WorldWideScience

Sample records for airborne particles

  1. The impact of fireworks on airborne particles

    OpenAIRE

    R. Vecchi; Bernardoni, V.; Cricchio, D; A. D'Alessandro; P. Fermo; F. Lucarelli(Agenzia Spaziale Italiana); S. Nava; Piazzalunga, A.; Valli, G.

    2008-01-01

    Fireworks are one of the most unusual sources of pollution in atmosphere; although transient, these pollution episodes are responsible for high concentrations of particles (especially metals and organic compounds) and gases. In this paper, results of a study on chemical-physical properties of airborne particles (elements, ions, organic and elemental carbon and particles size distributions) collected during a fireworks episode in Milan (Italy) are reported. Elements typically emitted during py...

  2. Airborne soil organic particles generated by precipitation

    Science.gov (United States)

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.; Piens, Dominique S.; China, Swarup; Kovarik, Libor; Keiluweit, Marco; Arey, Bruce W.; Gilles, Mary K.; Laskin, Alexander

    2016-06-01

    Airborne organic particles play a critical role in Earth's climate, public health, air quality, and hydrological and carbon cycles. However, sources and formation mechanisms for semi-solid and solid organic particles are poorly understood and typically neglected in atmospheric models. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rain events, sub-micrometre solid particles, with a chemical composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. We suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events.

  3. Study of airborne particles generated by the impact of droplets

    International Nuclear Information System (INIS)

    A liquid droplet impinging onto surfaces occurs in many industrial and natural processes. The study of this phenomenon is fundamental in order to determine the potential sources of contamination in the case of scenarios of liquid falls such as dripping. There are very few data in the literature in the case of the impact of millimeter-size droplets. The purpose of our work is to study experimentally the particle emission during the impact of droplets onto a liquid film. Experiments were conducted to study the influence of the velocity and the diameter of the droplets, the height of the liquid film, the surface tension and viscosity of the liquid on the airborne particles. Our results, original, have made it possible to examine the relevance of existing relations, describing the transition between deposition and splash regimes, in order to determine the presence or not of airborne particles. The micro droplets produced, with diameters less than fifty micrometers, are characterised in terms of total mass and size distribution. Our results also show the influence of a combination of several factors on the production of airborne particles. For this reason, it is interesting to use dimensionless numbers, to describe the relationship between the inertial, viscosity and surface tension forces, in order to understand physically the emission of airborne particles. (author)

  4. Acoustic Resonator Optimisation for Airborne Particle Manipulation

    Science.gov (United States)

    Devendran, Citsabehsan; Billson, Duncan R.; Hutchins, David A.; Alan, Tuncay; Neild, Adrian

    Advances in micro-electromechanical systems (MEMS) technology and biomedical research necessitate micro-machined manipulators to capture, handle and position delicate micron-sized particles. To this end, a parallel plate acoustic resonator system has been investigated for the purposes of manipulation and entrapment of micron sized particles in air. Numerical and finite element modelling was performed to optimise the design of the layered acoustic resonator. To obtain an optimised resonator design, careful considerations of the effect of thickness and material properties are required. Furthermore, the effect of acoustic attenuation which is dependent on frequency is also considered within this study, leading to an optimum operational frequency range. Finally, experimental results demonstrated good particle levitation and capture of various particle properties and sizes ranging to as small as 14.8 μm.

  5. [Investigation of Carbonaceous Airborne Particles by Scanning Proton Microprobe].

    Science.gov (United States)

    Bao, Liang-man; Liu, Jiang-feng; Lei, Qian-tao; Li, Xiao-lin; Zhang, Gui-lin; Li, Yan

    2016-01-15

    Carbonaceous particles are an important component of the atmospheric aerosol particles and important for global climate change, air quality and human health. The PM₁₀ single particles from two environmental monitor locations and seven pollution emission sources were analyzed using scanning proton microprobe (SPM) techniques. The concentration of carbon in individual particles was quantitatively determined by proton non-Rutherford elastic backscattering spectrometry (EBS). The results of this investigation showed that carbonaceous particles were dominant in the pollution sources of coal and oil combustions, diesel busexhaust and automobile exhaust, while inorganic particles were dominant in the sources of steel industry, cement dust and soil dust. Carbonaceous matter was enriched in particles from the city center, while mineral matter was the main component of airborne particles in the industrial area. Elemental mapping of single aerosol particles yielded important information on the chemical reactions of aerosol particles. The micro-PIXE (particle induced X-ray emission) maps of S, Ca and Fe of individual carbonaceous particles showed that sulfuration reaction occurred between SO₂and mineral particles, which increased the sulfur content of particles. PMID:27078933

  6. Radioactive airborne particles from Chernobyl forest fires

    International Nuclear Information System (INIS)

    The spring and summer, 1992 within 30-km zone near Chernobyl NPP were very hot and dry. That lead to forest fires in May (4 ... 9,23 ... 25), July (28 ... 30) and August (10...12). The Cs-137 soil contamination density (SCD) was equal to 1...400 Ci/km2 at various forest sections of combustion. The stationary air samplers with capacity of 1500 m3/h were used for the monitoring of aerosol emissions during fires. These samplers were situated at a distance of 5...10km from fires boundaries. Smoke particles were collected by the fibrous filters FPP-15-1,5 (Russia). After exposure the activity of aerosols of Cs which deposited by a filter was measured by a gamma-spectrometer. For the separation of Sr-90 and isotopes of Pu the radiochemical analysis was used. It was found that the concentration of Cs-137 increased up to 10...100 times compare with open-quotes backgroundclose quotes one even at several km from fires. The concentration of Cs-137 inside of combustion zone was estimated could exceed the Russian maximum permissible one both for population (0.49 nCi/m3) and for professionals (14 nCi/m3) if the SCD will be more than 0.5 and 7 Ci/km2, respectively. It was measured that Cs-137/Sr-90 and Cs-137/Pu-238 ratios increase in fire emissions. It is obviously, that such enrichment was a consequense of radioactive cesium evaporation at temperature more than 500 C. The experimental forest fire was carry out in August, 1993 in Bryansk region (Russia). The forest section with area 50x50 m was selected. The SCD of Cs-137 was equal to 30 Ci/km2. The Cs-137 concentration during the day before the experiment was equal to 0.16pCi/m3. The concentration was varied from 1.6 to 15 pCi/m3 during the experiment. For the determination of particle sizes the filter pack technique (Budyka et al, 1993) was used. It was found that particle size distribution was a bimodal in plume

  7. New Methods for Personal Exposure Monitoring for Airborne Particles.

    Science.gov (United States)

    Koehler, Kirsten A; Peters, Thomas M

    2015-12-01

    Airborne particles have been associated with a range of adverse cardiopulmonary outcomes, which has driven its monitoring at stationary central sites throughout the world. Individual exposures, however, can differ substantially from concentrations measured at central sites due to spatial variability across a region and sources unique to the individual, such as cooking or cleaning in homes, traffic emissions during commutes, and widely varying sources encountered at work. Personal monitoring with small, battery-powered instruments enables the measurement of an individual's exposure as they go about their daily activities. Personal monitoring can substantially reduce exposure misclassification and improve the power to detect relationships between particulate pollution and adverse health outcomes. By partitioning exposures to known locations and sources, it may be possible to account for variable toxicity of different sources. This review outlines recent advances in the field of personal exposure assessment for particulate pollution. Advances in battery technology have improved the feasibility of 24-h monitoring, providing the ability to more completely attribute exposures to microenvironment (e.g., work, home, commute). New metrics to evaluate the relationship between particulate matter and health are also being considered, including particle number concentration, particle composition measures, and particle oxidative load. Such metrics provide opportunities to develop more precise associations between airborne particles and health and may provide opportunities for more effective regulations. PMID:26385477

  8. Inversely tracking indoor airborne particles to locate their release sources

    Science.gov (United States)

    Zhang, Tengfei (Tim); Li, Hongzhu; Wang, Shugang

    2012-08-01

    Airborne particles can have numerous adverse effects on human health. Knowing the release locations of airborne particulate sources is helpful in minimizing pollutant exposure. This paper describes a proposal to locate indoor particulate sources by two inverse models: the quasi-reversibility (QR) model and the zone prescription of contaminant sources with the Lagrangian-reversibility (LR) model. The QR model reverses the time marching direction of the Eulerian governing equation and replaces the second-order diffusion term with a fourth-order stabilization term. The zone prescription LR model traces individual particulate motion in a Lagrangian reference frame after reversing the flow field. The particle trajectories are solved backward to the initial release once the conservative forces acting on particles are reversed. The tracked particles are proposed to be placed at the zone boundary of the largest concentration contour within the domain at a given time, which is provided as the initially known information. By connecting all particles at t = 0, a zone is formed that can prescribe the actual contaminant source. This study finds that both models can accurately locate particulate sources released instantaneously at a spot. The QR model performs slightly better than the LR model but is much more computationally demanding.

  9. Particle sizing of airborne radioactivity field measurements at Olympic Dam

    International Nuclear Information System (INIS)

    On July 1, 1991 the Australian Radiation Laboratory (ARL) commenced a two year project entitled - Particle sizing of airborne radioactivity, funded by a Mining and Quarrying Occupational Health and Safety Committee - grant (submission No. 9138). This study was set out to measure airborne radioactivity size distributions in an underground uranium mine, in order to provide better estimates of the health risks associated with inhalation of airborne radiation in the work place. These measurements included both active and passive measurement of radon gas, continuous and spot sample of radon daughter levels, as well as wire screen diffusion battery measurements of the radon daughter size distributions. The results of measurements at over 50 sites within the mine are reported, together with the calculated dose conversion factors derived from the older dosimetric models and from the new ICRP lung model using the computer code RADEP. The results showed that the ventilation is relatively uniform within the mine and the radon daughter concentrations are kept to less than 20% of the equilibrium concentration. The radon and radon daughter concentrations showed marked variability with both time and position within the mine. It is concluded that the present radiation protection methods and dose conversion factors used in Australia provide a good estimate of the radiation risk for the inhalation of radon progeny. 29 refs., 8 tabs., 9 figs

  10. Microvolumetric determination of inorganic and organic sulphur in airborne particles

    Energy Technology Data Exchange (ETDEWEB)

    Moehnle, K.; Krivan, V.; Grallath, E.

    1984-02-01

    A reductive procedure for the determination of sulphur was modified and applied to the analysis of airborne particles. It is based on the reduction of the given sulphur forms with the mixture HI/HCOOH/H/sub 3/PO/sub 2//Sb/sub 2/O/sub 3/ to hydrogen sulphide, which is transferred into a NaOH solution and determined by microtitration with Cd/sup 2 +/ using dithizone as indicator. Examination of the behaviour of the different sulphur forms in the reduction mixture showed that the inorganic sulphur was converted to H/sub 2/S whereas the organic remained in the reaction flask. This makes possible the differentiation between inorganic and organic sulphur when one part of the sample is directly reacted with the mixture and the other one is oxidatively decomposed (Schoeniger), and then the total sulphur determined with the same procedure. The method was used for the analysis of a number of airborne particle samples of different origin, and the results were compared with those of some instrumental techniques.

  11. Measurement of airborne particle concentrations near the Sunset Crater volcano, Arizona.

    Science.gov (United States)

    Benke, Roland R; Hooper, Donald M; Durham, James S; Bannon, Donald R; Compton, Keith L; Necsoiu, Marius; McGinnis, Ronald N

    2009-02-01

    Direct measurements of airborne particle mass concentrations or mass loads are often used to estimate health effects from the inhalation of resuspended contaminated soil. Airborne particle mass concentrations were measured using a personal sampler under a variety of surface-disturbing activities within different depositional environments at both volcanic and nonvolcanic sites near the Sunset Crater volcano in northern Arizona. Focused field investigations were performed at this analog site to improve the understanding of natural and human-induced processes at Yucca Mountain, Nevada. The level of surface-disturbing activity was found to be the most influential factor affecting the measured airborne particle concentrations, which increased over three orders of magnitude relative to ambient conditions. As the surface-disturbing activity level increased, the particle size distribution and the majority of airborne particle mass shifted from particles with aerodynamic diameters less than 10 mum (0.00039 in) to particles with aerodynamic diameters greater than 10 mum (0.00039 in). Under ambient conditions, above average wind speeds tended to increase airborne particle concentrations. In contrast, stronger winds tended to decrease airborne particle concentrations in the breathing zone during light and heavy surface-disturbing conditions. A slight increase in the average airborne particle concentration during ambient conditions was found above older nonvolcanic deposits, which tended to be finer grained than the Sunset Crater tephra deposits. An increased airborne particle concentration was realized when walking on an extremely fine-grained deposit, but the sensitivity of airborne particle concentrations to the resuspendible fraction of near-surface grain mass was not conclusive in the field setting when human activities disturbed the bulk of near-surface material. Although the limited sample size precluded detailed statistical analysis, the differences in airborne particle

  12. An introduction to data analysis of airborne particle composition

    International Nuclear Information System (INIS)

    A major problem facing air quality management personnel is the identification of sources of airborne particles and the quantitative apportionment of the aerosol mass to those sources. The ability to collect particle samples and analyze these samples for a suite of elements by such techniques as neutron activation analysis or x-ray fluorescence provides that data for the problem of resolving a series of complex mixtures into its components based on the profiles of the elements emitted by the various sources in the airshed. If all of the sources and their composition profiles are known, then the mass balance model becomes a multiple regression problem. If a series of samples have been analyzed without substantial information being available on the sources, factor analysis methods can be employed. In both situations, there are limits to the identification of specific sources or the location of the sources. Thus, other methods that combine chemical with meteorological data have been developed to assist in spatial identification of pollutant sources. There are also limitations to the ability of any statistical method to resolve sources in real world problems. The physical and statistical basis of these methods and their application to representative problems are reviewed in this report. (author). 42 refs, 5 figs, 5 tabs

  13. Determination of thorium and uranium particles in monazite airborne

    International Nuclear Information System (INIS)

    The work is the determination of the Mass Median Aerodynamic Diameter of Airborne particles of Th and U, produced during the milling of monazite in Monozite Sand Plants. The air samples was collected using a Cascade Impactor from Delron DCI-6 with a flux of 12,5 1/min and cut-off diametes of 0,5, 1,0, 4,0, 8,0 and 16,0 μm. Each stage of the cascate impactor was analysed by measuring the X rays induced in collision with 2 MeV protons acellereted by a 4 MV Van de Graaff acceletor located at University Catolic, PUC, RJ. The MMAD found for Th and U was of 1,15 μm with a geometric standard desviation of 2,0. Take in acount that there are more thorium than uranium in the brazilian monazite, and the 232Th 238U are thr principal isotopes at the Th and U natural radioative decay series, we considered the mass and the activity distribution as equal. The mean concentration of Th (17,0 Bq/m3) record in the air was 42% above 3/10 of international limit for concentration of oxides of thorium in the air, while the concentration of U remaind below 1/10 of the limit for concentration of U3O8 in the air. (author)

  14. Study of airborne particle generated by free falling powder

    International Nuclear Information System (INIS)

    This study comes within the general framework of industrial facilities' safety research. Indeed, industrial processes, notably in the nuclear field, handle hazardous materials in powder form and can produce large quantities of fugitive dust. The study of the particles resuspension from powders is of interest of first order in order to estimate the consequences of this source term of contamination on the operator, the neighbouring installations and, if necessary, the environment. Up to now, there are very few reliable data in the scientific literature on the particulate emission in case of a scenario with an accidental free fall spill of powder. The powder dustiness evaluation is carried out using coefficients obtained in experiments, or using empirical correlations. The objective of the present work is to study the influence of some parameters involved in the airborne particles production by a free fall of powder. For that purpose, experiments are carried out in order to study the influence of parameters such as the type of discharge, the powder nature, the type of surface on which occurs the powder impaction, the system diameter used for discharge, and the falling mass. The results of mass fractions and number concentrations obtained highlighted the dominating parameters according to the type of discharge employed. Thereafter, the comparisons between our results and the empirical correlations available in the literature showed that those led to an undervaluation of the powder dustiness. This thus led us to develop, starting from the whole of experimental data, empirical correlations taking into account the various parameters studied as well as the interactions. (author)

  15. Discussion on National Standard GB 6167 "Methods for Testing the Performance of Airborne Particle Counter"

    Institute of Scientific and Technical Information of China (English)

    刘俊杰; 朱能; 王君山

    2003-01-01

    Airborne particle counters are used widely to test the air cleanliness of cleanrooms. The current Chinese national standard of airborne particle counter calibration, GB6167-85, Methods for Testing the Performance of Dust Particle Counter, has kept the same for more than 10 years. It is necessary to be amended in time.This paper discusses the differences between Chinese airborne particle counter calibration procedure and other new calibration procedures in other countries, and points out the defects of current Chinese national standard.The draft of revised Chinese National Standard is also introduced. The new revised standard, Methods for Testing the Performance of Airborne Particle Counter, covers two level calibrations:primary and secondary. Primary calibration procedure includes testing 6 kinds of performances: sample airflow rate, false counting, particle size accuracy and resolution, particle counting stability, counting efficiency and particle concentration limit. Secondary calibration is a relative comparing test method to verify the counting accuracy of calibrated airborne particle counters. Finally, how to keep the calibration traceability is suggested.

  16. Evaluation of airborne particle emissions from commercial products containing carbon nanotubes

    International Nuclear Information System (INIS)

    The emission of the airborne particles from epoxy resin test sticks with different carbon nanotube (CNT) loadings and two commercial products were characterized while sanding with three grit sizes and three disk sander speeds. The total number concentrations, respirable mass concentrations, and particle size number/mass distributions of the emitted particles were measured using a condensation particle counter, an optical particle counter, and a scanning mobility particle sizer. The emitted particles were sampled on a polycarbonate filter and analyzed using electron microscopy. The highest number concentrations (arithmetic mean = 4,670 particles/cm3) were produced with coarse sandpaper, 2 % (by weight) CNT test sticks and medium disk sander speed, whereas the lowest number concentrations (arithmetic mean = 92 particles/cm3) were produced with medium sandpaper, 2 % CNT test sticks and slow disk sander speed. Respirable mass concentrations were the highest (arithmetic mean = 1.01 mg/m3) for fine sandpaper, 2 % CNT test sticks and medium disk sander speed and the lowest (arithmetic mean = 0.20 mg/m3) for medium sandpaper, 0 % CNT test sticks and medium disk sander speed. For CNT-epoxy samples, airborne particles were primarily micrometer-sized epoxy cores with CNT protrusions. No free CNTs were observed in airborne samples, except for tests conducted with 4 % CNT-epoxy. The number concentration, mass concentration, and size distribution of airborne particles generated when products containing CNTs are sanded depends on the conditions of sanding and the characteristics of the material being sanded.

  17. Self-refreshing characteristics of an airborne particle sensor using a bridged paddle oscillator

    Science.gov (United States)

    Choi, Eunsuk; Lee, Seung-Beck; Park, Bonghyun; Sul, Onejae

    2016-05-01

    We report on the self-refreshing characteristics of a micromachined airborne particle sensor. The sensor consists of a bridge-type beam having an oscillating paddle-type particle collector at its center. When a positive potential is applied to the paddle, the sensor is able to attract and collect negatively charged airborne particles while oscillating close to its resonant frequency and thereby measure their density from the change in the oscillating phase at ˜10 pg resolution. When the applied potential is removed, the collected particles are detached from the sensor due to momentum transfer from the oscillating paddle, thus demonstrating a self-refreshing capability.

  18. Bioaerosol Mass Spectrometry for Rapid Detection of Individual Airborne Mycobacterium tuberculosis H37Ra Particles

    OpenAIRE

    Tobias, Herbert J.; Schafer, Millie P.; Pitesky, Maurice; Fergenson, David P.; Horn, Joanne; Frank, Matthias; Gard, Eric E.

    2005-01-01

    Single-particle laser desorption/ionization time-of-flight mass spectrometry, in the form of bioaerosol mass spectrometry (BAMS), was evaluated as a rapid detector for individual airborne, micron-sized, Mycobacterium tuberculosis H37Ra particles, comprised of a single cell or a small number of clumped cells. The BAMS mass spectral signatures for aerosolized M. tuberculosis H37Ra particles were found to be distinct from M. smegmatis, Bacillus atrophaeus, and B. cereus particles, using a distin...

  19. Airborne contamination of forest soils by carbonaceous particles from industrial coal processing

    OpenAIRE

    Schmidt, M. W. I.; Knicker, Heike; Hatcher, Patrick G.; Kögel-Knabner, I.

    2000-01-01

    In the German Ruhr-area industrial coal processing emitted large amounts of carbonaceous particles for a century until 1970. Our objectives were to detect the presence of airborne carbonaceous particles and assess their impact on the chemical structure of soil organic matter in two forest soils (Podzols) with potential sources of carbonaceous particles approximately 10 to 30 km away. Contamination was not visible macroscopicaily. Organic matter was characterized in bulk soils and in particle-...

  20. ELECTROHYDRODYNAMIC ENHANCED TRANSPORT AND TRAPPING OF AIRBORNE PARTICLES TO A MICROFLUIDIC AIR-LIQUID INTERFACE

    OpenAIRE

    Sandström, Niklas; Frisk, Thomas; Stemme, Göran; van der Wijngaart, Wouter

    2008-01-01

    We introduce a novel approach for greatly improved transport and trapping of airborne sample to a microfluidic analysis system by integrating an electrohydrodynamic (EHD) air pump with a microfluidic air-liquid interface. In our system, a negative corona discharge partially ionizes the air around a sharp electrode tip while the electrostatic field accelerates airborne particles towards an electrically grounded liquid surface, where they absorb. The air-liquid interface is fixated at the micro...

  1. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit

    OpenAIRE

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J; Banfield, Jillian F; Nazaroff, William W.

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupanc...

  2. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit.

    OpenAIRE

    Licina, D; Bhangar, S; Brooks, B.; Baker, R; Firek, B; Tang, X; Morowitz, MJ; Banfield, JF; Nazaroff, WW

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupanc...

  3. Ventilation conditions and air-borne bacteria and particles in operating theatres: proposed safe economies.

    OpenAIRE

    Clark, R. P.; Reed, P. J.; Seal, D V; Stephenson, M. L.

    1985-01-01

    Concentrations of air-borne bacteria and particles have been measured in turbulently ventilated operating theatres in full flow, half flow and zero flow conditions. Increased air-borne challenge produced by human activity and by mechanical cleaning procedures is demonstrated: die-away of this contamination is shown to be related to the ventilation rate. Ventilation can be reduced or turned off at night and during weekends, and cleaning can also be carried out, without increased risk of infect...

  4. Airborne particle monitoring with urban closed-circuit television camera networks and a chromatic technique

    International Nuclear Information System (INIS)

    An economic approach for the preliminary assessment of 2–10 µm sized (PM10) airborne particle levels in urban areas is described. It uses existing urban closed-circuit television (CCTV) surveillance camera networks in combination with particle accumulating units and chromatic quantification of polychromatic light scattered by the captured particles. Methods for accommodating extraneous light effects are discussed and test results obtained from real urban sites are presented to illustrate the potential of the approach

  5. Size distribution of airborne mist and endotoxin-containing particles in metalworking fluid environments.

    Science.gov (United States)

    Wang, Hongxia; Reponen, Tiina; Lee, Shu-An; White, Eugene; Grinshpun, Sergey A

    2007-03-01

    The objective of the study was to investigate size-selective concentrations of airborne particles and endotoxin in metalworking fluid (MWF) environments. The experiments were conducted under two conditions: (1) MWF collected in the field was aerosolized with a laboratory-scale simulator (MWF simulator) in the laboratory; and (2) MWFs were aerosolized during routine field operations. All experiments included size-selective measurement of airborne concentrations of particle numbers and endotoxin mass using an electrical low-pressure impactor. During field sampling, the total microbial and endotoxin concentrations in the air were also measured with a BioSampler, and the mass concentration of MWF mists was measured with a photometer. Airborne particle concentrations were highest in the fine particle size ranges in the areas affected by MWFs. Relatively high concentrations of endotoxin were detected at particle size below 0.39 mum, which is smaller than the size of intact bacterial cells. The total microbial and endotoxin analysis revealed high microbial contamination in one sampling site although the total particle mass was not elevated. It was concluded that MWF sites can be contaminated with high concentrations of fine particles, and these fine particles may contain microbial components, such as endotoxin. The results call for the size-selective measurement of particles and endotoxin for more comprehensive exposure assessment in MWF facilities. PMID:17237021

  6. On Airborne Wear Particles Emissions ofCommercial Disc Brake Materials– A Pin on Disc Simulation

    OpenAIRE

    Söderberg, Anders; Wahlström, Jens; Olander, Lars; Jansson, Anders; Olofsson, Ulf

    2008-01-01

    A novel test method was used to study the concentration and size distribution of airborne wear particles from disc brake materials. A pin-on-disc tribometer equipped with particle counting instruments was used as test equipment. Four different nonasbestoses-organic (NAO) linings for the U.S. market and four different low metallic linings for the EU market were tested against material from gray cast iron rotors. The result indicates that the low metallic linings are more aggressive to the roto...

  7. Characterization of winter airborne particles at Emperor Qin's Terra-cotta Museum, China

    International Nuclear Information System (INIS)

    Daytime and nighttime total suspended particulate matters (TSP) were collected inside and outside Emperor Qin's Terra-cotta Museum, the most popular on-site museum in China, in winter 2008. The purpose of this study was to investigate the contribution of visitors to indoor airborne particles in two display halls with different architectural and ventilating conditions, including Exhibition Hall and Pit No.1. Morphological and elemental analyses of 7-day individual particle samples were performed with scanning electron microscopy and energy dispersive X-ray spectrometer (SEM-EDX). Particle mass concentrations in Exhibition Hall and Pit No.1 were in a range of 54.7-291.7 μg m-3 and 95.3-285.4 μg m-3 with maximum diameters of 17.5 μm and 26.0 μm, respectively. In most sampling days, daytime/nighttime particle mass ratios in Exhibition Hall (1.30-3.12) were higher than those in Pit No.1 (0.96-2.59), indicating more contribution of the tourist flow in Exhibition Hall than in Pit No. 1. The maximum of particle size distributions were in a range of 0.5-1.0 μm, with the highest abundance (43.4%) occurred in Exhibition Hall at night. The majority of airborne particles at the Museum was composed of soil dust, S-containing particles, and low-Z particles like soot aggregate and biogenic particles. Both size distributions and particle types were found to be associated with visitor numbers in Exhibition Hall and with natural ventilation in Pit No.1. No significant influence of visitors on indoor temperature and relative humidity (RH) was found in either display halls. Those baseline data on the nature of the airborne particles inside the Museum can be incorporated into the maintenance criteria, display management, and ventilation strategy by conservators of the museum.

  8. Direct Characterization of Airborne Particles Associated with Arsenic-rich Mine Tailings: Particle Size Mineralogy and Texture

    Energy Technology Data Exchange (ETDEWEB)

    M Corriveau; H Jamieson; M Parsons; J Campbell; A Lanzirotti

    2011-12-31

    Windblown and vehicle-raised dust from unvegetated mine tailings can be a human health risk. Airborne particles from As-rich abandoned Au mine tailings from Nova Scotia, Canada have been characterized in terms of particle size, As concentration, As oxidation state, mineral species and texture. Samples were collected in seven aerodynamically fractionated size ranges (0.5-16 {micro}m) using a cascade impactor deployed at three tailings fields. All three sites are used for recreational activities and off-road vehicles were racing on the tailings at two mines during sample collection. Total concentrations of As in the <8 {micro}m fraction varied from 65 to 1040 ng/m{sup 3} of air as measured by proton-induced X-ray emission (PIXE) analysis. The same samples were analysed by synchrotron-based microfocused X-ray absorption near-edge spectroscopy ({micro}XANES) and X-ray diffraction ({micro}XRD) and found to contain multiple As-bearing mineral species, including Fe-As weathering products. The As species present in the dust were similar to those observed in the near-surface tailings. The action of vehicles on the tailings surface may disaggregate material cemented with Fe arsenate and contribute additional fine-grained As-rich particles to airborne dust. Results from this study can be used to help assess the potential human health risks associated with exposure to airborne particles from mine tailings.

  9. Airborne endotoxin associated with particles of different sizes and affected by water content in handled straw.

    Science.gov (United States)

    Madsen, A M; Nielsen, S H

    2010-07-01

    High exposures to endotoxin are observed in environments where organic materials are handled and lower exposures are found in e.g. indoor air. Inhaled endotoxin contributes significantly to the induction of airway inflammation and dysfunction. The size of an inhaled particle influences the deposition in the airways and the following health symptoms. The objective is to characterise the distribution of endotoxin on airborne particles of different sizes in straw storage halls with high exposure and in other environments with lower exposure levels to endotoxin. Furthermore we have studied the influence of water content of handled straw on the size distribution of endotoxin containing particles. Total, inhalable, thoracic and respirable endotoxin and particles have each been quantified in aerosols from boiler rooms and straw storage halls at 24 power plants, including 21 biofuel plants. Inhalable, thoracic and respirable endotoxin have been quantified in aerosols from offices and outdoor air. The endotoxin concentration was higher in airborne thoracic dust than in airborne 'total dust'. The median respirable fraction in the straw storage halls, boiler rooms at biofuel plants, boiler rooms at conventional plants, offices and outdoors was respectively 42%, 9%, 19%, 24% and 34%. Thoracic endotoxin per number of thoracic particles was higher than respirable endotoxin per number of respirable particles at the biofuel plants. In straw storage halls the fraction of endotoxin of respirable size was highest on the days with lowest water content in the received straw. Furthermore the exposures to all endotoxin fractions were highest on days with the lowest water content in the received straw. In conclusion the highest exposures and concentrations of endotoxin occur or tend to occur from thoracic dust. A high variation in endotoxin concentrations and in fractions of respirable or thoracic size is found in the different working areas. This is important in the risk assessment and

  10. Particle size analysis in estimating the significance of airborne contamination

    International Nuclear Information System (INIS)

    In this report information on pertinent methods and techniques for analysing particle size distributions is compiled. The principles underlying the measurement methods are described, and the merits of different methods in relation to the information being sought and to their usefulness in the laboratory and in the field are explained. Descriptions on sampling methods, gravitational and inertial particle separation methods, electrostatic sizing devices, diffusion batteries, optical sizing techniques and autoradiography are included. Finally, the report considers sampling for respirable activity and problems related to instrument calibration

  11. Retention of airborne particles in granular bed filters

    International Nuclear Information System (INIS)

    A literature survey was made on theoretical models for the prediction of particle retention in sand beds. Also data on observed retention was collected from the literature. Based on this information, a semi-empirical model was compiled. Comparison of the model with published retention data shows a general agreement. (Auth.)

  12. Evaluation of cell sorting aerosols and containment by an optical airborne particle counter.

    Science.gov (United States)

    Xie, Mike; Waring, Michael T

    2015-08-01

    Understanding aerosols produced by cell sorting is critical to biosafety risk assessment and validation of containment efficiency. In this study an Optical Airborne Particle Counter was used to analyze aerosols produced by the BD FACSAria and to assess the effectiveness of its aerosol containment. The suitability of using this device to validate containment was directly compared to the Glo-Germ method put forth by the International Society for Advancement of Cytometry (ISAC) as a standard for testing. It was found that high concentrations of aerosols ranging from 0.3 µm to 10 µm can be detected in failure mode, with most less than 5 µm. In most cases, while numerous aerosols smaller than 5 µm were detected by the Optical Airborne Particle Counter, no Glo-Germ particles were detected, indicating that small aerosols are under-evaluated by the Glo-Germ method. The results demonstrate that the Optical Airborne Particle Counter offers a rapid, economic, and quantitative analysis of cell sorter aerosols and represents an improved method over Glo-Germ for the task of routine validation and monitoring of aerosol containment for cell sorting. PMID:26012776

  13. Direct characterization of airborne particles associated with arsenic-rich mine tailings: Particle size, mineralogy and texture

    Energy Technology Data Exchange (ETDEWEB)

    Corriveau, M.C. [Department of Geological Sciences and Geological Engineering, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Jamieson, H.E., E-mail: jamieson@geol.queensu.ca [Department of Geological Sciences and Geological Engineering, Queen' s University, Kingston, Ontario, K7L 3N6 (Canada); Parsons, M.B. [Geological Survey of Canada (Atlantic), Natural Resources Canada, Dartmouth, Nova Scotia, B2Y 4A2 (Canada); Campbell, J.L. [Guelph-Waterloo Physics Institute, University of Guelph, Guelph, Ontario, N1G 2W1 (Canada); Lanzirotti, A. [Center for Advanced Radiation Sources, University of Chicago, Chicago, IL 60637 (United States)

    2011-09-15

    Highlights: > Airborne dust from As-rich gold mine tailings used for recreation was collected. > Total concentrations of arsenic in the <8 {mu}m fraction varied from 65 to 1040 ng/m{sup 3}. > Multiple As minerals in dust are comparable with near-surface tailings samples. - Abstract: Windblown and vehicle-raised dust from unvegetated mine tailings can be a human health risk. Airborne particles from As-rich abandoned Au mine tailings from Nova Scotia, Canada have been characterized in terms of particle size, As concentration, As oxidation state, mineral species and texture. Samples were collected in seven aerodynamically fractionated size ranges (0.5-16 {mu}m) using a cascade impactor deployed at three tailings fields. All three sites are used for recreational activities and off-road vehicles were racing on the tailings at two mines during sample collection. Total concentrations of As in the <8 {mu}m fraction varied from 65 to 1040 ng/m{sup 3} of air as measured by proton-induced X-ray emission (PIXE) analysis. The same samples were analysed by synchrotron-based microfocused X-ray absorption near-edge spectroscopy ({mu}XANES) and X-ray diffraction ({mu}XRD) and found to contain multiple As-bearing mineral species, including Fe-As weathering products. The As species present in the dust were similar to those observed in the near-surface tailings. The action of vehicles on the tailings surface may disaggregate material cemented with Fe arsenate and contribute additional fine-grained As-rich particles to airborne dust. Results from this study can be used to help assess the potential human health risks associated with exposure to airborne particles from mine tailings.

  14. Allergens in Paved Road Dust and Airborne Particles

    OpenAIRE

    Miguel, Ann G.; Cass, Glen R.; Glovsky, M. Michael; Weiss, Jay

    1999-01-01

    Paved road dust present on the surface of streets in Southern California consists of a complex mixture of soil dust, deposited motor vehicle exhaust particles, tire dust, brake lining wear dust, plant fragments, and other biological materials. The research presented here shows that allergens from at least 20 different source materials are found in the paved road dust. These include pollens and pollen fragments, animal dander, and molds. When paved road dust is resuspended into the atmosphere ...

  15. Characterization of individual airborne particles in Taiyuan City, China

    OpenAIRE

    Xie, R. K.; Seip, H. M.; L. Liu; Zhang, D.S.

    2009-01-01

    Taiyuan, the capital of Shanxi province, China, is one of the most polluted cities in the world. To characterize the ambient particulate pollution, samples of particulates with aerodynamic diameter less than 10 µm (PM10) were collected during a 6-day campaign. Individual particles were analyzed by Scanning Electron Microscope with Energy-Dispersive Spectrometer (SEM-EDS) to determine their chemical composition. Meanwhile, photomicrographs were obtained from SEM to aid in particles’ source ide...

  16. Identification and characterization of individual airborne volcanic ash particles by Raman microspectroscopy.

    Science.gov (United States)

    Ivleva, Natalia P; Huckele, Susanne; Weinzierl, Bernadett; Niessner, Reinhard; Haisch, Christoph; Baumann, Thomas

    2013-11-01

    We present for the first time the Raman microspectroscopic identification and characterization of individual airborne volcanic ash (VA) particles. The particles were collected in April/May 2010 during research aircraft flights, which were performed by Deutsches Zentrum für Luft- und Raumfahrt in the airspace near the Eyjafjallajökull volcano eruption and over Europe (between Iceland and Southern Germany). In addition, aerosol particles were sampled by an Electrical Low Pressure Impactor in Munich, Germany. As references for the Raman analysis, we used the spectra of VA collected at the ground near the place of eruption, of mineral basaltic rock, and of different minerals from a database. We found significant differences in the spectra of VA and other aerosol particles (e.g., soot, nitrates, sulfates, and clay minerals), which allowed us to identify VA among other atmospheric particulate matter. Furthermore, while the airborne VA shows a characteristic Raman pattern (with broad band from ca. 200 to ca. 700 cm(-1) typical for SiO₂ glasses and additional bands of ferric minerals), the differences between the spectra of aged and fresh particles were observed, suggesting differences in their chemical composition and/or structure. We also analyzed similarities between Eyjafjallajökull VA particles collected at different sampling sites and compared the particles with a large variety of glassy and crystalline minerals. This was done by applying cluster analysis, in order to get information on the composition and structure of volcanic ash. PMID:24121468

  17. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit

    Science.gov (United States)

    Licina, Dusan; Bhangar, Seema; Brooks, Brandon; Baker, Robyn; Firek, Brian; Tang, Xiaochen; Morowitz, Michael J.; Banfield, Jillian F.; Nazaroff, William W.

    2016-01-01

    Premature infants in neonatal intensive care units (NICUs) have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC) system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses’ station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3–1 μm) particles. The mean indoor particle mass concentrations averaged across the size range 0.3–10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3). Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37–81%. Near-room indoor emissions and outdoor sources contributed 18–59% and 1–5%, respectively. Airborne particle levels in the size range 1–10 μm showed strong dependence on human activities, indicating the importance of indoor

  18. Concentrations and Sources of Airborne Particles in a Neonatal Intensive Care Unit.

    Directory of Open Access Journals (Sweden)

    Dusan Licina

    Full Text Available Premature infants in neonatal intensive care units (NICUs have underdeveloped immune systems, making them susceptible to adverse health consequences from air pollutant exposure. Little is known about the sources of indoor airborne particles that contribute to the exposure of premature infants in the NICU environment. In this study, we monitored the spatial and temporal variations of airborne particulate matter concentrations along with other indoor environmental parameters and human occupancy. The experiments were conducted over one year in a private-style NICU. The NICU was served by a central heating, ventilation and air-conditioning (HVAC system equipped with an economizer and a high-efficiency particle filtration system. The following parameters were measured continuously during weekdays with 1-min resolution: particles larger than 0.3 μm resolved into 6 size groups, CO2 level, dry-bulb temperature and relative humidity, and presence or absence of occupants. Altogether, over sixteen periods of a few weeks each, measurements were conducted in rooms occupied with premature infants. In parallel, a second monitoring station was operated in a nearby hallway or at the local nurses' station. The monitoring data suggest a strong link between indoor particle concentrations and human occupancy. Detected particle peaks from occupancy were clearly discernible among larger particles and imperceptible for submicron (0.3-1 μm particles. The mean indoor particle mass concentrations averaged across the size range 0.3-10 μm during occupied periods was 1.9 μg/m3, approximately 2.5 times the concentration during unoccupied periods (0.8 μg/m3. Contributions of within-room emissions to total PM10 mass in the baby rooms averaged 37-81%. Near-room indoor emissions and outdoor sources contributed 18-59% and 1-5%, respectively. Airborne particle levels in the size range 1-10 μm showed strong dependence on human activities, indicating the importance of indoor

  19. Sampling and Characterization of Airborne Particle from Car Brakes Testing

    Czech Academy of Sciences Publication Activity Database

    Moravec, Pavel; Smolík, Jiří; Schwarz, Jaroslav; Ševčíková, Irena; Kukutschová, J.; Tomášek, V.

    Praha: Česká aerosolová společnost, 2009, s. 25-30. ISBN 978-80-86186-20-7. [Konference České aerosolové společnosti /10./. Čejkovice (CZ), 12.11.2009-13.11.2009] R&D Projects: GA ČR GA106/07/1436 Institutional research plan: CEZ:AV0Z40720504 Keywords : friction * size resolved sampling * wear particles Subject RIV: CF - Physical ; Theoretical Chemistry http://cas.icpf.cas.cz/download/Sbornik_VKCAS_2009.pdf

  20. Indoor and outdoor airborne particles. An in vitro study on mutagenic potential and toxicological implications.

    OpenAIRE

    Houdt, van, R.

    1988-01-01

    IntroductionAir pollution components are present as gases and as particulate matter. As particle deposition takes place in various parts of the respiratory system particulate matter may have other toxicological implications than gaseous pollutants, which all may penetrate in the lower part of the respiratory tract. In addition, suspended particulate matter represents a group of pollutants of variable physical as well as chemical composition. Therefore airborne particulate matter cannot be reg...

  1. Assessment of oxidative DNA damage formation by organic complex mixtures from airborne particles PM10

    Czech Academy of Sciences Publication Activity Database

    Gábelová, A.; Valovičová, Z.; Lábaj, J.; Bačová, G.; Binková, Blanka; Farmer, P. B.

    2007-01-01

    Roč. 620, 1-2 (2007), s. 135-144. ISSN 0027-5107 Grant ostatní: EU(EU) 2000-00091 Institutional research plan: CEZ:AV0Z50390512 Source of funding: R - rámcový projekt EK Keywords : airborne particles PM10 * oxidative DNA damage * 8-oxoguanine Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 4.159, year: 2007

  2. Airborne Release of Particles in Overheating Incidents Involving Plutonium Metal and Compounds

    International Nuclear Information System (INIS)

    Ever-increasing utilization of nuclear fuels will result in wide-scale plutonium recovery processing, reconstitution of fuels, transportation, and extensive handling of this material. A variety of circumstances resulting in overheating and fires involving plutonium may occur, releasing airborne particles. This work describes the observations from a study in which the airborne release of plutonium and its compounds was measured during an exposure of the material of interest containing plutonium to temperatures which may result from fires. Aerosol released from small cylinders of metallic plutonium ignited in air at temperatures from 410 to 650°C ranged from 3 x 10-6 to 5 x 10-5 wt%. Particles smaller than 15μm in diameter represented as much as 0.03% of the total released. Large plutonium pieces weighing from 456 to 1770 g were ignited and allowed to oxidize completely in air with a velocity of around 500 cm/sec. Release rates of from 0.0045 to 0.032 wt% per hour were found. The median mass diameter of airborne material was 4 μm. Quenching the oxidation with magnesium oxide sand reduced the release to 2.9 X 10-4 wt% per hour. Many experiments were carried out in which plutonium compounds as powders were heated at temperatures ranging from 700 to 1000°C with several air flows. Release rates ranged from 5 x 10-8 to 0.9 wt% per hour, depending upon the compound and the conditions imposed. The airborne release from boiling solutions of plutonium nitrate were roughly related to energy of boiling, and ranged from 4 x 10-4 to 2 x 10-1 % for the evaporation of 90% of the solution. The fraction airborne when combustibles contaminated with plutonium are burned is under study. The data reported can be used in assessing the consequences of off-standard situations involving plutonium and its compounds in fires. (author)

  3. Predicting emissions of SVOCs from polymeric materials and their interaction with airborne particles.

    Science.gov (United States)

    Xu, Ying; Little, John C

    2006-01-15

    A model that predicts the emission rate of volatile organic compounds (VOCs) from building materials is extended and used to predict the emission rate of semivolatile organic compounds (SVOCs) from polymeric materials. Reasonable agreement between model predictions and gas-phase di-2-ethylhexyl phthalate (DEHP) concentrations is achieved using data collected in a previous experimental study that measured emissions of DEHP from vinyl flooring in two very different chambers. While emissions of highly volatile VOCs are subject to "internal" control (the material-phase diffusion coefficient), emissions of the very low volatility SVOCs are subject to "external" control (partitioning into the gas phase, the convective mass-transfer coefficient, and adsorption onto interior surfaces). The effect of SVOCs partitioning onto airborne particles is also examined. The DEHP emission rate is increased when the gas-phase concentration is high, and especially when partitioning to the airborne particles is strong. Airborne particles may play an important role in inhalation exposure as well as in transporting SVOCs well beyond the source. Although more rigorous validation is needed, the model should help elucidate the mechanisms governing emissions of phthalate plasticizers, brominated flame retardants, biocides, and other SVOCs from a wide range of building materials and consumer products. PMID:16468389

  4. Total airborne mold particle sampling: evaluation of sample collection, preparation and counting procedures, and collection devices.

    Science.gov (United States)

    Godish, Diana; Godish, Thad

    2008-02-01

    This study was conducted to evaluate (i) procedures used to collect, prepare, and count total airborne mold spore/particle concentrations, and (ii) the relative field performance of three commercially available total airborne mold spore/particle sampling devices. Differences between factory and laboratory airflow calibration values of axial fan-driven sampling instruments (used in the study) indicated a need for laboratory calibration using a mass flow meter to ensure that sample results were accurately calculated. An aniline blue-amended Calberla's solution adjusted to a pH of 4.2-4.4 provided good sample mounting/counting results using Dow Corning high vacuum grease, Dow Corning 280A adhesive, and Dow Corning 316 silicone release spray for samples collected using mini-Burkard and Allergenco samplers. Count variability among analysts was most pronounced in 5% counts of relatively low mold particle deposition density samples and trended downward with increased count percentage and particle deposition density. No significant differences were observed among means of 5, 10, and 20% counts and among analysts; a significant interaction effect was observed between analysts' counts and particle deposition densities. Significantly higher mini-Burkard and Air-O-Cell total mold spore/particle counts for 600x vs. 400x (1.9 and 2.3 x higher, respectively), 1000x vs. 600x (1.9 and 2.2 x higher, respectively) and 1000x vs. 400x (3.6 and 4.6 x higher, respectively) comparisons indicated that 1000x magnification counts best quantified total airborne mold spore/particles using light microscopy, and that lower magnification counts may result in unacceptable underreporting of airborne mold spore/particle concentrations. Modest but significantly higher (1.2x) total mold spore concentrations were observed with Allergenco vs. mini-Burkard samples collected in co-located, concurrently operated sampler studies; moderate but significantly higher mini-Burkard count values (1.4x) were

  5. Approximation for the absorption coefficient of airborne atmospheric aerosol particles in terms of measurable bulk properties

    OpenAIRE

    HÄNEL, GOTTFRIED; Dlugi, Ralph

    2011-01-01

    The absorption coefficient of airborne atmospheric aerosol particles can be approximated by where λ is the wavelength of radiation, n — ik is the mean complex refractive index, ρ the mean bulk density, and M/Vk the mass of the particles per unit volume of air. This approximation gives good results at relative humidities between 0 and 0.95 for the wavelengths of radiation between 0.55 μm and 2.0 μm and between 9.25 μm and 12.0 μm. Basing on this approximation it is possible to determine the s...

  6. A review of airborne particle sampling with special reference to long-lived radioactive dust

    International Nuclear Information System (INIS)

    This report reviews some basic aspects related to the sampling of airborne particles with special reference to Long-Lived Radioactive Dust (LLRD). The report covers a number of areas of practical interest such as the production of aerosols, the dynamics of suspended particles, the physical and chemical characteristics and properties of dust clouds, and the inhalation and measurement of dust. It is followed with a brief review of dust sampling instrumentation, and with a short account of the work done on LLRD in Canada with a few references to work done outside this country. (34 figs., 7 tabs., 117 refs.)

  7. Use of GSR particle analysis program on an analytical SEM to identify sources of emission of airborne particles

    International Nuclear Information System (INIS)

    Full text: High concentrations of airborne particles, in particular PM10 (particulate matter 10, but has been little used in Australia for airborne particulates. Two sets of 15 mm PM10 samples were collected in March and April 2000 from two sites in Brisbane, one within a suburb and one next to an arterial road. The particles were collected directly onto double-sided carbon tapes with a cascade impactor attached to a high-volume PM10 sampler. The carbon tapes were analysed in a JEOL 840 SEM equipped with a Be-window energy-dispersive X-ray detector and Moran Scientific microanalysis system. An automated Gun Shot Residue (GSR) program was used together with backscattered electron imaging to characterise and analyse individual particulates. About 6,000 particles in total were analysed for each set of impactor samples. Due to limitations of useful pixel size, only particles larger than about 0.5 μm could be analysed. The size, shape and estimated elemental composition (from Na to Pb) of the particles were subjected to non-hierarchical cluster analysis and the characteristics of the clusters were related to their possible sources of emission. Both samples resulted in similar particle clusters. The particles could be classified into three main categories non-spherical (58% of the total number of analysed particles, shape factor >1 1), spherical (15%) and 'carbonaceous' (27%, ie with unexplained % of elemental mass >75%). Non-spherical particles were mainly sea salt and soil particles, and a small amount of iron, lead and mineral dust. The spherical particles were mainly sea salt particles and flyash, and a small amount of iron, lead and secondary sulphate dust. The carbonaceous particles included carbon material mixed with secondary aerosols, roadside dust, sea salt or industrial dust. The arterial road sample also contained more roadside dust and less secondary aerosols than the suburb sample. Current limitations with this method are the minimum particle size

  8. Cloud particle size distributions measured with an airborne digital in-line holographic instrument

    Directory of Open Access Journals (Sweden)

    J. P. Fugal

    2009-03-01

    Full Text Available Holographic data from the prototype airborne digital holographic instrument HOLODEC (Holographic Detector for Clouds, taken during test flights are digitally reconstructed to obtain the size (equivalent diameters in the range 23 to 1000 μm, three-dimensional position, and two-dimensional profile of ice particles and then ice particle size distributions and number densities are calculated using an automated algorithm with minimal user intervention. The holographic method offers the advantages of a well-defined sample volume size that is not dependent on particle size or airspeed, and offers a unique method of detecting shattered particles. The holographic method also allows the volume sample rate to be increased beyond that of the prototype HOLODEC instrument, limited solely by camera technology.

    HOLODEC size distributions taken in mixed-phase regions of cloud compare well to size distributions from a PMS FSSP probe also onboard the aircraft during the test flights. A conservative algorithm for detecting shattered particles utilizing the particles depth-position along the optical axis eliminates the obvious ice particle shattering events from the data set. In this particular case, the size distributions of non-shattered particles are reduced by approximately a factor of two for particles 15 to 70 μm in equivalent diameter, compared to size distributions of all particles.

  9. Airborne lidar measurements of smoke plume distribution, vertical transmission, and particle size

    International Nuclear Information System (INIS)

    Observations were made of a dense smoke plume downwind from a forest using the ALPHA-1 two-wavelength downward-looking airborne lidar system. Facsimile displays derived from lidar signatures depict plume dimensions, boundary layer height, and underlying terrain elevation. Surface returns are interpreted in terms of vertical transmissions as function of cross-plume distance. Results show significantly greater plume attenuation at 0.53-μm wavelength than at 1.06-μm, indicating approx.0.1-μm mean particle diameters of the presence of gaseous constituents that absorb the visible radiation. These results demonstrate the potential of multiple-wavelength airborne lidar for quantitative analysis of atmospheric particulate and gaseous constituents

  10. Characterization and Control of Airborne Particles Emitted During Production of Epoxy / Carbon Nanotube Nanocomposites

    Science.gov (United States)

    Cena, Lorenzo G.; Peters, Thomas M.

    2016-01-01

    This work characterized airborne particles that were generated from the weighing of bulk, multi-wall carbon nanotubes (CNTs) and the manual sanding of epoxy test samples reinforced with CNTs. It also evaluated the effectiveness of three local exhaust ventilation (LEV) conditions (no LEV, custom fume hood, and biosafety cabinet) for control of particles generated during sanding of CNT-epoxy nanocomposites. Particle number and respirable mass concentrations were measured using an optical particle counter (OPC) and a condensation particle counter (CPC), and particle morphology was assessed by transmission electron microscopy. The ratios of the geometric mean (GM) concentrations measured during the process to that measured in the background (P/B ratios) were used as indices of the impact of the process and the LEVs on observed concentrations. Processing CNT-epoxy nanocomposites materials released respirable size airborne particles (P/B ratio: weighing = 1.79; sanding = 5.90) but generally no nanoparticles (P/B ratiô1). The particles generated during sanding were predominately micron-sized with protruding CNTs and very different from bulk CNTs that tended to remain in large (>1 μm) tangled clusters. Respirable mass concentrations in the operator’s breathing zone were lower when sanding was performed in the biological safety cabinet (GM = 0.20 μg/m3) compared to those with no LEV (GM = 2.68 μg/m3) or those when sanding was performed inside the fume hood (GM = 21.4 μg/m3; p-value < 0.0001). The poor performance of the custom fume hood used in this study may have been exacerbated by its lack of a front sash and rear baffles and its low face velocity (0.39 m/sec). PMID:21253981

  11. A review of methods for sampling large airborne particles and associated radioactivity

    International Nuclear Information System (INIS)

    Radioactive particles, tens of μm or more in diameter, are unlikely to be emitted directly from nuclear facilities with exhaust gas cleansing systems, but may arise in the case of an accident or where resuspension from contaminated surfaces is significant. Such particles may dominate deposition and, according to some workers, may contribute to inhalation doses. Quantitative sampling of large airborne particles is difficult because of their inertia and large sedimentation velocities. The literature describes conditions for unbiased sampling and the magnitude of sampling errors for idealised sampling inlets in steady winds. However, few air samplers for outdoor use have been assessed for adequacy of sampling. Many size selective sampling methods are found in the literature but few are suitable at the low concentrations that are often encountered in the environment. A number of approaches for unbiased sampling of large particles have been found in the literature. Some are identified as meriting further study, for application in the measurement of airborne radioactivity. (author)

  12. A Lagrangian particle model to predict the airborne spread of foot-and-mouth disease virus

    Science.gov (United States)

    Mayer, D.; Reiczigel, J.; Rubel, F.

    Airborne spread of bioaerosols in the boundary layer over a complex terrain is simulated using a Lagrangian particle model, and applied to modelling the airborne spread of foot-and-mouth disease (FMD) virus. Two case studies are made with study domains located in a hilly region in the northwest of the Styrian capital Graz, the second largest town in Austria. Mountainous terrain as well as inhomogeneous and time varying meteorological conditions prevent from application of so far used Gaussian dispersion models, while the proposed model can handle these realistically. In the model, trajectories of several thousands of particles are computed and the distribution of virus concentration near the ground is calculated. This allows to assess risk of infection areas with respect to animal species of interest, such as cattle, swine or sheep. Meteorological input data like wind field and other variables necessary to compute turbulence were taken from the new pre-operational version of the non-hydrostatic numerical weather prediction model LMK ( Lokal-Modell-Kürzestfrist) running at the German weather service DWD ( Deutscher Wetterdienst). The LMK model provides meteorological parameters with a spatial resolution of about 2.8 km. To account for the spatial resolution of 400 m used by the Lagrangian particle model, the initial wind field is interpolated upon the finer grid by a mass consistent interpolation method. Case studies depict a significant influence of local wind systems on the spread of virus. Higher virus concentrations at the upwind side of the hills and marginal concentrations in the lee are well observable, as well as canalization effects by valleys. The study demonstrates that the Lagrangian particle model is an appropriate tool for risk assessment of airborne spread of virus by taking into account the realistic orographic and meteorological conditions.

  13. Identifying airborne metal particles sources near an optoelectronic and semiconductor industrial park

    Science.gov (United States)

    Chen, Ho-Wen; Chen, Wei-Yea; Chang, Cheng-Nan; Chuang, Yen-Hsun; Lin, Yu-Hao

    2016-06-01

    The recently developed Central Taiwan Science Park (CTSP) in central Taiwan is home to an optoelectronic and semiconductor industrial cluster. Therefore, exploring the elemental compositions and size distributions of airborne particles emitted from the CTSP would help to prevent pollution. This study analyzed size-fractionated metal-rich particle samples collected in upwind and downwind areas of CTSP during Jan. and Oct. 2013 by using micro-orifice uniform deposited impactor (MOUDI). Correlation analysis, hierarchical cluster analysis and particle mass-size distribution analysis are performed to identify the source of metal-rich particle near the CTSP. Analyses of elemental compositions and particle size distributions emitted from the CTSP revealed that the CTSP emits some metals (V, As, In Ga, Cd and Cu) in the ultrafine particles (pollution index for optoelectronic and semiconductor emission in the CTSP. Meanwhile, the ratios of As/Ga concentration at the particle size of 0.32 μm demonstrates that humans near the CTSP would be potentially exposed to GaAs ultrafine particles. That is, metals such as Ga and As and other metals that are not regulated in Taiwan are potentially harmful to human health.

  14. Occupational exposure to airborne particles and other pollutants in an aviation base

    International Nuclear Information System (INIS)

    The occupational exposure to airborne particles and other pollutants in a high performance jet engine airport was investigated. Three spatial scales were considered: i) a downwind receptor site, ii) close to the airstrip, iii) personal monitoring. Particle number, surface area, mass concentrations and distributions were measured as well as inorganic and organic fractions, ionic fractions and Polycyclic Aromatic Hydrocarbons. Particle number distribution measured at a receptor site presents a mode of 80 nm and an average total concentration of 6.5 × 103 part. cm−3; the chemical analysis shows that all the elements may be attributed to long-range transport from the sea. Particle number concentrations in the proximity of the airstrip show short term peaks during the working day mainly related to takeoff, landing and pre-flight operations of jet engines. Personal exposure of workers highlights a median number concentration of 2.5 × 104 part. cm−3 and 1.7 × 104 part. cm−3 for crew chief and hangar operator. - Highlights: ► Air quality measures were performed at different spatial scales in an aviation base. ► Exposure to Polycyclic Aromatic Hydrocarbons was estimated. ► Particles at downwind receptor site show a marine origin typical of a coastal site. ► Main exposure peaks are related to pre-flight operations of jet engine aircrafts. ► Crew chief are exposed to highest concentrations even if these were not worrisome. - A negligible impact of a high performance jet engine airport, in terms of airborne particles and other pollutants, was measured through an experimental campaign at three spatial scales.

  15. A microfluidics-based on-chip impinger for airborne particle collection.

    Science.gov (United States)

    Mirzaee, I; Song, M; Charmchi, M; Sun, H

    2016-06-21

    Capturing airborne particles from air into a liquid is a critical process for the development of many sensors and analytical systems. A miniaturized airborne particle sampling device (microimpinger) has been developed in this research. The microimpinger relies on a controlled bubble generation process produced by driving air through microchannel arrays. The particles confined in the microscale bubbles are captured in the sampling liquid while the bubbles form, are released and travel in a millimetre-scale sealed liquid reservoir. The microchannel arrays in the impinger are fabricated using a soft-lithography method with polydimethylsiloxane (PDMS) as the structural material. To prevent air leakage at the connections, a PDMS-only sealing technique is successfully developed. The hydrophobicity of the microchannel surface is found to be critical for generating continuous and stable bubbles in the bubbling process. A Teflon layer is coated on the walls of a microchannel array by vapor deposition which effectively increases the hydrophobicity of the PDMS. The collection efficiency of the microimpinger is measured by counting different sizes of fluorescent polystyrene latex particles on polycarbonate membrane filters. Collection efficiencies above 90% are achieved. Furthermore, the particle capturing mechanisms during the injection, formation and rise of a single microbubble are investigated by a computational fluid dynamics (CFD) model. The Navier-Stokes equations are solved along with the use of the volume-of-fluid (VOF) method to capture the bubble deformations and the particles are tracked using a Lagrangian equation of motion. The model is also employed to study the effect of bubble size on the collection efficiency of the microimpinger. PMID:27185303

  16. Optical manipulation of airborne particles using flexible dual-beam trap

    Czech Academy of Sciences Publication Activity Database

    Brzobohatý, Oto; Šiler, Martin; Zemánek, Pavel

    Bellingham: SPIE, 2012 - (Dholakia, K.; Spalding, G.), 84582C:1-7 ISBN 978-0-8194-9175-6. [Optical Trapping and Optical Micromanipulation IX. San Diego (US), 12.08.2012-16.08.2012] R&D Projects: GA ČR GPP205/11/P294; GA MŠk ED0017/01/01 Institutional support: RVO:68081731 Keywords : Optical tweezers * Dual-beam trap * Standing wave trap * Spatial light modulator * Airborne particles * Droplets Subject RIV: BH - Optics, Masers, Lasers

  17. Particle-size distribution of fission products in airborne dust collected at Tsukuba from April to June 1986

    International Nuclear Information System (INIS)

    The radioactivity released by the reactor accident at Chernobyl was detected in surface air at Tsukuba, Japan. Gamma-spectrometry of airborne dust collected using aerodynamic separation showed higher concentrations of radionuclides in fine particles. The particle-size distribution of radionuclides changed with time. (author)

  18. Measurement of the electrostatic charge in airborne particles: II - particle charge distribution of different aerosols

    Directory of Open Access Journals (Sweden)

    M. V. Rodrigues

    2006-03-01

    Full Text Available This work gives sequence to the study on the measurement of the electrostatic charges in aerosols. The particle charge classifier developed for this purpose and presented in the previous paper (Marra and Coury, 2000 has been used here to measure the particle charge distribution of a number of different aerosols. The charges acquired by the particles were naturally derived from the aerosol generation procedure itself. Two types of aerosol generators were used: the vibrating orifice generator and turntable Venturi plate generator. In the vibrating orifice generator, mono-dispersed particles were generated by a solution of water/ethanol/methylene blue, while in the rotating plate generator, six different materials were utilized. The results showed no clear dependence between electric charge and particle diameter for the mono-dispersed aerosol. However, for the poly-dispersed aerosols, a linear dependence between particle size and charge could be noticed.

