WorldWideScience

Sample records for airborne p-band ice

  1. Design of an airborne P-band ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Kusk, Anders

    2006-01-01

    This paper presents the top-level design of an airborne, P-band ice sounding radar under development at the Technical University of Denmark. The ice sounder is intended to help gaining experience with the electromagnetic properties of the Antarctic ice sheet at P-band. A secondary objective...

  2. P-sounder: an airborne P-band ice sounding radar

    DEFF Research Database (Denmark)

    Dall, Jørgen; Skou, Niels; Kusk, Anders

    2007-01-01

    This paper presents the top-level design of an airborne, P-band ice sounding radar under development at the Technical University of Denmark. The ice sounder is intended to provide more information on the electromagnetic properties of the Antarctic ice sheet at P-band. A secondary objective...

  3. Polarimetric ice sounding at P-band: First results

    DEFF Research Database (Denmark)

    Dall, Jørgen

    2009-01-01

    For polar ice sheets valuable stress and strain information can be deduced from the crystal orientation fabric (COF) and its prevailing c-axis alignment. Polarimetric radio echo sounding is a promising technique to measure the anisotropic electromagnetic propagation and reflection properties...... associated with the COF. In this paper, dual-polarized P-band data acquired with the airborne POLARIS system near the ice divide of the Greenland ice sheet are analyzed. The internal layers in the uppermost few hundred meters of the ice sheet look the same at HH and VV polarizations, whereas the layering...

  4. Ice flow mapping with P-band SAR

    DEFF Research Database (Denmark)

    Dall, Jørgen; Nielsen, Ulrik; Kusk, Anders;

    2013-01-01

    -band SAR data have been acquired in Greenland, and both offset tracking and DInSAR have been applied to the full resolution data as well as to data degraded to the resolution of Biomass. Generally, ice velocity maps are successfully generated, but in the ablation zone, DInSAR fails in the melt season......Glacier and ice sheet dynamics are currently mapped with X-, C-, and L-band SAR. With the prospect of a P-band SAR, Biomass, to be launched within the next decade it is interesting to look into the potential of P-band for ice velocity mapping. In this paper first results are presented. Airborne P...

  5. P-band radar ice sounding in Antarctica

    DEFF Research Database (Denmark)

    Dall, Jørgen; Kusk, Anders; Kristensen, Steen Savstrup

    2012-01-01

    In February 2011, the Polarimetric Airborne Radar Ice Sounder (POLARIS) was flown in Antarctica in order to assess the feasibility of a potential space-based radar ice sounding mission. The campaign has demonstrated that the basal return is detectable in areas with up to 3 km thick cold ice...

  6. Multichannel surface clutter suppression: East Antarctica P-band SAR ice sounding in the presence of grating lobes

    DEFF Research Database (Denmark)

    Bekaert, David; Gebert, Nicolas; Lin, Chung-Chi

    2014-01-01

    with the European Space Agency's P-band POLarimetric Airborne Radar Ice Sounder (POLARIS). The 4 m long antenna of POLARIS enables simultaneous reception of up to four across-track channels. It was operated in 2011 over Antarctica at a high flight altitude of 3200 m. Different coherent weighting techniques...

  7. P-band polarimetric ice sounder: concept and first results

    DEFF Research Database (Denmark)

    Dall, Jørgen; Hernández, Carlos Cilla; Kristensen, Steen Savstrup;

    2008-01-01

    direction. In May 2008, a proof-of-concept campaign was organized in Greenland, where data were acquired over the ice sheet. The system proved capable of detecting the bedrock under 3 km thick ice and of mapping the internal ice layers down to a depth of at least 1.3 km. In this paper, the system concept...

  8. Single and Multipolarimetric P-Band SAR Tomography of Subsurface Ice Structure

    DEFF Research Database (Denmark)

    Banda, Francesco; Dall, Jørgen; Tebaldini, Stefano

    2016-01-01

    In this paper, first results concerning the characterization of the subsurface of ice sheets and glaciers through single and multipolarization synthetic aperture radar (SAR) tomography (TomoSAR) are illustrated. To this aim, the processing of data acquired in the framework of the European Space...

  9. SAR focusing of P-band ice sounding data using back-projection

    DEFF Research Database (Denmark)

    Kusk, Anders; Dall, Jørgen

    2010-01-01

    accommodated at the expense of computation time. The back-projection algorithm can be easily parallelized however, and can advantageously be implemented on a graphics processing unit (GPU). Results from using the back-projection algorithm on POLARIS ice sounder data from North Greenland shows that the quality...... of data is improved by the processing, and the performance of the GPU implementation allows for very fast focusing....

  10. POLARIS: ESA's airborne ice sounding radar front-end design, performance assessment and first results

    DEFF Research Database (Denmark)

    Hernández, Carlos Cilla; Krozer, Viktor; Vidkjær, Jens;

    2009-01-01

    This paper addresses the design, implementation and experimental performance assessment of the RF front-end of an airborne P-band ice sounding radar. The ice sounder design comprises commercial-of-the-shelf modules and newly purpose-built components at a centre frequency of 435 MHz with 20......% relative bandwidth. The transmitter uses two amplifiers combined in parallel to generate more than >128 W peak power, with system >60% PAE and 47 dB in-band to out-of-band signal ratio. The four channel receiver features digitally controlled variable gain to achieve more than 100 dB dynamic range, 2.4 d...

  11. Arctic Sea Ice: Using Airborne Topographic Mapper Measurements (ATM) to Determine Sea Ice Thickness

    Science.gov (United States)

    2011-05-10

    today. MATERIALS AND METHODS IceBridge is a six-year NASA airborne mission which is aimed at surveying both poles of the earth. IceBridge comprises a...http://psc.apl.washington.edu/ArcticSeaiceVolume/IceVolume.php> Wahdams, Peter. “Ice in the Oceans.” Scott Polar Reseach Institute, Cambridge United

  12. An airborne icing characterization probe: nephelometer prototype

    Science.gov (United States)

    Roques, S.

    2007-10-01

    The aeronautical industry uses airborne probes to characterize icing conditions for flight certification purposes by counting and sizing cloud droplets. Existing probes have been developed for meteorologists in order to study cloud microphysics. They are used on specific aircraft, instrumented for this type of study, but are not adapted for an industrial flight test environment. The development by Airbus of a new probe giving a real time response for particle sizes between 10 and 500 µm, adapted to operational requirements, is in progress. An optical principle by coherent shadowgraphy with a low coherency point source is used for the application. The size of the droplets is measured from their shadows on a CCD. A pulsed laser coupled to a fast camera freezes the movement. Usually, image processing rejects out-of-focus objects. Here, particles far from the focal plane can be sized because of the large depth of field due to the point source. The technique used increases the depth of field and the sampled volume is enough to build a histogram even for low droplet concentrations. Image processing is done in real time and results are provided to the flight test engineer. All data and images are recorded in order to allow on-ground complementary analysis if necessary. A non-telescopic prototype has been tested in a wind tunnel and in flight. The definitive probe being retractable is designed to be easily installed through a dummy window. Retracted, it will allow the aircraft to fly at VMO (maximum operating limit speed).

  13. Sea Ice Thickness, Freeboard, and Snow Depth products from Operation IceBridge Airborne Data

    Science.gov (United States)

    Kurtz, N. T.; Farrell, S. L.; Studinger, M.; Galin, N.; Harbeck, J. P.; Lindsay, R.; Onana, V. D.; Panzer, B.; Sonntag, J. G.

    2013-01-01

    The study of sea ice using airborne remote sensing platforms provides unique capabilities to measure a wide variety of sea ice properties. These measurements are useful for a variety of topics including model evaluation and improvement, assessment of satellite retrievals, and incorporation into climate data records for analysis of interannual variability and long-term trends in sea ice properties. In this paper we describe methods for the retrieval of sea ice thickness, freeboard, and snow depth using data from a multisensor suite of instruments on NASA's Operation IceBridge airborne campaign. We assess the consistency of the results through comparison with independent data sets that demonstrate that the IceBridge products are capable of providing a reliable record of snow depth and sea ice thickness. We explore the impact of inter-campaign instrument changes and associated algorithm adaptations as well as the applicability of the adapted algorithms to the ongoing IceBridge mission. The uncertainties associated with the retrieval methods are determined and placed in the context of their impact on the retrieved sea ice thickness. Lastly, we present results for the 2009 and 2010 IceBridge campaigns, which are currently available in product form via the National Snow and Ice Data Center

  14. Greenland Ice sheet mass balance from satellite and airborne altimetry

    Science.gov (United States)

    Khan, S. A.; Bevis, M. G.; Wahr, J. M.; Wouters, B.; Sasgen, I.; van Dam, T. M.; van den Broeke, M. R.; Hanna, E.; Huybrechts, P.; Kjaer, K.; Korsgaard, N. J.; Bjork, A. A.; Kjeldsen, K. K.

    2013-12-01

    Ice loss from the Greenland Ice Sheet (GrIS) is dominated by loss in the marginal areas. Dynamic induced ice loss and its associated ice surface lowering is often largest close to the glacier calving front and may vary from rates of tens of meters per years to a few meters per year over relatively short distances. Hence, high spatial resolution data are required to accurately estimate volume changes. Here, we estimate ice volume change rate of the Greenland ice sheet using data from Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter during 2003-2009 and CryoSat-2 data during 2010-2012. To improve the volume change estimate we supplement the ICESat and CryoSat data with altimeter surveys from NASA's Airborne Topographic Mapper (ATM) during 2003-2012 and NASA's Land, Vegetation and Ice Sensor (LVIS) during 2007-2012. The Airborne data are mainly concentrated along the ice margin and therefore significantly improve the estimate of the total volume change. Furthermore, we divide the GrIS into six major drainage basins and provide volume loss estimates during 2003-2006, 2006-2009 and 2009-2012 for each basin and separate between melt induced and dynamic ice loss. In order to separate dynamic ice loss from melt processes, we use SMB values from the Regional Atmospheric Climate Model (RACMO2) and SMB values from a positive degree day runoff retention model (Janssens & Huybrechts 2000, Hanna et al. 2011 JGR, updated for this study). Our results show increasing SMB ice loss over the last decade, while dynamic ice loss increased during 2003-2009, but has since been decreasing. Finally, we assess the estimated mass loss using GPS observations from stations located along the edge of the GrIS and measurements from the Gravity Recovery and Climate Experiment (GRACE) satellite gravity mission. Hanna, E., et al. (2011), Greenland Ice Sheet surface mass balance 1870 to 2010 based on Twentieth Century Reanalysis, and links with global climate forcing, J. Geophys. Res

  15. The NRL 2011 Airborne Sea-Ice Thickness Campaign

    Science.gov (United States)

    Brozena, J. M.; Gardner, J. M.; Liang, R.; Ball, D.; Richter-Menge, J.

    2011-12-01

    In March of 2011, the US Naval Research Laboratory (NRL) performed a study focused on the estimation of sea-ice thickness from airborne radar, laser and photogrammetric sensors. The study was funded by ONR to take advantage of the Navy's ICEX2011 ice-camp /submarine exercise, and to serve as a lead-in year for NRL's five year basic research program on the measurement and modeling of sea-ice scheduled to take place from 2012-2017. Researchers from the Army Cold Regions Research and Engineering Laboratory (CRREL) and NRL worked with the Navy Arctic Submarine Lab (ASL) to emplace a 9 km-long ground-truth line near the ice-camp (see Richter-Menge et al., this session) along which ice and snow thickness were directly measured. Additionally, US Navy submarines collected ice draft measurements under the groundtruth line. Repeat passes directly over the ground-truth line were flown and a grid surrounding the line was also flown to collect altimeter, LiDAR and Photogrammetry data. Five CRYOSAT-2 satellite tracks were underflown, as well, coincident with satellite passage. Estimates of sea ice thickness are calculated assuming local hydrostatic balance, and require the densities of water, ice and snow, snow depth, and freeboard (defined as the elevation of sea ice, plus accumulated snow, above local sea level). Snow thickness is estimated from the difference between LiDAR and radar altimeter profiles, the latter of which is assumed to penetrate any snow cover. The concepts we used to estimate ice thickness are similar to those employed in NASA ICEBRIDGE sea-ice thickness estimation. Airborne sensors used for our experiment were a Reigl Q-560 scanning topographic LiDAR, a pulse-limited (2 nS), 10 GHz radar altimeter and an Applanix DSS-439 digital photogrammetric camera (for lead identification). Flights were conducted on a Twin Otter aircraft from Pt. Barrow, AK, and averaged ~ 5 hours in duration. It is challenging to directly compare results from the swath LiDAR with the

  16. Measurements of sea ice by satellite and airborne altimetry

    DEFF Research Database (Denmark)

    Kildegaard Rose, Stine

    A changing sea ice cover in the Arctic Ocean is an early indicator of a climate in transition, the sea ice has in addition a large impact on the climate. The annual and interannual variations of the sea ice cover have been observed by satellites since the start of the satellite era in 1979......, and it has been in retreat every since. The mass balance of the sea ice is an important input to climate models, where the ice thickness is the most uncertain parameter. In this study, data from the CryoSat-2 radar altimeter satellite are used. CryoSat-2 has been measuring the sea ice in the Arctic Ocean...... freeboard is found to be 35 cm for both the airborne and satellite data implying, that the radar signal is here reflected from the snow surface, probably due to weather conditions. CryoSat-2 is very sensitive to returns from specular surfaces, even if they appear o_-nadir. This contaminates the “true...

  17. Estimation of Snow Thickness on Sea Ice and Lake Ice Using Airborne SnowSAR Data

    Science.gov (United States)

    Veijola, Katriina; Makynen, Marko; Lemmetyinen, Juha; Praks, Jaan

    2016-08-01

    Currently, snow thickness on sea ice is operationally estimated using microwave radiometer data. However, the estimates are hampered by the inherent coarse spatial resolution of passive microwave sensors. Successful application of SAR imagery for snow thickness estimation has the potential of providing estimates of snow thickness with much finer spatial resolution.In this study, we concentrate on assessing the capability of X- and Ku-band SAR backscattering to estimate snow thickness on sea and lake ice. Co- and cross -polarized X- and Ku-band SAR backscattering data, acquired with the ESA airborne SnowSAR sensor, are applied. The SAR data acquisition and co-incident in-situ measurements were conducted in Finland in the winter of 2012 over sea ice and lake ice test sites.Our analysis shows which frequency and polarization combinations have best sensitivity to snow thickness on sea and lake ice and in deep discussion provides plausible ways to improve the results.

  18. ESA'S POLarimetric Airborne Radar Ice Sounder (POLARIS): design and first results

    DEFF Research Database (Denmark)

    Dall, Jørgen; Kristensen, Steen Savstrup; Krozer, Viktor;

    2010-01-01

    The Technical University of Denmark has developed and tested a P-band ice sounding radar for European Space Agency (ESA). With the recent by the International Telecommunication Union (ITU) allocation of a radar band at 435 MHz, increased interest in space-based sounding of the Earth s ice caps ha...

  19. Using Airborne SAR Interferometry to Measure the Elevation of a Greenland Ice Cap

    DEFF Research Database (Denmark)

    Dall, Jørgen; Keller, K.; Madsen, S.N.

    2000-01-01

    A digital elevation model (DEM) of an ice cap in Greenland has been generated from airborne SAR interferometry data, calibrated with a new algorithm, and compared with airborne laser altimetry profiles and carrier-phase differential GPS measurements of radar reflectors deployed on the ice cap...

  20. Sea-ice thickness from airborne laser altimetry over the Arctic Ocean north of Greenland

    DEFF Research Database (Denmark)

    Hvidegaard, Sine Munk; Forsberg, René

    2002-01-01

    We present a new method to measure ice thickness of polar sea-ice freeboard heights, using airborne laser altimetry combined with a precise geoid model, giving estimates of thickness of ice through isostatic equilibrium assumptions. In the paper we analyze a number of flights from the Polar Sea o...

  1. Sea-ice freeboard heights in the Arctic Ocean from ICESat and airborne lidar - a comparison

    Science.gov (United States)

    Skourup, H.; Forsberg, R.

    2005-12-01

    Two near-coincident tracks of ICESat/GLAS and airborne scanning airborne lidar data were acquired on May 25, 2004, in the Arctic Ocean north of Greenland, in an area of thick perennial sea-ice with few open leads and numerous large ridges. The airborne lidar data, having a relative accuracy of few cm and 1 m spatial resolution, provide an excellent quantification of the ability of ICESat to detect and model sea-ice features such as leads and ridges, as well as gaining insight into the expected ICESat waveforms over heavily deformed sea-ice. In the paper we outline the underflight experiment and hardware, as well as show examples of the good fit between ICESat and filtered airborne data, matching the ICESat footprint. We also compare the observed ICESat waveforms to the airborne data, as well as quantify the biases induced by "lowest-level" filtering techniques in this particular area. We conclude by showing examples of Arctic Ocean-wide freeboard heights derived from ICESat by an improved "lowest-level" technique, showing good overall correlation to Quikscat multi-year ice distribution and expected seasonal changes.

  2. Greenland Ice sheet mass balance from satellite and airborne altimetry

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Bevis, M. G.; Wahr, J. M.;

    and therefore significantly improve the estimate of the total volume change. Furthermore, we divide the GrIS into six major drainage basins and provide volume loss estimates during 2003-2006, 2006-2009 and 2009-2012 for each basin and separate between melt induced and dynamic ice loss. In order to separate...... dynamic ice loss from melt processes, we use SMB values from the Regional Atmospheric Climate Model (RACMO2) and SMB values from a positive degree day runoff retention model (Janssens & Huybrechts 2000, Hanna et al. 2011 JGR, updated for this study). Our results show increasing SMB ice loss over the last......Ice loss from the Greenland Ice Sheet (GrIS) is dominated by loss in the marginal areas. Dynamic induced ice loss and its associated ice surface lowering is often largest close to the glacier calving front and may vary from rates of tens of meters per years to a few meters per year over relatively...

  3. King George Island ice cap geometry updated with airborne GPR measurements

    Directory of Open Access Journals (Sweden)

    M. Rückamp

    2012-07-01

    Full Text Available Ice geometry is a mandatory requirement for numerical modelling purposes. In this paper we present a consistent data set for the ice thickness, the bedrock topography and the ice surface topography of the King George Island ice cap (Arctowski icefield and the adjacent central part. The new data set is composed of ground based and airborne ground penetrating radar (GPR and differential GPS (DGPS measurements, obtained during several field campaigns. Blindow et al. (2010 already provided a comprehensive overview of the ground based measurements carried out in the safely accessible area of the ice cap. The updated data set incorporates airborne measurements in the heavily crevassed coastal areas. Therefore, in this paper special attention is paid to the airborne measurements by addressing the instrument used, survey procedure, and data processing in more detail. In particular, the inclusion of airborne GPR measurements with the 30 MHz BGR-P30-System developed at the Institute of Geophysics (University of Münster completes the picture of the ice geometry substantially. The compiled digital elevation model of the bedrock shows a rough, highly variable topography with pronounced valleys, ridges, and troughs. Mean ice thickness is 240 ± 6 m, with a maximum value of 422 ± 10 m in the surveyed area. Noticeable are bounded areas in the bedrock topography below sea level where marine based ice exists. The provided data set is required as a basis for future monitoring attempts or as input for numerical modelling experiments. The data set is available from the PANGAEA database at http://dx.doi.org/10.1594/PANGAEA.770567.

  4. King George Island ice cap geometry updated with airborne GPR measurements

    Directory of Open Access Journals (Sweden)

    M. Rückamp

    2011-12-01

    Full Text Available Ice geometry is a mandatory requirement for numerical modelling purposes. In this paper we present a consistent data set for the ice thickness, the bedrock topography and the ice surface topography of the King George Island ice cap (Arctowski Icefield and the adjacent central part. The newly data set is composed of groundbased and airborne Ground Penetrating Radar (GPR and differential GPS (DGPS measurements, obtained during several field campaigns. Blindow et al. (2010 already provided a comprehensive overview of the groundbased measurements carried out in the safely accessible area of the ice cap. The updated data set incorporates airborne measurements in the heavily crevassed coastal areas. Therefore, in this paper special attention is paid to the airborne measurements by addressing the used instrument, survey, and data processing in more detail. In particular, the inclusion of airborne GPR measurements with the 30 MHz BGR-P30-System developed at the Institute of Geophysics (University of Münster completes the picture of the ice geometry substantially. The compiled digital elevation model of the bedrock shows a rough, highly variable topography with pronounced valleys, ridges, and troughs. Mean ice thickness is ~240 m, with a maximum value of ~400 m in the surveyed area. Noticeable are bounded areas in the bedrock topography below sea level where marine based ice exists. The provided data set is required as a basis for future monitoring attempts or as input for numerical modelling experiments. The data set is available from the PANGAEA database at doi:10.1594/PANGAEA.770567.

  5. CBSIT 2009: Airborne Validation of Envisat Radar Altimetry and In Situ Ice Camp Measurements Over Arctic Sea Ice

    Science.gov (United States)

    Connor, Laurence; Farrell, Sinead; McAdoo, David; Krabill, William; Laxon, Seymour; Richter-Menge, Jacqueline; Markus, Thorsten

    2010-01-01

    The past few years have seen the emergence of satellite altimetry as valuable tool for taking quantitative sea ice monitoring beyond the traditional surface extent measurements and into estimates of sea ice thickness and volume, parameters that arc fundamental to improved understanding of polar dynamics and climate modeling. Several studies have now demonstrated the use of both microwave (ERS, Envisat/RA-2) and laser (ICESat/GLAS) satellite altimeters for determining sea ice thickness. The complexity of polar environments, however, continues to make sea ice thickness determination a complicated remote sensing task and validation studies remain essential for successful monitoring of sea ice hy satellites. One such validation effort, the Arctic Aircraft Altimeter (AAA) campaign of2006. included underflights of Envisat and ICESat north of the Canadian Archipelago using NASA's P-3 aircraft. This campaign compared Envisat and ICESat sea ice elevation measurements with high-resolution airborne elevation measurements, revealing the impact of refrozen leads on radar altimetry and ice drift on laser altimetry. Continuing this research and validation effort, the Canada Basin Sea Ice Thickness (CBSIT) experiment was completed in April 2009. CBSIT was conducted by NOAA. and NASA as part of NASA's Operation Ice Bridge, a gap-filling mission intended to supplement sea and land ice monitoring until the launch of NASA's ICESat-2 mission. CBIST was flown on the NASA P-3, which was equipped with a scanning laser altimeter, a Ku-band snow radar, and un updated nadir looking photo-imaging system. The CB5IT campaign consisted of two flights: an under flight of Envisat along a 1000 km track similar to that flown in 2006, and a flight through the Nares Strait up to the Lincoln Sea that included an overflight of the Danish GreenArc Ice Camp off the coast of northern Greenland. We present an examination of data collected during this campaign, comparing airborne laser altimeter measurements

  6. Development of an Airborne Sea Ice Thickness Measurement System and Field Test Results

    Science.gov (United States)

    1989-12-01

    R.P., F.W. DeBord, F.A. Geisel , J.L. Kovacs, A. and A.J. Gow (1976) Some character- Cobrun and K.E. Dane (1981) Winter 1981 traffic- istics of...MOUS 𔃽 47 A facsimile catalog card in Library of Congress MARC format is reproduced below. Kovacs, Austin Development of an airborne sea ice thickness

  7. Mapping of Ice in the Odden by Satellite and Airborne Remote Sensing

    DEFF Research Database (Denmark)

    Pedersen, Leif Toudal; Hansen, K.Q.; Valeur, H.;

    1999-01-01

    A detailed analysis of the ice conditions in the Odden area of the Greenland Sea was carried out using data from active and passive microwave sensors, supplemented by airborne data. The study focuses on the 1992-1993 winter season, the only winter during the period 1993-1995 in which an Odden...

  8. Validation of Airborne FMCW Radar Measurements of Snow Thickness Over Sea Ice in Antarctica

    Science.gov (United States)

    Galin, Natalia; Worby, Anthony; Markus, Thorsten; Leuschen, Carl; Gogineni, Prasad

    2012-01-01

    Antarctic sea ice and its snow cover are integral components of the global climate system, yet many aspects of their vertical dimensions are poorly understood, making their representation in global climate models poor. Remote sensing is the key to monitoring the dynamic nature of sea ice and its snow cover. Reliable and accurate snow thickness data are currently a highly sought after data product. Remotely sensed snow thickness measurements can provide an indication of precipitation levels, predicted to increase with effects of climate change in the polar regions. Airborne techniques provide a means for regional-scale estimation of snow depth and distribution. Accurate regional-scale snow thickness data will also facilitate an increase in the accuracy of sea ice thickness retrieval from satellite altimeter freeboard estimates. The airborne data sets are easier to validate with in situ measurements and are better suited to validating satellite algorithms when compared with in situ techniques. This is primarily due to two factors: better chance of getting coincident in situ and airborne data sets and the tractability of comparison between an in situ data set and the airborne data set averaged over the footprint of the antennas. A 28-GHz frequency modulated continuous wave (FMCW) radar loaned by the Center for Remote Sensing of Ice Sheets to the Australian Antarctic Division is used to measure snow thickness over sea ice in East Antarctica. Provided with the radar design parameters, the expected performance parameters of the radar are summarized. The necessary conditions for unambiguous identification of the airsnow and snowice layers for the radar are presented. Roughnesses of the snow and ice surfaces are found to be dominant determinants in the effectiveness of layer identification for this radar. Finally, this paper presents the first in situ validated snow thickness estimates over sea ice in Antarctica derived from an FMCW radar on a helicopterborne platform.

  9. Ku-band radar penetration into snow cover Arctic sea ice using airborne data

    OpenAIRE

    Willatt, R.; Laxon, S.; Giles, K.; R. Cullen; Haas, C.; V. Helm

    2011-01-01

    Satellite radar altimetry provides data to monitor winter Arctic sea-ice thickness variability on interannual, basin-wide scales. When using this technique an assumption is made that the peak of the radar return originates from the snow/ice interface. This has been shown to be true in the laboratory for cold, dry snow as is the case on Arctic sea ice during winter. However, this assumption has not been tested in the field. We use data from an airborne normal-incidence Ku-band radar altimeter ...

  10. A digital elevation model of the Greenland ice sheet and validation with airborne laser altimeter data

    Science.gov (United States)

    Bamber, Jonathan L.; Ekholm, Simon; Krabill, William B.

    1997-01-01

    A 2.5 km resolution digital elevation model (DEM) of the Greenland ice sheet was produced from the 336 days of the geodetic phase of ERS-1. During this period the altimeter was operating in ice-mode over land surfaces providing improved tracking around the margins of the ice sheet. Combined with the high density of tracks during the geodetic phase, a unique data set was available for deriving a DEM of the whole ice sheet. The errors present in the altimeter data were investigated via a comparison with airborne laser altimeter data obtained for the southern half of Greenland. Comparison with coincident satellite data showed a correlation with surface slope. An explanation for the behavior of the bias as a function of surface slope is given in terms of the pattern of surface roughness on the ice sheet.

  11. Airborne Surveys of Snow Depth over Arctic Sea Ice

    Science.gov (United States)

    Kwok, R.; Panzer, B.; Leuschen, C.; Pang, S.; Markus, T.; Holt, B.; Gogineni, S.

    2011-01-01

    During the spring of 2009, an ultrawideband microwave radar was deployed as part of Operation IceBridge to provide the first cross-basin surveys of snow thickness over Arctic sea ice. In this paper, we analyze data from three approx 2000 km transects to examine detection issues, the limitations of the current instrument, and the regional variability of the retrieved snow depth. Snow depth is the vertical distance between the air \\snow and snow-ice interfaces detected in the radar echograms. Under ideal conditions, the per echogram uncertainty in snow depth retrieval is approx 4 - 5 cm. The finite range resolution of the radar (approx 5 cm) and the relative amplitude of backscatter from the two interfaces limit the direct retrieval of snow depths much below approx 8 cm. Well-defined interfaces are observed over only relatively smooth surfaces within the radar footprint of approx 6.5 m. Sampling is thus restricted to undeformed, level ice. In early April, mean snow depths are 28.5 +/- 16.6 cm and 41.0 +/- 22.2 cm over first-year and multiyear sea ice (MYI), respectively. Regionally, snow thickness is thinner and quite uniform over the large expanse of seasonal ice in the Beaufort Sea, and gets progressively thicker toward the MYI cover north of Ellesmere Island, Greenland, and the Fram Strait. Snow depth over MYI is comparable to that reported in the climatology by Warren et al. Ongoing improvements to the radar system and the utility of these snow depth measurements are discussed.

  12. Snow thickness retrieval using SMOS satellite data: Comparison with airborne IceBridge and buoy measurements

    Science.gov (United States)

    Maaß, N.; Kaleschke, L.; Tian-Kunze, X.

    2015-12-01

    The passive microwave mission SMOS (Soil Moisture and Ocean Salinity) provides daily coverage of the polar regions and its data have been used to retrieve thin sea ice thickness up to about one meter. In addition, there has been an attempt to retrieve snow thickness over thick Arctic multi-year ice, which is a crucial parameter for the freeboard-based estimation of (thick) sea ice thickness from lidar and radar altimetry. SMOS provides measurements at a frequency of 1.4 GHz (L-band) at horizontal and vertical polarization for a range of incidence angles (0 to 60°). The retrieval of ice or snow parameters from SMOS measurements is based on an emission model that describes the 1.4 GHz brightness temperature of (snow-covered) sea ice as a function of the ice and snow thicknesses and the permittivities of these media, which are mainly determined by ice temperature and salinity and snow density, respectively. In the first attempts to retrieve snow thickness from SMOS data, these parameters were assumed to be constant in the emission model, and the resulting maps were compared with airborne ice and snow thickness measurements taken during NASA's Operation IceBridge mission in spring 2012. The present approach to produce SMOS snow thickness maps is more elaborate. For example, available information on the ice surface temperature from MODIS (MODerate resolution Imaging Spectroradiometer) satellite images or from the IceBridge campaign itself are used, and the ice in the retrieval model is described by temperature and salinity profiles instead of using bulk values. As a first step we have produced (winter/spring) snow thickness maps of the Arctic, from 3-day-averages up to monthly means, using the available SMOS data from 2010 on. Here, we show how our spatial snow thickness distributions compare with IceBridge campaign data in the western Arctic from spring 2011 to 2015. In addition, we show how the temporal evolution of SMOS-retrieved snow thickness compares with snow

  13. Topography and Penetration of the Greenland Ice Sheet Measured with Airborne SAR Interferometry

    DEFF Research Database (Denmark)

    Dall, Jørgen; Madsen, Søren Nørvang; Keller, K.

    2001-01-01

    A digital elevation model (DEM) of the Geikie ice sap in East Greenland has been generated from interferometric C-band synthetic aperture radar (SAR) data acquired with the airborne EMISAR system. GPS surveyed radar reflectors and an airborne laser altimeter supplemented the experiment. The accur......A digital elevation model (DEM) of the Geikie ice sap in East Greenland has been generated from interferometric C-band synthetic aperture radar (SAR) data acquired with the airborne EMISAR system. GPS surveyed radar reflectors and an airborne laser altimeter supplemented the experiment....... The accuracy of the SAR DEM is about 1.5 m. The mean difference between the laser heights and the SAR heights changes from 0 m in the soaked zone to a maximum of 13 m in the percolation zone. This is explained by the fact that the snow in the soaked zone contains liquid water which attenuates the radar signals......, while the transparency of the firn in the percolation zone makes volume scattering dominate at the higher elevations. For the first time, the effective penetration has been measured directly as the difference between the interferometric heights and reference heights obtained with GPS and laser altimetry....

  14. Waveform analysis of airborne synthetic aperture radar altimeter over Arctic sea ice

    Directory of Open Access Journals (Sweden)

    M. Zygmuntowska

    2013-03-01

    Full Text Available Sea ice thickness is one of the most sensitive variables in the Arctic climate system. In order to quantify changes in sea ice thickness, CryoSat was launched in 2010 carrying a Ku-band Radar Altimeter (SIRAL designed to measure sea ice freeboard with a few centimeters accuracy. The instrument uses the synthetic aperture radar technique providing signals with a resolution of about 300 m along track. In this study, airborne Ku-band radar altimeter data over different sea ice types has been analyzed. A set of parameters has been defined to characterize the difference in strength and width of the returned power waveforms. With a Bayesian based method it is possible to classify about 80% of the waveforms by three parameters: maximum of the returned power echo, the trailing edge width and pulse peakiness. Furthermore, the radar power echo maximum can be used to minimize the rate of false detection of leads compared to the widely used Pulse Peakiness parameter. The possibility to distinguish between different ice types and open water allows to improve the freeboard retrieval and the conversion into sea ice thickness where surface type dependent values for the sea ice density and snow load can be used.

  15. Direction-of-Arrival Analysis of Airborne Ice Depth Sounder Data

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Yan, Jie-Bang; Gogineni, Sivaprasad;

    2017-01-01

    -flowing Jakobshavn Glacier by analyzing the DOA of signals received with a five-element receive-antenna array. This allowed us to obtain ice thickness information, which is a key parameter when generating bed topography of glaciers. We also estimated ice–bed roughness and bed slope from the combined analysis......In this paper, we analyze the direction-of arrival(DOA) of the ice-sheet data collected over Jakobshavn Glacier with the airborne Multichannel Radar Depth Sounder (MCRDS) during the 2006 field season. We extracted weak ice–bed echoes buried in signals scattered by the rough surface of the fast...... of the DOA and radar waveforms. The bed slope is about 8° and the roughness in terms of rms slope is about 16°....

  16. Recent ice sheet snow accumulation and firn storage of meltwater inferred by ground and airborne radars

    Science.gov (United States)

    Miege, Clement

    Recent surface mass balance changes in space and time over the polar ice sheets need to be better constrained in order to estimate the ice-sheet contribution to sea-level rise. The mass balance of any ice body is obtained by subtracting mass losses from mass gains. In response to climate changes of the recent decades, ice-sheet mass losses have increased, making ice-sheet mass balance negative and raising sea level. In this work, I better quantify the mass gained by snowfall across the polar ice sheets; I target specific regions over both Greenland and West Antarctica where snow accumulation changes are occurring due to rising air temperature. Southeast Greenland receives 30% of the total snow accumulation of the Greenland ice sheet. In this work, I combine internal layers observed in ice-penetrating radar data with firn cores to derive the last 30 years of accumulation and to measure the spatial pattern of accumulation toward the southeast coastline. Below 1800 m elevation, in the percolation zone, significant surface melt is observed in the summer, which challenges both firn-core dating and internal-layer tracing. While firn-core drilling at 1500 m elevation, liquid water was found at ˜20-m depth in a firn aquifer that persisted over the winter. The presence of this water filling deeper pore space in the firn was unexpected, and has a significant impact on the ice sheet thermal state and the estimate of mass balance made using satellite altimeters. Using a 400-MHz ice-penetrating radar, the extent of this widespread aquifer was mapped on the ground, and also more extensively from the air with a 750-MHz airborne radar as part of the NASA Operation IceBridge mission. Over three IceBridge flight campaigns (2011-2013), based on radar data, the firn aquifer is estimated to cover ˜30,000 km2 area within the wet-snow zone of the ice sheet. I use repeated flightlines to understand the temporal variability of the water trapped in the firn aquifer and to simulate its

  17. Airborne observations and simulations of three-dimensional radiative interactions between Arctic boundary layer clouds and ice floes

    Directory of Open Access Journals (Sweden)

    M. Schäfer

    2015-07-01

    Full Text Available Based on airborne spectral imaging observations, three-dimensional (3-D radiative effects between Arctic boundary layer clouds and highly variable Arctic surfaces were identified and quantified. A method is presented to discriminate between sea ice and open water under cloudy conditions based on airborne nadir reflectivity γλ measurements in the visible spectral range. In cloudy cases the transition of γλ from open water to sea ice is not instantaneous but horizontally smoothed. In general, clouds reduce γλ above bright surfaces in the vicinity of open water, while γλ above open sea is enhanced. With the help of observations and 3-D radiative transfer simulations, this effect was quantified to range between 0 and 2200 m distance to the sea ice edge (for a dark-ocean albedo of αwater = 0.042 and a sea-ice albedo of αice = 0.91 at 645 nm wavelength. The affected distance Δ L was found to depend on both cloud and sea ice properties. For a low-level cloud at 0–200 m altitude, as observed during the Arctic field campaign VERtical Distribution of Ice in Arctic clouds (VERDI in 2012, an increase in the cloud optical thickness τ from 1 to 10 leads to a decrease in Δ L from 600 to 250 m. An increase in the cloud base altitude or cloud geometrical thickness results in an increase in Δ L; for τ = 1/10 Δ L = 2200 m/1250 m in case of a cloud at 500–1000 m altitude. To quantify the effect for different shapes and sizes of ice floes, radiative transfer simulations were performed with various albedo fields (infinitely long straight ice edge, circular ice floes, squares, realistic ice floe field. The simulations show that Δ L increases with increasing radius of the ice floe and reaches maximum values for ice floes with radii larger than 6 km (500–1000 m cloud altitude, which matches the results found for an infinitely long, straight ice edge. Furthermore, the influence of these 3-D radiative effects on the retrieved cloud optical

  18. The accuracy of satellite radar altimeter data over the Greenland ice sheet determined from airborne laser data

    DEFF Research Database (Denmark)

    Bamber, J.L.; Ekholm, Simon; Krabill, W.

    1998-01-01

    The 336 days of the geodetic phase of ERS-1 provides dense coverage, by satellite radar altimetry, of the whole of the Greenland ice sheet. These data have been used to produce a digital elevation model of the ice sheet. The errors present in the altimeter data were investigated via a comparison...... with airborne laser altimeter data an absolute accuracy typically in the range 2-10 cm +/- 10 cm. Comparison of differences between the radar and laser derived elevations, showed a correlation with surface slope. The difference between the two data sets ranged from 84 cm +/- 79 cm for slopes below 0.1 degrees...

  19. Direction-of-Arrival Estimation for Radar Ice Sounding Surface Clutter Suppression

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Dall, Jørgen

    2015-01-01

    Ice sounding radars are able to measure ice sheets by profiling their glaciological features from the surface to the bedrock. The current airborne and, in particular, future space-based systems are suffering from off-nadir surface clutter, which can mask the depth signal of interest. The most...... estimation for surface clutter signals, which includes a formulation of the mathematical foundation of spatial aliasing. DOA estimation is applied to data acquired with the P-band POLarimetric Airborne Radar Ice Sounder at the Jutulstraumen Glacier, Antarctica. The effects of spatial aliasing related...

  20. Comparison of airborne radar altimeter and ground-based Ku-band radar measurements on the ice cap Austfonna, Svalbard

    Directory of Open Access Journals (Sweden)

    O. Brandt

    2008-11-01

    Full Text Available We compare coincident data from the European Space Agency's Airborne SAR/Interferometric Radar Altimeter System (ASIRAS with ground-based Very High Bandwidth (VHB stepped-frequency radar measurements in the Ku-band. The ASIRAS instrument obtained data from ~700 m above the surface, using a 13.5 GHz center frequency and a 1 GHz bandwidth. The ground-based VHB radar measurements were acquired using the same center frequency, but with a variable bandwidth of either 1 or 8 GHz. Four sites were visited with the VHB radar; two sites within the transition region from superimposed ice to firn, and two sites in the long-term firn area (wet-snow zone. The greater bandwidth VHB measurements show that the first peak in the airborne data is a composite of the return from the surface (i.e. air-snow interface and returns of similar or stronger amplitude from reflectors in the upper ~30 cm of the subsurface. The peak position in the airborne data is thus not necessarily a good proxy for the surface since the maximum and width of the first return depend on the degree of interference between surface and subsurface reflectors. The major response from the winter snowpack was found to be caused by units of thin crust/ice layers (0.5–2 mm surrounded by large crystals (>3 mm. In the airborne data, it is possible to track such layers for tens of kilometers. The winter snowpack lacked thicker ice layers. The last year's summer surface, characterized by a low density large crystal layer overlaying a harder denser layer, gives a strong radar response, frequently the strongest. The clear relationship observed between the VHB and ASIRAS waveforms, justifies the use of ground-based radar measurements in the validation of air- or spaceborne radars.

  1. Characterization of Vegetation and Soil Scattering Mechanisms across Different Biomes using P-band SAR Polarimetry

    CERN Document Server

    Alemohammad, Seyed Hamed; Jagdhuber, Thomas; Moghaddam, Mahta; Entekhabi, Dara

    2016-01-01

    A quantitative analysis of vegetation and soil scattering mechanisms retrieved from the observations of an airborne P-band Synthetic Aperture Radar (SAR) instrument across nine different biomes in North America is presented. The understanding of scattering mechanisms from the surface in the presence of different vegetation densities is necessary for the interpretation of P-band SAR observations and for the design of retrieval algorithms. Observations used here are part of the NASA Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission, and data have been collected between 2013 and 2015. A data-driven phase calibration technique is used to correct the phase information in the polarimetric observations. A hybrid (model- and eigen- based) three component decomposition algorithm is developed to separate the contributions of surface, double-bounce and vegetation scattering. The decomposition makes no prior assumptions about vegetation structure and is analytically tractable. Applying the retr...

  2. Airborne observations of changes of ice sheet and sea ice in the Arctic using CryoVEx campaign data

    DEFF Research Database (Denmark)

    Hvidegaard, Sine Munk; Skourup, Henriette; Forsberg, René

    DTU Space have collected surface elevation observations of the Arctic sea ice and land ice since 1998 using laser scanning and radar altimetry from a small fixed‐wing Twin‐Otter aircraft. The observations provide unique datasets for studying ongoing changes, and support the analysis of satellite......‐launch validation studies, with several aircraft and international in‐situ ground teams participating, both in Greenland, Arctic Canada, and Svalbard. The methods and campaigns are outlined together with examples of results.The campaigns focused on five main validation sites: Devon ice cap (Canada), Austfonna ice...

  3. Comparison of space borne radar altimetry and airborne laser altimetry over sea ice in the Fram Strait

    DEFF Research Database (Denmark)

    Giles, K.A.; Hvidegaard, Sine Munk

    2006-01-01

    This paper describes the first comparison of satellite radar and airborne laser altimetry over sea ice. In order to investigate the differences between measurements from the two different instruments we explore the statistical properties of the data and determine reasonable scales in space and time...... at which to examine them. The resulting differences between the data sets show that the laser and the radar are reflecting from different surfaces and that the magnitude of the difference decreases with increasing surface air temperature. This suggests that the penetration depth of the radar signal...

  4. Microphysical and radiative characterization of a subvisible midlevel Arctic ice cloud by airborne observations – a case study

    Directory of Open Access Journals (Sweden)

    A. Lampert

    2009-04-01

    Full Text Available During the Arctic Study of Tropospheric Aerosol, Clouds and Radiation (ASTAR campaign, which was conducted in March and April 2007, an optically thin ice cloud was observed south of Svalbard at around 3 km altitude. The microphysical and radiative properties of this particular subvisible midlevel cloud were investigated with complementary remote sensing and in situ instruments. Collocated airborne lidar remote sensing and spectral solar radiation measurements were performed at a flight altitude of 2300 m below the cloud base. Under almost stationary atmospheric conditions, the same subvisible midlevel cloud was probed with various in situ sensors roughly 30 min later.

    From individual ice crystal samples detected with the Cloud Particle Imager and the ensemble of particles measured with the Polar Nephelometer, microphysical properties were retrieved with a bi-modal inversion algorithm. The best agreement with the measurements was obtained for small ice spheres and deeply rough hexagonal ice crystals. Furthermore, the single-scattering albedo, the scattering phase function as well as the volume extinction coefficient and the effective diameter of the crystal population were determined. A lidar ratio of 21(±6 sr was deduced by three independent methods. These parameters in conjunction with the cloud optical thickness obtained from the lidar measurements were used to compute spectral and broadband radiances and irradiances with a radiative transfer code. The simulated results agreed with the observed spectral downwelling radiance within the range given by the measurement uncertainty. Furthermore, the broadband radiative simulations estimated a net (solar plus thermal infrared radiative forcing of the subvisible midlevel ice cloud of −0.4 W m−2 (−3.2 W m−2 in the solar and +2.8 W m−2 in the thermal infrared wavelength range.

  5. The relation between Arctic sea ice surface elevation and draft: A case study using coincident AUV sonar and airborne scanning laser

    DEFF Research Database (Denmark)

    Doble, Martin J.; Skourup, Henriette; Wadhams, Peter

    2011-01-01

    Data are presented from a survey by airborne scanning laser profilometer and an AUV-mounted, upward looking swath sonar in the spring Beaufort Sea. The air-snow (surface elevation) and water-ice (draft) surfaces were mapped at 1 x 1 m resolution over a 300 x 300 m area. Data were separated into l...

  6. Airborne Passive Microwave Measurements from the AMISA 2008 Science Campaign for Modeling of Arctic Sea Ice Heating

    Science.gov (United States)

    Zucker, M. L.; Gasiewski, A. J.; CenterEnvironmental Technology

    2011-12-01

    While climate changes in the Arctic are occurring more rapidly than anywhere else on Earth model-based predictions of sea ice extent are at once both more optimistic than the data suggest and exhibit a high degree of variability. It is believed that this high level of uncertainty is the result of an inadequate quantitative understanding of surface heating mechanisms, which in large part is due to a lack of high spatial resolution data on boundary layer and surface energy processes during melt and freezeup. In August 2008 the NASA Arctic Mechanisms of Interactions between the Surface and Atmosphere (AMISA) campaign, in conjunction with the Swedish-led Arctic Summer Cloud-Ocean Study (ASCOS) conducted coordinated high spatial resolution measurements of geophysical parameters in the Arctic relevant to atmospheric-sea ice interaction. The IPY-approved AMISA campaign used airborne radiometers, including the Polarimetric Scanning Radiometer (PSR) system, a suite of L-band to V-band fixed-beam radiometers for cloud liquid and water vapor measurement, short and longwave radiation sensors, meteorological parameters from cloud size distribution probes, GPS dropsondes, and aerosol sensors. Calibration of the PSR is achieved through periodic observations of stable references such as thermal blackbody targets and noise diodes. A combination of methods using both infrequent external thermal blackbody views and brief frequent internal noise sources has proven practical for airborne systems such as the PSR and is proposed for spaceborne systems such as GeoMAS. Once radiometric data is calibrated it is then rasterized into brightness temperature images which are then geo-located and imported into Google EarthTM. An example brightness temperature map from the AMISA 2008 campaign is included in this abstract. The analysis of this data provides a basis for the development of a heat flux model needed to decrease the uncertainly in weather and climate predictions within the Arctic. In

  7. Development of an airborne MMW FM-CW radar for mapping river ice

    Science.gov (United States)

    Yankielum, Norbert E.; Ferrick, Michael G.; Weyrick, Patricia B.

    1993-01-01

    Analyses of a river's freezeup ice cover stability and its breakup rely on detailed knowledge of the cover's thickness and the variability of that thickness. A high-resolution, millimeter wave (26.5- to 40-GHz) Frequency Modulated-Continuous Wave radar with real-time data acquisition and digital signal processing and display capability was deployed from a low-flying (3-10 m) helicopter to continuously acquire, process and display data during an ice thickness profiling survey of a 24-km study reach. A nominal sheet ice thickness of 50 cm, occasional areas of new ice sheet as thin as 5 cm, open leads, and massive ice accumulations on the order of 5 m thick were encountered. Radar profiling data agreed with ground truth from borehole measurements of the sheet ice, and provided a more detailed view of the ice conditions than that obtained from a low altitude video survey. The radar system provided rapid, safe and accurate data acquisition, allowing detailed mapping of the ice conditions throughout the reach.

  8. Design and instrumentation of an airborne far infrared radiometer for in-situ measurements of ice clouds

    Science.gov (United States)

    Proulx, Christian; Ngo Phong, Linh; Lamontagne, Frédéric; Wang, Min; Fisette, Bruno; Martin, Louis; Châteauneuf, François

    2016-09-01

    We report on the design and instrumentation of an aircraft-certified far infrared radiometer (FIRR) and the resulting instrument characteristics. FIRR was designed to perform unattended airborne measurements of ice clouds in the arctic in support of a microsatellite payload study. It provides radiometrically calibrated data in nine spectral channels in the range of 8-50 μm with the use of a rotating wheel of bandpass filters and reference blackbodies. Measurements in this spectral range are enabled with the use of a far infrared detector based on microbolometers of 104-μm pitch. The microbolometers have a new design because of the large structure and are coated with gold black to maintain uniform responsivity over the working spectral range. The vacuum sealed detector package is placed at the focal plane of a reflective telescope based on a Schwarschild configuration with two on-axis spherical mirrors. The telescope field-of-view is of 6° and illuminates an area of 2.1-mm diameter at the focal plane. In operation, FIRR was used as a nonimaging radiometer and exhibited a noise equivalent radiance in the range of 10-20 mW/m2-sr. The dynamic range and the detector vacuum integrity of FIRR were found to be suited for the conditions of the airborne experiments.

  9. Airborne Geophysics and Remote Sensing Applied to Study Greenland Ice Dynamics

    Science.gov (United States)

    Csatho, Beata M.

    2003-01-01

    Overview of project: we combined and jointly analysed geophysical, remote sensing and glaciological data for investigating the temporal changes in ice flow and the role of geologic control on glacial drainage. The project included two different studies, the investigation of recent changes of the Kangerlussuaq glacier and the study of geologic control of ice flow in NW Greenland, around the Humboldt, Petermann and Ryder glaciers.

  10. L and P Band MMIC T/R Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is specifically written to address the need for improved L and P band T/R modules for use in active microwave surveillance of earth surface and...

  11. L and P Band MMIC T/R Module Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal is specifically written to address the need for improved L and P band T/R modules. The solicitation calls for investigation and development of core...

  12. Characterization of the ice nucleation activity of an airborne Penicillium species

    Science.gov (United States)

    Yordanova, Petya; Hill, Thomas C. J.; Pummer, Bernhard G.; Franc, Gary D.; Pöschl, Ulrich; Fröhlich-Nowoisky, Janine

    2016-04-01

    Microorganisms are ubiquitous both on and above the Earth. Several bacterial and fungal spe-cies are the focus of atmospheric studies due to their ability to trigger ice formation at high subzero temperatures. Thus, they have potential to modify cloud albedo, lifetime and precipita-tion, and ultimately the hydrological cycle. Several fungal strains have already been identified as possessing ice nucleation (IN) activity, and recent studies have shown that IN active fungi are present in the cultivable community of air and soil samples [1, 2]. However, the abundance, diversity, and sources of fungal ice nuclei in the atmosphere are still poorly characterized. In this study, fungal colonies obtained from air samples were screened for IN activity in the droplet-freezing assay described in Fröhlich-Nowoisky et al., 2015 [2]. Out of 128 tested iso-lates, two were found to catalyze ice formation at temperatures up to -4°C. By DNA analysis, both isolates were classified as Penicillium spp. The freezing activity of both was further char-acterized after different filtration, heat, and enzymatic treatments in the temperature range from -4°C to -15°C. Preliminary results show that a proteinaceous compound is responsible for the IN activity. Furthermore, ongoing experiments indicate that the activity is associated only with the hyphae. [1] Huffman, et al. (2013): Atmos. Chem. Phys., 13, 6151-6164. [2] Fröhlich-Nowoisky et al. (2015): Biogeosciences, 12: 1057-1071.

  13. Shape-from-shading using Landsat 8 and airborne laser altimetry over ice sheets: toward new regional DEMs of Greenland and Antarctica

    Science.gov (United States)

    Moussavi, M. S.; Scambos, T.; Haran, T. M.; Klinger, M. J.; Abdalati, W.

    2015-12-01

    We investigate the capability of Landsat 8's Operational Land Imager (OLI) instrument to quantify subtle ice sheet topography of Greenland and Antarctica. We use photoclinometry, or 'shape-from-shading', a method of deriving surface topography from local variations in image brightness due to varying surface slope. Photoclinomeetry is applicable over ice sheet areas with highly uniform albedo such as regions covered by recent snowfall. OLI imagery is available from both ascending and descending passes near the summer solstice period for both ice sheets. This provides two views of the surface features from two distinct solar azimuth illumination directions. Airborne laser altimetry data from the Airborne Topographic Mapper (ATM) instrument (flying on the Operation Ice Bridge program) are used to quantitatively convert the image brightness variations of surface undulations to surface slope. To validate the new DEM products, we use additional laser altimetry profiles collected over independent sites from Ice Bridge and ICESat, and high-resolution WorldView-2 DEMs. The photoclinometry-derived DEM products will be useful for studying surface elevation changes, enhancing bedrock elevation maps through inversion of surface topography, and inferring local variations in snow accumulation rates.

  14. Progressing from 1D to 2-3D near surface airborne electromagnetic mapping: Development of MAiSIE, a Multi-Sensor, Airborne Sea Ice Explorer

    OpenAIRE

    Pfaffhuber, Andreas; Hendricks, Stefan; Kvistedal, Yme

    2012-01-01

    The polar oceans’ sea ice cover is an unconventional and challenging geophysical target to map. Current state of ractice helicopter-electromagnetic (HEM) ice thickness apping is limited to 1D interpretation due to common rocedures and systems that are mainly sensitive to layered tructures. We present a new generation Multi-sensor, irborne Sea Ice Explorer (MAiSIE) to overcome these imitations. As the actual sea ice structure is 3D and in parts heterogeneous, errors up to 50% are observe...

  15. The use of airborne laser data to calibrate satellite radar altimetry data over ice sheets

    DEFF Research Database (Denmark)

    Ekholm, Simon; Bamber, J.L.; Krabill, W.B.

    2002-01-01

    -correlated noise can be effectively removed by the so-called relocation error correction method. The adjustment, however, produces a different spatial sampling of the data, which introduces a non-negligible slope related bias to the computation of digital elevation models. In this paper we incorporate high......Satellite radar altimetry is the most important data source for ice sheet elevation modeling but it is well established that the accuracy of such data from satellite borne radar altimeters degrade seriously with increasing surface slope and level of roughness. A significant fraction of the slope...... as a linear function of surface slope. This linear correspondence is in turn tested as a model for adjusting the satellite altimetry data for the observed slope correlated bias. The adjustment is shown to have a significant effect in terms of reducing the bias, thus improving the modeling accuracy of the data....

  16. Essential Climate Variables for the Ice Sheets from Space and Airborne measurements

    DEFF Research Database (Denmark)

    Fredenslund Levinsen, Joanna

    , this studyexploits the advantages of radar and laser altimetry to analyze surface elevationchanges and build a Digital Elevation Model of the ice sheet. Selected advantagesare radar data’s continuity in time and laser data’s higher horizontal andvertical accuracy. Therefore, ESA Envisat and CryoSat-2 radar altimetry...... and cross-over result from 2006 – 2010.A 2 × 2 km Digital Elevation Model is built from combined radar and laserdata. It is applicable for elevation change detection and correction of topographicerrors. Current models have limitations as they are based on shortobservation periods from one sensor, limiting...... Elevation Model is referencedto a specific epoch in time and exploits the high spatial coverage of input data. An important finding in the study is disagreeing relocations of radar data dependingon the method. Validation shows the preferred method to be the Pointof Closest Approach with an a-priori Digital...

  17. The relation between Arctic sea ice surface elevation and draft: A case study using coincident AUV sonar and airborne scanning laser

    Science.gov (United States)

    Doble, Martin J.; Skourup, Henriette; Wadhams, Peter; Geiger, Cathleen A.

    2011-08-01

    Data are presented from a survey by airborne scanning laser profilometer and an AUV-mounted, upward looking swath sonar in the spring Beaufort Sea. The air-snow (surface elevation) and water-ice (draft) surfaces were mapped at 1 × 1 m resolution over a 300 × 300 m area. Data were separated into level and deformed ice fractions using the surface roughness of the sonar data. The relation (R = d/f) between draft, d, and surface elevation, f, was then examined. Correlation between top and bottom surfaces was essentially zero at full resolution, requiring averaging over patches of at least 11 m diameter to constrain the relation largely because of the significant error (˜15 cm) of the laser instrument. Level ice points were concentrated in two core regions, corresponding to level FY ice and refrozen leads, with variations in R attributed primarily to positive snow thickness variability. Deformed ice displayed a more diffuse "cloud," with draft having a more important role in determining R because of wider deformed features underwater. Averaging over footprints similar to satellite altimeters showed the mean surface elevation (typical of ICESat) to be stable with averaging scale, with R = 3.4 (level) and R = 4.2 (deformed). The "minimum elevation within a footprint" characteristic reported for CryoSat was less stable, significantly overestimating R for level ice (R > 5) and deformed ice (R > 6). The mean draft difference between measurements and isostasy suggests 70 m as an isostatic length scale for level ice. The isostatic scale for deformed ice appears to be longer than accessible with these data (>300 m).

  18. Topological Superfluid in P-band Optical Lattice

    Science.gov (United States)

    Wu, Ya-Jie; He, Jing; Zang, Chun-Li; Kou, Su-Peng

    2012-02-01

    By studying p-band fermionic system with nearest neighbor attractive interaction we find translation symmetry protected Z2 topological superfluid (TSF) that is characterized by a special fermion parity pattern at high symmetry points in momentum space k= (0,0), (0, π), (π, 0), (π, π). Such Z2 TSF supports the robust Majorana edge modes and a new type of low energy excitation - (supersymmetric) Z2 link-excitation.

  19. The use of airborne radar reflectometry to establish snow/firn density distribution on Devon Ice Cap, Canadian Arctic: A path to understanding complex heterogeneous internal layering patterns

    Science.gov (United States)

    Rutishauser, A.; Grima, C.; Sharp, M. J.; Blankenship, D. D.; Young, D. A.; Dowdeswell, J. A.

    2014-12-01

    The internal layer stratigraphy of polar ice sheets revealed by airborne radio-echo sounding (RES) contains valuable information about past ice sheet mass balance and dynamics. Internal layers in the Antarctic and Greenland ice sheets are considered to be isochrones and are continuous over several hundreds of kilometres. In contrast, internal layers in Canadian Arctic ice caps appear to be very heterogeneous and fragmentary, consisting of highly discontinuous layers that can be traced over only a few to several tens of kilometres. Internal layers most likely relate to former ice surfaces (the upper few meters of snow/firn), the properties which are directly influenced by atmospheric conditions including the air temperature, precipitation rate, and prevailing wind pattern. We hypothesize that the heterogeneous and complex nature of layers in the Canadian Arctic results from highly variable snow and firn conditions at the surface. Characterizing surface properties such as variations in the snow/firn density from dry to wet snow/firn, as well as high-density shallow ice layers and lenses of refrozen water can help to elucidate the complex internal layer pattern in the Canadian Arctic ice caps. Estimates of the snow/firn surface density and roughness can be derived from reflectance and scattering information using the surface radar returns from RES measurements. Here we present estimates of the surface snow/firn density distribution over Devon Ice Cap in the Canadian Arctic derived by the Radar Statistical Reconnaissance (RSR) methodology (Grima et al., 2014, Planetary & Space Sciences) using data collected by recent airborne radar sounding programs. The RSR generates estimates of the statistical distribution of surface echo amplitudes over defined areas along a survey transect. The derived distributions are best-fitted with a theoretical stochastic envelope, parameterized with the signal reflectance and scattering, in order to separate those two components. Finally

  20. A sea-ice thickness retrieval model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea-ice

    Directory of Open Access Journals (Sweden)

    L. Kaleschke

    2010-12-01

    Full Text Available In preparation for the European Space Agency's (ESA Soil Moisture and Ocean Salinity (SMOS mission, we investigated the potential of L-band (1.4 GHz radiometry to measure sea-ice thickness.

    Sea-ice brightness temperature was measured at 1.4 GHz and ice thickness was measured along nearly coincident flight tracks during the SMOS Sea-Ice campaign in the Bay of Bothnia in March 2007. A research aircraft was equipped with the L-band Radiometer EMIRAD and coordinated with helicopter based electromagnetic induction (EM ice thickness measurements.

    We developed a three layer (ocean-ice-atmosphere dielectric slab model for the calculation of ice thickness from brightness temperature. The dielectric properties depend on the relative brine volume which is a function of the bulk ice salinity and temperature.

    The model calculations suggest a thickness sensitivity of up to 1.5 m for low-salinity (multi-year or brackish sea-ice. For Arctic first year ice the modelled thickness sensitivity is less than half a meter. It reduces to a few centimeters for temperatures approaching the melting point.

    The campaign was conducted under unfavorable melting conditions and the spatial overlap between the L-band and EM-measurements was relatively small. Despite these disadvantageous conditions we demonstrate the possibility to measure the sea-ice thickness with the certain limitation up to 1.5 m.

    The ice thickness derived from SMOS measurements would be complementary to ESA's CryoSat-2 mission in terms of the error characteristics and the spatiotemporal coverage. The relative error for the SMOS ice thickness retrieval is expected to be not less than about 20%.

  1. A sea ice thickness retrieval model for 1.4 GHz radiometry and application to airborne measurements over low salinity sea ice

    Directory of Open Access Journals (Sweden)

    L. Kaleschke

    2009-11-01

    Full Text Available In preparation for the European Space Agency's (ESA Soil Moisture and Ocean Salinity (SMOS mission we investigated the potential of L-band (1.4 GHz radiometery to measure sea ice thickness.

    Sea ice brightness temperature was measured at 1.4 GHz and ice thickness were measured along nearly coincident flight tracks during the SMOS Sea-Ice campaign in the Bay of Bothnia in March 2007. A research aircraft was equipped with the L-band Radiometer EMIRAD and coordinated with helicopter based electromagnetic induction (EM ice thickness measurements.

