WorldWideScience

Sample records for airborne ballistic camera

  1. Digital airborne camera introduction and technology

    CERN Document Server

    Sandau, Rainer

    2014-01-01

    The last decade has seen great innovations on the airborne camera. This book is the first ever written on the topic and describes all components of a digital airborne camera ranging from the object to be imaged to the mass memory device.

  2. Measurement of airborne gunshot particles in a ballistics laboratory by sector field inductively coupled plasma mass spectrometry.

    Science.gov (United States)

    Diaz, Ernesto; Sarkis, Jorge E Souza; Viebig, Sônia; Saldiva, Paulo

    2012-01-10

    The present study aimed determines lead (Pb), antimony (Sb) and barium (Ba) as the major elements present in GSR in the environmental air of the Ballistics Laboratory of the São Paulo Criminalistics Institute (I.C.-S.P.), São Paulo, SP, Brazil. Micro environmental monitors (mini samplers) were located at selected places. The PM(2.5) fraction of this airborne was collected in, previously weighted filters, and analyzed by sector field inductively coupled plasma mass spectrometer (SF-HR-ICP-MS). The higher values of the airborne lead, antimony and barium, were found at the firing range (lead (Pb): 58.9 μg/m(3); barium (Ba): 6.9 μg/m(3); antimony (Sb): 7.3 μg/m(3)). The mean value of the airborne in this room during 6 monitored days was Pb: 23.1 μg/m(3); Ba: 2.2 μg/m(3); Sb: 1.5 μg/m(3). In the water tank room, the air did not show levels above the limits of concern. In general the airborne lead changed from day to day, but the barium and antimony remained constant. Despite of that, the obtained values suggest that the workers may be exposed to airborne lead concentration that can result in an unhealthy environment and could increase the risk of chronic intoxication. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  3. An Airborne Multispectral Imaging System Based on Two Consumer-Grade Cameras for Agricultural Remote Sensing

    Directory of Open Access Journals (Sweden)

    Chenghai Yang

    2014-06-01

    Full Text Available This paper describes the design and evaluation of an airborne multispectral imaging system based on two identical consumer-grade cameras for agricultural remote sensing. The cameras are equipped with a full-frame complementary metal oxide semiconductor (CMOS sensor with 5616 × 3744 pixels. One camera captures normal color images, while the other is modified to obtain near-infrared (NIR images. The color camera is also equipped with a GPS receiver to allow geotagged images. A remote control is used to trigger both cameras simultaneously. Images are stored in 14-bit RAW and 8-bit JPEG files in CompactFlash cards. The second-order transformation was used to align the color and NIR images to achieve subpixel alignment in four-band images. The imaging system was tested under various flight and land cover conditions and optimal camera settings were determined for airborne image acquisition. Images were captured at altitudes of 305–3050 m (1000–10,000 ft and pixel sizes of 0.1–1.0 m were achieved. Four practical application examples are presented to illustrate how the imaging system was used to estimate cotton canopy cover, detect cotton root rot, and map henbit and giant reed infestations. Preliminary analysis of example images has shown that this system has potential for crop condition assessment, pest detection, and other agricultural applications.

  4. Remote classification from an airborne camera using image super-resolution.

    Science.gov (United States)

    Woods, Matthew; Katsaggelos, Aggelos

    2017-02-01

    The image processing technique known as super-resolution (SR), which attempts to increase the effective pixel sampling density of a digital imager, has gained rapid popularity over the last decade. The majority of literature focuses on its ability to provide results that are visually pleasing to a human observer. In this paper, we instead examine the ability of SR to improve the resolution-critical capability of an imaging system to perform a classification task from a remote location, specifically from an airborne camera. In order to focus the scope of the study, we address and quantify results for the narrow case of text classification. However, we expect the results generalize to a large set of related, remote classification tasks. We generate theoretical results through simulation, which are corroborated by experiments with a camera mounted on a DJI Phantom 3 quadcopter.

  5. Evaluation of an Airborne Remote Sensing Platform Consisting of Two Consumer-Grade Cameras for Crop Identification

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2016-03-01

    Full Text Available Remote sensing systems based on consumer-grade cameras have been increasingly used in scientific research and remote sensing applications because of their low cost and ease of use. However, the performance of consumer-grade cameras for practical applications has not been well documented in related studies. The objective of this research was to apply three commonly-used classification methods (unsupervised, supervised, and object-based to three-band imagery with RGB (red, green, and blue bands and four-band imagery with RGB and near-infrared (NIR bands to evaluate the performance of a dual-camera imaging system for crop identification. Airborne images were acquired from a cropping area in Texas and mosaicked and georeferenced. The mosaicked imagery was classified using the three classification methods to assess the usefulness of NIR imagery for crop identification and to evaluate performance differences between the object-based and pixel-based methods. Image classification and accuracy assessment showed that the additional NIR band imagery improved crop classification accuracy over the RGB imagery and that the object-based method achieved better results with additional non-spectral image features. The results from this study indicate that the airborne imaging system based on two consumer-grade cameras used in this study can be useful for crop identification and other agricultural applications.

  6. Airborne particle monitoring with urban closed-circuit television camera networks and a chromatic technique

    International Nuclear Information System (INIS)

    Kolupula, Y R; Jones, G R; Deakin, A G; Spencer, J W; Aceves-Fernandez, M A

    2010-01-01

    An economic approach for the preliminary assessment of 2–10 µm sized (PM10) airborne particle levels in urban areas is described. It uses existing urban closed-circuit television (CCTV) surveillance camera networks in combination with particle accumulating units and chromatic quantification of polychromatic light scattered by the captured particles. Methods for accommodating extraneous light effects are discussed and test results obtained from real urban sites are presented to illustrate the potential of the approach

  7. Anti-Ballistic Missile Laser Predictive Avoidance of Satellites: Theory and Software for Real-Time Processing and Deconfliction of Satellite Ephemerides With a Moving Platform Laser, Book 1

    National Research Council Canada - National Science Library

    vloedman, David

    1999-01-01

    The Anti-Ballistic missile Laser (ABL) Project is committed to defense against attack from enemy-launched Theater Ballistic Missiles using an airborne laser platform to disable an enemy missile in the boost phase of launch...

  8. ASHRAE IAQ 2010: Airborne infection controlventilation, IAQ & energy

    DEFF Research Database (Denmark)

    Sekhar, Chandra; Olesen, Bjarne W.

    2012-01-01

    . • Knowledge that proximity to an infected person affects infection rate, but the continued lack of certainty about whether that is due to large "ballistic" droplets or just a higher concentration of smaller airborne particles. Besides the papers from the IAQ 2010 conference mentioned above, this special issue...

  9. The influence of magnetic field on ballistic performance of aramid fibre and ultrahigh molecular weight polyethylene

    International Nuclear Information System (INIS)

    Wong, Y.C.; Ruan, D.; Sesso, M.L.

    2014-01-01

    Highlights: • Ballistic tests conducted on Kevlar and UHMWPE within a magnetic field. • Repulsion force created by opposing magnet poles reduced the impact momentum. • High speed camera images showed no perforation on Kevlar due to magnetic field. • Standoff distance between magnets has an effect on the repulsion force. - Abstract: An innovative method is introduced here whereby using two sets of arrays of rare earth magnets aligned opposite each other in order to create a repulsion force owing to the like poles when facing close to each other. Ballistic test samples of aramid fibre (Kevlar K29) and ultrahigh molecular weight polyethylene (UHMWPE) were sandwiched by two sets of opposing magnets. Ballistic test was conducted using a gas gun with a 7.62 mm diameter projectile at a velocity ranging from 160 to 220 m/s. High speed camera was used to capture the ballistics testing and it shows that the magnetic repulsion force created by the opposing rare earth magnets managed to suppress the projectile from advancing into the front face of the aramid fibre. Similarly, when magnets were used, the UHMWPE sample shows the projectile perforated through the first few sheets and finally rested on the last sheet showing partial perforation

  10. High Resolution, High-Speed Photography, an Increasingly Prominent Diagnostic in Ballistic Research Experiments

    International Nuclear Information System (INIS)

    Shaw, L.; Muelder, S.

    1999-01-01

    High resolution, high-speed photography is becoming a prominent diagnostic in ballistic experimentation. The development of high speed cameras utilizing electro-optics and the use of lasers for illumination now provide the capability to routinely obtain high quality photographic records of ballistic style experiments. The purpose of this presentation is to review in a visual manner the progress of this technology and how it has impacted ballistic experimentation. Within the framework of development at LLNL, we look at the recent history of large format high-speed photography, and present a number of photographic records that represent the state of the art at the time they were made. These records are primarily from experiments involving shaped charges. We also present some examples of current photographic technology, developed within the ballistic community, that has application to hydro diagnostic experimentation at large. This paper is designed primarily as an oral-visual presentation. This written portion is to provide general background, a few examples, and a bibliography

  11. Iranian Ballistic Missile Threat and a Phased, Adaptive Approach for Missile Defense in Europe: Perceptions, Policies and Scenarios

    Science.gov (United States)

    2010-09-15

    vii ACRONYMS AA Aegis Ashore ABL Airborne Laser ABM Anti-Ballistic Missile ADCF Air Defense Command Frigates AEOI ...in September 2002 at the IAEA’s General Conference in Vienna, Iran’s Vice President and President of the Atomic Energy Organization of Iran ( AEOI

  12. Ballistic characteristics improving and maintenance of protective ballistic vests

    OpenAIRE

    RADONJIC VOJKAN M.; JOVANOVIC DANKO M.; ZIVANOVIC GORAN Z.; RESIMIC BRANKO V.

    2014-01-01

    The work presents research of the materials necessary for the maintenance of protective ballistic vests. In this paper is proposed a new construction design with modern materials for ballistic inserts producing. This paper also presents the results of laboratory tests of ballistic cartridges with new materials. Based on the test results, it can be concluded, the proposed technical solution for making ballistic inserts adequately meets current standards.

  13. High-speed Imaging of Global Surface Temperature Distributions on Hypersonic Ballistic-Range Projectiles

    Science.gov (United States)

    Wilder, Michael C.; Reda, Daniel C.

    2004-01-01

    The NASA-Ames ballistic range provides a unique capability for aerothermodynamic testing of configurations in hypersonic, real-gas, free-flight environments. The facility can closely simulate conditions at any point along practically any trajectory of interest experienced by a spacecraft entering an atmosphere. Sub-scale models of blunt atmospheric entry vehicles are accelerated by a two-stage light-gas gun to speeds as high as 20 times the speed of sound to fly ballistic trajectories through an 24 m long vacuum-rated test section. The test-section pressure (effective altitude), the launch velocity of the model (flight Mach number), and the test-section working gas (planetary atmosphere) are independently variable. The model travels at hypersonic speeds through a quiescent test gas, creating a strong bow-shock wave and real-gas effects that closely match conditions achieved during actual atmospheric entry. The challenge with ballistic range experiments is to obtain quantitative surface measurements from a model traveling at hypersonic speeds. The models are relatively small (less than 3.8 cm in diameter), which limits the spatial resolution possible with surface mounted sensors. Furthermore, since the model is in flight, surface-mounted sensors require some form of on-board telemetry, which must survive the massive acceleration loads experienced during launch (up to 500,000 gravities). Finally, the model and any on-board instrumentation will be destroyed at the terminal wall of the range. For these reasons, optical measurement techniques are the most practical means of acquiring data. High-speed thermal imaging has been employed in the Ames ballistic range to measure global surface temperature distributions and to visualize the onset of transition to turbulent-flow on the forward regions of hypersonic blunt bodies. Both visible wavelength and infrared high-speed cameras are in use. The visible wavelength cameras are intensified CCD imagers capable of integration

  14. Airborne hyperspectral observations of surface and cloud directional reflectivity using a commercial digital camera

    Directory of Open Access Journals (Sweden)

    A. Ehrlich

    2012-04-01

    Full Text Available Spectral radiance measurements by a digital single-lens reflex camera were used to derive the directional reflectivity of clouds and different surfaces in the Arctic. The camera has been calibrated radiometrically and spectrally to provide accurate radiance measurements with high angular resolution. A comparison with spectral radiance measurements with the Spectral Modular Airborne Radiation measurement sysTem (SMART-Albedometer showed an agreement within the uncertainties of both instruments (6% for both. The directional reflectivity in terms of the hemispherical directional reflectance factor (HDRF was obtained for sea ice, ice-free ocean and clouds. The sea ice, with an albedo of ρ = 0.96 (at 530 nm wavelength, showed an almost isotropic HDRF, while sun glint was observed for the ocean HDRF (ρ = 0.12. For the cloud observations with ρ = 0.62, the cloudbow – a backscatter feature typically for scattering by liquid water droplets – was covered by the camera. For measurements above heterogeneous stratocumulus clouds, the required number of images to obtain a mean HDRF that clearly exhibits the cloudbow has been estimated at about 50 images (10 min flight time. A representation of the HDRF as a function of the scattering angle only reduces the image number to about 10 (2 min flight time.

    The measured cloud and ocean HDRF have been compared to radiative transfer simulations. The ocean HDRF simulated with the observed surface wind speed of 9 m s−1 agreed best with the measurements. For the cloud HDRF, the best agreement was obtained by a broad and weak cloudbow simulated with a cloud droplet effective radius of Reff = 4 μm. This value agrees with the particle sizes derived from in situ measurements and retrieved from the spectral radiance of the SMART-Albedometer.

  15. An integrated compact airborne multispectral imaging system using embedded computer

    Science.gov (United States)

    Zhang, Yuedong; Wang, Li; Zhang, Xuguo

    2015-08-01

    An integrated compact airborne multispectral imaging system using embedded computer based control system was developed for small aircraft multispectral imaging application. The multispectral imaging system integrates CMOS camera, filter wheel with eight filters, two-axis stabilized platform, miniature POS (position and orientation system) and embedded computer. The embedded computer has excellent universality and expansibility, and has advantages in volume and weight for airborne platform, so it can meet the requirements of control system of the integrated airborne multispectral imaging system. The embedded computer controls the camera parameters setting, filter wheel and stabilized platform working, image and POS data acquisition, and stores the image and data. The airborne multispectral imaging system can connect peripheral device use the ports of the embedded computer, so the system operation and the stored image data management are easy. This airborne multispectral imaging system has advantages of small volume, multi-function, and good expansibility. The imaging experiment results show that this system has potential for multispectral remote sensing in applications such as resource investigation and environmental monitoring.

  16. Viscoelastic shock wave in ballistic gelatin behind soft body armor.

    Science.gov (United States)

    Liu, Li; Fan, Yurun; Li, Wei

    2014-06-01

    Ballistic gelatins are widely used as a surrogate of biological tissue in blunt trauma tests. Non-penetration impact tests of handgun bullets on the 10wt% ballistic gelatin block behind soft armor were carried out in which a high-speed camera recorded the crater׳s movement and pressure sensors imbedded in the gelatin block recorded the pressure waves at different locations. The observed shock wave attenuation indicates the necessity of considering the gelatin׳s viscoelasticity. A three-element viscoelastic constitutive model was adopted, in which the relevant parameters were obtained via fitting the damping free oscillations at the beginning of the creep-mode of rheological measurement, and by examining the data of published split Hopkinson pressure bar (SHPB) experiments. The viscoelastic model is determined by a retardation time of 5.5×10(-5)s for high oscillation frequencies and a stress relaxation time of 2.0-4.5×10(-7)s for shock wave attenuation. Using the characteristic-line method and the spherical wave assumption, the propagation of impact pressure wave front and the subsequent unloading profile can be simulated using the experimental velocity boundary condition. The established viscoelastic model considerably improves the prediction of shock wave attenuation in the ballistic gelatin. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Photogrammetry and ballistic analysis of a high-flying projectile in the STS-124 space shuttle launch

    Science.gov (United States)

    Metzger, Philip T.; Lane, John E.; Carilli, Robert A.; Long, Jason M.; Shawn, Kathy L.

    2010-07-01

    A method combining photogrammetry with ballistic analysis is demonstrated to identify flying debris in a rocket launch environment. Debris traveling near the STS-124 Space Shuttle was captured on cameras viewing the launch pad within the first few seconds after launch. One particular piece of debris caught the attention of investigators studying the release of flame trench fire bricks because its high trajectory could indicate a flight risk to the Space Shuttle. Digitized images from two pad perimeter high-speed 16-mm film cameras were processed using photogrammetry software based on a multi-parameter optimization technique. Reference points in the image were found from 3D CAD models of the launch pad and from surveyed points on the pad. The three-dimensional reference points were matched to the equivalent two-dimensional camera projections by optimizing the camera model parameters using a gradient search optimization technique. Using this method of solving the triangulation problem, the xyz position of the object's path relative to the reference point coordinate system was found for every set of synchronized images. This trajectory was then compared to a predicted trajectory while performing regression analysis on the ballistic coefficient and other parameters. This identified, with a high degree of confidence, the object's material density and thus its probable origin within the launch pad environment. Future extensions of this methodology may make it possible to diagnose the underlying causes of debris-releasing events in near-real time, thus improving flight safety.

  18. Airborne radioactive contamination following aerosol ventilation studies

    International Nuclear Information System (INIS)

    Mackie, A.; Hart, G.C.; Ibbett, D.A.; Whitehead, R.J.S.

    1994-01-01

    Lung aerosol ventilation studies may be accompanied by airborne contamination, with subsequent surface contamination. Airborne contamination has been measured prior to, during and following 59 consecutive 99 Tc m -diethylenetriamine pentaacetate (DTPA) aerosol studies using a personal air sampler. Airborne contamination ranging between 0 and 20 330 kBq m -3 has been measured. Airborne contamination increases with degree of patient breathing difficulty. The effective dose equivalent (EDE) to staff from ingested activity has been calculated to be 0.3 μSv per study. This figure is supported by data from gamma camera images of a contaminated staff member. However, surface contamination measurements reveal that 60% of studies exceed maximum permissible contamination limits for the hands; 16% of studies exceed limits for controlled area surfaces. (author)

  19. The Truth About Ballistic Coefficients

    OpenAIRE

    Courtney, Michael; Courtney, Amy

    2007-01-01

    The ballistic coefficient of a bullet describes how it slows in flight due to air resistance. This article presents experimental determinations of ballistic coefficients showing that the majority of bullets tested have their previously published ballistic coefficients exaggerated from 5-25% by the bullet manufacturers. These exaggerated ballistic coefficients lead to inaccurate predictions of long range bullet drop, retained energy and wind drift.

  20. Improving Ballistic Performance of Polyurethane Foam by Nanoparticle Reinforcement

    Directory of Open Access Journals (Sweden)

    M. F. Uddin

    2009-01-01

    Full Text Available We report improving ballistic performance of polyurethane foam by reinforcing it with nanoscale TiO2 particles. Particles were dispersed through a sonic cavitation process and the loading of particles was 3 wt% of the total polymer. Once foams were reinforced, sandwich panels were made and impacted with fragment simulating projectiles (FSPs in a 1.5-inch gas gun. Projectile speed was set up to have complete penetration of the target in each experiment. Test results have indicated that sandwich with nanophased cores absorbed about 20% more kinetic energy than their neat counterpart. The corresponding increase in ballistic limit was around 12% over the neat control samples. The penetration phenomenon was also monitored using a high-speed camera. Analyses of digital images showed that FSP remained inside the nanophased sandwich for about 7 microseconds longer than that of a neat sandwich demonstrating improved energy absorption capability of the nanoparticle reinforced core. Failure modes for energy absorption have been investigated through a microscope and high-speed images.

  1. Improving Ballistic Performance of Polyurethane Foam by Nanoparticle Reinforcement

    International Nuclear Information System (INIS)

    Uddin, M.F.; Zainuddin, S.; Mahfuz, H.; Jeelani, S.

    2009-01-01

    We report improving ballistic performance of polyurethane foam by reinforcing it with nano scale TiO 2 particles. Particles were dispersed through a sonic cavitation process and the loading of particles was 3 wt % of the total polymer. Once foams were reinforced, sandwich panels were made and impacted with fragment simulating projectiles (FSPs) in a 1.5-inch gas gun. Projectile speed was set up to have complete penetration of the target in each experiment. Test results have indicated that sandwich with nano phased cores absorbed about 20% more kinetic energy than their neat counterpart. The corresponding increase in ballistic limit was around 12% over the neat control samples. The penetration phenomenon was also monitored using a high-speed camera. Analyses of digital images showed that FSP remained inside the nano phased sandwich for about 7 microseconds longer than that of a neat sandwich demonstrating improved energy absorption capability of the nanoparticle reinforced core. Failure modes for energy absorption have been investigated through a microscope and high-speed images.

  2. Analysis of behind the armor ballistic trauma.

    Science.gov (United States)

    Wen, Yaoke; Xu, Cheng; Wang, Shu; Batra, R C

    2015-05-01

    The impact response of body armor composed of a ceramic plate with an ultrahigh molecular weight polyethylene (UHMWPE) fiber-reinforced composite and layers of UHMWPE fibers shielding a block of ballistic gelatin has been experimentally and numerically analyzed. It is a surrogate model for studying injuries to human torso caused by a bullet striking body protection armor placed on a person. Photographs taken with a high speed camera are used to determine deformations of the armor and the gelatin. The maximum depth of the temporary cavity formed in the ballistic gelatin and the peak pressure 40mm behind the center of the gelatin front face contacting the armor are found to be, respectively, ~34mm and ~15MPa. The Johnson-Holmquist material model has been used to simulate deformations and failure of the ceramic. The UHMWPE fiber-reinforced composite and the UHMWPE fiber layers are modeled as linear elastic orthotropic materials. The gelatin is modeled as a strain-rate dependent hyperelastic material. Values of material parameters are taken from the open literature. The computed evolution of the temporary cavity formed in the gelatin is found to qualitatively agree with that seen in experiments. Furthermore, the computed time histories of the average pressure at four points in the gelatin agree with the corresponding experimentally measured ones. The maximum pressure at a point and the depth of the temporary cavity formed in the gelatin can be taken as measures of the severity of the bodily injury caused by the impact; e.g. see the United States National Institute of Justice standard 0101.06-Ballistic Resistance of Body Armor. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. The Effects of Ballistic and Non-Ballistic Bench Press on Mechanical Variables.

    Science.gov (United States)

    Moir, Gavin L; Munford, Shawn N; Moroski, Lindsey L; Davis, Shala E

    2017-02-21

    To investigate the effects of ballistic and non-ballistic bench press performed with loads equivalent to 30 and 90% 1-repetition maximum (1-RM) on mechanical variables. Eleven resistance-trained men (age: 23.0 ± 1.4 years; mass: 98.4 ± 14.4 kg) attended four testing sessions where they performed one of the following sessions: 1) three sets of five non-ballistic repetitions performed with a load equivalent to 30% 1-RM (30N-B), 2) three sets of five ballistic repetitions performed with a load equivalent to 30% 1-RM (30B), 3) three sets of four non-ballistic repetitions with a load equivalent to 90% 1-RM (90N-B), 4) three sets of four ballistic repetitions with a load equivalent to 90% 1-RM (90B). Force plates and a 3-D motion analysis system were used to determine the velocity, force, power output (PO) and work during each repetition. The heavier loads resulted in significantly greater forces applied to the barbell (mean differences: 472-783 N, pvelocities (mean differences: 0.85-1.20 m/s, pvelocity (mean difference: 0.33 m/s, pbench press may be an effective exercise for developing power output and multiple sets may elicit post-activation potentiation that enhances force production. However, these benefits may be negated at heavier loads.

  4. Adaptation of the Camera Link Interface for Flight-Instrument Applications

    Science.gov (United States)

    Randall, David P.; Mahoney, John C.

    2010-01-01

    COTS (commercial-off-the-shelf) hard ware using an industry-standard Camera Link interface is proposed to accomplish the task of designing, building, assembling, and testing electronics for an airborne spectrometer that would be low-cost, but sustain the required data speed and volume. The focal plane electronics were designed to support that hardware standard. Analysis was done to determine how these COTS electronics could be interfaced with space-qualified camera electronics. Interfaces available for spaceflight application do not support the industry standard Camera Link interface, but with careful design, COTS EGSE (electronics ground support equipment), including camera interfaces and camera simulators, can still be used.

  5. Is there ballistic transport in metallic nano-objects? Ballistic versus diffusive contributions

    International Nuclear Information System (INIS)

    Garcia, N; Bai Ming; Lu Yonghua; Munoz, M; Cheng Hao; Levanyuk, A P

    2007-01-01

    When discussing the resistance of an atomic-or nanometre-size contact we should consider both its ballistic and its diffusive contributions. But there is a contribution of the leads to the resistance of the contact as well. In this context, the geometry and the roughness of the surfaces limiting the system will contribute to the resistance, and these contributions should be added to the ideal ballistic resistance of the nanocontact. We have calculated, for metallic materials, the serial resistance of the leads arising from the roughness, and our calculations show that the ohmic resistance is as important as the ballistic resistance of the constriction. The classical resistance is a lower limit to the quantum resistance of the leads. Many examples of earlier experiments show that the mean free path of the transport electrons is of the order of the size of the contacts or the leads. This is not compatible with the idea of ballistic transport. This result may put in serious difficulties the current, existing interpretation of experimental data in metals where only small serial resistances compared with the ballistic component of the total resistance have been taken into account. The two-dimensional electron gas (2DEG) is also discussed and the serial corrections appear to be smaller than for metals. Experiments with these last systems are proposed that may reveal new interesting aspects in the physics of ballistic and diffusive transport

  6. Photophoretic trampoline—Interaction of single airborne absorbing droplets with light

    Science.gov (United States)

    Esseling, Michael; Rose, Patrick; Alpmann, Christina; Denz, Cornelia

    2012-09-01

    We present the light-induced manipulation of absorbing liquid droplets in air. Ink droplets from a printer cartridge are used to demonstrate that absorbing liquids—just like their solid counterparts—can interact with regions of high light intensity due to the photophoretic force. It is shown that droplets follow a quasi-ballistic trajectory after bouncing off a high intensity light sheet. We estimate the intensities necessary for this rebound of airborne droplets and change the droplet trajectories through a variation of the manipulating light field.

  7. Terminal Ballistics

    CERN Document Server

    Rosenberg, Zvi

    2012-01-01

    This book covers the important issues of terminal ballistics in a comprehensive way combining experimental data, numerical simulations and analytical modeling. The first chapter reviews the experimental equipment which are used for ballistic tests and the diagnostics for material characterization under impulsive loading conditions. The second chapter covers essential features of the codes which are used for terminal ballistics such as the Euler vs. Lagrange schemes and meshing techniques, as well as the most popular material models. The third chapter, devoted to the penetration mechanics of rigid penetrators, brings the update of modeling in this field. The fourth chapter deals with plate perforation and the fifth chapter deals with the penetration mechanics of shaped charge jets and eroding long rods. The last two chapters discuss several techniques for the disruption and defeating of the main threats in armor design. Throughout the book the authors demonstrate the advantages of numerical simulations in unde...

  8. Airborne multispectral identification of individual cotton plants using consumer-grade cameras

    Science.gov (United States)

    Although multispectral remote sensing using consumer-grade cameras has successfully identified fields of small cotton plants, improvements to detection sensitivity are needed to identify individual or small clusters of plants. The imaging sensor of consumer-grade cameras are based on a Bayer patter...

  9. Highly Protable Airborne Multispectral Imaging System

    Science.gov (United States)

    Lehnemann, Robert; Mcnamee, Todd

    2001-01-01

    A portable instrumentation system is described that includes and airborne and a ground-based subsytem. It can acquire multispectral image data over swaths of terrain ranging in width from about 1.5 to 1 km. The system was developed especially for use in coastal environments and is well suited for performing remote sensing and general environmental monitoring. It includes a small,munpilotaed, remotely controlled airplance that carries a forward-looking camera for navigation, three downward-looking monochrome video cameras for imaging terrain in three spectral bands, a video transmitter, and a Global Positioning System (GPS) reciever.

  10. Mechanism of ballistic collisions

    International Nuclear Information System (INIS)

    Sindoni, J.M.; Sharma, R.D.

    1992-01-01

    Ballistic collisions is a term used to describe atom-diatom collisions during which a substantial fraction of the initial relative translational energy is converted into the internal energy of the diatom. An exact formulation of the impulse approach to atom-diatom collisions is shown to be in excellent agreement with the experimental results for the CsF-Ar system at 1.1 eV relative translational energy for laboratory scattering angles of 30 degree and 60 degree. The differential cross section for scattering of CsF peaks at two distinct recoil velocities. The peak centered at the recoil velocity corresponding to elastic scattering has been called the elastic peak. This peak is shown to consist of several hundred inelastic transitions, most involving a small change in internal energy. The peak near the center-of-mass (c.m.) velocity is called the ballistic peak and is shown to consist of highly inelastic (ballistic) transitions. It is shown that transitions comprising the ballistic (elastic) peak occur when an Ar atom strikes the F (Cs) end of CsF. When one is looking along the direction of the c.m. velocity, the signal from a single transition, which converts about 99.99% of the relative translational energy into internal energy, may be larger than the signal from any other ballistic transition by as much as an order of magnitude. This property may be used to prepare state-selected and velocity-selected beams for further studies. It is also pointed out that the ballistic peak may be observed for any atom-molecule system under appropriate circumstances

  11. Ballistic studies on layered structures

    International Nuclear Information System (INIS)

    Jena, P.K.; Ramanjeneyulu, K.; Siva Kumar, K.; Balakrishna Bhat, T.

    2009-01-01

    This paper presents the ballistic behavior and penetration mechanism of metal-metal and metal-fabric layered structures against 7.62 armour piercing projectiles at a velocity of 840 ± 15 m/s at 30 o angle of impact and compares the ballistic results with that of homogeneous metallic steel armour. This study also describes the effect of keeping a gap between the target layers. Experimental results showed that among the investigated materials, the best ballistic performance was attained with metal-fabric layered structures. The improvements in ballistic performance were analyzed in terms of mode of failure and fracture mechanisms of the samples by using optical and electron microscope, X-ray radiography and hardness measurement equipments.

  12. Conformable Self-Healing Ballistic Armor

    Science.gov (United States)

    2011-06-28

    public release, distribution unlimited 13. SUPPLEMENTARY NOTES Patent No: US 7,966,923 B2 14. ABSTRACT 15. SUBJECT TERMS 16. SECURITY CLASSIFICATION...B2 5 Each unit of shell 10 of the ballistic annor of the subject invention further comprises fastening means 20 to attach each such shell IOta the...selectively affixing the conformable ballistic annor to the vehicle is a secure manner, both on a temporal)’ orpennanent basis. The ballistic

  13. REFLECTANCE CALIBRATION SCHEME FOR AIRBORNE FRAME CAMERA IMAGES

    Directory of Open Access Journals (Sweden)

    U. Beisl

    2012-07-01

    Full Text Available The image quality of photogrammetric images is influenced by various effects from outside the camera. One effect is the scattered light from the atmosphere that lowers contrast in the images and creates a colour shift towards the blue. Another is the changing illumination during the day which results in changing image brightness within an image block. In addition, there is the so-called bidirectional reflectance of the ground (BRDF effects that is giving rise to a view and sun angle dependent brightness gradient in the image itself. To correct for the first two effects an atmospheric correction with reflectance calibration is chosen. The effects have been corrected successfully for ADS linescan sensor data by using a parametrization of the atmospheric quantities. Following Kaufman et al. the actual atmospheric condition is estimated by the brightness of a dark pixel taken from the image. The BRDF effects are corrected using a semi-empirical modelling of the brightness gradient. Both methods are now extended to frame cameras. Linescan sensors have a viewing geometry that is only dependent from the cross track view zenith angle. The difference for frame cameras now is to include the extra dimension of the view azimuth into the modelling. Since both the atmospheric correction and the BRDF correction require a model inversion with the help of image data, a different image sampling strategy is necessary which includes the azimuth angle dependence. For the atmospheric correction a sixth variable is added to the existing five variables visibility, view zenith angle, sun zenith angle, ground altitude, and flight altitude – thus multiplying the number of modelling input combinations for the offline-inversion. The parametrization has to reflect the view azimuth angle dependence. The BRDF model already contains the view azimuth dependence and is combined with a new sampling strategy.

  14. Buildings vs. ballistics: Quantifying the vulnerability of buildings to volcanic ballistic impacts using field studies and pneumatic cannon experiments

    Science.gov (United States)

    Williams, G. T.; Kennedy, B. M.; Wilson, T. M.; Fitzgerald, R. H.; Tsunematsu, K.; Teissier, A.

    2017-09-01

    Recent casualties in volcanic eruptions due to trauma from blocks and bombs necessitate more rigorous, ballistic specific risk assessment. Quantitative assessments are limited by a lack of experimental and field data on the vulnerability of buildings to ballistic hazards. An improved, quantitative understanding of building vulnerability to ballistic impacts is required for informing appropriate life safety actions and other risk reduction strategies. We assessed ballistic impacts to buildings from eruptions at Usu Volcano and Mt. Ontake in Japan and compiled available impact data from eruptions elsewhere to identify common damage patterns from ballistic impacts to buildings. We additionally completed a series of cannon experiments which simulate ballistic block impacts to building claddings to investigate their performance over a range of ballistic projectile velocities, masses and energies. Our experiments provide new insights by quantifying (1) the hazard associated with post-impact shrapnel from building and rock fragments; (2) the effect of impact obliquity on damage; and (3) the additional impact resistance buildings possess when claddings are struck in areas directly supported by framing components. This was not well identified in previous work which may have underestimated building vulnerability to ballistic hazards. To improve assessment of building vulnerability to ballistics, we use our experimental and field data to develop quantitative vulnerability models known as fragility functions. Our fragility functions and field studies show that although unreinforced buildings are highly vulnerable to large ballistics (> 20 cm diameter), they can still provide shelter, preventing death during eruptions.

  15. Management of civilian ballistic fractures.

    Science.gov (United States)

    Seng, V S; Masquelet, A C

    2013-12-01

    The management of ballistic fractures, which are open fractures, has often been studied in wartime and has benefited from the principles of military surgery with debridement and lavage, and the use of external fixation for bone stabilization. In civilian practice, bone stabilization of these fractures is different and is not performed by external fixation. Fifteen civilian ballistic fractures, Gustilo II or IIIa, two associated with nerve damage and none with vascular damage, were reviewed. After debridement and lavage, ten internal fixations and five conservative treatments were used. No superficial or deep surgical site infection was noted. Fourteen of the 15 fractures (93%) healed without reoperation. Eleven of the 15 patients (73%) regained normal function. Ballistic fractures have a bad reputation due to their many complications, including infections. In civilian practice, the use of internal fixation is not responsible for excessive morbidity, provided debridement and lavage are performed. Civilian ballistic fractures, when they are caused by low-velocity firearms, differ from military ballistic fractures. Although the principle of surgical debridement and lavage remains the same, bone stabilization is different and is similar to conventional open fractures. Copyright © 2013 Elsevier Masson SAS. All rights reserved.

  16. Ballistic properties of bidirectional fiber/resin composites

    OpenAIRE

    Dimeski, Dimko; Spaseska, Dijana

    2004-01-01

    The aim of the research was to make evaulation of the ballistic strenth of four different composites intended to be used in manufacturing of ballistic items for personal protection. Research has been performed on glass, ntlon, HPPE and aramide fibers...... Key words. aramid, ballistic, V50

  17. Ballistic electron transport in mesoscopic samples

    International Nuclear Information System (INIS)

    Diaconescu, D.

    2000-01-01

    In the framework of this thesis, the electron transport in the ballistic regime has been studied. Ballistic means that the lateral sample dimensions are smaller than the mean free path of the electrons, i.e. the electrons can travel through the whole device without being scattered. This leads to transport characteristics that differ significantly from the diffusive regime which is realised in most experiments. Making use of samples with high mean free path, features of ballistic transport have been observed on samples with sizes up to 100 μm. The basic device used in ballistic electron transport is the point contact, from which a collimated beam of ballistic electrons can be injected. Such point contacts were realised with focused ion beam (FIB) implantation and the collimating properties were analysed using a two opposite point contact configuration. The typical angular width at half maximum is around 50 , which is comparable with that of point contacts defined by other methods. (orig.)

  18. Dense-plasma research using ballistic compressors

    International Nuclear Information System (INIS)

    Hess, H.

    1986-01-01

    An introduction is given to research on dense (or nonideal) plasmas which can be generated to advantage by ballistic compressors. Some properties of ballistic compressors are discussed especially in comparison with shock tubes. A short review is given on the history of these devices for high-pressure plasma generation. The present state of the art is reported including research on the two ZIE (Central Institute for Electron Physics) ballistic compressors. (author)

  19. SWUIS-A: A Versatile, Low-Cost UV/VIS/IR Imaging System for Airborne Astronomy and Aeronomy Research

    Science.gov (United States)

    Durda, Daniel D.; Stern, S. Alan; Tomlinson, William; Slater, David C.; Vilas, Faith

    2001-01-01

    We have developed and successfully flight-tested on 14 different airborne missions the hardware and techniques for routinely conducting valuable astronomical and aeronomical observations from high-performance, two-seater military-type aircraft. The SWUIS-A (Southwest Universal Imaging System - Airborne) system consists of an image-intensified CCD camera with broad band response from the near-UV to the near IR, high-quality foreoptics, a miniaturized video recorder, an aircraft-to-camera power and telemetry interface with associated camera controls, and associated cables, filters, and other minor equipment. SWUIS-A's suite of high-quality foreoptics gives it selectable, variable focal length/variable field-of-view capabilities. The SWUIS-A camera frames at 60 Hz video rates, which is a key requirement for both jitter compensation and high time resolution (useful for occultation, lightning, and auroral studies). Broadband SWUIS-A image coadds can exceed a limiting magnitude of V = 10.5 in <1 sec with dark sky conditions. A valuable attribute of SWUIS-A airborne observations is the fact that the astronomer flies with the instrument, thereby providing Space Shuttle-like "payload specialist" capability to "close-the-loop" in real-time on the research done on each research mission. Key advantages of the small, high-performance aircraft on which we can fly SWUIS-A include significant cost savings over larger, more conventional airborne platforms, worldwide basing obviating the need for expensive, campaign-style movement of specialized large aircraft and their logistics support teams, and ultimately faster reaction times to transient events. Compared to ground-based instruments, airborne research platforms offer superior atmospheric transmission, the mobility to reach remote and often-times otherwise unreachable locations over the Earth, and virtually-guaranteed good weather for observing the sky. Compared to space-based instruments, airborne platforms typically offer

  20. Ballistic transport and electronic structure

    NARCIS (Netherlands)

    Schep, Kees M.; Kelly, Paul J.; Bauer, Gerrit E.W.

    1998-01-01

    The role of the electronic structure in determining the transport properties of ballistic point contacts is studied. The conductance in the ballistic regime is related to simple geometrical projections of the Fermi surface. The essential physics is first clarified for simple models. For real

  1. Ship Anti Ballistic Missile Response (SABR)

    OpenAIRE

    Johnson, Allen P.; Breeden, Bryan; Duff, Willard Earl; Fishcer, Paul F.; Hornback, Nathan; Leiker, David C.; Carlisle, Parker; Diersing, Michael; Devlin, Ryan; Glenn, Christopher; Hoffmeister, Chris; Chong, Tay Boon; Sing, Phang Nyit; Meng, Low Wee; Meng, Fann Chee

    2006-01-01

    Includes supplementary material. Based on public law and Presidential mandate, ballistic missile defense development is a front-burner issue for homeland defense and the defense of U.S. and coalition forces abroad. Spearheaded by the Missile Defense Agency, an integrated ballistic missile defense system was initiated to create a layered defense composed of land-, air-, sea-, and space-based assets. The Ship Anti-Ballistic Response (SABR) Project is a systems engineering approach t...

  2. Ballistic properties of bidirectional fiber/resin composites

    International Nuclear Information System (INIS)

    Dimeski, Dimko; Spaseska, Dijana

    2004-01-01

    The aim of the research was to make evaluation of the ballistic strength of four different fiber/resin composites intended to be used in manufacturing of ballistic items for personal protection. Research has been performed on glass, ballistic nylon, aramid and HPPE (High Performance Polyethylene) plainly woven fabric based composites. As a matrix system, in all cases, polyvinylbutyral modified phenolic resin was used. For the investigation, areal weight range 2 - 9 kg/m 2 chosen was, which is applicable for personal ballistic protection and the ultimate resin content range 20 - 50 vol.%. Ballistic test of the composites has shown that the best results exhibit HPPE based composites; aramid based composites have been the second best followed by the polyamide based composites. The worst results have been shown by the glass based composites. All composites with lower resin content (20%) have performed much better than their counterparts with higher resin content (50 %).The plot of the ballistic strength (V 50 ) versus areal weight has shown a linear increase of V 50 with the increase of areal weight. The ballistic strength of the composites is highly dependant on the fiber/resin ratio and increases with the increase of the fiber content. (Author)

  3. Ballistic phonon transport in holey silicon.

    Science.gov (United States)

    Lee, Jaeho; Lim, Jongwoo; Yang, Peidong

    2015-05-13

    When the size of semiconductors is smaller than the phonon mean free path, phonons can carry heat with no internal scattering. Ballistic phonon transport has received attention for both theoretical and practical aspects because Fourier's law of heat conduction breaks down and the heat dissipation in nanoscale transistors becomes unpredictable in the ballistic regime. While recent experiments demonstrate room-temperature evidence of ballistic phonon transport in various nanomaterials, the thermal conductivity data for silicon in the length scale of 10-100 nm is still not available due to experimental challenges. Here we show ballistic phonon transport prevails in the cross-plane direction of holey silicon from 35 to 200 nm. The thermal conductivity scales linearly with the length (thickness) even though the lateral dimension (neck) is as narrow as 20 nm. We assess the impact of long-wavelength phonons and predict a transition from ballistic to diffusive regime using scaling models. Our results support strong persistence of long-wavelength phonons in nanostructures and are useful for controlling phonon transport for thermoelectrics and potential phononic applications.

  4. Ballistic resistance capacity of carbon nanotubes

    International Nuclear Information System (INIS)

    Mylvaganam, Kausala; Zhang, L C

    2007-01-01

    Carbon nanotubes have high strength, light weight and excellent energy absorption capacity and therefore have great potential applications in making antiballistic materials. By examining the ballistic impact and bouncing-back processes on carbon nanotubes, this investigation shows that nanotubes with large radii withstand higher bullet speeds and the ballistic resistance is the highest when the bullet hits the centre of the CNT; the ballistic resistance of CNTs will remain the same on subsequent bullet strikes if the impact is after a small time interval

  5. Supra-ballistic phonons

    International Nuclear Information System (INIS)

    Russell, F.M.

    1989-05-01

    Energetic particles moving with a solid, either from nuclear reactions or externally injected, deposit energy by inelastic scattering processes which eventually appears as thermal energy. If the transfer of energy occurs in a crystalline solid then it is possible to couple some of the energy directly to the nuclei forming the lattice by generating phonons. In this paper the transfer of energy from a compound excited nucleus to the lattice is examined by introducing a virtual particle Π. It is shown that by including a Π in the nuclear reaction a substantial amount of energy can be coupled directly to the lattice. In the lattice this particle behaves as a spatially localized phonon of high energy, the so-called supra-ballistic phonon. By multiple inelastic scattering the supra-ballistic phonon eventually thermalizes. Because both the virtual particle Π and the equivalent supra-ballistic phonon have no charge or spin and can only exist within a lattice it is difficult to detect other than by its decay into thermal phonons. The possibility of a Π removing excess energy from a compound nucleus formed by the cold fusion of deuterium is examined. (Author)

  6. The Cooperative Ballistic Missile Defence Game

    NARCIS (Netherlands)

    Evers, L.; Barros, A.I.; Monsuur, H.

    2013-01-01

    The increasing proliferation of ballistic missiles and weapons of mass destruction poses new risks worldwide. For a threatened nation and given the characteristics of this threat a layered ballistic missile defence system strategy appears to be the preferred solution. However, such a strategy

  7. Comparison of mosaicking techniques for airborne images from consumer-grade cameras

    Science.gov (United States)

    Song, Huaibo; Yang, Chenghai; Zhang, Jian; Hoffmann, Wesley Clint; He, Dongjian; Thomasson, J. Alex

    2016-01-01

    Images captured from airborne imaging systems can be mosaicked for diverse remote sensing applications. The objective of this study was to identify appropriate mosaicking techniques and software to generate mosaicked images for use by aerial applicators and other users. Three software packages-Photoshop CC, Autostitch, and Pix4Dmapper-were selected for mosaicking airborne images acquired from a large cropping area. Ground control points were collected for georeferencing the mosaicked images and for evaluating the accuracy of eight mosaicking techniques. Analysis and accuracy assessment showed that Pix4Dmapper can be the first choice if georeferenced imagery with high accuracy is required. The spherical method in Photoshop CC can be an alternative for cost considerations, and Autostitch can be used to quickly mosaic images with reduced spatial resolution. The results also showed that the accuracy of image mosaicking techniques could be greatly affected by the size of the imaging area or the number of the images and that the accuracy would be higher for a small area than for a large area. The results from this study will provide useful information for the selection of image mosaicking software and techniques for aerial applicators and other users.

  8. Application of phase matching autofocus in airborne long-range oblique photography camera

    Science.gov (United States)

    Petrushevsky, Vladimir; Guberman, Asaf

    2014-06-01

    The Condor2 long-range oblique photography (LOROP) camera is mounted in an aerodynamically shaped pod carried by a fast jet aircraft. Large aperture, dual-band (EO/MWIR) camera is equipped with TDI focal plane arrays and provides high-resolution imagery of extended areas at long stand-off ranges, at day and night. Front Ritchey-Chretien optics is made of highly stable materials. However, the camera temperature varies considerably in flight conditions. Moreover, a composite-material structure of the reflective objective undergoes gradual dehumidification in dry nitrogen atmosphere inside the pod, causing some small decrease of the structure length. The temperature and humidity effects change a distance between the mirrors by just a few microns. The distance change is small but nevertheless it alters the camera's infinity focus setpoint significantly, especially in the EO band. To realize the optics' resolution potential, the optimal focus shall be constantly maintained. In-flight best focus calibration and temperature-based open-loop focus control give mostly satisfactory performance. To get even better focusing precision, a closed-loop phase-matching autofocus method was developed for the camera. The method makes use of an existing beamsharer prism FPA arrangement where aperture partition exists inherently in an area of overlap between the adjacent detectors. The defocus is proportional to an image phase shift in the area of overlap. Low-pass filtering of raw defocus estimate reduces random errors related to variable scene content. Closed-loop control converges robustly to precise focus position. The algorithm uses the temperature- and range-based focus prediction as an initial guess for the closed-loop phase-matching control. The autofocus algorithm achieves excellent results and works robustly in various conditions of scene illumination and contrast.

  9. Ballistic materials in MR imaging

    International Nuclear Information System (INIS)

    Smith, A.S.; Hurst, G.C.; Duerk, J.L.; Diaz, P.J.

    1990-01-01

    This paper reports on the most common ballistic materials available in the urban setting studied for deflection force, rotation, heating, and imaging artifact at 1.5 T to determine potential efficacy and safety for imaging patients with ballistic injuries. Twenty-eight missiles were tested, covering the range of bullet types and materials suggested by the Cleveland Police Department. Deflection force was measured by the New method. Rotation was studied by evaluating bullets in a 10% (W/W) ballistic gelating after 30 minutes with the long axis of the bullet placed parallel and perpendicular to the z axis. Heating was measured with alcohol thermometers imaged for 1 hour alternately with FESUM and spin-echo sequences (RF absorption w/Kg and 0.033 w/Kg). Image artifact evaluation of routine sequences was performed

  10. Feasibility of ballistic strengthening exercises in neurologic rehabilitation.

    Science.gov (United States)

    Williams, Gavin; Clark, Ross A; Hansson, Jessica; Paterson, Kade

    2014-09-01

    Conventional methods for strength training in neurologic rehabilitation are not task specific for walking. Ballistic strength training was developed to improve the functional transfer of strength training; however, no research has investigated this in neurologic populations. The aim of this pilot study was to evaluate the feasibility of applying ballistic principles to conventional leg strengthening exercises in individuals with mobility limitations as a result of neurologic injuries. Eleven individuals with neurologic injuries completed seated and reclined leg press using conventional and ballistic techniques. A 2 × 2 repeated-measures analysis of variance was used to compare power measures (peak movement height and peak velocity) between exercises and conditions. Peak jump velocity and peak jump height were greater when using the ballistic jump technique rather than the conventional concentric technique (P ballistic principles was associated with increased peak height and peak velocities.

  11. Ballistic missile defense effectiveness

    Science.gov (United States)

    Lewis, George N.

    2017-11-01

    The potential effectiveness of ballistic missile defenses today remains a subject of debate. After a brief discussion of terminal and boost phase defenses, this chapter will focus on long-range midcourse defenses. The problems posed by potential countermeasures to such midcourse defenses are discussed as are the sensor capabilities a defense might have available to attempt to discriminate the actual missile warhead in a countermeasures environment. The role of flight testing in assessing ballistic missile defense effectiveness is discussed. Arguments made about effectiveness by missile defense supporters and critics are summarized.

  12. Two distinct ballistic processes in graphene

    International Nuclear Information System (INIS)

    Lewkowicz, M; Rosenstein, B; Nghiem, D

    2012-01-01

    A dynamical approach to ballistic transport in mesoscopic graphene samples of finite length Land contact potential difference with leads U is developed. It is shown that at ballistic times shorter than both relevant time scales, t L = L/v g (v g - Fermi velocity) and t u = ħ/(eU), the major effect of electric field is to creates the electron - hole pairs, namely causes interband transitions. At ballistic times lager than the two scales the mechanism is very different. The conductivity has its “nonrelativistic” or intraband value equal to the one obtained within the Landauer-Butticker approach for the barrier Uresulting from evanescent waves tunneling through the barrier.

  13. Ballistic self-annealing during ion implantation

    International Nuclear Information System (INIS)

    Prins, Johan F.

    2001-01-01

    Ion implantation conditions are considered during which the energy, dissipated in the collision cascades, is low enough to ensure that the defects, which are generated during these collisions, consist primarily of vacancies and interstitial atoms. It is proposed that ballistic self-annealing is possible when the point defect density becomes high enough, provided that none, or very few, of the interstitial atoms escape from the layer being implanted. Under these conditions, the fraction of ballistic atoms, generated within the collision cascades from substitutional sites, decreases with increasing ion dose. Furthermore, the fraction of ballistic atoms, which finally end up within vacancies, increases with increasing vacancy density. Provided the crystal structure does not collapse, a damage threshold should be approached where just as many atoms are knocked out of substitutional sites as the number of ballistic atoms that fall back into vacancies. Under these conditions, the average point defect density should approach saturation. This model is applied to recently published Raman data that have been measured on a 3 MeV He + -ion implanted diamond (Orwa et al 2000 Phys. Rev. B 62 5461). The conclusion is reached that this ballistic self-annealing model describes the latter data better than a model in which it is assumed that the saturation in radiation damage is caused by amorphization of the implanted layer. (author)

  14. Room-temperature ballistic transport in III-nitride heterostructures.

    Science.gov (United States)

    Matioli, Elison; Palacios, Tomás

    2015-02-11

    Room-temperature (RT) ballistic transport of electrons is experimentally observed and theoretically investigated in III-nitrides. This has been largely investigated at low temperatures in low band gap III-V materials due to their high electron mobilities. However, their application to RT ballistic devices is limited by their low optical phonon energies, close to KT at 300 K. In addition, the short electron mean-free-path at RT requires nanoscale devices for which surface effects are a limitation in these materials. We explore the unique properties of wide band-gap III-nitride semiconductors to demonstrate RT ballistic devices. A theoretical model is proposed to corroborate experimentally their optical phonon energy of 92 meV, which is ∼4× larger than in other III-V semiconductors. This allows RT ballistic devices operating at larger voltages and currents. An additional model is described to determine experimentally a characteristic dimension for ballistic transport of 188 nm. Another remarkable property is their short carrier depletion at device sidewalls, down to 13 nm, which allows top-down nanofabrication of very narrow ballistic devices. These results open a wealth of new systems and basic transport studies possible at RT.

  15. The effects of drain scatterings on the electron transport properties of strained-Si diodes with ballistic and non-ballistic channels

    International Nuclear Information System (INIS)

    Yasenjan Ghupur; Mamtimin Geni; Mamatrishat Mamat; Abudukelimu Abudureheman

    2015-01-01

    The effects of multiple scattering on the electron transport properties in drain regions are numerically investigated for the cases of strained-Si diodes with or without scattering in the channel. The performance of non-ballistic (with scattering) channel Si-diodes is compared with that of ballistic (without scattering) channel Si-diodes, using the strain and scattering model. Our results show that the values of the electron velocity and the current in the strain model are higher than the respective values in the unstrained model, and the values of the velocity and the current in the ballistic channel model are higher than the respective values in the non-ballistic channel model. In the strain and scattering models, the effect of each carrier scattering mechanism on the performance of the Si-diodes is analyzed in the drain region. For the ballistic channel model, our results show that inter-valley optical phonon scattering improves device performance, whereas intra-valley acoustic phonon scattering degrades device performance. For the strain model, our results imply that the larger energy splitting of the strained Si could suppress the inter-valley phonon scattering rate. In conclusion, for the drain region, investigation of the strained-Si and scattering mechanisms are necessary, in order to improve the performance of nanoscale ballistic regime devices. (paper)

  16. Utilizzo di laser scanner e camera digitale aviotrasportati nella progettazione di impianti fotovoltaici

    Directory of Open Access Journals (Sweden)

    Nicola Santomauro

    2012-04-01

    Full Text Available La normativa nazionale nel perseguire le direttive impartite dalla CEE in materia di energia, hai ncentivato fin dal 2007 lo sviluppo delle energie rinnovabili e di conseguenza il sorgere della cosiddetta green-economy ove la Geocart ha deciso di investire nella progettazione di impianti fotovoltaici di microgenerazione, con potenza installata inferiore ad 1 MW. Di particolare rilevanza nella fase di progettazione è risultato un laser scanner ed una camera digitaleintegrati nella piattaforma aviotrasportata MAPPING nel processo di rilievo dei siti individuati come idonei alla installazione di impianti fotovoltaici.Using airborne laser scanner and digital camera in the design of photovoltaic power plantsThe design of ground-mounted photovoltaic power plants re-quires a deep knowledge of the territory where people work, mainly if the area of interest has a wide coverage and the survey is not smooth. In this article, it is described the experience gained by Geo-cart in the design of 4-MW photovoltaic solar power plants of micro-generation, developed also by means of airborne laser scanner and digital camera for aerial survey of large scale areas within the Matera and Oppido Lucano’s municipalities in Basilicata.