  19. The effect of airborne particles and weather conditions on pediatric respiratory infections in Cordoba, Argentine

    International Nuclear Information System (INIS)

    We studied the effect of estimated PM10 on respiratory infections in children from Cordoba, Argentine as well as the influence of weather factors, socio-economic conditions and education. We analyzed upper and lower respiratory infections and applied a time-series analysis with a quasi-Poisson distribution link function. To control for seasonally varying factors we fitted cubic smoothing splines of date. We also examined community-specific parameters and differences in susceptibility by sex. We found a significant association between particles and respiratory infections. This relationship was affected by mean temperature, atmospheric pressure and wind speed. These effects were stronger in fall, winter and spring for upper respiratory infections while for lower respiratory infections the association was significant only during spring. Low socio-economic conditions and low education levels increased the risk of respiratory infections. These findings add useful information to understand the influence of airborne particles on children health in developing countries. - Highlights: ► Few information is available on children respiratory health from developing countries. ► We modeled the association between PM10 and children's respiratory infections. ► We checked the influence of weather factors, socio-economic conditions, education and sex. ► Temperature, pressure and wind speed modified the effect of particles. ► Low socio-economic conditions and low education levels increased the risk of infections. - The concentration of airborne particles as well as low socio-economic conditions and low education levels are significant risk factors for upper and lower respiratory infections in children from Cordoba, Argentine.

  20. Laboratory testing of airborne brake wear particle emissions using a dynamometer system under urban city driving cycles

    Science.gov (United States)

    Hagino, Hiroyuki; Oyama, Motoaki; Sasaki, Sousuke

    2016-04-01

    To measure driving-distance-based mass emission factors for airborne brake wear particulate matter (PM; i.e., brake wear particles) related to the non-asbestos organic friction of brake assembly materials (pads and lining), and to characterize the components of brake wear particles, a brake wear dynamometer with a constant-volume sampling system was developed. Only a limited number of studies have investigated brake emissions under urban city driving cycles that correspond to the tailpipe emission test (i.e., JC08 or JE05 mode of Japanese tailpipe emission test cycles). The tests were performed using two passenger cars and one middle-class truck. The observed airborne brake wear particle emissions ranged from 0.04 to 1.4 mg/km/vehicle for PM10 (particles up to 10 μm (in size), and from 0.04 to 1.2 mg/km/vehicle for PM2.5. The proportion of brake wear debris emitted as airborne brake wear particles was 2-21% of the mass of wear. Oxygenated carbonaceous components were included in the airborne PM but not in the original friction material, which indicates that changes in carbon composition occurred during the abrasion process. Furthermore, this study identified the key tracers of brake wear particles (e.g., Fe, Cu, Ba, and Sb) at emission levels comparable to traffic-related atmospheric environments.

  1. Size and composition of airborne particles from pavement wear, tires, and traction sanding.

    Science.gov (United States)

    Kupiainen, Kaarle J; Tervahattu, Heikki; Räisänen, Mika; Mäkelä, Timo; Aurela, Minna; Hillamo, Risto

    2005-02-01

    Mineral matter is an important component of airborne particles in urban areas. In northern cities of the world, mineral matter dominates PM10 during spring because of enhanced road abrasion caused by the use of antiskid methods, including studded tires and traction sanding. In this study, factors that affect formation of abrasion components of springtime road dust were assessed. Effects of traction sanding and tires on concentrations, mass size distribution, and composition of the particles were studied in a test facility. Lowest particle concentrations were observed in tests without traction sanding. The concentrations increased when traction sand was introduced and continued to increase as a function of the amount of aggregate dispersed. Emissions were additionally affected by type of tire, properties of traction sand aggregate, and driving speed. Aggregates with high fragmentation resistance and coarse grain size distribution had the lowest emissions. Over 90% of PM10 was mineral particles. Mineralogy of the dust and source apportionment showed that they originated from both traction sand and pavement aggregates. The remaining portion was mostly carbonaceous and originated from tires and road bitumen. Mass size distributions were dominated by coarse particles. Contribution of fine and submicron size ranges were approximately 15 and 10% in PM10, respectively. PMID:15757329

  2. Treatment of airborne asbestos and asbestos-like microfiber particles using atmospheric microwave air plasma

    International Nuclear Information System (INIS)

    Highlights: → We use atmospheric microwave air plasma to treat ceramic fiber and stainless fiber as asbestos alike micro fiber particle. → Spheroidization of certain type of ceramic fiber and stainless fiber particle. → The evaluation of the treated particles by the fiber vanishing rate. → Good fiber vanishing rate is observed for fiber particle with diameter below 10 μm. → The treatment of pure asbestos and a suggestion of the use of this method for the treatment airborne asbestos. - Abstract: Atmospheric microwave air plasma was used to treat asbestos-like microfiber particles that had two types of ceramic fiber and one type of stainless fiber. The treated particles were characterized via scanning electron microscopy (SEM) and X-ray diffraction (XRD). The experiment results showed that one type of ceramic fiber (Alumina:Silica = 1:1) and the stainless fiber were spheroidized, but the other type of ceramic fiber (Alumina:Silica = 7:3) was not. The conversion of the fibers was investigated by calculating the equivalent diameter, the aspect ratio, and the fiber content ratio. The fiber content ratio in various conditions showed values near zero. The relationship between the normalized fiber vanishing rate and the energy needed to melt the particles completely per unit surface area of projected particles, which is defined as η, was examined and seen to indicate that the normalized fiber vanishing rate decreased rapidly with the increase in η. Finally, some preliminary experiments for pure asbestos were conducted, and the analysis via XRD and phase-contrast microscopy (PCM) showed the availability of the plasma treatment.

  3. Measuring the trace elemental composition of size-resolved airborne particles.

    Science.gov (United States)

    Herner, Jorn D; Green, Peter G; Kleeman, Michael J

    2006-03-15

    A new method to measure the trace elemental composition of size-resolved airborne particles that uses acetone extraction followed by ICPMS analysis is compared to three other established methods: copper anode XRF, molybdenum anode XRF, and an ICPMS method that uses HF digestion. The method detection limit (MDL), accuracy, and precision of each method is studied through the analysis of ambient samples collected in California. The MDLs of the new acetone-ICPMS method are similar to MDLs for the established HF-ICPMS method. Both sets of ICPMS MDLs are 1-3 orders of magnitude lower than XRF MDLs for approximately 50 elements other than the light crustal elements such as silicon, sulfur, calcium, and zinc. The accuracy of the acetone-ICPMS method was verified by comparison to measurements made using ion chromatography and the HF-ICPMS method. The acetone-ICPMS analysis method was more precise than the conventional HF-ICPMS method for collocated measurements. Both ICPMS methods were more precise than XRF for most elements. The size distribution of 21 elements contained in ambient particles collected with cascade impactors could be measured with good precision using the new acetone-ICPMS analysis method: lithium, sulfur, potassium, titanium, vanadium, manganese, iron, gallium, germanium, arsenic, selenium, bromine, rubidium, strontium, cadmium, tin, antimony, barium, thallium, lead, and bismuth. It is likely that the size distribution of an additional 9 elements could also be measured when concentrations are sufficiently high: phosphorus, molybdenum, niobium, palladium, cesium, europium, holmium, platinum, and uranium. None of the conventional methods were able to measure the size distribution of these elements with acceptable precision under the conditions studied. The new acetone-ICPMS method should provide useful data for the study of the health effects of airborne particles. PMID:16570617

  4. Chemical and isotopic properties and origin of coarse airborne particles collected by passive samplers in industrial, urban, and rural environments

    Science.gov (United States)

    Guéguen, Florence; Stille, Peter; Dietze, Volke; Gieré, Reto

    2012-12-01

    Passive air samplers have been installed in industrial, urban, rural and remote forested environments in order to collect coarse airborne particles for subsequent chemical characterization. To identify principal polluting sources, isotopic tracers, such as Sr, Nd and Pb isotopic ratios, have been used. The mass deposition rates (MDRs) of trace metals, determined for each of the studied environments, clearly indicate that industrial and traffic sites are especially affected by air pollution. Elements such as V, Pb, Fe, Cr, Co, Mo, Cd, Ni, As, Sb and Zn are notably enriched in samples from industrial zones, whereas V, Mn, Ba, Sr, Al, U, Th, rare earth elements (REE), Zr, Y, Cs, Rb, Sb, Sn and Cu are principal components of the airborne particles collected close to areas influenced by heavy traffic. The chemical/isotopic baseline composition derived from the airborne particles is the result of mixing of particles from different industrial sources, traffic and fertilizers. The monthly analysis of trace-metal MDRs of the collected airborne particle samples from different stations around the industrial zone allows for the detection of distinct atmospheric dust-deposition events during the year, characterized by high MDRs. "Natural" dusts from regional soil re-suspension, including from more distant regions like the Sahara desert, might overprint the regional atmospheric baseline composition, as suggested by trace metal trajectories in ternary diagrams and by Sr, Nd and Pb isotope data.

  5. Differences in airborne particle and gaseous concentrations in urban air between weekdays and weekends

    International Nuclear Information System (INIS)

    Airborne particle number concentrations and size distributions as well as CO and NOx concentrations monitored at a site within the central business district of Brisbane, Australia were correlated with the traffic flow rate on a nearby freeway with the aim of investigating differences between weekday and weekend pollutant characteristics. Observations over a 5-year monitoring period showed that the mean number particle concentration on weekdays was (8.8±0.1)x103 cm-3 and on weekends (5.9±0.2)x103 cm-3 - a difference of 47%. The corresponding mean particle number median diameters during weekdays and weekends were 44.2±0.3 and 50.2±0.2 nm, respectively. The differences in mean particle number concentration and size between weekdays and weekends were found to be statistically significant at confidence levels of over 99%. During a 1-year period of observation, the mean traffic flow rate on the freeway was 14.2x104 and 9.6x104 vehicles per weekday and weekend day, respectively - a difference of 48%. The mean diurnal variations of the particle number and the gaseous concentrations closely followed the traffic flow rate on both weekdays and weekends (correlation coefficient of 0.86 for particles). The overall conclusion, as to the effect of traffic on concentration levels of pollutant concentration in the vicinity of a major road (about 100 m) carrying traffic of the order of 105 vehicles per day, is that about a 50% increase in traffic flow rate results in similar increases of CO and NOx concentrations and a higher increase of about 70% in particle number concentration. (author)

  6. A new look at inhalable metalliferous airborne particles on rail subway platforms.

    Science.gov (United States)

    Moreno, Teresa; Martins, Vânia; Querol, Xavier; Jones, Tim; BéruBé, Kelly; Minguillón, Maria Cruz; Amato, Fulvio; Capdevila, Marta; de Miguel, Eladio; Centelles, Sonia; Gibbons, Wes

    2015-02-01

    Most particles breathed on rail subway platforms are highly ferruginous (FePM) and extremely small (nanometric to a few microns in size). High magnification observations of particle texture and chemistry on airborne PM₁₀ samples collected from the Barcelona Metro, combined with published experimental work on particle generation by frictional sliding, allow us to propose a general model to explain the origin of most subway FePM. Particle generation occurs by mechanical wear at the brake-wheel and wheel-rail interfaces, where magnetic metallic flakes and splinters are released and undergo progressive atmospheric oxidation from metallic iron to magnetite and maghemite. Flakes of magnetite typically comprise mottled mosaics of octahedral nanocrystals (10-20 nm) that become pseudomorphed by maghemite. Continued oxidation results in extensive alteration of the magnetic nanostructure to more rounded aggregates of non-magnetic hematite nanocrystals, with magnetic precursors (including iron metal) still preserved in some particle cores. Particles derived from steel wheel and rails contain a characteristic trace element chemistry, typically with Mn/Fe=0.01. Flakes released from brakes are chemically very distinctive, depending on the pad composition, being always carbonaceous, commonly barium-rich, and texturally inhomogeneous, with trace elements present in nanominerals incorporated within the crystalline structure. In the studied subway lines of Barcelona at least there appears to be only a minimal aerosol contribution from high temperature processes such as sparking. To date there is no strong evidence that these chemically and texturally complex inhalable metallic materials are any more or less toxic than street-level urban particles, and as with outdoor air, the priority in subway air quality should be to reduce high mass concentrations of aerosol present in some stations. PMID:25461038

  7. Assessment of oxidative DNA damage formation by organic complex mixtures from airborne particles PM10

    International Nuclear Information System (INIS)

    The free radical generating activity of airborne particulate matter (PM10) has been proposed as a primary mechanism in biological activity of ambient air pollution. In an effort to determine the impact of the complex mixtures of extractable organic matter (EOM) from airborne particles on oxidative damage to DNA, the level of 8-oxo-2'-deoxyguanosine (8-oxodG), the most prevalent and stable oxidative lesion, was measured in the human metabolically competent cell line Hep G2. Cultured cells were exposed to equivalent EOM concentrations (5-150 μg/ml) and oxidative DNA damage was analyzed using a modified single cell gel electrophoresis (SCGE), which involves the incubation of whole cell DNA with repair specific DNA endonuclease, which cleaves oxidized DNA at the sites of 8-oxodG. EOMs were extracted from PM10 collected daily (24 h intervals) in three European cities: Prague (Czech Republic, two monitoring sites, Libus and Smichov), Kosice (Slovak Republic) and Sofia (Bulgaria) during 3-month sampling periods in the winter and summer seasons. No substantial time- and dose-dependent increase of oxidative DNA lesions was detected in EOM-treated cells with the exception of the EOM collected at the monitoring site Kosice, summer sampling. In this case, 2 h cell exposure to EOM resulted in a slight but significant increase of oxidative DNA damage at three from total of six concentrations. The mean 8-oxodG values at these concentrations ranged from 15.3 to 26.1 per 106 nucleotides with a value 3.5 per 106 nucleotides in untreated cells. B[a]P, the positive control, induced a variable but insignificant increase of oxidative DNA damage in Hep G2 cell (approximately 1.6-fold increase over control value). Based on these data we believe that EOM samples extracted from airborne particle PM10 play probably only a marginal role in oxidative stress generation and oxidative lesion formation to DNA. However, adsorbed organic compounds can undergo various interactions (additive or

  8. Assessment of oxidative DNA damage formation by organic complex mixtures from airborne particles PM(10).

    Science.gov (United States)

    Gábelová, Alena; Valovicová, Zuzana; Lábaj, Juraj; Bacová, Gabriela; Binková, Blanka; Farmer, Peter B

    2007-07-01

    The free radical generating activity of airborne particulate matter (PM(10)) has been proposed as a primary mechanism in biological activity of ambient air pollution. In an effort to determine the impact of the complex mixtures of extractable organic matter (EOM) from airborne particles on oxidative damage to DNA, the level of 8-oxo-2'-deoxyguanosine (8-oxodG), the most prevalent and stable oxidative lesion, was measured in the human metabolically competent cell line Hep G2. Cultured cells were exposed to equivalent EOM concentrations (5-150microg/ml) and oxidative DNA damage was analyzed using a modified single cell gel electrophoresis (SCGE), which involves the incubation of whole cell DNA with repair specific DNA endonuclease, which cleaves oxidized DNA at the sites of 8-oxodG. EOMs were extracted from PM(10) collected daily (24h intervals) in three European cities: Prague (Czech Republic, two monitoring sites, Libus and Smíchov), Kosice (Slovak Republic) and Sofia (Bulgaria) during 3-month sampling periods in the winter and summer seasons. No substantial time- and dose-dependent increase of oxidative DNA lesions was detected in EOM-treated cells with the exception of the EOM collected at the monitoring site Kosice, summer sampling. In this case, 2h cell exposure to EOM resulted in a slight but significant increase of oxidative DNA damage at three from total of six concentrations. The mean 8-oxodG values at these concentrations ranged from 15.3 to 26.1 per 10(6) nucleotides with a value 3.5 per 10(6) nucleotides in untreated cells. B[a]P, the positive control, induced a variable but insignificant increase of oxidative DNA damage in Hep G2 cell (approximately 1.6-fold increase over control value). Based on these data we believe that EOM samples extracted from airborne particle PM(10) play probably only a marginal role in oxidative stress generation and oxidative lesion formation to DNA. However, adsorbed organic compounds can undergo various interactions

  9. On the interaction between glyceraldehyde-3-phosphate dehydrogenase and airborne particles: Evidence for electrophilic species

    Science.gov (United States)

    Shinyashiki, Masaru; Rodriguez, Chester E.; Di Stefano, Emma W.; Sioutas, Constantinos; Delfino, Ralph J.; Kumagai, Yoshito; Froines, John R.; Cho, Arthur K.

    Many of the adverse health effects of airborne particulate matter (PM) have been attributed to the chemical properties of some of the large number of chemical species present in PM. Some PM component chemicals are capable of generating reactive oxygen species and eliciting a state of oxidative stress. In addition, however, PM can contain chemical species that elicit their effects through covalent bond formation with nucleophilic functions in the cell. In this manuscript, we report the presence of constituents with electrophilic properties in ambient and diesel exhaust particles, demonstrated by their ability to inhibit the thiol enzyme, glyceraldehyde-3-phosphate dehydrogenase (GAPDH). GAPDH is irreversibly inactivated by electrophiles under anaerobic conditions by covalent bond formation. This inactivation can be blocked by the prior addition of a high concentration of dithiothreitol (DTT) as an alternate nucleophile. Addition of DTT after the reaction between the electrophile and GAPDH, however, does not reverse the inactivation. This property has been utilized to develop a procedure that provides a quantitative measure of electrophiles present in samples of ambient particles collected in the Los Angeles Basin and in diesel exhaust particles. The toxicity of electrophiles is the result of irreversible changes in biological molecules; recovery is dependent on resynthesis. If the resynthesis is slow, the irreversible effects can be cumulative and manifest themselves after chronic exposure to low levels of electrophiles.

  10. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Brockmann, J.E.; Adkins, C.L.J.; Gelbard, F. [Sandia National Labs., Albuquerque, NM (United States)

    1991-09-01

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications.

  11. Alternate particle removal technologies for the Airborne Activity Confinement System at the Savannah River Site

    International Nuclear Information System (INIS)

    This report presents a review of the filtration technologies available for the removal of particulate material from a gas stream. It was undertaken to identify alternate filtration technologies that may be employed in the Airborne Activity Confinement System (AACS) at the Savannah River Plant. This report is organized into six sections: (1) a discussion of the aerosol source term and its definition, (2) a short discussion of particle and gaseous contaminant removal mechanisms, (3) a brief overview of particle removal technologies, (4) a discussion of the existing AACS and its potential shortcomings, (5) an enumeration of issues to be addressed in upgrading the AACS, and, (6) a detailed discussion of the identified technologies. The purpose of this report is to identity available options to the existing particle removal system. This system is in continuous operation during routine operation of the reactor. As will be seen, there are a number of options and the selection of any technology or combination of technologies will depend on the design aerosol source term (yet to be appropriately defined) as well as the flow requirements and configuration. This report does not select a specific technology. It focuses on particulate removal and qualitatively on the removal of radio-iodine and mist elimination. Candidate technologies have been selected from industrial and nuclear gas cleaning applications

  12. Determination of chemical composition of individual airborne particles by SEM/EDX and micro-Raman spectrometry: A review

    Science.gov (United States)

    Stefaniak, E. A.; Buczynska, A.; Novakovic, V.; Kuduk, R.; Van Grieken, R.

    2009-04-01

    The strategies for sampling and analysis by SEM/EDX and micro-Raman spectrometry for individual airborne particles analysis as applied at the University of Antwerp (Belgium) by the MITAC group have been reviewed. Microbeam techniques provide detailed information concerning the origin, formation, transport, reactivity, transformation reactions and environmental impact of particulate matter. Moreover, some particles of certain chemical properties have been recognized as a threat for human health and cultural heritage objects. However, the small sizes of particles result in specific problems with respect to single particle analysis. Development of equipment and software for improvement of analysis and quantification are reported.

  13. Airborne observations of new particle formation events in the boundary layer using a Zeppelin

    Science.gov (United States)

    Lampilahti, Janne; Manninen, Hanna E.; Nieminen, Tuomo; Mirme, Sander; Pullinen, Iida; Yli-Juuti, Taina; Schobesberger, Siegfried; Kangasluoma, Juha; Kontkanen, Jenni; Lehtipalo, Katrianne; Ehn, Mikael; Mentel, Thomas F.; Petäjä, Tuukka; Kulmala, Markku

    2014-05-01

    Atmospheric new particle formation (NPF) is a frequent and ubiquitous process in the atmosphere and a major source of newly formed aerosol particles [1]. However, it is still unclear how the aerosol particle distribution evolves in space and time during an NPF. We investigated where in the planetary boundary layer does NPF begin and how does the aerosol number size distribution develop in space and time during it. We measured in Hyytiälä, southern Finland using ground based and airborne measurements. The measurements were part of the PEGASOS project. NPF was studied on six scientific flights during spring 2013 using a Zeppelin NT class airship. Ground based measurements were simultaneously conducted at SMEAR II station located in Hyytiälä. The flight profiles over Hyytiälä were flown between sunrise and noon during the growth of the boundary layer. The profiles over Hyytiälä covered vertically a distance of 100-1000 meters reaching the mixed layer, stable (nocturnal) boundary layer and the residual layer. Horizontally the profiles covered approximately a circular area of four kilometers in diameter. The measurements include particle number size distribution by Neutral cluster and Air Ion Spectrometer (NAIS), Differential Mobility Particle Sizer (DMPS) and Particle Size Magnifier (PSM) [2], meteorological parameters and position (latitude, longitude and altitude) of the Zeppelin. Beginning of NPF was determined from an increase in 1.7-3 nm ion concentration. Height of the mixed layer was estimated from relative humidity measured on-board the Zeppelin. Particle growth rate during NPF was calculated. Spatial inhomogeneities in particle number size distribution during NPF were located and the birthplace of the particles was estimated using the growth rate and trajectories. We observed a regional NPF event that began simultaneously and evolved uniformly inside the mixed layer. In the horizontal direction we observed a long and narrow high concentration plume of

  14. Instrument for Long-Path Spectral Extinction Measurements in Air: Application to Sizing of Airborne Particles

    Science.gov (United States)

    Paganini, Enrico; Trespidi, Franco; Ferri, Fabio

    2001-08-01

    A novel instrument that is capable of taking spectral extinction measurements over long optical paths (approximately 1 -100 m) in the UV, visible, and IR ranges is described. The instrument is fully automated, and the extinction spectrum is acquired in almost real time (approximately 5 -10 s) with a resolution of ~3 nm. Its sensitivity and accuracy were estimated by tests carried out in a clean room that showed that, for optical paths between 50 and 100 m, the extinction coefficient can be detected at levels of ~10-5 m-1 . Tests carried out on calibrated latex particles showed that, when it was combined with an appropriate inversion method, the technique could be profitably applied to characterize airborne particulate distributions. By carrying out measurements over optical paths of ~100 m, the instrument is also capable of detecting extinction coefficients that are due to aerosol concentrations well below the limits imposed by the European Economic Community for atmospheric pollution (150 g /m3 ). Scaled over optical paths of ~10 m, the limit imposed for particle emissions from industrial plants (10 mg /m3 ) can also be detected sensitively.

  15. MEMS-based silicon cantilevers with integrated electrothermal heaters for airborne ultrafine particle sensing

    Science.gov (United States)

    Wasisto, Hutomo Suryo; Merzsch, Stephan; Waag, Andreas; Peiner, Erwin

    2013-05-01

    The development of low-cost and low-power MEMS-based cantilever sensors for possible application in hand-held airborne ultrafine particle monitors is described in this work. The proposed resonant sensors are realized by silicon bulk micromachining technology with electrothermal excitation, piezoresistive frequency readout, and electrostatic particle collection elements integrated and constructed in the same sensor fabrication process step of boron diffusion. Built-in heating resistor and full Wheatstone bridge are set close to the cantilever clamp end for effective excitation and sensing, respectively, of beam deflection. Meanwhile, the particle collection electrode is located at the cantilever free end. A 300 μm-thick, phosphorus-doped silicon bulk wafer is used instead of silicon-on-insulator (SOI) as the starting material for the sensors to reduce the fabrication costs. To etch and release the cantilevers from the substrate, inductively coupled plasma (ICP) cryogenic dry etching is utilized. By controlling the etching parameters (e.g., temperature, oxygen content, and duration), cantilever structures with thicknesses down to 10 - 20 μm are yielded. In the sensor characterization, the heating resistor is heated and generating thermal waves which induce thermal expansion and further cause mechanical bending strain in the out-of-plane direction. A resonant frequency of 114.08 +/- 0.04 kHz and a quality factor of 1302 +/- 267 are measured in air for a fabricated rectangular cantilever (500x100x13.5 μm3). Owing to its low power consumption of a few milliwatts, this electrothermal cantilever is suitable for replacing the current external piezoelectric stack actuator in the next generation of the miniaturized cantilever-based nanoparticle detector (CANTOR).

  16. The white-light humidified optical particle spectrometer (WHOPS – a novel airborne system to characterize aerosol hygroscopicity

    Directory of Open Access Journals (Sweden)

    B. Rosati

    2014-07-01

    3% and maximal deviation of 9% for GFs at RH = 95%. First airborne measurements in the Netherlands observed GFs (mean value of the GF distribution at RH = 95% between 1.74 and 2.67 with a median of 1.94 for particles with a dry diameter of 500 nm. This corresponds to hygroscopicity parameters (κ between 0.21 and 0.93 with a median of 0.33. The GF distributions indicate externally mixed particles covering the whole range of GFs between ~ 1.0–3.0. On average ~ 74% of the particles were "more hygroscopic" with GFs > 1.5, ~ 15% were non- or slightly hygroscopic with GF 2, indicating influence of sea salt particles, consistent with previous ground-based particle hygroscopicity measurements in this area. The mean dry effective index of refraction for 500 nm particles was found to be rather constant with a value of 1.42 ± 0.04.

  17. Application examples of APC-03-2 and APC-03-2A airborne particle counters under various contamination conditions

    International Nuclear Information System (INIS)

    Several application examples of the airborne particle counters APC-03-2 and APC-03-2A for monitoring particle size distribution and concentration in air and other gases are described. The computer controlled fast data evaluation and storage provide efficient presentation of the measured data in a variety of table- and histogram-forms, presenting of alarm levels for each size range, observation of alarm history, etc. The device can be applied not only for clean room monitoring and laminar box testing, but also for measuring contamination in health care facilities in workshops using hazardous airborne compounds (e.g. in pharmacology), and in toxicology where the concentration of the contamination may be very high. (author)

  18. Regional monitoring of metals in the Munich metropolitan area: Comparison of biomonitoring (standardized grass culture) with deposition and airborne particles

    International Nuclear Information System (INIS)

    In the Munich metropolitan area a close association of lead (Pb) and antimony (Sb) impacts with traffic was observed in 1992 and 1993. The intercorrelation of both metals was found by samples of standardised grass cultures and was reflected by deposition sampling, too. With respect to location-specific variations, however, both methods revealed differing gradients of Pb and Sb concentrations with increasing distance from traffic. It appeared that Sb variations according to traffic implications were particularly well indicated by means of biomonitoring, while Pb variations were not indicated adequately. As a result, a special qualification of grass to selectively collect metals on airborne dust according to particle sizes was suggested. Further investigations on the correlations between metal biomonitoring, metal deposition and airborne metals in 1994 - 1996 corroborated method-specific sampling features. They in turn showed that one interference is the individual prevalence of the metals on different particle sizes. (author)

  19. Beryllium solubility in occupational airborne particles: Sequential extraction procedure and workplace application.

    Science.gov (United States)

    Rousset, Davy; Durand, Thibaut

    2016-01-01

    Modification of an existing sequential extraction procedure for inorganic beryllium species in the particulate matter of emissions and in working areas is described. The speciation protocol was adapted to carry out beryllium extraction in closed-face cassette sampler to take wall deposits into account. This four-step sequential extraction procedure aims to separate beryllium salts, metal, and oxides from airborne particles for individual quantification. Characterization of the beryllium species according to their solubility in air samples may provide information relative to toxicity, which is potentially related to the different beryllium chemical forms. Beryllium salts (BeF(2), BeSO(4)), metallic beryllium (Bemet), and beryllium oxide (BeO) were first individually tested, and then tested in mixtures. Cassettes were spiked with these species and recovery rates were calculated. Quantitative analyses with matched matrix were performed using inductively coupled plasma mass spectrometry (ICP-MS). Method Detection Limits (MDLs) were calculated for the four matrices used in the different extraction steps. In all cases, the MDL was below 4.2 ng/sample. This method is appropriate for assessing occupational exposure to beryllium as the lowest recommended threshold limit values are 0.01 µg.m(-3) in France([) (1) (]) and 0.05 µg.m(-3) in the USA.([ 2 ]) The protocol was then tested on samples from French factories where occupational beryllium exposure was suspected. Beryllium solubility was variable between factories and among the same workplace between different tasks. PMID:26327570

  20. Health effects of daily airborne particle dose in children: Direct association between personal dose and respiratory health effects

    International Nuclear Information System (INIS)

    Air pollution is a widespread health problem associated with respiratory symptoms. Continuous exposure monitoring was performed to estimate alveolar and tracheobronchial dose, measured as deposited surface area, for 103 children and to evaluate the long-term effects of exposure to airborne particles through spirometry, skin prick tests and measurement of exhaled nitric oxide (eNO). The mean daily alveolar deposited surface area dose received by children was 1.35 × 103 mm2. The lowest and highest particle number concentrations were found during sleeping and eating time. A significant negative association was found between changes in pulmonary function tests and individual dose estimates. Significant differences were found for asthmatics, children with allergic rhinitis and sensitive to allergens compared to healthy subjects for eNO. Variation is a child's activity over time appeared to have a strong impact on respiratory outcomes, which indicates that personal monitoring is vital for assessing the expected health effects of exposure to particles. -- Highlights: •Particle dose was estimated through personal monitoring on more than 100 children. •We focused on real-time daily dose of particle alveolar deposited surface area. •Spirometry, skin prick and exhaled Nitric Oxide tests were performed. •Negative link was found between changes in pulmonary functions and individual doses. •A child's lifestyle appeared to have a strong impact on health respiratory outcomes. -- The respiratory health effects of daily airborne particle dose on children through personal monitoring

  1. Characterizing the impact of urban emissions on regional aerosol particles: airborne measurements during the MEGAPOLI experiment

    Science.gov (United States)

    Freney, E. J.; Sellegri, K.; Canonaco, F.; Colomb, A.; Borbon, A.; Michoud, V.; Doussin, J.-F.; Crumeyrolle, S.; Amarouche, N.; Pichon, J.-M.; Bourianne, T.; Gomes, L.; Prevot, A. S. H.; Beekmann, M.; Schwarzenböeck, A.

    2014-02-01

    The MEGAPOLI (Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation) experiment took place in July 2009. The aim of this campaign was to study the aging and reactions of aerosol and gas-phase emissions in the city of Paris. Three ground-based measurement sites and several mobile platforms including instrument equipped vehicles and the ATR-42 aircraft were involved. We present here the variations in particle- and gas-phase species over the city of Paris, using a combination of high-time resolution measurements aboard the ATR-42 aircraft. Particle chemical composition was measured using a compact time-of-flight aerosol mass spectrometer (C-ToF-AMS), giving detailed information on the non-refractory submicron aerosol species. The mass concentration of black carbon (BC), measured by a particle absorption soot photometer (PSAP), was used as a marker to identify the urban pollution plume boundaries. Aerosol mass concentrations and composition were affected by air-mass history, with air masses that spent longest time over land having highest fractions of organic aerosol and higher total mass concentrations. The Paris plume is mainly composed of organic aerosol (OA), BC, and nitrate aerosol, as well as high concentrations of anthropogenic gas-phase species such as toluene, benzene, and NOx. Using BC and CO as tracers for air-mass dilution, we observe the ratio of ΔOA / ΔBC and ΔOA / ΔCO increase with increasing photochemical age (-log(NOx / NOy)). Plotting the equivalent ratios of different organic aerosol species (LV-OOA, SV-OOA, and HOA) illustrate that the increase in OA is a result of secondary organic aerosol (SOA) formation. Within Paris the changes in the ΔOA / ΔCO are similar to those observed during other studies in London, Mexico City, and in New England, USA. Using the measured SOA volatile organic compounds (VOCs) species together with organic aerosol formation

  2. Short-term mechanisms of toxic action of airborne particulates underlie dose-rate dependent health risks and support control of one-hour airborne particle levels

    Energy Technology Data Exchange (ETDEWEB)

    Michaels, R.A.; Kleinman, M.T.

    1999-07-01

    Twenty-four-hour airborne particle mass levels permissible under the NAAQS have been associated with mortality and morbidity in communities, motivating reconsideration of the standard. Reports of shorter-term mechanisms of toxic action exerted by airborne PM and PM constituents are emerging. The mechanisms are diverse, but have in common a short time frame of toxic action, from minutes to hours. In view of documented PM excursions also lasting minutes to hours, this study inquires whether such short-term mechanisms might contribute to explaining daily morbidity and mortality. Toxicology experiments have demonstrated the harmfulness of brief exposure to PM levels in the range of observed excursions. This suggests that toxicological processes initiated by short-term inhalation of PM may exert clinically important effects, and that weak associations of 24-hour-average particle mass with mortality and morbidity may represent artifacts of stronger, shorter-term associations whose full magnitude remains to be quantified. In one study, the area of lung surface developing lesions was elevated in rats breathing the same four-hour dose of aerosols, when the four-hour average rate of aerosol delivery included a short-term (five-minute) burst fifty percent above the average dose rate. Elevations were observed with each of two aerosols tested. The magnitude of the effect was higher with one of the two aerosols, whose dose rate included four excursions rather than just one excursion. Particulate matter inhaled or instilled intratracheally has produced morbidity in animals, including apnea and electrophysiological effects in dogs. Other studies reveal that PM can kill rats via electrophysiological and possibly other mechanisms. PM has also adversely affected asthmatic people in controlled clinical settings during exercise or, in one study, at rest.

  3. Airborne measurements over the boreal forest of southern Finland during new particle formation events in 2009 and 2010

    Energy Technology Data Exchange (ETDEWEB)

    Schobesberger, S.; Vaananen, R.; Leino, K. [Helsinki Univ. (Finland). Dept. of Physics, Division of Atmospheric Sciences] [and others

    2013-06-01

    We conducted airborne observations of aerosol physical properties over the southern Finland boreal forest environment. The aim was to investigate the lower tropospheric aerosol (up to 4-km altitude) over an area of 250 by 200 km, in particular during new particle formation (NPF) events, and to address the spatial variability of aerosol number concentration and number size distribution. The regional NPF events, detected both airborne and at the ground, with air masses originating from the Arctic or northern Atlantic Ocean were studied throughout the boundary layer and throughout the area covered. Three suitable case studies are presented in more detail. In two of these studies, the concentrations of nucleation mode particles (3-10 nm in diameter) were found considerably higher (up to a factor of 30) in the upper parts of the planetary boundary layer compared to ground-based measurements during the nucleation events. The observed vertical variation can be connected to boundary layer dynamics and interactions between the boundary layer and the lower free troposphere, likely yielding high concentrations of newly formed aerosol particles. Our results suggest that nucleation does not necessarily occur close to the surface. In one presented case we found evidence of NPF occurring in a limited area above cloud, in the complete absence of a regional NPF event. (orig.)

  4. PHIPS-HALO: the airborne Particle Habit Imaging and Polar Scattering probe - Part 1: Design and operation

    Science.gov (United States)

    Abdelmonem, Ahmed; Järvinen, Emma; Duft, Denis; Hirst, Edwin; Vogt, Steffen; Leisner, Thomas; Schnaiter, Martin

    2016-07-01

    The number and shape of ice crystals present in mixed-phase and ice clouds influence the radiation properties, precipitation occurrence and lifetime of these clouds. Since clouds play a major role in the climate system, influencing the energy budget by scattering sunlight and absorbing heat radiation from the earth, it is necessary to investigate the optical and microphysical properties of cloud particles particularly in situ. The relationship between the microphysics and the single scattering properties of cloud particles is usually obtained by modelling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. There is a demand to obtain both information correspondently and simultaneously for individual cloud particles in their natural environment. For evaluating the average scattering phase function as a function of ice particle habit and crystal complexity, in situ measurements are required. To this end we have developed a novel airborne optical sensor (PHIPS-HALO) to measure the optical properties and the corresponding microphysical parameters of individual cloud particles simultaneously. PHIPS-HALO has been tested in the AIDA cloud simulation chamber and deployed in mountain stations as well as research aircraft (HALO and Polar 6). It is a successive version of the laboratory prototype instrument PHIPS-AIDA. In this paper we present the detailed design of PHIPS-HALO, including the detection mechanism, optical design, mechanical construction and aerodynamic characterization.

  5. Toxic effects of indoor and outdoor airborne particles relevant to carcinogenesis.

    NARCIS (Netherlands)

    Heussen, G.A.H.

    1993-01-01

    The mutagenicity of indoor and outdoor airborne particulate matter (APM) has been demonstrated by previous in vitro studies (Alink et al., 1983; Van Houdt et al., 1984, 1986, 1987). The aim of the present thesis was to contribute to a better understanding of the mode of action of AIM in the pathogen

  6. Characterization of trace metals in airborne carbonaceous aerosols by single-particle EDX – Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Pietrodangelo A.

    2013-04-01

    Full Text Available The presence of fine and ultrafine metal particles has been evidenced in size segregated airborne carbonaceous aerosols collected at one industrial and two background (urban and rural sites during an extended field campaign in Central Italy. Analysis of the backscattered electrons (BSE by SEM – EDX demonstrated an effective potential in evidencing main structural features of the metal content in identified carbon aerosols. Many observed ultrafine metal particles appear embedded in the skeleton of carbonaceous individual particles and aggregates in the coarse fraction, while the same is not evident in the case of mixed carbon-sulphates aerosol that has been detected in the submicron size. These carbon-sulphates formations include indeed nano-sized metal particles that appear physically combined but not embedded. Also, larger metal particles (ranging around 1 μm physical size were observed close to carbon materials, but not included in their structure. Main compositional differences of metal particles with size segregation could be evidenced by energy – dispersive X ray spectrometry (EDX. Larger particles are mainly rich in Fe, frequently in presence of Mn, Cu, Cr and Zn in variable proportions; either oxidized or elemental metals were detected. On the other hand, ultrafine particles associated with carbon–sulphates aerosol are enriched in Pb and Zn, although the presence of other trace elements not detectable by SEM – EDX technique cannot be excluded. Moreover, Ce-enriched ultrafine particles were clearly determined in cenospheres. Conversely, inclusion of fine and ultrafine metal particles was rarely or not observed in soot aggregates.

  7. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry.

    Science.gov (United States)

    Kero, Ida Teresia; Jørgensen, Rikke Bramming

    2016-01-01

    The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPI(TM)), a Fast Mobility Particle Sizer (FMPS(TM)), and a Condensation Particle Counter (CPC). The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification. PMID:27598180

  8. Comparison of Three Real-Time Measurement Methods for Airborne Ultrafine Particles in the Silicon Alloy Industry

    Directory of Open Access Journals (Sweden)

    Ida Teresia Kero

    2016-09-01

    Full Text Available The aim of this study was to compare the applicability and the correlation between three commercially available instruments capable of detection, quantification, and characterization of ultrafine airborne particulate matter in the industrial setting of a tapping area in a silicon alloy production plant. The number concentration of ultrafine particles was evaluated using an Electric Low Pressure Impactor (ELPITM, a Fast Mobility Particle Sizer (FMPSTM, and a Condensation Particle Counter (CPC. The results are discussed in terms of particle size distribution and temporal variations linked to process operations. The instruments show excellent temporal covariation and the correlation between the FMPS and ELPI is good. The advantage of the FMPS is the excellent time- and size resolution of the results. The main advantage of the ELPI is the possibility to collect size-fractionated samples of the dust for subsequent analysis by, for example, electron microscopy. The CPC does not provide information about the particle size distribution and its correlation to the other two instruments is somewhat poor. Nonetheless, the CPC gives basic, real-time information about the ultrafine particle concentration and can therefore be used for source identification.

  9. Airborne Biogenic Particles in the Snow of the Cities of the Russian Far East as Potential Allergic Compounds

    Directory of Open Access Journals (Sweden)

    Kirill S. Golokhvast

    2014-01-01

    Full Text Available This paper presents an analysis of airborne biogenic particles (1 mkm–1 mm found in the snow in several cities of the Russian Far East during 2010–2013. The most common was vegetational terraneous detritus (fragments of tree and grass leaves followed by animal hair, small insects and their fragments, microorganisms of aeroplankton, and equivocal biological garbage. Specific components were found in samples from locations close to bodies of water such as fragments of algae and mollusc shells and, marine invertebrates (needles of sea urchins and shell debris of arthropods. In most locations across the Far East (Vladivostok, Khabarovsk, Blagoveshchensk, and Ussuriysk, the content of biogenic particles collected in the winter did not exceed 10% of the total particulate matter, with the exception of Birobidzhan and the nature reserve Bastak, where it made up to 20%. Most of all biogenic compounds should be allergic: hair, fragments of tree and grass leaves, insects, and microorganisms.

  10. Airborne biogenic particles in the snow of the cities of the Russian Far East as potential allergic compounds.

    Science.gov (United States)

    Golokhvast, Kirill S

    2014-01-01

    This paper presents an analysis of airborne biogenic particles (1 mkm-1 mm) found in the snow in several cities of the Russian Far East during 2010-2013. The most common was vegetational terraneous detritus (fragments of tree and grass leaves) followed by animal hair, small insects and their fragments, microorganisms of aeroplankton, and equivocal biological garbage. Specific components were found in samples from locations close to bodies of water such as fragments of algae and mollusc shells and, marine invertebrates (needles of sea urchins and shell debris of arthropods). In most locations across the Far East (Vladivostok, Khabarovsk, Blagoveshchensk, and Ussuriysk), the content of biogenic particles collected in the winter did not exceed 10% of the total particulate matter, with the exception of Birobidzhan and the nature reserve Bastak, where it made up to 20%. Most of all biogenic compounds should be allergic: hair, fragments of tree and grass leaves, insects, and microorganisms. PMID:25140327

  11. The physicochemical characterisation of microscopic airborne particles in south Wales: A review of the locations and methodologies

    International Nuclear Information System (INIS)

    As part of the NERC-URGENT thematic programme, research was undertaken into the physicochemistry and bioreactivity of microscopic airborne particulate matter in south Wales. This paper reviews the collecting and characterisation methods used in the research; some of the results obtained are shown as examples. Four main collecting locations were chosen: Cardiff (urban); Port Talbot (urban/industrial); Park Slip West coal opencast pit (industrial/rural); the Black Mountains (rural/background). Collections initially used a 30-l/min Negretti PM1 filter collection system, however in the later stages of the project increased use was made of a 1100-l/min impaction system (nicknamed the super-sucker). This latter device was developed at Harvard University USA, however was adapted and optimised at Cardiff University. Methods for the extraction of PM1 off polycarbonate filters and polyurethane substrates were developed, with particular attention being paid to minimise physical or chemical changes during the extraction, and the extracts being in an appropriate state for bioreactivity assessment. Physicochemical characterisation of the PM1 included the empirical measurement of shape and size using electron microscopy and semi-automated image analysis. The determinations of the water-soluble and -insoluble chemical components were undertaken by ion chromatography and inductive coupled plasma-mass spectrometry. The bioreactivity of south Wales airborne particles is not covered by this review

  12. Effect of indoor-generated airborne particles on radon progeny dynamics.

    Science.gov (United States)

    Trassierra, C Vargas; Stabile, L; Cardellini, F; Morawska, L; Buonanno, G

    2016-08-15

    In order to investigate the interaction between radon progeny and particles, an experimental campaign was carried out in a radon chamber at the Italian National Institute of Ionizing Radiation Metrology, quantifying the amount of attached and unattached radon daughters present in air, as well as the equilibrium factor in the presence of particles generated through indoor sources. A fixed radon concentration was maintained, while particles were generated using incense sticks, mosquito coils and gas combustion. Aerosols were characterized in terms of particle concentrations and size distributions. Simultaneously, radon concentration and attached/unattached potential alpha energy concentration in the air were continuously monitored by two different devices, based on alpha spectroscopy techniques. The presence of particles was found to affect the attached fraction of radon decay products, in such a way that the particles acted as a sink for radionuclides. In terms of sources which emit large particles (e.g. incense, mosquito coils), which greatly increase particle surface area concentrations, the Equilibrium Factor was found to double with respect to the background level before particle generation sessions. On the contrary, the radon decay product dynamics were not influenced by gas combustion processes, mainly due to the small surface area of the particles emitted. PMID:27131455

  13. 激光尘埃粒子计数器反射腔偏差分析%Error Analysis of Reflecting mirror of Airborne Particle Counter

    Institute of Scientific and Technical Information of China (English)

    王卫芳

    2011-01-01

    目前激光尘埃粒子计数器的应用非常广泛,但各方面参数的选择还都不是很完善。将激光尘埃粒子计器的反射腔工作原理建立了几何模型,用数学公式表达出气溶胶粒子偏离焦点后在反射腔上的偏差,为实际生产和使用提供了依据。%Recently,The Airborne Particle Counter is used widely,however,its choose of parameters is not very perfect.In this particle,a geometric model of mirror in Airborne Particle Counter was established,expressed in mathematical formula for error in reflect cavity besause of Particles off the focus,This will offer some references to practices.

  14. Airborne dust and soil particles at the Phoenix landing site, Mars

    DEFF Research Database (Denmark)

    Madsen, M. B.; Drube, L.; Goetz, W.;

    . Because of the multiple background colors of the iSweeps the effect of the translucence of thin dust layers can be studied. This is used to estimate the rate of dust accumulation and will be used to evaluate light scattering properties of the particles. Some particles raised by the retro-rockets during...

  15. The future of airborne sulfur-containing particles in the absence of fossil fuel sulfur dioxide emissions.

    Science.gov (United States)

    Perraud, Véronique; Horne, Jeremy R; Martinez, Andrew S; Kalinowski, Jaroslaw; Meinardi, Simone; Dawson, Matthew L; Wingen, Lisa M; Dabdub, Donald; Blake, Donald R; Gerber, R Benny; Finlayson-Pitts, Barbara J

    2015-11-01

    Sulfuric acid (H2SO4), formed from oxidation of sulfur dioxide (SO2) emitted during fossil fuel combustion, is a major precursor of new airborne particles, which have well-documented detrimental effects on health, air quality, and climate. Another precursor is methanesulfonic acid (MSA), produced simultaneously with SO2 during the atmospheric oxidation of organosulfur compounds (OSCs), such as dimethyl sulfide. In the present work, a multidisciplinary approach is used to examine how contributions of H2SO4 and MSA to particle formation will change in a large coastal urban area as anthropogenic fossil fuel emissions of SO2 decline. The 3-dimensional University of California Irvine-California Institute of Technology airshed model is used to compare atmospheric concentrations of gas phase MSA, H2SO4, and SO2 under current emissions of fossil fuel-associated SO2 and a best-case futuristic scenario with zero fossil fuel sulfur emissions. Model additions include results from (i) quantum chemical calculations that clarify the previously uncertain gas phase mechanism of formation of MSA and (ii) a combination of published and experimental estimates of OSC emissions, such as those from marine, agricultural, and urban processes, which include pet waste and human breath. Results show that in the zero anthropogenic SO2 emissions case, particle formation potential from H2SO4 will drop by about two orders of magnitude compared with the current situation. However, particles will continue to be generated from the oxidation of natural and anthropogenic sources of OSCs, with contributions from MSA and H2SO4 of a similar order of magnitude. This could be particularly important in agricultural areas where there are significant sources of OSCs. PMID:26483454

  16. Phthalates in PM2.5 airborne particles in the Moravian-Silesian Region, Czech Republic

    OpenAIRE

    Jana Růžičková; Helena Raclavská; Konstantin Raclavský; Dagmar Juchelková

    2016-01-01

    Industrial area of the Moravian-Silesian Region (the Czech Republic) is highly polluted by air contaminants, especially emissions of particulate matter. Samples of PM2.5 particles were analysed by pyrolysis gas chromatography with mass spectrometric detection. Concentrations of phthalates were determined for the winter season, transitional period and the summer season. The relative concentrations of phthalates in PM2.5 particles have the same proportion in both heating and non-heating season:...

  17. Airborne measurements of nucleation mode particles I: coastal nucleation and growth rates

    Directory of Open Access Journals (Sweden)

    C. D. O'Dowd

    2007-01-01

    Full Text Available A light aircraft was equipped with a bank of Condensation Particle Counters (CPCs (50% cut from 3–5.4–9.6 nm and a nano-Scanning Mobility Particle Sizer (nSMPS and deployed along the west coast of Ireland, in the vicinity of Mace Head. The objective of the exercise was to provide high resolution micro-physical measurements of the coastal nucleation mode in order to map the spatial extent of new particle production regions and to evaluate the evolution, and associated growth rates of the coastal nucleation-mode aerosol plume. Results indicate that coastal new particle production is occurring over most areas along the land-sea interface with peak concentrations at the coastal plume-head in excess of 106 cm−3. Pseudo-Lagrangian studies of the coastal plume evolution illustrated significant growth of new particles to sizes in excess of 8 nm approximately 10 km downwind of the source region. Close to the plume head (<1 km growth rates can be as high as 123–171 nm h−1, decreasing gradually to 53–72 nm h−1 at 3 km. Further along the plume, at distances up to 10 km, the growth rates are calculated to be 17–32 nm h−1. Growth rates of this magnitude suggest that after a couple of hours, coastal nucleation mode particles can reach significant sizes where they can contribution to the regional aerosol loading.

  18. Fabrication and characterization of thermally actuated micromechanical resonators for airborne particle mass sensing: II. Device fabrication and characterization

    International Nuclear Information System (INIS)

    This paper, the second of two parts, presents extensive measurement and characterization results on fabricated thermally actuated single-crystal silicon MEMS resonators analyzed in part I. The resonators have been fabricated using a single mask process on SOI substrates. Resonant frequencies in a few hundreds of kHz to a few MHz and equivalent motional conductances as high as 102 mA V−1 have been measured for the fabricated resonators. The measurement results have been compared to the resonator characteristics predicted by the model developed in part I showing a good agreement between the two. Despite the relatively low frequencies, high quality factors (Q) of the order of a few thousand have been measured for the resonators under atmospheric pressure. The mass sensitivities of some of the resonators were characterized by embedding them in a custom-made test setup and deposition of artificially generated aerosol particles with known size and composition. The resulting measured mass sensitivities are of the order of tens to hundreds of Hz ng−1 and are in agreement with the expected values based on the resonator's physical dimensions. Finally, measurement of mass density of arbitrary airborne particles in the surrounding lab environment has been demonstrated

  19. Lung deposition predictions of airborne particles and the emergence of contemporary diseases Part-I

    Directory of Open Access Journals (Sweden)

    Khan A

    2011-05-01

    Full Text Available Inhaled particles can cause a variety of pulmonary illnesses such as asthma, bronchitis, chronic obstructive pulmonary diseases (COPD and even secondary organismic diseases. Thus, predictions of inhaled aerosol deposition in the respiratory tract are essential not only to assess their possible consequences but also to optimize drug delivery using pharmaceutical aerosols. Deposition of inhaled aerosols is a complex phenomenon that depends on the physico-chemical properties of the particles, lung anatomy, and respiratory patterns of the subject. Hence, the prediction of particle deposition for an individual person poses real challenges. Different conceptual particle deposition models are employed for the estimation of deposition fraction in different region of the lung. However, these deposition fractions vary with the above mentioned parameters in addition to the modeling and computational technique. Part-I of this review article briefly describes the deposition behaviour of inhaled particulate matter and the currently available approaches for the prediction of aerosol deposition in the respiratory tract. Part-II continues this thread and provides a broad view of the health-related issues of particle exposure.

  20. Airborne particle sizes and sources found in indoor air. Rept. for Sep 89-Feb 90

    International Nuclear Information System (INIS)

    The paper summarizes results of a literature search into the sources, sizes, and concentrations of particles in indoor air, including the various types: plant, animal, mineral, combustion, home/personal care, and radioactive aerosols. The information, presented in a summary figure, has been gathered for use in designing test methodologies for air cleaners and other mitigation approaches and to aid in the selection of air cleaners. (NOTE: As concern about indoor air quality has grown, understanding indoor aerosols has become increasingly important so that control techniques may be implemented to reduce damaging health effects and soiling problems. Particle diameters must be known to predict dose or soiling and to determine efficient mitigation techniques.)

  1. Automated classification of single airborne particles from two-dimensional angle-resolved optical scattering (TAOS) patterns by non-linear filtering

    Science.gov (United States)

    Crosta, Giovanni Franco; Pan, Yong-Le; Aptowicz, Kevin B.; Casati, Caterina; Pinnick, Ronald G.; Chang, Richard K.; Videen, Gorden W.

    2013-12-01

    Measurement of two-dimensional angle-resolved optical scattering (TAOS) patterns is an attractive technique for detecting and characterizing micron-sized airborne particles. In general, the interpretation of these patterns and the retrieval of the particle refractive index, shape or size alone, are difficult problems. By reformulating the problem in statistical learning terms, a solution is proposed herewith: rather than identifying airborne particles from their scattering patterns, TAOS patterns themselves are classified through a learning machine, where feature extraction interacts with multivariate statistical analysis. Feature extraction relies on spectrum enhancement, which includes the discrete cosine FOURIER transform and non-linear operations. Multivariate statistical analysis includes computation of the principal components and supervised training, based on the maximization of a suitable figure of merit. All algorithms have been combined together to analyze TAOS patterns, organize feature vectors, design classification experiments, carry out supervised training, assign unknown patterns to classes, and fuse information from different training and recognition experiments. The algorithms have been tested on a data set with more than 3000 TAOS patterns. The parameters that control the algorithms at different stages have been allowed to vary within suitable bounds and are optimized to some extent. Classification has been targeted at discriminating aerosolized Bacillus subtilis particles, a simulant of anthrax, from atmospheric aerosol particles and interfering particles, like diesel soot. By assuming that all training and recognition patterns come from the respective reference materials only, the most satisfactory classification result corresponds to 20% false negatives from B. subtilis particles and <11% false positives from all other aerosol particles. The most effective operations have consisted of thresholding TAOS patterns in order to reject defective ones

  2. On Airborne Nano/Micro-Sized Particles Released from Low-Metallic Automotive Brakes

    Czech Academy of Sciences Publication Activity Database

    Kukutschová, J.; Moravec, Pavel; Tomášek, V.; Matějka, V.; Smolík, Jiří; Schwarz, Jaroslav; Seidlerová, J.; Šafářová, K.; Filip, P.

    2011-01-01

    Roč. 159, č. 4 (2011), s. 998-1006. ISSN 0269-7491 Institutional research plan: CEZ:AV0Z40720504 Keywords : brake wear debris * nano particles * oxidative wear Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.746, year: 2011

  3. Indoor and outdoor airborne particles. An in vitro study on mutagenic potential and toxicological implications.

    NARCIS (Netherlands)

    Houdt, van J.J.

    1988-01-01

    IntroductionAir pollution components are present as gases and as particulate matter. As particle deposition takes place in various parts of the respiratory system particulate matter may have other toxicological implications than gaseous pollutants, which all may penetrate in the low

  4. Effect of atmospheric electricity on dry deposition of airborne particles from atmosphere

    Science.gov (United States)

    Tammet, H.; Kimmel, V.; Israelsson, S.

    The electric mechanism of dry deposition is well known in the case of unattached radon daughter clusters that are unipolar charged and of high mobility. The problematic role of the electric forces in deposition of aerosol particles is theoretically examined by comparing the fluxes of particles carried by different deposition mechanisms in a model situation. The electric mechanism of deposition appears essential for particles of diameter 10-200 nm in conditions of low wind speed. The electric flux of fine particles can be dominant on the tips of leaves and needles even in a moderate atmospheric electric field of a few hundred V m -1 measured over the plane ground surface. The electric deposition is enhanced under thunderclouds and high voltage power lines. Strong wind suppresses the relative role of the electric deposition when compared with aerodynamic deposition. When compared with diffusion deposition the electric deposition appears less uniform: the precipitation particulate matter on the tips of leaves and especially on needles of top branches of conifer trees is much more intensive than on the ground surface and electrically shielded surfaces of plants. The knowledge of deposition geometry could improve our understanding of air pollution damage to plants.

  5. Aerobyologic monitoring in urban and extra urban areas : analysis of airborne fungal particle concentration; Indagini aerobiologiche in ambiente urbano ed extraurbano componente fungina aerodiffusa

    Energy Technology Data Exchange (ETDEWEB)

    Bari, A. [ENEA, Saluggia (Italy). Centro Ricerche Energia; Caramiello, R.; Fossa, V.; Potenza, A. [Turin Univ. (Italy), Dip. di Biologia Vegetale

    1995-12-01

    In the environmental monitoring studies carried out by ENEA (Italian Agency for New Technologies, Energy and the Environment) a research about air quality of Turin and Saluggia (VC) has started in collaboration with the University of Turin. This research concerns the study of pollen and airborne fungal particle concentrations in the atmosphere. In the last few years the interest in airborne spores and hyphal fragments has increased. Indeed these particles play a very important role in allergic reactions, in several other human diseases, and in plant pathology. The incidence and the risk of infections by airborne fungal spores are correlated to the general climate and to the local micro climatic conditions; a complete aerosporological knowledge can be in many cases a useful indicator for infection risks. In this study the concentrations of airborne fungal spores in two different stations (urban station, Turin; and rural station, Saluggia (VC)) has been evaluated and compared, only for the year 1992, in order to verify the influence of climatic conditions and of floristic and vegetational aspects. In order to establish the correlations between the climate and the airborne fungal data, the results of aerosporogical analysis, relative to the Turin station, are reported. This investigation cover a six year period, three of which under standard climatic conditions and three with considerable peculiarities. A comparative evaluation of the efficiency in the collection of aerobiological particles (pollen and spores) by natural traps (mosses) has been attempted in Saluggia. The results obtained by this palinological analysis have been compared with the composition of the local flora and the data monitored by a spore-trap (volumetric pollen trap) positioned on the roof of a building in the ENEA Research Center of Saluggia.