    We developed a three layer (ocean-ice-atmosphere dielectric slab model for the calculation of ice thickness from brightness temperature. The dielectric properties depend on the relative brine volume which is a function of the bulk ice salinity and temperature.

    The model calculations suggest a thickness sensitivity of up to 1.5 m for low-salinity (multi-year or brackish sea ice. For Arctic first year ice the modeled thickness sensitivity is roughly half a meter. It reduces to a few centimeters for temperatures approaching the melting point. Although the campaign was conducted under such unfavorable melting conditions and despite limited spatial overlap between the L-band and EM-measurements was small we demonstrate a large potential for retrieving the ice thickness in the range of 0.2 to 1.5 m.

    Furthermore, we show that the ice thickness derived from SMOS measurements would be complementary to ESA's CryoSat-2 mission in terms of the error characteristics and the spatio-temporal coverage.

  2. Retrieving Vegetation Parameters and Soil Reflection Coefficients with P-band SAR Polarimetry

    Science.gov (United States)

    Alemohammad, S. H.; Konings, A. G.; Jagdhuber, T.; Entekhabi, D.

    2015-12-01

    Photosynthetic activity of plants is highly dependent on the water available to the plant through its roots. Therefore, measuring the root-zone-soil-moisture across large spatial scales is of great importance for crop monitoring and yield estimation as well as hydrological and ecological modeling. Unlike L-band instruments, which are sensitive to only a few centimeters of the top soil layer, P-band Synthetic Aperture Radar (SAR) instruments have a penetration depth that can be used to retrieve soil moisture profiles in depths of several tens of centimeters (depending on soil texture and moisture content). NASA's Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS) mission is designed to study the application of P-band SAR measurements for monitoring root-zone-soil-moisture. In this study, we introduce a new framework to retrieve vegetation parameters and smooth-surface soil reflection coefficients using SAR polarimetry and the fully polarimetric covariance matrix of the backscattering signal from AirMOSS observations. The retrieved soil reflectivities (both horizontally and vertically -polarized) can then be used to estimate the soil moisture profile. The retrieval model takes into account contributions from surface, dihedral and volume scattering coming from the vegetation and soil components, and does not require prior vegetation parameters. This approach reduces the dependency of the retrieval on allometry-based vegetation models with large numbers of uncertain parameters. The performance of this method will be validated using observations from AirMOSS field campaigns in July 2013 over Harvard Forest in Massachusetts, USA. This will enable a quality assessment of the polarimetry-based retrieval of the soil reflectivities and the estimated root-zone-soil-moisture profiles.

  3. Reconfigurable, Wideband Radar Transceiver and Antenna for P-band Stretch Processing Project

    Data.gov (United States)

    National Aeronautics and Space Administration — IAI proposes to develop a Reconfigurable Wideband Radar Transceiver, with direct digital synthesis of P-band radar frequencies, novel high bandwidth P-band antenna...

  4. Effects of surface roughness on sea ice freeboard retrieval with an Airborne Ku-Band SAR radar altimeter

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    2010-01-01

    airborne radar and laser altimeters. We find regional variable penetration of the radar signal at late spring conditions, where the difference of the radar and the reference laser range measurement never agrees with the expected snow thickness. In addition, a rough surface can lead to biases...

  5. Experiments of Tomography-Based SAR Techniques with P-Band Polarimetric Data

    Science.gov (United States)

    Lombardini, F.; Pardini, M.

    2009-04-01

    New opportunities are arising in the synthetic aperture radar (SAR) observation of forest scenarios, especially with decimetric and metric radio wavelengths, which possess the capability of penetrating into volumes. Given its capabilities in the three-dimensional imaging of the scattering properties of the observed scene, SAR Tomography (Tomo-SAR) constitutes a good candidate for the analysis of the vertical structure of the forest. In this work, the results are presented of the application of tomography-based SAR techniques to P-band airborne data over a boreal forest from the ESA BioSAR-1 project. Results of an adaptive tomographic analysis are presented, also with a low resolution dataset, which emulates a satellite acquisition. In order to mitigate the geometric perspective effects due to the poor range resolution, the principle is introduced of the application of a common band pre-filtering to tomography. Then, a coherent layer canceller is derived to possibly apply interferometric techniques conceived for single layer scenarios to two layer scenarios. Finally, a stabilized adaptive polarimetric Tomo-SAR (PolTomo-SAR) method is proposed for estimating the 3D polarimetric scattering mechanism of the scene with low distorsions.

  6. Ultra-Wideband, Dual-Polarized, Beam-Steering P-Band Array Antenna

    Science.gov (United States)

    duToit, Cornelis

    2014-01-01

    A dual-polarized, wide-bandwidth (200 MHz for one polarization, 100 MHz for the orthogonal polarization) antenna array at P-band was designed to be driven by NASA's EcoSAR digital beam former. EcoSAR requires two wide P-band antenna arrays mounted on the wings of an aircraft, each capable of steering its main beam up to 35deg off-boresight, allowing the twin radar beams to be steered at angles to the flight path. The science requirements are mainly for dual-polarization capability and a wide bandwidth of operation of up to 200 MHz if possible, but at least 100 MHz with high polarization port isolation and low cross-polarization. The novel design geometry can be scaled with minor modifications up to about four times higher or down to about half the current design frequencies for any application requiring a dual-polarized, wide-bandwidth steerable antenna array. EcoSAR is an airborne interferometric P-band synthetic aperture radar (SAR) research application for studying two- and three-dimensional fine-scale measurements of terrestrial ecosystem structure and biomass, which will ultimately aid in the broader study of the carbon cycle and climate change. The two 2×8 element Pband antenna arrays required by the system will be separated by a baseline of about 25 m, allowing for interferometry measurements. The wide 100-to- 200-MHz bandwidth dual-polarized beams employed will allow the determination of the amount of biomass and even tree height on the ground. To reduce the size of the patches along the boresight dimension in order to fit them into the available space, two techniques were employed. One technique is to add slots along the edges of each patch where the main electric currents are expected to flow, and the other technique is to bend the central part of the patch away from the ground plane. The latter also facilitates higher mechanical rigidity. The high port isolation of more than 40 dB was achieved by employing a highly symmetrical feed mechanism for each

  7. AirMOSS P-Band Radar Retrieval of Subcanopy Soil Moisture Profile

    Science.gov (United States)

    Tabatabaeenejad, A.; Burgin, M. S.; Duan, X.; Moghaddam, M.

    2013-12-01

    Knowledge of soil moisture, as a key variable of the Earth system, plays an important role in our under-standing of the global water, energy, and carbon cycles. The importance of such knowledge has led NASA to fund missions such as Soil Moisture Active and Passive (SMAP) and Airborne Microwave Observatory of Subcanopy and Subsurface (AirMOSS). The AirMOSS mission seeks to improve the estimates of the North American Net Ecosystem Exchange (NEE) by providing high-resolution observations of the root zone soil moisture (RZSM) over regions representative of the major North American biomes. AirMOSS flies a P-band SAR to penetrate vegetation and into the root zone to provide estimates of RZSM. The flights cover areas containing flux tower sites in regions from the boreal forests in Saskatchewan, Canada, to the tropical forests in La Selva, Costa Rica. The radar snapshots are used to generate estimates of RZSM via inversion of a scattering model of vegetation overlying soils with variable moisture profiles. These retrievals will be used to generate a time record of RZSM, which will be integrated with an ecosystem demography model in order to estimate the respiration and photosynthesis carbon fluxes. The aim of this work is the retrieval of the moisture profile over AirMOSS sites using the collected P-band radar data. We have integrated layered-soil scattering models into a forest scattering model; for the backscattering from ground and for the trunk-ground double-bounce mechanism, we have used a layered small perturbation method and a coherent scattering model of layered soil, respectively. To estimate the soil moisture profile, we represent it as a second-order polynomial in the form of az2 + bz + c, where z is the depth and a, b, and c are the coefficients to be retrieved from radar measurements. When retrieved, these coefficients give us the soil moisture up to a prescribed depth of validity. To estimate the unknown coefficients of the polynomial, we use simulated

  8. A High Efficiency 1kWatt GaN Amplifier for P-Band Pulsed Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An improved efficiency amplifier for high power pulse applications at P-Band will be investigated that will support space based RADAR systems. Current P-Band pulsed...

  9. A High Efficiency 1kWatt GaN amplifier for P-Band pulsed applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An improved efficiency amplifier for high power pulse applications at P-Band will be investigated that will support space based RADAR systems. Current P-Band pulsed...

  10. Topological superfluid state of fermions on a p-band optical square lattice

    Science.gov (United States)

    Wu, Ya-Jie; He, Jing; Zang, Chun-Li; Kou, Su-Peng

    2012-08-01

    In this paper we study an interacting mixture of ultracold spinless fermions on the s band and bosons on the p band in a 2D square optical lattice, of which the effective model is reduced to a p-band fermionic system with nearest-neighbor attractive interaction. From this effective p-band model, we find a translation symmetry protected Z2 topological superfluid that is characterized by a special fermion parity pattern at high-symmetry points in momentum space k=(0,0), (0,π), (π,0), (π,π). Such Z2 topological superfluid supports the robust Majorana edge modes and a new type of low-energy excitation—(supersymmetric) Z2 link excitation.

  11. Improved ice loss estimate of the northwestern Greenland ice sheet

    DEFF Research Database (Denmark)

    Kjeldsen, K. K.; Khan, Shfaqat Abbas; Wahr, J.;

    2013-01-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003–2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change...... estimate, we supplement the ICESat data with altimeter surveys from NASA's Airborne Topographic Mapper from 2002 to 2010 and NASA's Land, Vegetation and Ice Sensor from 2010. The Airborne data are mainly concentrated along the ice margin and thus have a significant impact on the estimate of the volume...... change. Our results show that adding Airborne Topographic Mapper and Land, Vegetation and Ice Sensor data to the ICESat data increases the catchment-wide estimate of ice volume loss by 11%, mainly due to an improved volume loss estimate along the ice sheet margin. Furthermore, our results show...

  12. Use of the SAR (Synthetic Aperture Radar) P band for detection of the Moche and Lambayeque canal networks in the Apurlec region, Perù

    Science.gov (United States)

    Ilaria Pannaccione Apa, Maria; Santovito, Maria Rosaria; Pica, Giulia; Catapano, Ilaria; Fornaro, Gianfranco; Lanari, Riccardo; Soldovieri, Francesco; Wester La Torre, Carlos; Fernandez Manayalle, Marco Antonio; Longo, Francesco; Facchinetti, Claudia; Formaro, Roberto

    2016-04-01

    In recent years, research attention has been devoted to the development of a new class of airborne radar systems using low frequency bands ranging from VHF/UHF to P and L ones. In this frame, the Italian Space Agency (ASI) has promoted the development of a new multi-mode and multi-band airborne radar system, which can be considered even a "proof-of-concept" for the next space-borne missions. In particular, in agreement with the ASI, the research consortium CO.RI.S.T.A. has in charge the design, development and flight validation of such a kind of system, which is the first airborne radar entirely built in Italy. The aim was to design and realize a radar system able to work in different modalities as: nadir-looking sounder at VHF band (163 MHz); side-looking imager (SAR) at P band with two channels at 450 MHz and 900 MHz. The P-band is a penetration radar. Exploiting penetration features of low frequency electromagnetic waves, dielectric discontinuities of observed scene due to inhomogeneous materials rise up and can be detected on the resulting image. Therefore buried objects or targets placed under vegetation may be detected. Penetration capabilities essentially depend on microwave frequency. Typically, penetration distance is inversely proportional to microwave frequency. The higher the frequency, the lower the penetration depth. Terrain characteristics affect penetration capabilities. Humidity acts as a shield to microwave penetration. Hence terrain with high water content are not good targets for P-band applicability. Science community, governments and space agencies have increased their interest about low frequency radar for their useful applicability in climatology, ecosystem monitoring, glaciology, archaeology. The combination of low frequency and high relative bandwidth of such a systems has a large applicability in both military and civilian applications, ranging from forestry applications, biomass measuring, archaeological and geological exploration

  13. Ground Observation and Correction of P-band Radar Imaging Ionospheric Effects

    Directory of Open Access Journals (Sweden)

    Zhao Ning

    2014-02-01

    Full Text Available For high resolution space-borne P-band SAR system, ionospheric effects could cause serious phase errors. These errors are causally related to the radar frequency and the TEC of ionosphere and make the image quality degraded. To guarantee the image quality, the ionosphere errors must be emended. Based on the mismatched filter model caused by ionosphere, it is pointed out that accurate ionosphere TEC is the key for phase error correction, a high precision ionosphere TEC measurement method is further put forward by using the phase errors of SAR echoes, which is validated by processing the data of a ground based P-band radar with well focused radar image of the international space station obtained. The results indicate that the method can effectively increase the accuracy of ionosphere TEC estimation, and thus improve the radar imaging quality, it is applicable to low frequency space-borne SAR systems for reducing the ionosphere effects.

  14. Surface Clutter Suppression Techniques Applied to P-band Multi-Channel SAR Ice Sounder Data from East Antarctica

    DEFF Research Database (Denmark)

    Lin, Chung-Chi; Bekaert, David; Gebert, Nicolas

    ., Lausanne, developed and built the radiator-elements of the enhanced POLARIS. Several datasets were acquired in the multi-channel configuration during the Feb. 2011 campaign over East Antarctica. The POLARIS instrument will be briefly introduced, followed by an overview of the sounding campaign. Finally...

  15. Improved ice loss estimate of the northwestern Greenland ice sheet

    Science.gov (United States)

    Kjeldsen, Kristian K.; Khan, Shfaqat Abbas; Wahr, John; Korsgaard, Niels J.; KjæR, Kurt H.; BjøRk, Anders A.; Hurkmans, Ruud; Broeke, Michiel R.; Bamber, Jonathan L.; Angelen, Jan H.

    2013-02-01

    We estimate ice volume change rates in the northwest Greenland drainage basin during 2003-2009 using Ice, Cloud and land Elevation Satellite (ICESat) laser altimeter data. Elevation changes are often reported to be largest near the frontal portion of outlet glaciers. To improve the volume change estimate, we supplement the ICESat data with altimeter surveys from NASA's Airborne Topographic Mapper from 2002 to 2010 and NASA's Land, Vegetation and Ice Sensor from 2010. The Airborne data are mainly concentrated along the ice margin and thus have a significant impact on the estimate of the volume change. Our results show that adding Airborne Topographic Mapper and Land, Vegetation and Ice Sensor data to the ICESat data increases the catchment-wide estimate of ice volume loss by 11%, mainly due to an improved volume loss estimate along the ice sheet margin. Furthermore, our results show a significant acceleration in mass loss at elevations above 1200 m. Both the improved mass loss estimate along the ice sheet margin and the acceleration at higher elevations have implications for predictions of the elastic adjustment of the lithosphere caused by present-day ice mass changes. Our study shows that the use of ICESat data alone to predict elastic uplift rates biases the predicted rates by several millimeters per year at GPS locations along the northwestern coast.

  16. IceBridge BedMachine Greenland

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains bed topography beneath the Greenland Ice Sheet based on mass conservation derived from airborne radar tracks and satellite radar. The data...

  17. ESA CryoVEx 2014 - Airborne ASIRAS radar and laser scanner measurements during 2014 CryoVEx campaign in the Arctic

    DEFF Research Database (Denmark)

    Hvidegaard, S. M.; Nielsen, J. E.; Sørensen, L. Sandberg;

    This report outlines the airborne field operations with the ESA airborne Ku‐band interferometric radar (ASIRAS), coincident airborne laser scanner (ALS) and vertical photography to acquire data over sea‐ and land ice along validation sites and CryoSat‐2 ground tracks. The airborne campaign was co...

  18. Esa Cryovex 2011 Airborne Campaign For Cryosat-2 Calibration And Validation

    DEFF Research Database (Denmark)

    Skourup, Henriette; Einarsson, Indriði; Sørensen, Louise Sandberg;

    measurements, as the laser reflects on the surface, and by overflight of laser reflectors. In the spring of 2011 the DTU Space airborne team visited five main validation sites: Devon ice cap (Canada), Austfonna ice cap (Svalbard), the EGIG line crossing the Greenland Ice Sheet, as well as the sea ice north...... of Alert and sea ice around Svalbard in the Fram Strait. Selected tracks were planned to match CryoSat-2 passes and a few of them were flown in formation flight with the Alfred Wegener Institute (AWI) Polar-5 carrying an EM-bird. We present an overview of the 2011 airborne campaign together with first...

  19. Spin-orbital exchange of strongly interacting fermions in the p band of a two-dimensional optical lattice.

    Science.gov (United States)

    Zhou, Zhenyu; Zhao, Erhai; Liu, W Vincent

    2015-03-13

    Mott insulators with both spin and orbital degeneracy are pertinent to a large number of transition metal oxides. The intertwined spin and orbital fluctuations can lead to rather exotic phases such as quantum spin-orbital liquids. Here, we consider two-component (spin 1/2) fermionic atoms with strong repulsive interactions on the p band of the optical square lattice. We derive the spin-orbital exchange for quarter filling of the p band when the density fluctuations are suppressed, and show that it frustrates the development of long-range spin order. Exact diagonalization indicates a spin-disordered ground state with ferro-orbital order. The system dynamically decouples into individual Heisenberg spin chains, each realizing a Luttinger liquid accessible at higher temperatures compared to atoms confined to the s band.

  20. The Ecosystems SAR (EcoSAR) an Airborne P-band Polarimetric InSAR for the Measurement of Vegetation Structure, Biomass and Permafrost

    Science.gov (United States)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Ranson, K. Jon; Osmanoglu, Batuhan; Sun, Guoqing; Deshpande, Manohar D.; Perrine, Martin L.; Du Toit, Cornelis F.; Bonds, Quenton; Beck, Jaclyn; Lu, Daniel

    2014-01-01

    EcoSAR is a new synthetic aperture radar (SAR) instrument being developed at the NASA/ Goddard Space Flight Center (GSFC) for the polarimetric and interferometric measurements of ecosystem structure and biomass. The instrument uses a phased-array beamforming architecture and supports full polarimetric measurements and single pass interferometry. This Instrument development is part of NASA's Earth Science Technology Office Instrument Incubator Program (ESTO IIP).

  1. Estimation of Pine Forest Height and Underlying DEM Using Multi-Baseline P-Band PolInSAR Data

    Directory of Open Access Journals (Sweden)

    Haiqiang Fu

    2016-10-01

    Full Text Available On the basis of the Gaussian vertical backscatter (GVB model, this paper proposes a new method for extracting pine forest height and forest underlying digital elevation model (FUDEM from multi-baseline (MB P-band polarimetric-interferometric radar (PolInSAR data. Considering the linear ground-to-volume relationship, the GVB is linked to the interferometric coherences of different polarizations. Subsequently, an inversion algorithm, weighted complex least squares adjustment (WCLSA, is formulated, including the mathematical model, the stochastic model and the parameter estimation method. The WCLSA method can take full advantage of the redundant observations, adjust the contributions of different observations and avoid null ground-to-volume ratio (GVR assumption. The simulated experiment demonstrates that the WCLSA method is feasible to estimate the pure ground and volume scattering contributions. Finally, the WCLSA method is applied to E-SAR P-band data acquired over Krycklan Catchment covered with mixed pine forest. It is shown that the FUDEM highly agrees with those derived by LiDAR, with a root mean square error (RMSE of 3.45 m, improved by 23.0% in comparison to the three-stage method. The difference between the extracted forest height and LiDAR forest height is assessed with a RMSE of 1.45 m, improved by 37.5% and 26.0%, respectively, for model and inversion aspects in comparison to three-stage inversion based on random volume over ground (RVoG model.

  2. Airborne campaigns for CryoSat pre-launch calibration and validation

    DEFF Research Database (Denmark)

    Hvidegaard, Sine Munk; Forsberg, René; Skourup, Henriette

    2010-01-01

    in the Arctic Ocean. The main goal of the airborne surveys was to acquire coincident scanning laser and CryoSat type radar elevation measurements of the surface; either sea ice or land ice. Selected lines have been surveyed along with detailed mapping of validation sites coordinated with insitu field work......From 2003 to 2008 DTU Space together with ESA and several international partners carried out airborne and ground field campaigns in preparation for CryoSat validation; called CryoVEx: CryoSat Validation Experiments covering the main ice caps in Greenland, Canada and Svalbard and sea ice...

  3. Characterizing Arctic sea ice topography using high-resolution IceBridge data

    OpenAIRE

    Petty, Alek A.; Tsamados, Michel C.; Kurtz, Nathan T.; Farrell, Sinead L.; Newman, Thomas; Harbeck, Jeremy P.; FELTHAM, DANIEL L.; Richter-Menge, Jackie A.

    2015-01-01

    We present an analysis of Arctic sea ice topography using high resolution, three-dimensional, surface elevation data from the Airborne Topographic Mapper, flown as part of NASA's Operation IceBridge mission. Surface features in the sea ice cover are detected using a newly developed surface feature picking algorithm. We derive information regarding the height, volume and geometry of surface features from 2009–2014 within the Beaufort/Chukchi and Central Arcti...

  4. Deformation Studies of NEEM, Greenland Basal Folded Ice

    Science.gov (United States)

    Keegan, K.; Dahl-Jensen, D.; Montagnat, M.; Weikusat, I.

    2015-12-01

    Deep Greenland ice cores and airborne radio echo sounding (RES) images have recently revealed that basal ice flow of the Greenland Ice Sheet is very unstable. In many locations, a basal layer of disturbed ice is observed. At the NEEM, Greenland site this folding occurs at the boundary between the Eemian and glacial ice regimes, indicating that differences in physical properties of the ice play a role in the disturbance. Past work in metallurgy and ice suggests that impurity content controls grain evolution and therefore deformation. We hypothesize that the differences in ice flow seen deep in the NEEM ice core are controlled by differences in the impurity content of the ice layers. Here we present results of fabric, grain size, impurity content, and deformation studies from samples above and below this unstable boundary in the ice sheet.

  5. Scattering From the Finite-Length, Dielectric Circular Cylinder. Part 2 - On the Validity of an Analytical Solution for Characterizing Backscattering from Tree Trunks at P-Band

    Science.gov (United States)

    2015-09-01

    flared base is expected to provide a closer emulation of trunk geometries encountered in nature. Only the 3-dB error lines for the analytical solution...On the Validity of an Analytical Solution for Characterizing Backscattering from Tree Trunks at P-Band by DaHan Liao...Validity of an Analytical Solution for Characterizing Backscattering from Tree Trunks at P-Band by DaHan Liao Sensors and Electron Devices

  6. Glacier surge after ice shelf collapse.

    Science.gov (United States)

    De Angelis, Hernán; Skvarca, Pedro

    2003-03-07

    The possibility that the West Antarctic Ice Sheet will collapse as a consequence of ice shelf disintegration has been debated for many years. This matter is of concern because such an event would imply a sudden increase in sea level. Evidence is presented here showing drastic dynamic perturbations on former tributary glaciers that fed sections of the Larsen Ice Shelf on the Antarctic Peninsula before its collapse in 1995. Satellite images and airborne surveys allowed unambiguous identification of active surging phases of Boydell, Sjögren, Edgeworth, Bombardier, and Drygalski glaciers. This discovery calls for a reconsideration of former hypotheses about the stabilizing role of ice shelves.

  7. Mass Balance Changes and Ice Dynamics of Greenland and Antarctic Ice Sheets from Laser Altimetry

    Science.gov (United States)

    Babonis, G. S.; Csatho, B.; Schenk, T.

    2016-06-01

    During the past few decades the Greenland and Antarctic ice sheets have lost ice at accelerating rates, caused by increasing surface temperature. The melting of the two big ice sheets has a big impact on global sea level rise. If the ice sheets would melt down entirely, the sea level would rise more than 60 m. Even a much smaller rise would cause dramatic damage along coastal regions. In this paper we report about a major upgrade of surface elevation changes derived from laser altimetry data, acquired by NASA's Ice, Cloud and land Elevation Satellite mission (ICESat) and airborne laser campaigns, such as Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice Sensor (LVIS). For detecting changes in ice sheet elevations we have developed the Surface Elevation Reconstruction And Change detection (SERAC) method. It computes elevation changes of small surface patches by keeping the surface shape constant and considering the absolute values as surface elevations. We report about important upgrades of earlier results, for example the inclusion of local ice caps and the temporal extension from 1993 to 2014 for the Greenland Ice Sheet and for a comprehensive reconstruction of ice thickness and mass changes for the Antarctic Ice Sheets.

  8. Airborne Lidar and Radar Measurments In and Around Greenland CryoVEx 2006

    DEFF Research Database (Denmark)

    Stenseng, Lars; Hvidegaard, Sine Munk; Skourup, Henriette;

    This report describes the airborne part of the fieldwork performed as part of the CryoSat Validation Experiment (CryoVEx) 2006 and the processing of the collected dataset. The airborne part of the campaign was carried out by the Danish National Space Center (DNSC) using a Twin-Otter chartered from...... of overflights of corner reflectors both on sea ice and inland ice will aid this understanding and serve the calibration of ASIRAS. The airborne part of the CryoVEx 2006 campaign has successfully been carried out by DNSC during the period April 18 to May 18 and the gathered datasets are now stored and secured...

  9. Tomographic Techniques for Radar Ice Sounding

    DEFF Research Database (Denmark)

    Nielsen, Ulrik

    AbstractLow frequency radars, also known as sounders, can be used for subsurfacemeasurements of Earth’s massive ice sheets. Radar data are essential toimproving ice sheet models for better prediction of the response of theseice sheets to global climate change. While airborne sounders are neededfor...... challenge. This dissertation deals with tomographic techniques based on multiphase-center radars that represent state-of-the-art technology within thefield of ice sounding. The use of advanced tomographic processing forclutter suppression is investigated, which up to this point has beenlargely unexplored...... acquired withthe POLarimetric Airborne Radar Ice Sounder (POLARIS), single-passtomographic surface clutter suppression capabilities are demonstratedfor the system. Using repeat-pass POLARIS data, a method based ondata-driven DOA estimation is used to show an along-track variation ofthe effective scattering...

  10. Airborne geoid determination

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Bastos, L.

    2000-01-01

    Airborne geoid mapping techniques may provide the opportunity to improve the geoid over vast areas of the Earth, such as polar areas, tropical jungles and mountainous areas, and provide an accurate "seam-less" geoid model across most coastal regions. Determination of the geoid by airborne methods...

  11. A Validation Dataset for CryoSat Sea Ice Investigators

    DEFF Research Database (Denmark)

    Julia, Gaudelli,; Baker, Steve; Haas, Christian;

    Since its launch in April 2010 Cryosat has been collecting valuable sea ice data over the Arctic region. Over the same period ESA’s CryoVEx and NASA IceBridge validation campaigns have been collecting a unique set of coincident airborne measurements in the Arctic. The CryoVal-SI project has colla...

  12. Deformation of Eemian and Glacial ice at NEEM, Greenland

    Science.gov (United States)

    Keegan, Kaitlin; Dahl-Jensen, Dorthe; Montagnat, Maurine; Weikusat, Ilka; Kipfstuhl, Sepp

    2015-04-01

    New findings from deep Greenland ice cores and airborne radio echo sounding (RES) images show that basal ice flow is very unstable, and a basal layer of disturbed ice is often observed. At NEEM, Greenland this folding occurs at the boundary between the Eemian and glacial ice regimes, suggesting that differences in physical properties of the ice play a role in the disturbance. Past work in metallurgy (Burke, 1957) and ice (Hammer et al., 1978; Langway et al., 1988; Dahl-Jensen et al., 1997), suggests that impurity content controls grain evolution, and therefore deformation, which we hypothesize to be analogous to the differences in ice flow seen deep in the NEEM ice core. Here we present results of fabric, grain size, impurity content, and deformation studies from samples above and below this unstable boundary in the ice sheet.

  13. Ice flux divergence anomalies on 79north Glacier, Greenland

    DEFF Research Database (Denmark)

    Seroussi, H.; Morlighem, M.; Rignot, E.;

    2011-01-01

    The ice flux divergence of a glacier is an important quantity to examine because it determines the rate of temporal change of its thickness. Here, we combine high-resolution ice surface velocity observations of Nioghalvfjerdsfjorden (79north) Glacier, a major outlet glacier in north Greenland......, with a dense grid of ice thickness data collected with an airborne radar sounder in 1998, to examine its ice flux divergence. We detect large variations, up to 100 m/yr, in flux divergence on grounded ice that are incompatible with what we know of the glacier surface mass balance, basal mass balance...... onto a regular grid using a scheme (here block kriging) that does not conserve mass or ice flux. This problem is not unique to 79north Glacier but is common to all conventional ice thickness surveys of glaciers and ice sheets; and fundamentally limits the application of ice thickness grids to high...

  14. IceBridge: Bringing a Field Campaign Home

    Science.gov (United States)

    Woods, J.; Beck, J.; Bartholow, S.

    2015-12-01

    IceBridge, a six-year NASA mission, is the largest airborne survey of Earth's polar ice ever flown. It will yield an unprecedented three-dimensional view of Arctic and Antarctic ice sheets, ice shelves and sea ice. These flights will provide a yearly, multi-instrument look at the behavior of the rapidly changing features of the Greenland and Antarctic ice. Data collected during IceBridge will help scientists bridge the gap in polar observations between NASA's Ice, Cloud and Land Elevation Satellite (ICESat) -- in orbit since 2003 -- and ICESat-2, planned for 2017. ICESat stopped collecting science data in 2009, making IceBridge critical for ensuring a continuous series of observations. IceBridge will use airborne instruments to map Arctic and Antarctic areas once a year at a minimum, with new campaigns being developed during the Arctic melt season. IceBridge flights are conducted in the spring and summer for the Arctic and in the fall over Antarctica. Other smaller airborne surveys around the world are also part of the IceBridge campaign. IceBridge actively engages the public and educators through a variety of outlets ranging from communications strategies through social media outlets, to larger organized efforts such as PolarTREC. In field activities include blog posts, photo updates, in flight chat sessions, and more intensive live events to include google hangouts, where field team members can interact with the public during a scheduled broadcast. The IceBridge team provides scientists and other team members with the training and support to become communicators in their own right. There is an exciting new initiative where IceBridge will be collaborating with Undergraduate and Graduate students to integrate the next generation of scientists and communicators into the Science Teams. This will be explored through partnerships with institutions that are interested in mentoring through project based initiatives.

  15. Airborne wind energy

    CERN Document Server

    Ahrens, Uwe; Schmehl, Roland

    2013-01-01

    This reference offers an overview of the field of airborne wind energy. As the first book of its kind, it provides a consistent compilation of the fundamental theories, a compendium of current research and development activities as well as economic and regulatory aspects. In five parts, the book demonstrates the relevance of Airborne Wind Energy and the role that this emerging field of technology can play for the transition towards a renewable energy economy. Part I on 'Fundamentals' contains seven general chapters explaining the principles of airborne wind energy and its different variants, o

  16. Ice Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Records of past temperature, precipitation, atmospheric trace gases, and other aspects of climate and environment derived from ice cores drilled on glaciers and ice...

  17. Suitability of GaN and LDMOS for 70–82% efficiency 120–200W HPA addressing spaceborne P-band radar applications

    DEFF Research Database (Denmark)

    Le Gallou, N.; Vidkjær, Jens; Poivey, C.

    2012-01-01

    This paper addresses the development of P-band (435 MHz) HPA based on different technologies (GaN HEMT, LDMOS FET) for future use in pace radar applications in the context of the Biomass project. In particular best in class PAE of 70%–82% is targeted and achieved for power levels of 120W. In order...

  18. Ice cores

    DEFF Research Database (Denmark)

    Svensson, Anders

    2014-01-01

    Ice cores from Antarctica, from Greenland, and from a number of smaller glaciers around the world yield a wealth of information on past climates and environments. Ice cores offer unique records on past temperatures, atmospheric composition (including greenhouse gases), volcanism, solar activity......, dustiness, and biomass burning, among others. In Antarctica, ice cores extend back more than 800,000 years before present (Jouzel et al. 2007), whereas. Greenland ice cores cover the last 130,000 years...

  19. Airborne Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — AFRL's Airborne Evaluation Facility (AEF) utilizes Air Force Aero Club resources to conduct test and evaluation of a variety of equipment and concepts. Twin engine...

  20. Simulation of multistatic and backscattering cross sections for airborne radar

    Science.gov (United States)

    Biggs, Albert W.

    1986-07-01

    In order to determine susceptibilities of airborne radar to electronic countermeasures and electronic counter-countermeasures simulations of multistatic and backscattering cross sections were developed as digital modules in the form of algorithms. Cross section algorithms are described for prolate (cigar shape) and oblate (disk shape) spheroids. Backscattering cross section algorithms are also described for different categories of terrain. Backscattering cross section computer programs were written for terrain categorized as vegetation, sea ice, glacial ice, geological (rocks, sand, hills, etc.), oceans, man-made structures, and water bodies. PROGRAM SIGTERRA is a file for backscattering cross section modules of terrain (TERRA) such as vegetation (AGCROP), oceans (OCEAN), Arctic sea ice (SEAICE), glacial snow (GLASNO), geological structures (GEOL), man-made structures (MAMMAD), or water bodies (WATER). AGCROP describes agricultural crops, trees or forests, prairies or grassland, and shrubs or bush cover. OCEAN has the SLAR or SAR looking downwind, upwind, and crosswind at the ocean surface. SEAICE looks at winter ice and old or polar ice. GLASNO is divided into a glacial ice and snow or snowfields. MANMAD includes buildings, houses, roads, railroad tracks, airfields and hangars, telephone and power lines, barges, trucks, trains, and automobiles. WATER has lakes, rivers, canals, and swamps. PROGRAM SIGAIR is a similar file for airborne targets such as prolate and oblate spheroids.

  1. Ice Cream

    NARCIS (Netherlands)

    Scholten, E.

    2014-01-01

    Ice cream is a popular dessert, which owes its sensorial properties (mouth feel) to its complex microstructure. The microstructure is a result of the combination of the ingredients and the production process. Ice cream is produced by simultaneous freezing and shearing of the ice cream mix, which res

  2. Sea-Ice Freeboard Retrieval Using Digital Photon-Counting Laser Altimetry

    Science.gov (United States)

    Farrell, Sinead L.; Brunt, Kelly M.; Ruth, Julia M.; Kuhn, John M.; Connor, Laurence N.; Walsh, Kaitlin M.

    2015-01-01

    Airborne and spaceborne altimeters provide measurements of sea-ice elevation, from which sea-ice freeboard and thickness may be derived. Observations of the Arctic ice pack by satellite altimeters indicate a significant decline in ice thickness, and volume, over the last decade. NASA's Ice, Cloud and land Elevation Satellite-2 (ICESat-2) is a next-generation laser altimeter designed to continue key sea-ice observations through the end of this decade. An airborne simulator for ICESat-2, the Multiple Altimeter Beam Experimental Lidar (MABEL), has been deployed to gather pre-launch data for mission development. We present an analysis of MABEL data gathered over sea ice in the Greenland Sea and assess the capabilities of photon-counting techniques for sea-ice freeboard retrieval. We compare freeboard estimates in the marginal ice zone derived from MABEL photon-counting data with coincident data collected by a conventional airborne laser altimeter. We find that freeboard estimates agree to within 0.03m in the areas where sea-ice floes were interspersed with wide leads, and to within 0.07m elsewhere. MABEL data may also be used to infer sea-ice thickness, and when compared with coincident but independent ice thickness estimates, MABEL ice thicknesses agreed to within 0.65m or better.

  3. Tomographic SAR analysis of subsurface ice structure in Greenland: first results

    DEFF Research Database (Denmark)

    Banda, Francesco; Dall, Jørgen; Tebaldini, Stefano;

    2013-01-01

    Due to the increased melting of ice sheets over the last decades, monitoring of ice dynamics and structure with remote sensing instruments is of extreme importance to achieve a deeper insight on related environmental issues. The study presented in this paper documents an attempt of mapping ice...... structure with P-band SAR tomography. First results from ESA IceSAR 2012 campaign carried out in south-west Greenland are presented. It is found that significant penetration in the upper layers of glacial subsurface can be achieved up to an extent of about 20–60 m, conditional on the different type...

  4. Surface return direction-of-arrival analysis for radar ice sounding surface clutter suppression

    DEFF Research Database (Denmark)

    Nielsen, Ulrik; Dall, Jørgen

    2015-01-01

    with coherent signal processing techniques can improve the suppression, in particular if the direction of arrival (DOA) of the clutter signal is estimated accurately. This paper deals with data-driven DOA estimation. By using P-band data from the ice shelf in Antarctica it is demonstrated that a varying...... penetration depth influences the DOA....

  5. Greenland ice sheet mass balance: a review

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Aschwanden, Andy; Bjørk, Anders A.

    2015-01-01

    Over the past quarter of a century the Arctic has warmed more than any other region on Earth, causing a profound impact on the Greenland ice sheet (GrIS) and its contribution to the rise in global sea level. The loss of ice can be partitioned into processes related to surface mass balance...... and to ice discharge, which are forced by internal or external (atmospheric/oceanic/basal) fluctuations. Regardless of the measurement method, observations over the last two decades show an increase in ice loss rate, associated with speeding up of glaciers and enhanced melting. However, both ice discharge...... and melt-induced mass losses exhibit rapid short-term fluctuations that, when extrapolated into the future, could yield erroneous long-term trends. In this paper we review the GrIS mass loss over more than a century by combining satellite altimetry, airborne altimetry, interferometry, aerial photographs...

  6. Sea Ice Deformation State From Synthetic Aperture Radar Imagery - Part II: Effects of Spatial Resolution and Noise Level

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Dall, Jørgen

    2008-01-01

    C- and L-band airborne synthetic aperture radar (SAR) imagery acquired at like- and cross-polarization over sea ice under winter conditions is examined with the objective to study the discrimination between level ice and ice deformation features. High-resolution low-noise data were analysed...

  7. Airborne bacteria in the atmosphere: Presence, purpose, and potential

    Science.gov (United States)

    Smets, Wenke; Moretti, Serena; Denys, Siegfried; Lebeer, Sarah

    2016-08-01

    Numerous recent studies have highlighted that the types of bacteria present in the atmosphere often show predictable patterns across space and time. These patterns can be driven by differences in bacterial sources of the atmosphere and a wide range of environmental factors, including UV intensity, precipitation events, and humidity. The abundance of certain bacterial taxa is of interest, not only for their ability to mediate a range of chemical and physical processes in the atmosphere, such as cloud formation and ice nucleation, but also for their implications -both beneficial and detrimental-for human health. Consequently, the widespread importance of airborne bacteria has stimulated the search for their applicability. Improving air quality, modelling the dispersal of airborne bacteria (e.g. pathogens) and biotechnological purposes are already being explored. Nevertheless, many technological challenges still need to be overcome to fully understand the roles of airborne bacteria in our health and global ecosystems.

  8. Legal Ice?

    DEFF Research Database (Denmark)

    Strandsbjerg, Jeppe

    The idealised land|water dichotomy is most obviously challenged by ice when ‘land practice’ takes place on ice or when ‘maritime practice’ is obstructed by ice. Both instances represent disparity between the legal codification of space and its social practice. Logically, then, both instances call...... for alternative legal thought and practice; in the following I will emphasise the former and reflect upon the relationship between ice, law and politics. Prior to this workshop I had worked more on the relationship between cartography, geography and boundaries than specifically on ice. Listening to all...... the interesting conversations during the workshop, however, made me think that much of the concern with the Polar Regions in general, and the presence of ice in particular, reverberates around the question of how to accommodate various geographical presences and practices within the regulatory framework that we...

  9. Sea Ice

    Science.gov (United States)

    Perovich, D.; Gerland, S.; Hendricks, S.; Meier, Walter N.; Nicolaus, M.; Richter-Menge, J.; Tschudi, M.

    2013-01-01

    During 2013, Arctic sea ice extent remained well below normal, but the September 2013 minimum extent was substantially higher than the record-breaking minimum in 2012. Nonetheless, the minimum was still much lower than normal and the long-term trend Arctic September extent is -13.7 per decade relative to the 1981-2010 average. The less extreme conditions this year compared to 2012 were due to cooler temperatures and wind patterns that favored retention of ice through the summer. Sea ice thickness and volume remained near record-low levels, though indications are of slightly thicker ice compared to the record low of 2012.

  10. High Resolution Ice Surface of the Ross Ice Shelf: Accuracy and Links to Basal Processes

    Science.gov (United States)

    Starke, S. E.

    2015-12-01

    We use airborne laser altimetry data from IcePod and IceBridge to map the surface across the Ross Ice Shelf in Antarctica. Laser altimetry and radar data is analyzed from the IcePod 2014 and 2015 field campaigns as well as IceBridge 2013. Icepod is a multi sensor suite that includes ice penetrating radars, a swath scanning laser, visible and IR cameras as well as GPS mounted on a LC-130. Using shallow ice radar data from both IcePod and IceBridge we identify the base of the ice shelf. Across the shelf we observe distinct areas of high reflectivity in the radar data suggesting basal crevassing. In some regions, the basal reflector is not well defined. Laser altimetry profiles correlate surface morphology with features at the base including basal crevasses and marine ice formed by freezing on to the base of the ice shelf. Building Digital Elevation Models (DEMs) from the laser altimetry data, we investigate the relationship between the surface expressions of these ice shelf dynamics including thickness changes, potential sites of marine ice at the base and basal morphology in regions where a well defined basal reflector does not exist in the radar profiles. We present accuracy of the IcePod laser altimetry dataset using ground control points and GPS grids from Greenland and Antarctica as well as Photogrammetric DEMs. Our laser altimetry analysis resolves sub-meter surface features which, combined with coincident radar, provides a link between basal processes and their surface expressions.

  11. Utilizing The Synergy of Airborne Backscatter Lidar and In-Situ Measurements for Evaluating CALIPSO

    Directory of Open Access Journals (Sweden)

    Tsekeri Alexandra

    2016-01-01

    Full Text Available Airborne campaigns dedicated to satellite validation are crucial for the effective global aerosol monitoring. CALIPSO is currently the only active remote sensing satellite mission, acquiring the vertical profiles of the aerosol backscatter and extinction coefficients. Here we present a method for CALIPSO evaluation from combining lidar and in-situ airborne measurements. The limitations of the method have to do mainly with the in-situ instrumentation capabilities and the hydration modelling. We also discuss the future implementation of our method in the ICE-D campaign (Cape Verde, August 2015.

  12. Knowledge-based sea ice classification by polarimetric SAR

    DEFF Research Database (Denmark)

    Skriver, Henning; Dierking, Wolfgang

    2004-01-01

    Polarimetric SAR images acquired at C- and L-band over sea ice in the Greenland Sea, Baltic Sea, and Beaufort Sea have been analysed with respect to their potential for ice type classification. The polarimetric data were gathered by the Danish EMISAR and the US AIRSAR which both are airborne...... systems. A hierarchical classification scheme was chosen for sea ice because our knowledge about magnitudes, variations, and dependences of sea ice signatures can be directly considered. The optimal sequence of classification rules and the rules themselves depend on the ice conditions/regimes. The use...... of the polarimetric phase information improves the classification only in the case of thin ice types but is not necessary for thicker ice (above about 30 cm thickness)...

  13. Microwave remote sensing of the snow and ice cover: The Russian experience

    Science.gov (United States)

    Kondratyev, K. Ya.; Melentyev, V. V.

    Microwave remote sensing techniques are useful for deriving properties of snow and ice. There has been substantial Russian research in developing such techniques, as well as their scientific application. The main centers of such activities are described, and results of fundamental research are summarized. Results from selected case studies are presented and compared with those from western research. Included are results on retrieving ice concentration, ice type, ice thickness, and ice state during the melt period. These airborne microwave remote sensing investigations provide information on the ice cover in several regions in the eastern Arctic.

  14. International Symposium on Airborne Geophysics

    Science.gov (United States)

    Mogi, Toru; Ito, Hisatoshi; Kaieda, Hideshi; Kusunoki, Kenichiro; Saltus, Richard W.; Fitterman, David V.; Okuma, Shigeo; Nakatsuka, Tadashi

    2006-05-01

    Airborne geophysics can be defined as the measurement of Earth properties from sensors in the sky. The airborne measurement platform is usually a traditional fixed-wing airplane or helicopter, but could also include lighter-than-air craft, unmanned drones, or other specialty craft. The earliest history of airborne geophysics includes kite and hot-air balloon experiments. However, modern airborne geophysics dates from the mid-1940s when military submarine-hunting magnetometers were first used to map variations in the Earth's magnetic field. The current gamut of airborne geophysical techniques spans a broad range, including potential fields (both gravity and magnetics), electromagnetics (EM), radiometrics, spectral imaging, and thermal imaging.

  15. Indoor airborne infection

    Energy Technology Data Exchange (ETDEWEB)

    Riley, R.L.

    1982-01-01

    Airborne infection from person to person is an indoor phenomenon. The infectious organisms are atomized by coughing, sneezing, singing, and even talking. The smallest droplets evaporate to droplet nuclei and disperse rapidly and randomly throughout the air of enclosed spaces. Droplet nuclei have negligible settling velocity and travel wherever the air goes. Outdoors, dilution is so rapid that the chance of inhaling an infectious droplet nucleus is minimal. Measles and other childhood contagions, the common respiratory virus infections, pulmonary tuberculosis, and Legionnaires' Disease are typically airborne indoors. In analyzing a measles outbreak, the probability that a susceptible person would breathe a randomly distributed quantum of airborne infection during one generation of an outbreak was expressed mathematically. Estimates of the rate of production of infectious droplet nuclei ranged between 93 and 8 per min, and the concentration in the air produced by the index case was about 1 quantum per 5 m/sup 3/ of air. Infectious aiborne particles are thus few and far between. Control of indoor airborne infection can be approached through immunization, therapeutic medication, and air disinfection with ultraviolet radiation.

  16. Airborne Compositae dermatitis

    DEFF Research Database (Denmark)

    Christensen, Lars Porskjær; Jakobsen, Henrik Byrial; Paulsen, E.

    1999-01-01

    The air around intact feverfew (Tanacetum parthenium) plants was examined for the presence of airborne parthenolide and other potential allergens using a high-volume air sampler and a dynamic headspace technique. No particle-bound parthenolide was detected in the former. Among volatiles emitted f...

  17. Interstellar Ices

    CERN Document Server

    Boogert, A C A

    2003-01-01

    Currently ~36 different absorption bands have been detected in the infrared spectra of cold, dense interstellar and circumstellar environments. These are attributed to the vibrational transitions of ~17 different molecules frozen on dust grains. We review identification issues and summarize the techniques required to extract information on the physical and chemical evolution of these ices. Both laboratory simulations and line of sight studies are essential. Examples are given for ice bands observed toward high mass protostars, fields stars and recent work on ices in disks surrounding low mass protostars. A number of clear trends have emerged in recent years. One prominent ice component consists of an intimate mixture between H2O, CH3OH and CO2 molecules. Apparently a stable balance exists between low temperature hydrogenation and oxidation reactions on grain surfaces. In contrast, an equally prominent ice component, consisting almost entirely of CO, must have accreted directly from the gas phase. Thermal proc...

  18. The microstructure of polar ice. Part I: Highlights from ice core research

    Science.gov (United States)

    Faria, Sérgio H.; Weikusat, Ilka; Azuma, Nobuhiko

    2014-04-01

    Polar ice sheets play a fundamental role in Earth's climate system, by interacting actively and passively with the environment. Active interactions include the creeping flow of ice and its effects on polar geomorphology, global sea level, ocean and atmospheric circulation, and so on. Passive interactions are mainly established by the formation of climate records within the ice, in form of air bubbles, dust particles, salt microinclusions and other derivatives of airborne impurities buried by recurrent snowfalls. For a half-century scientists have been drilling deep ice cores in Antarctica and Greenland for studying such records, which can go back to around a million years. Experience shows, however, that the ice-sheet flow generally disrupts the stratigraphy of the bottom part of deep ice cores, destroying the integrity of the oldest records. For all these reasons glaciologists have been studying the microstructure of polar ice cores for decades, in order to understand the genesis and fate of ice-core climate records, as well as to learn more about the physical properties of polar ice, aiming at better climate-record interpretations and ever more precise models of ice-sheet dynamics. In this Part I we review the main difficulties and advances in deep ice core drilling in Antarctica and Greenland, together with the major contributions of deep ice coring to the research on natural ice microstructures. In particular, we discuss in detail the microstructural findings from Camp Century, Byrd, Dye 3, GRIP, GISP2, NorthGRIP, Vostok, Dome C, EDML, and Dome Fuji, besides commenting also on the earlier results of some pioneering ventures, like the Jungfraujoch Expedition and the Norwegian-British-Swedish Antarctic Expedition, among others. In the companion Part II of this work (Faria et al., 2014), the review proceeds with a survey of the state-of-the-art understanding of natural ice microstructures and some exciting prospects in this field of research.

  19. Mapping of a Hydrological Ice Sheet Drainage Basin on the West Greenland Ice Sheet Margin from ERS-1/2 SAR Interferometry, Ice-Radar Measurement, and Modelling

    DEFF Research Database (Denmark)

    Ahlstrøm, Andreas P.; Bøggild, C.E.; Stenseng, L.

    2002-01-01

    The hydrological ice-sheet basin draining into the Tasersiaq lake, West Greenland (66°13'N, 50°30'W), was delineated, First using standard digital elevation models (DEMs) for ice-sheet surface and bedrock, and subsequently using a new high-resolution dataset, with a surface DEM derived from repeat......-track interferometric synthetic aperture radar (SAR) and a bedrock topography derived from an airborne 60 MHz ice-penetrating radar. The extent of the delineation was calculated from a water-pressure potential as a function of the ice-sheet surface and bedrock elevations and a hydraulic factor κ describing the relative...... importance of the potential of the ice overburden pressure compared to the bedrock topography. The meltwater run-off for the basin delineations was modelled with an energy-balance model calibrated with observed ice-sheet ablation and compared to a 25 year time series of measured basin run-off. The standard...

  20. Generation of a new Greenland Ice Sheet Digital Elevation Model

    DEFF Research Database (Denmark)

    Nagarajan, Sudhagar; Csatho, Beata M; Schenk, Anton F

    and spaceborne laser altimetry (airborne: Airborne Topographic Mapper (ATM) (1993-present), Laser Vegetation Imaging Sensor(LVIS) (2007,2009 and 2011); spaceborne: Ice, Cloud, and land Elevation Satellite (ICESat) (2003-2009)) and DEMs have been derived from stereo satellite imagery (e.g., SPOT (40 m), ASTER (15...... conditions, by fusing a photoclinometry DEM, SPOT and ASTER DEMs as well as elevations from ICESat, ATM and LVIS laser altimetry. The new multi-resolution DEM has a resolution of 40 m x 40 m in the marginal ice sheet regions and 250 m elsewhere. The ice sheet margin is mapped from SPOT and Landsat imagery...... and SPOT DEMs are used to cover the complex topography of ice sheet marginal regions. The accuracy of SPOT DEMs is approximately $\\pm 6$ m except in the areas covered by clouds regions, where the SPOT elevations were replaced by ASTER DEMs. The ASTER DEMs were checked and improved by the DEM derived from...

  1. Antarctic firn compaction rates from repeat-track airborne radar data: II. Firn model evaluation

    OpenAIRE

    2015-01-01

    The thickness and density of the Antarctic firn layer vary considerably in time and space, thereby contributing to ice-sheet volume and mass changes. Distinguishing between these mass and volume changes is important for ice-sheet mass-balance studies. Evolution of firn layer depth and density is often modeled, because direct measurements are scarce. Here we directly compare modeled firn compaction rates with observed rates obtained from repeat-track airborne radar data over a 2 year interval ...

  2. Absolute airborne gravimetry

    Science.gov (United States)

    Baumann, Henri

    This work consists of a feasibility study of a first stage prototype airborne absolute gravimeter system. In contrast to relative systems, which are using spring gravimeters, the measurements acquired by absolute systems are uncorrelated and the instrument is not suffering from problems like instrumental drift, frequency response of the spring and possible variation of the calibration factor. The major problem we had to resolve were to reduce the influence of the non-gravitational accelerations included in the measurements. We studied two different approaches to resolve it: direct mechanical filtering, and post-processing digital compensation. The first part of the work describes in detail the different mechanical passive filters of vibrations, which were studied and tested in the laboratory and later in a small truck in movement. For these tests as well as for the airborne measurements an absolute gravimeter FG5-L from Micro-G Ltd was used together with an Inertial navigation system Litton-200, a vertical accelerometer EpiSensor, and GPS receivers for positioning. These tests showed that only the use of an optical table gives acceptable results. However, it is unable to compensate for the effects of the accelerations of the drag free chamber. The second part describes the strategy of the data processing. It is based on modeling the perturbing accelerations by means of GPS, EpiSensor and INS data. In the third part the airborne experiment is described in detail, from the mounting in the aircraft and data processing to the different problems encountered during the evaluation of the quality and accuracy of the results. In the part of data processing the different steps conducted from the raw apparent gravity data and the trajectories to the estimation of the true gravity are explained. A comparison between the estimated airborne data and those obtained by ground upward continuation at flight altitude allows to state that airborne absolute gravimetry is feasible and

  3. Archimedean Ice

    CERN Document Server

    Eloranta, Kari

    2009-01-01

    The striking boundary dependency (the Arctic Circle phenomenon) exhibited in the ice model on the square lattice extends to other planar set-ups. We present these findings for the triangular and the Kagome lattices. Critical connectivity results guarantee that ice configurations can be generated using the simplest and most efficient local actions. Height functions are utilized throughout the analysis. At the end there is a surprise in store: on the remaining Archimedean lattice for which the ice model can be defined, the 3.4.6.4. lattice, the long range behavior is completely different from the other cases.

  4. Quantifying the Mass Balance of Ice Caps on Severnaya Zemlya, Russian High Arctic. III: Sensitivity of Ice Caps in Severnaya Zemlya to Future Climate Change

    OpenAIRE

    Bassford, R.P.; Siegert, M. J.; J. A. Dowdeswell

    2006-01-01

    A coupled surface mass balance and ice-flow model was used to predict the response of three ice caps on Severnaya Zemlya, Russian Arctic, to the present climate and to future climate changes as postulated by the Intergovernmental Panel on Climate Change (IPCC). Ice cap boundary conditions are derived from recent airborne geophysical surveying (Dowdeswell et al., 2002), and model inputs are constructed from available climate data. Model results indicate that, currently, the state of balance of...

  5. High-resolution ice thickness and bed topography of a land-terminating section of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Lindbäck, K.; Pettersson, R.; Doyle, S. H.;

    2014-01-01

    . The covered area is one of the most studied regions of the Greenland Ice Sheet with studies of mass balance, dynamics, and supraglacial lakes, and our combined dataset can be valuable for detailed studies of ice sheet dynamics and hydrology. The compiled datasets of ground-based and airborne radar surveys......We present ice thickness and bed topography maps with high spatial resolution (250 to 500 m) of a and-terminating section of the Greenland Ice Sheet derived from combined ground-based and airborne radar surveys. The data have a total area of ~12000 km2 and cover the whole ablation area...... of the outlet glaciers of Isunnguata Sermia, Russell, Leverett, Ørkendalen and Isorlersuup up to the long-term mass balance equilibrium line altitude at ~1600 m above sea level. The bed topography shows highly variable subglacial trough systems, and the trough of the Isunnguata Sermia Glacier is over...

  6. Airborne wireless communication systems, airborne communication methods, and communication methods

    Science.gov (United States)

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  7. Deformation, warming and softening of Greenland’s ice by refreezing meltwater

    Science.gov (United States)

    Bell, Robin E.; Tinto, Kirsteen; Das, Indrani; Wolovick, Michael; Chu, Winnie; Creyts, Timothy T.; Frearson, Nicholas; Abdi, Abdulhakim; Paden, John D.

    2014-07-01

    Meltwater beneath the large ice sheets can influence ice flow by lubrication at the base or by softening when meltwater refreezes to form relatively warm ice. Refreezing has produced large basal ice units in East Antarctica. Bubble-free basal ice units also outcrop at the edge of the Greenland ice sheet, but the extent of refreezing and its influence on Greenland’s ice flow dynamics are unknown. Here we demonstrate that refreezing of meltwater produces distinct basal ice units throughout northern Greenland with thicknesses of up to 1,100 m. We compare airborne gravity data with modelled gravity anomalies to show that these basal units are ice. Using radar data we determine the extent of the units, which significantly disrupt the overlying ice sheet stratigraphy. The units consist of refrozen basal water commonly surrounded by heavily deformed meteoric ice derived from snowfall. We map these units along the ice sheet margins where surface melt is the largest source of water, as well as in the interior where basal melting is the only source of water. Beneath Petermann Glacier, basal units coincide with the onset of fast flow and channels in the floating ice tongue. We suggest that refreezing of meltwater and the resulting deformation of the surrounding basal ice warms the Greenland ice sheet, modifying the temperature structure of the ice column and influencing ice flow and grounding line melting.

  8. Airborne Submillimeter Spectroscopy

    Science.gov (United States)

    Zmuidzinas, J.

    1998-01-01

    This is the final technical report for NASA-Ames grant NAG2-1068 to Caltech, entitled "Airborne Submillimeter Spectroscopy", which extended over the period May 1, 1996 through January 31, 1998. The grant was funded by the NASA airborne astronomy program, during a period of time after the Kuiper Airborne Observatory was no longer operational. Instead. this funding program was intended to help develop instrument concepts and technology for the upcoming SOFIA (Stratospheric Observatory for Infrared Astronomy) project. SOFIA, which is funded by NASA and is now being carried out by a consortium lead by USRA (Universities Space Research Association), will be a 747 aircraft carrying a 2.5 meter diameter telescope. The purpose of our grant was to fund the ongoing development of sensitive heterodyne receivers for the submillimeter band (500-1200 GHz), using sensitive superconducting (SIS) detectors. In 1997 July we submitted a proposal to USRA to construct a heterodyne instrument for SOFIA. Our proposal was successful [1], and we are now continuing our airborne astronomy effort with funding from USRA. A secondary purpose of the NAG2-1068 grant was to continue the anaIN'sis of astronomical data collected with an earlier instrument which was flown on the NASA Kuiper Airborne Observatory (KAO). The KAO instrument and the astronomical studies which were carried out with it were supported primarily under another grant, NAG2-744, which extended over October 1, 1991 through Januarv 31, 1997. For a complete description of the astronomical data and its anailysis, we refer the reader to the final technical report for NAG2-744, which was submitted to NASA on December 1. 1997. Here we report on the SIS detector development effort for SOFIA carried out under NAG2-1068. The main result of this effort has been the demonstration of SIS mixers using a new superconducting material niobium titanium nitride (NbTiN), which promises to deliver dramatic improvements in sensitivity in the 700

  9. CryoSat-2 Validation using CryoVEX 2011-12 Airborne Campaigns

    DEFF Research Database (Denmark)

    Skourup, Henriette; Forsberg, René; Kildegaard Rose, Stine;

    north of Alert and sea ice around Svalbard in the Fram Strait. Selected tracks were planned to match CryoSat-2 passes and a few of them were flown in formation flight with the Alfred Wegener Institute (AWI) Polar-5 carrying an EM-bird. This presentation summarizes the 2011-12 airborne campaigns...

  10. CryoVEx 2011-12 Airborne Campaigns for CryoSat Validation

    DEFF Research Database (Denmark)

    Skourup, Henriette; Hvidegaard, Sine Munk; Forsberg, René;

    2013-01-01

    of Alert and sea ice around Svalbard in the Fram Strait. Selected tracks were planned to match CryoSat-2 passes and a few of them were flown in formation flight with the AlfredWegener Institute (AWI) Polar- 5 carrying an EM induction sounder. The paper presents an overview of the 2011-12 airborne campaigns...

  11. Interdecadal changes in snow depth on Arctic sea ice

    Science.gov (United States)

    Webster, Melinda A.; Rigor, Ignatius G.; Nghiem, Son V.; Kurtz, Nathan T.; Farrell, Sinead L.; Perovich, Donald K.; Sturm, Matthew

    2014-08-01

    Snow plays a key role in the growth and decay of Arctic sea ice. In winter, it insulates sea ice from cold air temperatures, slowing sea ice growth. From spring to summer, the albedo of snow determines how much insolation is absorbed by the sea ice and underlying ocean, impacting ice melt processes. Knowledge of the contemporary snow depth distribution is essential for estimating sea ice thickness and volume, and for understanding and modeling sea ice thermodynamics in the changing Arctic. This study assesses spring snow depth distribution on Arctic sea ice using airborne radar observations from Operation IceBridge for 2009-2013. Data were validated using coordinated in situ measurements taken in March 2012 during the Bromine, Ozone, and Mercury Experiment (BROMEX) field campaign. We find a correlation of 0.59 and root-mean-square error of 5.8 cm between the airborne and in situ data. Using this relationship and IceBridge snow thickness products, we compared the recent results with data from the 1937, 1954-1991 Soviet drifting ice stations. The comparison shows thinning of the snowpack, from 35.1 ± 9.4 to 22.2 ± 1.9 cm in the western Arctic, and from 32.8 ± 9.4 to 14.5 ± 1.9 cm in the Beaufort and Chukchi seas. These changes suggest a snow depth decline of 37 ± 29% in the western Arctic and 56 ± 33% in the Beaufort and Chukchi seas. Thinning is negatively correlated with the delayed onset of sea ice freezeup during autumn.

  12. Greenland ice mass balance from GPS, GRACE and ICESat

    DEFF Research Database (Denmark)

    Khan, Shfaqat Abbas; Kjær, Kurt H.; Korsgaard, Niels Jákup

    Greenland, using stereoscopic coverage by aerial photographs recorded in 1985, and subsequent comparative surface elevation data from ICESat (Ice, Cloud and land Elevation Satellite) and ATM (Airborne Topographic Mapper) supplemented with measurements from GPS and the Gravity Recovery and Climate Experiment...