  17. Ballistic Test Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Test Facility is comprised of two outdoor and one indoor test ranges, which are all instrumented for data acquisition and analysis. Full-size aircraft...

  18. Preservation and storage of prepared ballistic gelatine.

    Science.gov (United States)

    Mattijssen, E J A T; Alberink, I; Jacobs, B; van den Boogaard, Y

    2016-02-01

    The use of ballistic gelatine, generally accepted as a human muscle tissue simulant in wound ballistic studies, might be improved by adding a preservative (Methyl 4-hydroxybenzoate) which inhibits microbial growth. This study shows that replacing a part of the gelatine powder by the preservative does not significantly alter the penetration depth of projectiles. Storing prepared blocks of ballistic gelatine over time decreased the penetration depth of projectiles. Storage of prepared gelatine for 4 week already showed a significant effect on the penetration depth of projectiles. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  19. Assessment of Ballistic Performance for Transparent Material

    Directory of Open Access Journals (Sweden)

    Basim M. Fadhil

    2014-05-01

    Full Text Available A finite element method was used to investigate the ballistic behavior of Polymethylmethacrylate (PMMA under impact loading by spherical steel projectile with different ranges of velocities. Three different target thicknesses were used in the experimental and the numerical works. A mathematical model has been used for the ballistic limit based on the experimental results. It has been found that projectile velocity and target thickness play an important role in the ballistic behavior of PMMA. A good agreement was found between the numerical, experimental, and the analytical result.

  20. Injuries of the head from backface deformation of ballistic protective helmets under ballistic impact.

    Science.gov (United States)

    Rafaels, Karin A; Cutcliffe, Hattie C; Salzar, Robert S; Davis, Martin; Boggess, Brian; Bush, Bryan; Harris, Robert; Rountree, Mark Steve; Sanderson, Ellory; Campman, Steven; Koch, Spencer; Dale Bass, Cameron R

    2015-01-01

    Modern ballistic helmets defeat penetrating bullets by energy transfer from the projectile to the helmet, producing helmet deformation. This deformation may cause severe injuries without completely perforating the helmet, termed "behind armor blunt trauma" (BABT). As helmets become lighter, the likelihood of larger helmet backface deformation under ballistic impact increases. To characterize the potential for BABT, seven postmortem human head/neck specimens wearing a ballistic protective helmet were exposed to nonperforating impact, using a 9 mm, full metal jacket, 124 grain bullet with velocities of 400-460 m/s. An increasing trend of injury severity was observed, ranging from simple linear fractures to combinations of linear and depressed fractures. Overall, the ability to identify skull fractures resulting from BABT can be used in forensic investigations. Our results demonstrate a high risk of skull fracture due to BABT and necessitate the prevention of BABT as a design factor in future generations of protective gear. © 2014 American Academy of Forensic Sciences.

  1. Ballistic deficit correction

    International Nuclear Information System (INIS)

    Duchene, G.; Moszynski, M.; Curien, D.

    1991-01-01

    The EUROGAM data-acquisition has to handle a large number of events/s. Typical in-beam experiments using heavy-ion fusion reactions assume the production of about 50 000 compound nuclei per second deexciting via particle and γ-ray emissions. The very powerful γ-ray detection of EUROGAM is expected to produce high-fold event rates as large as 10 4 events/s. Such high count rates introduce, in a common dead time mode, large dead times for the whole system associated with the processing of the pulse, its digitization and its readout (from the preamplifier pulse up to the readout of the information). In order to minimize the dead time the shaping time constant τ, usually about 3 μs for large volume Ge detectors has to be reduced. Smaller shaping times, however, will adversely affect the energy resolution due to ballistic deficit. One possible solution is to operate the linear amplifier, with a somewhat smaller shaping time constant (in the present case we choose τ = 1.5 μs), in combination with a ballistic deficit compensator. The ballistic deficit can be corrected in different ways using a Gated Integrator, a hardware correction or even a software correction. In this paper we present a comparative study of the software and hardware corrections as well as gated integration

  2. An integrated approach towards future ballistic neck protection materials selection.

    Science.gov (United States)

    Breeze, John; Helliker, Mark; Carr, Debra J

    2013-05-01

    Ballistic protection for the neck has historically taken the form of collars attached to the ballistic vest (removable or fixed), but other approaches, including the development of prototypes incorporating ballistic material into the collar of an under body armour shirt, are now being investigated. Current neck collars incorporate the same ballistic protective fabrics as the soft armour of the remaining vest, reflecting how ballistic protective performance alone has historically been perceived as the most important property for neck protection. However, the neck has fundamental differences from the thorax in terms of anatomical vulnerability, flexibility and equipment integration, necessitating a separate solution from the thorax in terms of optimal materials selection. An integrated approach towards the selection of the most appropriate combination of materials to be used for each of the two potential designs of future neck protection has been developed. This approach requires evaluation of the properties of each potential material in addition to ballistic performance alone, including flexibility, mass, wear resistance and thermal burden. The aim of this article is to provide readers with an overview of this integrated approach towards ballistic materials selection and an update of its current progress in the development of future ballistic neck protection.

  3. Numerical simulation and optimized design of cased telescoped ammunition interior ballistic

    Directory of Open Access Journals (Sweden)

    Jia-gang Wang

    2018-04-01

    Full Text Available In order to achieve the optimized design of a cased telescoped ammunition (CTA interior ballistic design, a genetic algorithm was introduced into the optimal design of CTA interior ballistics with coupling the CTA interior ballistic model. Aiming at the interior ballistic characteristics of a CTA gun, the goal of CTA interior ballistic design is to obtain a projectile velocity as large as possible. The optimal design of CTA interior ballistic is carried out using a genetic algorithm by setting peak pressure, changing the chamber volume and gun powder charge density. A numerical simulation of interior ballistics based on a 35 mm CTA firing experimental scheme was conducted and then the genetic algorithm was used for numerical optimization. The projectile muzzle velocity of the optimized scheme is increased from 1168 m/s for the initial experimental scheme to 1182 m/s. Then four optimization schemes were obtained with several independent optimization processes. The schemes were compared with each other and the difference between these schemes is small. The peak pressure and muzzle velocity of these schemes are almost the same. The result shows that the genetic algorithm is effective in the optimal design of the CTA interior ballistics. This work will be lay the foundation for further CTA interior ballistic design. Keywords: Cased telescoped ammunition, Interior ballistics, Gunpowder, Optimization genetic algorithm

  4. Ballistic Missile Defense in Europe

    OpenAIRE

    Sarihan, Ali; Bush, Amy; Summers, Lawrence; Thompson, Brent; Tomasszewski, Steven

    2009-01-01

    This paper will build on ballistic missile defense in Europe. In the first part, a brief historical overview will place the current public management issue into light. This is followed by a discussion of the main actors in the international debate, the problems that arise and the available options and recommendations to address missile defense. In the second part, differences between George W. Bush and Barack H. Obama will analyze under the title “Ballistic Missile Defense in Europe: Evolving...

  5. 2015 Assessment of the Ballistic Missile Defense System (BMDS)

    Science.gov (United States)

    2016-04-01

    Director, Operational Test and Evaluation 2015 Assessment of the Ballistic Missile Defense System (BMDS...Evaluation (DOT&E) as they pertain to the Ballistic Missile Defense System (BMDS). Congress specified these requirements in the fiscal year 2002 (FY02...systems are the Ground-based Midcourse Defense (GMD), Aegis Ballistic Missile Defense (Aegis BMD), Terminal High-Altitude Area Defense (THAAD), and

  6. Modeling terminal ballistics using blending-type spline surfaces

    Science.gov (United States)

    Pedersen, Aleksander; Bratlie, Jostein; Dalmo, Rune

    2014-12-01

    We explore using GERBS, a blending-type spline construction, to represent deform able thin-plates and model terminal ballistics. Strategies to construct geometry for different scenarios of terminal ballistics are proposed.

  7. Ballistic resistant article, semi-finished product for and method of making a shell for a ballistic resistant article

    NARCIS (Netherlands)

    Harings, Jules Armand Wilhelmina; Janse, Gerardus Hubertus Anna

    2013-01-01

    The invention relates to a ballistic resistant article, such as a helmet (1), comprising a double curved shell in turn comprising a stack (5) of layers (6) of an oriented anti-ballistic material, the layers comprising one or more plies and having a plurality of cuts (7), the ends of which define a

  8. Ballistic resistant article, semi-finished product for and method of making a shell for a ballistic resistant article

    NARCIS (Netherlands)

    Harings, Jules; Janse, Gerardus

    2013-01-01

    The invention relates to a ballistic resistant article, such as a helmet (1), comprising a double curved shell (2) in turn comprising a stack (5) of layers (6) of an oriented anti-ballistic material, the layers (6) comprising one or more plies and having a plurality of cuts (7), the ends of which

  9. Magneto-ballistic transport in GaN nanowires

    International Nuclear Information System (INIS)

    Santoruvo, Giovanni; Allain, Adrien; Ovchinnikov, Dmitry; Matioli, Elison

    2016-01-01

    The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuations and weak localization of electrons due to quantum interference up to ∼25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.

  10. Magneto-ballistic transport in GaN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Santoruvo, Giovanni, E-mail: giovanni.santoruvo@epfl.ch; Allain, Adrien; Ovchinnikov, Dmitry; Matioli, Elison, E-mail: elison.matioli@epfl.ch [Ecole Polytechnique Fédérale de Lausanne (EPFL), CH 1015 Lausanne (Switzerland)

    2016-09-05

    The ballistic filtering property of nanoscale crosses was used to investigate the effect of perpendicular magnetic fields on the ballistic transport of electrons on wide band-gap GaN heterostructures. The straight scattering-less trajectory of electrons was modified by a perpendicular magnetic field which produced a strong non-linear behavior in the measured output voltage of the ballistic filters and allowed the observation of semi-classical and quantum effects, such as quenching of the Hall resistance and manifestation of the last plateau, in excellent agreement with the theoretical predictions. A large measured phase coherence length of 190 nm allowed the observation of universal quantum fluctuations and weak localization of electrons due to quantum interference up to ∼25 K. This work also reveals the prospect of wide band-gap GaN semiconductors as a platform for basic transport and quantum studies, whose properties allow the investigation of ballistic transport and quantum phenomena at much larger voltages and temperatures than in other semiconductors.

  11. Leaf Area Index (LAI Estimation of Boreal Forest Using Wide Optics Airborne Winter Photos

    Directory of Open Access Journals (Sweden)

    Pauline Stenberg

    2009-12-01

    Full Text Available A new simple airborne method based on wide optics camera is developed for leaf area index (LAI estimation in coniferous forests. The measurements are carried out in winter, when the forest floor is completely snow covered and thus acts as a light background for the hemispherical analysis of the images. The photos are taken automatically and stored on a laptop during the flights. The R2 value of the linear regression of the airborne and ground based LAI measurements was 0.89.

  12. Airborne imaging for heritage documentation using the Fotokite tethered flying camera

    Science.gov (United States)

    Verhoeven, Geert; Lupashin, Sergei; Briese, Christian; Doneus, Michael

    2014-05-01

    Since the beginning of aerial photography, researchers used all kinds of devices (from pigeons, kites, poles, and balloons to rockets) to take still cameras aloft and remotely gather aerial imagery. To date, many of these unmanned devices are still used for what has been referred to as Low-Altitude Aerial Photography or LAAP. In addition to these more traditional camera platforms, radio-controlled (multi-)copter platforms have recently added a new aspect to LAAP. Although model airplanes have been around for several decades, the decreasing cost, increasing functionality and stability of ready-to-fly multi-copter systems has proliferated their use among non-hobbyists. As such, they became a very popular tool for aerial imaging. The overwhelming amount of currently available brands and types (heli-, dual-, tri-, quad-, hexa-, octo-, dodeca-, deca-hexa and deca-octocopters), together with the wide variety of navigation options (e.g. altitude and position hold, waypoint flight) and camera mounts indicate that these platforms are here to stay for some time. Given the multitude of still camera types and the image quality they are currently capable of, endless combinations of low- and high-cost LAAP solutions are available. In addition, LAAP allows for the exploitation of new imaging techniques, as it is often only a matter of lifting the appropriate device (e.g. video cameras, thermal frame imagers, hyperspectral line sensors). Archaeologists were among the first to adopt this technology, as it provided them with a means to easily acquire essential data from a unique point of view, whether for simple illustration purposes of standing historic structures or to compute three-dimensional (3D) models and orthophotographs from excavation areas. However, even very cheap multi-copters models require certain skills to pilot them safely. Additionally, malfunction or overconfidence might lift these devices to altitudes where they can interfere with manned aircrafts. As such, the

  13. Construction and tests of an in-beam PET-like demonstrator for hadrontherapy beam ballistic control

    Energy Technology Data Exchange (ETDEWEB)

    Montarou, G., E-mail: montarou@clermont.in2p3.fr [Clermont University, Blaise Pascal University, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand F-63000 (France); Bony, M.; Busato, E.; Chadelas, R. [Clermont University, Blaise Pascal University, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand F-63000 (France); Donnarieix, D. [Centre Jean Perrin, Service de Physique Médicale, Clermont-Ferrand F-63000 (France); Force, P.; Guicheney, C.; Insa, C.; Lambert, D.; Lestand, L.; Magne, M.; Martin, F. [Clermont University, Blaise Pascal University, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand F-63000 (France); Millardet, C. [Centre Jean Perrin, Service de Physique Médicale, Clermont-Ferrand F-63000 (France); Nivoix, M.; Podlyski, F.; Rozes, A. [Clermont University, Blaise Pascal University, CNRS/IN2P3, Laboratoire de Physique Corpusculaire, BP 10448, Clermont-Ferrand F-63000 (France)

    2017-02-11

    We present the first results obtained with a detector, called Large Area Pixelized Detector (LAPD), dedicated to the study the ballistic control of the beam delivered to the patient by in-beam and real time detection of secondary particles, emitted during its irradiation in the context of hadrontherapy. These particles are 511 keV γ from the annihilation of a positron issued from the β{sup +} emitters induced in the patient tissues along the beam path. The LAPD basic concepts are similar to a conventional PET camera. The 511 keV γ are detected and the reconstructed lines of response allow to measure the β{sup +} activity distribution. Nevertheless, when trying to use γ from positron annihilation for the ballistic control in hadrontherapy, the large prompt γ background should be taken into account and properly rejected. First reconstruction results, obtained with a phantom filled with a high intensity FDG source at the cancer research centre of Clermont-Ferrand are shown. We also report results of measurements performed at the Heidelberg Ion-Beam Therapy Centre with one third of the detector, using proton and carbon ion beams.

  14. Impacts of Deflection Nose on Ballistic Trajectory Control Law

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available The deflection of projectile nose is aimed at changing the motion of the projectile in flight with the theory of motion control and changing the exterior ballistics so as to change its range and increase its accuracy. The law of external ballistics with the deflectable nose is considered as the basis of the design of a flight control system and an important part in the process of projectile development. Based on the existing rigid external ballistic model, this paper establishes an external ballistic calculation model for deflectable nose projectile and further establishes the solving programs accordingly. Different angle of attack, velocity, coefficients of lift, resistance, and moment under the deflection can be obtained in this paper based on the previous experiments and emulation researches. In the end, the author pointed out the laws on the impaction of external ballistic trajectory by the deflection of nose of the missile.

  15. Establishing a Ballistic Test Methodology for Documenting the Containment Capability of Small Gas Turbine Engine Compressors

    Science.gov (United States)

    Heady, Joel; Pereira, J. Michael; Ruggeri, Charles R.; Bobula, George A.

    2009-01-01

    A test methodology currently employed for large engines was extended to quantify the ballistic containment capability of a small turboshaft engine compressor case. The approach involved impacting the inside of a compressor case with a compressor blade. A gas gun propelled the blade into the case at energy levels representative of failed compressor blades. The test target was a full compressor case. The aft flange was rigidly attached to a test stand and the forward flange was attached to a main frame to provide accurate boundary conditions. A window machined in the case allowed the projectile to pass through and impact the case wall from the inside with the orientation, direction and speed that would occur in a blade-out event. High-peed, digital-video cameras provided accurate velocity and orientation data. Calibrated cameras and digital image correlation software generated full field displacement and strain information at the back side of the impact point.

  16. Quantum Mechanical Modeling of Ballistic MOSFETs

    Science.gov (United States)

    Svizhenko, Alexei; Anantram, M. P.; Govindan, T. R.; Biegel, Bryan (Technical Monitor)

    2001-01-01

    The objective of this project was to develop theory, approximations, and computer code to model quasi 1D structures such as nanotubes, DNA, and MOSFETs: (1) Nanotubes: Influence of defects on ballistic transport, electro-mechanical properties, and metal-nanotube coupling; (2) DNA: Model electron transfer (biochemistry) and transport experiments, and sequence dependence of conductance; and (3) MOSFETs: 2D doping profiles, polysilicon depletion, source to drain and gate tunneling, understand ballistic limit.

  17. Ballistic transport and quantum interference in InSb nanowire devices

    International Nuclear Information System (INIS)

    Li Sen; Huang Guang-Yao; Guo Jing-Kun; Kang Ning; Xu Hong-Qi; Caroff, Philippe

    2017-01-01

    An experimental realization of a ballistic superconductor proximitized semiconductor nanowire device is a necessary step towards engineering topological quantum electronics. Here, we report on ballistic transport in InSb nanowires grown by molecular-beam epitaxy contacted by superconductor electrodes. At an elevated temperature, clear conductance plateaus are observed at zero magnetic field and in agreement with calculations based on the Landauer formula. At lower temperature, we have observed characteristic Fabry–Pérot patterns which confirm the ballistic nature of charge transport. Furthermore, the magnetoconductance measurements in the ballistic regime reveal a periodic variation related to the Fabry–Pérot oscillations. The result can be reasonably explained by taking into account the impact of magnetic field on the phase of ballistic electron’s wave function, which is further verified by our simulation. Our results pave the way for better understanding of the quantum interference effects on the transport properties of InSb nanowires in the ballistic regime as well as developing of novel device for topological quantum computations. (paper)

  18. Ballistic negatron battery

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M.S.R. [Koneru Lakshmiah Univ.. Dept. of Electrical and Electronics Engineering, Green fields, Vaddeswaram (India)

    2012-07-01

    If we consider the Statistics there is drastic increase in dependence of batteries from year to year, due to necessity of power storage equipment at homes, power generating off grid and on grid Wind, PV systems, etc.. Where wind power is leading in renewable sector, there is a need to look at its development. Considering the scenario in India, most of the wind resource areas are far away from grid and the remaining areas which are near to grid are of low wind currents which is of no use connecting these equipment directly to grid. So, there is a need for a power storage utility to be integrated, such as the BNB (Ballistic Negatron Battery). In this situation a country like India need a battery which should be reliable, cheap and which can be industrialized. So this paper presents the concept of working, design, operation, adaptability of a Ballistic Negatron Battery. Unlike present batteries with low energy density, huge size, more weight, more charging time and low resistant to wear level, this Ballistic Negatron Battery comes with, 1) High energy storage capability (many multiples more than the present most advanced battery). 2) Very compact in size. 3) Almost negligible in weight compared to present batteries. 4) Charges with in very less time. 5) Never exhibits a wear level greater than zero. Seems like inconceivable but adoptable with simple physics. This paper will explains in detail the principle, model, design, construction and practical considerations considered in making this battery. (Author)

  19. Design and development of an airborne multispectral imaging system

    Science.gov (United States)

    Kulkarni, Rahul R.; Bachnak, Rafic; Lyle, Stacey; Steidley, Carl W.

    2002-08-01

    Advances in imaging technology and sensors have made airborne remote sensing systems viable for many applications that require reasonably good resolution at low cost. Digital cameras are making their mark on the market by providing high resolution at very high rates. This paper describes an aircraft-mounted imaging system (AMIS) that is being designed and developed at Texas A&M University-Corpus Christi (A&M-CC) with the support of a grant from NASA. The approach is to first develop and test a one-camera system that will be upgraded into a five-camera system that offers multi-spectral capabilities. AMIS will be low cost, rugged, portable and has its own battery power source. Its immediate use will be to acquire images of the Coastal area in the Gulf of Mexico for a variety of studies covering vast spectra from near ultraviolet region to near infrared region. This paper describes AMIS and its characteristics, discusses the process for selecting the major components, and presents the progress.

  20. Solar-Powered Airplane with Cameras and WLAN

    Science.gov (United States)

    Higgins, Robert G.; Dunagan, Steve E.; Sullivan, Don; Slye, Robert; Brass, James; Leung, Joe G.; Gallmeyer, Bruce; Aoyagi, Michio; Wei, Mei Y.; Herwitz, Stanley R.; hide

    2004-01-01

    An experimental airborne remote sensing system includes a remotely controlled, lightweight, solar-powered airplane (see figure) that carries two digital-output electronic cameras and communicates with a nearby ground control and monitoring station via a wireless local-area network (WLAN). The speed of the airplane -- typically <50 km/h -- is low enough to enable loitering over farm fields, disaster scenes, or other areas of interest to collect high-resolution digital imagery that could be delivered to end users (e.g., farm managers or disaster-relief coordinators) in nearly real time.

  1. Cost of space-based laser ballistic missile defense.

    Science.gov (United States)

    Field, G; Spergel, D

    1986-03-21

    Orbiting platforms carrying infrared lasers have been proposed as weapons forming the first tier of a ballistic missile defense system under the President's Strategic Defense Initiative. As each laser platform can destroy a limited number of missiles, one of several methods of countering such a system is to increase the number of offensive missiles. Hence it is important to know whether the cost-exchange ratio, defined as the ratio of the cost to the defense of destroying a missile to the cost to the offense of deploying an additional missile, is greater or less than 1. Although the technology to be used in a ballistic missile defense system is still extremely uncertain, it is useful to examine methods for calculating the cost-exchange ratio. As an example, the cost of an orbiting infrared laser ballistic missile defense system employed against intercontinental ballistic missiles launched simultaneously from a small area is compared to the cost of additional offensive missiles. If one adopts lower limits to the costs for the defense and upper limits to the costs for the offense, the cost-exchange ratio comes out substantially greater than 1. If these estimates are confirmed, such a ballistic missile defense system would be unable to maintain its effectiveness at less cost than it would take to proliferate the ballistic missiles necessary to overcome it and would therefore not satisfy the President's requirements for an effective strategic defense. Although the method is illustrated by applying it to a space-based infrared laser system, it should be straightforward to apply it to other proposed systems.

  2. Design of comprehensive general maintenance service system of aerial reconnaissance camera

    Directory of Open Access Journals (Sweden)

    Li Xu

    2016-01-01

    Full Text Available Aiming at the problem of lack of security equipment for airborne reconnaissance camera and universal difference between internal and external field and model, the design scheme of comprehensive universal system based on PC-104 bus architecture and ARM wireless test module is proposed is proposed using the ATE design. The scheme uses the "embedded" technology to design the system, which meets the requirements of the system. By using the technique of classified switching, the hardware resources are reasonably extended, and the general protection of the various types of aerial reconnaissance cameras is realized. Using the concept of “wireless test”, the test interface is extended to realize the comprehensive protection of the aerial reconnaissance camera and the field. The application proves that the security system works stably, has good generality, practicability, and has broad application prospect.

  3. Nonlinear Ballistic Transport in an Atomically Thin Material.

    Science.gov (United States)

    Boland, Mathias J; Sundararajan, Abhishek; Farrokhi, M Javad; Strachan, Douglas R

    2016-01-26

    Ultrashort devices that incorporate atomically thin components have the potential to be the smallest electronics. Such extremely scaled atomically thin devices are expected to show ballistic nonlinear behavior that could make them tremendously useful for ultrafast applications. While nonlinear diffusive electron transport has been widely reported, clear evidence for intrinsic nonlinear ballistic transport in the growing array of atomically thin conductors has so far been elusive. Here we report nonlinear electron transport of an ultrashort single-layer graphene channel that shows quantitative agreement with intrinsic ballistic transport. This behavior is shown to be distinctly different than that observed in similarly prepared ultrashort devices consisting, instead, of bilayer graphene channels. These results suggest that the addition of only one extra layer of an atomically thin material can make a significant impact on the nonlinear ballistic behavior of ultrashort devices, which is possibly due to the very different chiral tunneling of their charge carriers. The fact that we observe the nonlinear ballistic response at room temperature, with zero applied magnetic field, in non-ultrahigh vacuum conditions and directly on a readily accessible oxide substrate makes the nanogap technology we utilize of great potential for achieving extremely scaled high-speed atomically thin devices.

  4. Effect of measurement on the ballistic-diffusive transition in turbid media.

    Science.gov (United States)

    Glasser, Ziv; Yaroshevsky, Andre; Barak, Bavat; Granot, Er'el; Sternklar, Shmuel

    2013-10-01

    The dependence of the transition between the ballistic and the diffusive regimes of turbid media on the experimental solid angle of the detection system is analyzed theoretically and experimentally. A simple model is developed which shows the significance of experimental conditions on the location of the ballistic-diffusive transition. It is demonstrated that decreasing the solid angle expands the ballistic regime; however, this benefit is bounded by the initial Gaussian beam diffraction. In addition, choosing the appropriate wavelength according to the model's principles provides another means of expanding the ballistic regime. Consequently, by optimizing the experimental conditions, it should be possible to extract the ballistic image of a tissue with a thickness of 1 cm.

  5. Ballistic impact response of lipid membranes.

    Science.gov (United States)

    Zhang, Yao; Meng, Zhaoxu; Qin, Xin; Keten, Sinan

    2018-03-08

    Therapeutic agent loaded micro and nanoscale particles as high-velocity projectiles can penetrate cells and tissues, thereby serving as gene and drug delivery vehicles for direct and rapid internalization. Despite recent progress in developing micro/nanoscale ballistic tools, the underlying biophysics of how fast projectiles deform and penetrate cell membranes is still poorly understood. To understand the rate and size-dependent penetration processes, we present coarse-grained molecular dynamics simulations of the ballistic impact of spherical projectiles on lipid membranes. Our simulations reveal that upon impact, the projectile can pursue one of three distinct pathways. At low velocities below the critical penetration velocity, projectiles rebound off the surface. At intermediate velocities, penetration occurs after the projectile deforms the membrane into a tubular thread. At very high velocities, rapid penetration occurs through localized membrane deformation without tubulation. Membrane tension, projectile velocity and size govern which phenomenon occurs, owing to their positive correlation with the reaction force generated between the projectile and the membrane during impact. Two critical membrane tension values dictate the boundaries among the three pathways for a given system, due to the rate dependence of the stress generated in the membrane. Our findings provide broad physical insights into the ballistic impact response of soft viscous membranes and guide design strategies for drug delivery through lipid membranes using micro/nanoscale ballistic tools.

  6. Ballistic quality assurance

    International Nuclear Information System (INIS)

    Cassol, E.; Bonnet, J.; Porcheron, D.; Mazeron, J.J.; Peiffert, D.; Alapetite, C.

    2012-01-01

    This review describes the ballistic quality assurance for stereotactic intracranial irradiation treatments delivered with Gamma Knife R either dedicated or adapted medical linear accelerators. Specific and periodic controls should be performed in order to check the mechanical stability for both irradiation and collimation systems. If this step remains under the responsibility of the medical physicist, it should be done in agreement with the manufacturer's technical support. At this time, there are no recent published guidelines. With technological developments, both frequency and accuracy should be assessed in each institution according to the treatment mode: single versus hypo-fractionated dose, circular collimator versus micro-multi-leaf collimators. In addition, 'end-to-end' techniques are mandatory to find the origin of potential discrepancies and to estimate the global ballistic accuracy of the delivered treatment. Indeed, they include frames, non-invasive immobilization devices, localizers, multimodal imaging for delineation and in-room positioning imaging systems. The final precision that could be reasonably achieved is more or less 1 mm. (authors)

  7. Target-Tracking Camera for a Metrology System

    Science.gov (United States)

    Liebe, Carl; Bartman, Randall; Chapsky, Jacob; Abramovici, Alexander; Brown, David

    2009-01-01

    An analog electronic camera that is part of a metrology system measures the varying direction to a light-emitting diode that serves as a bright point target. In the original application for which the camera was developed, the metrological system is used to determine the varying relative positions of radiating elements of an airborne synthetic aperture-radar (SAR) antenna as the airplane flexes during flight; precise knowledge of the relative positions as a function of time is needed for processing SAR readings. It has been common metrology system practice to measure the varying direction to a bright target by use of an electronic camera of the charge-coupled-device or active-pixel-sensor type. A major disadvantage of this practice arises from the necessity of reading out and digitizing the outputs from a large number of pixels and processing the resulting digital values in a computer to determine the centroid of a target: Because of the time taken by the readout, digitization, and computation, the update rate is limited to tens of hertz. In contrast, the analog nature of the present camera makes it possible to achieve an update rate of hundreds of hertz, and no computer is needed to determine the centroid. The camera is based on a position-sensitive detector (PSD), which is a rectangular photodiode with output contacts at opposite ends. PSDs are usually used in triangulation for measuring small distances. PSDs are manufactured in both one- and two-dimensional versions. Because it is very difficult to calibrate two-dimensional PSDs accurately, the focal-plane sensors used in this camera are two orthogonally mounted one-dimensional PSDs.

  8. A ballistic mission to fly by Comet Halley

    Science.gov (United States)

    Boain, R. J.; Hastrup, R. C.

    1980-01-01

    The paper describes the available options, ballistic trajectory opportunities, and a preliminary reference trajectory that were selected as a basis for spacecraft design studies and programmatic planning for a Halley ballistic intercept mission in 1986. The paper also presents trajectory, performance, and navigation data which support the preliminary selection.

  9. Space-based ballistic-missile defense

    International Nuclear Information System (INIS)

    Bethe, H.A.; Garwin, R.L.; Gottfried, K.; Kendall, H.W.

    1984-01-01

    This article, based on a forthcoming book by the Union for Concerned Scientists, focuses on the technical aspects of the issue of space-based ballistic-missile defense. After analysis, the authors conclude that the questionable performance of the proposed defense, the ease with which it could be overwhelmed or circumvented, and its potential as an antisatellite system would cause grievous damage to the security of the US if the Strategic Defense Initiative were to be pursued. The path toward greater security lies in quite another direction, they feel. Although research on ballistic-missile defense should continue at the traditional level of expenditure and within the constraints of the ABM Treaty, every effort should be made to negotiate a bilateral ban on the testing and use of space weapons. The authors think it is essential that such an agreement cover all altitudes, because a ban on high-altitude antisatellite weapons alone would not viable if directed energy weapons were developed for ballistic-missile defense. Further, the Star Wars program, unlikely ever to protect the entire nation against a nuclear attack, would nonetheless trigger a major expansion of the arms race

  10. Ballistic food transport in toucans.

    Science.gov (United States)

    Baussart, Sabine; Korsoun, Leonid; Libourel, Paul-Antoine; Bels, Vincent

    2009-08-01

    The basic mechanism of food transport in tetrapods is lingual-based. Neognathous birds use this mechanism for exploiting a large diversity of food resources, whereas paleognathous birds use cranioinertial mechanism with or without tongue involvement. Food transport in two neognathous species of toucans (Ramphastos toco and R. vitellinus) is defined as ballistic transport mechanism. Only one transport cycle is used for moving the food from the tip of the beak to the pharynx. The food is projected between jaws with similar initial velocity in both species. At the time of release, the angle between trajectory of food position and horizontal is higher in R. vitellinus with a shorter beak than in R. toco. The tongue never makes contact with the food nor is it used to expand the buccal cavity. Tongue movement is associated with throat expansion, permitting the food to reach the entrance of the esophagus at the end of the ballistic trajectory. Selection of large food items in the diet may explain the evolutionary trend of using ballistic transport in the feeding behavior of toucans, which plays a key role in ecology of tropical forest. 2009 Wiley-Liss, Inc.

  11. Ballistic trauma: lessons learned from iraq and afghanistan.

    Science.gov (United States)

    Shin, Emily H; Sabino, Jennifer M; Nanos, George P; Valerio, Ian L

    2015-02-01

    Management of upper extremity injuries secondary to ballistic and blast trauma can lead to challenging problems for the reconstructive surgeon. Given the recent conflicts in Iraq and Afghanistan, advancements in combat-casualty care, combined with a high-volume experience in the treatment of ballistic injuries, has led to continued advancements in the treatment of the severely injured upper extremity. There are several lessons learned that are translatable to civilian trauma centers and future conflicts. In this article, the authors provide an overview of the physics of ballistic injuries and principles in the management of such injuries through experience gained from military involvement in Iraq and Afghanistan.

  12. Ballistic transport in graphene grown by chemical vapor deposition

    International Nuclear Information System (INIS)

    Calado, V. E.; Goswami, S.; Xu, Q.; Vandersypen, L. M. K.; Zhu, Shou-En; Janssen, G. C. A. M.; Watanabe, K.; Taniguchi, T.

    2014-01-01

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene

  13. Ballistic transport in graphene grown by chemical vapor deposition

    Energy Technology Data Exchange (ETDEWEB)

    Calado, V. E.; Goswami, S.; Xu, Q.; Vandersypen, L. M. K., E-mail: l.m.k.vandersypen@tudelft.nl [Kavli Institute of Nanoscience, Delft University of Technology, 2600 GA Delft (Netherlands); Zhu, Shou-En; Janssen, G. C. A. M. [Micro and Nano Engineering Laboratory, Precision and Microsystems Engineering, Delft University of Technology, 2628 CD Delft (Netherlands); Watanabe, K.; Taniguchi, T. [Advanced Materials Laboratory, National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2014-01-13

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be ballistically directed by a magnetic field (transverse magnetic focussing) over length scales of ∼1 μm. Comparison with atomic force microscope measurements suggests a correlation between the absence of wrinkles and the presence of ballistic transport in CVD graphene.

  14. Understanding the ballistic event : Methodology and observations relevant to ceramic armour

    Science.gov (United States)

    Healey, Adam

    The only widely-accepted method of gauging the ballistic performance of a material is to carry out ballistic testing; due to the large volume of material required for a statistically robust test, this process is very expensive. Therefore a new test, or suite of tests, that employ widely-available and economically viable characterisation methods to screen candidate armour materials is highly desirable; in order to design such a test, more information on the armour/projectile interaction is required. This work presents the design process and results of using an adapted specimen configuration to increase the amount of information obtained from a ballistic test. By using a block of ballistic gel attached to the ceramic, the fragmentation generated during the ballistic event was captured and analysed. In parallel, quasi-static tests were carried out using ring-on-ring biaxial disc testing to investigate relationships between quasi-static and ballistic fragment fracture surfaces. Three contemporary ceramic armour materials were used to design the test and to act as a baseline; Sintox FA alumina, Hexoloy SA silicon carbide and 3M boron carbide. Attempts to analyse the post-test ballistic sample non-destructively using X-ray computed tomography (XCT) were unsuccessful due to the difference in the density of the materials and the compaction of fragments. However, the results of qualitative and quantitative fracture surface analysis using scanning electron microscopy showed similarities between the fracture surfaces of ballistic fragments at the edges of the tile and biaxial fragments; this suggests a relationship between quasi-static and ballistic fragments created away from the centre of impact, although additional research will be required to determine the reason for this. Ballistic event-induced porosity was observed and quantified on the fracture surfaces of silicon carbide samples, which decreased as distance from centre of impact increased; upon further analysis this

  15. Missile Defense: Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities

    Science.gov (United States)

    2016-04-28

    Page 1 GAO-16-339R Ballistic Missile Defense 441 G St. N.W. Washington, DC 20548 April 28, 2016 Congressional Committees Missile Defense... Ballistic Missile Defense System Testing Delays Affect Delivery of Capabilities For over half a century, the Department of Defense (DOD) has been...funding efforts to develop a system to detect, track, and defeat enemy ballistic missiles. The current system—the Ballistic Missile Defense System

  16. Room-temperature ballistic energy transport in molecules with repeating units

    Energy Technology Data Exchange (ETDEWEB)

    Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong; Zhang, Boyu; Zhou, Xiao; Jayawickramarajah, Janarthanan; Burin, Alexander L.; Rubtsov, Igor V., E-mail: irubtsov@tulane.edu [Department of Chemistry, Tulane University, New Orleans, Louisiana 70118 (United States)

    2015-06-07

    In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport in molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators.

  17. Time-gated ballistic imaging using a large aperture switching beam.

    Science.gov (United States)

    Mathieu, Florian; Reddemann, Manuel A; Palmer, Johannes; Kneer, Reinhold

    2014-03-24

    Ballistic imaging commonly denotes the formation of line-of-sight shadowgraphs through turbid media by suppression of multiply scattered photons. The technique relies on a femtosecond laser acting as light source for the images and as switch for an optical Kerr gate that separates ballistic photons from multiply scattered ones. The achievable image resolution is one major limitation for the investigation of small objects. In this study, practical influences on the optical Kerr gate and image quality are discussed theoretically and experimentally applying a switching beam with large aperture (D = 19 mm). It is shown how switching pulse energy and synchronization of switching and imaging pulse in the Kerr cell influence the gate's transmission. Image quality of ballistic imaging and standard shadowgraphy is evaluated and compared, showing that the present ballistic imaging setup is advantageous for optical densities in the range of 8 ballistic imaging setup into a schlieren-type system with an optical schlieren edge.

  18. Room-temperature ballistic energy transport in molecules with repeating units

    International Nuclear Information System (INIS)

    Rubtsova, Natalia I.; Nyby, Clara M.; Zhang, Hong; Zhang, Boyu; Zhou, Xiao; Jayawickramarajah, Janarthanan; Burin, Alexander L.; Rubtsov, Igor V.

    2015-01-01

    In materials, energy can propagate by means of two limiting regimes: diffusive and ballistic. Ballistic energy transport can be fast and efficient and often occurs with a constant speed. Using two-dimensional infrared spectroscopy methods, we discovered ballistic energy transport via individual polyethylene chains with a remarkably high speed of 1440 m/s and the mean free path length of 14.6 Å in solution at room temperature. Whereas the transport via the chains occurs ballistically, the mechanism switches to diffusive with the effective transport speed of 130 m/s at the end-groups attached to the chains. A unifying model of the transport in molecules is presented with clear time separation and additivity among the transport along oligomeric fragments, which occurs ballistically, and the transport within the disordered fragments, occurring diffusively. The results open new avenues for making novel elements for molecular electronics, including ultrafast energy transporters, controlled chemical reactors, and sub-wavelength quantum nanoseparators

  19. Sub-ballistic behavior in the quantum kicked rotor

    Energy Technology Data Exchange (ETDEWEB)

    Romanelli, A. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, C.C. 30, C.P. 11000, Montevideo (Uruguay)]. E-mail: alejo@fing.edu.uy; Auyuanet, A. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, C.C. 30, C.P. 11000, Montevideo (Uruguay)]. E-mail: auyuanet@fing.edu.uy; Siri, R. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, C.C. 30, C.P. 11000, Montevideo (Uruguay)]. E-mail: rsiri@fing.edu.uy; Micenmacher, V. [Instituto de Fisica, Facultad de Ingenieria, Universidad de la Republica, C.C. 30, C.P. 11000, Montevideo (Uruguay)]. E-mail: vmd@fing.edu.uy

    2007-05-28

    We study the resonances of the quantum kicked rotor subjected to an excitation that follows an aperiodic Fibonacci prescription. In such a case the secondary resonances show a sub-ballistic behavior like the quantum walk with the same aperiodic prescription for the coin. The principal resonances maintain the well-known ballistic behavior.

  20. Sub-ballistic behavior in the quantum kicked rotor

    International Nuclear Information System (INIS)

    Romanelli, A.; Auyuanet, A.; Siri, R.; Micenmacher, V.

    2007-01-01

    We study the resonances of the quantum kicked rotor subjected to an excitation that follows an aperiodic Fibonacci prescription. In such a case the secondary resonances show a sub-ballistic behavior like the quantum walk with the same aperiodic prescription for the coin. The principal resonances maintain the well-known ballistic behavior

  1. Electron transport in InAs/AlGaSb ballistic rectifiers

    International Nuclear Information System (INIS)

    Maemoto, Toshihiko; Koyama, Masatoshi; Furukawa, Masashi; Takahashi, Hiroshi; Sasa, Shigehiko; Inoue, Masataka

    2006-01-01

    Nonlinear transport properties of a ballistic rectifier fabricated from InAs/AlGaSb heterostructures are reported. The operation of the ballistic rectifier is based on the guidance of carriers by a square anti-dot structure. The structure was defined by electron beam lithography and wet chemical etching. The DC characteristics and magneto-transport properties of the ballistic rectifier have been measured at 77 K and 4.2 K. Rectification effects relying on the ballistic transport were observed. From the four-terminal resistance measured at low magnetic fields, we also observed magneto-resistance fluctuations corresponding to the electron trajectories and symmetry-breaking electron scattering, which are influenced by the magnetic field strength

  2. Design and Manufacturing Process for a Ballistic Missile

    Directory of Open Access Journals (Sweden)

    Zaharia Sebastian Marian

    2016-12-01

    Full Text Available Designing a ballistic missile flight depends on the mission and the stress to which the missile is subject. Missile’s requests are determined by: the organization of components; flight regime type, engine configuration and aerodynamic performance of the rocket flight. In this paper has been developed a ballistic missile with a smooth fuselage type, 10 control surfaces, 8 directional surfaces for cornering execution, 2 for maneuvers of execution to change the angle of incidence and 4 stabilizers direction. Through the technology of gluing and clamping of the shell and the use of titanium components, mass of ballistic missile presented a significant decrease in weight and a structure with high strength.

  3. Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.

    Science.gov (United States)

    Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S

    2016-02-10

    Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.

  4. Diagnostics of ballistic electrons in a dc/rf hybrid capacitively coupled discharge

    International Nuclear Information System (INIS)

    Xu Lin; Chen, Lee; Funk, Merritt; Ranjan, Alok; Hummel, Mike; Bravenec, Ron; Sundararajan, Radha; Economou, Demetre J.; Donnelly, Vincent M.

    2008-01-01

    The energy distribution of ballistic electrons in a dc/rf hybrid parallel-plate capacitively coupled plasma reactor was measured. Ballistic electrons originated as secondaries produced by ion and electron bombardment of the electrodes. The energy distribution of ballistic electrons peaked at the value of the negative bias applied to the dc electrode. As that bias became more negative, the ballistic electron current on the rf substrate electrode increased dramatically. The ion current on the dc electrode also increased

  5. Towards reliable simulations of ballistic impact on concrete structures

    NARCIS (Netherlands)

    Khoe, Y.S.; Tyler Street, M.D.; Maravalalu Suresh,, R.S.; Weerheijm, J.

    2013-01-01

    Protection against weapon effects like ballistic impacts, fragmenting shells and explosions is the core business of the Explosions, Ballistics and Protection department of TNO (The Netherlands). Experimental and numerical research is performed to gain and maintain the knowledge to support the Dutch

  6. Determining fast orientation changes of multi-spectral line cameras from the primary images

    Science.gov (United States)

    Wohlfeil, Jürgen

    2012-01-01

    Fast orientation changes of airborne and spaceborne line cameras cannot always be avoided. In such cases it is essential to measure them with high accuracy to ensure a good quality of the resulting imagery products. Several approaches exist to support the orientation measurement by using optical information received through the main objective/telescope. In this article an approach is proposed that allows the determination of non-systematic orientation changes between every captured line. It does not require any additional camera hardware or onboard processing capabilities but the payload images and a rough estimate of the camera's trajectory. The approach takes advantage of the typical geometry of multi-spectral line cameras with a set of linear sensor arrays for different spectral bands on the focal plane. First, homologous points are detected within the heavily distorted images of different spectral bands. With their help a connected network of geometrical correspondences can be built up. This network is used to calculate the orientation changes of the camera with the temporal and angular resolution of the camera. The approach was tested with an extensive set of aerial surveys covering a wide range of different conditions and achieved precise and reliable results.

  7. Ballistic Jumping Drops on Superhydrophobic Surfaces via Electrostatic Manipulation.

    Science.gov (United States)

    Li, Ning; Wu, Lei; Yu, Cunlong; Dai, Haoyu; Wang, Ting; Dong, Zhichao; Jiang, Lei

    2018-02-01

    The ballistic ejection of liquid drops by electrostatic manipulating has both fundamental and practical implications, from raindrops in thunderclouds to self-cleaning, anti-icing, condensation, and heat transfer enhancements. In this paper, the ballistic jumping behavior of liquid drops from a superhydrophobic surface is investigated. Powered by the repulsion of the same kind of charges, water drops can jump from the surface. The electrostatic acting time for the jumping of a microliter supercooled drop only takes several milliseconds, even shorter than the time for icing. In addition, one can control the ballistic jumping direction precisely by the relative position above the electrostatic field. The approach offers a facile method that can be used to manipulate the ballistic drop jumping via an electrostatic field, opening the possibility of energy efficient drop detaching techniques in various applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Development and testing of a flexible ballistic neck protection

    NARCIS (Netherlands)

    Roebroeks, G.H.J.J.; Rensink, P.

    2016-01-01

    Sufficient ballistic protection of the neck area would significantly reduce the vulnerability of an infantry soldier. So far this protection is offered by extensions on the ballistic vest or combat helmet. However, the requirements for head agility and the various body to head positions combined

  9. 76 FR 70165 - Ballistic-Resistant Body Armor Standard Workshop

    Science.gov (United States)

    2011-11-10

    ... DEPARTMENT OF JUSTICE Office of Justice Programs [OJP (NIJ) Docket No. 1573] Ballistic-Resistant Body Armor Standard Workshop AGENCY: National Institute of Justice, DOJ. ACTION: Notice. SUMMARY: The... jointly hosting a workshop focused on NIJ Standard-0101.06, Ballistic Resistance of Body Armor, and the...

  10. Airborne laser altimeter measurements of landscape topography

    International Nuclear Information System (INIS)

    Ritchie, J.C.

    1995-01-01

    Measurements of topography can provide a wealth of information on landscape properties for managing hydrologic and geologic systems and conserving natural and agricultural resources. This article discusses the application of an airborne laser altimeter to measure topography and other landscape surface properties. The airborne laser altimeter makes 4000 measurements per second with a vertical recording resolution of 5 cm. Data are collected digitally with a personal computer. A video camera, borehole sighted with the laser, records an image for locating flight lines. GPS data are used to locate flight line positions on the landscape. Laser data were used to measure vegetation canopy topography, height, cover, and distribution and to measure microtopography of the land surface and gullies with depths of 15–20 cm. Macrotopography of landscape profiles for segments up to 4 km were in agreement with available topographic maps but provided more detail. Larger gullies with and without vegetation, and stream channel cross sections and their associated floodplains have also been measured and reported in other publications. Landscape segments for any length could be measured for either micro- or macrotopography. Airborne laser altimeter measurements of landscape profiles can provide detailed information on landscape properties or specific needs that will allow better decisions on the design and location of structures (i.e., roads, pipe, and power lines) and for improving the management and conservation of natural and agricultural landscapes. (author)

  11. Trismus in Face Transplantation Following Ballistic Trauma.

    Science.gov (United States)

    Krezdorn, Nicco; Alhefzi, Muayyad; Perry, Bridget; Aycart, Mario A; Tasigiorgos, Sotirios; Bueno, Ericka M; Green, Jordan R; Pribaz, Julian J; Pomahac, Bohdan; Caterson, Edward J

    2018-06-01

    Trismus can be a challenging consequence of ballistic trauma to the face, and has rarely been described in the setting of face transplantation. Almost half of all current face transplant recipients in the world received transplantation to restore form and function after a ballistic injury. Here we report our experience and challenges with long standing trismus after face transplantation. We reviewed the medical records of our face transplant recipients whose indication was ballistic injury. We focused our review on trismus and assessed the pre-, peri- and postoperative planning, surgery and functional outcomes. Two patients received partial face transplantation, including the midface for ballistic trauma. Both patients suffered from impaired mouth opening, speech intelligibility, and oral competence. Severe scarring of the temporomandibular joint (TMJ) required intraoperative release in both patients, and additional total condylectomy on the left side 6 months posttransplant for 1 patient. Posttransplant, both patients achieved an improvement in mouth opening; however, there was persistent trismus. One year after transplantation, range of motion of the jaw had improved for both patients. Independent oral food intake was possible 1 year after surgery, although spillage of liquids and mixed consistency solids persisted. Speech intelligibility testing showed impairments in the immediate postoperative period, with improvement to over 85% for both patients at 1 year posttransplant. Ballistic trauma to the face and subsequent reconstructive measures can cause significant scarring and covert injuries to structures such as the TMJ, resulting in long standing trismus. Meticulous individual planning prior to interventions such as face transplantation must take these into account. We encourage intraoperative evaluation of these structures as well as peri- and postoperative treatment when necessary. Due to the nature of the primary injury, functional outcomes after face

  12. Kinetics of diffusion-controlled and ballistically-controlled reactions

    International Nuclear Information System (INIS)

    Redner, S.

    1995-01-01

    The kinetics of diffusion-controlled two-species annihilation, A+B → O and single-species ballistically-controlled annihilation, A+A → O are investigated. For two-species annihilation, we describe the basic mechanism that leads to the formation of a coarsening mosaic of A- and B-domains. The implications of this picture on the distribution of reactants is discussed. For ballistic annihilation, dimensional analysis shows that the concentration and rms velocity decay as c∼t -α and v∼t -β , respectively, with α+β = 1 in any spatial dimension. Analysis of the Boltzmann equation for the evolution of the velocity distribution yields accurate predictions for the kinetics. New phenomena associated with discrete initial velocity distributions and with mixed ballistic and diffusive reactant motion are also discussed. (author)

  13. Oblique Multi-Camera Systems - Orientation and Dense Matching Issues

    Science.gov (United States)

    Rupnik, E.; Nex, F.; Remondino, F.

    2014-03-01

    The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies (Blomoblique, IGI, Leica, Midas, Pictometry, Vexcel/Microsoft, VisionMap, etc.). The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. The paper reports an overview of the actual oblique commercial systems and presents a workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given. Tests performed on two datasets acquired with two multi-camera systems over urban areas are also reported.

  14. Ballistic One-Dimensional InAs Nanowire Cross-Junction Interconnects.

    Science.gov (United States)

    Gooth, Johannes; Borg, Mattias; Schmid, Heinz; Schaller, Vanessa; Wirths, Stephan; Moselund, Kirsten; Luisier, Mathieu; Karg, Siegfried; Riel, Heike

    2017-04-12

    Coherent interconnection of quantum bits remains an ongoing challenge in quantum information technology. Envisioned hardware to achieve this goal is based on semiconductor nanowire (NW) circuits, comprising individual NW devices that are linked through ballistic interconnects. However, maintaining the sensitive ballistic conduction and confinement conditions across NW intersections is a nontrivial problem. Here, we go beyond the characterization of a single NW device and demonstrate ballistic one-dimensional (1D) quantum transport in InAs NW cross-junctions, monolithically integrated on Si. Characteristic 1D conductance plateaus are resolved in field-effect measurements across up to four NW-junctions in series. The 1D ballistic transport and sub-band splitting is preserved for both crossing-directions. We show that the 1D modes of a single injection terminal can be distributed into multiple NW branches. We believe that NW cross-junctions are well-suited as cross-directional communication links for the reliable transfer of quantum information as required for quantum computational systems.

  15. Ballistic hole magnetic microscopy

    NARCIS (Netherlands)

    Haq, E.; Banerjee, T.; Siekman, M.H.; Lodder, J.C.; Jansen, R.

    2005-01-01

    A technique to study nanoscale spin transport of holes is presented: ballistic hole magnetic microscopy. The tip of a scanning tunneling microscope is used to inject hot electrons into a ferromagnetic heterostructure, where inelastic decay creates a distribution of electron-hole pairs.

  16. Evaluation of an airborne remote sensing platform consisting of two consumer-grade cameras for crop identification

    Science.gov (United States)

    Remote sensing systems based on consumer-grade cameras have been increasingly used in scientific research and remote sensing applications because of their low cost and ease of use. However, the performance of consumer-grade cameras for practical applications have not been well documented in related ...