  6. Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia

    Directory of Open Access Journals (Sweden)

    P. Guyon

    2005-05-01

    Full Text Available As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate 2002 campaign, we studied the emission of carbon monoxide (CO, carbon dioxide (CO2, and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN relative to CO (ERCN/CO fell in the range 14–32 cm-3 ppb-1 for most of the time, in agreement with values usually found from tropical savanna fires. The number of particles emitted per amount biomass burned was found to be dependant on the fire condition (combustion efficiency. Variability in the ERCN/CO between fires was similar to the variability caused by variations in combustion behavior within each individual fire. This was confirmed by observations of CO-to-CO2 emission ratios (ERCO/CO2, which stretched across the same wide range of values for individual fires as for all the fires observed during the sampling campaign, indicating that flaming and smoldering phases are present simultaneously in deforestation fires. Emission factors (EF for CO and aerosol particles were computed and a correction was applied for the residual smoldering combustion (RSC fraction of emissions that are not sampled by the aircraft. The correction, previously unpublished for tropical deforestation fires, suggested an EF about one and a half to twice as large for these species. Vertical transport of biomass-burning plumes from the boundary layer (BL to the cloud detrainment layer (CDL and the free troposphere (FT was found to be a very common phenomenon. We observed a 20% loss in particle number as a result of this vertical transport and subsequent cloud processing, attributable to in-cloud coagulation. This small loss fraction suggests that this mode of transport is very efficient in terms of particle numbers and occurs mostly via non

  7. Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia

    Directory of Open Access Journals (Sweden)

    P. Guyon

    2005-01-01

    Full Text Available As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia - Smoke, Aerosols, Clouds, Rainfall, and Climate 2002 campaign, we studied the emission of carbon monoxide (CO, carbon dioxide (CO2, and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN relative to CO (ERCN/CO fell in the range 14-32 cm-3 ppb-1 in most of the investigated smoke plumes. Particle number emission ratios have to our knowledge not been previously measured in tropical deforestation fires, but our results are in agreement with values usually found from tropical savanna fires. The number of particles emitted per amount biomass burned was found to be dependent on the fire conditions (combustion efficiency. Variability in ERCN/CO between fires was similar to the variability caused by variations in combustion behavior within each individual fire. This was confirmed by observations of CO-to-CO2 emission ratios (ERCO/CO2, which stretched across the same wide range of values for individual fires as for all the fires observed during the sampling campaign, reflecting the fact that flaming and smoldering phases are present simultaneously in deforestation fires. Emission factors (EF for CO and aerosol particles were computed and a correction was applied for the residual smoldering combustion (RSC fraction of emissions that are not sampled by the aircraft, which increased the EF by a factor of 1.5-2.1. Vertical transport of smoke from the boundary layer (BL to the cloud detrainment layer (CDL and the free troposphere (FT was found to be a very common phenomenon. We observed a 20% loss in particle number as a result of this vertical transport and subsequent cloud processing, attributable to in-cloud coagulation. This small loss fraction suggests that this mode of transport is very efficient in terms of particle numbers and occurs mostly via non-precipitating clouds. The detrained aerosol

  8. Heterogeneous reaction of N2O5 with airborne TiO2 particles and the implication for stratospheric particle injection

    Science.gov (United States)

    Tang, Mingjin; Abraham, Luke; Braesicke, Peter; Cox, Tony; McGregor, James; Pope, Francis; Pyle, John; Rkiouak, Laylla; Telford, Paul; Watson, Matt; Kalberer, Markus

    2014-05-01

    Injection of aerosol particles (or their precursors) into the stratosphere to scatter solar radiation back into space, has been suggested as a solar-radiation management (SRM) scheme for the mitigation for global warming. TiO2 has recently been highlighted as a possible candidate aerosol because of its high light scattering ability with a refractive index of 2.5 (Pope et al. 2012). The impact of particles injection on stratospheric ozone requires systematical assessment via laboratory and modelling studies. In this work, the heterogeneous reaction of airborne sub-micrometre TiO2 particles with N2O5 has been investigated at room temperature and different relative humidities (RH), using an atmospheric pressure aerosol flow tube. The uptake coefficient of N2O5 onto TiO2, γ(N2O5), was determined to be ~1.0×10-3 at low RH, and increase to ~3×10-3 at 60% RH. The dependence of γ(N2O5) on RH can be explained by the water adsorption isotherm of TiO2 particles. In addition, the uptake of N2O5 onto TiO2 aerosol particles has been included in the UKCA chemistry-climate model to assess the effect of N2O5 uptake onto TiO2 particles on the stratospheric composition. We construct a case study based on the eruption of Mt. Pinatubo, comparing the effects of TiO2 to those from the volcanic sulfate and to the situation with only background amount of aerosol. The changes in reactive nitrogen species and ozone due to the heterogeneous reaction of TiO2 with N2O5 are assessed relative to sulfate aerosol impacts. Pope, F. D., Braesicke, P., Grainger, R. G., Kalberer, M., Watson, I. M., Davidson, P. J., and Cox, R. A.: Stratospheric aerosol particles and solar-radiation management, Nature Clim. Change, 2, 713-719, 2012

  9. Measurement of Soluble and Total Hexavalent Chromium in the Ambient Airborne Particles in New Jersey

    Science.gov (United States)

    Huang, Lihui; Yu, Chang Ho; Hopke, Philip K.; Lioy, Paul J.; Buckley, Brian T.; Shin, Jin Young; Fan, Zhihua (Tina)

    2015-01-01

    Hexavalent chromium (Cr(VI)) in ambient airborne particulate matter (PM) is a known pulmonary carcinogen and may have both soluble and insoluble forms. The sum of the two forms is defined as total Cr(VI). Currently, there were no methods suitable for large-scale monitoring of total Cr(VI) in ambient PM. This study developed a method to measure total Cr(VI) in ambient PM. This method includes PM collection using a Teflon filter, microwave extraction with 3% Na2CO3-2% NaOH at 95°C for 60 minutes, and Cr(VI) analysis by 1,5-diphenylcarbazide colorimetry at 540 nm. The recoveries of total Cr(VI) were 119.5 ± 10.4% and 106.3 ± 16.7% for the Cr(VI)-certified reference materials, SQC 012 and SRM 2700, respectively. Total Cr(VI) in the reference urban PM (NIST 1648a) was 26.0 ± 3.1 mg/kg (%CV = 11.9%) determined by this method. The method detection limit was 0.33 ng/m3. This method and the one previously developed to measure ambient Cr(VI), which is soluble in pH ~9.0 aqueous solution, were applied to measure Cr(VI) in ambient PM10 collected from three urban areas and one suburban area in New Jersey. The total Cr(VI) concentrations were 1.05–1.41 ng/m3 in the winter and 0.99–1.56 ng/m3 in the summer. The soluble Cr(VI) concentrations were 0.03–0.19 ng/m3 in the winter and 0.12–0.37 ng/m3 in the summer. The summer mean ratios of soluble to total Cr(VI) were 14.3–43.7%, significantly higher than 4.2–14.4% in the winter. The winter concentrations of soluble and total Cr(VI) in the suburban area were significantly lower than in the three urban areas. The results suggested that formation of Cr(VI) via atmospheric chemistry may contribute to the higher soluble Cr(VI) concentrations in the summer. PMID:26120324

  10. TOF-SIMS measurements for toxic air pollutants adsorbed on the surface of airborne particles

    Science.gov (United States)

    Tomiyasu, Bunbunoshin; Hoshi, Takahiro; Owari, Masanori; Nihei, Yoshimasa

    2003-01-01

    Three kinds of particulate matter were collected: diesel and gasoline exhaust particles emitted directly from exhaust nozzle, and suspended particulate matter (SPM) near the traffic route. Soxhlet extraction was performed on each sample. By gas-chromatograph-mass spectrometer (GC-MS) analysis of these extracts, di-ethyl phthalate and di- n-butyl phthalate were detected from the extract of SPM and diesel exhaust particles (DEPs). Because these phthalates were sometimes suspected as contamination, time-of-flight secondary ion mass spectrometry (TOF-SIMS) measurements were also performed on the samples collected at the same environment. By comparing obtained spectra, it is clear that these environmental endocrine disrupters (EEDs) were adsorbed on DEP surface. Thus, we concluded that the combination of conventional method and TOF-SIMS measurement is one of the most powerful techniques for analyzing the toxic air pollutants adsorbed on SPM surface.

  11. Phthalates in PM2.5 airborne particles in the Moravian-Silesian Region, Czech Republic

    Directory of Open Access Journals (Sweden)

    Jana Růžičková

    2016-03-01

    Full Text Available Industrial area of the Moravian-Silesian Region (the Czech Republic is highly polluted by air contaminants, especially emissions of particulate matter. Samples of PM2.5 particles were analysed by pyrolysis gas chromatography with mass spectrometric detection. Concentrations of phthalates were determined for the winter season, transitional period and the summer season. The relative concentrations of phthalates in PM2.5 particles have the same proportion in both heating and non-heating season: di(2ethylexyl phthalate > di-n-butyl phthalate > diisononyl phthalate > diethyl phthalate. The most common increase in concentration in the winter season is from 5 to 10 times higher; the maximum of average concentration was 44 times higher than in the non-heating season.

  12. Personal exposure to airborne ultrafine particles in the urban area of Milan

    International Nuclear Information System (INIS)

    The relevance of health effects related to ultrafine particles (UFPs; aerodynamic diameter 5 particles/cm3. UFPs measures were divided on the basis of crossed environments or micro-environments, days of the week and day time (hours). The highest measured mean concentrations and data variability were observed during walking time and moving on motorized vehicles (bus and car), indicating that the highest exposure to UFPs can be reached near motorized traffic. The lowest exposures were observed in green areas and in office microenvironments. An appreciable difference between working and non-working days was observed. Concentration patterns and variation by days of the week and time periods appears related to time trends in traffic intensity.

  13. Airborne measurements of trace gas and aerosol particle emissions from biomass burning in Amazonia

    OpenAIRE

    Guyon, P; Frank, G. P.; M. Welling; D. Chand; Artaxo, P.; L. Rizzo; Nishioka, G.; Kolle, O.; Fritsch, H.; Silva Dias, M. A. F.; L. V. Gatti; Cordova, A. M.; Andreae, M.O.

    2005-01-01

    As part of the LBA-SMOCC (Large-Scale Biosphere-Atmosphere Experiment in Amazonia – Smoke, Aerosols, Clouds, Rainfall, and Climate) 2002 campaign, we studied the emission of carbon monoxide (CO), carbon dioxide (CO2), and aerosol particles from Amazonian deforestation fires using an instrumented aircraft. Emission ratios for aerosol number (CN) relative to CO (ERCN/CO) fell in the range 14–32 cm-3&nbs...

  14. Selection of filter media used for monitoring airborne alpha-emitting particles in a radiological emergency

    International Nuclear Information System (INIS)

    We have developed on air monitor for alpha-emitting particles released to the atmosphere at an accident of nuclear reprocessing plant. Selection of a suitable filter for the monitor is considerably important in order to achieve the high-sensitive measurement of radioactive concentration. We have examined surface collection efficiencies and pressure drops for the various filters that are commercially available in Japan. It was found that the PTFE membrane filter with backing had superior performance to the others, that is, a high surface collection efficiency and low pressure drop. (author)

  15. Concentration and particle size of airborne toxic algae (brevetoxin) derived from ocean red tide events.

    Science.gov (United States)

    Cheng, Yung Sung; McDonald, Jacob D; Kracko, Dean; Irvin, C Mitch; Zhou, Yue; Pierce, Richard H; Henry, Michael S; Bourdelaisa, Andrea; Naar, Jerome; Baden, Daniel G

    2005-05-15

    Red tides in the Gulf of Mexico are formed by blooms of the dinoflagellate Karenia brevis, which produces brevetoxins (PbTx). Brevetoxins can be transferred from water to air in the wind-powered whitecapped waves during red tide episodes. Inhalation exposure to marine aerosol containing PbTx causes respiratory problems. A liquid chromatograph/ tandem mass spectrometric method was developed for the detection and quantitation of several PbTxs in ambient samples collected during red tide events. This method was complemented by a previously developed antibody assay that analyzes the entire class of PbTx compounds. The method showed good linearity, accuracy, and reproducibility, allowing quantitation of PbTx compounds in the 10 pg/m3 range. Air concentrations of PbTxs and brevenal for individual samples ranged from 0.01 to 80 ng/m3. The particle size showed a single mode with a mass median diameter between 6 and 10 microm, which was consistent for all of the PbTx species that were measured. Our results imply that individual PbTxs were from the same marine aerosol or from marine aerosol that was produced from the same process. The particle size indicated the likelihood of high deposition efficiency in the respiratory tract with the majority of aerosol deposited in the upper airways and small but not insignificant deposition in the lower airways. PMID:15954221

  16. Rural measurements of the chemical composition of airborne particles in the Eastern United States

    International Nuclear Information System (INIS)

    Quantitative measurements of particulate composition was made at three rural sites: in central South Dakota, on the Louisiana Gulf Coastal, and in the Blue Ridge Mountains of Virginia. The first two sites were selected to determine background concentrations in continental polar and maritime tropical air masses, respectively, which affect the eastern United State during the summer. The Virginia site was selected as a receptor site, downwind of the midwestern source area. The South Dakota data established the background concentrations. These concentrations were similar to the levels in Louisiana when air parcels arrived from the Gulf of Mexico, without recently passing over the United States. Levels of fine particles (diameters less than 2.5 μm) were highest in Virginia and were due chiefly to sulfate. Using trajectory and statistical analyses, it is shown that the residence time of an air parcel over the midwestern source area was the most important variable in determining the sulface levels in the Blue Ridge Mountains

  17. Composition and mutagenicity of PAHs associated with urban airborne particles in Córdoba, Argentina

    International Nuclear Information System (INIS)

    The comet assay and micronucleous test were used to assess the genotoxicity of organic compounds associated with particulate material collected in the city of Córdoba, Argentina. Samples were collected on fiber glass filters and their organic extracts were analyzed by GC-MS. These extracts were used for the comet assay on human lymphocytes and for the MCN test with Tradescantia pallida. The concentrations of polycyclic aromatic hydrocarbons as well as some of their nitro derivates were higher during winter. Their composition suggested that their main emission sources were gasoline and diesel vehicles. We observed genotoxic effects of these organic extracts due to the presence of both direct and indirect acting mutagens. We found a good agreement between the two test systems employed, which encourages the further use of plant bioassays for air pollution monitoring, especially in developing countries, due to their flexibility, low cost and efficiency. -- Highlights: •PAHs and nitro-PAHs were higher during winter and fall seasons. •Concentrations of PAHs were below the daily potential dose of carcinogenic PAH. •The comet assay revealed that indirect mutagens were more abundant than direct ones. •The MCN test and the comet assay demonstrated the presence of human carcinogens. -- Capsule: Indirect mutagens were more abundant during winter and fall, in agreement with the higher concentrations of PAHs and nitro-PAHs being associated with atmospheric particles

  18. Trace elements in airborne particles in internal industrial environments: spectrometric analysis of x-ray fluorescence (XRF)

    International Nuclear Information System (INIS)

    Fluorescence spectroscopy x-ray, is a technique of non-destructive analysis, that allows quantitative determination of the absolute concentration of chemical elements that make up a given matrix. The detected elements depend on atomic number and energy of the secondary target used for irradiation of samples. X-rays are detected and counted in a spectroscopy system based on a multichannel analyzer, that discriminates by energy and form a spectrum of independent photopeaks, whose energy identifies the element and its intensity is proportional to its concentration. The quantification requires the irradiation and counting of a set of pattern comparators, of the same elements identified in the samples. The x-ray emission shows only during the time that the selected sample is subjected to irradiation by x-ray tube. This irradiation does not change the structure nor the chemical composition of the matrix, so the sample remains unchanged, after irradiation. This condition non-destructive characterizes the fluorescence x-ray. The trace elements present in airborne particles, are determined and collected on a Nuclepore filter. The collection sites selected are: Taller de Mecanica de Precision de la Escuela de Fisica, Universidad de Costa Rica; Taller J. V. G. Precision, San Antonio de Coronado; Taller de Muflas, MUFLASA, Alto de Guadalupe; Industria Silvania S. A., Pavas. In addition, it is attached the service rendered to the enterprise Sellos Generales S. A. The working conditions and physical conditions of facilities were considered. An aerosol sampler with a temporal variation was used. Irradiation of samples and an evaluation of the concentrations have been made. (author)

  19. The impact of flood and post-flood cleaning on airborne microbiological and particle contamination in residential houses.

    Science.gov (United States)

    He, Congrong; Salonen, Heidi; Ling, Xuan; Crilley, Leigh; Jayasundara, Nadeesha; Cheung, Hing Cho; Hargreaves, Megan; Huygens, Flavia; Knibbs, Luke D; Ayoko, Godwin A; Morawska, Lidia

    2014-08-01

    In January 2011, Brisbane, Australia, experienced a major river flooding event. We aimed to investigate its effects on air quality and assess the role of prompt cleaning activities in reducing the airborne exposure risk. A comprehensive, multi-parameter indoor and outdoor measurement campaign was conducted in 41 residential houses, 2 and 6 months after the flood. The median indoor air concentrations of supermicrometer particle number (PN), PM10, fungi and bacteria 2 months after the flood were comparable to those previously measured in Brisbane. These were 2.88 p cm(-3), 15 μg m(-3), 804 cf um(-3) and 177 cf um(-3) for flood-affected houses (AFH), and 2.74 p cm(-3), 15 μg m(-3), 547 cf um(-3) and 167 cf um(-3) for non-affected houses (NFH), respectively. The I/O (indoor/outdoor) ratios of these pollutants were 1.08, 1.38, 0.74 and 1.76 for AFH and 1.03, 1.32, 0.83 and 2.17 for NFH, respectively. The average of total elements (together with transition metals) in indoor dust was 2296 ± 1328 μg m(-2) for AFH and 1454 ± 678 μg m(-2) for NFH, respectively. In general, the differences between AFH and NFH were not statistically significant, implying the absence of a measureable effect on air quality from the flood. We postulate that this was due to the very swift and effective cleaning of the flooded houses by 60,000 volunteers. Among the various cleaning methods, the use of both detergent and bleach was the most efficient at controlling indoor bacteria. All cleaning methods were equally effective for indoor fungi. This study provides quantitative evidence of the significant impact of immediate post-flood cleaning on mitigating the effects of flooding on indoor bioaerosol contamination and other pollutants. PMID:24785990

  20. Measurement of airborne gunshot particles in a ballistics laboratory by sector field inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Diaz, Ernesto; Sarkis, Jorge E Souza; Viebig, Sônia; Saldiva, Paulo

    2012-01-10

    The present study aimed determines lead (Pb), antimony (Sb) and barium (Ba) as the major elements present in GSR in the environmental air of the Ballistics Laboratory of the São Paulo Criminalistics Institute (I.C.-S.P.), São Paulo, SP, Brazil. Micro environmental monitors (mini samplers) were located at selected places. The PM(2.5) fraction of this airborne was collected in, previously weighted filters, and analyzed by sector field inductively coupled plasma mass spectrometer (SF-HR-ICP-MS). The higher values of the airborne lead, antimony and barium, were found at the firing range (lead (Pb): 58.9 μg/m(3); barium (Ba): 6.9 μg/m(3); antimony (Sb): 7.3 μg/m(3)). The mean value of the airborne in this room during 6 monitored days was Pb: 23.1 μg/m(3); Ba: 2.2 μg/m(3); Sb: 1.5 μg/m(3). In the water tank room, the air did not show levels above the limits of concern. In general the airborne lead changed from day to day, but the barium and antimony remained constant. Despite of that, the obtained values suggest that the workers may be exposed to airborne lead concentration that can result in an unhealthy environment and could increase the risk of chronic intoxication. PMID:21831549

  1. Experimental study of the response functions of direct-reading instruments measuring surface-area concentration of airborne nanostructured particles

    Science.gov (United States)

    Bau, Sébastien; Witschger, Olivier; Gensdarmes, François; Thomas, Dominique

    2009-05-01

    An increasing number of experimental and theoretical studies focus on airborne nanoparticles (NP) in relation with many aspects of risk assessment to move forward our understanding of the hazards, the actual exposures in the workplace, and the limits of engineering controls and personal protective equipment with regard to NP. As a consequence, generating airborne NP with controlled properties constitutes an important challenge. In parallel, toxicological studies have been carried out, and most of them support the concept that surface-area could be a relevant metric for characterizing exposure to airborne NP [1]. To provide NP surface-area concentration measurements, some direct-reading instruments have been designed, based on attachment rate of unipolar ions to NP by diffusion. However, very few information is available concerning the performances of these instruments and the parameters that could affect their responses. In this context, our work aims at characterizing the actual available instruments providing airborne NP surface-area concentration. The instruments (a- LQ1-DC, Matter Engineering; b-AeroTrak™ 9000, TSI; c- NSAM, TSI model 3550;) are thought to be relevant for further workplace exposure characterization and monitoring. To achieve our work, an experimental facility (named CAIMAN) was specially designed, built and characterized.

  2. Organic compounds present in airborne particles stimulate superoxide production and DNA fragmentation: role of NOX and xanthine oxidase in animal tissues.

    Science.gov (United States)

    Busso, Iván Tavera; Silva, Guillermo Benjamín; Carreras, Hebe Alejandra

    2016-08-01

    Suspended particulate matter trigger the production of reactive oxygen species. However, most of the studies dealing with oxidative damage of airborne particles focus on the effects of individual compounds and not real mixtures. In order to study the enzymatic superoxide production resulting from the exposition to a complex mixture, we derived organic extracts from airborne particles collected daily in an urban area and exposed kidney, liver, and heart mammal tissues. After that, we measured DNA damage employing the comet assay. We observed that in every tissue, NADPH oxidase and xanthine oxidase were involved in O2 (-) production when they were exposed to the organic extracts, as the lucigenin's chemiluminescence decays when enzymes were inhibited. The same trend was observed with the percentage of cells with comets, since DNA damage was higher when they were exposed to same experimental conditions. Our data allow us to hypothesize that these enzymes play an important role in the oxidative stress produced by PAHs and that there is a mechanism involving them in the O2 (-)generation. PMID:27180836

  3. 最小二乘法在尘埃粒子计数器中的应用%Application of Least Square Method in the Airborne Particle Counter

    Institute of Scientific and Technical Information of China (English)

    杨娟; 卞保民; 何幼权; 贺安之

    2001-01-01

    分析了导致尘埃粒子计数器标定过程非常复杂的原因,提出将最小二乘法用于尘埃粒子计数器标定过程中的方法,有利于提高仪器标定的一致性并降低劳动强度。文中给出了用最小二乘法对国产激光尘埃粒子计数器进行标定的实验结果。%The reasons that lead to the complication in the process of demarcating the airborne particle counter is anal-ysed in this paper. And the Least Square Method is introduced, which can increase effectively the consistency of the in-strument demarcation and decrease the labor intensity. Experimental results calculated by the Least Square Method hasbeen performed with laser airborne particle counter.

  4. Observation and Discussion of the Latest Airborne Particle Counter of Hach Company%美国哈希公司尘埃粒子计数器最新动态观察与探讨

    Institute of Scientific and Technical Information of China (English)

    刘柳; 梁毅

    2012-01-01

    以美国哈希公司生产的METONE3411便携式尘埃粒子计数器为例,介绍了目前制药工业洁净区空气悬浮粒子的控制和监测方面的最新技术动向,并探讨其应用。%This paper introduces the current pharmaceutical airborne particle control and monitoring of the latest technology trends,using MET ONE 3411 portable airborne particle counters produced by Hath Company as an example, and discussed its application.

  5. Vertical wind retrieved by airborne lidar and analysis of island induced gravity waves in combination with numerical models and in situ particle measurements

    Science.gov (United States)

    Chouza, Fernando; Reitebuch, Oliver; Jähn, Michael; Rahm, Stephan; Weinzierl, Bernadett

    2016-04-01

    This study presents the analysis of island induced gravity waves observed by an airborne Doppler wind lidar (DWL) during SALTRACE. First, the instrumental corrections required for the retrieval of high spatial resolution vertical wind measurements from an airborne DWL are presented and the measurement accuracy estimated by means of two different methods. The estimated systematic error is below -0.05 m s-1 for the selected case of study, while the random error lies between 0.1 and 0.16 m s-1 depending on the estimation method. Then, the presented method is applied to two measurement flights during which the presence of island induced gravity waves was detected. The first case corresponds to a research flight conducted on 17 June 2013 in the Cabo Verde islands region, while the second case corresponds to a measurement flight on 26 June 2013 in the Barbados region. The presence of trapped lee waves predicted by the calculated Scorer parameter profiles was confirmed by the lidar and in situ observations. The DWL measurements are used in combination with in situ wind and particle number density measurements, large-eddy simulations (LES), and wavelet analysis to determine the main characteristics of the observed island induced trapped waves.

  6. Airborne exposures to PAH and PM2.5 particles for road paving workers applying conventional asphalt and crumb rubber modified asphalt.

    Science.gov (United States)

    Watts, R R; Wallingford, K M; Williams, R W; House, D E; Lewtas, J

    1998-01-01

    Personal exposure monitoring was conducted for road paving workers in three states. A research objective was to characterize and compare occupational exposures to fine respirable particles (asphalt and asphalt containing crumb rubber from shredded tires. Workers not exposed to asphalt fume were also included for comparison (to support the biomarker component of this study). The rubber content of the crumb rubber modified (CRM) asphalt at the three study sites was 12, 15, and 20%. A comparison of some specific job categories from two sites indicates greater potential carcinogenic PAH exposures during CRM asphalt work, however, the site with the greatest overall exposures did not indicate any differences for specific jobs. A statistical analysis of means for fine particle, pyrene and total carcinogenic PAH personal exposure shows, with two exceptions, there were no differences in exposures for these three measurement variables. One site shows significantly elevated pyrene exposure for CRM asphalt workers and another site similarly shows greater carcinogenic PAH exposure for CRM asphalt workers. Conventional and CRM asphalt worker airborne exposures to the PAH carcinogen marker, BaP, were very low with concentrations comparable to ambient air in many cities. However, this study demonstrates that asphalt road paving workers are exposed to elevated airborne concentrations of a group of unknown compounds that likely consist of the carcinogenic PAHs benz(a)anthracene, chrysene and methylated derivatives of both. The research described in this article has been reviewed in accordance with U.S. Environmental Protection Agency policy and approved for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. PMID:9577752

  7. Comparison of physicochemical properties between fine (PM2.5) and coarse airborne particles at cold season in Korea.

    Science.gov (United States)

    Choung, Sungwook; Oh, Jungsun; Han, Weon Shik; Chon, Chul-Min; Kwon, Youngsang; Kim, Do Yeon; Shin, Woosik

    2016-01-15

    Although it has been well-known that atmospheric aerosols affect negatively the local air quality, human health, and climate changes, the chemical and physical properties of atmospheric aerosols are not fully understood yet. This study experimentally measured the physiochemical characteristics of fine and coarse aerosol particles at the suburban area to evaluate relative contribution to environmental pollution in consecutive seasons of autumn and winter, 2014-2015, using XRD, SEM-EDX, XNI, ICP-MS, and TOF-SIMS. For these experimental works, the fine and coarse aerosols were collected by the high volume air sampler for 7 days each season. The fine particles contain approximately 10 μg m(-3) of carbonaceous aerosols consisting of 90% organic and 10% elemental carbon. The spherical-shape carbonaceous particles were observed for the coarse samples as well. Interestingly, the coarse particles in winter showed the increased frequency of carbon-rich particles with high contents of heavy metals. These results suggest that, for the cold season, the coarse particles could contribute relatively more to the conveyance of toxic contaminants compared to the fine particles in the study area. However, the fine particles showed acidic properties so that their deposition to surface may cause facilitate the increase of mobility for toxic heavy metals in soil and groundwater environments. The fine and coarse particulate matters, therefore, should be monitored separately with temporal variation to evaluate the impact of atmospheric aerosols to environmental pollution and human health. PMID:26476059

  8. Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States

    Directory of Open Access Journals (Sweden)

    I. R. Burling

    2011-06-01

    Full Text Available We measured the emission factors for 19 trace gas species and particulate matter (PM2.5 from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous observations that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured both the emissions in the convective smoke plume from our airborne platform and the unlofted residual smoldering combustion emissions with our ground-based platform. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including high 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts of smoke that disperses at ground level. We also show that the often ignored unlofted emissions can significantly impact estimates of total emissions. Preliminary evidence suggests large emissions of monoterpenes in the residual smoldering smoke. These data should lead to an improved capacity to model the impacts of biomass burning in similar temperate ecosystems.

  9. Airborne and ground-based measurements of the trace gases and particles emitted by prescribed fires in the United States

    Directory of Open Access Journals (Sweden)

    I. R. Burling

    2011-12-01

    Full Text Available We have measured emission factors for 19 trace gas species and particulate matter (PM2.5 from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps to close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous observations that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured both the emissions in the convective smoke plume from our airborne platform and the unlofted residual smoldering combustion emissions with our ground-based platform. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including high 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts for smoke that disperses at ground level. We also show that the often ignored unlofted emissions can significantly impact estimates of total emissions. Preliminary evidence suggests large emissions of monoterpenes in the residual smoldering smoke. These data should lead to an improved capacity to model the impacts of biomass burning in similar temperate ecosystems.

  10. Airborne and ground-based measurements of the trace gases and particles emitted from prescribed fires in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Burling, Ian; Yokelson, Robert J.; Akagi, Sheryl; Urbanski, Shawn; Wold, Cyle E.; Griffith, David WT; Johnson, Timothy J.; Reardon, James; Weise, David

    2011-12-07

    We measured the emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous suggestions that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured the emissions in the convective smoke plume from our airborne platform at the same time the unlofted residual smoldering combustion emissions were measured with our ground-based platform after the flame front passed through. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including significant 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts of smoke that disperses at ground level, and we show that the normally-ignored unlofted emissions can also significantly impact estimates of total emissions. Preliminary evidence of large emissions of monoterpenes was seen in the residual smoldering spectra, but we have not yet quantified these emissions. These data should lead to an improved capacity to model the impacts of biomass burning in similar

  11. Performance of a scanning mobility particle sizer in measuring diverse types of airborne nanoparticles: Multi-walled carbon nanotubes, welding fumes, and titanium dioxide spray.

    Science.gov (United States)

    Chen, Bean T; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-07-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the "gold standard" for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing "monodisperse" aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in some test

  12. Performance of a Scanning Mobility Particle Sizer in Measuring Diverse Types of Airborne Nanoparticles: Multi-Walled Carbon Nanotubes, Welding Fumes, and Titanium Dioxide Spray

    Science.gov (United States)

    Chen, Bean T.; Schwegler-Berry, Diane; Cumpston, Amy; Cumpston, Jared; Friend, Sherri; Stone, Samuel; Keane, Michael

    2016-01-01

    Direct-reading instruments have been widely used for characterizing airborne nanoparticles in inhalation toxicology and industrial hygiene studies for exposure/risk assessments. Instruments using electrical mobility sizing followed by optical counting, e.g., scanning or sequential mobility particle spectrometers (SMPS), have been considered as the “gold standard” for characterizing nanoparticles. An SMPS has the advantage of rapid response and has been widely used, but there is little information on its performance in assessing the full spectrum of nanoparticles encountered in the workplace. In this study, an SMPS was evaluated for its effectiveness in producing “monodisperse” aerosol and its adequacy in characterizing overall particle size distribution using three test aerosols, each mimicking a unique class of real-life nanoparticles: singlets of nearly spherical titanium dioxide (TiO2), agglomerates of fiber-like multi-walled carbon nanotube (MWCNT), and aggregates that constitutes welding fume (WF). These aerosols were analyzed by SMPS, cascade impactor, and by counting and sizing of discrete particles by scanning and transmission electron microscopy. The effectiveness of the SMPS to produce classified particles (fixed voltage mode) was assessed by examination of the resulting geometric standard deviation (GSD) from the impactor measurement. Results indicated that SMPS performed reasonably well for TiO2 (GSD = 1.3), but not for MWCNT and WF as evidenced by the large GSD values of 1.8 and 1.5, respectively. For overall characterization, results from SMPS (scanning voltage mode) exhibited particle-dependent discrepancies in the size distribution and total number concentration compared to those from microscopic analysis. Further investigation showed that use of a single-stage impactor at the SMPS inlet could distort the size distribution and underestimate the concentration as shown by the SMPS, whereas the presence of vapor molecules or atom clusters in

  13. Exposure to Airborne Particles and Volatile Organic Compounds from Polyurethane Molding, Spray Painting, Lacquering, and Gluing in a Workshop

    Directory of Open Access Journals (Sweden)

    Bjarke Mølgaard

    2015-04-01

    Full Text Available Due to the health risk related to occupational air pollution exposure, we assessed concentrations and identified sources of particles and volatile organic compounds (VOCs in a handcraft workshop producing fishing lures. The work processes in the site included polyurethane molding, spray painting, lacquering, and gluing. We measured total VOC (TVOC concentrations and particle size distributions at three locations representing the various phases of the manufacturing and assembly process. The mean working-hour TVOC concentrations in three locations studied were 41, 37, and 24 ppm according to photo-ionization detector measurements. The mean working-hour particle number concentration varied between locations from 3000 to 36,000 cm−3. Analysis of temporal and spatial variations of TVOC concentrations revealed that there were at least four substantial VOC sources: spray gluing, mold-release agent spraying, continuous evaporation from various lacquer and paint containers, and either spray painting or lacquering (probably both. The mold-release agent spray was indirectly also a major source of ultrafine particles. The workers’ exposure can be reduced by improving the local exhaust ventilation at the known sources and by increasing the ventilation rate in the area with the continuous source.

  14. Study of chemical composition and morphology of airborne particles in Chandigarh, India using EDXRF and SEM techniques.

    Science.gov (United States)

    Sharma, S G; Srinivas, M S N

    2009-03-01

    The elemental composition and morphology of aerosols, collected from March 95 to February 96 and March 96 to August 96 respectively in the city of Chandigarh, India is determined using Energy Dispersive X-ray fluorescence and scanning electron microscopic techniques. The elemental concentration levels are found to be higher by a factor of 2-7 in the spring season as compared to the rainy season. The concentration of spherical and non-spherical (i.e. elongated) aerosols is more in the spring season and is reduced drastically in the rainy season due to the prominent wash out effect of rains. More accurate particle classification and source identification is obtained when based on combination of chemical composition and particle morphology. Possible sources identified from this analysis are soil dust, Industrial activity, Agricultural and Garbage burning, Maritime aerosols and Automobile exhaust. PMID:18418721

  15. Real-time detection and characterization of individual flowing airborne biological particles: fluorescence spectra and elastic scattering measurements

    Science.gov (United States)

    Pan, Yongle; Holler, Stephen; Chang, Richard K.; Hill, Steven C.; Pinnick, Ronald G.; Niles, Stanley; Bottiger, Jerold R.; Bronk, Burt V.

    1999-11-01

    Real-time methods which is reagentless and could detect and partially characterize bioaerosols are of current interest. We present a technique for real-time measurement of UV-excited fluorescence spectra and two-dimensional angular optical scattering (TAOS) from individual flowing biological aerosol particles. The fluorescence spectra have been observed from more than 20 samples including Bacillus subtilis, Escherichia coli, Erwinia herbicola, allergens, dust, and smoke. The S/N and resolution of the spectra are sufficient for observing small lineshape differences among the same type of bioaerosol prepared under different conditions. The additional information from TAOS regarding particle size, shape, and granularity has the potential of aiding in distinguishing bacterial aerosols from other aerosols, such as diesel and cigarette smoke.

  16. Mineralogical characteristics of airborne particles collected in Beijing during a severe Asian dust storm period in spring 2002

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Asian dust storm (ADS) samples were collected on March 20,2002 in Beijing,China. High-resolution field emission scanning electron microscopy with energy dispersive X-ray detector (FESEM-EDX) and X-ray diffraction (XRD) were used to study the morphology,chemical compositions,number-size dis-tributions and mineralogical compositions of ADS particles. The mineral particles were major compo-nents in the ADS samples,accounting for 94% by number. The XRD analysis indicated that the dust particles were dominated by clay (40.3%),and quartz (19.5%),followed by plagioclase (8.4%),calcite (7.5%),K-feldspar (1.5%),hematite (0.9%),pyrite (0.9%),hornblende (0.4%) and gypsum (0.3%),with a certain amount of noncrystalline materials (20.3%). Clay minerals were mainly illite/smectite mixed lay-ers (78%),followed by illite (9%),kaolinite (6%),and chlorite (7%). In addition to these main minerals,FESEM-EDX also detected some trace minerals,such as dolomite,pyrite,thenardite,as well as heavy minerals represented by rutile,ilmenite and apatite. The mineralogical compositions of the 2002-03-20 Asian dust storm and the Saharan dust plumes were similar but the clay mineralogy showed a great distinction,with the illite/smectite mixed layers being common in the Asian dust storm but illite being common in the Saharan dust plumes.

  17. Airborne urban particles (Milan winter-PM2.5) cause mitotic arrest and cell death: Effects on DNA, mitochondria, AhR binding and spindle organization

    International Nuclear Information System (INIS)

    Highlights: → PM2.5 induces mitotic arrest in BEAS-2B cells. → PM2.5 induces DNA damage and activates DNA damage response. → AhR regulated genes (Cyp1A1, Cyp1B1 and AhRR) are upregulated after PM exposure. → Mitotic spindle assembly is perturbed in PM exposed cells. - Abstract: Airborne particulate matter (PM) is considered to be an important contributor to lung diseases. In the present study we report that Milan winter-PM2.5 inhibited proliferation in human bronchial epithelial cells (BEAS-2B) by inducing mitotic arrest. The cell cycle arrest was followed by an increase in mitotic-apoptotic cells, mitotic slippage and finally an increase in 'classical' apoptotic cells. Exposure to winter-PM10 induced only a slight effect which may be due to the presence of PM2.5 in this fraction while pure combustion particles failed to disturb mitosis. Fewer cells expressing the mitosis marker phospho-histone H3 compared to cells with condensed chromosomes, suggest that PM2.5 induced premature mitosis. PM2.5 was internalized into the cells and often localized in laminar organelles, although particles without apparent plasma membrane covering were also seen. In PM-containing cells mitochondria and lysosomes were often damaged, and in mitotic cells fragmented chromosomes often appeared. PM2.5 induced DNA strands breaks and triggered a DNA-damage response characterized by increased phosphorylation of ATM, Chk2 and H2AX; as well as induced a marked increase in expression of the aryl hydrocarbon receptor (AhR)-regulated genes, CYP1A1, CYP1B1 and AhRR. Furthermore, some disturbance of the organization of microtubules was indicated. It is hypothesized that the induced mitotic arrest and following cell death was due to a premature chromosome condensation caused by a combination of DNA, mitochondrial and spindle damage.

  18. "EUROPART". Airborne particles in the indoor environment. A European interdisciplinary review of scientific evidence on associations between exposure to particles in buildings and health effects

    DEFF Research Database (Denmark)

    Schneider, T.; Sundell, Jan; Bischof, W.;

    2003-01-01

    The relevance of particle mass, surface area or number concentration as risk indicators for health effects in non-industrial buildings has been assessed by a European interdisciplinary group of researchers (called EUROPART) by reviewing papers identified in Medline, Toxline, and OSH. Studies...... number concentrations can be used as generally applicable risk indicators of health effects in non-industrial buildings and consequently that there is inadequate scientific evidence for establishing limit values or guidelines for particulate mass or number concentrations....

  19. Study on Size Distributions of Airborne Particles by Aircraft Observation in Spring over Eastern Coastal Areas of China

    Institute of Scientific and Technical Information of China (English)

    WANG Wei; LIU Hongjie; YUE Xin; LI Hong; CHEN Jianhua; TANG Dagang

    2005-01-01

    The authors studied the size distributions of particles at an altitude of 2000 m by aircraft observation over eastern costal areas of China from Zhuhai, Guangdong to Dalian, Liaoning (0.47-30 μm, 57 channels,including number concentration distribution, surface area concentration distribution and mass concentration distribution). In these cities, the average daily concentrations of PM10 are very high. They are among the most heavily polluted cities in China. The main pollution sources are anthropogenic activities such as wood, coal and oil burning. The observed size distributions show a broad spectrum and unique multi-peak characteristics, indicating no significant impacts of individual sources from urban areas. These results are far different from the distribution type at ground level. It may reflect the comprehensive effect of the regional pollution characteristics. Monitoring results over big cities could to some extent reflect their pollution characteristics.

  20. Monitoring and evaluation techniques for airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yihua [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  1. Evaluation of fluorescent particle counter in detecting airborne bacteria%荧光粒子计数器在空气细菌监测中的应用评价

    Institute of Scientific and Technical Information of China (English)

    张艳; 马筱玲; 尹美玲; 郑海洋; 顾学军; 谢少清; 荚恒敏; 张亮; 张为俊

    2014-01-01

    Objective Airborne transmission is the main approach of nosocomial infection.Closely related to the nosocomial infection rate is the air purification of hospital environment,especially the operating theatres and patients concentrated area.Routine monitoring of hospital air is the key to reduce the incidence of hospital infection.But it's quite necessary to do a bacteria culture if using traditional airborne bacterial detection method,which will take 2~3 days and delay in results.Laser-induced fluorescence spectroscopy was first used to detect airborne biological particles and non-biological particles in the mid of 1 990s.The aim of this study is to explore the ap-plication value of fluorescent particle counter in monitoring airborne bacteria.Methods The number of biological particles was dynami-cally monitored by the fluorescent particle counter in the blood collection room,and compared with the bacterial culture counts which was collected by impacting air sampler;SPSS1 3.0 software was used to calculate the correlation coefficient r between the number of bi-ological particles and airborne bacteria.Results There was a significant correlation between the number of biological particles and the number of airborne bacteria(r=0.889);the number of airborne bacteria was below 500 cfu·m-3 in non-treatment time and increased in other condition,and it didn’t meet the requirements of national hygienic standard for disinfection.Conclusions The number of bio-logical particles detected by fluorescent particle counter can be used to indicate the number of airborne bacteria,thus hopefully,the dy-namic monitoring of airborne bacteria can be achieved.%目的:空气是医院内感染传播的主要途径,医院内环境尤其是手术室及患者集中地区的空气净化程度和医院感染发生率密切相关,对医院空气进行常规监测是降低医院感染发生的关键所在。但是传统的空气细菌检测方法需要进行细菌培养,耗时2~3 d,

  2. Expert workshop traffic-caused airborne particles in urban areas; Experten-Workshop 'Verkehrsbedingte Feinstaeube in der Stadt'

    Energy Technology Data Exchange (ETDEWEB)

    Lanzendorf, Martin; Birmili, Wolfram; Franke, Patrick

    2006-07-15

    The proceedings of the expert workshop on traffic-caused airborne particulates in urban regions include the following contributions: epidemiology of ultra-fine particulates, ultra-fine particulates and their impacts in human health, environmental particulates in the urban atmosphere: properties and future requirement of measuring methods; ultra-fine particulates from traffic emissions - problems of measuring site selection for the evaluation of human exposure, modeling of PMx emissions in the context of environmental compatibility assessments and mitigation planning, traffic-caused particulates - need for action and remedial actions from the sight of the Federal environment Agency, traffic-related measures for the reduction of urban particulate exposure and their impact on the planning of air pollution prevention, strategic environmental assessment as an instrument for the airborne particulate consideration within the traffic and regional planning.

  3. THE BIMODAL DISTRIBUTION: DEVELOPMENT OF THE CONCEPT OF FINE AND COARSE PARTICLES AS SEPARATE AND DISTINCT COMPONENTS OF AIRBORNE PARTICULATE MATTER

    Science.gov (United States)

    In the early 1970s, it was understood that combustion particles were formed mostly in sizes below 1 um diameter, and windblown dust was suspended in sizes mostly above 1 um diameter. However, particle size distribution was thought of as a single mode. Particles were thought to f...

  4. Modeling for Airborne Contamination

    International Nuclear Information System (INIS)

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of sufficient thickness to simulate the drift

  5. Analysis on Measurement Calibration Specifications for Light-scattering Airborne Particle Counter%光散射尘埃粒子计数器的计量校准规范浅析

    Institute of Scientific and Technical Information of China (English)

    高志良; 季启政; 王慧; 袁亚飞

    2013-01-01

    光散射尘埃粒子计数器作为监测洁净环境的最主要仪器,已在各领域被广泛应用,其自身性能质量也越来越被关注.近年来,国内外形成了多种光散射尘埃粒子计数器计量校准方法,其相互之间均存在着一定差异,这给仪器生产厂家以及计量机构带来了一定困难.本文简要分析了光散射尘埃粒子计数器相关国内外技术标准的研究现状,并重点对国内目前使用较为广泛的JJF 1190和GJB/J 5416标准进行了对比分析.%As the main equipment to monitor the clean space,the light-scattering airborne particle counter has been widely used and caught more attention on its capability.In recent years,many kinds of measurements of the airborne particle counter have been made,which brings troubles to the manufacturing corporations and measurement organizations.This paper introduces the domestic and international counter measurement standards,and focuses on the comparison and analysis of domestic standards JJF 1190 and GJB/J 5416.

  6. Measuring airborne microorganisms and dust from livestock houses

    OpenAIRE

    Yang Zhao, Yang

    2011-01-01

      Airborne transmission has been suspected to be responsible for epidemics of highly infectious disease in livestock production. In such transmission, the pathogenic microorganisms may associate with dust particles. However, the extent to which airborne transmission plays a role in the spread of diseases between farms, and the relationship between microorganisms and dust remain unclear. In order to better understand airborne transmission and to set up effective control techniques, this s...

  7. Airborne geoid determination

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Bastos, L.; Gidskehaug, A.; Meyer, U.; Timmen, L.

    2000-01-01

    Airborne geoid mapping techniques may provide the opportunity to improve the geoid over vast areas of the Earth, such as polar areas, tropical jungles and mountainous areas, and provide an accurate "seam-less" geoid model across most coastal regions. Determination of the geoid by airborne methods...... relies on the development of airborne gravimetry, which in turn is dependent on developments in kinematic GPS. Routine accuracy of airborne gravimetry are now at the 2 mGal level, which may translate into 5-10 cm geoid accuracy on regional scales. The error behaviour of airborne gravimetry is well...

  8. Size distribution and chemical composition of airborne particles in south-eastern Finland during different seasons and wildfire episodes in 2006

    International Nuclear Information System (INIS)

    The inorganic main elements, trace elements and PAHs were determined from selected PM1, PM2.5 and PM10 samples collected at the Nordic background station in Virolahti during different seasons and during the wildfire episodes in 2006. Submicron particles are those most harmful to human beings, as they are able to penetrate deep into the human respiratory system and may cause severe health effects. About 70-80%, of the toxic trace elements, like lead, cadmium, arsenic and nickel, as well as PAH compounds, were found in particles smaller than 1 μm. Furthermore, the main part of the copper, zinc, and vanadium was associated with submicron particles. In practice, all the PAHs found in PM10 were actually in PM2.5. For PAHs and trace elements, it is more beneficial to analyse the PM2.5 or even the PM1 fraction instead of PM10, because exclusion of the large particles reduces the need for sample cleaning to minimize the matrix effects during the analysis. During the wildfire episodes, the concentrations of particles smaller than 2.5 μm, as well as those of submicron particles, increased, and also the ratio PM1/PM10 increased to about 50%. On the fire days, the mean potassium concentration was higher in all particle fractions, but ammonium and nitrate concentrations rose only in particles smaller than 1.0 μm. PAH concentrations rose even to the same level as in winter.

  9. Effect of airborne particle abrasion protocols on surface topography of Y-TZP ceramic Efeito do protocolo de jateamento com partículas na topografia da superfície de uma cerâmica Y-TZP

    Directory of Open Access Journals (Sweden)

    J. R. C. Queiroz

    2012-06-01

    Full Text Available This study aimed to evaluate Y-TZP surface after different airborne particle abrasion protocols. Seventy-six Y-TZP ceramic blocks (5×4×4 mm³ were sintered and polished. Specimens were randomly divided into 19 groups (n=4 according to control group and 3 factors: a protocol duration (2 and 4 s; b particle size (30 µm, alumina coated silica particle; 45 µm, alumina particle; and 145 µm, alumina particle and; c pressure (1.5, 2.5 and 4.5 bar. Airborne particle abrasion was performed following a strict protocol. For qualitative and quantitative results, topography surfaces were analyzed in a digital optical profilometer (Interference Microscopic, using different roughness parameters (Ra, Rq, Rz, X-crossing, Mr1, Mr2 and Sdr and 3D images. Surface roughness also was analyzed following the primer and silane applications on Y-TZP surfaces. One-way ANOVA revealed that treatments (application period, particle size and pressure of particle blasting provided significant difference for all roughness parameters. The Tukey test determined that the significant differences between groups were different among roughness parameters. In qualitative analysis, the bonding agent application reduced roughness, filing the valleys in the surface. The protocols performed in this study verified that application period, particle size and pressure influenced the topographic pattern and amplitude of roughness.O objetivo deste estudo foi avaliar a superfície de uma cerâmica à base de zircônia tetragonal estabilizada por ítria (Y-TZP após diferentes protocolos de jateamento com partículas. Setenta e seis blocos cerâmicos de Y-TZP (5 x 4 x 4 mm³ foram sinterizados e polidos. As amostras foram randomicamente divididas em 19 grupos (n=4 sendo um controle e 18 grupos utilizando 3 fatores: a tempo (2 e 4 s; b tamanho de partícula (30 µm - partículas de alumina revestida por sílica; 45 µm - partículas de alumina; 145 µm - partículas de alumina e; c pressão (1

  10. Airborne Single Particle Mass Spectrometers (SPLAT II & miniSPLAT) and New Software for Data Visualization and Analysis in a Geo-Spatial Context

    Energy Technology Data Exchange (ETDEWEB)

    Zelenyuk, Alla; Imre, D.; Wilson, Jacqueline M.; Zhang, Zhiyuan; Wang, Jun; Mueller, Klaus

    2015-02-01

    Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles - two fundamental properties that determine an aerosol’s optical properties and ability to serve as cloud condensation or ice nuclei. Here we present miniSPLAT, our new aircraft compatible single particle mass spectrometer, that measures in-situ and in real-time size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. miniSPLAT operates in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations, size distributions, density, and asphericity with high temporal resolution. When compared to our previous instrument, SPLAT II, miniSPLAT has been significantly reduced in size, weight, and power consumption without loss in performance. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle composition and their activity as cloud condensation nuclei.

  11. Airborne Single Particle Mass Spectrometers (SPLAT II & miniSPLAT) and New Software for Data Visualization and Analysis in a Geo-Spatial Context

    Science.gov (United States)

    Zelenyuk, Alla; Imre, Dan; Wilson, Jacqueline; Zhang, Zhiyuan; Wang, Jun; Mueller, Klaus

    2015-02-01

    Understanding the effect of aerosols on climate requires knowledge of the size and chemical composition of individual aerosol particles—two fundamental properties that determine an aerosol's optical properties and ability to serve as cloud condensation or ice nuclei. Here we present our aircraft-compatible single particle mass spectrometers, SPLAT II and its new, miniaturized version, miniSPLAT that measure in-situ and in real-time the size and chemical composition of individual aerosol particles with extremely high sensitivity, temporal resolution, and sizing precision on the order of a monolayer. Although miniSPLAT's size, weight, and power consumption are significantly smaller, its performance is on par with SPLAT II. Both instruments operate in dual data acquisition mode to measure, in addition to single particle size and composition, particle number concentrations, size distributions, density, and asphericity with high temporal resolution. We also present ND-Scope, our newly developed interactive visual analytics software package. ND-Scope is designed to explore and visualize the vast amount of complex, multidimensional data acquired by our single particle mass spectrometers, along with other aerosol and cloud characterization instruments on-board aircraft. We demonstrate that ND-Scope makes it possible to visualize the relationships between different observables and to view the data in a geo-spatial context, using the interactive and fully coupled Google Earth and Parallel Coordinates displays. Here we illustrate the utility of ND-Scope to visualize the spatial distribution of atmospheric particles of different compositions, and explore the relationship between individual particle compositions and their activity as cloud condensation nuclei.

  12. The Distribution of PM10 and PM2.5 Dust Particles Diameter in Airborne at the Cement Factory Neighboring Area, Citeureup - Bogor

    International Nuclear Information System (INIS)

    The distribution analysis in PM10 and PM2.5 dust particle diameter has been carried out at residence area around the cement factory, Citeureup - Bogor to estimate deposition of dust particles that is accepted by public. The dust particles were sampled at the dwellings by using a cascade impactor on four wind directions and 500, 1000, 1500, 2000, 2500, and 3000 m radius from the Plant one as the center of the cement factory at Citeureup - Bogor. Measurements at the north direction were the Gunung Putri, Kranggan, Bojong Nangka villages, and Gunung Putri dwellings. The south directions were Tarikolot and Pasir Mukti villages. The west directions were guest house, Puspanegara, Puspasari, and Citatah villages. The northwest directions were Puspanegara, Gunung Putri, Puspasari, and Kranggan villages. The analysis result showed that the diameter distribution of PM10 dust particles at outdoor is ranging from 0.4 to 4.7 μm, and has the weight percentage is high in average approximate 17.91 % of total dust weight on 500, 1000, 1500, 2000, 2500, and 3000 m radius. The distributions of indoor PM2.5 dust particles diameter show a stable 12.27 % weight percentage of total dust weight from 0.4 to 2.1 μm. (author)

  13. Microwaves in Airborne Surveillance

    OpenAIRE

    Christopher, S.

    2013-01-01

    The use of microwave spectrum is widespread due to its convenience. Therefore, enormous amount of information is available in the free space channel. Obviously, mining this channel for surveillance is quite common. Airborne surveillance offers significant advantages in military operations. This paper talks of the usage of microwaves in airborne surveillance systems, in general, and in the Indian airborne early warning and control (AEW&C) System, in particular. It brings out the multiple s...

  14. BioAerosol Mass Spectrometry: Reagentless Detection of Individual Airborne Spores and Other Bioagent Particles Based on Laser Desorption/Ionization Mass Spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Steele, P T

    2004-07-20

    Better devices are needed for the detection of aerosolized biological warfare agents. Advances in the ongoing development of one such device, the BioAerosol Mass Spectrometry (BAMS) system, are described here in detail. The system samples individual, micrometer-sized particles directly from the air and analyzes them in real-time without sample preparation or use of reagents. At the core of the BAMS system is a dual-polarity, single-particle mass spectrometer with a laser based desorption and ionization (DI) system. The mass spectra produced by early proof-of-concept instruments were highly variable and contained limited information to differentiate certain types of similar biological particles. The investigation of this variability and subsequent changes to the DI laser system are described. The modifications have reduced the observed variability and thereby increased the usable information content in the spectra. These improvements would have little value without software to analyze and identify the mass spectra. Important improvements have been made to the algorithms that initially processed and analyzed the data. Single particles can be identified with an impressive level of accuracy, but to obtain significant reductions in the overall false alarm rate of the BAMS instrument, alarm decisions must be made dynamically on the basis of multiple analyzed particles. A statistical model has been developed to make these decisions and the resulting performance of a hypothetical BAMS system is quantitatively predicted. The predictions indicate that a BAMS system, with reasonably attainable characteristics, can operate with a very low false alarm rate (orders of magnitude lower than some currently fielded biodetectors) while still being sensitive to small concentrations of biological particles in a large range of environments. Proof-of-concept instruments, incorporating some of the modifications described here, have already performed well in independent testing.

  15. Airborne infections and modern building technology

    Energy Technology Data Exchange (ETDEWEB)

    LaForce, F.M.

    1986-01-01

    Over the last 30 yr an increased appreciation of the importance of airborne infection has evolved. The concept of droplet nuclei, infectious particles from 0.5 to 3 ..mu.. which stay suspended in air for long periods of time, has been accepted as an important determinant of infectivity. Important airborne pathogens in modern buildings include legionella pneumophila, Aspergillus sp., thermophilic actinomycetes, Mycobacterium tuberculosis, measles, varicella and rubella. Perhaps, the most important microbiologic threat to most buildings is L. pneumophila. This organism can multiply in water cooling systems and contaminate effluent air which can be drawn into a building and efficiently circulated throughout by existing ventilation systems. Hospitals are a special problem because of the concentration of immunosuppressed patients who are uniquely susceptible to airborne diseases such as aspergillosis, and the likelihood that patients ill from diseases that can be spread via the airborne route will be concentrated. Humidifiers are yet another problem and have been shown to be important in several outbreaks of allergic alveolitis and legionellosis. Control of airborne infections is largely an effort at identifying and controlling reservoirs of infection. This includes regular biocide treatment of cooling towers and evaporative condensers and identification and isolation of patients with diseases that may be spread via the airborne route.

  16. 空中颗粒物对直流电晕放电影响研究现状:颗粒物空间电荷效应%Current Status of Study on the Effects of Airborne Particles on DC Corona Discharge:Space-charge Effect of Particles

    Institute of Scientific and Technical Information of China (English)

    陆家榆; 何堃; 马晓倩; 鞠勇; 谢莉

    2015-01-01

    Airborne suspended particles trapping electrons and ions give rise to space charges, which has an impact on DC corona discharge and electromagnetic environment of high voltage DC(HVDC) transmission lines. This is called space- charge effect of airborne suspended particles. Presently, severe air pollution and frequent occurrence of sand-dust, fog and haze are increasingly raging through China. The space-charge effect of airborne suspended particles charged by corona discharge will complicate the electromagnetic environment of HVDC transmission lines which is one of the important aspects impacting on the determination of the configuration parameters of the transmission lines. This makes the research on the effects of airborne suspended particles on electromagnetic environment of HVDC transmission lines crucial. Firstly, A detailed review on the research on the space charge-effect of suspended particles in the field of power transmission from the aspects of space charge density, charge of particles, total field ion current density at the ground level was conducted. Further, a summary of the research on the space charge effect in the fields of electrostatic precipitation, corona discharge of two- phase mixture of gas and solid, and dust plasma was presented. In the end, this paper pointed out the problems needed to be solved and gives the suggestions for the future research.%颗粒物捕获电子或离子以空间电荷形式对直流电晕放电产生影响。当前我国的大气污染日益严重,沙尘和霾天气频发。污染物中悬浮颗粒物荷电后带来的空间电荷效应将使高压直流输电线路周围的电磁环境复杂化,因此开展空中悬浮颗粒物对高压直流输电线路电磁环境影响的研究对指导直流输电线路的工程设计具有重要意义。该文对输电线路关于颗粒物空间电荷效应的研究历史进行回顾,并从空间电荷密度分布、颗粒物荷电量及其分布、地面合成电场和

  17. Modelling airborne dispersion of coarse particulate material

    International Nuclear Information System (INIS)

    Methods of modelling the airborne dispersion and deposition of coarse particulates are presented, with the emphasis on the heavy particles identified as possible constituents of releases from damaged AGR fuel. The first part of this report establishes the physical characteristics of the irradiated particulate in airborne emissions from AGR stations. The second part is less specific and describes procedures for extending current dispersion/deposition models to incorporate a coarse particulate component: the adjustment to plume spread parameters, dispersion from elevated sources and dispersion in conjunction with building effects and plume rise. (author)

  18. Airborne Particulate Threat Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  19. Molecular composition and size distribution of sugars, sugar-alcohols and carboxylic acids in airborne particles during a severe urban haze event caused by wheat straw burning

    Science.gov (United States)

    Wang, Gehui; Chen, Chunlei; Li, Jianjun; Zhou, Bianhong; Xie, Mingjie; Hu, Shuyuan; Kawamura, Kimitaka; Chen, Yan

    2011-05-01

    Molecular compositions and size distributions of water-soluble organic compounds (WSOC, i.e., sugars, sugar-alcohols and carboxylic acids) in particles from urban air of Nanjing, China during a severe haze event caused by field burning of wheat straw were characterized and compared with those in the summer and autumn non-haze periods. During the haze event levoglucosan (4030 ng m -3) was the most abundant compound among the measured WSOC, followed by succinic acid, malic acid, glycerol, arabitol and glucose, being different from those in the non-haze samples, in which sucrose or azelaic acid showed a second highest concentration, although levoglucosan was the highest. The measured WSOC in the haze event were 2-20 times more than those in the non-hazy days. Size distribution results showed that there was no significant change in the compound peaks in coarse mode (>2.1 μm) with respect to the haze and non-haze samples, but a large difference in the fine fraction (glucose and related sugar-alcohols whose concentrations significantly increased in the fine haze samples are unclear. Compared to that in the fresh smoke particles of wheat straw burning an increase in relative abundance of succinic acid to levoglucosan during the haze event suggests a significant production of secondary organic aerosols during transport of the smoke plumes.

  20. Characterization of Cloud Water and Drop Residual Particle Properties in Northeastern Pacific Ocean Stratocumulus Clouds: Airborne Measurements during the E-PEACE 2012 Field Campaign

    Science.gov (United States)

    Sorooshian, A.; Wang, Z.; Coggon, M.; Craven, J. S.; Metcalf, A. R.; Lin, J. J.; Nenes, A.; Jonsson, H.; Flagan, R. C.; Seinfeld, J.