  13. A spongy icing model for aircraft icing

    Institute of Scientific and Technical Information of China (English)

    Li Xin; Bai Junqiang; Hua Jun; Wang Kun; Zhang Yang

    2014-01-01

    Researches have indicated that impinging droplets can be entrapped as liquid in the ice matrix and the temperature of accreting ice surface is below the freezing point. When liquid entrapment by ice matrix happens, this kind of ice is called spongy ice. A new spongy icing model for the ice accretion problem on airfoil or aircraft has been developed to account for entrapped liquid within accreted ice and to improve the determination of the surface temperature when enter-ing clouds with supercooled droplets. Different with conventional icing model, this model identifies icing conditions in four regimes:rime, spongy without water film, spongy with water film and glaze. By using the Eulerian method based on two-phase flow theory, the impinging droplet flow was investigated numerically. The accuracy of the Eulerian method for computing the water collection efficiency was assessed, and icing shapes and surface temperature distributions predicted with this spongy icing model agree with experimental results well.

  14. A spongy icing model for aircraft icing

    Directory of Open Access Journals (Sweden)

    Li Xin

    2014-02-01

    Full Text Available Researches have indicated that impinging droplets can be entrapped as liquid in the ice matrix and the temperature of accreting ice surface is below the freezing point. When liquid entrapment by ice matrix happens, this kind of ice is called spongy ice. A new spongy icing model for the ice accretion problem on airfoil or aircraft has been developed to account for entrapped liquid within accreted ice and to improve the determination of the surface temperature when entering clouds with supercooled droplets. Different with conventional icing model, this model identifies icing conditions in four regimes: rime, spongy without water film, spongy with water film and glaze. By using the Eulerian method based on two-phase flow theory, the impinging droplet flow was investigated numerically. The accuracy of the Eulerian method for computing the water collection efficiency was assessed, and icing shapes and surface temperature distributions predicted with this spongy icing model agree with experimental results well.

  15. Airborne field strength monitoring

    Directory of Open Access Journals (Sweden)

    J. Bredemeyer

    2007-06-01

    Full Text Available In civil and military aviation, ground based navigation aids (NAVAIDS are still crucial for flight guidance even though the acceptance of satellite based systems (GNSS increases. Part of the calibration process for NAVAIDS (ILS, DME, VOR is to perform a flight inspection according to specified methods as stated in a document (DOC8071, 2000 by the International Civil Aviation Organization (ICAO. One major task is to determine the coverage, or, in other words, the true signal-in-space field strength of a ground transmitter. This has always been a challenge to flight inspection up to now, since, especially in the L-band (DME, 1GHz, the antenna installed performance was known with an uncertainty of 10 dB or even more. In order to meet ICAO's required accuracy of ±3 dB it is necessary to have a precise 3-D antenna factor of the receiving antenna operating on the airborne platform including all losses and impedance mismatching. Introducing precise, effective antenna factors to flight inspection to achieve the required accuracy is new and not published in relevant papers yet. The authors try to establish a new balanced procedure between simulation and validation by airborne and ground measurements. This involves the interpretation of measured scattering parameters gained both on the ground and airborne in comparison with numerical results obtained by the multilevel fast multipole algorithm (MLFMA accelerated method of moments (MoM using a complex geometric model of the aircraft. First results will be presented in this paper.

  16. Compositae dermatitis from airborne parthenolide

    DEFF Research Database (Denmark)

    Paulsen, E.; Christensen, Lars Porskjær; Andersen, K.E.

    2007-01-01

    -allergic patients and (ii) re-assess the role of PHL and other SQLs in airborne contact allergy. PATIENTS AND METHODS: Feverfew-allergic patients were patch tested with extracts and fractions containing volatile monoterpenes and sesquiterpenes as well as extracts of airborne particles from flowering feverfew plants......, whether they were oxidized or not. CONCLUSIONS: The clinical results have proved that some feverfew-allergic patients are sensitive to airborne particles released from the plant, and isolation of PHL from the particle-containing HIVAS extract in allergenic amounts is strong evidence of PHL......BACKGROUND: Compositae dermatitis confined to exposed skin has often been considered on clinical grounds to be airborne. Although anecdotal clinical and plant chemical reports suggest true airborne allergy, no proof has been procured. Feverfew (Tanacetum parthenium) is a European Compositae plant...

  17. Electrical performance verification methodology for large reflector antennas: based on the P-band SAR payload of the ESA BIOMASS candidate mission

    DEFF Research Database (Denmark)

    Pivnenko, Sergey; Kim, Oleksiy S.; Nielsen, Jeppe Majlund;

    2013-01-01

    In this paper, an electrical performance verification methodology for large reflector antennas is proposed. The verification methodology was developed for the BIOMASS P-band (435 MHz) synthetic aperture radar (SAR), but can be applied to other large deployable or fixed reflector antennas for which...... the verification of the entire antenna or payload is impossible. The two-step methodology is based on accurate measurement of the feed structure characteristics, such as complex radiation pattern and radiation efficiency, with an appropriate Measurement technique, and then accurate calculation of the radiation...... pattern and gain of the entire antenna including support and satellite structure with an appropriate computational software. A preliminary investigation of the proposed methodology was carried out by performing extensive simulations of different verification approaches. The experimental validation...

  18. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2012-09-01

    Full Text Available The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA, levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re

  19. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    Science.gov (United States)

    Wagner, R.; Möhler, O.; Saathoff, H.; Schnaiter, M.; Skrotzki, J.; Leisner, T.; Wilson, T. W.; Malkin, T. L.; Murray, B. J.

    2012-09-01

    The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA), levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition) before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosol particles that have re-vitrified in contact

  20. Ice cloud processing of ultra-viscous/glassy aerosol particles leads to enhanced ice nucleation ability

    Directory of Open Access Journals (Sweden)

    B. J. Murray

    2012-04-01

    Full Text Available The ice nucleation potential of airborne glassy aqueous aerosol particles has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 247 and 216 K. Four different solutes were used as proxies for oxygenated organic matter found in the atmosphere: raffinose, 4-hydroxy-3-methoxy-DL-mandelic acid (HMMA, levoglucosan, and a multi-component mixture of raffinose with five dicarboxylic acids and ammonium sulphate. Similar to previous experiments with citric acid aerosols, all particles were found to nucleate ice heterogeneously before reaching the homogeneous freezing threshold provided that the freezing cycles were started well below the respective glass transition temperatures of the compounds; this is discussed in detail in a separate article. In this contribution, we identify a further mechanism by which glassy aerosols can promote ice nucleation below the homogeneous freezing limit. If the glassy aerosol particles are probed in freezing cycles started only a few degrees below their respective glass transition temperatures, they enter the liquid regime of the state diagram upon increasing relative humidity (moisture-induced glass-to-liquid transition before being able to act as heterogeneous ice nuclei. Ice formation then only occurs by homogeneous freezing at elevated supersaturation levels. When ice forms the remaining solution freeze concentrates and re-vitrifies. If these ice cloud processed glassy aerosol particles are then probed in a second freezing cycle at the same temperature, they catalyse ice formation at a supersaturation threshold between 5 and 30% with respect to ice. By analogy with the enhanced ice nucleation ability of insoluble ice nuclei like mineral dusts after they nucleate ice once, we refer to this phenomenon as pre-activation. We propose a number of possible explanations for why glassy aerosols that have re-vitrified in

  1. Spring Snow Depth on Arctic Sea Ice using the IceBridge Snow Depth Product (Invited)

    Science.gov (United States)

    Webster, M.; Rigor, I. G.; Nghiem, S. V.; Kurtz, N. T.; Farrell, S. L.

    2013-12-01

    Snow has dual roles in the growth and decay of Arctic sea ice. In winter, it insulates sea ice from colder air temperatures, slowing its growth. From spring into summer, the albedo of snow determines how much insolation is transmitted through the sea ice and into the underlying ocean, ultimately impacting the progression of the summer ice melt. Knowing the snow thickness and distribution are essential for understanding and modeling sea ice thermodynamics and the surface heat budget. Therefore, an accurate assessment of the snow cover is necessary for identifying its impacts in the changing Arctic. This study assesses springtime snow conditions on Arctic sea ice using airborne snow thickness measurements from Operation IceBridge (2009-2012). The 2012 data were validated with coordinated in situ measurements taken in March 2012 during the BRomine, Ozone, and Mercury EXperiment field campaign. We find a statistically significant correlation coefficient of 0.59 and RMS error of 5.8 cm. The comparison between the IceBridge snow thickness product and the 1937, 1954-1991 Soviet drifting ice station data suggests that the snow cover has thinned by 33% in the western Arctic and 44% in the Beaufort and Chukchi Seas. A rudimentary estimation shows that a thinner snow cover in the Beaufort and Chukchi Seas translates to a mid-December surface heat flux as high as 81 W/m2 compared to 32 W/m2. The relationship between the 2009-2012 thinner snow depth distribution and later sea ice freeze-up is statistically significant, with a correlation coefficient of 0.59. These results may help us better understand the surface energy budget in the changing Arctic, and may improve our ability to predict the future state of the sea ice cover.

  2. Modeling for Airborne Contamination

    Energy Technology Data Exchange (ETDEWEB)

    F.R. Faillace; Y. Yuan

    2000-08-31

    The objective of Modeling for Airborne Contamination (referred to from now on as ''this report'') is to provide a documented methodology, along with supporting information, for estimating the release, transport, and assessment of dose to workers from airborne radioactive contaminants within the Monitored Geologic Repository (MGR) subsurface during the pre-closure period. Specifically, this report provides engineers and scientists with methodologies for estimating how concentrations of contaminants might be distributed in the air and on the drift surfaces if released from waste packages inside the repository. This report also provides dose conversion factors for inhalation, air submersion, and ground exposure pathways used to derive doses to potentially exposed subsurface workers. The scope of this report is limited to radiological contaminants (particulate, volatile and gaseous) resulting from waste package leaks (if any) and surface contamination and their transport processes. Neutron activation of air, dust in the air and the rock walls of the drift during the preclosure time is not considered within the scope of this report. Any neutrons causing such activation are not themselves considered to be ''contaminants'' released from the waste package. This report: (1) Documents mathematical models and model parameters for evaluating airborne contaminant transport within the MGR subsurface; and (2) Provides tables of dose conversion factors for inhalation, air submersion, and ground exposure pathways for important radionuclides. The dose conversion factors for air submersion and ground exposure pathways are further limited to drift diameters of 7.62 m and 5.5 m, corresponding to the main and emplacement drifts, respectively. If the final repository design significantly deviates from these drift dimensions, the results in this report may require revision. The dose conversion factors are further derived by using concrete of

  3. Retrieval of Precipitation from Microwave Airborne Sensors during TOGA COARE.

    Science.gov (United States)

    Viltard, Nicolas; Obligis, Estelle; Marecal, Virginie; Klapisz, Claude

    1998-07-01

    The aim of this paper is to report on the retrieval of the vertically averaged liquid cloud water content and vertically averaged precipitation rates (rain and ice) from microwave airborne radiometric observations in a two-plane parallel layer atmosphere. The approach is based on the inversion of a simple radiative transfer model in which a raindrop size distribution derived from microphysical measurements is introduced. The microwave data (18.7, 21, 37, and 92 GHz) used were acquired by the Airborne Multichannel Microwave Radiometer and Advanced Microwave Moisture Sounder on board NASA DC8 within a mesoscale convective system on 6 February 1993 during the Tropical Oceans Global Atmosphere Coupled Ocean-Atmosphere Response Experiment.Before interpreting the results, the quality of the inversion is checked. The fit between the measured and the model-retrieved brightness temperatures is good when compared to the model and measurements uncertainties. Doppler radar data from three other aircraft help the result's interpretation, providing reflectivity and wind fields. The cloud liquid content seems to be difficult to retrieve. The ice and liquid rain rates are consistent with the other data sources: order of magnitude for convective and stratiform regions, presence of ice and liquid precipitation correlated with cell structure, and presence of cloud particles in the lighter precipitating regions.A quantitative comparison is done between the radiometric rainfall rates and those derived from the Airborne Rain Mapping Radar observations (also on board NASA DC8). There is a good agreement between the two from the statistical point of view (mean and standard deviation values). Moreover, the finescale rain structures that appear in radar results are rather well reproduced in the radiometric results. The importance of the new drop size distribution introduced in the radiative transfer model is emphasized by this last comparison.

  4. Development of an airborne ice sounding radar front-end

    DEFF Research Database (Denmark)

    Krozer, Viktor; Hernandez, C C; Vazquez Roy, J L

    2007-01-01

    a relative bandwidth of 20% at a center frequency of 435 MHz, and a digital signal generation and acquisition unit. Furthermore, we demonstrate broadband performance of our left-handed/right-handed out-of-phase power dividers. In 2008 the first data acquisition campaign will take place in Greenland....

  5. Greenland Ice Surface Elevations from NASA ATM Airborne Lidar

    Data.gov (United States)

    National Aeronautics and Space Administration — Scanning laser altimeters were flown over the Greenland icesheet during late spring or early summer from 1993 to 1999. Flights spanned the entire icesheet, sampling...

  6. Airborne Cloud Computing Environment (ACCE)

    Science.gov (United States)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  7. Airborne laser fish finder

    Science.gov (United States)

    Zhu, Xiao; Li, Zaiguang; Huang, Houzheng

    1998-05-01

    An experimental airborne laser fish finder has been developed and field trial has been conducted. The Q-switched and frequency-doubled Nd:YAG laser output is of 100 HZ pulse repetition rate, 2 MW peak power, 8 ns pulse width. The green light receiving telescope is transmissive with 1400 mm focal length and 200 mm aperture. The varying-gain control of PMT and logarithmic amplifier are used to compress the 105 dynamic range of received signals. The main features of data real-time processing subsystem are of 200 Ms/s sampling rate, 8 bit resolution, adjacent average treatment of return waveforms with high noise, and pseudo-color display of water depth.

  8. Airborne laser bathymetry experiment

    Science.gov (United States)

    Lei, Wenqiang; Zhu, Xiao; Yang, Kecheng; Li, Zaiguang

    1999-09-01

    An experimental airborne laser bathymetry system has been developed and field trial has been conducted. The Q-switched and frequency-doubled Nd:YAG laser output is of 100 HZ pulse repetition rate, 2 MW peak power, 8 ns pulse width. The green light receiving telescope is transmissive with 1400 mm focal length and 200 mm aperture. The varying-gain control of PMT and logarithmic amplifier are used to compress the 105 dynamic range of received signals. The main features of data real-time processing subsystem are of 200 Ms/s sampling rate, 8 bit resolution, adjacent average treatment of return waveforms with high noise, and pseudo-color display of sea depth.

  9. Comparison of sea-ice freeboard and thickness distributions from aircraft data and cryosat-2

    DEFF Research Database (Denmark)

    accurate range measurements. During the CryoSat Validation Experiment (CryoVEx) 2011 in the Lincoln Sea, Cryosat-2 underpasses were accomplished with two aircraft, which carried an airborne laser-scanner, a radar altimeter and an electromagnetic induction device for direct sea-ice thickness retrieval. Both......The only remote sensing technique capable of obtaining sea-ice thickness on basin-scale are satellite altimeter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter, which measures the height of the ice surface above the sea level. This method requires highly...... aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard and thickness distribution of airborne validation and CryoSat-2 measurements within the multi-year sea-ice region of the Lincoln Sea in spring, with respect...

  10. River Ice Data Instrumentation

    Science.gov (United States)

    1997-06-01

    edge in the field of ice engineering expands. For example, ice concentration and freezeup stage are not considered by the survey respondents to...im- pacts both freezeup and breakup jam formation Table 2. Ice parameters currently monitored, by Divisions (as of 1995). Ice parameters currently...V V V V Date of ice in V V V V Ice concentration V V V V Freezeup stage V V V V V Note: Southwestern Division does not currently monitor ice

  11. The airborne EMIRAD L-band radiometer system

    DEFF Research Database (Denmark)

    Søbjærg, Sten Schmidl; Kristensen, Steen Savstrup; Balling, Jan E.;

    2013-01-01

    This paper describes the EMIRAD L-band radiometer, developed in support of the ESA/SMOS mission. The instrument is a fully polarimetric, dual antenna system, built with special focus on antenna accuracy, receiver stability, and detection and mitigation of radio frequency interference (RFI......). The EMIRAD system has been installed on three different airborne platforms for measurements of sea surface signatures and salinity, soil moisture, and the homogeneity of the Antarctic SMOS calibration site. The installations are shown in the paper, and some major results for ocean and ice observations...

  12. Morphometric Characteristics of Ice and Snow in the Arctic Basin: Aircraft Landing Observations from the Former Soviet Union, 1928-1989

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This data set contains sea ice and snow measurements collected during aircraft landings associated with the Soviet Union's historical Sever airborne and North Pole...

  13. Investigation of Controls on Ice Dynamics in Northeast Greenland from Ice-Thickness Change Record Using Ice Sheet System Model (ISSM)

    Science.gov (United States)

    Csatho, B. M.; Larour, E. Y.; Schenk, A. F.; Schlegel, N.; Duncan, K.

    2015-12-01

    We present a new, complete ice thickness change reconstruction of the NE sector of the Greenland Ice Sheet for 1978-2014, partitioned into changes due to surface processes and ice dynamics. Elevation changes are computed from all available stereoscopic DEMs, and laser altimetry data (ICESat, ATM, LVIS). Surface Mass Balance and firn-compaction estimates are from RACMO2.3. Originating nearly at the divide of the Greenland Ice Sheet (GrIS), the dynamically active North East Ice Stream (NEGIS) is capable of rapidly transmitting ice-marginal forcing far inland. Thus, NEGIS provides a possible mechanism for a rapid drawdown of ice from the ice sheet interior as marginal warming, thinning and retreat continues. Our altimetry record shows accelerating dynamic thinning of Zachariæ Isstrom, initially limited to the deepest part of the fjord near the calving front (1978-2000) and then extending at least 75 km inland. At the same time, changes over the Nioghalvfjerdsfjorden (N79) Glacier are negligible. We also detect localized large dynamic changes at higher elevations on the ice sheet. These thickness changes, often occurring at the onset of fast flow, could indicate rapid variations of basal lubrication due to rerouting of subglacial drainage. We investigate the possible causes of the observed spatiotemporal pattern of ice sheet elevation changes using the Ice Sheet System Model (ISSM). This work build on our previous studies examining the sensitivity of ice flow within the Northeast Greenland Ice Stream (NEGIS) to key fields, including ice viscosity, basal drag. We assimilate the new altimetry record into ISSM to improve the reconstruction of basal friction and ice viscosity. Finally, airborne geophysical (gravity, magnetic) and ice-penetrating radar data is examined to identify the potential geologic controls on the ice thickness change pattern. Our study provides the first comprehensive reconstruction of ice thickness changes for the entire NEGIS drainage basin during

  14. NASA_Airborne_Lidar_Flights

    Data.gov (United States)

    National Aeronautics and Space Administration — Data from the 1982 NASA Langley Airborne Lidar flights following the eruption of El Chichon beginning in July 1982 and continuing to January 1984. Data in ASCII...

  15. Airborne laser altimetry survey of Glaciar Tyndall, Patagonia

    DEFF Research Database (Denmark)

    Keller, K.; Casassa, G.; Rivera, A.

    2007-01-01

    flown over the ablation area of Glaciar Tyndall, with 5 longitudinal tracks with a mean swath width of 300 m, which results in a point spacing of approximately 2 m both along and across track. A digital elevation model (DEM) generated using the laser altimetry data was compared with a DEM produced from...... of - 3.2 m a(-1) [Raymond, C., Neumann, T.A., Rignot, E., Echelmeyer, K.A., Rivera, A., Casassa, G., 2005. Retreat of Tyndall Glacier, Patagonia, over the last half century. Journal of Glaciology 173 (51), 239-247.]. A good agreement was also found between ice elevation changes measured with laser data...... and previous results obtained with Shuttle Radar Topography Mission (SRTM) data. We conclude that airborne laser altimetry is an effective means for accurately detecting glacier elevation changes in Patagonia, where an ice thinning acceleration trend has been observed during recent years, presumably...

  16. Feasibility Study of Radiometry for Airborne Detection of Aviation Hazards

    Science.gov (United States)

    Gimmestad, Gary G.; Papanicolopoulos, Chris D.; Richards, Mark A.; Sherman, Donald L.; West, Leanne L.; Johnson, James W. (Technical Monitor)

    2001-01-01

    Radiometric sensors for aviation hazards have the potential for widespread and inexpensive deployment on aircraft. This report contains discussions of three aviation hazards - icing, turbulence, and volcanic ash - as well as candidate radiometric detection techniques for each hazard. Dual-polarization microwave radiometry is the only viable radiometric technique for detection of icing conditions, but more research will be required to assess its usefulness to the aviation community. Passive infrared techniques are being developed for detection of turbulence and volcanic ash by researchers in this country and also in Australia. Further investigation of the infrared airborne radiometric hazard detection approaches will also be required in order to develop reliable detection/discrimination techniques. This report includes a description of a commercial hyperspectral imager for investigating the infrared detection techniques for turbulence and volcanic ash.

  17. A marine biogenic source of atmospheric ice-nucleating particles

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, T. W.; Ladino, L. A.; Alpert, Peter A.; Breckels, M. N.; Brooks, I. M.; Browse, J.; Burrows, Susannah M.; Carslaw, K. S.; Huffman, J. A.; Judd, C.; Kilthau, W. P.; Mason, R. H.; McFiggans, Gordon; Miller, L. A.; Najera, J.; Polishchuk, E. A.; Rae, S.; Schiller, C. L.; Si, M.; Vergara Temprado, J.; Whale, Thomas; Wong, J P S; Wurl, O.; Yakobi-Hancock, J. D.; Abbatt, JPD; Aller, Josephine Y.; Bertram, Allan K.; Knopf, Daniel A.; Murray, Benjamin J.

    2015-09-09

    The formation of ice in clouds is facilitated by the presence of airborne ice nucleating particles1,2. Sea spray is one of the major global sources of atmospheric particles, but it is unclear to what extent these particles are capable of nucleating ice3–11. Here we show that material in the sea surface microlayer, which is enriched in surface active organic material representative of that found in sub-micron sea- spray aerosol12–21, nucleates ice under conditions that occur in mixed-phase clouds and high-altitude ice clouds. The ice active material is likely biogenic and is less than ~0.2 ?m in size. We also show that organic material (exudate) released by a common marine diatom nucleates ice when separated from cells and propose that organic material associated with phytoplankton cell exudates are a candidate for the observed ice nucleating ability of the microlayer samples. By combining our measurements with global model simulations of marine organic aerosol, we show that ice nucleating particles of marine origin are dominant in remote marine environments, such as the Southern Ocean, the North Pacific and the North Atlantic.

  18. Airborne Particulate Threat Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Treado; Oksana Klueva; Jeffrey Beckstead

    2008-12-31

    Aerosol threat detection requires the ability to discern between threat agents and ambient background particulate matter (PM) encountered in the environment. To date, Raman imaging technology has been demonstrated as an effective strategy for the assessment of threat agents in the presence of specific, complex backgrounds. Expanding our understanding of the composition of ambient particulate matter background will improve the overall performance of Raman Chemical Imaging (RCI) detection strategies for the autonomous detection of airborne chemical and biological hazards. Improving RCI detection performance is strategic due to its potential to become a widely exploited detection approach by several U.S. government agencies. To improve the understanding of the ambient PM background with subsequent improvement in Raman threat detection capability, ChemImage undertook the Airborne Particulate Threat Assessment (APTA) Project in 2005-2008 through a collaborative effort with the National Energy Technology Laboratory (NETL), under cooperative agreement number DE-FC26-05NT42594. During Phase 1 of the program, a novel PM classification based on molecular composition was developed based on a comprehensive review of the scientific literature. In addition, testing protocols were developed for ambient PM characterization. A signature database was developed based on a variety of microanalytical techniques, including scanning electron microscopy, FT-IR microspectroscopy, optical microscopy, fluorescence and Raman chemical imaging techniques. An automated particle integrated collector and detector (APICD) prototype was developed for automated collection, deposition and detection of biothreat agents in background PM. During Phase 2 of the program, ChemImage continued to refine the understanding of ambient background composition. Additionally, ChemImage enhanced the APICD to provide improved autonomy, sensitivity and specificity. Deliverables included a Final Report detailing our

  19. The impact of snow depth, snow density and ice density on sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise

    Science.gov (United States)

    Kern, S.; Khvorostovsky, K.; Skourup, H.; Rinne, E.; Parsakhoo, Z. S.; Djepa, V.; Wadhams, P.; Sandven, S.

    2015-01-01

    We assess different methods and input parameters, namely snow depth, snow density and ice density, used in freeboard-to-thickness conversion of Arctic sea ice. This conversion is an important part of sea ice thickness retrieval from spaceborne altimetry. A data base is created comprising sea ice freeboard derived from satellite radar altimetry between 1993 and 2012 and co-locate observations of total (sea ice + snow) and sea ice freeboard from the Operation Ice Bridge (OIB) and CryoSat Validation Experiment (CryoVEx) airborne campaigns, of sea ice draft from moored and submarine upward looking sonar (ULS), and of snow depth from OIB campaigns, Advanced Microwave Scanning Radiometer (AMSR-E) and the Warren climatology (Warren et al., 1999). We compare the different data sets in spatiotemporal scales where satellite radar altimetry yields meaningful results. An inter-comparison of the snow depth data sets emphasizes the limited usefulness of Warren climatology snow depth for freeboard-to-thickness conversion under current Arctic Ocean conditions reported in other studies. We test different freeboard-to-thickness and freeboard-to-draft conversion approaches. The mean observed ULS sea ice draft agrees with the mean sea ice draft derived from radar altimetry within the uncertainty bounds of the data sets involved. However, none of the approaches are able to reproduce the seasonal cycle in sea ice draft observed by moored ULS. A sensitivity analysis of the freeboard-to-thickness conversion suggests that sea ice density is as important as snow depth.

  20. Improving volume loss estimates of the northwestern Greenland Ice Sheet 2002-2010

    DEFF Research Database (Denmark)

    Korsgaard, Niels Jákup; Khan, Shfaqat Abbas; Kjeldsen, Kristian Kjellerup

    Studies have been carried out using various methods to estimate the Greenland ice sheet mass balance. Remote sensing techniques used to determine the ice sheet volume includes airborne and satellite radar and laser methods and measurements of ice flow of outlet glaciers use InSAR satellite radar......) does not work on sloping surfaces and is affected by radar penetration into the snow. InSAR estimates require knowledge of outlet glacier thickness. GRACE has limited spatial resolution and is affected by mass variations not just from ice changes, but also from hydrologic and ocean mass variability...

  1. Great Lakes Ice Charts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Charts show ice extent and concentration three times weekly during the ice season, for all lakes except Ontario, from the 1973/74 ice season through the 2001/2002...

  2. South African Airborne Operations

    Directory of Open Access Journals (Sweden)

    McGill Alexander

    2012-02-01

    Full Text Available Airborne operations entail the delivery of ground troops and their equipment by air to their area of operations. They can also include the subsequent support of these troops and their equipment by air. Historically, and by definition, this would encompass delivery by fixed-wing powered aircraft, by glider, by parachute or by helicopter. Almost any troops can be delivered by most of these means. However, the technical expertise and physical as well as psychological demands required by parachuting have resulted in specialist troops being selected and trained for this role. Some of the material advantages of using parachute troops, or paratroops, are: the enormous strategic reach provided by the long-distance transport aircraft used to convey them; the considerable payload which these aircraft are capable of carrying; the speed with which the parachute force can deploy; and the fact that no infrastructure such as airfields are required for their arrival. Perhaps most attractively to cash-strapped governments, the light equipment scales of parachute units’ makes them economical to establish and maintain. There are also less tangible advantages: the soldiers selected are invariably volunteers with a willingness or even desire to tackle challenges; their selection and training produces tough, confident and aggressive troops, psychologically geared to face superior odds and to function independently from other units; and their initiative and self-reliance combined with a high level of physical fitness makes them suitable for a number of different and demanding roles.

  3. Ice Sheet Thermomety Using Wideband Radiometry

    Science.gov (United States)

    Jezek, K. C.; Johnson, J.; Durand, M. T.; Aksoy, M.; Tsang, L.; Wang, T.; Tan, S.; Macelloni, G.; Brogioni, M.; Drinkwater, M. R.

    2014-12-01

    There are good correlations between L-band brightness temperature data from the ESA Soil Moisture and Ocean Salinity mission and the thickness and surface temperature of the Antarctic Ice Sheet. These data along with independent, radiative-transfer modeling-studies suggest that it is possible to estimate the internal, physical temperatures of ice sheets to some, perhaps great, depth. Such a measurement is necessary to improve ice sheet models which rely on temperature-dependent deformation rates within the body of the ice sheet. In this paper we review our most recent modeling which now includes the effect of layering in near surface firn. We go on to compare L-band satellite data with modeled brightness temperatures at several sites in Greenland and Antarctica where physical temperature has been measured. We show the brightness temperature response over the band 0.5 to 2 GHz including the influence of basal-water on the low frequency range of this band. We conclude by summarizing our current design of an ultra-wide-band radiometer intended to make ice sheet thermometry measurements. We plan to deploy the airborne instrument in Greenland in two years' time.

  4. CryoSat2 Pre-Launch Validation Measurements on Arctic Sea Ice

    DEFF Research Database (Denmark)

    Nicolaus, Marcel; Hendricks, Stefan; Stenseng, Lars

    2010-01-01

    of sea ice and its snow cover will contribute to increasing our understanding of atmosphere-ice-ocean interaction and improve our ability to quantify observed changes. Our validation measurements show that the penetration depth of the radar signal strongly depends on snow cover characteristics......One of the main goals of ESA’s CryoSat-2 mission are estimates of the sea-ice mass and mass balance. For this aim, CryoSat-2 is designed to retrieve high-quality thickness data for over sea ice through its onboard radar altimeter. Together with other satellite data products, these thickness data...... (seasonality and underlying ice type) and is often not the snow-ice interface, as commonly assumed. Validation transects, using airborne electromagnetic ice-thickness measurements, are shown to be a powerful tool for regional-scale validation experiments during different seasons....

  5. Multi-decadal dynamic thinning on the northwest margin of the Greenland Ice Sheet

    DEFF Research Database (Denmark)

    Korsgaard, Niels Jákup; Kjær, Kurt H.; Khan, Shfaqat Abbas;

    Ice mass changes in the Greenland Ice Sheet have been estimated since the early 1990s from the GRACE (Gravity Recovery and Climate Experiment) satellite gravity mission, of ice sheet thinning from satellite radar altimetry and airborne laser altimetry, and of increased velocities of outlet glaciers...... from radar interferometric surveys. Prior to 2000 existing altimetry data provides comparatively limited spatial resolution and ice losses near ice sheet margins are most likely underestimated and existing data is unable to document the persisting change within outlet glaciers. Subsequent estimates...... of increasing dynamic induced ice loss. GRACE data show that this increased mass loss initiated in 2005 ceased in late 2009, thus, defining a dynamic thinning event as seen previous along the coast in southeast Greenland. Here, we present a multi-decadal perspective on ice mass change from northwestern...

  6. Submillimeter-Wave Cloud Ice Radiometry

    Science.gov (United States)

    Walter, Steven J.

    1999-01-01

    Submillimeter-wave cloud ice radiometry is a new and innovative technique for characterizing cirrus ice clouds. Cirrus clouds affect Earth's climate and hydrological cycle by reflecting incoming solar energy, trapping outgoing IR radiation, sublimating into vapor, and influencing atmospheric circulation. Since uncertainties in the global distribution of cloud ice restrict the accuracy of both climate and weather models, successful development of this technique could provide a valuable tool for investigating how clouds affect climate and weather. Cloud ice radiometry could fill an important gap in the observational capabilities of existing and planned Earth-observing systems. Using submillimeter-wave radiometry to retrieve properties of ice clouds can be understood with a simple model. There are a number of submillimeter-wavelength spectral regions where the upper troposphere is transparent. At lower tropospheric altitudes water vapor emits a relatively uniform flux of thermal radiation. When cirrus clouds are present, they scatter a portion of the upwelling flux of submillimeter-wavelength radiation back towards the Earth as shown in the diagram, thus reducing the upward flux o f energy. Hence, the power received by a down-looking radiometer decreases when a cirrus cloud passes through the field of view causing the cirrus cloud to appear radiatively cool against the warm lower atmospheric thermal emissions. The reduction in upwelling thermal flux is a function of both the total cloud ice content and mean crystal size. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in crystal size to be distinguished from changes in ice content, and polarized measurements can be used to constrain mean crystal shape. The goal of the cloud ice radiometry program is to further develop and validate this technique of characterizing cirrus. A multi-frequency radiometer is being designed to support airborne science and

  7. Evaluation of Arctic Sea Ice Thickness Simulated by Arctic Ocean Model Intercomparison Project Models

    Science.gov (United States)

    Johnson, Mark; Proshuntinsky, Andrew; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nikolay; Kwok, Ron; Maslowski, Wieslaw; Hakkinen, Sirpa; Ashik, Igor; De Cuevas, Beverly

    2012-01-01

    Six Arctic Ocean Model Intercomparison Project model simulations are compared with estimates of sea ice thickness derived from pan-Arctic satellite freeboard measurements (2004-2008); airborne electromagnetic measurements (2001-2009); ice draft data from moored instruments in Fram Strait, the Greenland Sea, and the Beaufort Sea (1992-2008) and from submarines (1975-2000); and drill hole data from the Arctic basin, Laptev, and East Siberian marginal seas (1982-1986) and coastal stations (1998-2009). Despite an assessment of six models that differ in numerical methods, resolution, domain, forcing, and boundary conditions, the models generally overestimate the thickness of measured ice thinner than approximately 2 mand underestimate the thickness of ice measured thicker than about approximately 2m. In the regions of flat immobile landfast ice (shallow Siberian Seas with depths less than 25-30 m), the models generally overestimate both the total observed sea ice thickness and rates of September and October ice growth from observations by more than 4 times and more than one standard deviation, respectively. The models do not reproduce conditions of fast ice formation and growth. Instead, the modeled fast ice is replaced with pack ice which drifts, generating ridges of increasing ice thickness, in addition to thermodynamic ice growth. Considering all observational data sets, the better correlations and smaller differences from observations are from the Estimating the Circulation and Climate of the Ocean, Phase II and Pan-Arctic Ice Ocean Modeling and Assimilation System models.

  8. Impacts of warm water on Antarctic ice shelf stability through basal channel formation

    Science.gov (United States)

    Alley, Karen E.; Scambos, Ted A.; Siegfried, Matthew R.; Fricker, Helen Amanda

    2016-04-01

    Antarctica's ice shelves provide resistance to the flow of grounded ice towards the ocean. If this resistance is decreased as a result of ice shelf thinning or disintegration, acceleration of grounded ice can occur, increasing rates of sea-level rise. Loss of ice shelf mass is accelerating, especially in West Antarctica, where warm seawater is reaching ocean cavities beneath ice shelves. Here we use satellite imagery, airborne ice-penetrating radar and satellite laser altimetry spanning the period from 2002 to 2014 to map extensive basal channels in the ice shelves surrounding Antarctica. The highest density of basal channels is found in West Antarctic ice shelves. Within the channels, warm water flows northwards, eroding the ice shelf base and driving channel evolution on annual to decadal timescales. Our observations show that basal channels are associated with the development of new zones of crevassing, suggesting that these channels may cause ice fracture. We conclude that basal channels can form and grow quickly as a result of warm ocean water intrusion, and that they can structurally weaken ice shelves, potentially leading to rapid ice shelf loss in some areas.

  9. 电离层闪烁对星载P波段SAR的影响分析%Effects of Ionospheric Scintillation on P Band Spaceborne SAR

    Institute of Scientific and Technical Information of China (English)

    冯健; 甄卫民; 吴振森; 刘钝

    2015-01-01

    The ionospheric scintillation can destroy the coherence of SAR echos, and correspondingly degradeSAR imaging performance. The previous studies are conducted under the hypothesis of the given ionospheric electron density irregularities, which are unavailable with the current measurement technologies. In this paper, the characteristics of ionospheric scintillations at low latitudes are analysed by using the observational data of Ultra High Frequency(UHF) band scintillations in the years of high and moderate solar activity at Haikou station. Based on the phase screen theory, a method is proposed to quantify the effects of ionospheric scintillation on P-band spaceborne SAR by using the scintillation index. The results show that the scintillations occur mostly at the night time at low latitudes, especially in equinoxes. The scintillations occur approximately 3.8% during a typical year of high solar activity. For P band SAR, the weak scintillation widens the mainlobe of azimuthal Impulse Response Function(IRF), increases the intensity of sidelobe, and reduces the azimuthal resolution. The moderate scintillation disturbs the IRF seriously, increases the intensity of sidelobe to the degree of mainlobe, and makes the peak of mainlobe shift in azimuthal direction, which can result in the disability of SAR imaging.%电离层闪烁会破坏星载合成孔径雷达(SAR)回波信号之间的相关性,使其成像性能下降.已有的工作都是假设已知电离层电子密度的扰动开展的,但是目前的测量手段无法直接获取该参量.该文利用海口观测站超高频(UHF)频段太阳活动高年和中等年份的实测数据,分析电离层闪烁的变化特征,并基于相位屏理论,给出一种利用闪烁指数评估电离层闪烁对星载P波段SAR系统影响效应的方法.结果表明:电离层闪烁在低纬地区主要发生在夜间,且在两分季高发;太阳活动高年,全年约有3.8%的时间会发生电离层闪烁现象;对于P波段SAR

  10. Curved PVDF airborne transducer.

    Science.gov (United States)

    Wang, H; Toda, M

    1999-01-01

    In the application of airborne ultrasonic ranging measurement, a partially cylindrical (curved) PVDF transducer can effectively couple ultrasound into the air and generate strong sound pressure. Because of its geometrical features, the ultrasound beam angles of a curved PVDF transducer can be unsymmetrical (i.e., broad horizontally and narrow vertically). This feature is desired in some applications. In this work, a curved PVDF air transducer is investigated both theoretically and experimentally. Two resonances were observed in this transducer. They are length extensional mode and flexural bending mode. Surface vibration profiles of these two modes were measured by a laser vibrometer. It was found from the experiment that the surface vibration was not uniform along the curvature direction for both vibration modes. Theoretical calculations based on a model developed in this work confirmed the experimental results. Two displacement peaks were found in the piezoelectric active direction of PVDF film for the length extensional mode; three peaks were found for the flexural bending mode. The observed peak positions were in good agreement with the calculation results. Transient surface displacement measurements revealed that vibration peaks were in phase for the length extensional mode and out of phase for the flexural bending mode. Therefore, the length extensional mode can generate a stronger ultrasound wave than the flexural bending mode. The resonance frequencies and vibration amplitudes of the two modes strongly depend on the structure parameters as well as the material properties. For the transducer design, the theoretical model developed in this work can be used to optimize the ultrasound performance.

  11. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik

    In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...... mesoscale model, allowing for both climatological estimates of icing and short term icing forecasts. The current model was able to detect periods of icing reasonably well at the warmer site. However at the cold climate site, the model was not able to remove ice quickly enough leading to large ice...... accumulations, which have not been seen in observations. In addition to the model evaluation we were able to investigate the potential occurrence of ice induced power loss at two wind parks in Europe using observed data. We found that the potential loss during an icing event is large even when the turbine...

  12. Ice sheet systems and sea level change.

    Science.gov (United States)

    Rignot, E. J.

    2015-12-01

    Modern views of ice sheets provided by satellites, airborne surveys, in situ data and paleoclimate records while transformative of glaciology have not fundamentally changed concerns about ice sheet stability and collapse that emerged in the 1970's. Motivated by the desire to learn more about ice sheets using new technologies, we stumbled on an unexplored field of science and witnessed surprising changes before realizing that most were coming too fast, soon and large. Ice sheets are integrant part of the Earth system; they interact vigorously with the atmosphere and the oceans, yet most of this interaction is not part of current global climate models. Since we have never witnessed the collapse of a marine ice sheet, observations and exploration remain critical sentinels. At present, these observations suggest that Antarctica and Greenland have been launched into a path of multi-meter sea level rise caused by rapid climate warming. While the current loss of ice sheet mass to the ocean remains a trickle, every mm of sea level change will take centuries of climate reversal to get back, several major marine-terminating sectors have been pushed out of equilibrium, and ice shelves are irremediably being lost. As glaciers retreat from their salty, warm, oceanic margins, they will melt away and retreat slower, but concerns remain about sea level change from vastly marine-based sectors: 2-m sea level equivalent in Greenland and 23-m in Antarctica. Significant changes affect 2/4 marine-based sectors in Greenland - Jakobshavn Isb. and the northeast stream - with Petermann Gl. not far behind. Major changes have affected the Amundsen Sea sector of West Antarctica since the 1980s. Smaller yet significant changes affect the marine-based Wilkes Land sector of East Antarctica, a reminder that not all marine-based ice is in West Antarctica. Major advances in reducing uncertainties in sea level projections will require massive, interdisciplinary efforts that are not currently in place

  13. Radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment and the Airborne Arctic Stratospheric Expedition

    Science.gov (United States)

    Rosenfield, Joan E.

    1992-01-01

    Results are presented of a study of the radiative effects of polar stratospheric clouds during the Airborne Antarctic Ozone Experiment (AAOE) and the Airborne Arctic Stratospheric Expedition (AASE) in which daily 3D Type I nitric acid trihydrate (NAT) and Type II water ice polar stratospheric clouds (PSCs) were generated in the polar regions during AAOE and the AASE aircraft missions. Mission data on particular composition and size, together with NMC-analyzed temperatures, are used. For AAOE, both Type I and Type II clouds were formed for the time period August 23 to September 17, after which only Type I clouds formed. During AASE, while Type I clouds were formed for each day between January 3 and February 10, Type II clouds formed on only two days, January 24 and 31. Mie theory and a radiative transfer model are used to compute the radiative heating rates during the mission periods, for clear and cloudy lower sky cases. Only the Type II water ice clouds have a significant radiative effect, with the Type I NATO PSCs generating a net heating or cooling of 0.1 K/d or less.

  14. Organic matter matters for ice nuclei of agricultural soil origin

    Directory of Open Access Journals (Sweden)

    Y. Tobo

    2014-04-01

    Full Text Available Heterogeneous ice nucleation is a~crucial process for forming ice-containing clouds and subsequent ice-induced precipitation. The importance for ice nucleation of airborne desert soil dusts composed predominantly of minerals is relatively well understood. On the other hand, the potential influence of agricultural soil dusts on ice nucleation has been poorly recognized, despite recent estimates that they may account for up to ∼25% of the global atmospheric dust load. We have conducted freezing experiments with various dusts, including agricultural soil dusts derived from the largest dust source region in North America. Here we show evidence for the significant role of soil organic matter (SOM in particles acting as ice nuclei (IN under mixed-phase cloud conditions. We find that the ice nucleating ability of the agricultural soil dusts is similar to that of desert soil dusts, but is reduced to almost the same level as that of clay minerals (e.g., kaolinite after either H2O2 digestion or dry heating to 300 °C. In addition, based on chemical composition analysis, we show that organic-rich particles are more important than mineral particles for the ice nucleating ability of the agricultural soil dusts at temperatures warmer than about −36 °C. Finally, we suggest that such organic-rich particles of agricultural origin (namely, SOM particles may contribute significantly to the ubiquity of organic-rich IN in the global atmosphere.

  15. Radar attenuation and temperature within the Greenland Ice Sheet

    Science.gov (United States)

    MacGregor, Joseph A; Li, Jilu; Paden, John D; Catania, Ginny A; Clow, Gary D.; Fahnestock, Mark A; Gogineni, Prasad S.; Grimm, Robert E.; Morlighem, Mathieu; Nandi, Soumyaroop; Seroussi, Helene; Stillman, David E

    2015-01-01

    The flow of ice is temperature-dependent, but direct measurements of englacial temperature are sparse. The dielectric attenuation of radio waves through ice is also temperature-dependent, and radar sounding of ice sheets is sensitive to this attenuation. Here we estimate depth-averaged radar-attenuation rates within the Greenland Ice Sheet from airborne radar-sounding data and its associated radiostratigraphy. Using existing empirical relationships between temperature, chemistry, and radar attenuation, we then infer the depth-averaged englacial temperature. The dated radiostratigraphy permits a correction for the confounding effect of spatially varying ice chemistry. Where radar transects intersect boreholes, radar-inferred temperature is consistently higher than that measured directly. We attribute this discrepancy to the poorly recognized frequency dependence of the radar-attenuation rate and correct for this effect empirically, resulting in a robust relationship between radar-inferred and borehole-measured depth-averaged temperature. Radar-inferred englacial temperature is often lower than modern surface temperature and that of a steady state ice-sheet model, particularly in southern Greenland. This pattern suggests that past changes in surface boundary conditions (temperature and accumulation rate) affect the ice sheet's present temperature structure over a much larger area than previously recognized. This radar-inferred temperature structure provides a new constraint for thermomechanical models of the Greenland Ice Sheet.

  16. The microphysical properties of small ice particles measured during MACPEX

    Science.gov (United States)

    Schmitt, C. G.; Schnaiter, M.; Heymsfield, A.; Bansemer, A.; Hirst, E.

    2012-12-01

    During the Mid-latitude Airborne Cirrus Properties Experiment (MACPEX) field campaign, the Small Ice Detector version 3 (SID-3) and the NCAR Video Ice Particle Sampler (VIPS) probes were operated onboard the NASA WB-57 aircraft to measure the microphysical properties of small ice particles in midlatitude cirrus clouds. The VIPS was optimized to measure the particle size distribution and projected area properties of ice particles between 20 and 200 microns and measurements agreed well with other microphysical probes. SID-3 measures the forward light scattering pattern from ice particles in the 1 to 100 micron size range. Forward scattering patterns can be used to characterize ice particle shape as well as surface roughness. Scattering patterns appear to be 'speckled' when particles have surface roughness and/or are polycrystalline. Scattering patterns can be used to identify quasi-spherical ice particles as well as particles which are sublimating. Sublimating crystals, spherical ice particles, and particles with surface roughness were all observed by SID-3 during MACPEX. Observed particle properties will be correlated to concurrent atmospheric observations. Measurements from the controlled environment of the Aerosol Interaction and Dynamics in the Atmosphere (AIDA) cloud chamber will be related to atmospheric particle measurements.

  17. Automatic polar ice thickness estimation from SAR imagery

    Science.gov (United States)

    Rahnemoonfar, Maryam; Yari, Masoud; Fox, Geoffrey C.

    2016-05-01

    Global warming has caused serious damage to our environment in recent years. Accelerated loss of ice from Greenland and Antarctica has been observed in recent decades. The melting of polar ice sheets and mountain glaciers has a considerable influence on sea level rise and altering ocean currents, potentially leading to the flooding of the coastal regions and putting millions of people around the world at risk. Synthetic aperture radar (SAR) systems are able to provide relevant information about subsurface structure of polar ice sheets. Manual layer identification is prohibitively tedious and expensive and is not practical for regular, longterm ice-sheet monitoring. Automatic layer finding in noisy radar images is quite challenging due to huge amount of noise, limited resolution and variations in ice layers and bedrock. Here we propose an approach which automatically detects ice surface and bedrock boundaries using distance regularized level set evolution. In this approach the complex topology of ice and bedrock boundary layers can be detected simultaneously by evolving an initial curve in radar imagery. Using a distance regularized term, the regularity of the level set function is intrinsically maintained that solves the reinitialization issues arising from conventional level set approaches. The results are evaluated on a large dataset of airborne radar imagery collected during IceBridge mission over Antarctica and Greenland and show promising results in respect to hand-labeled ground truth.

  18. EOS Aqua AMSR-E Arctic Sea Ice Validation Program: Intercomparison Between Modeled and Measured Sea Ice Brightness Temperatures

    Science.gov (United States)

    Stroeve, J.; Markus, T.; Cavalieri, D. J.; Maslanik, J.; Sturm, M.; Henrichs, J.; Gasiewski, A.; Klein, M.

    2004-01-01

    During March 2003, an extensive field campaign was conducted near Barrow, Alaska to validate AQUA Advanced Microwave Scanning Radiometer (AMSR) sea ice products. Field, airborne and satellite data were collected over three different types of sea ice: 1) first year ice with little deformation, 2) first year ice with various amounts of deformation and 3) mixed first year ice and multi-year ice with various degrees of deformation. The validation plan relies primarily on comparisons between satellite, aircraft flights and ground-based measurements. Although these efforts are important, key aspects such as the effects of atmospheric conditions, snow properties, surface roughness, melt processes, etc on the sea ice algorithms are not sufficiently well understood or documented. To improve our understanding of these effects, we combined the detailed, in-situ data collection from the 2003 field campaign with radiance modeling using a radiative transfer model to simulate the top of the atmosphere AMSR brightness temperatures. This study reports on the results of the simulations for a variety of snow and ice types and compares the results with the National Oceanographic and Atmospheric Administration Environmental Technology Laboratory Polarimetric Scanning Radiometer (NOAA) (ETL) (PSR) microwave radiometer that was flown on the NASA P-3.

  19. Ice Lithography for Nanodevices

    DEFF Research Database (Denmark)

    Han, Anpan; Kuan, A.; Wang, J.;

    Water vapor is condensed onto a cold sample, coating it with a thin-film of ice. The ice is sensitive to electron beam lithography exposure. 10 nm ice patterns are transferred into metals by “melt-off”. Non-planar samples are coated with ice, and we pattern on cantilevers, AFM tips, and suspended...

  20. Dead-ice environments

    DEFF Research Database (Denmark)

    Krüger, Johannes; Kjær, Kurt H.; Schomacker, Anders

    2010-01-01

    glacier environment. The scientific challenges are to answer the key questions. What are the conditions for dead-ice formation? From which sources does the sediment cover originate? Which melting and reworking processes act in the ice-cored moraines? What is the rate of de-icing in the ice-cored moraines...

  1. The relationship between aboveground biomass and radar backscatter as observed on airborne SAR imagery

    Science.gov (United States)

    Kasischke, Eric S.; Bourgeau-Chavez, Laura L.; Christensen, Norman L., Jr.; Dobson, M. Craig

    1991-01-01

    The initial results of an experiment to examine the dependence of radar image intensity on total above-ground biomass in a southern US pine forest ecosystem are presented. Two sets of data are discussed. First, we examine two L-band (VV-polarization) data sets which were collected 5 years apart. These data sets clearly illustrate the change in backscatter resulting from the growth of a young pine stand. Second, we examine the dependence between radar backscatter and biomass as a function of radar frequency using data from the JPL Airborne Synthetic Aperture Radar (AIRSAR) and ERIM/NADC P-3 SAR systems. These results show that there is a positive correlation between above-ground biomass and radar backscatter and at C-, L-, and P-bands, but very little correlation at C-band. The biomass level for which this positive correlation holds decreases as radar frequency increases. This positive correlation is stronger at HH and HV polarizations that VV polarization at L- and P-bands, but strongest at VV polarization for C-band.

  2. Mass loss of the Greenland Ice Sheet since the Little Ice Age, implications on sea level

    Science.gov (United States)

    Kjeldsen, K. K.; Kjaer, K.; Bjork, A. A.; Khan, S. A.; Korsgaard, N. J.; Larsen, N. K.; Long, A. J.; Woodroffe, S.; Milne, G. A.; Wahr, J. M.; Geruo, A.; Bamber, J. L.; van den Broeke, M. R.

    2013-12-01

    The impact of mass loss from the Greenland Ice Sheet (GrIS) on 20th Century sea level rise (SLR) has long been subject to intense discussions. While globally distributed tide gauges suggest a global mean SLR of 15-20 cm, quantifying the separate components is of great concern - in particular for modeling sea level projections into the 21st Century. Estimates of the past GrIS contribution to SLR have been derived using a number of different approaches, e.g. surface mass balance (SMB) calculations combined with estimates of ice discharge found by in correlating SMB anomalies and calving rates. Here, we adopt a novel geometric approach to determine the post-Little Ice Age (LIA) mass loss of the GrIS. We use high quality aerial stereo photogrammetric imagery recorded between 1978 and 1987 to map morphological features such as trim lines (boundary between freshly eroded and non-eroded bedrock) and end moraines marking the ice extent of the LIA, which thereby enables us to obtain vertical point-based differences associated with changes in ice extent. These point measurements are combined with contemporary ice surface differences derived using NASA's Airborne Topographic Mapper (ATM) from 2002-2010, NASA's Ice, Cloud, and land Elevation Satellite (ICESat) from 2003-2009, and NASA's Land, Vegetation, and Ice Sensor (LVIS) from 2010, to estimate mass loss throughout the 20th and early 21st Century. We present mass balance estimates of the GrIS since retreat commence from the maximum extent of the LIA to 2010 derived for three intervals, LIAmax (1900) - 1978/87, 1978/87 - 2002, and 2002 - 2010. Results suggest that despite highly spatially- and temporally variable post-LIA mass loss, the total mass loss and thus the contribution from the GrIS to global SLR has accelerated significantly during the 20th Century.

  3. Mass Balance of Multiyear Sea Ice in the Southern Beaufort Sea

    Science.gov (United States)

    2014-09-30

    seaice.alaska.edu/gi/ LONG-TERM GOALS 1) Determination of the net growth and melt of multiyear (MY) sea ice during its transit through the southern Beaufort...sparse. However, we will make use of airborne electromagnetic (AEM) data from the Tuktoyaktuk and Barrow regions to examine differences in the...buoys occupying each grid cell , with whiter shades indicating higher concentrations. Cross-validation of ice thickness and velocity data The fusion of

  4. A Newly Updated Database of Elevation-changes of the Greenand Ice Sheet to Study Surface Processes and Ice Dynamics

    Science.gov (United States)

    Schenk, A. F.; Csatho, B. M.; van den Broeke, M.; Kuipers Munneke, P.

    2015-12-01

    This paper reports about important upgrades of the Greenland Ice Sheet (GrIS) surface elevation and elevation-change database obtained with our Surface Elevation And Change detection (SERAC) software suite. We have developed SERAC to derive information from laser altimetry data, particularly time series of elevation changes and their partitioning into changes caused by ice dynamics. This allows direct investigation of ice dynamic processes that is much needed for improving the predictive power of ice sheet models. SERAC is different from most other change detection methods. It is based on detecting changes of surface patches, about 1 km by 1 km in size, rather than deriving elevation changes from individual laser points. The current database consists of ~100,000 time series with satellite laser altimetry data from ICESat, airborne laser observations obtained by NASA's Airborne Topographic Mapper (ATM) and the Land, Vegetation and Ice Sensor (LVIS). The upgrade is significant, because not only new observations from 2013 and 2014 have been added but also a number of improvements lead to a more comprehensive and consistent record of elevation-changes. First, we used the model that gives in addition to ice sheet also information about ice caps and glaciers (Rastner et al., 2012) for deciding if a laser point is on the ice sheet or ice cap. Then we added small gaps that exist in the ICESat GLA12 data set because the ice sheet mask is not wide enough. The new database is now more complete and will facilitate more accurate comparisons of mass balance studies obtained from the Gravity Recovery and Climate Experiment system (GRACE). For determining the part of a time series caused by ice dynamics we used the new firn compaction model and Surface Mass Balance (SMB) estimates from RACMO2.3. The new database spans the time period from 1993 to 2014. Adding new observations amounts to a spatial densification of the old record and at the same time extends the time domain by two

  5. Wave-Ice interaction

    Institute of Scientific and Technical Information of China (English)

    沈奚海莉

    2001-01-01

    The growth and movement of sea ice cover are influenced by the presence of wave field. Inturn, the wave field is influenced by the presence of ice cover. Their interaction is not fully understood.In this paper, we discuss some current understanding on wave attenuation when it propagates through frag-mented ice cover, ice drift due to the wave motion, and the growth characteristics of ice cover in wave field.

  6. Widespread Refreezing of Both Surface and Basal Melt Water Beneath the Greenland Ice Sheet

    Science.gov (United States)

    Bell, R. E.; Tinto, K. J.; Das, I.; Wolovick, M.; Chu, W.; Creyts, T. T.; Frearson, N.

    2013-12-01

    The isotopically and chemically distinct, bubble-free ice observed along the Greenland Ice Sheet margin both in the Russell Glacier and north of Jacobshavn must have formed when water froze from subglacial networks. Where this refreezing occurs and what impact it has on ice sheet processes remain unclear. We use airborne radar data to demonstrate that freeze-on to the ice sheet base and associated deformation produce large ice units up to 700 m thick throughout northern Greenland. Along the ice sheet margin, in the ablation zone, surface meltwater, delivered via moulins, refreezes to the ice sheet base over rugged topography. In the interior, water melted from the ice sheet base is refrozen and surrounded by folded ice. A significant fraction of the ice sheet is modified by basal freeze-on and associated deformation. For the Eqip and Petermann catchments, representing the ice sheet margin and interior respectively, extensive airborne radar datasets show that 10%-13% of the base of the ice sheet and up to a third of the catchment width is modified by basal freeze-on. The interior units develop over relatively subdued topography with modest water flux from basal melt where conductive cooling likely dominates. Steps in the bed topography associated with subglacial valley networks may foster glaciohydraulic supercooling. The ablation zone units develop where both surface melt and crevassing are widespread and large volumes of surface meltwater will reach the base of the ice sheet. The relatively steep topography at the upslope edge of the ablation zone units combined with the larger water flux suggests that supercooling plays a greater role in their formation. The ice qualities of the ablation zone units should reflect the relatively fresh surface melt whereas the chemistry of the interior units should reflect solute-rich basal melt. Changes in basal conditions such as the presence of till patches may contribute to the formation of the large basal units near the

  7. Regional surface melt constrained from exposed strata on the Greenland ice sheet using structural geology, satellite imagery and IcePod data.

    Science.gov (United States)

    Tinto, K. J.; Bell, R. E.; Porter, D. F.; Das, I.; Frearson, N.; Bertinato, C.; Boghosian, A.; Chu, W.; Creyts, T. T.; Dhakal, T.; Dong, L.; Starke, S. E.

    2014-12-01

    Surface melt in the ablation zone of Greenland varies considerably, with increasing rates over the satellite observational period. Prior to airborne and satellite altimetry studies, the record is primarily based on point measurements. Here, we develop an independent method of estimating supraglacial melt from satellite images to produce a broad spatial record of mass balance in west Greenland through three decades. The ablation zone along the margin of the ice sheet in central west Greenland shows a band of dark grey ice approximately 25 km wide traceable over 150 km from 66° 40' N to 68° 20' N, inland from Kangerlussuaq, and visible again to the north of Jakobshavn Isbrae. This grey ice is characterized by large, km-scale zigzags of alternating dark and light ice bands. Ice penetrating radar data show that the outcropping ice throughout this band is strongly stratified, with strata dipping inland towards the centre of the ice sheet. The large zigzags across the ice surface are seen on the surface where these dipping strata undulate, or when the ice surface is incised by meltwater channels. The amplitude of the zigzags is determined by the relative dip of the strata and the surface topography. We focus on data from the Russell Glacier, where surface velocity is on the order of 100 m/yr, and surface melt erodes the bare ice on the order of 1 m/yr. While ice flow moves the exposed strata upwards and towards the margin, surface melt displaces the exposed trace of the stratigraphy down dip, i.e. towards the interior of the ice sheet. By cross-correlating satellite images from a 30 year period we can distinguish the seaward movement of ice surface features, such as crevasses and melt channels that move with ice flow, from the landward apparent displacement of the exposed strata. We combine this with high resolution DEMs, photographs and shallow ice radar from Operation IceBridge and the IcePod instrument suite to constrain the geometry of the ice surface and exposed

  8. Airborne gamma-ray spectrometry

    DEFF Research Database (Denmark)

    Hovgaard, Jens

    A new method - Noise Adjusted Singular Value Decomposition, NASVD - for processing gamma-ray spectra has been developed as part of a Ph.D. project. By using this technique one is able to decompose a large set of data - for example from airborne gamma-ray surveys - into a few spectral components. ...

  9. Arctic ice islands

    Energy Technology Data Exchange (ETDEWEB)

    Sackinger, W.M.; Jeffries, M.O.; Lu, M.C.; Li, F.C.

    1988-01-01

    The development of offshore oil and gas resources in the Arctic waters of Alaska requires offshore structures which successfully resist the lateral forces due to moving, drifting ice. Ice islands are floating, a tabular icebergs, up to 60 meters thick, of solid ice throughout their thickness. The ice islands are thus regarded as the strongest ice features in the Arctic; fixed offshore structures which can directly withstand the impact of ice islands are possible but in some locations may be so expensive as to make oilfield development uneconomic. The resolution of the ice island problem requires two research steps: (1) calculation of the probability of interaction between an ice island and an offshore structure in a given region; and (2) if the probability if sufficiently large, then the study of possible interactions between ice island and structure, to discover mitigative measures to deal with the moving ice island. The ice island research conducted during the 1983-1988 interval, which is summarized in this report, was concerned with the first step. Monte Carlo simulations of ice island generation and movement suggest that ice island lifetimes range from 0 to 70 years, and that 85% of the lifetimes are less then 35 years. The simulation shows a mean value of 18 ice islands present at any time in the Arctic Ocean, with a 90% probability of less than 30 ice islands. At this time, approximately 34 ice islands are known, from observations, to exist in the Arctic Ocean, not including the 10-meter thick class of ice islands. Return interval plots from the simulation show that coastal zones of the Beaufort and Chukchi Seas, already leased for oil development, have ice island recurrences of 10 to 100 years. This implies that the ice island hazard must be considered thoroughly, and appropriate safety measures adopted, when offshore oil production plans are formulated for the Alaskan Arctic offshore. 132 refs., 161 figs., 17 tabs.