  17. AUTOMATED DATA PRODUCTION FOR A NOVEL AIRBORNE MULTIANGLE SPECTROPOLARIMETRIC IMAGER (AIRMSPI

    Directory of Open Access Journals (Sweden)

    V. M. Jovanovic

    2012-07-01

    Full Text Available A novel polarimetric imaging technique making use of rapid retardance modulation has been developed by JPL as a part of NASA's Instrument Incubator Program. It has been built into the Airborne Multiangle SpectroPolarimetric Imager (AirMSPI under NASA's Airborne Instrument Technology Transition Program, and is aimed primarily at remote sensing of the amounts and microphysical properties of aerosols and clouds. AirMSPI includes an 8-band (355, 380, 445, 470, 555, 660, 865, 935 nm pushbroom camera that measures polarization in a subset of the bands (470, 660, and 865 nm. The camera is mounted on a gimbal and acquires imagery in a configurable set of along-track viewing angles ranging between +67°and –67° relative to nadir. As a result, near simultaneous multi-angle, multi-spectral, and polarimetric measurements of the targeted areas at a spatial resolution ranging from 7 m to 20 m (depending on the viewing angle can be derived. An automated data production system is being built to support high data acquisition rate in concert with co-registration and orthorectified mapping requirements. To date, a number of successful engineering checkout flights were conducted in October 2010, August-September 2011, and January 2012. Data products resulting from these flights will be presented.

  18. Flight Test Results From the Ultra High Resolution, Electro-Optical Framing Camera Containing a 9216 by 9216 Pixel, Wafer Scale, Focal Plane Array

    National Research Council Canada - National Science Library

    Mathews, Bruce; Zwicker, Theodore

    1999-01-01

    The details of the fabrication and results of laboratory testing of the Ultra High Resolution Framing Camera containing onchip forward image motion compensation were presented to the SPIE at Airborne...

  19. Ballistic parameters and trauma potential of pistol crossbows.

    Science.gov (United States)

    Frank, Matthias; Schikorr, Wolfgang; Tesch, Ralf; Werner, Ronald; Hanisch, Steffen; Peters, Dieter; Ekkernkamp, Axel; Bockholdt, Britta; Seifert, Julia

    2013-07-01

    Hand-held pistol crossbows, which are smaller versions of conventional crossbows, have recently increased in popularity. Similar to conventional crossbows, life threatening injuries due to bolts discharged from pistol crossbows are reported in forensic and traumatological literature. While the ballistic background of conventional crossbows is comprehensively investigated, there are no investigations on the characteristic ballistic parameters (draw force, potential energy, recurve factor, kinetic energy, and efficiency) of pistol crossbows. Two hand-held pistol crossbows (Barnett Commando and Mini Cross Bow, rated draw force 362.9 N or 80 lbs) were tested. The maximum draw force was investigated using a dynamic tensile testing machine (TIRAtest 2705, TIRA GmbH). The potential energy was determined graphically by polynomial regression as area under the force-draw curve. External ballistic parameters of the bolts discharged from pistol crossbows were measured using a redundant ballistic speed measurement system (Dual-BMC 21a and Dual-LS 1000, Werner Mehl Kurzzeitmesstechnik). The average maximum draw force was 190.3 and 175.6 N for the Barnett and Mini Cross Bow, respectively. The corresponding total energy expended was 10.7 and 11 J, respectively. The recurve factor was calculated to be 0.705 and 1.044, respectively. Average bolt velocity was measured 43 up to 52 m/s. The efficiency was calculated up to 0.94. To conclude, this work provides the pending ballistic data on this special subgroup of crossbows which operate on a remarkable low kinetic energy level. Furthermore, it demonstrates that the nominal draw force pretended in the sales brochure is grossly exaggerated.

  20. Japan and Ballistic Missile Defense

    National Research Council Canada - National Science Library

    Swaine, Michael

    2001-01-01

    Spurred by a perceived growing ballistic missile threat from within the Asia-Pacific region and requests from the United States to support research and development on components of a missile defense...

  1. Comparative study on sintered alumina for ballistic shielding application

    International Nuclear Information System (INIS)

    Melo, Francisco Cristovao Lourenco de; Goncalves, Diniz Pereira

    1997-01-01

    This work presents a development of the armor made from special ceramic materials and kevlar. An experimental investigation was conducted to study the ballistic penetration resistance on three samples taken from sintered alumina: a commercial one and two formulations A and B made in IAE/CTA. The main differences between the two formulations was the grain size and bend resistance. The knowledge of the mechanisms during the penetration and perforation process allowed to apply a ductile composite laminate made form kevlar under the alumina to delay its rupture. The last ballistic test showed how a Weibull's modulii and other mechanical properties are able to improve ballistic penetration resistance. (author)

  2. Ballistic heat conduction and mass disorder in one dimension

    International Nuclear Information System (INIS)

    Ong, Zhun-Yong; Zhang, Gang

    2014-01-01

    It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (κ) scales asymptotically as lim L→∞ κ∝L 0.5 where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (L C ) below which ballistic heat conduction (κ∝L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function Ξ i.e. Ξ(ω, L) = exp[−L/λ(ω)], where λ is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction. (paper)

  3. Ballistic heat conduction and mass disorder in one dimension.

    Science.gov (United States)

    Ong, Zhun-Yong; Zhang, Gang

    2014-08-20

    It is well-known that in the disordered harmonic chain, heat conduction is subballistic and the thermal conductivity (κ) scales asymptotically as lim(L--> ∞) κ ∝ L(0.5) where L is the chain length. However, using the nonequilibrium Green's function (NEGF) method and analytical modelling, we show that there exists a critical crossover length scale (LC) below which ballistic heat conduction (κ ∝ L) can coexist with mass disorder. This ballistic-to-subballistic heat conduction crossover is connected to the exponential attenuation of the phonon transmittance function Ξ i.e. Ξ(ω, L) = exp[-L/λ(ω)], where λ is the frequency-dependent attenuation length. The crossover length can be determined from the minimum attenuation length, which depends on the maximum transmitted frequency. We numerically determine the dependence of the transmittance on frequency and mass composition as well as derive a closed form estimate, which agrees closely with the numerical results. For the length-dependent thermal conductance, we also derive a closed form expression which agrees closely with numerical results and reproduces the ballistic to subballistic thermal conduction crossover. This allows us to characterize the crossover in terms of changes in the length, mass composition and temperature dependence, and also to determine the conditions under which heat conduction enters the ballistic regime. We describe how the mass composition can be modified to increase ballistic heat conduction.

  4. Transition to ballistic regime for heat transport in helium II

    Energy Technology Data Exchange (ETDEWEB)

    Sciacca, Michele, E-mail: michele.sciacca@unipa.it [Dipartimento Scienze Agrarie e Forestali, Università degli studi di Palermo, Viale delle Scienze, 90128 Palermo (Italy); Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Sellitto, Antonio, E-mail: ant.sellitto@gmail.com [Dipartimento di Matematica, Informatica ed Economia, Università della Basilicata, Campus Macchia Romana, 85100 Potenza (Italy); Jou, David, E-mail: david.jou@uab.cat [Departament de Física, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia (Spain); Institut d' Estudis Catalans, Carme 47, 08001 Barcelona, Catalonia (Spain)

    2014-07-04

    The size-dependent and flux-dependent effective thermal conductivity of narrow capillaries filled with superfluid helium is analyzed from a thermodynamic continuum perspective. The classical Landau evaluation of the effective thermal conductivity of quiescent superfluid, or the Gorter–Mellinck regime of turbulent superfluids, is extended to describe the transition to ballistic regime in narrow channels wherein the radius R is comparable to (or smaller than) the phonon mean-free path ℓ in superfluid helium. To do so, we start from an extended equation for the heat flux incorporating non-local terms, and take into consideration a heat slip flow along the walls of the tube. This leads from an effective thermal conductivity proportional to R{sup 2} (Landau regime) to another one proportional to Rℓ (ballistic regime). We consider two kinds of flows: along cylindrical pipes and along two infinite parallel plates. - Highlights: • Heat transport in counterflow helium in the ballistic regime. • The one-fluid model based on the Extended Thermodynamics is used. • The transition from the Landau regime to the ballistic regime. • The transition from quantum turbulence to ballistic regime.

  5. Novel formulations of ballistic gelatin. 1. Rheological properties.

    Science.gov (United States)

    Zecheru, Teodora; Său, Ciprian; Lăzăroaie, Claudiu; Zaharia, Cătălin; Rotariu, Traian; Stănescu, Paul-Octavian

    2016-06-01

    Ballistic gelatin is the simulant of the human body during field tests in forensics and other related fields, due to its physical and mechanical similarities to human trunk and organs. Since the ballistic gelatin used in present has important issues to overcome, an alternative approach is the use of gelatin-polymer composites, where a key factor is the insertion of biocompatible materials, which replicate accurately the human tissues. In order to be able to obtain an improved material in terms of mechanical performances by an easy industrial-scale technology, before the verification of the ballistic parameters by shooting in agreement with military standards, one of the best and cheapest solutions is to perform a thorough check of their rheological properties, in standard conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. COMPARISON OF DIGITAL SURFACE MODELS FOR SNOW DEPTH MAPPING WITH UAV AND AERIAL CAMERAS

    Directory of Open Access Journals (Sweden)

    R. Boesch

    2016-06-01

    Full Text Available Photogrammetric workflows for aerial images have improved over the last years in a typically black-box fashion. Most parameters for building dense point cloud are either excessive or not explained and often the progress between software releases is poorly documented. On the other hand, development of better camera sensors and positional accuracy of image acquisition is significant by comparing product specifications. This study shows, that hardware evolutions over the last years have a much stronger impact on height measurements than photogrammetric software releases. Snow height measurements with airborne sensors like the ADS100 and UAV-based DSLR cameras can achieve accuracies close to GSD * 2 in comparison with ground-based GNSS reference measurements. Using a custom notch filter on the UAV camera sensor during image acquisition does not yield better height accuracies. UAV based digital surface models are very robust. Different workflow parameter variations for ADS100 and UAV camera workflows seem to have only random effects.

  7. Based on airborne multi-array butting for IRFPA staring imagery

    Science.gov (United States)

    Mao, Minjun; Xiao, Gonghai; Lin, Yancheng; Xie, Feng; Shu, Rong

    2010-10-01

    Because infrared system detects the radiation energy of the target, it has the ability to work all day that the visible-light detection system cannot achieve, at the same time, infrared system is a passive detection system, does not need active detection technology such as radar, which requires large radiation power or a larger expandable antenna. It is more suitable for airborne applications, therefore, infrared imaging based on the aircraft and aerostat platform, has been an important means of monitoring the ground. However, due to detector limitations, the spatial resolution of current infrared cameras or spectrographs and the total field coverage of view are generally not satisfied the customer's requirements. This paper proposes an airborne infrared camera imaging method based on multi-planar arrays, using frame-type imaging array. In order to provide large ground coverage together with good spatial resolution, the mirror is drove to scan rapidly by the galvanometer. The scanning mirror works at staring imagery mode. During multi-planar detectors exposure and imaging, the mirror moves to the staring position. There is more than 10 % overlapping sensor foot prints between two adjacent frames, and the functions of image matching algorithms are used to ensure the seamless butting. This imaging method improves the system integration time, and effectively improves the sensitivity of infrared systems; frame-type imaging solves the serious image distortion caused by the platform attitude.

  8. Ballistic Transport Exceeding 28 μm in CVD Grown Graphene.

    Science.gov (United States)

    Banszerus, Luca; Schmitz, Michael; Engels, Stephan; Goldsche, Matthias; Watanabe, Kenji; Taniguchi, Takashi; Beschoten, Bernd; Stampfer, Christoph

    2016-02-10

    We report on ballistic transport over more than 28 μm in graphene grown by chemical vapor deposition (CVD) that is fully encapsulated in hexagonal boron nitride. The structures are fabricated by an advanced dry van-der-Waals transfer method and exhibit carrier mobilities of up to three million cm(2)/(Vs). The ballistic nature of charge transport is probed by measuring the bend resistance in cross- and square-shaped devices. Temperature-dependent measurements furthermore prove that ballistic transport is maintained exceeding 1 μm up to 200 K.

  9. Simulation of depth of penetration during ballistic impact on thick ...

    Indian Academy of Sciences (India)

    One-dimensional discrete element model for the ballistic impact is used ... Simulation of ballistic impact process has been done using several ..... MATLAB 7.0 platform is used to simulate impact process using 1-D DEM and to perform the.

  10. Targeting Low-Energy Ballistic Lunar Transfers

    Science.gov (United States)

    Parker, Jeffrey S.

    2010-01-01

    Numerous low-energy ballistic transfers exist between the Earth and Moon that require less fuel than conventional transfers, but require three or more months of transfer time. An entirely ballistic lunar transfer departs the Earth from a particular declination at some time in order to arrive at the Moon at a given time along a desirable approach. Maneuvers may be added to the trajectory in order to adjust the Earth departure to meet mission requirements. In this paper, we characterize the (Delta)V cost required to adjust a low-energy ballistic lunar transfer such that a spacecraft may depart the Earth at a desirable declination, e.g., 28.5(white bullet), on a designated date. This study identifies the optimal locations to place one or two maneuvers along a transfer to minimize the (Delta)V cost of the transfer. One practical application of this study is to characterize the launch period for a mission that aims to launch from a particular launch site, such as Cape Canaveral, Florida, and arrive at a particular orbit at the Moon on a given date using a three-month low-energy transfer.

  11. A ballistics module as a part of the fire control system

    Directory of Open Access Journals (Sweden)

    Branka R. Luković

    2013-10-01

    Full Text Available This article presents a ballistics module as a part of the fire control system of weapons for fire support (mortars, artillery weapons and rocket launchers. The software is "open" with the prominence of autonomy work. It can be modulated and adapted on the user demand. Moreover, it is independent of the hardware base. Introduction: The fire control system is based on a ballistic module (BM which determines the firing data for each weapon tool in the battery. Ballistic calculations, for the given position of the target in relation to the position of tools in the given weather conditions, determine firing data (elevation, direction, timing and locating devices so that the missile seems to cause the desired effect. This paper gives the basic information about the features the BM performs and the manner of their implementation in the fire control system without going into algorithmic solution procedures. Ballistic problem in the fire control system: Ballistic calculation is based on a trajectory calculation of all kinds of projectiles (current, time-fuze, illuminating, smoke, with conventional propulsion, rocket, with built-in gas generator, etc.. Instead of previous solutions, where a trajectory calculation of the fire control system was done by approximate methods, in this BM the trajectory calculation is made by the same model with the same data as for a weapon and ammunition in the process of creating a firing table. The data used in the fire control system are made simultaneously with the preparation of firing tables for a particular tool and associated ammunition,. A modified model of particle, standardized at the NATO level, is also used. Taking into account the meteorological situation, before the trajectory calculation is done, a relative position of the target in relation to the position of the tool should be determined. A selection or loading check is carried out (possibility of reaching a given target as well as the point at which the

  12. Experiments with Liquid Propellant Jet Ignition in a Ballistic Compressor

    National Research Council Canada - National Science Library

    Birk, Avi

    1998-01-01

    .... The apparatus consists of an inline ballistic compressor and LP injector. The rebound of the ballistic compressor piston was arrested, trapping 40 to 55 MPa of 750 to 8500 C argon for ignition of circular jets in a windowed test chamber...

  13. Thermodynamic properties of UF sub 6 measured with a ballistic piston compressor

    Science.gov (United States)

    Sterritt, D. E.; Lalos, G. T.; Schneider, R. T.

    1973-01-01

    From experiments performed with a ballistic piston compressor, certain thermodynamic properties of uranium hexafluoride were investigated. Difficulties presented by the nonideal processes encountered in ballistic compressors are discussed and a computer code BCCC (Ballistic Compressor Computer Code) is developed to analyze the experimental data. The BCCC unfolds the thermodynamic properties of uranium hexafluoride from the helium-uranium hexafluoride mixture used as the test gas in the ballistic compressor. The thermodynamic properties deduced include the specific heat at constant volume, the ratio of specific heats for UF6, and the viscous coupling constant of helium-uranium hexafluoride mixtures.

  14. Ballistic tongue projection in a miniaturized salamander.

    Science.gov (United States)

    Deban, Stephen M; Bloom, Segall V

    2018-05-20

    Miniaturization of body size is often accompanied by peculiarities in morphology that can have functional consequences. We examined the feeding behavior and morphology of the miniaturized plethodontid salamander Thorius, one of the smallest vertebrates, to determine if its performance and biomechanics differ from those of its larger relatives. High-speed imaging and dynamics analysis of feeding at a range of temperatures show that tongue projection in Thorius macdougalli is ballistic and achieves accelerations of up to 600 G with low thermal sensitivity, indicating that tongue projection is powered by an elastic-recoil mechanism. Preceding ballistic projection is an unusual preparatory phase of tongue protrusion, which, like tongue retraction, shows lower performance and higher thermal sensitivity that are indicative of movement being powered directly by muscle shortening. The variability of tongue-projection kinematics and dynamics is comparable to larger ballistic-tongued plethodontids and reveals that Thorius is capable of modulating its tongue movements in response to prey distance. Morphological examination revealed that T. macdougalli possesses a reduced number of myofibers in the tongue muscles, a large projector muscle mass relative to tongue mass, and an unusual folding of the tongue skeleton, compared with larger relatives. Nonetheless, T. macdougalli retains the elaborated collagen aponeuroses in the projector muscle that store elastic energy and a tongue skeleton that is free of direct myofiber insertion, two features that appear to be essential for ballistic tongue projection in salamanders. © 2018 Wiley Periodicals, Inc.

  15. Ballistic study of Tensylon®–based panels

    Directory of Open Access Journals (Sweden)

    L-C. Alil

    2018-06-01

    Full Text Available Ballistic protection is a matter of interest requested by civilian as well as military needs. The last decade has witnessed an increase in the use of light weight and efficient armour systems. These panels may be used for body protection as well as light vehicle protection against small calibres or to enhance the protection level of heavier vehicles with decreasing or maintaining their weight penalty. Ultra high molecular weight polyethylene is a material of interest for light weight armour applications. The authors designed panels made of hot–pressed Tensylon® in different configurations with thin steel sheets as a backing and shield protection. Comparison of their ballistic performance to the theory predictions reveals the improved ballistic response of the panels. In addition, a non–pressed Tensylon® panel has been tested in order to facilitate the observations of the failure mechanisms inside the panels. Even if not suitable for practical use, such non–pressed panels clearly reveal the dynamic processes at micro–scale that occur during the impact. The failure mechanisms of the material under bullet penetration are discussed based on photography, optical microscopy and scanning electron microscopy. The supposed effects of the panel pressing are discussed based on the observed difference between pressed and non–pressed structures ballistic response.

  16. Ballistic protection performance of curved armor systems with or without debondings/delaminations

    International Nuclear Information System (INIS)

    Tan, Ping

    2014-01-01

    Highlights: • Influence of pre-existing defect in an armor system on its ballistic performance. • Development of finite element models for the ballistic performance of armor systems. • Prediction of the ballistic limit and back face deformation of curved armor systems. - Abstract: In order to discern how pre-existing defects such as single or multiple debondings/delaminations in a curved armor system may affect its ballistic protection performance, two-dimensional axial finite element models were generated using the commercial software ANSYS/Autodyn. The armor systems considered in this investigation are composed of boron carbide front component and Kevlar/epoxy backing component. They are assumed to be perfectly bonded at the interface without defects. The parametric study shows that for the cases considered, the maximum back face deformation of a curved armor system with or without defects is more sensitive to its curvature, material properties of the ceramic front component, and pre-existing defect size and location than the ballistic limit velocity. Additionally, both the ballistic limit velocity and maximum back face deformation are significantly affected by the backing component thickness, front/backing component thickness ratio and the number of delaminations

  17. 19 mm ballistic range: a potpourri of techniques and recipes

    International Nuclear Information System (INIS)

    Carpluk, G.T.

    1975-01-01

    The expansion of ballistic gun range facilities at LLL has introduced state-of-the-art diagnostic techniques to glovebox-enclosed ballistic guns systems. These enclosed ballistic ranges are designed for the study of one-dimensional shock phenomena in extremely toxic material such as plutonium. The extension of state-of-the-art phtographic and interferometric diagnostic systems to glovebox-enclosed gun systems introduces new design boundaries and performance criteria on optical and mechanical components. A technique for experimentally evaluating design proposals is illustrated, and several specific examples (such as, target alignment, collateral shrapnel damage, and soft recovery) are discussed

  18. Orientation Effects in Ballistic High-Strained P-type Si Nanowire FETs

    Directory of Open Access Journals (Sweden)

    Hong Yu

    2009-04-01

    Full Text Available In order to design and optimize high-sensitivity silicon nanowire-field-effect transistor (SiNW FET pressure sensors, this paper investigates the effects of channel orientations and the uniaxial stress on the ballistic hole transport properties of a strongly quantized SiNW FET placed near the high stress regions of the pressure sensors. A discrete stress-dependent six-band k.p method is used for subband structure calculation, coupled to a two-dimensional Poisson solver for electrostatics. A semi-classical ballistic FET model is then used to evaluate the ballistic current-voltage characteristics of SiNW FETs with and without strain. Our results presented here indicate that [110] is the optimum orientation for the p-type SiNW FETs and sensors. For the ultra-scaled 2.2 nm square SiNW, due to the limit of strong quantum confinement, the effect of the uniaxial stress on the magnitude of ballistic drive current is too small to be considered, except for the [100] orientation. However, for larger 5 nm square SiNW transistors with various transport orientations, the uniaxial tensile stress obviously alters the ballistic performance, while the uniaxial compressive stress slightly changes the ballistic hole current. Furthermore, the competition of injection velocity and carrier density related to the effective hole masses is found to play a critical role in determining the performance of the nanotransistors.

  19. Ballistic behavior of ultra-high molecular weight polyethylene composite: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L. dos Santos; Nascimento, Lucio F.C.; Suarez, Joao C. Miguez; lucio2002bol.com.br

    2003-01-01

    Since World War II, textile composites have been used as ballistic armor. Ultra-high molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials. As they have been developed and commercialized only recently, there is not enough information about the effect of environmental agents in the ballistic performance of UHMWPE composites. In the present work, was evaluated the ballistic behavior of composite plates manufactured with UHMWPE fibers after exposure to gamma radiation. The ballistic tests results were related to the macromolecular alterations induced by the radiation through mechanical (hardness, impact and flexure) and physicochemical (Ftir/Mir. DSC and TGA) testing. It was observed that irradiation induces changes in the UHMWPE, degrading the ballistic performance of the composite. These results are presented and discussed. (author)

  20. OBLIQUE MULTI-CAMERA SYSTEMS – ORIENTATION AND DENSE MATCHING ISSUES

    Directory of Open Access Journals (Sweden)

    E. Rupnik

    2014-03-01

    Full Text Available The use of oblique imagery has become a standard for many civil and mapping applications, thanks to the development of airborne digital multi-camera systems, as proposed by many companies (Blomoblique, IGI, Leica, Midas, Pictometry, Vexcel/Microsoft, VisionMap, etc.. The indisputable virtue of oblique photography lies in its simplicity of interpretation and understanding for inexperienced users allowing their use of oblique images in very different applications, such as building detection and reconstruction, building structural damage classification, road land updating and administration services, etc. The paper reports an overview of the actual oblique commercial systems and presents a workflow for the automated orientation and dense matching of large image blocks. Perspectives, potentialities, pitfalls and suggestions for achieving satisfactory results are given. Tests performed on two datasets acquired with two multi-camera systems over urban areas are also reported.

  1. Verification of models for ballistic movement time and endpoint variability.

    Science.gov (United States)

    Lin, Ray F; Drury, Colin G

    2013-01-01

    A hand control movement is composed of several ballistic movements. The time required in performing a ballistic movement and its endpoint variability are two important properties in developing movement models. The purpose of this study was to test potential models for predicting these two properties. Twelve participants conducted ballistic movements of specific amplitudes using a drawing tablet. The measured data of movement time and endpoint variability were then used to verify the models. This study was successful with Hoffmann and Gan's movement time model (Hoffmann, 1981; Gan and Hoffmann 1988) predicting more than 90.7% data variance for 84 individual measurements. A new theoretically developed ballistic movement variability model, proved to be better than Howarth, Beggs, and Bowden's (1971) model, predicting on average 84.8% of stopping-variable error and 88.3% of aiming-variable errors. These two validated models will help build solid theoretical movement models and evaluate input devices. This article provides better models for predicting end accuracy and movement time of ballistic movements that are desirable in rapid aiming tasks, such as keying in numbers on a smart phone. The models allow better design of aiming tasks, for example button sizes on mobile phones for different user populations.

  2. Air-borne shape measurement of parabolic trough collector fields

    Science.gov (United States)

    Prahl, Christoph; Röger, Marc; Hilgert, Christoph

    2017-06-01

    The optical and thermal efficiency of parabolic trough collector solar fields is dependent on the performance and assembly accuracy of its components such as the concentrator and absorber. For the purpose of optical inspection/approval, yield analysis, localization of low performing areas, and optimization of the solar field, it is essential to create a complete view of the optical properties of the field. Existing optical measurement tools are based on ground based cameras, facing restriction concerning speed, volume and automation. QFly is an airborne qualification system which provides holistic and accurate information on geometrical, optical, and thermal properties of the entire solar field. It consists of an unmanned aerial vehicle, cameras and related software for flight path planning, data acquisition and evaluation. This article presents recent advances of the QFly measurement system and proposes a methodology on holistic qualification of the complete solar field with minimum impact on plant operation.

  3. Ballistic edge states in Bismuth nanowires revealed by SQUID interferometry.

    Science.gov (United States)

    Murani, Anil; Kasumov, Alik; Sengupta, Shamashis; Kasumov, Yu A; Volkov, V T; Khodos, I I; Brisset, F; Delagrange, Raphaëlle; Chepelianskii, Alexei; Deblock, Richard; Bouchiat, Hélène; Guéron, Sophie

    2017-07-05

    The protection against backscattering provided by topology is a striking property. In two-dimensional insulators, a consequence of this topological protection is the ballistic nature of the one-dimensional helical edge states. One demonstration of ballisticity is the quantized Hall conductance. Here we provide another demonstration of ballistic transport, in the way the edge states carry a supercurrent. The system we have investigated is a micrometre-long monocrystalline bismuth nanowire with topological surfaces, that we connect to two superconducting electrodes. We have measured the relation between the Josephson current flowing through the nanowire and the superconducting phase difference at its ends, the current-phase relation. The sharp sawtooth-shaped phase-modulated current-phase relation we find demonstrates that transport occurs selectively along two ballistic edges of the nanowire. In addition, we show that a magnetic field induces 0-π transitions and ϕ 0 -junction behaviour, providing a way to manipulate the phase of the supercurrent-carrying edge states and generate spin supercurrents.

  4. Monte Carlo simulation of ballistic transport in high-mobility channels

    Energy Technology Data Exchange (ETDEWEB)

    Sabatini, G; Marinchio, H; Palermo, C; Varani, L; Daoud, T; Teissier, R [Institut d' Electronique du Sud (CNRS UMR 5214) - Universite Montpellier II (France); Rodilla, H; Gonzalez, T; Mateos, J, E-mail: sabatini@ies.univ-montp2.f [Departamento de Fisica Aplicada - Universidad de Salamanca (Spain)

    2009-11-15

    By means of Monte Carlo simulations coupled with a two-dimensional Poisson solver, we evaluate directly the possibility to use high mobility materials in ultra fast devices exploiting ballistic transport. To this purpose, we have calculated specific physical quantities such as the transit time, the transit velocity, the free flight time and the mean free path as functions of applied voltage in InAs channels with different lengths, from 2000 nm down to 50 nm. In this way the transition from diffusive to ballistic transport is carefully described. We remark a high value of the mean transit velocity with a maximum of 14x10{sup 5} m/s for a 50 nm-long channel and a transit time shorter than 0.1 ps, corresponding to a cutoff frequency in the terahertz domain. The percentage of ballistic electrons and the number of scatterings as functions of distance are also reported, showing the strong influence of quasi-ballistic transport in the shorter channels.

  5. Monte Carlo simulation of ballistic transport in high-mobility channels

    International Nuclear Information System (INIS)

    Sabatini, G; Marinchio, H; Palermo, C; Varani, L; Daoud, T; Teissier, R; Rodilla, H; Gonzalez, T; Mateos, J

    2009-01-01

    By means of Monte Carlo simulations coupled with a two-dimensional Poisson solver, we evaluate directly the possibility to use high mobility materials in ultra fast devices exploiting ballistic transport. To this purpose, we have calculated specific physical quantities such as the transit time, the transit velocity, the free flight time and the mean free path as functions of applied voltage in InAs channels with different lengths, from 2000 nm down to 50 nm. In this way the transition from diffusive to ballistic transport is carefully described. We remark a high value of the mean transit velocity with a maximum of 14x10 5 m/s for a 50 nm-long channel and a transit time shorter than 0.1 ps, corresponding to a cutoff frequency in the terahertz domain. The percentage of ballistic electrons and the number of scatterings as functions of distance are also reported, showing the strong influence of quasi-ballistic transport in the shorter channels.

  6. [Wound Ballistics – a Brief Overview].

    Science.gov (United States)

    Bolliger, Stephan A; Eggert, Sebastian; Thali, Michael J

    2016-02-03

    Wound ballistics examines the specific effect, namely the wound profile, of bullets on the body by firing at synthetic models made of ordnance gelatine, glycerin soap and synthetic bones, validated with real cases from (battlefield) surgery and forensic pathology. Wound profile refers to the penetration depth, the bullet deformation/ fragmentation, the diameter of the permanent and the temporary wound cavity. Knowing these features and the used ammunition a surgeon can rapidly assess the amount damage within a patient. The forensic pathologist can draw conclusions as to the used ammunition based on the wound profile. By measuring of the destructive capability of different ammunition types, wound ballistics lays the foundation for guidelines concerning the maximum effect of military ammunition.

  7. One-Dimensional Modelling of Internal Ballistics

    Science.gov (United States)

    Monreal-González, G.; Otón-Martínez, R. A.; Velasco, F. J. S.; García-Cascáles, J. R.; Ramírez-Fernández, F. J.

    2017-10-01

    A one-dimensional model is introduced in this paper for problems of internal ballistics involving solid propellant combustion. First, the work presents the physical approach and equations adopted. Closure relationships accounting for the physical phenomena taking place during combustion (interfacial friction, interfacial heat transfer, combustion) are deeply discussed. Secondly, the numerical method proposed is presented. Finally, numerical results provided by this code (UXGun) are compared with results of experimental tests and with the outcome from a well-known zero-dimensional code. The model provides successful results in firing tests of artillery guns, predicting with good accuracy the maximum pressure in the chamber and muzzle velocity what highlights its capabilities as prediction/design tool for internal ballistics.

  8. Autocalibrating vision guided navigation of unmanned air vehicles via tactical monocular cameras in GPS denied environments

    Science.gov (United States)

    Celik, Koray

    This thesis presents a novel robotic navigation strategy by using a conventional tactical monocular camera, proving the feasibility of using a monocular camera as the sole proximity sensing, object avoidance, mapping, and path-planning mechanism to fly and navigate small to medium scale unmanned rotary-wing aircraft in an autonomous manner. The range measurement strategy is scalable, self-calibrating, indoor-outdoor capable, and has been biologically inspired by the key adaptive mechanisms for depth perception and pattern recognition found in humans and intelligent animals (particularly bats), designed to assume operations in previously unknown, GPS-denied environments. It proposes novel electronics, aircraft, aircraft systems, systems, and procedures and algorithms that come together to form airborne systems which measure absolute ranges from a monocular camera via passive photometry, mimicking that of a human-pilot like judgement. The research is intended to bridge the gap between practical GPS coverage and precision localization and mapping problem in a small aircraft. In the context of this study, several robotic platforms, airborne and ground alike, have been developed, some of which have been integrated in real-life field trials, for experimental validation. Albeit the emphasis on miniature robotic aircraft this research has been tested and found compatible with tactical vests and helmets, and it can be used to augment the reliability of many other types of proximity sensors.

  9. Firearms and Ballistics

    OpenAIRE

    BOLTON-KING, Rachel; Schulze, Johan

    2016-01-01

    Chapter 7 of the book entitled 'Practical Veterinary Forensics' aims to introduce forensic veterinarians to the scientific concepts underpinning the field of firearms and ballistics. This introduction will enable practitioners to understand wound formation depending on the firearm and ammunition used. \\ud \\ud Various types of firearms, modern firing mechanisms and ammunition will be explained, together with an introduction to the physical concepts underpinning the four main constituents of th...

  10. Does preliminary optimisation of an anatomically correct skull-brain model using simple simulants produce clinically realistic ballistic injury fracture patterns?

    Science.gov (United States)

    Mahoney, P F; Carr, D J; Delaney, R J; Hunt, N; Harrison, S; Breeze, J; Gibb, I

    2017-07-01

    Ballistic head injury remains a significant threat to military personnel. Studying such injuries requires a model that can be used with a military helmet. This paper describes further work on a skull-brain model using skulls made from three different polyurethane plastics and a series of skull 'fills' to simulate brain (3, 5, 7 and 10% gelatine by mass and PermaGel™). The models were subjected to ballistic impact from 7.62 × 39 mm mild steel core bullets. The first part of the work compares the different polyurethanes (mean bullet muzzle velocity of 708 m/s), and the second part compares the different fills (mean bullet muzzle velocity of 680 m/s). The impact events were filmed using high speed cameras. The resulting fracture patterns in the skulls were reviewed and scored by five clinicians experienced in assessing penetrating head injury. In over half of the models, one or more assessors felt aspects of the fracture pattern were close to real injury. Limitations of the model include the skull being manufactured in two parts and the lack of a realistic skin layer. Further work is ongoing to address these.

  11. A new experimental setup to characterize the dynamic mechanical behaviour of ballistic yarns

    International Nuclear Information System (INIS)

    Chevalier, C; Kerisit, C; Faderl, N; Klavzar, A; Boussu, F; Coutellier, D

    2016-01-01

    Fabrics have been widely used as part of ballistic protections since the 1970s and the development of new ballistic solutions made from fabrics need numerical simulations, in order to predict the performance of the ballistic protection. The performances and the induced mechanisms in ballistic fabrics during an impact depend on the weaving parameters and also on the inner parameters of the yarns used inside these structures. Thus, knowing the dynamic behaviour of yarn is essential to determine the ballistic behaviour of fabrics during an impact. Two major experimental devices exist and are used to test ballistic yarns in a dynamic uniaxial tension. The first one corresponds to the Split Hopkinson Tensile Bars device, which is commonly used to characterize the mechanical properties of materials in uniaxial tension and under high loading. The second one is the transversal impact device. The real conditions of ballistic impact can be realized with this device. Then, this paper deals with a new experimental setup developed in our laboratory and called the ‘tensile impact test for yarn’ (TITY) device. With this device, specific absorbed energy measurements of para-aramid yarns (336 Tex, Twaron ™ , 1000 filaments) have been carried out and revealed that static and dynamic properties of para-aramid are different. (paper)

  12. Ballistic spin filtering across the ferromagnetic-semiconductor interface

    Directory of Open Access Journals (Sweden)

    Y.H. Li

    2012-03-01

    Full Text Available The ballistic spin-filter effect from a ferromagnetic metal into a semiconductor has theoretically been studied with an intention of detecting the spin polarizability of density of states in FM layer at a higher energy level. The physical model for the ballistic spin filtering across the interface between ferromagnetic metals and semiconductor superlattice is developed by exciting the spin polarized electrons into n-type AlAs/GaAs superlattice layer at a much higher energy level and then ballistically tunneling through the barrier into the ferromagnetic film. Since both the helicity-modulated and static photocurrent responses are experimentally measurable quantities, the physical quantity of interest, the relative asymmetry of spin-polarized tunneling conductance, could be extracted experimentally in a more straightforward way, as compared with previous models. The present physical model serves guidance for studying spin detection with advanced performance in the future.

  13. Ballistic current transport studies of ferromagnetic multilayer films and tunnel junctions (invited)

    International Nuclear Information System (INIS)

    Rippard, W. H.; Perrella, A. C.; Buhrman, R. A.

    2001-01-01

    Three applications of ballistic electron microscopy are used to study, with nanometer-scale resolution, the magnetic and electronic properties of magnetic multilayer thin films and tunnel junctions. First, the capabilities of ballistic electron magnetic microscopy are demonstrated through an investigation of the switching behavior of continuous Ni 80 Fe 20 /Cu/Co trilayer films in the presence of an applied magnetic field. Next, the ballistic, hot-electron transport properties of Co films and multilayers formed by thermal evaporation and magnetron sputtering are compared, a comparison which reveals significant differences in the ballistic transmissivity of thin film multilayers formed by the two techniques. Finally, the electronic properties of thin aluminum oxide tunnel junctions formed by thermal evaporation and sputter deposition are investigated. Here the ballistic electron microscopy studies yield a direct measurement of the barrier height of the aluminum oxide barriers, a result that is invariant over a wide range of oxidation conditions. [copyright] 2001 American Institute of Physics

  14. Ballistic Resistance of Armored Passenger Vehicles: Test Protocols and Quality Methods

    Energy Technology Data Exchange (ETDEWEB)

    Jeffrey M. Lacy; Robert E. Polk

    2005-07-01

    This guide establishes a test methodology for determining the overall ballistic resistance of the passenger compartment of assembled nontactical armored passenger vehicles (APVs). Because ballistic testing of every piece of every component of an armored vehicle is impractical, if not impossible, this guide describes a testing scheme based on statistical sampling of exposed component surface areas. Results from the test of the sampled points are combined to form a test score that reflects the probability of ballistic penetration into the passenger compartment of the vehicle.

  15. Ballistic propagation of turbulence front in tokamak edge plasmas

    International Nuclear Information System (INIS)

    Sugita, Satoru; Itoh, Kimitaka; Itoh, Sanae-I; Yagi, Masatoshi; Fuhr, Guillaume; Beyer, Peter; Benkadda, Sadruddin

    2012-01-01

    The flux-driven nonlinear simulation of resistive ballooning mode turbulence with tokamak edge geometry is performed to study the non-steady component in the edge turbulence. The large-scale and dynamical events in transport are investigated in a situation where the mean flow is suppressed. Two types of dynamics are observed. One is the radial propagation of the pulse of pressure gradient, the other is the appearance/disappearance of radially elongated global structure of turbulent heat flux. The ballistic propagation is observed in the pulse of pressure gradient, which is associated with the front of turbulent heat flux. We focus on this ballistic propagation phenomenon. Both of the bump of pressure gradient and the front of heat flux propagate inward and outward direction. It is confirmed that the strong fluctuation propagates with the pulse front. It is observed that the number of pulses going outward is close to those going inward. This ballistic phenomenon does not contradict to the turbulence spreading theory. Statistical characteristics of the ballistic propagation of pulses are evaluated and compared with scaling laws which is given by the turbulence spreading theory. It is found that they give qualitatively good agreement. (paper)

  16. Controlling ballistic missiles: How important? How to do it?

    International Nuclear Information System (INIS)

    Harvey, J.R.; Rubin, U.

    1992-01-01

    Missiles themselves are not weapons of mass destruction; they do not give states the ability to wreak unimaginable destruction, or to radically shift the balance of power, as nuclear weapons do. Hence, the primary focus of nonproliferation efforts should remain on weapons of mass destruction, particularly nuclear weapons, rather than on one of the many possible means of delivering them. Moreover, as discussed in more detail below, advanced strike aircraft can also be effective in delivering nuclear weapons, and are generally more effective than ballistic missiles for delivering conventional or chemical ordnance. Ultimately, if the industrialized nations seriously desire to control the spread of delivery means for weapons of mass destruction, they need to consider bringing controls over ballistic missiles and advanced strike aircraft more into balance. At the same time, while efforts to control ballistic missile proliferation - centered on the Missile Technology Control Regime (MTCR) - have had some successes and could be strengthened, US policy will be most effective if it recognizes two key realities: the spread of ballistic missiles cannot be as comprehensively controlled as the spread of nuclear weapons, nor need it be as comprehensively controlled

  17. 76 FR 14589 - Defense Federal Acquisition Regulation Supplement; Repeal of Restriction on Ballistic Missile...

    Science.gov (United States)

    2011-03-17

    ...-AH18 Defense Federal Acquisition Regulation Supplement; Repeal of Restriction on Ballistic Missile...). Section 222 repeals the restriction on purchase of Ballistic Missile Defense research, development, test... Ballistic Missile Defense research, development, test, and evaluation that was required by section 222 of...

  18. Medical Provider Ballistic Protection at Active Shooter Events.

    Science.gov (United States)

    Stopyra, Jason P; Bozeman, William P; Callaway, David W; Winslow, James; McGinnis, Henderson D; Sempsrott, Justin; Evans-Taylor, Lisa; Alson, Roy L

    2016-01-01

    There is some controversy about whether ballistic protective equipment (body armor) is required for medical responders who may be called to respond to active shooter mass casualty incidents. In this article, we describe the ongoing evolution of recommendations to optimize medical care to injured victims at such an incident. We propose that body armor is not mandatory for medical responders participating in a rapid-response capacity, in keeping with the Hartford Consensus and Arlington Rescue Task Force models. However, we acknowledge that the development and implementation of these programs may benefit from the availability of such equipment as one component of risk mitigation. Many police agencies regularly retire body armor on a defined time schedule before the end of its effective service life. Coordination with law enforcement may allow such retired body armor to be available to other public safety agencies, such as fire and emergency medical services, providing some degree of ballistic protection to medical responders at little or no cost during the rare mass casualty incident. To provide visual demonstration of this concept, we tested three "retired" ballistic vests with ages ranging from 6 to 27 years. The vests were shot at close range using police-issue 9mm, .40 caliber, .45 caliber, and 12-gauge shotgun rounds. Photographs demonstrate that the vests maintained their ballistic protection and defeated all of these rounds. 2016.

  19. Airborne ultrasound surface motion camera: Application to seismocardiography

    Science.gov (United States)

    Shirkovskiy, P.; Laurin, A.; Jeger-Madiot, N.; Chapelle, D.; Fink, M.; Ing, R. K.

    2018-05-01

    The recent achievements in the accelerometer-based seismocardiography field indicate a strong potential for this technique to address a wide variety of clinical needs. Recordings from different locations on the chest can give a more comprehensive observation and interpretation of wave propagation phenomena than a single-point recording, can validate existing modeling assumptions (such as the representation of the sternum as a single solid body), and provide better identifiability for models using richer recordings. Ultimately, the goal is to advance our physiological understanding of the processes to provide useful data to promote cardiovascular health. Accelerometer-based multichannel system is a contact method and laborious for use in practice, and also even ultralight accelerometers can cause non-negligible loading effects. We propose a contactless ultrasound imaging method to measure thoracic and abdominal surface motions, demonstrating that it is adequate for typical seismocardiogram (SCG) use. The developed method extends non-contact surface-vibrometry to fast 2D mapping by originally combining multi-element airborne ultrasound arrays, a synthetic aperture implementation, and pulsed-waves. Experimental results show the ability of the developed method to obtain 2D seismocardiographic maps of the body surface 30 × 40 cm2 in dimension, with a temporal sampling rate of several hundred Hz, using ultrasound waves with the central frequency of 40 kHz. Our implementation was validated in-vivo on eight healthy human participants. The shape and position of the zone of maximal absolute acceleration and velocity during the cardiac cycle were also observed. This technology could potentially be used to obtain more complete cardio-vascular information than single-source SCG in and out of clinical environments, due to enhanced identifiability provided by the distributed measurements, and observation of propagation phenomena.

  20. A microscopic model of ballistic-diffusive crossover

    International Nuclear Information System (INIS)

    Bagchi, Debarshee; Mohanty, P K

    2014-01-01

    Several low-dimensional systems show a crossover from diffusive to ballistic heat transport when system size is decreased. Although there is some phenomenological understanding of this crossover phenomenon at the coarse-grained level, a microscopic picture that consistently describes both the ballistic and the diffusive transport regimes has been lacking. In this work we derive a scaling form for the thermal current in a class of one dimensional systems attached to heat baths at boundaries and rigorously show that the crossover occurs when the characteristic length scale of the system competes with the system size. (paper)

  1. Magnetic anisotropy and anisotropic ballistic conductance of thin magnetic wires

    International Nuclear Information System (INIS)

    Sabirianov, R.

    2006-01-01

    The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μ B , while the orbital moment as high as 0.5 μ B . The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5x4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment

  2. Assessment and monitoring of ballistic and maximal upper-body strength qualities in athletes.

    Science.gov (United States)

    Young, Kieran P; Haff, G Gregory; Newton, Robert U; Gabbett, Tim J; Sheppard, Jeremy M

    2015-03-01

    To evaluate whether the dynamic strength index (DSI: ballistic peak force/isometric peak force) could be effectively used to guide specific training interventions and detect training-induced changes in maximal and ballistic strength. Twenty-four elite male athletes were assessed in the isometric bench press and a 45% 1-repetition-maximum (1RM) ballistic bench throw using a force plate and linear position transducer. The DSI was calculated using the peak force values obtained during the ballistic bench throw and isometric bench press. Athletes were then allocated into 2 groups as matched pairs based on their DSI and strength in the 1RM bench press. Over the 5 wk of training, athletes performed either high-load (80-100% 1RM) bench press or moderate-load (40-55% 1RM) ballistic bench throws. The DSI was sensitive to disparate training methods, with the bench-press group increasing isometric bench-press peak force (P=.035, 91% likely), and the ballistic-bench-throw group increasing bench-throw peak force to a greater extent (P≤.001, 83% likely). A significant increase (P≤.001, 93% likely) in the DSI was observed for both groups. The DSI can be used to guide specific training interventions and can detect training-induced changes in isometric bench-press and ballistic bench-throw peak force over periods as short as 5 wk.

  3. Optimization theory for ballistic conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Michel; van den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  4. Hybrid composite laminates reinforced with Kevlar/carbon/glass woven fabrics for ballistic impact testing.

    Science.gov (United States)

    Randjbaran, Elias; Zahari, Rizal; Jalil, Nawal Aswan Abdul; Majid, Dayang Laila Abang Abdul

    2014-01-01

    Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  5. Hybrid Composite Laminates Reinforced with Kevlar/Carbon/Glass Woven Fabrics for Ballistic Impact Testing

    Directory of Open Access Journals (Sweden)

    Elias Randjbaran

    2014-01-01

    Full Text Available Current study reported a facile method to investigate the effects of stacking sequence layers of hybrid composite materials on ballistic energy absorption by running the ballistic test at the high velocity ballistic impact conditions. The velocity and absorbed energy were accordingly calculated as well. The specimens were fabricated from Kevlar, carbon, and glass woven fabrics and resin and were experimentally investigated under impact conditions. All the specimens possessed equal mass, shape, and density; nevertheless, the layers were ordered in different stacking sequence. After running the ballistic test at the same conditions, the final velocities of the cylindrical AISI 4340 Steel pellet showed how much energy was absorbed by the samples. The energy absorption of each sample through the ballistic impact was calculated; accordingly, the proper ballistic impact resistance materials could be found by conducting the test. This paper can be further studied in order to characterise the material properties for the different layers.

  6. The Anti-Ballistic Missile Treaty

    International Nuclear Information System (INIS)

    Platt, A.

    1991-01-01

    This paper reports that in late May 1972 former President Richard M. Nixon went to Moscow and signed, among other documents, a Treaty to Limit Anti-Ballistic Missile (ABM) Systems. Under this agreement, both the United States and the Soviet Union made a commitment not to build nationwide ABM defenses against the other's intercontinental and submarine-launched ballistic missiles. They agreed to limit ABM deployments to a maximum of two sites, with no more than 100 launchers per site. Thirteen of the treaty's sixteen articles are intended to prevent any deviation from this. In addition, a joint Standing Consultative Commission to monitor compliance was created. National technical means --- sophisticated monitoring devices on land, sea, and in space --- were to be the primary instruments used to monitor compliance with the treaty. The ABM Treaty was signed in conjunction with an Interim Agreement to Limit Strategic Offensive Arms

  7. Ballistic Rail Gun Soft Recovery Facility

    Data.gov (United States)

    Federal Laboratory Consortium — The Ballistic Rail Gun Soft Recovery Facility accommodates a 155mm Howitzer, fired horizontally into a 104-foot long water trough to slow the projectile and recover...

  8. Investigation of dental alginate and agar impression materials as a brain simulant for ballistic testing.

    Science.gov (United States)

    Falland-Cheung, Lisa; Piccione, Neil; Zhao, Tianqi; Lazarjan, Milad Soltanipour; Hanlin, Suzanne; Jermy, Mark; Waddell, J Neil

    2016-06-01

    Routine forensic research into in vitro skin/skull/brain ballistic blood backspatter behavior has traditionally used gelatin at a 1:10 Water:Powder (W:P) ratio by volume as a brain simulant. A limitation of gelatin is its high elasticity compared to brain tissue. Therefore this study investigated the use of dental alginate and agar impression materials as a brain simulant for ballistic testing. Fresh deer brain, alginate (W:P ratio 91.5:8.5) and agar (W:P ratio 81:19) specimens (n=10) (11×22×33mm) were placed in transparent Perspex boxes of the same internal dimensions prior to shooting with a 0.22inch caliber high velocity air gun. Quantitative analysis to establish kinetic energy loss, vertical displacement elastic behavior and qualitative analysis to establish elasticity behavior was done via high-speed camera footage (SA5, Photron, Japan) using Photron Fastcam Viewer software (Version 3.5.1, Photron, Japan) and visual observation. Damage mechanisms and behavior were qualitatively established by observation of the materials during and after shooting. The qualitative analysis found that of the two simulant materials tested, agar behaved more like brain in terms of damage and showed similar mechanical response to brain during the passage of the projectile, in terms of energy absorption and vertical velocity displacement. In conclusion agar showed a mechanical and subsequent damage response that was similar to brain compared to alginate. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  9. Effects of Strength vs. Ballistic-Power Training on Throwing Performance.

    Science.gov (United States)

    Zaras, Nikolaos; Spengos, Konstantinos; Methenitis, Spyridon; Papadopoulos, Constantinos; Karampatsos, Giorgos; Georgiadis, Giorgos; Stasinaki, Aggeliki; Manta, Panagiota; Terzis, Gerasimos

    2013-01-01

    The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power) training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9) and Power (n = 8) groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ), Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively). Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively), while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p ballistic power training in novice throwers, but with dissimilar muscular adaptations. Key pointsBallistic-power training with 30% of 1RM is equally effective in increasing shot put performance as strength training, in novice throwers, during a short training cycle of six weeks.In novice shot putters with relatively low initial muscle strength/mass, short-term strength training might be more important since it can increase both muscle strength and shot put performance.The ballistic type of power training resulted in a significant increase of the mass of type IIx muscle fibres and no change in their proportion. Thus, this type of training might be used effectively during the last weeks before competition, when the strength training load is usually reduced, in order to increase muscle power and shot put performance in novice shot putters.

  10. Catchment-Scale Terrain Modelling with Structure-from-Motion Photogrammetry: a replacement for airborne lidar?

    Science.gov (United States)

    Brasington, James; James, Joe; Cook, Simon; Cox, Simon; Lotsari, Eliisa; McColl, Sam; Lehane, Niall; Williams, Richard; Vericat, Damia

    2016-04-01

    In recent years, 3D terrain reconstructions based on Structure-from-Motion photogrammetry have dramatically democratized the availability of high quality topographic data. This approach involves the use of a non-linear bundle adjustment to estimate simultaneously camera position, pose, distortion and 3D model coordinates. In contrast to traditional aerial photogrammetry, the bundle adjustment is typically solved without external constraints and instead ground control is used a posteriori to transform the modelled coordinates to an established datum using a similarity transformation. The limited data requirements, coupled with the ability to self-calibrate compact cameras, has led to a burgeoning of applications using low-cost imagery acquired terrestrially or from low-altitude platforms. To date, most applications have focused on relatively small spatial scales (0.1-5 Ha), where relaxed logistics permit the use of dense ground control networks and high resolution, close-range photography. It is less clear whether this low-cost approach can be successfully upscaled to tackle larger, watershed-scale projects extending over 102-3 km2 where it could offer a competitive alternative to established landscape modelling with airborne lidar. At such scales, compromises over the density of ground control, the speed and height of sensor platform and related image properties are inevitable. In this presentation we provide a systematic assessment of the quality of large-scale SfM terrain products derived for over 80 km2 of the braided Dart River and its catchment in the Southern Alps of NZ. Reference data in the form of airborne and terrestrial lidar are used to quantify the quality of 3D reconstructions derived from helicopter photography and used to establish baseline uncertainty models for geomorphic change detection. Results indicate that camera network design is a key determinant of model quality, and that standard aerial photogrammetric networks based on strips of nadir

  11. Geometrical optimization of a local ballistic magnetic sensor

    Energy Technology Data Exchange (ETDEWEB)

    Kanda, Yuhsuke; Hara, Masahiro [Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Kumamoto 860-8555 (Japan); Nomura, Tatsuya [Advanced Electronics Research Division, INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Kimura, Takashi [Advanced Electronics Research Division, INAMORI Frontier Research Center, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2014-04-07

    We have developed a highly sensitive local magnetic sensor by using a ballistic transport property in a two-dimensional conductor. A semiclassical simulation reveals that the sensitivity increases when the geometry of the sensor and the spatial distribution of the local field are optimized. We have also experimentally demonstrated a clear observation of a magnetization process in a permalloy dot whose size is much smaller than the size of an optimized ballistic magnetic sensor fabricated from a GaAs/AlGaAs two-dimensional electron gas.