    2012-12-01

    During the July-August 2012 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE), the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter carried out thirty flights off the California coast with a payload focused on detailed characterization of aerosol and cloud properties. A counter-flow virtual impactor (CVI) inlet was used in cloud to study the physical and chemical properties of drop residual particles in the climatically-important stratocumulus cloud deck over the northeastern Pacific Ocean. A total of 82 cloud water samples were also collected and examined with ion chromatography (17 anion species) and inductively coupled plasma mass spectrometry (> 50 elements). The pH of the cloud water samples ranged widely between 2.92 and 7.58. This work focuses on inter-relationships between the chemical signatures of cloud water and drop residual particles, in addition to the influence of numerous regional sources on these measurements. Of interest will be to look critically at the influence of biogenic oceanic sources, shipping traffic, and entrainment of free tropospheric aerosol.

  1. Characterization of airborne uranium from test firing of XM774 ammunition

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory conducted experiments at Aberdeen Proving Grounds, Maryland, to characterize the airborne depleted uranium (DU) resulting from the test firings of 105-mm, APFSDS-T XM774 ammunition. The goal was to obtain data pertinent to evaluations of human inhalation exposure to the airborne DU. Data was desired concerning the following: (1) size distribution of airborne DU; (2) quantity of airborne DU; (3) dispersion of airborne DU from the target vicinity; (4) amount of DU deposited on the ground; (5) solubility of airborne DU compounds in lung fluid; and (6) oxide forms of airborne and fallout DU. The experiments involved extensive air sampling for total airborne DU particulates and respirable DU particles both above the targets and at distances downwind. Fallout and fragments were collected around the target area. High-speed movies of the smoke generated from the impact of the penetrators were taken to estimate the cloud volumes. Results of the experiments are presented

  2. Promoting smoke-free homes: a novel behavioral intervention using real-time audio-visual feedback on airborne particle levels.

    Directory of Open Access Journals (Sweden)

    Neil E Klepeis

    Full Text Available Interventions are needed to protect the health of children who live with smokers. We pilot-tested a real-time intervention for promoting behavior change in homes that reduces second hand tobacco smoke (SHS levels. The intervention uses a monitor and feedback system to provide immediate auditory and visual signals triggered at defined thresholds of fine particle concentration. Dynamic graphs of real-time particle levels are also shown on a computer screen. We experimentally evaluated the system, field-tested it in homes with smokers, and conducted focus groups to obtain general opinions. Laboratory tests of the monitor demonstrated SHS sensitivity, stability, precision equivalent to at least 1 µg/m(3, and low noise. A linear relationship (R(2 = 0.98 was observed between the monitor and average SHS mass concentrations up to 150 µg/m(3. Focus groups and interviews with intervention participants showed in-home use to be acceptable and feasible. The intervention was evaluated in 3 homes with combined baseline and intervention periods lasting 9 to 15 full days. Two families modified their behavior by opening windows or doors, smoking outdoors, or smoking less. We observed evidence of lower SHS levels in these homes. The remaining household voiced reluctance to changing their smoking activity and did not exhibit lower SHS levels in main smoking areas or clear behavior change; however, family members expressed receptivity to smoking outdoors. This study established the feasibility of the real-time intervention, laying the groundwork for controlled trials with larger sample sizes. Visual and auditory cues may prompt family members to take immediate action to reduce SHS levels. Dynamic graphs of SHS levels may help families make decisions about specific mitigation approaches.

  3. Airborne wind energy

    CERN Document Server

    Ahrens, Uwe; Schmehl, Roland

    2013-01-01

    This reference offers an overview of the field of airborne wind energy. As the first book of its kind, it provides a consistent compilation of the fundamental theories, a compendium of current research and development activities as well as economic and regulatory aspects. In five parts, the book demonstrates the relevance of Airborne Wind Energy and the role that this emerging field of technology can play for the transition towards a renewable energy economy. Part I on 'Fundamentals' contains seven general chapters explaining the principles of airborne wind energy and its different variants, o

  4. Airborne plutonium-239 and americium-241 concentrations measured from the 125-meter Hanford Meteorological Tower

    International Nuclear Information System (INIS)

    Airborne plutonium-239 and americium-241 concentrations and fluxes were measured at six heights from 1.9 to 122 m on the Hanford meteorological tower. The data show that plutonium-239 was transported on nonrespirable and small particles at all heights. Airborne americium-241 concentrations on small particles were maximum at the 91 m height

  5. The airborne laser

    Science.gov (United States)

    Lamberson, Steven; Schall, Harold; Shattuck, Paul

    2007-05-01

    The Airborne Laser (ABL) is an airborne, megawatt-class laser system with a state-of-the-art atmospheric compensation system to destroy enemy ballistic missiles at long ranges. This system will provide both deterrence and defense against the use of such weapons during conflicts. This paper provides an overview of the ABL weapon system including: the notional operational concept, the development approach and schedule, the overall aircraft configuration, the technologies being incorporated in the ABL, and the current program status.

  6. Wavelet Based Fractal Analysis of Airborne Pollen

    OpenAIRE

    Degaudenzi, M. E.; Arizmendi, C. M.

    1998-01-01

    The most abundant biological particles in the atmosphere are pollen grains and spores. Self protection of pollen allergy is possible through the information of future pollen contents in the air. In spite of the importance of airborne pol len concentration forecasting, it has not been possible to predict the pollen concentrations with great accuracy, and about 25% of the daily pollen forecasts have resulted in failures. Previous analysis of the dynamic characteristics of atmospheric pollen tim...

  7. Microwaves in Airborne Surveillance

    Directory of Open Access Journals (Sweden)

    S. Christopher

    2013-03-01

    Full Text Available The use of microwave spectrum is widespread due to its convenience. Therefore, enormous amount of information is available in the free space channel. Obviously, mining this channel for surveillance is quite common. Airborne surveillance offers significant advantages in military operations. This paper talks of the usage of microwaves in airborne surveillance systems, in general, and in the Indian airborne early warning and control (AEW&C System, in particular. It brings out the multiple sub-systems onboard the aircraft comprising the AEW&C system and their spectral coverage. Co-location of several systems has its own problems and resolving them in terms of geometric location, frequency band and time of operation are covered. AEW&C, being an airborne system, has several other requirements  including minimal weight, volume and power considerations, lightning protection, streamlining, structural integrity, thermal management, vibration tolerance, corrosion prevention, erosion resistance, static charge discharge capability, bird strike resilience, etc. The methods adopted to cater to all these requirements in the microwave systems that are used in the AEW&C system are discussed. Paper ultimately speaks of the microwave systems that are designed and developed for the Indian AEW&C system to surmount these unusual constraints.Defence Science Journal, 2013, 63(2, pp.138-144, DOI:http://dx.doi.org/10.14429/dsj.63.4255

  8. Effect of an Air Cleaner with Electrostatic Filter on the Removal of Airborne House Dust Mite Allergens

    OpenAIRE

    Agrawal, Santosh Rani; Kim, Hak-Joon; Lee, Yong Won; Sohn, Jung-Ho; Lee, Jae Hyun; Kim, Yong-Jin; Lee, Sung-Hwa; Hong, Chein-Soo; Park, Jung-Won

    2010-01-01

    Purpose The effects of air cleaners on the removal of airborne indoor allergens, especially house dust mites (HDM), are still controversial. The objective of this study is to evaluate the effect of an air cleaner with an electrostatic filter on the removal of airborne mite allergens. Materials and Methods A dried HDM culture medium that contained mite body particles and excretions was dispersed in a chamber equipped with an electrostatic air cleaner. The number of airborne particles was recor...

  9. International Symposium on Airborne Geophysics

    Science.gov (United States)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  10. Analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    An airborne particulate matter (APM) consists of many kinds of solid and liquid particles in air. APM analysis methods and the application examples are explained on the basis of paper published after 1998. Books and general remarks, sampling and the measurement of concentration and particle distribution, elemental analysis methods and the present state of analysis of species are introduced. Tapered Element Oscillating Microbalance (TEOM) method can collect continuously the integrating mass, but indicates lower concentration. Cu, Ni, Zn, Co, Fe(2), Mn, Cd, Fe(3) and Pb, the water-soluble elements, are determined by ion-chromatography after ultrasonic extraction of the aqueous solution. The detection limit of them is from 10 to 15 ppb (30 ppb Cd and 60 ppb Pb). The elemental carbon (EC) and organic carbon (OC) are separated by the thermal mass measurement-differential scanning calorimeter by means of keeping at 430degC for 60 min. 11 research organizations compared the results of TC (Total Carbon) and EC by NIOSH method 5040 and the thermal method and obtained agreement of TC. ICP-MS has been developed in order to determine correctly and quickly the trace elements. The determination methods for distinction of chemical forms in the environment were developed. GC/MS, LC/MS and related technologies for determination of organic substances are advanced. Online real-time analysis of APN, an ideal method, is examined. (S.Y.)

  11. Sedimentation behavior of indoor airborne microparticles

    Institute of Scientific and Technical Information of China (English)

    LI Ming; WU Chao; PAN Wei

    2008-01-01

    Experiments on the behavior of airborne microparticle sediments and their adhesion on glass slides were conducted in a laboratory located on the first floor of a teaching building. Clean tiles and glass slides were placed at different angles (0°, 45° and 90°) with respect to the horizontal plane in the laboratory. The sedimentation of microparticles was investigated at certain time intervals (1 d, 3 d, 10 d and 30 d). The results of testing, at day 30, show that the diameters of particles on the horizontal tiles varied from 20 to 80 μm; few particles with diameter less than 0.5 μm or greater than 100 μm were found. The amount of particle sediment on all the slides increased along over time, while the average diameter of particles was not correlated with time, nor with the angle of placement. The maximum particle size, the total particle surface area, the total perimeter of all particles and the cover ratio of light (the proportion of total area of particles to the observed area of the slides surfaces) did not change significantly within the first 10 days. Inspection of all the samples for the last 20 days, however, showed that these variables increased substantially with the passage of time and were in reverse proportion to the placement angles, which indicates a concentration of particles, as well as physical and chemical changes.

  12. An Analysis of Measurement Calibration Specifications for Light-scattering Airborne Particle Counter%能量色散X射线荧光法快速检测玩具中铅方法的问题分析及应对措施

    Institute of Scientific and Technical Information of China (English)

    李学云; 陈子凡; 勾正伦; 彭首创

    2013-01-01

    结合美国和欧盟在X射线荧光光谱法检测玩具中铅的报告和标准方法,对X射线荧光光谱仪进行了分类剖析,列举能量色散X射线荧光光谱仪检测玩具中铅的优势,分析现阶段还存在的问题,结合理论和实践对问题逐一提出应对措施,为建立X射线荧光光谱法检测玩具中铅的标准方法提供正确方向和理论基础.%As the main equipment to monitor the clean space,the light-scattering airborne particle counter has been widely used and caught more attention on its capability.In recent years,many kinds of measurements of the airborne particle counter have been made,which brings troubles to the manufacturing corporations and measurement organizations.This paper introduces the domestic and international counter measurement standards,and focuses on the comparison and analysis of domestic standards JJF 1190 and GJB/J 5416.

  13. Airborne forest fire research

    Science.gov (United States)

    Mattingly, G. S.

    1974-01-01

    The research relating to airborne fire fighting systems is reviewed to provide NASA/Langley Research Center with current information on the use of aircraft in forest fire operations, and to identify research requirements for future operations. A literature survey, interview of forest fire service personnel, analysis and synthesis of data from research reports and independent conclusions, and recommendations for future NASA-LRC programs are included.

  14. Particulate airborne impurities

    OpenAIRE

    Wilkinson, Kai

    2013-01-01

    The cumulative effects of air pollutants are of principal concern in research on environmental protection in Sweden. Post-industrial society has imposed many limits on emitted air pollutants, yet the number of reports on the negative effects from them is increasing, largely due to human activity in the form of industrial emissions and increased traffic flows. Rising concerns over the health effects from airborne particulate matter (PM) stem from in vitro, in vivo, and cohort studies revealing...

  15. GRYPHON : Airborne lifestyle concept

    OpenAIRE

    Evers, Erik

    2014-01-01

    The result of the project, the Gryphon, is a helicopter concept designed for private use. The intention of the project has been to investigate how safe, personal airborne mobility could be an attractive transportation alternative in the future. As an aspirational concept the goal has been to inspire and show an exciting way to enjoy a modern, sustainable lifestyle close to nature without the need for conventional infrastructure.

  16. Airborne wireless communication systems, airborne communication methods, and communication methods

    Science.gov (United States)

    Deaton, Juan D.; Schmitt, Michael J.; Jones, Warren F.

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  17. ASHRAE IAQ 2010: Airborne infection controlventilation, IAQ & energy

    DEFF Research Database (Denmark)

    Sekhar, Chandra; Olesen, Bjarne W.

    2012-01-01

    . • Knowledge that proximity to an infected person affects infection rate, but the continued lack of certainty about whether that is due to large "ballistic" droplets or just a higher concentration of smaller airborne particles. Besides the papers from the IAQ 2010 conference mentioned above, this special issue...

  18. Airborne radioactive contamination monitoring

    International Nuclear Information System (INIS)

    Current technologies for the detection of airborne radioactive contamination do not provide real-time capability. Most of these techniques are based on the capture of particulate matter in air onto filters which are then processed in the laboratory; thus, the turnaround time for detection of contamination can be many days. To address this shortcoming, an effort is underway to adapt LRAD (Long-Range-Alpha-Detection) technology for real-time monitoring of airborne releases of alpa-emitting radionuclides. Alpha decays in air create ionization that can be subsequently collected on electrodes, producing a current that is proportional to the amount of radioactive material present. Using external fans on a pipe containing LRAD detectors, controlled samples of ambient air can be continuously tested for the presence of radioactive contamination. Current prototypes include a two-chamber model. Sampled air is drawn through a particulate filter and then through the first chamber, which uses an electrostatic filter at its entrance to remove ambient ionization. At its exit, ionization that occurred due to the presence of radon is collected and recorded. The air then passes through a length of pipe to allow some decay of short-lived radon species. A second chamber identical to the first monitors the remaining activity. Further development is necessary on air samples without the use of particulate filtering, both to distinguish ionization that can pass through the initial electrostatic filter on otherwise inert particulate matter from that produced through the decay of radioactive material and to separate both of these from the radon contribution. The end product could provide a sensitive, cost-effective, real-time method of determining the presence of airborne radioactive contamination

  19. Airborne field strength monitoring

    Directory of Open Access Journals (Sweden)

    J. Bredemeyer

    2007-06-01

    Full Text Available In civil and military aviation, ground based navigation aids (NAVAIDS are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000 by the International Civil Aviation Organization (ICAO. One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz, the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA accelerated method of moments (MoM using a complex geometric model of the aircraft. First results will be presented in this paper.

  20. Airborne silica levels in an urban area

    International Nuclear Information System (INIS)

    In order to evaluate the exposure levels of the general population we studied the concentrations of silica particles in the inhalable particulate fraction (PM10) in different meteorological-climate periods in an urban area of Rome. In order to determine the concentration and the granulometric spectrum of silica particles, PM10 sampled by a cascade impactor was analysed by X-ray diffractometry (XRD) and by scanning electron microscopy equipped with a thin-window system for X-ray microanalysis (SEM/EDX). Over the period September 2004-October 2005 the abundance of silica particles as evaluated by SEM/EDX ranged from 1.6 to 10.4% of the total PM10 particulate, with a weight concentration of free crystalline silica, evaluated by XRD, in the range 0.25-2.87 μg/m3. The mean diameter of silica particles ranged from 0.3 to 10.5 μm, with more than 87% of particles having a diameter of less than 2.5 μm. The correlations between SEM/EDX and XRD data seem to suggest that the airborne silica particles in the urban location studied were mainly in the form crystalline silica. A strong relationship was found between the meteorological-climate conditions and the concentration level of free crystalline silica. This result suggests that the Southern winds from the Sahara desert carry an important amount of silica particles into Mediterranean Europe

  1. Compositae dermatitis from airborne parthenolide

    DEFF Research Database (Denmark)

    Paulsen, E; Christensen, Lars Porskjær; Andersen, Klaus Ejner

    2007-01-01

    BACKGROUND: Compositae dermatitis confined to exposed skin has often been considered on clinical grounds to be airborne. Although anecdotal clinical and plant chemical reports suggest true airborne allergy, no proof has been procured. Feverfew (Tanacetum parthenium) is a European Compositae plant...

  2. Spatial distributions of airborne dust in a cows barn exposed to influence of different ventilation rates

    OpenAIRE

    Topisirović G.; Petrović D.V.; Maletić R.

    2013-01-01

    Information on the concentration of dust particles is an important microclimate parameter that characterizes the local environmental quality of each livestock building. Increased concentration of dust particles primarily affects the indoor air quality and, consequently, the animal and workers health. Among many others, ventilation rate is a vital parameter that controls the spatial distribution of airborne dust particles in livestock buildings. This was the...

  3. Influence of instruments performance and material properties on exposure assessment of airborne engineered nanomaterials

    DEFF Research Database (Denmark)

    Levin, Marcus

    particle number concentration. Measured size distributions with particle modes above 150 nm should not be deemed reliable as they might arise from misclassification of larger size particles. 4) That current methods for real-time measurement of lung-deposited surface area concentration for airborne...

  4. Airborne transmission of lyssaviruses.

    Science.gov (United States)

    Johnson, N; Phillpotts, R; Fooks, A R

    2006-06-01

    In 2002, a Scottish bat conservationist developed a rabies-like disease and subsequently died. This was caused by infection with European bat lyssavirus 2 (EBLV-2), a virus closely related to Rabies virus (RABV). The source of this infection and the means of transmission have not yet been confirmed. In this study, the hypothesis that lyssaviruses, particularly RABV and the bat variant EBLV-2, might be transmitted via the airborne route was tested. Mice were challenged via direct introduction of lyssavirus into the nasal passages. Two hours after intranasal challenge with a mouse-adapted strain of RABV (Challenge Virus Standard), viral RNA was detectable in the tongue, lungs and stomach. All of the mice challenged by direct intranasal inoculation developed disease signs by 7 days post-infection. Two out of five mice challenged by direct intranasal inoculation of EBLV-2 developed disease between 16 and 19 days post-infection. In addition, a simple apparatus was evaluated in which mice could be exposed experimentally to infectious doses of lyssavirus from an aerosol. Using this approach, mice challenged with RABV, but not those challenged with EBLV-2, were highly susceptible to infection by inhalation. These data support the hypothesis that lyssaviruses, and RABV in particular, can be spread by airborne transmission in a dose-dependent manner. This could present a particular hazard to personnel exposed to aerosols of infectious RABV following accidental release in a laboratory environment. PMID:16687600

  5. Airborne monitoring system

    International Nuclear Information System (INIS)

    A complete system for tracking, mapping, and performing a composition analysis of a radioactive plume and contaminated area was developed at the NRCN. The system includes two major units : An airborne unit for monitoring and a ground station for analyzing. The airborne unit is mounted on a helicopter and includes file following. Four radiation sensor, two 2'' x 2'' Nal (Tl) sensors horizontally separated by lead shield for mapping and spectroscopy, and two Geiger Mueller (GM) tubes as part of the safety system. A multichannel analyzer card is used for spectroscopy. A navigation system, based on GPS and a barometric altitude meter, is used to locate the plume or ground data. The telemetry system, consisting of a transceiver and a modem, transfers all the data in real time to the ground station. An industrial PC (Field Works) runs a dedicated C++ Windows application to manage the acquired data. An independent microprocessor based backup system includes a recorder, display, and key pad. The ground station is based on an industrial PC, a telemetry system, a color printer and a modem to communicate with automatic meteorology stations in the relevant area. A special software controls the ground station. Measurement results are analyzed in the ground station to estimate plume parameters including motion, location, size, velocity, and perform risk assessment. (authors)

  6. Development of airborne remote sensing data assimilation system

    International Nuclear Information System (INIS)

    In this paper, an airborne remote sensing data assimilation system for China Airborne Remote Sensing System is introduced. This data assimilation system is composed of a land surface model, data assimilation algorithms, observation data and fundamental parameters forcing the land surface model. In this data assimilation system, Variable Infiltration Capacity hydrologic model is selected as the land surface model, which also serves as the main framework of the system. Three-dimensional variation algorithm, four-dimensional variation algorithms, ensemble Kalman filter and Particle filter algorithms are integrated in this system. Observation data includes ground observations and remotely sensed data. The fundamental forcing parameters include soil parameters, vegetation parameters and the meteorological data

  7. Single Scattering Albedo Monitor for Airborne Particulates

    Science.gov (United States)

    Onasch, Timothy; Massoli, Paola; Kebabian, Paul; Hills, Frank; Bacon, Fred; Freedman, Andrew

    2015-04-01

    We describe a robust, compact, field deployable instrument (the CAPS PMssa) that simultaneously measures airborne particle light extinction and scattering coefficients and thus the single scattering albedo (SSA) on the same sample volume. With an appropriate change in mirrors and light source, measurements have been made at wavelengths ranging from 450 to 780 nm. The extinction measurement is based on cavity attenuated phase shift (CAPS) techniques as employed in the CAPS PMex particle extinction monitor; scattering is measured using a integrating nephelometry by incorporating a Lambertian integrating sphere within the sample cell. The scattering measurement is calibrated using the extinction measurement. Measurements using ammonium sulfate particles of various sizes indicate that the response of the scattering channel with respect to measured extinction is linear to within 1% up to 1000 Mm-1 and can be extended further (4000 Mm-1) with additional corrections. The precision in both measurement channels is less than 1 Mm-1 (1s, 1σ). The truncation effect in the scattering channel, caused by light lost at extreme forward/backward scattering angles, was measured as a function of particle size using monodisperse polystyrene latex particles (n=1.59). The results were successfully fit using a simple geometric model allowing for reasonable extrapolation to a given wavelength, particle index of refraction and particle size distribution, assuming spherical particles. For sub-micron sized particles, the truncation corrections are comparable to those reported for commercial nephelometers. Measurements of the optical properties of ambient aerosol indicate that the values of the SSA of these particles measured with this instrument (0.91±0.03) using scattering and extinction agreed within experimental uncertainty with those determined using extinction measured by this instrument and absorption measured using a Multi-Angle Absorption Spectrometer (0.89±0.03) where the

  8. Ultrafine Condensation Particle Counter Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-01

    The Model 3776 Ultrafine Condensation Particle Counter (UCPC; pictured in Appendix A) is designed for researchers interested in airborne particles smaller than 20 nm. With sensitivity to particles down to 2.5 nm in diameter, this UCPC is ideally suited for atmospheric and climate research, particle formation and growth studies, combustion and engine exhaust research, and nanotechnology research.

  9. Airborne Cloud Computing Environment (ACCE)

    Science.gov (United States)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  10. Dispersion model for airborne particulates inside a building

    International Nuclear Information System (INIS)

    An empirical model has been developed for the spread of airborne radioactive particles after they are released inside a building. The model has been useful in performing safety analyses of actinide materials facilities at the Savannah River Plant (SRP). These facilities employ the multiple-air-zone concept; that is, ventilation air flows from rooms or areas of least radioactive material hazard, through zones of increasing hazard, to a treatment system. A composite of the data for dispersion of airborne activity during 12 actual case incidents at SRP forms the basis for this model. These incidents occurred during approximately 90 plant-years of experience at SRP with the chemical and metallurgical processing of purified neptunium and plutonium after their recovery from irradiated uranium. The model gives ratios of the airborne activity concentrations in rooms and corridors near the site of the release. The multiple-air-zone concept has been applied to many designs of nuclear facilities as a safety feature to limit the spread of airborne activity from a release. The model illustrates the limitations of this concept: it predicts an apparently anomalous behavior of airborne particulates; namely, a small migration against the flow of the ventilation air

  11. Ultrafine particles in the atmosphere

    CERN Document Server

    Brown, L M; Harrison, R M; Maynard, A D; Maynard, R L

    2003-01-01

    Following the recognition that airborne particulate matter, even at quite modest concentrations, has an adverse effect on human health, there has been an intense research effort to understand the mechanisms and quantify the effects. One feature that has shone through is the important role of ultrafine particles as a contributor to the adverse effects of airborne particles. In this volume, many of the most distinguished researchers in the field provide a state-of-the-art overview of the scientific and medical research on ultrafine particles. Contents: Measurements of Number, Mass and Size Distr

  12. Characterisation of airborne dust in a gold mine

    International Nuclear Information System (INIS)

    Samples of airborne dust were collected from a gold mine using a single orifice cascade impactor. The size fractionated dust samples were analysed by Particle Induced X-ray Emission (PIXE) and Electron Probe X-ray Micro-Analysis (EPXMA). Results on chemical composition of the sub-micron, inhalable dust were obtained. In addition ot quartz dust, a large fraction consisted of chlorine containing particles. The filter grade efficiency of a spray cooling chamber was calculated as a function of particle size

  13. Air sampling system for airborne surveys

    International Nuclear Information System (INIS)

    An air sampling system has been designed for installation on the Beechcraft King Air A-100 aircraft as a part of the Aerial Radiological Measuring System (ARMS). It is intended for both particle and whole gas sampling. The sampling probe is designed for isokinetic sampling and is mounted on a removable modified escape hatch cover, behind the co-pilot's seat, and extends about two feet forward of the hatch cover in the air stream lines. Directly behind the sampling probe inside the modified hatch cover is an expansion chamber, space for a 5-inch diameter filter paper cassette, and an optional four-stage cascade impactor for particle size distribution measurements. A pair of motors and blower pumps provide the necessary 0.5 atmosphere pressure across the type MSA 1106 B glass fiber filter paper to allow a flow rate of 50 cfm. The MSA 1106 B filter paper is designed to trap sub-micrometer particles with a high efficiency; it was chosen to enable a quantitative measurement of airborne radon daughters, one of the principal sources of background signals when radiological surveys are being performed. A venturi section and pressure gauges allow air flow rate measurements so that airborne contaminant concentrations may be quantified. A whole gas sampler capable of sampling a cubic meter of air is mounted inside the aircraft cabin. A nuclear counting system on board the aircraft provides capability for α, β and γ counting of filter paper samples. Design data are presented and types of survey missions which may be served by this system are described

  14. South African Airborne Operations

    Directory of Open Access Journals (Sweden)

    McGill Alexander

    2012-02-01

    Full Text Available Airborne operations entail the delivery of ground troops and their equipment by air to their area of operations. They can also include the subsequent support of these troops and their equipment by air. Historically, and by definition, this would encompass delivery by fixed-wing powered aircraft, by glider, by parachute or by helicopter. Almost any troops can be delivered by most of these means. However, the technical expertise and physical as well as psychological demands required by parachuting have resulted in specialist troops being selected and trained for this role. Some of the material advantages of using parachute troops, or paratroops, are: the enormous strategic reach provided by the long-distance transport aircraft used to convey them; the considerable payload which these aircraft are capable of carrying; the speed with which the parachute force can deploy; and the fact that no infrastructure such as airfields are required for their arrival. Perhaps most attractively to cash-strapped governments, the light equipment scales of parachute units’ makes them economical to establish and maintain. There are also less tangible advantages: the soldiers selected are invariably volunteers with a willingness or even desire to tackle challenges; their selection and training produces tough, confident and aggressive troops, psychologically geared to face superior odds and to function independently from other units; and their initiative and self-reliance combined with a high level of physical fitness makes them suitable for a number of different and demanding roles.

  15. Dispersion model for airborne particulates inside a building

    International Nuclear Information System (INIS)

    An empirical model has been developed for the spread of airborne radioactive particles after they are released inside a building. The model has been useful in performing safety analyses of actinide materials facilities at the Savannah River Plant (SRP), operated for the US Department of Energy by the Du Pont Company. These facilities employ the multiple-air-zone concept; that is, ventilation air flows from rooms or areas of least radioactive material hazard, through zones of increasing hazard, to a treatment system. A composite of the data for dispersion of airborne activity during 12 actual case incidents at SRP forms the basis for this model. These incidents occurred during approximately 90 plant-years of experience at SRP with the chemical and metallurgical processing of purified neptunium and plutonium after their recovery from irradiated uranium. The model gives ratios of the airborne activity concentrations in rooms and corridors near the site of the release. All data are normalized to the data from the air sampler nearest the release point. The model can be applied in predicting airborne activity concentrations from particulate releases elsewhere, if the facility in question has similar features of floor plan, air velocity, and air flow direction. The multiple-air-zone concept has been applied to many designs of nuclear facilities as a safety feature to limit the spread of airborne activity from a release. The model illustrates the limitations of this concept: it predicts an apparently anomalous behavior of airborne particulates; namely, a small migration against the flow of the ventilation air. The following phenomena are suggested as possible mechanisms for this migration: eddy currents in the air flow; leaks of ventilation air between zones; open doors; movement of personnel during an incident; inadequate flow of ventilation air; and thermal gradients. 2 references, 12 figures, 4 tables

  16. Airborne transuranium elements

    International Nuclear Information System (INIS)

    This paper reports on a new kind of alpha-particle air monitor which is based on the concept of alpha energy range discrimination (AERD). With the help of a specially designed sandwich detector, an on-line discrimination between alpha and beta particles of natural and artificial origin can be performed. The high flow rate of approximately 50-60 m3 h-1 allows reliable surveillance even of large volumes. Typical results are presented, and the properties of the AERD technique are compared with those of competing methods

  17. Airborne Nanoparticle Concentrations in the Manufacturing of Polytetrafluoroethylene (PTFE) Apparel

    OpenAIRE

    Vosburgh, Donna J. H.; Boysen, Dane A.; Oleson, Jacob J; Peters, Thomas M.

    2011-01-01

    One form of waterproof, breathable apparel is manufactured from polytetrafluoroethylene (PTFE) membrane laminated fabric, using a specific process to seal seams that have been sewn with traditional techniques. The sealing process involves applying waterproof tape to the seam by feeding the seam through two rollers while applying hot air (600°C). This study addressed the potential for exposure to particulate matter from this sealing process, by characterizing airborne particles in a facility t...

  18. Wavelet Based Fractal Analysis of Airborne Pollen

    CERN Document Server

    Degaudenzi, M E

    1999-01-01

    The most abundant biological particles in the atmosphere are pollen grains and spores. Self protection of pollen allergy is possible through the information of future pollen contents in the air. In spite of the importance of airborne pol len concentration forecasting, it has not been possible to predict the pollen concentrations with great accuracy, and about 25% of the daily pollen forecasts have resulted in failures. Previous analysis of the dynamic characteristics of atmospheric pollen time series indicate that the system can be described by a low dimensional chaotic map. We apply the wavelet transform to study the multifractal characteristics of an a irborne pollen time series. We find the persistence behaviour associated to low pollen concentration values and to the most rare events of highest pollen co ncentration values. The information and the correlation dimensions correspond to a chaotic system showing loss of information with time evolution.

  19. Airborne Measurements of Coarse Mode Aerosol Composition and Abundance

    Science.gov (United States)

    Froyd, K. D.; Murphy, D. M.; Brock, C. A.; Ziemba, L. D.; Anderson, B. E.; Wilson, J. C.

    2015-12-01

    Coarse aerosol particles impact the earth's radiative balance by direct scattering and absorption of light and by promoting cloud formation. Modeling studies suggest that coarse mode mineral dust and sea salt aerosol are the dominant contributors to aerosol optical depth throughout much of the globe. Lab and field studies indicate that larger aerosol particles tend to be more efficient ice nuclei, and recent airborne measurements confirm the dominant role of mineral dust on cirrus cloud formation. However, our ability to simulate coarse mode particle abundance in large scale models is limited by a lack of validating measurements above the earth's surface. We present airborne measurements of coarse mode aerosol abundance and composition over several mid-latitude, sub-tropical, and tropical regions from the boundary layer to the stratosphere. In the free troposphere the coarse mode constitutes 10-50% of the total particulate mass over a wide range of environments. Above North America mineral dust typically dominates the coarse mode, but biomass burning particles and sea salt also contribute. In remote environments coarse mode aerosol mainly consists of internally mixed sulfate-organic particles. Both continental and marine convection can enhance coarse aerosol mass through direct lofting of primary particles and by secondary accumulation of aerosol material through cloud processing.

  20. Identifying Airborne Pathogens in Time to Respond

    Energy Technology Data Exchange (ETDEWEB)

    Hazi, A

    2006-01-25

    Among the possible terrorist activities that might threaten national security is the release of an airborne pathogen such as anthrax. Because the potential damage to human health could be severe, experts consider 1 minute to be an operationally useful time limit for identifying the pathogen and taking action. Many commercial systems can identify airborne pathogenic microbes, but they take days or, at best, hours to produce results. The Department of Homeland Security (DHS) and other U.S. government agencies are interested in finding a faster approach. To answer this national need, a Livermore team, led by scientist Eric Gard, has developed the bioaerosol mass spectrometry (BAMS) system--the only instrument that can detect and identify spores at low concentrations in less than 1 minute. BAMS can successfully distinguish between two related but different spore species. It can also sort out a single spore from thousands of other particles--biological and nonbiological--with no false positives. The BAMS team won a 2005 R&D 100 Award for developing the system. Livermore's Laboratory Directed Research and Development (LDRD) Program funded the biomedical aspects of the BAMS project, and the Department of Defense's Technical Support Working Group and Defense Advanced Research Project Agency funded the biodefense efforts. Developing a detection system that can analyze small samples so quickly has been challenging. Livermore engineer Vincent Riot, who worked on the BAMS project, explains, ''A typical spore weighs approximately one-trillionth of a gram and is dispersed in the atmosphere, which contains naturally occurring particles that could be present at concentrations thousands of times higher. Previous systems also had difficulty separating benign organisms from those that are pathogenic but very similar, which has resulted in false alarms''.

  1. Integrated micro-optofluidic platform for real-time detection of airborne microorganisms

    Science.gov (United States)

    Choi, Jeongan; Kang, Miran; Jung, Jae Hee

    2015-11-01

    We demonstrate an integrated micro-optofluidic platform for real-time, continuous detection and quantification of airborne microorganisms. Measurements of the fluorescence and light scattering from single particles in a microfluidic channel are used to determine the total particle number concentration and the microorganism number concentration in real-time. The system performance is examined by evaluating standard particle measurements with various sample flow rates and the ratios of fluorescent to non-fluorescent particles. To apply this method to real-time detection of airborne microorganisms, airborne Escherichia coli, Bacillus subtilis, and Staphylococcus epidermidis cells were introduced into the micro-optofluidic platform via bioaerosol generation, and a liquid-type particle collection setup was used. We demonstrate successful discrimination of SYTO82-dyed fluorescent bacterial cells from other residue particles in a continuous and real-time manner. In comparison with traditional microscopy cell counting and colony culture methods, this micro-optofluidic platform is not only more accurate in terms of the detection efficiency for airborne microorganisms but it also provides additional information on the total particle number concentration.

  2. Personal exposure to airborne dust and microorganisms in agricultural environments.

    Science.gov (United States)

    Lee, Shu-An; Adhikari, Atin; Grinshpun, Sergey A; McKay, Roy; Shukla, Rakesh; Reponen, Tiina

    2006-03-01

    Airborne dust and microorganisms are associated with respiratory diseases and increased mortality and morbidity. Farmers are at high risk of exposure to both of these hazards. Very limited information, however, is available on the combined exposures to both hazards on different types of farms. Moreover, most of the previous studies have measured the mass concentration of particles ignoring the particle size. In this study, farmers' exposure to airborne dust and microorganisms was studied using our newly developed personal sampling system. Particle number concentration and size distribution were measured with an optical particle counter. Simultaneously, particles were collected on a filter and analyzed for microorganisms. The field measurements were conducted in animal confinements (swine, poultry, and dairy) and during grain harvesting (corn and soybean). The results show the following average concentrations on the workers' breathing zone: 1.7 x 10(6) to 2.9 x 10(7) particles/m(3) for total dust, 0.9 x 10(3) to 3.9 x 10(4) spores/m(3) for total fungal spores, 0.3 x 10(3) to 3.6 x 10(4)CFU/m(3) for culturable fungal spores, 0.3 x 10(4) to 3.3 x 10(8) CFU/m(3) for culturable bacteria, and limit of detection (LOD) to 2.8 x 10(3) CFU/m(3) for culturable actinomycetes in animal confinements. The respective concentrations were 4.4 x 10(6) to 5.8 x 10(7) particles/m(3), 3.4 x 10(4) to 6.1 x 10(6) spores/m(3), 8.2 x 10(4) to 7.4 x 10(6) CFU/m(3), 0.4 x 10(5) to 1.4 x 10(6) CFU/m(3), and LOD to 2.6 x 10(4) CFU/m(3) during grain harvesting. The highest contribution of large particles (3-10 microm) in total particles was found during grain harvesting, whereas the size distribution was dominated by smaller particles (particles between 2-10 microm was found to be fungal spores. The results indicate that an increase in the concentration of large dust particles (2-10 microm) during grain harvesting was partially attributed to the increase in the concentration of the fungal spores

  3. Toxicity to chicken embryos of organic extracts from airborne particulates separated into five sizes

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, H.

    1988-07-01

    The chicken embryo assay has been used for research on the toxicity of complex extracts derived from different environmental sources, as well as of individual compounds. However, only a few studies have been made on the toxicological effects of extracts derived from airborne particulate matter in chicken embryo. These studies showed that the toxic effect was due to the polycyclic aromatic hydrocarbons (PAHs) in the particles, although their structure and quantity were the factors determining the extent of the toxicity. Airborne particulate matter is composed of particles of different sizes, which can be separated into five classes according to their size by an Andersen high-volume sampler. Each class contained many kinds of compounds such as PAHs. In this study, airborne particulate matter was extracted according to particle size, the extracts analyzed for PAHs, and tested for embryotoxicity.

  4. Physicochemical Characterization of Cloud Drop Residual Particles in Eastern Pacific Marine Stratocumulus: Airborne Measurements Downstream of a Newly-Developed Counterflow Virtual Impactor Inlet during the 2011 E-PEACE Campaign

    Science.gov (United States)

    Sorooshian, A.; Shingler, T.; Dey, S.; Brechtel, F. J.; Jonsson, H.; Metcalf, A. R.; Craven, J. S.; Coggon, M.; Lin, J. J.; Nenes, A.; Seinfeld, J.

    2011-12-01

    The aerosol nuclei that are the seeds of cloud drops are a critically important component of the atmosphere as they influence radiative transfer, visibility, and cloud microphysics. Aircraft must employ special inlets to exclusively sample cloud drops, which involves rejecting the smaller interstitial aerosol in clouds, and then subsequently drying the drops to leave only the residual particles. A new counterflow virtual impactor inlet (CVI) was recently deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS) Twin Otter during the 2011 Eastern Pacific Emitted Aerosol Cloud Experiment (E-PEACE). Several state-of-the-art instruments sampling downstream of the CVI characterized the physical and chemical properties of the droplet residual particles including measurements of composition, size distribution, optical properties, and water-uptake properties. This work will summarize CVI measurements from over 25 flights during the E-PEACE campaign off the central coast of California between July and August. The flights specifically targeted aerosol-cloud interactions in a region where stratocumulus clouds are perturbed by emissions from ship traffic. New findings related to the physicochemical properties of drop residual particles will be highlighted in addition to a characterization of CVI performance.

  5. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components. ...

  6. Sampling airborne radioactivity

    International Nuclear Information System (INIS)

    Radioactive contaminants have historically been considered apart from chemical contaminants because it is their radiological properties that determine their biological and environmental impact. Additionally they have been regulated by special government agencies concerned with radiological protection. Radioactive contaminants are also distinguished by the specialized and very sensitive methods available for the detection of radioactivity. Measurements of a few thousand atoms per liter are not uncommon. Radiation detectors in common use are gas filled chambers, scintillation and semiconductor detectors, and the more recently developed thermoluminescent and etched track detectors. Solid-state nuclear track detectors consist of a large group of inorganic and organic dielectrics which register tracks when traversed by heavy charged particles. They do not respond to light, beta particles or gamma ray photons and thus provide a very low background system for the detection of extremely low levels of radioactivity. In addition, no power source or electronic equipment is required. Cellulose nitrate detectors are currently in use for long term integrated sampling of environmental radon. Thermoluminescent dosimeters (TID's) are crystalline materials, in which electrons which have been displaced by an interaction with ionizing radiation become trapped at an elevated energy level and emit visible light when released from that energy level. As which etched-track detectors no power or electronic equipment is needed for the TID's at a measurement site, but they respond to alpha, beta and gamma radiation. Thermoluminescent dosimeters are useful for long term environmental monitoring, and have also been newly incorporated into integrating radon detection systems

  7. Wavelet-based fractal analysis of airborne pollen

    Science.gov (United States)

    Degaudenzi, M. E.; Arizmendi, C. M.

    1999-06-01

    The most abundant biological particles in the atmosphere are pollen grains and spores. Self-protection of a pollen allergy is possible through information about future pollen contents in the air. In spite of the importance of airborne pollen concentration forecasting, it has not been possible to predict the pollen concentrations with great accuracy, and about 25% of daily pollen forecasts result in failures. Previous analyses of the dynamic characteristics of atmospheric pollen time series indicate that the system can be described by a low dimensional chaotic map. We apply a wavelet transform to study the multifractal characteristics of an airborne pollen time series. The information and the correlation dimensions correspond to a chaotic system showing a loss of information with time evolution.

  8. Improved IMMPF Tracking Methods for Airborne Laser Communication

    Directory of Open Access Journals (Sweden)

    Yang Cao

    2014-01-01

    Full Text Available Tracking system offers the prerequisite and guarantee for airborne laser communication, it is vital for tracking methods to determine the tracking accuracy. Because of diversity of maneuvering forms and high nonlinear problem, it is impossible to accurately describe the movement of airborne platform with the simple model and the traditional filtering method, it is necessary to adopt Interacting Multiple Model (IMM methods for tracking system. The Particle Filter (PF can deal with nonlinear/non-Gaussian problems, it can be introduced into IMM framework. However, the realization of PF have a larger amount of computation, in order to solve computational complexity, the parallel structure of data processing is proposed. Through theoretical analysis and computer simulation, improved PF effectively reduces the workload; the performance of improved IMMPF is much superior to other methods.

  9. Dynamic radioactive particle source

    Energy Technology Data Exchange (ETDEWEB)

    Moore, Murray E.; Gauss, Adam Benjamin; Justus, Alan Lawrence

    2012-06-26

    A method and apparatus for providing a timed, synchronized dynamic alpha or beta particle source for testing the response of continuous air monitors (CAMs) for airborne alpha or beta emitters is provided. The method includes providing a radioactive source; placing the radioactive source inside the detection volume of a CAM; and introducing an alpha or beta-emitting isotope while the CAM is in a normal functioning mode.

  10. Airborne contamination during blow-fill-seal pharmaceutical production.

    Science.gov (United States)

    Whyte, W; Matheis, W; Dean-Netcher, M; Edwards, A

    1998-01-01

    The routes of airborne contamination, during Blow-Fill-Seal (BFS) production, were studied using tracer gas, particles and bacteria. The prevention of airborne contamination, by the air shower at the point of fill, was effective (> 99.2% efficient). However, microbe-carrying particles could gain access, by deposition or air exchange, when the containers were cut open and before they shuttled under the protection of the air shower. The use of SF6 tracer gas demonstrated that when the air shower was not on, 50% of the air within the containers came from the area round the machine. When the air shower was switched on, only about 5% of the air came from the surroundings. Airborne microbial contamination of containers is in proportion to: the number of airborne microbes around the machine, the time the container is open, the neck area and the amount of air left within the container. The likely microbial contamination rate can be calculated from a model incorporating these variables. Microbial contamination of containers during BFS manufacturing is normally very low, but by increasing the naturally occurring bacteria in the air of the production rooms by about 100-fold, it was possible to verify the accuracy of this model. The contamination model agrees well with the observation that microbial contamination levels of between 1 in 10(5) and in 10(7) will be found when small containers (< 10 ml) are filled in conventionally ventilated rooms. To achieve similar contamination rates when filling of larger bottles, it is likely that unidirectional flow, or barrier technology will be required. PMID:9691671

  11. Airborne Ultrasonic Tactile Display BCI

    OpenAIRE

    Hamada, Katsuhiko; Mori, Hiromu; Shinoda, Hiroyuki; Rutkowski, Tomasz M.

    2015-01-01

    This chapter presents results of our project, which studied whether contactless and airborne ultrasonic tactile display (AUTD) stimuli delivered to a user's palms could serve as a platform for a brain computer interface (BCI) paradigm. We used six palm positions to evoke combined somatosensory brain responses to implement a novel contactless tactile BCI. This achievement was awarded the top prize in the Annual BCI Research Award 2014 competition. This chapter also presents a comparison with a...

  12. NASA Student Airborne Research Program

    Science.gov (United States)

    Schaller, E. L.; Shetter, R. E.

    2012-12-01

    The NASA Student Airborne Research Program (SARP) is a unique summer internship program for advanced undergraduates and early graduate students majoring in the STEM disciplines. SARP participants acquire hands-on research experience in all aspects of an airborne research campaign, including flying onboard an major NASA resource used for studying Earth system processes. In summer 2012, thirty-two participants worked in four interdisciplinary teams to study surface, atmospheric, and oceanographic processes. Participants assisted in the operation of instruments onboard the NASA P-3B aircraft where they sampled and measured atmospheric gases and imaged land and water surfaces in multiple spectral bands. Along with airborne data collection, students participated in taking measurements at field sites. Mission faculty and research mentors helped to guide participants through instrument operation, sample analysis, and data reduction. Over the eight-week program, each student developed an individual research project from the data collected and delivered a conference-style final presentation on his/her results. We will discuss the results and effectiveness of the program from the first four summers and discuss plans for the future.

  13. Influence of Asian dust particles on immune adjuvant effects and airway inflammation in asthma model mice.

    Directory of Open Access Journals (Sweden)

    Jun Kurai

    Full Text Available An Asian dust storm (ADS contains airborne particles that affect conditions such as asthma, but the mechanism of exacerbation is unclear. The objective of this study was to compare immune adjuvant effects and airway inflammation induced by airborne particles collected on ADS days and the original ADS soil (CJ-1 soil in asthma model mice.Airborne particles were collected on ADS days in western Japan. NC/Nga mice were co-sensitized by intranasal instillation with ADS airborne particles and/or Dermatophagoides farinae (Df, and with CJ-1 soil and/or Df for 5 consecutive days. Df-sensitized mice were stimulated with Df challenge intranasally at 7 days after the last Df sensitization. At 24 hours after challenge, serum allergen specific antibody, differential leukocyte count and inflammatory cytokines in bronchoalveolar lavage fluid (BALF were measured, and airway inflammation was examined histopathologically.Co-sensitization with ADS airborne particles and Df increased the neutrophil and eosinophil counts in BALF. Augmentation of airway inflammation was also observed in peribronchiolar and perivascular lung areas. Df-specific serum IgE was significantly elevated by ADS airborne particles, but not by CJ-1 soil. Levels of interleukin (IL-5, IL-13, IL-6, and macrophage inflammatory protein-2 were higher in BALF in mice treated with ADS airborne particles.These results suggest that substances attached to ADS airborne particles that are not in the original ADS soil may play important roles in immune adjuvant effects and airway inflammation.

  14. Electrospray Collection of Airborne Contaminants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In stark contrast to current stagnation-based methods for capturing airborne particulates and biological aerosols, our demonstrated, cost-effective electrospray...

  15. Vascular effects of ultrafine particles in persons with type 2 diabetes

    Science.gov (United States)

    BACKGROUND: Diabetes confers an increased risk for cardiovascular effects of airborne particles. OBJECTIVE: We hypothesized that inhalation of elemental carbon ultrafine particles (UFP) would activate blood platelets and vascular endothelium in people with type 2 diabetes. ...

  16. SIZE DISTRIBUTION AND RATE OF PRODUCTION OF AIRBORNE PARTICULATE MATTER GENERATED DURING METAL CUTTING

    International Nuclear Information System (INIS)

    During deactivation and decommissioning activities, thermal cutting tools, such as plasma torch, laser, and gasoline torch, are used to cut metals. These activities generate fumes, smoke and particulates. These airborne species of matter, called aerosols, may be inhaled if suitable respiratory protection is not used. Inhalation of the airborne metallic aerosols has been reported to cause ill health effects, such as acute respiratory syndrome and chromosome damage in lymphocytes. In the nuclear industry, metals may be contaminated with radioactive materials. Cutting these metals, as in size reduction of gloveboxes and tanks, produces high concentrations of airborne transuranic particles. Particles of the respirable size range (size < 10 microm) deposit in various compartments of the respiratory tract, the fraction and the site in the respiratory tract depending on the size of the particles. The dose delivered to the respiratory tract depends on the size distribution of the airborne particulates (aerosols) and their concentration and radioactivity/toxicity. The concentration of airborne particulate matter in an environment is dependent upon the rate of their production and the ventilation rate. Thus, measuring aerosol size distribution and generation rate is important for (1) the assessment of inhalation exposures of workers, (2) the selection of respiratory protection equipment, and (3) the design of appropriate filtration systems. Size distribution of the aerosols generated during cutting of different metals by plasma torch was measured. Cutting rates of different metals, rate of generation of respirable mass, as well as the fraction of the released kerf that become respirable were determined. This report presents results of these studies. Measurements of the particles generated during cutting of metal plates with a plasma arc torch revealed the presence of particles with mass median aerodynamic diameters of particles close to 0.2 micro

  17. Elemental composition of airborne dust in the shale shaker house during an offshore drilling operation

    DEFF Research Database (Denmark)

    Hansen, A.B.; Larsen, E.; Hansen, L.V.;

    1991-01-01

    chrome lignosulphonate and chrome lignite, was circulated between the borehole and the Shale Shaker House. The concentration of airborne dust in the atmosphere was determined and the elemental composition of the particles analysed by both PIXE (proton-induced X-ray emission) and ICP-MS (inductively...

  18. Airborne exposure patterns from a passenger source in aircraft cabins.

    Science.gov (United States)

    Bennett, James S; Jones, Byron W; Hosni, Mohammad H; Zhang, Yuanhui; Topmiller, Jennifer L; Dietrich, Watts L

    2013-01-01

    Airflow is a critical factor that influences air quality, airborne contaminant distribution, and disease transmission in commercial airliner cabins. The general aircraft-cabin air-contaminant transport effect model seeks to build exposure-spatial relationships between contaminant sources and receptors, quantify the uncertainty, and provide a platform for incorporation of data from a variety of studies. Knowledge of infection risk to flight crews and passengers is needed to form a coherent response to an unfolding epidemic, and infection risk may have an airborne pathogen exposure component. The general aircraf-tcabin air-contaminant transport effect model was applied to datasets from the University of Illinois and Kansas State University and also to case study information from a flight with probable severe acute respiratory syndrome transmission. Data were fit to regression curves, where the dependent variable was contaminant concentration (normalized for source strength and ventilation rate), and the independent variable was distance between source and measurement locations. The data-driven model showed exposure to viable small droplets and post-evaporation nuclei at a source distance of several rows in a mock-up of a twin-aisle airliner with seven seats per row. Similar behavior was observed in tracer gas, particle experiments, and flight infection data for severe acute respiratory syndrome. The study supports the airborne pathway as part of the matrix of possible disease transmission modes in aircraft cabins. PMID:26526769

  19. Chemical Microsensor Instrument for UAV Airborne Atmospheric Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) proposes to develop a miniaturized Airborne Chemical Microsensor Instrument (ACMI) suitable for real-time, airborne measurements of...

  20. Geophex airborne unmanned survey system

    International Nuclear Information System (INIS)

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This nonintrusive system will provide open-quotes stand-offclose quotes capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits two operators to rapidly conduct geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance, of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak anomalies can be detected

  1. Airborne Research Experience for Educators

    Science.gov (United States)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  2. Geophex Airborne Unmanned Survey System

    Energy Technology Data Exchange (ETDEWEB)

    Won, I.J.; Keiswetter, D. [Geophex, Ltd., Raleigh, NC (United States)

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  3. Airborne peptidoglycans as a supporting indicator of bacterial contamination in a metal processing plant

    OpenAIRE

    Marcin Cyprowski; Anna Ławniczek-Wałczyk; Górny, Rafał L.

    2016-01-01

    Objectives: The aim of this study was to assess exposure to airborne endotoxins and peptidoglycans (PGs) as well as possibility of using PGs as a surrogate measure of bacterial exposure in workplaces in a metal processing plant. Material and Methods: Personal dosimetry (N = 11) was used to obtain data on concentrations of viable bacteria, total number of bioaerosol particles, endotoxins and peptidoglycans. To investigate the size distributions of aerosol particles responsible for transport of...

  4. Airborne Oceanographic Lidar (AOL) (Global Carbon Cycle)

    Science.gov (United States)

    2003-01-01

    This bimonthly contractor progress report covers the operation, maintenance and data management of the Airborne Oceanographic Lidar and the Airborne Topographic Mapper. Monthly activities included: mission planning, sensor operation and calibration, data processing, data analysis, network development and maintenance and instrument maintenance engineering and fabrication.

  5. A system for airborne SAR interferometry

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Skou, Niels; Granholm, Johan;

    1996-01-01

    Interferometric synthetic aperture radar (INSAR) systems have already demonstrated that elevation maps can be generated rapidly with single pass airborne across-track interferometry systems (XTT), and satellite repeat track interferometry (RTT) techniques have been used to map both elevation and......) the status of the airborne interferometry activities at DCRS, including the present system configuration, recent results, and some scientific applications of the system....

  6. Geophex Airborne Unmanned Survey System

    International Nuclear Information System (INIS)

    Ground-based surveys place personnel at risk due to the proximity of buried unexploded ordnance (UXO) items or by exposure to radioactive materials and hazardous chemicals. The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide stand-off capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected. The Geophex Airborne Unmanned Survey System (GAUSS) is designed to detect and locate small-scale anomalies at hazardous sites using magnetic and electromagnetic survey techniques. The system consists of a remotely-piloted, radio-controlled, model helicopter (RCH) with flight computer, light-weight geophysical sensors, an electronic positioning system, a data telemetry system, and a computer base-station. The report describes GAUSS and its test results

  7. Airborne fourier infrared spectrometer system

    International Nuclear Information System (INIS)

    A commercial Fourier Transform Infrared (FTIR) spectrometer has been interfaced to a 35 cm aperture telescope and a digital data processing and display system and flown in a downward-viewing configuration on a Queen Air aircraft. Real-time spectral analysis and display software were developed to provide the means to direct aircraft flight operations based on atmospheric and/or surface features identified on 1 to 8 cm-1 resolution infrared spectra. Data are presented from ground-based tests consisting of simultaneous horizontal path measurements by the FTIR system and an infrared differential absorption lidar (DIAL) observing gas volumes generated in an open-ended chamber. Airborne FUR data are presented on the tracking of a surface-released puff of SF6 gas to a downwind distance of 45 km in a time period of 1.5 hours. The experiment demonstrated the real time tracking of a gas tracer cloud to provide atmospheric transport and diffusion information and for directing airborne in-situ sensors for optimum cloud sampling. 5 refs., 5 figs

  8. Airborne nanoparticle exposures associated with the manual handling of nanoalumina and nanosilver in fume hoods

    International Nuclear Information System (INIS)

    Manual handling of nanoparticles is a fundamental task of most nanomaterial research; such handling may expose workers to ultrafine or nanoparticles. Recent studies confirm that exposures to ultrafine or nanoparticles produce adverse inflammatory responses in rodent lungs and such particles may translocate to other areas of the body, including the brain. An important method for protecting workers handling nanoparticles from exposure to airborne nanoparticles is the laboratory fume hood. Such hoods rely on the proper face velocity for optimum performance. In addition, several other hood design and operating factors can affect worker exposure. Handling experiments were performed to measure airborne particle concentration while handling nanoparticles in three fume hoods located in different buildings under a range of operating conditions. Nanoalumina and nanosilver were selected to perform handling experiments in the fume hoods. Air samples were also collected on polycarbonate membrane filters and particles were characterized by scanning electron microscopy. Handling tasks included transferring particles from beaker to beaker by spatula and by pouring. Measurement locations were the room background, the researcher's breathing zone and upstream and downstream from the handling location. Variable factors studied included hood design, transfer method, face velocity/sash location and material types. Airborne particle concentrations measured at breathing zone locations were analyzed to characterize exposure level. Statistics were used to test the correlation between data. The test results found that the handling of dry powders consisting of nano-sized particles inside laboratory fume hoods can result in a significant release of airborne nanoparticles from the fume hood into the laboratory environment and the researcher's breathing zone. Many variables were found to affect the extent of particle release including hood design, hood operation (sash height, face velocity

  9. Tracing airborne particles after Japan's nuclear plant explosion

    Science.gov (United States)

    Takemura, Toshihiko; Nakamura, Hisashi; Nakajima, Teruyuki

    2011-11-01

    The powerful Tohoku earthquake and consequent tsunami that occurred off the east coast of Japan on 11 March 2011 devastated dozens of coastal cities and towns, causing the loss of more than 15,000 lives and leaving close to 4000 people still missing. Although nuclear reactors at the Fukushima Daiichi Nuclear Power Plant, located on the Pacific coast, stopped their operation automatically upon the occurrence of the Mw 9.0 quake [Showstack, 2011], the cooling system for nuclear fuel broke down. From 12 to 16 March, vapor and hydrogen blasts destroyed the buildings that had contained the reactors, resulting in the release into the atmosphere of radioactive materials such as sulfur-35, iodine-131, cesium-134, and cesium-137, which collectively can cause harmful health effects such as tissue damage and increased risk of cancer (particularly in children), depending on dose. Most of those materials emitted from the power plant rained out onto the grounds within its vicinity and forced tens of thousands within a 20-kilometer radius to evacuate (residents to the northwest of the site within about 40 kilometers also were moved from their homes). Some of the radioactive materials were transported and then detected at such distant locations as North America and Europe, although the level of radiation dose was sufficiently low not to affect human health in any significant manner.

  10. Latex allergens in tire dust and airborne particles.

    OpenAIRE

    Miguel, A G; Cass, G R; Weiss, J; Glovsky, M M

    1996-01-01

    The prevalence and severity of latex allergy has increased dramatically in the last 15 years due to exposure to natural rubber products. Although historically this health risk has been elevated in hospital personnel and patients, a recent survey has indicated a significant potential risk for the general population. To obtain a wide-spread source for latex exposure, we have considered tire debris. We have searched for the presence of latex allergens in passenger car and truck tire tread, in de...

  11. Morphology, chemical composition, and bacterial concentration of airborne particulate matter in rabbit farms

    Directory of Open Access Journals (Sweden)

    Elisa Adell

    2012-12-01

    Full Text Available Livestock houses are major sources of airborne particulate matter (PM, which can originate from manure, feed, feathers, skin and bedding and may contain and transport microorganisms. Improved knowledge of particle size, morphology, chemical and microbiological composition of PM in livestock houses can help identify major sources of PM and contribute to the development of appropriate source-specific reduction techniques. In rabbit production systems, however, there is limited information on specific particle characteristics. The objective of this study was to characterise airborne PM in rabbit farms in terms of morphology, chemical compositions and bacterial concentration in different size fractions. Size-fractioned PM was sampled in the air of 2 rabbit farms, 1 for fattening rabbits and 1 for reproductive does, using a virtual cascade impactor, which simultaneously collected total suspended PM (TSP, PM10 and PM2.5 size fractions. Airborne PM samples were examined by light microscopy and scanning electron microscopy combined with energy dispersive X-ray analysis. Representative samples from potential sources of PM were also collected and examined. Additionally, a methodology to extract bacteria from the collected samples of airborne PM was developed to determine the bacterial concentration per PM size fraction. Results showed that airborne PM in rabbit farms is highly complex in particle morphology, especially in size. Broken skin flakes, disintegrated particles from feed or faecal material from mechanical fracture are the main sources of airborne PM in rabbit farms. Major elements found in rabbit airborne PM were S, Ca, Mg, Na and Cl. Bacterial concentrations ranged from 1.7×104 to 1.6×106 colony forming units (CFU/m3 (TSP; from 3.6×103 to 3.0×104 CFU/m3 (PM10; and from 3.1×103 to 1.6×104 CFU/m3 (PM2.5. Our results will improve the knowledge on essential particle characteristics necessary to understand PM’s origin in rabbit farms and

  12. Airborne gamma ray spectrometer surveying

    International Nuclear Information System (INIS)

    The International Atomic Energy Agency (IAEA) in its role as collector and disseminator of information on nuclear techniques has long had an interest in gamma ray spectrometer methods and has published a number of Technical Reports on various aspects of the subject. At an Advisory Group Meeting held in Vienna in November 1986 to review appropriate activities the IAEA could take following the Chernobyl accident, it was recommended that preparation begin on a new Technical Report on airborne gamma ray spectrometer surveying, taking into account the use of the technique for environmental monitoring as well as for nuclear emergency response requirements. Shortly thereafter the IAEA became the lead organization in the Radioelement Geochemical Mapping section of the International Geological Correlation Programme/United Nations Educational, Scientific and Cultural Organization (UNESCO) Project on International Geochemical Mapping. These two factors led to the preparation of the present Technical Report. 18 figs, 4 tabs

  13. Airborne synthetic aperture acoustic imaging.

    Science.gov (United States)

    Soumekh, M

    1997-01-01

    This paper presents a system model and inversion for airborne synthetic aperture acoustic (SAA) imaging. The system model accurately represents the intercation of the acoustic source and the target region at near range values. Moreover, the model incorporates the fact that the relative speed of the vehicle's (transmitter/receiver) with respect to the target region is comparable to the acoustic wave propagation speed. The inversion utilizes the principle of spectral decomposition of spherical phase functions to develop a wavefront reconstruction method from SAA data. Processing issues and selection of appropriate acoustic FM-CW sources are discussed. Results are provided that exhibit the superior accuracy of the proposed SAA system model and inversion over their synthetic aperture radar (SAR) counterpart in which the vehicle's speed is assumed to be much smaller than the wave propagation speed. PMID:18282912

  14. Condensation Particle Counter Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Kuang, C. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-02-01

    The Model 3772 CPC is a compact, rugged, and full-featured instrument that detects airborne particles down to 10 nm in diameter, at an aerosol flow rate of 1.0 lpm, over a concentration range from 0 to 1x104 #/cc. This CPC is ideally suited for applications without high concentration measurements, such as basic aerosol research, filter and air-cleaner testing, particle counter calibrations, environmental monitoring, mobile aerosol studies, particle shedding and component testing, and atmospheric and climate studies.