  10. Two-dimensional prognostic experiments for fast-flowing ice streams from the Academy of Sciences Ice Cap: future modeled histories obtained for the reference surface mass balance

    Directory of Open Access Journals (Sweden)

    Y. V. Konovalov

    2015-11-01

    Full Text Available The prognostic experiments for fast-flowing ice streams on the southern side of the Academy of Sciences Ice Cap in the Komsomolets Island, Severnaya Zemlya archipelago, are implemented in this study. These experiments are based on inversions of basal friction coefficients using a two-dimensional flow-line thermo-coupled model and the Tikhonov's regularization method. The modeled ice temperature distributions in the cross-sections were obtained using the ice surface temperature histories that were inverted previously from the borehole temperature profiles derived at the Academy of Sciences Ice Cap. Input data included InSAR ice surface velocities, ice surface elevations, and ice thicknesses obtained from airborne measurements and the surface mass balance, were adopted from the prior investigations for the implementation of both the forward and inverse problems. The prognostic experiments reveal that both ice mass and ice stream extents decline for the reference time-independent surface mass balance. Specifically, the grounding line retreats (a along the B–B' flow line from ~ 40 to ~ 30 km (the distance from the summit, (b along the C–C' flow line from ~ 43 to ~ 37 km, and (c along the D–D' flow line from ~ 41 to ~ 32 km considering a time period of 500 years and assuming time-independent surface mass balance. Ice flow velocities in the ice streams decrease with time and this trend results in the overall decline of the outgoing ice flux. Generally, the modeled histories are in agreement with observations of sea ice extent and thickness indicating a continual ice decline in the Arctic.

  11. Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations

    Directory of Open Access Journals (Sweden)

    M. Huntemann

    2013-08-01

    Full Text Available Sea ice thickness information is needed for climate modeling and ship operations. Here a method to detect the thickness of sea ice up to 50 cm during the freezeup season based on high incidence angle observations of the Soil Moisture and Ocean Salinity (SMOS satellite working at 1.4 GHz is suggested. By comparison of thermodynamic ice growth data with SMOS brightness temperatures, a high correlation to intensity and an anti correlation to the difference between vertically and horizontally polarised brightness temperatures at incidence angles between 40 and 50 ° are found and used to develop an empirical retrieval sensitive to thin sea ice up to 50 cm thickness. It shows high correlations with ice thickness data from airborne measurements and reasonable ice thickness patterns for the Arctic freeze up period.

  12. Empirical sea ice thickness retrieval during the freeze up period from SMOS high incident angle observations

    Science.gov (United States)

    Huntemann, M.; Heygster, G.; Kaleschke, L.; Krumpen, T.; Mäkynen, M.; Drusch, M.

    2013-08-01

    Sea ice thickness information is needed for climate modeling and ship operations. Here a method to detect the thickness of sea ice up to 50 cm during the freezeup season based on high incidence angle observations of the Soil Moisture and Ocean Salinity (SMOS) satellite working at 1.4 GHz is suggested. By comparison of thermodynamic ice growth data with SMOS brightness temperatures, a high correlation to intensity and an anti correlation to the difference between vertically and horizontally polarised brightness temperatures at incidence angles between 40 and 50 ° are found and used to develop an empirical retrieval sensitive to thin sea ice up to 50 cm thickness. It shows high correlations with ice thickness data from airborne measurements and reasonable ice thickness patterns for the Arctic freeze up period.

  13. Sensitivity of airborne geophysical data to sublacustrine permafrost thaw

    Directory of Open Access Journals (Sweden)

    B. J. Minsley

    2014-12-01

    Full Text Available A coupled hydrogeophysical forward and inverse modeling approach is developed to illustrate the ability of frequency-domain airborne electromagnetic (AEM data to characterize subsurface physical properties associated with sublacustrine permafrost thaw during lake talik formation. Several scenarios are evaluated that consider the response to variable hydrologic forcing from different lake depths and hydrologic gradients. The model includes a physical property relationship that connects the dynamic distribution of subsurface electrical resistivity based on lithology as well as ice-saturation and temperature outputs from the SUTRA groundwater simulator with freeze/thaw physics. Electrical resistivity models are used to simulate AEM data in order to explore the sensitivity of geophysical observations to permafrost thaw. Simulations of sublacustrine talik formation over a 1000 year period modeled after conditions found in the Yukon Flats, Alaska, are evaluated. Synthetic geophysical data are analyzed with a Bayesian Markov chain Monte Carlo algorithm that provides a probabilistic assessment of geophysical model uncertainty and resolution. Major lithological and permafrost features are well resolved in the examples considered. The subtle geometry of partial ice-saturation beneath lakes during talik formation cannot be resolved using AEM data, but the gross characteristics of sub-lake resistivity models reflect bulk changes in ice content and can be used to determine the presence of a talik. A final example compares AEM and ground-based electromagnetic responses for their ability to resolve shallow permafrost and thaw features in the upper 1–2 m below ground.

  14. Top Sounder Ice Penetration

    Science.gov (United States)

    Porter, D. L.; Goemmer, S. A.; Sweeney, J. H.

    2014-12-01

    Ice draft measurements are made as part of normal operations for all US Navy submarines operating in the Arctic Ocean. The submarine ice draft data are unique in providing high resolution measurements over long transects of the ice covered ocean. The data has been used to document a multidecadal drop in ice thickness, and for validating and improving numerical sea-ice models. A submarine upward-looking sonar draft measurement is made by a sonar transducer mounted in the sail or deck of the submarine. An acoustic beam is transmitted upward through the water column, reflecting off the bottom of the sea ice and returning to the transducer. Ice thickness is estimated as the difference between the ship's depth (measured by pressure) and the acoustic range to the bottom of the ice estimated from the travel time of the sonar pulse. Digital recording systems can provide the return off the water-ice interface as well as returns that have penetrated the ice. Typically, only the first return from the ice hull is analyzed. Information regarding ice flow interstitial layers provides ice age information and may possibly be derived with the entire return signal. The approach being investigated is similar to that used in measuring bottom sediment layers and will involve measuring the echo level from the first interface, solving the reflection loss from that transmission, and employing reflection loss versus impedance mismatch to ascertain ice structure information.

  15. Generation of a new Greenland Ice Sheet Digital Elevation Model

    Science.gov (United States)

    Nagarajan, S.; Csatho, B. M.; Schenk, A. F.; Babonis, G. S.; Scambos, T. A.; Haran, T. M.; Kjaer, K. H.; Korsgaard, N. J.

    2011-12-01

    Currently available Digital Elevation Models(DEMs) of the Greenland Ice Sheet (GrIS) were originally derived from radar altimetry data, e.g. Bamber (Bamber et al., 2001) and later improved by photoclinometry to fill the regions between orbits (Scambos and Haran, 2002). The elevation error of these DEMs is a few meters in the higher part (above 2000 m) of the ice sheet, but it can be as much as 50-100 meters in marginal regions. The relatively low resolution and accuracy poses a problem, especially for ice sheet modeling. Although accurate elevation data have been collected by airborne and spaceborne laser altimetry (airborne: Airborne Topographic Mapper (ATM) (1993-present), Laser Vegetation Imaging Sensor(LVIS) (2007,2009 and 2011); spaceborne: Ice, Cloud, and land Elevation Satellite (ICESat) (2003-2009)) and DEMs have been derived from stereo satellite imagery (e.g., SPOT (40 m), ASTER (15 m)), a high resolution, consistent DEM of GrIS is not yet available. This is due to various problems, such as different error sources in the data and different dates of data acquisition. In order to overcome these difficulties, we generated a multi-resolution DEM of GrIS, reflecting June 2008 conditions, by fusing a photoclinometry DEM, SPOT and ASTER DEMs as well as elevations from ICESat, ATM and LVIS laser altimetry. The new multi-resolution DEM has a resolution of 40 m x 40 m in the marginal ice sheet regions and 250 m elsewhere. The ice sheet margin is mapped from SPOT and Landsat imagery and SPOT DEMs are used to cover the complex topography of ice sheet marginal regions. The accuracy of SPOT DEMs is approximately ± 6 m except in the areas covered by clouds regions, where the SPOT elevations were replaced by ASTER DEMs. The ASTER DEMs were checked and improved by the DEM derived from aerial photography from the 1980s. A new photoclinometry DEM, derived from Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS) imagery

  16. Ross Ice Shelf, Antarctic Ice and Clouds

    Science.gov (United States)

    1991-01-01

    In this view of Antarctic ice and clouds, (56.5S, 152.0W), the Ross Ice Shelf of Antarctica is almost totally clear, showing stress cracks in the ice surface caused by wind and tidal drift. Clouds on the eastern edge of the picture are associated with an Antarctic cyclone. Winds stirred up these storms have been known to reach hurricane force.

  17. Temperate Ice Depth-Sounder: A proved concept for temperate ice sounding

    Science.gov (United States)

    Jara-Olivares, V. A.; Rodriguez-Morales, F.; Leuschen, C.; Ayyangar, H.; Gogineni, P. S.

    2010-12-01

    blocks: the digital section, the radio-frequency (RF) section, and the antenna. It is designed to weigh less than 2 kg, excluding the power supply. The digital section generates the transmit waveforms, as well as the timing and control signals. It also digitizes the output signal from the receiver and stores the data in binary format using a computer. The RF-section consists of a high-power transmitter and a low-noise receiver with variable gain (digitally controlled). In regards to the antenna, TIDSoR uses an electrically small 4-m dipole antenna and can operate in dual- or single-antenna configurations for surface-based and airborne platforms. In a single-antenna configuration, the radiating element can be time-shared between the transmitter and receiver by means of a transmit/receive switch. The radar antenna is currently being re-designed for installation on the tail boom of a P-3 Orion for airborne operation. In this configuration, TIDSoR could be supported by the aircraft power system. In this paper, we will discuss the status of the instrument and our most recent results from data collected in Greenland and Antarctica, showing successful sounding of ice up to 2-km thick. Finally, we will discuss the adaptation of this system for airborne operation.

  18. Airborne Next: Rethinking Airborne Organization and Applying New Concepts

    Science.gov (United States)

    2015-06-01

    supported them, both inside and outside of the classroom . The direction of this project was kept on track thanks to Professor Leo Blanken, COL Guy LeMire...the areas of organization, doctrine, technology , and strategy as guiding frames of reference, this thesis recommends updating the organizational... technology , and strategy as guiding frames of reference, this thesis recommends updating the organizational structures of airborne forces to model a

  19. Changes in the Earth's largest surge glacier system from satellite and airborne altimetry and imagery

    Science.gov (United States)

    Trantow, T.; Herzfeld, U. C.

    2015-12-01

    The Bering-Bagley Glacier System (BBGS), Alaska, one of the largest ice systems outside of Greenland and Antarctica, has recently surged (2011-2013), providing a rare opportunity to study the surge phenomenon in a large and complex system. Understanding fast-flowing glaciers and accelerations in ice flow, of which surging is one type, is critical to understanding changes in the cryosphere and ultimately changes in sea level. It is important to distinguish between types of accelerations and their consequences, especially between reversible or quasi-cyclic and irreversible forms of glacial acceleration, but current icesheet models treat all accelerating ice identically. Additionally, the surge provides an exceptional opportunity to study the influence of surface roughness and water content on return signals of altimeter systems. In this presentation, we analyze radar and laser altimeter data from CryoSat-2, NASA's Operation IceBridge (OIB), the ICESat Geoscience Laser Altimeter System (GLAS), ICESat-2's predecessor the Multiple Altimeter Beam Experimental Lidar (MABEL), and airborne laser altimeter and imagery campaigns by our research group. These measurements are used to study elevation, elevation change and crevassing throughout the glacier system. Analysis of the imagery from our airborne campaigns provides comprehensive characterizations of the BBGS surface over the course of the surge. Results from the data analysis are compared to numerical modeling experiments.

  20. Empirical sea ice thickness retrieval during the freeze-up period from SMOS high incident angle observations

    Directory of Open Access Journals (Sweden)

    M. Huntemann

    2014-03-01

    Full Text Available Sea ice thickness information is important for sea ice modelling and ship operations. Here a method to detect the thickness of sea ice up to 50 cm during the freeze-up season based on high incidence angle observations of the Soil Moisture and Ocean Salinity (SMOS satellite working at 1.4 GHz is suggested. By comparison of thermodynamic ice growth data with SMOS brightness temperatures, a high correlation to intensity and an anticorrelation to the difference between vertically and horizontally polarised brightness temperatures at incidence angles between 40 and 50° are found and used to develop an empirical retrieval algorithm sensitive to thin sea ice up to 50 cm thickness. The algorithm shows high correlation with ice thickness data from airborne measurements and reasonable ice thickness patterns for the Arctic freeze-up period.

  1. Bathymetry of the Amundsen Sea Embayment sector of West Antarctica from Operation IceBridge gravity and other data

    Science.gov (United States)

    Millan, Romain; Rignot, Eric; Bernier, Vincent; Morlighem, Mathieu; Dutrieux, Pierre

    2017-02-01

    We employ airborne gravity data from NASA's Operation IceBridge collected in 2009-2014 to infer the bathymetry of sub-ice shelf cavities in front of Pine Island, Thwaites, Smith, and Kohler glaciers, West Antarctica. We use a three-dimensional inversion constrained by multibeam echo sounding data offshore and bed topography from a mass conservation reconstruction on land. The seamless bed elevation data refine details of the Pine Island sub-ice shelf cavity, a slightly thinner cavity beneath Thwaites, and previously unknown deep (>1200 m) channels beneath the Crosson and Dotson ice shelves that shallow (500 m and 750 m, respectively) near the ice shelf fronts. These sub-ice shelf channels define the natural pathways for warm, circumpolar deep water to reach the glacier grounding lines, melt the ice shelves from below, and constrain the pattern of past and future glacial retreat.

  2. Analysis methods for airborne radioactivity

    OpenAIRE

    Ala-Heikkilä, Jarmo J

    2008-01-01

    High-resolution gamma-ray spectrometry is an analysis method well suitable for monitoring airborne radioactivity. Many of the natural radionuclides and a majority of anthropogenic nuclides are prominent gamma-ray emitters. With gamma-ray spectrometry different radionuclides are readily observed at minute concentrations that are far from health hazards. The gamma-ray spectrometric analyses applied in air monitoring programmes can be divided into particulate measurements and gas measurements. I...

  3. The Search for a Habitable Europa: Radar, Water and an Active Ice Shell

    Science.gov (United States)

    Blankenship, D. D.; Schmidt, B. E.; Young, D. A.; Schroeder, D. M.; Greenbaum, J. S.

    2011-10-01

    Future Europa exploration will seek to characterize the distribution of shallow subsurface water as well as to understand the formation of surface features through dynamic ice-shell processes. Radar sounding will be a critical tool for detecting these features, and should be of primary interest to the astrobiology community for understanding how and where life might arise on Europa. To develop successful instrumentation and data interpretation techniques for exploring Europa, we must leverage analogous terrestrial environments and processes. Airborne ice penetrating radar is now a mature tool in terrestrial studies of Earth's ice sheets, and orbital examples have been successful at the Moon and Mars.

  4. IOMASA SEA ICE DEVELOPMENTS

    DEFF Research Database (Denmark)

    Andersen, Søren; Tonboe, Rasmus; Heygster, Georg

    2005-01-01

    Sensitivity studies show that the radiometer ice concentration estimate can be biased by +10% by anomalous atmospheric emissivity and -20% by anomalous ice surface emissivity. The aim of the sea ice activities in EU 5th FP project IOMASA is to improve sea ice concentration estimates at higher...... spatial resolution. The project is in the process of facilitating an ice concentration observing system through validation and a better understanding of the microwave radiative transfer of the sea ice and overlying snow layers. By use of a novel modelling approach, it is possible to better detect...... and determine the circumstances that may lead to anomalous sea ice concentration retrieval as well as to assess and possibly minimize the sensitivities of the retrieval system. Through an active partnership with the SAF on Ocean and Sea Ice, a prototype system will be implemented as an experimental product...

  5. Forecast Icing Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Forecast Icing Product (FIP) is an automatically-generated index suitable for depicting areas of potentially hazardous airframe icing. The FIP algorithm uses...

  6. Ice Adhesion Testing Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Uses Evaluate and compare the relative performance of materials and surfcae coating based on their ability to aid in ice removal Test the effectiveness of de-icing...

  7. Airborne microorganisms from waste containers.

    Science.gov (United States)

    Jedlicka, Sabrina S; Stravitz, David M; Lyman, Charles E

    2012-01-01

    In physician's offices and biomedical labs, biological waste is handled every day. This waste is disposed of in waste containers designed for holding red autoclave bags. The containers used in these environments are closed hands-free containers, often with a step pedal. While these containers protect the user from surface-borne microorganisms, the containers may allow airborne microorganisms to escape via the open/close mechanism because of the air current produced upon open/close cycles. In this study, the air current was shown to be sufficient to allow airborne escape of microorganisms held in the container, including Aspergillus niger. However, bacterial cultures, such as Escherichia coli and Lactococcus lactis did not escape. This may be due to the choice of bacterial cultures and the absence of solid waste, such as dust or other particulate matter in the waste containers, that such strains of bacteria could travel on during aerosolization. We compared these results to those obtained using a re-designed receptacle, which mimimizes air currents, and detected no escaping microorganisms. This study highlights one potential source of airborne contamination in labs, hospitals, and other environments that dispose of biological waste.

  8. Estimating small-scale snow depth and ice thickness from total freeboard for East Antarctic sea ice

    Science.gov (United States)

    Steer, Adam; Heil, Petra; Watson, Christopher; Massom, Robert A.; Lieser, Jan L.; Ozsoy-Cicek, Burcu

    2016-09-01

    Deriving the snow depth on Antarctic sea ice is a key factor in estimating sea-ice thickness distributions from space or airborne altimeters. Using a linear regression to model snow depth from observed 'total freeboard', or the snow/ice surface elevation relative to sea level is an efficient and promising method for the estimation of snow depth for instruments which only detect the uppermost surface of the sea-ice conglomerate (e.g. laser altimetry). However the Antarctic pack-ice zone is subject to substantial variability due to synoptic-scale weather forcing. Ice formation, motion and melt undergo large spatio-temporal variability throughout the year. In this paper we estimate snow depth from total freeboard for the ARISE (2003), SIPEX (2007) and SIPEX-II (2012) research voyages to the East Antarctic pack-ice zone. Using in situ data we investigate variability in snow depth and show that for East Antarctica, relationships between snow depth and total freeboard vary between each voyage. At a resolution of metres to tens of metres, we show how regression-based snow-depth models track total freeboard and generally over-estimate snow depth, especially on highly deformed sea ice and at sites where ice freeboard makes a substantial contribution to total freeboard. For a set of 3192 records we obtain an in situ mean snow depth of 0.21 m (σ = 0.19 m). Using a regression model derived from all in situ points we obtain the same mean, with a slightly lower variability (σ = 0.16 m). Using voyage-specific subsets of the data to derive regression models and estimate snow depth, mean snow depths ranged from 0.19 m (model derived from SIPEX observations) to 0.25 m (model derived from SIPEX-II observations). While small, these discrepancies impact ice thickness estimation using the assumption of hydrostatic equilibrium. Mean in situ ice thickness for all samples is 1.44 m (σ = 1.19 m). Using empirical models for snow depth, ice thickness varies from 1.0 to 1.8 m with the best

  9. Monitoring and evaluation techniques for airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Xia Yihua [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  10. Ice Cream Headaches

    Science.gov (United States)

    Diseases and Conditions Ice cream headaches By Mayo Clinic Staff Ice cream headaches are brief, stabbing headaches that can happen when you eat, drink or inhale something cold. Digging into an ice cream cone is a common trigger, but eating or ...

  11. Aircraft Icing Handbook. (Update)

    Science.gov (United States)

    1993-01-01

    pp. 68-69, 1947. Speranza, F., OThe Formation of Ice,a Rivista di Meteorologia Aeronautics, 1(2), pp. 19-30, 1937. Steiner, R. 0., "The Icing of...Deposits of Ice on Airplane Carburetors,8 (Translation) Rivista di Meteorologia Aeronautica, 4(2), pp. 38-47, 1940. Von Glahn, U. H.; Renner, C. E

  12. Islands in the ice

    DEFF Research Database (Denmark)

    Jørgensen, Tina; Kjær, Kurt H.; Haile, James Seymour

    2012-01-01

    Nunataks are isolated bedrocks protruding through ice sheets. They vary in age, but represent island environments in 'oceans' of ice through which organism dispersals and replacements can be studied over time. The J.A.D. Jensen's Nunataks at the southern Greenland ice sheet are the most isolated ...

  13. Annual Greenland accumulation rates (2009-2012) from airborne snow radar

    Science.gov (United States)

    Koenig, Lora S.; Ivanoff, Alvaro; Alexander, Patrick M.; MacGregor, Joseph A.; Fettweis, Xavier; Panzer, Ben; Paden, John D.; Forster, Richard R.; Das, Indrani; McConnell, Joesph R.; Tedesco, Marco; Leuschen, Carl; Gogineni, Prasad

    2016-08-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet through increasing surface melt, emphasizing the need to closely monitor its surface mass balance in order to improve sea-level rise predictions. Snow accumulation is the largest component of the ice sheet's surface mass balance, but in situ observations thereof are inherently sparse and models are difficult to evaluate at large scales. Here, we quantify recent Greenland accumulation rates using ultra-wideband (2-6.5 GHz) airborne snow radar data collected as part of NASA's Operation IceBridge between 2009 and 2012. We use a semiautomated method to trace the observed radiostratigraphy and then derive annual net accumulation rates for 2009-2012. The uncertainty in these radar-derived accumulation rates is on average 14 %. A comparison of the radar-derived accumulation rates and contemporaneous ice cores shows that snow radar captures both the annual and long-term mean accumulation rate accurately. A comparison with outputs from a regional climate model (MAR) shows that this model matches radar-derived accumulation rates in the ice sheet interior but produces higher values over southeastern Greenland. Our results demonstrate that snow radar can efficiently and accurately map patterns of snow accumulation across an ice sheet and that it is valuable for evaluating the accuracy of surface mass balance models.

  14. Electrospray Collection of Airborne Contaminants Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In stark contrast to current stagnation-based methods for capturing airborne particulates and biological aerosols, our demonstrated, cost-effective electrospray...

  15. Remote sensing of sea ice: advances during the DAMOCLES project

    Directory of Open Access Journals (Sweden)

    G. Heygster

    2012-12-01

    ASCAT (62.5 km grid spacing, with visible AVHRR observations (20 km, with the synthetic aperture radar sensor ASAR (10 km, and a multi-sensor product (62.5 km with improved angular resolution (Continuous Maximum Cross Correlation, CMCC method is presented. CMCC is also used to derive the sea ice deformation, important for formation of sea ice leads (diverging deformation and pressure ridges (converging. The indirect determination of sea ice thickness from altimeter freeboard data requires knowledge of the ice density and snow load on sea ice. The relation between freeboard and ice thickness is investigated based on the airborne Sever expeditions conducted between 1928 and 1993.

  16. Estimation of Arctic Sea Ice Freeboard and Thickness Using CryoSat-2

    Science.gov (United States)

    Lee, S.; Im, J.; Kim, J. W.; Kim, M.; Shin, M.

    2014-12-01

    . With the freeboard height calculated using the lead detection approach, sea ice thickness was finally estimated using the Archimedes' buoyancy principle. The estimated sea ice freeboard and thickness were validated using ESA airborne Ku-band interferometric radar and Airborne Electromagnetic (AEM) data.

  17. Deep Radiostratigraphy of the East Antarctic Plateau: Connecting the Dome C and Vostok Ice Core Sites

    Science.gov (United States)

    Cavitte, Marie G. P.; Blankenship, Donald D.; Young, Duncan A.; Schroeder, Dustin M.; Parrenin, Frederic; Lemeur, Emmanuel; Macgregor, Joseph A.; Siegert, Martin J.

    2016-01-01

    Several airborne radar-sounding surveys are used to trace internal reflections around the European Project for Ice Coring in Antarctica Dome C and Vostok ice core sites. Thirteen reflections, spanning the last two glacial cycles, are traced within 200 km of Dome C, a promising region for million-year-old ice, using the University of Texas Institute for Geophysics High-Capacity Radar Sounder. This provides a dated stratigraphy to 2318 m depth at Dome C. Reflection age uncertainties are calculated from the radar range precision and signal-to-noise ratio of the internal reflections. The radar stratigraphy matches well with the Multichannel Coherent Radar Depth Sounder (MCoRDS) radar stratigraphy obtained independently. We show that radar sounding enables the extension of ice core ages through the ice sheet with an additional radar-related age uncertainty of approximately 1/3-1/2 that of the ice cores. Reflections are extended along the Byrd-Totten Glacier divide, using University of Texas/Technical University of Denmark and MCoRDS surveys. However, core-to-core connection is impeded by pervasive aeolian terranes, and Lake Vostok's influence on reflection geometry. Poor radar connection of the two ice cores is attributed to these effects and suboptimal survey design in affected areas. We demonstrate that, while ice sheet internal radar reflections are generally isochronal and can be mapped over large distances, careful survey planning is necessary to extend ice core chronologies to distant regions of the East Antarctic ice sheet.

  18. SMOS derived sea ice thickness: algorithm baseline, product specifications and initial verification

    Directory of Open Access Journals (Sweden)

    X. Tian-Kunze

    2013-12-01

    Full Text Available Following the launch of ESA's Soil Moisture and Ocean salinity (SMOS mission it has been shown that brightness temperatures at a low microwave frequency of 1.4 GHz (L-band are sensitive to sea ice properties. In a first demonstration study, sea ice thickness has been derived using a semi-empirical algorithm with constant tie-points. Here we introduce a novel iterative retrieval algorithm that is based on a sea ice thermodynamic model and a three-layer radiative transfer model, which explicitly takes variations of ice temperature and ice salinity into account. In addition, ice thickness variations within a SMOS footprint are considered through a statistical thickness distribution function derived from high-resolution ice thickness measurements from NASA's Operation IceBridge campaign. This new algorithm has been used for the continuous operational production of a SMOS based sea ice thickness data set from 2010 on. This data set is compared and validated with estimates from assimilation systems, remote sensing data, and airborne electromagnetic sounding data. The comparisons show that the new retrieval algorithm has a considerably better agreement with the validation data and delivers a more realistic Arctic-wide ice thickness distribution than the algorithm used in the previous study.

  19. Firn structure of Larsen C Ice Shelf, Antarctic Peninsula, from in-situ geophysical surveys

    Science.gov (United States)

    Kulessa, B.; Brisbourne, A.; Kuipers Munneke, P.; Bevan, S. L.; Luckman, A. J.; Hubbard, B. P.; Ashmore, D.; Holland, P.; Jansen, D.; King, E. C.; O'Leary, M.; McGrath, D.

    2015-12-01

    Rising surface temperatures have been causing firn layers on Antarctic Peninsula ice shelves to compact, a process that is strongly implicated in ice shelf disintegration. Firn compaction is expected to warm the ice column and given sufficiently wet and compacted firn layers, to allow meltwater to penetrate into surface crevasses and thus enhance the potential for hydrofracture. On Larsen C Ice Shelf a compacting firn layer has previously been inferred from airborne radar and satellite data, with strongly reduced air contents in Larsen C's north and north-west. The hydrological processes governing firn compaction, and the detailed firn structures they produce, have so far remained uncertain however. Using integrated seismic refraction, MASW (Multi-Channel Analysis of Surface Waves), seismoelectric and ground-penetrating radar (GPR) data, we reveal vertical and horizontal changes in firn structure across Larsen C Ice Shelf. Particular attention is paid to the spatial prevalence of refrozen meltwaters within firn, such as the massive subsurface ice layer discovered recently by the NERC-funded MIDAS project in Cabinet Inlet in Larsen C's extreme northwest. Such ice layers or lenses are particularly dramatic manifestations of increased ice shelf densities and temperatures, and contrast sharply with the relatively uncompacted firn layers present in the ice shelf's southeast. We consider our observations in the context of a one-dimensional firn model for Larsen C Ice Shelf that includes melt percolation and refreezing, and discuss temporal changes in firn layer structures due to surface melt and ponding.

  20. Accessing IceBridge Data Products - The OIB Portal

    Science.gov (United States)

    Tanner, S.; Oldenburg, J.; Collins, J. A.; Lewis, S.; Schaffer, F.

    2013-12-01

    NASA's Operation IceBridge mission both collects and makes available airborne remote sensing measurements over the polar regions to bridge the gap between NASA's Ice, Cloud and Land Elevation satellite (ICESat) mission and the upcoming ICESat-2 mission in 2016. The flight paths are carefully chosen areas of scientific interest, and the diverse set of instruments aboard each flight provide a more robust and thorough set of measurements than can satellite-based sensors. Instruments currently in use gather data on ice and snow thickness, bedrock topography, high-resolution photography, and other scientific properties. Shortly after collection, the data are transferred to the National Snow and Ice Data Center (NSIDC) for permanent storage and free, public access. At NSIDC, the data are organized with detailed metadata and made available through several avenues. The primary point of access for IceBridge data is the IceBridge Data Portal, located at http://nsidc.org/icebridge/portal/. This data portal allows users to both quickly find data that they seek or just peruse the available data holdings through the user interface. Ease of use is a top priority in the portal development to allow the user to concentrate on the science behind the data instead of how to navigate the website. Past development of the portal has focused on clarity of data presentation and access to the data itself. Current and planned development will see substantial additions to the filtering options, navigational tools, and visualization capabilities. Metadata are heavily relied upon to drive the data organization and access at NSIDC, particularly in the IceBridge Data Portal. The Portal's interactive maps of the polar regions allow users to search for data geographically. A user may also see how data at a specific location change over time using the Portal's temporal filters. In addition, the IceBridge flights themselves are searchable if a user is looking for data from a specific instrument

  1. Arctic ice management

    Science.gov (United States)

    Desch, Steven J.; Smith, Nathan; Groppi, Christopher; Vargas, Perry; Jackson, Rebecca; Kalyaan, Anusha; Nguyen, Peter; Probst, Luke; Rubin, Mark E.; Singleton, Heather; Spacek, Alexander; Truitt, Amanda; Zaw, Pye Pye; Hartnett, Hilairy E.

    2017-01-01

    As the Earth's climate has changed, Arctic sea ice extent has decreased drastically. It is likely that the late-summer Arctic will be ice-free as soon as the 2030s. This loss of sea ice represents one of the most severe positive feedbacks in the climate system, as sunlight that would otherwise be reflected by sea ice is absorbed by open ocean. It is unlikely that CO2 levels and mean temperatures can be decreased in time to prevent this loss, so restoring sea ice artificially is an imperative. Here we investigate a means for enhancing Arctic sea ice production by using wind power during the Arctic winter to pump water to the surface, where it will freeze more rapidly. We show that where appropriate devices are employed, it is possible to increase ice thickness above natural levels, by about 1 m over the course of the winter. We examine the effects this has in the Arctic climate, concluding that deployment over 10% of the Arctic, especially where ice survival is marginal, could more than reverse current trends of ice loss in the Arctic, using existing industrial capacity. We propose that winter ice thickening by wind-powered pumps be considered and assessed as part of a multipronged strategy for restoring sea ice and arresting the strongest feedbacks in the climate system.

  2. Ice sheet in peril

    DEFF Research Database (Denmark)

    Hvidberg, Christine Schøtt

    2016-01-01

    Earth's large ice sheets in Greenland and Antarctica are major contributors to sea level change. At present, the Greenland Ice Sheet (see the photo) is losing mass in response to climate warming in Greenland (1), but the present changes also include a long-term response to past climate transitions....... On page 590 of this issue, MacGregor et al. (2) estimate the mean rates of snow accumulation and ice flow of the Greenland Ice Sheet over the past 9000 years based on an ice sheet-wide dated radar stratigraphy (3). They show that the present changes of the Greenland Ice Sheet are partly an ongoing...... response to the last deglaciation. The results help to clarify how sensitive the ice sheet is to climate changes....

  3. Forecasting Turbine Icing Events

    DEFF Research Database (Denmark)

    Davis, Neil; Hahmann, Andrea N.; Clausen, Niels-Erik;

    2012-01-01

    is not shut down for its protection. We also found that there is a a large spread across the various turbines within a wind park, in the amount of icing. This is currently not taken into account by our model. Evaluating and adding these small scale differences to the model will be undertaken as future work....... accumulations, which have not been seen in observations. In addition to the model evaluation we were able to investigate the potential occurrence of ice induced power loss at two wind parks in Europe using observed data. We found that the potential loss during an icing event is large even when the turbine......In this study, we present a method for forecasting icing events. The method is validated at two European wind farms in with known icing events. The icing model used was developed using current ice accretion methods, and newly developed ablation algorithms. The model is driven by inputs from the WRF...

  4. ICE SLURRY APPLICATIONS.

    Science.gov (United States)

    Kauffeld, M; Wang, M J; Goldstein, V; Kasza, K E

    2010-12-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers due to the beneficial thermo-physical properties of ice slurry. Research has shown that ice slurry can be engineered to have ideal ice particle characteristics so that it can be easily stored in tanks without agglomeration and then be extractable for pumping at very high ice fraction without plugging. In addition ice slurry can be used in many direct contact food and medical protective cooling applications. This paper provides an overview of the latest developments in ice slurry technology.

  5. Icing Operations - De-Icing Policy

    Directory of Open Access Journals (Sweden)

    Jaromír Procházka

    2013-07-01

    Full Text Available The accumulation of ice, frost and snow on aircraft surfaces can drastically reduce the climb and maneuvering capabilities of an aircraft. The removal of such contamination prior to take off MUST be strictly adhered to in accordance with regulations and standards. The policy with respect to aircraft icing contamination should be “MAKE IT CLEAN AND KEEP IT CLEAN”. All personnel associated with the dispatch and/or operation of aircraft share the responsibility for ensuring that no aircraft is dispatched unless it is clear of ice, snow or frost.

  6. Chemical Microsensor Instrument for UAV Airborne Atmospheric Measurements Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Makel Engineering, Inc. (MEI) proposes to develop a miniaturized Airborne Chemical Microsensor Instrument (ACMI) suitable for real-time, airborne measurements of...

  7. Comparison of sea-ice freeboard distributions from aircraft data and cryosat-2

    DEFF Research Database (Denmark)

    Ricker, Robert; Hendricks, Stefan; Helm, Veit

    2012-01-01

    highly accurate range measurements. During the CryoSat Validation Experiment (CryoVEx) 2011 in the Lincoln Sea Cryosat-2 underpasses were accomplished with two aircraft which carried an airborne laser scanner, a radar altimeter and an electromagnetic induction device for direct sea ice thickness......The only remote sensing technique capable of obtaining sea ice thickness on basin-scale are satellite altimeter missions, such as the 2010 launched CryoSat-2. It is equipped with a Ku-Band radar altimeter which measures the height of the ice surface above the water level. This method requires...... retrieval. Both aircraft flew in close formation at the same time of a CryoSat-2 overpass. This is a study about the comparison of the sea-ice freeboard distribution of laser scanner and radar altimeter measurements with the CryoSat-2 product within the multi-year sea ice region of the Lincoln Sea in spring...

  8. Geophex Airborne Unmanned Survey System

    Energy Technology Data Exchange (ETDEWEB)

    Won, I.J.; Keiswetter, D. [Geophex, Ltd., Raleigh, NC (United States)

    1995-10-01

    The purpose of this effort is to design, construct, and evaluate a portable, remotely-piloted, airborne, geophysical survey system. This non-intrusive system will provide {open_quotes}stand-off{close_quotes} capability to conduct surveys and detect buried objects, structures, and conditions of interest at hazardous locations. This system permits rapid geophysical characterization of hazardous environmental sites. During a survey, the operators remain remote from, but within visual distance of, the site. The sensor system never contacts the Earth, but can be positioned near the ground so that weak geophysical anomalies can be detected.

  9. Airborne Research Experience for Educators

    Science.gov (United States)

    Costa, V. B.; Albertson, R.; Smith, S.; Stockman, S. A.

    2009-12-01

    The Airborne Research Experience for Educators (AREE) Program, conducted by the NASA Dryden Flight Research Center Office of Education in partnership with the AERO Institute, NASA Teaching From Space Program, and California State University Fullerton, is a complete end-to-end residential research experience in airborne remote sensing and atmospheric science. The 2009 program engaged ten secondary educators who specialize in science, technology, engineering or mathematics in a 6-week Student Airborne Research Program (SARP) offered through NSERC. Educators participated in collection of in-flight remote sensor data during flights aboard the NASA DC-8 as well as in-situ research on atmospheric chemistry (bovine emissions of methane); algal blooms (remote sensing to determine location and degree of blooms for further in-situ analysis); and crop classification (exploration of how drought conditions in Central California have impacted almond and cotton crops). AREE represents a unique model of the STEM teacher-as-researcher professional development experience because it asks educators to participate in a research experience and then translate their experiences into classroom practice through the design, implementation, and evaluation of instructional materials that emphasize the scientific research process, inquiry-based investigations, and manipulation of real data. Each AREE Master Educator drafted a Curriculum Brief, Teachers Guide, and accompanying resources for a topic in their teaching assignment Currently, most professional development programs offer either a research experience OR a curriculum development experience. The dual nature of the AREE model engaged educators in both experiences. Educators’ content and pedagogical knowledge of STEM was increased through the review of pertinent research articles during the first week, attendance at lectures and workshops during the second week, and participation in the airborne and in-situ research studies, data

  10. Requirements for airborne vector gravimetry

    Science.gov (United States)

    Schwarz, K. P.; Colombo, O.; Hein, G.; Knickmeyer, E. T.

    1992-01-01

    The objective of airborne vector gravimetry is the determination of the full gravity disturbance vector along the aircraft trajectory. The paper briefly outlines the concept of this method using a combination of inertial and GPS-satellite data. The accuracy requirements for users in geodesy and solid earth geophysics, oceanography and exploration geophysics are then specified. Using these requirements, accuracy specifications for the GPS subsystem and the INS subsystem are developed. The integration of the subsystems and the problems connected with it are briefly discussed and operational methods are indicated that might reduce some of the stringent accuracy requirements.

  11. Mass loss from the southern half of the Greenland Ice Sheet since the Little Ice Age

    Science.gov (United States)

    Kjeldsen, Kristian K.; Kjær, Kurt H.; Bjørk, Anders A.; Khan, Shfaqat A.; Korsgaard, Niels J.; Funder, Svend; Larsen, Nicolaj K.; Vinther, Bo; Andresen, Camilla S.; Long, Antony J.; Woodroffe, Sarah A.; Steen Hansen, Eric; Olsen, Jesper

    2013-04-01

    The impact of mass loss from the Greenland Ice sheet (GrIS) on the 20th Century sea level rise (SLR) has long been subject to immense discussions. While globally distributed tide gauges suggest SLR of 15-20 cm computing the input constituents is of great concern - in particular for modeling sea level projections into the 21st Century. Estimates of the GrIS contribution to SLR have been derived using a number of different approaches, e.g. surface mass balance (SMB) calculations combined with estimates of ice discharge founded in correlating SMB anomalies and calving rates. Here, we show a novel geometric approach to determine the post-Little Ice Age (LIA) mass loss of the southern GrIS. We present mass balance estimates of the GrIS south of 71N since retreat commence from the maximum extent of the LIA to 2010. The mass loss estimates are derived for three intervals, LIAmax (1900) - 1981/85 (1), 1981/85 - 2002 (2), and 2002 - 2010 (3). We use high quality aerial stereo photogrammetric imagery recorded in 1981 and 1985 to map morphological features such as trim lines (boundary between freshly eroded and non-eroded bedrock) and end moraines marking the ice extent of the LIA, which thereby enables us to obtain vertical difference associated with former ice extent. We combine these with contemporary ice surface differences derived using NASA's Airborne Topographic Mapper (ATM) from 2002-2010, NASA's Ice, Cloud, and land Elevation Satellite (ICESat) from 2003-2009, and NASA's Land, Vegetation, and Ice Sensor (LVIS) from 2010, to estimate mass loss throughout the 20th and early 21st Century. Using our novel approach we find mass loss rates for the above periods (1) to (3) of 53 Gt/yr, 46 Gt/yr, and 109 Gt/yr, respectively. In southeast GrIS we find substantial and extensive mass loss reaching the ice divide while in southwestern GrIS mass loss is less and mainly associated with marine outlet glaciers. Furthermore, post-LIA mass loss is found to be highly variable, even

  12. Land Ice: Greenland & Antarctic ice mass anomaly

    Data.gov (United States)

    National Aeronautics and Space Administration — Data from NASA's Grace satellites show that the land ice sheets in both Antarctica and Greenland are losing mass. The continent of Antarctica (left chart) has been...

  13. First airborne transient em survey in antarctica

    DEFF Research Database (Denmark)

    Auken, Esben; Mikucki, J. J.; Sørensen, Kurt Ingvard K.I.

    2012-01-01

    A first airborne transient electromagnetic survey was flown in Antarctica in December 2011 with the SkyTEM system. This transient airborne EM system has been optimized in Denmark for almost ten years and was specially designed for ground water mapping. The SkyTEM tool is ideal for mapping...

  14. A Simple Method for Collecting Airborne Pollen

    Science.gov (United States)

    Kevan, Peter G.; DiGiovanni, Franco; Ho, Rong H.; Taki, Hisatomo; Ferguson, Kristyn A.; Pawlowski, Agata K.

    2006-01-01

    Pollination is a broad area of study within biology. For many plants, pollen carried by wind is required for successful seed set. Airborne pollen also affects human health. To foster studies of airborne pollen, we introduce a simple device--the "megastigma"--for collecting pollen from the air. This device is flexible, yielding easily obtained data…

  15. Resuscitation effects of catalase on airborne bacteria.

    OpenAIRE

    Marthi, B; Shaffer, B. T.; Lighthart, B; Ganio, L

    1991-01-01

    Catalase incorporation into enumeration media caused a significant increase (greater than 63%) in the colony-forming abilities of airborne bacteria. Incubation for 30 to 60 min of airborne bacteria in collection fluid containing catalase caused a greater than 95% increase in colony-forming ability. However, catalase did not have any effects on enumeration at high relative humidities (80 to 90%).

  16. SIMULATION STUDY ON AIRBORNE SAR ECHO SIGNAL

    Institute of Scientific and Technical Information of China (English)

    Bao Houbing; Liu Zhao

    2004-01-01

    Through analyzing the influence on echo signal by factors of kinematical parameters of airborne SAR platform and radar antenna direction, this letter, on the basis of classical SAR echo signal analogue algorithm, puts forward certain airborne SAR echo signal analogue algorithm of distance directional frequency domain pulse coherent accumulation, and goes through simulation. The simulation results have proved the effectiveness of this algorithm.

  17. Ice Jams in Alaska. Ice Engineering. Number 16, February 1997

    Science.gov (United States)

    1997-02-01

    An ice jam is an accumulation of ice in rivers that restricts flow and can cause destructive floods costly to riv- erine communities. Freezeup jams...and reliable data on past ice jam events. The CRREL Ice Jam Database is such a com- pilation of freezeup and breakup ice jam events in the United

  18. Study on Radio Frequency Interference Signal Analysis and Suppression in P Band SAR%P波段SAR射频干扰信号分析及抑制方法研究

    Institute of Scientific and Technical Information of China (English)

    丁斌; 梁兴东; 向茂生

    2012-01-01

    分析了实测P波段SAR静默接收数据,研究了模拟电视信号的频谱特性.针对P波段SAR回波中的模拟电视干扰信号,提出了一种新的干扰抑制方法.通过在时域拼接多个脉冲的回波数据增加模拟电视信号的观测时间以提高频率分辨率,进而在距离频域对其准确识别.根据模拟电视信号的频谱特征,在距离频域构造滤波器组滤除模拟电视信号的离散谱线,保留了谱线间SAR回波信号的频谱分量.实际回波数据的成像处理结果验证了方法的有效性.%Both P band SAR received silent data and spectrum characteristics of analog television signal are analyzed. In order to suppress analog television signals in P band SAR echoes, a novel interference suppression algorithm is proposed. By splicing multi-pulse SAR echoes in time domain, high frequency resolution of analog television signal can be obtained. Therefore the analog television signal can be identified accurately. By designing filter bank in range-frequency domain according to spectrum characteristics of analog television signals, the discrete spectrum lines of analog television signals are removed and the spectrum of SAR echoes between these discrete spectrum lines are saved. Finally, the proposed algorithm is verified by processing real P band SAR data.

  19. Trends and variability in summer sea ice cover in the Canadian Arctic based on the Canadian Ice Service Digital Archive

    Science.gov (United States)

    Howell, S.; Tivy, A. C.; Alt, B.; McCourt, S.; Chagnon, R.; Crocker, G.; Carrieres, T. G.; Yackel, J.

    2010-12-01

    The Canadian Ice Service Digital Archive (CISDA) is a compilation of weekly ice charts that cover Canadian Waters; the data set is continually updated and it extends back to the early 1960s. The ice charts are represent and integration of remotely sensed sea ice data, surface observations, airborne and ship reports, operational model results and the expertise of experience ice forecasters. Although the accuracy, type and detail of information far exceeds what is attainable from a single satellite source, errors and uncertainties in the data are non-uniform in both space and time. In part one of this study the main sources of uncertainty in the database are reviewed and the data are validated for use in climate studies. In part two, trends and variability in summer sea ice in the Canadian Arctic are investigated using CISDA. These data revealed that between 1968 and 2008, summer sea ice cover has decreased by 8.9% ± 3.1% per decade in Hudson Bay, 2.9% ± 1.2% per decade in the Canadian Arctic Archipelago, 8.9% ± 3.1% per decade in Baffin Bay, and 5.2% ± 2.4% per decade in the Beaufort Sea. In general, these reductions in sea ice cover are linked to increases in early summer surface air temperature (SAT); significant increases in SAT were observed in every season and with the exception of the Hudson Bay region they are consistently greater than the pan-Arctic change by up to ~0.2oC per decade. Within the Canadian Arctic Archipelago and Baffin Bay, the El Niño-Southern Oscillation (ENSO) index correlates well with multi-year ice coverage (positive correlation) and first-year ice coverage (negative correlation) suggesting that El Nino episodes precede summers with more multi-year ice and less first-year ice. Extending the trend calculations back to 1960 along the major shipping routes through the Canadian Arctic revealed significant decreases in summer sea ice coverage ranging between 11% and 15% per decade along the shipping route through Hudson Bay, the western

  20. IceBridge Data Management and Access Strategies at NSIDC

    Science.gov (United States)

    Oldenburg, J.; Tanner, S.; Collins, J. A.; Lewis, S.; FitzGerrell, A.

    2013-12-01

    NASA's Operation IceBridge (OIB) mission, initiated in 2009, collects airborne remote sensing measurements over the polar regions to bridge the gap between NASA's Ice, Cloud and Land Elevation satellite (ICESat) mission and the upcoming ICESat-2 mission in 2016. OIB combines an evolving mix of instruments to gather data on topography, ice and snow thickness, high-resolution photography, and other properties that are more difficult or impossible to measure via satellite. Once collected, these data are stored and made available at the National Snow and Ice Data Center (NSIDC) in Boulder, Colorado. To date, there are nearly 90 terabytes of data available, and there are about three more years of data collection left. The main challenges faced in data management at NSIDC are derived from the quantity and heterogeneity of the data. To deal with the quantity of data, the technical teams at NSIDC have significantly automated the data ingest, metadata generation, and other required data management steps. Heterogeneity of data and the evolution of the Operation over time make technical automation complex. To limit complexity, the IceBridge team has agreed to such practices as using specific data file formats, limiting file sizes, using specific filename templates, etc. These agreements evolve as Operation IceBridge moves forward. The metadata generated about the flights and the data collected thereon make the storage of the data more robust, and enable data discoverability. With so much metadata, users can search the vast collection with ease using specific parameters about the data they seek. An example of this in action is the IceBridge data portal developed at NSIDC, http://nsidc.org/icebridge/portal/. This portal uses the GPS data from the flights projected onto maps as well as other flight and instrument metadata to help the user find the exact data file they seek. This implementation is only possible with dependable data management beneath the surface. The data files

  1. The DC-8 Submillimeter-Wave Cloud Ice Radiometer

    Science.gov (United States)

    Walter, Steven J.; Batelaan, Paul; Siegel, Peter; Evans, K. Franklin; Evans, Aaron; Balachandra, Balu; Gannon, Jade; Guldalian, John; Raz, Guy; Shea, James

    2000-01-01

    An airborne radiometer is being developed to demonstrate the capability of radiometry at submillimeter-wavelengths to characterize cirrus clouds. At these wavelengths, cirrus clouds scatter upwelling radiation from water vapor in the lower troposphere. Radiometric measurements made at multiple widely spaced frequencies permit flux variations caused by changes in scattering due to crystal size to be distinguished from changes in cloud ice content. Measurements at dual polarizations can also be used to constrain the mean crystal shape. An airborne radiometer measuring the upwelling submillimeter-wave flux should then able to retrieve both bulk and microphysical cloud properties. The radiometer is being designed to make measurements at four frequencies (183 GHz, 325 GHz, 448 GHz, and 643 GHz) with dual-polarization capability at 643 GHz. The instrument is being developed for flight on NASA's DC-8 and will scan cross-track through an aircraft window. Measurements with this radiometer in combination with independent ground-based and airborne measurements will validate the submillimeter-wave radiometer retrieval techniques. The goal of this effort is to develop a technique to enable spaceborne characterization of cirrus, which will meet a key climate measurement need. The development of an airborne radiometer to validate cirrus retrieval techniques is a critical step toward development of spaced-based radiometers to investigate and monitor cirrus on a global scale. The radiometer development is a cooperative effort of the University of Colorado, Colorado State University, Swales Aerospace, and Jet Propulsion Laboratory and is funded by the NASA Instrument Incubator Program.

  2. Kagome spin ice

    Science.gov (United States)

    Mellado, Paula

    Spin ice in magnetic pyrochlore oxides is a peculiar magnetic state. Like ordinary water ice, these materials are in apparent violation with the third law of thermodynamics, which dictates that the entropy of a system in thermal equilibrium vanishes as its temperature approaches absolute zero. In ice, a "zero-point" entropy is retained down to low temperatures thanks to a high number of low-energy positions of hydrogen ions associated with the Bernal-Fowler ice-rules. Spins in pyrochlore oxides Ho2Ti 2O7 and Dy2Ti2O7 exhibit a similar degeneracy of ground states and thus also have a sizable zero-point entropy. A recent discovery of excitations carrying magnetic charges in pyrochlore spin ice adds another interesting dimension to these magnets. This thesis is devoted to a theoretical study of a two-dimensional version of spin ice whose spins reside on kagome, a lattice of corner-sharing triangles. It covers two aspects of this frustrated classical spin system: the dynamics of artificial spin ice in a network of magnetic nanowires and the thermodynamics of crystalline spin ice. Magnetization dynamics in artificial spin ice is mediated by the emission, propagation and absorption of domain walls in magnetic nanowires. The dynamics shows signs of self-organized behavior such as avalanches. The theoretical model compares favorably to recent experiments. The thermodynamics of the microscopic version of spin ice on kagome is examined through analytical calculations and numerical simulations. The results show that, in addition to the high-temperature paramagnetic phase and the low-temperature phase with magnetic order, spin ice on kagome may have an intermediate phase with fluctuating spins and ordered magnetic charges. This work is concluded with a calculation of the entropy of kagome spin ice at zero temperature when one of the sublattices is pinned by an applied magnetic field and the system breaks up into independent spin chains, a case of dimensional reduction.

  3. Variability of Basal Melt Beneath the Pine Island Glacier Ice Shelf, West Antarctica

    Science.gov (United States)

    Bindschadler, Robert; Vaughan, David G.; Vornberger, Patricia

    2011-01-01

    Observations from satellite and airborne platforms are combined with model calculations to infer the nature and efficiency of basal melting of the Pine Island Glacier ice shelf, West Antarctica, by ocean waters. Satellite imagery shows surface features that suggest ice-shelf-wide changes to the ocean s influence on the ice shelf as the grounding line retreated. Longitudinal profiles of ice surface and bottom elevations are analyzed to reveal a spatially dependent pattern of basal melt with an annual melt flux of 40.5 Gt/a. One profile captures a persistent set of surface waves that correlates with quasi-annual variations of atmospheric forcing of Amundsen Sea circulation patterns, establishing a direct connection between atmospheric variability and sub-ice-shelf melting. Ice surface troughs are hydrostatically compensated by ice-bottom voids up to 150m deep. Voids form dynamically at the grounding line, triggered by enhanced melting when warmer-than-average water arrives. Subsequent enlargement of the voids is thermally inefficient (4% or less) compared with an overall melting efficiency beneath the ice shelf of 22%. Residual warm water is believed to cause three persistent polynyas at the ice-shelf front seen in Landsat imagery. Landsat thermal imagery confirms the occurrence of warm water at the same locations.

  4. An ice lithography instrument

    Science.gov (United States)

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  5. Validation of CryoSat-2 Performance over Arctic Sea Ice

    DEFF Research Database (Denmark)

    di Bella, Alessandro; Skourup, Henriette; Bouffard, J.;

    The main objective of this work is to validate CryoSat-2 (CS2) SARIn performance over sea ice by use of airborne laser altimetry data obtained during the CryoVEx 2012 campaign. A study by [1] has shown that the extra information from the CS2 SARIn mode increases the number of valid sea surface...... height estimates which are usually discarded in the SAR mode due to snagging of the radar signal. As the number of valid detected leads increases, the uncertainty of the freeboard heights decreases. In this study, the snow freeboard heights estimated using data from the airborne laser scanner are used...

  6. Amery ice shelf DEM and its marine ice distribution

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The Amery Ice Shelf is the largest ice shelf in East Antarctica. A new DEM was generated for this ice shelf, using kriging to interpolate the data from ICESat altimetry and the AIS-DEM. The ice thickness distribution map is converted from the new DEM, assuming hydrostatic equilibrium. The Amery Ice Shelf marine ice, up to 230 m thick, is concentrated in the northwest of the ice shelf. The volume of the marine ice is 2.38×103 km3 and accounts for about 5.6% of the shelf volume.

  7. Ice Tank Experiments Highlight Changes in Sea Ice Types

    Science.gov (United States)

    Wilkinson, Jeremy P.; DeCarolis, Giacomo; Ehlert, Iris; Notz, Dirk; Evers, Karl-Ulrich; Jochmann, Peter; Gerland, Sebastian; Nicolaus, Marcel; Hughes, Nick; Kern, Stefan; de la Rosa, Sara; Smedsrud, Lars; Sakai, Shigeki; Shen, Hayley; Wadhams, Peter

    2009-03-01

    With the current and likely continuing reduction of summer sea ice extent in the Arctic Ocean, the predominant mechanism of sea ice formation in the Arctic is likely to change in the future. Although substantial new ice formation occurred under preexisting ice in the past, the fraction of sea ice formation in open water likely will increase significantly. In open water, sea ice formation starts with the development of small ice crystals, called frazil ice, which are suspended in the water column [World Meteorological Organization, 1985]. Under quiescent conditions, these crystals accumulate at the surface to form an unbroken ice sheet known in its early stage as nilas. Under turbulent conditions, caused by wind and waves, frazil ice continues to grow and forms into a thick, soupy mixture called grease ice. Eventually the frazil ice will coalesce into small, rounded pieces known as pancake ice, which finally consolidate into an ice sheet with the return of calm conditions. This frazil/pancake/ice sheet cycle is currently frequently observed in the Antarctic [Lange et al., 1989]. The cycle normally occurs in regions that have a significant stretch of open water, because this allows for the formation of larger waves and hence increased turbulence. Given the increase of such open water in the Arctic Ocean caused by retreating summer sea ice, the frazil/pancake/ice sheet cycle may also become the dominant ice formation process during freezeup in the Arctic.

  8. Small Airframe Manufacturer's Icing Perspective

    Science.gov (United States)

    Hoppins, Jim

    2009-01-01

    This viewgraph presentation describes the icing effects, risk mitigation practices, and icing certifications for various Cessna small aircraft models. NASA's role in the development of simulation tools for icing certifications is also discussed.

  9. Bacterial Ice Crystal Controlling Proteins

    Directory of Open Access Journals (Sweden)

    Janet S. H. Lorv

    2014-01-01

    Full Text Available Across the world, many ice active bacteria utilize ice crystal controlling proteins for aid in freezing tolerance at subzero temperatures. Ice crystal controlling proteins include both antifreeze and ice nucleation proteins. Antifreeze proteins minimize freezing damage by inhibiting growth of large ice crystals, while ice nucleation proteins induce formation of embryonic ice crystals. Although both protein classes have differing functions, these proteins use the same ice binding mechanisms. Rather than direct binding, it is probable that these protein classes create an ice surface prior to ice crystal surface adsorption. Function is differentiated by molecular size of the protein. This paper reviews the similar and different aspects of bacterial antifreeze and ice nucleation proteins, the role of these proteins in freezing tolerance, prevalence of these proteins in psychrophiles, and current mechanisms of protein-ice interactions.

  10. Ice-on-ice impact experiments.

    Science.gov (United States)

    Kato, Manabu; Iijima, Yu-Ichi; Arakawa, Masahiko; Okimura, Yasuyuki; Fujimura, Akio; Maeno, Norikazu; Mizutani, Hitoshi

    1995-02-01

    Impact experiments, cratering and fragmentation, on water ice were performed in order to test the scaling laws previously constructed on rocks and sands for studying the collision process in the planetary history. The installation of a vertical gas gun in a cold room at -18°C (255 K) made it possible to use a projectile of water ice and to get the detailed mass distribution of ice fragments. Experimental results indicated the necessity for large modification of those scaling laws. Material dependence was investigated by using projectiles of ice, aluminum, and polycarbonate. Differences were observed in the morphology and efficiencies of cratering and in the energies required to initiate the fragmentation. Moreover, an abrupt increase of cratering efficiency, suggesting a change of excavation mechanism, was found at a critical diameter of spalled crater. The mass (size) distribution of small ice fragments obeyed a power law with an exponent significantly larger than that in rocks. The exponent was the same as that in Saturn's ring particles estimated from the data by the microwave occultation, which indicates a collisional disruption ring origin.

  11. Evaluation of Arctic Sea Ice Thickness Simulated by AOMIP Models

    Science.gov (United States)

    Johnson, Mark; Proshutinsky, Andrey; Aksenov, Yevgeny; Nguyen, An T.; Lindsay, Ron; Haas, Christian; Zhang, Jinlun; Diansky, Nimolay; Kwok, Ron; Maslowski, Wieslaw; Hakkinen, Sirpa; Ashik, Igor; de Cuevas, Beverly

    2011-01-01

    We compare results from six AOMIP model simulations with estimates of sea ice thickness obtained from ICESat, moored and submarine-based upward looking sensors, airborne electromagnetic measurements and drill holes. Our goal is to find patterns of model performance to guide model improvement. The satellite data is pan-arctic from 2004-2008, ice-draft data is from moored instruments in Fram Strait, the Greenland Sea and the Beaufort Sea from 1992-2008 and from submarines from 1975-2000. The drill hole data are from the Laptev and East Siberian marginal seas from 1982-1986 and from coastal stations from 1998-2009. While there are important caveats when comparing modeled results with measurements from different platforms and time periods such as these, the models agree well with moored ULS data. In general, the AOMIP models underestimate the thickness of measured ice thicker than about 2 m and overestimate thickness of ice thinner than 2 m. The simulated results are poor over the fast ice and marginal seas of the Siberian shelves. Averaging over all observational data sets, the better correlations and smaller differences from observed thickness are from the ECCO2 and UW models.

  12. Wind, current and swell influences on the ice extent and flux in the Grand Banks-Labrador sea area as observed in the LIMEX '87 experiment

    Science.gov (United States)

    Argus, Susan Digby; Carsey, Frank; Holt, Benjamin

    1988-01-01

    This paper presents data collected by airborne and satellite instruments during the Labrador Ice Margin Experiment, that demonstrate the effects of oceanic and atmospheric processes on the ice conditions in the Grand Banks-Labrador sea area. Special consideration is given to the development of algorithms for extracting information from SAR data. It is shown that SAR data can be used to monitor ice extent, determine ice motion, locate shear zones, monitor the penetration of swell into the ice, estimate floe sizes, and establish the dimensions of the ice velocity zones. It is also shown that the complex interaction of the ice cover with winds, currents, swell, and coastlines is similar to the dynamics established for a number of sites in both polar regions.

  13. Airborne remote sensing of forest biomes

    Science.gov (United States)

    Sader, Steven A.

    1987-01-01

    Airborne sensor data of forest biomes obtained using an SAR, a laser profiler, an IR MSS, and a TM simulator are presented and examined. The SAR was utilized to investigate forest canopy structures in Mississippi and Costa Rica; the IR MSS measured forest canopy temperatures in Oregon and Puerto Rico; the TM simulator was employed in a tropical forest in Puerto Rico; and the laser profiler studied forest canopy characteristics in Costa Rica. The advantages and disadvantages of airborne systems are discussed. It is noted that the airborne sensors provide measurements applicable to forest monitoring programs.