  12. Noncontact ballistic motion measurement using a fiber-optic confocal sensor

    International Nuclear Information System (INIS)

    Shafir, E.; Berkovic, G.; Horovitz, Y.; Appelbaum, G.; Moshe, E.; Horovitz, E.; Skutelski, A.; Werdiger, M.; Perelmutter, L.; Sudai, M.

    2007-01-01

    A fiber-optic confocal sensor for noncontact ballistic measurements is described. Determination of motion at velocities of 1.7 km/s with an uncertainty as small as ±0.3% is demonstrated for both a projectile and a free-surface target. The fibers detect the passage of the object at their conjugate image points created by low F/ optics. This results in an output signal comprising a train of sharp pulses each precisely identifying when the ballistic object traverses an image point. Since the ballistic object does not contact the sensor at the time of imaging, the measurements do not perturb the motion, enabling multi-fragment measurement, as well as repetitive measurements of the same object point

  13. A simple Boltzmann transport equation for ballistic to diffusive transient heat transport

    International Nuclear Information System (INIS)

    Maassen, Jesse; Lundstrom, Mark

    2015-01-01

    Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions

  14. Effects of Different Relative Loads on Power Performance During the Ballistic Push-up.

    Science.gov (United States)

    Wang, Ran; Hoffman, Jay R; Sadres, Eliahu; Bartolomei, Sandro; Muddle, Tyler W D; Fukuda, David H; Stout, Jeffrey R

    2017-12-01

    Wang, R, Hoffman, JR, Sadres, E, Bartolomei, S, Muddle, TWD, Fukuda, DH, and Stout, JR. Effects of different relative loads on power performance during the ballistic push-up. J Strength Cond Res 31(12): 3411-3416, 2017-The purpose of this investigation was to examine the effect of load on force and power performance during a ballistic push-up. Sixty (24.5 ± 4.3 years, 1.75 ± 0.07 m, and 80.8 ± 13.5 kg) recreationally active men who participated in this investigation completed all testing and were included in the data analysis. All participants were required to perform a 1 repetition maximum bench press, and ballistic push-ups without external load (T1), with 10% (T2) and 20% (T3) of their body mass. Ballistic push-ups during T2 and T3 were performed using a weight loaded vest. Peak and mean force, power, as well as net impulse and flight time were determined for each ballistic push-up. Peak and mean force were both significantly greater (p ballistic push-up, regardless of the participants' level of strength.

  15. Modeling internal ballistics of gas combustion guns.

    Science.gov (United States)

    Schorge, Volker; Grossjohann, Rico; Schönekess, Holger C; Herbst, Jörg; Bockholdt, Britta; Ekkernkamp, Axel; Frank, Matthias

    2016-05-01

    Potato guns are popular homemade guns which work on the principle of gas combustion. They are usually constructed for recreational rather than criminal purposes. Yet some serious injuries and fatalities due to these guns are reported. As information on the internal ballistics of homemade gas combustion-powered guns is scarce, it is the aim of this work to provide an experimental model of the internal ballistics of these devices and to investigate their basic physical parameters. A gas combustion gun was constructed with a steel tube as the main component. Gas/air mixtures of acetylene, hydrogen, and ethylene were used as propellants for discharging a 46-mm caliber test projectile. Gas pressure in the combustion chamber was captured with a piezoelectric pressure sensor. Projectile velocity was measured with a ballistic speed measurement system. The maximum gas pressure, the maximum rate of pressure rise, the time parameters of the pressure curve, and the velocity and path of the projectile through the barrel as a function of time were determined according to the pressure-time curve. The maximum gas pressure was measured to be between 1.4 bar (ethylene) and 4.5 bar (acetylene). The highest maximum rate of pressure rise was determined for hydrogen at (dp/dt)max = 607 bar/s. The muzzle energy was calculated to be between 67 J (ethylene) and 204 J (acetylene). To conclude, this work provides basic information on the internal ballistics of homemade gas combustion guns. The risk of injury to the operator or bystanders is high, because accidental explosions of the gun due to the high-pressure rise during combustion of the gas/air mixture may occur.

  16. Development of ballistics identification—from image comparison to topography measurement in surface metrology

    International Nuclear Information System (INIS)

    Song, J; Chu, W; Vorburger, T V; Thompson, R; Renegar, T B; Zheng, A; Yen, J; Silver, R; Ols, M

    2012-01-01

    Fired bullets and ejected cartridge cases have unique ballistics signatures left by the firearm. By analyzing the ballistics signatures, forensic examiners can trace these bullets and cartridge cases to the firearm used in a crime scene. Current automated ballistics identification systems are primarily based on image comparisons using optical microscopy. The correlation accuracy depends on image quality which is largely affected by lighting conditions. Because ballistics signatures are geometrical micro-topographies by nature, direct measurement and correlation of the surface topography is being investigated for ballistics identification. A Two-dimensional and Three-dimensional Topography Measurement and Correlation System was developed at the National Institute of Standards and Technology for certification of Standard Reference Material 2460/2461 bullets and cartridge cases. Based on this system, a prototype system for bullet signature measurement and correlation has been developed for bullet signature identifications, and has demonstrated superior correlation results. (paper)

  17. Ballistic Characterization of the Scalability of Magnesium Alloy AMX602

    Science.gov (United States)

    2015-07-01

    Magnesium Alloy AMX602 by Tyrone L Jones Weapons and Materials Research Directorate, ARL Katsuyoshi Kondoh Joining and Welding Research...formed a collaborative partnership with Osaka University Joining and Welding Research Institute (JWRI), Taber Extrusions, Epson Atmix, Pacific Sowa...Powder Metallurgy 4 5. Fabrication Procedure 4 6. Mechanical Property Analysis 5 7. Ballistic Experimental Procedures 6 8. Ballistic Experimental

  18. Electron eigen-oscillations and ballistic modes of a stable plasma

    International Nuclear Information System (INIS)

    Jungwirth, K.

    1976-01-01

    The relation between plasma responses to singular and regular initial perturbations is established. Time scaling is introduced to separate time intervals for which eigen-oscillations (Landau solution) are dominant from such where ballistic modes prevail. The enhanced role is demonstrated of the ballistic modes for an initially perturbed field-free plasma including the phenomenon of plasma wave echoes. (author)

  19. (DCT-FY08) Target Detection Using Multiple Modality Airborne and Ground Based Sensors

    Science.gov (United States)

    2013-03-01

    resolution SIFT grids in metric-topological SLAM ,” in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, 2009. [4] M. Bosse and R...single camera SLAM ,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 29, no. 6, pp. 1052–1067, 2007. [7] D. Nister, O. Naroditsky, and J. Bergen...segmentation with ground-based and airborne LIDAR range data,” in Proceedings of the Fourth International Symposium on 3D Data Processing

  20. The application of computed tomography in wound ballistics research

    International Nuclear Information System (INIS)

    Tsiatis, Nick; Moraitis, Konstantinos; Papadodima, Stavroula; Spiliopoulou, Chara; Kelekis, Alexis; Kelesis, Christos; Efstathopoulos, Efstathios; Kordolaimi, Sofia; Ploussi, Agapi

    2015-01-01

    In wound ballistics research there is a relationship between the data that characterize a bullet and the injury resulted after shooting when it perforates the human body. The bullet path in the human body following skin perforation as well as the damaging effect cannot always be predictable as they depend on various factors such as the bullet's characteristics (velocity, distance, type of firearm and so on) and the tissue types that the bullet passes through. The purpose of this presentation is to highlight the contribution of Computed Tomography (CT) in wound ballistics research. Using CT technology and studying virtual “slices” of specific areas on scanned human bodies, allows the evaluation of density and thickness of the skin, the subcutaneous tissue, the muscles, the vital organs and the bones. Density data taken from Hounsfield units can be converted in g/ml by using the appropriate software. By evaluating the results of this study, the anatomy of the human body utilizing ballistic gel will be reproduced in order to simulate the path that a bullet follows. The biophysical analysis in wound ballistics provides another application of CT technology, which is commonly used for diagnostic and therapeutic purposes in various medical disciplines. (paper)

  1. Space-based infrared sensors of space target imaging effect analysis

    Science.gov (United States)

    Dai, Huayu; Zhang, Yasheng; Zhou, Haijun; Zhao, Shuang

    2018-02-01

    Target identification problem is one of the core problem of ballistic missile defense system, infrared imaging simulation is an important means of target detection and recognition. This paper first established the space-based infrared sensors ballistic target imaging model of point source on the planet's atmosphere; then from two aspects of space-based sensors camera parameters and target characteristics simulated atmosphere ballistic target of infrared imaging effect, analyzed the camera line of sight jitter, camera system noise and different imaging effects of wave on the target.

  2. Ballistic-neutralized chamber transport of intense heavy ion beams

    International Nuclear Information System (INIS)

    Rose, D.V.; Welch, D.R.; Oliver, B.V.; Clark, R.E.; Sharp, W.M.; Friedman, A.

    2001-01-01

    Two-dimensional particle-in-cell simulations of intense heavy ion beams propagating in an inertial confinement fusion (ICF) reactor chamber are presented. The ballistic-neutralized transport scheme studied uses 4 GeV Pb +1 ion beams injected into a low-density, gas-filled reactor chamber and the beam is ballistically focused onto an ICF target before entering the chamber. Charge and current neutralization of the beam is provided by the low-density background gas. The ballistic-neutralized simulations include stripping of the beam ions as the beam traverses the chamber as well as ionization of the background plasma. In addition, a series of simulations are presented that explore the charge and current neutralization of the ion beam in an evacuated chamber. For this vacuum transport mode, neutralizing electrons are only drawn from sources near the chamber entrance

  3. Results of a Round Robin ballistic load sensing headform test series

    NARCIS (Netherlands)

    Philippens, M.A.G.; Anctil, B.; Markwardt, K.C.

    2014-01-01

    The majority of methods to assess the behind armour blunt trauma (BABT) risk for ballistic helmets is based on plastic deformable headforms. An alternative, the Ballistic Load Sensing Headform (BLSH) can record the dynamic contact force between helmet back face and the skull. Helmet BABT methods are

  4. Ballistic superconductivity in semiconductor nanowires

    Science.gov (United States)

    Zhang, Hao; Gül, Önder; Conesa-Boj, Sonia; Nowak, Michał P.; Wimmer, Michael; Zuo, Kun; Mourik, Vincent; de Vries, Folkert K.; van Veen, Jasper; de Moor, Michiel W. A.; Bommer, Jouri D. S.; van Woerkom, David J.; Car, Diana; Plissard, Sébastien R; Bakkers, Erik P.A.M.; Quintero-Pérez, Marina; Cassidy, Maja C.; Koelling, Sebastian; Goswami, Srijit; Watanabe, Kenji; Taniguchi, Takashi; Kouwenhoven, Leo P.

    2017-01-01

    Semiconductor nanowires have opened new research avenues in quantum transport owing to their confined geometry and electrostatic tunability. They have offered an exceptional testbed for superconductivity, leading to the realization of hybrid systems combining the macroscopic quantum properties of superconductors with the possibility to control charges down to a single electron. These advances brought semiconductor nanowires to the forefront of efforts to realize topological superconductivity and Majorana modes. A prime challenge to benefit from the topological properties of Majoranas is to reduce the disorder in hybrid nanowire devices. Here we show ballistic superconductivity in InSb semiconductor nanowires. Our structural and chemical analyses demonstrate a high-quality interface between the nanowire and a NbTiN superconductor that enables ballistic transport. This is manifested by a quantized conductance for normal carriers, a strongly enhanced conductance for Andreev-reflecting carriers, and an induced hard gap with a significantly reduced density of states. These results pave the way for disorder-free Majorana devices. PMID:28681843

  5. Molecular Dynamics Studies on Ballistic Thermal Resistance of Graphene Nano-Junctions

    International Nuclear Information System (INIS)

    Yao Wen-Jun; Cao Bing-Yang

    2015-01-01

    Ballistic thermal resistance of graphene nano-junctions is investigated using non-equilibrium molecular dynamics simulation. The simulation system is consisted of two symmetrical trapezoidal or rectangular graphene nano-ribbons (GNRs) and a connecting nanoscale constriction in between. From the simulated temperature profile, a big temperature jump resulted from the constriction is found, which is proportional to the heat current and corresponds to a local ballistic thermal resistance. Fixing the constriction width and the length of GNRs, this ballistic thermal resistance is independent of the width of the GNRs bottom layer, i.e., the convex angle. But interestingly, this thermal resistance has obvious size effect. It is inversely proportional to the constriction width and will disappear with the constriction being wider. Moreover, based on the phonon dynamics theory, a theoretical model of the ballistic thermal resistance in two-dimensional nano-systems is developed, which gives a good explanation on microcosmic level and agrees well with the simulation result quantitatively and qualitatively. (paper)

  6. Effect of ballistic electrons on ultrafast thermomechanical responses of a thin metal film

    International Nuclear Information System (INIS)

    Xiong Qi-lin; Tian Xin

    2017-01-01

    The ultrafast thermomechanical coupling problem in a thin gold film irradiated by ultrashort laser pulses with different electron ballistic depths is investigated via the ultrafast thermoelasticity model. The solution of the problem is obtained by solving finite element governing equations. The comparison between the results of ultrafast thermomechanical coupling responses with different electron ballistic depths is made to show the ballistic electron effect. It is found that the ballistic electrons have a significant influence on the ultrafast thermomechanical coupling behaviors of the gold thin film and the best laser micromachining results can be achieved by choosing the specific laser technology (large or small ballistic range). In addition, the influence of simplification of the ultrashort laser pulse source on the results is studied, and it is found that the simplification has a great influence on the thermomechanical responses, which implies that care should be taken when the simplified form of the laser source term is applied as the Gaussian heat source. (paper)

  7. Self-diffusion and solute diffusion in alloys under irradiation: Influence of ballistic jumps

    International Nuclear Information System (INIS)

    Roussel, Jean-Marc; Bellon, Pascal

    2002-01-01

    We have studied the influence of ballistic jumps on thermal and total diffusion of solvent and solute atoms in dilute fcc alloys under irradiation. For the diffusion components that result from vacancy migration, we introduce generalized five-frequency models, and show that ballistic jumps produce decorrelation effects that have a moderate impact on self-diffusion but that can enhance or suppress solute diffusion by several orders of magnitude. These could lead to new irradiation-induced transformations, especially in the case of subthreshold irradiation conditions. We also show that the mutual influence of thermal and ballistic jumps results in a nonadditivity of partial diffusion coefficients: the total diffusion coefficient under irradiation may be less than the sum of the thermal and ballistic diffusion coefficients. These predictions are confirmed by kinetic Monte Carlo simulations. Finally, it is shown that the method introduced here can be extended to take into account the effect of ballistic jumps on the diffusion of dumbbell interstitials in dilute alloys

  8. Low-temperature ballistic transport in nanoscale epitaxial graphene cross junctions

    OpenAIRE

    Weingart, S.; Bock, C.; Kunze, U.; Speck, F.; Seyller, Th.; Ley, L.

    2009-01-01

    We report on the observation of inertial-ballistic transport in nanoscale cross junctions fabricated from epitaxial graphene grown on SiC(0001). Ballistic transport is indicated by a negative bend resistance of R12,43 ~ 170 ohm which is measured in a non-local, four-terminal configuration at 4.2 K and which vanishes as the temperature is increased above 80 K.

  9. Micro-Doppler Feature Extraction and Recognition Based on Netted Radar for Ballistic Targets

    Directory of Open Access Journals (Sweden)

    Feng Cun-qian

    2015-12-01

    Full Text Available This study examines the complexities of using netted radar to recognize and resolve ballistic midcourse targets. The application of micro-motion feature extraction to ballistic mid-course targets is analyzed, and the current status of application and research on micro-motion feature recognition is concluded for singlefunction radar networks such as low- and high-resolution imaging radar networks. Advantages and disadvantages of these networks are discussed with respect to target recognition. Hybrid-mode radar networks combine low- and high-resolution imaging radar and provide a specific reference frequency that is the basis for ballistic target recognition. Main research trends are discussed for hybrid-mode networks that apply micromotion feature extraction to ballistic mid-course targets.

  10. Airborne geoid determination

    DEFF Research Database (Denmark)

    Forsberg, René; Olesen, Arne Vestergaard; Bastos, L.

    2000-01-01

    Airborne geoid mapping techniques may provide the opportunity to improve the geoid over vast areas of the Earth, such as polar areas, tropical jungles and mountainous areas, and provide an accurate "seam-less" geoid model across most coastal regions. Determination of the geoid by airborne methods...... relies on the development of airborne gravimetry, which in turn is dependent on developments in kinematic GPS. Routine accuracy of airborne gravimetry are now at the 2 mGal level, which may translate into 5-10 cm geoid accuracy on regional scales. The error behaviour of airborne gravimetry is well......-suited for geoid determination, with high-frequency survey and downward continuation noise being offset by the low-pass gravity to geoid filtering operation. In the paper the basic principles of airborne geoid determination are outlined, and examples of results of recent airborne gravity and geoid surveys...

  11. Are certain fractures at increased risk for compartment syndrome after civilian ballistic injury?

    Science.gov (United States)

    Meskey, Thomas; Hardcastle, John; O'Toole, Robert V

    2011-11-01

    Compartment syndrome after ballistic fracture is uncommon but potentially devastating. Few data are available to help guide clinicians regarding risk factors for developing compartment syndrome after ballistic fractures. Our primary hypothesis was that ballistic fractures of certain bones would be at higher risk for development of compartment syndrome. A retrospective review at a Level I trauma center from 2001 through 2007 yielded 650 patients with 938 fractures resulting from gunshots. We reviewed all operative notes, clinic notes, discharge summaries, and data from our prospective trauma database. Cases in which the attending orthopedic surgeon diagnosed compartment syndrome and performed fasciotomy were considered cases with compartment syndrome. We excluded all prophylactic fasciotomies. Univariate analyses were conducted to identify risk factors associated with development of compartment syndrome. Twenty-six (2.8%) of the 938 fractures were associated with compartment syndrome. Only fibular (11.6%) and tibial (11.4%) fractures had incidence significantly higher than baseline for all ballistic fractures (p Ballistic fractures of the fibula and tibia are at increased risk for development of compartment syndrome over other ballistic fractures. We recommend increased vigilance when treating these injuries, particularly if the fracture is in the proximal aspect of the bone or is associated with vascular injury.

  12. Ballistic Missile Defense

    OpenAIRE

    Mayer, Michael

    2011-01-01

    At the 2010 NATO summit in Lisbon, the alliance decided to move forward on the development of a territorial ballistic missile defense (BMD) system and explore avenues for cooperation with Russia in this endeavor. Substantial progress on BMD has been made over the past decade, but some questions remain regarding the ultimate strategic utility of such a system and whether its benefi ts outweigh the possible opportunity costs. Missile defense has been a point of contention between the US and its...

  13. Potentiation Effects of Half-Squats Performed in a Ballistic or Nonballistic Manner.

    Science.gov (United States)

    Suchomel, Timothy J; Sato, Kimitake; DeWeese, Brad H; Ebben, William P; Stone, Michael H

    2016-06-01

    This study examined and compared the acute effects of ballistic and nonballistic concentric-only half-squats (COHSs) on squat jump performance. Fifteen resistance-trained men performed a squat jump 2 minutes after a control protocol or 2 COHSs at 90% of their 1 repetition maximum (1RM) COHS performed in a ballistic or nonballistic manner. Jump height (JH), peak power (PP), and allometrically scaled peak power (PPa) were compared using three 3 × 2 repeated-measures analyses of variance. Statistically significant condition × time interaction effects existed for JH (p = 0.037), PP (p = 0.041), and PPa (p = 0.031). Post hoc analysis revealed that the ballistic condition produced statistically greater JH (p = 0.017 and p = 0.036), PP (p = 0.031 and p = 0.026), and PPa (p = 0.024 and p = 0.023) than the control and nonballistic conditions, respectively. Small effect sizes for JH, PP, and PPa existed during the ballistic condition (d = 0.28-0.44), whereas trivial effect sizes existed during the control (d = 0.0-0.18) and nonballistic (d = 0.0-0.17) conditions. Large statistically significant relationships existed between the JH potentiation response and the subject's relative back squat 1RM (r = 0.520; p = 0.047) and relative COHS 1RM (r = 0.569; p = 0.027) during the ballistic condition. In addition, large statistically significant relationship existed between JH potentiation response and the subject's relative back squat strength (r = 0.633; p = 0.011), whereas the moderate relationship with the subject's relative COHS strength trended toward significance (r = 0.483; p = 0.068). Ballistic COHS produced superior potentiation effects compared with COHS performed in a nonballistic manner. Relative strength may contribute to the elicited potentiation response after ballistic and nonballistic COHS.

  14. Application of Super-Hydrophobic Coating for Enhanced Water Repellency of Ballistic Fabric

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Barton [ORNL; Rajic, Slobodan [ORNL; Hunter, Scott Robert [ORNL

    2014-10-01

    The objective of this work was to demonstrate that a superhydrophobic coating technology developed at Oak Ridge National Laboratory (ORNL) increases the water repellency of ballistic fabric beyond that provided by existing water repellency treatments. This increased water repellency has the potential to provide durable ballistic fabric for body armor without adding significant weight to the armor or significant manufacturing cost. Specimens of greige and scoured ballistic fabric were treated with a superhydrophobic coating and their weights and degree of water repellency were compared to specimens of untreated fabric. Treatment of both greige and scoured ballistic fabrics yielded highly water repellent fabrics. Our measurements of the water droplet contact angles gave values of approximately 150 , near the lower limit of 160 for superhydrophobic surfaces. The coatings increased the fabric weights by approximately 6%, an amount that is many times less than the estimated weight increase in a conventional treatment of ballistic fabric. The treated fabrics retained a significant amount of water repellency following a basic abrasion test, with water droplet contact angles decreasing by 14 to 23 . Microscopic analysis of the coating applied to woven fabrics indicated that the coating adhered equally well to fibers of greige and scoured yarns. Future evaluation of the superhydrophobic water repellent treatment will involve the manufacture of shoot packs of treated fabric for ballistic testing and provide an analysis of manufacturing scale-up and cost-to-benefit considerations.

  15. Ballistic behaviour of ultra-high molecular weight polyethylene: effect of gamma radiation

    International Nuclear Information System (INIS)

    Alves, Andreia L.S.; Nascimento, Lucio F.C.; Miguez Suarez, Joao Carlos

    2004-01-01

    The fiber reinforced polymer matrix composites (PMCs) are considered excellent engineering materials. In structural applications, when a high strength-to-weight ratio is fundamental for the design, PMCs are successfully replacing many conventional materials. Since World War II textile materials have been used as ballistic armor. Materials manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers are used in the production of armor materials, for personnel protection and armored vehicles. As these have been developed and commercialized more recently, there is not enough information about the action of the ionizing radiation in the ballistic performance of this armor material. In the present work the ballistic behavior of composite plates manufactured with ultrahigh molecular weight polyethylene (UHMWPE) fibers were evaluated after exposure to gamma radiation. The ballistic tests results were related to the macromolecular modifications induced by the environmental degradation through mechanical (hardness, impact and flexure) and physicochemical (infrared spectroscopy, differential scanning calorimetry and thermal gravimetric analysis) tests. Our results indicate that gamma irradiation induces modifications in the UHMWPE macromolecular chains, altering the mechanical properties of the composite and decreasing, for higher radiation doses, its ballistic performance. These results are presented and discussed. (author)

  16. Supercurrent and multiple Andreev reflections in micrometer-long ballistic graphene Josephson junctions.

    Science.gov (United States)

    Zhu, Mengjian; Ben Shalom, Moshe; Mishchsenko, Artem; Fal'ko, Vladimir; Novoselov, Kostya; Geim, Andre

    2018-02-08

    Ballistic Josephson junctions are predicted to support a number of exotic physics processess, providing an ideal system to inject the supercurrent in the quantum Hall regime. Herein, we demonstrate electrical transport measurements on ballistic superconductor-graphene-superconductor junctions by contacting graphene to niobium with a junction length up to 1.5 μm. Hexagonal boron nitride encapsulation and one-dimensional edge contacts guarantee high-quality graphene Josephson junctions with a mean free path of several micrometers and record-low contact resistance. Transports in normal states including the observation of Fabry-Pérot oscillations and Sharvin resistance conclusively witness the ballistic propagation in the junctions. The critical current density J C is over one order of magnitude larger than that of the previously reported junctions. Away from the charge neutrality point, the I C R N product (I C is the critical current and R N the normal state resistance of junction) is nearly a constant, independent of carrier density n, which agrees well with the theory for ballistic Josephson junctions. Multiple Andreev reflections up to the third order are observed for the first time by measuring the differential resistance in the micrometer-long ballistic graphene Josephson junctions.

  17. Drag of ballistic electrons by an ion beam

    Energy Technology Data Exchange (ETDEWEB)

    Gurevich, V. L.; Muradov, M. I., E-mail: mag.muradov@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2015-12-15

    Drag of electrons of a one-dimensional ballistic nanowire by a nearby one-dimensional beam of ions is considered. We assume that the ion beam is represented by an ensemble of heavy ions of the same velocity V. The ratio of the drag current to the primary current carried by the ion beam is calculated. The drag current turns out to be a nonmonotonic function of velocity V. It has a sharp maximum for V near v{sub nF}/2, where n is the number of the uppermost electron miniband (channel) taking part in conduction and v{sub nF} is the corresponding Fermi velocity. This means that the phenomenon of ion beam drag can be used for investigation of the electron spectra of ballistic nanostructures. We note that whereas observation of the Coulomb drag between two parallel quantum wires may in general be complicated by phenomena such as tunneling and phonon drag, the Coulomb drag of electrons of a one-dimensional ballistic nanowire by an ion beam is free of such spurious effects.

  18. Development of high-density ceramic composites for ballistic applications

    International Nuclear Information System (INIS)

    Rupert, N.L.; Burkins, M.S.; Gooch, W.A.; Walz, M.J.; Levoy, N.F.; Washchilla, E.P.

    1993-01-01

    The application of ceramic composites for ballistic application has been generally developed with ceramics of low density, between 2.5 and 4.5 g/cm 2 . These materials have offered good performance in defeating small-caliber penetrators, but can suffer time-dependent degradation effects when thicker ceramic tiles are needed to defeat modem, longer, heavy metal penetrators that erode rather than break up. This paper addresses the ongoing development, fabrication procedures, analysis, and ballistic evaluation of thinner, denser ceramics for use in armor applications. Nuclear Metals Incorporated (NMI) developed a process for the manufacture of depleted uranium (DU) ceramics. Samples of the ceramics have been supplied to the US Army Research Laboratory (ARL) as part of an unfunded cooperative study agreement. The fabrication processes used, characterization of the ceramic, and a ballistic comparison between the DU-based ceramic with baseline Al 2 O 3 will be presented

  19. Accuracy Potential and Applications of MIDAS Aerial Oblique Camera System

    Science.gov (United States)

    Madani, M.

    2012-07-01

    Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System) is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees) cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels) with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm) and (50 mm/50 mm)) were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance) for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining systematic

  20. ACCURACY POTENTIAL AND APPLICATIONS OF MIDAS AERIAL OBLIQUE CAMERA SYSTEM

    Directory of Open Access Journals (Sweden)

    M. Madani

    2012-07-01

    Full Text Available Airborne oblique cameras such as Fairchild T-3A were initially used for military reconnaissance in 30s. A modern professional digital oblique camera such as MIDAS (Multi-camera Integrated Digital Acquisition System is used to generate lifelike three dimensional to the users for visualizations, GIS applications, architectural modeling, city modeling, games, simulators, etc. Oblique imagery provide the best vantage for accessing and reviewing changes to the local government tax base, property valuation assessment, buying & selling of residential/commercial for better decisions in a more timely manner. Oblique imagery is also used for infrastructure monitoring making sure safe operations of transportation, utilities, and facilities. Sanborn Mapping Company acquired one MIDAS from TrackAir in 2011. This system consists of four tilted (45 degrees cameras and one vertical camera connected to a dedicated data acquisition computer system. The 5 digital cameras are based on the Canon EOS 1DS Mark3 with Zeiss lenses. The CCD size is 5,616 by 3,744 (21 MPixels with the pixel size of 6.4 microns. Multiple flights using different camera configurations (nadir/oblique (28 mm/50 mm and (50 mm/50 mm were flown over downtown Colorado Springs, Colorado. Boresight fights for 28 mm nadir camera were flown at 600 m and 1,200 m and for 50 mm nadir camera at 750 m and 1500 m. Cameras were calibrated by using a 3D cage and multiple convergent images utilizing Australis model. In this paper, the MIDAS system is described, a number of real data sets collected during the aforementioned flights are presented together with their associated flight configurations, data processing workflow, system calibration and quality control workflows are highlighted and the achievable accuracy is presented in some detail. This study revealed that the expected accuracy of about 1 to 1.5 GSD (Ground Sample Distance for planimetry and about 2 to 2.5 GSD for vertical can be achieved. Remaining

  1. Relationship between traditional and ballistic squat exercise with vertical jumping and maximal sprinting.

    Science.gov (United States)

    Requena, Bernardo; García, Inmaculada; Requena, Francisco; de Villarreal, Eduardo Sáez-Sáez; Cronin, John B

    2011-08-01

    The purpose of this study was to quantify the magnitude of the relationship between vertical jumping and maximal sprinting at different distances with performance in the traditional and ballistic concentric squat exercise in well-trained sprinters. Twenty-one men performed 2 types of barbell squats (ballistic and traditional) across different loads with the aim of determining the maximal peak and average power outputs and 1 repetition maximum (1RM) values. Moreover, vertical jumping (countermovement jump test [CMJ]) and maximal sprints over 10, 20, 30, 40, 60, and 80 m were also assessed. In respect to 1RM in traditional squat, (a) no significant correlation was found with CMJ performance; (b) positive strong relationships (p ballistic and traditional squat exercises (r = 0.53-0.90); (c) negative significant correlations (r = -0.49 to -0.59, p ballistic or traditional squat exercises. Sprint time at 20 m was only related to ballistic and traditional squat performance when power values were expressed in relative terms. Moderate significant correlations (r = -0.39 to -0.56, p ballistic and traditional squat exercises. Sprint times at 60 and 80 m were mainly related to ballistic squat power outputs. Although correlations can only give insights into associations and not into cause and effect, from this investigation, it can be seen that traditional squat strength has little in common with CMJ performance and that relative 1RM and power outputs for both squat exercises are statistically correlated to most sprint distances underlying the importance of strength and power to sprinting.

  2. Whither Ballistic Missile Defense?

    Science.gov (United States)

    1992-11-30

    important that technology today is placing enormous power in the many camps-not only information that enables timely decision-making, but also the...WHITHER BALLISTIC MISSILE DEFENSE? BY AMBASSADOR HENRY F. COOPER NOVEMBER 30,1992 TECHNICAL MARKETING SOCIETY OF AMERICA WASHINGTON, DC...Conference on Technical Marketing 2000: Opportunities and Strategies for a Changing World) I intend to discuss the prospects for SDI in a changing

  3. Ballistic model to estimate microsprinkler droplet distribution

    Directory of Open Access Journals (Sweden)

    Conceição Marco Antônio Fonseca

    2003-01-01

    Full Text Available Experimental determination of microsprinkler droplets is difficult and time-consuming. This determination, however, could be achieved using ballistic models. The present study aimed to compare simulated and measured values of microsprinkler droplet diameters. Experimental measurements were made using the flour method, and simulations using a ballistic model adopted by the SIRIAS computational software. Drop diameters quantified in the experiment varied between 0.30 mm and 1.30 mm, while the simulated between 0.28 mm and 1.06 mm. The greatest differences between simulated and measured values were registered at the highest radial distance from the emitter. The model presented a performance classified as excellent for simulating microsprinkler drop distribution.

  4. Learning without knowing: subliminal visual feedback facilitates ballistic motor learning

    DEFF Research Database (Denmark)

    Lundbye-Jensen, Jesper; Leukel, Christian; Nielsen, Jens Bo

    by subconscious (subliminal) augmented visual feedback on motor performance. To test this, 45 subjects participated in the experiment, which involved learning of a ballistic task. The task was to execute simple ankle plantar flexion movements as quickly as possible within 200 ms and to continuously improve...... by the learner, indeed facilitated ballistic motor learning. This effect likely relates to multiple (conscious versus unconscious) processing of visual feedback and to the specific neural circuitries involved in optimization of ballistic motor performance.......). It is a well- described phenomenon that we may respond to features of our surroundings without being aware of them. It is also a well-known principle, that learning is reinforced by augmented feedback on motor performance. In the present experiment we hypothesized that motor learning may be facilitated...

  5. Ballistic movements of jumping legs implemented as variable components of cricket behaviour.

    Science.gov (United States)

    Hustert, R; Baldus, M

    2010-12-01

    Ballistic accelerations of a limb or the whole body require special joint mechanisms in many animals. Specialized joints can be moved by stereotypic or variable motor control during motor patterns with and without ballistic components. As a model of variable motor control, the specialized femur-tibia (knee) joints of cricket (Acheta domesticus) hindlegs were studied during ballistic kicking, jumping and swimming and in non-ballistic walking. In this joint the tendons of the antagonistic flexor and the extensor muscles attach at different distances from the pivot and the opposed lever arms form an angle of 120 deg. A 10:1 ratio of their effective lever arms at full knee flexion helps to prepare for most ballistic extensions: the tension of the extensor can reach its peak while it is restrained by flexor co-contraction. In kicks, preparatory flexion is rapid and the co-contraction terminates just before knee extensions. Therefore, mainly the stored tension of the extensor muscle accelerates the small mass of the tibia. Jumps are prepared with slower extensor-flexor co-contractions that flex both knees simultaneously and then halt to rotate both legs outward to a near horizontal level. From there, catapult extension of both knees accelerates the body, supported by continued high frequency motor activity to their tibia extensor muscles during the ongoing push-off from the substrate. Premature extension of one knee instantly takes load from the lagging leg that extends and catches up, which finally results in a straight jump. In swimming, synchronous ballistic power strokes of both hindlegs drive the tibiae on a ventral-to-posterior trajectory through the water, well coordinated with the swimming patterns of all legs. In walking, running and climbing the steps of the hindlegs range between 45 deg flexion and 125 deg extension and use non-ballistic, alternating activity of knee flexor and extensor muscles. Steep climbing requires longer bursts from the extensor tibiae

  6. Influence of structural properties on ballistic transport in nanoscale epitaxial graphene cross junctions

    International Nuclear Information System (INIS)

    Bock, Claudia; Weingart, Sonja; Karaissaridis, Epaminondas; Kunze, Ulrich; Speck, Florian; Seyller, Thomas

    2012-01-01

    In this paper we investigate the influence of material and device properties on the ballistic transport in epitaxial monolayer graphene and epitaxial quasi-free-standing monolayer graphene. Our studies comprise (a) magneto-transport in two-dimensional (2D) Hall bars, (b) temperature- and magnetic-field-dependent bend resistance of unaligned and step-edge-aligned orthogonal cross junctions, and (c) the influence of the lead width of the cross junctions on ballistic transport. We found that ballistic transport is highly sensitive to scattering at the step edges of the silicon carbide substrate. A suppression of the ballistic transport is observed if the lead width of the cross junction is reduced from 50 nm to 30 nm. In a 50 nm wide device prepared on quasi-free-standing graphene we observe a gradual transition from the ballistic into the diffusive transport regime if the temperature is increased from 4.2 to about 50 K, although 2D Hall bars show a temperature-independent mobility. Thus, in 1D devices additional temperature-dependent scattering mechanisms play a pivotal role. (paper)

  7. Investigation of the potential barrier lowering for quasi-ballistic transport in short channel MOSFETs

    International Nuclear Information System (INIS)

    Lee, Jaehong; Kwon, Yongmin; Ji, Junghwan; Shin, Hyungcheol

    2011-01-01

    In this paper, the quasi-ballistic carrier transport in short channel MOSFETs is investigated from the point of potential barrier lowering. To investigate the ballistic characteristic of transistors, we extracted the channel backscattering coefficient and the ballistic ratio from experimental data obtained by RF C-V and DC I-V measurements. Two factors that modulate the potential barrier height, besides the gate bias, are considered in this work: the drain bias (V DS ) and the channel doping concentration (N A ). We extract the critical length by calculating the potential drop in the channel region and conclude that the drain bias and the channel doping concentration affect the quasi-ballistic carrier transport.

  8. Development of Mortar Simulator with Shell-In-Shell System – Problem of External Ballistics

    Directory of Open Access Journals (Sweden)

    A. Fedaravicius

    2007-01-01

    Full Text Available The shell-in-shell system used in the mortar simulator raises a number of non-standard technical and computational problems starting from the requirement to distribute the propelling blast energy between the warhead and the ballistic barrel, finishing with the requirement that the length of warhead's flight path must be scaled to combat shell firing tables. The design problem of the simulator is split into two parts – the problem of external ballistics where the initial velocities of the warhead must be determined, and the problem of internal ballistics – where the design of the cartridge and the ballistic barrel must be performed.

  9. Overlapping Ballistic Ejecta Fields: Separating Distinct Blasts at Kings Bowl, Idaho

    Science.gov (United States)

    Borg, C.; Kobs-Nawotniak, S. E.; Hughes, S. S.; Sears, D. W. G.; Heldmann, J. L.; Lim, D. S. S.; Haberle, C. W.; Sears, H.; Elphic, R. C.; Kobayashi, L.; Garry, W. B.; Neish, C.; Karunatillake, S.; Button, N.; Purcell, S.; Mallonee, H.; Ostler, B.

    2015-12-01

    Kings Bowl is a ~2200ka pit crater created by a phreatic blast along a volcanic fissure in the eastern Snake River Plain (ESRP), Idaho. The main crater measures approximately 80m in length, 30m in width, and 30m in depth, with smaller pits located nearby on the Great Rift fissure, and has been targeted by the FINESSE team as a possible analogue for Cyane Fossae, Mars. The phreatic eruption is believed to have occurred due to the interaction of groundwater with lava draining back into the fissure following a lava lake high stand, erupting already solidified basalt from this and previous ERSP lava flows. The contemporaneous draw back of the lava with the explosions may conceal some smaller possible blast pits as more lava drained into the newly formed pits. Ballistic ejecta from the blasts occur on both sides of the fissure. To the east, the ballistic blocks are mantled by fine tephra mixed with eolian dust, the result of a westerly wind during the explosions. We use differential GPS to map the distribution of ballistic blocks on the west side of the fissure, recording position, percent vesiculation, and the length of 3 mutually perpendicular axes for each block >20cm along multiple transects parallel to the fissure. From the several hundred blocks recorded, we have been able to separate the ballistic field into several distinct blast deposits on the basis of size distributions and block concentration. The smaller pits identified from the ballistic fields correspond broadly to the northern and southern limits of the tephra/dust field east of the fissure. Soil formation and bioturbation of the tephra by sagebrush have obliterated any tephrostratigraphy that could have been linked to individual blasts. The ballistic block patterns at Kings Bowl may be used to identify distinct ejecta groups in high-resolution imagery of Mars or other planetary bodies.

  10. BALLISTIC RESISTANT ARTICLES COMPRISING TAPES

    NARCIS (Netherlands)

    VAN DER EEM, JORIS; HARINGS, JULES; JANSE, GERARDUS; TJADEN, HENDRIK

    2015-01-01

    The invention pertains to a ballistic-resistant moulded article comprising a compressed stack of sheets comprising reinforcing tapes having a tensile strength of at least 1.0 GPa, a tensile modulus of at least 40 GPa, and a tensile energy-to-break of at least 15 J/g, the direction of the tapes

  11. Ballistic impacts on an anatomically correct synthetic skull with a surrogate skin/soft tissue layer.

    Science.gov (United States)

    Mahoney, Peter; Carr, Debra; Arm, Richard; Gibb, Iain; Hunt, Nicholas; Delaney, Russ J

    2018-03-01

    The aim of this work was to further develop a synthetic model of ballistic head injury by the addition of skin and soft tissue layers to an anatomically correct polyurethane skull filled with gelatine 10% by mass. Six head models were impacted with 7.62 x 39 mm full metal jacket mild steel core (FMJ MSC) bullets with a mean velocity of 652 m/s. The impact events were filmed with high-speed cameras. The models were imaged pre- and post-impact using computed tomography. The models were assessed post impact by two experienced Home Office pathologists and the images assessed by an experienced military radiologist. The findings were scored against real injuries. The entry wounds, exit wounds and fracture patterns were scored positively, but the synthetic skin and soft tissue layer was felt to be too extendable. Further work is ongoing to address this.

  12. Ballistic Imaging and Scattering Measurements for Diesel Spray Combustion: Optical Development and Phenomenological Studies

    Science.gov (United States)

    2016-04-01

    3mm) of diesel sprays from a high-pressure single-hole fuel injector . Ballistic imaging of dodecane and methyl oleate sprays are reported...Porter, Sean P. Duran, Terence E. Parker. Picosecond Ballistic Imaging of Ligament Structures in the Near- Nozzle Region of Diesel Sprays, ILASS...Experiments in Fluids (12 2014) Sean Duran, Jason Porter, Terence Parker. Ballistic Imaging of a Diesel Injector Spray at High Temperature and

  13. 77 FR 809 - Request for Proposals for Certification and Testing Expertise for the Ballistic Resistance of...

    Science.gov (United States)

    2012-01-06

    ... for Certification and Testing Expertise for the Ballistic Resistance of Personal Body Armor (2008... revising its Ballistic Resistance of Personal Body Armor (2008) Standard and corresponding certification... laboratories with experience in programs for similar types of ballistic-resistant personal protective equipment...

  14. Hazard map for volcanic ballistic impacts at El Chichón volcano (Mexico)

    Science.gov (United States)

    Alatorre-Ibarguengoitia, Miguel; Ramos-Hernández, Silvia; Jiménez-Aguilar, Julio

    2014-05-01

    The 1982 eruption of El Chichón Volcano in southeastern Mexico had a strong social and environmental impact. The eruption resulted in the worst volcanic disaster in the recorded history of Mexico, causing about 2,000 casualties, displacing thousands, and producing severe economic losses. Even when some villages were relocated after the 1982 eruption, many people still live and work in the vicinities of the volcano and may be affected in the case of a new eruption. The hazard map of El Chichón volcano (Macías et al., 2008) comprises pyroclastic flows, pyroclastic surges, lahars and ash fall but not ballistic projectiles, which represent an important threat to people, infrastructure and vegetation in the case of an eruption. In fact, the fatalities reported in the first stage of the 1982 eruption were caused by roof collapse induced by ashfall and lithic ballistic projectiles. In this study, a general methodology to delimit the hazard zones for volcanic ballistic projectiles during volcanic eruptions is applied to El Chichón volcano. Different scenarios are defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with ballistic projectiles ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of the projectiles observed in the field. The maximum ranges expected for the ballistics in the different explosive scenarios defined for El Chichón volcano are presented in a ballistic hazard map which complements the published hazard map. These maps assist the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  15. Ballistic resistance of honeycomb sandwich panels under in-plane high-velocity impact.

    Science.gov (United States)

    Qi, Chang; Yang, Shu; Wang, Dong; Yang, Li-Jun

    2013-01-01

    The dynamic responses of honeycomb sandwich panels (HSPs) subjected to in-plane projectile impact were studied by means of explicit nonlinear finite element simulations using LS-DYNA. The HSPs consisted of two identical aluminum alloy face-sheets and an aluminum honeycomb core featuring three types of unit cell configurations (regular, rectangular-shaped, and reentrant hexagons). The ballistic resistances of HSPs with the three core configurations were first analyzed. It was found that the HSP with the reentrant auxetic honeycomb core has the best ballistic resistance, due to the negative Poisson's ratio effect of the core. Parametric studies were then carried out to clarify the influences of both macroscopic (face-sheet and core thicknesses, core relative density) and mesoscopic (unit cell angle and size) parameters on the ballistic responses of the auxetic HSPs. Numerical results show that the perforation resistant capabilities of the auxetic HSPs increase as the values of the macroscopic parameters increase. However, the mesoscopic parameters show nonmonotonic effects on the panels' ballistic capacities. The empirical equations for projectile residual velocities were formulated in terms of impact velocity and the structural parameters. It was also found that the blunter projectiles result in higher ballistic limits of the auxetic HSPs.

  16. Coupling between a Langmuir wave and a ballistic perturbation

    International Nuclear Information System (INIS)

    Gervais, F.; Olivain, J.; Quemeneur, A.; Trocheris, M.

    1980-01-01

    The study of the mode-mode coupling usually neglects the ballistic contribution associated with parent waves. If this approximation is not made, a new mode, resulting from the interaction between the ballistic perturbation of pulsation ω 2 associated with one launched wave and the Landau component of pulsation ω 1 of the second one appears if ω 1 >ω 2 . The problem is solved theoretically and experimental evidence of this mode from measurements performed on a D.C. plasma column, confirms the results of this analysis

  17. A Klein-tunneling transistor with ballistic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Wilmart, Quentin; Fève, Gwendal; Berroir, Jean-Marc; Plaçais, Bernard [Laboratoire Pierre Aigrain, Ecole Normale Supérieure, CNRS (UMR 8551), Université P et M Curie, Université D Diderot, 24, rue Lhomond, 75231 Paris Cedex 05 (France); Berrada, Salim; Hung Nguyen, V; Dollfus, Philippe [Institute of Fundamental Electronics, Univ. Paris-Sud, CNRS, Orsay (France); Torrin, David [Département de Physique, Ecole Polytechnique, 91128 Palaiseau (France)

    2014-06-15

    Today, the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistors in the ballistic regime give access to Klein tunneling physics and allow the realization of devices exploiting the optics-like behavior of Dirac Fermions (DFs) as in the Veselago lens or the Fabry–Pérot cavity. Here we propose a Klein tunneling transistor based on the geometrical optics of DFs. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using non-equilibrium Green's function (NEGF) simulation. (letter)

  18. Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress

    Science.gov (United States)

    2016-04-05

    Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine Program: Background and Issues for Congress Ronald O’Rourke Specialist in Naval...Affairs April 5, 2016 Congressional Research Service 7-5700 www.crs.gov R41129 Navy Ohio Replacement (SSBN[X]) Ballistic Missile Submarine...1,091.1 million in research and development funding for the Ohio replacement program (ORP), a program to design and build a new class of 12 ballistic

  19. Optimization theory for ballistic energy conversion

    NARCIS (Netherlands)

    Xie, Yanbo; Versluis, Michel; Van Den Berg, Albert; Eijkel, Jan C.T.

    2016-01-01

    The growing demand of renewable energy stimulates the exploration of new materials and methods for clean energy. We recently demonstrated a high efficiency and power density energy conversion mechanism by using jetted charged microdroplets, termed as ballistic energy conversion. Hereby, we model and

  20. Electron Interference in Ballistic Graphene Nanoconstrictions

    DEFF Research Database (Denmark)

    Baringhaus, Jens; Settnes, Mikkel; Aprojanz, Johannes

    2016-01-01

    We realize nanometer size constrictions in ballistic graphene nanoribbons grown on sidewalls of SiC mesa structures. The high quality of our devices allows the observation of a number of electronic quantum interference phenomena. The transmissions of Fabry-Perot-like resonances are probed...

  1. Transition from normal to ballistic diffusion in a one-dimensional impact system

    Science.gov (United States)

    Livorati, André L. P.; Kroetz, Tiago; Dettmann, Carl P.; Caldas, Iberê L.; Leonel, Edson D.

    2018-03-01

    We characterize a transition from normal to ballistic diffusion in a bouncing ball dynamics. The system is composed of a particle, or an ensemble of noninteracting particles, experiencing elastic collisions with a heavy and periodically moving wall under the influence of a constant gravitational field. The dynamics lead to a mixed phase space where chaotic orbits have a free path to move along the velocity axis, presenting a normal diffusion behavior. Depending on the control parameter, one can observe the presence of featured resonances, known as accelerator modes, that lead to a ballistic growth of velocity. Through statistical and numerical analysis of the velocity of the particle, we are able to characterize a transition between the two regimes, where transport properties were used to characterize the scenario of the ballistic regime. Also, in an analysis of the probability of an orbit to reach an accelerator mode as a function of the velocity, we observe a competition between the normal and ballistic transport in the midrange velocity.

  2. The use of gelatine in wound ballistics research.

    Science.gov (United States)

    Carr, D J; Stevenson, T; Mahoney, P F

    2018-04-25

    Blocks of gelatine are used in both lethality and survivability studies for broadly the same reason, i.e. comparison of ammunition effects using a material that it is assumed represents (some part of) the human body. The gelatine is used to visualise the temporary and permanent wound profiles; elements of which are recognised as providing a reasonable approximation to wounding in humans. One set of researchers aim to improve the lethality of the projectile, and the other to understand the effects of the projectile on the body to improve survivability. Research areas that use gelatine blocks are diverse and include ammunition designers, the medical and forensics communities and designers of ballistic protective equipment (including body armour). This paper aims to provide an overarching review of the use of gelatine for wound ballistics studies; it is not intended to provide an extensive review of wound ballistics as that already exists, e.g. Legal Med 23:21-29, 2016. Key messages are that test variables, projectile type (bullet, fragmentation), impact site on the body and intermediate layers (e.g. clothing, personal protective equipment (PPE)) can affect the resulting wound profiles.

  3. Precession feature extraction of ballistic missile warhead with high velocity

    Science.gov (United States)

    Sun, Huixia

    2018-04-01

    This paper establishes the precession model of ballistic missile warhead, and derives the formulas of micro-Doppler frequency induced by the target with precession. In order to obtain micro-Doppler feature of ballistic missile warhead with precession, micro-Doppler bandwidth estimation algorithm, which avoids velocity compensation, is presented based on high-resolution time-frequency transform. The results of computer simulations confirm the effectiveness of the proposed method even with low signal-to-noise ratio.

  4. Low-Energy Ballistic Transfers to Lunar Halo Orbits

    Science.gov (United States)

    Parker, Jeffrey S.

    2009-01-01

    Recent lunar missions have begun to take advantage of the benefits of low-energy ballistic transfers between the Earth and the Moon rather than implementing conventional Hohmann-like lunar transfers. Both Artemis and GRAIL plan to implement low-energy lunar transfers in the next few years. This paper explores the characteristics and potential applications of many different families of low-energy ballistic lunar transfers. The transfers presented here begin from a wide variety of different orbits at the Earth and follow several different distinct pathways to the Moon. This paper characterizes these pathways to identify desirable low-energy lunar transfers for future lunar missions.

  5. 3D topography measurements on correlation cells—a new approach to forensic ballistics identifications

    International Nuclear Information System (INIS)

    Song, John; Chu, Wei; Tong, Mingsi; Soons, Johannes

    2014-01-01

    Based on three-dimensional (3D) topography measurements on correlation cells, the National Institute of Standards and Technology (NIST) has developed the ‘NIST Ballistics Identification System (NBIS)’ aimed at accurate ballistics identifications and fast ballistics evidence searches. The 3D topographies are divided into arrays of correlation cells to identify ‘valid correlation areas’ and eliminate ‘invalid correlation areas’ from the matching and identification procedure. A ‘congruent matching cells’ (CMC)’ method using three types of identification parameters of the paired correlation cells (cross correlation function maximum CCF max , spatial registration position in x–y and registration angle θ) is used for high accuracy ballistics identifications. ‘Synchronous processing’ is proposed for correlating multiple cell pairs at the same time to increase the correlation speed. The proposed NBIS can be used for correlations of both geometrical topographies and optical intensity images. All the correlation parameters and algorithms are in the public domain and subject to open tests. An error rate reporting procedure has been developed that can greatly add to the scientific support for the firearm and toolmark identification specialty, and give confidence to the trier of fact in court proceedings. The NBIS is engineered to employ transparent identification parameters and criteria, statistical models and correlation algorithms. In this way, interoperability between different ballistics identification systems can be more easily achieved. This interoperability will make the NBIS suitable for ballistics identifications and evidence searches with large national databases, such as the National Integrated Ballistic Information Network in the United States. (paper)

  6. Effect of joint design on ballistic performance of quenched and tempered steel welded joints

    International Nuclear Information System (INIS)

    Balakrishnan, M.; Balasubramanian, V.; Madhusudhan Reddy, G.