  15. Predictors of airborne endotoxin in the home.

    OpenAIRE

    Park, J. H.; Spiegelman, D L; Gold, D R; Burge, H A; Milton, D K

    2001-01-01

    We identified home characteristics associated with the level of airborne endotoxin in 111 Boston-area homes enrolled in a cohort study of home exposures and childhood asthma, and we developed a predictive model to estimate airborne endotoxin. We measured endotoxin in family-room air and in dust from the baby's bed, family room, bedroom, and kitchen floor. Level of airborne endotoxin was weakly correlated (r < 0.3) with level of endotoxin in each of the four types of dust samples and was signi...

  16. Airborne Digital Camera. A digital view from above; Airborne Digital Camera. Der digitale Blick von oben

    Energy Technology Data Exchange (ETDEWEB)

    Roeser, H.P. [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Berlin (Germany). Inst. fuer Weltraumsensorik und Planetenerkundung

    1999-09-01

    The Airborne Digital Camera is based on the WAOSS camera of the MARS-96 mission. The camera will provide a new basis for airborne photogrammetry and remote exploration. The ADC project aims at the development of the first commercial digital airborne camera. [German] Die Wurzeln des Projektes Airborne Digital Camera (ADC) liegen in der Mission MARS-96. Die hierfuer konzipierte Marskamera WAOSS lieferte die Grundlage fuer das innovative Konzept einer digitalen Flugzeugkamera. Diese ist auf dem Weg, die flugzeuggestuetzte Photogrammetrie und Fernerkundung auf eine technologisch voellig neue Basis zu stellen. Ziel des Projektes ADC ist die Entwicklung der ersten kommerziellen digitalen Luftbildkamera. (orig.)

  17. Sampling of solid particles in clouds

    International Nuclear Information System (INIS)

    This paper is concerned with the sampling of small solid particles from clouds by an airborne apparatus to be mounted on an airplane for meteorological investigations. In the airborne experiment the particles entering the test tube should be as representative as possible of the upstream conditions ahead of the plane, in the real cloud. Due to the inertia of the particles, the proportion of the different sizes of particles entering the test tube depends on the location of the tube mouth. We present a method of calculating the real concentration in particles of different sizes, using the results of measurements executed during the flight of an airplane in a cloud. Two geometries are considered: the nose of the airplane, represented schematically by a hemisphere, and a wing represented by a (2D) Joukowski profile which matches well a NACA 0015 profile on its leading edge

  18. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance computer-based electronic backend that...

  19. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance-computer-based electronic backend that...

  20. Airborne Multi-Gas Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mesa Photonics proposes to develop an Airborne Multi-Gas Sensor (AMUGS) based upon two-tone, frequency modulation spectroscopy (TT-FMS). Mesa Photonics has...

  1. Software for airborne radiation monitoring system

    International Nuclear Information System (INIS)

    The Airborne Radiation Monitoring System monitors radioactive contamination in the air or on the ground. The contamination source can be a radioactive plume or an area contaminated with radionuclides. This system is composed of two major parts: Airborne Unit carried by a helicopter, and Ground Station carried by a truck. The Airborne software is intended to be the core of a computerized airborne station. The software is written in C++ under MS-Windows with object-oriented methodology. It has been designed to be user-friendly: function keys and other accelerators are used for vital operations, a help file and help subjects are available, the Human-Machine-Interface is plain and obvious. (authors)

  2. Reconfigurable Weather Radar for Airborne Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Automation, Inc (IAI) and its university partner, University of Oklahoma (OU), Norman, propose a forward-looking airborne environment sensor based on...

  3. Voxel inversion of airborne EM data

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca G.; Auken, Esben; Christiansen, Anders Vest C A.V.C.;

    2013-01-01

    jointly inverting airborne and ground-based geophysical data. Furthermore, geological and groundwater models most often refer to a regular voxel grid not correlated to the geophysical model space, and incorporating the geophysical data into the geological/hydrological modelling grids is problematic. We...... of prior information. Inversion of geophysical data usually refers to a model space being linked to the actual observation points. For airborne surveys the spatial discretization of the model space reflects the flight lines. Often airborne surveys are carried out in areas where other ground......-based geophysical data are available. The model space of geophysical inversions is usually referred to the positions of the measurements, and ground-based model positions do not generally coincide with the airborne model positions. Consequently, a model space based on the measuring points is not well suited for...

  4. Regenerable Lunar Airborne Dust Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Effective methods are needed to control pervasive Lunar Dust within spacecraft and surface habitations. Once inside, airborne transmission is the primary mode of...

  5. Airborne Infrared Search and Track Systems

    Directory of Open Access Journals (Sweden)

    Hari Babu Srivastava

    2007-09-01

    Full Text Available Infrared search and track (IRST systems are required for fighter aircraft to enable them to passively search, detect, track, classify, and prioritise multiple airborne targets under all aspects, look-up, look-down, and co-altitude conditions and engage them at as long ranges as possible. While the IRST systems have been proven in performance for ground-based and naval-based platforms, it is still facing some technical problems for airborne applications. These problems arise from uncertainty in target signature, atmospheric effects, background clutter (especially dense and varying clouds, signal and data processing algorithms to detect potential targets at long ranges and some hardware limitations such as large memory requirement to store and process wide field of view data. In this paper, an overview of airborne IRST as a system has been presented with detailed comparative simulation results of different detectionitracking algorithms and the present status of airborne IRSTs

  6. Suspended particle interactions

    International Nuclear Information System (INIS)

    The objectives of the study are to determine the factors influencing the extent of Pu deposition from airborne effluents onto foliage, the potential for the resuspension of Pu from the leaf surface and the extent of Pu uptake and translocation by the plant. Using a low-wind-speed aerosol plant-exposure chamber, polydispersed aerosols were generated, particles characterized with respect to AMAD and GSD, and parameters such as deposition rate and deposition velocity evaluated for the plant canopy. The fate of surface deposited Pu compounds with respect to chemical modification and leachability was evaluated by leaching with synthetic ''rainwater'' and 0.1 percent HNO3 solutions

  7. The JAC airborne EM system : AEM-05

    OpenAIRE

    Levaniemi, H.; Beamish, D; Hautaniemi, H.; Kurimo, M.; Suppala, I.; Vironmaki, J.; Cuss, R.J.; Lahti, M; Tartaras, E.

    2009-01-01

    This paper describes the airborne electromagnetic (AEM) system operated by the Joint Airborne geoscience Capability (JAC), a partnership between the Finnish and British Geological Surveys. The system is a component of a 3-in-1, fixed-wing facility acquiring magnetic gradiometer and full spectrum radiometric data alongside the wing-tip, frequency-domain AEM measurements. The AEM system has recently (2005) been upgraded from 2 to 4 frequencies and now provides a bandwidth from 900 Hz to 25 kHz....

  8. Concentration and size distribution of total airborne microbes in hazy and foggy weather.

    Science.gov (United States)

    Dong, Lijie; Qi, Jianhua; Shao, Congcong; Zhong, Xi; Gao, Dongmei; Cao, Wanwan; Gao, Jiawei; Bai, Ran; Long, Gaoyuan; Chu, Congcong

    2016-01-15

    Atmospheric bioaerosol particles were collected using a bioaerosol sampler from Oct. 2013 to Aug. 2014 in the coastal region of Qingdao. The total microbes were measured using an epifluorescence microscope after staining with DAPI (4',6-diamidino-2-phenylindole). The concentration of total airborne microbes showed seasonal variation, with the highest value in winter and the lowest in summer. The mean concentration of total microbes was 6.55 × 10(5)Cells/m(3) on non-hazy days. The total microbe concentration increased to 7.09 × 10(5) and 9.00 × 10(5)Cells/m(3) on hazy and foggy days, respectively. The particle sizes of the total microbes presented a bimodal distribution on sunny days, with one peak at 1.1-2.1 μm and another at 4.7-7.0 μm. The size distribution of total microbes showed an increase in the fine fraction on hazy days and an increase in the coarse fraction on foggy days. However, the size distribution became unimodal during a heating period. Spearman correlation analysis showed that temperature and O3 had a significant negative correlation with the airborne microbe concentration, while PM2.5, SO2, NO2, CO and the air quality index (AQI) had significant positive correlations with the airborne microbe concentration during hazy days. The increased number of airborne microbes will affect the air quality on hazy days. PMID:26473703

  9. Challenges and Opportunities of Airborne Metagenomics

    KAUST Repository

    Behzad, H.

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  10. Particles for testing the stack particle monitor of nuclear power plants

    International Nuclear Information System (INIS)

    The manufacture of particles for a simplified test procedure for the stack particle monitor of nuclear power plants has been studied. It was found that a kind of monodisperse polymer particles could be tagged with dysprosium. The particles can then be traced by means of activation analysis. The lower limit of detection appeared to be inconveniently high. The detection limit can probably be reduced, but airborne matter in the plants ventilation air might interfere. Porous particles were used in the experiments, to obtain a high dimensional stability. Stable solid particles are preferred

  11. Particle Suspension Mechanisms - Supplemental Material

    Energy Technology Data Exchange (ETDEWEB)

    Dillon, M B

    2011-03-03

    This supplemental material provides a brief introduction to particle suspension mechanisms that cause exfoliated skin cells to become and remain airborne. The material presented here provides additional context to the primary manuscript and serves as background for designing possible future studies to assess the impact of skin cells as a source of infectious aerosols. This introduction is not intended to be comprehensive and interested readers are encouraged to consult the references cited.

  12. Airborne observations of mineral dust over western Africa in the summer Monsoon season: spatial and vertical variability of physico-chemical and optical properties

    OpenAIRE

    P. Formenti; Rajot, J. L.; Desboeufs, K.; Saïd, F.; N. Grand; Chevaillier, S.; Schmechtig, C.

    2011-01-01

    We performed airborne measurements of aerosol particle concentration, composition, size distribution and optical properties over Western Africa in the corridor 2–17° N and 3–5° E. Data were collected on board the French ATR-42 research aircraft in June–July 2006 as part of the African Monsoon Multidisciplinary Analysis (AMMA) intensive field phases in June–July 2006 using the AVIRAD airborne aerosol sampling system.

    The aerosol vertical distributio...

  13. Changing methodology for measuring airborne radioactive discharges from nuclear facilities

    International Nuclear Information System (INIS)

    The US Environmental Protection Agency (USEPA) requires that measurements of airborne radioactive discharges from nuclear facilities be performed following outdated methods contained in the American National Standards Institute (ANSI) N13.1-1969 Guide to Sampling Airborne Radioactive Materials in Nuclear Facilities. Improved methods are being introduced via two paths. First, the ANSI standard is being revised, and second, EPA's equivalency granting process is being used to implement new technology on a case-by-case or broad basis. The ANSI standard is being revised by a working group under the auspices of the Health Physics Society Standards Committee. The revised standard includes updated methods based on current technology and a performance-based approach to design. The performance-based standard will present new challenges, especially in the area of performance validation. Progress in revising the standard is discussed. The US Department of Energy recently received approval from the USEPA for an alternate approach to complying with air-sampling regulations. The alternate approach is similar to the revised ANSI standard. New design tools include new types of sample extraction probes and a model for estimating line-losses for particles and radioiodine. Wind tunnel tests are being performed on various sample extraction probes for use at small stacks. The data show that single-point sampling probes are superior to ANSI-Nl3.1-1969 style multiple-point sample extraction probes

  14. Mapping permafrost with airborne electromagnetics

    Science.gov (United States)

    Minsley, B. J.; Ball, L. B.; Bloss, B. R.; Kass, A.; Pastick, N.; Smith, B. D.; Voss, C. I.; Walsh, D. O.; Walvoord, M. A.; Wylie, B. K.

    2014-12-01

    Permafrost is a key characteristic of cold region landscapes, yet detailed assessments of how the subsurface distribution of permafrost impacts the environment, hydrologic systems, and infrastructure are lacking. Data acquired from several airborne electromagnetic (AEM) surveys in Alaska provide significant new insight into the spatial extent of permafrost over larger areas (hundreds to thousands of square kilometers) than can be mapped using ground-based geophysical methods or through drilling. We compare several AEM datasets from different areas of interior Alaska, and explore the capacity of these data to infer geologic structure, permafrost extent, and related hydrologic processes. We also assess the impact of fires on permafrost by comparing data from different burn years within similar geological environments. Ultimately, interpretations rely on understanding the relationship between electrical resistivity measured by AEM surveys and the physical properties of interest such as geology, permafrost, and unfrozen water content in the subsurface. These relationships are often ambiguous and non-unique, so additional information is useful for reducing uncertainty. Shallow (upper ~1m) permafrost and soil characteristics identified from remotely sensed imagery and field observations help to constrain and aerially extend near-surface AEM interpretations, where correlations between the AEM and remote sensing data are identified using empirical multivariate analyses. Surface nuclear magnetic resonance (sNMR) measurements quantify the contribution of unfrozen water at depth to the AEM-derived electrical resistivity models at several locations within one survey area. AEM surveys fill a critical data gap in the subsurface characterization of permafrost environments and will be valuable in future mapping and monitoring programs in cold regions.

  15. Air pollution dry deposition: radioisotopes as particles and volatiles

    International Nuclear Information System (INIS)

    This study focuses on determining volcanic ash and ambient airborne solids concentrations at various sampling sites subsequent to the Mt. St. Helens' eruption in order to develop an experimental basis for models predicting removal of airborne particles and gases by dry deposition onto outdoor surfaces. In addition, deposition rates were determined using dual tracer techniques in the field and in a wind tunnel in the laboratory

  16. Airborne high spectral resolution lidar observation of pollution aerosol during EUCAARI-LONGREX

    OpenAIRE

    Groß, S.; M. Esselborn; F. Abicht; Wirth, M.; Fix, A.(Laboratory of Mathematical Physics, Tomsk Polytechnic University, Tomsk, Russia); Minikin, A.

    2012-01-01

    Airborne high spectral resolution lidar observations over Europe during the EUCAARI field experiment in May 2008 are analysed with respect to spatial distribution and optical properties of continental pollution aerosol. Continental aerosol is characterized by its depolarisation and lidar ratio. Mean values of 6%±1% for the particle linear depolarisation ratio, and 56 sr±6 sr for the lidar ratio were found for pollution aerosol. Both, lidar ratio and depolarisation ...

  17. Airborne high spectral resolution lidar observation of pollution aerosol during EUCAARI-LONGREX

    OpenAIRE

    Groß, Silke; Esselborn, Michael; Abicht, Florian; Wirth, Martin; Fix, Andreas; Minikin, Andreas

    2013-01-01

    Airborne high spectral resolution lidar observations over Europe during the EUCAARI-LONGREX field experiment in May 2008 are analysed with respect to the optical properties of continental pollution aerosol. Continental pollution aerosol is characterized by its depolarisation and lidar ratio. Over all, the measurements of the lidar ratio and the particle linear depolarization ratio of pollution aerosols provide a narrow range of values. Therefore, this data set allows for a distinct characteri...

  18. Analytical Methods INAA and PIXE Applied to Characterization of Airborne Particulate Matter in Bandung, Indonesia

    OpenAIRE

    D.D. Lestiani; M. Santoso

    2011-01-01

    Urbanization and industrial growth have deteriorated air quality and are major cause to air pollution. Air pollution through fine and ultra-fine particles is a serious threat to human health. The source of air pollution must be known quantitatively by elemental characterization, in order to design the appropriate air quality management. The suitable methods for analysis the airborne particulate matter such as nuclear analytical techniques are hardly needed to solve the air pollution problem....

  19. Airborne observations of black carbon aerosol layers at mid-latitudes

    OpenAIRE

    Dahlkötter, Florian

    2014-01-01

    Model studies show that black carbon (BC) is, after CO2, the second strongest component of current global warming. In this study, microphysical and optical properties of BC-containing aerosol layers at mid-latitudes were investigated based on airborne in situ observations during the CONCERT 2011 field experiment. For the first time, the Single Particle Soot Photometer was operated onboard the research aircraft Falcon. Besides comprehensive results to BC in aerosol layers, this study shows the...

  20. Airborne laser communication technology and flight test

    Science.gov (United States)

    Meng, Li-xin; Zhang, Li-zhong; Li, Xiao-ming; Li, Ying-chao; Jiang, Hui-lin

    2015-11-01

    Reconnaissance aircraft is an important node of the space-air-ground integrated information network, on which equipped with a large number of high-resolution surveillance equipment, and need high speed communications equipment to transmit detected information in real time. Currently RF communication methods cannot meet the needs of communication bandwidth. Wireless laser communication has outstanding advantages high speed, high capacity, security, etc., is an important means to solve the high-speed information transmission of airborne platforms. In this paper, detailed analysis of how the system works, the system components, work processes, link power and the key technologies of airborne laser communication were discussed. On this basis, a prototype airborne laser communications was developed, and high-speed, long-distance communications tests were carried out between the two fixed-wing aircraft, and the airborne precision aiming, atmospheric laser communication impacts on laser communication were tested. The experiments ultimately realize that, the communication distance is 144km, the communication rate is 2.5Gbps. The Airborne laser communication experiments provide technical basis for the application of the conversion equipment.

  1. Active airborne contamination control using electrophoresis

    International Nuclear Information System (INIS)

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ''cold,'' or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications

  2. Particle Pollution

    Science.gov (United States)

    ... Your Health Particle Pollution Public Health Issues Particle Pollution Recommend on Facebook Tweet Share Compartir Particle pollution ... see them in the air. Where does particle pollution come from? Particle pollution can come from two ...

  3. Airborne and ground based CCN spectral characteristics: Inferences from CAIPEEX - 2011

    Science.gov (United States)

    Varghese, Mercy; Prabha, Thara V.; Malap, Neelam; Resmi, E. A.; Murugavel, P.; Safai, P. D.; Axisa, Duncan; Pandithurai, G.; Dani, K.

    2016-01-01

    A first time comprehensive study of Cloud Condensation Nuclei (CCN) and associated spectra from both airborne and ground campaigns of the Cloud Aerosol Interaction and Precipitation Enhancement Experiment (CAIPEEX) conducted over the rain shadow region of Western Ghats during September and October 2011 is illustrated. Observations of CCN spectra during clean, polluted and highly polluted conditions indicated significant differences between airborne and ground observations. Vertical variation of CCN concentration is illustrated from airborne observations in the clean, polluted and highly polluted conditions with different air mass characteristics. The cloud base CCN number concentrations are three times less than that of the surface measurements at different supersaturations. Diurnal variations of the ground based CCN number concentration and activation diameter showed bimodality. Atmospheric mixing in the wet conditions is mainly through mechanical mixing. The dry conditions favored convective mixing and were dominated by more CCN than the wet conditions. New particle formation and growth events have been observed and were found more often on days with convective mixing. The average critical activation diameter (at 0.6% SS) observed at the ground is approximately 60 nm and availability of a large number of particles below this limit was due to the new particle formation. Observations give convincing evidence that the precipitable water and liquid water path is inversely proportional to surface CCN number concentration, and this relationship is largely dictated by the meteorological conditions.

  4. Method for measuring the size distribution of airborne rhinovirus

    International Nuclear Information System (INIS)

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor

  5. Method for measuring the size distribution of airborne rhinovirus

    Energy Technology Data Exchange (ETDEWEB)

    Russell, M.L.; Goth-Goldstein, R.; Apte, M.G.; Fisk, W.J.

    2002-01-01

    About 50% of viral-induced respiratory illnesses are caused by the human rhinovirus (HRV). Measurements of the concentrations and sizes of bioaerosols are critical for research on building characteristics, aerosol transport, and mitigation measures. We developed a quantitative reverse transcription-coupled polymerase chain reaction (RT-PCR) assay for HRV and verified that this assay detects HRV in nasal lavage samples. A quantitation standard was used to determine a detection limit of 5 fg of HRV RNA with a linear range over 1000-fold. To measure the size distribution of HRV aerosols, volunteers with a head cold spent two hours in a ventilated research chamber. Airborne particles from the chamber were collected using an Andersen Six-Stage Cascade Impactor. Each stage of the impactor was analyzed by quantitative RT-PCR for HRV. For the first two volunteers with confirmed HRV infection, but with mild symptoms, we were unable to detect HRV on any stage of the impactor.

  6. System for particle concentration and detection

    Energy Technology Data Exchange (ETDEWEB)

    Morales, Alfredo M.; Whaley, Josh A.; Zimmerman, Mark D.; Renzi, Ronald F.; Tran, Huu M.; Maurer, Scott M.; Munslow, William D.

    2013-03-19

    A new microfluidic system comprising an automated prototype insulator-based dielectrophoresis (iDEP) triggering microfluidic device for pathogen monitoring that can eventually be run outside the laboratory in a real world environment has been used to demonstrate the feasibility of automated trapping and detection of particles. The system broadly comprised an aerosol collector for collecting air-borne particles, an iDEP chip within which to temporarily trap the collected particles and a laser and fluorescence detector with which to induce a fluorescence signal and detect a change in that signal as particles are trapped within the iDEP chip.

  7. Trace elements in airborne particulates in South Africa

    International Nuclear Information System (INIS)

    Airborne particulate materials were monitored continously with calendar month sampling periods at 5 rural/background, 4 rural/developing/peri-urban, 6 urban and 7 industrial sites in South Africa. Concentrations of Al, Br, Ca, Cs, Cd, Cl, Co, Cr, Cu, Eu, Fe, K, Mg, Mn, Na, Ni, Pb, Rb, S, Sb, Sc, Se, Ti, V and Zn were determined with neutron activation analysis (NAA), atomic absorption spectroscopy (AAS) and particle-induced X-ray emission spectroscopy (PIXE) employed on a complementary basis. A review of sources of airborne trace elements is given. The monitoring program, sampling, sample-handling procedures, as well as the analytical methods used, are discussed in detail. The results of related studies, i.e. effects of filter materials; sampling rates and geometry; determinations of collection efficiencies; particle size ranges; effects of internal flux monitors on the precision and accuracy of NAA; trace impurities in blank materials; quality control by routine analysis of reference materials; comparison of results obtained by NAA, AAS, and PIXE analysis; are given, as is a review of air-pollution control and research policy in South Africa and of ambient air quality standards. Results are discussed in terms of general patterns in trace-element concentrations and enrichments, the general pattern in population centres, the variability of monthly concentrations, and in terms of long-term trends at background, rural, developing, peri-urban, urban and industrial sites. Cases of concern in respect of increasing concentrations are pointed out, as are the constantly high Pb levels at urban sites

  8. Data quality in airborne particulate matter measurements

    Science.gov (United States)

    Hyslop, Nicole Marie

    Environmental measurements are complicated by uncontrollable natural variations in the environment, which cannot be reproduced in the laboratory. These variations affect the measurement uncertainty and detection capabilities -- two measures of data quality. Variations in a measurement series that arise from uncertainty in the measurements should not be interpreted as variations in the environment. Accurate estimates of measurement uncertainty are thus important inputs to data analyses. Collocated (duplicate) measurements are the most direct approach to characterizing uncertainty and detection capabilities because the observed differences reflect the actual measurement performance under the natural environmental variability. This dissertation uses collocated measurements of airborne particulate matter chemical speciation collected by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) to explore data quality issues. In addition to the complications introduced by uncontrollable environmental factors, the concepts of measurement precision and detection capabilities are often complicated by incomplete and inconsistent definitions. In this dissertation, collocated IMPROVE data are used to illustrate different formulations for precision and their ability to fit the observed differences. Collocated IMPROVE data are also used to show that measurement precision is typically better at concentrations well above the detection limit, when the analysis is performed on the whole filter instead of just a fraction of the filter, and for species predominantly in the smaller size fractions. For most species, the collocated differences are worse than the differences predicted by the current uncertainty model, suggesting that some sources of uncertainty are not accounted for or have been underestimated in the model. In addition, collocated measurement differences are shown to be correlated among several species. In both IMPROVE and

  9. Mechanisms related to the genotoxicity of particles in the subway and from other sources.

    OpenAIRE

    Karlsson, Hanna L; Holgersson, Asa; Moller, Lennart

    2008-01-01

    Negative health effects of airborne particles have clearly been shown in epidemiological studies. People get exposed to particles from various sources such as the combustion of, for example, diesel and wood and also from particles arising from tire-road wear. Another source of importance for certain populations is exposure to particles in subway systems. We recently reported that these particles were more genotoxic when compared to that of several other particle types. The aim of this study w...

  10. Airborne radioactivity surveys in geologic exploration

    Science.gov (United States)

    Moxham, R.M.

    1958-01-01

    The value of airborne radioactivity surveys in guiding uranium exploration has been well established. Recent improvements in circuitry and development of semiquantitative analytical techniques permit a more comprehensive evaluation of the geologic distribution of radioactive materials that may prove useful in exploration for other minerals and in regional geologic studies. It is shown that placer deposits of heavy minerals can be detected from the air, and that the geometric configuration and average grade of the surficial part of the deposit can be approximated. Uranium-bearing phosphorite deposits may be similarly evaluated. Airborne surveys over the Coastal Plain area, Texas, show that

  11. Sandia Multispectral Airborne Lidar for UAV Deployment

    Energy Technology Data Exchange (ETDEWEB)

    Daniels, J.W.; Hargis,Jr. P.J.; Henson, T.D.; Jordan, J.D.; Lang, A.R.; Schmitt, R.L.

    1998-10-23

    Sandia National Laboratories has initiated the development of an airborne system for W laser remote sensing measurements. System applications include the detection of effluents associated with the proliferation of weapons of mass destruction and the detection of biological weapon aerosols. This paper discusses the status of the conceptual design development and plans for both the airborne payload (pointing and tracking, laser transmitter, and telescope receiver) and the Altus unmanned aerospace vehicle platform. Hardware design constraints necessary to maintain system weight, power, and volume limitations of the flight platform are identified.

  12. Attenuation of airborne debris from LMFBR accidents

    International Nuclear Information System (INIS)

    Experimental and theoretical studies have been performed to characterize the behavior of airborne particulates (aerosols) expected to be produced by hypothetical core disassembly accidents (HCDA's) in liquid metal fast breeder reactors (LMFBR's). These aerosol studies include work on aerosol transport in a 20-m high, 850-m3 closed vessel at moderate concentrations; aerosol transport in a small vessel under conditions of high concentration (approx. 1000 g/m3), high turbulence, and high temperature (approx. 20000C); and aerosol transport through various leak paths. These studies have shown that little, if any, airborne debris from LMFBR HCDA's would reach the atmosphere exterior to an intact reactor containment building

  13. Attenuation of airborne debris from LMFBR accidents

    International Nuclear Information System (INIS)

    Experimental and theoretical studies have been performed to characterize the behavior of airborne particulates (aerosols) expected to be produced by hypothetical core disassembly accidents (HCDA's) in liquid metal fast breeder reactors (LMFBR's). These aerosol studies include work on aerosol transport in a 20-m high, 850-m3 closed vessel at moderate concentrations; aerosol transport in a small vessel under conditions of high concentration (approximately 1,000 g/m3), high turbulence, and high temperature (approximately 20000C); and aerosol transport through various leak paths. These studies have shown that tittle, if any, airborne debris from LMFBR HCDA's would reach the atmosphere exterior to an intact reactor containment building. (author)

  14. 76 FR 76333 - Notification for Airborne Wind Energy Systems (AWES)

    Science.gov (United States)

    2011-12-07

    ... Federal Aviation Administration 14 CFR Part 77 Notification for Airborne Wind Energy Systems (AWES) AGENCY...,'' to airborne wind energy systems (AWES). In addition, this notice requests information from airborne wind energy system developers and the public related to these systems so that the FAA...

  15. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a... conditions that can be detected with airborne weather radar equipment, may reasonably be expected along...

  16. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather...

  17. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane....

  18. ASSESSMENT OF BAGGING OPERATORS EXPOSURE TO WITH PVC AIRBORNE PARTICULATES

    Directory of Open Access Journals (Sweden)

    H. Asilian, M. Nasseri Nejad, S. B. Mortazavi, M. J. Jafari, A. Khavanin, A. R. Dehdashti

    2008-07-01

    Full Text Available Dust consists of tiny solid particles carried by air currents. These particles are formed by many different processes. One of these processes is polymerization of inert plastic such as Polyvinyl Chloride production plant. According to the Occupational Health and Safety Assessment Series requirements, section 4.4.6, occupational health and safety risks must be defined and controlled where needed. This field study was conducted to evaluate the occupational exposure of packaging operators to airborne polyvinyl chloride dust in order to health risk assessment and recommend feasible controlling methods. The mass concentration of polyvinyl chloride particulate was measured in two fractions according to the particle size that expressed as total and respirable particulates. The Air Sampling Methods, Methods for the Determination of Hazardous Substances 14/3, of Health and Safety Executive were used as a standard sampling protocol. The average mass concentrations for respirable and total particulates were measured 3.54±0.3 mg/m3 and 11.89±0.8 mg/m3 respectively. Also health risks of studied condition were estimated as significant level, category one, therefore the risk must be reduced below the standard level. According to the work requirements to reduce the emission rate and mitigate the health risk exposure, a local exhaust ventilation system design was recommended for bag-filters of hopper tank.

  19. Effects of inlet/outlet configurations on the electrostatic capture of airborne nanoparticles and viruses

    International Nuclear Information System (INIS)

    Motivated by capture and detection of airborne biological agents in real time with a cantilever biosensor without introducing the agents into liquids, we present the effects of inlet/outlet configurations of a homemade particle collector on the electrostatic capture of airborne 100 nm diameter nanoparticles under swirling gas flows. This particle collector has three different inlet/outlet configurations: forward inlet/outlet (FO), backward inlet/outlet (BO) and straight inlet/outlet (SO) configurations. We also present the electrostatic capture of Vaccinia viruses using the same particle collector and compare these virus measurements with the nanoparticle cases. The most particles were collected in the FO configuration. The numbers of particles captured in the BO and SO configurations were close within their standard deviations. For all the three configurations tested, the number of particles captured in the center electrode C was much smaller than those captured in the other electrodes at a flow rate of 1.1 l min−1 and an applied potential of 2 kV. Using a commercial CFD code FLUENT, we also simulated the effects of the three inlet/outlet configurations on the particle capture in terms of particle trajectories, velocities and travel times. This simulation was in a good agreement with measurements that the FO configuration is the most favorable to particle capture among the tested configurations at a flow rate of 1.1 l min−1. The effects of particle diameters on the capture will also be discussed. This collector can be used for real-time monitoring of bioaerosols along with cantilever biosensors

  20. Development of an improved methodology to detect infectious airborne influenza virus using the NIOSH bioaerosol sampler

    OpenAIRE

    Cao, G.; Noti, J D; Blachere, F. M.; Lindsley, W. G.; Beezhold, D H

    2011-01-01

    A unique two-stage cyclone bioaerosol sampler has been developed at NIOSH that can separate aerosols into three size fractions. The ability of this sampler to collect infectious airborne viruses from a calm-air chamber loaded with influenza A virus was tested. The sampler’s efficiency at collecting aerosolized viral particles from a calm-air chamber is essentially the same as that from the high performance SKC BioSampler that collects un-fractionated particles directly into a liquid media (2....

  1. Potential Marine Organisms Affecting Airborne Primary Organic Matter

    Science.gov (United States)

    Aller, J. Y.; Alpert, P. A.; Knopf, D. A.

    2012-12-01

    The oceans cover 70% of earth with the marine environment contributing ~50% of the global biomass. Particularly during periods of high biological activity associated with phytoplankton blooms, primary emitted aerosol particles dominated by organic compounds in the submicron size range, are ejected from surface waters increasing in concentration exponentially with overlying wind speeds. This is significant for clouds and climate particularly over nutrient rich polar seas, where seawater concentrations of biogenic particles can reach 109 cells per ml during spring phytoplankton blooms, and even 106 cells per ml in winter when empty frustules and fragments of diatoms are resuspensed from shallow shelf sediments by strong winds, and mix with living pico- and nanoplankton in surface sea waters. This organic aerosol fraction can have a significant impact on the ability of ocean derived aerosol to act as cloud condensation nuclei. It has been shown that small insoluble organic particles are aerosolized from the sea surface microlayer (SML) via bubble bursting. The exact composition and complexity of the SML varies spatially and temporally but includes phytoplankton cells, microorganisms, organic debris, and a complex mixture of proteins, polysaccharides, humic-type material and waxes, microgels and colloidal nanogels, and strong surface active lipids. The specific chemical composition is dependent on the fractionation of organic matter which originates from in-situ production, from underlying water and even from atmospheric deposition. These conditions will most likely determine the nature of the organic and biogenic material. Here we review the types, sizes, and properties of ocean-derived particles and organic material which present potential candidates for airborne biogenic and organic particles.

  2. Airborne Gravity: NGS' Airborne Gravity Data for AN01 (2009-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2009-2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  3. Topology optimized cloak for airborne sound

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Sigmund, Ole

    2013-01-01

    Directional acoustic cloaks that conceal an aluminum cylinder for airborne sound waves are presented in this paper. Subwavelength cylindrical aluminum inclusions in air constitute the cloak design to aid practical realizations. The positions and radii of the subwavelength cylinders are determined...

  4. A system for airborne SAR interferometry

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Skou, Niels; Granholm, Johan; Woelders, Kim; Christensen, Erik Lintz

    1996-01-01

    perturbations of the surface of the Earth. The Danish Center for Remote Sensing (DCRS) has experimented with airborne INSAR since 1993. Multiple track data are collected in a special mode in which the radar directly steers the aircraft which allows for very precise control of the flight path. Such data sets...

  5. The National Airborne Field Experiment Data Sets

    DEFF Research Database (Denmark)

    Walker, J. P.; Balling, Jan E.; Bell, M.; Berg, A.; Berger, M.; Biasoni, D.; Botha, E.; Boulet, G.; Chen, Y.; Christen, E.; deJeu, R.; Derosnay, P.; Dever, C.; Draper, C.; Fenollar, J.; Gomez, C.; Grant, J. P.; Hacker, J.; Hafeez, M.; Hancock, G.; Hansen, D.; Holz, L.; Hornbuckle, J.; Hurkmans, R.; Jackson, T.; Johanson, J.; Jones, P.; Jones, S.; Kalma, J.; Kerr, Y.; Kim, E.; Kuzmin, V.; Lakshmi, V.; Lopez, E.; Maggioni, V.; Maisongrande, P.; Martinez, C.; McKee, L.; Merlin, O.; Mladenova, I.; O'Neill, P.; Panciera, R.; Paruscio, V.; Pipunic, R.; Rawls, W.; Rinaldi, M.; Ruediger, C.; Saco, P.; Saleh, K.; Savstrup-Kristensen, S.; Shoemark, V.; Skou, N.; Soebjaerg, S.; Summerell, G.; Teuling, A. J.; Thompson, H.; Thyer, M.; Toyra, J.; Tsang, A.; Wells, T.; Wursteisen, P.; Young, R.

    The National Airborne Field Experiment's (NAFE) were a series of intensive experiments recently conducted in different parts of Australia. These hydrologic-focused experiments have been designed to answer a range of questions which can only be resolved through carefully planned and executed field...

  6. Materiel requirements for airborne minefield detection system

    Science.gov (United States)

    Bertsche, Karl A.; Huegle, Helmut

    1997-07-01

    Within the concept study, Material Requirements for an airborne minefield detection systems (AMiDS) the following topics were investigated: (i) concept concerning airborne minefield detection technique sand equipment, (ii) verification analysis of the AMiDS requirements using simulation models and (iii) application concept of AMiDS with regard o tactics and military operations. In a first approach the problems concerning unmanned airborne minefield detection techniques within a well-defined area were considered. The complexity of unmanned airborne minefield detection is a result of the following parameters: mine types, mine deployment methods, tactical requirements, topography, weather conditions, and the size of the area to be searched. In order to perform the analysis, a simulation model was developed to analyze the usability of the proposed remote controlled air carriers. The basic flight patterns for the proposed air carriers, as well as the preparation efforts of military operations and benefits of such a system during combat support missions were investigated. The results of the conceptual study showed that a proposed remote controlled helicopter drone could meet the stated German MOD scanning requirements of mine barriers. Fixed wing air carriers were at a definite disadvantage because of their inherently large turning loops. By implementing a mine detection system like AMiDS minefields can be reconnoitered before an attack. It is therefore possible either to plan, how the minefields can be circumvented or where precisely breaching lanes through the mine barriers are to be cleared for the advancing force.

  7. Experimental airborne transmission of PRRS virus

    DEFF Research Database (Denmark)

    Kristensen, C.S.; Bøtner, Anette; Takai, H.; Nielsen, J.P.; Jorsal, Sven Erik Lind

    A series of three experiments, differing primarily in airflow volume, were performed to evaluate the likelihood of airborne transmission of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) from infected to non-infected pigs. Pigs were housed in two units (unit A and unit B) located 1 m...

  8. Use of airborne vehicles as research platforms

    OpenAIRE

    Gratton, GB

    2012-01-01

    This is the accepted version of the following chapter: Gratton, G. 2012. Use of Airborne Vehicles as Research Platforms. Encyclopedia of Aerospace Engineering, which has been published in final form at http://onlinelibrary.wiley.com/doi/10.1002/9780470686652.eae604/full. Copyright @ John Wiley & Sons 2012.

  9. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    Energy Technology Data Exchange (ETDEWEB)

    Mietz, D.; Archuleta, B.; Archuleta, J. [and others

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  10. Airborne laser sensors and integrated systems

    Science.gov (United States)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  11. The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores

    Energy Technology Data Exchange (ETDEWEB)

    Grinn-Gofron, Agnieszka, E-mail: agofr@univ.szczecin.p [Department of Plant Taxonomy and Phytogeography, Faculty of Natural Science, University of Szczecin, Waska 13 Street, 71-415 Szczecin (Poland); Strzelczak, Agnieszka [Department of Food Process Engineering, Faculty of Food Science and Fisheries, West Pomeranian University of Technology, Szczecin (Poland); Wolski, Tomasz [Physical Oceanography Laboratory, University of Szczecin (Poland)

    2011-02-15

    Fungal spores are an important component of bioaerosol and also considered to act as indicator of the level of atmospheric bio-pollution. Therefore, better understanding of these phenomena demands a detailed survey of airborne particles. The objective of this study was to examine the dependence of two the most important allergenic taxa of airborne fungi - Alternaria and Cladosporium - on meteorological parameters and air pollutant concentrations during three consecutive years (2006-2008). This study is also an attempt to create artificial neural network (ANN) forecasting models useful in the prediction of aeroallergen abundance. There were statistically significant relationships between spore concentration and environmental parameters as well as pollutants, confirmed by the Spearman's correlation rank analysis and high performance of the ANN models obtained. The concentrations of Cladosporium and Alternaria spores can be predicted with quite good accuracy from meteorological conditions and air pollution recorded three days earlier. - ANN models predict airspore contents from weather conditions and air pollutant.

  12. The International SubMillimetre Airborne Radiometer (ISMAR) - First results from the STICCS and COSMIC campaigns

    Science.gov (United States)

    Mendrok, Jana; Eriksson, Patrick; Fox, Stuart; Brath, Manfred; Buehler, Stefan

    2016-04-01

    Multispectral millimeter- and submillimeter-wave observations bear the potential to measure properties of non-thin ice clouds like mass content and mean particle size. The next generation of European meteorological satellites, the MetOp-SG series, will carry the first satellite-borne submillimeter sounder, the Ice Cloud Imager (ICI). An airborne demonstrator, the International SubMillimetre Airborne Radiometer (ISMAR), is operated together with other remote sensing instruments and in-situ probes on the FAAM aircraft. Scientific measurements from two campaings in the North Atlantic region, STICCS and COSMIC, are available so far. Here we will introduce the ISMAR instrument, present the acquired measurements from the STICCS and COSMIC campaigns and show some first results. This will include estimation of instrument performance, first analysis of clear-sky and cloudy cases and discussion of selected features observed in the measurements (e.g. polarisation signatures).

  13. The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores

    International Nuclear Information System (INIS)

    Fungal spores are an important component of bioaerosol and also considered to act as indicator of the level of atmospheric bio-pollution. Therefore, better understanding of these phenomena demands a detailed survey of airborne particles. The objective of this study was to examine the dependence of two the most important allergenic taxa of airborne fungi - Alternaria and Cladosporium - on meteorological parameters and air pollutant concentrations during three consecutive years (2006-2008). This study is also an attempt to create artificial neural network (ANN) forecasting models useful in the prediction of aeroallergen abundance. There were statistically significant relationships between spore concentration and environmental parameters as well as pollutants, confirmed by the Spearman's correlation rank analysis and high performance of the ANN models obtained. The concentrations of Cladosporium and Alternaria spores can be predicted with quite good accuracy from meteorological conditions and air pollution recorded three days earlier. - ANN models predict airspore contents from weather conditions and air pollutant.

  14. Measurement of airborne fission products in Chapel Hill, NC, USA from the Fukushima I reactor accident

    CERN Document Server

    MacMullin, S; Green, M P; Henning, R; Holmes, R; Vorren, K; Wilkerson, J F

    2011-01-01

    We present measurements of airborne fission products in Chapel Hill, NC, USA, from 62 days following the March 11, 2011, accident at the Fukushima I Nuclear Power Plant. Airborne particle samples were collected daily in air filters and radio-assayed with two high-purity germanium (HPGe) detectors. The fission products I-131 and Cs-137 were measured with maximum activities of 4.2 +/- 0.6 mBq/m^2 and 0.42 +/- 0.07 mBq/m^2 respectively. Additional activity from I-131, I-132, Cs-134, Cs-136, Cs-137 and Te-132 were measured in the same air filters using a low-background HPGe detector at the Kimballton Underground Research Facility (KURF).

  15. Skin Damage Mechanisms Related to Airborne Particulate Matter Exposure.

    Science.gov (United States)

    Magnani, Natalia D; Muresan, Ximena M; Belmonte, Giuseppe; Cervellati, Franco; Sticozzi, Claudia; Pecorelli, Alessandra; Miracco, Clelia; Marchini, Timoteo; Evelson, Pablo; Valacchi, Giuseppe

    2016-01-01

    Epidemiological studies suggest a correlation between increased airborne particulate matter (PM) and adverse health effects. The mechanisms of PM-health effects are believed to involve oxidative stress and inflammation. To evaluate the ability of PM promoting skin tissue damage, one of the main organs exposed to outdoor pollutants, we analyzed the effect of concentrated ambient particles (CAPs) in a reconstructed human epidermis (RHE) model. RHE tissues were exposed to 25 or 100 µg/ml CAPs for 24 or 48 h. Data showed that RHE seems to be more susceptible to CAPs-induced toxicity after 48 h exposure than after 24 h. We found a local reactive O(2) species (ROS) production increase generated from metals present on the particle, which contributes to lipids oxidation. Furthermore, as a consequence of altered redox status, NFkB nucleus translocation was increase upon CAPs exposure, as well as cyclooxygenase 2 and cytochrome P450 levels, which may be involved in the inflammatory response initiated by PM. CAPs also triggered an apoptotic process in skin. Surprisingly, by transition electron microscopy analysis we showed that CAPs were able to penetrate skin tissues. These findings contribute to the understanding of the cutaneous pathophysiological mechanisms initiated by CAPs exposure, where oxidative stress and inflammation may play predominant roles. PMID:26507108

  16. Determination of airborne isocyanate exposure: considerations in method selection.

    Science.gov (United States)

    Streicher, R P; Reh, C M; Key-Schwartz, R J; Schlecht, P C; Cassinelli, M E; O'Connor, P F

    2000-01-01

    To assess worker isocyanate exposures in a variety of processes involving the manufacture and use of surface coatings, polyurethane foams, adhesives, resins, elastomers, binders, and sealants, it is important to be able to measure airborne reactive isocyanate-containing compounds. Choosing the correct methodology can be difficult. Isocyanate species, including monomers, prepolymers, oligomers, and polyisocyanates, are capable of producing irritation to the skin, eyes, mucous membranes, and respiratory tract. The most common adverse health effect is respiratory sensitization, and to a lesser extent dermal sensitization and hypersensitivity pneumonitis. Furthermore, isocyanate species formed during polyurethane production or thermal degradation may also produce adverse health effects. Isocyanate measurement is complicated by the fact that isocyanates may be in the form of vapors or aerosols of various particle size; the species of interest are reactive and therefore unstable; few pure analytical standards exist; and high analytical sensitivity is needed. There are numerous points in the sampling and analytical procedures at which errors can be introduced. The factors to be considered for selecting the most appropriate methodology for a given workplace include collection, derivatization, sample preparation, separation, identification, and quantification. This article discusses these factors in detail and presents a summary of method selection criteria based on the isocyanate species, its physical state, particle size, cure rate, and other factors. PMID:10976685

  17. Airborne crystalline silica concentrations at coal-fired power plants associated with coal fly ash.

    Science.gov (United States)

    Hicks, Jeffrey; Yager, Janice

    2006-08-01

    This study presents measurements of airborne concentrations of respirable crystalline silica in the breathing zone of workers who were anticipated to encounter coal fly ash. Six plants were studied; two were fired with lignite coal, and the remaining four plants used bituminous and subbituminous coals. A total of 108 personal breathing zone respirable dust air samples were collected. Bulk samples were also collected from each plant site and subjected to crystalline silica analysis. Airborne dust particle size analysis was measured where fly ash was routinely encountered. The results from bituminous and subbituminous fired plants revealed that the highest airborne fly ash concentrations are encountered during maintenance activities: 0.008 mg/m3 to 96 mg/m3 (mean of 1.8 mg/m3). This group exceeded the threshold limit values (TLV) in 60% of the air samples. During normal production activities, airborne concentrations of crystalline silica ranged from nondetectable to 0.18 mg/m3 (mean value of 0.048 mg/m3). Air samples collected during these activities exceeded the current and proposed TLVs in approximately 54% and 65% of samples, respectively. Limited amounts of crystalline silica were detected in samples collected from lignite-fired plants, and approximately 20% of these air samples exceeded the current TLV. Particle size analysis in areas where breathing zone air samples were collected revealed mass median diameters typically between 3 microm and 8 microm. Bulk and air samples were analyzed for all of the common crystalline silica polymorphs, and only alpha quartz was detected. As compared with air samples, bulk samples from the same work areas consistently yielded lower relative amounts of quartz. Controls to limit coal fly ash exposures are indicated during some normal plant operations and during episodes of short term, but high concentrations of dust that may be encountered during maintenance activities, especially in areas where ash accumulations are present

  18. Identification of airborne radioactive spatial patterns in Europe - Feasibility study using Beryllium-7.

    Science.gov (United States)

    Hernández-Ceballos, M A; Cinelli, G; Tollefsen, T; Marín-Ferrer, M

    2016-05-01

    The present study proposes a methodology to identify spatial patterns in airborne radioactive particles in Europe. The methodology is based on transforming the activity concentrations in the set of stations for each month (monthly index), due to the tightly spaced sampling intervals (daily to monthly), in combination with hierarchical and non-hierarchical clustering approaches, due to the lack of a priori knowledge of the number of clusters to be created. Three different hierarchical cluster methodologies are explored to set the optimal number of clusters necessary to initialize the non-hierarchical one (k-means). To evaluate this methodology, cosmogenic beryllium-7 ((7)Be) data, collected between 2007 and 2010 at 19 sampling stations in European Union (EU) countries and stored in the Radioactivity Environmental Monitoring (REM) database, are used. This methodology yields a solution with three distinguishable clusters (south, central and north), each with a different evolution of the (7)Be monthly index. Clear differences between monthly indices are shown in both intensity and time trends, following a latitudinal distribution of the sampling stations. This cluster result is evaluated performing ANOVA analysis, considering the original (7)Be activity concentrations grouped in each cluster. The statistical results (among clusters and sampling stations within clusters) confirm the spatial distribution of (7)Be in Europe, and, hence, reinforce the use of this methodology. Finally, the impact of tropopause height on this grouping is successfully tested, suggesting its influence on the spatial distribution of (7)Be in Europe. For airborne radioactive particles the analysis gave valuable results that improve knowledge of these atmospheric compounds in Europe. Hence, this work addresses a methodology to a grouping of airborne sampling stations, 1) allowing a better understanding of the distribution of (7)Be activity concentrations in the EU, and 2) serving as a basis for

  19. Indoor air particles in office buildings with suspected indoor air problems in the Helsinki area

    OpenAIRE

    Sanna Lappalainen; Heidi Salonen; Kari Salmi; Kari Reijula

    2013-01-01

    Objectives: Airborne particle concentrations can be used as quality indicators of indoor environments. The previous lack of reference data has limited the use of particle measurements in offi ce environments. The aim of this study was to describe the concentrations of airborne particles (≥ 0.5 μm and ≥ 5.0 μm) in 122 Finnish offi ce buildings with suspected indoor air problems. Materials and Methods: The database consisted of indoor air and supply air particle samples collected in 2001–2006 f...

  20. Analyzing Options for Airborne Emergency Wireless Communications

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  1. Comprehensive characterization of indoor airborne bacterial profile

    Institute of Scientific and Technical Information of China (English)

    P.L.Chan; P.H.F.Yu; Y.W.Cheng; C.Y.Chan; P.K.Wong

    2009-01-01

    This is the first detailed characterization of the air-borne bacterial profiles in indoor environments and two restaurants were selected for this study.Fifteen genera of bacteria were isolated from each restaurant and identified by three different bacterial identification systems including MIDI, Biolog and Riboprinter?.The dominant bacteria of both restaurants were Gram-positive bacteria in which Micrococcus and Bacillus species were the most abundant species.Most bacteria identified were representative species of skin and respiratory tract of human, and soil.Although the bacterial levels in these restaurants were below the limit of the Hong Kong Indoor Air Quality Objective (HKIAQO) Level 1 standard (i.e., < 500 cfu/m3), the majority of these bacteria were opportunistic pathogens.These results suggested that the identity of airborne bacteria should also be included in the IAQ to ensure there is a safety guideline for the public.

  2. Geoid of Nepal from airborne gravity survey

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Einarsson, Indriði;

    2011-01-01

    An airborne gravity survey of Nepal was carried out December 2010 in a cooperation between DTU-Space, Nepal Survey Department, and NGA, USA. The entire country was flown with survey lines spaced 6 nm with a King Air aircraft, with a varying flight altitude from 4 to 10 km. The survey operations...... were a major challenge due to excessive jet streams at altitude as well as occasional excessive mountain waves. Despite the large 400 mGal+ range of gravity anomaly changes from the Indian plains to the Tibetan Plateau, results appear accurate to a few mGal, with proper evaluation from cross...... as well as recent GPS-heights of Mt. Everest. The new airborne data also provide an independent validation of GOCE gravity field results at the local ~100 km resolution scale....

  3. First airborne transient em survey in antarctica

    DEFF Research Database (Denmark)

    Auken, Esben; Mikucki, J. J.; Sørensen, Kurt Ingvard K.I.;

    2012-01-01

    A first airborne transient electromagnetic survey was flown in Antarctica in December 2011 with the SkyTEM system. This transient airborne EM system has been optimized in Denmark for almost ten years and was specially designed for ground water mapping. The SkyTEM tool is ideal for mapping...... conductive targets, and the transient AEM method provides a better understanding of the saline ground water system for microbiology, paleoclimate studies, or geothermal potential. In this study we present preliminary results from our field survey which resulted in more than 1000 km of flight lines. The...... are presented here, the Taylor Valley demonstrating the promising capabilities of the geophysical method to map permafrost and the saline ground water systems....

  4. Simulating City-level Airborne Infectious Diseases

    CERN Document Server

    Shan, Mei; Yifan, Zhu; Zhenghu, Zu; Tao, Zheng; Boukhanovsky, A V; Sloot, P M A

    2012-01-01

    With the exponential growth in the world population and the constant increase in human mobility, the danger of outbreaks of epidemics is rising. Especially in high density urban areas such as public transport and transfer points, where people come in close proximity of each other, we observe a dramatic increase in the transmission of airborne viruses and related pathogens. It is essential to have a good understanding of the `transmission highways' in such areas, in order to prevent or to predict the spreading of infectious diseases. The approach we take is to combine as much information as is possible, from all relevant sources and integrate this in a simulation environment that allows for scenario testing and decision support. In this paper we lay out a novel approach to study Urban Airborne Disease spreading by combining traffic information, with geo-spatial data, infection dynamics and spreading characteristics.

  5. Forage: a sensitive indicator of airborne radioactivity

    International Nuclear Information System (INIS)

    This paper presents the results of using Ge(Li) γ-ray spectroscopy to measure radioactivity concentration of forage in the vicinity of the Joseph M. Farley Nuclear Plant, Houston County, AL., over a 31/2 yr period. The report period includes 2 yr of pre-operational and 11/2 yr of operational sampling. Although the objective of forage sampling was the measurement of manmade airborne fallout radioactivity, several natural radioisotopes were also found to be present. A summary of natural radioactivity data for all samples measured during the period from August 1975 to December 1978 is given. Approximately 10 days after each of four Chinese atmospheric nuclear tests conducted during the sampling period fresh fission product fallout was measured on the forage. The information from these nuclear tests shows forage sampling to be a convenient and sensitive monitoring tool for airborne fallout radioactivity. (author)

  6. Airborne microorganisms and dust from livestock houses

    OpenAIRE

    Zhao, Y.; Aarnink, A.J.A.; Jong, de, M.C.M.; Groot Koerkamp, P.W.G.

    2011-01-01

    The objective of this study was to evaluate the efficiencies and suitability of samplers for airborne microorganisms and dust, which could be used in practical livestock houses. Two studies were performed: 1) Testing impaction and cyclone pre-separators for dust sampling in livestock houses; 2) Determining sampling efficiencies of four bioaerosol samplers for bacteria and virus. Study 1. The overloading problem of the EU reference impaction pre-separator (IPS) was tested in layer houses and c...

  7. Challenges and Opportunities of Airborne Metagenomics

    OpenAIRE

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-01-01

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events su...

  8. Simulating city-level airborne infectious diseases

    OpenAIRE

    Mei, S.; Chen, B; Zhu, Y; Lees, M.H.; Boukhanovsky, A.V.; Sloot, P.M.A.

    2015-01-01

    With the exponential growth in the world population and the constant increase in human mobility, the possible impact of outbreaks of epidemics on cities is increasing, especially in high-density urban areas such as public transportation and transfer points. The volume and proximity of people in these areas can lead to an observed dramatic increase in the transmission of airborne viruses and related pathogens. Due to the critical role these areas play in transmission, it is vital that we have ...

  9. HIGH RESOLUTION AIRBORNE SHALLOW WATER MAPPING

    OpenAIRE

    Steinbacher, F.; M. Pfennigbauer; M. Aufleger; Ullrich, A

    2012-01-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperati...

  10. MITAS: multisensor imaging technology for airborne surveillance

    Science.gov (United States)

    Thomas, John D.

    1991-08-01

    MITAS, a unique and low-cost solution to the problem of collecting and processing multisensor imaging data for airborne surveillance operations has been developed, MITAS results from integrating the established and proven real-time video processing, target tracking, and sensor management software of TAU with commercially available image exploitation and map processing software. The MITAS image analysis station (IAS) supports airborne day/night reconnaissance and surveillance missions involving low-altitude collection platforms employing a suite of sensors to perform reconnaissance functions against a variety of ground and sea targets. The system will detect, locate, and recognize threats likely to be encountered in support of counternarcotic operations and in low-intensity conflict areas. The IAS is capable of autonomous, near real-time target exploitation and has the appropriate communication links to remotely located IAS systems for more extended analysis of sensor data. The IAS supports the collection, fusion, and processing of three main imaging sensors: daylight imagery (DIS), forward looking infrared (FLIR), and infrared line scan (IRLS). The MITAS IAS provides support to all aspects of the airborne surveillance mission, including sensor control, real-time image enhancement, automatic target tracking, sensor fusion, freeze-frame capture, image exploitation, target data-base management, map processing, remote image transmission, and report generation.

  11. Airborne multispectral detection of regrowth cotton fields

    Science.gov (United States)

    Westbrook, John K.; Suh, Charles P.-C.; Yang, Chenghai; Lan, Yubin; Eyster, Ritchie S.

    2015-01-01

    Effective methods are needed for timely areawide detection of regrowth cotton plants because boll weevils (a quarantine pest) can feed and reproduce on these plants beyond the cotton production season. Airborne multispectral images of regrowth cotton plots were acquired on several dates after three shredding (i.e., stalk destruction) dates. Linear spectral unmixing (LSU) classification was applied to high-resolution airborne multispectral images of regrowth cotton plots to estimate the minimum detectable size and subsequent growth of plants. We found that regrowth cotton fields can be identified when the mean plant width is ˜0.2 m for an image resolution of 0.1 m. LSU estimates of canopy cover of regrowth cotton plots correlated well (r2=0.81) with the ratio of mean plant width to row spacing, a surrogate measure of plant canopy cover. The height and width of regrowth plants were both well correlated (r2=0.94) with accumulated degree-days after shredding. The results will help boll weevil eradication program managers use airborne multispectral images to detect and monitor the regrowth of cotton plants after stalk destruction, and identify fields that may require further inspection and mitigation of boll weevil infestations.

  12. Airborne laser altimeter measurements of landscape topography

    International Nuclear Information System (INIS)

    Measurements of topography can provide a wealth of information on landscape properties for managing hydrologic and geologic systems and conserving natural and agricultural resources. This article discusses the application of an airborne laser altimeter to measure topography and other landscape surface properties. The airborne laser altimeter makes 4000 measurements per second with a vertical recording resolution of 5 cm. Data are collected digitally with a personal computer. A video camera, borehole sighted with the laser, records an image for locating flight lines. GPS data are used to locate flight line positions on the landscape. Laser data were used to measure vegetation canopy topography, height, cover, and distribution and to measure microtopography of the land surface and gullies with depths of 15–20 cm. Macrotopography of landscape profiles for segments up to 4 km were in agreement with available topographic maps but provided more detail. Larger gullies with and without vegetation, and stream channel cross sections and their associated floodplains have also been measured and reported in other publications. Landscape segments for any length could be measured for either micro- or macrotopography. Airborne laser altimeter measurements of landscape profiles can provide detailed information on landscape properties or specific needs that will allow better decisions on the design and location of structures (i.e., roads, pipe, and power lines) and for improving the management and conservation of natural and agricultural landscapes. (author)

  13. Airborne Tactical Free-Electron Laser

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, Roy; Neil, George

    2007-02-01

    The goal of 100 kilowatts (kW) of directed energy from an airborne tactical platform has proved challenging due to the size and weight of most of the options that have been considered. However, recent advances in Free-Electron Lasers appear to offer a solution along with significant tactical advantages: a nearly unlimited magazine, time structures for periods from milliseconds to hours, radar like functionality, and the choice of the wavelength of light that best meets mission requirements. For an Airborne Tactical Free-Electron Laser (ATFEL) on a platforms such as a Lockheed C-130J-30 and airships, the two most challenging requirements, weight and size, can be met by generating the light at a higher harmonic, aggressively managing magnet weights, managing cryogenic heat loads using recent SRF R&D results, and using FEL super compact design concepts that greatly reduce the number of components. The initial R&D roadmap for achieving an ATFEL is provided in this paper. Performing this R&D is expected to further reduce the weight, size and power requirements for the FELs the Navy is currently developing for shipboard applications, as well as providing performance enhancements for the strategic airborne MW class FELs. The 100 kW ATFEL with its tactical advantages may prove sufficiently attractive for early advancement in the queue of deployed FELs.