  14. Airborne microwave radiometric imaging system

    Science.gov (United States)

    Guo, Wei; Li, Futang; Zhang, Zuyin

    1999-09-01

    A dual channel Airborne Microwave Radiometric Imaging system (AMRI) was designed and constructed for regional environment mapping. The system operates at 35GHz, which collects radiation at horizontal and vertical polarized channels. It runs at mechanical conical scanning with 45 degrees incidence angle. Two Cassegrain antennas with 1.5 degrees beamwidth scan the scene alternately and two pseudo- color images of two channels are displayed on the screen of PC in real time. Simultaneously, all parameters of flight and radiometric data are sorted in hard disk for post- processing. The sensitivity of the radiometer (Delta) T equals 0.16K. A new displaying method, unequal size element arc displaying method, is used in image displaying. Several experiments on mobile tower were carried out and the images demonstrate that the AMRI is available to work steadily and accurately.

  15. In-situ calibration and validation of Cryosat-2 observations over arctic sea ice north of Svalbard

    DEFF Research Database (Denmark)

    Gerland, Sebastian; Renner, Angelika H. H.; Spreen, Gunnar

    photography. Measurements from a Twin-Otter aircraft carrying a laser scanner and the CryoSat airborne simulator ASIRAS were obtained over one sea ice station. Here we discuss effects of snow properties on the penetration of the radar signal into the snow pack, along with in-situ, helicopter, and aircraft......CryoSat-2's radar altimeter allows to observe the panArctic sea ice thickness up to 88°N on a monthly basis. However, calibration and validation are crucial to assess limitations and accuracy of the altimeter, and to better quantify the uncertainties involved in converting sea ice freeboard...

  16. Making an Ice Core.

    Science.gov (United States)

    Kopaska-Merkel, David C.

    1995-01-01

    Explains an activity in which students construct a simulated ice core. Materials required include only a freezer, food coloring, a bottle, and water. This hands-on exercise demonstrates how a glacier is formed, how ice cores are studied, and the nature of precision and accuracy in measurement. Suitable for grades three through eight. (Author/PVD)

  17. Ice Core Investigations

    Science.gov (United States)

    Krim, Jessica; Brody, Michael

    2008-01-01

    What can glaciers tell us about volcanoes and atmospheric conditions? How does this information relate to our understanding of climate change? Ice Core Investigations is an original and innovative activity that explores these types of questions. It brings together popular science issues such as research, climate change, ice core drilling, and air…

  18. Testing The Ice

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The country’s fourth scientific expedition tothe North Pole starts OBSERVATION STATIONS:Members of China’s fourth Arctic expedition set up polar bear-proof "apple houses" on the ice surface of the Arctic Ocean on August 8 The Chinese ice breaker Xuelong

  19. Meth (Crank, Ice) Facts

    Science.gov (United States)

    ... That People Abuse » Meth (Crank, Ice) Facts Meth (Crank, Ice) Facts Listen Methamphetamine—meth for short—is a white, bitter powder. Sometimes ... clear or white shiny rock (called a crystal). Meth powder can be eaten or snorted up the ...

  20. Sputtering of water ice

    DEFF Research Database (Denmark)

    Baragiola, R.A.; Vidal, R.A.; Svendsen, W.

    2003-01-01

    We present results of a range of experiments of sputtering of water ice together with a guide to the literature. We studied how sputtering depends on the projectile energy and fluence, ice growth temperature, irradiation temperature and external electric fields. We observed luminescence from...

  1. GLERL Radiation Transfer Through Freshwater Ice

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Radiation transmittance (ratio of transmitted to incident radiation) through clear ice, refrozen slush ice and brash ice, from ice surface to ice-water interface in...

  2. Impact of surface roughness on L-band emissivity of the sea ice

    Science.gov (United States)

    Miernecki, M.; Kaleschke, L.; Hendricks, S.; Søbjærg, S. S.

    2015-12-01

    In March 2014 a joint experiment IRO2/SMOSice was carried out in the Barents Sea. R/V Lance equipped with meteorological instruments, electromagnetic sea ice thickness probe and engine monitoring instruments, was performing a series of tests in different ice conditions in order to validate the ice route optimization (IRO) system, advising on his route through pack ice. In parallel cal/val activities for sea ice thickness product obtained from SMOS (Soil Moisture and Ocean Salinity mission) L-band radiometer were carried out. Apart from helicopter towing the EMbird thickness probe, Polar 5 aircraft was serving the area during the experiment with L-band radiometer EMIRAD2 and Airborne Laser Scanner (ALS) as primary instruments. Sea ice Thickness algorithm using SMOS brightness temperature developed at University of Hamburg, provides daily maps of thin sea ice (up to 0.5-1 m) in polar regions with resolution of 35-50 km. So far the retrieval method was not taking into account surface roughness, assuming that sea ice is a specular surface. Roughness is a stochastic process that can be characterized by standard deviation of surface height σ and by shape of the autocorrelation function R to estimate it's vertical and horizontal scales respectively. Interactions of electromagnetic radiation with the surface of the medium are dependent on R and σ and they scales with respect to the incident wavelength. During SMOSice the radiometer was observing sea ice surface at two incidence angles 0 and 40 degrees and simultaneously the surface elevation was scanned with ALS with ground resolution of ~ 0.25 m. This configuration allowed us to calculate σ and R from power spectral densities of surface elevation profiles and quantify the effect of surface roughness on the emissivity of the sea ice. First results indicate that Gaussian autocorrelation function is suitable for deformed ice, for other ice types exponential function is the best fit.

  3. Reconfigurable Weather Radar for Airborne Applications Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Intelligent Automation, Inc (IAI) and its university partner, University of Oklahoma (OU), Norman, propose a forward-looking airborne environment sensor based on...

  4. Photoacoustic study of airborne and model aerosols

    NARCIS (Netherlands)

    Alebic-Juretic, A.; Zetsch, C.; Doka, O.; Bicanic, D.D.

    2003-01-01

    Airborne particulates of either natural or anthropogenic origin constitute a significant portion of atmospheric pollution. Environmental xenobiotics, among which are polynuclear aromatic hydrocarbons (PAHs) and pesticides, often adsorb to aerosols and as such are transported through the atmosphere w

  5. Airborne Infrared Search and Track Systems

    Directory of Open Access Journals (Sweden)

    Hari Babu Srivastava

    2007-09-01

    Full Text Available Infrared search and track (IRST systems are required for fighter aircraft to enable them to passively search, detect, track, classify, and prioritise multiple airborne targets under all aspects, look-up, look-down, and co-altitude conditions and engage them at as long ranges as possible. While the IRST systems have been proven in performance for ground-based and naval-based platforms, it is still facing some technical problems for airborne applications. These problems arise from uncertainty in target signature, atmospheric effects, background clutter (especially dense and varying clouds, signal and data processing algorithms to detect potential targets at long ranges and some hardware limitations such as large memory requirement to store and process wide field of view data. In this paper, an overview of airborne IRST as a system has been presented with detailed comparative simulation results of different detectionitracking algorithms and the present status of airborne IRSTs

  6. Airborne Multi-Gas Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Mesa Photonics proposes to develop an Airborne Multi-Gas Sensor (AMUGS) based upon two-tone, frequency modulation spectroscopy (TT-FMS). Mesa Photonics has developed...

  7. Regenerable Lunar Airborne Dust Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Effective methods are needed to control pervasive Lunar Dust within spacecraft and surface habitations. Once inside, airborne transmission is the primary mode of...

  8. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance-computer-based electronic backend that...

  9. Miniaturized Airborne Imaging Central Server System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a miniaturized airborne imaging central server system (MAICSS). MAICSS is designed as a high-performance computer-based electronic backend that...

  10. East Antarctic land-ice/ocean networks: progress and questions

    Science.gov (United States)

    Blankenship, D. D.; Young, D. A.; Greenbaum, J. S.; Roberts, J. L.; van Ommen, T. D.; Aitken, A.; Siegert, M. J.

    2014-12-01

    International collaborative exploration over the last decade has revealed East Antarctica as a geologically diverse continent underlying an ice sheet with significant sea level potential, parts of which are currently undergoing rapid change. The Wilkes and Aurora Subglacial Basins (WSB and ASB), two of the largest reservoirs of sea level potential in Antarctica, are broader, deeper, and more susceptible to marine ice sheet instability than previously known. The morphology and coastal connections of the ASB indicate a dynamic early ice sheet with a significant erosional history and multiple ice sheet configurations. Recent results imply significant retreat into the WSB during the Pliocene while today irreversible discharge there is halted by only a small ridge. We have unveiled complex contemporary subglacial landscapes beneath both basins providing new challenges and opportunities to ice sheet modelers. For instance, geothermal heat flow varies spatially on multiple scales in the continental crust assumed to be homogeneous. A large, active, subglacial hydrological system flows through the ASB along pathways that likely predate large-scale glaciation. Proxies indicate four to eight meters of global sea level rise during the last interglacial period. Ice core results constrain the amount of sea level rise to one to three meters from contributed by East Antarctica. Going forward, new altimetry data along the East Antarctic coast reveal extensive lowering of the Totten and Denman Glaciers while satellite gravity indicate a variable but persistent record of negative regional mass loss. These discoveries provide a new baseline as the international community increases its focus on the region through ongoing airborne and marine exploration to address the many outstanding questions: What is the character and distribution of subglacial boundary conditions and water systems upstream of the grounding line in areas of significant potential sea level impact? How much subglacial

  11. Remote sensing of sea ice: advances during the DAMOCLES project

    Directory of Open Access Journals (Sweden)

    G. Heygster

    2012-01-01

    pressure ridges (converging. The indirect determination of sea ice thickness from altimeter freeboard data requires knowledge of the ice density and snow load on sea ice. The relation between freeboard and ice thickness is investigated based on the airborne Sever expeditions conducted between 1928 and 1993.

  12. Airborne observations of the microphysical structure of two contrasting cirrus clouds

    Science.gov (United States)

    O'Shea, S. J.; Choularton, T. W.; Lloyd, G.; Crosier, J.; Bower, K. N.; Gallagher, M.; Abel, S. J.; Cotton, R. J.; Brown, P. R. A.; Fugal, J. P.; Schlenczek, O.; Borrmann, S.; Pickering, J. C.

    2016-11-01

    We present detailed airborne in situ measurements of cloud microphysics in two midlatitude cirrus clouds, collected as part of the Cirrus Coupled Cloud-Radiation Experiment. A new habit recognition algorithm for sorting cloud particle images using a neural network is introduced. Both flights observed clouds that were related to frontal systems, but one was actively developing while the other dissipated as it was sampled. The two clouds showed distinct differences in particle number, habit, and size. However, a number of common features were observed in the 2-D stereo data set, including a distinct bimodal size distribution within the higher-temperature regions of the clouds. This may result from a combination of local heterogeneous nucleation and large particles sedimenting from aloft. Both clouds had small ice crystals (developing case the ice concentrations at the lowest temperatures are best explained by homogenous nucleation.

  13. Stacking disorder in ice I.

    Science.gov (United States)

    Malkin, Tamsin L; Murray, Benjamin J; Salzmann, Christoph G; Molinero, Valeria; Pickering, Steven J; Whale, Thomas F

    2015-01-07

    Traditionally, ice I was considered to exist in two well-defined crystalline forms at ambient pressure: stable hexagonal ice (ice Ih) and metastable cubic ice (ice Ic). However, it is becoming increasingly evident that what has been called cubic ice in the past does not have a structure consistent with the cubic crystal system. Instead, it is a stacking-disordered material containing cubic sequences interlaced with hexagonal sequences, which is termed stacking-disordered ice (ice Isd). In this article, we summarise previous work on ice with stacking disorder including ice that was called cubic ice in the past. We also present new experimental data which shows that ice which crystallises after heterogeneous nucleation in water droplets containing solid inclusions also contains stacking disorder even at freezing temperatures of around -15 °C. This supports the results from molecular simulations, that the structure of ice that crystallises initially from supercooled water is always stacking-disordered and that this metastable ice can transform to the stable hexagonal phase subject to the kinetics of recrystallization. We also show that stacking disorder in ice which forms from water droplets is quantitatively distinct from ice made via other routes. The emerging picture of ice I is that of a very complex material which frequently contains stacking disorder and this stacking disorder can vary in complexity depending on the route of formation and thermal history.

  14. Airborne Network Optimization with Dynamic Network Update

    Science.gov (United States)

    2015-03-26

    AIRBORNE NETWORK OPTIMIZATION WITH DYNAMIC NETWORK UPDATE THESIS Bradly S. Paul, Capt, USAF AFIT-ENG-MS-15-M-030 DEPARTMENT OF THE AIR FORCE AIR...to copyright protection in the United States. AFIT-ENG-MS-15-M-030 AIRBORNE NETWORK OPTIMIZATION WITH DYNAMIC NETWORK UPDATE THESIS Presented to the...NETWORK OPTIMIZATION WITH DYNAMIC NETWORK UPDATE Bradly S. Paul, B.S.C.P. Capt, USAF Committee Membership: Maj Thomas E. Dube Chair Dr. Kenneth M. Hopkinson

  15. Downscaling of Airborne Wind Energy Systems

    Science.gov (United States)

    Fechner, Uwe; Schmehl, Roland

    2016-09-01

    Airborne wind energy systems provide a novel solution to harvest wind energy from altitudes that cannot be reached by wind turbines with a similar nominal generator power. The use of a lightweight but strong tether in place of an expensive tower provides an additional cost advantage, next to the higher capacity factor and much lower total mass. This paper investigates the scaling effects of airborne wind energy systems. The energy yield of airborne wind energy systems, that work in pumping mode of operation is at least ten times higher than the energy yield of conventional solar systems. For airborne wind energy systems the yield is defined per square meter wing area. In this paper the dependency of the energy yield on the nominal generator power for systems in the range of 1 kW to 1 MW is investigated. For the onshore location Cabauw, The Netherlands, it is shown, that a generator of just 1.4 kW nominal power and a total system mass of less than 30 kg has the theoretical potential to harvest energy at only twice the price per kWh of large scale airborne wind energy systems. This would make airborne wind energy systems a very attractive choice for small scale remote and mobile applications as soon as the remaining challenges for commercialization are solved.

  16. Airborne infections and modern building technology

    Energy Technology Data Exchange (ETDEWEB)

    LaForce, F.M.

    1986-01-01

    Over the last 30 yr an increased appreciation of the importance of airborne infection has evolved. The concept of droplet nuclei, infectious particles from 0.5 to 3 ..mu.. which stay suspended in air for long periods of time, has been accepted as an important determinant of infectivity. Important airborne pathogens in modern buildings include legionella pneumophila, Aspergillus sp., thermophilic actinomycetes, Mycobacterium tuberculosis, measles, varicella and rubella. Perhaps, the most important microbiologic threat to most buildings is L. pneumophila. This organism can multiply in water cooling systems and contaminate effluent air which can be drawn into a building and efficiently circulated throughout by existing ventilation systems. Hospitals are a special problem because of the concentration of immunosuppressed patients who are uniquely susceptible to airborne diseases such as aspergillosis, and the likelihood that patients ill from diseases that can be spread via the airborne route will be concentrated. Humidifiers are yet another problem and have been shown to be important in several outbreaks of allergic alveolitis and legionellosis. Control of airborne infections is largely an effort at identifying and controlling reservoirs of infection. This includes regular biocide treatment of cooling towers and evaporative condensers and identification and isolation of patients with diseases that may be spread via the airborne route.

  17. Challenges and Opportunities of Airborne Metagenomics

    KAUST Repository

    Behzad, H.

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  18. Challenges and opportunities of airborne metagenomics.

    Science.gov (United States)

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  19. Ku-Band radar penetration into Snow over Arctic Sea Ice

    DEFF Research Database (Denmark)

    Hendricks, Stefan; Stenseng, Lars; Helm, Veit

    Sea ice freeboard measurements are of great interest for basin-scale ice mass balance monitoring. Typically, laser- and radar-altimeters are used for freeboard retrieval in operational systems such as aircrafts and satellites. For laser beams it can be assumed that the dominant reflector......, if radar altimeters are capable of measuring the distance to the snow-ice interface reliably. We present the results of aircraft campaigns in the Arctic with a scanning laser altimeter and the Airborne SAR/Interferometric Radar Altimeter System (ASIRAS) of the European Space Agency. The elevation...... observations are converted into freeboard profiles, taking the different footprints into account when comparing the two systems. Based on the probability distribution of laser and radar freeboard we discuss the specific characteristics of both systems and the apparent radar penetration over sea ice...

  20. 趣话ice

    Institute of Scientific and Technical Information of China (English)

    刘奉越

    2002-01-01

    在英语中,ice是一个很普通的词,它的基本含义是“冰,冰块”。如:The sportsman slipped on the ice and one of his legs was broken.(这个运动员在冰上滑倒了,一条腿摔断了。)它还可指“冰淇淋”,相当于ice cream。如.After having two ices I felt uncomfortable.

  1. Initial Cooling Experiment (ICE)

    CERN Multimedia

    Photographic Service

    1978-01-01

    In 1977, in a record-time of 9 months, the magnets of the g-2 experiment were modified and used to build a proton/antiproton storage ring: the "Initial Cooling Experiment" (ICE). It served for the verification of the cooling methods to be used for the "Antiproton Project". Stochastic cooling was proven the same year, electron cooling followed later. Also, with ICE the experimental lower limit for the antiproton lifetime was raised by 9 orders of magnitude: from 2 microseconds to 32 hours. For its previous life as g-2 storage ring, see 7405430. More on ICE: 7711282, 7809081, 7908242.

  2. Stripping with dry ice

    Science.gov (United States)

    Malavallon, Olivier

    1995-04-01

    Mechanical-type stripping using dry ice (solid CO2) consists in blasting particles of dry ice onto the painted surface. This surface can be used alone or in duplex according to type of substrate to be treated. According to operating conditions, three physical mechanisms may be involved when blasting dry ice particles onto a paint system: thermal shock, differential thermal contraction, and mechanical shock. The blast nozzle, nozzle travel speed, blast angle, stripping distance, and compressed air pressure and media flow rate influence the stripping quality and the uniformity and efficiency obtained.

  3. Ice nucleation terminology

    Directory of Open Access Journals (Sweden)

    G. Vali

    2014-08-01

    Full Text Available Progress in the understanding of ice nucleation is being hampered by the lack of uniformity in how some terms are used in the literature. This even extends to some ambiguity of meanings attached to some terms. Suggestions are put forward here for common use of terms. Some are already well established and clear of ambiguities. Others are less engrained and will need a conscious effort in adoption. Evolution in the range of systems where ice nucleation is being studied enhances the need for a clear nomenclature. The ultimate limit in the clarity of definitions is, of course, the limited degree to which ice nucleation processes are understood.

  4. Temperate Ice Depth-Sounding Radar

    Science.gov (United States)

    Jara-Olivares, V. A.; Player, K.; Rodriguez-Morales, F.; Gogineni, P.

    2008-12-01

    . It also digitizes the output signal from the receiver and stores the data in binary format using a portable computer. The RF-section consists of a high- power transmitter and a low-noise receiver with digitally controlled variable gain. The antenna is time-shared between the transmitter and receiver by means of a transmit/receive (T/R) switch. In regards to the antenna, we have made a survey study of various electrically small antennas (ESA) to choose the most suitable radiating structure for this application. Among the different alternatives that provide a good trade-off between electrical performance and small size, we have adopted an ESA dipole configuration for airborne platforms and a half-wavelength radiator for the surface-based version. The airborne antenna solution is given after studying the geometry of the aerial vehicle and its fuselage contribution to the antenna radiation pattern. Dipoles are made of 11.6 mm diameter cables (AWG 0000) or printed patches embedded into the aircraft fuselage, wings, or both. The system is currently being integrated and tested. TIDSoR is expected to be deployed during the spring 2008 either in Alaska or Greenland for surface based observations. In this paper, we will discuss our design considerations and current progress towards the development of this radar system. [1] Center for Remote Sensing of Ice Sheets (Cresis), Sept 2008, [Online]. Available: http://www.cresis.ku.edu

  5. Vortex ice in nanostructured superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Reichhardt, Charles [Los Alamos National Laboratory; Reichhardt, Cynthia J [Los Alamos National Laboratory; Libal, Andras J [Los Alamos National Laboratory

    2008-01-01

    We demonstrate using numerical simulations of nanostructured superconductors that it is possible to realize vortex ice states that are analogous to square and kagome ice. The system can be brought into a state that obeys either global or local ice rules by applying an external current according to an annealing protocol. We explore the breakdown of the ice rules due to disorder in the nanostructure array and show that in square ice, topological defects appear along grain boundaries, while in kagome ice, individual defects appear. We argue that the vortex system offers significant advantages over other artificial ice systems.

  6. Development of a Next Generation Polar Multidisciplinary Airborne Imaging System for the International Polar Year 2007-2009

    Science.gov (United States)

    Bell, R. E.; Studinger, M.; Frearson, N.; Gogineni, P.; Braaten, D.

    2007-12-01

    Key elements in Earth's geodynamic and climatic systems, the polar regions are very sensitive to changing global environmental conditions such as increasing sea surface temperatures and have the potential to trigger significant global sea level rise as large volumes of ice melt. Locked within these icy regions are the records of past global climate shifts and novel ecosystems sealed from open interactions with the atmosphere for millions of years. While satellite missions can image the surface of the polar ice sheet, many of the key processes occur beneath the surface beyond the reach of space based observations. These crucial processes can only be efficiently examined through airborne instrumentation designed to study the vast expanses of snow and ice of the Antarctic continent, the sub-continent of Greenland and the surrounding oceans. The expanding logistical infrastructure associated with the International Polar Year (2007-2009) will enable the scientific community access major new portions of the polar regions. We are developing a state-of-the-art integrated multidisciplinary aerogeophysical instrumentation package for deployment during multi-national expeditions as part of the International Polar Year. This development project brings together the recent developments in radar sounding by the University of Kansas CReSIS (Center for Remote Sensing of Ice Sheets), that now permit the full characterization of the entire ice sheet and the major advances in the accuracy, resolution and efficiency of airborne gravity technology emerging from the private sector. Integrating the full spectrum of ice sheet imaging with high-resolution gravity and magnetics will enable the imaging of the previously invisible world of subglacial hydrodynamics.

  7. Annual Greenland accumulation rates (2009–2012 from airborne Snow Radar

    Directory of Open Access Journals (Sweden)

    L. S. Koenig

    2015-12-01

    Full Text Available Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet (GrIS through increasing surface melt, emphasizing the need to closely monitor surface mass balance (SMB in order to improve sea-level rise predictions. Here, we quantify accumulation rates, the largest component of GrIS SMB, at a higher spatial resolution than currently available, using Snow Radar stratigraphy. We use a semi-automated method to derive annual-net accumulation rates from airborne Snow Radar data collected by NASA's Operation IceBridge from 2009 to 2012. An initial comparison of the accumulation rates from the Snow Radar and the outputs of a regional climate model (MAR shows that, in general, the radar-derived accumulation matches closely with MAR in the interior of the ice sheet but MAR estimates are high over the southeast GrIS. Comparing the radar-derived accumulation with contemporaneous ice cores reveals that the radar captures the annual and long-term mean. The radar-derived accumulation rates resolve large-scale patterns across the GrIS with uncertainties of up to 11 %, attributed mostly to uncertainty in the snow/firn density profile.

  8. Annual Greenland accumulation rates (2009-2012) from airborne Snow Radar

    Science.gov (United States)

    Koenig, L. S.; Ivanoff, A.; Alexander, P. M.; MacGregor, J. A.; Fettweis, X.; Panzer, B.; Paden, J. D.; Forster, R. R.; Das, I.; McConnell, J.; Tedesco, M.; Leuschen, C.; Gogineni, P.

    2015-12-01

    Contemporary climate warming over the Arctic is accelerating mass loss from the Greenland Ice Sheet (GrIS) through increasing surface melt, emphasizing the need to closely monitor surface mass balance (SMB) in order to improve sea-level rise predictions. Here, we quantify accumulation rates, the largest component of GrIS SMB, at a higher spatial resolution than currently available, using Snow Radar stratigraphy. We use a semi-automated method to derive annual-net accumulation rates from airborne Snow Radar data collected by NASA's Operation IceBridge from 2009 to 2012. An initial comparison of the accumulation rates from the Snow Radar and the outputs of a regional climate model (MAR) shows that, in general, the radar-derived accumulation matches closely with MAR in the interior of the ice sheet but MAR estimates are high over the southeast GrIS. Comparing the radar-derived accumulation with contemporaneous ice cores reveals that the radar captures the annual and long-term mean. The radar-derived accumulation rates resolve large-scale patterns across the GrIS with uncertainties of up to 11 %, attributed mostly to uncertainty in the snow/firn density profile.

  9. The Antartic Ice Borehole Probe

    Science.gov (United States)

    Behar, A.; Carsey, F.; Lane, A.; Engelhardt, H.

    2000-01-01

    The Antartic Ice Borehole Probe mission is a glaciological investigation, scheduled for November 2000-2001, that will place a probe in a hot-water drilled hole in the West Antartic ice sheet. The objectives of the probe are to observe ice-bed interactions with a downward looking camera, and ice inclusions and structure, including hypothesized ice accretion, with a side-looking camera.

  10. Ice Engineering Research Area

    Data.gov (United States)

    Federal Laboratory Consortium — Refrigerated Physical Modeling of Waterways in a Controlled EnvironmentThe Research Area in the Ice Engineering Facility at the Cold Regions Research and Engineering...

  11. Ice Cream Stick Math.

    Science.gov (United States)

    Paddock, Cynthia

    1992-01-01

    Described is a teaching technique which uses the collection of ice cream sticks as a means of increasing awareness of quantity in a self-contained elementary special class for students with learning disabilities and mild mental retardation. (DB)

  12. Web life: Ice Flows

    Science.gov (United States)

    2016-11-01

    Computer and video gamers of a certain vintage will have fond memories of Lemmings, a game in which players must shepherd pixelated, suicidal rodents around a series of obstacles to reach safety. At first glance, Ice Flows is strikingly similar.

  13. Phase-sensitive radar on thick Antarctic ice - how well does it work?

    Science.gov (United States)

    Binder, Tobias; Eisen, Olaf; Helm, Veit; Humbert, Angelika; Steinhage, Daniel

    2016-04-01

    Phase-sensitive radar (pRES) has become one of the mostly used tools to determine basal melt rates as well as vertical strain in ice sheets. Whereas most applications are performed on ice shelves, only few experiments were conducted on thick ice in Greenland or Antarctica. The technical constrains on an ice shelf to deduce basal melt rates are less demanding than on inland ice of more than 2 km thickness. First, the ice itself is usually only several 100s of meters thick; and, second, the reflection coefficient at the basal interface between sea water and ice is the second strongest one possible. Although the presence of marine ice with higher conductivities might increase attenuation in the lower parts, most experiments on shelves were successful. To transfer this technology to inland regions, either for the investigation of basal melt rates of subglacial hydrological networks or for determining vertical strain rates in basal regions, a reliable estimate of the current system performance is necessary. To this end we conducted an experiment at and in the vicinity of the EPICA deep ice core drill site EDML in Dronning Maud Land, Antarctica. That site has been explored in extraordinary detail with different geophysical methods and provides an already well-studied ice core and borehole, in particular with respect to physical properties like crystal orientation fabric, dielectric properties and matching of internal radar horizons with conductivity signals. We present data from a commercially available pRES system initially recorded in January 2015 and repeated measurements in January 2016. The pRES data are matched to existing and already depth-calibrated airborne radar data. Apart from identifying prominent internal layers, e.g. the one originating from the deposits of the Toba eruption at around 75 ka, we put special focus on the identification of the basal reflection at multiple polarizations. We discuss the potential uncertainty estimates and requirements to

  14. Evaluation of second-order texture parameters for sea ice classification from radar images

    Science.gov (United States)

    Shokr, Mohammed E.

    1991-06-01

    With the advent of airborne and spaceborne synthetic aperture radar (SAR) systems, sea ice classification from SAR images has become an important research subject. Since gray tone alone has proven to be of limited capability in differentiating ice types, texture has naturally become an attractive avenue to explore. Accordingly, performance of texture quantification parameters as related to their ability to discriminate ice types has to be examined. SAR image appearance depends on radar parameters involved in the image construction procedures from the doppler history record. Therefore the feasibility of using universal texture/ice type relationships that hold for all combinations of radar parameters also has to be investigated. To that end, imagery data from three different SAR systems were used in this study. Five conventional texture parameters, derived from the gray level co-occurrence matrix (GLCM), were examined. Two of them were modified to ensure their invariant character under linear gray tone transformations. Results indicated that all parameters were highly correlated. The parameters did not, in general, vary with the computational variables used in generating co-occurrence matrices. Ice types can be identified uniquely by the mean value of any texture parameter. The relatively high variability of texture parameters, however, confuses ice discrimination, particularly of smoother ice types. Ice classification was conducted using a per-pixel maximum likelihood supervised scheme. When texture was combined with gray tone, the overall average classification accuracy was improved. Texture was successful in improving the classification accuracy of multiyear ice but was less promising in discriminating first-season ice types. The best two GLCM texture parameters, according to the computed overall average classification accuracies, were the inverse difference moment and the entropy. A brief description of GLCM texture parameters as related to ice's physical

  15. Recent summer sea ice thickness surveys in the Fram Strait and associated volume fluxes

    Directory of Open Access Journals (Sweden)

    T. Krumpen

    2015-09-01

    Full Text Available Fram Strait is the main gateway for sea ice export out of the Arctic Ocean, and therefore observations there give insight into composition and properties of Arctic sea ice in general and how it varies over time. An extensive data set of ground-based and airborne electromagnetic ice thickness measurements collected between 2001 and 2012 is presented here, including long transects well into the southern part of the Transpolar Drift obtained using fixed-wing aircrafts. The source area for the surveyed ice is primarily the Laptev Sea, and the estimated age is consistent with a decreased from 3 to 2 years between 1990 and 2012. The data consistently also show a general thinning for the last decade, with a decrease in modal thickness of second year and multiyear ice, and a decrease in mean thickness and fraction of ice thicker than 3 m. Local melting in the strait was investigated in two surveys performed in the downstream direction, showing a decrease of 0.19 m degree−1 latitude south of 81° N probably driven by bottom melting from warm water of Atlantic origin. Further north variability in ice thickness is more related to differences in age and deformation. The thickness observations were combined with ice area export estimates to calculate summer volume fluxes of sea ice. This shows that it is possible to determine volume fluxes through Fram Strait during summer when satellite based sea ice thickness information is missing. While the ice area export based on satellite remote sensing shows positive trends since 2001, the mean fluxes during summer (July and August are small (18 km3, and long-term trends are uncertain due to the limited surveys available.

  16. Improved Bathymetry Resolution in the Ross Sea from Aerogravity and Magnetics: Examples from Operation IceBridge.

    Science.gov (United States)

    Tinto, K. J.; Cochran, J. R.; Bell, R. E.; Charles, K.; Burton, B.

    2014-12-01

    The Ross Ice Shelf, located in the embayment between East and West Antarctica, is one of the largest underexplored patches of ocean on the planet. Sediment cores show that the Ross Ice Shelf can disintegrate during some interglacial periods. The conditions required for sudden collapse are not well constrained. A key to understanding the dynamics and long-term stability of the Ross Ice Shelf system is having high-resolution constraints on its boundary conditions, including sea floor bathymetry. The sea floor under the Ross Ice Shelf has developed in response to both the tectonic development of the West Antarctic Rift and the glacial signature of the waxing and waning Antarctic Ice Sheets. A mixture of fabrics and orientations in its bathymetry reflect this complex development. However, present oceanographic models of water circulation under the ice are based on low-resolution bathymetric maps drawn from stations spaced 55 km apart obtained during the RIGGS project in the 1970s. In contrast, most of the bathymetry of the world's oceans has been mapped to approximately 15 km resolution from satellite altimetry and much higher resolution from acoustic surveys. Improvement of Ross Ice Shelf bathymetry can be achieved from combined analysis and inversion of gravity and magnetic data acquired from airborne surveys over the Ross Ice Shelf. Survey lines flown in 2013 by Operation IceBridge, with the Sander Geophysics Ltd AIRGrav system over the central and northern Ross Embayment provide a tenfold increase, to 5 km, of the along track resolution of bathymetry. Newly resolved bathymetric highs and lows have amplitudes of up to 200 km. Combining the gravity and magnetic surveys also reveals the differing geology across the embayment. Results from these surveys, including comparison with ship-based bathymetry data from the Ross Sea, demonstrate the value of gravity and magnetic surveys for mapping the bathymetry of the Ross Ice Shelf and the need for more comprehensive

  17. Innovative Control Effectors (ICE)

    Science.gov (United States)

    1996-01-01

    including weight, maneuver performance, signa- ture, hydraulic requirements, demands on the flight control system (FCS) design, and car - rier (CV...applicable to the car - rier-based configurations. Figure 7-36 summarizes an assessment of the ICE series 101 configuration control allocation evaluation. ICE...plain leading edge flaps, all moving horizontal tails, rudder, two airbrakes under fuselage F-15C inner trailing edge plain flap, outer aileron, all

  18. Layered kagome spin ice

    Science.gov (United States)

    Hamp, James; Dutton, Sian; Mourigal, Martin; Mukherjee, Paromita; Paddison, Joseph; Ong, Harapan; Castelnovo, Claudio

    Spin ice materials provide a rare instance of emergent gauge symmetry and fractionalisation in three dimensions: the effective degrees of freedom of the system are emergent magnetic monopoles, and the extensively many `ice rule' ground states are those devoid of monopole excitations. Two-dimensional (kagome) analogues of spin ice have also been shown to display a similarly rich behaviour. In kagome ice however the ground-state `ice rule' condition implies the presence everywhere of magnetic charges. As temperature is lowered, an Ising transition occurs to a charge-ordered state, which can be mapped to a dimer covering of the dual honeycomb lattice. A second transition, of Kosterlitz-Thouless or three-state Potts type, occurs to a spin-ordered state at yet lower temperatures, due to small residual energy differences between charge-ordered states. Inspired by recent experimental capabilities in growing spin ice samples with selective (layered) substitution of non-magnetic ions, in this work we investigate the fate of the two ordering transitions when individual kagome layers are brought together to form a three-dimensional pyrochlore structure coupled by long range dipolar interactions. We also consider the response to substitutional disorder and applied magnetic fields.

  19. Ice slurry accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, K.G.; Kauffeld, M.

    1998-06-01

    More and more refrigeration systems are designed with secondary loops, thus reducing the refrigerant charge of the primary refrigeration plant. In order not to increase energy consumption by introducing a secondary refrigerant, alternatives to the well established single phase coolants (brines) and different concepts of the cooling plant have to be evaluated. Combining the use of ice-slurry - mixture of water, a freezing point depressing agent (antifreeze) and ice particles - as melting secondary refrigerant and the use of a cool storage makes it possible to build plants with secondary loops without increasing the energy consumption and investment. At the same time the operating costs can be kept at a lower level. The accumulation of ice-slurry is compared with other and more traditional storage systems. The method is evaluated and the potential in different applications is estimated. Aspects of practically use of ice-slurry has been examined in the laboratory at the Danish Technological Institute (DTI). This paper will include the final conclusions from this work concerning tank construction, agitator system, inlet, outlet and control. The work at DTI indicates that in some applications systems with ice-slurry and accumulation tanks have a great future. These applications are described by a varying load profile and a process temperature suiting the temperature of ice-slurry (-3 - -8/deg. C). (au)

  20. Ice recrystallization inhibition in ice cream by propylene glycol monostearate.

    Science.gov (United States)

    Aleong, J M; Frochot, S; Goff, H D

    2008-11-01

    The effectiveness of propylene glycol monostearate (PGMS) to inhibit ice recrystallization was evaluated in ice cream and frozen sucrose solutions. PGMS (0.3%) dramatically reduced ice crystal sizes in ice cream and in sucrose solutions frozen in a scraped-surface freezer before and after heat shock, but had no effect in quiescently frozen solutions. PGMS showed limited emulsifier properties by promoting smaller fat globule size distributions and enhanced partial coalescence in the mix and ice cream, respectively, but at a much lower level compared to conventional ice cream emulsifier. Low temperature scanning electron microscopy revealed highly irregular crystal morphology in both ice cream and sucrose solutions frozen in a scraped-surface freezer. There was strong evidence to suggest that PGMS directly interacts with ice crystals and interferes with normal surface propagation. Shear during freezing may be required for its distribution around the ice and sufficient surface coverage.

  1. The Ice Selective Inlet: a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds

    Science.gov (United States)

    Kupiszewski, P.; Weingartner, E.; Vochezer, P.; Schnaiter, M.; Bigi, A.; Gysel, M.; Rosati, B.; Toprak, E.; Mertes, S.; Baltensperger, U.

    2015-08-01

    Climate predictions are affected by high uncertainties partially due to an insufficient knowledge of aerosol-cloud interactions. One of the poorly understood processes is formation of mixed-phase clouds (MPCs) via heterogeneous ice nucleation. Field measurements of the atmospheric ice phase in MPCs are challenging due to the presence of much more numerous liquid droplets. The Ice Selective Inlet (ISI), presented in this paper, is a novel inlet designed to selectively sample pristine ice crystals in mixed-phase clouds and extract the ice residual particles contained within the crystals for physical and chemical characterization. Using a modular setup composed of a cyclone impactor, droplet evaporation unit and pumped counterflow virtual impactor (PCVI), the ISI segregates particles based on their inertia and phase, exclusively extracting small ice particles between 5 and 20 μm in diameter. The setup also includes optical particle spectrometers for analysis of the number size distribution and shape of the sampled hydrometeors. The novelty of the ISI is a droplet evaporation unit, which separates liquid droplets and ice crystals in the airborne state, thus avoiding physical impaction of the hydrometeors and limiting potential artefacts. The design and validation of the droplet evaporation unit is based on modelling studies of droplet evaporation rates and computational fluid dynamics simulations of gas and particle flows through the unit. Prior to deployment in the field, an inter-comparison of the optical particle size spectrometers and a characterization of the transmission efficiency of the PCVI was conducted in the laboratory. The ISI was subsequently deployed during the Cloud and Aerosol Characterization Experiment (CLACE) 2013 and 2014 - two extensive international field campaigns encompassing comprehensive measurements of cloud microphysics, as well as bulk aerosol, ice residual and ice nuclei properties. The campaigns provided an important opportunity for a

  2. The Ice Selective Inlet: a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds

    Directory of Open Access Journals (Sweden)

    P. Kupiszewski

    2015-08-01

    Full Text Available Climate predictions are affected by high uncertainties partially due to an insufficient knowledge of aerosol–cloud interactions. One of the poorly understood processes is formation of mixed-phase clouds (MPCs via heterogeneous ice nucleation. Field measurements of the atmospheric ice phase in MPCs are challenging due to the presence of much more numerous liquid droplets. The Ice Selective Inlet (ISI, presented in this paper, is a novel inlet designed to selectively sample pristine ice crystals in mixed-phase clouds and extract the ice residual particles contained within the crystals for physical and chemical characterization. Using a modular setup composed of a cyclone impactor, droplet evaporation unit and pumped counterflow virtual impactor (PCVI, the ISI segregates particles based on their inertia and phase, exclusively extracting small ice particles between 5 and 20 μm in diameter. The setup also includes optical particle spectrometers for analysis of the number size distribution and shape of the sampled hydrometeors. The novelty of the ISI is a droplet evaporation unit, which separates liquid droplets and ice crystals in the airborne state, thus avoiding physical impaction of the hydrometeors and limiting potential artefacts. The design and validation of the droplet evaporation unit is based on modelling studies of droplet evaporation rates and computational fluid dynamics simulations of gas and particle flows through the unit. Prior to deployment in the field, an inter-comparison of the optical particle size spectrometers and a characterization of the transmission efficiency of the PCVI was conducted in the laboratory. The ISI was subsequently deployed during the Cloud and Aerosol Characterization Experiment (CLACE 2013 and 2014 – two extensive international field campaigns encompassing comprehensive measurements of cloud microphysics, as well as bulk aerosol, ice residual and ice nuclei properties. The campaigns provided an important

  3. Recent increase in Antarctic Peninsula ice core uranium concentrations

    Science.gov (United States)

    Potocki, Mariusz; Mayewski, Paul A.; Kurbatov, Andrei V.; Simões, Jefferson C.; Dixon, Daniel A.; Goodwin, Ian; Carleton, Andrew M.; Handley, Michael J.; Jaña, Ricardo; Korotkikh, Elena V.

    2016-09-01

    Understanding the distribution of airborne uranium is important because it can result in both chemical and radiological toxicity. Ice cores offer the most robust reconstruction of past atmospheric levels of toxic substances. Here we present the first sub-annually dated, continuously sampled ice core documenting change in U levels in the Southern Hemisphere. The ice core was recovered from the Detroit Plateau, northern Antarctic Peninsula, in 2007 by a joint Brazilian-Chilean-US team. It displays a significant increase in U concentration that coincides with reported mining activities in the Southern Hemisphere, notably Australia. Raw U concentrations in the Detroit Plateau ice core increased by as much as 102 between the 1980s and 2000s accompanied by increased variability in recent years. Decadal mean U concentrations increased by a factor of ∼3 from 1980 to 2007, reaching a mean of 205 pg/L from 2000 to 2007. The fact that other terrestrial source dust elements such as Ce, La, Pr, and Ti do not show a similar increase and that the increased U concentrations are enriched above natural crustal levels, supports an anthropogenic source for the U as opposed to a change in atmospheric circulation.

  4. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    Science.gov (United States)

    2013-09-30

    ice age, and iv) onset dates of melt and freezeup . 4. Assess the magnitude of the contribution from ice-albedo feedback to the observed decrease of...the impact on albedo evolution of ice concentration and melt and freezeup onset dates. This effort will expand on previous work by i) examining...radiation, ice concentration, ice type, and melt and freezeup onset dates on a 25 x 25 km equal area scalable grid. We have daily values of these parameters

  5. Characterizing near-surface firn using the scattered signal component of the glacier surface return from airborne radio-echo sounding

    Science.gov (United States)

    Rutishauser, Anja; Grima, Cyril; Sharp, Martin; Blankenship, Donald D.; Young, Duncan A.; Cawkwell, Fiona; Dowdeswell, Julian A.

    2016-12-01

    We derive the scattered component (hereafter referred to as the incoherent component) of glacier surface echoes from airborne radio-echo sounding measurements over Devon Ice Cap, Arctic Canada, and compare the scattering distribution to firn stratigraphy observations from ground-based radar data. Low scattering correlates to laterally homogeneous firn above 1800 m elevation containing thin, flat, and continuous ice layers and below 1200 m elevation where firn predominantly consists of ice. Increased scattering between elevations of 1200-1800 m corresponds to firn with inhomogeneous, undulating ice layers. No correlation was found to surface roughness and its theoretical incoherent backscattering values. This indicates that the scattering component is mainly influenced by the near-surface firn stratigraphy, whereas surface roughness effects are minor. Our results suggest that analyzing the scattered signal component of glacier surface echoes is a promising approach to characterize the spatial heterogeneity of firn that is affected by melting and refreezing processes.

  6. Sea-ice deformation state from synthetic aperture radar imagery - Part I: comparison of C- and L-band and different polarization

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Dall, Jørgen

    2007-01-01

    In this paper, we present a quantitative comparison of L- and C-band airborne synthetic aperture radar imagery acquired at like- and cross-polarizations over deformed sea ice under winter conditions. The parameters characterizing the deformation state of the ice are determined at both radar bands...... and at different polarizations. The separation of deformed and level ice is based on a target detection technique. The threshold is set such that image pixels with intensities equal to or larger than the highest 2% of the level-ice intensity distribution are classified as deformed ice, independent of the radar...... are very sensitive to the radar frequency. Aeral fractions are larger, and average distances are smaller at L-band than at C-band because of the much higher intensity contrast between the deformed and level ice at L-band. The differences between polarizations at one radar band are smaller but not always...

  7. Analysis of the Effect of Radio Frequency Interference on Repeat Track Airborne InSAR System

    Directory of Open Access Journals (Sweden)

    Ding Bin

    2012-03-01

    Full Text Available The SAR system operating at low frequency is susceptible to Radio Frequency Interference (RFI from television station, radio station, and some other civil electronic facilities. The presence of RFI degrades the SAR image quality, and obscures the targets in the scene. Furthermore, RFI can cause interferometric phase error in repeat track InSAR system. In order to analyze the effect of RFI on interferometric phase of InSAR, real measured RFI signal are added on cone simulated SAR echoes. The imaging and interferometric processing results of both the RFI-contaminated and raw data are given. The effect of real measured RFI signal on repeat track InSAR system is analyzed. Finally, the imaging and interferometric processing results of both with and without RFI suppressed of the P band airborne repeat track InSAR real data are presented, which demonstrates the efficiency of the RFI suppression method in terms of decreasing the interferometric phase errors caused by RFI.

  8. Constraining Climate Forcing of Ice Nucleation with SPartICus/MACPEX Observations

    Science.gov (United States)

    Liu, X.; Zhang, K.; Wang, M.; Comstock, J. M.; Mitchell, D. L.; Mace, G. G.; Jensen, E. J.

    2012-12-01

    Cirrus clouds composed of ice crystals play an important role in modifying the global radiative balance through scattering shortwave (SW) radiation and absorbing and emitting longwave (LW) terrestrial radiation. Cirrus clouds also modulate water vapor in the upper troposphere and lower stratosphere, which is an important greenhouse gas. Although cirrus clouds are an important player in the global climate system, there are still large uncertainties in the understanding of cirrus cloud properties and processes and their treatments in global climate models, due to the scarcity of cirrus measurements and instrument artifacts of in situ ice crystal number measurements. The DOE Atmospheric Radiation Measurement (ARM)'s Small Particles in Cirrus (SPartICus) campaign (http://campaign.arm.gov/sparticus/) and the NASA's Mid-latitude Airborne Cirrus Properties Experiment (MACPEX, http://www.espo.nasa.gov/macpex/) conducted airborne measurements over central North America with special emphasis in the vicinity of the DOE ARM's Southern Great Plains (SGP) site to investigate the properties of mid-latitude cirrus clouds, the processes affecting these properties and their impact on radiation. With a new generation of probes designed to minimize artifacts due to ice shattering, SPartICus and MACPEX provide unprecedented datasets characterizing cirrus microphysical properties and dynamics. In this study we use the SPartICus/MACPEX observations to constrain the parameterizations of formation and growth of ice crystals in the Community Atmospheric Model version 5 (CAM5). This is achieved by comparing modeled ice crystal number concentration, ice water content, updraft velocity and relative humidity in- and outside cirrus, and their covariance with temperature with the statistics from SPartICus/MACPEX observations. Model sensitivity tests are performed with different ice nucleation mechanisms (homogeneous versus heterogeneous nucleation) and different vapor deposition coefficients to

  9. Arctic Summer Ice Processes

    Science.gov (United States)

    Holt, Benjamin

    1999-01-01

    The primary objective of this study is to estimate the flux of heat and freshwater resulting from sea ice melt in the polar seas. The approach taken is to examine the decay of sea ice in the summer months primarily through the use of spaceborne Synthetic Aperture Radar (SAR) imagery. The improved understanding of the dynamics of the melt process can be usefully combined with ice thermodynamic and upper ocean models to form more complete models of ice melt. Models indicate that more heat is absorbed in the upper ocean when the ice cover is composed of smaller rather than larger floes and when there is more open water. Over the course of the summer, floes disintegrate by physical forcing and heating, melting into smaller and smaller sizes. By measuring the change in distribution of floes together with open water over a summer period, we can make estimates of the amount of heating by region and time. In a climatic sense, these studies are intended to improve the understanding of the Arctic heat budget which can then be eventually incorporated into improved global climate models. This work has two focus areas. The first is examining the detailed effect of storms on floe size and open water. A strong Arctic low pressure storm has been shown to loosen up the pack ice, increase the open water concentration well into the pack ice, and change the distribution of floes toward fewer and smaller floes. This suggests episodic melting and the increased importance of horizontal (lateral) melt during storms. The second focus area is related to an extensive ship-based experiment that recently took place in the Arctic called Surface Heat Budget of the Arctic (SHEBA). An icebreaker was placed purposely into the older pack ice north of Alaska in September 1997. The ship served as the base for experimenters who deployed extensive instrumentation to measure the atmosphere, ocean, and ice during a one-year period. My experiment will be to derive similar measurements (floe size, open

  10. Dynamics and Mass Balance of Riiser-Larsen Ice Shelf, Antarctica, and its Drainage Area

    Science.gov (United States)

    Klauke, S.; Oelke, C.; Kleiner, T.; Lange, M. A.; Baessler, M.; Dietrich, R.

    2006-12-01

    A coupled finite difference ice sheet/ice shelf model is used to investigate the flow regime of Riiser-Larsen ice shelf, Eastern Weddell Sea, Antarctica, and its drainage area. The model takes into account higher order terms that are neglected in the popular shallow ice approximation. The modeled region has a total area of roughly 130 · 103 km2. The model grid consists of 2.5 km × 2.5 km cells horizontally, and of 10 sigma layers vertically. As input data for the simulation, a new DEM is derived mainly from recent ICESat/GLAS laser-altimetry data. In the ice sheet part of the modeled area, ice thickness data are taken from the BEDMAP data set. For the ice shelf, the thickness distribution is computed from the DEM by assuming isostatic equilibrium. For this purpose, vertical density variations inside the ice shelf are derived by comparison of GLAS altimetry data with airborne RES ice thickness measurements from the EPICA mission. The modeled ice flow velocity is compared with interferometrically derived surface flow velocities from ERS-SAR scenes of the ice sheet and with published in-situ measurements of the ice shelf. In order to minimize the difference between modeled and measured velocities, the boundary conditions and free parameters of the flow model are adjusted. The boundary condition at the ice-rock interface turns out to play a crucial role in optimizing the agreement. Thus, the basal sliding velocity of the ice body is calculated from the basal temperature and the basal shear stress following a widely used relation originally proposed by Weertman, and by adjusting its parameters. In the ice shelf, the viscosity of the ice is used as a tuning parameter and is adjusted to maximize the agreement with in-situ measurements. From the result of the simulation with an optimal set of parameters a mass flow over the grounding line of roughly 2 · 1013 kg yr-1 is derived. The comparison with published surface accumulation data suggests a stable mass balance for

  11. GNSS kinematic position and velocity determination for airborne gravimetry

    OpenAIRE

    K. He

    2015-01-01

    The Global Navigation Satellite System (GNSS) plays a significant role in the fields of airborne gravimetry. The objective of this thesis is to develop reliable GNSS algorithms and software for kinematic highly precise GNSS data analysis in airborne gravimetry.

  12. Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Boisen, Anja

    2013-01-01

    Airborne nanoparticles can cause severe harm when inhaled. Therefore, small and cheap portable airborne nanoparticle monitors are highly demanded by authorities and the nanoparticle producing industry. We propose to use nanomechanical resonators to build the next generation cheap and portable...

  13. About uncertainties in sea ice thickness retrieval from satellite radar altimetry: results from the ESA-CCI Sea Ice ECV Project Round Robin Exercise

    Science.gov (United States)

    Kern, S.; Khvorostovsky, K.; Skourup, H.; Rinne, E.; Parsakhoo, Z. S.; Djepa, V.; Wadhams, P.; Sandven, S.

    2014-03-01

    One goal of the European Space Agency Climate Change Initiative sea ice Essential Climate Variable project is to provide a quality controlled 20 year long data set of Arctic Ocean winter-time sea ice thickness distribution. An important step to achieve this goal is to assess the accuracy of sea ice thickness retrieval based on satellite radar altimetry. For this purpose a data base is created comprising sea ice freeboard derived from satellite radar altimetry between 1993 and 2012 and collocated observations of snow and sea ice freeboard from Operation Ice Bridge (OIB) and CryoSat Validation Experiment (CryoVEx) air-borne campaigns, of sea ice draft from moored and submarine Upward Looking Sonar (ULS), and of snow depth from OIB campaigns, Advanced Microwave Scanning Radiometer aboard EOS (AMSR-E) and the Warren Climatology (Warren et al., 1999). An inter-comparison of the snow depth data sets stresses the limited usefulness of Warren climatology snow depth for freeboard-to-thickness conversion under current Arctic Ocean conditions reported in other studies. This is confirmed by a comparison of snow freeboard measured during OIB and CryoVEx and snow freeboard computed from radar altimetry. For first-year ice the agreement between OIB and AMSR-E snow depth within 0.02 m suggests AMSR-E snow depth as an appropriate alternative. Different freeboard-to-thickness and freeboard-to-draft conversion approaches are realized. The mean observed ULS sea ice draft agrees with the mean sea ice draft computed from radar altimetry within the uncertainty bounds of the data sets involved. However, none of the realized approaches is able to reproduce the seasonal cycle in sea ice draft observed by moored ULS satisfactorily. A sensitivity analysis of the freeboard-to-thickness conversion suggests: in order to obtain sea ice thickness as accurate as 0.5 m from radar altimetry, besides a freeboard estimate with centimetre accuracy, an ice-type dependent sea ice density is as mandatory

  14. Local effects of ice floes and leads on skin sea surface temperature, mixing and gas transfer in the marginal ice zone

    Science.gov (United States)

    Zappa, Christopher; Brumer, Sophia; Brown, Scott; LeBel, Deborah; McGillis, Wade; Schlosser, Peter; Loose, Brice

    2014-05-01

    Recent years have seen extreme changes in the Arctic. Marginal ice zones (MIZ), or areas where the "ice-albedo feedback" driven by solar warming is highest and ice melt is extensive, may provide insights into the extent of these changes. Furthermore, MIZ play a central role in setting the air-sea CO2 balance making them a critical component of the global carbon cycle. Incomplete understanding of how the sea-ice modulates gas fluxes renders it difficult to estimate the carbon budget in MIZ. Here, we investigate the turbulent mechanisms driving gas exchange in leads, polynyas and in the presence of ice floes using both field and laboratory measurements. Here, we present measurements of visible and IR imagery of melting ice floes in the marginal ice zone north of Oliktok Point AK in the Beaufort Sea made during the Marginal Ice Zone Ocean and Ice Observations and Processes EXperiment (MIZOPEX) in July-August 2013. The visible and IR imagery were taken from the unmanned airborne vehicle (UAV) ScanEagle. The visible imagery clearly defines the scale of the ice floes. The IR imagery show distinct cooling of the skin sea surface temperature (SST) as well as an intricate circulation and mixing pattern that depends on the surface current, wind speed, and near-surface vertical temperature/salinity structure. Individual ice floes develop turbulent wakes as they drift and cause transient mixing of an influx of colder surface (fresh) melt water. We capture a melting and mixing event that explains the changing pattern observed in skin SST and is substantiated using laboratory experiments. The Gas Transfer through Polar Sea Ice experiment was performed at the US Army Cold Regions Research and Engineering Laboratory (Hanover, NH) under varying ice coverage, winds speed, fetch and currents. Supporting measurements were made of air and water temperature, humidity, salinity and wave height. Air-side profiling provided momentum, heat, and CO2 fluxes. Transfer velocities are also

  15. Ice-nucleating bacteria control the order and dynamics of interfacial water.

    Science.gov (United States)

    Pandey, Ravindra; Usui, Kota; Livingstone, Ruth A; Fischer, Sean A; Pfaendtner, Jim; Backus, Ellen H G; Nagata, Yuki; Fröhlich-Nowoisky, Janine; Schmüser, Lars; Mauri, Sergio; Scheel, Jan F; Knopf, Daniel A; Pöschl, Ulrich; Bonn, Mischa; Weidner, Tobias

    2016-04-01

    Ice-nucleating organisms play important roles in the environment. With their ability to induce ice formation at temperatures just below the ice melting point, bacteria such as Pseudomonas syringae attack plants through frost damage using specialized ice-nucleating proteins. Besides the impact on agriculture and microbial ecology, airborne P. syringae can affect atmospheric glaciation processes, with consequences for cloud evolution, precipitation, and climate. Biogenic ice nucleation is also relevant for artificial snow production and for biomimetic materials for controlled interfacial freezing. We use interface-specific sum frequency generation (SFG) spectroscopy to show that hydrogen bonding at the water-bacteria contact imposes structural ordering on the adjacent water network. Experimental SFG data and molecular dynamics simulations demonstrate that ice-active sites within P. syringae feature unique hydrophilic-hydrophobic patterns to enhance ice nucleation. The freezing transition is further facilitated by the highly effective removal of latent heat from the nucleation site, as apparent from time-resolved SFG spectroscopy.

  16. Understanding Europa's Ice Shell and Subsurface Water Through Terestrial Analogs for Flyby Radar Sounding

    Science.gov (United States)

    Blankenship, D. D.; Grima, C.; Young, D. A.; Schroeder, D. M.; Soderlund, K. M.; Gim, Y.; Plaut, J. J.; Patterson, G.; Moussessian, A.

    2015-12-01

    The recently approved NASA mission to Europa proposes to study this ice-covered moon of Jupiter though a series of fly-by observations of its surface and subsurface from a spacecraft in Jovian orbit. The science goal of this mission is to "explore Europa to investigate its habitability". One of the primary instruments in the selected scientific payload is a multi-frequency, multi-channel ice penetrating radar system. The "Radar for Europa Assessment and Sounding: Ocean to Near-surface (REASON)" will play a critical role in achieving the mission's habitability driven science objectives, which include characterizing the distribution of any shallow subsurface water, searching for an ice-ocean interface and evaluating a spectrum of ice-ocean-atmosphere exchange hypotheses. The development of successful measurement and data interpretation techniques for exploring Europa will need to leverage knowledge of analogous terrestrial environments and processes. Towards this end, we will discuss a range of terrestrial radioglaciological analogs for hypothesized physical, chemical, and biological processes on Europa and present airborne data collected with the University of Texas dual-frequency radar system over a variety of terrestrial targets. These targets include water filled fractures, brine rich ice, water lenses, accreted marine ice, and ice surfaces with roughness ranging from firn to crevasse fields and will provide context for understanding and optimizing the observable signature of these processes in future radar data collected at Europa.

  17. Airborne LIDAR as a tool for estimating inherent optical properties

    Science.gov (United States)

    Trees, Charles; Arnone, Robert

    2012-06-01

    LIght Detection and Ranging (LIDAR) systems have been used most extensively to generate elevation maps of land, ice and coastal bathymetry. There has been space-, airborne- and land-based LIDAR systems. They have also been used in underwater communication. What have not been investigated are the capabilities of LIDARs to measure ocean temperature and optical properties vertically in the water column, individually or simultaneously. The practical use of bathymetric LIDAR as a tool for the estimation of inherent optical properties remains one of the most challenging problems in the field of optical oceanography. LIDARs can retrieve data as deep as 3-4 optical depths (e.g. optical properties can be measured through the thermocline for ~70% of the world's oceans). Similar to AUVs (gliders), UAV-based LIDAR systems will increase temporal and spatial measurements by several orders of magnitude. The LIDAR Observations of Optical and Physical Properties (LOOPP) Conference was held at NURC (2011) to review past, current and future LIDAR research efforts in retrieving water column optical/physical properties. This new observational platform/sensor system is ideally suited for ground truthing hyperspectral/geostationary satellite data in coastal regions and for model data assimilation.

  18. Microbial abundance in surface ice on the Greenland Ice Sheet

    Directory of Open Access Journals (Sweden)

    Marek eStibal

    2015-03-01

    Full Text Available Measuring microbial abundance in glacier ice and identifying its controls is essential for a better understanding and quantification of biogeochemical processes in glacial ecosystems. However, cell enumeration of glacier ice samples is challenging due to typically low cell numbers and the presence of interfering mineral particles. We quantified for the first time the abundance of microbial cells in surface ice from geographically distinct sites on the Greenland Ice Sheet, using three enumeration methods: epifluorescence microscopy (EFM, flow cytometry (FCM and quantitative polymerase chain reaction (qPCR. In addition, we reviewed published data on microbial abundance in glacier ice and tested the three methods on artificial ice samples of realistic cell (10^2 – 10^7 cells ml-1 and mineral particle (0.1 – 100 mg/ml concentrations, simulating a range of glacial ice types, from clean subsurface ice to surface ice to sediment-laden basal ice. We then used multivariate statistical analysis to identify factors responsible for the variation in microbial abundance on the ice sheet. EFM gave the most accurate and reproducible results of the tested methodologies, and was therefore selected as the most suitable technique for cell enumeration of ice containing dust. Cell numbers in surface ice samples, determined by EFM, ranged from ca 2 x 10^3 to ca 2 x 10^6 cells/ml while dust concentrations ranged from 0.01 to 2 mg/ml. The lowest abundances were found in ice sampled from the accumulation area of the ice sheet and in samples affected by fresh snow; these samples may be considered as a reference point of the cell abundance of precipitants that are deposited on the ice sheet surface. Dust content was the most significant variable to explain the variation in the abundance data, which suggests a direct association between deposited dust particles and cells and/or by their provision of limited nutrients to microbial communities on the Greenland Ice Sheet.

  19. Modeling Commercial Turbofan Engine Icing Risk With Ice Crystal Ingestion

    Science.gov (United States)

    Jorgenson, Philip C. E.; Veres, Joseph P.