    2014-01-01

    Highlights: • Traditional usage of austenitic stainless steel filler for armour steel welding shows poor ballistic performance. • Earlier efforts show dubious success on ballistic resistance of armour steel joints. • Comparative evaluation of equal/unequal joint design on ballistic performance. • Effect of joint design covers the main aspects of successful bullet stoppage. - Abstract: A study was carried out to evaluate the effect of joint design on ballistic performance of armour grade quenched and tempered steel welded joints. Equal double Vee and unequal double Vee joint configuration were considered in this study. Targets were fabricated using 4 mm thick tungsten carbide hardfaced middle layer; above and below which austenitic stainless steel layers were deposited on both sides of the hardfaced interlayer in both joint configurations. Shielded metal arc welding process was used to deposit for all layers. The fabricated targets were evaluated for its ballistic performance and the results were compared in terms of depth of penetration on weld metal. From the ballistic test results, it was observed that both the targets successfully stopped the bullet penetration at weld center line. Of the two targets, the target made with unequal double Vee joint configuration offered maximum resistance to the bullet penetration at weld metal location without any bulge at the rear side. The higher volume of austenitic stainless steel front layer and the presence of hardfaced interlayer after some depth of soft austenitic stainless steel front layer is the primary reason for the superior ballistic performance of this joint

  7. 3D topography measurements on correlation cells—a new approach to forensic ballistics identifications

    Science.gov (United States)

    Song, John; Chu, Wei; Tong, Mingsi; Soons, Johannes

    2014-06-01

    Based on three-dimensional (3D) topography measurements on correlation cells, the National Institute of Standards and Technology (NIST) has developed the ‘NIST Ballistics Identification System (NBIS)’ aimed at accurate ballistics identifications and fast ballistics evidence searches. The 3D topographies are divided into arrays of correlation cells to identify ‘valid correlation areas’ and eliminate ‘invalid correlation areas’ from the matching and identification procedure. A ‘congruent matching cells’ (CMC)’ method using three types of identification parameters of the paired correlation cells (cross correlation function maximum CCFmax, spatial registration position in x-y and registration angle θ) is used for high accuracy ballistics identifications. ‘Synchronous processing’ is proposed for correlating multiple cell pairs at the same time to increase the correlation speed. The proposed NBIS can be used for correlations of both geometrical topographies and optical intensity images. All the correlation parameters and algorithms are in the public domain and subject to open tests. An error rate reporting procedure has been developed that can greatly add to the scientific support for the firearm and toolmark identification specialty, and give confidence to the trier of fact in court proceedings. The NBIS is engineered to employ transparent identification parameters and criteria, statistical models and correlation algorithms. In this way, interoperability between different ballistics identification systems can be more easily achieved. This interoperability will make the NBIS suitable for ballistics identifications and evidence searches with large national databases, such as the National Integrated Ballistic Information Network in the United States.

  8. Schottky barrier height measurements of Cu/Si(001), Ag/Si(001), and Au/Si(001) interfaces utilizing ballistic electron emission microscopy and ballistic hole emission microscopy

    International Nuclear Information System (INIS)

    Balsano, Robert; Matsubayashi, Akitomo; LaBella, Vincent P.

    2013-01-01

    The Schottky barrier heights of both n and p doped Cu/Si(001), Ag/Si(001), and Au/Si(001) diodes were measured using ballistic electron emission microscopy and ballistic hole emission microscopy (BHEM), respectively. Measurements using both forward and reverse ballistic electron emission microscopy (BEEM) and (BHEM) injection conditions were performed. The Schottky barrier heights were found by fitting to a linearization of the power law form of the Bell-Kaiser BEEM model. The sum of the n-type and p-type barrier heights are in good agreement with the band gap of silicon and independent of the metal utilized. The Schottky barrier heights are found to be below the region of best fit for the power law form of the BK model, demonstrating its region of validity

  9. Ballistic Missile Defense and ABM Treaty Limitations

    National Research Council Canada - National Science Library

    Robinson, Brian

    1998-01-01

    The U.S. must critically evaluate our current ballistic missile defense (BMD) strategy. In today's geostrategic context, is it sound strategy to continue to impose 1972 ABM Treaty restrictions on BMD systems development...

  10. Ballistic Graphene Josephson Junctions from the Short to the Long Junction Regimes.

    Science.gov (United States)

    Borzenets, I V; Amet, F; Ke, C T; Draelos, A W; Wei, M T; Seredinski, A; Watanabe, K; Taniguchi, T; Bomze, Y; Yamamoto, M; Tarucha, S; Finkelstein, G

    2016-12-02

    We investigate the critical current I_{C} of ballistic Josephson junctions made of encapsulated graphene-boron-nitride heterostructures. We observe a crossover from the short to the long junction regimes as the length of the device increases. In long ballistic junctions, I_{C} is found to scale as ∝exp(-k_{B}T/δE). The extracted energies δE are independent of the carrier density and proportional to the level spacing of the ballistic cavity. As T→0 the critical current of a long (or short) junction saturates at a level determined by the product of δE (or Δ) and the number of the junction's transversal modes.

  11. Herontwerp Ballistisch vest voor Vrouwen: Fase 1 (Redesign Ballistic Vest for Women: Phase 1)

    National Research Council Canada - National Science Library

    Koerhuis, C. L; Weghorst, M. G

    2008-01-01

    .... A questionnaire was filled out by fourteen female soldiers consisting of questions about complaints, characteristics of the ballistic vest and the mobility of the combat soldier wearing the ballistic vest...

  12. Airborne wireless communication systems, airborne communication methods, and communication methods

    Science.gov (United States)

    Deaton, Juan D [Menan, ID; Schmitt, Michael J [Idaho Falls, ID; Jones, Warren F [Idaho Falls, ID

    2011-12-13

    An airborne wireless communication system includes circuitry configured to access information describing a configuration of a terrestrial wireless communication base station that has become disabled. The terrestrial base station is configured to implement wireless communication between wireless devices located within a geographical area and a network when the terrestrial base station is not disabled. The circuitry is further configured, based on the information, to configure the airborne station to have the configuration of the terrestrial base station. An airborne communication method includes answering a 911 call from a terrestrial cellular wireless phone using an airborne wireless communication system.

  13. A Klein-tunneling transistor with ballistic graphene

    International Nuclear Information System (INIS)

    Wilmart, Quentin; Fève, Gwendal; Berroir, Jean-Marc; Plaçais, Bernard; Berrada, Salim; Hung Nguyen, V; Dollfus, Philippe; Torrin, David

    2014-01-01

    Today, the availability of high mobility graphene up to room temperature makes ballistic transport in nanodevices achievable. In particular, p-n-p transistors in the ballistic regime give access to Klein tunneling physics and allow the realization of devices exploiting the optics-like behavior of Dirac Fermions (DFs) as in the Veselago lens or the Fabry–Pérot cavity. Here we propose a Klein tunneling transistor based on the geometrical optics of DFs. We consider the case of a prismatic active region delimited by a triangular gate, where total internal reflection may occur, which leads to the tunable suppression of transistor transmission. We calculate the transmission and the current by means of scattering theory and the finite bias properties using non-equilibrium Green's function (NEGF) simulation. (letter)

  14. Aerodigitalni senzori - LH Systems ADS 40 / Airborne digital sensors: LH Systems ADS 40

    Directory of Open Access Journals (Sweden)

    Marko Pejić

    2004-01-01

    Full Text Available U radu su prezentovane osnove prikupljanja prostornih podataka metodom daljinske detekcije i klasičnim fotogrametrijskim metodom. Ukazano je na kompromis između dva metoda koji nudi digitalna aerokamera. Kompanija LH Systems proizvela je digitalnu aerokameru ADS 40 koja nudi sasvim nov koncept prikupljanja prostornih podataka. Sistem kamere obezbeđuje panhromatske i trodimenzionalne informacije koristeći tri CCD linije i opciono još pet linija iz multispektralnog opsega. Kamera skenira teren sa prostornom rezolucijom od 25 cm, površine od 300 kvadratnih kilometara, uz vreme trajanja leta koje je nešto kraće od jednog sata. / This paper presents basics of collecting spatial data with remote sensing and the classical photogrammetric method. A compromise between two methods, offered by a digital aero camera, is also suggested. The LH Systems has produced a new camera concept called Airborne Digital Sensor (ADS 40 which uses a new way of collecting spatial data. The camera system provides panchromatic and stereo information using three CCD lines and up to five more lines for multispectral imagery. The performance of the camera allows a three dimensional and multispectral image with a ground sample distance of 25 cm for an area of 300 square miles within a flight time shorter than one hour.

  15. Wound ballistic evaluation of the Taser® XREP ammunition.

    Science.gov (United States)

    Kunz, Sebastian N; Adamec, Jiri; Zinka, Bettina; Münzel, Daniela; Noël, Peter B; Eichner, Simon; Manthei, Axel; Grove, Nico; Graw, M; Peschel, Oliver

    2013-01-01

    The Taser® eXtended Range Electronic Projectile (XREP®) is a wireless conducted electrical weapon (CEW) designed to incapacitate a person from a larger distance. The aim of this study was to analyze the ballistic injury potential of the XREP. Twenty rounds were fired from the Taser®X12 TM shotgun into ballistic soap covered with artificial skin and clothing at different shooting distances (1-25 m). One shot was fired at pig skin at a shooting distance of 10 m. The average projectile velocity was 67.0 m/s. The kinetic energy levels on impact varied from 28-52 J. Depending on the intermediate target, the projectiles penetrated up to 4.2 cm into the ballistic soap. On impact the nose assembly did not separate from the chassis, and no electrical activation was registered. Upon impact, a skin penetration of the XREP cannot be excluded. However, it is very unlikely at shooting distances of 10 m or more. Clothing and a high elasticity limit of the target body area can significantly reduce the penetration risk on impact.

  16. On the influence of particle morphology on the post-impact ballistic response of ceramic armour materials

    Science.gov (United States)

    Hameed, Amer; Appleby-Thomas, Gareth; Wood, David; Jaansalu, Kevin

    2015-06-01

    Recent studies have shown evidence that the ballistic-resistance of fragmented (comminuted) ceramics is independent of the original strength of the material. In particular, experimental investigations into the ballistic behaviour of such fragmented ceramics have indicated that this response is correlated to shattered ceramic morphology. This suggests that careful control of ceramic microstructure - and therefore failure paths - might provide a route to optimise post-impact ballistic performance, thereby enhancing multi-hit capability. In this study, building on previous in-house work, ballistic tests were conducted using pre-formed `fragmented-ceramic' analogues based around three morphologically differing (but chemically identical) alumina feedstock materials compacted into target `pucks. In an evolution of previous work, variation of target thickness provided additional insight into an apparent morphology-based contribution to ballistic response.

  17. Dynamic Load Measurement of Ballistic Gelatin Impact Using an Instrumented Tube

    Science.gov (United States)

    Seidt, J. D.; Periira, J. M.; Hammer, J. T.; Gilat, A.; Ruggeri, C. R.

    2012-01-01

    Bird strikes are a common problem for the aerospace industry and can cause serious damage to an aircraft. Ballistic gelatin is frequently used as a surrogate for actual bird carcasses in bird strike tests. Numerical simulations of these tests are used to supplement experimental data, therefore it is necessary to use numerical modeling techniques that can accurately capture the dynamic response of ballistic gelatin. An experimental technique is introduced to validate these modeling techniques. A ballistic gelatin projectile is fired into a strike plate attached to a 36 in. long sensor tube. Dynamic load is measured at two locations relative to the strike plate using strain gages configured in a full Wheatstone bridge. Data from these experiments are used to validate a gelatin constitutive model. Simulations of the apparatus are analyzed to investigate its performance.

  18. Nonlocal nature of the resistance in classical ballistic transport

    International Nuclear Information System (INIS)

    Sukhorukov, E.V.; Levinson, I.B.

    1990-01-01

    An investigation is made of the resistance of ballistic microstructures formed in the two-dimensional electron gas of a GaAs/AlGaAs heterojunction representing combinations of long channels. It is shown that the nonlocal nature of the resistance (dependence on the measurement method) is unrelated to the quantum nature of the electron behavior, but is solely due to the ballistic nature of microstructures and does not disappear in the classical limit. An analog of the Landauer equation is obtained for the resistance measured by the four-probe method allowing for the geometry of the measuring probes

  19. Voltage quantization by ballistic vortices in two-dimensional superconductors

    International Nuclear Information System (INIS)

    Orlando, T.P.; Delin, K.A.

    1991-01-01

    The voltage generated by moving ballistic vortices with a mass m ν in a two-dimensional superconducting ring is quantized, and this quantization depends on the amount of charge enclosed by the ring. The quantization of the voltage is the dual to flux quantization in a superconductor, and is a manifestation of the Aharonov-Casher effect. The quantization is obtained by applying the Bohr-Sommerfeld criterion to the canonical momentum of the ballistic vortices. The results of this quantization condition can also be used to understand the persistent voltage predicted by van Wees for an array of Josephson junctions

  20. Ballistic Phonon Penetration Depth in Amorphous Silicon Dioxide.

    Science.gov (United States)

    Yang, Lin; Zhang, Qian; Cui, Zhiguang; Gerboth, Matthew; Zhao, Yang; Xu, Terry T; Walker, D Greg; Li, Deyu

    2017-12-13

    Thermal transport in amorphous silicon dioxide (a-SiO 2 ) is traditionally treated as random walks of vibrations owing to its greatly disordered structure, which results in a mean free path (MFP) approximately the same as the interatomic distance. However, this picture has been debated constantly and in view of the ubiquitous existence of thin a-SiO 2 layers in nanoelectronic devices, it is imperative to better understand this issue for precise thermal management of electronic devices. Different from the commonly used cross-plane measurement approaches, here we report on a study that explores the in-plane thermal conductivity of double silicon nanoribbons with a layer of a-SiO 2 sandwiched in-between. Through comparing the thermal conductivity of the double ribbon samples with that of corresponding single ribbons, we show that thermal phonons can ballistically penetrate through a-SiO 2 of up to 5 nm thick even at room temperature. Comprehensive examination of double ribbon samples with various oxide layer thicknesses and van der Waals bonding strengths allows for extraction of the average ballistic phonon penetration depth in a-SiO 2 . With solid experimental data demonstrating ballistic phonon transport through a-SiO 2 , this work should provide important insight into thermal management of electronic devices.

  1. Ballistic calculation of nonequilibrium Green's function in nanoscale devices using finite element method

    International Nuclear Information System (INIS)

    Kurniawan, O; Bai, P; Li, E

    2009-01-01

    A ballistic calculation of a full quantum mechanical system is presented to study 2D nanoscale devices. The simulation uses the nonequilibrium Green's function (NEGF) approach to calculate the transport properties of the devices. While most available software uses the finite difference discretization technique, our work opts to formulate the NEGF calculation using the finite element method (FEM). In calculating a ballistic device, the FEM gives some advantages. In the FEM, the floating boundary condition for ballistic devices is satisfied naturally. This paper gives a detailed finite element formulation of the NEGF calculation applied to a double-gate MOSFET device with a channel length of 10 nm and a body thickness of 3 nm. The potential, electron density, Fermi functions integrated over the transverse energy, local density of states and the transmission coefficient of the device have been studied. We found that the transmission coefficient is significantly affected by the top of the barrier between the source and the channel, which in turn depends on the gate control. This supports the claim that ballistic devices can be modelled by the transport properties at the top of the barrier. Hence, the full quantum mechanical calculation presented here confirms the theory of ballistic transport in nanoscale devices.

  2. What Should Be the United States Policy towards Ballistic Missile Defense for Northeast Asia?

    National Research Council Canada - National Science Library

    Delgado, Roberto L

    2005-01-01

    .... The threat of ballistic missiles from Northeast Asia is especially high. China and North Korea are seen as the top threats in the region when it comes to the delivery of WMD through ballistic missiles...

  3. Ballistic representation for kinematic access

    Science.gov (United States)

    Alfano, Salvatore

    2011-01-01

    This work uses simple two-body orbital dynamics to initially determine the kinematic access for a ballistic vehicle. Primarily this analysis was developed to assess when a rocket body might conjunct with an orbiting satellite platform. A family of access opportunities can be represented as a volume for a specific rocket relative to its launch platform. Alternately, the opportunities can be represented as a geographical footprint relative to aircraft or satellite position that encompasses all possible launcher locations for a specific rocket. A thrusting rocket is treated as a ballistic vehicle that receives all its energy at launch and follows a coasting trajectory. To do so, the rocket's burnout energy is used to find its equivalent initial velocity for a given launcher's altitude. Three kinematic access solutions are then found that account for spherical Earth rotation. One solution finds the maximum range for an ascent-only trajectory while another solution accommodates a descending trajectory. In addition, the ascent engagement for the descending trajectory is used to depict a rapid access scenario. These preliminary solutions are formulated to address ground-, sea-, or air-launched vehicles.

  4. Non linear interaction between a Langmuir wave and a ballistic perturbation

    International Nuclear Information System (INIS)

    Gervais, F.; Olivain, J.; Quemeneur, A.; Trocheris, M.

    1979-05-01

    The theoretical solutions of the Landau-Vlasov initial value problem giving mode-mode coupling usually neglect the free-streaming contribution. We solve theoretically this problem including the ballistic terms. We find that a new mode appears resulting from the nonlinear interaction between the Landau component and the ballistic perturbation. The amplitude of this mode is calculated as a function of distance and compared with experimental results in a plasma column

  5. Impulse-variability theory: implications for ballistic, multijoint motor skill performance.

    Science.gov (United States)

    Urbin, M A; Stodden, David F; Fischman, Mark G; Weimar, Wendi H

    2011-01-01

    Impulse-variability theory (R. A. Schmidt, H. N. Zelaznik, B. Hawkins, J. S. Frank, & J. T. Quinn, 1979) accounts for the curvilinear relationship between the magnitude and resulting variability of the muscular forces that influence the success of goal-directed limb movements. The historical roots of impulse-variability theory are reviewed in the 1st part of this article, including the relationship between movement speed and spatial error. The authors then address the relevance of impulse-variability theory for the control of ballistic, multijoint skills, such as throwing, striking, and kicking. These types of skills provide a stark contrast to the relatively simple, minimal degrees of freedom movements that characterized early research. However, the inherent demand for ballistic force generation is a strong parallel between these simple laboratory tasks and multijoint motor skills. Therefore, the authors conclude by recommending experimental procedures for evaluating the adequacy of impulse variability as a theoretical model within the context of ballistic, multijoint motor skill performance. Copyright © Taylor & Francis Group, LLC

  6. Scale effects on quasi-steady solid rocket internal ballistic behaviour

    Energy Technology Data Exchange (ETDEWEB)

    Greatrix, D. R. [Department of Aerospace Engineering, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B2K3 (Canada)

    2010-11-15

    The ability to predict with some accuracy a given solid rocket motor's performance before undertaking one or several costly experimental test firings is important. On the numerical prediction side, as various component models evolve, their incorporation into an overall internal ballistics simulation program allows for new motor firing simulations to take place, which in turn allows for updated comparisons to experimental firing data. In the present investigation, utilizing an updated simulation program, the focus is on quasi-steady performance analysis and scale effects (influence of motor size). The predicted effects of negative/positive erosive burning and propellant/casing deflection, as tied to motor size, on a reference cylindrical-grain motor's internal ballistics, are included in this evaluation. Propellant deflection has only a minor influence on the reference motor's internal ballistics, regardless of motor size. Erosive burning, on the other hand, is distinctly affected by motor scale. (author)

  7. KevlarTM Fiber-Reinforced Polybenzoxazine Alloys for Ballistic Impact Application

    Directory of Open Access Journals (Sweden)

    Chanchira Jubsilp

    2011-10-01

    Full Text Available A light weight ballistic composites from KevlarTM-reinforcing fiber having polybenzoxazine (BA/urethane prepolymer (PU alloys as a matrix were investigated in this work. The effect of alloy compositions on the ballistic composite properties was determined. The results revealed that the enhancement in the glass transition temperature (Tg of the KevlarTM-reinforced BA/PU composites compared to that of the KevlarTM-reinforced polybenzoxazine composite was observed. The increase of the elastomeric PU content in the BA/PU alloy resulted in samples with tougher characteristics. The storage modulus of the KevlarTM-reinforced BA/PU composites increased with increasing the mass fraction of polybenzoxazine. A ballistic impact test was also performed on the KevlarTM-reinforced BA/PU composites using a 9 mm handgun. It was found that the optimal contents of PU in the BA/PU alloys should be approximately 20wt%. The extent of the delaminated area and interfacial fracture were observed to change with the varied compositions of the matrix alloys. The appropriate thickness of KevlarTM-reinforced 80/20 BA/PU composite panel was 30 plies and 50 plies to resist the penetration from the ballistic impact equivalent to levels II-A and III-A of NIJ standard. The arrangement of composite panels with the higher stiffness panel at the front side also showed the best efficiency of ballistic penetration resistance.

  8. Natural Mallow Fiber-Reinforced Epoxy Composite for Ballistic Armor Against Class III-A Ammunition

    Science.gov (United States)

    Nascimento, Lucio Fabio Cassiano; Holanda, Luane Isquerdo Ferreira; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Gomes, Alaelson Vieira; Lima, Édio Pereira

    2017-10-01

    Epoxy matrix composites reinforced with up to 30 vol pct of continuous and aligned natural mallow fibers were for the first time ballistic tested as personal armor against class III-A 9 mm FMJ ammunition. The ballistic efficiency of these composites was assessed by measuring the dissipated energy and residual velocity after the bullet perforation. The results were compared to those in similar tests of aramid fabric (Kevlar™) commonly used in vests for personal protections. Visual inspection and scanning electron microscopy analysis of impact-fractured samples revealed failure mechanisms associated with fiber pullout and rupture as well as epoxy cracking. As compared to Kevlar™, the mallow fiber composite displayed practically the same ballistic efficiency. However, there is a reduction in both weight and cost, which makes the mallow fiber composites a promising material for personal ballistic protection.

  9. CAROLS: A New Airborne L-Band Radiometer for Ocean Surface and Land Observations

    Directory of Open Access Journals (Sweden)

    Ernesto Lopez-Baeza

    2011-01-01

    Full Text Available The “Cooperative Airborne Radiometer for Ocean and Land Studies” (CAROLS L-Band radiometer was designed and built as a copy of the EMIRAD II radiometer constructed by the Technical University of Denmark team. It is a fully polarimetric and direct sampling correlation radiometer. It is installed on board a dedicated French ATR42 research aircraft, in conjunction with other airborne instruments (C-Band scatterometer—STORM, the GOLD-RTR GPS system, the infrared CIMEL radiometer and a visible wavelength camera. Following initial laboratory qualifications, three airborne campaigns involving 21 flights were carried out over South West France, the Valencia site and the Bay of Biscay (Atlantic Ocean in 2007, 2008 and 2009, in coordination with in situ field campaigns. In order to validate the CAROLS data, various aircraft flight patterns and maneuvers were implemented, including straight horizontal flights, circular flights, wing and nose wags over the ocean. Analysis of the first two campaigns in 2007 and 2008 leads us to improve the CAROLS radiometer regarding isolation between channels and filter bandwidth. After implementation of these improvements, results show that the instrument is conforming to specification and is a useful tool for Soil Moisture and Ocean Salinity (SMOS satellite validation as well as for specific studies on surface soil moisture or ocean salinity.

  10. Comparison of third-order plasma wave echoes with ballistic second-order plasma wave echoes

    International Nuclear Information System (INIS)

    Leppert, H.D.; Schuelter, H.; Wiesemann, K.

    1982-01-01

    The apparent dispersion of third-order plasma wave echoes observed in a high frequency plasma is compared with that of simultaneously observed ballistic second-order echoes. Amplitude and wavelength of third-order echoes are found to be always smaller than those of second-order echoes, however, the dispersion curves of both types of echoes are very similar. These observations are in qualitative agreement with calculations of special ballistic third-order echoes. The ballistic nature of the observed third-order echoes may, therefore, be concluded from these measurements. (author)

  11. EFFECTS OF STRENGTH VS. BALLISTIC-POWER TRAINING ON THROWING PERFORMANCE

    Directory of Open Access Journals (Sweden)

    Nikolaos Zaras

    2013-03-01

    Full Text Available The purpose of the present study was to investigate the effects of 6 weeks strength vs. ballistic-power (Power training on shot put throwing performance in novice throwers. Seventeen novice male shot-put throwers were divided into Strength (N = 9 and Power (n = 8 groups. The following measurements were performed before and after the training period: shot put throws, jumping performance (CMJ, Wingate anaerobic performance, 1RM strength, ballistic throws and evaluation of architectural and morphological characteristics of vastus lateralis. Throwing performance increased significantly but similarly after Strength and Power training (7.0-13.5% vs. 6.0-11.5%, respectively. Muscular strength in leg press increased more after Strength than after Power training (43% vs. 21%, respectively, while Power training induced an 8.5% increase in CMJ performance and 9.0 - 25.8% in ballistic throws. Peak power during the Wingate test increased similarly after Strength and Power training. Muscle thickness increased only after Strength training (10%, p < 0.05. Muscle fibre Cross Sectional Area (fCSA increased in all fibre types after Strength training by 19-26% (p < 0.05, while only type IIx fibres hypertrophied significantly after Power training. Type IIx fibres (% decreased after Strength but not after Power training. These results suggest that shot put throwing performance can be increased similarly after six weeks of either strength or ballistic power training in novice throwers, but with dissimilar muscular adaptations

  12. Comparison of ballistic impact effects between biological tissue and gelatin.

    Science.gov (United States)

    Jin, Yongxi; Mai, Ruimin; Wu, Cheng; Han, Ruiguo; Li, Bingcang

    2018-02-01

    Gelatin is commonly used in ballistic testing as substitute for biological tissue. Comparison of ballistic impact effects produced in the gelatin and living tissue is lacking. The work in this paper was aimed to compare the typical ballistic impact effects (penetration trajectory, energy transfer, temporary cavity) caused by 4.8mm steel ball penetrating the 60kg porcine hind limbs and 10wt% gelatin. The impact event in the biological tissue was recorded by high speed flash X-ray machine at different delay time, while the event in the gelatin continuously recorded by high speed video was compared to that in the biological tissue. The collected results clearly displayed that the ballistic impact effects in the muscle and gelatin were similar for the steel ball test; as for instance, the projectile trajectory in the two targets was basically similar, the process of energy transfer was highly coincident, and the expansion of temporary cavity followed the same pattern. This study fully demonstrated that choosing gelatin as muscle simulant was reasonable. However, the maximum temporary cavity diameter in the gelatin was a little larger than that in the muscle, and the expansion period of temporary cavity was longer in the gelatin. Additionally, the temporary cavity collapse process in the two targets followed different patterns, and the collapse period in the gelatin was two times as long as that in the muscle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Stochastic processes crossing from ballistic to fractional diffusion with memory: exact results

    Directory of Open Access Journals (Sweden)

    V. Ilyin

    2010-01-01

    Full Text Available We address the now classical problem of a diffusion process that crosses over from a ballistic behavior at short times to a fractional diffusion (sub- or super-diffusion at longer times. Using the standard non-Markovian diffusion equation we demonstrate how to choose the memory kernel to exactly respect the two different asymptotics of the diffusion process. Having done so we solve for the probability distribution function as a continuous function which evolves inside a ballistically expanding domain. This general solution agrees for long times with the probability distribution function obtained within the continuous random walk approach but it is much superior to this solution at shorter times where the effect of the ballistic regime is crucial.

  14. Experimental evaluation of ballistic hazards in imaging diagnostic center.

    Science.gov (United States)

    Karpowicz, Jolanta; Gryz, Krzysztof

    2013-04-01

    Serious hazards for human health and life and devices in close proximity to the magnetic resonance scanners (MRI scanners) include the effects of being hit by ferromagnetic objects attracted by static magnetic field (SMF) produced by scanner magnet - the so-called ballistic hazards classified among indirect electromagnetic hazards. International safety guidelines and technical literature specify different SMF threshold values regarding ballistic hazards - e.g. 3 mT (directive 2004/40/EC, EN 60601-2-33), and 30 mT (BMAS 2009, directive proposal 2011). Investigations presented in this article were performed in order to experimentally verify SMF threshold for ballistic hazards near MRI scanners used in Poland. Investigations were performed with the use of a laboratory source of SMF (0-30 mT) and MRI scanners of various types. The levels of SMF in which metal objects of various shapes and 0.4-500 g mass are moved by the field influence were investigated. The distance from the MRI scanners (0.2-3T) where hazards may occur were also investigated. Objects investigated under laboratory conditions were moved by SMF of 2.2-15 mT magnetic flux density when they were freely suspended, but were moved by the SMF of 5.6-22 mT when they were placed on a smooth surface. Investigated objects were moved in fields of 3.5-40 mT by MRI scanners. Distances from scanner magnet cover, where ballistic hazards might occur are: up to 0.5 m for 0.2-0.3T scanners; up to 1.3 m for 0.5T scanners; up to 2.0 m for 1.5T scanners and up to 2.5 m for 3T scanners (at the front and back of the magnet). It was shown that SMF of 3 mT magnetic flux density should be taken as the threshold for ballistic hazards. Such level is compatible with SMF limit value regarding occupational safety and health-protected areas/zones, where according to the Polish labor law the procedures of work environment inspection and prevention measures regarding indirect electromagnetic hazards should be applied. Presented results

  15. Effect of ageing on the calibration of ballistic gelatin.

    Science.gov (United States)

    Guey, Jason; Rodrigues, S; Pullen, A; Shaw, B; Kieser, D C

    2018-02-27

    Ballistic gelatin is commonly used as a validated surrogate for soft tissue during terminal ballistic testing. However, the effect of a delay between production and testing of a gelatin mould remains unknown. The aim of this study was to determine any potential effects of ageing on ballistic gelatin. Depth of penetration (DoP) of 4.5 mm spherical fragment simulating projectiles was ascertained using mixtures of 10%, 11.25% and 20% Type A 250 Bloom ballistic gelatin. Testing was performed daily for 5 days using velocities between 75 and 210 m/s. DoP at day 5 was statistically compared with day 1, and net mass change was recorded daily. No significant difference was found for DoP observed with time in any of the samples (P>0.05). Spearman correlation was excellent in all moulds. The moulds with known standard calibrations remained in calibration throughout the study period. Mass loss of less than 1% was noted in all samples. Mass loss was the only quantifiable measure of changes in the blocks with time, but did not correlate with any changes in DoP. This may provide reassurance when undertaking such testing that an inadvertent delay will not significantly alter the penetration properties of the mould. Future research is recommended to determine any potential effect on the mechanical properties of gelatin at higher velocity impacts and whether the calibration corresponds to an adequate simulation under such conditions. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  16. Valley-symmetric quasi-1D transport in ballistic graphene

    Science.gov (United States)

    Lee, Hu-Jong

    We present our recent studies on gate-defined valley-symmetric one-dimensional (1D) carrier guiding in ballistic monolayer graphene and valley-symmetry-protected topological 1D transport in ballistic bilayer graphene. Successful carrier guiding was realized in ballistic monolayer graphene even in the absence of a band gap by inducing a high distinction ( more than two orders of magnitude) in the carrier density between the region of a quasi-1D channel and the rest of the top-gated regions. Conductance of a channel shows quantized values in units of 4e2/ h, suggesting that the valley symmetry is preserved. For the latter, the topological 1D conduction was realized between two closely arranged insulating regions with inverted band gaps, induced under a pair of split dual gating with polarities opposite to each other. The maximum conductance along the boundary channel showed 4e2/ h, again with the preserved valley symmetry. The 1D topological carrier guiding demonstrated in this study affords a promising route to robust valleytronic applications and sophisticated valley-associated functionalities based on 2D materials. This work was funded by the National Research Foundation of Korea.

  17. Airborne Compositae dermatitis

    DEFF Research Database (Denmark)

    Christensen, Lars Porskjær; Jakobsen, Henrik Byrial; Paulsen, E.

    1999-01-01

    The air around intact feverfew (Tanacetum parthenium) plants was examined for the presence of airborne parthenolide and other potential allergens using a high-volume air sampler and a dynamic headspace technique. No particle-bound parthenolide was detected in the former. Among volatiles emitted f...... for airborne Compositae dermatitis. Potential allergens were found among the emitted monoterpenes and their importance in airborne Compositae dermatitis is discussed....

  18. Automatic inference of geometric camera parameters and inter-camera topology in uncalibrated disjoint surveillance cameras

    Science.gov (United States)

    den Hollander, Richard J. M.; Bouma, Henri; Baan, Jan; Eendebak, Pieter T.; van Rest, Jeroen H. C.

    2015-10-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many cameras, or for frequent ad-hoc deployments of cameras, the cost of this calibration is high. This creates a barrier for the use of video analytics. Automating the calibration allows for a short configuration time, and the use of video analytics in a wider range of scenarios, including ad-hoc crisis situations and large scale surveillance systems. We show an autocalibration method entirely based on pedestrian detections in surveillance video in multiple non-overlapping cameras. In this paper, we show the two main components of automatic calibration. The first shows the intra-camera geometry estimation that leads to an estimate of the tilt angle, focal length and camera height, which is important for the conversion from pixels to meters and vice versa. The second component shows the inter-camera topology inference that leads to an estimate of the distance between cameras, which is important for spatio-temporal analysis of multi-camera tracking. This paper describes each of these methods and provides results on realistic video data.

  19. The reference ballistic imaging database revisited.

    Science.gov (United States)

    De Ceuster, Jan; Dujardin, Sylvain

    2015-03-01

    A reference ballistic image database (RBID) contains images of cartridge cases fired in firearms that are in circulation: a ballistic fingerprint database. The performance of an RBID was investigated a decade ago by De Kinder et al. using IBIS(®) Heritage™ technology. The results of that study were published in this journal, issue 214. Since then, technologies have evolved quite significantly and novel apparatus have become available on the market. The current research article investigates the efficiency of another automated ballistic imaging system, Evofinder(®) using the same database as used by De Kinder et al. The results demonstrate a significant increase in correlation efficiency: 38% of all matches were on first position of the Evofinder correlation list in comparison to IBIS(®) Heritage™ where only 19% were on the first position. Average correlation times are comparable to the IBIS(®) Heritage™ system. While Evofinder(®) demonstrates specific improvement for mutually correlating different ammunition brands, ammunition dependence of the markings is still strongly influencing the correlation result because the markings may vary considerably. As a consequence a great deal of potential hits (36%) was still far down in the correlation lists (positions 31 and lower). The large database was used to examine the probability of finding a match as a function of correlation list verification. As an example, the RBID study on Evofinder(®) demonstrates that to find at least 90% of all potential matches, at least 43% of the items in the database need to be compared on screen and this for breech face markings and firing pin impression separately. These results, although a clear improvement to the original RBID study, indicate that the implementation of such a database should still not be considered nowadays. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  20. Advanced geometries for ballistic neutron guides

    International Nuclear Information System (INIS)

    Schanzer, Christian; Boeni, Peter; Filges, Uwe; Hils, Thomas

    2004-01-01

    Sophisticated neutron guide systems take advantage of supermirrors being used to increase the neutron flux. However, the finite reflectivity of supermirrors becomes a major loss mechanism when many reflections occur, e.g. in long neutron guides and for long wavelengths. In order to reduce the number of reflections, ballistic neutron guides have been proposed. Usually linear tapered sections are used to enlarge the cross-section and finally, focus the beam to the sample. The disadvantages of linear tapering are (i) an inhomogeneous phase space at the sample position and (ii) a decreasing flux with increasing distance from the exit of the guide. We investigate the properties of parabolic and elliptic tapering for ballistic neutron guides, using the Monte Carlo program McStas with a new guide component dedicated for such geometries. We show that the maximum flux can indeed be shifted away from the exit of the guide. In addition we explore the possibilities of parabolic and elliptic geometries to create point like sources for dedicated experimental demands

  1. Deterrence of ballistic missile systems and their effects on today's air operations

    Science.gov (United States)

    Durak, Hasan

    2015-05-01

    Lately, the effect-based approach has gained importance in executing air operations. Thus, it makes more successful in obtaining the desired results by breaking the enemy's determination in a short time. Air force is the first option to be chosen in order to defuse the strategic targets. However, the problems such as the defense of targets and country, radars, range…etc. becoming serious problems. At this level ballistic missiles emerge as a strategic weapon. Ultimate emerging technologies guided by the INS and GPS can also be embedded with multiple warheads and reinforced with conventional explosive, ballistic missiles are weapons that can destroy targets with precision. They have the advantage of high speed, being easily launched from every platform and not being easily detected by air defense systems contrary to other air platforms. While these are the advantages, there are also disadvantages of the ballistic missiles. The high cost, unavailability of nuclear, biological and chemical weapons, and its limited effect while using conventional explosives against destroying the fortified targets are the disadvantages. The features mentioned above should be considered as limitation to the impact of the ballistic missiles. The aim is to impose the requests on enemies without starting a war with all components and to ensure better implementation of the operation functions during the air operations. In this study, effects of ballistic missiles in the future on air battle theatre will be discussed in the beginning, during the process and at the end phase of air operations within the scope of an effect-based approach.

  2. Localization and Ballistic Diffusion for the Tempered Fractional Brownian-Langevin Motion

    Science.gov (United States)

    Chen, Yao; Wang, Xudong; Deng, Weihua

    2017-10-01

    This paper discusses the tempered fractional Brownian motion (tfBm), its ergodicity, and the derivation of the corresponding Fokker-Planck equation. Then we introduce the generalized Langevin equation with the tempered fractional Gaussian noise for a free particle, called tempered fractional Langevin equation (tfLe). While the tfBm displays localization diffusion for the long time limit and for the short time its mean squared displacement (MSD) has the asymptotic form t^{2H}, we show that the asymptotic form of the MSD of the tfLe transits from t^2 (ballistic diffusion for short time) to t^{2-2H}, and then to t^2 (again ballistic diffusion for long time). On the other hand, the overdamped tfLe has the transition of the diffusion type from t^{2-2H} to t^2 (ballistic diffusion). The tfLe with harmonic potential is also considered.

  3. Electron transport properties in InAs four-terminal ballistic junctions under weak magnetic fields

    International Nuclear Information System (INIS)

    Koyama, M.; Fujiwara, K.; Amano, N.; Maemoto, T.; Sasa, S.; Inoue, M.

    2009-01-01

    We report on the electron transport properties based on ballistic electrons under magnetic fields in four-terminal ballistic junctions fabricated on an InAs/AlGaSb heterostructure. The four-terminal junction structure is composed of two longitudinal stems with two narrow wires slanted with 30 degree from the perpendicular axis. The electron focusing peak was obtained with the bend resistance measurement. Then it was investigated the nonlinear electron transport property of potential difference between longitudinal stems due to ballistic electrons with applying direct current from narrow wires. Observed nonlinearity showed clear rectification effects which have negative polarity regardless of input voltage polarity. Although this nonlinearity was qualitatively changed due to the Lorentz force under magnetic fields, the degradation of ballistic effects on nonlinear properties were observed when the current increased to higher strength. (copyright 2009 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  4. EXTRACTING ROOF PARAMETERS AND HEAT BRIDGES OVER THE CITY OF OLDENBURG FROM HYPERSPECTRAL, THERMAL, AND AIRBORNE LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    L. Bannehr

    2012-09-01

    Full Text Available Remote sensing methods are used to obtain different kinds of information about the state of the environment. Within the cooperative research project HiReSens, funded by the German BMBF, a hyperspectral scanner, an airborne laser scanner, a thermal camera, and a RGB-camera are employed on a small aircraft to determine roof material parameters and heat bridges of house tops over the city Oldenburg, Lower Saxony. HiReSens aims to combine various geometrical highly resolved data in order to achieve relevant evidence about the state of the city buildings. Thermal data are used to obtain the energy distribution of single buildings. The use of hyperspectral data yields information about material consistence of roofs. From airborne laser scanning data (ALS digital surface models are inferred. They build the basis to locate the best orientations for solar panels of the city buildings. The combination of the different data sets offers the opportunity to capitalize synergies between differently working systems. Central goals are the development of tools for the collection of heat bridges by means of thermal data, spectral collection of roofs parameters on basis of hyperspectral data as well as 3D-capture of buildings from airborne lasers scanner data. Collecting, analyzing and merging of the data are not trivial especially not when the resolution and accuracy is aimed in the domain of a few decimetre. The results achieved need to be regarded as preliminary. Further investigations are still required to prove the accuracy in detail.

  5. Characterization of dynamic properties of ballistic clay

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.; Broos, J.P.F.; Halls, V.; Zheng, J.

    2014-01-01

    In order use material models in (numerical) calculations, the mechanical properties of all materials involved should be known. At TNO an indirect method to determine the dynamic flow stress of materials has been generated by a combination of ballistic penetration tests with an energy-based

  6. Coherent Control of Nanoscale Ballistic Currents in Transition Metal Dichalcogenide ReS2.

    Science.gov (United States)

    Cui, Qiannan; Zhao, Hui

    2015-04-28

    Transition metal dichalcogenides are predicted to outperform traditional semiconductors in ballistic devices with nanoscale channel lengths. So far, experimental studies on charge transport in transition metal dichalcogenides are limited to the diffusive regime. Here we show, using ReS2 as an example, all-optical injection, detection, and coherent control of ballistic currents. By utilizing quantum interference between one-photon and two-photon interband transition pathways, ballistic currents are injected in ReS2 thin film samples by a pair of femtosecond laser pulses. We find that the current decays on an ultrafast time scale, resulting in an electron transport of only a fraction of one nanometer. Following the relaxation of the initially injected momentum, backward motion of the electrons for about 1 ps is observed, driven by the Coulomb force from the oppositely moved holes. We also show that the injected current can be controlled by the phase of the laser pulses. These results demonstrate a new platform to study ballistic transport of nonequilibrium carriers in transition metal dichalcogenides.

  7. Influence of Material Properties on the Ballistic Performance of Ceramics for Personal Body Armour

    Directory of Open Access Journals (Sweden)

    Christian Kaufmann

    2003-01-01

    Full Text Available In support of improved personal armour development, depth of penetration tests have been conducted on four different ceramic materials including alumina, modified alumina, silicon carbide and boron carbide. These experiments consisted of impacting ceramic tiles bonded to aluminum cylinders with 0.50 caliber armour piercing projectiles. The results are presented in terms of ballistic efficiency, and the validity of using ballistic efficiency as a measure of ceramic performance was examined. In addition, the correlation between ballistic performance and ceramic material properties, such as elastic modulus, hardness, spall strength and Hugoniot Elastic Limit, has been considered.

  8. Temperature dependence of ballistic mobility in a metamorphic InGaAs/InAlAs high electron mobility transistor

    International Nuclear Information System (INIS)

    Lee, Jongkyong; Gang, Suhyun; Jo, Yongcheol; Kim, Jongmin; Woo, Hyeonseok; Han, Jaeseok; Kim, Hyungsang; Im, Hyunsik

    2014-01-01

    We have investigated the temperature dependence of ballistic mobility in a 100 nm-long InGaAs/InAlAs metamorphic high-electron-mobility transistor designed for millimeter-wavelength RF applications. To extract the temperature dependence of quasi-ballistic mobility, our experiment involves measurements of the effective mobility in the low-bias linear region of the transistor and of the collision-dominated Hall mobility using a gated Hall bar of the same epitaxial structure. The data measured from the experiment are consistent with that of modeled ballistic mobility based on ballistic transport theory. These results advance the understanding of ballistic transport in various transistors with a nano-scale channel length that is comparable to the carrier's mean free path in the channel.

  9. Airborne Video Surveillance

    National Research Council Canada - National Science Library

    Blask, Steven

    2002-01-01

    The DARPA Airborne Video Surveillance (AVS) program was established to develop and promote technologies to make airborne video more useful, providing capabilities that achieve a UAV force multiplier...

  10. Quantum ballistic evolution in quantum mechanics: Application to quantum computers

    International Nuclear Information System (INIS)

    Benioff, P.

    1996-01-01

    Quantum computers are important examples of processes whose evolution can be described in terms of iterations of single-step operators or their adjoints. Based on this, Hamiltonian evolution of processes with associated step operators T is investigated here. The main limitation of this paper is to processes which evolve quantum ballistically, i.e., motion restricted to a collection of nonintersecting or distinct paths on an arbitrary basis. The main goal of this paper is proof of a theorem which gives necessary and sufficient conditions that T must satisfy so that there exists a Hamiltonian description of quantum ballistic evolution for the process, namely, that T is a partial isometry and is orthogonality preserving and stable on some basis. Simple examples of quantum ballistic evolution for quantum Turing machines with one and with more than one type of elementary step are discussed. It is seen that for nondeterministic machines the basis set can be quite complex with much entanglement present. It is also proven that, given a step operator T for an arbitrary deterministic quantum Turing machine, it is decidable if T is stable and orthogonality preserving, and if quantum ballistic evolution is possible. The proof fails if T is a step operator for a nondeterministic machine. It is an open question if such a decision procedure exists for nondeterministic machines. This problem does not occur in classical mechanics. Also the definition of quantum Turing machines used here is compared with that used by other authors. copyright 1996 The American Physical Society

  11. Performance of Plain Woven Jute Fabric-Reinforced Polyester Matrix Composite in Multilayered Ballistic System

    Directory of Open Access Journals (Sweden)

    Sergio Neves Monteiro

    2018-02-01

    Full Text Available The ballistic performance of plain woven jute fabric-reinforced polyester matrix composites was investigated as the second layer in a multilayered armor system (MAS. Volume fractions of jute fabric, up to 30 vol %, were mixed with orthophthalic polyester to fabricate laminate composites. Ballistic tests were conducted using high velocity 7.62 mm ammunition. The depth of penetration caused by the bullet in a block of clay witness, simulating a human body, was used to evaluate the MAS ballistic performance according to the international standard. The fractured materials after tests were analyzed by scanning electron microscopy (SEM. The results indicated that jute fabric composites present a performance similar to that of the much stronger Kevlar™, which is an aramid fabric laminate, as MAS second layer with the same thickness. The mechanism of this similar ballistic behavior as well as the comparative advantages of the jute fabric composites over the Kevlar™ are discussed.

  12. The strong thermoelectric effect in nanocarbon generated by the ballistic phonon drag of electrons

    International Nuclear Information System (INIS)

    Eidelman, E D; Vul', A Ya

    2007-01-01

    The thermoelectric power and thermoelectric figure of merit for carbon nanostructure consisting of graphite-like (sp 2 ) and diamond-like (sp 3 ) regions have been investigated. The probability of electron collisions with quasi-ballistic phonons in sp 2 regions has been analysed for the first time. We have shown that the probability is not small. We have analysed the influence of various factors on the process of the electron-ballistic phonon drag (the phonon drag effect). The thermoelectric power and thermoelectric figure of merit under conditions of ballistic transport were found to be substantially higher than those in the cases of drag by thermalized phonons and of electron diffusion. The thermoelectric figure of merit (ZT) in the case of a ballistic phonon contribution to the phonon drag of electrons should be 50 times that for chaotic phonons and 500 times that in the case of the diffusion process. In that case ZT should be a record (ZT≥2-3)

  13. Ballistic Impact Resistance of Plain Woven Kenaf/Aramid Reinforced Polyvinyl Butyral Laminated Hybrid Composite

    Directory of Open Access Journals (Sweden)

    Suhad D. Salman

    2016-07-01

    Full Text Available Traditionally, the helmet shell has been used to provide protection against head injuries and fatalities caused by ballistic threats. In this study, because of the high cost of aramid fibres and the necessity for environmentally friendly alternatives, a portion of aramid was replaced with plain woven kenaf fibre, with different arrangements and thicknesses, without jeopardising the requirements demanded by U.S. Army helmet specifications. Furthermore, novel helmets were produced and tested to reduce the dependency on the ballistic resistance components. Their use could lead to helmets that are less costly and more easily available than conventional helmet armour. The hybrid materials subjected to ballistic tests were composed of 19 layers and were fabricated by the hot press technique using different numbers and configurations of plain woven kenaf and aramid layers. In the case of ballistic performance tests, a positive effect was found for the hybridisation of kenaf and aramid laminated composites.

  14. Ballistic target tracking algorithm based on improved particle filtering

    Science.gov (United States)

    Ning, Xiao-lei; Chen, Zhan-qi; Li, Xiao-yang

    2015-10-01

    Tracking ballistic re-entry target is a typical nonlinear filtering problem. In order to track the ballistic re-entry target in the nonlinear and non-Gaussian complex environment, a novel chaos map particle filter (CMPF) is used to estimate the target state. CMPF has better performance in application to estimate the state and parameter of nonlinear and non-Gassuian system. The Monte Carlo simulation results show that, this method can effectively solve particle degeneracy and particle impoverishment problem by improving the efficiency of particle sampling to obtain the better particles to part in estimation. Meanwhile CMPF can improve the state estimation precision and convergence velocity compared with EKF, UKF and the ordinary particle filter.

  15. Dual cameras acquisition and display system of retina-like sensor camera and rectangular sensor camera

    Science.gov (United States)

    Cao, Nan; Cao, Fengmei; Lin, Yabin; Bai, Tingzhu; Song, Shengyu

    2015-04-01

    For a new kind of retina-like senor camera and a traditional rectangular sensor camera, dual cameras acquisition and display system need to be built. We introduce the principle and the development of retina-like senor. Image coordinates transformation and interpolation based on sub-pixel interpolation need to be realized for our retina-like sensor's special pixels distribution. The hardware platform is composed of retina-like senor camera, rectangular sensor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes two cameras' acquisition and display.

  16. 48 CFR 252.225-7018 - Notice of prohibition of certain contracts with foreign entities for the conduct of ballistic...

    Science.gov (United States)

    2010-10-01

    ... certain contracts with foreign entities for the conduct of ballistic missile defense research, development... foreign entities for the conduct of ballistic missile defense research, development, test, and evaluation... With Foreign Entities for the Conduct of Ballistic Missile Defense Research, Development, Test, and...

  17. [Ballistic concepts and management of gunshot wounds at members].

    Science.gov (United States)

    Fabeck, L; Hock, N; Goffin, J; Ngatchou, W

    2017-01-01

    Ballistic trauma is not the prerogative of battlefields and currently extends to civil environments. Any surgeon or emergency room can be faced with such trauma whose management requires an understanding of wound ballistics. The aim of this retrospective is reviewing the management of ballistic trauma within the C.H.U. Saint-Pierre hospital over a period of ten years. Data recorded included demographics data, lesions, clinical parameters, imaging, treatment and outcome. It appears that the wounds of the members have a low mortality rate but a significant rate of complications. Patients should be managed according to the ATLS protocol and according hemodynamic stability and location of the injury, benefit from imaging. Unstable patients will be operated in emergency, stable patients will be treated according to the extent of damage and the type of fracture either conservatively or by external fixator and intramedullary centromedullary. Debridement and antibiotics are recommended as a nerve exploration if there is a peripheral paralysis. The management of trauma in our sample appear not optimal in light of the literature especially in terms of setting the vascular point of debridement, antibiotic and nerve repair resulting in significant consequences. Two management protocols according to patients' hemodynamic status are offered.

  18. Experimental evaluation of ballistic hazards in imaging diagnostic center

    International Nuclear Information System (INIS)

    Karpowicz, Jolanta; Gryz, Krzysztof

    2013-01-01

    Serious hazards for human health and life and devices in close proximity to the magnetic resonance scanners (MRI scanners) include the effects of being hit by ferromagnetic objects attracted by static magnetic field (SMF) produced by scanner magnet – the so-called ballistic hazards classified among indirect electromagnetic hazards. International safety guidelines and technical literature specify different SMF threshold values regarding ballistic hazards – e.g. 3 mT (directive 2004/40/EC, EN 60601-2-33), and 30 mT (BMAS 2009, directive proposal 2011). Investigations presented in this article were performed in order to experimentally verify SMF threshold for ballistic hazards near MRI scanners used in Poland. Investigations were performed with the use of a laboratory source of SMF (0–30 mT) and MRI scanners of various types. The levels of SMF in which metal objects of various shapes and 0.4–500 g mass are moved by the field influence were investigated. The distance from the MRI scanners (0.2–3T) where hazards may occur were also investigated. Objects investigated under laboratory conditions were moved by SMF of 2.2–15 mT magnetic flux density when they were freely suspended, but were moved by the SMF of 5.6–22 mT when they were placed on a smooth surface. Investigated objects were moved in fields of 3.5–40 mT by MRI scanners. Distances from scanner magnet cover, where ballistic hazards might occur are: up to 0.5 m for 0.2–0.3T scanners; up to 1.3 m for 0.5T scanners; up to 2.0 m for 1.5T scanners and up to 2.5 m for 3T scanners (at the front and back of the magnet). It was shown that SMF of 3 mT magnetic flux density should be taken as the threshold for ballistic hazards. Such level is compatible with SMF limit value regarding occupational safety and health-protected areas/zones, where according to the Polish labor law the procedures of work environment inspection and prevention measures regarding indirect electromagnetic hazards should be applied

  19. Ballistic transport in semiconductor nanostructures: From quasi ...

    Indian Academy of Sciences (India)

    By suitable design it is possible to achieve quasi-ballistic transport in semiconductor nanostructures over times up to the ps-range. Monte-Carlo simulations reveal that under these conditions phase-coherent real-space oscillations of an electron ensemble, generated by fs-pulses become possible in wide potential wells.

  20. A theoretical analysis of ballistic electron emission microscopy: band structure effects and attenuation lengths

    International Nuclear Information System (INIS)

    Andres, P.L. de; Reuter, K.; Garcia-Vidal, F.J.; Flores, F.; Hohenester, U.; Kocevar, P.