  14. Use of direct versus indirect preparation data for assessing risk associated with airborne exposures at asbestos-contaminated sites.

    Science.gov (United States)

    Goldade, Mary Patricia; O'Brien, Wendy Pott

    2014-01-01

    At asbestos-contaminated sites, exposure assessment requires measurement of airborne asbestos concentrations; however, the choice of preparation steps employed in the analysis has been debated vigorously among members of the asbestos exposure and risk assessment communities for many years. This study finds that the choice of preparation technique used in estimating airborne amphibole asbestos exposures for risk assessment is generally not a significant source of uncertainty. Conventionally, the indirect preparation method has been less preferred by some because it is purported to result in false elevations in airborne asbestos concentrations, when compared to direct analysis of air filters. However, airborne asbestos sampling in non-occupational settings is challenging because non-asbestos particles can interfere with the asbestos measurements, sometimes necessitating analysis via indirect preparation. To evaluate whether exposure concentrations derived from direct versus indirect preparation techniques differed significantly, paired measurements of airborne Libby-type amphibole, prepared using both techniques, were compared. For the evaluation, 31 paired direct and indirect preparations originating from the same air filters were analyzed for Libby-type amphibole using transmission electron microscopy. On average, the total Libby-type amphibole airborne exposure concentration was 3.3 times higher for indirect preparation analysis than for its paired direct preparation analysis (standard deviation = 4.1), a difference which is not statistically significant (p = 0.12, two-tailed, Wilcoxon signed rank test). The results suggest that the magnitude of the difference may be larger for shorter particles. Overall, neither preparation technique (direct or indirect) preferentially generates more precise and unbiased data for airborne Libby-type amphibole concentration estimates. The indirect preparation method is reasonable for estimating Libby-type amphibole exposure and

  15. Sources of airborne microorganisms in the built environment

    OpenAIRE

    Prussin, Aaron J.; Marr, Linsey C.

    2015-01-01

    Abstract Each day people are exposed to millions of bioaerosols, including whole microorganisms, which can have both beneficial and detrimental effects. The next chapter in understanding the airborne microbiome of the built environment is characterizing the various sources of airborne microorganisms and the relative contribution of each. We have identified the following eight major categories of sources of airborne bacteria, viruses, and fungi in the built environment: humans...

  16. Airborne EM applied to environmental geoscience in the UK

    OpenAIRE

    Beamish, D

    2002-01-01

    The British Geological Survey (BGS) has been highlighting the need for modern, multi-sensor airborne geophysical data in the UK. Here David Beamish, geophysicist with the BGS, describes the first trial airborne electromagnetic data acquired and its relevance to environmental geoscience. The lack of modern, multi-sensor (magnetic, radiometric and electromagnetic) data represents one of the most serious gaps in the geoscience knowledge base of the UK, and a national, high resolution airborne su...

  17. Influence of negative pressurization on airborne microbial and radon levels

    Energy Technology Data Exchange (ETDEWEB)

    Kalliokoski, P.; Korhonen, P.; Kokotti, H.; Pasanen, A.L.; Rautiala, S.; Rantamaeki, J.

    1999-07-01

    The negative pressure inside a building is the main driving force for the entry of both radon and fungal spores. This study was conducted to test the suitability of depressurization to facilitate simultaneously the detection of fungal growth within the lower parts of building envelope and the risk of radon entry. Pressure difference was increased in three steps to 24--28 Pa in two wooden buildings known to suffer from long-term water damages. At the end, pulses of negative pressure were generated. Airborne viable fungal counts, radon and particle counts were followed during the tests together with the ventilation rate and particle count. The absolute concentrations of the impurities studied did not increase significantly or even decreased during the tests due to enhanced ventilation. However, when the increase in the ventilation rate was taken into consideration it was found that the entry rate of all the contaminants increased. The changes were larger in the tighter building where the radon entry rate increased systematically with the pressure difference reaching finally 13.8-fold level compared to the initial value. In the less tight building, the corresponding highest radon entry rate ratio was 9.5. Very large increases, up to 42-fold, were observed in the viable spore count ratio in the tighter building during the tests. In the leaky building, the changes were again considerably smaller; the maximum ratio was 4.2. Increases in particle emissions were smaller than those observed in fungal counts. The pulses were less effective than continuous depressurization. The results show that negative pressurization can be used to increase the release of fungal spores in order to detect hidden fungal growth. This kind of test is especially effective if there are no major leaks in the clean part of the building envelope. The method allows simultaneous rapid checking of need for radon mitigation.

  18. Comprehensive airborne characterization of aerosol from a major bovine source

    Directory of Open Access Journals (Sweden)

    H. Jonsson

    2008-09-01

    Full Text Available We report an extensive airborne characterization of aerosol downwind of a massive bovine source in the San Joaquin Valley (California on two flights during July 2007. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS Twin Otter probed chemical composition, particle size distribution, mixing state, sub- and supersaturated water uptake behavior, light scattering properties, and the interrelationship between these parameters and meteorology. Total PM1.0 levels and concentrations of organics, nitrate, and ammonium were enhanced in the plume from the source as compared to the background aerosol. Organics dominated the plume aerosol mass (~56–64%, followed either by sulfate or nitrate, and then ammonium. Particulate amines were detected in the plume aerosol by a particle-into-liquid sampler (PILS and via mass spectral markers in the Aerodyne C-ToF-AMS. Amines were found to be a significant atmospheric base even in the presence of ammonia; particulate amine concentrations are estimated as at least 14–23% of that of ammonium in the plume. Enhanced sub- and supersaturated water uptake and reduced refractive indices were coincident with lower organic mass fractions, higher nitrate mass fractions, and the detection of amines. The likelihood of suppressed droplet growth owing to kinetic limitations from hydrophobic organic material is explored. After removing effects associated with size distribution and mixing state, the normalized activated fraction of cloud condensation nuclei (CCN increased as a function of the subsaturated hygroscopic growth factor, with the highest activated fractions being consistent with relatively lower organic mass fractions and higher nitrate mass fractions. Subsaturated hygroscopic growth factors for the organic fraction of the aerosol are estimated based on employing the Zdanovskii-Stokes Robinson (ZSR mixing rule. Representative values for a parameterization treating particle water

  19. Comprehensive airborne characterization of aerosol from a major bovine source

    Directory of Open Access Journals (Sweden)

    A. Sorooshian

    2008-06-01

    Full Text Available We report an extensive airborne characterization of aerosol downwind of a massive bovine source in the San Joaquin Valley (California on two flights during July 2007. The Center for Interdisciplinary Remotely-Piloted Aircraft Studies (CIRPAS Twin Otter probed chemical composition, particle size distribution, mixing state, sub- and supersaturated water uptake behavior, light scattering properties, and the interrelationship between these parameters and meteorology. Total PM1.0 levels and concentrations of organics, nitrate, and ammonium were enhanced in the plume from the source as compared to the background aerosol. Organics dominated the plume aerosol mass (~56–64%, followed either by sulfate or nitrate, and then ammonium. Particulate amines were detected in the plume aerosol by a particle-into-liquid sampler (PILS and via mass spectral markers in the Aerodyne cToF-AMS. Amines were found to be a significant atmospheric base even in the presence of ammonia; particulate amine concentrations are estimated as at least 14–23% of that of ammonium in the plume. Enhanced sub- and supersaturated water uptake and reduced refractive indices were coincident with lower organic mass fractions, higher nitrate mass fractions, and the detection of amines. Kinetic limitations due to hydrophobic organic material are shown to have likely suppressed droplet growth. After removing effects associated with size distribution and mixing state, the normalized activated fraction of cloud condensation nuclei (CCN increased as a function of the subsaturated hygroscopic growth factor, with the highest activated fractions being consistent with relatively lower organic mass fractions and higher nitrate mass fractions. Subsaturated hygroscopic growth factors for the organic fraction of the aerosol are estimated based on employing the Zdanovskii-Stokes Robinson (ZSR mixing rule. Representative values for a parameterization treating particle water uptake in both the

  20. Receptor modeling of airborne pollutants in the State of Maryland

    Science.gov (United States)

    Han, Ming

    A total of 132 sets of airborne particulate and acidic gas samples were collected simultaneously at Lewes, DE, from July 24, 1989, to January 18, 1990, and 24 sets at Beltsville, MD, from September 21, to December 7, 1990. The samples were analyzed for >40 elements by instrumental neutron activation analysis, for particulate S by inductively-coupled plasma atomic emission spectroscopy and for gas phase SO_2, NO _{rm x}, and Cl by ion chromatography. The concentration patterns of airborne particles at Lewes and Beltsville were interpreted using principal component analysis (PCA) which revealed 6 principal components (PCs) for both sites. At Lewes, PC1 was heavily loaded with crustal elements and elements usually associated with high-temperature combustion sources; PC2 was mainly loaded with Na and Cl and represents marine aerosol; PC3 had a distinctive V signature and was attributed to oil-fired power plants; PC4 was loaded with particulate and gaseous S, and possibly represents nearby coal-fired power plants; PC5 contained Cr, Zn and Sb, which is indicative of an incinerator component; PC6 was loaded with particulate S and Se, and is attributed to regional sulfate. A similar pattern was observed at Beltsville, where the 6 PCs resolved were: soil and coal combustion (PC1); an industrial component loaded with many metal elements (PC2); marine aerosol (PC3); regional sulfate (PC4); oil-burning (PC5); and incinerators (PC6). All components, except for marine aerosol, were more or less mixed with one another. Chemical mass balances (CMB) with 10 sources, i.e., steel, seasalt, lime, motor vehicles, regional sulfate, incinerators, oil refineries, soil, oil and coal combustion, were performed on the Lewes, DE. and Beltsville, MD. data, the data from Deep Creek Lake (DCL), MD. (August 1983, collected by the United States Environmental Protection Agency) and College Park, MD. (1983-1986). Regional sulfate, which is thought to be formed by conversion of SO _2 released from

  1. Correlation between airborne Olea europaea pollen concentrations and levels of the major allergen Ole e 1 in Córdoba, Spain, 2012-2014

    Science.gov (United States)

    Plaza, M. P.; Alcázar, P.; Galán, C.

    2016-04-01

    Olea europaea L. pollen is the second-largest cause of pollinosis in the southern Iberian Peninsula. Airborne-pollen monitoring networks provide essential data on pollen dynamics over a given study area. Recent research, however, has shown that airborne pollen levels alone do not always provide a clear indicator of actual exposure to aeroallergens. This study sought to evaluate correlations between airborne concentrations of olive pollen and Ole e 1 allergen levels in Córdoba (southern Spain), in order to determine whether atmospheric pollen concentrations alone are sufficient to chart changes in hay fever symptoms. The influence of major weather-related variables on local airborne pollen and allergen levels was also examined. Monitoring was carried out from 2012 to 2014. Pollen sampling was performed using a Hirst-type sampler, following the protocol recommended by the Spanish Aerobiology Network. A multi-vial cyclone sampler was used to collect aeroallergens, and allergenic particles were quantified by ELISA assay. Significant positive correlations were found between daily airborne allergen levels and atmospheric pollen concentrations, although there were occasions when allergen was detected before and after the pollen season and in the absence of airborne pollen. The correlation between the two was irregular, and pollen potency displayed year-on-year variations and did not necessarily match pollen-season-intensity.

  2. Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Boisen, Anja

    2013-01-01

    airborne nanoparticle sensors. Recently, nanomechanical mass spectrometry was established. One of the biggest challenges of nanomechanical sensors is the low efficiency of diffusion-based sampling. We developed an inertial-based sampling method that enables the efficient sampling of airborne nanoparticles...... first bending mode. Mass spectrometry of airborne nanoparticles requires the simultaneous operation in the first and second mode, which can be implemented in the transduction scheme of the resonator. The presented results lay the cornerstone for the realization of a portable airborne nanoparticle mass...

  3. High-Performance Airborne Optical Carbon Dioxide Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental species measurement on airborne atmospheric research craft is a demanding application for optical sensing techniques. Yet optical techniques offer...

  4. The Airborne Transmission of Infection Between Flats in High-rise Residential Buildings

    DEFF Research Database (Denmark)

    Gao, N. P.; Niu, J. L.; Perino, M.;

    2009-01-01

    Several case clusters occurred in high-rise residential buildings in Hong Kong in the 2003 SARS (the severe acute respiratory syndrome) epidemic, which motivated a series of engineering investigations into the possible airborne transport routes. It is suspected that, driven by buoyancy force, the...... polluted air that exits the window of the lower floor may re-enter the immediate upper floor through the window on the same side. This cascade effect has been quantified and reported in a previous paper, and it is found that, by tracer gas concentration analysis, the room in the adjacent upstairs may...... found that the particle concentration in the upper floor is two to three orders of magnitude lower than in the source floor. 1.0 μm particles disperse like gaseous pollutants. For coarse particles larger than 20.0 μm, strong deposition on solid surfaces and gravitational settling effect greatly limit...

  5. Interim report: airborne plutonium studies for the HEDL Plutonium Fuels Laboratory

    International Nuclear Information System (INIS)

    This report describes data and findings for two studies. The objective of the first is to provide a valid estimate of the alpha activity concentration of the gaseous effluents emitted from the Plutonium Fuels Laboratory. Particulates from large volume samples (millions of cubic ft.) continuously extracted from the E4 duct have shown the alpha activity concentrations to be greater than 2 orders of magnitude below the most restrictive limits for plutonium isotopes listed in Appendix B 10 CFR 20. Currently, samples are continuously extracted at approximately 50 cm for 90 days and indicate alpha activity concentrations of around 5 x 10-6 dpm per ft3. The second study proposes to evaluate the behavior of particles airborne in ''inerted'' gloveboxes. The size distributions and alpha activity concentrations of airborne activity in the Mixing-Blending glovebox have been evaluated during selected fuel fabrication operations. Samples were collected by inserting the collection equipment (cascade impactors or filters) into the glovebox. Samples were collected during mixing blending operations during 2 periods with varying enrichment levels. A maximum airborne concentration of 2.4 x 108 dpm/ft3 was measured with concentrations decaying to 102 to 103 dpm/ft3 after a few days of inactivity

  6. Airborne gamma anomalies in the Elbe Valley near Koenigstein, Germany - Origin and variation with time

    International Nuclear Information System (INIS)

    In 1982, an airborne gamma spectrometer survey was undertaken by SDAG WISMUT which was directed at the detection of further uranium mineralization in Saxony and Thuringia. Anomalies outlined along the Elbe river near the existing Koenigstein uranium mine were attributed to one or a combination of the following causes: radioactive residues from uranium processing facilities located upstream, temporary accumulation of Rn-decay products attached to dust particles in the atmosphere at the time of the survey, and radioactive waters emerging from uraniferous rocks along tectonic structures. In 1994, WISMUT GmbH re-evaluated the survey to determine the need for implementing cleanup measures. Subsequent to the verification of the original airborne data, ground surveys were undertaken that included gamma spectrometry, percussion probing and river sediment sampling. The new results did not confirm the magnitude of most of the 1982 airborne anomalies. The general decline of the radioactivity pointed out by the 1994 ground measurements is interpreted to be a result of the partial erosion and dilution of radionuclides in fluvial sediments as well as burial by additional river sediments since. Additional anomalous copper and zinc concentrations are attributed to sources other than mining. The ground follow-up delineated a new anomalous zone that is caused by radionuclides discharged with treated process and mine water. It is the only area, which may require further investigations and possible remedial action. (author)

  7. Contribution of airborne microbes to bacterial production and N2 fixation in seawater upon aerosol deposition

    Science.gov (United States)

    Rahav, Eyal; Ovadia, Galit; Paytan, Adina; Herut, Barak

    2016-01-01

    Aerosol deposition may supply a high diversity of airborne microbes, which can affect surface microbial composition and biological production. This study reports a diverse microbial community associated with dust and other aerosol particles, which differed significantly according to their geographical air mass origin. Microcosm bioassay experiments, in which aerosols were added to sterile (0.2 µm filtered and autoclaved) SE Mediterranean Sea (SEMS) water, were performed to assess the potential impact of airborne bacteria on bacterial abundance, production, and N2 fixation. Significant increase was observed in all parameters within a few hours, and calculations suggest that airborne microbes can account for one third in bacterial abundance and 50-100% in bacterial production and N2-fixation rates following dust/aerosol amendments in the surface SEMS. We show that dust/aerosol deposition can be a potential source of a wide array of microorganisms, which may impact microbial composition and food web dynamics in oligotrophic marine systems such as the SEMS.

  8. Black pine (Pinus nigra) barks as biomonitors of airborne mercury pollution.

    Science.gov (United States)

    Chiarantini, Laura; Rimondi, Valentina; Benvenuti, Marco; Beutel, Marc W; Costagliola, Pilario; Gonnelli, Cristina; Lattanzi, Pierfranco; Paolieri, Mario

    2016-11-01

    Tree barks are relevant interfaces between plants and the external environment, and can effectively retain airborne particles and elements at their surface. In this paper we have studied the distribution of mercury (Hg) in soils and in black pine (Pinus nigra) barks from the Mt. Amiata Hg district in southern Tuscany (Italy), where past Hg mining and present-day geothermal power plants affect local atmospheric Hg concentration, posing serious environmental concerns. Barks collected in heavily Hg-polluted areas of the district display the highest Hg concentration ever reported in literature (8.6mg/kg). In comparison, barks of the same species collected in local reference areas and near geothermal power plants show much lower (range 19-803μg/kg) concentrations; even lower concentrations are observed at a "blank" site near the city of Florence (5-98μg/kg). Results show a general decrease of Hg concentration from bark surface inwards, in accordance with a deposition of airborne Hg, with minor contribution from systemic uptake from soils. Preliminary results indicate that bark Hg concentrations are comparable with values reported for lichens in the same areas, suggesting that tree barks may represent an additional useful tool for biomonitoring of airborne Hg. PMID:27341111

  9. Automated Counting of Airborne Asbestos Fibers by a High-Throughput Microscopy (HTM Method

    Directory of Open Access Journals (Sweden)

    Hwataik Han

    2011-07-01

    Full Text Available Inhalation of airborne asbestos causes serious health problems such as lung cancer and malignant mesothelioma. The phase-contrast microscopy (PCM method has been widely used for estimating airborne asbestos concentrations because it does not require complicated processes or high-priced equipment. However, the PCM method is time-consuming and laborious as it is manually performed off-site by an expert. We have developed a high-throughput microscopy (HTM method that can detect fibers distinguishable from other spherical particles in a sample slide by image processing both automatically and quantitatively. A set of parameters for processing and analysis of asbestos fiber images was adjusted for standard asbestos samples with known concentrations. We analyzed sample slides containing airborne asbestos fibers collected at 11 different workplaces following PCM and HTM methods, and found a reasonably good agreement in the asbestos concentration. Image acquisition synchronized with the movement of the robotic sample stages followed by an automated batch processing of a stack of sample images enabled us to count asbestos fibers with greatly reduced time and labors. HTM should be a potential alternative to conventional PCM, moving a step closer to realization of on-site monitoring of asbestos fibers in air.

  10. Evaluating the capabilities of portable black carbon monitors and photometers for measuring airborne carbon nanotubes

    International Nuclear Information System (INIS)

    For daily monitoring of occupational exposure to aerosolized carbon nanotubes (CNTs) where CNTs are manufactured and handled, inexpensive real-time measuring methods are preferable. In this study, we evaluated the capabilities of a portable black carbon monitor (BCM; also called an aethalometer) and a light-scattering aerosol photometer in detecting airborne CNTs. The responses of these instruments to airborne CNTs, aerosolized through vortex shaking, were evaluated by comparing the measurements of CNT mass concentrations made by these instruments to those determined through thermal carbon analysis. Results showed that their raw readings underestimated CNT mass concentrations in most cases. Their sensitivities depended on the type of CNTs and decreased with the particle sizes of aerosolized CNT clumps. We also found that the sensitivity of the BCM tended to substantially decrease with increasing filter load, even before the point at which the filter should be replaced as recommended by the manufacturer, which could be attributed to a clean environmental condition (i.e., the absence of ubiquitous light-scattering material). As an example of the use of these instruments for measuring airborne CNTs in the presence of background aerosols, a CNT-handling simulation was also conducted. Although both the BCM and the photometer could detect CNT emissions, the BCM was more sensitive to the detection of emitted CNTs in the presence of background aerosols. The correction factors obtained from the response evaluations could enhance the measurement accuracy of these instruments, which will be helpful for the daily monitoring of CNTs at workplaces

  11. Methods for describing airborne fractions of free fall spills of powders and liquids

    International Nuclear Information System (INIS)

    Pacific Northwest Laboratory developed calculational methods to characterize aerosols produced in hypothetical spill accidents. These methods were developed for the US Nuclear Regulatory Commission to use when evaluating the consequence of postulated accidents for safety analyses and environmental impact statements. Basic physical properties and mechanistic descriptions of spill events were used as a basis for the methods. Source term models consist of equations that can be used to estimate the mass airborne and particle size distribution of aerosols produced by spills of powders and solutions. Experimental data from Sutter et al. (1981) and Ballinger and Hodgson (1986) were emphasized in the models. Parameter ranges for this data were spill height 1 to 3 m, powder mass 25 to 1000 g, and liquid volume 125 to 1000 ml. Liquids spilled included slurries and solutions of varying viscosities. Liquid spills differed from powders in that an aerosol was produced on impact instead of during the fall. The fraction airborne from liquid spills (including viscous solutions and slurries) correlated well with three dimensionless numbers: the Archimedes number, the Froude number, and a density ratio. Liquid aerosol parameters were statistical descriptions of the log-normal distributions. A computer code was developed to model powder spills. In the code, the mass airborne was assumed proportional to the drag force on the power as it falls. The proportionality factor was empirically found to be a function of a dimensionless number, the Galileo number. 16 refs., 2 figs., 13 tabs

  12. Impaction onto a Glass Slide or Agar versus Impingement into a Liquid for the Collection and Recovery of Airborne Microorganisms

    OpenAIRE

    Juozaitis, Arvydas; Willeke, Klaus; Grinshpun, Sergey A.; Donnelly, Jean

    1994-01-01

    To study impaction versus impingement for the collection and recovery of viable airborne microorganisms, three new bioaerosol samplers have been designed and built. They differ from each other by the medium onto which the bioaerosol particles are collected (glass, agar, and liquid) but have the same inlet and collection geometries and the same sampling flow rate. The bioaerosol concentrations recorded by three different collection techniques have been compared with each other: impaction onto ...

  13. Environmental releases from fuel cycle facility: part 1: radionuclide resuspension vs. stack releases on ambient airborne uranium and thorium levels

    International Nuclear Information System (INIS)

    Airborne activity levels of uranium and thorium series were measured in the vicinity (1.1 km) of a uranium (UF4) processing plant, located in Malvési, south of France. Regarding its impact on the environment, this facility is characterized by its routine atmospheric releases of uranium and by the emission of radionuclide-labelled particles from a storage pond filled with waste water or that contain dried sludge characterized by traces of plutonium and thorium (230Th). This study was performed during a whole year (November 2009–November 2010) and based on weekly aerosol sampling. Thanks to ICP-MS results, it was possible to perform investigations of uranium and thorium decay product concentration in the air. The number of aerosol filters sampled (50) was sufficient to establish a relationship between airborne radionuclide variations and the wind conditions. As expected, the more the time spent in the plume, the higher the ambient levels. The respective contributions of atmospheric releases and resuspension from local soil and waste ponds on ambient dust load and uranium-bearing aerosols were estimated. Two shutdown periods dedicated to facility servicing made it possible to estimate the resuspension contribution and to specify its origin (local or regional) according to the wind direction and remote background concentration. Airborne uranium mainly comes from the emission stack and, to a minor extent (∼20%), from wind resuspension of soil particles from the surrounding fields and areas devoted to waste storage. Moreover, weighed activity levels were clearly higher during operational periods than for shutdown periods. - Highlights: • Airborne activity levels of uranium and thorium were determined at about 1 km from the smokestack of a UF4 facility. • During shutdown periods all the airborne activity can be ascribed to local resuspension of formerly deposited radionuclides. • During production periods, the respective contribution of resuspension

  14. Comprehensive simultaneous shipboard and airborne characterization of exhaust from a modern container ship at sea.

    Science.gov (United States)

    Murphy, Shane M; Agrawal, Harshit; Sorooshian, Armin; Padró, Luz T; Gates, Harmony; Hersey, Scott; Welch, W A; Lung, H; Miller, J W; Cocker, David R; Nenes, Athanasios; Jonsson, Haflidi H; Flagan, Richard C; Seinfeld, John H

    2009-07-01

    We report the first joint shipboard and airborne study focused on the chemical composition and water-uptake behavior of particulate ship emissions. The study focuses on emissions from the main propulsion engine of a Post-Panamax class container ship cruising off the central coast of California and burning heavy fuel oil. Shipboard sampling included micro-orifice uniform deposit impactors (MOUDI) with subsequent off-line analysis, whereas airborne measurements involved a number of real-time analyzers to characterize the plume aerosol, aged from a few seconds to over an hour. The mass ratio of particulate organic carbon to sulfate at the base of the ship stack was 0.23 +/- 0.03, and increased to 0.30 +/- 0.01 in the airborne exhaust plume, with the additional organic mass in the airborne plume being concentrated largely in particles below 100 nm in diameter. The organic to sulfate mass ratio in the exhaust aerosol remained constant during the first hour of plume dilution into the marine boundary layer. The mass spectrum of the organic fraction of the exhaust aerosol strongly resembles that of emissions from other diesel sources and appears to be predominantly hydrocarbon-like organic (HOA) material. Background aerosol which, based on air mass back trajectories, probably consisted of aged ship emissions and marine aerosol, contained a lower organic mass fraction than the fresh plume and had a much more oxidized organic component. A volume-weighted mixing rule is able to accurately predict hygroscopic growth factors in the background aerosol but measured and calculated growth factors do not agree for aerosols in the ship exhaust plume. Calculated CCN concentrations, at supersaturations ranging from 0.1 to 0.33%, agree well with measurements in the ship-exhaust plume. Using size-resolved chemical composition instead of bulk submicrometer composition has little effect on the predicted CCN concentrations because the cutoff diameter for CCN activation is larger than the

  15. Even Shallower Exploration with Airborne Electromagnetics

    Science.gov (United States)

    Auken, E.; Christiansen, A. V.; Kirkegaard, C.; Nyboe, N. S.; Sørensen, K.

    2015-12-01

    Airborne electromagnetics (EM) is in many ways undergoing the same type rapid technological development as seen in the telecommunication industry. These developments are driven by a steadily increasing demand for exploration of minerals, groundwater and geotechnical targets. The latter two areas demand shallow and accurate resolution of the near surface geology in terms of both resistivity and spatial delineation of the sedimentary layers. Airborne EM systems measure the grounds electromagnetic response when subject to either a continuous discrete sinusoidal transmitter signal (frequency domain) or by measuring the decay of currents induced in the ground by rapid transmission of transient pulses (time domain). In the last decade almost all new developments of both instrument hardware and data processing techniques has focused around time domain systems. Here we present a concept for measuring the time domain response even before the transient transmitter current has been turned off. Our approach relies on a combination of new instrument hardware and novel modeling algorithms. The newly developed hardware allows for measuring the instruments complete transfer function which is convolved with the synthetic earth response in the inversion algorithm. The effect is that earth response data measured while the transmitter current is turned off can be included in the inversion, significantly increasing the amount of available information. We demonstrate the technique using both synthetic and field data. The synthetic examples provide insight on the physics during the turn off process and the field examples document the robustness of the method. Geological near surface structures can now be resolved to a degree that is unprecedented to the best of our knowledge, making airborne EM even more attractive and cost-effective for exploration of water and minerals that are crucial for the function of our societies.

  16. Forage: A sensitive indicator for airborne radioactivity

    International Nuclear Information System (INIS)

    As a part of the radiological environmental monitoring program at the Joseph M. Parley Nuclear Plant to meet the requirements of NRC Regulations 10 CRF 50, Appendix I, routine sampling of forage was implemented. Indicator plots of forage (grass) were established at the plant site boundary in the two Meteorological sectors having the highest X/Q values for ground-level dispersion of airborne radioactivity. Likewise, a control plot was established in a sector having a significantly lower X/Q value at a distance of 18 miles. Procedures for maintenance of the grass plots, sampling of forage, and sample preparation for measurement of gamma radioactivity with a Ge (Li) detector were developed during the reported three year measurement period. Three atmospheric nuclear tests by the Peoples Republic of China in 1976 and 1977 has proven forage sampling to be convenient, sensitive, and in the judgement of the authors gives results which are superior to most other media sampled for airborne radioactivity. Typical measured levels of radioactivity from 150 to greater than 10,000 pCi/kg (dry weight) were obtained for the principal fission products in the Chinese bomb fallout, which included 95Zr-95Nb, 103Ru, 131I, 140Ba-140La, 141Ce, and 144Ce. On a unit weight basis the level of radioactivity measured was consistently higher for forage than for green leafy vegetables. This was attributed to the higher surface area for the forage. For comparison, plots of airborne concentrations for gross beta and particulate gamma emitters are shown during the time periods that include the Chinese nuclear tests. (author)

  17. 1. Airborne 2. Hangár

    OpenAIRE

    Johnson, Christy

    2008-01-01

    Hangár, Bakelit Multi Art Center 7th L1 Dance Festival, Budapest, Hungary Installation, 2008 AIRBORNE (projection-sound-monitor installation) was sited in the Hangár, B.A.C. as part of the 7th L1 Dance Festival in Budapest, Hungary (March 2008). This work continues Johnson's interest in and use of 'found' material (16mm wind tunnel footage), and performative methods (sound recording of Channel 9 on United Airlines). This immersive work explores the turbulence of suspension and sets ...

  18. Analysis of airborne pollen grains in Denizli

    OpenAIRE

    GÜVENSEN, Aykut; ÇELİK, Ali; TOPUZ, Bülent; ÖZTÜRK, Münir

    2013-01-01

    Airborne pollen distribution in Denizli Province was measured volumetrically during 2 consecutive years, 2005 and 2006, on a weekly basis. A total of 11,981 pollen grains/m3 belonging to 42 taxa were determined. In 2005 the total was 5368 pollen grains/m3 and in 2006 it was 6613 pollen grains/m3. Among the taxa recorded, 26 belonged to arboreal and 16 to nonarboreal taxa. At the end of the 2 years total pollen counts comprised 79.68% arboreal, 19.48% nonarboreal, and 0.84% unidentified taxa. ...

  19. Resuspension of uranium-plutonium oxide particles from burning Plexiglas

    International Nuclear Information System (INIS)

    Nuclear fuel materials such as Uranium-Plutonium oxide must be handled remotely in gloveboxes because of their radiotoxicity. These gloveboxes are frequently constructed largely of combustible Plexiglas sheet. To estimate the potential airborne spread of radioactive contamination in the event of a glovebox fire, the resuspension of particles from burning Plexiglas was investigated. (author)

  20. Development and calibration of real-time PCR for quantification of airborne microorganisms in air samples

    Science.gov (United States)

    An, Hey Reoun; Mainelis, Gediminas; White, Lori

    This manuscript describes the coupling of bioaerosol collection and the use of real-time PCR (RT-PCR) to quantify the airborne bacteria. The quantity of collected bacteria determined by RT-PCR is compared with conventional quantification techniques, such as culturing, microscopy and airborne microorganism counting by using optical particle counter (OPC). Our data show that an experimental approach used to develop standard curves for use with RT-PCR is critical for accurate sample quantification. Using universal primers we generated 12 different standard curves which were used to quantify model organism Escherichia coli (Migula) Catellani from air samples. Standard curves prepared using a traditional approach, where serially diluted genomic DNA extracted from pure cultured bacteria were used in PCR reaction as a template DNA yielded significant underestimation of sample quantities compared to airborne microorganism concentration as measured by an OPC. The underestimation was especially pronounced when standard curves were built using colony forming units (CFUs). In contrast, the estimate of cell concentration in an air sample by RT-PCR was more accurate (˜60% compared to the airborne microorganism concentration) when the standard curve was built using aerosolized E. coli. The accuracy improved even further (˜100%) when air samples used to build the standard curves were diluted first, then the DNA extracted from each dilution was amplified by the RT-PCR—to mimic the handling of air samples with unknown and possibly low concentration. Therefore, our data show that standard curves used for quantification by RT-PCR needs to be prepared using the same environmental matrix and procedures as handling of the environmental sample in question. Reliance on the standard curves generated with cultured bacterial suspension (a traditional approach) may lead to substantial underestimation of microorganism quantities in environmental samples.

  1. Sampling and analytical methodologies for instrumental neutron activation analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    The IAEA supports a number of projects having to do with the analysis of airborne particulate matter by nuclear techniques. Most of this work involves the use of activation analysis in its various forms, particularly instrumental neutron activation analysis (INAA). This technique has been widely used in many different countries for the analysis of airborne particulate matter, and there are already many publications in scientific journals, books and reports describing such work. The present document represents an attempt to summarize the most important features of INAA as applied to the analysis of airborne particulate matter. It is intended to serve as a set of guidelines for use by participants in the IAEA's own programmes, and other scientists, who are not yet fully experienced in the application of INAA to airborne particulate samples, and who wish either to make a start on using this technique or to improve their existing procedures. The methodologies for sampling described in this document are of rather general applicability, although they are presented here in a way that takes account of the particular requirements arising from the use of INAA as the analytical technique. The analytical part of the document, however, is presented in a form that is applicable only to INAA. (Subsequent publications in this series are expected to deal specifically with other nuclear related techniques such as energy dispersive X ray fluorescence (ED-XRF) and particle induced X ray emission (PIXE) analysis). Although the methods and procedures described here have been found through experience to yield acceptable results, they should not be considered mandatory. Any other procedure used should, however, be chosen to be capable of yielding results at least of equal quality to those described

  2. Fe2O3 nanoparticles for airborne organophosphate detection

    Science.gov (United States)

    Phillips, Joshua; Soliz, Jennifer; Hauser, Adam

    Dire need for early detection of organophosphates (OP) exists in both civilian (pesticide/herbicide buildup) and military (G/V nerve agents) spheres. Nanoparticle materials are excellent candidates for the detection and/or decontamination of hazardous materials, owing to their large surface to volume ratios and tailored surface functionality. Within this category, metal oxides include structures that are stable with the range of normal environmental conditions (temperature, humidity), but have strong, specific reaction mechanisms (hydrolysis, oxidation, catalysis, stoichiometric reaction) with toxic compounds. In this talk, we will present on the suitability of Fe2O3 nanoparticles as airborne organophosphate detectors. 23 nm particles were exposed to a series of organophosphate compounds (dimethyl methylphosphonate, dimethyl chlorophosphonate, diisopropyl methylphosphonate), and studied by x-ray magnetic circular dichroism and x-ray absorption spectroscopy to confirm the stoichiometric Fe2O3 to FeO mechanism and determine magnetic sensor feasibility. AC Impedance Spectroscopy shows both high sensitivity and selectivity via frequency dependence in both impedance and resistivity, suggesting some feasibility for impedimetric devices. We acknowledge funding under Army Research Office STIR Award #W911F-15-1-0104. J.R.S. acknowledges funding from the Defense Threat Reduction Agency under Projects BA13PHM210 and BA07PRO104. J.R.S. also acknowledges funding under a NRC fellowship.

  3. Modelling airborne concentration and deposition rate of maize pollen

    Science.gov (United States)

    Jarosz, Nathalie; Loubet, Benjamin; Huber, Laurent

    2004-10-01

    The introduction of genetically modified (GM) crops has reinforced the need to quantify gene flow from crop to crop. This requires predictive tools which take into account meteorological conditions, canopy structure as well as pollen aerodynamic characteristics. A Lagrangian Stochastic (LS) model, called SMOP-2D (Stochastic Mechanistic model for Pollen dispersion and deposition in 2 Dimensions), is presented. It simulates wind dispersion of pollen by calculating individual pollen trajectories from their emission to their deposition. SMOP-2D was validated using two field experiments where airborne concentration and deposition rate of pollen were measured within and downwind from different sized maize (Zea mays) plots together with micrometeorological measurements. SMOP-2D correctly simulated the shapes of the concentration profiles but generally underestimated the deposition rates in the first 10 m downwind from the source. Potential explanations of this discrepancy are discussed. Incorrect parameterisation of turbulence in the transition from the crop to the surroundings is probably the most likely reason. This demonstrates that LS models for particle transfer need to be coupled with air-flow models under complex terrain conditions.

  4. Overview of the risk of respiratory cancer from airborne contaminants

    International Nuclear Information System (INIS)

    This overview on defining risk of respiratory cancer from airborne pollutants summarizes broad issues related to a number of the environmental agents that are discussed in the articles that follow. Lung cancer kills more than 100,000 people annually and is the major form of cancer in both sexes in middle age. Cigarette smoking is the major cause of respiratory cancer and must be taken into account in any study of the effect of an environmental agent on the risk of respiratory cancer, particularly at relatively low levels of excess risk. The agents considered in this series all have the potential for widespread community exposures, either because there is widespread long-term exposure (passive smoking), the agents are direct byproducts of energy consumption (organic particles), have ubiquitous production and use patterns (formaldehyde and fibers), or occur widely in natural settings (radon). Several issues--measurement of exposure, latency, confounding factors and bias, extrapolation from animals to humans, population at risk, and attributable risk--must be considered for each agent. A further issue related to exposure estimates is the relationship of exposure to actual dose. Understanding exposure some 25 to 40 years in the past is important because of the prolonged latency period in the development of respiratory cancers. To the degree that these agents act synergistically with smoking, the reduction of smoking or of exposure to these agents may have greater public health consequences than would be anticipated from the directly measured attributable risk of each of these agents separately

  5. Gas-borne particles with tunable and highly controlled characteristics for nanotoxicology studies

    OpenAIRE

    Messing, Maria; Svensson, Christian; Meuller, Bengt; Deppert, Knut; Pagels, Joakim; Rissler, Jenny

    2012-01-01

    For nanotoxicology investigations of air-borne particles to provide relevant results it is ever so important that the particle exposure of, for example cells, closely resembles the “real” exposure situation, that the dosimetry is well defined, and that the characteristics of the deposited nanoparticles are known in detail. By synthesizing the particles in the gas-phase and directly depositing them on lung cells the particle deposition conditions in the lung is closely mimicked. In this work w...

  6. 30 CFR 56.5001 - Exposure limits for airborne contaminants.

    Science.gov (United States)

    2010-07-01

    ... asbestos standard found in 29 CFR 1910.1001, Appendix A, or a method at least equivalent to that method in... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exposure limits for airborne contaminants. 56... Quality and Physical Agents Air Quality § 56.5001 Exposure limits for airborne contaminants. Except...

  7. 30 CFR 57.5001 - Exposure limits for airborne contaminants.

    Science.gov (United States)

    2010-07-01

    ... contrast microscopy (PCM) using the OSHA Reference Method in OSHA's asbestos standard found in 29 CFR 1910... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Exposure limits for airborne contaminants. 57... Underground § 57.5001 Exposure limits for airborne contaminants. Except as permitted by § 57.5005— (a)...

  8. Adaptive Restoration of Airborne Daedalus AADS1268 ATM Thermal Data

    International Nuclear Information System (INIS)

    To incorporate the georegistration and restoration processes into airborne data processing in support of U.S. Department of Energy's nuclear emergency response task, we developed an adaptive restoration filter for airborne Daedalus AADS1268 ATM thermal data based on the Wiener filtering theory. Preliminary assessment shows that this filter enhances the detectability of small weak thermal anomalies in AADS1268 thermal images

  9. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved...

  10. Decontamination of airborne bacteria in meat processing plants

    Science.gov (United States)

    Air has been established as a source of bacterial contamination in meat processing facilities. Airborne bacteria may affect product shelf life, and have food safety implications. The effectiveness of reactive oxygen species (ROS) generating AirOcare equipment on the reduction of airborne bacteria in...

  11. Monitoring of airborne radioactivity (radon, thoron and daughters; radioactive dust)

    International Nuclear Information System (INIS)

    The processes resulting in airborne radioactivity from uranium and thorium ores are discussed. Measurement methods for radioactive dust, radon and thoron gas and radon and thoron daughters are described and assessed. The monitoring equipment required for measurement of airborne radioactivity is described

  12. Decontamination of airborne bacteria in meat processing plants

    Science.gov (United States)

    The effectiveness of reactive oxygen species (ROS) generating AirOcare equipment on the reduction of airborne bacteria in a meat processing environment was determined. Bacterial strains found in ground beef were used to artificially contaminate the air using a 6-jet Collison nebulizer. Airborne bact...

  13. Moving Target Indication for Multi-channel Airborne Radar Systems

    NARCIS (Netherlands)

    Lidicky, L.

    2010-01-01

    Moving target indication (MTI) using radar is of great interest in civil and military applications. Its uses include airborne or space-borne surveillance of ground moving vehicles (cars, trains) or ships at sea, for instance. Airborne (space-borne) radar offers several advantages when compared to op

  14. SOFIA's Airborne Astronomy Ambassadors: An External Evaluation of Cycle 1

    Science.gov (United States)

    Phillips, Michelle

    2015-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a partnership between NASA and the German Aerospace Center (DLR). The observatory itself is a Boeing 747 SP that has been modified to serve as the world's largest airborne research observatory. The SOFIA Airborne Astronomy Ambassadors (AAA) program is a component of SOFIA's…

  15. UAVSAR: An Airborne Window on Earth Surface Deformation

    Science.gov (United States)

    Hensley, Scott

    2011-01-01

    This study demonstrates that UAVSAR's precision autopilot and electronic steering have allowed for the reliable collection of airborne repeat pass radar interferometric data for deformation mapping. Deformation maps from temporal scales ranging from hours to months over a variety of signals of geophysical interest illustrate the utility of UAVSAR airborne repeat pass interferometry to these studies.

  16. Particle-Particle-String Vertex

    OpenAIRE

    Ishibashi, Nobuyuki

    1996-01-01

    We study a theory of particles interacting with strings. Considering such a theory for Type IIA superstring will give some clue about M-theory. As a first step toward such a theory, we construct the particle-particle-string interaction vertex generalizing the D-particle boundary state.

  17. Airborne gamma radiation soil moisture measurements over short flight lines

    Science.gov (United States)

    Peck, Eugene L.; Carrol, Thomas R.; Lipinski, Daniel M.

    1990-01-01

    Results are presented on airborne gamma radiation measurements of soil moisture condition, carried out along short flight lines as part of the First International Satellite Land Surface Climatology Project Field Experiment (FIFE). Data were collected over an area in Kansas during the summers of 1987 and 1989. The airborne surveys, together with ground measurements, provide the most comprehensive set of airborne and ground truth data available in the U.S. for calibrating and evaluating airborne gamma flight lines. Analysis showed that, using standard National Weather Service weights for the K, Tl, and Gc radiation windows, the airborne soil moisture estimates for the FIFE lines had a root mean square error of no greater than 3.0 percent soil moisture. The soil moisture estimates for sections having acquisition time of at least 15 sec were found to be reliable.

  18. Calibration Matters: Advances in Strapdown Airborne Gravimetry

    Science.gov (United States)

    Becker, D.

    2015-12-01

    Using a commercial navigation-grade strapdown inertial measurement unit (IMU) for airborne gravimetry can be advantageous in terms of cost, handling, and space consumption compared to the classical stable-platform spring gravimeters. Up to now, however, large sensor errors made it impossible to reach the mGal-level using such type IMUs as they are not designed or optimized for this kind of application. Apart from a proper error-modeling in the filtering process, specific calibration methods that are tailored to the application of aerogravity may help to bridge this gap and to improve their performance. Based on simulations, a quantitative analysis is presented on how much IMU sensor errors, as biases, scale factors, cross couplings, and thermal drifts distort the determination of gravity and the deflection of the vertical (DOV). Several lab and in-field calibration methods are briefly discussed, and calibration results are shown for an iMAR RQH unit. In particular, a thermal lab calibration of its QA2000 accelerometers greatly improved the long-term drift behavior. Latest results from four recent airborne gravimetry campaigns confirm the effectiveness of the calibrations applied, with cross-over accuracies reaching 1.0 mGal (0.6 mGal after cross-over adjustment) and DOV accuracies reaching 1.1 arc seconds after cross-over adjustment.

  19. Handling Trajectory Uncertainties for Airborne Conflict Management

    Science.gov (United States)

    Barhydt, Richard; Doble, Nathan A.; Karr, David; Palmer, Michael T.

    2005-01-01

    Airborne conflict management is an enabling capability for NASA's Distributed Air-Ground Traffic Management (DAG-TM) concept. DAGTM has the goal of significantly increasing capacity within the National Airspace System, while maintaining or improving safety. Under DAG-TM, autonomous aircraft maintain separation from each other and from managed aircraft unequipped for autonomous flight. NASA Langley Research Center has developed the Autonomous Operations Planner (AOP), an onboard decision support system that provides airborne conflict management (ACM) and strategic flight planning support for autonomous aircraft pilots. The AOP performs conflict detection, prevention, and resolution from nearby traffic aircraft and area hazards. Traffic trajectory information is assumed to be provided by Automatic Dependent Surveillance Broadcast (ADS-B). Reliable trajectory prediction is a key capability for providing effective ACM functions. Trajectory uncertainties due to environmental effects, differences in aircraft systems and performance, and unknown intent information lead to prediction errors that can adversely affect AOP performance. To accommodate these uncertainties, the AOP has been enhanced to create cross-track, vertical, and along-track buffers along the predicted trajectories of both ownship and traffic aircraft. These buffers will be structured based on prediction errors noted from previous simulations such as a recent Joint Experiment between NASA Ames and Langley Research Centers and from other outside studies. Currently defined ADS-B parameters related to navigation capability, trajectory type, and path conformance will be used to support the algorithms that generate the buffers.

  20. Airborne multidimensional integrated remote sensing system

    Science.gov (United States)

    Xu, Weiming; Wang, Jianyu; Shu, Rong; He, Zhiping; Ma, Yanhua

    2006-12-01

    In this paper, we present a kind of airborne multidimensional integrated remote sensing system that consists of an imaging spectrometer, a three-line scanner, a laser ranger, a position & orientation subsystem and a stabilizer PAV30. The imaging spectrometer is composed of two sets of identical push-broom high spectral imager with a field of view of 22°, which provides a field of view of 42°. The spectral range of the imaging spectrometer is from 420nm to 900nm, and its spectral resolution is 5nm. The three-line scanner is composed of two pieces of panchromatic CCD and a RGB CCD with 20° stereo angle and 10cm GSD(Ground Sample Distance) with 1000m flying height. The laser ranger can provide height data of three points every other four scanning lines of the spectral imager and those three points are calibrated to match the corresponding pixels of the spectral imager. The post-processing attitude accuracy of POS/AV 510 used as the position & orientation subsystem, which is the aerial special exterior parameters measuring product of Canadian Applanix Corporation, is 0.005° combined with base station data. The airborne multidimensional integrated remote sensing system was implemented successfully, performed the first flying experiment on April, 2005, and obtained satisfying data.

  1. Determination of leachable uranium in airborne particulates

    International Nuclear Information System (INIS)

    The uranium content of airborne particulates collected on cellulose filters was investigated. As a case study, filter samples from the large area of Thessaloniki, Greece, were used. For the uranium determination instrumental neutron activation analysis was used. To obtain equal counting conditions for all samples after irradiation, independent from the initial matrix, uranium was leached from the filter by using a 0.1M NH4HCO3 solution, forming a stable uranyl complex [UO2(CO3)3]. This complex was absorbed in a batch process on a small amount of chelating ion exchanger Srafion NMRR, which was directly irradiated in the reactor of the NCSR Demokritos. Over the investigated time period in 1997 the mean concentration was found to be 0.047 ng U/m3. In relation to the collected amount of airborne particulates having a mean concentration of 0.52 μg/gU. It can be assumed as a natural uranium level in the environment. (author)

  2. Laser Systems For Use With Airborne Platforms

    Science.gov (United States)

    Jepsky, Joseph

    1984-10-01

    This paper describes a family of airborne laser systems in use for terrain profiling, surveying, mapping, altimetry, collision avoidance and shipboard landing systems using fixed and rotary wing aircraft as the platforms. The laser altimeter has also been used in systems compatible with the Army T-16 and. T-22 carrier missiles (platform). Both pulsed gallium arsenide and Nd:YAG (neodymium-doped, yttrium-aluminum-garnet) laser rangefinders have been used for these applications. All of these systems use ACCI's advanced measurement techniques that permit range accuracies of 8 cm, single shot, 1 cm averaged, to be achieved. Pulse rates up to 4 Khz are employed for airborne profiling. This high data density rate provides 1 data point every 2" along the aircraft flight line at aircraft speed of 500 knots. Scanning modes for some applications are employed. Systems have been integrated with all current inertial navigation systems (Litton, Ferranti and Honeywell), as well as a number of microwave positioning systems. Removal of aircraft motion from the laser range measurements by use of an accelerometer is described. Flight data from a number of program performed by U.S. and Canadian Federal Agencies, in addition to those of commercial surveying and mapping companies are described.

  3. Architecture and Algorithms for an Airborne Network

    CERN Document Server

    Sen, Arunabha; Silva, Tiffany; Das, Nibedita; Kundu, Anjan

    2010-01-01

    The U.S. Air Force currently is in the process of developing an Airborne Network (AN) to provide support to its combat aircrafts on a mission. The reliability needed for continuous operation of an AN is difficult to achieve through completely infrastructure-less mobile ad hoc networks. In this paper we first propose an architecture for an AN where airborne networking platforms (ANPs - aircrafts, UAVs and satellites) form the backbone of the AN. In this architecture, the ANPs can be viewed as mobile base stations and the combat aircrafts on a mission as mobile clients. The combat aircrafts on a mission move through a space called air corridor. The goal of the AN design is to form a backbone network with the ANPs with two properties: (i) the backbone network remains connected at all times, even though the topology of the network changes with the movement of the ANPs, and (ii) the entire 3D space of the air corridor is under radio coverage at all times by the continuously moving ANPs. In addition to proposing an...

  4. Auxiliary DCP data acquisition system. [airborne system

    Science.gov (United States)

    Snyder, R. V.

    1975-01-01

    An airborne DCP Data Aquisition System has been designed to augment the ERTS satellite data recovery system. The DCP's are data collection platforms located at pertinent sites. With the appropriate sensors they are able to collect, digitally encode and transmit environmental parameters to the ERTS satellite. The satellite in turn relays these transmissions to a ground station for processing. The satellite is available for such relay duty a minimum of two times in a 24-hour period. The equipment is to obtain continuous DCP data during periods of unusual environmental activity--storms, floods, etc. Two circumstances contributed to the decision to design such a system; (1) Wallops Station utilizes surveillance aircraft in support of rocket launches and also in support of earth resources activities; (2) the area in which Wallops is located, the Delaware and Chesapeake Bay areas, are fertile areas for DCP usage. Therefore, by developing an airborne DCP receiving station and installing it on aircraft more continuous DCP data can be provided from sites in the surrounding areas at relatively low cost.

  5. Detection of the density of fine particulate matter employing laser beam divergence and inertia-dependent particle motion

    Science.gov (United States)

    Schrobenhauser, R.; Strzoda, R.; Hartmann, A.; Fleischer, M.; Amann, M.-C.

    2014-10-01

    We present a miniaturized sensor setup capable of determining the density of airborne particles employing size information provided by an enhanced light-scattering intensity ratio technique and inertia-dependent particle motion. The method is based on the particle density-dependent spatial particle spreading, measured as the time of flight using a divergent laser beam. Measurement results using polystyrene latex and silica particles in a size range of 500-1,600 nm show good agreement with theoretical estimations.

  6. Individual bioaerosol particle discrimination by multi-photon excited fluorescence

    OpenAIRE

    Kiselev, Denis; Bonacina, Luigi; Wolf, Jean-Pierre

    2011-01-01

    Femtosecond laser induced multi-photon excited fluorescence (MPEF) from individual airborne particles is tested for the first time for discriminating bioaerosols. The fluorescence spectra, analysed in 32 channels, exhibit a composite character originating from simultaneous two-photon and three-photon excitation at 790 nm. Simulants of bacteria aggregates (clusters of dyed polystyrene microspheres) and different pollen particles (Ragweed, Pecan, Mulberry) are clearly discriminated by their MPE...

  7. The Next Generation Airborne Polarimetric Doppler Radar

    Science.gov (United States)

    Vivekanandan, J.; Lee, Wen-Chau; Loew, Eric; Salazar, Jorge; Chandrasekar, V.

    2013-04-01

    NCAR's Electra Doppler radar (ELDORA) with a dual-beam slotted waveguide array using dual-transmitter, dual-beam, rapid scan and step-chirped waveform significantly improved the spatial scale to 300m (Hildebrand et al. 1996). However, ELDORA X-band radar's penetration into precipitation is limited by attenuation and is not designed to collect polarimetric measurements to remotely estimate microphysics. ELDORA has been placed on dormancy because its airborne platform (P3 587) was retired in January 2013. The US research community has strongly voiced the need to continue measurement capability similar to the ELDORA. A critical weather research area is quantitative precipitation estimation/forecasting (QPE/QPF). In recent years, hurricane intensity change involving eye-eyewall interactions has drawn research attention (Montgomery et al., 2006; Bell and Montgomery, 2006). In the case of convective precipitation, two issues, namely, (1) when and where convection will be initiated, and (2) determining the organization and structure of ensuing convection, are key for QPF. Therefore collocated measurements of 3-D winds and precipitation microphysics are required for achieving significant skills in QPF and QPE. Multiple radars in dual-Doppler configuration with polarization capability estimate dynamical and microphysical characteristics of clouds and precipitation are mostly available over land. However, storms over complex terrain, the ocean and in forest regions are not observable by ground-based radars (Bluestein and Wakimoto, 2003). NCAR/EOL is investigating potential configurations for the next generation airborne radar that is capable of retrieving dynamic and microphysical characteristics of clouds and precipitation. ELDORA's slotted waveguide array radar is not compatible for dual-polarization measurements. Therefore, the new design has to address both dual-polarization capability and platform requirements to replace the ELDORA system. NCAR maintains a C-130

  8. Quantification of bitumen particles in aerosol and soil samples using HP-GPC

    DEFF Research Database (Denmark)

    Fauser, Patrik; Tjell, Jens Christian; Mosbæk, Hans;

    2000-01-01

    A method for identifying and quantifying bitumen particles, generated from the wear of roadway asphalts, in aerosol and soil samples has been developed. Bitumen is found to be the only contributor to airborne particles containing organic molecules with molecular weights larger than 2000 g pr. mol...

  9. Particle deposition in ventilation ducts

    Energy Technology Data Exchange (ETDEWEB)

    Sippola, Mark R.

    2002-09-01

    Exposure to airborne particles is detrimental to human health and indoor exposures dominate total exposures for most people. The accidental or intentional release of aerosolized chemical and biological agents within or near a building can lead to exposures of building occupants to hazardous agents and costly building remediation. Particle deposition in heating, ventilation and air-conditioning (HVAC) systems may significantly influence exposures to particles indoors, diminish HVAC performance and lead to secondary pollutant release within buildings. This dissertation advances the understanding of particle behavior in HVAC systems and the fates of indoor particles by means of experiments and modeling. Laboratory experiments were conducted to quantify particle deposition rates in horizontal ventilation ducts using real HVAC materials. Particle deposition experiments were conducted in steel and internally insulated ducts at air speeds typically found in ventilation ducts, 2-9 m/s. Behaviors of monodisperse particles with diameters in the size range 1-16 {micro}m were investigated. Deposition rates were measured in straight ducts with a fully developed turbulent flow profile, straight ducts with a developing turbulent flow profile, in duct bends and at S-connector pieces located at duct junctions. In straight ducts with fully developed turbulence, experiments showed deposition rates to be highest at duct floors, intermediate at duct walls, and lowest at duct ceilings. Deposition rates to a given surface increased with an increase in particle size or air speed. Deposition was much higher in internally insulated ducts than in uninsulated steel ducts. In most cases, deposition in straight ducts with developing turbulence, in duct bends and at S-connectors at duct junctions was higher than in straight ducts with fully developed turbulence. Measured deposition rates were generally higher than predicted by published models. A model incorporating empirical equations based on

  10. Nucleation and capture of condensible airborne contaminants in an aqueous scrubbing system

    International Nuclear Information System (INIS)

    The fate of condensible contaminants in an aqueous scrubbing system was evaluated. Knowledge of the behavior of volatile fission product compounds is important in evaluating the effectiveness of emergency air cleaning systems proposed for use in containment systems of breeder reactor plants. When a high temperature air stream passes through a spray quench chamber, very large cooling rates occur in the drop boundary layers. These large cooling rates cause large supersaturations in airborne concentrations of condensible contaminants, and one predicts that most condensation would take place through homogeneous nucleation. The very small particles formed would agglomerate, and attach to sodium aerosol particles which would be present. In the study the overall removal efficiency of volatile fission product species (typified by NaI, SeO2, and Sb2O3) in an air cleaning train (quench chamber, venturi scrubber, and fibrous bed) was theoretically evaluated. The overall removal efficiency of condensible materials was found to be lower than that for sodium compound aerosols because the freshly condensed particles would be smaller in size. For a base case, a removal efficiency of 99.97 percent was predicted for condensible materials. The fibrous bed scrubber exhibited superior particle removal characteristics for small particles compared to the quench chamber and venturi scrubber. Its removal efficiency exceeded 97 percent for even the most penetrating particle size (about 0.4 micron aerodynamic diameter). Therefore, all condensible fission products would be removed with efficiencies exceeding 97 percent

  11. Airborne Influenza A Is Detected in the Personal Breathing Zone of Swine Veterinarians.

    Science.gov (United States)

    O'Brien, Kate M; Nonnenmann, Matthew W

    2016-01-01

    The 2009 H1N1 pandemic emphasized a need to evaluate zoonotic transmission of influenza A in swine production. Airborne influenza A virus has been detected in swine facilities during an outbreak. However, the personal exposure of veterinarians treating infected swine has not been characterized. Two personal bioaerosol samplers, the NIOSH bioaerosol sampler and the personal high-flow inhalable sampler head (PHISH), were placed in the breathing zone of veterinarians treating swine infected with either H1N1 or H3N2 influenza A. A greater number of viral particles were recovered from the NIOSH bioaerosol sampler (2094 RNA copies/m3) compared to the PHISH sampler (545 RNA copies/m3). In addition, the majority of viral particles were detected by the NIOSH bioaerosol sampler in the >4 μm size fraction. These results suggest that airborne influenza A virus is present in the breathing zone of veterinarians treating swine, and the aerosol route of zoonotic transmission of influenza virus should be further evaluated among agricultural workers. PMID:26867129

  12. Airborne laser: a tool to study landscape surface features

    International Nuclear Information System (INIS)

    Landscape surface features related to erosion and hydrology were measured using an airborne laser profiler. The airborne laser profiler made 4,000 measurements per second with a recording accuracy of 5 cm (1.9 inches) on a single measurement. Digital data from the laser are recorded and analyzed with a personal computer. These airborne laser profiles provide information on surface landscape features. Topography and canopy heights, cover, and distribution of natural vegetation were determined in studies in South Texas. Laser measurements of shrub cover along flightlines were highly correlated (R2 = 0.98) with ground measurements made with line-intercept methods. Stream channel cross sections on Goodwin Creek in Mississippi were measured quickly and accurately with airborne laser data. Airborne laser profile data were used to measure small gullies in a level fallow field and in field with mature soybeans. While conventional ground-based techniques can be used to make these measurements, airborne laser profiler techniques allow data to be collected quickly, at a high density, and in areas that are essentially inaccessible for ground surveys. Airborne laser profiler data can quantify landscape features related to erosion and runoff, and the laser proler has the potential to be a useful tool for providing other data for studying and managing natural resources

  13. Evaluating airborne and ground based gamma spectrometry methods for detecting particulate radioactivity in the environment: A case study of Irish Sea beaches

    International Nuclear Information System (INIS)

    In several places, programmes are in place to locate and recover radioactive particles that have the potential to cause detrimental health effects in any member of the public who may encounter them. A model has been developed to evaluate the use of mobile gamma spectrometry systems within such programmes, with particular emphasis on large volume (16 l) NaI(Tl) detectors mounted in low flying helicopters. This model uses a validated Monte Carlo code with assessment of local geochemistry and natural and anthropogenic background radiation concentrations and distributions. The results of the model, applied to the example of particles recovered from beaches in the vicinity of Sellafield, clearly show the ability of rapid airborne surveys conducted at 75 m ground clearance and 120 kph speeds to demonstrate the absence of sources greater than 5 MBq 137Cs within large areas (10–20 km2 h−1), and identify areas requiring further ground based investigation. Lowering ground clearance for airborne surveys to 15 m whilst maintaining speeds covering 1–2 km2 h−1 can detect buried 137Cs sources of 0.5 MBq or greater activity. A survey design to detect 100 kBq 137Cs sources at 10 cm depth has also been defined, requiring surveys at −1 ground speed. The response of airborne systems to the Sellafield particles recovered to date has also been simulated, and the proportion of the existing radiocaesium background in the vicinity of the nuclear site has been established. Finally the rates of area coverage and sensitivities of both airborne and ground based approaches are compared, demonstrating the ability of airborne systems to increase the rate of particle recovery in a cost effective manner. The potential for equipment and methodological developments to improve performance are discussed. -- Highlights: ► Validated Monte Carlo simulations used to model mobile gamma spectrometry response to radioactive particless. ► Detection limits for airborne and ground based surveys

  14. Particle energization

    Energy Technology Data Exchange (ETDEWEB)

    Gisler, G.