    2013-01-01

    The occurrence of ice accretion within commercial high bypass aircraft turbine engines has been reported under certain atmospheric conditions. Engine anomalies have taken place at high altitudes that have been attributed to ice crystal ingestion, partially melting, and ice accretion on the compression system components. The result was degraded engine performance, and one or more of the following: loss of thrust control (roll back), compressor surge or stall, and flameout of the combustor. As ice crystals are ingested into the fan and low pressure compression system, the increase in air temperature causes a portion of the ice crystals to melt. It is hypothesized that this allows the ice-water mixture to cover the metal surfaces of the compressor stationary components which leads to ice accretion through evaporative cooling. Ice accretion causes a blockage which subsequently results in the deterioration in performance of the compressor and engine. The focus of this research is to apply an engine icing computational tool to simulate the flow through a turbofan engine and assess the risk of ice accretion. The tool is comprised of an engine system thermodynamic cycle code, a compressor flow analysis code, and an ice particle melt code that has the capability of determining the rate of sublimation, melting, and evaporation through the compressor flow path, without modeling the actual ice accretion. A commercial turbofan engine which has previously experienced icing events during operation in a high altitude ice crystal environment has been tested in the Propulsion Systems Laboratory (PSL) altitude test facility at NASA Glenn Research Center. The PSL has the capability to produce a continuous ice cloud which are ingested by the engine during operation over a range of altitude conditions. The PSL test results confirmed that there was ice accretion in the engine due to ice crystal ingestion, at the same simulated altitude operating conditions as experienced previously in

  20. Urban greenness influences airborne bacterial community composition.

    Science.gov (United States)

    Mhuireach, Gwynne; Johnson, Bart R; Altrichter, Adam E; Ladau, Joshua; Meadow, James F; Pollard, Katherine S; Green, Jessica L

    2016-11-15

    Urban green space provides health benefits for city dwellers, and new evidence suggests that microorganisms associated with soil and vegetation could play a role. While airborne microorganisms are ubiquitous in urban areas, the influence of nearby vegetation on airborne microbial communities remains poorly understood. We examined airborne microbial communities in parks and parking lots in Eugene, Oregon, using high-throughput sequencing of the bacterial 16S rRNA gene on the Illumina MiSeq platform to identify bacterial taxa, and GIS to measure vegetation cover in buffer zones of different diameters. Our goal was to explore variation among highly vegetated (parks) versus non-vegetated (parking lots) urban environments. A secondary objective was to evaluate passive versus active collection methods for outdoor airborne microbial sampling. Airborne bacterial communities from five parks were different from those of five parking lots (p=0.023), although alpha diversity was similar. Direct gradient analysis showed that the proportion of vegetated area within a 50m radius of the sampling station explained 15% of the variation in bacterial community composition. A number of key taxa, including several Acidobacteriaceae were substantially more abundant in parks, while parking lots had higher relative abundance of Acetobacteraceae. Parks had greater beta diversity than parking lots, i.e. individual parks were characterized by unique bacterial signatures, whereas parking lot communities tended to be similar to each other. Although parks and parking lots were selected to form pairs of nearby sites, spatial proximity did not appear to affect compositional similarity. Our results also showed that passive and active collection methods gave comparable results, indicating the "settling dish" method is effective for outdoor airborne sampling. This work sets a foundation for understanding how urban vegetation may impact microbial communities, with potential implications for designing

  1. Derive Arctic Sea-ice Freeboard and Thickness from NASA's LVIS Observations

    Science.gov (United States)

    Yi, D.; Hofton, M. A.; Harbeck, J.; Cornejo, H.; Kurtz, N. T.

    2015-12-01

    The sea-ice freeboard and thickness are derived from the six sea-ice flights of NASA's IceBridge Land, Vegetation, and Ice Sensor (LVIS) over the Arctic from 2009 to 2013. The LVIS is an airborne scanning laser altimeter. It can operate at an altitude up to 10 km above the ground and produce a data swath up to 2 km wide with 20-m wide footprints. The laser output wavelength is 1064 nm and pulse repetition rate is 1000 Hz. The LVIS L2 geolocated surface elevation product and Level-1b waveform product (http://nsidc.org/data/ilvis2.html and http://nsidc.org/data/ilvis1b.html) at National Snow and Ice Data Center, USA (NSIDC) are used in this study. The elevations are referenced to a geoid with tides and dynamic atmospheric corrections applied. The LVIS waveforms were fitted with Gaussian curves to calculate pulse width, peak location, pulse amplitude, and signal baseline. For each waveform, the centroid, skewness, kurtosis, and pulse area were also calculated. The waveform parameters were calibrated based on laser off pointing angle and laser channels. Calibrated LVIS waveform parameters show a coherent response to variations in surface features along their ground tracks. These parameters, combined with elevation, can be used to identify leads, enabling the derivation of sea-ice freeboard and thickness without relying upon visual images. Preliminary results show that the elevations in some of the LVIS campaigns may vary with laser incident angle; this can introduce an elevation bias if not corrected. Further analysis of the LVIS data shown that the laser incident angle related elevation bias can be removed empirically. The sea-ice freeboard and thickness results from LVIS are compared with NASA's Airborne Topographic Mapper (ATM) for an April 20, 2010 flight, when both LVIS and ATM sensors were on the same aircraft and made coincidental measurements along repeat ground tracks.

  2. Response of Eyjafjallajökull, Torfajökull and Tindfjallajökull ice caps in Iceland to regional warming, deduced by remote sensing

    DEFF Research Database (Denmark)

    Gudmundsson, Sverrir; Björnsson, Helgi; Magnússon, Eyjólfur

    2011-01-01

    were compiled using aerial photographs from 1979 to 1984, airborne Synthetic Aperture Radar (SAR) images obtained in 1998 and two image pairs from the SPOT 5 satellite's high-resolution stereoscopic (HRS) instrument acquired in 2004. The ice-free part of the accurate DEM from 1998 was used...

  3. Detection and enumeration of airborne biocontaminants.

    Science.gov (United States)

    Stetzenbach, Linda D; Buttner, Mark P; Cruz, Patricia

    2004-06-01

    The sampling and analysis of airborne microorganisms has received attention in recent years owing to concerns with mold contamination in indoor environments and the threat of bioterrorism. Traditionally, the detection and enumeration of airborne microorganisms has been conducted using light microscopy and/or culture-based methods; however, these analyses are time-consuming, laborious, subjective and lack sensitivity and specificity. The use of molecular methods, such as quantitative polymerase chain reaction amplification, can enhance monitoring strategies by increasing sensitivity and specificity, while decreasing the time required for analysis.

  4. Inactivation of an enterovirus by airborne disinfectants

    OpenAIRE

    2013-01-01

    Background The activity of airborne disinfectants on bacteria, fungi and spores has been reported. However, the issue of the virucidal effect of disinfectants spread by fogging has not been studied thoroughly. Methods A procedure has been developed to determine the virucidal activity of peracetic acid-based airborne disinfectants on a resistant non-enveloped virus poliovirus type 1. This virus was laid on a stainless carrier. The products were spread into the room by hot fogging at 55°C for 3...

  5. 76 FR 76333 - Notification for Airborne Wind Energy Systems (AWES)

    Science.gov (United States)

    2011-12-07

    ... Federal Aviation Administration 14 CFR Part 77 Notification for Airborne Wind Energy Systems (AWES) AGENCY...,'' to airborne wind energy systems (AWES). In addition, this notice requests information from airborne wind energy system developers and the public related to these systems so that the FAA...

  6. Data archaeology at ICES

    Science.gov (United States)

    Dooley, Harry D.

    1992-01-01

    This paper provides a brief overview of the function of the International Council for the Exploration of the Sea (ICES), both past and present, in particular in the context of its interest in compiling oceanographic data sets. Details are provided of the procedures it adopted to ensure adequate internationally collaborative marine investigations during the first part of the century, such as how it provided a forum for action by its member states, how it coordinated and published the results of scientific programs, and how it provided a foundation, through scientists employed in the ICES Office, for the establishment of the original oceanographic marine databases and associated products, and the scientific interpretation of the results. The growth and expansion of this area of ICES activity is then traced, taking into account the changing conditions for oceanographic data management resulting from the establishment of the National Data Centres, as well as the World Data Centres for Oceanography, which were created to meet the needs of the International Geophysical Year (IGY). Finally, there is a discussion of the way in which the very existence of ICES has proved to be a valuable source of old data, some of which have not yet been digitized, but which can be readily retrieved because they have been very carefully documented throughout the years. Lessons from this activity are noted, and suggestions are made on how the past experiences of ICES can be utilized to ensure the availability of marine data to present and future generations of scientists.

  7. IDEOLOGICALLY CHALLENGING ENTERTAINMENT (ICE

    Directory of Open Access Journals (Sweden)

    Dana Lori Chalmers

    2015-09-01

    Full Text Available Ideologically Challenging Entertainment (ICE is entertainment that challenges ‘us vs. them’ ideologies associated with radicalization, violent conflict and terrorism. ICE presents multiple perspectives on a conflict through mainstream entertainment. This article introduces the theoretical underpinnings of ICE, the first ICE production and the audience responses to it. The first ICE production was Two Merchants: The Merchant of Venice adapted to challenge ideologies of the Arab-Israeli Conflict. A mixed-methods study of audience responses explored whether this production inspired audiences to shift their ideological views. Each performance included two versions of the adaptation: a Jewish dominated society with an Arab Muslim minority, contrasted with an Arab Muslim dominated society and a Jewish minority. A mixed-methods study of audience responses explored whether this production inspired audiences to shift their ideological views to become more tolerant of differences away from ideological radicalization. Of audience members who did not initially agree with the premise of the production, 40% reconsidered their ideological views, indicating increased tolerance, greater awareness of and desire to change their own prejudices. In addition, 86% of the audience expressed their intention to discuss the production with others, thereby encouraging critical engagement with, and broader dissemination of the message. These outcomes suggest that high quality entertainment – as defined by audience responses to it - can become a powerful tool in the struggle against radicalised ideologies.

  8. Ice Cores of the National Ice Core Laboratory

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — The U.S. National Ice Core Laboratory (NICL) is a facility for storing, curating, and studying ice cores recovered from the polar regions of the world. It provides...

  9. Seafloor Control on Sea Ice

    Science.gov (United States)

    Nghiem, S. V.; Clemente-Colon, P.; Rigor, I. G.; Hall, D. K.; Neumann, G.

    2011-01-01

    The seafloor has a profound role in Arctic sea ice formation and seasonal evolution. Ocean bathymetry controls the distribution and mixing of warm and cold waters, which may originate from different sources, thereby dictating the pattern of sea ice on the ocean surface. Sea ice dynamics, forced by surface winds, are also guided by seafloor features in preferential directions. Here, satellite mapping of sea ice together with buoy measurements are used to reveal the bathymetric control on sea ice growth and dynamics. Bathymetric effects on sea ice formation are clearly observed in the conformation between sea ice patterns and bathymetric characteristics in the peripheral seas. Beyond local features, bathymetric control appears over extensive ice-prone regions across the Arctic Ocean. The large-scale conformation between bathymetry and patterns of different synoptic sea ice classes, including seasonal and perennial sea ice, is identified. An implication of the bathymetric influence is that the maximum extent of the total sea ice cover is relatively stable, as observed by scatterometer data in the decade of the 2000s, while the minimum ice extent has decreased drastically. Because of the geologic control, the sea ice cover can expand only as far as it reaches the seashore, the continental shelf break, or other pronounced bathymetric features in the peripheral seas. Since the seafloor does not change significantly for decades or centuries, sea ice patterns can be recurrent around certain bathymetric features, which, once identified, may help improve short-term forecast and seasonal outlook of the sea ice cover. Moreover, the seafloor can indirectly influence cloud cover by its control on sea ice distribution, which differentially modulates the latent heat flux through ice covered and open water areas.

  10. The Ice Selective Inlet: a novel technique for exclusive extraction of pristine ice crystals in mixed-phase clouds

    Directory of Open Access Journals (Sweden)

    P. Kupiszewski

    2014-12-01

    Full Text Available Climate predictions are affected by high uncertainties partially due to an insufficient knowledge of aerosol-cloud interactions. One of the poorly understood processes is formation of mixed-phase clouds (MPCs via heterogeneous ice nucleation. Field measurements of the atmospheric ice phase in MPCs are challenging due to the presence of supercooled liquid droplets. The Ice Selective Inlet (ISI, presented in this paper, is a novel inlet designed to selectively sample pristine ice crystals in mixed-phase clouds and extract the ice residual particles contained within the crystals for physical and chemical characterisation. Using a modular setup composed of a cyclone impactor, droplet evaporation unit and pumped counterflow virtual impactor (PCVI, the ISI segregates particles based on their inertia and phase, exclusively extracting small ice particles between 5 and 20 μm in diameter. The setup also includes optical particle spectrometers for analysis of the number size distribution and shape of the sampled hydrometeors. The novelty of the ISI is a droplet evaporation unit, which separates liquid droplets and ice crystals in the airborne state, thus avoiding physical impaction of the hydrometeors and limiting potential artifacts. The design and validation of the droplet evaporation unit is based on modelling studies of droplet evaporation rates and computational fluid dynamics simulations of gas and particle flows through the unit. Prior to deployment in the field, an inter-comparison of the WELAS optical particle size spectrometers and a characterisation of the transmission efficiency of the PCVI was conducted in the laboratory. The ISI was subsequently deployed during the Cloud and Aerosol Characterisation Experiment (CLACE 2013 – an extensive international field campaign encompassing comprehensive measurements of cloud microphysics, as well as bulk aerosol, ice residual and ice nuclei properties. The campaign provided an important opportunity

  11. EASE-Grid Sea Ice Age

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides weekly estimates of sea ice age for the Arctic Ocean from remotely sensed sea ice motion and sea ice extent. The ice age data are derived from...

  12. Airborne Gravity: NGS' Airborne Gravity Data for AN01 (2009-2010)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Airborne gravity data for Alaska collected in 2009-2010 over 2 surveys. This data set is part of the Gravity for the Re-definition of the American Vertical Datum...

  13. ICE Online Detainee Locator System

    Data.gov (United States)

    Department of Homeland Security — The Online Detainee Locator datasets provide the location of a detainee who is currently in ICE custody, or who was release from ICE custody for any reason with the...

  14. Vacancy Concentration in Ice

    DEFF Research Database (Denmark)

    Mogensen, O. E.; Eldrup, Morten Mostgaard

    1977-01-01

    Based on the diffusion constant for self-diffusion in ice, which is believed to take place by a vacancy mechanism, we estimate the relative vacancy concentration near the melting point to be at least ∼ 10−6, i.e. much higher than previous estimates of about 10−10.......Based on the diffusion constant for self-diffusion in ice, which is believed to take place by a vacancy mechanism, we estimate the relative vacancy concentration near the melting point to be at least ∼ 10−6, i.e. much higher than previous estimates of about 10−10....

  15. Antarctica - Ross Ice Shelf

    Science.gov (United States)

    1990-01-01

    This color picture of Antarctica is one part of a mosaic of pictures covering the entire polar continent taken during the hours following Galileo's historic first encounter with its home planet. The view shows the Ross Ice Shelf to the right and its border with the sea. An occasional mountain can be seen poking through the ice near the McMurdo Station. It is late spring in Antarctica, so the sun never sets on the frigid, icy continent. This picture was taken about 6:20 p.m. PST on December 8, 1990. From top to bottom, the frame looks across about half of Antarctica.

  16. Marginal Ice Zone Bibliography.

    Science.gov (United States)

    1985-06-01

    In Russian.) Kryndin, A.N., 1971: Seasonal and yearly variations in the iciness and the position of ice edge in the Black and Azov Seas, which are...p.2057--2063. idreas, E.L., R.M. Williams, C.A. Paulson, 1981: Observatinis of conden- sate profiles over Arctic leads with a hot- film anemometer...A.N., 1971: Seasonal and yearly variations in the iciness and the position of ice edge in the Black and Azov Seas, which are associated with

  17. A new, high-resolution digital elevation model of Greenland fully validated with airborne laser altimeter data

    DEFF Research Database (Denmark)

    Bamber, J.L.; Ekholm, Simon; Krabill, W.B.

    2001-01-01

    A new digital elevation model of the Greenland ice sheet and surrounding rock outcrops has been produced at 1-km postings from a comprehensive suite of satellite remote sensing and cartographic data sets. Height data over the ice sheet were mainly from ERS-1 and Geosat radar altimetry. These data...... coverage existed. The data were interpolated onto a regular grid with a spacing of similar to1 km. The accuracy of the resultant digital elevation model over the ice sheet was assessed using independent and spatially extensive measurements from an airborne laser altimeter that had an accuracy of between 10...... and 12 cm. In a comparison with the laser altimetry the digital elevation model was found to have a slope-dependent accuracy ranging from -1.04 +/-1.98 m to -0.06 +/- 14.33 m over the ice sheet for a slope range of 0.0-1.0 degrees. The mean accuracy over the whole ice sheet was -0.33 +/-6.97 m. Over...

  18. PHIPS-HALO: the airborne Particle Habit Imaging and Polar Scattering probe - Part 1: Design and operation

    Science.gov (United States)

    Abdelmonem, Ahmed; Järvinen, Emma; Duft, Denis; Hirst, Edwin; Vogt, Steffen; Leisner, Thomas; Schnaiter, Martin

    2016-07-01

    The number and shape of ice crystals present in mixed-phase and ice clouds influence the radiation properties, precipitation occurrence and lifetime of these clouds. Since clouds play a major role in the climate system, influencing the energy budget by scattering sunlight and absorbing heat radiation from the earth, it is necessary to investigate the optical and microphysical properties of cloud particles particularly in situ. The relationship between the microphysics and the single scattering properties of cloud particles is usually obtained by modelling the optical scattering properties from in situ measurements of ice crystal size distributions. The measured size distribution and the assumed particle shape might be erroneous in case of non-spherical ice particles. There is a demand to obtain both information correspondently and simultaneously for individual cloud particles in their natural environment. For evaluating the average scattering phase function as a function of ice particle habit and crystal complexity, in situ measurements are required. To this end we have developed a novel airborne optical sensor (PHIPS-HALO) to measure the optical properties and the corresponding microphysical parameters of individual cloud particles simultaneously. PHIPS-HALO has been tested in the AIDA cloud simulation chamber and deployed in mountain stations as well as research aircraft (HALO and Polar 6). It is a successive version of the laboratory prototype instrument PHIPS-AIDA. In this paper we present the detailed design of PHIPS-HALO, including the detection mechanism, optical design, mechanical construction and aerodynamic characterization.

  19. Ice recrystallization inhibition in ice cream as affected by ice structuring proteins from winter wheat grass.

    Science.gov (United States)

    Regand, A; Goff, H D

    2006-01-01

    Ice recrystallization in quiescently frozen sucrose solutions that contained some of the ingredients commonly found in ice cream and in ice cream manufactured under commercial conditions, with or without ice structuring proteins (ISP) from cold-acclimated winter wheat grass extract (AWWE), was assessed by bright field microscopy. In sucrose solutions, critical differences in moisture content, viscosity, ionic strength, and other properties derived from the presence of other ingredients (skim milk powder, corn syrup solids, locust bean gum) caused a reduction in ice crystal growth. Significant ISP activity in retarding ice crystal growth was observed in all solutions (44% for the most complex mix) containing 0.13% total protein from AWWE. In heat-shocked ice cream, ice recrystallization rates were significantly reduced 40 and 46% with the addition of 0.0025 and 0.0037% total protein from AWWE. The ISP activity in ice cream was not hindered by its inclusion in mix prior to pasteurization. A synergistic effect between ISP and stabilizer was observed, as ISP activity was reduced in the absence of stabilizer in ice cream formulations. A remarkably smoother texture for ice creams containing ISP after heat-shock storage was evident by sensory evaluation. The efficiency of ISP from AWWE in controlling ice crystal growth in ice cream has been demonstrated.

  20. Precision Rectification of Airborne SAR Image

    DEFF Research Database (Denmark)

    Dall, Jørgen; Liao, M.; Zhang, Zhe

    1997-01-01

    A simple and direct procedure for the rectification of a certain class of airborne SAR data is presented. The relief displacements of SAR data are effectively removed by means of a digital elevation model and the image is transformed to the ground coordinate system. SAR data from the Danish EMISAR...

  1. Airborne microorganisms and dust from livestock houses

    NARCIS (Netherlands)

    Zhao, Y.; Aarnink, A.J.A.; Jong, de M.C.M.; Groot Koerkamp, P.W.G.

    2011-01-01

    The objective of this study was to evaluate the efficiencies and suitability of samplers for airborne microorganisms and dust, which could be used in practical livestock houses. Two studies were performed: 1) Testing impaction and cyclone pre-separators for dust sampling in livestock houses; 2) Dete

  2. The National Airborne Field Experiment Data Sets

    DEFF Research Database (Denmark)

    Walker, J. P.; Balling, Jan E.; Bell, M.

    2007-01-01

    The National Airborne Field Experiment's (NAFE) were a series of intensive experiments recently conducted in different parts of Australia. These hydrologic-focused experiments have been designed to answer a range of questions which can only be resolved through carefully planned and executed field...

  3. Experimental airborne transmission of PRRS virus

    DEFF Research Database (Denmark)

    Kristensen, C.S.; Bøtner, Anette; Takai, H.

    2004-01-01

    A series of three experiments, differing primarily in airflow volume, were performed to evaluate the likelihood of airborne transmission of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) from infected to non-infected pigs. Pigs were housed in two units (unit A and unit B) located 1 m...

  4. Mapping Waterhyacinth Infestations Using Airborne Hyperspectral Imagery

    Science.gov (United States)

    Waterhyacinth [Eichhornia crassipes (Mart.) Solms] is an exotic aquatic weed that often invades and clogs waterways in many tropical and subtropical regions of the world. The objective of this study was to evaluate airborne hyperspectral imagery and different image classification techniques for mapp...

  5. Airborne gravity field Measurements - status and developments

    DEFF Research Database (Denmark)

    Olesen, Arne Vestergaard; Forsberg, René

    2016-01-01

    English Abstract:DTU-Space has since 1996 carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM or inertial navigation systems) ...

  6. Ice crystal ingestion by turbofans

    Science.gov (United States)

    Rios Pabon, Manuel A.

    This Thesis will present the problem of inflight icing in general and inflight icing caused by the ingestion of high altitude ice crystals produced by high energy mesoscale convective complexes in particular, and propose a new device to prevent it based on dielectric barrier discharge plasma. Inflight icing is known to be the cause of 583 air accidents and more than 800 deaths in more than a decade. The new ice crystal ingestion problem has caused more than 100 flights to lose engine power since the 1990's, and the NTSB identified it as one of the causes of the Air France flight 447 accident in 1-Jun2008. The mechanics of inflight icing not caused by ice crystals are well established. Aircraft surfaces exposed to supercooled liquid water droplets will accrete ice in direct proportion of the droplet catch and the freezing heat transfer process. The multiphase flow droplet catch is predicted by the simple sum of forces on each spherical droplet and a droplet trajectory calculation based on Lagrangian or Eulerian analysis. The most widely used freezing heat transfer model for inflight icing caused by supercooled droplets was established by Messinger. Several computer programs implement these analytical models to predict inflight icing, with LEWICE being based on Lagrangian analysis and FENSAP being based on Eulerian analysis as the best representatives among them. This Thesis presents the multiphase fluid mechanics particular to ice crystals, and explains how it differs from the established droplet multiphase flow, and the obstacles in implementing the former in computational analysis. A new modification of the Messinger thermal model is proposed to account for ice accretion produced by ice crystal impingement. Because there exist no computational and experimental ways to fully replicate ice crystal inflight icing, and because existing ice protections systems consume vast amounts of energy, a new ice protection device based on dielectric barrier discharge plasma is

  7. The Physics of Ice Sheets

    Science.gov (United States)

    Bassis, J. N.

    2008-01-01

    The great ice sheets in Antarctica and Greenland are vast deposits of frozen freshwater that contain enough to raise sea level by approximately 70 m if they were to completely melt. Because of the potentially catastrophic impact that ice sheets can have, it is important that we understand how ice sheets have responded to past climate changes and…

  8. Airborne laser sensors and integrated systems

    Science.gov (United States)

    Sabatini, Roberto; Richardson, Mark A.; Gardi, Alessandro; Ramasamy, Subramanian

    2015-11-01

    The underlying principles and technologies enabling the design and operation of airborne laser sensors are introduced and a detailed review of state-of-the-art avionic systems for civil and military applications is presented. Airborne lasers including Light Detection and Ranging (LIDAR), Laser Range Finders (LRF), and Laser Weapon Systems (LWS) are extensively used today and new promising technologies are being explored. Most laser systems are active devices that operate in a manner very similar to microwave radars but at much higher frequencies (e.g., LIDAR and LRF). Other devices (e.g., laser target designators and beam-riders) are used to precisely direct Laser Guided Weapons (LGW) against ground targets. The integration of both functions is often encountered in modern military avionics navigation-attack systems. The beneficial effects of airborne lasers including the use of smaller components and remarkable angular resolution have resulted in a host of manned and unmanned aircraft applications. On the other hand, laser sensors performance are much more sensitive to the vagaries of the atmosphere and are thus generally restricted to shorter ranges than microwave systems. Hence it is of paramount importance to analyse the performance of laser sensors and systems in various weather and environmental conditions. Additionally, it is important to define airborne laser safety criteria, since several systems currently in service operate in the near infrared with considerable risk for the naked human eye. Therefore, appropriate methods for predicting and evaluating the performance of infrared laser sensors/systems are presented, taking into account laser safety issues. For aircraft experimental activities with laser systems, it is essential to define test requirements taking into account the specific conditions for operational employment of the systems in the intended scenarios and to verify the performance in realistic environments at the test ranges. To support the

  9. Arctic Ocean gravity, geoid and sea-ice freeboard heights from ICESat and GRACE

    DEFF Research Database (Denmark)

    Forsberg, René; Skourup, Henriette

    2005-01-01

    ICESat laser measurements provide a high-resolution mapping of the sea-ice surface of the Arctic Ocean, which can be inverted to determine gravity anomalies and sea-ice freeboard heights by a "lowest-level'' filtering scheme. In this paper we use updated terrestrial gravity data from the Arctic...... all major tectonic features of the Arctic Ocean, and has an accuracy of 6 mGal compared to recent airborne gravity data, illustrating the usefulness of ICESat data for gravity field determination....... Gravity Project in combination with GRACE gravity field models to derive an improved Arctic geoid model. This model is then used to convert ICESat measurements to sea-ice freeboard heights with a coarse lowest-level surface method. The derived freeboard heights show a good qualitative agreement...

  10. Ice Cream Wars

    Institute of Scientific and Technical Information of China (English)

    TAMMYTANG

    2004-01-01

    In early March, most Chinese can only vaguely sense a trace of warmth in the spring winds. For thecountry's ice cream producers however, the hot season has already arrived as they scramble for a niche position in thecountry's huge and lucrative

  11. Proceedings of ICED'09

    DEFF Research Database (Denmark)

    The 17th International Conference on Engineering Design, ICED'09, was held August 24-27 2009 at Stanford University, California, USA. The Conference is the flagship event of the Design Society, a society dedicated to contributing to a broad and established understanding of development and design....

  12. Melting ice, growing trade?

    Directory of Open Access Journals (Sweden)

    Sami Bensassi

    2016-05-01

    Full Text Available Abstract Large reductions in Arctic sea ice, most notably in summer, coupled with growing interest in Arctic shipping and resource exploitation have renewed interest in the economic potential of the Northern Sea Route (NSR. Two key constraints on the future viability of the NSR pertain to bathymetry and the future evolution of the sea ice cover. Climate model projections of future sea ice conditions throughout the rest of the century suggest that even under the most “aggressive” emission scenario, increases in international trade between Europe and Asia will be very low. The large inter-annual variability of weather and sea ice conditions in the route, the Russian toll imposed for transiting the NSR, together with high insurance costs and scarce loading/unloading opportunities, limit the use of the NSR. We show that even if these obstacles are removed, the duration of the opening of the NSR over the course of the century is not long enough to offer a consequent boost to international trade at the macroeconomic level.

  13. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Arctic Sea Ice Cover

    Science.gov (United States)

    2015-09-30

    the Arctic Ocean and surrounding seas, with particular emphasis on the Chukchi and Beaufort Seas. Some of the largest changes to the sea ice cover are...Changing Arctic Sea Ice Cover Don Perovich ERDC – CRREL 72 Lyme Road Hanover, NH 03755 Phone: 603-646-4255 Email: donald.k.perovich...quantitative understanding of the partitioning of solar radiation by the Arctic sea ice cover and its impact on the heat and mass balance of the ice and upper

  14. Sunlight, Sea Ice, and the Ice Albedo Feedback in a Changing Artic Sea Ice Cover

    Science.gov (United States)

    2015-11-30

    Arctic sea ice cover and its impact on the heat and mass balance of the ice and upper ocean ... Arctic Ocean and surrounding seas, with particular emphasis on the Chukchi and Beaufort Seas. Some of the largest changes to the sea ice cover are...other parts of the Arctic ice cover appear to now be accelerating. Figure 6. Maps of the linear trend of annual solar heat input to the ocean

  15. Cloud particle size distributions measured with an airborne digital in-line holographic instrument

    Directory of Open Access Journals (Sweden)

    J. P. Fugal

    2009-03-01

    Full Text Available Holographic data from the prototype airborne digital holographic instrument HOLODEC (Holographic Detector for Clouds, taken during test flights are digitally reconstructed to obtain the size (equivalent diameters in the range 23 to 1000 μm, three-dimensional position, and two-dimensional profile of ice particles and then ice particle size distributions and number densities are calculated using an automated algorithm with minimal user intervention. The holographic method offers the advantages of a well-defined sample volume size that is not dependent on particle size or airspeed, and offers a unique method of detecting shattered particles. The holographic method also allows the volume sample rate to be increased beyond that of the prototype HOLODEC instrument, limited solely by camera technology.

    HOLODEC size distributions taken in mixed-phase regions of cloud compare well to size distributions from a PMS FSSP probe also onboard the aircraft during the test flights. A conservative algorithm for detecting shattered particles utilizing the particles depth-position along the optical axis eliminates the obvious ice particle shattering events from the data set. In this particular case, the size distributions of non-shattered particles are reduced by approximately a factor of two for particles 15 to 70 μm in equivalent diameter, compared to size distributions of all particles.

  16. Improved retrieval of land ice topography from CryoSat-2 data and its impact for volume-change estimation of the Greenland Ice Sheet

    Science.gov (United States)

    Nilsson, Johan; Gardner, Alex; Sandberg Sørensen, Louise; Forsberg, Rene

    2016-12-01

    A new methodology for retrieval of glacier and ice sheet elevations and elevation changes from CryoSat-2 data is presented. Surface elevations and elevation changes determined using this approach show significant improvements over ESA's publicly available CryoSat-2 elevation product (L2 Baseline-B). The results are compared to near-coincident airborne laser altimetry from NASA's Operation IceBridge and seasonal height amplitudes from the Ice, Cloud, and Elevation Satellite (ICESat). Applying this methodology to CryoSat-2 data collected in interferometric synthetic aperture mode (SIN) over the high-relief regions of the Greenland Ice Sheet we find an improvement in the root-mean-square error (RMSE) of 27 and 40 % compared to ESA's L2 product in the derived elevation and elevation changes, respectively. In the interior part of the ice sheet, where CryoSat-2 operates in low-resolution mode (LRM), we find an improvement in the RMSE of 68 and 55 % in the derived elevation and elevation changes, respectively. There is also an 86 % improvement in the magnitude of the seasonal amplitudes when compared to amplitudes derived from ICESat data. These results indicate that the new methodology provides improved tracking of the snow/ice surface with lower sensitivity to changes in near-surface dielectric properties. To demonstrate the utility of the new processing methodology we produce elevations, elevation changes, and total volume changes from CryoSat-2 data for the Greenland Ice Sheet during the period January 2011 to January 2015. We find that the Greenland Ice Sheet decreased in volume at a rate of 289 ± 20 km3a-1, with high interannual variability and spatial heterogeneity in rates of loss. This rate is 65 km3a-1 more negative than rates determined from ESA's L2 product, highlighting the importance of CryoSat-2 processing methodologies.

  17. Multi-decadal dynamic thinning on the northwest margin of the Greenland Ice Sheet

    Science.gov (United States)

    Korsgaard, N. J.; Kjaer, K. H.; Khan, S. A.; Wahr, J. M.; Bamber, J. L.; Hurkmans, R. T.; Timm, L. H.; Kjeldsen, K. K.; Bjork, A. A.; Larsen, N. K.

    2011-12-01

    Ice mass changes in the Greenland Ice Sheet have been estimated since the early 1990s from the GRACE (Gravity Recovery and Climate Experiment) satellite gravity mission, of ice sheet thinning from satellite radar altimetry and airborne laser altimetry, and of increased velocities of outlet glaciers from radar interferometric surveys. Prior to 2000 existing altimetry data provides comparatively limited spatial resolution and ice losses near ice sheet margins are most likely underestimated and existing data is unable to document the persisting change within outlet glaciers. Subsequent estimates for the entire ice sheet show increased mass loss from 137 Gt/yr in 2002-2003 to 286 Gt/yr in 2007-2009. Also evidence from the GRACE, GPS (Global Positioning System), and ICESat (Ice, Cloud and land Elevation Satellite) as well as surface mass balance data suggests there is an ongoing northward migration of increasing dynamic induced ice loss. GRACE data show that this increased mass loss initiated in 2005 ceased in late 2009, thus, defining a dynamic thinning event as seen previous along the coast in southeast Greenland. Here, we present a multi-decadal perspective on ice mass change from northwestern Greenland using the stereoscopic coverage by aerial photographs recorded in 1985, which captures the beginning of the present warming in the late 1980s. The derived Digital Elevation Model (DEM) based on the aerial photographs are superior in coverage and spatial resolution to other early surface change records with a 25 m grid resolution and vertical uncertainty of 4.6m. Comparative DEMs were derived from laser altimetry data recorded in 2005 and 2010. Ice loss from the Greenland Ice Sheet (GrIS) can be partitioned into surface mass balance (SMB) processes (runoff and precipitation) and ice dynamics. For the marginal part of northwestern Greenland, we calculate a mass loss between 1985-2005 to 239 km3 and between 2005-2010 to 193 km3. The SMB contribute with respective 17km3

  18. The quest for the lost picture and surface detection change of the Greenland Ice Sheet (Invited)

    Science.gov (United States)

    Kjaer, K. H.; Korsgaard, N.; Kjeldsen, K.

    2010-12-01

    Past analogues to future change require long term records for ice marginal behavior around the entire Greenland Ice Sheet. Repeated surveys by satellite and airborne radar and laser altimetry have since the 1980s together with gravitational satellite estimates over the last decade shown a significant thinning at lower altitudes of the Greenland Ice Sheet, while the interior is in balance or thickening. The loss of ice is estimated to between 47 and 227 Gt per year, equivalent to 0.1-0.6 mm global sea level rise. The loss is concentrated in the southern dome of the ice sheet and can hardly be explained by increased ablation or decrease in snow accumulation. Instead, glacial dynamic processes are thought to have accelerated ice flow towards the coastal areas with increased release of ice and meltwater into the ocean. This implies a complex relationship between the interior of the ice sheet, where most of the ice is located, and the marginal zone where local climatic and topographical conditions control the discharge of ice - and therefore the intensity of response to climatic change. The data collection involves a compilation and digitalization of data from more than a century of geological field work, unpublished historical material, and finally mapping of selected areas by combining remote sensing tools with field-based glacial-geomorphological interpretation of the landscape. We also seek to quantify the net thinning pattern at the ice margin and sub-marginal areas using trimline altitudes on valley sides, and, not least, nunataks situated far from the ice margin to quantify volumetric changes and estimate the sensitivity of the margin to temperature change (ΔVolume loss per °C). Upstream nunataks show the amplitude of former ice thickness and serve as a master signal for a certain sector of the ice sheet. The data source is based on multi-temporal aerial photographs and satellite imagery processed through digital photogrammetry and field sampling in selected

  19. Recent Changes in the Greenland Ice Sheet as Seen from Space

    Science.gov (United States)

    Hall, Dorothy K.

    2011-01-01

    elevations and a decrease of ice at the lower elevations as measured using airborne Lidar and Ice, Cloud and Land Elevation Satellite (ICESat) data. The seminar will address the above issues using a variety of NASA satellite data and ground observations.

  20. Changes in the firn structure of the western Greenland Ice Sheet caused by recent warming

    Science.gov (United States)

    de la Peña, S.; Howat, I. M.; Nienow, P. W.; van den Broeke, M. R.; Mosley-Thompson, E.; Price, S. F.; Mair, D.; Noël, B.; Sole, A. J.

    2015-06-01

    Atmospheric warming over the Greenland Ice Sheet during the last 2 decades has increased the amount of surface meltwater production, resulting in the migration of melt and percolation regimes to higher altitudes and an increase in the amount of ice content from refrozen meltwater found in the firn above the superimposed ice zone. Here we present field and airborne radar observations of buried ice layers within the near-surface (0-20 m) firn in western Greenland, obtained from campaigns between 1998 and 2014. We find a sharp increase in firn-ice content in the form of thick widespread layers in the percolation zone, which decreases the capacity of the firn to store meltwater. The estimated total annual ice content retained in the near-surface firn in areas with positive surface mass balance west of the ice divide in Greenland reached a maximum of 74 ± 25 Gt in 2012, compared to the 1958-1999 average of 13 ± 2 Gt, while the percolation zone area more than doubled between 2003 and 2012. Increased melt and column densification resulted in surface lowering averaging -0.80 ± 0.39 m yr-1 between 1800 and 2800 m in the accumulation zone of western Greenland. Since 2007, modeled annual melt and refreezing rates in the percolation zone at elevations below 2100 m surpass the annual snowfall from the previous year, implying that mass gain in the region is retained after melt in the form of refrozen meltwater. If current melt trends over high elevation regions continue, subsequent changes in firn structure will have implications for the hydrology of the ice sheet and related abrupt seasonal densification could become increasingly significant for altimetry-derived ice sheet mass balance estimates.

  1. Spatial pattern of mass loss processes across the Greenland Ice Sheet from the Little Ice Age to 2010

    Science.gov (United States)

    Kjaer, K.; Korsgaard, N. J.; Kjeldsen, K. K.; Bjork, A. A.; Khan, S. A.; Funder, S.; Nuth, C.; Larsen, N. K.; Vinther, B.; Andresen, C. S.; Long, A. J.; Woodroffe, S.; Hansen, E. S.; Odgaard, B. V.; Olsen, J.; Bamber, J. L.; van den Broeke, M. R.; Box, J. E.; Willerslev, E.

    2013-12-01

    The Greenland Ice Sheet loses mass through surface meltwater runoff and discharge from marine terminating outlet glaciers. The spatial variability and magnitude of these processes have been studied and described in detail for the past decades. Here, we combine the mass loss between the LIA to 2010 with a SMB model extending back to ~1900 in order to investigate the spatial distribution of mass loss processes. We use high quality aerial stereo photogrammetric imagery recorded between 1978 and 1987 to map morphological features such as trim lines and end moraines marking the maximum ice extent of the LIA, which enables us to obtain vertical point-based differences associated with former ice extent. These point measurements are combined with contemporary ice surface differences derived using NASA's Airborne Topographic Mapper (ATM) from 2003-2010, NASA's Ice, Cloud, and land Elevation Satellite (ICESat) from 2003-2009, NASA's Land, Vegetation, and Ice Sensor (LVIS) from 2010, and ASTER (Silcast AST14DMO) co-registered to ICESat, to estimate mass loss throughout the 20th and early 21st Century. The mass balance estimates of the GrIS since retreat from maximum LIA is combined with a SMB model for the period for three intervals, LIAmax (~1900) - 1978/87, 1978/87 - 2003, and 2003 - 2010. Across the GrIS the total mass loss if found to be spatially- and temporally variable. However, when assessing the mass loss due to SMB and mass loss due to dynamic ice loss, we find that that the ratios between these components are variable between the different sectors of the GrIS, e.g. in the southeast sector of the GrIS we find substantial mass loss, possibly driven by high precipitation rates but also the presence of a large number of marine terminating glaciers. Furthermore many areas currently undergoing changes correspond to those that experienced considerable thinning throughout the 20th century. Consequently, comparing the 20th century thinning pattern to that of the last decade

  2. Observations of Wind-Induced Motion in the Arctic Marginal Ice Zone

    Science.gov (United States)

    Bradley, A. C.; Palo, S. E.; Zappa, C. J.; LoDolce, G.; Weibel, D.; Lawrence, D.

    2014-12-01

    The increasingly recognized importance of the Marginal Ice Zone (MIZ) in the global and Arctic climate systems necessitates study of the complex processes at work in the interactions between ice floes, the ocean, and the atmosphere. This study uses observations of surface currents and floe drift speeds to explore the hydrodynamic processes driven by interactions with surface winds surrounding isolated small floes in the Arctic summertime MIZ. The 2013 MIZOPEX campaign flew several unmanned aircraft over the MIZ north of Oliktok Point, AK. These flights had two primary missions: dropping microbuoys into areas of open water between ice floes, and imaging in both thermal and visible using airborne systems. The Air-Deployed Micro Buoys (ADMB) drifted with surface currents, providing a measure of current speeds from the GPS track. ADMB were equipped with a string of thermistors extending two meters below the surface, which measured near-surface temperature gradients. Analysis of visible aerial imagery of ice floes is used to retrieve floe drift speeds from sequential photos by using aircraft telemetry to geolocate the images. Wind speeds from NCEP reanalysis and nearby met data are compared to surface currents and floe drift speeds; surface currents are approximately 4% of wind speeds, which agree well with lab measurements. Thermal imagery from the campaign show cold wakes at the surface near ice floes in certain wind conditions. The spatial view provided by airborne measurements, when combined with subsurface temperature gradients and the relation between drift and current speeds to local wind forcing, paints a picture of the physical interaction between an isolated ice floe in the MIZ and the open water surrounding it.

  3. Ice shelf-ocean interactions, mechanisms of change in the Amundsen Sea, West Antarctica

    Science.gov (United States)

    Dutrieux, P.

    2015-12-01

    Over the length of the observational record, the Antarctic Ice Sheet has been loosing ice to the ocean, significantly contributing to global sea level rise. This signal is largely due to glacial flow acceleration in West Antarctica, driven by oceanic melting at its margin and the induced thinning of the glacier buttressing ice shelves. Pine Island Glacier is one stellar example where vigorous oceanic melting fundamentally modifies the geometry of the ice-ocean interface and the associated ice dynamics. Since the early 1970's, the glacier terminating ice shelf has thinned, its grounding line has retreated, and its speed has doubled, now reaching close to 11 m/day. During that time, oceanic melting has increased, injecting fresh and nutrient-rich waters between the surface and intermediate depth in the coastal southern ocean. Using autonomous platforms, ship-borne ocean observations, ground-based and airborne radar observations, satellite observations and numerical modelling, this talk will review the mechanisms behind this trajectory of change and open perspectives on its potential impacts in the Southern Ocean.

  4. River ice jams at bridges

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, D. [New Brunswick Dept. of Transportation, Fredericton, NB (Canada); Beltaos, S. [National Water Research Institute, Burlington, ON (Canada)

    2000-12-01

    Ice jamming, known to cause high water levels at even moderate river flows, is described as both the main and least understood source of ice-related bridge damages. This paper describes a joint study by the New Brunswick Department of Transportation, the Department of the Environment, local governments, and the National Water Research Institute, designed to address problems associated with the interaction of ice jams and bridges. The study consists of collecting information at each of four sites in New Brunswick including: historical data on ice jam locations, causes, and water levels; channel bathymetry, width and slope within each study centred at the respective bridge; and documentation of ice conditions throughout the ice season, including measurement of ice cover thickness, observation of breakup mechanisms, times, causes, characteristics and possible impacts of ice jam release. Data analysis will include determination of high stages due to ice jams or surges caused by upstream ice jam releases, scour potential of surges, and quantification of the structure's capacity to restrain ice movement and to cause jams. The principal objective of the study is to advance beyond empiricism and to develop rational design criteria for bridges by anticipating the effects of climate changes and by incorporating local meteorological and hydrometric records into bridge design for added safety.

  5. Modelling the Antarctic Ice Sheet

    DEFF Research Database (Denmark)

    Pedersen, Jens Olaf Pepke; Holm, A.

    2015-01-01

    The Antarctic ice sheet is a major player in the Earth’s climate system and is by far the largest depository of fresh water on the planet. Ice stored in the Antarctic ice sheet (AIS) contains enough water to raise sea level by about 58 m, and ice loss from Antarctica contributed significantly...... Science) Antarctic Ice Sheet (DAIS) model (Shaffer 2014) is forced by reconstructed time series of Antarctic temperature, global sea level and ocean subsurface temperature over the last two glacial cycles. In this talk a modelling work of the Antarctic ice sheet over most of the Cenozoic era using...... the DAIS model will be presented. G. Shaffer (2014) Formulation, calibration and validation of the DAIS model (version 1), a simple Antarctic ice sheet model sensitive to variations of sea level and ocean subsurface temperature, Geosci. Model Dev., 7, 1803‐1818...

  6. Sensitivity Analysis of Automated Ice Edge Detection

    Science.gov (United States)

    Moen, Mari-Ann N.; Isaksem, Hugo; Debien, Annekatrien

    2016-08-01

    The importance of highly detailed and time sensitive ice charts has increased with the increasing interest in the Arctic for oil and gas, tourism, and shipping. Manual ice charts are prepared by national ice services of several Arctic countries. Methods are also being developed to automate this task. Kongsberg Satellite Services uses a method that detects ice edges within 15 minutes after image acquisition. This paper describes a sensitivity analysis of the ice edge, assessing to which ice concentration class from the manual ice charts it can be compared to. The ice edge is derived using the Ice Tracking from SAR Images (ITSARI) algorithm. RADARSAT-2 images of February 2011 are used, both for the manual ice charts and the automatic ice edges. The results show that the KSAT ice edge lies within ice concentration classes with very low ice concentration or open water.

  7. Synchronizing ice cores from the Renland and Agassiz ice caps to the Greenland Ice Core Chronology

    DEFF Research Database (Denmark)

    Vinther, Bo Møllesøe; Clausen, Henrik Brink; Fischer, D. A.;

    2008-01-01

    Four ice cores from the Agassiz ice cap in the Canadian high arctic and one ice core from the Renland ice cap in eastern Greenland have been synchronized to the Greenland Ice Core Chronology 2005 (GICC05) which is based on annual layer counts in the DYE-3, GRIP and NGRIP ice cores. Volcanic...... reference horizons, seen in electrical conductivity measurements (ECM) have been used to carry out the synchronization throughout the Holocene. The Agassiz ice cores have been matched to the NGRIP ice core ECM signal, while the Renland core has been matched to the GRIP ice core ECM signal, thus tying...... the cores to GICC05. Furthermore, it has been possible to synchronize the Renland ice core to NGRIP-GICC05 in the glacial period back to 60,000 years b2k (years before A.D. 2000), on the basis of a matching of transitions between stadials and interstadials. This work brings the total number of ice core...

  8. Geoid of Nepal from airborne gravity survey

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Einarsson, Indriði

    2011-01-01

    An airborne gravity survey of Nepal was carried out December 2010 in a cooperation between DTU-Space, Nepal Survey Department, and NGA, USA. The entire country was flown with survey lines spaced 6 nm with a King Air aircraft, with a varying flight altitude from 4 to 10 km. The survey operations...... were a major challenge due to excessive jet streams at altitude as well as occasional excessive mountain waves. Despite the large 400 mGal+ range of gravity anomaly changes from the Indian plains to the Tibetan Plateau, results appear accurate to a few mGal, with proper evaluation from cross...... as well as recent GPS-heights of Mt. Everest. The new airborne data also provide an independent validation of GOCE gravity field results at the local ~100 km resolution scale....

  9. A system for airborne SAR interferometry

    DEFF Research Database (Denmark)

    Madsen, Søren Nørvang; Skou, Niels; Granholm, Johan

    1996-01-01

    Interferometric synthetic aperture radar (INSAR) systems have already demonstrated that elevation maps can be generated rapidly with single pass airborne across-track interferometry systems (XTT), and satellite repeat track interferometry (RTT) techniques have been used to map both elevation...... and perturbations of the surface of the Earth. The Danish Center for Remote Sensing (DCRS) has experimented with airborne INSAR since 1993. Multiple track data are collected in a special mode in which the radar directly steers the aircraft which allows for very precise control of the flight path. Such data sets...... have been acquired at both L- and C-band. During 1994/95 the system was further modified to add the capability to perform single pass interferometric data acquisitions at C-band. This paper will discuss: (1) the general principles of INSAR systems and their application to topographic mapping and (2...

  10. Infrared signature generation of airborne targets

    Science.gov (United States)

    Whalen, Michael R.

    1993-08-01

    This report proposes a generic methodology for generating infrared signatures of airborne targets. The various issues, assumptions and simplifications utilized in signature studies are outlines to insure baseline consistency among future models and evaluation tools. More specifically, the target is characterized on a component level, and the at-aperture signature is generated by the correct inclusion of atmospheric transmission. While the technique and general concepts may apply to all airborne targets, this study places emphasis on cruise missiles and related targets due to their low contrast. For these targets, the background signature becomes more important as both the emitted target radiance and the reflected background radiance contribute to the overall signature. Example target signatures generated using the proposed methodology will be presented following the discussion of signature modeling.

  11. Analyzing Options for Airborne Emergency Wireless Communications

    Energy Technology Data Exchange (ETDEWEB)

    Michael Schmitt; Juan Deaton; Curt Papke; Shane Cherry

    2008-03-01

    In the event of large-scale natural or manmade catastrophic events, access to reliable and enduring commercial communication systems is critical. Hurricane Katrina provided a recent example of the need to ensure communications during a national emergency. To ensure that communication demands are met during these critical times, Idaho National Laboratory (INL) under the guidance of United States Strategic Command has studied infrastructure issues, concerns, and vulnerabilities associated with an airborne wireless communications capability. Such a capability could provide emergency wireless communications until public/commercial nodes can be systematically restored. This report focuses on the airborne cellular restoration concept; analyzing basic infrastructure requirements; identifying related infrastructure issues, concerns, and vulnerabilities and offers recommended solutions.

  12. Comprehensive characterization of indoor airborne bacterial profile

    Institute of Scientific and Technical Information of China (English)

    P.L.Chan; P.H.F.Yu; Y.W.Cheng; C.Y.Chan; P.K.Wong

    2009-01-01

    This is the first detailed characterization of the air-borne bacterial profiles in indoor environments and two restaurants were selected for this study.Fifteen genera of bacteria were isolated from each restaurant and identified by three different bacterial identification systems including MIDI, Biolog and Riboprinter?.The dominant bacteria of both restaurants were Gram-positive bacteria in which Micrococcus and Bacillus species were the most abundant species.Most bacteria identified were representative species of skin and respiratory tract of human, and soil.Although the bacterial levels in these restaurants were below the limit of the Hong Kong Indoor Air Quality Objective (HKIAQO) Level 1 standard (i.e., < 500 cfu/m3), the majority of these bacteria were opportunistic pathogens.These results suggested that the identity of airborne bacteria should also be included in the IAQ to ensure there is a safety guideline for the public.

  13. Simulating City-level Airborne Infectious Diseases

    CERN Document Server

    Shan, Mei; Yifan, Zhu; Zhenghu, Zu; Tao, Zheng; Boukhanovsky, A V; Sloot, P M A

    2012-01-01

    With the exponential growth in the world population and the constant increase in human mobility, the danger of outbreaks of epidemics is rising. Especially in high density urban areas such as public transport and transfer points, where people come in close proximity of each other, we observe a dramatic increase in the transmission of airborne viruses and related pathogens. It is essential to have a good understanding of the `transmission highways' in such areas, in order to prevent or to predict the spreading of infectious diseases. The approach we take is to combine as much information as is possible, from all relevant sources and integrate this in a simulation environment that allows for scenario testing and decision support. In this paper we lay out a novel approach to study Urban Airborne Disease spreading by combining traffic information, with geo-spatial data, infection dynamics and spreading characteristics.

  14. City under the Ice

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    military conflicts are taking place. Studying the wealth of public representations of Camp Century, established 1959-60 by the US Army 128 miles east of the Thule Air Base and often referred to as the “City under the Ice”, we find a sharp contrast between the domesticated interior and the superpower...... conflict that gave impetus to the camp’s construction. Presented to the public as a scientific station and a technologically-advanced, under-ice extension of the American way of life, while situated in the titanic struggle between West and East, Camp Century took on a number of closed-world meanings....... However, the military logic of Camp Century was self-referential and closed in the sense that the very idea of constructing the city under ice emerged from Cold War strategy. The closed world of Camp Century established a temporary boundary between, on the one hand, the comfortable space controlled by US...

  15. Image Content Engine (ICE)

    Energy Technology Data Exchange (ETDEWEB)

    Brase, J M

    2007-03-26

    The Image Content Engine (ICE) is being developed to provide cueing assistance to human image analysts faced with increasingly large and intractable amounts of image data. The ICE architecture includes user configurable feature extraction pipelines which produce intermediate feature vector and match surface files which can then be accessed by interactive relational queries. Application of the feature extraction algorithms to large collections of images may be extremely time consuming and is launched as a batch job on a Linux cluster. The query interface accesses only the intermediate files and returns candidate hits nearly instantaneously. Queries may be posed for individual objects or collections. The query interface prompts the user for feedback, and applies relevance feedback algorithms to revise the feature vector weighting and focus on relevant search results. Examples of feature extraction and both model-based and search-by-example queries are presented.

  16. Animals and ICE

    DEFF Research Database (Denmark)

    van Hemmen, J Leo; Christensen-Dalsgaard, Jakob; Carr, Catherine E

    2016-01-01

    experimental and mathematical foundation, it is known that there is a low-frequency regime where the internal time difference (iTD) as perceived by the animal may well be 2-5 times higher than the external ITD, the interaural time difference, and that there is a frequency plateau over which the fraction i......TD/ITD is constant. There is also a high-frequency regime where the internal level (amplitude) difference iLD as perceived by the animal is much higher than the interaural level difference ILD measured externally between the two ears. The fundamental tympanic frequency segregates the two regimes. The present special...... issue devoted to "internally coupled ears" provides an overview of many aspects of ICE, be they acoustic, anatomical, auditory, mathematical, or neurobiological. A focus is on the hotly debated topic of what aspects of ICE animals actually exploit neuronally to localize a sound source....

  17. Novel Ice Mitigation Methods

    Science.gov (United States)

    2008-01-01

    After the loss of Columbia, there was great concern in the Space Shuttle program for the impact of debris against the leading edges of the Orbiter wings. It was quickly recognized that, in addition to impacts by foam, ice that formed on the liquid-oxygen bellows running down the outside of the External Tank could break free during launch and hit this sensitive area. A Center Director s Discretionary Fund (CDDF) project would concentrate on novel ideas that were potentially applicable. The most successful of the new concepts for ice mitigation involved shape memory alloy materials. These materials can be bent into a given shape and, when heated, will return to their original shape.

  18. Spatial dynamics of airborne infectious diseases

    OpenAIRE

    Robinson, M; Stilianakis, N. I.; Drossinos, Y.

    2011-01-01

    Disease outbreaks, such as those of Severe Acute Respiratory Syndrome in 2003 and the 2009 pandemic A(H1N1) influenza, have highlighted the potential for airborne transmission in indoor environments. Respirable pathogen-carrying droplets provide a vector for the spatial spread of infection with droplet transport determined by diffusive and convective processes. An epidemiological model describing the spatial dynamics of disease transmission is presented. The effects of an ambient airflow, as ...

  19. Airborne Chemical Sensing with Mobile Robots

    Science.gov (United States)

    Lilienthal, Achim J.; Loutfi, Amy; Duckett, Tom

    2006-01-01

    Airborne chemical sensing with mobile robots has been an active research area since the beginning of the 1990s. This article presents a review of research work in this field, including gas distribution mapping, trail guidance, and the different subtasks of gas source localisation. Due to the difficulty of modelling gas distribution in a real world environment with currently available simulation techniques, we focus largely on experimental work and do not consider publications that are purely based on simulations.

  20. Ice anaesthesia in procedural dermatology.

    Science.gov (United States)

    Dixit, Shreya; Lowe, Patricia; Fischer, Gayle; Lim, Adrian

    2013-11-01

    This article presents findings from a survey of Australian dermatologists who were questioned about their preferred pain control methods when carrying out injectable procedures. We also present, what is to the best of our knowledge, the first proof-of-concept experiment exploring the relationship between ice-to-skin contact time and skin surface temperature, using both ice wrapped in latex and ice wrapped in aluminium foil. Of 79 dermatologists 32 responded to the survey (41% response rate): 31 (97%) injected botulinum toxin type A (BTA) for dynamic lines, 26 (81%) injected BTA for hyperhidrosis, and 24 (75%) injected skin fillers. Ice anaesthesia was the most common method of pain control (75%) followed by use of topical anaesthesia (50%) such as EMLA, compound agents and lignocaine 4%. Ice wrapped in latex or latex-like material was the most common ice packaging used by those surveyed and the median ice-to-skin contact time was 10 s. The ice experiment results indicated that ice wrapped with aluminium foil was equivalent to ice wrapped in latex for short contact times (skin temperature with longer contact times (> 20 s). These findings will be of relevance to cosmetic and paediatric dermatologists or any area of procedural medicine where effective non-injectable pain control is required.

  1. Mercury’s Ice

    Institute of Scientific and Technical Information of China (English)

    1994-01-01

    The fiery planet Mercury, where the temperature at high noon can exceed 750°F, is not a place that you would expect to find ice. The closestplanet to the sun, this airless, cratered world appears devoid of any wa-ter. frozen or otherwise. But appearances can be deceiving, as proven by ateam of researchers from NASA’s Jet Propulsion Laboratory and the Cali-fornia Institute of Technology.

  2. Mars Ice Age, Simulated

    Science.gov (United States)

    2003-01-01

    December 17, 2003This simulated view shows Mars as it might have appeared during the height of a possible ice age in geologically recent time.Of all Solar System planets, Mars has the climate most like that of Earth. Both are sensitive to small changes in orbit and tilt. During a period about 2.1 million to 400,000 years ago, increased tilt of Mars' rotational axis caused increased solar heating at the poles. A new study using observations from NASA's Mars Global Surveyor and Mars Odyssey orbiters concludes that this polar warming caused mobilization of water vapor and dust into the atmosphere, and buildup of a surface deposit of ice and dust down to about 30 degrees latitude in both hemispheres. That is the equivalent of the southern Unites States or Saudi Arabia on Earth. Mars has been in an interglacial period characterized by less axial tilt for about the last 300,000 years. The ice-rich surface deposit has been degrading in the latitude zone of 30 degrees to 60 degrees as water-ice returns to the poles.In this illustration prepared for the December 18, 2003, cover of the journal Nature, the simulated surface deposit is superposed on a topography map based on altitude measurements by Global Surveyor and images from NASA's Viking orbiters of the 1970s.Mars Global Surveyor and Mars Odyssey are managed by NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology, Pasadena, for the NASA Office of Space Science, Washington.

  3. ICE SLURRY APPLICATIONS

    OpenAIRE

    Kauffeld, M.; Wang, M. J.; Goldstein, V.; Kasza, K. E.

    2010-01-01

    The role of secondary refrigerants is expected to grow as the focus on the reduction of greenhouse gas emissions increases. The effectiveness of secondary refrigerants can be improved when phase changing media are introduced in place of single phase media. Operating at temperatures below the freezing point of water, ice slurry facilitates several efficiency improvements such as reductions in pumping energy consumption as well as lowering the required temperature difference in heat exchangers ...

  4. Planetary Ices Attenuation Properties

    Science.gov (United States)

    McCarthy, Christine; Castillo-Rogez, Julie C.

    In this chapter, we review the topic of energy dissipation in the context of icy satellites experiencing tidal forcing. We describe the physics of mechanical dissipation, also known as attenuation, in polycrystalline ice and discuss the history of laboratory methods used to measure and understand it. Because many factors - such as microstructure, composition and defect state - can influence rheological behavior, we review what is known about the mechanisms responsible for attenuation in ice and what can be inferred from the properties of rocks, metals and ceramics. Since attenuation measured in the laboratory must be carefully scaled to geologic time and to planetary conditions in order to provide realistic extrapolation, we discuss various mechanical models that have been used, with varying degrees of success, to describe attenuation as a function of forcing frequency and temperature. We review the literature in which these models have been used to describe dissipation in the moons of Jupiter and Saturn. Finally, we address gaps in our present knowledge of planetary ice attenuation and provide suggestions for future inquiry.

  5. Cryospheric Applications of Modern Airborne Photogrammetry

    Science.gov (United States)

    Nolan, M.

    2014-12-01

    Airborne photogrammetry is undergoing a renaissance. Lower-cost equipment, more powerful software, and simplified methods have lowered the barriers-to-entry significantly and now allow repeat-mapping of cryospheric dynamics that were previously too expensive to consider. The current state-of-the-art is the ability to use an airborne equipment package costing less than $20,000 to make topographic maps on landscape-scales at 10 cm pixel size with a vertical repeatability of about 10 cm. Nearly any surface change on the order of decimeters can be measured using these techniques through analysis of time-series of such maps. This presentation will discuss these new methods and their application to cryospheric dynamics such as the measurement of snow depth, coastal erosion, valley-glacier volume-change, permafrost thaw, frost heave of infrastructure, river bed geomorphology, and aufeis melt. Because of the expense of other airborne methods, by necessity measurements of these dynamics are currently most often made on the ground along benchmark transects that are then extrapolated to the broader scale. The ability to directly measure entire landscapes with equal or higher accuracy than transects eliminates the need to extrapolate them and the ability to do so at lower costs than transects may revolutionize the way we approach studying change in the cryosphere, as well as our understanding of the cryosphere itself.