    1998-01-01

    Using quantum mechanical approach, we compute the ballistic electron emission microscopy current distribution in reciprocal space to compare experimental and theoretical spectroscopic I(V) curves. In the elastic limit, this formalism is a 'parameter free' representation of the problem. At low voltages, low temperatures, and for thin metallic layers, the elastic approximation is enough to explain the experiments (ballistic conditions). At low temperatures, inelastic effects can be taken into account approximately by introducing an effective electron-electron lifetime as an imaginary part in the energy. Ensemble Monte Carlo calculations were also performed to obtain ballistic electron emission microscopy currents in good agreement with the previous approach. (author)

  1. Effects of acute static, ballistic, and PNF stretching exercise on the muscle and tendon tissue properties.

    Science.gov (United States)

    Konrad, A; Stafilidis, S; Tilp, M

    2017-10-01

    The purpose of this study was to investigate the influence of a single static, ballistic, or proprioceptive neuromuscular facilitation (PNF) stretching exercise on the various muscle-tendon parameters of the lower leg and to detect possible differences in the effects between the methods. Volunteers (n = 122) were randomly divided into static, ballistic, and PNF stretching groups and a control group. Before and after the 4 × 30 s stretching intervention, we determined the maximum dorsiflexion range of motion (RoM) with the corresponding fascicle length and pennation angle of the gastrocnemius medialis. Passive resistive torque (PRT) and maximum voluntary contraction (MVC) were measured with a dynamometer. Observation of muscle-tendon junction (MTJ) displacement with ultrasound allowed us to determine the length changes in the tendon and muscle, respectively, and hence to calculate stiffness. Although RoM increased (static: +4.3%, ballistic: +4.5%, PNF: +3.5%), PRT (static: -11.4%, ballistic: -11.5%, PNF: -13,7%), muscle stiffness (static: -13.1%, ballistic: -20.3%, PNF: -20.2%), and muscle-tendon stiffness (static: -11.3%, ballistic: -10.5%, PNF: -13.7%) decreased significantly in all the stretching groups. Only in the PNF stretching group, the pennation angle in the stretched position (-4.2%) and plantar flexor MVC (-4.6%) decreased significantly. Multivariate analysis showed no clinically relevant difference between the stretching groups. The increase in RoM and the decrease in PRT and muscle-tendon stiffness could be explained by more compliant muscle tissue following a single static, ballistic, or PNF stretching exercise. © 2017 The Authors Scandinavian Journal of Medicine & Science In Sports Published by John Wiley & Sons Ltd.

  2. On the comparison of the ballistic performance of 10% zirconia toughened alumina and 95% alumina ceramic target

    International Nuclear Information System (INIS)

    Zhang, X.F.; Li, Y.C.

    2010-01-01

    Ballistic performance of different type of ceramic materials subjected to high velocity impact was investigated in many theoretical, experimental and numerical studies. In this study, a comparison of ballistic performance of 95% alumina ceramic and 10% zirconia toughened alumina (ZTA) ceramic tiles was analyzed theoretically and experimentally. Spherical cavity model based on the concepts of mechanics of compressible porous media of Galanov was used to analyze the relation of target resistance and static mechanical properties. Experimental studies were carried out on the ballistic performance of above two types of ceramic tiles based on the depth of penetration (DOP) method, when subjected to normal impact of tungsten long rod projectiles. Typical damaged targets were presented. The residual depth of penetration on after-effect target was measured in all experiments, and the ballistic efficiency factor of above two types ceramic plates were determined. Both theoretical and experimental results show that the improvement on ballistic resistance was clearly observed by increasing fracture toughness in ZTA ceramics.

  3. Noninteracting beams of ballistic two-dimensional electrons

    International Nuclear Information System (INIS)

    Spector, J.; Stormer, H.L.; Baldwin, K.W.; Pfeiffer, L.N.; West, K.W.

    1991-01-01

    We demonstrate that two beams of two-dimensional ballistic electrons in a GaAs-AlGaAs heterostructure can penetrate each other with negligible mutual interaction analogous to the penetration of two optical beams. This allows electrical signal channels to intersect in the same plane with negligible crosstalk between the channels

  4. INNOVATIV AIRBORNE SENSORS FOR DISASTER MANAGEMENT

    Directory of Open Access Journals (Sweden)

    M. O. Altan

    2016-06-01

    Lidar supports Disaster management by analyzing changes in the DSM before and after the “event”. Advantage of Lidar is that beside rain and clouds, no other weather conditions limit their use. As an active sensor, missions in the nighttime are possible. The new mid-format cameras that make use CMOS sensors (e.g. Phase One IXU1000 can capture data also under poor and difficult light conditions and might will be the first choice for remotely sensed data acquisition in aircrafts and UAVs. UAVs will surely be more and more part of the disaster management on the detailed level. Today equipped with video live cams using RGB and Thermal IR, they assist in looking inside buildings and behind. Thus, they can continue with the aerial survey where airborne anomalies have been detected.

  5. Innovativ Airborne Sensors for Disaster Management

    Science.gov (United States)

    Altan, M. O.; Kemper, G.

    2016-06-01

    Disaster management by analyzing changes in the DSM before and after the "event". Advantage of Lidar is that beside rain and clouds, no other weather conditions limit their use. As an active sensor, missions in the nighttime are possible. The new mid-format cameras that make use CMOS sensors (e.g. Phase One IXU1000) can capture data also under poor and difficult light conditions and might will be the first choice for remotely sensed data acquisition in aircrafts and UAVs. UAVs will surely be more and more part of the disaster management on the detailed level. Today equipped with video live cams using RGB and Thermal IR, they assist in looking inside buildings and behind. Thus, they can continue with the aerial survey where airborne anomalies have been detected.

  6. Coherent Charge Transport in Ballistic InSb Nanowire Josephson Junctions

    Science.gov (United States)

    Li, S.; Kang, N.; Fan, D. X.; Wang, L. B.; Huang, Y. Q.; Caroff, P.; Xu, H. Q.

    2016-01-01

    Hybrid InSb nanowire-superconductor devices are promising for investigating Majorana modes and topological quantum computation in solid-state devices. An experimental realisation of ballistic, phase-coherent superconductor-nanowire hybrid devices is a necessary step towards engineering topological superconducting electronics. Here, we report on a low-temperature transport study of Josephson junction devices fabricated from InSb nanowires grown by molecular-beam epitaxy and provide a clear evidence for phase-coherent, ballistic charge transport through the nanowires in the junctions. We demonstrate that our devices show gate-tunable proximity-induced supercurrent and clear signatures of multiple Andreev reflections in the differential conductance, indicating phase-coherent transport within the junctions. We also observe periodic modulations of the critical current that can be associated with the Fabry-Pérot interference in the nanowires in the ballistic transport regime. Our work shows that the InSb nanowires grown by molecular-beam epitaxy are of excellent material quality and hybrid superconducting devices made from these nanowires are highly desirable for investigation of the novel physics in topological states of matter and for applications in topological quantum electronics. PMID:27102689

  7. Evaluation of bone surrogates for indirect and direct ballistic fractures.

    Science.gov (United States)

    Bir, Cynthia; Andrecovich, Chris; DeMaio, Marlene; Dougherty, Paul J

    2016-04-01

    The mechanism of injury for fractures to long bones has been studied for both direct ballistic loading as well as indirect. However, the majority of these studies have been conducted on both post-mortem human subjects (PMHS) and animal surrogates which have constraints in terms of storage, preparation and testing. The identification of a validated bone surrogate for use in forensic, medical and engineering testing would provide the ability to investigate ballistic loading without these constraints. Two specific bone surrogates, Sawbones and Synbone, were evaluated in comparison to PMHS for both direct and indirect ballistic loading. For the direct loading, the mean velocity to produce fracture was 121 ± 19 m/s for the PMHS, which was statistically different from the Sawbones (140 ± 7 m/s) and Synbone (146 ± 3 m/s). The average distance to fracture in the indirect loading was .70 cm for the PMHS. The Synbone had a statistically similar average distance to fracture (.61 cm, p=0.54) however the Sawbones average distance to fracture was statistically different (.41 cm, pballistic testing was not identified and future work is warranted. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Is muscle coordination affected by loading condition in ballistic movements?

    Science.gov (United States)

    Giroux, Caroline; Guilhem, Gaël; Couturier, Antoine; Chollet, Didier; Rabita, Giuseppe

    2015-02-01

    This study aimed to investigate the effect of loading on lower limb muscle coordination involved during ballistic squat jumps. Twenty athletes performed ballistic squat jumps on a force platform. Vertical force, velocity, power and electromyographic (EMG) activity of lower limb muscles were recorded during the push-off phase and compared between seven loading conditions (0-60% of the concentric-only maximal repetition). The increase in external load increased vertical force (from 1962 N to 2559 N; P=0.0001), while movement velocity decreased (from 2.5 to 1.6 ms(-1); P=0.0001). EMG activity of tibialis anterior first peaked at 5% of the push-off phase, followed by gluteus maximus (35%), vastus lateralis and soleus (45%), rectus femoris (55%), gastrocnemius lateralis (65%) and semitendinosus (75%). This sequence of activation (P=0.67) and the amplitude of muscle activity (P=0.41) of each muscle were not affected by loading condition. However, a main effect of muscle was observed on these parameters (peak value: Ppush-off phase. Our findings suggest that muscle coordination is not influenced by external load during a ballistic squat jump. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. HVI Ballistic Limit Charaterization of Fused Silica Thermal Pane

    Science.gov (United States)

    Bohl, William E.; Miller, Joshua E.; Christiansen, Eric L.; Deighton, Kevin.; Davis, Bruce

    2015-01-01

    The Orion spacecraft's windows are exposed to the micrometeroid and orbital debris (MMOD) space environments while in space as well as the Earth entry environment at the mission's conclusion. The need for a low-mass spacecraft window design drives the need to reduce conservatism when assessing the design for loss of crew due to MMOD impact and subsequent Earth entry. Therefore, work is underway at NASA and Lockheed Martin to improve characterization of the complete penetration ballistic limit of an outer fused silica thermal pane. Hypervelocity impact tests of the window configuration at up to 10 km/s and hydrocode modeling have been performed with a variety of projectile materials to enable refinement of the fused silica ballistic limit equation.

  10. Localization of small arms fire using acoustic measurements of muzzle blast and/or ballistic shock wave arrivals.

    Science.gov (United States)

    Lo, Kam W; Ferguson, Brian G

    2012-11-01

    The accurate localization of small arms fire using fixed acoustic sensors is considered. First, the conventional wavefront-curvature passive ranging method, which requires only differential time-of-arrival (DTOA) measurements of the muzzle blast wave to estimate the source position, is modified to account for sensor positions that are not strictly collinear (bowed array). Second, an existing single-sensor-node ballistic model-based localization method, which requires both DTOA and differential angle-of-arrival (DAOA) measurements of the muzzle blast wave and ballistic shock wave, is improved by replacing the basic external ballistics model (which describes the bullet's deceleration along its trajectory) with a more rigorous model and replacing the look-up table ranging procedure with a nonlinear (or polynomial) equation-based ranging procedure. Third, a new multiple-sensor-node ballistic model-based localization method, which requires only DTOA measurements of the ballistic shock wave to localize the point of fire, is formulated. The first method is applicable to situations when only the muzzle blast wave is received, whereas the third method applies when only the ballistic shock wave is received. The effectiveness of each of these methods is verified using an extensive set of real data recorded during a 7 day field experiment.

  11. Terminal ballistics

    CERN Document Server

    Rosenberg, Zvi

    2016-01-01

    This book comprehensively discusses essential aspects of terminal ballistics, combining experimental data, numerical simulations and analytical modeling. Employing a unique approach to numerical simulations as a measure of sensitivity for the major physical parameters, the new edition also includes the following features: new figures to better illustrate the problems discussed; improved explanations for the equation of state of a solid and for the cavity expansion process; new data concerning the Kolsky bar test; and a discussion of analytical modeling for the hole diameter in a thin metallic plate impacted by a shaped charge jet. The section on thick concrete targets penetrated by rigid projectiles has now been expanded to include the latest findings, and two new sections have been added: one on a novel approach to the perforation of thin concrete slabs, and one on testing the failure of thin metallic plates using a hydrodynamic ram.

  12. Development of a time-of-flight Compton camera prototype for online control of ion therapy and medical imaging

    International Nuclear Information System (INIS)

    Ley, Jean-Luc

    2015-01-01

    Hadron-therapy is one of the modalities available for treating cancer. This modality uses light ions (protons, carbon ions) to destroy cancer cells. Such particles have a ballistic accuracy thanks to their quasi-rectilinear trajectory, their path and the finished profile maximum dose in the end. Compared to conventional radiotherapy, this allows to spare the healthy tissue located adjacent downstream and upstream of the tumor. One of this modality's quality assurance challenges is to control the positioning of the dose deposited by ions in the patient. One possibility to perform this control is to detect the prompt gammas emitted during nuclear reactions induced along the ion path in the patient. A Compton camera prototype, theoretically allowing to maximize the detection efficiency of the prompt gammas, is being developed under a regional collaboration. This camera was the main focus of my thesis, and particularly the following points: i) studying, throughout Monte Carlo simulations, the operation of the prototype in construction, particularly with respect to the expected counting rates on the different types of accelerators in hadron-therapy ii) conducting simulation studies on the use of this camera in clinical imaging, iii) characterising the silicon detectors (scatterer) iv) confronting Geant4 simulations on the camera's response with measurements on the beam with the help of a demonstrator. As a result, the Compton camera prototype developed makes a control of the localization of the dose deposition in proton therapy to the scale of a spot possible, provided that the intensity of the clinical proton beam is reduced by a factor 200 (intensity of 10 8 protons/s). An application of the Compton camera in nuclear medicine seems to be attainable with the use of radioisotopes of an energy greater than 300 keV. These initial results must be confirmed by more realistic simulations (homogeneous and heterogeneous PMMA targets). Tests with the progressive

  13. Cost Effective Regional Ballistic Missile Defense

    Science.gov (United States)

    2016-02-16

    deploying advanced air defense systems18, such as the Russian S-300 and S-500, and concealing them in hardened, camouflaged sites, such as extensive... Russian objections to the European Phased Adaptive Approach (EPAA) and fund homeland defense priorities.39 Furthermore, the PTSS system was also... Theatre Ballistic Missile Defence Capability Becomes Operational,” Jane’s Missiles & Rockets, 1 February 2011. 55 Joseph W. Kirschbaum, REGIONAL MISSILE

  14. Toward Better Personal Ballistic Protection

    Science.gov (United States)

    2014-03-04

    Toward Better Personal Ballistic Protection Manon Bolduc1, Jason Lo2, Ruby Zhang2, Dan Walsh2, Shuqiong Lin3, Benoit Simard3, Ken Bosnick4, Mike...presenc particulate gr atly increase ceramic mad er, knowing e ceramic ma the alumina y on the mat a layered with s on the coat stantial prope C) magnif...mic fiber ma site ceramics such, thod. this fore, on of t has 8. CONCLUSION In an attempt to improve the failure resistance of ceramic

  15. Putting the Scanning Laser Environmental Airborne Fluorosensor through its paces : initial test results

    International Nuclear Information System (INIS)

    Brown, C.E.; Fingas, M.F.; Mullin, J.V.; Dick, R.; Giroud, C.

    1998-01-01

    The development and construction of a remote sensing system used to detect and map oil and related petroleum products in complex marine and shoreline environments was reviewed. The Scanning Laser Environmental Airborne Fluorosensor (SLEAF) system will be integrated into Environment Canada's DC-3 aircraft and will be undergoing extensive testing to verify its functionality in an airborne environment. Laser fluorosensors are the only sensors that can successfully detect oil in most environments including snow and ice. One of the roles of SLEAF will be to confirm or reject suspected oil contamination sites that have been targeted by infrared or visible spectral cameras. The ability of the SLEAF system to detect, classify and estimate oil coverage has been tested using a total of twenty-one oils ranging from light refined crude through to heavy refined oils. The aromatic content of the oils varied between 13 and 52 per cent and the API gravities of the oils tested varied from 11.9 to 48.6. 10 refs., 2 tabs., 2 figs

  16. Institute for Non-Lethal Defense Technologies Report: Ballistic Gelatin

    National Research Council Canada - National Science Library

    Nicholas, N. C; Welsch, J. R

    2004-01-01

    Ballistic gelatin is designed to simulate living soft tissue. It is the standard for evaluating the effectiveness of firearms against humans because of its convenience and acceptability over animal or cadaver testing...

  17. The Internal Ballistics of an Air Gun

    Science.gov (United States)

    Denny, Mark

    2011-01-01

    The internal ballistics of a firearm or artillery piece considers the pellet, bullet, or shell motion while it is still inside the barrel. In general, deriving the muzzle speed of a gunpowder firearm from first principles is difficult because powder combustion is fast and it very rapidly raises the temperature of gas (generated by gunpowder…

  18. Investigation on energy absorption efficiency of each layer in ballistic armour panel for applications in hybrid design

    OpenAIRE

    Yang, Yanfei; Chen, Xiaogang

    2017-01-01

    This study aims to reveal different energy absorption efficiency of each layer when armour panel is under ballistic impact. Through Finite Element (FE) modelling and ballistic tests, it is found that when fabrics are layered up in a panel, energy absorption efficiency is only 30%–60% of an individual fabric layer with free boundary condition. In addition, fabric layers in front, middle, and back exhibit different ballistic characteristics. Therefore, a new hybrid design principle has been pro...

  19. Ballistic thermophoresis of adsorbates on free-standing graphene.

    Science.gov (United States)

    Panizon, Emanuele; Guerra, Roberto; Tosatti, Erio

    2017-08-22

    The textbook thermophoretic force which acts on a body in a fluid is proportional to the local temperature gradient. The same is expected to hold for the macroscopic drift behavior of a diffusive cluster or molecule physisorbed on a solid surface. The question we explore here is whether that is still valid on a 2D membrane such as graphene at short sheet length. By means of a nonequilibrium molecular dynamics study of a test system-a gold nanocluster adsorbed on free-standing graphene clamped between two temperatures [Formula: see text] apart-we find a phoretic force which for submicron sheet lengths is parallel to, but basically independent of, the local gradient magnitude. This identifies a thermophoretic regime that is ballistic rather than diffusive, persisting up to and beyond a 100-nanometer sheet length. Analysis shows that the phoretic force is due to the flexural phonons, whose flow is known to be ballistic and distance-independent up to relatively long mean-free paths. However, ordinary harmonic phonons should only carry crystal momentum and, while impinging on the cluster, should not be able to impress real momentum. We show that graphene and other membrane-like monolayers support a specific anharmonic connection between the flexural corrugation and longitudinal phonons whose fast escape leaves behind a 2D-projected mass density increase endowing the flexural phonons, as they move with their group velocity, with real momentum, part of which is transmitted to the adsorbate through scattering. The resulting distance-independent ballistic thermophoretic force is not unlikely to possess practical applications.

  20. Mallow Fiber-Reinforced Epoxy Composites in Multilayered Armor for Personal Ballistic Protection

    Science.gov (United States)

    Nascimento, Lucio Fábio Cassiano; Louro, Luis Henrique Leme; Monteiro, Sergio Neves; Lima, Édio Pereira; da Luz, Fernanda Santos

    2017-10-01

    Lighter and less expensive polymer composites reinforced with natural fibers have been investigated as possible components of a multilayered armor system (MAS) for personal protection against high-velocity ammunition. Their ballistic performance was consistently found comparable with that of conventional Kevlar® synthetic aramid fiber. Among the numerous existing natural fibers with the potential for reinforcing polymer composites to replace Kevlar® in MAS, mallow fiber has not been fully investigated. Thus, the objective of this work is to evaluate the ballistic performance of epoxy composites reinforced with 30 vol.% of aligned mallow fibers as a second MAS layer backing a front ceramic plate. The results using high-velocity 7.62 ammunition show a similar indentation to a Kevlar® layer with the same thickness. An impedance matching calculation supports the similar ballistic performance of mallow fiber composite and Kevlar®. Reduced MAS costs associated with the mallow fiber composite are practical advantages over Kevlar®.

  1. Photogrammetry and Remote Sensing: New German Standards (din) Setting Quality Requirements of Products Generated by Digital Cameras, Pan-Sharpening and Classification

    Science.gov (United States)

    Reulke, R.; Baltrusch, S.; Brunn, A.; Komp, K.; Kresse, W.; von Schönermark, M.; Spreckels, V.

    2012-08-01

    10 years after the first introduction of a digital airborne mapping camera in the ISPRS conference 2000 in Amsterdam, several digital cameras are now available. They are well established in the market and have replaced the analogue camera. A general improvement in image quality accompanied the digital camera development. The signal-to-noise ratio and the dynamic range are significantly better than with the analogue cameras. In addition, digital cameras can be spectrally and radiometrically calibrated. The use of these cameras required a rethinking in many places though. New data products were introduced. In the recent years, some activities took place that should lead to a better understanding of the cameras and the data produced by these cameras. Several projects, like the projects of the German Society for Photogrammetry, Remote Sensing and Geoinformation (DGPF) or EuroSDR (European Spatial Data Research), were conducted to test and compare the performance of the different cameras. In this paper the current DIN (Deutsches Institut fuer Normung - German Institute for Standardization) standards will be presented. These include the standard for digital cameras, the standard for ortho rectification, the standard for classification, and the standard for pan-sharpening. In addition, standards for the derivation of elevation models, the use of Radar / SAR, and image quality are in preparation. The OGC has indicated its interest in participating that development. The OGC has already published specifications in the field of photogrammetry and remote sensing. One goal of joint future work could be to merge these formerly independent developments and the joint development of a suite of implementation specifications for photogrammetry and remote sensing.

  2. Elements of sub-quantum thermodynamics: quantum motion as ballistic diffusion

    International Nuclear Information System (INIS)

    Groessing, G; Fussy, S; Pascasio, J Mesa; Schwabl, H

    2011-01-01

    By modelling quantum systems as emerging from a (classical) sub-quantum thermodynamics, the quantum mechanical 'decay of the wave packet' is shown to simply result from sub-quantum diffusion with a specific diffusion coefficient varying in time due to a particle's changing thermal environment. It is thereby proven that free quantum motion strictly equals ballistic diffusion. The exact quantum mechanical trajectory distributions and the velocity field of the Gaussian wave packet are thus derived solely from classical physics. Moreover, also quantum motion in a linear (e.g., gravitational) potential is shown to equal said ballistic diffusion. Quantitative statements on the trajectories' characteristic behaviours are obtained which provide a detailed 'micro-causal' explanation in full accordance with momentum conservation.

  3. An investigation into the relationship between thermal shock resistance and ballistic performance of ceramic materials

    Science.gov (United States)

    Beaumont, Robert

    Currently, there are no reliable methods for screening potential armour materials and hence full-scale ballistic trials are needed. These are both costly and time-consuming in terms of the actual test and also in the materials development that needs to take place to produce sufficient material to give a meaningful result. Whilst it will not be possible to dispense with ballistic trials before material deployment in armour applications, the ability to shorten the development cycle would be advantageous. The thermal shock performance of ceramic armour materials has been highlighted as potential marker for ballistic performance. Hence the purpose of this study was to investigate this further. A new thermal shock technique that reproduced features relevant to ballistic testing was sought. As it would be beneficial to have a simple test that did not use much material, a water-drop method was adopted. This was combined with a variety of characterisation techniques, administered pre- and post-shock. The methods included measurement of the amplitude of ultrasonic wave transmission through the sample alongside residual strength testing using a biaxial ball-on-ball configuration and reflected light and confocal microscopy. Once the protocols had been refined the testing regime was applied to a group of ceramic materials. The materials selected were from two broad groups: alumina and carbide materials. Carbide ceramics show superior performance to alumina ceramics in ballistic applications so it was essential that any screening test would be easily able to differentiate the two groups. Within the alumina family, two commercially available materials, AD995 and Sintox FA, were selected. These were tested alongside three developmental silicon carbide-boron carbide composites, which had identical chemical compositions but different microstructures and thus presented more of a challenge in terms of differentiation. The results from the various tests were used to make predictions

  4. The Advantages of Normalizing Electromyography to Ballistic Rather than Isometric or Isokinetic Tasks.

    Science.gov (United States)

    Suydam, Stephen M; Manal, Kurt; Buchanan, Thomas S

    2017-07-01

    Isometric tasks have been a standard for electromyography (EMG) normalization stemming from anatomic and physiologic stability observed during contraction. Ballistic dynamic tasks have the benefit of eliciting maximum EMG signals for normalization, despite having the potential for greater signal variability. It is the purpose of this study to compare maximum voluntary isometric contraction (MVIC) to nonisometric tasks with increasing degrees of extrinsic variability, ie, joint range of motion, velocity, rate of contraction, etc., to determine if the ballistic tasks, which elicit larger peak EMG signals, are more reliable than the constrained MVIC. Fifteen subjects performed MVIC, isokinetic, maximum countermovement jump, and sprint tasks while EMG was collected from 9 muscles in the quadriceps, hamstrings, and lower leg. The results revealed the unconstrained ballistic tasks were more reliable compared to the constrained MVIC and isokinetic tasks for all triceps surae muscles. The EMG from sprinting was more reliable than the constrained cases for both the hamstrings and vasti. The most reliable EMG signals occurred when the body was permitted its natural, unconstrained motion. These results suggest that EMG is best normalized using ballistic tasks to provide the greatest within-subject reliability, which beneficially yield maximum EMG values.

  5. Computational Investigation of Effects of Grain Size on Ballistic Performance of Copper

    Science.gov (United States)

    He, Ge; Dou, Yangqing; Guo, Xiang; Liu, Yucheng

    2018-01-01

    Numerical simulations were conducted to compare ballistic performance and penetration mechanism of copper (Cu) with four representative grain sizes. Ballistic limit velocities for coarse-grained (CG) copper (grain size ≈ 90 µm), regular copper (grain size ≈ 30 µm), fine-grained (FG) copper (grain size ≈ 890 nm), and ultrafine-grained (UG) copper (grain size ≈ 200 nm) were determined for the first time through the simulations. It was found that the copper with reduced grain size would offer higher strength and better ductility, and therefore renders improved ballistic performance than the CG and regular copper. High speed impact and penetration behavior of the FG and UG copper was also compared with the CG coppers strengthened by nanotwinned (NT) regions. The comparison results showed the impact and penetration resistance of UG copper is comparable to the CG copper strengthened by NT regions with the minimum twin spacing. Therefore, besides the NT-strengthened copper, the single phase copper with nanoscale grain size could also be a strong candidate material for better ballistic protection. A computational modeling and simulation framework was proposed for this study, in which Johnson-Cook (JC) constitutive model is used to predict the plastic deformation of Cu; the JC damage model is to capture the penetration and fragmentation behavior of Cu; Bao-Wierzbicki (B-W) failure criterion defines the material's failure mechanisms; and temperature increase during this adiabatic penetration process is given by the Taylor-Quinney method.

  6. Using airborne middle-infrared (1.45–2.0 μm) video imagery for distinguishing plant species and soil conditions

    International Nuclear Information System (INIS)

    Everitt, J.H.; Escobar, D.E.; Alaniz, M.A.; Davis, M.R.

    1987-01-01

    This paper describes the use of a black-and-white visible/infrared (0.4–2.4 μm) sensitive video camera, filtered to record radiation within the 1.45–2.0 μm middle-infrared water absorption region, for discriminating among plant species and soil conditions. The camera provided adequate quality airborne imagery that distinguished the succulent plant species onions (Allium cepum L.) and aloe vera (Aloe barbadensis Mill.) from nonsucculent plant species. Moreover, wet soil, dry crusted soil, and dry fallow soil could be differentiated in middle-infrared video images. Succulent plants, however, could not be distinguished from wet soil or water. These results show that middle-infrared video imagery has potential use for remote sensing research and applications

  7. High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera Tracking

    Science.gov (United States)

    Liss, J.; Dunagan, S. E.; Johnson, R. R.; Chang, C. S.; LeBlanc, S. E.; Shinozuka, Y.; Redemann, J.; Flynn, C. J.; Segal-Rosenhaimer, M.; Pistone, K.; Kacenelenbogen, M. S.; Fahey, L.

    2016-12-01

    High Precision Sunphotometer using Wide Dynamic Range (WDR) Camera TrackingThe NASA Ames Sun-photometer-Satellite Group, DOE, PNNL Atmospheric Sciences and Global Change Division, and NASA Goddard's AERONET (AErosol RObotic NETwork) team recently collaborated on the development of a new airborne sunphotometry instrument that provides information on gases and aerosols extending far beyond what can be derived from discrete-channel direct-beam measurements, while preserving or enhancing many of the desirable AATS features (e.g., compactness, versatility, automation, reliability). The enhanced instrument combines the sun-tracking ability of the current 14-Channel NASA Ames AATS-14 with the sky-scanning ability of the ground-based AERONET Sun/sky photometers, while extending both AATS-14 and AERONET capabilities by providing full spectral information from the UV (350 nm) to the SWIR (1,700 nm). Strengths of this measurement approach include many more wavelengths (isolated from gas absorption features) that may be used to characterize aerosols and detailed (oversampled) measurements of the absorption features of specific gas constituents. The Sky Scanning Sun Tracking Airborne Radiometer (3STAR) replicates the radiometer functionality of the AATS-14 instrument but incorporates modern COTS technologies for all instruments subsystems. A 19-channel radiometer bundle design is borrowed from a commercial water column radiance instrument manufactured by Biospherical Instruments of San Diego California (ref, Morrow and Hooker)) and developed using NASA funds under the Small Business Innovative Research (SBIR) program. The 3STAR design also incorporates the latest in robotic motor technology embodied in Rotary actuators from Oriental motor Corp. having better than 15 arc seconds of positioning accuracy. Control system was designed, tested and simulated using a Hybrid-Dynamical modeling methodology. The design also replaces the classic quadrant detector tracking sensor with a

  8. Measurements of the ballistic-phonon component resulting from nuclear and electron recoils in crystalline silicon

    International Nuclear Information System (INIS)

    Lee, A.T.; Cabrera, B.; Dougherty, B.L.; Penn, M.J.; Pronko, J.G.; Tamura, S.

    1996-01-01

    We present measurements of the ballistic-phonon component resulting from nuclear and electron recoils in silicon at ∼380 mK. The detectors used for these experiments consist of a 300-μm-thick monocrystal of silicon instrumented with superconducting titanium transition-edge sensors. These sensors detect the initial wavefront of athermal phonons and give a pulse height that is sensitive to changes in surface-energy density resulting from the focusing of ballistic phonons. Nuclear recoils were generated by neutron bombardment of the detector. A Van de Graaff proton accelerator and a thick 7 Li target were used. Pulse-height spectra were compared for neutron, x-ray, and γ-ray events. A previous analysis of this data set found evidence for an increase in the ballistic-phonon component for nuclear recoils compared to electron recoils at a 95% confidence level. An improved understanding of the detector response has led to a change in the result. In the present analysis, the data are consistent with no increase at the 68% confidence level. This change stems from an increase in the uncertainty of the result rather than a significant change in the central value. The increase in ballistic phonon energy for nuclear recoils compared to electron recoils as a fraction of the total phonon energy (for equal total phonon energy events) was found to be 0.024 +0.041 -0.055 (68% confidence level). This result sets a limit of 11.6% (95% confidence level) on the ballistic phonon enhancement for nuclear recoils predicted by open-quote open-quote hot spot close-quote close-quote and electron-hole droplet models, which is the most stringent to date. To measure the ballistic-phonon component resulting from electron recoils, the pulse height as a function of event depth was compared to that of phonon simulations. (Abstract Truncated)

  9. Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions

    Science.gov (United States)

    2013-01-01

    REPORT Friction Stir Weld Failure Mechanisms in Aluminum-Armor Structures Under Ballistic Impact Loading Conditions 14. ABSTRACT 16. SECURITY...properties and of the attendant ballistic-impact failure mechanisms in prototypical friction stir welding (FSW) joints found in armor structures made of high...mechanisms, friction stir welding M. Grujicic, B. Pandurangan, A. Arakere, C-F. Yen, B. A. Cheeseman Clemson University Office of Sponsored Programs 300

  10. Validation of the NATO Armaments Ballistic Kernel for use in small-arms fire control systems

    Directory of Open Access Journals (Sweden)

    D. Corriveau

    2017-06-01

    Full Text Available In support for the development of a new small-arm ballistic computer based on the NATO Armaments Ballistic Kernel (NABK for the Canadian snipers, DRDC Valcartier Research Centre was asked to carry out high-fidelity 6 degree-of-freedom (6-DOF trajectory simulations for a set of relevant vignettes for the snipers, and to compare the direct fire 6-DOF simulation results with those obtained with the 4-DOF NATO Armaments Ballistic Kernel (NABK adapted to simulate small-arm ammunition trajectories. To conduct this study, DRDC Valcartier Research Centre used BALCO v1.0b. This paper presents (1 the process and the methodology employed to carry out the sniper direct fire solution study, (2 the modeling and the simulation of the sniper projectile, the approach used in calculating the firing solutions, and the results of direct fire simulations for the sniper vignettes, and (3 an analysis of firing solutions obtained with the BALCO engine versus those of NABK. The work presented in this paper serves to validate the use of NABK for the new sniper ballistic computer.

  11. Artifacts that mimic ballistic magnetoresistance

    International Nuclear Information System (INIS)

    Egelhoff, W.F. . E-mail : egelhoff@nist.gov; Gan, L.; Ettedgui, H.; Kadmon, Y.; Powell, C.J.; Chen, P.J.; Shapiro, A.J.; McMichael, R.D.; Mallett, J.J.; Moffat, T.P.; Stiles, M.D.; Svedberg, E.B.

    2005-01-01

    We have investigated the circumstances underlying recent reports of very large values of ballistic magnetoresistance (BMR) in nanocontacts between magnetic wires. We find that the geometries used are subject to artifacts due to motion of the wires that distort the nanocontact thereby changing its electrical resistance. Since these nanocontacts are often of atomic scale, reliable experiments would require stability on the atomic scale. No method for achieving such stability in macroscopic wires is apparent. We conclude that macroscopic magnetic wires cannot be used to establish the validity of the BMR effect

  12. A brief review of strength and ballistic assessment methodologies in sport.

    Science.gov (United States)

    McMaster, Daniel Travis; Gill, Nicholas; Cronin, John; McGuigan, Michael

    2014-05-01

    An athletic profile should encompass the physiological, biomechanical, anthropometric and performance measures pertinent to the athlete's sport and discipline. The measurement systems and procedures used to create these profiles are constantly evolving and becoming more precise and practical. This is a review of strength and ballistic assessment methodologies used in sport, a critique of current maximum strength [one-repetition maximum (1RM) and isometric strength] and ballistic performance (bench throw and jump capabilities) assessments for the purpose of informing practitioners and evolving current assessment methodologies. The reliability of the various maximum strength and ballistic assessment methodologies were reported in the form of intra-class correlation coefficients (ICC) and coefficient of variation (%CV). Mean percent differences (Mdiff = [/Xmethod1 - Xmethod2/ / (Xmethod1 + Xmethod2)] x 100) and effect size (ES = [Xmethod2 - Xmethod1] ÷ SDmethod1) calculations were used to assess the magnitude and spread of methodological differences for a given performance measure of the included studies. Studies were grouped and compared according to their respective performance measure and movement pattern. The various measurement systems (e.g., force plates, position transducers, accelerometers, jump mats, optical motion sensors and jump-and-reach apparatuses) and assessment procedures (i.e., warm-up strategies, loading schemes and rest periods) currently used to assess maximum isometric squat and mid-thigh pull strength (ICC > 0.95; CV 0.91; CV ballistic (vertical jump and bench throw) capabilities (ICC > 0.82; CV ballistic performance in recreational and elite athletes, alike. However, the reader needs to be cognisant of the inherent differences between measurement systems, as selection will inevitably affect the outcome measure. The strength and conditioning practitioner should also carefully consider the benefits and limitations of the different measurement

  13. Gate controlled high efficiency ballistic energy conversion system

    NARCIS (Netherlands)

    Xie, Yanbo; Bos, Diederik; de Boer, Hans L.; van den Berg, Albert; Eijkel, Jan C.T.; Zengerle, R.

    2013-01-01

    Last year we demonstrated the microjet ballistic energy conversion system[1]. Here we show that the efficiency of such a system can be further improved by gate control. With gate control the electrical current generation is enhanced a hundred times with respect to the current generated from the zeta

  14. Crop Classification and LAI Estimation Using Original and Resolution-Reduced Images from Two Consumer-Grade Cameras

    Directory of Open Access Journals (Sweden)

    Jian Zhang

    2017-10-01

    Full Text Available Consumer-grade cameras are being increasingly used for remote sensing applications in recent years. However, the performance of this type of cameras has not been systematically tested and well documented in the literature. The objective of this research was to evaluate the performance of original and resolution-reduced images taken from two consumer-grade cameras, a RGB camera and a modified near-infrared (NIR camera, for crop identification and leaf area index (LAI estimation. Airborne RGB and NIR images taken over a 6.5-square-km cropping area were mosaicked and aligned to create a four-band mosaic with a spatial resolution of 0.4 m. The spatial resolution of the mosaic was then reduced to 1, 2, 4, 10, 15 and 30 m for comparison. Six supervised classifiers were applied to the RGB images and the four-band images for crop identification, and 10 vegetation indices (VIs derived from the images were related to ground-measured LAI. Accuracy assessment showed that maximum likelihood applied to the 0.4-m images achieved an overall accuracy of 83.3% for the RGB image and 90.4% for the four-band image. Regression analysis showed that the 10 VIs explained 58.7% to 83.1% of the variability in LAI. Moreover, spatial resolutions at 0.4, 1, 2 and 4 m achieved better classification results for both crop identification and LAI prediction than the coarser spatial resolutions at 10, 15 and 30 m. The results from this study indicate that imagery from consumer-grade cameras can be a useful data source for crop identification and canopy cover estimation.

  15. Image-guided percutaneous removal of ballistic foreign bodies secondary to air gun injuries.

    Science.gov (United States)

    Rothermund, Jacob L; Rabe, Andrew J; Zumberge, Nicholas A; Murakami, James W; Warren, Patrick S; Hogan, Mark J

    2018-01-01

    Ballistic injuries with retained foreign bodies from air guns is a relatively common problem, particularly in children and adolescents. If not removed in a timely fashion, the foreign bodies can result in complications, including pain and infection. Diagnostic methods to identify the presence of the foreign body run the entire gamut of radiology, particularly radiography, ultrasound (US) and computed tomography (CT). Removal of the foreign bodies can be performed by primary care, emergency, surgical, and radiologic clinicians, with or without imaging guidance. To evaluate the modalities of radiologic detection and the experience of image-guided ballistic foreign body removal related to air gun injuries within the interventional radiology department of a large pediatric hospital. A database of more than 1,000 foreign bodies that were removed with imaging guidance by the interventional radiologists at our institution was searched for ballistic foreign bodies from air guns. The location, dimensions, diagnostic modality, duration, complications and imaging modality used for removal were recorded. In addition, the use of sedation and anesthesia required for the procedures was also recorded. Sixty-one patients with ballistic foreign bodies were identified. All foreign bodies were metallic BBs or pellets. The age of the patients ranged from 5 to 20 years. The initial diagnostic modality to detect the foreign bodies was primarily radiography. The primary modality to assist in removal was US, closely followed by fluoroscopy. For the procedure, 32.7% of the patients required some level of sedation. Only two patients had an active infection at the time of the removal. The foreign bodies were primarily in the soft tissues; however, successful removal was also performed from intraosseous, intraglandular and intratendinous locations. All cases resulted in successful removal without complications. Image-guided removal of ballistic foreign bodies secondary to air guns is a very

  16. Surgeon preferences regarding antibiotic prophylaxis for ballistic fractures.

    Science.gov (United States)

    Marecek, Geoffrey S; Earhart, Jeffrey S; Gardner, Michael J; Davis, Jason; Merk, Bradley R

    2016-06-01

    Scant evidence exists to support antibiotic use for low velocity ballistic fractures (LVBF). We therefore sought to define current practice patterns. We hypothesized that most surgeons prescribe antibiotics for LVBF, prescribing is not driven by institutional protocols, and that decisions are based on protocols utilized for blunt trauma. A web-based questionnaire was emailed to the membership of the Orthopaedic Trauma Association (OTA). The questionnaire included demographic information and questions about LVBF treatment practices. Two hundred and twenty surgeons responded. One hundred and fifty-four (70 %) respondents worked at a Level-1 trauma center, 176 (80 %) had received fellowship education in orthopaedic trauma and 104 (47 %) treated at least 10 ballistic fractures annually. Responses were analyzed with SAS 9.3 for Windows (SAS Institute Inc, Cary, NC). One hundred eighty-six respondents (86 %) routinely provide antibiotics for LVBF. Those who did not were more apt to do so for intra-articular fractures (8/16, 50 %) and pelvic fractures with visceral injury (10/16, 63 %). Most surgeons (167, 76 %) do not believe the Gustilo-Anderson classification applies to ballistic fractures, and (20/29, 70 %) do not base their antibiotic choice on the classification system. Few institutions (58, 26 %) have protocols guiding antibiotic use for LVBF. Routine antibiotic use for LVBF is common; however, practice is not dictated by institutional protocol. Although antibiotic use generally follows current blunt trauma guidelines, surgeons do not base their treatment decisions the Gustilo-Anderson classification. Given the high rate of antibiotic use for LVBF, further study should focus on providing evidence-based treatment guidelines.

  17. Designing an Innovative Composite Armor System for Affordable Ballistic Protection

    National Research Council Canada - National Science Library

    Ma, Zheng-Dong; Wang, Hui; Cui, Yushun; Rose, Douglas; Socks, Adria; Ostberg, Donald

    2006-01-01

    .... This paper focuses on the frontal armor plate and back plate design problems with demonstration examples, including both results of the virtual prototyping and ballistic testing for proof-of-concept...

  18. Development of underwater camera using high-definition camera

    International Nuclear Information System (INIS)

    Tsuji, Kenji; Watanabe, Masato; Takashima, Masanobu; Kawamura, Shingo; Tanaka, Hiroyuki

    2012-01-01

    In order to reduce the time for core verification or visual inspection of BWR fuels, the underwater camera using a High-Definition camera has been developed. As a result of this development, the underwater camera has 2 lights and 370 x 400 x 328mm dimensions and 20.5kg weight. Using the camera, 6 or so spent-fuel IDs are identified at 1 or 1.5m distance at a time, and 0.3mmφ pin-hole is recognized at 1.5m distance and 20 times zoom-up. Noises caused by radiation less than 15 Gy/h are not affected the images. (author)

  19. Determination of the propellant combustion law under ballistic experiment conditions

    Science.gov (United States)

    Ishchenko, A. N.; Diachkovskii, A. S.; Zykova, A. I.; Kasimov, VZ; Samorokova, N. M.

    2017-11-01

    The main characteristics of ballistic experiment are the maximum pressure in the combustion chamber P max and the projectile velocity at the time of barrel leaving U M. During the work the burning law of the new high-energy fuel was determined in a ballistic experiment. This burning law was used for a parametric study of depending P max and U M from a powder charge mass and a traveling charge at initial temperature of + 20 °C was carried out. The optimal conditions for loading were obtained for improving the muzzle velocity by 14.9 %. Under optimal loading, there is defined the conditions, which is possible to get the greatest value muzzle velocity projectile at pressures up to 600 MPa.

  20. Determine ISS Soyuz Orbital Module Ballistic Limits for Steel Projectiles Hypervelocity Impact Testing

    Science.gov (United States)

    Lyons, Frankel

    2013-01-01

    A new orbital debris environment model (ORDEM 3.0) defines the density distribution of the debris environment in terms of the fraction of debris that are low-density (plastic), medium-density (aluminum) or high-density (steel) particles. This hypervelocity impact (HVI) program focused on assessing ballistic limits (BLs) for steel projectiles impacting the enhanced Soyuz Orbital Module (OM) micrometeoroid and orbital debris (MMOD) shield configuration. The ballistic limit was defined as the projectile size on the threshold of failure of the OM pressure shell as a function of impact speeds and angle. The enhanced OM shield configuration was first introduced with Soyuz 30S (launched in May 2012) to improve the MMOD protection of Soyuz vehicles docked to the International Space Station (ISS). This test program provides HVI data on U.S. materials similar in composition and density to the Russian materials for the enhanced Soyuz OM shield configuration of the vehicle. Data from this test program was used to update ballistic limit equations used in Soyuz OM penetration risk assessments. The objective of this hypervelocity impact test program was to determine the ballistic limit particle size for 440C stainless steel spherical projectiles on the Soyuz OM shielding at several impact conditions (velocity and angle combinations). This test report was prepared by NASA-JSC/ HVIT, upon completion of tests.

  1. Influence of Material Properties on the Ballistic Performance of Ceramics for Personal Body Armour

    OpenAIRE

    Kaufmann, Christian; Cronin, Duane; Worswick, Michael; Pageau, Gilles; Beth, Andre

    2003-01-01

    In support of improved personal armour development, depth of penetration tests have been conducted on four different ceramic materials including alumina, modified alumina, silicon carbide and boron carbide. These experiments consisted of impacting ceramic tiles bonded to aluminum cylinders with 0.50 caliber armour piercing projectiles. The results are presented in terms of ballistic efficiency, and the validity of using ballistic efficiency as a measure of ceramic performance was examined. In...

  2. Airborne radionuclide waste-management reference document

    International Nuclear Information System (INIS)

    Brown, R.A.; Christian, J.D.; Thomas, T.R.

    1983-07-01

    This report provides the detailed data required to develop a strategy for airborne radioactive waste management by the Department of Energy (DOE). The airborne radioactive materials of primary concern are tritium (H-3), carbon-14 (C-14), krypton-85 (Kr-85), iodine-129 (I-129), and radioactive particulate matter. The introductory section of the report describes the nature and broad objectives of airborne waste management. The relationship of airborne waste management to other waste management programs is described. The scope of the strategy is defined by considering all potential sources of airborne radionuclides and technologies available for their management. Responsibilities of the regulatory agencies are discussed. Section 2 of this document deals primarily with projected inventories, potential releases, and dose commitments of the principal airborne wastes from the light water reactor (LWR) fuel cycle. In Section 3, dose commitments, technologies, costs, regulations, and waste management criteria are analyzed. Section 4 defines goals and objectives for airborne waste management

  3. Investigation of energy levels of Er-impurity centers in Si by the method of ballistic electron emission spectroscopy

    International Nuclear Information System (INIS)

    Filatov, D. O.; Zimovets, I. A.; Isakov, M. A.; Kuznetsov, V. P.; Kornaukhov, A. V.

    2011-01-01

    The method of ballistic electron emission spectroscopy is used for the first time to study the energy spectrum of Er-impurity complexes in Si. The features are observed in the ballistic electron spectra of mesa diodes based on p + -n + Si structures with a thin (∼30 nm) p + -Si:Er surface layer in the region of ballistic-electron energies eV t lower than the conduction-band-edge energy E c in this layer. They are associated with the tunnel injection of ballistic electrons from the probe of the scanning tunnel microscope to the deep donor levels of the Er-impurity complexes in the p + -Si:Er layer with subsequent thermal excitation into the conduction band and the diffusion to the p + -n + junction and the direct tunneling in it. To verify this assumption, the ballistic-electron transport was simulated in the system of the Pt probe, native-oxide layer SiO 2 -p + -Si:Er-n + , and Si substrate. By approximating the experimental ballistic-electron spectra with the modeling spectra, the ground-state energy of the Er complex in Si was determined: E d ≈ E c − 0.27 eV. The indicated value is consistent with the data published previously and obtained from the measurements of the temperature dependence of the free-carrier concentration in Si:Er layers.

  4. Investigation of thermal effects on FinFETs in the quasi-ballistic regime

    Science.gov (United States)

    Yin, Longxiang; Shen, Lei; Di, Shaoyan; Du, Gang; Liu, Xiaoyan

    2018-04-01

    In this work, the thermal effects of FinFETs in the quasi-ballistic regime are investigated using the Monte Carlo method. Bulk Si nFinFETs with the same fin structure and two different gate lengths L g = 20 and 80 nm are investigated and compared to evaluate the thermal effects on the performance of FinFETs in the quasi-ballistic regime. The on current of the 20 nm FinFET with V gs = 0.7 V does not decrease with increasing lattice temperature (T L) at a high V ds. The electrostatic properties in the 20 nm FinFET are more affected by T L than those in the 80 nm FinFET. However, the electron transport in the 20 nm FinFET is less affected by T L than that in the 80 nm FinFET. The electrostatic properties being more sensitive and the electron transport being less sensitive to thermal effects in the quasi-ballistic regime than in the diffusive regime should be considered for effective device modeling and design.

  5. Airborne relay-based regional positioning system.

    Science.gov (United States)

    Lee, Kyuman; Noh, Hongjun; Lim, Jaesung

    2015-05-28

    Ground-based pseudolite systems have some limitations, such as low vertical accuracy, multipath effects and near-far problems. These problems are not significant in airborne-based pseudolite systems. However, the monitoring of pseudolite positions is required because of the mobility of the platforms on which the pseudolites are mounted, and this causes performance degradation. To address these pseudolite system limitations, we propose an airborne relay-based regional positioning system that consists of a master station, reference stations, airborne relays and a user. In the proposed system, navigation signals are generated from the reference stations located on the ground and are relayed via the airborne relays. Unlike in conventional airborne-based systems, the user in the proposed system sequentially estimates both the locations of airborne relays and his/her own position. Therefore, a delay due to monitoring does not occur, and the accuracy is not affected by the movement of airborne relays. We conducted several simulations to evaluate the performance of the proposed system. Based on the simulation results, we demonstrated that the proposed system guarantees a higher accuracy than airborne-based pseudolite systems, and it is feasible despite the existence of clock offsets among reference stations.

  6. Optical Airborne Tracker System

    Data.gov (United States)

    National Aeronautics and Space Administration — The Optical Airborne Tracker System (OATS) is an airborne dual-axis optical tracking system capable of pointing at any sky location or ground target.  The objectives...

  7. Sub-Camera Calibration of a Penta-Camera

    Science.gov (United States)

    Jacobsen, K.; Gerke, M.

    2016-03-01

    Penta cameras consisting of a nadir and four inclined cameras are becoming more and more popular, having the advantage of imaging also facades in built up areas from four directions. Such system cameras require a boresight calibration of the geometric relation of the cameras to each other, but also a calibration of the sub-cameras. Based on data sets of the ISPRS/EuroSDR benchmark for multi platform photogrammetry the inner orientation of the used IGI Penta DigiCAM has been analyzed. The required image coordinates of the blocks Dortmund and Zeche Zollern have been determined by Pix4Dmapper and have been independently adjusted and analyzed by program system BLUH. With 4.1 million image points in 314 images respectively 3.9 million image points in 248 images a dense matching was provided by Pix4Dmapper. With up to 19 respectively 29 images per object point the images are well connected, nevertheless the high number of images per object point are concentrated to the block centres while the inclined images outside the block centre are satisfying but not very strongly connected. This leads to very high values for the Student test (T-test) of the finally used additional parameters or in other words, additional parameters are highly significant. The estimated radial symmetric distortion of the nadir sub-camera corresponds to the laboratory calibration of IGI, but there are still radial symmetric distortions also for the inclined cameras with a size exceeding 5μm even if mentioned as negligible based on the laboratory calibration. Radial and tangential effects of the image corners are limited but still available. Remarkable angular affine systematic image errors can be seen especially in the block Zeche Zollern. Such deformations are unusual for digital matrix cameras, but it can be caused by the correlation between inner and exterior orientation if only parallel flight lines are used. With exception of the angular affinity the systematic image errors for corresponding

  8. Relative camera localisation in non-overlapping camera networks using multiple trajectories

    NARCIS (Netherlands)

    John, V.; Englebienne, G.; Kröse, B.J.A.

    2012-01-01

    In this article we present an automatic camera calibration algorithm using multiple trajectories in a multiple camera network with non-overlapping field-of-views (FOV). Visible trajectories within a camera FOV are assumed to be measured with respect to the camera local co-ordinate system.

  9. KALMAN FILTER BASED FEATURE ANALYSIS FOR TRACKING PEOPLE FROM AIRBORNE IMAGES

    Directory of Open Access Journals (Sweden)

    B. Sirmacek

    2012-09-01

    Full Text Available Recently, analysis of man events in real-time using computer vision techniques became a very important research field. Especially, understanding motion of people can be helpful to prevent unpleasant conditions. Understanding behavioral dynamics of people can also help to estimate future states of underground passages, shopping center like public entrances, or streets. In order to bring an automated solution to this problem, we propose a novel approach using airborne image sequences. Although airborne image resolutions are not enough to see each person in detail, we can still notice a change of color components in the place where a person exists. Therefore, we propose a color feature detection based probabilistic framework in order to detect people automatically. Extracted local features behave as observations of the probability density function (pdf of the people locations to be estimated. Using an adaptive kernel density estimation method, we estimate the corresponding pdf. First, we use estimated pdf to detect boundaries of dense crowds. After that, using background information of dense crowds and previously extracted local features, we detect other people in non-crowd regions automatically for each image in the sequence. We benefit from Kalman filtering to track motion of detected people. To test our algorithm, we use a stadium entrance image data set taken from airborne camera system. Our experimental results indicate possible usage of the algorithm in real-life man events. We believe that the proposed approach can also provide crucial information to police departments and crisis management teams to achieve more detailed observations of people in large open area events to prevent possible accidents or unpleasant conditions.

  10. Wound Ballistics Modeling for Blast Loading Blunt Force Impact and Projectile Penetration.

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Paul A. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    Light body armor development for the warfighter is based on trial-and-error testing of prototype designs against ballistic projectiles. Torso armor testing against blast is nonexistent but necessary to protect the heart and lungs. In tests against ballistic projectiles, protective apparel is placed over ballistic clay and the projectiles are fired into the armor/clay target. The clay represents the human torso and its behind-armor, permanent deflection is the principal metric used to assess armor protection. Although this approach provides relative merit assessment of protection, it does not examine the behind-armor blunt trauma to crucial torso organs. We propose a modeling and simulation (M&S) capability for wound injury scenarios to the head, neck, and torso of the warfighter. We will use this toolset to investigate the consequences of, and mitigation against, blast exposure, blunt force impact, and ballistic projectile penetration leading to damage of critical organs comprising the central nervous, cardiovascular, and respiratory systems. We will leverage Sandia codes and our M&S expertise on traumatic brain injury to develop virtual anatomical models of the head, neck, and torso and the simulation methodology to capture the physics of wound mechanics. Specifically, we will investigate virtual wound injuries to the head, neck, and torso without and with protective armor to demonstrate the advantages of performing injury simulations for the development of body armor. The proposed toolset constitutes a significant advance over current methods by providing a virtual simulation capability to investigate wound injury and optimize armor design without the need for extensive field testing.