    1990-01-01

    A first-principles approach to the physics of particle energization is presented. The general physics of particle acceleration is then applied to a number of the classical astrophysical mechanisms for accelerating particles, with references to recent literature where these are used in specific circumstances. The solar flare is recommended as a microcosm for studying particle acceleration because many different processes seem to be occurring in close proximity, and there is abundant high time resolution data for diagnosing those processes. Finally, a list of possible sites and mechanisms for particle acceleration in spiral galaxies is presented. 66 refs., 6 figs., 3 tabs.

  15. Study of airborne science experiment management concepts for application to space shuttle, volume 2

    Science.gov (United States)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.

  16. Biomass Burning Airborne and Spaceborne Experiment in the Amazonas (BASE-A)

    Science.gov (United States)

    Kaufman, Y. J.; Setzer, A.; Ward, D.; Tanre, D.; Holben, B. N.; Menzel, P.; Pereira, M. C.; Rasmussen, R.

    1992-01-01

    Results are presented on measurements of the trace gas and particulate matter emissions due to biomass burning during deforestation and grassland fires in South America, conducted as part of the Biomass Burning Airborne and Spaceborne Experiment in the Amazonas in September 1989. Field observations by an instrumented aircraft were used to estimate concentrations of O3, CO2, CO, CH4, and particulate matter. Fires were observed from satellite imagery, and the smoke optical thickness, particle size, and profiles of the extinction coefficient were measured from the aircraft and from the ground. Four smoke plumes were sampled, three vertical profiles were measured, and extensive ground measurements of smoke optical characteristics were carried out for different smoke types. The simultaneous measurements of the trace gases, smoke particles, and the distribution of fires were used to correlate biomass burning with the elevated levels of ozone.

  17. Airborne radioactivity surveys for phosphate in Florida

    Science.gov (United States)

    Moxham, Robert M.

    1954-01-01

    Airborne radioactivity surveys totaling 5, 600 traverse miles were made in 10 areas in Florida, which were thought to be geologically favorable for deposits of uraniferous phosphate. Abnormal radioactivity was recorded in 8 of the 10 areas surveyed. The anomalies are located in Bradford, Clay, Columbia, DeSoto, Dixie, Lake, Marion, Orange, Sumter, Taylor, and Union Counties. Two of the anomalies were investigated briefly on the ground. One resulted from a deposit of river-pebble phosphate in the Peace River valley; the river-pebble samples contain an average of 0.013 percent equivalent uranium. The other anomaly resulted from outcrops of leached phosphatic rock containing as much as 0. 016 percent equivalent uranium. Several anomalies in other areas were recorded at or near localities where phosphate deposits have been reported.

  18. Spatial dynamics of airborne infectious diseases

    CERN Document Server

    Robinson, M; Drossinos, Y

    2011-01-01

    Disease outbreaks, such as those of Severe Acute Respiratory Syndrome in 2003 and the 2009 pandemic A(H1N1) influenza, have highlighted the potential for airborne transmission in indoor environments. Respirable pathogen-carrying droplets provide a vector for the spatial spread of infection with droplet transport determined by diffusive and convective processes. An epidemiological model describing the spatial dynamics of disease transmission is presented. The effects of an ambient airflow, as an infection control, are incorporated leading to a delay equation, with droplet density dependent on the infectious density at a previous time. It is found that small droplets ($\\sim 0.4\\ \\mu$m) generate a negligible infectious force due to the small viral load and the associated duration they require to transmit infection. In contrast, larger droplets ($\\sim 4\\ \\mu$m) can lead to an infectious wave propagating through a fully susceptible population or a secondary infection outbreak for a localised susceptible population...

  19. Digital Logarithmic Airborne Gamma Ray Spectrometer

    CERN Document Server

    Zeng, GuoQiang; Li, Chen; Tan, ChengJun; Ge, LiangQuan; Gu, Yi; Cheng, Feng

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energy calibration. The photopeak energy resolution of 137Cs improves to 6.75% from the original 7.8%. Furthermore, the energy resolution of three photopeaks, namely, K, U, and Th, is maintained, and the overall stability of the energy spectrum is increased through potassium peak spectrum stabilization. Thus, effectively measuring energy from 20keV to 10MeV is possible.

  20. NASA Airborne Science Program: NASA Stratospheric Platforms

    Science.gov (United States)

    Curry, Robert E.

    2010-01-01

    The National Aeronautics and Space Administration conducts a wide variety of remote sensing projects using several unique aircraft platforms. These vehicles have been selected and modified to provide capabilities that are particularly important for geophysical research, in particular, routine access to very high altitudes, long range, long endurance, precise trajectory control, and the payload capacity to operate multiple, diverse instruments concurrently. While the NASA program has been in operation for over 30 years, new aircraft and technological advances that will expand the capabilities for airborne observation are continually being assessed and implemented. This presentation will review the current state of NASA's science platforms, recent improvements and new missions concepts as well as provide a survey of emerging technologies unmanned aerial vehicles for long duration observations (Global Hawk and Predator). Applications of information technology that allow more efficient use of flight time and the ability to rapidly reconfigure systems for different mission objectives are addressed.

  1. The National Airborne Field Experiment Data Sets

    DEFF Research Database (Denmark)

    Walker, J. P.; Balling, Jan E.; Bell, M.;

    2007-01-01

    experiments in well instrumented basins together with intensive ground and airborne measurements of the appropriate type and spatial/temporal resolution. While the data collected have a specific focus on soil moisture, they are applicable to a wide range of hydrologic activities. The NAFE'05 experiment was...... undertaken in the Goulburn River catchment (New South Wales, Australia) during November 2005, with the objective of providing high resolution data for process level understanding of soil moisture retrieval, scaling and data assimilation. The NAFE'06 experiment was undertaken in the Murrumbidgee catchment...... (NSW, Australia) during November 2006, with the objective of providing data for SMOS (Soil Moisture and Ocean Salinity; a dedicated soil moisture satellite to be launched in 2008) like soil moisture retrieval, downscaling and data assimilation. To meet these objectives, the Polarimetric L...

  2. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days

    Science.gov (United States)

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p air pollution in Beijing. PMID:27148180

  3. NASA Langley Airborne High Spectral Resolution Lidar Instrument Description

    Science.gov (United States)

    Harper, David B.; Cook, Anthony; Hostetler, Chris; Hair, John W.; Mack, Terry L.

    2006-01-01

    NASA Langley Research Center (LaRC) recently developed the LaRC Airborne High Spectral Resolution Lidar (HSRL) to make measurements of aerosol and cloud distribution and optical properties. The Airborne HSRL has undergone as series of test flights and was successfully deployed on the Megacity Initiative: Local and Global Research Observations (MILAGRO) field mission in March 2006 (see Hair et al. in these proceedings). This paper provides an overview of the design of the Airborne HSRL and descriptions of some key subsystems unique to this instrument.

  4. Airborne system for mapping and tracking extended gamma ray sources

    International Nuclear Information System (INIS)

    An airborne system was developed for mapping and tracking extended sources of airborne or terrestrially distributed γ-ray emitters. The system records 300 channel γ-ray spectral data every three seconds on magnetic tape. Computer programs have been written to isolate the contribution from the particular radionuclide of interest. Aircraft position as sensed by a microwave ranging system is recorded every second on magnetic tape. Measurements of airborne stack releases of 41A concentrations versus time or aircraft position agree well with computer code predictions

  5. Carbon black vs. black carbon and other airborne materials containing elemental carbon: Physical and chemical distinctions

    International Nuclear Information System (INIS)

    Airborne particles containing elemental carbon (EC) are currently at the forefront of scientific and regulatory scrutiny, including black carbon, carbon black, and engineered carbon-based nanomaterials, e.g., carbon nanotubes, fullerenes, and graphene. Scientists and regulators sometimes group these EC-containing particles together, for example, interchangeably using the terms carbon black and black carbon despite one being a manufactured product with well-controlled properties and the other being an undesired, incomplete-combustion byproduct with diverse properties. In this critical review, we synthesize information on the contrasting properties of EC-containing particles in order to highlight significant differences that can affect hazard potential. We demonstrate why carbon black should not be considered a model particle representative of either combustion soots or engineered carbon-based nanomaterials. Overall, scientific studies need to distinguish these highly different EC-containing particles with care and precision so as to forestall unwarranted extrapolation of properties, hazard potential, and study conclusions from one material to another. -- Highlights: •Major classes of elemental carbon-containing particles have distinct properties. •Despite similar names, carbon black should not be confused with black carbon. •Carbon black is distinguished by a high EC content and well-controlled properties. •Black carbon particles are characterized by their heterogenous properties. •Carbon black is not a model particle representative of engineered nanomaterials. -- This review demonstrates the significant physical and chemical distinctions between elemental carbon-containing particles e.g., carbon black, black carbon, and engineered nanomaterials

  6. Endotoxin in Size-Separated Metal Working Fluid Aerosol Particles.

    Science.gov (United States)

    Dahlman-Höglund, Anna; Lindgren, Åsa; Mattsby-Baltzer, Inger

    2016-08-01

    Patients with airway symptoms working in metal working industries are increasing, despite efforts to improve the environmental air surrounding the machines. Our aim was to analyse the amount of endotoxin in size-separated airborne particles of metal working fluid (MWF) aerosol, by using the personal sampler Sioutas cascade impactor, to compare filter types, and to compare the concentration of airborne endotoxin to that of the corresponding MWFs. In a pilot field study, aerosols were collected in two separate machine halls on totally 10 occasions, using glass fibre and polytetrafluoroethylene (PTFE) filters in parallel at each station. Airborne endotoxin was distributed over all size fractions. While a major part was found in the largest size fraction (72%, 2.5-10 µm), up to 8% of the airborne endotoxin was detected in the smallest size fraction (efficiency of the filter types, a significantly higher median endotoxin level was found with glass fibres filters collecting the largest particle-size fraction (1.2-fold) and with PTFE filters collecting the smallest ones (5-fold). The levels of endotoxin in the size-separated airborne particle fractions correlated to those of the MWFs supporting the aerosol-generating machines. Our study indicates that a significant part of inhalable aerosols of MWFs consists of endotoxin-containing particles below the size of intact bacteria, and thus small enough to readily reach the deepest part of the lung. Combined with other chemical irritants of the MWF, exposure to MWF aerosols containing endotoxin pose a risk to respiratory health problems. PMID:27268595

  7. Polarization resolved angular optical scattering of aerosol particles

    Science.gov (United States)

    Redding, B.; Pan, Y.; Wang, C.; Videen, G.; Cao, Hui

    2014-05-01

    Real-time detection and identification of bio-aerosol particles are crucial for the protection against chemical and biological agents. The strong elastic light scattering properties of airborne particles provides a natural means for rapid, non-invasive aerosol characterization. Recent theoretical predictions suggested that variations in the polarization dependent angular scattering cross section could provide an efficient means of classifying different airborne particles. In particular, the polarization dependent scattering cross section of aggregate particles is expected to depend on the shape of the primary particles. In order to experimentally validate this prediction, we built a high throughput, sampling system, capable of measuring the polarization resolved angular scattering cross section of individual aerosol particles flowing through an interrogating volume with a single shot of laser pulse. We calibrated the system by comparing the polarization dependent scattering cross section of individual polystyrene spheres with that predicted by Mie theory. We then used the system to study different particles types: Polystyrene aggregates composed 500 nm spheres and Bacillus subtilis (BG, Anthrax simulant) spores composed of elongated 500 nm × 1000 nm cylinder-line particles. We found that the polarization resolved scattering cross section depends on the shape of the constituent elements of the aggregates. This work indicates that the polarization resolved scattering cross section could be used for rapid discrimination between different bio-aerosol particles.

  8. Airborne forward pointing UV Rayleigh lidar for remote clear air turbulence (CAT) detection: system design and performance

    CERN Document Server

    Vrancken, Patrick; Ehret, Gerhard; Barny, Hervé; Rondeau, Philippe; Veerman, Henk

    2016-01-01

    A high-performance airborne UV Rayleigh lidar system was developed within the European project DELICAT. With its forward-pointing architecture it aims at demonstrating a novel detection scheme for clear air turbulence (CAT) for an aeronautics safety application. Due to its occurrence in clear and clean air at high altitudes (aviation cruise flight level), this type of turbulence evades microwave radar techniques and in most cases coherent Doppler lidar techniques. The present lidar detection technique relies on air density fluctuations measurement and is thus independent of backscatter from hydrometeors and aerosol particles. The subtle air density fluctuations caused by the turbulent air flow demand exceptionally high stability of the setup and in particular of the detection system. This paper describes an airborne test system for the purpose of demonstrating this technology and turbulence detection method: a high-power UV Rayleigh lidar system is installed on a research aircraft in a forward-looking configu...

  9. Airborne Dust, "The Good Guy or the Bad Guy": How Much do We Know?

    Science.gov (United States)

    Tsay, Si-Chee

    2010-01-01

    Processes in generating, transporting, and dissipating the airborne dust particles are global phenomena -African dust regularly reaching the Alps; Asian dust seasonally crossing the Pacific into North America, and ultimately the Atlantic into Europe. One of the vital biogeochemical roles dust storms play in Earth's ecosystem is routinely mobilizing mineral dust, as a source of iron, from deserts into oceans for fertilizing the growth of phytoplankton -the basis of the oceanic food chain. Similarly, these dust-laden airs also supply crucial nutrients for the soil of tropical rain forests, the so-called womb of life that hosts 50-90% of the species on Earth. With massive amounts of dust lifted from desert regions and injected into the atmosphere, however, these dust storms often affect daily activities in dramatic ways: pushing grit through windows and doors, forcing people to stay indoors, causing breathing problems, reducing visibility and delaying flights, and by and large creating chaos. Thus, both increasing and decreasing concentrations of doses result in harmful biological effects; so do the airborne dust particles to our Living Earth. Since 1997 NASA has been successfully launching a series of satellites - the Earth Observing System - to intensively study, and gain a better understanding of, the Earth as an integrated system. Through participation in many satellite remote-sensing/retrieval and validation projects over the years, we have gradually developed and refined the SMART (Surface-sensing Measurements for Atmospheric Radiative Transfer) and COMMIT (Chemical, Optical & Microphysical Measurements of In-situ Troposphere) mobile observatories, a suite of surface remote sensing and in-situ instruments that proved to be vital in providing high temporal measurements, which complement the satellite observations. In this talk, we will present SMART-COMMIT which has played key roles, serving as network or supersite, in major international research projects such

  10. Particle therapy

    Energy Technology Data Exchange (ETDEWEB)

    Raju, M.R.

    1993-09-01

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics.

  11. Particle therapy

    International Nuclear Information System (INIS)

    Particle therapy has a long history. The experimentation with particles for their therapeutic application got started soon after they were produced in the laboratory. Physicists played a major role in proposing the potential applications in radiotherapy as well as in the development of particle therapy. A brief review of the current status of particle radiotherapy with some historical perspective is presented and specific contributions made by physicists will be pointed out wherever appropriate. The rationale of using particles in cancer treatment is to reduce the treatment volume to the target volume by using precise dose distributions in three dimensions by using particles such as protons and to improve the differential effects on tumors compared to normal tissues by using high-LET radiations such as neutrons. Pions and heavy ions combine the above two characteristics

  12. Advances and perspectives in bathymetry by airborne lidar

    Science.gov (United States)

    Zhou, Guoqing; Wang, Chenxi; Li, Mingyan; Wang, Yuefeng; Ye, Siqi; Han, Caiyun

    2015-12-01

    In this paper, the history of the airborne lidar and the development stages of the technology are reviewed. The basic principle of airborne lidar and the method of processing point-cloud data were discussed. At present, single point laser scanning method is widely used in bathymetric survey. Although the method has high ranging accuracy, the data processing and hardware system is too much complicated and expensive. For this reason, this paper present a kind of improved dual-frequency method for bathymetric and sea surface survey, in this method 176 units of 1064nm wavelength laser has been used by push-broom scanning and due to the airborne power limits still use 532nm wavelength single point for bathymetric survey by zigzag scanning. We establish a spatial coordinates for obtaining the WGS-84 of point cloud by using airborne POS system.

  13. Airborne Wide Area Imager for Wildfire Mapping and Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An advanced airborne imaging system for fire detection/mapping is proposed. The goal of the project is to improve control and management of wildfires in order to...

  14. Airborne Wide Area Imager for Wildfire Mapping and Detection Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An autonomous airborne imaging system for earth science research, disaster response, and fire detection is proposed. The primary goal is to improve information to...

  15. A Web-Based Airborne Remote Sensing Telemetry Server Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A Web-based Airborne Remote Sensing Telemetry Server (WARSTS) is proposed to integrate UAV telemetry and web-technology into an innovative communication, command,...

  16. Airborne Gravity: NGS' Gravity Data for ES03 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maryland, Pennsylvania, New Jersey, West Virginia, Virginia, Delaware, and the Atlantic Ocean collected in 2013 over 1 survey. This data...

  17. Airborne Gravity: NGS' Gravity Data for EN04 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Michigan and Lake Huron collected in 2012 over 1 survey. This data set is part of the Gravity for the Re-definition of the American...

  18. Airborne Gravity: NGS' Gravity Data for EN08 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Vermont, New Hampshire, Massachusettes, Maine, and Canada collected in 2013 over 1 survey. This data set is part of the Gravity...

  19. Airborne Gravity: NGS' Gravity Data for EN05 (2012)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Minnesota, Wisconsin, and Michigan collected in 2012 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  20. Airborne Gravity: NGS' Gravity Data for CS06 (2012 & 2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas collected in 2012 & 2013 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  1. Airborne Gravity: NGS' Gravity Data for ES01 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Florida, the Bahamas, and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the Gravity for the Re-definition...

  2. Airborne Gravity: NGS' Gravity Data for PN01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for California and Oregon collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical...

  3. Airborne Gravity: NGS' Gravity Data for AS02 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  4. Airborne Gravity: NGS' Gravity Data for CN03 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2014 over one survey. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  5. Airborne Gravity: NGS' Gravity Data for EN01 (2011)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Canada, and Lake Ontario collected in 2011 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  6. Airborne Gravity: NGS' Gravity Data for CS03 (2009)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Texas and Louisiana collected in 2009 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  7. Airborne Gravity: NGS' Gravity Data for EN06 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Maine, Canada, and the Atlantic Ocean collected in 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the...

  8. Airborne Gravity: NGS' Gravity Data for EN09 (2016)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Massachusetts, Connecticut, Rhode Island, New Hampshire, New York, and the Atlantic Ocean collected in 2012 over 1 survey. This data set...

  9. Airborne Gravity: NGS' Gravity Data for CS01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alabama and Florida collected in 2008 over 1 survey. This data set is part of the Gravity for the Re-definition of the American Vertical...

  10. Airborne Gravity: NGS' Gravity Data for AN03 (2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2010 and 2012 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  11. Airborne Gravity: NGS' Gravity Data for TS01 (2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Puerto Rico and the Virgin Islands collected in 2009 over 1 survey. This data set is part of the Gravity for the Re-definition of the...

  12. Airborne software tests on a fully virtual platform

    OpenAIRE

    Randimbivololona, Famantanantsoa; Brahmi, Abderrahmane; Meur, Philippe Le

    2012-01-01

    This paper presents the early deployment of a fully virtual platform to perform the tests of certified airborne software. This is an alternative to the current approach based on the use of dedicated hardware platforms.

  13. Thermal Mapping Airborne Simulator for Small Satellite Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A high performance, inexpensive, airborne simulator that will serve as the prototype for a small satellite based imaging system capable of mapping thermal anomalies...

  14. Airborne Gravity: NGS' Gravity Data for EN10 (2013)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for New York, Pennsylvania, New Jersey, Connecticut and the Atlantic Ocean collected in 2013 over 1 survey. This data set is part of the...

  15. Airborne Magnetic Trackline and Survey Data (Vector and Scalar Observations)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA National Centers for Environmental Information (formerly National Geophysical Data Center) receive airborne magnetic survey data from US and non-US...

  16. Airborne Gravity: NGS' Gravity Data for CN02 (2013 & 2014)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Nebraska collected in 2013 & 2014 over 3 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical...

  17. Research on airborne infrared leakage detection of natural gas pipeline

    Science.gov (United States)

    Tan, Dongjie; Xu, Bin; Xu, Xu; Wang, Hongchao; Yu, Dongliang; Tian, Shengjie

    2011-12-01

    An airborne laser remote sensing technology is proposed to detect natural gas pipeline leakage in helicopter which carrying a detector, and the detector can detect a high spatial resolution of trace of methane on the ground. The principle of the airborne laser remote sensing system is based on tunable diode laser absorption spectroscopy (TDLAS). The system consists of an optical unit containing the laser, camera, helicopter mount, electronic unit with DGPS antenna, a notebook computer and a pilot monitor. And the system is mounted on a helicopter. The principle and the architecture of the airborne laser remote sensing system are presented. Field test experiments are carried out on West-East Natural Gas Pipeline of China, and the results show that airborne detection method is suitable for detecting gas leak of pipeline on plain, desert, hills but unfit for the area with large altitude diversification.

  18. Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon

    International Nuclear Information System (INIS)

    Concentrations and vertical profiles of various fractions of airborne particulate matter (suspended particulate matter (SPM), PM10 and PM2.5) have been measured over the first three metres from ground in a street canyon. Measurements were carried out using automated near real-time apparatus called the Kinetic Sequential Sampling (KSS) system. KSS system is essentially an electronically-controlled lift carrying a real-time particle monitor for sampling air sequentially, at different heights within the breathing zone, which includes all heights within the surface layer of a street canyon at which people may breathe. Data is automatically logged at the different receptor levels, for the determination of the average vertical concentration profile of airborne particulate matter. For measuring the airborne particle concentration, a Grimm Dust Monitor 1.104/5 was used. The recorded data also allows for time series analysis of airborne particulate matter concentration at different heights. Time series data and hourly-average vertical concentration profiles in the boundary layer of the confines of a street are thought to be mainly determined by traffic emissions and traffic associated processes. Hence the measured data were compared with results of a street canyon emission-dispersion model in time and space. This Street Level Air Quality (SLAQ) model employs the plume-box technique and includes modules for simulating vehicle-generated effects such as thermally- and mechanically-generated turbulence and resuspension of road dust. Environmental processes, such as turbulence resulting from surface sensible heat and the formation of sulphate aerosol from sulphur dioxide exhaust emissions, are taken into account. The paper presents an outline description of the measuring technique and model used, and a comparison of the measured and modelled data

  19. Airborne study of a multi-layer aerosol structure in the eastern Mediterranean observed with the airborne polarized lidar ALEX during a STAAARTE campaign (7 June 1997

    Directory of Open Access Journals (Sweden)

    F. Dulac

    2003-01-01

    Full Text Available We present a case study of tropospheric aerosol transport in the eastern Mediterranean, based on airborne measurements obtained south of Greece on 7 June 1997. Airborne observations (backscattering lidar at 0.532 mm with polarization measurements, in situ particle counters/sizers, and standard meteorological measurements are complemented by monitoring with Meteosat visible and infrared images and a ground-based sun-photometer, air-mass back-trajectory computations, and meteorological analyses. As already observed from ground-based lidars in the Mediterranean region, the vertical structure of the lower troposphere appears complex, with a superposition of several turbid layers from the surface up to the clean free troposphere which is found here above 2 to 4 km in altitude. The aircraft observations also reveal an important horizontal variability. We identify the presence of depolarising dust from northern Africa in the most elevated turbid layer, which is relatively humid and has clouds embedded. The lowermost troposphere likely contains pollution water-soluble aerosols from eastern continental Greece, and an intermediate layer is found with a probable mixture of the two types of particles. The column optical depth at 0.55 mm estimated from Meteosat is in the range 0.15-0.35. It is used to constrain the aerosol backscattering-to-extinction ratio needed for the backscattering lidar data inversion. The column value of 0.017 sr -1 is found applicable to the various aerosol layers and allows us to derive the aerosol extinction vertical profile. The aerosol extinction coefficient ranges from 0.03 km-1 in the lower clean free troposphere to more than 0.25 km-1 in the marine boundary layer. Values are -1 in the elevated dust layer but its thickness makes it dominate the aerosol optical depth at some places.

  20. Particle physics

    International Nuclear Information System (INIS)

    Provides step-by-step derivations. Contains numerous tables and diagrams. Supports learning and teaching with numerous worked examples, questions and problems with answers. Sketches also the historical development of the subject. This textbook teaches particle physics very didactically. It supports learning and teaching with numerous worked examples, questions and problems with answers. Numerous tables and diagrams lead to a better understanding of the explanations. The content of the book covers all important topics of particle physics: Elementary particles are classified from the point of view of the four fundamental interactions. The nomenclature used in particle physics is explained. The discoveries and properties of known elementary particles and resonances are given. The particles considered are positrons, muon, pions, anti-protons, strange particles, neutrino and hadrons. The conservation laws governing the interactions of elementary particles are given. The concepts of parity, spin, charge conjugation, time reversal and gauge invariance are explained. The quark theory is introduced to explain the hadron structure and strong interactions. The solar neutrino problem is considered. Weak interactions are classified into various types, and the selection rules are stated. Non-conservation of parity and the universality of the weak interactions are discussed. Neutral and charged currents, discovery of W and Z bosons and the early universe form important topics of the electroweak interactions. The principles of high energy accelerators including colliders are elaborately explained. Additionally, in the book detectors used in nuclear and particle physics are described. This book is on the upper undergraduate level.

  1. AirborneWind Energy: Airfoil-Airmass Interaction

    OpenAIRE

    Zanon, Mario; Gros, Sebastien; Meyers, Johan; Diehl, Moritz

    2014-01-01

    The Airborne Wind Energy paradigm proposes to generate energy by flying a tethered airfoil across the wind flow at a high velocity. While Airborne Wind Energy enables flight in higher-altitude, stronger wind layers, the extra drag generated by the tether motion imposes a significant limit to the overall system efficiency. To address this issue, two airfoils with a shared tether can reduce overall system drag. A study proposed in Zanon et al. (2013) confirms this claim by showing that, in the ...

  2. Airborne geophysical mapping of environmental features - examples from Northern Ireland

    OpenAIRE

    Young, Michael; Appleton, James; Beamish, David; Cuss, Robert; Van Dam, Christiaan; Jones, David; Lahti, Mari; Miles, Jon; Rawlins, Barry; Scheib, Catherine

    2007-01-01

    The Geological Survey of Northern Ireland completed a low-level regional airborne geophysical survey of Northern Ireland during 2005-6 as part of the Tellus Project. The survey was flown by the Joint Airborne Geoscience Capability, a partnership of the British Geological Survey and the Geological Survey of Finland. The aircraft, a De Havilland Twin Otter, was equipped with two magnetometer sensors, a four-frequency electromagnetic system and a 256-channel gamma-ray spectrometer. The traverse-...

  3. User definition and mission requirements for unmanned airborne platforms, revised

    Science.gov (United States)

    Kuhner, M. B.; Mcdowell, J. R.

    1979-01-01

    The airborne measurement requirements of the scientific and applications experiment user community were assessed with respect to the suitability of proposed strawman airborne platforms. These platforms provide a spectrum of measurement capabilities supporting associated mission tradeoffs such as payload weight, operating altitude, range, duration, flight profile control, deployment flexibility, quick response, and recoverability. The results of the survey are used to examine whether the development of platforms is warranted and to determine platform system requirements as well as research and technology needs.

  4. Passive dust collectors for assessing airborne microbial material

    OpenAIRE

    Adams, Rachel I.; Tian, Yilin; Taylor, John W; Bruns, Thomas D.; Hyvärinen, Anne; Täubel, Martin

    2015-01-01

    Background Settled airborne dust is used as a surrogate for airborne exposure in studies that explore indoor microbes. In order to determine whether detecting differences in dust environments would depend on the sampler type, we compared different passive, settled dust sampling approaches with respect to displaying qualitative and quantitative aspects of the bacterial and fungal indoor microbiota. Results Settled dust sampling approaches—utilizing plastic petri dishes, TefTex material, and el...

  5. On the Atmospheric Correction of Antarctic Airborne Hyperspectral Data

    OpenAIRE

    Martin Black; Andrew Fleming; Teal Riley; Graham Ferrier; Peter Fretwell; John McFee; Stephen Achal; Alejandra Umana Diaz

    2014-01-01

    The first airborne hyperspectral campaign in the Antarctic Peninsula region was carried out by the British Antarctic Survey and partners in February 2011. This paper presents an insight into the applicability of currently available radiative transfer modelling and atmospheric correction techniques for processing airborne hyperspectral data in this unique coastal Antarctic environment. Results from the Atmospheric and Topographic Correction version 4 (ATCOR-4) package reveal absolute reflectan...

  6. Association of airborne Aspergillus with asthma exacerbation in Southern Pakistan

    OpenAIRE

    Zubairi, Ali Bin Sarwar; Azam, Iqbal; Awan, Safia; Zafar, Afia; Imam, Asif Ali

    2014-01-01

    Background Exposure to airborne fungi has been related with exacerbation of asthma in adults and children leading to increased outpatient, emergency room visits, and hospitalizations. Hypersensitivity to these airborne fungi may be an important initial predisposing factor in the development and exacerbation of asthma. Objective This study was conducted to determine an association between fungal types and spore concentrations with the risk of asthma exacerbation in adults. Methods This cross-s...

  7. The next generation airborne polarimetric Doppler weather radar

    OpenAIRE

    Vivekanandan, J.; W.-C. Lee; E. Loew; Salazar, J. L.; Grubišić, V.; J. Moore; Tsai, P

    2014-01-01

    Results from airborne field deployments emphasized the need to obtain concurrently high temporal and spatial resolution measurements of 3-D winds and microphysics. A phased array radar on an airborne platform using dual-polarization antenna has the potential for retrieving high resolution, collocated 3-D winds and microphysical measurements. Recently, ground-based phased array radar (PAR) demonstrated the high time resolution estimation of accurate Doppler velocity and reflecti...

  8. The next generation airborne polarimetric Doppler weather radar

    OpenAIRE

    Vivekanandan, J.; W.-C. Lee; E. Loew; Salazar, J. L.; Grubišić, V.; J. Moore; Tsai, P

    2014-01-01

    Results from airborne field deployments emphasized the need to obtain concurrently high temporal and spatial resolution measurements of 3-D winds and microphysics. A phased array radar on an airborne platform using dual-polarization antenna has the potential for retrieving high-resolution, collocated 3-D winds and microphysical measurements. Recently, ground-based phased array radar (PAR) has demonstrated the high time-resolution estimation of accurate Doppler velocity and...

  9. Levels and spatial distribution of airborne chemical elements in a heavy industrial area located in the north of Spain.

    Science.gov (United States)

    Lage, J; Almeida, S M; Reis, M A; Chaves, P C; Ribeiro, T; Garcia, S; Faria, J P; Fernández, B G; Wolterbeek, H T

    2014-01-01

    The adverse health effects of airborne particles have been subjected to intense investigation in recent years; however, more studies on the chemical characterization of particles from pollution emissions are needed to (1) identify emission sources, (2) better understand the relative toxicity of particles, and (3) pinpoint more targeted emission control strategies and regulations. The main objective of this study was to assess the levels and spatial distribution of airborne chemical elements in a heavy industrial area located in the north of Spain. Instrumental and biomonitoring techniques were integrated and analytical methods for k0 instrumental neutron activation analysis and particle-induced x-ray emission were used to determine element content in aerosol filters and lichens. Results indicated that in general local industry contributed to the emissions of As, Sb, Cu, V, and Ni, which are associated with combustion processes. In addition, the steelwork emitted significant quantities of Fe and Mn and the cement factory was associated with Ca emissions. The spatial distribution of Zn and Al also indicated an important contribution of two industries located outside the studied area. PMID:25072718

  10. Modeling radiometric effects on airborne multispectral videography

    Science.gov (United States)

    Fischer, Robert L., Jr.

    Observing the Earth through remote technologies allows for the extraction of synoptic data that is difficult to match with ground-based measurements. Over time, remote sensing instruments and associated processing algorithms have improved in both spectral and spatial resolution. Currently, commercial spaceborne and airborne imaging systems are capable of producing data at one-meter spatial resolution. To fully utilize these improved data sources, it is critical that processing and analysis algorithms keep pace with instrument advances. This dissertation describes models and algorithms used to correct high spatial resolution airborne imagery for radiometric effects. These radiometric effects include topography and view-angle (also termed bidirectional reflectance). Also studied were radiometric and geometric calibration issues. The sensor used for this study was a four camera off-the-shelf system which is capable of collecting imagery in the visible through near-infrared (0.4-1.0 μm) spectral region. Three topographic correction models were applied to one- meter spatial resolution imagery collected over Fort Huachuca, Arizona, in October 1998. The model proposed by Ekstrand (1996) was successful in reducing topographic effects found in the semidesert grassland and Madrean forest communities. Spectral signature coefficient of variation, histogram range, and histogram normality all showed improvement after correction for both classes. Additionally, the optimal spatial resolution of the supporting Digital Elevation Model (DEM) was found to be 40 meters. This disagrees with previous research stating that the imagery to be corrected and the supporting DEM should be the same spatial resolution. Two bidirectional reflectance models were applied to 1.5 meter spatial resolution imagery collected over Parramore Island, Virginia, in May 1999. A modified version of a model proposed by Irons et al. (1991) was found to substantially reduce bidirectional reflectance effects over

  11. Miniaturized Airborne Imaging Central Server System

    Science.gov (United States)

    Sun, Xiuhong

    2011-01-01

    In recent years, some remote-sensing applications require advanced airborne multi-sensor systems to provide high performance reflective and emissive spectral imaging measurement rapidly over large areas. The key or unique problem of characteristics is associated with a black box back-end system that operates a suite of cutting-edge imaging sensors to collect simultaneously the high throughput reflective and emissive spectral imaging data with precision georeference. This back-end system needs to be portable, easy-to-use, and reliable with advanced onboard processing. The innovation of the black box backend is a miniaturized airborne imaging central server system (MAICSS). MAICSS integrates a complex embedded system of systems with dedicated power and signal electronic circuits inside to serve a suite of configurable cutting-edge electro- optical (EO), long-wave infrared (LWIR), and medium-wave infrared (MWIR) cameras, a hyperspectral imaging scanner, and a GPS and inertial measurement unit (IMU) for atmospheric and surface remote sensing. Its compatible sensor packages include NASA s 1,024 1,024 pixel LWIR quantum well infrared photodetector (QWIP) imager; a 60.5 megapixel BuckEye EO camera; and a fast (e.g. 200+ scanlines/s) and wide swath-width (e.g., 1,920+ pixels) CCD/InGaAs imager-based visible/near infrared reflectance (VNIR) and shortwave infrared (SWIR) imaging spectrometer. MAICSS records continuous precision georeferenced and time-tagged multisensor throughputs to mass storage devices at a high aggregate rate, typically 60 MB/s for its LWIR/EO payload. MAICSS is a complete stand-alone imaging server instrument with an easy-to-use software package for either autonomous data collection or interactive airborne operation. Advanced multisensor data acquisition and onboard processing software features have been implemented for MAICSS. With the onboard processing for real time image development, correction, histogram-equalization, compression, georeference, and

  12. Mortality Risk Associated with Short-Term Exposure to Traffic Particles and Sulfates

    OpenAIRE

    Maynard, Dan; Gryparis, Alexandros; Coull, Brent Andrew; Schwartz, Joel David

    2007-01-01

    Background: Many studies have shown that airborne particles are associated with increased risk of death, but attention has more recently focused on the differential toxicity of particles from different sources. Geographic information system (GIS) approaches have recently been used to improve exposure assessment, particularly for traffic particles, but only for long-term exposure. Objectives: We analyzed approximately 100,000 deaths from all, cardiovascular, and respiratory causes for the year...

  13. The Origin And Spread Of Airborne Bacteria

    Science.gov (United States)

    Henderson-Begg, S. K.; Moffett, B. F.

    2009-12-01

    wind speed and direction, marine organisms would have been airborne for at least 16 hours in the Thursley sample and for at least 4 hours in the East London sample. The origin and spread of airborne organisms warrants further investigation.

  14. High Resolution Airborne Shallow Water Mapping

    Science.gov (United States)

    Steinbacher, F.; Pfennigbauer, M.; Aufleger, M.; Ullrich, A.

    2012-07-01

    In order to meet the requirements of the European Water Framework Directive (EU-WFD), authorities face the problem of repeatedly performing area-wide surveying of all kinds of inland waters. Especially for mid-sized or small rivers this is a considerable challenge imposing insurmountable logistical efforts and costs. It is therefore investigated if large-scale surveying of a river system on an operational basis is feasible by employing airborne hydrographic laser scanning. In cooperation with the Bavarian Water Authority (WWA Weilheim) a pilot project was initiated by the Unit of Hydraulic Engineering at the University of Innsbruck and RIEGL Laser Measurement Systems exploiting the possibilities of a new LIDAR measurement system with high spatial resolution and high measurement rate to capture about 70 km of riverbed and foreland for the river Loisach in Bavaria/Germany and the estuary and parts of the shoreline (about 40km in length) of lake Ammersee. The entire area surveyed was referenced to classic terrestrial cross-section surveys with the aim to derive products for the monitoring and managing needs of the inland water bodies forced by the EU-WFD. The survey was performed in July 2011 by helicopter and airplane and took 3 days in total. In addition, high resolution areal images were taken to provide an optical reference, offering a wide range of possibilities on further research, monitoring, and managing responsibilities. The operating altitude was about 500 m to maintain eye-safety, even for the aided eye, the airspeed was about 55 kts for the helicopter and 75 kts for the aircraft. The helicopter was used in the alpine regions while the fixed wing aircraft was used in the plains and the urban area, using appropriate scan rates to receive evenly distributed point clouds. The resulting point density ranged from 10 to 25 points per square meter. By carefully selecting days with optimum water quality, satisfactory penetration down to the river bed was achieved

  15. Overview of the Airborne Tropical TRopopause EX

    Science.gov (United States)

    Singh, Hanwant B.; Jensen, Eric J.; Pfister, Leonhard

    2014-01-01

    The NASA Airborne Tropical TRopopause EXperiment (ATTREX) is a series of airborne campaigns focused on understanding physical processes in the Tropical Tropopause Layer (TTL) and their role in atmospheric chemistry and climate. ATTREX is using the high-altitude, long-duration NASA Global Hawk Unmanned Air System to make in situ and remote-sensing measurements spanning the Pacific. A particular ATIREX emphasis is to better understand the dehydration of air as it passes through the cold tropical tropopause region. The ATTREX payload contains 12 in situ and remote sensing instruments that measure water vapor, clouds, multiple gaseous tracers (CO, CO2, CH4, NMHC, SF6, CFCs, N2O), reactive chemical compounds (O3, BrO, NO2), meteorological parameters, and radiative fluxes. ATTREX flight series have been conducted in the fall of 2011 from Armstrong Flight Research Center (AFRC) in California, in the winter of 2013 from AFRC, and in the winter/spring of 2014 from Guam. The first two f light series provided extensive sampling of the central and eastern Pacific, whereas the last flight series permitted sampling in the western Pacific. The sampling strategy has primarily involved repeated ascents and descents through the depth of the TTL (about 13-19 km). Over 100 TTL profiles were obtained on each flight series. The ATTREX dataset includes TTL water vapor measurements with unprecedented accuracy, ice crystal size distributions and habits. The cloud and water measurements provide unique information about TTL cloud formation, the persistence of supersaturation with respect to ice, and dehydration. The plethora of tracers measured on the Global Hawk flights are providing unique information about TTL transport pathways and time scales. The meteorological measurements are revealing dynamical phenomena controlling the TTL thermal structure, and the radiation measurements are providing information about heating rates associated with TTL clouds and water vapor. This presentation

  16. Air-borne geophysical prospecting using Helicopter

    International Nuclear Information System (INIS)

    The air-borne geophysical prospecting can investigate geological properties widely and quickly. In this investigation, we applied 3-types of geophysical prospecting, those were Electro-magnetic, Magnetic, and Radiometric method. We can measure apparent resistivity of ground on Electro-magnetic method, radioactivity on Radiometric method, and magnetization on Magnetic method. We can measure also resistivity distribution in the depth direction by measuring electro magnetic response to various frequencies. Conducting measurement, analysis and interpretation of above-mentioned 3-geophysical properties, we solved the geological structure from the distribution of geophysical properties in this area. We also tried to study and discuss comparison and correspondence with the present geological map. The air-borne Electro-magnetic method showed that the regions distributed with Sarabetsu Formation and Isachi Formation, which mainly consists of sandstone and conglomerate, have high apparent resistivity about 30-500 Ω·m. The regions distributed with Kowama Formation, Wakkanai Formation and Mashihoro Formation (Upper Mudstone Layer), which mainly consists of mudrock, have low resistivity 1-10 Ω·m in the depth over than dozens of meters, though some area dozens of meter below the surface have high resistivity about 50-200 Ω·m. Magnetic method showed that magnetization tends to decrease from southwest to northeast and this result corresponded with previous large scale magnetic intensity map (Geological Survey of Japan, 1992). High magnetic anomaly area, which spread from north-northwest to south-southeast, is found on a boundary between Sarabetsu and Isachi formation. Mashihoro formation, which is located east side of Nukanan fault, has also high magnetic anomaly area. Radiometric method showed that high radioactivity areas are distributed in alluvial depressions along Tenshio river and small river in the hill, while low radioactivity area are distributed in Tertiary

  17. Potential of Airborne Imaging Spectroscopy at Czechglobe

    Science.gov (United States)

    Hanuš, J.; Fabiánek, T.; Fajmon, L.

    2016-06-01

    Ecosystems, their services, structures and functions are affected by complex environmental processes, which are both natural and human-induced and globally changing. In order to understand how ecosystems behave in globally changing environment, it is important to monitor the current status of ecosystems and their structural and functional changes in time and space. An essential tool allowing monitoring of ecosystems is remote sensing (RS). Many ecosystems variables are being translated into a spectral response recorded by RS instruments. It is however important to understand the complexity and synergies of the key ecosystem variables influencing the reflected signal. This can be achieved by analysing high resolution RS data from multiple sources acquired simultaneously from the same platform. Such a system has been recently built at CzechGlobe - Global Change Research Institute (The Czech Academy of Sciences). CzechGlobe has been significantly extending its research infrastructure in the last years, which allows advanced monitoring of ecosystem changes at hierarchical levels spanning from molecules to entire ecosystems. One of the CzechGlobe components is a laboratory of imaging spectroscopy. The laboratory is now operating a new platform for advanced remote sensing observations called FLIS (Flying Laboratory of Imaging Spectroscopy). FLIS consists of an airborne carrier equipped with passive RS systems. The core instrument of FLIS is a hyperspectral imaging system provided by Itres Ltd. The hyperspectral system consists of three spectroradiometers (CASI 1500, SASI 600 and TASI 600) that cover the reflective spectral range from 380 to 2450 nm, as well as the thermal range from 8 to 11.5 μm. The airborne platform is prepared for mounting of full-waveform laser scanner Riegl-Q780 as well, however a laser scanner is not a permanent part of FLIS. In 2014 the installation of the hyperspectral scanners was completed and the first flights were carried out with all

  18. Particle physics

    CERN Document Server

    Carlsmith, Duncan

    2012-01-01

    Particle Physics is the first book to connect theory and experiment in particle physics. Duncan Carlsmith provides the first accessible exposition of the standard model with sufficient mathematical depth to demystify the language of gauge theory and Feynman diagrams used by researchers in the field. Carlsmith also connects theories to past, present, and future experiments.

  19. EUFAR – European Facility for Airborne Research: Easy and Open Access to the Airborne Research Facilities and Expert Knowledge

    OpenAIRE

    Holzwarth, Stefanie; Reusen, Ils; Brown, Philip R. A.; Gerard, Elisabeth

    2015-01-01

    The European Facility for Airborne Research, EUFAR, is an Integrating Activity of the 7th Framework Programme (FP7) of the European Commission with funding covering the period 2014-2018. The current EUFAR follows three previous contracts under FP5, FP6 and FP7, and currently represents a consortium of 24 European institutions and organisations involved in airborne research. 18 small and medium size aircraft equipped with a multitude of different sensor systems are available to the European sc...

  20. Barberton-Phalaborwa airborne geophysical survey (25/78) - preliminary report on airborne radiometric data

    International Nuclear Information System (INIS)

    Forty-two uranium and mixed uranium and thorium anomalies were selected from the analogue radiometric records generated during theBarberton-Phalaborwa airborne geophysical survey. Thirty-eight of the anomalies plotted over rocks of the Timeball Hill and Daspoort Formations, and ground follow-up work is recommended for these anomalies. Two more anomalies probably originate from rocks of the Palabora Igneous Complex, another anomaly overlies a diabase intrusive, and the remaining anomaly appears related to an outlier of Ecca Group rocks

  1. Assessment of airborne dust associated with chemical plant: A case study

    Directory of Open Access Journals (Sweden)

    Pattajoshi P

    2006-01-01

    Full Text Available The process of alumina production involves refining of bauxite ore into tri-hydrated alumina (Al2O3, 3H2O by chemical method followed by process of calcinations. This method possesses various kinds of dust hazards in its work environment amongst the people involved. Poor health of industrial employees in India is due to its occupational environment (Park & Park, 1970, which is a major concern now-a-days. Attempts have been made to recognize the potential sources of airborne dust and to assess the dust load upon exposed workers at different work sites of alumina plants by comparing the observations with the standard values called ′Threshold Limit Values′ (T.L.V. assigned by the international body ACGIH (American Conference of Governmental and Industrial Hygienists, USA, and also permissible exposure limit values prescribed in the second schedule Section F of Factories Act (Amendment, 1987. Alumina plant operation includes various physical operations like crushing, grinding, conveying, loading, transporting, etc., which generate finer particles. It can cause serious health hazards on inhalation, depending upon its size, shape, constituents and duration of exposure. Out of all these parameters, concentration of respirable fraction of airborne dust (0.5 to 5.0 micron size and its free silica content have been reported to cause lung fibrosis as well as occupational disorders. In the present study, attempts have been made to make a survey of respirable fraction of the airborne dust (that remains suspended in air for quite an appreciable time associated with various operations according to job profiles. It also outlines the probable control measures in order to provide a healthy working environment. Present work aims at identifying and evaluating the degree of workplace dust with special reference to respirable fraction and for recommending suitable suggestive control measures for an effective management of occupational environment.

  2. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, A.; Hasselbach, J.; P. Lauer; Baumann, R.; Franke, K.; Gurk, C.; H. Schlager; Weingartner, E.

    2008-01-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transform...

  3. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, A.; Hasselbach, J.; P. Lauer; Baumann, R.; Franke, K.; Gurk, C.; H. Schlager; Weingartner, E.

    2007-01-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B{&}W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aerosol transfo...

  4. Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer

    OpenAIRE

    Petzold, A.; Hasselbach, J.; P. Lauer; Baumann, R.; Franke, K.; Gurk, C.; H. Schlager; Weingartner, E.

    2007-01-01

    Particle emissions from ship engines and their atmospheric transformation in the marine boundary layer (MBL) were investigated in engine test bed studies and in airborne measurements of expanding ship plumes. During the test rig studies, detailed aerosol microphysical and chemical properties were measured in the exhaust gas of a serial MAN B&W seven-cylinder four-stroke marine diesel engine under various load conditions. The emission studies were complemented by airborne aer...

  5. Analytical Methods INAA and PIXE Applied to Characterization of Airborne Particulate Matter in Bandung, Indonesia

    Directory of Open Access Journals (Sweden)

    D.D. Lestiani

    2011-08-01

    Full Text Available Urbanization and industrial growth have deteriorated air quality and are major cause to air pollution. Air pollution through fine and ultra-fine particles is a serious threat to human health. The source of air pollution must be known quantitatively by elemental characterization, in order to design the appropriate air quality management. The suitable methods for analysis the airborne particulate matter such as nuclear analytical techniques are hardly needed to solve the air pollution problem. The objectives of this study are to apply the nuclear analytical techniques to airborne particulate samples collected in Bandung, to assess the accuracy and to ensure the reliable of analytical results through the comparison of instrumental neutron activation analysis (INAA and particles induced X-ray emission (PIXE. Particle samples in the PM2.5 and PM2.5-10 ranges have been collected in Bandung twice a week for 24 hours using a Gent stacked filter unit. The result showed that generally there was a systematic difference between INAA and PIXE results, which the values obtained by PIXE were lower than values determined by INAA. INAA is generally more sensitive and reliable than PIXE for Na, Al, Cl, V, Mn, Fe, Br and I, therefore INAA data are preffered, while PIXE usually gives better precision than INAA for Mg, K, Ca, Ti and Zn. Nevertheless, both techniques provide reliable results and complement to each other. INAA is still a prospective method, while PIXE with the special capabilities is a promising tool that could contribute and complement the lack of NAA in determination of lead, sulphur and silicon. The combination of INAA and PIXE can advantageously be used in air pollution studies to extend the number of important elements measured as key elements in source apportionment.

  6. Analytical Methods INAA and PIXE Applied to Characterization of Airborne Particulate Matter in Bandung, Indonesia

    International Nuclear Information System (INIS)

    Urbanization and industrial growth have deteriorated air quality and are major cause to air pollution. Air pollution through fine and ultra-fine particles is a serious threat to human health. The source of air pollution must be known quantitatively by elemental characterization, in order to design the appropriate air quality management. The suitable methods for analysis the airborne particulate matter such as nuclear analytical techniques are hardly needed to solve the air pollution problem. The objectives of this study are to apply the nuclear analytical techniques to airborne particulate samples collected in Bandung, to assess the accuracy and to ensure the reliable of analytical results through the comparison of instrumental neutron activation analysis (INAA) and particles induced X-ray emission (PIXE). Particle samples in the PM2.5 and PM2.5-10 ranges have been collected in Bandung twice a week for 24 hours using a Gent stacked filter unit. The result showed that generally there was a systematic difference between INAA and PIXE results, which the values obtained by PIXE were lower than values determined by INAA. INAA is generally more sensitive and reliable than PIXE for Na, Al, Cl, V, Mn, Fe, Br and I, therefore INAA data are preferred, while PIXE usually gives better precision than INAA for Mg, K, Ca, Ti and Zn. Nevertheless, both techniques provide reliable results and complement to each other. INAA is still a prospective method, while PIXE with the special capabilities is a promising tool that could contribute and complement the lack of NAA in determination of lead, sulphur and silicon. The combination of INAA and PIXE can advantageously be used in air pollution studies to extend the number of important elements measured as key elements in source apportionment. (author)

  7. Honey Bees (Apis mellifera, L. as Active Samplers of Airborne Particulate Matter.

    Directory of Open Access Journals (Sweden)

    Ilaria Negri

    Full Text Available Honey bees (Apis mellifera L. are bioindicators of environmental pollution levels. During their wide-ranging foraging activity, these hymenopterans are exposed to pollutants, thus becoming a useful tool to trace the environmental contaminants as heavy metals, pesticides, radionuclides and volatile organic compounds. In the present work we demonstrate that bees can also be used as active samplers of airborne particulate matter. Worker bees were collected from hives located in a polluted postmining area in South West Sardinia (Italy that is also exposed to dust emissions from industrial plants. The area is included in an official list of sites of national interest for environmental remediation, and has been characterized for the effects of pollutants on the health of the resident population. The head, wings, hind legs and alimentary canal of the bees were investigated with Scanning Electron Microscopy coupled with X-ray spectroscopy (SEM-EDX. The analyses pointed to specific morphological and chemical features of the particulate, and resulted into the identification of three categories of particles: industry-, postmining-, and soil-derived. With the exception of the gut, all the analyzed body districts displayed inorganic particles, mostly concentrated in specific areas of the body (i.e. along the costal margin of the fore wings, the medial plane of the head, and the inner surface of the hind legs. The role of both past mining activities and the industrial activity close to the study area as sources of the particulate matter is also discussed. We conclude that honey bees are able to collect samples of the main airborne particles emitted from different sources, therefore could be an ideal tool for monitoring such a kind of pollutants.

  8. Size-resolved culturable airborne bacteria sampled in rice field, sanitary landfill, and waste incineration sites.

    Science.gov (United States)

    Heo, Yongju; Park, Jiyeon; Lim, Sung-Il; Hur, Hor-Gil; Kim, Daesung; Park, Kihong

    2010-08-01

    Size-resolved bacterial concentrations in atmospheric aerosols sampled by using a six stage viable impactor at rice field, sanitary landfill, and waste incinerator sites were determined. Culture-based and Polymerase Chain Reaction (PCR) methods were used to identify the airborne bacteria. The culturable bacteria concentration in total suspended particles (TSP) was found to be the highest (848 Colony Forming Unit (CFU)/m(3)) at the sanitary landfill sampling site, while the rice field sampling site has the lowest (125 CFU/m(3)). The closed landfill would be the main source of the observed bacteria concentration at the sanitary landfill. The rice field sampling site was fully covered by rice grain with wetted conditions before harvest and had no significant contribution to the airborne bacteria concentration. This might occur because the dry conditions favor suspension of soil particles and this area had limited personnel and vehicle flow. The respirable fraction calculated by particles less than 3.3 mum was highest (26%) at the sanitary landfill sampling site followed by waste incinerator (19%) and rice field (10%), which showed a lower level of respiratory fraction compared to previous literature values. We identified 58 species in 23 genera of culturable bacteria, and the Microbacterium, Staphylococcus, and Micrococcus were the most abundant genera at the sanitary landfill, waste incinerator, and rice field sites, respectively. An antibiotic resistant test for the above bacteria (Micrococcus sp., Microbacterium sp., and Staphylococcus sp.) showed that the Staphylococcus sp. had the strongest resistance to both antibiotics (25.0% resistance for 32 microg ml(-1) of Chloramphenicol and 62.5% resistance for 4 microg ml(-1) of Gentamicin). PMID:20623053

  9. Ultrafine particle characteristics in seven industrial plants.

    Science.gov (United States)

    Elihn, Karine; Berg, Peter

    2009-07-01

    Ultrafine particles are considered as a possible cause of some of the adverse health effects caused by airborne particles. In this study, the particle characteristics were measured in seven Swedish industrial plants, with a special focus on the ultrafine particle fraction. Number concentration, size distribution, surface area concentration, and mass concentration were measured at 10 different job activities, including fettling, laser cutting, welding, smelting, core making, moulding, concreting, grinding, sieving powders, and washing machine goods. A thorough particle characterization is necessary in workplaces since it is not clear yet which choice of ultrafine particle metric is the best to measure in relation to health effects. Job activities were given a different order of rank depending on what particle metric was measured. An especially high number concentration (130 x 10(3) cm(-3)) and percentage of ultrafine particles (96%) were found at fettling of aluminium, whereas the highest surface area concentration (up to 3800 mum(2) cm(-3)) as well as high PM10 (up to 1 mg m(-3)) and PM1 (up to 0.8 mg m(-3)) were found at welding and laser cutting of steel. The smallest geometric mean diameter (22 nm) was found at core making (geometric standard deviation: 1.9). PMID:19447849

  10. A multiprocessor airborne lidar data system

    Science.gov (United States)

    Wright, C. W.; Bailey, S. A.; Heath, G. E.; Piazza, C. R.

    A new multiprocessor data acquisition system was developed for the existing Airborne Oceanographic Lidar (AOL). This implementation simultaneously utilizes five single board 68010 microcomputers, the UNIX system V operating system, and the real time executive VRTX. The original data acquisition system was implemented on a Hewlett Packard HP 21-MX 16 bit minicomputer using a multi-tasking real time operating system and a mixture of assembly and FORTRAN languages. The present collection of data sources produce data at widely varied rates and require varied amounts of burdensome real time processing and formatting. It was decided to replace the aging HP 21-MX minicomputer with a multiprocessor system. A new and flexible recording format was devised and implemented to accommodate the constantly changing sensor configuration. A central feature of this data system is the minimization of non-remote sensing bus traffic. Therefore, it is highly desirable that each micro be capable of functioning as much as possible on-card or via private peripherals. The bus is used primarily for the transfer of remote sensing data to or from the buffer queue.

  11. Diversity and seasonal dynamics of airborne Archaea

    Directory of Open Access Journals (Sweden)

    J. Fröhlich-Nowoisky

    2014-05-01

    Full Text Available Archaea are widespread and abundant in many terrestrial and aquatic environments, accounting for up to ∼10% of the prokaryotes. Compared to Bacteria and other microorganisms, however, very little is known about the abundance, diversity, and dispersal of Archaea in the atmosphere. By DNA analysis targeting the 16S rRNA and amoA genes in samples of air particulate matter collected over one year at a continental sampling site in Germany, we obtained first insights into the seasonal dynamics of airborne Archaea. The detected Archaea were identified as Thaumarchaeota or Euryarchaeota, with soil Thaumarchaeota (group I.1b being present in all samples. The normalized species richness of Thaumarchaeota correlated positively with relative humidity and negatively with temperature. This together with an increase of bare agricultural soil surfaces may explain the diversity peaks observed in fall and winter. The detected Euryarchaeota were mainly methanogens with a low relative frequency of occurrence. A slight increase in their frequency during spring may be linked to fertilization processes in the surrounding agricultural fields. Comparison with samples from the Cape Verde islands and from other coastal and continental sites indicates that the proportions of Euryarchaeota are enhanced in coastal air, which is consistent with their suggested abundance in marine surface waters. We conclude that air transport may play an important role for the dispersal of Archaea, including ammonia-oxidizing Thaumarchaeota and methanogens. Also, anthropogenic activities might influence the atmospheric abundance and diversity of Archaea.