  6. Characterization of Ice Roughness Variations in Scaled Glaze Icing Conditions

    Science.gov (United States)

    McClain, Stephen T.; Vargas, Mario; Tsao, Jen-Ching

    2016-01-01

    Because of the significant influence of surface tension in governing the stability and breakdown of the liquid film in flooded stagnation regions of airfoils exposed to glaze icing conditions, the Weber number is expected to be a significant parameter governing the formation and evolution of ice roughness. To investigate the influence of the Weber number on roughness formation, 53.3-cm (21-in.) and 182.9-cm (72-in.) NACA 0012 airfoils were exposed to flow conditions with essentially the same Weber number and varying stagnation collection efficiency to illuminate similarities of the ice roughness created on the different airfoils. The airfoils were exposed to icing conditions in the Icing Research Tunnel (IRT) at the NASA Glenn Research Center. Following exposure to the icing event, the airfoils were then scanned using a ROMER Absolute Arm scanning system. The resulting point clouds were then analyzed using the self-organizing map approach of McClain and Kreeger (2013) to determine the spatial roughness variations along the surfaces of the iced airfoils. The roughness characteristics on each airfoil were then compared using the relative geometries of the airfoil. The results indicate that features of the ice shape and roughness such as glaze-ice plateau limits and maximum airfoil roughness were captured well by Weber number and collection efficiency scaling of glaze icing conditions. However, secondary ice roughness features relating the instability and waviness of the liquid film on the glaze-ice plateau surface are scaled based on physics that were not captured by the local collection efficiency variations.

  7. Floating Ice-Algal Aggregates below melting Arctic Sea Ice

    OpenAIRE

    Philipp Assmy; Jens K. Ehn; Mar Fernández-Méndez; Haakon Hop; Christian Katlein; Arild Sundfjord; Katrin Bluhm; Malin Daase; Anja Engel; Agneta Fransson; Granskog, Mats A.; Hudson, Stephen R.; Svein Kristiansen; Marcel Nicolaus; Ilka Peeken

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1 – 15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layer...

  8. Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd;

    2016-01-01

    using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been......Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... gravity data were 5-6 km. The airborne gravity survey database for landand marine areas has been compiled using ArcGIS geodatabase format in order to produce the update geological map of Sabah....

  9. The Spitzer ice legacy: Ice evolution from cores to protostars

    CERN Document Server

    Oberg, Karin I; Pontoppidan, Klaus M; Broek, Saskia van den; van Dishoeck, Ewine F; Bottinelli, Sandrine; Blake, Geoffrey A; Evans, Neal J

    2011-01-01

    Ices regulate much of the chemistry during star formation and account for up to 80% of the available oxygen and carbon. In this paper, we use the Spitzer c2d ice survey, complimented with data sets on ices in cloud cores and high-mass protostars, to determine standard ice abundances and to present a coherent picture of the evolution of ices during low- and high-mass star formation. The median ice composition H2O:CO:CO2:CH3OH:NH3:CH4:XCN is 100:29:29:3:5:5:0.3 and 100:13:13:4:5:2:0.6 toward low- and high-mass protostars, respectively, and 100:31:38:4:-:-:- in cloud cores. In the low-mass sample, the ice abundances with respect to H2O of CH4, NH3, and the component of CO2 mixed with H2O typically vary by <25%, indicative of co-formation with H2O. In contrast, some CO and CO2 ice components, XCN and CH3OH vary by factors 2-10 between the lower and upper quartile. The XCN band correlates with CO, consistent with its OCN- identification. The origin(s) of the different levels of ice abundance variations are cons...

  10. Ice slurry cooling research: Storage tank ice agglomeration and extraction

    Energy Technology Data Exchange (ETDEWEB)

    Kasza, K. [Argonne National Lab., IL (United States); Hayashi, Kanetoshi [NKK Corp., Kawasaki (Japan)

    1999-08-01

    A new facility has been built to conduct research and development on important issues related to implementing ice slurry cooling technology. Ongoing studies are generating important information on the factors that influence ice particle agglomeration in ice slurry storage tanks. The studies are also addressing the development of methods to minimize and monitor agglomeration and improve the efficiency and controllability of tank extraction of slurry for distribution to cooling loads. These engineering issues impede the utilization of the ice slurry cooling concept that has been under development by various groups.

  11. Floating ice-algal aggregates below melting arctic sea ice.

    Science.gov (United States)

    Assmy, Philipp; Ehn, Jens K; Fernández-Méndez, Mar; Hop, Haakon; Katlein, Christian; Sundfjord, Arild; Bluhm, Katrin; Daase, Malin; Engel, Anja; Fransson, Agneta; Granskog, Mats A; Hudson, Stephen R; Kristiansen, Svein; Nicolaus, Marcel; Peeken, Ilka; Renner, Angelika H H; Spreen, Gunnar; Tatarek, Agnieszka; Wiktor, Jozef

    2013-01-01

    During two consecutive cruises to the Eastern Central Arctic in late summer 2012, we observed floating algal aggregates in the melt-water layer below and between melting ice floes of first-year pack ice. The macroscopic (1-15 cm in diameter) aggregates had a mucous consistency and were dominated by typical ice-associated pennate diatoms embedded within the mucous matrix. Aggregates maintained buoyancy and accumulated just above a strong pycnocline that separated meltwater and seawater layers. We were able, for the first time, to obtain quantitative abundance and biomass estimates of these aggregates. Although their biomass and production on a square metre basis was small compared to ice-algal blooms, the floating ice-algal aggregates supported high levels of biological activity on the scale of the individual aggregate. In addition they constituted a food source for the ice-associated fauna as revealed by pigments indicative of zooplankton grazing, high abundance of naked ciliates, and ice amphipods associated with them. During the Arctic melt season, these floating aggregates likely play an important ecological role in an otherwise impoverished near-surface sea ice environment. Our findings provide important observations and measurements of a unique aggregate-based habitat during the 2012 record sea ice minimum year.

  12. Proceedings of the Airframe Icing Workshop

    Science.gov (United States)

    Colantonio, Ron O. (Editor)

    2009-01-01

    The NASA Glenn Research Center (GRC) has a long history of working with its partners towards the understanding of ice accretion formation and its associated degradation of aerodynamic performance. The June 9, 2009, Airframe Icing Workshop held at GRC provided an opportunity to examine the current NASA airframe icing research program and to dialogue on remaining and emerging airframe icing issues and research with the external community. Some of the airframe icing gaps identified included, but are not limited to, ice accretion simulation enhancements, three-dimensional benchmark icing database development, three-dimensional iced aerodynamics modeling, and technology development for a smart icing system.

  13. Temporal and spatial variability of the Greenland firn aquifer revealed by ground and airborne radar data

    Science.gov (United States)

    Miège, C.; Forster, R. R.; Koenig, L.; Brucker, L.; Box, J. E.; Burgess, E. W.; Solomon, D. K.

    2014-12-01

    During the last two decades, the Greenland ice sheet has been losing mass, significantly contributing to sea level rise (0.33±0.08 mm yr-1). In the meantime, summer surface melt has been increasing in both duration and extent, and subsequent runoff represents about half of the total mass lost. However, small-scale heterogeneous physical processes and residence times associated with meltwater formation, infiltration in the firn, refreezing and/or runoff remain unconstrained in coarser resolution numerical models, leading to significant error bars while estimating total runoff. In Southeast and South Greenland, widespread aquifers have been observed in relative high accumulation and melt regions, persisting throughout the year, storing a significant mass of water within the firn. The presence of a persistent water table within the firn aquifer is observed using a 400 MHz ground-penetrating radar and the 750 MHz airborne Accumulation Radar over the same location. In both radar echograms, a strong reflection is present, illustrating the important dielectric contrast between dry firn and water-saturated firn. Since 2011, NASA's Operation IceBridge mission allows us to produce an ice-sheet-wide map of the location and depth of the firn aquifer using the Accumulation Radar echograms. Over the last four years, from one spring to the next, repeated flight lines demonstrate a relatively steady short-term behavior of water in the aquifer with constant lateral boundaries (with a few exceptions) and water table surface. An earlier radar survey (1993) implies the aquifer presence by lack of bed return, but the study area was limited to the Helheim Glacier region. Within the aquifer, a relatively slow flow of water is inferred from 2-D hydrological flow modeling, while assuming a constant hydraulic conductivity in the aquifer. On the aquifer low-elevation lateral boundary, connection with crevasses are observed in the airborne radar echograms and documented in this study. More

  14. Measuring airborne microorganisms and dust from livestock houses

    OpenAIRE

    Yang Zhao, Yang

    2011-01-01

      Airborne transmission has been suspected to be responsible for epidemics of highly infectious disease in livestock production. In such transmission, the pathogenic microorganisms may associate with dust particles. However, the extent to which airborne transmission plays a role in the spread of diseases between farms, and the relationship between microorganisms and dust remain unclear. In order to better understand airborne transmission and to set up effective control techniques, this s...

  15. Scavenging of biomass burning refractory black carbon and ice nuclei in a Western Pacific extratropical storm

    Directory of Open Access Journals (Sweden)

    J. L. Stith

    2011-01-01

    Full Text Available In situ airborne sampling of refractory black carbon (rBC particles and Ice Nuclei (IN was conducted in and near an extratropical cyclonic storm in the Western Pacific Ocean during the Pacific Dust Experiment, PACDEX, in the spring of 2007. Airmass origins were from Eastern Asia. Cloud hydrometeors were evaporated by a counterflow virtual impactor and the residue was sampled by a single particle soot photometer (SP2 instrument and a continuous flow diffusion chamber ice nucleus detector. Clouds associated primarily with the warm sector of the storm were sampled at various locations and altitudes. In storm midlevels at temperatures where heterogeneous freezing is expected to be significant (here −24 to −29 °C, IN measurements from ice particle residues generally agreed well with simultaneous measurements of total ice concentrations provided that the measurements were made at ambient temperatures similar to those in the CFDC chamber, suggesting heterogeneous freezing as the dominant ice formation process in the mid levels of these warm sector clouds. Lower in the storm, at warmer temperatures (−22 to −6.4 °C, ice particle concentrations were similar to IN concentrations at CFDC chamber temperatures representative of colder temperatures. This is consistent with ice particles forming at storm mid-levels by heterogeneous freezing on IN, followed by sedimentation to lower altitudes. Homogeneous freezing did not appear to contribute significantly to midlevel ice concentrations and rime-splintering was also unlikely due to the absence of significant supercooled liquid water in the warm sector clouds. IN number concentrations were typically about a~factor of five to ten lower than simultaneous measurements of rBC concentrations in cloud.

  16. Airborne observations of far-infrared upwelling radiance in the Arctic

    Science.gov (United States)

    Libois, Quentin; Ivanescu, Liviu; Blanchet, Jean-Pierre; Schulz, Hannes; Bozem, Heiko; Leaitch, W. Richard; Burkart, Julia; Abbatt, Jonathan P. D.; Herber, Andreas B.; Aliabadi, Amir A.; Girard, Éric

    2016-12-01

    The first airborne measurements of the Far-InfraRed Radiometer (FIRR) were performed in April 2015 during the panarctic NETCARE campaign. Vertical profiles of spectral upwelling radiance in the range 8-50 µm were measured in clear and cloudy conditions from the surface up to 6 km. The clear sky profiles highlight the strong dependence of radiative fluxes to the temperature inversion typical of the Arctic. Measurements acquired for total column water vapour from 1.5 to 10.5 mm also underline the sensitivity of the far-infrared greenhouse effect to specific humidity. The cloudy cases show that optically thin ice clouds increase the cooling rate of the atmosphere, making them important pieces of the Arctic energy balance. One such cloud exhibited a very complex spatial structure, characterized by large horizontal heterogeneities at the kilometre scale. This emphasizes the difficulty of obtaining representative cloud observations with airborne measurements but also points out how challenging it is to model polar clouds radiative effects. These radiance measurements were successfully compared to simulations, suggesting that state-of-the-art radiative transfer models are suited to study the cold and dry Arctic atmosphere. Although FIRR in situ performances compare well to its laboratory performances, complementary simulations show that upgrading the FIRR radiometric resolution would greatly increase its sensitivity to atmospheric and cloud properties. Improved instrument temperature stability in flight and expected technological progress should help meet this objective. The campaign overall highlights the potential for airborne far-infrared radiometry and constitutes a relevant reference for future similar studies dedicated to the Arctic and for the development of spaceborne instruments.

  17. A new airborne Polar Nephelometer for the measurement of optical and microphysical cloud properties. Part II: Preliminary tests

    Directory of Open Access Journals (Sweden)

    O. Crépel

    Full Text Available A new optical sensor, the airborne Polar Nephelometer, has been tested in an open wind tunnel. The wind tunnel was operated in cloudy conditions including either cloud water droplets or ice crystals, or a mixture of these particles. The sensor is designed to measure the optical and microphysical parameters of cloud particles sized from a few micrometers to about 500 µm diameter. Basically, the probe measures the scattering phase function of an ensemble of cloud particles which intersect a collimated laser beam near the focal point of a paraboloidal mirror. From the measured scattering phase function the retrieval of the droplet-size spectra and subsequent derived quantities such as liquid water content and size parameters can be calculated using an inversion method. The particle phase discrimination (water droplets/ice particles can be derived from the shape of the scattering phase function and the sensitivity of the probe allows the detection of small ice crystals (typically of 5 µm diameter. The paper describes the preliminary results obtained by the prototype version of the Polar Nephelometer in various cloudy conditions. These results are compared with direct microphysical measurements obtained by usual PMS probes also mounted in the wind tunnel. Complementary results obtained in a cold chamber are presented in order to illustrate the reliability of the Polar Nephelometer in the presence of small ice crystals.

  18. High-Performance Airborne Optical Carbon Dioxide Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental species measurement on airborne atmospheric research craft is a demanding application for optical sensing techniques. Yet optical techniques offer...

  19. High-Performance Airborne Optical Carbon Dioxide Analyzer Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Environmental species measurement on airborne atmospheric research craft is a demanding application for optical sensing techniques. Yet optical techniques offer many...

  20. THE INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    1977-01-01

    ICE was built during 1977, in a record time of 9 months, using the modified bending magnets of the g-2 muon storage ring (see 7405430). ICE was a proton and antiproton storage ring, built to verify the validity of stochastic and electron cooling for the antiproton project to be launched in 1978. More on the ICE experimental programme with 7802099. See also 7809081, 7908242.

  1. Ice cream with additional value

    OpenAIRE

    Melicharová, Barbora

    2016-01-01

    The aim of this bachelor thesis is to summarise current knowledge about production and properties of ice cream with an additional value. Nowadays, incorporation of probiotics is considered as the most intensively studied possibility for functional ice cream manufacture. Their viability depends on the kind of a microorganism, for example bifidobacteria are mostly less stable than lactobacilli in ice cream matrix. Lactobacillus acidophilus AB518, AK414, Lactobacillus agilis AA1773, AC1888 and L...

  2. Ice-driven CO2 feedback on ice volume

    Directory of Open Access Journals (Sweden)

    W. F. Ruddiman

    2006-02-01

    Full Text Available The origin of the major ice-sheet variations during the last 2.7 million years remains a mystery. Neither the dominant 41 000-year cycles in δ18O and ice-volume during the late Pliocene and early Pleistocene nor the late-Pleistocene variations near 100 000 years is a linear (''Milankovitch'' response to summer insolation forcing. Both result from non-linear behavior within the climate system. Greenhouse gases (primarily CO2 are a plausible source of this non-linearity, but confusion has persisted over whether the gases force ice volume or are a positive feedback. During the last several hundred thousand years, CO2 and ice volume (marine δ18O have varied in phase both at the 41 000-year obliquity cycle and within the ~100 000-year eccentricity band. This timing argues against greenhouse-gas forcing of a slow ice response and instead favors ice control of a fast CO2 response. Because the effect of CO2 on temperature is logarithmic, the temperature/CO2 feedback on ice volume is also logarithmic. In the schematic model proposed here, ice sheets were forced by insolation changes at the precession and obliquity cycles prior to 0.9 million years ago and responded in a linear way, but CO2 feedback amplified (roughly doubled the ice response at 41 000 years. After 0.9 million years ago, as polar climates continued to cool, ablation weakened. CO2 feedback continued to amplify ice-sheet growth at 41 000-year intervals, but weaker ablation permitted ice to survive subsequent insolation maxima of low intensity. These longer-lived ice sheets persisted until peaks in northern summer insolation paced abrupt deglaciations every 100 000±15 000 years. Most ice melting during deglaciations was achieved by the same CO2/temperature feedback that had built the ice sheets, but now acting in the opposite direction. Several processes have the northern geographic origin, as well as the requisite orbital tempo and phasing, to have been the mechanisms by which ice sheets

  3. Ices in the Solar Nebula

    Science.gov (United States)

    Robinson, Sarah

    2008-05-01

    The centerpiece of this proposal is my hypothesis that other ices besides H2O help build giant planet cores. I propose a theory project on the ice composition of planet-forming regions and a related observing project on ice detection and mineralogy in debris disks. Together, the theory and observing projects will answer two questions: 1. Where are the condensation fronts of abundant volatiles located in relation to giant planet feeding zones? 2. How much does the presence of CHON ices in planetesimals speed up giant planet formation?

  4. Climatic implications of ice microphysics

    Energy Technology Data Exchange (ETDEWEB)

    Liou, K.N. [Univ. of Utah, Salt Lake City, UT (United States)

    1995-09-01

    Based on aircraft measurements of mid-latitude cirrus clouds, ice crystal size distribution and ice water content (IWC) are shown to be dependent on temperature. This dependence is also evident from the theoretical consideration of ice crystal growth. Using simple models of the diffusion and accretion growth of ice particles, the computed mean ice crystal size and IWC compare reasonably well with the measured mean values. The temperature dependence of ice crystal size and IWC has important climatic implications in that the temperature field perturbed by external radiative forcings, such as greenhouse warming, can alter the composition of ice crystal clouds. Through radiative transfer, ice microphysics can in turn affect the temperature field. Higher IWC would increase cloud solar albedo and infrared emissivity, while for a given IWC, larger crystals would reduce cloud albedo and emissivity. The competing effects produced by greenhouse temperature perturbations via ice micro-physics and radiation interactions and feedbacks are assessed by a one-dimensional radiative-convective climate model that includes an advanced radiation parameterization program. 3 figs.

  5. Fluid dynamics of planetary ices

    CERN Document Server

    Greve, Ralf

    2009-01-01

    The role of water ice in the solar system is reviewed from a fluid-dynamical point of view. On Earth and Mars, water ice forms ice sheets, ice caps and glaciers at the surface, which show glacial flow under their own weight. By contrast, water ice is a major constituent of the bulk volume of the icy satellites in the outer solar system, and ice flow can occur as thermal convection. The rheology of polycrystalline aggregates of ordinary, hexagonal ice Ih is described by a power law, different forms of which are discussed. The temperature dependence of the ice viscosity follows an Arrhenius law. Therefore, the flow of ice in a planetary environment constitutes a thermo-mechanically coupled problem; its model equations are obtained by inserting the flow law and the thermodynamic material equations in the balance laws of mass, momentum and energy. As an example of gravity-driven flow, the polar caps of Mars are discussed. For the north-polar cap, large-scale flow velocities of the order of 0.1...1 mm/a are likely...

  6. Temperature profile for glacial ice at the South Pole: implications for life in a nearby subglacial lake.

    Science.gov (United States)

    Price, P Buford; Nagornov, Oleg V; Bay, Ryan; Chirkin, Dmitry; He, Yudong; Miocinovic, Predrag; Richards, Austin; Woschnagg, Kurt; Koci, Bruce; Zagorodnov, Victor

    2002-06-11

    Airborne radar has detected approximately 100 lakes under the Antarctic ice cap, the largest of which is Lake Vostok. International planning is underway to search in Lake Vostok for microbial life that may have evolved in isolation from surface life for millions of years. It is thought, however, that the lakes may be hydraulically interconnected. If so, unsterile drilling would contaminate not just one but many of them. Here we report measurements of temperature vs. depth down to 2,345 m in ice at the South Pole, within 10 km from a subglacial lake seen by airborne radar profiling. We infer a temperature at the 2,810-m deep base of the South Pole ice and at the lake of -9 degrees C, which is 7 degrees C below the pressure-induced melting temperature of freshwater ice. To produce the strong radar signal, the frozen lake must consist of a mix of sediment and ice in a flat bed, formed before permanent Antarctic glaciation. It may, like Siberian and Antarctic permafrost, be rich in microbial life. Because of its hydraulic isolation, proximity to South Pole Station infrastructure, and analog to a Martian polar cap, it is an ideal place to test a sterile drill before risking contamination of Lake Vostok. From the semiempirical expression for strain rate vs. shear stress, we estimate shear vs. depth and show that the IceCube neutrino observatory will be able to map the three-dimensional ice-flow field within a larger volume (0.5 km(3)) and at lower temperatures (-20 degrees C to -35 degrees C) than has heretofore been possible.

  7. Design of an Autonomous Underwater Vehicle to Calibrate the Europa Clipper Ice-Penetrating Radar

    Science.gov (United States)

    Stone, W.; Siegel, V.; Kimball, P.; Richmond, K.; Flesher, C.; Hogan, B.; Lelievre, S.

    2013-12-01

    Jupiter's moon Europa has been prioritized as the target for the Europa Clipper flyby mission. A key science objective for the mission is to remotely characterize the ice shell and any subsurface water, including their heterogeneity, and the nature of surface-ice-ocean exchange. This objective is a critical component of the mission's overarching goal of assessing the habitability of Europa. The instrument targeted for addressing key aspects of this goal is an ice-penetrating radar (IPR). As a primary goal of our work, we will tightly couple airborne IPR studies of the Ross Ice Shelf by the Europa Clipper radar team with ground-truth data to be obtained from sub-glacial sonar and bio-geochemical mapping of the corresponding ice-water and water-rock interfaces using an advanced autonomous underwater vehicle (AUV). The ARTEMIS vehicle - a heavily morphed long-range, low drag variant of the highly successful 4-degree-of-freedom hovering sub-ice ENDURANCE bot -- will be deployed from a sea-ice drill hole adjacent the McMurdo Ice Shelf (MIS) and will perform three classes of missions. The first includes original exploration and high definition mapping of both the ice-water interface and the benthic interface on a length scale (approximately 10 kilometers under-ice penetration radius) that will definitively tie it to the synchronous airborne IPR over-flights. These exploration and mapping missions will be conducted at up to 10 different locations along the MIS in order to capture varying ice thickness and seawater intrusion into the ice shelf. Following initial mapping characterization, the vehicle will conduct astrobiology-relevant proximity operations using bio-assay sensors (custom-designed UV fluorescence and machine-vision-processed optical imagery) followed by point-targeted studies at regions of interest. Sample returns from the ice-water interface will be triggered autonomously using real-time-processed instrument data and onboard decision-to-collect algorithms

  8. Wave-Ice and Air-Ice-Ocean Interaction During the Chukchi Sea Ice Edge Advance

    Science.gov (United States)

    2014-09-30

    Ocean gliders Ahead of ice edge Upper ocean (0-200m) T, S, O2, bio- optics , currents During cruise CU-B UAF Autonomous underwater vehicle (AUV...Under ice, up to 50km transects Ice thickness, floe-size distribution, waves, upper ocean properties ADCP, CTD, camera, multibeam sonar...WBMS broadband multibeam sonar, a Nortek 500 kHz AD2CP, and a hyperspectral radiometer. A Seabird Fastcat-49 CTD will also be added. This ROV will

  9. On Wave-Ice Interaction in the Arctic Marginal Ice Zone: Dispersion, Attenuation, and Ice Response

    Science.gov (United States)

    2016-06-01

    brine channels add to the porosity of ice. It turns out that porosity is inversely proportional to the flexural strength, i.e. very porous ice has...North and South Pole achieved the feat in 1908 (or possibly 1909) and 1911, respectively. By the mid-1940s, the Soviets were by far the leaders in...eventually converted into a research station (the first North Pole research station) which spent 812 days drifting in the ice. The captain’s log was

  10. Delicious ice cream, why does salt thaw ice?

    Science.gov (United States)

    Bagnoli, Franco

    2016-04-01

    During winter, we use to spread salt to thaw ice on the streets. In a physics show, one can be almost sure that after showing this effect, the answer to what happens to temperature will be "it increases". But no! It goes down, in such amount that one can complement the show by producing hand-made ice creams [1].

  11. Albedo evolution of seasonal Arctic sea ice

    Science.gov (United States)

    Perovich, Donald K.; Polashenski, Christopher

    2012-04-01

    There is an ongoing shift in the Arctic sea ice cover from multiyear ice to seasonal ice. Here we examine the impact of this shift on sea ice albedo. Our analysis of observations from four years of field experiments indicates that seasonal ice undergoes an albedo evolution with seven phases; cold snow, melting snow, pond formation, pond drainage, pond evolution, open water, and freezeup. Once surface ice melt begins, seasonal ice albedos are consistently less than albedos for multiyear ice resulting in more solar heat absorbed in the ice and transmitted to the ocean. The shift from a multiyear to seasonal ice cover has significant implications for the heat and mass budget of the ice and for primary productivity in the upper ocean. There will be enhanced melting of the ice cover and an increase in the amount of sunlight available in the upper ocean.

  12. Design and performance Assessment of an Airborne Ice Sounding Radar Front-End

    DEFF Research Database (Denmark)

    Hernández, Carlos Cilla; Krozer, Viktor; Vidkjær, Jens

    2008-01-01

    -phase and out-of-phase power dividers with a relative bandwidth of 20% and more than 75W CW power handling, high power SPDT PIN switch with 90W CW power handling and a 70W CW High efficiency LDMOS power amplifier with ≫60% power-added efficiency. The system comprises also a digital signal generator, a digital...

  13. The 20th century retreat of ice caps in Iceland derived from airborne SAR

    DEFF Research Database (Denmark)

    Magnússon, Eyjólfur; Björnsson, Helgi; Dall, Jørgen

    2005-01-01

    they had all recently surged in 1998 as was presumably the case when the outermost moraines were formed. The major contributor to the area decrease is therefore climate changes in the 20th century even though the glacier retreat has been interrupted by short-lived surges. Moraines associated with most...... of the surges in W-Vatnajokull in the 20th century are observed in the SAR data including the most recent surges in the 1990s. Interestingly no push moraines were observed in front of the surge advance, but the moraines appear when the glaciers start retreating. We estimate that the collective decrease...... of the outlets of western Vatnajokull since maximum Neoglacial extent of each outlet, is log km(2) (6.7%) corresponding to an average retreat of 850 in over a 130 km long margin. In the same period the outlet Slettjokull, in N-Myrdalsjokull, has decreased by 33 km(2) (20%) corresponding to an average retreat...

  14. Airborne Laser Sea Ice Profiles Near a Drifting Camp, April 1977.

    Science.gov (United States)

    1979-06-01

    C1 . o- 9, j," pca W 5z". . . - - ]- N’~~ c1 ~ W N I 44 ~~ I ~~~~ A on~~~~~~C ~ ’ -o 4,,., , -"*" ,a.C O N C. .4 11 1...0 c 0 .a V.- .- .. .3 .--~ .9 ..~ 4 -. . .. N C o .4 ** -- N C 4 , . . 0 0 - 0 O c C - 5. .:o’- c1 ..c.,0 C~ n~r-.I0J-. . .0- U .0 - 0 .l . W ~ C .. .O...CNCO " *~, ., 3 4 C, 3 W 0 N"Cn.p,,4C0,C..,C... 0 Nif * C~C.p...p..Cp. N * a’ - ’~ - . ,. - .,’s 4 ’ e 3’... C.3~~C. 3 )C-=*~~CC, - .,C𔃽C’e , ~ -..

  15. Sea Ice Processes

    Science.gov (United States)

    1988-01-01

    aq pnoiqs suol)0!pOid AixoolQA 00! 191100 (1I ’uoTow poAlosqo aql jo lqlgti 04) ol a~xe juqp suotioaJip 4)!A% parto s~t S stqi pule ’spoods 001 a)tUJT...to provide information as ating characteristics of PIPS. These factors in- to processes and their scales (as ascertained by elude the vertical grid...warranted horizontal compression being compensated by at this time. Further investigation is needed. vertical motion. In the case of ice, upward The space

  16. Ice-driven CO2 feedback on ice volume

    Directory of Open Access Journals (Sweden)

    W. F. Ruddiman

    2006-01-01

    Full Text Available The origin of the major ice-sheet variations during the last 2.7 million years is a long-standing mystery. Neither the dominant 41 000-year cycles in δ18O/ice-volume during the late Pliocene and early Pleistocene nor the late-Pleistocene oscillations near 100 000 years is a linear ('Milankovitch' response to summer insolation forcing. Both responses must result from non-linear behavior within the climate system. Greenhouse gases (primarily CO2 are a plausible source of the required non-linearity, but confusion has persisted over whether the gases force ice volume or are a positive feedback. During the last several hundred thousand years, CO2 and ice volume (marine δ18O have varied in phase at the 41 000-year obliquity cycle and nearly in phase within the ~100 000-year band. This timing rules out greenhouse-gas forcing of a very slow ice response and instead favors ice control of a fast CO2 response. In the schematic model proposed here, ice sheets responded linearly to insolation forcing at the precession and obliquity cycles prior to 0.9 million years ago, but CO2 feedback amplified the ice response at the 41 000-year period by a factor of approximately two. After 0.9 million years ago, with slow polar cooling, ablation weakened. CO2 feedback continued to amplify ice-sheet growth every 41 000 years, but weaker ablation permitted some ice to survive insolation maxima of low intensity. Step-wise growth of these longer-lived ice sheets continued until peaks in northern summer insolation produced abrupt deglaciations every ~85 000 to ~115 000 years. Most of the deglacial ice melting resulted from the same CO2/temperature feedback that had built the ice sheets. Several processes have the northern geographic origin, as well as the requisite orbital tempo and phasing, to be candidate mechanisms for ice-sheet control of CO2 and their own feedback.

  17. Arctic Sea Ice Predictability and the Sea Ice Prediction Network

    Science.gov (United States)

    Wiggins, H. V.; Stroeve, J. C.

    2014-12-01

    Drastic reductions in Arctic sea ice cover have increased the demand for Arctic sea ice predictions by a range of stakeholders, including local communities, resource managers, industry and the public. The science of sea-ice prediction has been challenged to keep up with these developments. Efforts such as the SEARCH Sea Ice Outlook (SIO; http://www.arcus.org/sipn/sea-ice-outlook) and the Sea Ice for Walrus Outlook have provided a forum for the international sea-ice prediction and observing community to explore and compare different approaches. The SIO, originally organized by the Study of Environmental Change (SEARCH), is now managed by the new Sea Ice Prediction Network (SIPN), which is building a collaborative network of scientists and stakeholders to improve arctic sea ice prediction. The SIO synthesizes predictions from a variety of methods, including heuristic and from a statistical and/or dynamical model. In a recent study, SIO data from 2008 to 2013 were analyzed. The analysis revealed that in some years the predictions were very successful, in other years they were not. Years that were anomalous compared to the long-term trend have proven more difficult to predict, regardless of which method was employed. This year, in response to feedback from users and contributors to the SIO, several enhancements have been made to the SIO reports. One is to encourage contributors to provide spatial probability maps of sea ice cover in September and the first day each location becomes ice-free; these are an example of subseasonal to seasonal, local-scale predictions. Another enhancement is a separate analysis of the modeling contributions. In the June 2014 SIO report, 10 of 28 outlooks were produced from models that explicitly simulate sea ice from dynamic-thermodynamic sea ice models. Half of the models included fully-coupled (atmosphere, ice, and ocean) models that additionally employ data assimilation. Both of these subsets (models and coupled models with data

  18. Analysis of a jet stream induced gravity wave associated with an observed ice cloud over Greenland

    Directory of Open Access Journals (Sweden)

    S. Buss

    2004-01-01

    Full Text Available A polar stratospheric ice cloud (PSC type II was observed by airborne lidar above Greenland on 14 January 2000. It was the unique observation of an ice cloud over Greenland during the SOLVE/THESEO 2000 campaign. Mesoscale simulations with the hydrostatic HRM model are presented which, in contrast to global analyses, are capable to produce a vertically propagating gravity wave that induces the low temperatures at the level of the PSC afforded for the ice formation. The simulated minimum temperature is ~8 K below the driving analyses and ~4.5 K below the frost point, exactly coinciding with the location of the observed ice cloud. Despite the high elevations of the Greenland orography the simulated gravity wave is not a mountain wave. Analyses of the horizontal wind divergence, of the background wind profiles, of backward gravity wave ray-tracing trajectories, of HRM experiments with reduced Greenland topography and of several diagnostics near the tropopause level provide evidence that the wave is emitted from an intense, rapidly evolving, anticyclonically curved jet stream. The precise physical process responsible for the wave emission could not be identified definitely, but geostrophic adjustment and shear instability are likely candidates. In order to evaluate the potential frequency of such non-orographic polar stratospheric cloud events, the non-linear balance equation diagnostic is performed for the winter 1999/2000. It indicates that ice-PSCs are only occasionally generated by gravity waves emanating from spontaneous adjustment.

  19. Primary spectrum and composition with IceCube/IceTop

    CERN Document Server

    ,

    2016-01-01

    IceCube, with its surface array IceTop, detects three different components of extensive air showers: the total signal at the surface, GeV muons in the periphery of the showers and TeV muons in the deep array of IceCube. The spectrum is measured with high resolution from the knee to the ankle with IceTop. Composition and spectrum are extracted from events seen in coincidence by the surface array and the deep array of IceCube. The muon lateral distribution at the surface is obtained from the data and used to provide a measurement of the muon density at 600 meters from the shower core up to 30 PeV. Results are compared to measurements from other experiments to obtain an overview of the spectrum and composition over an extended range of energy. Consistency of the surface muon measurements with hadronic interaction models and with measurements at higher energy is discussed.

  20. Combined Use of Airborne Lidar and DBInSAR Data to Estimate LAI in Temperate Mixed Forests

    Science.gov (United States)

    Peduzzi, Alicia; Wynne, Randolph Hamilton; Thomas, Valerie A.; Nelson, Ross F.; Reis, James J.; Sanford, Mark

    2012-01-01

    The objective of this study was to determine whether leaf area index (LAI) in temperate mixed forests is best estimated using multiple-return airborne laser scanning (lidar) data or dual-band, single-pass interferometric synthetic aperture radar data (from GeoSAR) alone, or both in combination. In situ measurements of LAI were made using the LiCor LAI-2000 Plant Canopy Analyzer on 61 plots (21 hardwood, 36 pine, 4 mixed pine hardwood; stand age ranging from 12-164 years; mean height ranging from 0.4 to 41.2 m) in the Appomattox-Buckingham State Forest, Virginia, USA. Lidar distributional metrics were calculated for all returns and for ten one meter deep crown density slices (a new metric), five above and five below the mode of the vegetation returns for each plot. GeoSAR metrics were calculated from the X-band backscatter coefficients (four looks) as well as both X- and P-band interferometric heights and magnitudes for each plot. Lidar metrics alone explained 69% of the variability in LAI, while GeoSAR metrics alone explained 52%. However, combining the lidar and GeoSAR metrics increased the R2 to 0.77 with a CV-RMSE of 0.42. This study indicates the clear potential for X-band backscatter and interferometric height (both now available from spaceborne sensors), when combined with small-footprint lidar data, to improve LAI estimation in temperate mixed forests.

  1. Survival and ice nucleation activity of bacteria as aerosols in a cloud simulation chamber

    Directory of Open Access Journals (Sweden)

    P. Amato

    2015-02-01

    Full Text Available The residence time of bacterial cells in the atmosphere is predictable by numerical models. However, estimations of their aerial dispersion as living entities are limited by lacks of information concerning survival rates and behavior in relation to atmospheric water. Here we investigate the viability and ice nucleation (IN activity of typical atmospheric ice nucleation active bacteria (Pseudomonas syringae and P. fluorescens when airborne in a cloud simulation chamber (AIDA, Karlsruhe, Germany. Cell suspensions were sprayed into the chamber and aerosol samples were collected by impingement at designated times over a total duration of up to 18 h, and at some occasions after dissipation of a cloud formed by depressurization. Aerosol concentration was monitored simultaneously by online instruments. The cultivability of airborne cells decreased exponentially over time with a half-life time of 250 ± 30 min (about 3.5 to 4.5 h. In contrast, IN activity remained unchanged for several hours after aerosolization, demonstrating that IN activity was maintained after cell death. Interestingly, the relative abundance of IN active cells still airborne in the chamber was strongly decreased after cloud formation and dissipation. This illustrates the preferential precipitation of IN active cells by wet processes. Our results indicate that from 106 = cells aerosolized from a surface, one would survive the average duration of its atmospheric journey estimated at 3.4 days. Statistically, this corresponds to the emission of 1 cell that achieves dissemination every ~33 min per m2 of cultivated crops fields, a strong source of airborne bacteria. Based on the observed survival rates, depending on wind speed, the trajectory endpoint could be situated several hundreds to thousands of kilometers from the emission source. These results should improve the representation of the aerial dissemination of bacteria in numeric models.

  2. Arctic sea-ice ridges—Safe heavens for sea-ice fauna during periods of extreme ice melt?

    Science.gov (United States)

    Gradinger, Rolf; Bluhm, Bodil; Iken, Katrin

    2010-01-01

    The abundances and distribution of metazoan within-ice meiofauna (13 stations) and under-ice fauna (12 stations) were investigated in level sea ice and sea-ice ridges in the Chukchi/Beaufort Seas and Canada Basin in June/July 2005 using a combination of ice coring and SCUBA diving. Ice meiofauna abundance was estimated based on live counts in the bottom 30 cm of level sea ice based on triplicate ice core sampling at each location, and in individual ice chunks from ridges at four locations. Under-ice amphipods were counted in situ in replicate ( N=24-65 per station) 0.25 m 2 quadrats using SCUBA to a maximum water depth of 12 m. In level sea ice, the most abundant ice meiofauna groups were Turbellaria (46%), Nematoda (35%), and Harpacticoida (19%), with overall low abundances per station that ranged from 0.0 to 10.9 ind l -1 (median 0.8 ind l -1). In level ice, low ice algal pigment concentrations (3 m where abundances were up to 42-fold higher compared with level ice. We propose that the summer ice melt impacted meiofauna and under-ice amphipod abundance and distribution through (a) flushing, and (b) enhanced salinity stress at thinner level sea ice (less than 3 m thickness). We further suggest that pressure ridges, which extend into deeper, high-salinity water, become accumulation regions for ice meiofauna and under-ice amphipods in summer. Pressure ridges thus might be crucial for faunal survival during periods of enhanced summer ice melt. Previous estimates of Arctic sea ice meiofauna and under-ice amphipods on regional and pan-Arctic scales likely underestimate abundances at least in summer because they typically do not include pressure ridges.

  3. NEON Airborne Remote Sensing of Terrestrial Ecosystems

    Science.gov (United States)

    Kampe, T. U.; Leisso, N.; Krause, K.; Karpowicz, B. M.

    2012-12-01

    The National Ecological Observatory Network (NEON) is the continental-scale research platform that will collect information on ecosystems across the United States to advance our understanding and ability to forecast environmental change at the continental scale. One of NEON's observing systems, the Airborne Observation Platform (AOP), will fly an instrument suite consisting of a high-fidelity visible-to-shortwave infrared imaging spectrometer, a full waveform small footprint LiDAR, and a high-resolution digital camera on a low-altitude aircraft platform. NEON AOP is focused on acquiring data on several terrestrial Essential Climate Variables including bioclimate, biodiversity, biogeochemistry, and land use products. These variables are collected throughout a network of 60 sites across the Continental United States, Alaska, Hawaii and Puerto Rico via ground-based and airborne measurements. Airborne remote sensing plays a critical role by providing measurements at the scale of individual shrubs and larger plants over hundreds of square kilometers. The NEON AOP plays the role of bridging the spatial scales from that of individual organisms and stands to the scale of satellite-based remote sensing. NEON is building 3 airborne systems to facilitate the routine coverage of NEON sites and provide the capacity to respond to investigator requests for specific projects. The first NEON imaging spectrometer, a next-generation VSWIR instrument, was recently delivered to NEON by JPL. This instrument has been integrated with a small-footprint waveform LiDAR on the first NEON airborne platform (AOP-1). A series of AOP-1 test flights were conducted during the first year of NEON's construction phase. The goal of these flights was to test out instrument functionality and performance, exercise remote sensing collection protocols, and provide provisional data for algorithm and data product validation. These test flights focused the following questions: What is the optimal remote

  4. Observed microphysical changes in Arctic mixed-phase clouds when transitioning from sea ice to open ocean

    Science.gov (United States)

    Young, Gillian; Jones, Hazel M.; Choularton, Thomas W.; Crosier, Jonathan; Bower, Keith N.; Gallagher, Martin W.; Davies, Rhiannon S.; Renfrew, Ian A.; Elvidge, Andrew D.; Darbyshire, Eoghan; Marenco, Franco; Brown, Philip R. A.; Ricketts, Hugo M. A.; Connolly, Paul J.; Lloyd, Gary; Williams, Paul I.; Allan, James D.; Taylor, Jonathan W.; Liu, Dantong; Flynn, Michael J.

    2016-11-01

    In situ airborne observations of cloud microphysics, aerosol properties, and thermodynamic structure over the transition from sea ice to ocean are presented from the Aerosol-Cloud Coupling And Climate Interactions in the Arctic (ACCACIA) campaign. A case study from 23 March 2013 provides a unique view of the cloud microphysical changes over this transition under cold-air outbreak conditions. Cloud base lifted and cloud depth increased over the transition from sea ice to ocean. Mean droplet number concentrations, Ndrop, also increased from 110 ± 36 cm-3 over the sea ice to 145 ± 54 cm-3 over the marginal ice zone (MIZ). Downstream over the ocean, Ndrop decreased to 63 ± 30 cm-3. This reduction was attributed to enhanced collision-coalescence of droplets within the deep ocean cloud layer. The liquid water content increased almost four fold over the transition and this, in conjunction with the deeper cloud layer, allowed rimed snowflakes to develop and precipitate out of cloud base downstream over the ocean. The ice properties of the cloud remained approximately constant over the transition. Observed ice crystal number concentrations averaged approximately 0.5-1.5 L-1, suggesting only primary ice nucleation was active; however, there was evidence of crystal fragmentation at cloud base over the ocean. Little variation in aerosol particle number concentrations was observed between the different surface conditions; however, some variability with altitude was observed, with notably greater concentrations measured at higher altitudes ( > 800 m) over the sea ice. Near-surface boundary layer temperatures increased by 13 °C from sea ice to ocean, with corresponding increases in surface heat fluxes and turbulent kinetic energy. These significant thermodynamic changes were concluded to be the primary driver of the microphysical evolution of the cloud. This study represents the first investigation, using in situ airborne observations, of cloud microphysical changes with

  5. Grease ice in basin-scale sea-ice ocean models

    OpenAIRE

    Lars H. Smedsrud; Martin, Torge

    2015-01-01

    The first stage of sea-ice formation is often grease ice, a mixture of sea water and frazil ice crystals. Over time, grease ice typically congeals first to pancake ice floes and then to a solid sea-ice cover. Grease ice is commonly not explicitly simulated in basin-scale sea-ice ocean models, though it affects oceanic heat loss and ice growth and is expected to play a greater role in a more seasonally icecovered Arctic Ocean. We present an approach to simulate the grease-ice layer with, as ba...

  6. Laser links for mobile airborne nodes

    Science.gov (United States)

    Griethe, Wolfgang; Knapek, Markus; Horwath, Joachim

    2015-05-01

    Remotely Piloted Aircrafts (RPA's) and especially Medium Altitude Long Endurance (MALE) and High Altitude Long Endurance (HALE) are currently operated over long distances, often across several continents. This is only made possible by maintaining Beyond Line Of Side (BLOS) radio links between ground control stations and unmanned vehicles via geostationary (GEO) satellites. The radio links are usually operated in the Ku-frequency band and used for both, vehicle command & control (C2) - it also refers to Command and Non-Payload Communication (CNPC) - as well as transmission of intelligence data - the associated communication stream also refers to Payload Link (PL). Even though this scheme of communication is common practice today, various other issues are raised thereby. The paper shows that the current existing problems can be solved by using the latest technologies combined with altered intuitive communication strategies. In this context laser communication is discussed as a promising technology for airborne applications. It is clearly seen that for tactical reasons, as for instance RPA cooperative flying, Air-to-Air communications (A2A) is more advantageous than GEO satellite communications (SatCom). Hence, together with in-flight test results the paper presents a design for a lightweight airborne laser terminal, suitable for use onboard manned or unmanned airborne nodes. The advantages of LaserCom in combination with Intelligence, Surveillance and Reconnaissance (ISR) technologies particularly for Persistent Wide Area Surveillance (PWAS) are highlighted. Technical challenges for flying LaserCom terminals aboard RPA's are outlined. The paper leads to the conclusion that by combining both, LaserCom and ISR, a new quality for an overall system arises which is more than just the sum of two separate key technologies.

  7. Even Shallower Exploration with Airborne Electromagnetics

    Science.gov (United States)

    Auken, E.; Christiansen, A. V.; Kirkegaard, C.; Nyboe, N. S.; Sørensen, K.

    2015-12-01

    Airborne electromagnetics (EM) is in many ways undergoing the same type rapid technological development as seen in the telecommunication industry. These developments are driven by a steadily increasing demand for exploration of minerals, groundwater and geotechnical targets. The latter two areas demand shallow and accurate resolution of the near surface geology in terms of both resistivity and spatial delineation of the sedimentary layers. Airborne EM systems measure the grounds electromagnetic response when subject to either a continuous discrete sinusoidal transmitter signal (frequency domain) or by measuring the decay of currents induced in the ground by rapid transmission of transient pulses (time domain). In the last decade almost all new developments of both instrument hardware and data processing techniques has focused around time domain systems. Here we present a concept for measuring the time domain response even before the transient transmitter current has been turned off. Our approach relies on a combination of new instrument hardware and novel modeling algorithms. The newly developed hardware allows for measuring the instruments complete transfer function which is convolved with the synthetic earth response in the inversion algorithm. The effect is that earth response data measured while the transmitter current is turned off can be included in the inversion, significantly increasing the amount of available information. We demonstrate the technique using both synthetic and field data. The synthetic examples provide insight on the physics during the turn off process and the field examples document the robustness of the method. Geological near surface structures can now be resolved to a degree that is unprecedented to the best of our knowledge, making airborne EM even more attractive and cost-effective for exploration of water and minerals that are crucial for the function of our societies.

  8. Topology optimized cloak for airborne sound

    DEFF Research Database (Denmark)

    Andkjær, Jacob Anders; Sigmund, Ole

    2013-01-01

    Directional acoustic cloaks that conceal an aluminum cylinder for airborne sound waves are presented in this paper. Subwavelength cylindrical aluminum inclusions in air constitute the cloak design to aid practical realizations. The positions and radii of the subwavelength cylinders are determined...... by minimizing scattering from the cloak-structure and cylinder using the gradient-based topology optimization method. In the final optimization step, the radii of the subwavelength cylinders are constrained to three discrete values. A near-perfect narrow-banded and angular cloaking effect is obtained...

  9. Voxel inversion of airborne EM data

    DEFF Research Database (Denmark)

    Fiandaca, Gianluca G.; Auken, Esben; Christiansen, Anders Vest C A.V.C.;

    2013-01-01

    We present a geophysical inversion algorithm working directly in a voxel grid disconnected from the actual measuring points, which allows for straightforward integration of different data types in joint inversion, for informing geological/hydrogeological models directly and for easier incorporation...... for jointly inverting airborne and ground-based geophysical data. Furthermore, geological and groundwater models most often refer to a regular voxel grid not correlated to the geophysical model space, and incorporating the geophysical data into the geological/hydrological modelling grids is problematic. We...... present a voxel grid inversion routine that overcomes these problems and we discuss in detail the algorithm implementation....

  10. Digital Logarithmic Airborne Gamma Ray Spectrometer

    OpenAIRE

    2014-01-01

    A new digital logarithmic airborne gamma ray spectrometer is designed in this study. The spectrometer adopts a high-speed and high-accuracy logarithmic amplifier (LOG114) to amplify the pulse signal logarithmically and to improve the utilization of the ADC dynamic range, because the low-energy pulse signal has a larger gain than the high-energy pulse signal. The spectrometer can clearly distinguish the photopeaks at 239, 352, 583, and 609keV in the low-energy spectral sections after the energ...

  11. Airborne Pollen Grains Of Afyon, Turkey

    Institute of Scientific and Technical Information of China (English)

    Adem BICAKCI; Süheyla ERGUN; Sevcan TATLIDIL; Hulusi MALYER; Sabri OZYURT; Ahmet AKKAYA; Nihat SAPAN

    2002-01-01

    The airborne pollen grains of Afyon have been studied for a two-year period (1999-2000) with a Durham sampler. A total of 14 367 pollen grains belonging to 40 taxa have been identified and recorded with some unidentified ones. Of them, 6 732 were identified in 1999 and 7 635 in 2000. Of the total pollen grains, 69.67% were arboreal, 26.64% non-arboreal and 3.68 % unidentified. The majority of the investigated pollen grains were from Pinus, Gramineae, Cupressaceae, Platanus, Chenopodiaceae/Amaranthaceae, Quercus, Ailanthus, Moraceae, Juglans, Salix, Cedrus and Rosaceae. The highest level of pollen grains was in May.

  12. The physics of ice cream

    Science.gov (United States)

    Clarke, Chris

    2003-05-01

    Almost everybody likes ice cream, so it can provide an excellent vehicle for discussing and demonstrating a variety of physical phenomena, such as Newton's law of cooling, Boyle's law and the relationship between microstructure and macroscopic properties (e.g. Young's modulus). Furthermore, a demonstration of freezing point depression can be used to make ice cream in the classroom!

  13. Snow, ice and solar radiation

    NARCIS (Netherlands)

    Kuipers Munneke, P.

    2009-01-01

    The snow-covered ice sheets of Antarctica and Greenland reflect most of the incoming solar radiation. The reflectivity, commonly called the albedo, of snow on these ice sheets has been observed to vary in space and time. In this thesis, temporal and spatial changes in snow albedo is found to depend

  14. Ice as an Abrading Agent

    Science.gov (United States)

    Blow, R. K.

    1984-01-01

    Grit-blasting method makes unnecessary to disassemble equipment for cleaning. Stream of small, frozen pellets directed at assembly to be cleaned. Pellets consist of deionized-water ice, carbon dioxide ice, or another substance that does not react chemically with parts to be cleaned and leaves no residue. Method suited to cleaning titanium and parts that touch liquid oxygen.

  15. Ices in space

    Science.gov (United States)

    Greenberg, J. Mayo; van de Bult, C. E. P. M.; Allamandola, Louis J.

    The chemical and physical properties of ice grains in interstellar space have been studied in the laboratory and theoretically modeled to compare with astronomical spectra between 2700 and 3700/cm. The observed polarization of starlight in this region clearly indicates that elongated particles are involved. Absorption characteristics for various shaped grains whose radii vary from approximately 0.1 to 1.0 micrometer, containing either pure amorphous H20 or amorphous mixtures of H20 with NH3, have been calculated with the aim of narrowing the range of acceptable grain parameters. By comparing the band shapes for spherical, spheroidal, and cylindrical grains with astronomical spectra we show that elongated particles whose radii are approximately equal to 0.15 micrometer produce an acceptable match and that both spherical and elongated particles whose radii are greater than or equal to 0.5 micrometer are definitely not consistent with observations. Details of the band shape are shown to depend on particle size, shape, and composition. Similar profiles can be produced by using different combinations of particle shape and composition. For example, the NH3 signature at 2.97 micrometer, which is prominent in a spherical grain, is greatly suppressed when in an elongated grain. This is exactly equivalent to reducing the concentration of NH3 in a spherical grain. A morphological grain model is used to explain the large variations in the observed strength of the 3.07 micrometer ice band from one region of space to another.

  16. Detection in Urban Scenario Using Combined Airborne Imaging Sensors

    NARCIS (Netherlands)

    Renhorn, I.; Axelsson, M.; Benoist, K.W.; Bourghys, D.; Boucher, Y.; Xavier Briottet, X.; Sergio De CeglieD, S. De; Dekker, R.J.; Dimmeler, A.; Dost, R.; Friman, O.; Kåsen, I.; Maerker, J.; Persie, M. van; Resta, S.; Schwering, P.B.W.; Shimoni, M.; Vegard Haavardsholm, T.

    2012-01-01

    The EDA project “Detection in Urban scenario using Combined Airborne imaging Sensors” (DUCAS) is in progress. The aim of the project is to investigate the potential benefit of combined high spatial and spectral resolution airborne imagery for several defense applications in the urban area. The proje

  17. Detection in Urban Scenario using Combined Airborne Imaging Sensors

    NARCIS (Netherlands)

    Renhorn, I.; Axelsson, M.; Benoist, K.W.; Bourghys, D.; Boucher, Y.; Xavier Briottet, X.; Sergio De CeglieD, S. De; Dekker, R.J.; Dimmeler, A.; Dost, R.; Friman, O.; Kåsen, I.; Maerker, J.; Persie, M. van; Resta, S.; Schwering, P.B.W.; Shimoni, M.; Vegard Haavardsholm, T.

    2012-01-01

    The EDA project “Detection in Urban scenario using Combined Airborne imaging Sensors” (DUCAS) is in progress. The aim of the project is to investigate the potential benefit of combined high spatial and spectral resolution airborne imagery for several defense applications in the urban area. The proje

  18. SOFIA's Airborne Astronomy Ambassadors: An External Evaluation of Cycle 1

    Science.gov (United States)

    Phillips, Michelle

    2015-01-01

    The Stratospheric Observatory for Infrared Astronomy (SOFIA) represents a partnership between NASA and the German Aerospace Center (DLR). The observatory itself is a Boeing 747 SP that has been modified to serve as the world's largest airborne research observatory. The SOFIA Airborne Astronomy Ambassadors (AAA) program is a component of SOFIA's…

  19. Measuring airborne microorganisms and dust from livestock houses

    NARCIS (Netherlands)

    Yang Zhao, Yang

    2011-01-01

      Airborne transmission has been suspected to be responsible for epidemics of highly infectious disease in livestock production. In such transmission, the pathogenic microorganisms may associate with dust particles. However, the extent to which airborne transmission plays a role in the spread

  20. Moving Target Indication for Multi-channel Airborne Radar Systems

    NARCIS (Netherlands)

    Lidicky, L.

    2010-01-01

    Moving target indication (MTI) using radar is of great interest in civil and military applications. Its uses include airborne or space-borne surveillance of ground moving vehicles (cars, trains) or ships at sea, for instance. Airborne (space-borne) radar offers several advantages when compared to op

  1. APEX; current status of the airborne dispersive pushbroom imaging spectrometer

    NARCIS (Netherlands)

    Nieke, J.; Itten, K.I.; Kaiser, J.W.; Schlapfer, D.; Brazile, J.; Debruyn, W.; Meuleman, K.; Kempeneers, P.; Neukom, A.; Feusi, H.; Adolph, P.; Moser, R.; Schilliger, T.; Kohler, P.; Meng, M.; Piesbergen, J.; Strobl, P.; Schaepman, M.E.; Gavira, J.; Ulbrich, G.J.; Meynart, R.

    2004-01-01

    Recently, a joint Swiss/Belgian initiative started a project to build a new generation airborne imaging spectrometer, namely APEX (Airborne Prism Experiment) under the ESA funding scheme named PRODEX. APEX is a dispersive pushbroom imaging spectrometer operating in the spectral range between 380 - 2

  2. The IceProd Framework

    DEFF Research Database (Denmark)

    Aartsen, M.G.; Abbasi, R.; Ackermann, M.

    2015-01-01

    IceCube is a one-gigaton instrument located at the geographic South Pole, designed to detect cosmic neutrinos, iden- tify the particle nature of dark matter, and study high-energy neutrinos themselves. Simulation of the IceCube detector and processing of data require a significant amount...... of computational resources. IceProd is a distributed management system based on Python, XML-RPC and GridFTP. It is driven by a central database in order to coordinate and admin- ister production of simulations and processing of data produced by the IceCube detector. IceProd runs as a separate layer on top of other...... middleware and can take advantage of a variety of computing resources, including grids and batch systems such as CREAM, Condor, and PBS. This is accomplished by a set of dedicated daemons that process job submission in a coordinated fashion through the use of middleware plugins that serve to abstract...

  3. Ice sheet hydrology from observations

    Energy Technology Data Exchange (ETDEWEB)

    Jansson, Peter (Dept. of Physical Geography and Quaternary Geology, Stockholm Univ-, Stockholm (Sweden))

    2010-11-15

    The hydrological systems of ice sheets are complex. Our view of the system is split, largely due to the complexity of observing the systems. Our basic knowledge of processes have been obtained from smaller glaciers and although applicable in general to the larger scales of the ice sheets, ice sheets contain features not observable on smaller glaciers due to their size. The generation of water on the ice sheet surface is well understood and can be satisfactorily modeled. The routing of water from the surface down through the ice is not complicated in terms of procat has been problematic is the way in which the couplings between surface and bed has been accomplished through a kilometer of cold ice, but with the studies on crack propagation and lake drainage on Greenland we are beginning to understand also this process and we know water can be routed through thick cold ice. Water generation at the bed is also well understood but the main problem preventing realistic estimates of water generation is lack of detailed information about geothermal heat fluxes and their geographical distribution beneath the ice. Although some average value for geothermal heat flux may suffice, for many purposes it is important that such values are not applied to sub-regions of significantly higher fluxes. Water generated by geothermal heat constitutes a constant supply and will likely maintain a steady system beneath the ice sheet. Such a system may include subglacial lakes as steady features and reconfiguration of the system is tied to time scales on which the ice sheet geometry changes so as to change pressure gradients in the basal system itself. Large scale re-organization of subglacial drainage systems have been observed beneath ice streams. The stability of an entirely subglacially fed drainage system may hence be perturbed by rapid ice flow. In the case of Antarctic ice streams where such behavior has been observed, the ice streams are underlain by deformable sediments. It is

  4. Amorphization of Crystalline Water Ice

    CERN Document Server

    Zheng, Weijun; Kaiser, Ralf I

    2008-01-01

    We conducted a systematic experimental study to investigate the amorphization of crystalline ice by irradiation in the 10-50 K temperature range with 5 keV electrons at a dose of ~140 eV per molecule. We found that crystalline water ice can be converted partially to amorphous ice by electron irradiation. Our experiments showed that some of the 1.65-micrometer band survived the irradiation, to a degree that depends on the temperature, demonstrating that there is a balance between thermal recrystallization and irradiation-induced amorphization, with thermal recrystallizaton dominant at higher temperatures. At 50 K, recrystallization due to thermal effects is strong, and most of the crystalline ice survived. Temperatures of most known objects in the solar system, including Jovian satellites, Saturnian satellites, and Kuiper belt objects, are equal to or above 50 K, this might explain why water ice detected on those objects is mostly crystalline.

  5. Study on analysis from sources of error for Airborne LIDAR

    Science.gov (United States)

    Ren, H. C.; Yan, Q.; Liu, Z. J.; Zuo, Z. Q.; Xu, Q. Q.; Li, F. F.; Song, C.

    2016-11-01

    With the advancement of Aerial Photogrammetry, it appears that to obtain geo-spatial information of high spatial and temporal resolution provides a new technical means for Airborne LIDAR measurement techniques, with unique advantages and broad application prospects. Airborne LIDAR is increasingly becoming a new kind of space for earth observation technology, which is mounted by launching platform for aviation, accepting laser pulses to get high-precision, high-density three-dimensional coordinate point cloud data and intensity information. In this paper, we briefly demonstrates Airborne laser radar systems, and that some errors about Airborne LIDAR data sources are analyzed in detail, so the corresponding methods is put forwarded to avoid or eliminate it. Taking into account the practical application of engineering, some recommendations were developed for these designs, which has crucial theoretical and practical significance in Airborne LIDAR data processing fields.

  6. Stellar Occultations from Airborne Platforms: 1988 to 2016

    Science.gov (United States)

    Bosh, Amanda S.; Dunham, Edward W.; Zuluaga, Carlos; Levine, Stephen; Person, Michael J.; Van Cleve, Jeffrey E.

    2016-10-01

    Observing a stellar occultation by a solar system body with an airborne telescope requires precise positioning of the observer within the shadow cast onto the Earth. For small bodies like Pluto and Kuiper Belt objects, smaller than the Earth, the challenge is particularly intense, with the accuracy of the astrometric and flight planning determining whether the observation succeeds or fails. From our first airborne occultation by Pluto in 1988 aboard the Kuiper Airborne Observatory (KAO), to our most recent event by Pluto in 2015 aboard the Stratospheric Observatory for Infrared Astronomy (SOFIA), we have refined our astrometric and flight planning systems to the point where we can now place an airborne observer into the small central flash zone. We will discuss the history of airborne observation of occultations while detailing the improvements in the astrometric processes. Support for this work was provided by NASA SSO grant NNX15AJ82G to Lowell Observatory.

  7. Crustal uplift due to ice mass variability on Upernavik Isstroem, west Greenland

    DEFF Research Database (Denmark)

    Nielsen, Karina; Khan, Shfaqat Abbas; Korsgaard, Niels Jákup

    two continuous receivers, UPVK and SRMP which are established on bedrock and located ~65 and ~2 km from the front of UI, respectively. We construct along-track elevation changes on UI for several time intervals during 2005 – 2011, based on ATM, SPOT 5 and Ice, Cloud, and land Elevation Satellite......We estimate the mass loss rate of Upernavik Isstroem using surface elevation changes between a SPOT 5 Digital Elevation Model (DEM) from 2008 and NASA’s Airborne Topographic Mapper (ATM) data from 2010. To assess the validity of our mass loss estimate, we analyze GPS data between 2007 and 2011 from...

  8. The IceProd (IceCube Production) Framework

    Science.gov (United States)

    Díaz-Vélez, J. C.