  11. Ballistic energy transport via perfluoroalkane linkers

    Energy Technology Data Exchange (ETDEWEB)

    Rubtsova, Natalia I. [Department of Chemistry, Tulane University, New Orleans, LA 70118 (United States); Rubtsov, Igor V., E-mail: irubtsov@tulane.edu [Department of Chemistry, Tulane University, New Orleans, LA 70118 (United States)

    2013-08-30

    Highlights: ► Energy transport in perfluoroalkanes oligomers of various chain lengths was studied. ► Cross-peaks among C=O stretch and CH bending modes were recorded using RA 2DIR. ► Efficient constant-speed energy transport with the speed of 1150 m/s is found. ► Ballistic energy transport mechanism is suggested. - Abstract: Intramolecular energy transport in a series of perfluoroalkane oligomers with various chain lengths of 3, 5, 7, 9, and 11 carbon atoms terminated by a carboxylic acid moiety on one end and –CF{sub 2}H group on another end is studied by relaxation-assisted two-dimensional infrared spectroscopy. Perfluoroalkane oligomers adopt an extended structure with antiperiplanar orientation of the neighboring carbon atoms. The energy transport initiated by exciting the C=O stretching mode of the acid was recorded by measuring a cross-peak amplitude between the C=O stretch and the C–H bending mode as a function of the waiting time between the excitation and probing. A linear dependence of energy transport time vs. chain length is found, which suggests a ballistic energy transport mechanism. The energy transport speed, measured from the chain-length dependence of the half-rise time, T{sub ½}, was found to be ca. 1150 m/s, which is close to the longitudinal speed of sound in Teflon polymers.

  12. Ballistic Characterization Of A Typical Military Steel Helmet

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Maher

    2017-08-01

    Full Text Available In this study the ballistic limit of a steel helmet against a FMJ 919 mm caliber bullet is estimated. The helmet model is the typical polish helmet wz.31.The helmet material showed high strength low alloy steel material of 0.28 carbon content and 9.125 kgm2 areal density. The tensile test according to ASTM E8 showed a tensile strength of 1236.4 MPa .The average hardness value was about HV550. First shooting experiment has been executed using a 9 mm pistol based on 350 ms muzzle velocity at 5m against the simply supported helmet complete penetrations rose in this test were in the form of cracks on the helmet surface and partial penetrations were in the form of craters on the surface whose largest diameter and depth were 43 mm and 20.2 mm consequently .The second experiment was on a rifled gun arrangement 13 bullets of 919 mm caliber were shot on the examined simply supported steel helmet at a zero obliquity angle at different velocities to determine the ballistic limit velocity V50 according to MIL-STD-662F. Three major outcomes were revealed 1 the value V50 which found to be about 390 ms is higher than the one found in literature 360 ms German steel helmet model 1A1. 2 The smallest the standard deviation of the mixed results zone data the most accurate the ballistic limit is. 3Similar to the performance of blunt-ended projectiles impacting overmatching targets tD near 11 or larger It was found that the dominating failure mode of the steel helmet stuck by a hemispherical-nose projectile was plugging mode despite of having tD ratio of about 19 undermatching.

  13. Airborne Tactical Crossload Planner

    Science.gov (United States)

    2017-12-01

    Regiment AGL above ground level AO area of operation APA American psychological association ASOP airborne standard operating procedure A/C aircraft...awarded a research contract to develop a tactical crossload tool. [C]omputer assisted Airborne Planning Application ( APA ) that provides a

  14. Direct measurement of the ballistic motion of a freely floating colloid in Newtonian and viscoelastic fluids.

    Science.gov (United States)

    Hammond, Andrew P; Corwin, Eric I

    2017-10-01

    A thermal colloid suspended in a liquid will transition from a short-time ballistic motion to a long-time diffusive motion. However, the transition between ballistic and diffusive motion is highly dependent on the properties and structure of the particular liquid. We directly observe a free floating tracer particle's ballistic motion and its transition to the long-time regime in both a Newtonian fluid and a viscoelastic Maxwell fluid. We examine the motion of the free particle in a Newtonian fluid and demonstrate a high degree of agreement with the accepted Clercx-Schram model for motion in a dense fluid. Measurements of the functional form of the ballistic-to-diffusive transition provide direct measurements of the temperature, viscosity, and tracer radius. We likewise measure the motion in a viscoelastic Maxwell fluid and find a significant disagreement between the theoretical asymptotic behavior and our measured values of the microscopic properties of the fluid. We observe a greatly increased effective mass for a freely moving particle and a decreased plateau modulus.

  15. Ballistic transport in graphene grown by chemical vapor deposition

    NARCIS (Netherlands)

    Calado, V.E.; Zhu, S.E.; Goswami, S.; Xu, Q.; Watanabe, K.; Taniguchi, T.; Janssen, G.C.A.M.; Vandersypen, L.M.K.

    2014-01-01

    In this letter, we report the observation of ballistic transport on micron length scales in graphene synthesised by chemical vapour deposition (CVD). Transport measurements were done on Hall bar geometries in a liquid He cryostat. Using non-local measurements, we show that electrons can be

  16. Graphene ballistic nano-rectifier with very high responsivity

    Science.gov (United States)

    Auton, Gregory; Zhang, Jiawei; Kumar, Roshan Krishna; Wang, Hanbin; Zhang, Xijian; Wang, Qingpu; Hill, Ernie; Song, Aimin

    2016-01-01

    Although graphene has the longest mean free path of carriers of any known electronic material, very few novel devices have been reported to harness this extraordinary property. Here we demonstrate a ballistic nano-rectifier fabricated by creating an asymmetric cross-junction in single-layer graphene sandwiched between boron nitride flakes. A mobility ∼200,000 cm2 V−1 s−1 is achieved at room temperature, well beyond that required for ballistic transport. This enables a voltage responsivity as high as 23,000 mV mW−1 with a low-frequency input signal. Taking advantage of the output channels being orthogonal to the input terminals, the noise is found to be not strongly influenced by the input. Hence, the corresponding noise-equivalent power is as low as 0.64 pW Hz−1/2. Such performance is even comparable to superconducting bolometers, which however need to operate at cryogenic temperatures. Furthermore, output oscillations are observed at low temperatures, the period of which agrees with the lateral size quantization. PMID:27241162

  17. On regulation of radioactive airborne discharge

    International Nuclear Information System (INIS)

    Stroganov, A.A.; Kuryndin, A.V.; Shapovalov, A.S.; Orlov, M.Yu.

    2013-01-01

    Authors present the Russian regulatory basis of radioactive airborne discharges which was updated after enactment of the Methodology for airborne discharge limits development. Criteria for establishing of airborne discharge limits, scope and other features of methodology are also considered in the article [ru

  18. The Rise and Fall of Safeguard:Anti‐Ballistic Missile Technology and the Nixon Administration

    OpenAIRE

    Spinardi, Graham

    2010-01-01

    The Safeguard anti-ballistic missile system was the first (and up until 2002 the only) system deployed to defend the USA from nuclear-armed ballistic missile attack. It was finally declared operational in September 1975 after many years of development and fierce controversy over both its feasibility and its desirability. However, almost immediately Congress voted to close the system down and it was dismantled within a few months. This paper draws on documents available in the Nixon archives t...

  19. Microbial arms race: Ballistic "nematocysts" in dinoflagellates represent a new extreme in organelle complexity.

    Science.gov (United States)

    Gavelis, Gregory S; Wakeman, Kevin C; Tillmann, Urban; Ripken, Christina; Mitarai, Satoshi; Herranz, Maria; Özbek, Suat; Holstein, Thomas; Keeling, Patrick J; Leander, Brian S

    2017-03-01

    We examine the origin of harpoon-like secretory organelles (nematocysts) in dinoflagellate protists. These ballistic organelles have been hypothesized to be homologous to similarly complex structures in animals (cnidarians); but we show, using structural, functional, and phylogenomic data, that nematocysts evolved independently in both lineages. We also recorded the first high-resolution videos of nematocyst discharge in dinoflagellates. Unexpectedly, our data suggest that different types of dinoflagellate nematocysts use two fundamentally different types of ballistic mechanisms: one type relies on a single pressurized capsule for propulsion, whereas the other type launches 11 to 15 projectiles from an arrangement similar to a Gatling gun. Despite their radical structural differences, these nematocysts share a single origin within dinoflagellates and both potentially use a contraction-based mechanism to generate ballistic force. The diversity of traits in dinoflagellate nematocysts demonstrates a stepwise route by which simple secretory structures diversified to yield elaborate subcellular weaponry.

  20. Targeting Ballistic Lunar Capture Trajectories Using Periodic Orbits in the Sun-Earth CRTBP

    Science.gov (United States)

    Cooley, D.S.; Griesemer, Paul Ricord; Ocampo, Cesar

    2009-01-01

    A particular periodic orbit in the Earth-Sun circular restricted three body problem is shown to have the characteristics needed for a ballistic lunar capture transfer. An injection from a circular parking orbit into the periodic orbit serves as an initial guess for a targeting algorithm. By targeting appropriate parameters incrementally in increasingly complicated force models and using precise derivatives calculated from the state transition matrix, a reliable algorithm is produced. Ballistic lunar capture trajectories in restricted four body systems are shown to be able to be produced in a systematic way.

  1. Orbital magnetism in ensembles of ballistic billiards

    International Nuclear Information System (INIS)

    Ullmo, D.; Richter, K.; Jalabert, R.A.

    1993-01-01

    The magnetic response of ensembles of small two-dimensional structures at finite temperatures is calculated. Using semiclassical methods and numerical calculation it is demonstrated that only short classical trajectories are relevant. The magnetic susceptibility is enhanced in regular systems, where these trajectories appear in families. For ensembles of squares large paramagnetic susceptibility is obtained, in good agreement with recent measurements in the ballistic regime. (authors). 20 refs., 2 figs

  2. Strategic nuclear policy and ballistic missile defense

    International Nuclear Information System (INIS)

    1981-01-01

    The article explains the problems of the antirockets (ABM) as they were part of the presentation Salt I 1972. It is a translation from the English of a publication of the Foreign Affairs Research Institute in London. A topical analysis of the strategic nuclear policy of the two superpowers and their attitudes in the question of ballistic missile defense are given by means of two monographies. (orig./HSCH) [de

  3. Balancing ballistic protection against physiological strain: evidence from laboratory and field trials.

    Science.gov (United States)

    Taylor, Nigel A S; Burdon, Catriona A; van den Heuvel, Anne M J; Fogarty, Alison L; Notley, Sean R; Hunt, Andrew P; Billing, Daniel C; Drain, Jace R; Silk, Aaron J; Patterson, Mark J; Peoples, Gregory E

    2016-02-01

    This project was based on the premise that decisions concerning the ballistic protection provided to defence personnel should derive from an evaluation of the balance between protection level and its impact on physiological function, mobility, and operational capability. Civilians and soldiers participated in laboratory- and field-based studies in which ensembles providing five levels of ballistic protection were evaluated, each with progressive increases in protection, mass (3.4-11.0 kg), and surface-area coverage (0.25-0.52 m(2)). Physiological trials were conducted on volunteers (N = 8) in a laboratory, under hot-dry conditions simulating an urban patrol: walking at 4 km·h(-1) (90 min) and 6 km·h(-1) (30 min or to fatigue). Field-based trials were used to evaluate tactical battlefield movements (mobility) of soldiers (N = 31) under tropical conditions, and across functional tests of power, speed, agility, endurance, and balance. Finally, trials were conducted at a jungle training centre, with soldiers (N = 32) patrolling under tropical conditions (averaging 5 h). In the laboratory, work tolerance was reduced as protection increased, with deep-body temperature climbing relentlessly. However, the protective ensembles could be grouped into two equally stressful categories, each providing a different level of ballistic protection. This outcome was supported during the mobility trials, with the greatest performance decrement evident during fire and movement simulations, as the ensemble mass was increased (-2.12%·kg(-1)). The jungle patrol trials similarly supported this outcome. Therefore, although ballistic protection does increase physiological strain, this research has provided a basis on which to determine how that strain can be balanced against the mission-specific level of required personal protection.

  4. Kinetic treatment of magnetosonic wave reflection by minority gyroresonant ballistic waves in tokamak geometry

    International Nuclear Information System (INIS)

    Kaufman, A.N.; Brizard, A.J.; Cook, D.R.

    1993-01-01

    The analysis of the minority-ion gyroresonant heating process by a magnetosonic wave in a general magnetic field geometry with one ignorable spatial coordinate can be divided into several steps, each defined in terms of a precise mathematical problem to be solved. In this work, the authors focus their attention on the magnetosonic wave reflection problem in axisymmetric tokamak geometry; the conversion and absorption of the minority-ion gyroresonant ballistic waves are treated elsewhere. In contrast to their previous work, they employ a kinetic model based on the perturbation generating function S for the gyroresonant minority-ions. The bulk plasma response is represented by the perturbation magnetic vector potential A, corresponding to a shielded magnetosonic wave. The set of coupled equations for S and A can be derived from an action principle, which can also be used to derive explicit wave-action conservation laws in ray phase space. The reflection problem is solved in ray phase space by considering three separate steps. In the first step, the incident magnetosonic ray propagates towards the first linear mode conversion region, where action is transferred to the minority-ion gyroresonant ballistic waves. In the second step, the continuum of excited gyroresonant ballistic rays propagate towards the second linear mode conversion region. In the third step, the reflected magnetosonic wave field is excited by linear mode conversion from the minority gyroresonant ballistic rays

  5. MD Test of a Ballistic Optics

    CERN Document Server

    Garcia-Tabares Valdivieso, Ana; Salvachua Ferrando, Belen Maria; Skowronski, Piotr Krzysztof; Solfaroli Camillocci, Matteo; Tomas Garcia, Rogelio; Wenninger, Jorg; Coello De Portugal - Martinez Vazquez, Jaime Maria; CERN. Geneva. ATS Department

    2016-01-01

    The ballistic optics is designed to improve the understanding of optical errors and BPM systematic effects in the critical triplet region. The particularity of that optics is that the triplet is switched off, effectively transforming the triplets on both sides of IR1 and IR5 into drift spaces. Advantage can be taken from that fact to localize better errors in the Q4-Q5-triplet region. During this MD this new optics was tested for the first time at injection with beam 2.

  6. Airborne geophysical radon hazard mapping

    International Nuclear Information System (INIS)

    Walker, P.

    1993-01-01

    Shales containing uranium pose a radon health hazard even when covered by several meters of overburden. Such an alum shale in southern Norway has been mapped with a joint helicopter borne electromagnetic (HEM) and radiometric survey. Results are compared with ground spectrometer, radon emanometer and radon gas measurements in dwellings, and a model to predict radon gas concentrations from the airborne data is developed. Since the shale is conductive, combining the HEM data with the radiometric channel allows the shale to be mapped with greater reliability than if the radiometric channel were used alone. Radiometrically more active areas which do not pose a radon gas hazard can thus be separated from the shales which do. The ground follow-up work consisted of spectrometer and radon emanometer measurements over a uranium anomaly coinciding with a conductor. The correlation between the airborne uranium channel, the ground uranium channel and emanometry is extremely good, indicating that airborne geophysics can, in this case, be used to predict areas having a high radon potential. Contingency tables comparing both radon exhalation and concentration in dwellings with the airborne uranium data show a strong relationship exists between exhalation and the airborne data and while a relationship between concentration and the airborne data is present, but weaker

  7. The influence of ALN-Al gradient material gradient index on ballistic performance

    International Nuclear Information System (INIS)

    Wang Youcong; Liu Qiwen; Li Yao; Shen Qiang

    2013-01-01

    Ballistic performance of the gradient material is superior to laminated material, and gradient materials have different gradient types. Using ls-dyna to simulate the ballistic performance of ALN-AL gradient target plates which contain three gradient index (b = 1, b = 0.5, b = 2). Through Hopkinson bar numerical simulation to the target plate materials, we obtained the reflection stress wave and transmission stress wave state of gradient material to get the best gradient index. The internal stress state of gradient material is simulated by amplification processing of the target plate model. When the gradient index b is equal to 1, the gradient target plate is best of all.

  8. Mobile phone camera benchmarking: combination of camera speed and image quality

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2014-01-01

    When a mobile phone camera is tested and benchmarked, the significance of quality metrics is widely acknowledged. There are also existing methods to evaluate the camera speed. For example, ISO 15781 defines several measurements to evaluate various camera system delays. However, the speed or rapidity metrics of the mobile phone's camera system have not been used with the quality metrics even if the camera speed has become more and more important camera performance feature. There are several tasks in this work. Firstly, the most important image quality metrics are collected from the standards and papers. Secondly, the speed related metrics of a mobile phone's camera system are collected from the standards and papers and also novel speed metrics are identified. Thirdly, combinations of the quality and speed metrics are validated using mobile phones in the market. The measurements are done towards application programming interface of different operating system. Finally, the results are evaluated and conclusions are made. The result of this work gives detailed benchmarking results of mobile phone camera systems in the market. The paper defines also a proposal of combined benchmarking metrics, which includes both quality and speed parameters.

  9. Ballistic Missile Defense: National Security and the High Frontier of Space.

    Science.gov (United States)

    Adragna, Steven P.

    1985-01-01

    Ballistic missile defense is discussed, and the rationale behind the proposal to place defensive weapons in space is examined. Strategic defense is a national security, political, and moral imperative. (RM)

  10. Imaging ballistic carrier trajectories in graphene using scanning gate microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Morikawa, Sei; Masubuchi, Satoru [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Dou, Ziwei; Wang, Shu-Wei; Smith, Charles G.; Connolly, Malcolm R., E-mail: mrc61@cam.ac.uk [Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0HE (United Kingdom); Watanabe, Kenji; Taniguchi, Takashi [National Institute for Materials Science, 1-1 Namiki, Tsukuba 305-0044 (Japan); Machida, Tomoki, E-mail: tmachida@iis.u-tokyo.ac.jp [Institute of Industrial Science, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan); Institute for Nano Quantum Information Electronics, University of Tokyo, 4-6-1 Komaba, Meguro, Tokyo 153-8505 (Japan)

    2015-12-14

    We use scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and subject to a weak magnetic field. We employ a magnetic focusing geometry to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local electric field generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector.

  11. Investigation on utilization of liquid propellant in ballistic range experiments

    Energy Technology Data Exchange (ETDEWEB)

    Saso, Akihiro; Oba, Shinji; Takayama, Kazuyoshi [Tohoku University, Sendai (Japan)

    1999-10-31

    Experiments were conducted in a ballistic range using a HAN (hydroxylammonium nitrate)-based liquid monopropellant, LP1846. In a 25-mm-bore single-stage gun, using bulk-loaded propellant of 10 to 35 g, a muzzle speed up to 1.0 km/s was obtained. Time variations of propellant chamber pressures and in-tube projectile velocity profiles were measured. The liquid propellant combustion was initiated accompanying a delay time which was created due to the pyrolysis of the propellant. In order to obtain reliable ballistic range performance, the method of propellant loading was revealed to be critical. Since the burning rate of the liquid propellant is relatively low, the peak acceleration and the muzzle speed strongly depend on the rupture pressure of a diaphragm that was inserted between the launch tube and the propellant chamber. (author)

  12. Routing architecture and security for airborne networks

    Science.gov (United States)

    Deng, Hongmei; Xie, Peng; Li, Jason; Xu, Roger; Levy, Renato

    2009-05-01

    Airborne networks are envisioned to provide interconnectivity for terrestial and space networks by interconnecting highly mobile airborne platforms. A number of military applications are expected to be used by the operator, and all these applications require proper routing security support to establish correct route between communicating platforms in a timely manner. As airborne networks somewhat different from traditional wired and wireless networks (e.g., Internet, LAN, WLAN, MANET, etc), security aspects valid in these networks are not fully applicable to airborne networks. Designing an efficient security scheme to protect airborne networks is confronted with new requirements. In this paper, we first identify a candidate routing architecture, which works as an underlying structure for our proposed security scheme. And then we investigate the vulnerabilities and attack models against routing protocols in airborne networks. Based on these studies, we propose an integrated security solution to address routing security issues in airborne networks.

  13. Using Digital Cameras to Detect Warning Signs of Volcanic Eruptions

    Science.gov (United States)

    Girona, T.; Huber, C.; Trinh, K. T.; Protti, M.; Pacheco, J. F.

    2017-12-01

    Monitoring volcanic outgassing is fundamental to improve the forecasting of volcanic eruptions. Recent efforts have led to the advent of new methods to measure the concentration and flux of volcanic gases with unprecedented temporal resolution, thus allowing us to obtain reliable high-frequency (up to 1 Hz) time series of outgassing activity. These high-frequency methods have shown that volcanic outgassing can be periodic sometimes (with periodicities ranging from 101 s to 103 s), although it remains unknown whether the spectral features of outgassing reflect the processes that ultimately trigger volcanic unrest and eruptions. In this study, we explore the evolution of the spectral content of the outgassing activity of Turrialba volcano (Costa Rica) using digital images (with digital brightness as a proxy for the emissions of water vapor [Girona et al., 2015]). Images were taken at 1 km distance with 1 Hz sampling rate, and the time period analyzed (from April 2016 to April 2017) is characterized by episodes of quiescent outgassing, ash explosions, and sporadic eruptions of ballistics. Our preliminary results show that: 1) quiescent states of Turrialba volcano are characterized by outgassing frequency spectra with fractal distribution; 2) superimposed onto the fractal frequency spectra, well-defined pulses with period around 100 s emerge hours to days before some of the eruptions of ballistics. An important conclusion of this study is that digital cameras can be potentially used in real-time volcano monitoring to detect warning signs of eruptions, as well as to better understand subsurface processes and track the changing conditions below volcanic craters. Our ongoing study also explores the correlation between the evolution of the spectral content of outgassing, infrasound data, and shallow seismicity. Girona, T., F. Costa, B. Taisne, B. Aggangan, and S. Ildefonso (2015), Fractal degassing from Erebus and Mayon volcanoes revealed by a new method to monitor H2O

  14. Game of thrown bombs in 3D: using high speed cameras and photogrammetry techniques to reconstruct bomb trajectories at Stromboli (Italy)

    Science.gov (United States)

    Gaudin, D.; Taddeucci, J.; Scarlato, P.; Del Bello, E.; Houghton, B. F.; Orr, T. R.; Andronico, D.; Kueppers, U.

    2015-12-01

    Large juvenile bombs and lithic clasts, produced and ejected during explosive volcanic eruptions, follow ballistic trajectories. Of particular interest are: 1) the determination of ejection velocity and launch angle, which give insights into shallow conduit conditions and geometry; 2) particle trajectories, with an eye on trajectory evolution caused by collisions between bombs, as well as the interaction between bombs and ash/gas plumes; and 3) the computation of the final emplacement of bomb-sized clasts, which is important for hazard assessment and risk management. Ground-based imagery from a single camera only allows the reconstruction of bomb trajectories in a plan perpendicular to the line of sight, which may lead to underestimation of bomb velocities and does not allow the directionality of the ejections to be studied. To overcome this limitation, we adapted photogrammetry techniques to reconstruct 3D bomb trajectories from two or three synchronized high-speed video cameras. In particular, we modified existing algorithms to consider the errors that may arise from the very high velocity of the particles and the impossibility of measuring tie points close to the scene. Our method was tested during two field campaigns at Stromboli. In 2014, two high-speed cameras with a 500 Hz frame rate and a ~2 cm resolution were set up ~350m from the crater, 10° apart and synchronized. The experiment was repeated with similar parameters in 2015, but using three high-speed cameras in order to significantly reduce uncertainties and allow their estimation. Trajectory analyses for tens of bombs at various times allowed for the identification of shifts in the mean directivity and dispersal angle of the jets during the explosions. These time evolutions are also visible on the permanent video-camera monitoring system, demonstrating the applicability of our method to all kinds of explosive volcanoes.

  15. Dynamic knee stability and ballistic knee movement after ACL reconstruction: an application on instep soccer kick.

    Science.gov (United States)

    Cordeiro, Nuno; Cortes, Nelson; Fernandes, Orlando; Diniz, Ana; Pezarat-Correia, Pedro

    2015-04-01

    The instep soccer kick is a pre-programmed ballistic movement with a typical agonist-antagonist coordination pattern. The coordination pattern of the kick can provide insight into deficient neuromuscular control. The purpose of this study was to investigate knee kinematics and hamstrings/quadriceps coordination pattern during the knee ballistic extension phase of the instep kick in soccer players after anterior cruciate ligament reconstruction (ACL reconstruction). Seventeen players from the Portuguese Soccer League participated in this study. Eight ACL-reconstructed athletes (experimental group) and 9 healthy individuals (control group) performed three instep kicks. Knee kinematics (flexion and extension angles at football contact and maximum velocity instants) were calculated during the kicks. Rectus femoris (RF), vastus lateralis, vastus medialis, biceps femoralis, and semitendinosus muscle activations were quantified during the knee extension phase. The ACL-reconstructed group had significantly lower knee extension angle (-1.2 ± 1.6, p ballistic control movement pattern between normal and ACL-reconstructed subjects. Performing open kinetic chain exercises using ballistic movements can be beneficial when recovering from ACL reconstruction. The exercises should focus on achieving multi-joint coordination and full knee extension (range of motion). III.

  16. Comparative evaluation of consumer grade cameras and mobile phone cameras for close range photogrammetry

    Science.gov (United States)

    Chikatsu, Hirofumi; Takahashi, Yoji

    2009-08-01

    The authors have been concentrating on developing convenient 3D measurement methods using consumer grade digital cameras, and it was concluded that consumer grade digital cameras are expected to become a useful photogrammetric device for the various close range application fields. On the other hand, mobile phone cameras which have 10 mega pixels were appeared on the market in Japan. In these circumstances, we are faced with alternative epoch-making problem whether mobile phone cameras are able to take the place of consumer grade digital cameras in close range photogrammetric applications. In order to evaluate potentials of mobile phone cameras in close range photogrammetry, comparative evaluation between mobile phone cameras and consumer grade digital cameras are investigated in this paper with respect to lens distortion, reliability, stability and robustness. The calibration tests for 16 mobile phone cameras and 50 consumer grade digital cameras were conducted indoors using test target. Furthermore, practability of mobile phone camera for close range photogrammetry was evaluated outdoors. This paper presents that mobile phone cameras have ability to take the place of consumer grade digital cameras, and develop the market in digital photogrammetric fields.

  17. MODELING THE FLIGHT TRAJECTORY OF OPERATIONAL-TACTICAL BALLISTIC MISSILES

    Directory of Open Access Journals (Sweden)

    I. V. Filipchenko

    2018-01-01

    Full Text Available The article gives the basic approaches to updating the systems of combat operations modeling in the part of enemy missile attack simulation taking into account the possibility of tactical ballistic missile maneuvering during the flight. The results of simulation of combat tactical missile defense operations are given. 

  18. Contemporary management of maxillofacial ballistic trauma.

    Science.gov (United States)

    Breeze, J; Tong, D; Gibbons, A

    2017-09-01

    Ballistic maxillofacial trauma in the UK is fortunately relatively rare, and generally involves low velocity handguns and shotguns. Civilian terrorist events have, however, shown that all maxillofacial surgeons need to understand how to treat injuries from improvised explosive devices. Maxillofacial surgeons in the UK have also been responsible for the management of soldiers evacuated from Iraq and Afghanistan, and in this review we describe the newer types of treatment that have evolved from these conflicts, particularly that of damage-control maxillofacial surgery. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  19. Comparison of the characteristics of granular propellant movement in interior ballistics based on the interphase drag model

    International Nuclear Information System (INIS)

    Jang, Jin Sung; Oh, Seok Hawn; Roh, Tae Seong

    2014-01-01

    Interior ballistics are completed in tens of milliseconds, as are all gun-firing phenomena. Thus, some data cannot be measured directly through experimentation. Therefore, such complex gun-firing phenomena are traditionally clarified by numerical analysis. In the two phase flow of interior ballistics, interphase drag has a strong effect on propellant particle movement. This drag is a momentum sink in the gas phase and a corresponding source of momentum for the solid phase. Previous studies have calculated the drag force on the propellant particles using Ergun's empirical equation, which was developed for a dense bed and relates the drag to the pressure drop through porous media. However, the particulate bed is fluidized in the course of the cycle of interior ballistics, thus indicating that the flow field is ransient with regions of high Reynolds number beyond the range of experimental data. The Ergun equation is examined through a compensation study and calibrated based on the Reynolds number using the numerical method. Moreover, the influence of different drag models on flow behavior and propellant movement in interior ballistics is analyzed.

  20. Gamma camera

    International Nuclear Information System (INIS)

    Tschunt, E.; Platz, W.; Baer, U.; Heinz, L.

    1978-01-01

    A gamma camera has a plurality of exchangeable collimators, one of which is mounted in the ray inlet opening of the camera, while the others are placed on separate supports. The supports are swingably mounted upon a column one above the other through about 90 0 to a collimator exchange position. Each of the separate supports is swingable to a vertically aligned position, with limiting of the swinging movement and positioning of the support at the desired exchange position. The collimators are carried on the supports by means of a series of vertically disposed coil springs. Projections on the camera are movable from above into grooves of the collimator at the exchange position, whereupon the collimator is turned so that it is securely prevented from falling out of the camera head

  1. Airborne Cloud Computing Environment (ACCE)

    Science.gov (United States)

    Hardman, Sean; Freeborn, Dana; Crichton, Dan; Law, Emily; Kay-Im, Liz

    2011-01-01

    Airborne Cloud Computing Environment (ACCE) is JPL's internal investment to improve the return on airborne missions. Improve development performance of the data system. Improve return on the captured science data. The investment is to develop a common science data system capability for airborne instruments that encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation.

  2. Skipping Orbits, Traversing Trajectories, and Quantum Ballistic Transport in Microstructures

    NARCIS (Netherlands)

    Beenakker, C.W.J.; Houten, H. van; Wees, B.J. van

    1989-01-01

    Three topics of current interest in the study of quantum ballistic transport in a two-dimensional electron gas are discussed, with an emphasis on correspondences between classical trajectories and quantum states in the various experimental geometries. We consider the quantized conductance of point

  3. Airborne and Ground-Based Platforms for Data Collection in Small Vineyards: Examples from the UK and Switzerland

    Science.gov (United States)

    Green, David R.; Gómez, Cristina; Fahrentrapp, Johannes

    2015-04-01

    This paper presents an overview of some of the low-cost ground and airborne platforms and technologies now becoming available for data collection in small area vineyards. Low-cost UAV or UAS platforms and cameras are now widely available as the means to collect both vertical and oblique aerial still photography and airborne videography in vineyards. Examples of small aerial platforms include the AR Parrot Drone, the DJI Phantom (1 and 2), and 3D Robotics IRIS+. Both fixed-wing and rotary wings platforms offer numerous advantages for aerial image acquisition including the freedom to obtain high resolution imagery at any time required. Imagery captured can be stored on mobile devices such as an Apple iPad and shared, written directly to a memory stick or card, or saved to the Cloud. The imagery can either be visually interpreted or subjected to semi-automated analysis using digital image processing (DIP) software to extract information about vine status or the vineyard environment. At the ground-level, a radio-controlled 'rugged' model 4x4 vehicle can also be used as a mobile platform to carry a number of sensors (e.g. a Go-Pro camera) around a vineyard, thereby facilitating quick and easy field data collection from both within the vine canopy and rows. For the small vineyard owner/manager with limited financial resources, this technology has a number of distinct advantages to aid in vineyard management practices: it is relatively cheap to purchase; requires a short learning-curve to use and to master; can make use of autonomous ground control units for repetitive coverage enabling reliable monitoring; and information can easily be analysed and integrated within a GIS with minimal expertise. In addition, these platforms make widespread use of familiar and everyday, off-the-shelf technologies such as WiFi, Go-Pro cameras, Cloud computing, and smartphones or tablets as the control interface, all with a large and well established end-user support base. Whilst there are

  4. GAMMASPHERE: Elimination of ballistic deficit by using a quasi-trapezoidal pulse shaper

    International Nuclear Information System (INIS)

    Goulding, F.S.; Landis, D.A.; Madden, N.; Maier, M.; Yaver, H.

    1993-10-01

    Gammasphere uses an spherical array of very large (7.2cm dia.) germanium detectors and only high-multiplicity events are studied. To achieve a reasonable coincidence rate, the individual detector channels must handle high rates with minimum pile-up losses. Ten microseconds was chosen as the total processing time for a signal which means that the shaped signal peaks in about 4us. The combination of short pulse shaping and the fluctuating long charge collection times (up to 400ns) in the detectors exaggerates the energy resolution degradation due to ballistic deficit effects. We describe a method of producing a flat-topped pulse with a simple time-invariant network that satisfies GAMMASPHERE requirements and eliminates ballistic deficit effects

  5. Ballistic transport of graphene pnp junctions with embedded local gates

    International Nuclear Information System (INIS)

    Nam, Seung-Geol; Ki, Dong-Keun; Kim, Youngwook; Kim, Jun Sung; Lee, Hu-Jong; Park, Jong Wan

    2011-01-01

    We fabricated graphene pnp devices, by embedding pre-defined local gates in an oxidized surface layer of a silicon substrate. With neither deposition of dielectric material on the graphene nor electron-beam irradiation, we obtained high-quality graphene pnp devices without degradation of the carrier mobility even in the local-gate region. The corresponding increased mean free path leads to the observation of ballistic and phase-coherent transport across a local gate 130 nm wide, which is about an order of magnitude wider than reported previously. Furthermore, in our scheme, we demonstrated independent control of the carrier density in the local-gate region, with a conductance map very much distinct from those of top-gated devices. This was caused by the electric field arising from the global back gate being strongly screened by the embedded local gate. Our scheme allows the realization of ideal multipolar graphene junctions with ballistic carrier transport.

  6. Effect of tempering time on the ballistic performance of a high strength armour steel

    OpenAIRE

    Jena, Pradipta Kumar; Senthil P., Ponguru; K., Siva Kumar

    2016-01-01

    The investigation describes and analyses the effect of tempering time on the mechanical and ballistic performance of a high strength armour steel. The steel is subjected to tempering at 300 °C for 2, 24 and 48 h. A marginal variation in strength and hardness is observed with increase in tempering time, whereas ductility and Charpy impact values are found to be decreasing. Ballistic performance of the samples are evaluated by impacting 7.62 mm and 12.7 mm armour piercing projectiles at 0° angl...

  7. Multi-Angle Imager for Aerosols (MAIA) Investigation of Airborne Particle Health Impacts

    Science.gov (United States)

    Diner, D. J.

    2016-12-01

    Airborne particulate matter (PM) is a well-known cause of heart disease, cardiovascular and respiratory illness, low birth weight, and lung cancer. The Global Burden of Disease (GBD) Study ranks PM as a major environmental risk factor worldwide. Global maps of PM2.5concentrations derived from satellite instruments, including MISR and MODIS, have provided key contributions to the GBD and many other health-related investigations. Although it is well established that PM exposure increases the risks of mortality and morbidity, our understanding of the relative toxicity of specific PM types is relatively poor. To address this, the Multi-Angle Imager for Aerosols (MAIA) investigation was proposed to NASA's third Earth Venture Instrument (EVI-3) solicitation. The satellite instrument that is part of the investigation is a multiangle, multispectral, and polarimetric camera system based on the first and second generation Airborne Multiangle SpectroPolarimetric Imagers, AirMSPI and AirMSPI-2. MAIA was selected for funding in March 2016. Estimates of the abundances of different aerosol types from the WRF-Chem model will be combined with MAIA instrument data. Geostatistical models derived from collocated surface and MAIA retrievals will then be used to relate retrieved fractional column aerosol optical depths to near-surface concentrations of major PM constituents, including sulfate, nitrate, organic carbon, black carbon, and dust. Epidemiological analyses of geocoded birth, death, and hospital records will be used to associate exposure to PM types with adverse health outcomes. MAIA launch is planned for early in the next decade. The MAIA instrument incorporates a pair of cameras on a two-axis gimbal to provide regional multiangle observations of selected, globally distributed target areas. Primary Target Areas (PTAs) on five continents are chosen to include major population centers covering a range of PM concentrations and particle types, surface-based aerosol sunphotometers

  8. Ballistic Aspects of Feasibility for Prospective Satellite Navigation Technologies

    Directory of Open Access Journals (Sweden)

    L. N. Lysenko

    2015-01-01

    Full Text Available When modeling the operating processes of ballistics and navigation support it is expedient to make decomposition of the general problem of coordinate-time and navigation support into the typical options of its engineering implementation.As the satellite navigation technologies the paper considers inter-satellite measurement and autonomous navigation mode of differential correction. It also assesses the possibility of their application to improve the accuracy of navigation determinations.Technologies using inter-satellite measurement tools such as GLONASS / GPS equipment, equipment of inter-satellite radio link, astro-optical space based devices are an independent class of navigation technologies.However, each of these options has both advantages and disadvantages that affect the eva luation of the appropriateness and feasibility of their use.The paper separately considers the problem of increasing survivability of space systems and conservation of ground control complex due to introduction of requirements to ensure the independent functioning of spacecraft and application of technologies of ballistics and navigation support, supposing to involve minimum means of automated ground control complex for these purposes.Currently, there is a completely developed theory of autonomous navigation based on astronomical positional gauges, which are used as onboard optical sensors of orientation and stabilization systems.To date, the differential navigation mode is, virtually, the only approach that can allow the olution of tasks in terms of increased accuracy, but with some restrictions.The implementation of differential mode of treatment is carried out through the creation of differential subsystems of the satellite navigation systems. These subsystems are usually divided into wide-range, regional and local ones.Analysis of ballistic aspects to implement discussed navigation technologies allowed us to identify constraints for improving accuracy to define

  9. Ballistic trauma from an exploding electronic cigarette: Case report

    Directory of Open Access Journals (Sweden)

    Christopher Ban, DMD

    2017-09-01

    Full Text Available Electronic cigarettes (e-cigarettes first became available in the United States in 2007, and since that time, the number of e-cigarette users in the US has grown to over 2.5 million. During the period from 2010–2013 alone, the percentage of Americans who reported that they had ever used electronic cigarettes more than doubled from 3.3% to 8.5%. This number will continue to grow, as the use of electronic cigarettes as an alternative to smoking and in smoking cessation is being explored by the public and medical professionals alike. This article presents a case report involving a patient who was injured when the electronic cigarette he was smoking exploded in his face, causing a ballistic injury to his maxilla, as well as a series of other associated injuries. There have been several recent reports in the literature of exploding electronic cigarettes. This article presents a case of avulsive injury due to ballistic trauma with associated impaction of the vaporizing device.

  10. Ballistic Limit Equation for Single Wall Titanium

    Science.gov (United States)

    Ratliff, J. M.; Christiansen, Eric L.; Bryant, C.

    2009-01-01

    Hypervelocity impact tests and hydrocode simulations were used to determine the ballistic limit equation (BLE) for perforation of a titanium wall, as a function of wall thickness. Two titanium alloys were considered, and separate BLEs were derived for each. Tested wall thicknesses ranged from 0.5mm to 2.0mm. The single-wall damage equation of Cour-Palais [ref. 1] was used to analyze the Ti wall's shielding effectiveness. It was concluded that the Cour-Palais single-wall equation produced a non-conservative prediction of the ballistic limit for the Ti shield. The inaccurate prediction was not a particularly surprising result; the Cour-Palais single-wall BLE contains shield material properties as parameters, but it was formulated only from tests of different aluminum alloys. Single-wall Ti shield tests were run (thicknesses of 2.0 mm, 1.5 mm, 1.0 mm, and 0.5 mm) on Ti 15-3-3-3 material custom cut from rod stock. Hypervelocity impact (HVI) tests were used to establish the failure threshold empirically, using the additional constraint that the damage scales with impact energy, as was indicated by hydrocode simulations. The criterion for shield failure was defined as no detached spall from the shield back surface during HVI. Based on the test results, which confirmed an approximately energy-dependent shield effectiveness, the Cour-Palais equation was modified.

  11. Sabots, Obturator and Gas-In-Launch Tube Techniques for Heat Flux Models in Ballistic Ranges

    Science.gov (United States)

    Bogdanoff, David W.; Wilder, Michael C.

    2013-01-01

    For thermal protection system (heat shield) design for space vehicle entry into earth and other planetary atmospheres, it is essential to know the augmentation of the heat flux due to vehicle surface roughness. At the NASA Ames Hypervelocity Free Flight Aerodynamic Facility (HFFAF) ballistic range, a campaign of heat flux studies on rough models, using infrared camera techniques, has been initiated. Several phenomena can interfere with obtaining good heat flux data when using this measuring technique. These include leakage of the hot drive gas in the gun barrel through joints in the sabot (model carrier) to create spurious thermal imprints on the model forebody, deposition of sabot material on the model forebody, thereby changing the thermal properties of the model surface and unknown in-barrel heating of the model. This report presents developments in launch techniques to greatly reduce or eliminate these problems. The techniques include the use of obturator cups behind the launch package, enclosed versus open front sabot designs and the use of hydrogen gas in the launch tube. Attention also had to be paid to the problem of the obturator drafting behind the model and impacting the model. Of the techniques presented, the obturator cups and hydrogen in the launch tube were successful when properly implemented

  12. Monitoring and evaluation techniques for airborne contamination

    Energy Technology Data Exchange (ETDEWEB)

    Yihua, Xia [China Inst. of Atomic Energy, Beijing (China)

    1997-06-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  13. Monitoring and evaluation techniques for airborne contamination

    International Nuclear Information System (INIS)

    Xia Yihua

    1997-01-01

    Monitoring and evaluation of airborne contamination are of great importance for the purpose of protection of health and safety of workers in nuclear installations. Because airborne contamination is one of the key sources to cause exposure to individuals by inhalation and digestion, and to cause diffusion of contaminants in the environment. The main objectives of monitoring and evaluation of airborne contamination are: to detect promptly a loss of control of airborne material, to help identify those individuals and predict exposure levels, to assess the intake and dose commitment to the individuals, and to provide sufficient documentation of airborne radioactivity. From the viewpoint of radiation protection, the radioactive contaminants in air can be classified into the following types: airborne aerosol, gas and noble gas, and volatile gas. In this paper, the following items are described: sampling methods and techniques, measurement and evaluation, and particle size analysis. (G.K.)

  14. Gamma camera

    International Nuclear Information System (INIS)

    Tschunt, E.; Platz, W.; Baer, Ul; Heinz, L.

    1978-01-01

    A gamma camera has a plurality of exchangeable collimators, one of which is replaceably mounted in the ray inlet opening of the camera, while the others are placed on separate supports. Supports are swingably mounted upon a column one above the other

  15. Narrow electron injector for ballistic electron spectroscopy

    International Nuclear Information System (INIS)

    Kast, M.; Pacher, C.; Strasser, G.; Gornik, E.

    2001-01-01

    A three-terminal hot electron transistor is used to measure the normal energy distribution of ballistic electrons generated by an electron injector utilizing an improved injector design. A triple barrier resonant tunneling diode with a rectangular transmission function acts as a narrow (1 meV) energy filter. An asymmetric energy distribution with its maximum on the high-energy side with a full width at half maximum of ΔE inj =10 meV is derived. [copyright] 2001 American Institute of Physics

  16. Spin Seebeck effect and ballistic transport of quasi-acoustic magnons in room-temperature yttrium iron garnet films

    Science.gov (United States)

    Noack, Timo B.; Musiienko-Shmarova, Halyna Yu; Langner, Thomas; Heussner, Frank; Lauer, Viktor; Heinz, Björn; Bozhko, Dmytro A.; Vasyuchka, Vitaliy I.; Pomyalov, Anna; L’vov, Victor S.; Hillebrands, Burkard; Serga, Alexander A.

    2018-06-01

    We studied the transient behavior of the spin current generated by the longitudinal spin Seebeck effect (LSSE) in a set of platinum-coated yttrium iron garnet (YIG) films of different thicknesses. The LSSE was induced by means of pulsed microwave heating of the Pt layer and the spin currents were measured electrically using the inverse spin Hall effect in the same layer. We demonstrate that the time evolution of the LSSE is determined by the evolution of the thermal gradient triggering the flux of thermal magnons in the vicinity of the YIG/Pt interface. These magnons move ballistically within the YIG film with a constant group velocity, while their number decays exponentially within an effective propagation length. The ballistic flight of the magnons with energies above 20 K is a result of their almost linear dispersion law, similar to that of acoustic phonons. By fitting the time-dependent LSSE signal for different film thicknesses varying by almost an order of magnitude, we found that the effective propagation length is practically independent of the YIG film thickness. We consider this fact as strong support of a ballistic transport scenario—the ballistic propagation of quasi-acoustic magnons in room temperature YIG.

  17. Ballistic Impact Response of Woven Hybrid Coir/Kevlar Laminated Composites

    Directory of Open Access Journals (Sweden)

    Azrin Hani A.R

    2016-01-01

    Full Text Available The effects of different laminated hybrid composites stacking configuration subjected to ballistic impact were investigated. The hybrid composites consist of woven coir (C and woven Kevlar (K layers laminated together. The samples of woven coir were prepared using handloom device. The composites were produced by stacking the laminated woven coir and Kevlar alternately with the presence of the binder. The samples were tested under ballistic impact with different stacking configuration. The results obtained had successfully achieved the National Institute of Justice (NIJ standard level IIA with energy absorption of 435.6 kJ and 412.2 kJ under the projectile speed of between 330 m/s and 321 m/s respectively. Samples that having Kevlar layer at the front face and woven coir layer as back face achieved partial penetration during projectile impact. This orientation is proven to have good impact energy absorption and able to stop projectile at the second panel of the composites.

  18. Relationships Between Potentiation Effects After Ballistic Half-Squats and Bilateral Symmetry.

    Science.gov (United States)

    Suchomel, Timothy J; Sato, Kimitake; DeWeese, Brad H; Ebben, William P; Stone, Michael H

    2016-05-01

    The purposes of this study were to examine the effect of ballistic concentric-only half-squats (COHS) on subsequent squat-jump (SJ) performances at various rest intervals and to examine the relationships between changes in SJ performance and bilateral symmetry at peak performance. Thirteen resistance-trained men performed an SJ immediately and every minute up to 10 min on dual force plates after 2 ballistic COHS repetitions at 90% of their 1-repetition-maximum COHS. SJ peak force, peak power, net impulse, and rate of force development (RFD) were compared using a series of 1-way repeated-measures ANOVAs. The percent change in performance at which peak performance occurred for each variable was correlated with the symmetry index scores at the corresponding time point using Pearson correlation coefficients. Statistical differences in peak power (P = .031) existed between rest intervals; however, no statistically significant pairwise comparisons were present (P > .05). No statistical differences in peak force (P = .201), net impulse (P = .064), and RFD (P = .477) were present between rest intervals. The relationships between changes in SJ performance and bilateral symmetry after the rest interval that produced the greatest performance for peak force (r = .300, P = .319), peak power (r = -.041, P = .894), net impulse (r = -.028, P = .927), and RFD (r = -.434, P = .138) were not statistically significant. Ballistic COHS may enhance SJ performance; however, the changes in performance were not related to bilateral symmetry.

  19. Acute Effects of Static vs. Ballistic Stretching on Strength and Muscular Fatigue Between Ballet Dancers and Resistance-Trained Women.

    Science.gov (United States)

    Lima, Camila D; Brown, Lee E; Wong, Megan A; Leyva, Whitney D; Pinto, Ronei S; Cadore, Eduardo L; Ruas, Cassio V

    2016-11-01

    Lima, CD, Brown, LE, Wong, MA, Leyva, WD, Pinto, RS, Cadore, EL, and Ruas, CV. Acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. J Strength Cond Res 30(11): 3220-3227, 2016-Stretching is used to increase joint range of motion, but the acute effects can decrease muscle strength. However, this may depend on the population or mode of stretching. The purpose of this study was to compare the acute effects of static vs. ballistic stretching on strength and muscular fatigue between ballet dancers and resistance-trained women. Fifteen resistance-trained women (age 23.8 ± 1.80 years, mass 67.47 ± 7.77 kg, height 168.30 ± 5.53 cm) and 12 ballet dancers (age 22.8 ± 3.04 years, mass 58.67 ± 5.65 kg, height 168.00 ± 7.69 cm) performed 5 days of testing. The first day was control (no stretching), whereas the other 4 days were static or ballistic stretching in a counterbalanced order. Range of motion, strength, and fatigue tests were also performed. Both groups demonstrated a significant decrease in hamstrings strength after static (102.71 ± 2.67 N·m) and ballistic stretching (99.49 ± 2.61 N·m) compared with control (113.059 ± 3.25 N·m), with no changes in quadriceps strength. For fatigue, only ballet dancers demonstrated a decrease from control (71.79 ± 4.88%) to ballistic (65.65 ± 8.19%), but no difference with static (65.01 ± 12.29%). These findings suggest that stretching decreases hamstrings strength similarly in ballet dancers and resistance-trained women, with no differences between modes of stretching. However, ballistic stretching only decreased muscular fatigue in ballet dancers, but not in resistance-trained women. Therefore, no stretching should be performed before strength performance. However, ballistic stretching may decrease acute muscular fatigue in ballet dancers.

  20. Ballistic V50 Evaluation of TIMET Ti108

    Science.gov (United States)

    2018-02-01

    threat by 1 m/s. Future studies or adjustments to the chemistry of the Ti108 can be conducted to optimize ballistic performance. 15. SUBJECT TERMS...10 Fig. A-2 30-mm APDS overall back of plate .................................................... 10 List of Tables Table 1 Chemistry of Ti108...performance of different titanium alloys. Conventional Ti-6Al-4V is commonly used in aerospace frames and engine components, but has difficulty passing

  1. Active airborne contamination control using electrophoresis

    International Nuclear Information System (INIS)

    Veatch, B.D.

    1994-01-01

    In spite of our best efforts, radioactive airborne contamination continues to be a formidable problem at many of the Department of Energy (DOE) weapons complex sites. For workers that must enter areas with high levels of airborne contamination, personnel protective equipment (PPE) can become highly restrictive, greatly diminishing productivity. Rather than require even more restrictive PPE for personnel in some situations, the Rocky Flats Plant (RFP) is actively researching and developing methods to aggressively combat airborne contamination hazards using electrophoretic technology. With appropriate equipment, airborne particulates can be effectively removed and collected for disposal in one simple process. The equipment needed to implement electrophoresis is relatively inexpensive, highly reliable, and very compact. Once airborne contamination levels are reduced, less PPE is required and a significant cost savings may be realized through decreased waste and maximized productivity. Preliminary ''cold,'' or non-radioactive, testing results at the RFP have shown the technology to be effective on a reasonable scale, with several potential benefits and an abundance of applications

  2. Dual-hemisphere transcranial direct current stimulation over primary motor cortex enhances consolidation of a ballistic thumb movement.

    Science.gov (United States)

    Koyama, Soichiro; Tanaka, Satoshi; Tanabe, Shigeo; Sadato, Norihiro

    2015-02-19

    Transcranial direct current stimulation (tDCS) is a noninvasive technique that modulates motor performance and learning. Previous studies have shown that tDCS over the primary motor cortex (M1) can facilitate consolidation of various motor skills. However, the effect of tDCS on consolidation of newly learned ballistic movements remains unknown. The present study tested the hypothesis that tDCS over M1 enhances consolidation of ballistic thumb movements in healthy adults. Twenty-eight healthy subjects participated in an experiment with a single-blind, sham-controlled, between-group design. Fourteen subjects practiced a ballistic movement with their left thumb during dual-hemisphere tDCS. Subjects received 1mA anodal tDCS over the contralateral M1 and 1mA cathodal tDCS over the ipsilateral M1 for 25min during the training session. The remaining 14 subjects underwent identical training sessions, except that dual-hemisphere tDCS was applied for only the first 15s (sham group). All subjects performed the task again at 1h and 24h later. Primary measurements examined improvement in peak acceleration of the ballistic thumb movement at 1h and 24h after stimulation. Improved peak acceleration was significantly greater in the tDCS group (144.2±15.1%) than in the sham group (98.7±9.1%) (Pballistic thumb movement in healthy adults. Dual-hemisphere tDCS over M1 may be useful to improve elemental motor behaviors, such as ballistic movements, in patients with subcortical strokes. Copyright © 2014 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.

  3. ZPR-9 airborne plutonium monitoring system

    International Nuclear Information System (INIS)

    Rusch, G.K.; McDowell, W.P.; Knapp, W.G.