  12. Airborne chemistry: acoustic levitation in chemical analysis.

    Science.gov (United States)

    Santesson, Sabina; Nilsson, Staffan

    2004-04-01

    This review with 60 references describes a unique path to miniaturisation, that is, the use of acoustic levitation in analytical and bioanalytical chemistry applications. Levitation of small volumes of sample by means of a levitation technique can be used as a way to avoid solid walls around the sample, thus circumventing the main problem of miniaturisation, the unfavourable surface-to-volume ratio. Different techniques for sample levitation have been developed and improved. Of the levitation techniques described, acoustic or ultrasonic levitation fulfils all requirements for analytical chemistry applications. This technique has previously been used to study properties of molten materials and the equilibrium shape()and stability of liquid drops. Temperature and mass transfer in levitated drops have also been described, as have crystallisation and microgravity applications. The airborne analytical system described here is equipped with different and exchangeable remote detection systems. The levitated drops are normally in the 100 nL-2 microL volume range and additions to the levitated drop can be made in the pL-volume range. The use of levitated drops in analytical and bioanalytical chemistry offers several benefits. Several remote detection systems are compatible with acoustic levitation, including fluorescence imaging detection, right angle light scattering, Raman spectroscopy, and X-ray diffraction. Applications include liquid/liquid extractions, solvent exchange, analyte enrichment, single-cell analysis, cell-cell communication studies, precipitation screening of proteins to establish nucleation conditions, and crystallisation of proteins and pharmaceuticals. PMID:14762640

  13. Palinocam Network: airborne pollen vigilance in Madrid

    Directory of Open Access Journals (Sweden)

    Patricia Cervigón Morales

    2005-12-01

    Full Text Available Asthma Regional Programme started to give up in 1992 with four big areas. Palinocam network project was first set up in Madrid as a part of Asthma Regional Programme, comprised in a wider Environmental Subprogram: Palynological Network of Madrid Region (PALINOCAM NETWORK.Palynological network is a multidisciplinary organization which has been working since 1993. In that moment an Experts Committee was created with This Experts Committee is coordinated by the Public Health Institute, under the technical Direction of Faculty of Pharmacy and is integrated by all of the involved institutions. This juridical framework is completed with individual agreements signed between the Councils and the Public Health Department, and with a Collaboration Agreement signed with the Madrid ́s Complutense University Faculty of Pharmacy.This network main aim is to watch for aerobiological content in Madrid's air, for a best knowledge of patients expositions in each geographical area in en different moment. This information has a great interest for Public Health.Palinocam Network is a useful tool in Public Health for offering information of aerobiological levels by Internet and Telephonic Service yearly .In this way allergic patients, sanitarians and media can know the most frequent pollen types in each season and its airborne level.

  14. Multiple model adaptive tracking of airborne targets

    Science.gov (United States)

    Norton, John E.

    1988-12-01

    Over the past ten years considerable work has been accomplished at the Air Force Institute of Technology (AFIT) towards improving the ability of tracking airborne targets. Motivated by the performance advantages in using established models of tracking environment variables within a Kalman filter, an advanced tracking algorithm has been developed based on adaptive estimation filter structures. A multiple model bank of filters that have been designed for various target dynamics, which each accounting for atmospheric disturbance of the Forward Looking Infrared (FLIR) sensor data and mechanical vibrations of the sensor platform, outperforms a correlator tracker. The bank of filters provides the estimation capability to guide the pointing mechanisms of a shared aperture laser/sensor system. The data is provided to the tracking algorithm via an (8 x 8)-pixel tracking Field of View (FOV) from the FLIR image plane. Data at each sample period is compared by an enhanced correlator to a target template. These offsets are measurements to a bank of linear Kalman filters which provide estimates of the target's location in azimuth and elevation coordinates based on a Gauss-Markov acceleration model, and a reduced form of the atmospheric jitter model for the disturbance in the IR wavefront carrying future measurements.

  15. AIRBORNE HIGH-RESOLUTION DIGITAL IMAGING SYSTEM

    Directory of Open Access Journals (Sweden)

    Prado-Molina, J.

    2006-04-01

    Full Text Available A low-cost airborne digital imaging system capable to perform aerial surveys with small-format cameras isintroduced. The equipment is intended to obtain high-resolution multispectral digital photographs constituting so aviable alternative to conventional aerial photography and satellite imagery. Monitoring software handles all theprocedures involved in image acquisition, including flight planning, real-time graphics for aircraft position updatingin a mobile map, and supervises the main variables engaged in the imaging process. This software also creates fileswith the geographical position of the central point of every image, and the flight path followed by the aircraftduring the entire survey. The cameras are mounted on a three-axis stabilized platform. A set of inertial sensorsdetermines platform's deviations independently from the aircraft and an automatic control system keeps thecameras at a continuous nadir pointing and heading, with a precision better than ± 1 arc-degree in three-axis. Thecontrol system is also in charge of saving the platform’s orientation angles when the monitoring software triggersthe camera. These external orientation parameters, together with a procedure for camera calibration give theessential elements for image orthocorrection. Orthomosaics are constructed using commercial GIS software.This system demonstrates the feasibility of large area coverage in a practical and economical way using smallformatcameras. Monitoring and automatization reduce the work while increasing the quality and the amount ofuseful images.

  16. An intercomparison of airborne VOC measurements

    International Nuclear Information System (INIS)

    During the Texas Air Quality Study (TexAQS) 2000 ambient air samples were analyzed on-board the NSF/NCAR ELECTRA research aircraft by two VOC measurement techniques: 1) an in-situ gas chromatograph named TACOH (Tropospheric Airborne Chromatograph for Oxy-hydrocarbons and Hydrocarbons), operated by NOAA's Aeronomy Laboratory, and 2) a chemical ionization mass spectrometer named PTR-MS (Proton-Transfer-Reaction Mass Spectrometer) and operated by the University of Innsbruck. The sample protocols were quite different for the two methods: the TACOH system collected air samples for 15-60 sec (depending upon altitude) every 15 min, the PTR-MS system monitored selected VOCs on a time-shared basis for 2 sec respectively, once every 4-20 sec, depending upon the number of monitored species. Simultaneous measurements of acetaldehyde, isoprene, the sum of acetone and propanal, the sum of methyl vinyl ketone and methacrolein (PTR-MS does not distinguish between isobaric species) and toluene show good agreement despite being performed in the complex and highly polluted Houston air matrix. (author)

  17. Airborne electromagnetic imaging of discontinuous permafrost

    Science.gov (United States)

    Minsley, B.J.; Abraham, J.D.; Smith, B.D.; Cannia, J.C.; Voss, C.I.; Jorgenson, M.T.; Walvoord, M.A.; Wylie, B.K.; Anderson, L.; Ball, L.B.; Deszcz-Pan, M.; Wellman, T.P.; Ager, T.A.

    2012-01-01

    The evolution of permafrost in cold regions is inextricably connected to hydrogeologic processes, climate, and ecosystems. Permafrost thawing has been linked to changes in wetland and lake areas, alteration of the groundwater contribution to streamflow, carbon release, and increased fire frequency. But detailed knowledge about the dynamic state of permafrost in relation to surface and groundwater systems remains an enigma. Here, we present the results of a pioneering ???1,800 line-kilometer airborne electromagnetic survey that shows sediments deposited over the past ???4 million years and the configuration of permafrost to depths of ???100 meters in the Yukon Flats area near Fort Yukon, Alaska. The Yukon Flats is near the boundary between continuous permafrost to the north and discontinuous permafrost to the south, making it an important location for examining permafrost dynamics. Our results not only provide a detailed snapshot of the present-day configuration of permafrost, but they also expose previously unseen details about potential surface-groundwater connections and the thermal legacy of surface water features that has been recorded in the permafrost over the past ???1,000 years. This work will be a critical baseline for future permafrost studies aimed at exploring the connections between hydrogeologic, climatic, and ecological processes, and has significant implications for the stewardship of Arctic environments. ?? 2012 by the American Geophysical Union.

  18. An intercomparison of airborne VOC measurements

    International Nuclear Information System (INIS)

    Full text: During the Texas Air Quality Study (TexAQS) 2000 ambient air samples were analyzed on-board the NSF/NCAR ELECTRA research aircraft by two VOC measurement techniques: 1) an in-situ gas chromatograph named TACOH (Tropospheric Airborne Chromatograph for Oxy-hydrocarbons and Hydrocarbons), operated by NOAA' Aeronomy Laboratory, and 2) a chemical ionization mass spectrometer named PTR-MS (Proton-Transfer-Reaction Mass Spectrometer) and operated by the University of Innsbruck. The sample protocols were quite different for the two methods: the TACOH system collected air samples for 15-60 sec (depending upon altitude) every 15 min, the PTR-MS system monitored selected VOCs on a time-shared basis for 2 sec respectively, once every 4-20 sec, depending upon the number of monitored species. Simultaneous measurements of acetaldehyde, isoprene, the sum* of acetone and propanal, the sum* of methyl vinyl ketone and methacrolein (* PTR-MS does not distinguish between isobaric species) and toluene show good agreement despite being performed in the complex and highly polluted Houston air matrix. (author)

  19. Evaluation of principal cannabinoids in airborne particulates

    Energy Technology Data Exchange (ETDEWEB)

    Balducci, C., E-mail: balducci@iia.cnr.it [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy); Nervegna, G.; Cecinato, A. [Italian National Research Council, Institute for Atmospheric Pollution (CNR-IIA), Monterotondo Stazione (Italy)

    2009-05-08

    The determination of delta(9)-tetrahydrocannabinol ({Delta}{sup 9}-THC), cannabidiol (CND) and cannabinol (CNB), primary active components in cannabis preparation, was carried out on airborne particulates by applying a specific procedure consisting of soot extraction by ultrasonic bath, purification by solvent partitioning, derivatization with N-(t-butyldimethylsilyl)-N-methyl-trifluoroacetamide, and separation/detection through gas chromatography coupled with tandem mass spectrometry. The optimized procedure was found suitable for measuring the three psychotropic substances at concentrations ranging from ca. 0.001 to ca. 5.0 ng cm{sup -3} of air, with recoveries always higher than 82%, accuracy >7.3% and precision >90%. Application of the procedure performed on field in Rome and Bari, Italy, demonstrated that all three compounds contaminate the air in Italian cities whereas in Algiers, Algeria, only cannabinol, the most stable in the atmosphere, exceeded the limit of quantification of the method. The relative percentages of the three cannabinoids in general reproduced those typical of the Cannabis sativa plant and were very different from those found in human blood, urine and sweat.

  20. Airborne radiometric: Data evaluation and calibration

    International Nuclear Information System (INIS)

    The airborne geophysical system of the BGR (German Geological Survey) consists of a helicopter equipped with an electromagnetic system with two transmittors and two receivers, a proton resonance magnetometer and a 16 L NaJ-crystal with four channel recording. All these data together with navigation data and flight altitude above ground are recorded each second on a nine track magnetic tape for further data evaluation. Different corrections have to be applied to the rough data such as: smoothing by means of a digital filter to reduce statistical noise, altitude correction, Compton-correction, and drift correction (cross-profile evaluation). Then the corrected measuring data are combined with the navigation data in order to be able to produce iso-line maps. The final results are presented as: line plots for U, Th, and K (and EM-data and magnetometer data); actual flight line plots; iso-line maps for U, Th, and K; iso-line maps for conductivity; depth of conducting layer; and magnetometry maps. The procedures of correction and evaluation of the above mentioned data as well as the calibration of the NaJ-detector in terms of ppm U, Th, and %K are dicussed in the paper. (author)

  1. Diversity and seasonal dynamics of airborne archaea

    Science.gov (United States)

    Fröhlich-Nowoisky, J.; Ruzene Nespoli, C.; Pickersgill, D. A.; Galand, P. E.; Müller-Germann, I.; Nunes, T.; Gomes Cardoso, J.; Almeida, S. M.; Pio, C.; Andreae, M. O.; Conrad, R.; Pöschl, U.; Després, V. R.

    2014-11-01

    Archaea are widespread and abundant in many terrestrial and aquatic environments, and are thus outside extreme environments, accounting for up to ~10% of the prokaryotes. Compared to bacteria and other microorganisms, however, very little is known about the abundance, diversity, and dispersal of archaea in the atmosphere. By means of DNA analysis and Sanger sequencing targeting the 16S rRNA (435 sequences) and amoA genes in samples of air particulate matter collected over 1 year at a continental sampling site in Germany, we obtained first insights into the seasonal dynamics of airborne archaea. The detected archaea were identified as Thaumarchaeota or Euryarchaeota, with soil Thaumarchaeota (group I.1b) being present in all samples. The normalized species richness of Thaumarchaeota correlated positively with relative humidity and negatively with temperature. This together with an increase in bare agricultural soil surfaces may explain the diversity peaks observed in fall and winter. The detected Euryarchaeota were mainly predicted methanogens with a low relative frequency of occurrence. A slight increase in their frequency during spring may be linked to fertilization processes in the surrounding agricultural fields. Comparison with samples from the Cape Verde islands (72 sequences) and from other coastal and continental sites indicates that the proportions of Euryarchaeota are enhanced in coastal air, which is consistent with their suggested abundance in marine surface waters. We conclude that air transport may play an important role in the dispersal of archaea, including assumed ammonia-oxidizing Thaumarchaeota and methanogens.

  2. Airborne radioiodine in northern Serbia from Fukushima

    International Nuclear Information System (INIS)

    The results obtained with the monitoring system set up to assess the impact of the Fukushima accident on the environment of Vojvodina (Northern Province of Serbia) are presented and discussed. Aerosol, rain, fresh milk and spinach samples were collected daily in the weeks following the accident. In the aerosol samples, 131I activity concentrations of several mBq m−3 were measured, while in rain, milk and spinach samples, 131I levels had values in a range of (0.3–1.7) Bq kg−1. These are the first results on the impact of the Fukushima accident on the Pannonian basin region. Our results are compared with the reported values from other parts of the world. - Highlights: ► I-131 from the Fukushima power plant was detected in the northern part of Serbia. ► In the aerosol samples the activity concentration of 131I has been measured to be of mBq m−3 order of magnitude. ► The concentrations of 131I in the rain, milk and spinach samples were in the range of (0.3–1.7) Bq kg−1. ► The time distributions of airborne I-131 during March–April of 2011 in the USA, Germany, Serbia and Greece are compared.

  3. Helicopter Airborne Laser Positioning System (HALPS)

    Science.gov (United States)

    Eppel, Joseph C.; Christiansen, Howard; Cross, Jeffrey; Totah, Joseph

    1990-01-01

    The theory of operation, configuration, laboratory, and ground test results obtained with a helicopter airborne laser positioning system developed by Princeton University is presented. Unfortunately, due to time constraints, flight data could not be completed for presentation at this time. The system measures the relative position between two aircraft in three dimensions using two orthogonal fan-shaped laser beams sweeping across an array of four detectors. Specifically, the system calculates the relative range, elevation, and azimuth between an observation aircraft and a test helicopter with a high degree of accuracy. The detector array provides a wide field of view in the presence of solar interference due to compound parabolic concentrators and spectral filtering of the detector pulses. The detected pulses and their associated time delays are processed by the electronics and are sent as position errors to the helicopter pilot who repositions the aircraft as part of the closed loop system. Accuracies obtained in the laboratory at a range of 80 ft in the absence of sunlight were + or - 1 deg in elevation; +0.5 to -1.5 deg in azimuth; +0.5 to -1.0 ft in range; while elevation varied from 0 to +28 deg and the azimuth varied from 0 to + or - 45 deg. Accuracies in sunlight were approximately 40 deg (+ or - 20 deg) in direct sunlight.

  4. Evaluation of principal cannabinoids in airborne particulates

    International Nuclear Information System (INIS)

    The determination of delta(9)-tetrahydrocannabinol (Δ9-THC), cannabidiol (CND) and cannabinol (CNB), primary active components in cannabis preparation, was carried out on airborne particulates by applying a specific procedure consisting of soot extraction by ultrasonic bath, purification by solvent partitioning, derivatization with N-(t-butyldimethylsilyl)-N-methyl-trifluoroacetamide, and separation/detection through gas chromatography coupled with tandem mass spectrometry. The optimized procedure was found suitable for measuring the three psychotropic substances at concentrations ranging from ca. 0.001 to ca. 5.0 ng cm-3 of air, with recoveries always higher than 82%, accuracy >7.3% and precision >90%. Application of the procedure performed on field in Rome and Bari, Italy, demonstrated that all three compounds contaminate the air in Italian cities whereas in Algiers, Algeria, only cannabinol, the most stable in the atmosphere, exceeded the limit of quantification of the method. The relative percentages of the three cannabinoids in general reproduced those typical of the Cannabis sativa plant and were very different from those found in human blood, urine and sweat.

  5. Open Source Software Reuse in the Airborne Cloud Computing Environment

    Science.gov (United States)

    Khudikyan, S. E.; Hart, A. F.; Hardman, S.; Freeborn, D.; Davoodi, F.; Resneck, G.; Mattmann, C. A.; Crichton, D. J.

    2012-12-01

    Earth science airborne missions play an important role in helping humans understand our climate. A challenge for airborne campaigns in contrast to larger NASA missions is that their relatively modest budgets do not permit the ground-up development of data management tools. These smaller missions generally consist of scientists whose primary focus is on the algorithmic and scientific aspects of the mission, which often leaves data management software and systems to be addressed as an afterthought. The Airborne Cloud Computing Environment (ACCE), developed by the Jet Propulsion Laboratory (JPL) to support Earth Science Airborne Program, is a reusable, multi-mission data system environment for NASA airborne missions. ACCE provides missions with a cloud-enabled platform for managing their data. The platform consists of a comprehensive set of robust data management capabilities that cover everything from data ingestion and archiving, to algorithmic processing, and to data delivery. Missions interact with this system programmatically as well as via browser-based user interfaces. The core components of ACCE are largely based on Apache Object Oriented Data Technology (OODT), an open source information integration framework at the Apache Software Foundation (ASF). Apache OODT is designed around a component-based architecture that allows for selective combination of components to create highly configurable data management systems. The diverse and growing community that currently contributes to Apache OODT fosters on-going growth and maturation of the software. ACCE's key objective is to reduce cost and risks associated with developing data management systems for airborne missions. Software reuse plays a prominent role in mitigating these problems. By providing a reusable platform based on open source software, ACCE enables airborne missions to allocate more resources to their scientific goals, thereby opening the doors to increased scientific discovery.

  6. Elementary analysis of airborne dust (preliminary findings of the AFR Coordinated Airborne Dust Programme (LVPr))

    International Nuclear Information System (INIS)

    In March 1981 the systematic measuring of 15 elements of airborne dust was started in the Coordinated Airborne Dust Program (LVPr) by the Association for the Promotion of Radionuclide Technology (AFR). The sampling was done under comparable conditions at five selected places within the Federal Republic of Germany by using especially developed large-filter High Volume Samplers. The aim of this research is to establish the foundation for further investigations on the effects of the current given element concentrations on human life. When the results of the first half-year (summer period) were in hand, these element concentrations, which had been analysed using different methods, were presented to a group of experts, also with the experience gained with the analytical methods, in order to critically assess procedure and philosophy of this study. This evaluation was done on the occasion of a colloquium on Jun 29th, 1982 at the Karlsruhe Nuclear Research Centre. The presented AFR-Report contains the papers and the discussions of this meeting as well as the average element data with respect to the sampling time between 15th and 40th week of the year 1981. The discussion contributions presented here correspond to the essential statements that have been given and recorded. A total classification of all data relating to the whole sampling time of the LVPr will be given in AFR-Report No. 007. (orig.)

  7. Accuracy of chemical analysis of airborne particulates: results of an intercomparison exercise

    International Nuclear Information System (INIS)

    Since suitable standard reference materials for chemical analysis of airborne particulates are not available, an intercomparison exercise was carried out among 40 interested laboratories in order to evaluate the accuracy of various trace analysis techniques for this specific application. Six hundred grams of airborne particulates were collected from the inlet filters of the air conditioning installation of a hotel in the center of Milan. The sample was sieved to remove coarser particles, thoroughly mixed, and distributed in 1 to 5 gram aliquots. The homogeneity was checked by relative measurements carried out by three independent techniques. For 40 elements no inhomogeneity was found to exceed the analytical error, which was estimated to be approximately 10 percent. The data of the analytical exercise are being collected and evaluated. Results are available for 56 elements, but to date only 33 have been determined by more than one technique. Activation analysis, emission spectroscopy, atomic absorption, x-ray fluorescence and various wet chemical methods contributed to the intercomparison. No result was received from mass spectroscopic methods and, although analyses were specifically encouraged, very few results were received on the organic components. From a first approximate evaluation a good agreement was found for Al, Fe, Zn, Mn, Ca, Pb, Cl, S, Si, Ti, Mn, while for the other elements no definite conclusion can yet be drawn. An attempt will be made to interpret important cases of systematic errors, a few of which are already evident

  8. Antimicrobial durability of air filters coated with airborne Sophora flavescens nanoparticles

    International Nuclear Information System (INIS)

    Airborne biological particles containing viruses, bacteria, and/or fungi can be toxic and cause infections and allergy symptoms. Recently, natural materials such as tea tree oil and Sophora flavescens have shown promising antimicrobial activity when applied as air filter media. Although many of these studies demonstrated excellent antimicrobial efficacy, only a few of them considered external environmental effects such as the surrounding humidity, temperature, and natural degradation of chemicals, all of which can affect the antimicrobial performance of these natural materials. In this study, we investigated the antimicrobial durability of air filters containing airborne nanoparticles from S. flavescens for 5 months. Antimicrobial tests and quantitative chemical analyses were performed every 30 days. Morphological changes in the nanoparticles were also evaluated by scanning electron microscopy. The major antimicrobial compounds remained stable and active for ∼ 90 days at room temperature. After about 90 days, the quantities of major antimicrobial compounds decreased noticeably with a consequent decrease in antimicrobial activity. These results are promising for the implementation of new technologies using natural antimicrobial products and provide useful information regarding the average life expectancy of antimicrobial filters using nanoparticles of S. flavescens. - Graphical abstract: Variations in (a) the concentrations of major antimicrobial chemical compounds on S. flavescens nanoparticle-coated filters: kurarinone, kuraridin, and sophoraflavanone-G and (b) the inactivation rate of antimicrobial filters as a function of time.

  9. Antimicrobial durability of air filters coated with airborne Sophora flavescens nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chong, Eui-seok; Hwang, Gi Byoung [Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Nho, Chu Won [Functional Food Center, Korea Institute of Science and Technology (KIST Gangneung Institute), Gangneung, Gangwon-do 210-340 (Korea, Republic of); Kwon, Bo Mi [Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Lee, Jung Eun [Biosafety Research Team, National Institute of Environmental Research, Kyungseo-Dong, Seo-Gu, Incheon 404-170 (Korea, Republic of); Seo, SungChul [Department of Environmental Health, College of Medicine, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-701 (Korea, Republic of); Bae, Gwi-Nam, E-mail: gnbae@kist.re.kr [Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of); Jung, Jae Hee, E-mail: jaehee@kist.re.kr [Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 136-791 (Korea, Republic of)

    2013-02-01

    Airborne biological particles containing viruses, bacteria, and/or fungi can be toxic and cause infections and allergy symptoms. Recently, natural materials such as tea tree oil and Sophora flavescens have shown promising antimicrobial activity when applied as air filter media. Although many of these studies demonstrated excellent antimicrobial efficacy, only a few of them considered external environmental effects such as the surrounding humidity, temperature, and natural degradation of chemicals, all of which can affect the antimicrobial performance of these natural materials. In this study, we investigated the antimicrobial durability of air filters containing airborne nanoparticles from S. flavescens for 5 months. Antimicrobial tests and quantitative chemical analyses were performed every 30 days. Morphological changes in the nanoparticles were also evaluated by scanning electron microscopy. The major antimicrobial compounds remained stable and active for ∼ 90 days at room temperature. After about 90 days, the quantities of major antimicrobial compounds decreased noticeably with a consequent decrease in antimicrobial activity. These results are promising for the implementation of new technologies using natural antimicrobial products and provide useful information regarding the average life expectancy of antimicrobial filters using nanoparticles of S. flavescens. - Graphical abstract: Variations in (a) the concentrations of major antimicrobial chemical compounds on S. flavescens nanoparticle-coated filters: kurarinone, kuraridin, and sophoraflavanone-G and (b) the inactivation rate of antimicrobial filters as a function of time.

  10. Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples

    Directory of Open Access Journals (Sweden)

    S. P. Burton

    2012-01-01

    Full Text Available The NASA Langley Research Center (LaRC airborne High Spectral Resolution Lidar (HSRL on the NASA B200 aircraft has acquired extensive datasets of aerosol extinction (532 nm, aerosol optical depth (AOD (532 nm, backscatter (532 and 1064 nm, and depolarization (532 and 1064 nm profiles during 18 field missions that have been conducted over North America since 2006. The lidar measurements of aerosol intensive parameters (lidar ratio, depolarization, backscatter color ratio, and spectral depolarization ratio are shown to vary with location and aerosol type. A methodology based on observations of known aerosol types is used to qualitatively classify the extensive set of HSRL aerosol measurements into eight separate types. Several examples are presented showing how the aerosol intensive parameters vary with aerosol type and how these aerosols are classified according to this new methodology. The HSRL-based classification reveals vertical variability of aerosol types during the NASA ARCTAS field experiment conducted over Alaska and northwest Canada during 2008. In two examples derived from flights conducted during ARCTAS, the HSRL classification of biomass burning smoke is shown to be consistent with aerosol types derived from coincident airborne in situ measurements of particle size and composition. The HSRL retrievals of AOD and inferences of aerosol types are used to apportion AOD to aerosol type; results of this analysis are shown for several experiments.

  11. PIXE analysis of airborne particulate matter from Monterrey, Mexico. A first survey

    International Nuclear Information System (INIS)

    A first survey of elemental contents in airborne particulate matter from Monterrey, Nuevo Leon, Mexico, was performed using PIXE. This second largest industrial city is located 715 km north of Mexico City, and counts with a population of nearly three million inhabitants in its conurbation. Air pollution in the place comes from a great variety of industries ranging from iron smelters to furniture manufacturing, as well as from fuel combustion in vehicles and industries. This study presents results of elemental contents in airborne particulate matter in two particle size fractions: PM2.5 and PM15. The samples were collected during five weeks on working days, Monday-Friday, from 9 December 1996 to 14 January 1997. Two samples a day were collected, 12 h each, night-time and day-time. These first results show local pollution as typical from a large urban area in conjunction with an active industry. Thirteen elements were consistently detected in most of the samples and some episodes due to both industrial and human activities were identified. A general discussion about the results obtained is presented

  12. Assessing deposition of airborne particulates and gases in the Selkirk area using lichens growing on tree trunks : non-technical summary

    International Nuclear Information System (INIS)

    An independent study was conducted to address the public concern regarding airborne emissions from Manitoba Hydro's coal-fired electricity generating station located in the Selkirk area. This document is a non-technical summary of the report issued by Ecostem Ltd. Since there are no air quality monitoring stations in the study area which covers more than 1,000 square km, Ecostem used lichens as biological indicators of historical deposition of airborne dust and gases. The sources of airborne dust and gases include urban centres, agriculture, pesticides, fertilizers, waste burning, vehicle use and manufacturing. Lichens have been commonly used as indicators since 1866. They provide useful information because they are long-lived, are not mobile, acquire most of their nutrients from the atmosphere, retain the airborne deposition they initially trap, and they can accumulate airborne particles year round. It is possible to obtain a record of the chemicals that have been present in the air by simply analyzing the lichen tissue. This study used the concentrations of various chemical elements in lichen tissue and the distribution and abundance of lichen species to see if airborne particulates were substantially elevated in the Selkirk area and if so, to determine if the coal-fired generating station was the apparent source of the pollution. A total of 62 stations and lichens on more than 400 trees were sampled. Sulphur, a fingerprint for gaseous emissions from the generating station, had tissue concentrations that were 1.32 times higher. Statistical analysis suggests that barium, boron and strontium were the clearest fingerprint elements for generating station emissions. Tissue concentrations of antimony, arsenic, cadmium, chromium, copper, iron, lead, manganese, mercury, molybdenum, nickel, selenium, silver, thallium, tin, vanadium and zinc were examined further because they are considered to be toxic. It was noted that a conclusion regarding human health cannot be made

  13. Elementary particles

    Science.gov (United States)

    Fritzsch, Harald; Heusch, Karin

    Introduction -- Electrons and atomic nuclei -- Quantum properties of atoms and particles -- The knives of Democritus -- Quarks inside atomic nuclei -- Quantum electrodynamics -- Quantum chromodynamics -- Mesons, baryons, and quarks -- Electroweak interactions -- Grand unification -- Conclusion.

  14. Elementary Particles

    Science.gov (United States)

    Parham, R.

    1974-01-01

    Presents the text of a speech given to a conference of physics teachers in which the full spectrum of elementary particles is given, along with their classification. Also includes some teaching materials available on this topic. (PEB)

  15. Experiments to quantify airborne release from packages with dispersible radioactive materials under accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Martens, R.; Lange, F. [Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) mbH, Schwertnergasse 1, 50667 Koeln (Germany); Koch, W.; Nolte, O. [Fraunhofer-Institut fuer Toxikologie und Experimentelle Medizin (ITEM), Nikolai-Fuchs-Str.1, 30625 Hannover (Germany)

    2005-07-01

    For transport or handling accidents involving packages with radioactive materials and the assessment of potential radiological consequences, for the review of current requirements of the IAEA Transport Regulations, and for their possible further development reliable release data following mechanical impact are required. Within this context a research project was carried out which extends the basis for a well-founded examination of the contemporary system of requirements of 'Low Specific Activity' (LSA)-type materials and allows for its further development where appropriate. This project comprises a prior system-analytical examination and an experimental programme aiming at improving the general physical understanding of the release process as well as the quantity and the characteristics of airborne released material for non-fixed dispersible LSA-II material upon mechanical impact. Impaction experiments applying small, medium and real sized specimens of different dispersible materials revealed that the release behaviour of dispersible powders strongly depends upon material properties, e.g. particle size distribution and cohesion forces. The highest experimentally determined release fraction of respirable mass (AED < 10 {mu}m) amounted to about 2 % and was obtained for 2 kg of un-contained easily dispersible pulverized fly ash (PFA). For larger un-contained PFA specimen the release fraction decreases. However, packaging containing powdery material substantially reduces the airborne release fraction. The measured airborne release fractions for a 200 l drum with Type A certificate containing PFA were about a factor of 50 to 100 lower than for un-contained material. For a drop height of 9 m the airborne release fraction amounted to about 4 x 10{sup -5}. This value should be applicable for most of transport and handling accidents with mechanical impact. For a metal container of Type IP-2 or better which contains powder masses of 100 kg or more this release

  16. Particle identification

    International Nuclear Information System (INIS)

    A variety of subjects are addressed within the general context of searching for limitations in capability of particle identification due to high average rates. Topics receiving attention included Cerenkov ring imaging, transition radiation, synchrotron radiation, time-of-flight, high P spectrometer, heavy quark tagging with leptons, general purpose muon and electron detector, and dE/dx. It is concluded that particle identification will probably not represent a primary obstacle at luminosities of 1033cm-2sec-1

  17. Validation of Airborne CO2 Laser Measurements

    Science.gov (United States)

    Browell, E. V.; Dobler, J. T.; Kooi, S.; Fenn, M. A.; Choi, Y.; Vay, S. A.; Harrison, F. W.; Moore, B.; Zaccheo, T. S.

    2010-12-01

    This paper discusses the flight test validation of a unique, multi-frequency, intensity-modulated, single-beam laser absorption spectrometer (LAS) that operates near 1.57 μm for remote column CO2 measurements. This laser system is under development for a future space-based mission to determine the global distribution of regional-scale CO2 sources and sinks, which is the objective of the NASA Active Sensing of CO2 Emissions during Nights, Days, and Seasons (ASCENDS) mission. A prototype of this LAS system, called the Multi-frequency Fiber Laser Lidar (MFLL), was developed by ITT, and it has been flight tested in nine airborne campaigns since May 2005. This paper focuses on the most recent results obtained over the last two years of flight-testing where the MFLL remote CO2 column measurements were evaluated against airborne in situ CO2 profile measurements traceable to World Meteorological Organization standards. A comprehensive multiple-aircraft flight test program was conducted over Oklahoma and Virginia in July-August 2009. The MFLL obtained surface reflectance and average CO2 column variations along the 50-km flight legs over the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Central Facility (CF) in Lamont, Oklahoma; over rural Virginia and North Carolina; and over the Chesapeake Bay. For a flight altitude of 4.6 km, the average signal to noise ratio (SNR) for a 1-s CO2 column measurement was found to be 760, which is the equivalent of a CO2 mixing ratio precision of 0.60 ppmv, and for a 10-s average the SNR was found to be 2002 or 0.20 ppmv. Absolute comparisons of MFLL-derived and in situ-derived CO2 column measurements were made for all daytime flights conducted over Oklahoma and Virginia with an average agreement to within 0.32 ppmv. A major ASCENDS flight test campaign was conducted using the NASA DC-8 during 6-18 July 2010. The MFLL system and associated in situ CO2 instrumentation were operated on DC-8 flights over the Central Valley

  18. Higgs particles

    International Nuclear Information System (INIS)

    The theoretical work on models of the electroweak interaction and simple grand unified models with a nonstandard set of Higgs particles is reviewed. Emphasis is placed on light and even strictly massless Higgs particles: Goldstone and pseudo-Goldstone bosons. It is shown that such bosons arise in a natural way in the theory if the Higgs particles are in fact composite. The low-energy effective Lagrangian of these particles is studied. A detailed study is made of the problem of CP breaking in a strong interaction and of a natural solution of this problem through the introduction of a pseudo-Goldstone particle: an axion. The theory of the ''standard'' axion and its experimental status are reviewed. Possible ''invisible'' and ''visualized'' axions are discussed, as are certain astrophysical aspects of the existence of an axion. By analogy with the axion, an analysis is made of another hypothetical particle: the strictly massless Goldstone boson or arion. Model-independent properties of the arion are determined. The similarity between the arion fields and magnetic fields and the differences between these fields are shown. Possible methods for detecting an arion field are discussed. An experiment which has set a limit on the strength of the arion interaction is described. Neutral Goldstone bosons whose emission is accompanied by changes in fermion flavors (''familons'') are discussed. Two versions of the theory with a Goldstone boson (a majoron) which arises upon a spontaneous breaking of lepton number are described

  19. Recent advances in airborne radiometric technology

    International Nuclear Information System (INIS)

    Since its inception, the DOE Remote Sensing Laboratory has made dramatic innovations in airborne radiometric technology. In the past few years there have been at least four major changes in operational philosophy. (1) The helicopter is now the prime radiation survey vehicle. Surveys are conducted at low speed and low altitude, with lines spaced only a few hundred feet apart. Radiation anomalies and subtle changes in background can be readily identified. (2) Much greater emphasis is now placed on accurate, detailed analysis and interpretation of radiation data. Dramatic improvements in survey hardware and software provide much more data of considerably better quality. (3) Recent Laboratory research has been concentrated on error-free, positive identification of point radiation sources. In the past, the extent and magnitude of dispersed sources were the major concerns. (4) Integrated remote sensing has been strongly emphasized at the Laboratory in recent years. This involves the simultaneous use of radiation detectors, aerial cameras, and the multispectral scanner imagery. The synergistic effects of such data correlation are of significantly greater value in analyzing the terrestrial environment. Many of the changes in operational philosophy are directly traceable to new or dramatically improved hardware and software employed at the Laboratory. Six items have been instrumental in the above technological advances: (1) the UHF Transponder System and its predecessor, the Microwave Ranging System; (2) Model IC of the REDAR data acquisition system; (3) the development of the search algorithm; (4) continued improvements in the REDACA data analysis system; (5) deployment of polyscin sodium iodide radiation detectors; and (6) development of the Graphic Overview System

  20. Spacecraft Maximum Allowable Concentrations for Airborne Contaminants

    Science.gov (United States)

    James, John T.

    2008-01-01

    The enclosed table lists official spacecraft maximum allowable concentrations (SMACs), which are guideline values set by the NASA/JSC Toxicology Group in cooperation with the National Research Council Committee on Toxicology (NRCCOT). These values should not be used for situations other than human space flight without careful consideration of the criteria used to set each value. The SMACs take into account a number of unique factors such as the effect of space-flight stress on human physiology, the uniform good health of the astronauts, and the absence of pregnant or very young individuals. Documentation of the values is given in a 5 volume series of books entitled "Spacecraft Maximum Allowable Concentrations for Selected Airborne Contaminants" published by the National Academy Press, Washington, D.C. These books can be viewed electronically at http://books.nap.edu/openbook.php?record_id=9786&page=3. Short-term (1 and 24 hour) SMACs are set to manage accidental releases aboard a spacecraft and permit risk of minor, reversible effects such as mild mucosal irritation. In contrast, the long-term SMACs are set to fully protect healthy crewmembers from adverse effects resulting from continuous exposure to specific air pollutants for up to 1000 days. Crewmembers with allergies or unusual sensitivity to trace pollutants may not be afforded complete protection, even when long-term SMACs are not exceeded. Crewmember exposures involve a mixture of contaminants, each at a specific concentration (C(sub n)). These contaminants could interact to elicit symptoms of toxicity even though individual contaminants do not exceed their respective SMACs. The air quality is considered acceptable when the toxicity index (T(sub grp)) for each toxicological group of compounds is less than 1, where T(sub grp), is calculated as follows: T(sub grp) = C(sub 1)/SMAC(sub 1) + C(sub 2/SMAC(sub 2) + ...+C(sub n)/SMAC(sub n).

  1. Airborne Lidar Point Cloud Density Indices

    Science.gov (United States)

    Shih, P. T.; Huang, C.-M.

    2006-12-01

    Airborne lidar is useful for collecting a large volume and high density of points with three dimensional coordinates. Among these points are terrain points, as well as those points located aboveground. For DEM production, the density of the terrain points is an important quality index. While the penetration rate of laser points is dependent on the surface type characteristics, there are also different ways to present the point density. Namely, the point density could be measured by subdividing the surveyed area into cells, then computing the ratio of the number of points in each respective cell to its area. In this case, there will be one density value for each cell. The other method is to construct the TIN, and count the number of triangles in the cell, divided by the area of the cell. Aside from counting the number of triangles, the area of the largest, or the 95% ranking, triangle, could be used as an index as well. The TIN could also be replaced by Voronoi diagrams (Thiessen Polygon), and a polygon with even density could be derived from human interpretation. The nature of these indices is discussed later in this research paper. Examples of different land cover types: bare earth, built-up, low vegetation, low density forest, and high density forest; are extracted from point clouds collected in 2005 by ITRI under a contract from the Ministry of the Interior. It is found that all these indices are capable of reflecting the differences of the land cover type. However, further investigation is necessary to determine which the most descriptive one is.

  2. Progress in georeferencing airborne laser altimeter measurements

    Energy Technology Data Exchange (ETDEWEB)

    Vaughn, C.R. [NASA/GSFC Wallops Flight Facility, Wallops Island, VA (United States); Bufton, J.L. [NASA/Goddard Space Flight Facility, Greenbelt, MD (United States)

    1996-10-01

    The NASA/Goddard Space Flight Center, including its Wallops Flight Facility, has conducted a series of airborne missions to collect transacts of pulsed-laser measured distances to the Earth`s surface. The primary purpose of these missions was to geolocate the points where the laser hit the earth. We present how we make these measurements with sufficient accuracy that a point on the earth can be geolocated in height to about 10 cm with-respect-to the WGS-84 ellipsoid. We give particular attention to determining the instantaneous spatial orientation of the laser beam and its transit time to the earth and back to the receiver. We also discuss the difficulty in assessing the accuracy of the ellipsoidal latitude and longitude of the point. From 1991 through 1994 we flew a nadir-pointing system in either a P3-B Orion or a T-39 Sabreline aircraft owned and operated by the Wallops Flight Facility. Flights in 1993 at an altitude of 500 to 600 meters over Lake Crowley, California (the Long Valley reservoir) gave a mean lake height that agreed to better than 10 cm with an accurate tide gage at the dam - after the local geoid undulation was removed from the laser data. In 1995 we built a new pulsed-laser ranger that raster-scans at 60 times per second, operates at a 523 run wavelength, fires 5000 pulses per second, and produces a 12 degrees wide scan line. We present preliminary results from this system. 5 refs., 5 figs.

  3. Forest Delineation Based on Airborne LIDAR Data

    Directory of Open Access Journals (Sweden)

    Norbert Pfeifer

    2012-03-01

    Full Text Available The delineation of forested areas is a critical task, because the resulting maps are a fundamental input for a broad field of applications and users. Different national and international forest definitions are available for manual or automatic delineation, but unfortunately most definitions lack precise geometrical descriptions for the different criteria. A mandatory criterion in forest definitions is the criterion of crown coverage (CC, which defines the proportion of the forest floor covered by the vertical projection of the tree crowns. For loosely stocked areas, this criterion is especially critical, because the size and shape of the reference area for calculating CC is not clearly defined in most definitions. Thus current forest delineations differ and tend to be non-comparable because of different settings for checking the criterion of CC in the delineation process. This paper evaluates a new approach for the automatic delineation of forested areas, based on airborne laser scanning (ALS data with a clearly defined method for calculating CC. The new approach, the ‘tree triples’ method, is based on defining CC as a relation between the sum of the crown areas of three neighboring trees and the area of their convex hull. The approach is applied and analyzed for two study areas in Tyrol, Austria. The selected areas show a loosely stocked forest at the upper timberline and a fragmented forest on the hillside. The fully automatic method presented for delineating forested areas from ALS data shows promising results with an overall accuracy of 96%, and provides a beneficial tool for operational applications.

  4. Optimization of performance of airborne dust monitors

    International Nuclear Information System (INIS)

    A new, computer based, improved version of airborne dust concentration monitor is presented. Thanks to the application of electronic circuit reducing Geiger-Mueller counter dead time, exchangeable radiation source collimators, rotary measuring unit and personal computer as a control and processing unit, considerable improvement of exploitation parameters was achieved. The principle of operation of the gauge is based on the measurement of beta absorption by the dust mass deposited on air filter from an air volume which is proportional to the pumping time. For count rates up to 4000 c/s from Geiger-Mueller counter the count loss is 6.0%. A set of exchangeable radiation source collimators with different diameters aperture permits to use same 37 MBq Pm-147 source for a period not shorter than 10 years. The precision of the measurement of the deposited dust mass in typical operating conditions is 10-15 μg, which permits to obtain a relative precision of dust concentration measurement 1.0-1.5% when the collected dust mass is equal to 1 mg. The lower detection limit does not exceed 2 μg/m3. Thanks to the measurement of a reference sample at the start and the end of the measuring cycle, variations of ambient temperature and pressure are compensated. A personal computer employed as processing and display unit of the gauge makes the programming of measuring cycles easy and permits to display measuring results in a convenient form for the user. (author). 7 refs, 6 figs, 3 tabs

  5. Airborne DOAS in South Africa: escaping flatland

    Science.gov (United States)

    Broccardo, S. P.; Heue, K.; Piketh, S.; Platt, U.

    2010-12-01

    The satellite instruments SCIAMACHY, OMI and GOME-2 show high average tropospheric NO2 vertical column densities over the South African Highveld, a region with a high density of coal-fired power stations and other heavy industries. A pushbroom-imaging DOAS spectrometer was flown over the Highveld and surrounding areas in order to further investigate this feature of the satellite record. The wavelength range of the instrument includes differential absorption structures of gases relevant to air quality such as NO2 and SO2. The high spatial resolution of the instrument allows individual sources to be distinguished, while the mobility of the airborne platform allows larger-scale measurements to be made. Emissions fluxes for individual facilities are calculated. An NO flux for the city of Johannesburg is derived from the nadir DOAS column measurements. Similarly, a flux for the entire Highveld region is derived and compared to a satellite-derived flux. The Highveld provides an excellent outdoor laboratory for development of trace-gas remote sensing instrumentation. The greater Johannesburg conurbation and nearby industrial point sources are surrounded by rural areas for several hundred kilometers on all sides. Flat topography and a stable atmosphere in winter lead to plumes with high trace-gas concentrations that are easy to measure and distinguish from the background. A lightweight scanning multi-axis spectrometer is being built to measure industrial plumes from an ultra-light aircraft. Using a tomographic inversion, this instrument will give a vertical cross-section of the plume, allowing validation of dispersion models and direct comparison with in-situ measurements. Using a suitable flight path, a three dimensional representation of the plume can be built up.

  6. Wind Field Measurements With Airborne Doppler Lidar

    Science.gov (United States)

    Menzies, Robert T.

    1999-01-01

    In collaboration with lidar atmospheric remote sensing groups at NASA Marshall Space Flight Center and National Oceanic and Atmospheric Administration (NOAA) Environmental Technology Laboratory, we have developed and flown the Multi-center Airborne Coherent Atmospheric Wind Sensor (MACAWS) lidar on the NASA DC-8 research aircraft. The scientific motivations for this effort are: to obtain measurements of subgrid scale (i.e. 2-200 km) processes and features which may be used to improve parameterizations in global/regional-scale models; to improve understanding and predictive capabilities on the mesoscale; and to assess the performance of Earth-orbiting Doppler lidar for global tropospheric wind measurements. MACAWS is a scanning Doppler lidar using a pulsed transmitter and coherent detection; the use of the scanner allows 3-D wind fields to be produced from the data. The instrument can also be radiometrically calibrated and used to study aerosol, cloud, and surface scattering characteristics at the lidar wavelength in the thermal infrared. MACAWS was used to study surface winds off the California coast near Point Arena, with an example depicted in the figure below. The northerly flow here is due to the Pacific subtropical high. The coastal topography interacts with the northerly flow in the marine inversion layer, and when the flow passes a cape or point that juts into the winds, structures called "hydraulic expansion fans" are observed. These are marked by strong variation along the vertical and cross-shore directions. The plots below show three horizontal slices at different heights above sea level (ASL). Bottom plots are enlargements of the area marked by dotted boxes above. The terrain contours are in 200-m increments, with the white spots being above 600-m elevation. Additional information is contained in the original.

  7. Research on Block Adjustment of Airborne InSAR Images

    International Nuclear Information System (INIS)

    Airborne InSAR system and InSAR data processing algorithm have been one of the hot topics in the international SAR field. Geometric constraint relation of images is set up through airborne InSAR block adjustment, adjustment parameters are adjusted and refined, and the three-dimensional(3D) ground coordinates of tie-points(TPs) are solved according to least squares theory. The number of the ground control points(GCPs) is reduced. The airborne InSAR block adjustment experiment was done using self-developed Airborne InSAR Block Adjustment Software System. The 76 airborne InSAR images which are 0.5 m resolution and cover an area of 472 square kilometers generated a block of 4 strips and 19 rows with approximately 30% overlap between adjacent strips. The study site is located in in Jiangyou Sichuan province and characterized by a hilly topography. The result meets DEM and DOM mapping accuracy requirements at scale of 1:10000

  8. Detection Range of Airborne Magnetometers in Magnetic Anomaly Detection

    Directory of Open Access Journals (Sweden)

    Chengjing Li

    2015-11-01

    Full Text Available Airborne magnetometers are utilized for the small-range search, precise positioning, and identification of the ferromagnetic properties of underwater targets. As an important performance parameter of sensors, the detection range of airborne magnetometers is commonly set as a fixed value in references regardless of the influences of environment noise, target magnetic properties, and platform features in a classical model to detect airborne magnetic anomalies. As a consequence, deviation in detection ability analysis is observed. In this study, a novel detection range model is proposed on the basis of classic detection range models of airborne magnetometers. In this model, probability distribution is applied, and the magnetic properties of targets and the environment noise properties of a moving submarine are considered. The detection range model is also constructed by considering the distribution of the moving submarine during detection. A cell-averaging greatest-of-constant false alarm rate test method is also used to calculate the detection range of the model at a desired false alarm rate. The detection range model is then used to establish typical submarine search probabilistic models. Results show that the model can be used to evaluate not only the effects of ambient magnetic noise but also the moving and geomagnetic features of the target and airborne detection platform. The model can also be utilized to display the actual operating range of sensor systems.

  9. Glass characterization to assess the airborne sound isolation

    International Nuclear Information System (INIS)

    The main contribution of this paper is the formulation of an alternative to experimental determination of loss factor and, consequently, to improve the predictions of airborne sound insulation for any type of monolithic or laminated glass. In addition, a review of the standards related to measurement of mechanical parameters of glass is carried out, with particular interest in laminated glass Indeed, one of the problems that arise in the current context of building acoustics is to meet the requirements of facades airborne sound insulation of existing Building Technical Code (BTC). It is known that the blind and the hollow part of the facade should be distinguished. The weakest part regarding to airborne sound insulation is the empty one (consisting of glass, woodwork and other elements). Choosing an adequate woodwork makes the glass surface become the limiting factor. The Constructive Elements Catalog (CEC) of the BTC, the UNE-EN 12758:2011 standard, as well as some, increasingly, data vendors provide information about airborne sound insulation for monolithic glass, laminated glass and double glazing. In the case of laminated glass, these data are limited only to those with a single intermediate layer, and also nonacoustic. Can therefore be said that there is a gap of knowledge in this regard. To obtain reliable predictions of airborne sound insulation of multilayer partitions, such as laminated glass, mechanical characteristics must be known, being loss factor one of the most important. (Author) 7 refs.

  10. Airborne Gravity Data Enhances NGS Experimental Gravimetric Geoid in Alaska

    Science.gov (United States)

    Holmes, S. A.; Childers, V. A.; Li, X.; Roman, D. R.

    2014-12-01

    The U.S. National Geodetic Survey [NGS], through their Gravity for the Redefinition of the American Vertical Datum [GRAV-D] program, continues to update its gravimetry holdings by flying new airborne gravity surveys over a large fraction of the USA and its territories. By 2022, NGS intends that all orthometric heights in the USA will be determined in the field by using a reliable national gravimetric geoid model to transform from geodetic heights obtained from GPS. Several airborne campaigns have already been flown over Alaska and its coastline. Some of this Alaskan coastal data have been incorporated into a new NGS experimental geoid model - xGEOID14. The xGEOID14 model is the first in a series of annual experimental geoid models that will incorporate NGS GRAV-D airborne data. This series provides a useful benchmark for assessing and improving current techniques by which the airborne and land-survey data are filtered and cleaned, and then combined with satellite gravity models, elevation data (etc.) with the ultimate aim of computing a geoid model that can support a national physical height system by 2022. Here we will examine the NGS GRAV-D airborne data in Alaska, and assess its contribution to xGEOID14. Future prospects for xGEOID15 will also be considered.

  11. Mass spectrometric airborne measurements of submicron aerosol and cloud residual composition in tropic deep convection during ACRIDICON-CHUVA

    Science.gov (United States)

    Schulz, Christiane; Schneider, Johannes; Mertes, Stephan; Kästner, Udo; Weinzierl, Bernadett; Sauer, Daniel; Fütterer, Daniel; Walser, Adrian; Borrmann, Stephan

    2015-04-01

    Airborne measurements of submicron aerosol and cloud particles were conducted in the region of Manaus (Amazonas, Brazil) during the ACRIDICON-CHUVA campaign in September 2014. ACRIDICON-CHUVA aimed at the investigation of convective cloud systems in order to get a better understanding and quantification of aerosol-cloud-interactions and radiative effects of convective clouds. For that, data from airborne measurements within convective cloud systems are combined with satellite and ground-based data. We used a C-ToF-AMS (Compact-Time-of-Flight-Aerosol-Mass-Spectrometer) to obtain information on aerosol composition and vertical profiles of different aerosol species, like organics, sulphate, nitrate, ammonium and chloride. The instrument was operated behind two different inlets: The HASI (HALO Aerosol Submicrometer Inlet) samples aerosol particles, whereas the CVI (Counterflow Virtual Impactor) samples cloud droplets and ice particles during in-cloud measurements, such that cloud residual particles can be analyzed. Differences in aerosol composition inside and outside of clouds and cloud properties over forested or deforested region were investigated. Additionally, the in- and outflow of convective clouds was sampled on dedicated cloud missions in order to study the evolution of the clouds and the processing of aerosol particles. First results show high organic aerosol mass concentrations (typically 15 μg/m3 and during one flight up to 25 μg/m3). Although high amounts of organic aerosol in tropic air over rainforest regions were expected, such high mass concentrations were not anticipated. Next to that, high sulphate aerosol mass concentrations (about 4 μg/m3) were measured at low altitudes (up to 5 km). During some flights organic and nitrate aerosol was observed with higher mass concentrations at high altitudes (10-12 km) than at lower altitudes, indicating redistribution of boundary layer particles by convection. The cloud residuals measured during in

  12. Initial evaluation of airborne water vapour measurements by the IAGOS-GHG CRDS system

    Science.gov (United States)

    Filges, Annette; Gerbig, Christoph; Smit, Herman G. J.; Krämer, Martina; Spelten, Nicole

    2013-04-01

    Accurate and reliable airborne measurements of water vapour are still a challenge. Presently, no airborne humidity sensor exists that covers the entire range of water vapour content between the surface and the upper troposphere/lower stratosphere (UT/LS) region with sufficient accuracy and time resolution. Nevertheless , these data are a pre-requisite to study the underlying processes in the chemistry and physics of the atmosphere. The DENCHAR project (Development and Evaluation of Novel Compact Hygrometer for Airborne Research) addresses this deficit by developing and characterizing novel or improved compact airborne hygrometers for different airborne applications within EUFAR (European Facility for Airborne Research). As part of the DENCHAR inter-comparison campaign in Hohn (Germany), 23 May - 1 June 2011, a commercial gas analyzer (G2401-m, Picarro Inc.,US), based on cavity ring-down spectroscopy (CRDS), was installed on a Learjet to measure water vapour, CO2, CH4 and CO. The CRDS components are identical to those chosen for integration aboard commercial airliner within IAGOS (In-service Aircraft for a Global Observing System). Thus the campaign allowed for the initial assessment validation of the long-term IAGOS H2O measurements by CRDS against reference instruments with a long performance record (FISH, the Fast In-situ Stratospheric Hygrometer, and CR2 frostpoint hygrometer, both research centre Juelich). The inlet system, a one meter long 1/8" FEP-tube connected to a Rosemount TAT housing (model 102BX, deiced) installed on a window plate of the aircraft, was designed to eliminate sampling of larger aerosols, ice particles, and water droplets, and provides about 90% of ram-pressure. In combination with a lowered sample flow of 0.1 slpm (corresponding to a 4 second response time), this ensured a fully controlled sample pressure in the cavity of 140 torr throughout an aircraft altitude operating range up to 12.5 km without the need of an upstream sampling pump

  13. Data fusion techniques for object space classification using airborne laser data and airborne digital photographs

    Science.gov (United States)

    Park, Joong Yong

    The objective of this research is to investigate possible strategies for the fusion of airborne laser data with passive optical data for object space classification. A significant contribution of our work is the development and implementation of a data-level fusion technique, direct digital image georeferencing (DDIG). In DDIG, we use navigation data from an integrated system (composed of global positioning system (GPS) and inertial measurement unit (IMU)) to project three-dimensional data points measured with the University of Florida's airborne laser swath mapping (ALSM) system onto digital aerial photographs. As an underlying math model, we use the familiar collinearity condition equations. After matching the ALSM object space points to their corresponding image space pixels, we resample the digital photographs using cubic convolution techniques. We call the resulting images pseudo-ortho-rectified images (PORI) because they are orthographic at the ground surface but still exhibit some relief displacement for elevated objects; and because they have been resampled using a interpolation technique. Our accuracy tests on these PORI images show that they are planimetrically correct to about 0.4 meters. This accuracy is sufficient to remove most of the effects of the central perspective projection and enable a meaningful fusion of the RGB data with the height and intensity data produced by the laser. PORI images may also be sufficiently accurate for many other mapping applications, and may in some applications be an attractive alternative to traditional photogrammetric techniques. A second contribution of our research is the development of several strategies for the fusion of data from airborne laser and camera systems. We have conducted our work within the sensor fusion paradigm formalized in the optical engineering community. Our work explores the fusion of these two types of data for precision mapping applications. Specifically, we combine three different types of

  14. Reducing airborne pathogens and dust in commercial hatching cabinets with an electrostatic space charge system.

    Science.gov (United States)

    Mitchell, B W; Waltman, W D

    2003-01-01

    Commercial hatcheries typically infuse hydrogen peroxide or formaldehyde gas into hatching cabinets to reduce airborne pathogens that may lead to disease transmission during the hatch. A nonchemical option, an electrostatic space charge system (ESCS), was customized for full-sized commercial hatching cabinets and was tested extensively in broiler hatcheries. The ESCS cleans air by transferring a strong negative electrostatic charge to dust and microorganisms that are aerosolized during the hatch and collecting the charged particles on grounded plates or surfaces. In studies with three poultry companies, the ESCS resulted in significant (P or = 0.05) from those with formaldehyde, and in 93%-96% lower Enterobacteriaceae than with no treatment or with hydrogen peroxide treatment (P hatchery. PMID:12887184

  15. First Study Of HEPA Filter Prototype Performance To Control The Airborne Pollution

    International Nuclear Information System (INIS)

    This paper will report the efficiency test result of the filtration tool prototype of High Efficiency Particulate Air (HEPA filter) for low temperature, to control the airborne pollution of aerosol particle of solid and liquid. The prototype design of HEPA filter was based on the characteristic data of filter material (fibrous diameter, density, filter thickness), flow rate of air and first pressure drop. From the result of laboratory scale test, using DOP/PSL aerosol with 0,3 mum diameter and the flow rate of 3,78 m exp.3/min, was obtained filtration efficiency revolve between 89,90 and 99,94 % for the filter prototype of A, B, C, and D. the efficiency estimation of theory with filtration programme and the experiment was different amount 1 %. The value of the prototype efficiency of D filter was not far different with AAF-USA filter and its price is cheaper 30 % than the price of AAF-USA filter

  16. Trace element determination in the airborne particulate matter of Bangkok and Samutprakan by INAA

    International Nuclear Information System (INIS)

    During October 1995 - January 1996, 66 samples of airborne particulate matter were collected from Bangkok and Samutprakan provinces. Samples of the particle sizes of 2.5 - 10 microns (33 samples) and less than 2.5 microns (33 samples) were determined for elemental concentration of 34 elements. A comparative study of the data from both sampling size was initiated to investigate the trends, source and origin of the aerosols by comparing the concentration, enrichment factor (E F) and coarse/ fine ratio. The results show Al, Fe, Sc are from crustal elements, Ca, K, Mn, V has moderate high E F and As, Br, Cd, Cu, Ni, Sb, Se and Zn has rather high E F. Comparison between the two sites yields higher levels of As and Sb at Samutprakan appearly due to smelting or other industries nearby. Higher level of Br might be due to the heavier of transportation of trucks in and out of the city

  17. Multi-Target Detection from Full-Waveform Airborne Laser Scanner Using Phd Filter

    Science.gov (United States)

    Fuse, T.; Hiramatsu, D.; Nakanishi, W.

    2016-06-01

    We propose a new technique to detect multiple targets from full-waveform airborne laser scanner. We introduce probability hypothesis density (PHD) filter, a type of Bayesian filtering, by which we can estimate the number of targets and their positions simultaneously. PHD filter overcomes some limitations of conventional Gaussian decomposition method; PHD filter doesn't require a priori knowledge on the number of targets, assumption of parametric form of the intensity distribution. In addition, it can take a similarity between successive irradiations into account by modelling relative positions of the same targets spatially. Firstly we explain PHD filter and particle filter implementation to it. Secondly we formulate the multi-target detection problem on PHD filter by modelling components and parameters within it. At last we conducted the experiment on real data of forest and vegetation, and confirmed its ability and accuracy.

  18. The calibration of portable and airborne gamma-ray spectrometers - theory, problems, and facilities

    International Nuclear Information System (INIS)

    A gamma-ray spectrometer for use in geological exploration possesses four stripping ratios and three window sensitivities which must be determined to make the instrumentation applicable for field assay or airborne measurement of potassium, uranium, and thorium contents in the ground. Survey organizations in many parts of the world perform the instrument calibration using large pads of concrete which simulate a plane ground of known radioelement concentration. Calibration and monitoring trials with twelve facilities in ten countries prove that moisture absorption, radon exhalation, and particle-size effects can offset a radiometric grade assigned to concrete whose aggregate contains an embedded radioactive mineral. These and other calibration problems are discussed from a combined theoretical and practical viewpoint. (author)

  19. Characterization of airborne particulate matter in the metropolitan region of Belo Horizonte

    International Nuclear Information System (INIS)

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and 57Fe-Moessbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. 57Fe-Moessbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area. (author)

  20. Characterization of airborne particulate matter in the metropolitan region of Belo Horizonte

    Energy Technology Data Exchange (ETDEWEB)

    Tavares, Fernanda V.F.; Ardisson, Jose Domingos; Rodrigues, Paulo Cesar H.; Brito, Walter de; Macedo, Waldemar Augusto A.; Jacomino, Vanusa Maria F., E-mail: ferufv@yahoo.com.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and {sup 57}Fe-Moessbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. {sup 57}Fe-Moessbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area. (author)