    2014-06-01

    IceProd is a data processing and management framework developed by the IceCube Neutrino Observatory for processing of Monte Carlo simulations and data. IceProd runs as a separate layer on top of middleware or cluster job schedulers and can take advantage of a variety of computing resources including grids such as EGI, OSG, and NorduGrid as well as local clusters running batch systems like HT Condor, PBS, and SGE. This is accomplished by a set of dedicated daemons which process job submission in a coordinated fashion through the use of middleware plug-ins that serve to abstract the details of job submission and job management. IceProd can also manage complex workflow DAGs across distributed computing grids in order to optimize usage of resources. We describe several aspects of IceProd's design and it's applications in collaborative computing environments. We also briefly discuss design aspects of a second generation IceProd, currently being tested in IceCube.

  9. High variability of the heterogeneous ice nucleation potential of oxalic acid dihydrate and sodium oxalate

    Directory of Open Access Journals (Sweden)

    R. Wagner

    2010-08-01

    Full Text Available The heterogeneous ice nucleation potential of airborne oxalic acid dihydrate and sodium oxalate particles in the deposition and condensation mode has been investigated by controlled expansion cooling cycles in the AIDA aerosol and cloud chamber of the Karlsruhe Institute of Technology at temperatures between 244 and 228 K. Previous laboratory studies have highlighted the particular role of oxalic acid dihydrate as the only species amongst a variety of other investigated dicarboxylic acids to be capable of acting as a heterogeneous ice nucleus in both the deposition and immersion mode. We could confirm a high deposition mode ice activity for 0.03 to 0.8 μm sized oxalic acid dihydrate particles that were either formed by nucleation from a gaseous oxalic acid/air mixture or by rapid crystallisation of highly supersaturated aqueous oxalic acid solution droplets. The critical saturation ratio with respect to ice required for deposition nucleation was found to be less than 1.1 and the size-dependent ice-active fraction of the aerosol population was in the range from 0.1 to 22%. In contrast, oxalic acid dihydrate particles that had crystallised from less supersaturated solution droplets and had been allowed to slowly grow in a supersaturated environment from still unfrozen oxalic acid solution droplets over a time period of several hours were found to be much poorer heterogeneous ice nuclei. We speculate that under these conditions a crystal surface structure with less-active sites for the initiation of ice nucleation was generated. Such particles partially proved to be almost ice-inactive in both the deposition and condensation mode. At times, the heterogeneous ice nucleation ability of oxalic acid dihydrate significantly changed when the particles had been processed in preceding cloud droplet activation steps. Such behaviour was also observed for the second investigated species, namely sodium oxalate. Our experiments address the atmospheric scenario

  10. Arctic Sea Ice Freeboard from Icebridge Acquisitions in 2009: Estimates and Comparisons with ICEsat

    Science.gov (United States)

    Kwok, R.; Cunningham, Glenn F.; Manizade, S. S.; Krabill, W. B.

    2012-01-01

    During the spring of 2009, the Airborne Topographic Mapper (ATM) system on the IceBridge mission acquired cross-basin surveys of surface elevations of Arctic sea ice. In this paper, the total freeboard derived from four 2000 km transects are examined and compared with those from the 2009 ICESat campaign. Total freeboard, the sum of the snow and ice freeboards, is the elevation of the air-snow interface above the local sea surface. Prior to freeboard retrieval, signal dependent range biases are corrected. With data from a near co-incident outbound and return track on 21 April, we show that our estimates of the freeboard are repeatable to within 4 cm but dependent locally on the density and quality of sea surface references. Overall difference between the ATM and ICESat freeboards for the four transects is 0.7 (8.5) cm (quantity in bracket is standard deviation), with a correlation of 0.78 between the data sets of one hundred seventy-eight 50 km averages. This establishes a level of confidence in the use of ATM freeboards to provide regional samplings that are consistent with ICESat. In early April, mean freeboards are 41 cm and 55 cm over first year and multiyear sea ice (MYI), respectively. Regionally, the lowest mean ice freeboard (28 cm) is seen on 5 April where the flight track sampled the large expanse of seasonal ice in the western Arctic. The highest mean freeboard (71 cm) is seen in the multiyear ice just west of Ellesmere Island from 21 April. The relatively large unmodeled variability of the residual sea surface resolved by ATM elevations is discussed.

  11. Electronic Control of Unguided Airborne Vehicle (UAV

    Directory of Open Access Journals (Sweden)

    Mohammed Ahmed Mohammed

    2015-02-01

    Full Text Available The paper deals with building an electronic remote control circuit for Unguided Airborne Vehicle (UAV based on implementing Dual Tone Multiple Frequency decoder ( DTMF .A microcontroller is used in the design to analyze and execute the commands arriving to the UAV . A Liquid Crystal Display (LCD is implemented to show the results during the circuit development and test phase. The control of the UAV is done from the ground using a mobile or a personnel computer (PC supplied with a modem. The DTMF decoder output is connected to the microcontroller which analyzes the commands and accordingly execute them on the control parts in the UAV . The microcontroller issues orders and display the operations on the LCD . The circuit design assumes the presence of an operating GSM network for the transmission of the control commands .The airborne platform model is a small aircraft carrying the electronic circuit on board. Three stepper motors are used as a means of control to the wings, elevators and rudders in the UAV. .The electronic circuit on board the UAV is well protected to ensue safety of the hardware and perfect performance.

  12. Filter algorithm for airborne LIDAR data

    Science.gov (United States)

    Li, Qi; Ma, Hongchao; Wu, Jianwei; Tian, Liqiao; Qiu, Feng

    2007-11-01

    Airborne laser scanning data has become an accepted data source for highly automated acquisition of digital surface models(DSM) as well as for the generation of digital terrain models(DTM). To generate a high quality DTM using LIDAR data, 3D off-terrain points have to be separated from terrain points. Even though most LIDAR system can measure "last-return" data points, these "last-return" point often measure ground clutter like shrubbery, cars, buildings, and the canopy of dense foliage. Consequently, raw LIDAR points must be post-processed to remove these undesirable returns. The degree to which this post processing is successful is critical in determining whether LIDAR is cost effective for large-scale mapping application. Various techniques have been proposed to extract the ground surface from airborne LIDAR data. The basic problem is the separation of terrain points from off-terrain points which are both recorded by the LIDAR sensor. In this paper a new method, combination of morphological filtering and TIN densification, is proposed to separate 3D off-terrain points.

  13. Changes to airborne pollen counts across Europe.

    Directory of Open Access Journals (Sweden)

    Chiara Ziello

    Full Text Available A progressive global increase in the burden of allergic diseases has affected the industrialized world over the last half century and has been reported in the literature. The clinical evidence reveals a general increase in both incidence and prevalence of respiratory diseases, such as allergic rhinitis (common hay fever and asthma. Such phenomena may be related not only to air pollution and changes in lifestyle, but also to an actual increase in airborne quantities of allergenic pollen. Experimental enhancements of carbon dioxide (CO[Formula: see text] have demonstrated changes in pollen amount and allergenicity, but this has rarely been shown in the wider environment. The present analysis of a continental-scale pollen data set reveals an increasing trend in the yearly amount of airborne pollen for many taxa in Europe, which is more pronounced in urban than semi-rural/rural areas. Climate change may contribute to these changes, however increased temperatures do not appear to be a major influencing factor. Instead, we suggest the anthropogenic rise of atmospheric CO[Formula: see text] levels may be influential.

  14. Auxiliary DCP data acquisition system. [airborne system

    Science.gov (United States)

    Snyder, R. V.

    1975-01-01

    An airborne DCP Data Aquisition System has been designed to augment the ERTS satellite data recovery system. The DCP's are data collection platforms located at pertinent sites. With the appropriate sensors they are able to collect, digitally encode and transmit environmental parameters to the ERTS satellite. The satellite in turn relays these transmissions to a ground station for processing. The satellite is available for such relay duty a minimum of two times in a 24-hour period. The equipment is to obtain continuous DCP data during periods of unusual environmental activity--storms, floods, etc. Two circumstances contributed to the decision to design such a system; (1) Wallops Station utilizes surveillance aircraft in support of rocket launches and also in support of earth resources activities; (2) the area in which Wallops is located, the Delaware and Chesapeake Bay areas, are fertile areas for DCP usage. Therefore, by developing an airborne DCP receiving station and installing it on aircraft more continuous DCP data can be provided from sites in the surrounding areas at relatively low cost.

  15. Airborne Radar Interferometric Repeat-Pass Processing

    Science.gov (United States)

    Hensley, Scott; Michel, Thierry R.; Jones, Cathleen E.; Muellerschoen, Ronald J.; Chapman, Bruce D.; Fore, Alexander; Simard, Marc; Zebker, Howard A.

    2011-01-01

    Earth science research often requires crustal deformation measurements at a variety of time scales, from seconds to decades. Although satellites have been used for repeat-track interferometric (RTI) synthetic-aperture-radar (SAR) mapping for close to 20 years, RTI is much more difficult to implement from an airborne platform owing to the irregular trajectory of the aircraft compared with microwave imaging radar wavelengths. Two basic requirements for robust airborne repeat-pass radar interferometry include the ability to fly the platform to a desired trajectory within a narrow tube and the ability to have the radar beam pointed in a desired direction to a fraction of a beam width. Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is equipped with a precision auto pilot developed by NASA Dryden that allows the platform, a Gulfstream III, to nominally fly within a 5 m diameter tube and with an electronically scanned antenna to position the radar beam to a fraction of a beam width based on INU (inertial navigation unit) attitude angle measurements.

  16. Airborne soil organic particles generated by precipitation

    Science.gov (United States)

    Wang, Bingbing; Harder, Tristan H.; Kelly, Stephen T.; Piens, Dominique S.; China, Swarup; Kovarik, Libor; Keiluweit, Marco; Arey, Bruce W.; Gilles, Mary K.; Laskin, Alexander

    2016-06-01

    Airborne organic particles play a critical role in Earth's climate, public health, air quality, and hydrological and carbon cycles. However, sources and formation mechanisms for semi-solid and solid organic particles are poorly understood and typically neglected in atmospheric models. Laboratory evidence suggests that fine particles can be formed from impaction of mineral surfaces by droplets. Here, we use chemical imaging of particles collected following rain events in the Southern Great Plains, Oklahoma, USA and after experimental irrigation to show that raindrop impaction of soils generates solid organic particles. We find that after rain events, sub-micrometre solid particles, with a chemical composition consistent with soil organic matter, contributed up to 60% of atmospheric particles. Our irrigation experiments indicate that intensive water impaction is sufficient to cause ejection of airborne soil organic particles from the soil surface. Chemical imaging and micro-spectroscopy analysis of particle physico-chemical properties suggest that these particles may have important impacts on cloud formation and efficiently absorb solar radiation. We suggest that raindrop-induced formation of solid organic particles from soils may be a widespread phenomenon in ecosystems such as agricultural systems and grasslands where soils are exposed to strong, episodic precipitation events.

  17. Architecture and Algorithms for an Airborne Network

    CERN Document Server

    Sen, Arunabha; Silva, Tiffany; Das, Nibedita; Kundu, Anjan

    2010-01-01

    The U.S. Air Force currently is in the process of developing an Airborne Network (AN) to provide support to its combat aircrafts on a mission. The reliability needed for continuous operation of an AN is difficult to achieve through completely infrastructure-less mobile ad hoc networks. In this paper we first propose an architecture for an AN where airborne networking platforms (ANPs - aircrafts, UAVs and satellites) form the backbone of the AN. In this architecture, the ANPs can be viewed as mobile base stations and the combat aircrafts on a mission as mobile clients. The combat aircrafts on a mission move through a space called air corridor. The goal of the AN design is to form a backbone network with the ANPs with two properties: (i) the backbone network remains connected at all times, even though the topology of the network changes with the movement of the ANPs, and (ii) the entire 3D space of the air corridor is under radio coverage at all times by the continuously moving ANPs. In addition to proposing an...

  18. CO2 Budget and Rectification Airborne Study

    Science.gov (United States)

    Grainger, C. A.

    2004-01-01

    The main purpose of this award was to supply a platform for the airborne measurements of gases associated with the CO2 Budget and Regional Airborne Study (COBRA). The original program was to consist of three field programs: the first was to be in 1999, the second in 2000, and the third in 2001. At the end of the second field program, it was agreed that the science could better be served by making the measurements in northern Brazil, rather than in North America. The final North American program would be postponed until after two field programs in Brazil. A substantial amount of effort was diverted into making plans and preparations for the Brazil field programs. The Brazil field programs were originally scheduled to take place in the Fall of 2002 and Spring of 2003. Carrying out the field program in Brazil was going to logistically much more involved than a program in the US. Shipping of equipment, customs, and site preparations required work to begin many months prior to the actual measurement program. Permission to fly in that country was also not trivial and indeed proved to be a major obstacle. When we were not able to get permission to fly in Brazil for the 2002 portion of the experiment, the program was pushed back to 2003. When permission by the Brazilian government was not given in time for a Spring of 2003 field program, the experiment was postponed again to begin in the Fall of 2003.

  19. The Airborne Carbon in the Mountains Experiment

    Science.gov (United States)

    Schimel, D.; Stephens, B.; Running, S.; Monson, R.; Vukicevic, T.; Ojima, D.

    2004-12-01

    Mountain landscapes of the Western US contain a significant portion of the North American carbon sink. This results from the land use history of the region, which has a preponderance of potentially aggrading mid-aged stands. The issue is significant not only because of the significant sink but because of the vulnerability of that sink to drought, insects, wildfire and other ecological changes occurring rapidly in the West. Quantification of the carbon budgets of western forests have received relatively limited attention, in part because direct carbon flux measurements are believed to be difficult to apply in complex landscapes. New techniques that take advantage of organized nighttime drainage flows may allow quantification of respiration on scales inaccessible in level landscapes, while Lagrangian airborne measurements may allow daytime fluxes to be quantified. Airborne and ground-based measurements during the summer of 2004 in Colorado show substantial drawdown of atmospheric carbon dioxide during the day and strong enrichment of the nocturnal boundary layer from nighttime respiration. We present a strategy whereby in situ measurements at multiple scales, remote sensing and data assimilation may be used to quantify carbon dynamics in mountain landscapes. Larger scales of integration may be possible in mountainous than level landscapes because of the integrative flow of air and water, while because of high heterogeneity, scaling from detailed local process studies remains difficult.

  20. Jet formation at the sea ice edge

    Science.gov (United States)

    Feltham, D. L.; Heorton, H. D.

    2014-12-01

    The sea ice edge presents a region of many feedback processes between the atmosphere, ocean and sea ice, which are inadequately represented in current climate models. Here we focus on on-ice atmospheric and oceanic flows at the sea ice edge. Mesoscale jet formation due to the Coriolis effect is well understood over sharp changes in surface roughness such as coastlines. This sharp change in surface roughness is experienced by the atmosphere flowing over, and ocean flowing under, a compacted sea ice edge. We have studied a dynamic sea ice edge responding to atmospheric and oceanic jet formation. The shape and strength of atmospheric and oceanic jets during on-ice flows is calculated from existing studies of the sea ice edge and prescribed to idealised models of the sea ice edge. An idealised analytical model of sea ice drift is developed and compared to a sea ice climate model (the CICE model) run on an idealised domain. The response of the CICE model to jet formation is tested at various resolutions. We find that the formation of atmospheric jets during on-ice winds at the sea ice edge increases the wind speed parallel to the sea ice edge and results in the formation of a sea ice edge jet. The modelled sea ice edge jet is in agreement with an observed jet although more observations are needed for validation. The increase in ice drift speed is dependent upon the angle between the ice edge and wind and can result in a 40% increase in ice transport along the sea ice edge. The possibility of oceanic jet formation during on-ice currents and the resultant effect upon the sea ice edge is less conclusive. Observations and climate model data of the polar oceans has been analysed to show areas of likely atmospheric jet formation, with the Fram Strait being of particular interest.

  1. Recent accumulation rates of an Alpine glacier derived from repeated airborne GPR and firn cores

    Science.gov (United States)

    Sold, Leo; Huss, Matthias; Eichler, Anja; Schwikowski, Margit; Hoelzle, Martin

    2014-05-01

    The topmost areas of glaciers contain a valuable record of their past accumulation rates. The water equivalent of annual firn layers can be used to initiate or extend existing time series of local mass balance and, ultimately, to consolidate the knowledge on the response of glaciers to changing climatic conditions. Measurements of the thickness and density of firn layers typically involve drilling in remote areas and core analysis and are thus expensive in terms of time and effort. Here, we discuss measurements from 2012 on Findelengletscher, Switzerland, a large Alpine valley glacier, using two in-situ firn cores and airborne Ground-Penetrating Radar (GPR). The firn cores were analysed regarding their density, major ions and deuterium concentration. The ammonium (NH4+) concentration is known to show seasonality due to a higher source activity and pronounced vertical transportation in the atmosphere in summer. The deuterium concentration serves as a proxy for air temperature during precipitation formation. Together, they provide depth and dating of annual summer surfaces. GPR has previously been used for a non-destructive assessment of internal layers in snow, firn and ice. Signal reflections indicate changes in the dielectric properties of the material, e.g. density changes at former summer surfaces. Airborne surveys allow measurements to be taken in remote and inaccessible areas. However, to transfer information from the GPR pulse travel time to the depth domain, the dielectric permittivity of the material is required, that changes with density of the firn. We observed a good agreement of the GPR signal with pronounced changes in the density profile, ice layers and peak contents of major ions. This underlines the high potential of GPR for detecting firn layers. However, not all peak-densities and thick ice layers represent a former glacier summer surface but can also be due to melting and refreezing during winter. We show that up to four years of annual

  2. Microphysical properties of cirrus clouds between 75°N and 25°S derived from extensive airborne in-situ observations

    Science.gov (United States)

    Krämer, Martina

    2016-04-01

    Numerous airborne field campaigns were performed in the last decades to record cirrus clouds microphysical properties. Beside the understanding of the processes of cirrus formation and evolution, an additional motivation for those studies is to provide a database to evaluate the representation of cirrus clouds in global climate models. This is of importance for an improved certainty of climate predictions, which are affected by the poor understanding of the microphysical processes of ice clouds (IPCC, 2013). To this end, the observations should ideally cover the complete respective parameter range and not be influenced by instrumental artifacts. However, due to the difficulties in measuring cirrus properties on fast-flying, high-altitude aircraft, some issues with respect to the measurements %evolved have arisen. In particular, concerns about the relative humidity in and around cirrus clouds and the ice crystal number concentrations were under discussion. Too high ice supersaturations as well as ice number concentrations were often reported. These issues have made more challenging the goal of compiling a large database using data from a suite of different instruments that were used on different campaigns. In this study, we have have addressed these challenges and compiled a large data set of cirrus clouds, sampled during eighteen field campaigns between 75°N and 25°S, representing measurements fulfilling the above mentioned requirements. The most recent campaigns were performed in 2014; namely, the ATTREX campaign with the research aircraft Global Hawk and the ML-CIRRUS and ACRIDICON campaigns with HALO. % The observations include ice water content (IWC: 130 hours of observations), ice crystal numbers (N_ice: 83 hours), ice crystal mean mass size (Rice: 83 hours) and relative humidity (RH_ice) in- and outside of cirrus clouds (78 and 140 hours). % We will present the parameters as PDFs versus temperature and derive medians and core ranges (including the most

  3. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    1979-01-01

    ICE was built in 1977, using the modified bending magnets of the g-2 muon storage ring (see 7405430). Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project. Stochastic cooling proved a resounding success early in 1978 and the antiproton project could go ahead, now entirely based on stochastic cooling. Electron cooling was experimented with in 1979. The 26 kV equipment is housed in the cage to the left of the picture, adjacent to the "e-cooler" located in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7809081.

  4. INITIAL COOLING EXPERIMENT (ICE)

    CERN Multimedia

    1978-01-01

    ICE was built in 1977, in a record time of 9 months, using the modified bending magnets of the g-2 muon storage ring. Its purpose was to verify the validity of stochastic and electron cooling for the antiproton project, to be launched in 1978. Already early in 1978, stochastic cooling proved a resounding success, such that the antiproton (p-pbar)project was entirely based on it. Tests of electron cooling followed later: protons of 46 MeV kinetic energy were cooled with an electron beam of 26 kV and 1.3 A. The cage seen prominently in the foreground houses the HV equipment, adjacent to the "cooler" installed in a straight section of the ring. With some modifications, the cooler was later transplanted into LEAR (Low Energy Antiproton Ring) and then, with further modifications, into the AD (Antiproton Decelerator), where it cools antiprotons to this day (2006). See also: 7711282, 7802099, 7908242.

  5. Dry ice blasting

    Science.gov (United States)

    Lonergan, Jeffrey M.

    1992-04-01

    As legal and societal pressures against the use of hazardous waste generating materials has increased, so has the motivation to find safe, effective, and permanent replacements. Dry ice blasting is a technology which uses CO2 pellets as a blasting medium. The use of CO2 for cleaning and stripping operations offers potential for significant environmental, safety, and productivity improvements over grit blasting, plastic media blasting, and chemical solvent cleaning. Because CO2 pellets break up and sublime upon impact, there is no expended media to dispose of. Unlike grit or plastic media blasting which produce large quantities of expended media, the only waste produced by CO2 blasting is the material removed. The quantity of hazardous waste produced, and thus the cost of hazardous waste disposal is significantly reduced.

  6. On the relationship between Arctic ice clouds and polluted air masses over the north slope of Alaska in April 2008

    Directory of Open Access Journals (Sweden)

    C. Jouan

    2013-02-01

    Full Text Available Recently, two Types of Ice Clouds (TICs properties have been characterized using ISDAC airborne measurements (Alaska, April 2008. TIC-2B were characterized by fewer (<10 L−1 and larger (>110 μm ice crystals, a larger ice supersaturation (>15% and a fewer ice nuclei (IN concentration (<2 order of magnitude when compared to TIC-1/2A. It has been hypothesized that emissions of SO2 may reduce the ice nucleating properties of IN through acidification, resulting to a smaller concentration of larger ice crystals and leading to precipitation (e.g. cloud regime TIC-2B because of the reduced competition for the same available moisture.

    Here, the origin of air masses forming the ISDAC TIC-1/2A (1 April 2008 and TIC-2B (15 April 2008 is investigated using trajectory tools and satellite data. Results show that the synoptic conditions favor air masses transport from the three potentials SO2 emission areas to Alaska: eastern China and Siberia where anthropogenic and biomass burning emission respectively are produced and the volcanic region from the Kamchatka/Aleutians. Weather conditions allow the accumulation of pollutants from eastern China/Siberia over Alaska, most probably with the contribution of acid volcanic aerosol during the TIC-2B period. OMI observations reveal that SO2 concentrations in air masses forming the TIC-2B were larger than in air masses forming the TIC-1/2A. Airborne measurements show high acidity near the TIC-2B flight where humidity was low. These results strongly support the hypothesis that acidic coating on IN are at the origin of the formation of TIC-2B.

  7. Using NASA Warm Ice Sounding Explorer (WISE) Data to Reexamine the Bed Morphology of Malaspina Glacier, Alaska

    Science.gov (United States)

    Molnia, B. F.; Snyder-Deaton, L. E.; Angeli, K.

    2015-12-01

    In 1988, a USGS ice-penetrating radar (IPR) survey of eastern Malaspina Glacier was conducted (Molnia and others, 1990) to determine the configuration of the glacier's bed and to measure ice thickness at more than 50 locations. The IPR survey results suggested that much of the glacier area investigated was underlain by fiord channels that extended as much as 50 km inland from the present Gulf of Alaska coastline. Maximum measured fiord channel bed depths exceeded 200 m below sea level, while the maximum ice thickness measured was more than 850 m. The IPR survey was conducted to test a hypothesis (Molnia and Jones, 1989) that unusual airborne radar backscatter features observed on a November 1986 X-band, high-resolution, synthetic aperture radar (SAR) image of the glacier's surface were expressions of the glacier's bed morphology, surface topography, surface wetness, ice structure, and ice flow characteristics. The most significant type of feature seen on the SAR image were several 10-25 km-long by 1.5-2.5-km-wide, north-south trending fiord-like glacial valleys, each with adjacent cirque-like amphitheaters. Field surveys in 1989 showed the valleys were topographic lows, while the cirque-like features were heavily crevassed topographic highs. Closely spaced IPR soundings showed that the ice associated with the valleys is substantially thicker than the ice over the adjacent cirques. In 2008 and again in 2012, NASA's airborne Warm Ice Sounding Explorer (WISE) was flown over Malaspina Glacier, producing more than 500 km of new soundings. Not only did this provide an opportunity to better map the glacier's bed, calculate ice thickness, and determine ice surface elevations, it also provided an opportunity to reexamine the Molnia and Jones hypothesis. Bed morphology profiles generated from the WISE data were co-registered to and compared with the 1986 X-band radar image. The results show a strong correlation between radar surface low backscatter surface channel features

  8. IceTop: The surface component of IceCube

    CERN Document Server

    Abbasi, R; Ackermann, M; Adams, J; Aguilar, J A; Ahlers, M; Altmann, D; Andeen, K; Auffenberg, J; Bai, X; Baker, M; Barwick, S W; Baum, V; Bay, R; Beattie, K; Beatty, J J; Bechet, S; Tjus, J Becker; Becker, K -H; Bell, M; Benabderrahmane, M L; BenZvi, S; Berdermann, J; Berghaus, P; Berley, D; Bernardini, E; Bertrand, D; Besson, D Z; Bindig, D; Bissok, M; Blaufuss, E; Blumenthal, J; Boersma, D J; Bohm, C; Bose, D; Böser, S; Botner, O; Brayeur, L; Brown, A M; Bruijn, R; Brunner, J; Buitink, S; Caballero-Mora, K S; Carson, M; Casey, J; Casier, M; Chirkin, D; Christy, B; Clevermann, F; Cohen, S; Cowen, D F; Silva, A H Cruz; Danninger, M; Daughhetee, J; Davis, J C; De Clercq, C; Descamps, F; Desiati, P; de Vries-Uiterweerd, G; DeYoung, T; Díaz-Vélez, J C; Dreyer, J; Dumm, J P; Dunkman, M; Eagan, R; Eisch, J; Elliott, C; Ellsworth, R W; Engdegård, O; Euler, S; Evenson, P A; Fadiran, O; Fazely, A R; Fedynitch, A; Feintzeig, J; Feusels, T; Filimonov, K; Finley, C; Fischer-Wasels, T; Flis, S; Franckowiak, A; Franke, R; Frantzen, K; Fuchs, T; Gaisser, T K; Gallagher, J; Gerhardt, L; Gladstone, L; Glüsenkamp, T; Goldschmidt, A; Goodman, J A; Góra, D; Grant, D; Groß, A; Grullon, S; Gurtner, M; Ha, C; Ismail, A Haj; Hallgren, A; Halzen, F; Hanson, K; Heereman, D; Heimann, P; Heinen, D; Helbing, K; Hellauer, R; Hickford, S; Hill, G C; Hoffman, K D; Hoffmann, R; Homeier, A; Hoshina, K; Huelsnitz, W; Hulth, P O; Hultqvist, K; Hussain, S; Ishihara, A; Jacobi, E; Jacobsen, J; Japaridze, G S; Jlelati, O; Johansson, H; Kappes, A; Karg, T; Karle, A; Kiryluk, J; Kislat, F; Kläs, J; Klein, S R; Klepser, S; Köhne, J -H; Kohnen, G; Kolanoski, H; Köpke, L; Kopper, C; Kopper, S; Koskinen, D J; Kowalski, M; Krasberg, M; Kroll, G; Kunnen, J; Kurahashi, N; Kuwabara, T; Labare, M; Laihem, K; Landsman, H; Larson, M J; Lauer, R; Lesiak-Bzdak, M; Lünemann, J; Madsen, J; Maruyama, R; Mase, K; Matis, H S; McDermott, A; McNally, F; Meagher, K; Merck, M; Mészáros, P; Meures, T; Miarecki, S; Middell, E; Milke, N; Miller, J; Mohrmann, L; Montaruli, T; Morse, R; Movit, S M; Nahnhauer, R; Naumann, U; Nießen, P; Nowicki, S C; Nygren, D R; Obertacke, A; Odrowski, S; Olivas, A; Olivo, M; O'Murchadha, A; Panknin, S; Paul, L; Pepper, J A; Heros, C Pérez de los; Pieloth, D; Pirk, N; Posselt, J; Price, P B; Przybylski, G T; Rädel, L; Rawlins, K; Redl, P; Resconi, E; Rhode, W; Ribordy, M; Richman, M; Riedel, B; Rodrigues, J P; Roth, J; Rothmaier, F; Rott, C; Roucelle, C; Ruhe, T; Rutledge, D; Ruzybayev, B; Ryckbosch, D; Saba, S M; Salameh, T; Sander, H -G; Santander, M; Sarkar, S; Schatto, K; Scheel, M; Scheriau, F; Schmidt, T; Schmitz, M; Schoenen, S; Schöneberg, S; Schönherr, L; Schönwald, A; Schukraft, A; Schulte, L; Schulz, O; Seckel, D; Seo, S H; Sestayo, Y; Seunarine, S; Shulman, L; Smith, M W E; Soiron, M; Soldin, D; Spiczak, G M; Spiering, C; Stamatikos, M; Stanev, T; Stasik, A; Stezelberger, T; Stokstad, R G; Stößl, A; Stoyanov, S; Strahler, E A; Ström, R; Sulanke, K-H; Sullivan, G W; Taavola, H; Taboada, I; Tamburro, A; Ter-Antonyan, S; Tilav, S; Toale, P A; Toscano, S; Usner, M; van der Drift, D; van Eijndhoven, N; Van Overloop, A; van Santen, J; Vehring, M; Voge, M; Walck, C; Waldenmaier, T; Wallraff, M; Walter, M; Wasserman, R; Weaver, Ch; Wendt, C; Westerhoff, S; Whitehorn, N; Wiebe, K; Wiebusch, C H; Williams, D R; Wissing, H; Wolf, M; Wood, T R; Woschnagg, K; Xu, C; Xu, D L; Xu, X W; Yanez, J P; Yodh, G; Yoshida, S; Zarzhitsky, P; Ziemann, J; Zilles, A; Zoll, M

    2012-01-01

    IceTop, the surface component of the IceCube Neutrino Observatory at the South Pole, is an air shower array with an area of 1 km2. The detector allows a detailed exploration of the mass composition of primary cosmic rays in the energy range from about 100 TeV to 1 EeV by exploiting the correlation between the shower energy measured in IceTop and the energy deposited by muons in the deep ice. In this paper we report on the technical design, construction and installation, the trigger and data acquisition systems as well as the software framework for calibration, reconstruction and simulation. Finally the first experience from commissioning and operating the detector and the performance as an air shower detector will be discussed.

  9. 2006 Program of Study: Ice

    Science.gov (United States)

    2007-03-01

    glacial cycles. But most, paleoclimate reconstructions suggest that there was year-round Arctic sea ice for at least the past million years (e.g., Moran et...the point where the ocean beconmes ice-free each sununer, the Arctic continues to b)e completely ice-coverel ever’ winter. When CO2 is further...of fractional pond cover in sumner ai( melt pond albedos [7]. 3.2.5 Addition of CO2 We can crudely vary CO 2 in the Model by enhancing the Arctic

  10. Whillans Ice Plain Stick Slip

    Science.gov (United States)

    Lipovsky, B.; Dunham, E. M.

    2015-12-01

    Concern about future sea level rise motivates the study of fast flowing ice. The Whillans Ice Plain (WIP) region of the West Antarctic Ice Sheet is notable for decelerating from previously fast motion during the instrumental record. Since most ice flux in Antarctica occurs through ice streams, understanding the conditions that cause ice stream stagnation is of basic importance in understanding the continent's contribution to future sea level rise. Although recent progress has been made in understanding the relationship between basal conditions and ice stream motion, direct observation of the temporal variation in subglacial conditions during ice stream stagnation has remained elusive. The Whillans Ice Plain flows to the sea mostly by way of stick-slip motion. We present numerical simulations of this stick-slip motion that capture the inertial dynamics, seismic waves, and the evolution of sliding with rate- and state-dependent basal friction. Large scale stick-slip behavior is tidally modulated and encompasses the entire WIP. Sliding initiates within one of several locked regions and then propagates outward with low average rupture velocity (~ 200 m/s). Sliding accelerates over a period of 200 s attain values as large as 65 m/d. From Newton's second law, this acceleration is ~ T / (rho H) for average shear stress drop T, ice thickness H, and ice density rho. This implies a 3 Pa stress drop that must be reconciled with the final stress drop of 300 Pa inferred from the total slip and fault dimensions. A possible explanation of this apparent discrepancy is that deceleration of the ice is associated with a substantial decrease in traction within rate-strengthening regions of the bed. During these large-scale sliding events, m-scale patches at the bed produce rapid (20 Hz) stick-slip motion. Each small event occurs over ~ 1/100 s, produces ~ 40 microns of slip, and gives rise to a spectacular form of seismic tremor. Variation between successive tremor episodes allows us

  11. Rewritable artificial magnetic charge ice

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y. -L.; Xiao, Z. -L.; Snezhko, A.; Xu, J.; Ocola, L. E.; Divan, R.; Pearson, J. E.; Crabtree, G. W.; Kwok, W. -K.

    2016-05-19

    Artificial ices enable the study of geometrical frustration by design and through direct observation. However, it has proven difficult to achieve tailored long-range ordering of their diverse configurations, limiting both fundamental and applied research directions. We designed an artificial spin structure that produces a magnetic charge ice with tunable long-range ordering of eight different configurations. We also developed a technique to precisely manipulate the local magnetic charge states and demonstrate write-read-erase multifunctionality at room temperature. This globally reconfigurable and locally writable magnetic charge ice could provide a setting for designing magnetic monopole defects, tailoring magnonics, and controlling the properties of other two-dimensional materials.

  12. Global dynamics of the Antarctic ice sheet

    NARCIS (Netherlands)

    Oerlemans, J.

    2002-01-01

    The total mass budget of the Antarctic ice sheet is studied with a simple axi-symmetrical model. The ice-sheet has a parabolic profile resting on a bed that slopes linearly downwards from the centre of the ice sheet into the ocean. The mean ice velocity at the grounding line is assumed to be proport

  13. Concrete ice abrasion rig and wear measurements

    NARCIS (Netherlands)

    Shamsutdinova, G.; Rike, P.B.; Hendriks, M.A.N.; Jacobsen, S.

    2015-01-01

    The wear of concrete material due to ice movement is a challenge for offshore and coastal structures. Concrete surfaces exposed to moving ice are subjected to wear at various rates depending on concrete and ice properties. At NTNU, Department of Structural Engineering, concrete ice abrasion phenomen

  14. Ultrasonic guided wave tomography for ice detection.

    Science.gov (United States)

    Zhao, Xiang; Rose, Joseph L

    2016-04-01

    Of great concern for many structures, particularly critical sections of rotary and fixed wing aircrafts, is the ability to detect ice either on grounded or in-flight vehicles. As a consequence, some work is reported here that could be useful for a variety of different industries where ice formation is an important problem. This paper presents experimental validations of a probability-based reconstruction algorithm (PRA) on ice detection of plate-like structures. The ice detection tests are performed for three different specimens: a single layer aluminum plate with a circular ice sensing array, a titanium plate with a sparse rectangular ice sensing array, and a carbon-fiber-reinforced titanium plate with an embedded ice sensing array mounted on a carbon fiber back plate. Cases from the simple to the more challenging exemplify that special modes can be used to differentiate ice from water, a sparse rectangular array could also be used for ice detection, and an ice sensing array could be further used to detect the ice on the sensor free side, a very useful application of ice sensing for aircraft wings, for example. Ice detection images for the respective cases are reconstructed to investigate the feasibility of ice sensing with ultrasonic guided wave tomography technology. The results show that the PRA based ultrasonic guided wave tomography method successfully detected and showed ice spots correctly for all three cases. This corroborates the fact that ultrasonic guided wave imaging technology could be a potential useful ice sensing tool in plate-like structures.

  15. Salmon River Ice Jam Control Studies

    Science.gov (United States)

    1990-04-01

    Deadrnan low stream depths often allows ice to pass beneath the Anchor /boom. But during freezeup , when the quantity of frazil ice is large, an ice...report. US Army Engineer District, Walla LITERATURE CITED Walla. Zufelt, J.E. (1987) Salmon River ice control study, Axelson, K.D. (1990) Freezeup

  16. Three-dimensional surface velocities of Storstrømmen glacier, Greenland, derived from radar interferometry and ice-sounding radar measurements

    DEFF Research Database (Denmark)

    Reeh, Niels; Mohr, Johan Jacob; Madsen, Søren Nørvang

    2003-01-01

    in substantial errors (up to 20%) also on the south-north component of horizontal velocities derived by satellite synthetic aperture radar interferometry (InSAR) measurements. In many glacier environments, the steady-state vertical velocity component required to balance the annual ablation rate is 5-10 m a(-1...... tracks with airborne ice-sounding radar measurement of ice thickness. The results are compared to InSAR velocities previously derived by using the SPF assumption, and to velocities obtained by in situ global positioning system (GPS) measurements. The velocities derived by using the MC principle...

  17. Massive subsurface ice formed by refreezing of ice-shelf melt ponds

    NARCIS (Netherlands)

    Hubbard, Bryn; Luckman, A.; Ashmore, David; Bevan, S.; Kulessa, Bernd; Kuipers Munneke, P.; phillipe, morgane; Jansen, Daniela; Booth, Adam; Sevestre, Heidi; Tison, Jean-Louis; O'Leary, Martin; Rutt, Ian

    2016-01-01

    Surface melt ponds form intermittently on several Antarctic ice shelves. Although implicated in ice-shelf break up, the consequences of such ponding for ice formation and ice-shelf structure have not been evaluated. Here we report the discovery of a massive subsurface ice layer, at least 16 km acros

  18. Ice, Ocean and Atmosphere Interactions in the Arctic Marginal Ice Zone

    Science.gov (United States)

    2015-09-30

    release; distribution is unlimited. DRI TECHNICAL PROGRAM: Emerging Dynamics Of The Marginal Ice Zone Ice, Ocean and Atmosphere Interactions in the... Arctic Marginal Ice Zone Year 4 Annual Report Jeremy Wilkinson British Antarctic Survey phone: 44 (0)1223 221489 fax: 44 (0) 1223...global) scientific team in order to better understand the ocean , sea ice and atmosphere interaction within the marginal ice zone

  19. Antarctic ice rises and rumples : Their properties and significance for ice-sheet dynamics and evolution

    NARCIS (Netherlands)

    Matsuoka, Kenichi; Hindmarsh, Richard C A; Moholdt, Geir; Bentley, Michael J.; Pritchard, Hamish D.; Brown, Joel; Conway, Howard; Drews, Reinhard; Durand, Gaël; Goldberg, Daniel; Hattermann, Tore; Kingslake, Jonathan; Lenaerts, Jan T M; Martín, Carlos; Mulvaney, Robert; Nicholls, Keith W.; Pattyn, Frank; Ross, Neil; Scambos, Ted; Whitehouse, Pippa L.

    2015-01-01

    Locally grounded features in ice shelves, called ice rises and rumples, play a key role buttressing discharge from the Antarctic Ice Sheet and regulating its contribution to sea level. Ice rises typically rise several hundreds of meters above the surrounding ice shelf; shelf flow is diverted around

  20. Response timescales for martian ice masses and implications for ice flow on Mars

    DEFF Research Database (Denmark)

    Koutnik, Michelle Rebecca; Waddington, E.D.; Winebrener, D.P.;

    2013-01-01

    ice-flow rates were more significant than today. A plausible range of near-basal ice temperatures and ice-flow enhancement factors can generate the characteristic geometry of an ice mass that has been shaped by flow over reasonable volume-response timescales. All plausible ice-flow scenarios require...

  1. Uncertainty in Ice Crystal Orientation Distributions in Ice Sheets

    Science.gov (United States)

    Hay, Michael; Waddington, Edwin

    2016-04-01

    Crystal-orientation fabrics in polar ice sheets have a strong influence on ice flow due to the plastic anisotropy of ice. Crystal orientations evolve primarily in response to applied strain, but are also affected by temperature, impurities, interactions with neighbors, and other factors. While the evolution of each ice crystal is physically deterministic, in limited samples, such as those from ice-core thin sections, measured samples are stochastic due to sampling error. Even in continuum representations from models, crystal orientation distribution functions (ODFs) can be treated as stochastic due to uncertainties in how they developed. Here, we present results on the statistics of crystal orientation fabrics. We show a first-order estimate of the sampling distribution of fabric eigenvalues and fabric eigenvectors from ice-core thin sections. We also analyze uncertainty in electron backscatter diffraction measurements. In addition to sampling error, the strain histories of fabrics are generally poorly constrained, and may have varied in unknown ways through time. Nearby layers in ice sheets can also experience different strain histories due to inherent variabilities such as transient flow, or differences in impurities. This means that the continuum ODF itself can be treated as stochastic, because it depends on an effectively-stochastic unknown strain-history. To explore this, we analyze the effects of strain and vorticity variability on the evolution of the continuum ice-crystal ODF. We recast Jeffery's equation for the evolution of the ODF as a stochastic differential equation, with vorticity and strain perturbed by Gaussian processes. From this, we run a Monte-Carlo ensemble to determine likely bounds of true continuum ODF variability in response to random perturbations of strain and vorticity.

  2. Icing in the Cake: Evidence for Ground Ice in Ceres

    Science.gov (United States)

    Schmidt, Britney E.; Chilton, Heather; Hughson, Kynan Horace; Scully, Jennifer E. C.; Sizemore, Hanna G.; Nathues, Andreas; Platz, Thomas; Byrne, Shane; Bland, Michael T.; Schorghofer, Norbert; O'Brien, David P.; Marchi, Simone; Hiesinger, Harald; Jaumann, Ralf; Russell, Christopher T.; Raymond, Carol; Dawn Science and Operations Team

    2016-10-01

    Without surface deposits of ice readily visible and few spectral detections of ice, the task of understanding ice on Ceres falls to other investigations. Several decades of thermal models suggest that subsurface ice on Ceres is stable for the lifetime of the solar system. Here, we report geomorphological evidence of silicate-ice mixtures, which we refer to as "ground ice", from careful analysis of the behavior of surface features on Ceres. In particular, we have focused on trends in mass wasting features. Mass wasting on Ceres is pervasive--in over 20% of craters above 10km in size, often with provocative rounded termini. We have identified three "endmember" classes of lobate mass wasting morphologies: tongue-shaped, furrowed flows hundreds of meters thick on steep slopes, tens of meter thick spatulate-sheeted flows on shallow slopes, and cuspate-sheeted flows, also tens of meters thick, but with morphology that indicates fluidization. These features on Ceres are distinct from those on dry Vesta, which shares a similar impactor population and velocity distribution due to their similar locations in the main belt. Thus, differing material properties are implied between the two bodies. Morphologically, each of these feature types possess an analog found in glaciated regions on Earth and Mars or on the surfaces of the icy satellites that help describe how down slope mass motion may be created. In particular, we identify several spectacular features that share commonatlity with rock glaciers and lahars. Moreover, these abundant features increase in number and aerial coverage towards the poles, and show progressively more fluidization towards the low latitudes. We conclude that the geomorphology of these features are evidence that Ceres' subsurface contains significant ground ice and that the ice is most abundant near the poles.

  3. Study of airborne science experiment management concepts for application to space shuttle, volume 2

    Science.gov (United States)

    Mulholland, D. R.; Reller, J. O., Jr.; Neel, C. B.; Haughney, L. C.

    1973-01-01

    Airborne research management and shuttle sortie planning at the Ames Research Center are reported. Topics discussed include: basic criteria and procedures for the formulation and approval of airborne missions; ASO management structure and procedures; experiment design, development, and testing aircraft characteristics and experiment interfaces; information handling for airborne science missions; mission documentation requirements; and airborne science methods and shuttle sortie planning.

  4. Arctic ice cover, ice thickness and tipping points.

    Science.gov (United States)

    Wadhams, Peter

    2012-02-01

    We summarize the latest results on the rapid changes that are occurring to Arctic sea ice thickness and extent, the reasons for them, and the methods being used to monitor the changing ice thickness. Arctic sea ice extent had been shrinking at a relatively modest rate of 3-4% per decade (annually averaged) but after 1996 this speeded up to 10% per decade and in summer 2007 there was a massive collapse of ice extent to a new record minimum of only 4.1 million km(2). Thickness has been falling at a more rapid rate (43% in the 25 years from the early 1970s to late 1990s) with a specially rapid loss of mass from pressure ridges. The summer 2007 event may have arisen from an interaction between the long-term retreat and more rapid thinning rates. We review thickness monitoring techniques that show the greatest promise on different spatial and temporal scales, and for different purposes. We show results from some recent work from submarines, and speculate that the trends towards retreat and thinning will inevitably lead to an eventual loss of all ice in summer, which can be described as a 'tipping point' in that the former situation, of an Arctic covered with mainly multi-year ice, cannot be retrieved.

  5. Ice-crust and ice-film; Miaraban

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, M. [Mechanical Engineering Lab., Tokyo (Japan)

    1999-11-01

    Snow on the road is converted into packed snow after being repeatedly trodden by automobile tires and pedestrians. During this compaction process, a phenomenon named sintering occurs inside the snow. Snow crystals at a temperature below the melting point are transformed into roundish ice grains with the passage of time, and bondage develops between the grains for the formation of a pack of snow which is very hard (hard-packed snow). This prepares the base for ice-film or ice-crust formation. What is called 'mirror-bahn' is an ice film which is 1mm thick or less. It is a mirror-like ice surface, generally termed the 'slippery packed snow or slippery road surface.' With studded tires repeatedly travelling on the hard-packed snow surface, friction heat is generated due to microscopic slips occurring between the tires in rotation and the ground and due to braking or driving, and the heat melts the very thin surface layer of the hard-packed snow. The surface freezes again for the formation of an ice film presenting a mirror-like surface. Such a slippery road surface is formed under complicatedly variable conditions with the parameters involving weather conditions and traffic density. The primary measure against the slippery road surface is the surface control by use of antifreezing agents. (NEDO)

  6. Loss of sea ice in the Arctic.

    Science.gov (United States)

    Perovich, Donald K; Richter-Menge, Jacqueline A

    2009-01-01

    The Arctic sea ice cover is in decline. The areal extent of the ice cover has been decreasing for the past few decades at an accelerating rate. Evidence also points to a decrease in sea ice thickness and a reduction in the amount of thicker perennial sea ice. A general global warming trend has made the ice cover more vulnerable to natural fluctuations in atmospheric and oceanic forcing. The observed reduction in Arctic sea ice is a consequence of both thermodynamic and dynamic processes, including such factors as preconditioning of the ice cover, overall warming trends, changes in cloud coverage, shifts in atmospheric circulation patterns, increased export of older ice out of the Arctic, advection of ocean heat from the Pacific and North Atlantic, enhanced solar heating of the ocean, and the ice-albedo feedback. The diminishing Arctic sea ice is creating social, political, economic, and ecological challenges.

  7. Getting around Antarctica: new high-resolution mappings of the grounded and freely-floating boundaries of the Antarctic ice sheet created for the International Polar Year

    Directory of Open Access Journals (Sweden)

    R. Bindschadler

    2011-07-01

    Full Text Available Two ice-dynamic transitions of the Antarctic ice sheet – the boundary of grounded ice features and the freely-floating boundary – are mapped at 15-m resolution by participants of the International Polar Year project ASAID using customized software combining Landsat-7 imagery and ICESat/GLAS laser altimetry. The grounded ice boundary is 53 610 km long; 74 % abuts to floating ice shelves or outlet glaciers, 19 % is adjacent to open or sea-ice covered ocean, and 7 % of the boundary ice terminates on land. The freely-floating boundary, called here the hydrostatic line, is the most landward position on ice shelves that expresses the full amplitude of oscillating ocean tides. It extends 27 521 km and is discontinuous. Positional (one-sigma accuracies of the grounded ice boundary vary an order of magnitude ranging from ±52 m for the land and open-ocean terminating segments to ±502 m for the outlet glaciers. The hydrostatic line is less well positioned with errors over 2 km. Elevations along each line are selected from 6 candidate digital elevation models based on their agreement with ICESat elevation values and surface shape inferred from the Landsat imagery. Elevations along the hydrostatic line are converted to ice thicknesses by applying a firn-correction factor and a flotation criterion. BEDMAP-compiled data and other airborne data are compared to the ASAID elevations and ice thicknesses to arrive at quantitative (one-sigma uncertainties of surface elevations of ±3.6, ±9.6, ±11.4, ±30 and ±100 m for five ASAID-assigned confidence levels. Over one-half of the surface elevations along the grounded ice boundary and over one-third of the hydrostatic line elevations are ranked in the highest two confidence categories. A comparison between ASAID-calculated ice shelf thicknesses and BEDMAP-compiled data indicate a thin-ice bias of 41.2 ± 71.3 m for the ASAID ice thicknesses. The relationship between the seaward offset of the hydrostatic line

  8. Getting around Antarctica: New High-Resolution Mappings of the Grounded and Freely-Floating Boundaries of the Antarctic Ice Sheet Created for the International Polar Year

    Science.gov (United States)

    Bindschadler, R.; Choi, H.; Wichlacz, A.; Bingham, R.; Bohlander, J.; Brunt, K.; Corr, H.; Drews, R.; Fricker, H.; Hall, M.; Hindmarsh, R.; Kohler, J.; Padman, L.; Rack, W.; Rotschkly, G.; Urbini, S.; Vornberger, P.; Young, N.

    2011-01-01

    Two ice-dynamic transitions of the Antarctic ice sheet - the boundary of grounded ice features and the freely-floating boundary - are mapped at 15-m resolution by participants of the International Polar Year project ASAID using customized software combining Landsat-7 imagery and ICESat/GLAS laser altimetry. The grounded ice boundary is 53 610 km long; 74% abuts to floating ice shelves or outlet glaciers, 19% is adjacent to open or sea-ice covered ocean, and 7% of the boundary ice terminates on land. The freely-floating boundary, called here the hydrostatic line, is the most landward position on ice shelves that expresses the full amplitude of oscillating ocean tides. It extends 27 521 km and is discontinuous. Positional (one-sigma) accuracies of the grounded ice boundary vary an order of magnitude ranging from +/- 52m for the land and open-ocean terminating segments to +/- 502m for the outlet glaciers. The hydrostatic line is less well positioned with errors over 2 km. Elevations along each line are selected from 6 candidate digital elevation models based on their agreement with ICESat elevation values and surface shape inferred from the Landsat imagery. Elevations along the hydrostatic line are converted to ice thicknesses by applying a firn-correction factor and a flotation criterion. BEDMAP-compiled data and other airborne data are compared to the ASAID elevations and ice thicknesses to arrive at quantitative (one-sigma) uncertainties of surface elevations of +/-3.6, +/-9.6, +/-11.4, +/-30 and +/-100m for five ASAID-assigned confidence levels. Over one-half of the surface elevations along the grounded ice boundary and over one-third of the hydrostatic line elevations are ranked in the highest two confidence categories. A comparison between ASAID-calculated ice shelf thicknesses and BEDMAP-compiled data indicate a thin-ice bias of 41.2+/-71.3m for the ASAID ice thicknesses. The relationship between the seaward offset of the hydrostatic line from the grounded ice

  9. Observations of ice nuclei and heterogeneous freezing in a Western Pacific extratropical storm

    Directory of Open Access Journals (Sweden)

    J. L. Stith

    2011-07-01

    Full Text Available In situ airborne sampling of refractory black carbon (rBC particles and Ice Nuclei (IN was conducted in and near an extratropical cyclonic storm in the western Pacific Ocean during the Pacific Dust Experiment, PACDEX, in the spring of 2007. Airmass origins were from Eastern Asia. Clouds associated primarily with the warm sector of the storm were sampled at various locations and altitudes. Cloud hydrometeors were evaporated by a counterflow virtual impactor (CVI and the residuals were sampled by a single particle soot photometer (SP2 instrument, a continuous flow diffusion chamber ice nucleus detector (CFDC and collected for electron microscope analysis. In clouds containing large ice particles, multiple residual particles were observed downstream of the CVI for each ice particle sampled on average. The fraction of rBC compared to total particles in the residual particles increased with decreasing condensed water content, while the fraction of IN compared to total particles did not, suggesting that the scavenging process for rBC is different than for IN. In the warm sector storm midlevels at temperatures where heterogeneous freezing is expected to be significant (here −24 to −29 °C, IN concentrations from ice particle residuals generally agreed with simultaneous measurements of total ice concentrations or were higher in regions where aggregates of crystals were found, suggesting heterogeneous freezing as the dominant ice formation process in the mid levels of these warm sector clouds. Lower in the storm, at warmer temperatures, ice concentrations were affected by aggregation and were somewhat less than measured IN concentrations at colder temperatures. The results are consistent with ice particles forming at storm mid-levels by heterogeneous freezing on IN, followed by aggregation and sedimentation to lower altitudes. Compositional analysis of the aerosol and back trajectories of the air in the warm sector suggested a possible biomass

  10. Observations of ice nuclei and heterogeneous freezing in a Western Pacific extratropical storm

    Science.gov (United States)

    Stith, J. L.; Twohy, C. H.; Demott, P. J.; Baumgardner, D.; Campos, T.; Gao, R.; Anderson, J.

    2011-07-01

    In situ airborne sampling of refractory black carbon (rBC) particles and Ice Nuclei (IN) was conducted in and near an extratropical cyclonic storm in the western Pacific Ocean during the Pacific Dust Experiment, PACDEX, in the spring of 2007. Airmass origins were from Eastern Asia. Clouds associated primarily with the warm sector of the storm were sampled at various locations and altitudes. Cloud hydrometeors were evaporated by a counterflow virtual impactor (CVI) and the residuals were sampled by a single particle soot photometer (SP2) instrument, a continuous flow diffusion chamber ice nucleus detector (CFDC) and collected for electron microscope analysis. In clouds containing large ice particles, multiple residual particles were observed downstream of the CVI for each ice particle sampled on average. The fraction of rBC compared to total particles in the residual particles increased with decreasing condensed water content, while the fraction of IN compared to total particles did not, suggesting that the scavenging process for rBC is different than for IN. In the warm sector storm midlevels at temperatures where heterogeneous freezing is expected to be significant (here -24 to -29 °C), IN concentrations from ice particle residuals generally agreed with simultaneous measurements of total ice concentrations or were higher in regions where aggregates of crystals were found, suggesting heterogeneous freezing as the dominant ice formation process in the mid levels of these warm sector clouds. Lower in the storm, at warmer temperatures, ice concentrations were affected by aggregation and were somewhat less than measured IN concentrations at colder temperatures. The results are consistent with ice particles forming at storm mid-levels by heterogeneous freezing on IN, followed by aggregation and sedimentation to lower altitudes. Compositional analysis of the aerosol and back trajectories of the air in the warm sector suggested a possible biomass burning source for much

  11. A study of ice response spectra

    Institute of Scientific and Technical Information of China (English)

    LIU Chunguang; JIA Lingling

    2009-01-01

    Some problems concerning the ice forces and ice response spectra are studied from both theoretical and practical points of view. On the basis of structural analysis,the analysis method of ice response spectra is proposed, since it plays an important role in the prediction of maximum structural response in cold regions. And it is illustrated that it is easy to study the structural response to ice using the ice response spectra.

  12. THE AIRPORT DE-ICING OF AIRCRAFTS

    Directory of Open Access Journals (Sweden)

    Robert KONIECZKA

    2015-03-01

    Full Text Available This article provides a summary of the issues involved in de-icing several kinds of aircrafts before flight. The basic risks of an iced aircraft and the factors that can influence its intensity are stated. It discusses the methods for de-icing and protecting against ice formation on small aircrafts, helicopters, and large aircrafts. It also classifies the fluids and other methods used for these de-icing operations, and explains the characteristics and limitations of their use.

  13. Ice thickness measurements by Raman scattering

    CERN Document Server

    Pershin, Sergey M; Klinkov, Vladimir K; Yulmetov, Renat N; Bunkin, Alexey F

    2014-01-01

    A compact Raman LIDAR system with a spectrograph was used for express ice thickness measurements. The difference between the Raman spectra of ice and liquid water is employed to locate the ice-water interface while elastic scattering was used for air-ice surface detection. This approach yields an error of only 2 mm for an 80-mm-thick ice sample, indicating that it is promising express noncontact thickness measurements technique in field experiments.

  14. Ice Jams, Winter 1996-1997

    Science.gov (United States)

    1998-06-01

    Engineers® Rivers, streams, and lakes in cold regions freeze during winter months. Ice jams may form during initial ice cover formation ( freezeup jams) or...when ice cover breaks up (breakup jams). Both freezeup and breakup jams cause backwater flooding and damage to low-lying areas and municipal...Laboratory (CRREL) Ice Jam Database is a compilation of freezeup and breakup ice jam events in the United States (White 1996). Currently, there are more

  15. Thin-ice Arctic Acoustic Window (THAAW)

    Science.gov (United States)

    2014-09-30

    STATEMENT A. Approved for public release; distribution is unlimited. Thin- ice Arctic Acoustic Window (THAAW) Peter F. Worcester Scripps Institution of...of the ice cover and extensive warming of the intermediate layers. The multiyear ice is melting . Ice keels are getting smaller. With more open water...determine the fundamental limits to signal processing in the Arctic imposed by ocean and ice processes. The hope is that these first few new steps will

  16. Control of Airborne Infectious Diseases in Ventilated Spaces

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2009-01-01

    We protect ourselves from airborne cross-infection in the indoor environment by supplying fresh air to a room by natural or mechanical ventilation. The air is distributed in the room according to different principles: mixing ventilation, displacement ventilation, etc. A large amount of air...... is supplied to the room to ensure a dilution of airborne infection. Analyses of the flow in the room show that there are a number of parameters that play an important role in minimizing airborne cross-infection. The air flow rate to the room must be high, and the air distribution pattern can be designed...

  17. Airborne gravimetry, altimetry, and GPS navigation errors

    Science.gov (United States)

    Colombo, Oscar L.

    1992-01-01

    Proper interpretation of airborne gravimetry and altimetry requires good knowledge of aircraft trajectory. Recent advances in precise navigation with differential GPS have made it possible to measure gravity from the air with accuracies of a few milligals, and to obtain altimeter profiles of terrain or sea surface correct to one decimeter. These developments are opening otherwise inaccessible regions to detailed geophysical mapping. Navigation with GPS presents some problems that grow worse with increasing distance from a fixed receiver: the effect of errors in tropospheric refraction correction, GPS ephemerides, and the coordinates of the fixed receivers. Ionospheric refraction and orbit error complicate ambiguity resolution. Optimal navigation should treat all error sources as unknowns, together with the instantaneous vehicle position. To do so, fast and reliable numerical techniques are needed: efficient and stable Kalman filter-smoother algorithms, together with data compression and, sometimes, the use of simplified dynamics.

  18. Wavelet Based Fractal Analysis of Airborne Pollen

    CERN Document Server

    Degaudenzi, M E

    1999-01-01

    The most abundant biological particles in the atmosphere are pollen grains and spores. Self protection of pollen allergy is possible through the information of future pollen contents in the air. In spite of the importance of airborne pol len concentration forecasting, it has not been possible to predict the pollen concentrations with great accuracy, and about 25% of the daily pollen forecasts have resulted in failures. Previous analysis of the dynamic characteristics of atmospheric pollen time series indicate that the system can be described by a low dimensional chaotic map. We apply the wavelet transform to study the multifractal characteristics of an a irborne pollen time series. We find the persistence behaviour associated to low pollen concentration values and to the most rare events of highest pollen co ncentration values. The information and the correlation dimensions correspond to a chaotic system showing loss of information with time evolution.

  19. Vine variety discrimination with airborne imaging spectroscopy

    Science.gov (United States)

    Ferreiro-Armán, M.; Alba-Castro, J. L.; Homayouni, S.; da Costa, J. P.; Martín-Herrero, J.

    2007-09-01

    We aim at the discrimination of varieties within a single plant species (Vitis vinifera) by means of airborne hyperspectral imagery collected using a CASI-2 sensor and supervised classification, both under constant and varying within-scene illumination conditions. Varying illumination due to atmospheric conditions (such as clouds) and shadows cause different pixels belonging to the same class to present different spectral vectors, increasing the within class variability and hindering classification. This is specially serious in precision applications such as variety discrimination in precision agriculture, which depends on subtle spectral differences. In this study, we use machine learning techniques for supervised classification, and we also analyze the variability within and among plots and within and among sites, in order to address the generalizability of the results.

  20. Characterization of iron in airborne particulate matter

    Science.gov (United States)

    Tavares, F. V. F.; Ardisson, J. D.; Rodrigues, P. C. H.; Brito, W.; Macedo, W. A. A.; Jacomino, V. M. F.

    2014-01-01

    In this work soil samples, iron ore and airborne atmospheric particulate matter (PM) in the Metropolitan Region of Belo Horizonte (MRBH), State of Minas Gerais, Brazil, are investigated with the aim of identifying if the sources of the particulate matter are of natural origin, such as, resuspension of particles from soil, or due to anthropogenic origins from mining and processing of iron ore. Samples were characterized by powder X-ray diffraction, X-ray fluorescence and 57Fe-Mössbauer spectroscopy. The results showed that soil samples studied are rich in quartz and have low contents of iron mainly iron oxide with low crystallinity. The samples of iron ore and PM have high concentration of iron, predominantly well crystallized hematite. 57Fe-Mössbauer spectroscopy confirmed the presence of similar iron oxides in samples of PM and in the samples of iron ore, indicating the anthropogenic origin in the material present in atmosphere of the study area.