    1975-01-01

    An airborne plutonium monitoring system which is installed in the ZPR-9 (Zero Power Reactor No. 9) facility at Argonne National Laboratory is described. The design and operational experience are discussed. This monitoring system utilizes particle size and density discrimination, alpha particle energy discrimination, and a background-subtraction techique operating in cascade to separate airborne-plutonium activity from other, naturally occurring, airborne activity. Relatively high sensitivity and reliability are achieved

  4. Radiation-resistant camera tube

    International Nuclear Information System (INIS)

    Kuwahata, Takao; Manabe, Sohei; Makishima, Yasuhiro

    1982-01-01

    It was a long time ago that Toshiba launched on manufacturing black-and-white radiation-resistant camera tubes employing nonbrowning face-plate glass for ITV cameras used in nuclear power plants. Now in compliance with the increasing demand in nuclear power field, the Company is at grips with the development of radiation-resistant single color-camera tubes incorporating a color-stripe filter for color ITV cameras used under radiation environment. Herein represented are the results of experiments on characteristics of materials for single color-camera tubes and prospects for commercialization of the tubes. (author)

  5. Function-Oriented Material Design of Joints for Advance Armors Under Ballistic Impact

    National Research Council Canada - National Science Library

    Ma, Zheng-Dong; Wang, Hui; Raju, Basavaraju

    2004-01-01

    The objective of this research is to develop a system of software tools based on a new design methodology for the efficient composite armor structural design under ballistic impact loading conditions...

  6. Formal Specification and Run-time Monitoring Within the Ballistic Missile Defense Project

    National Research Council Canada - National Science Library

    Caffall, Dale S; Cook, Thomas; Drusinsky, Doron; Michael, James B; Shing, Man-Tak; Sklavounos, Nicholas

    2005-01-01

    .... Ballistic Missile Defense Advanced Battle Manager (ABM) project in an effort that is amongst the most comprehensive application of formal methods to a large-scale safety-critical software application ever reported...

  7. Software for airborne radiation monitoring system

    International Nuclear Information System (INIS)

    Sheinfeld, M.; Kadmon, Y.; Tirosh, D.; Elhanany, I.; Gabovitch, A.; Barak, D.

    1997-01-01

    The Airborne Radiation Monitoring System monitors radioactive contamination in the air or on the ground. The contamination source can be a radioactive plume or an area contaminated with radionuclides. This system is composed of two major parts: Airborne Unit carried by a helicopter, and Ground Station carried by a truck. The Airborne software is intended to be the core of a computerized airborne station. The software is written in C++ under MS-Windows with object-oriented methodology. It has been designed to be user-friendly: function keys and other accelerators are used for vital operations, a help file and help subjects are available, the Human-Machine-Interface is plain and obvious. (authors)

  8. GRACE star camera noise

    Science.gov (United States)

    Harvey, Nate

    2016-08-01

    Extending results from previous work by Bandikova et al. (2012) and Inacio et al. (2015), this paper analyzes Gravity Recovery and Climate Experiment (GRACE) star camera attitude measurement noise by processing inter-camera quaternions from 2003 to 2015. We describe a correction to star camera data, which will eliminate a several-arcsec twice-per-rev error with daily modulation, currently visible in the auto-covariance function of the inter-camera quaternion, from future GRACE Level-1B product releases. We also present evidence supporting the argument that thermal conditions/settings affect long-term inter-camera attitude biases by at least tens-of-arcsecs, and that several-to-tens-of-arcsecs per-rev star camera errors depend largely on field-of-view.

  9. Inelastic and ballistic processes resulting from CsF--Ar collisions

    International Nuclear Information System (INIS)

    Sharma, R.D.; Sindoni, J.M.

    1993-01-01

    This paper continues the study of inelastic and ballistic collisions for the CsF--Ar system using the impulse approximation (IA). The IA expresses the atom--diatom potential as the sum of the two atom--atom potentials. The atom--atom interaction is approximated by a hard core potential, and the laboratory differential cross sections are calculated for an initial relative translational energy of 1.0 eV as a function of the laboratory recoil velocity of CsF. The calculated differential cross sections are in excellent agreement with the experimental measurements for all eight laboratory scattering angles for which the data are available. While the calculated results show no significant dependence on the initial relative velocity or on the initial vibrational quantum number of CsF, they do show a systematic variation with the initial rotational quantum number---the ballistic effect is more pronounced than that observed experimentally for initial quantum rotational numbers less than 30 and is not pronounced enough for rotational quantum numbers more than 100. Two mechanisms give rise to the ballistic peak. The first one is dominant when the laboratory scattering angle is equal, or nearly equal, to the laboratory angle of the centroid velocity. This mechanism transfers almost all of the relative translational energy into the internal energy of the diatom and magnifies the center-of-mass (c.m.) differential cross section almost a million times. This is due to a singularity in the Jacobian at very small c.m. recoil velocities, which physically means that a small solid angle in the laboratory frame can collect the signal from all 4π steradians in the c.m. frame

  10. The National Research Council study: "Making sense of ballistic missile defense"

    Science.gov (United States)

    Wilkening, Dean A.

    2014-05-01

    This chapter explains and summarizes the main findings of a recent National Research Council study entitled Making Sense of Ballistic Missile Defense: An Assessment of Concepts and Systems for U.S. Boost-Phase Missile Defense in Comparison to Other Alternatives.

  11. Separate observation of ballistic and scattered photons in the propagation of short laser pulses through a strongly scattering medium

    International Nuclear Information System (INIS)

    Tereshchenko, Sergei A; Podgaetskii, Vitalii M; Vorob'ev, Nikolai S; Smirnov, A V

    1998-01-01

    The conditions are identified for simultaneous observation of the peaks of scattered and unscattered (ballistic) photons in a narrow pulsed laser beam crossing a strongly scattering medium. The experimental results are explained on the basis of a nonstationary two-flux model of radiation transport. An analytic expression is given for the contribution of ballistic photons to the transmitted radiation, as a function of the characteristics of the scattering medium. It is shown that the ballistic photon contribution can be increased by the use of high-contrast substances which alter selectively the absorption and scattering coefficients of the medium. (laser applications and other topics in quantum electronics)

  12. High energy ballistic and fracture comparison between multilayered armor systems using non-woven curaua fabric composites and aramid laminates

    Directory of Open Access Journals (Sweden)

    Fábio de Oliveira Braga

    2017-10-01

    Full Text Available For personal protection against high kinetic energy projectiles, multilayered armor systems (MAS are usually the best option. They combine synergistically the properties of different materials such as ceramics, composites and metals. In the present work, ballistic tests were performed to evaluate multilayered armor systems (MAS using curaua non-woven fabric epoxy composites as second layer. A comparison to a MAS using aramid (Kevlar™ fabric laminates was made. The results showed that the curaua non-woven fabric composites are suitable to the high ballistic applications, and are promising substitutes for aramid fabric laminates. Keywords: Composite, Natural fiber, Curaua fiber, Non-woven fabric, Aramid laminate, Ballistic test

  13. Feasibility of ballistic strength training in sub-acute stroke: A randomized, controlled, assessor-blinded pilot study.

    Science.gov (United States)

    Hendrey, Genevieve; Clark, Ross A; Holland, Anne E; Mentiplay, Benjamin F; Davis, Carly; Windfeld-Lund, Cristie; Raymond, Melissa J; Williams, Gavin

    2018-05-30

    To establish the feasibility and effectiveness of a six week ballistic strength training protocol in people with stroke. Randomized, controlled, assessor-blinded study. Sub-acute inpatient rehabilitation. Consecutively admitted inpatients with a primary diagnosis of first ever stroke with lower limb weakness, functional ambulation category score of ≥3, and ability to walk ≥14m were screened for eligibility to recruit 30 participants for randomization. Participants were randomized to standard therapy or ballistic strength training three times per week for six weeks. The primary aim was to evaluate feasibility and outcomes included recruitment rate, participant retention and attrition, feasibility of the exercise protocol, therapist burden and participant safety. Secondary outcomes included measures of mobility, lower limb muscle strength, muscle power and quality of life. Thirty participants (11% of those screened) with mean age of 50 (SD 18) years were randomized. The median number of sessions attended was 15/18 and 17/18 for the ballistic and control groups respectively. Earlier than expected discharge home (n=4) and illness (n=7) were the most common reasons for non-attendance. Participants performed the exercises safely, with no study-related adverse events. There were significant (pballistic group for comfortable gait velocity (mean difference (MD) 0.31m/s, 95% confidence interval CI: 0.08 to 0.52), muscle power, as measured by peak jump height (MD 8cm, 95% CI: 3 to 13) and peak propulsive velocity (MD 64cm/s, 95% CI: 17 to 112). Ballistic training was safe and feasible in select ambulant people with stroke. Similar rates of retention and attrition suggest that ballistic training was acceptable to patients. Secondary outcomes provide promising results that warrant further investigation in a larger trial. Copyright © 2018. Published by Elsevier Inc.

  14. Recent developments in airborne gamma ray surveying

    International Nuclear Information System (INIS)

    Grasty, Robert L.

    1999-01-01

    Standardized procedures have been developed for converting airborne gamma ray measurements to ground concentrations of potassium, uranium and thorium. These procedures make use of an airborne calibration range whose ground concentrations should be measured with a calibrated portable spectrometer rather than by taking geochemical samples. Airborne sensitivities and height attenuation coefficients are normally determined from flights over the calibration range but may not be applicable in mountainous areas. Mathematical techniques have been now developed to reduce statistical noise in the airborne measurements by utilizing up to 256 channels of spectral information. (author)

  15. Self-Consistent Theory of Shot Noise Suppression in Ballistic Conductors

    Science.gov (United States)

    Bulashenko, O. M.; Rubí, J. M.; Kochelap, V. A.

    Shot-noise measurements become a fundamental tool to probe carrier interactions in mesoscopic systems [1]. A matter of particular interest is the significance of Coulomb interaction which may keep nearby electrons more regularly spaced rather than strictly at random and lead to the noise reduction. That effect occurs in different physical situations. Among them are charge-limited ballistic transport, resonant tunneling, single-electron tunneling, etc. In this communication we address the problem of Coulomb correlations in ballistic conductors under the space-charge-limited transport conditions, and present for the first time a semiclassical self-consistent theory of shot noise in these conductors by solving analytically the kinetic equation coupled self-consistently with a Poisson equation. Basing upon this theory, exact results for current noise in a two-terminal ballistic conductor under the action of long-range Coulomb correlations has been derived. The noise reduction factor (in respect to the uncorrelated value) is obtained in a closed analytical form for a full range of biases ranging from thermal to shot-noise limits which describe perfectly the results of the Monte Carlo simulations for a nondegenerate electron gas [2]. The magnitude of the noise reduction exceeds 0.01, which is of interest from the point of view of possible applications. Using these analytical results one may estimate a relative contribution to the noise from different groups of carriers (in energy space and/or real space) and to investigate in great detail the correlations between different groups of carriers. This leads us to suggest an electron energy spectroscopy experiment to probe the Coulomb correlations in ballistic conductors. Indeed, while the injected carriers are uncorrelated, those in the volume of the conductor are strongly correlated, as follows from the derived formulas for the fluctuation of the distribution function. Those correlations may be observed experimentally by

  16. Gamma camera

    International Nuclear Information System (INIS)

    Schlosser, P.A.; Steidley, J.W.

    1980-01-01

    The design of a collimation system for a gamma camera for use in nuclear medicine is described. When used with a 2-dimensional position sensitive radiation detector, the novel system can produce superior images than conventional cameras. The optimal thickness and positions of the collimators are derived mathematically. (U.K.)

  17. Picosecond camera

    International Nuclear Information System (INIS)

    Decroisette, Michel

    A Kerr cell activated by infrared pulses of a model locked Nd glass laser, acts as an ultra-fast and periodic shutter, with a few p.s. opening time. Associated with a S.T.L. camera, it gives rise to a picosecond camera allowing us to study very fast effects [fr

  18. Molecular dynamics simulations of ballistic He penetration into W fuzz

    NARCIS (Netherlands)

    Klaver, T. P. C.; Nordlund, K.; Morgan, T. W.; Westerhof, E.; Thijsse, B. J.; van de Sanden, M. C. M.

    2016-01-01

    Results are presented of large-scale Molecular Dynamics simulations of low-energy He bombardment of W nanorods, or so-called ‘fuzz’ structures. The goal of these simulations is to see if ballistic He penetration through W fuzz offers a more realistic scenario for how He moves through fuzz layers

  19. Nonlinear electron transport in InAs/AlGaSb three-terminal ballistic junctions

    International Nuclear Information System (INIS)

    Koyama, M; Inoue, T; Amano, N; Maemoto, T; Sasa, S; Inoue, M

    2008-01-01

    We have fabricated and characterized an InAs/AlGaSb three-terminal ballistic junction device. The fabricated device exhibited nonlinear electron transport properties because of ballistic motion of electrons in this structure that is comparable to the electron mean free path. When the left branch is biased to a finite voltage Vand the right to a voltage of -V (push-pull fashion), negative voltages appeared at the floating central branch regardless of the polarity of the input voltages. In the case of the central branch grounded in push-pull fashion, the clear current rectification effect also observed in the current flow of the central branch at 4.2K to even at 300K

  20. How to optimize joint theater ballistic missile defense

    OpenAIRE

    Diehl, Douglas D.

    2004-01-01

    Approved for public release, distribution is unlimited Many potential adversaries seek, or already have theater ballistic missiles capable of threatening targets of interest to the United States. The U.S. Missile Defense Agency and armed forces are developing and fielding missile interceptors carried by many different platforms, including ships, aircraft, and ground units. Given some exigent threat, the U.S. must decide where to position defensive platforms and how they should engage poten...

  1. Performance of Lead-Free versus Lead-Based Hunting Ammunition in Ballistic Soap

    Science.gov (United States)

    Gremse, Felix; Krone, Oliver; Thamm, Mirko; Kiessling, Fabian; Tolba, René Hany; Rieger, Siegfried; Gremse, Carl

    2014-01-01

    Background Lead-free hunting bullets are an alternative to lead-containing bullets which cause health risks for humans and endangered scavenging raptors through lead ingestion. However, doubts concerning the effectiveness of lead-free hunting bullets hinder the wide-spread acceptance in the hunting and wildlife management community. Methods We performed terminal ballistic experiments under standardized conditions with ballistic soap as surrogate for game animal tissue to characterize dimensionally stable, partially fragmenting, and deforming lead-free bullets and one commonly used lead-containing bullet. The permanent cavities created in soap blocks are used as a measure for the potential wound damage. The soap blocks were imaged using computed tomography to assess the volume and shape of the cavity and the number of fragments. Shots were performed at different impact speeds, covering a realistic shooting range. Using 3D image segmentation, cavity volume, metal fragment count, deflection angle, and depth of maximum damage were determined. Shots were repeated to investigate the reproducibility of ballistic soap experiments. Results All bullets showed an increasing cavity volume with increasing deposited energy. The dimensionally stable and fragmenting lead-free bullets achieved a constant conversion ratio while the deforming copper and lead-containing bullets showed a ratio, which increases linearly with the total deposited energy. The lead-containing bullet created hundreds of fragments and significantly more fragments than the lead-free bullets. The deflection angle was significantly higher for the dimensionally stable bullet due to its tumbling behavior and was similarly low for the other bullets. The deforming bullets achieved higher reproducibility than the fragmenting and dimensionally stable bullets. Conclusion The deforming lead-free bullet closely resembled the deforming lead-containing bullet in terms of energy conversion, deflection angle, cavity shape

  2. Performance of lead-free versus lead-based hunting ammunition in ballistic soap.

    Directory of Open Access Journals (Sweden)

    Felix Gremse

    Full Text Available BACKGROUND: Lead-free hunting bullets are an alternative to lead-containing bullets which cause health risks for humans and endangered scavenging raptors through lead ingestion. However, doubts concerning the effectiveness of lead-free hunting bullets hinder the wide-spread acceptance in the hunting and wildlife management community. METHODS: We performed terminal ballistic experiments under standardized conditions with ballistic soap as surrogate for game animal tissue to characterize dimensionally stable, partially fragmenting, and deforming lead-free bullets and one commonly used lead-containing bullet. The permanent cavities created in soap blocks are used as a measure for the potential wound damage. The soap blocks were imaged using computed tomography to assess the volume and shape of the cavity and the number of fragments. Shots were performed at different impact speeds, covering a realistic shooting range. Using 3D image segmentation, cavity volume, metal fragment count, deflection angle, and depth of maximum damage were determined. Shots were repeated to investigate the reproducibility of ballistic soap experiments. RESULTS: All bullets showed an increasing cavity volume with increasing deposited energy. The dimensionally stable and fragmenting lead-free bullets achieved a constant conversion ratio while the deforming copper and lead-containing bullets showed a ratio, which increases linearly with the total deposited energy. The lead-containing bullet created hundreds of fragments and significantly more fragments than the lead-free bullets. The deflection angle was significantly higher for the dimensionally stable bullet due to its tumbling behavior and was similarly low for the other bullets. The deforming bullets achieved higher reproducibility than the fragmenting and dimensionally stable bullets. CONCLUSION: The deforming lead-free bullet closely resembled the deforming lead-containing bullet in terms of energy conversion

  3. Airborne iodine-125 arising from surface contamination

    International Nuclear Information System (INIS)

    Kwok, C.S.; Hilditch, T.E.

    1982-01-01

    Measurements of airborne 125 I were made during the subdivision of 740 MBq stocks of 125 I iodide solution in a hospital dispensary. Within the fume cupboard the mean airborne 125 I concentration was 3.5 +- 2.9 kBqm -3 . No airborne concentration contamination was found outside the fume cupboard during these dispensing sessions. The airborne 125 I concentration arising from deliberate surface contamination (50 μl, 3.7-6.3 MBq) of the top of a lead pot was measured at a height simulating face level at an open work bench. There was a progressive fall in airborne concentration over seven days but even then the level was still significantly above background. Measurements made with the extraction system of the fume cupboard in operation were 2-3 times lower. (U.K.)

  4. Using ballistic electron emission microscopy to investigate the metal-vacuum interface

    International Nuclear Information System (INIS)

    Baykul, M.C.

    1993-01-01

    This dissertation investigates the possibility of using the ballistic electron microscope (BEEM) to study the metal-vacuum interface. In order to do that, we have designed and built a novel experimental setup which consists of an STM tip from which electrons tunnel into a thin (<60 nm), free-standing metal film in vacuum ambient. When the tunnel bias exceeds the work function of the metal, some small fraction of the tunneling electrons traverses through the film without any energy loss, and emits into the vacuum through the back side of the film. The rate of emission of such ballistic electrons, which is called the collector current, is measured by a channel electron multiplier. One of the major challenges for this investigation was preparing free-standing thin films by the following steps: (a) evaporating Au onto a (100) face of NaCl at room temperature, (b) dissolving the NaCl in a 50-50 mixture of ethyl alcohol and distilled water, and (c) catching the Au film that floats on the surface of the solvent onto a Cu grid. Subsequent annealing increased the grain size, and improved the bonding of the film onto the grid. We have succeeded in observing ballistic electron emission through these free-standing thin films, even though the collector current tended to decay in a time interval of a few tenths of a second. The exact cause of this decay is not known, however we have suggested some possibilities. By ramping the bias voltage from about 0.2 V to about 10.5 V, we find the threshold bias voltage at which the collector current begins. This threshold voltage is an upper limit for the work function of AU. From our data we obtained a value of 5.2 V for this upper limit. We also have plotted the collector current, that was averaged over a scan area of 375 nm x 375 nm, against the tunnel bias. This plot shows that, for this region, the lowest threshold bias voltage for ballistic electron emission is between 3.5 V and 4.5 V

  5. IMPROVED TOPOGRAPHIC MODELS VIA CONCURRENT AIRBORNE LIDAR AND DENSE IMAGE MATCHING

    Directory of Open Access Journals (Sweden)

    G. Mandlburger

    2017-09-01

    Full Text Available Modern airborne sensors integrate laser scanners and digital cameras for capturing topographic data at high spatial resolution. The capability of penetrating vegetation through small openings in the foliage and the high ranging precision in the cm range have made airborne LiDAR the prime terrain acquisition technique. In the recent years dense image matching evolved rapidly and outperforms laser scanning meanwhile in terms of the achievable spatial resolution of the derived surface models. In our contribution we analyze the inherent properties and review the typical processing chains of both acquisition techniques. In addition, we present potential synergies of jointly processing image and laser data with emphasis on sensor orientation and point cloud fusion for digital surface model derivation. Test data were concurrently acquired with the RIEGL LMS-Q1560 sensor over the city of Melk, Austria, in January 2016 and served as basis for testing innovative processing strategies. We demonstrate that (i systematic effects in the resulting scanned and matched 3D point clouds can be minimized based on a hybrid orientation procedure, (ii systematic differences of the individual point clouds are observable at penetrable, vegetated surfaces due to the different measurement principles, and (iii improved digital surface models can be derived combining the higher density of the matching point cloud and the higher reliability of LiDAR point clouds, especially in the narrow alleys and courtyards of the study site, a medieval city.

  6. NATO and U.S. Ballistic Missile Defense Programs: Divergent or Convergent Paths?

    National Research Council Canada - National Science Library

    Toms, Kevin E

    2008-01-01

    ...) information network to support the Theater Missile Defense (TMD) capabilities of specific Allies for the protection of forward deployed troops, and studies of the feasibility and political-military implications of Ballistic Missile Defense (BMD...

  7. Geological Mapping of Sabah, Malaysia, Using Airborne Gravity Survey

    DEFF Research Database (Denmark)

    Fauzi Nordin, Ahmad; Jamil, Hassan; Noor Isa, Mohd

    2016-01-01

    Airborne gravimetry is an effective tool for mapping local gravity fields using a combination of airborne sensors, aircraft and positioning systems. It is suitable for gravity surveys over difficult terrains and areas mixed with land and ocean. This paper describes the geological mapping of Sabah...... using airborne gravity surveys. Airborne gravity data over land areas of Sabah has been combined with the marine airborne gravity data to provide a seamless land-to-sea gravity field coverage in order to produce the geological mapping. Free-air and Bouguer anomaly maps (density 2.67 g/cm3) have been...... derived from the airborne data both as simple ad-hoc plots (at aircraft altitude), and as final plots from the downward continued airborne data, processed as part of the geoids determination. Data are gridded at 0.025 degree spacing which is about 2.7 km and the data resolution of the filtered airborne...

  8. Dynamic material characterization by combining ballistic testing and an engineering model

    NARCIS (Netherlands)

    Carton, E.P.; Roebroeks, G.H.J.J.; Wal, R. van der

    2013-01-01

    At TNO several energy-based engineering models have been created for various failure mechanism occurring in ballistic testing of materials, like ductile hole growth, denting, plugging, etc. Such models are also under development for ceramic and fiberbased materials (fabrics). As the models are

  9. Optical detection of ballistic electrons injected by a scanning-tunneling microscope

    NARCIS (Netherlands)

    Kemerink, M.; Sauthoff, K.; Koenraad, P.M.; Gerritsen, J.W.; Kempen, van H.; Wolter, J.H.

    2001-01-01

    We demonstrate a spectroscopic technique which is based on ballistic injection of minority carriers from the tip of a scanning-tunneling microscope into a semiconductor heterostructure. By analyzing the resulting electroluminescence spectrum as a function of tip-sample bias, both the injection

  10. Reducing the Variance of Intrinsic Camera Calibration Results in the ROS Camera_Calibration Package

    Science.gov (United States)

    Chiou, Geoffrey Nelson

    The intrinsic calibration of a camera is the process in which the internal optical and geometric characteristics of the camera are determined. If accurate intrinsic parameters of a camera are known, the ray in 3D space that every point in the image lies on can be determined. Pairing with another camera allows for the position of the points in the image to be calculated by intersection of the rays. Accurate intrinsics also allow for the position and orientation of a camera relative to some world coordinate system to be calculated. These two reasons for having accurate intrinsic calibration for a camera are especially important in the field of industrial robotics where 3D cameras are frequently mounted on the ends of manipulators. In the ROS (Robot Operating System) ecosystem, the camera_calibration package is the default standard for intrinsic camera calibration. Several researchers from the Industrial Robotics & Automation division at Southwest Research Institute have noted that this package results in large variances in the intrinsic parameters of the camera when calibrating across multiple attempts. There are also open issues on this matter in their public repository that have not been addressed by the developers. In this thesis, we confirm that the camera_calibration package does indeed return different results across multiple attempts, test out several possible hypothesizes as to why, identify the reason, and provide simple solution to fix the cause of the issue.

  11. Commercialization of radiation tolerant camera

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yong Bum; Choi, Young Soo; Kim, Sun Ku; Lee, Jong Min; Cha, Bung Hun; Lee, Nam Ho; Byun, Eiy Gyo; Yoo, Seun Wook; Choi, Bum Ki; Yoon, Sung Up; Kim, Hyun Gun; Sin, Jeong Hun; So, Suk Il

    1999-12-01

    In this project, radiation tolerant camera which tolerates 10{sup 6} - 10{sup 8} rad total dose is developed. In order to develop radiation tolerant camera, radiation effect of camera components was examined and evaluated, and camera configuration was studied. By the result of evaluation, the components were decided and design was performed. Vidicon tube was selected to use by image sensor and non-browning optics and camera driving circuit were applied. The controller needed for CCTV camera system, lens, light, pan/tilt controller, was designed by the concept of remote control. And two type of radiation tolerant camera were fabricated consider to use in underwater environment or normal environment. (author)

  12. Commercialization of radiation tolerant camera

    International Nuclear Information System (INIS)

    Lee, Yong Bum; Choi, Young Soo; Kim, Sun Ku; Lee, Jong Min; Cha, Bung Hun; Lee, Nam Ho; Byun, Eiy Gyo; Yoo, Seun Wook; Choi, Bum Ki; Yoon, Sung Up; Kim, Hyun Gun; Sin, Jeong Hun; So, Suk Il

    1999-12-01

    In this project, radiation tolerant camera which tolerates 10 6 - 10 8 rad total dose is developed. In order to develop radiation tolerant camera, radiation effect of camera components was examined and evaluated, and camera configuration was studied. By the result of evaluation, the components were decided and design was performed. Vidicon tube was selected to use by image sensor and non-browning optics and camera driving circuit were applied. The controller needed for CCTV camera system, lens, light, pan/tilt controller, was designed by the concept of remote control. And two type of radiation tolerant camera were fabricated consider to use in underwater environment or normal environment. (author)

  13. Hybrid carbon-glass fiber/toughened epoxy thick composites subject to drop-weight and ballistic impacts

    Science.gov (United States)

    Sevkat, Ercan

    The goals of this study are to investigate the low velocity and ballistic impact response of thick-section hybrid fiber composites at room temperature. Plain-woven S2-Glass and IM7 Graphite fabrics are chosen as fiber materials reinforcing the SC-79 epoxy. Four different types of composites consisting of alternating layers of glass and graphite woven fabric sheets are considered. Tensile tests are conducted using 98 KN (22 kip) MTS testing machine equipped with environmental chamber. Low-velocity impact tests are conducted using an Instron-Dynatup 8250 impact test machine equipped with an environmental chamber. Ballistic impact tests are performed using helium pressured high-speed gas-gun. Tensile tests results were used to define the material behavior of the hybrid and non-hybrid composites in Finite Element modeling. The low velocity and ballistic impact tests showed that hybrid composites performance was somewhere between non-hybrid woven composites. Using woven glass fabrics as outer skin improved the impact performance of woven graphite composite. However hybrid composites are prone to delamination especially between dissimilar layers. The ballistic limit velocity V50 hybrid composites were higher that of woven graphite composite and lower than that of woven glass composite. Both destructive cross-sectional micrographs and nondestructive ultrasonic techniques are used to evaluate the damage created by impact. The Finite Element code LS-DYNA is chosen to perform numerical simulations of low velocity and ballistic impact on thick-section hybrid composites. The damage progression in these composites shows anisotropic nonlinearity. The material model to describe this behavior is not available in LS-DYNA material library. Initially, linear orthotropic material with damage (Chan-Chan Model) is employed to simulate some of the experimental results. Then, user-defined material subroutine is incorporated into LS-DYNA to simulate the nonlinear behavior. The

  14. Cameras in mobile phones

    Science.gov (United States)

    Nummela, Ville; Viinikanoja, Jarkko; Alakarhu, Juha

    2006-04-01

    One of the fastest growing markets in consumer markets today are camera phones. During past few years total volume has been growing fast and today millions of mobile phones with camera will be sold. At the same time resolution and functionality of the cameras has been growing from CIF towards DSC level. From camera point of view the mobile world is an extremely challenging field. Cameras should have good image quality but in small size. They also need to be reliable and their construction should be suitable for mass manufacturing. All components of the imaging chain should be well optimized in this environment. Image quality and usability are the most important parameters to user. The current trend of adding more megapixels to cameras and at the same time using smaller pixels is affecting both. On the other hand reliability and miniaturization are key drivers for product development as well as the cost. In optimized solution all parameters are in balance but the process of finding the right trade-offs is not an easy task. In this paper trade-offs related to optics and their effects to image quality and usability of cameras are discussed. Key development areas from mobile phone camera point of view are also listed.

  15. North Korea's satellite launch: provocation and ballistic progress

    International Nuclear Information System (INIS)

    Sitt, Bernard

    2013-12-01

    North Korea's putting into orbit of a small meteorological satellite using an Unha-3 launcher on the 13 December 2013, a year on from Kim Jong-il's passing, smacks of provocation. The launch of an SLV that is closely related to the Taepodong-2 and that has numerous characteristics in common with a long-range ballistic missile contravened Security Council Resolutions 1695 (2006), 1718 (2006), and 1874 (2009), adopted in response to nuclear and ballistic tests carried out by Pyongyang. These resolutions implemented a progressively more strenuous regime of sanctions, which cannot fail to have marked the North Korean dictatorship, at least in economic and financial terms. The provisional successes and failures of the Six-party talks, mediated by China, which have been at a dead-end since 2009 bear witness to the unpredictability of the North's reactions. Pyongyang's double-agenda is, nonetheless, relatively easily to discern. Firstly, with this successful launch, North Korea has redeemed the failure of the first Unha-3 launch on the 13 April 2012, at the same time as Kim Jong-un took power and the country was celebrating the centenary of the birth of its founder, Kim Il-sung. This success evidently helps to bolster both the young leader's prestige on the domestic front and his sway over the army. Simultaneously, and beyond any symbolic value, North Korea's development of long-range ballistic capabilities constitutes veritable progress, on the back of a series of failures since 2006. Naturally, the reliability of the Unha-3 launcher (or of an improved Taepodong-2) is by no means guaranteed. Moreover, its payload is limited, since it can presently only launch small satellites, and thus well below the capacity needed to carry a nuclear weapon. If this is indeed North Korea's objective in years to come, it will need to make considerable technological progress, including the development of sufficiently small nuclear devices, which would necessitate further nuclear tests. In

  16. Influence of the vacuum resin process, on the ballistic behaviour of lightweight armouring solutions

    Science.gov (United States)

    Lefebvre, M.; Boussu, F.; Coutellier, D.; Vallee, D.

    2012-08-01

    The armour of vehicles against conventional threats is mainly composed with steel or aluminium panels. Efficient heavy solutions exist, but the involved industries require new lightweight structures. Moreover, unconventional threats as IEDs (Improvised Explosive Devices) may cause severe damages on these structural and protective panel solutions. Thus, combination of aluminium or steel plates with textile composite structures used as a backing, leads to the mass reduction and better performance under delamination behaviour against these new threats. This paper is a part of a study dealing with the impact behaviour of three warp interlocks weaving structures under Fragment Simulating Projectile (FSP) impact. During this research, several parameters has being studied as the influence of the yarns insertions [1-4], the degradation of the yarns during the weaving process [5-7], and the influence of the resin rate on the ballistic behaviour. The resin rate inside composite materials is dependant on the final application. In ballistic protection, we need to control the resin rate in order to have a deformable structure in order to absorb the maximum of energy. However, with the warp interlocks weaving structure, the yarns insertions induce empty spaces between the yarns where the resin takes place without being evacuated. The resin rate inside the warp interlocks structures is in the most of cases less than 50%, which lead to have brittle and hard material during the impact. Contrary to interlocks structures, the existing protection based on prepreg structure have a high fibres ratio around 88% of weight. That leads to have the best ballistic properties during the impact and good deformability of the structure. The aim of this paper is to evaluate the influence of the resin rate on the ballistic results of the composites materials. For that, we have chosen two kinds of warp interlocks fabrics which were infused with epoxy resin following two processes. The first is a

  17. Ballistic Missile Defense in the European Theater: Political, Military and Technical Considerations

    National Research Council Canada - National Science Library

    Terstegge, Stephen D

    2007-01-01

    ... that threatens the homeland of the United States. Therefore, the United States faces the complex security challenge of emplacing ballistic missile defense assets on European soil in the very near-term to mitigate this threat...

  18. Comparison of the ballistic contractile responses generated during microstimulation of single human motor axons with brief irregular and regular stimuli.

    Science.gov (United States)

    Leitch, Michael; Macefield, Vaughan G

    2017-08-01

    Ballistic contractions are induced by brief, high-frequency (60-100 Hz) trains of action potentials in motor axons. During ramp voluntary contractions, human motoneurons exhibit significant discharge variability of ∼20% and have been shown to be advantageous to the neuromuscular system. We hypothesized that ballistic contractions incorporating discharge variability would generate greater isometric forces than regular trains with zero variability. High-impedance tungsten microelectrodes were inserted into human fibular nerve, and single motor axons were stimulated with both irregular and constant-frequency stimuli at mean frequencies ranging from 57.8 to 68.9 Hz. Irregular trains generated significantly greater isometric peak forces than regular trains over identical mean frequencies. The high forces generated by ballistic contractions are not based solely on high frequencies, but rather a combination of high firing rates and discharge irregularity. It appears that irregular ballistic trains take advantage of the "catchlike property" of muscle, allowing augmentation of force. Muscle Nerve 56: 292-297, 2017. © 2016 Wiley Periodicals, Inc.

  19. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating ratesto the ...

  20. Aerodynamic heating of ballistic missile including the effects of gravity

    Indian Academy of Sciences (India)

    Abstract. The aerodynamic heating of a ballistic missile due to only convection is analysed taking into consideration the effects of gravity. The amount of heat transferred to the wetted area and to the nose region has been separately determined, unlike A Miele's treatise without consideration of gravity. The peak heating rates ...

  1. "Ballistic Six" Upper-Extremity Plyometric Training for the Pediatric Volleyball Players.

    Science.gov (United States)

    Turgut, Elif; Cinar-Medeni, Ozge; Colakoglu, Filiz F; Baltaci, Gul

    2017-09-19

    The Ballistic Six exercise program includes commonly used upper-body exercises, and the program is recommended for overhead throwing athletes. The purpose of the current study was to investigate the effects of a 12-week the Ballistic Six upper-extremity plyometric training program on upper-body explosive power, endurance, and reaction time in pediatric overhead athletes. Twenty-eight female pediatric volleyball players participated in the study. The participants were randomly divided into 2 study groups: an intervention group (upper-extremity plyometric training in addition to the volleyball training; n = 14) and a control group (the volleyball training only; n = 14). All the participants were assessed before and after a 12-week training program for upper-body power, strength and endurance, and reaction time. Statistical comparison was performed using an analysis of variance test. Comparisons showed that after a 12-week training program, the Ballistic Six upper-body plyometric training program resulted in more improvements in an overhead medicine ball throwing distance and a push-up performance, as well as greater improvements in the reaction time in the nonthrowing arm when compared with control training. In addition, a 12-week training program was found to be effective in achieving improvements in the reaction time in the throwing arm for both groups similarly. Compared with regular training, upper-body plyometric training resulted in additional improvements in upper-body power and strength and endurance among pediatric volleyball players. The findings of the study provide a basis for developing training protocols for pediatric volleyball players.

  2. SGA-WZ: A New Strapdown Airborne Gravimeter

    DEFF Research Database (Denmark)

    Huang, Yangming; Olesen, Arne Vestergaard; Wu, Meiping

    2012-01-01

    Inertial navigation systems and gravimeters are now routinely used to map the regional gravitational quantities from an aircraft with mGal accuracy and a spatial resolution of a few kilometers. However, airborne gravimeter of this kind is limited by the inaccuracy of the inertial sensor performance......, the integrated navigation technique and the kinematic acceleration determination. As the GPS technique developed, the vehicle acceleration determination is no longer the limiting factor in airborne gravity due to the cancellation of the common mode acceleration in differential mode. A new airborne gravimeter...... and discussion of the airborne field test results are also given....

  3. Advantages of computer cameras over video cameras/frame grabbers for high-speed vision applications

    Science.gov (United States)

    Olson, Gaylord G.; Walker, Jo N.

    1997-09-01

    Cameras designed to work specifically with computers can have certain advantages in comparison to the use of cameras loosely defined as 'video' cameras. In recent years the camera type distinctions have become somewhat blurred, with a great presence of 'digital cameras' aimed more at the home markets. This latter category is not considered here. The term 'computer camera' herein is intended to mean one which has low level computer (and software) control of the CCD clocking. These can often be used to satisfy some of the more demanding machine vision tasks, and in some cases with a higher rate of measurements than video cameras. Several of these specific applications are described here, including some which use recently designed CCDs which offer good combinations of parameters such as noise, speed, and resolution. Among the considerations for the choice of camera type in any given application would be such effects as 'pixel jitter,' and 'anti-aliasing.' Some of these effects may only be relevant if there is a mismatch between the number of pixels per line in the camera CCD and the number of analog to digital (A/D) sampling points along a video scan line. For the computer camera case these numbers are guaranteed to match, which alleviates some measurement inaccuracies and leads to higher effective resolution.

  4. Gate tuneable beamsplitter in ballistic graphene

    Energy Technology Data Exchange (ETDEWEB)

    Rickhaus, Peter; Makk, Péter, E-mail: Peter.Makk@unibas.ch; Schönenberger, Christian [Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel (Switzerland); Liu, Ming-Hao; Richter, Klaus [Institut für Theoretische Physik, Universität Regensburg, D-93040 Regensburg (Germany)

    2015-12-21

    We present a beam splitter in a suspended, ballistic, multiterminal, bilayer graphene device. By using local bottomgates, a p-n interface tilted with respect to the current direction can be formed. We show that the p-n interface acts as a semi-transparent mirror in the bipolar regime and that the reflectance and transmittance of the p-n interface can be tuned by the gate voltages. Moreover, by studying the conductance features appearing in magnetic field, we demonstrate that the position of the p-n interface can be moved by 1 μm. The herein presented beamsplitter device can form the basis of electron-optic interferometers in graphene.

  5. Going ballistic: Graphene hot electron transistors

    Science.gov (United States)

    Vaziri, S.; Smith, A. D.; Östling, M.; Lupina, G.; Dabrowski, J.; Lippert, G.; Mehr, W.; Driussi, F.; Venica, S.; Di Lecce, V.; Gnudi, A.; König, M.; Ruhl, G.; Belete, M.; Lemme, M. C.

    2015-12-01

    This paper reviews the experimental and theoretical state of the art in ballistic hot electron transistors that utilize two-dimensional base contacts made from graphene, i.e. graphene base transistors (GBTs). Early performance predictions that indicated potential for THz operation still hold true today, even with improved models that take non-idealities into account. Experimental results clearly demonstrate the basic functionality, with on/off current switching over several orders of magnitude, but further developments are required to exploit the full potential of the GBT device family. In particular, interfaces between graphene and semiconductors or dielectrics are far from perfect and thus limit experimental device integrity, reliability and performance.

  6. Comparative study on sintered alumina for ballistic shielding application; Estudo comparativo entre aluminas sinterizadas visando aplicacao em blindagem balistica

    Energy Technology Data Exchange (ETDEWEB)

    Melo, Francisco Cristovao Lourenco de; Goncalves, Diniz Pereira [Centro Tecnico Aeroespacial (CTA), Sao Jose dos Campos, SP (Brazil). Inst. de Aeronautica e Espaco

    1997-12-31

    This work presents a development of the armor made from special ceramic materials and kevlar. An experimental investigation was conducted to study the ballistic penetration resistance on three samples taken from sintered alumina: a commercial one and two formulations A and B made in IAE/CTA. The main differences between the two formulations was the grain size and bend resistance. The knowledge of the mechanisms during the penetration and perforation process allowed to apply a ductile composite laminate made form kevlar under the alumina to delay its rupture. The last ballistic test showed how a Weibull`s modulii and other mechanical properties are able to improve ballistic penetration resistance. (author) 3 refs.

  7. Divergence-ratio axi-vision camera (Divcam): A distance mapping camera

    International Nuclear Information System (INIS)

    Iizuka, Keigo

    2006-01-01

    A novel distance mapping camera the divergence-ratio axi-vision camera (Divcam) is proposed. The decay rate of the illuminating light with distance due to the divergence of the light is used as means of mapping the distance. Resolutions of 10 mm over a range of meters and 0.5 mm over a range of decimeters were achieved. The special features of this camera are its high resolution real-time operation, simplicity, compactness, light weight, portability, and yet low fabrication cost. The feasibility of various potential applications is also included

  8. Considerations on Dop (Depth Of Penetration) Test for Evaluation of Ceramics Materials Used in Ballistic Protection

    Science.gov (United States)

    Popa, Ioan-Dan; Dobriţa, Florin

    2017-12-01

    Tremendous amount of funds and other resorces were invested in studying the response of ceramic materials under ballistic impact, the main goal being to find a way to increase the protection of soldiers and the vehicles used in the modern battlespace. Using of ceramic materials especially carbon based (carbides), nitrogen based (nitrides) and oxygen based (oxides) ceramics in order to increase the protection level of ballistic equipment could be, sometimes, a big challenge when trying to use the proper test in order to evaluate and compare their performances. The role of the tests is to provide a better understanding of their response in different situations and, as a consequence, to make them more efficient as armour components through future improvements. The paper presents shortly the main tests which are used and eventually standardised for evaluating the ballistic behaviour of the ceramics and other armour components, with a special focus to DOP (Depth of Penetration) Tests.

  9. Thermal Cameras and Applications

    DEFF Research Database (Denmark)

    Gade, Rikke; Moeslund, Thomas B.

    2014-01-01

    Thermal cameras are passive sensors that capture the infrared radiation emitted by all objects with a temperature above absolute zero. This type of camera was originally developed as a surveillance and night vision tool for the military, but recently the price has dropped, significantly opening up...... a broader field of applications. Deploying this type of sensor in vision systems eliminates the illumination problems of normal greyscale and RGB cameras. This survey provides an overview of the current applications of thermal cameras. Applications include animals, agriculture, buildings, gas detection......, industrial, and military applications, as well as detection, tracking, and recognition of humans. Moreover, this survey describes the nature of thermal radiation and the technology of thermal cameras....

  10. Variability of Plyometric and Ballistic Exercise Technique Maintains Jump Performance.

    Science.gov (United States)

    Chandler, Phillip T; Greig, Matthew; Comfort, Paul; McMahon, John J

    2018-06-01

    Chandler, PT, Greig, M, Comfort, P, and McMahon, JJ. Variability of plyometric and ballistic exercise technique maintains jump performance. J Strength Cond Res 32(6): 1571-1582, 2018-The aim of this study was to investigate changes in vertical jump technique over the course of a training session. Twelve plyometric and ballistic exercise-trained male athletes (age = 23.4 ± 4.6 years, body mass = 78.7 ± 18.8 kg, height = 177.1 ± 9.0 cm) performed 3 sets of 10 repetitions of drop jump (DJ), rebound jump (RJ) and squat jump (SJ). Each exercise was analyzed from touchdown to peak joint flexion and peak joint flexion to take-off. Squat jump was analyzed from peak joint flexion to take-off only. Jump height, flexion and extension time and range of motion, and instantaneous angles of the ankle, knee, and hip joints were measured. Separate 1-way repeated analyses of variance compared vertical jump technique across exercise sets and repetitions. Exercise set analysis found that SJ had lower results than DJ and RJ for the angle at peak joint flexion for the hip, knee, and ankle joints and take-off angle of the hip joint. Exercise repetition analysis found that the ankle joint had variable differences for the angle at take-off, flexion, and extension time for RJ. The knee joint had variable differences for flexion time for DJ and angle at take-off and touchdown for RJ. There was no difference in jump height. Variation in measured parameters across repetitions highlights variable technique across plyometric and ballistic exercises. This did not affect jump performance, but likely maintained jump performance by overcoming constraints (e.g., level of rate coding).

  11. Adaptations in athletic performance after ballistic power versus strength training.

    Science.gov (United States)

    Cormie, Prue; McGuigan, Michael R; Newton, Robert U

    2010-08-01

    To determine whether the magnitude of improvement in athletic performance and the mechanisms driving these adaptations differ in relatively weak individuals exposed to either ballistic power training or heavy strength training. Relatively weak men (n = 24) who could perform the back squat with proficient technique were randomized into three groups: strength training (n = 8; ST), power training (n = 8; PT), or control (n = 8). Training involved three sessions per week for 10 wk in which subjects performed back squats with 75%-90% of one-repetition maximum (1RM; ST) or maximal-effort jump squats with 0%-30% 1RM (PT). Jump and sprint performances were assessed as well as measures of the force-velocity relationship, jumping mechanics, muscle architecture, and neural drive. Both experimental groups showed significant (P training with no significant between-group differences evident in either jump (peak power: ST = 17.7% +/- 9.3%, PT = 17.6% +/- 4.5%) or sprint performance (40-m sprint: ST = 2.2% +/- 1.9%, PT = 3.6% +/- 2.3%). ST also displayed a significant increase in maximal strength that was significantly greater than the PT group (squat 1RM: ST = 31.2% +/- 11.3%, PT = 4.5% +/- 7.1%). The mechanisms driving these improvements included significant (P force-velocity relationship, jump mechanics, muscle architecture, and neural activation that showed a degree of specificity to the different training stimuli. Improvements in athletic performance were similar in relatively weak individuals exposed to either ballistic power training or heavy strength training for 10 wk. These performance improvements were mediated through neuromuscular adaptations specific to the training stimulus. The ability of strength training to render similar short-term improvements in athletic performance as ballistic power training, coupled with the potential long-term benefits of improved maximal strength, makes strength training a more effective training modality for relatively weak individuals.

  12. Analytical model for a cooperative ballistic deposition in one dimension

    Science.gov (United States)

    Hassan, M. Kamrul; Wessel, Niels; Kurths, Jürgen

    2003-06-01

    We formulate a model for a cooperative ballistic deposition (CBD) process whereby the incoming particles are correlated with those already adsorbed via attractive force. The strength of the correlation is controlled by a tunable parameter a that interpolates the classical car parking problem at a=0, the ballistic deposition at a=1, and the CBD model at a>1. The effects of the correlation in the CBD model are as follows. The jamming coverage q(a) increases with the strength of attraction a due to an ever-increasing tendency of cluster formation. The system almost reaches the closest packing structure as a→∞ but never forms a percolating cluster, which is typical of one-dimensional systems. In the large a regime, the mean cluster size k increases as a1/2. Furthermore, the asymptotic approach towards the closest packing is purely algebraic both with a as q(∞)-q(a)˜a-1/2 and with k as q(∞)-q(k)˜k-1, where q(∞)≃1.

  13. Virtual georeferencing : how an 11-eyed video camera helps the pipeline industry

    Energy Technology Data Exchange (ETDEWEB)

    Ball, C.

    2006-08-15

    Designed by Immersive Media Corporation (IMC) the new Telemmersion System is a lightweight camera system capable of generating synchronized high-resolution video streams that represent a full motion spherical world. With 11 cameras configured in a sphere, the system is portable and can be easily mounted on ground and air-borne vehicles for use in surveillance; integration; commanded control of interactive intelligent databases; scenario modelling; and specialized training. The system was recently used to georeference immersive video of existing and proposed pipeline routes. Footage from the system was used to supplement traditional data collection methods for environmental impact assessment; route selection and engineering; regulatory compliance; and public consultation. Traditionally, the medium used to visualize pipeline routes is a map overlaid with aerial photography. Pipeline routes are typically flown throughout the planning stages in order to give environmentalists, engineers and other personnel the opportunity to visually inspect the terrain, identify issues and make decisions. The technology has significantly reduced the costs during the planning stages of pipeline routes, as the remote footage can be stored on DVD, allowing various stakeholders and contractors to view the terrain and zoom in on particular land features. During one recent 3-day trip, 500 km of proposed pipeline was recorded using the technology. Typically, for various regulatory and environmental requirements, a half a dozen trips would have been required. 2 figs.

  14. Radiation camera exposure control

    International Nuclear Information System (INIS)

    Martone, R.J.; Yarsawich, M.; Wolczek, W.

    1976-01-01

    A system and method for governing the exposure of an image generated by a radiation camera to an image sensing camera is disclosed. The exposure is terminated in response to the accumulation of a predetermined quantity of radiation, defining a radiation density, occurring in a predetermined area. An index is produced which represents the value of that quantity of radiation whose accumulation causes the exposure termination. The value of the predetermined radiation quantity represented by the index is sensed so that the radiation camera image intensity can be calibrated to compensate for changes in exposure amounts due to desired variations in radiation density of the exposure, to maintain the detectability of the image by the image sensing camera notwithstanding such variations. Provision is also made for calibrating the image intensity in accordance with the sensitivity of the image sensing camera, and for locating the index for maintaining its detectability and causing the proper centering of the radiation camera image

  15. Challenges and Opportunities of Airborne Metagenomics

    KAUST Repository

    Behzad, H.

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles.

  16. Adapting Virtual Camera Behaviour

    DEFF Research Database (Denmark)

    Burelli, Paolo

    2013-01-01

    In a three-dimensional virtual environment aspects such as narrative and interaction completely depend on the camera since the camera defines the player’s point of view. Most research works in automatic camera control aim to take the control of this aspect from the player to automatically gen- er...

  17. Airborne gravimetry for geoid and GOCE

    DEFF Research Database (Denmark)

    Forsberg, R.; Olesen, A. V.; Nielsen, E.

    2014-01-01

    DTU-Space has since 1996 carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM) side by side for increased reliability and redun......DTU-Space has since 1996 carried out large area airborne surveys over both polar, tropical and temperate regions, especially for geoid determination and global geopotential models. Recently we have started flying two gravimeters (LCR and Chekan-AM) side by side for increased reliability...... in Antarctica and Tanzania based on DTU-Space aerogravity and GOCE. In both cases the airborne data validate GOCE to very high degrees, and confirms the synergy of airborne gravity and GOCE. For Antarctica, the deep interior Antarctic survey (continued in 2013 from a remote field camp), shows...... that it is possible efficiently to cover even the most remote regions on the planet with good aerogravity. With the recent termination of the GOCE mission, it is therefore timely to initiate a coordinated, preferably international, airborne gravity effort to cover the polar gap south of 83° S; such a survey can...

  18. Examples of the nonlinear dynamics of ballistic capture and escape in the earth-moon system

    Science.gov (United States)

    Belbruno, Edward A.

    1990-01-01

    An example of a trajectory is given which is initially captured in an elliptic resonant orbit about the earth and then ballistically escapes the earth-moon system. This is demonstrated by a numerical example in three-dimensions using a planetary ephemeris. Another example shows a mechanism of how an elliptic orbit about the earth can increase its energy by performing a complex nonlinear transition to an elliptic orbit of a larger semi-major axis. Capture is also considered. An application of ballistic capture at the moon via an unstable periodic orbit using the four-body sun-earth-moon-S/C interaction is described.

  19. Experimental Determination of Ballistic Performance of Composite Material Kevlar 29 and Alumina Powder/ Epoxy by Spherical Projectile

    Directory of Open Access Journals (Sweden)

    Luay Hashem Abbud

    2016-12-01

    Full Text Available In this study, a response of hybrid composite laminate woven fiber Kevlar29 – Al2O3 Powder/ Epoxy subjected to high velocity impact loading is presented. The energy absorbed due to impact of small rigid projectile on composite materials targets is determined experimentally. The energy absorbed due to impact of hemispherical projectiles on the developed composite laminates is investigated. The results revealed the maximum ballistic limit at impact velocity is found to be 390.87 ± 6 m/s for an the 18 mm target thickness. The ballistic limit velocity predictions are based on the theoretical method presented from another article. The initial velocity and residual velocity results showed good is agreement compared with the predicted results of Ipson and Recht equations. With 5.4 % of accuracy based on the experimental value for the theoretical model for ballistic limit velocity.

  20. Civilian casualties of Iraqi ballistic missile attack to

    Directory of Open Access Journals (Sweden)

    Khaji Ali

    2012-06-01

    Full Text Available 【Abstract】Objective: To determine the pattern of causalities of Iraqi ballistic missile attacks on Tehran, the capital of Iran, during Iraq-Iran war. Methods: Data were extracted from the Army Staff Headquarters based on daily reports of Iranian army units during the war. Results: During 52 days, Tehran was stroked by 118 Al-Hussein missiles (a modified version of Scud missile. Eighty-six missiles landed in populated areas. During Iraqi missile attacks, 422 civilians died and 1 579 injured (4.9 deaths and 18.3 injuries per missile. During 52 days, 8.1 of the civilians died and 30.4 injured daily. Of the cases that died, 101 persons (24% were excluded due to the lack of information. Among the remainders, 179 (55.8% were male and 142 (44.2% were female. The mean age of the victims was 25.3 years±19.9 years. Our results show that the high accuracy of modified Scud missiles landed in crowded ar-eas is the major cause of high mortality in Tehran. The pres-ence of suitable warning system and shelters could reduce civilian casualties. Conclusion: The awareness and readiness of civilian defense forces, rescue services and all medical facilities for dealing with mass casualties caused by ballistic missile at-tacks are necessary. Key words: Mortality; War; Mass casualty incidents; Wounds and injuries

  1. On the Trajectories of Projectiles Depicted in Early Ballistic Woodcuts

    Science.gov (United States)

    Stewart, Sean M.

    2012-01-01

    Motivated by quaint woodcut depictions often found in many late 16th and 17th century ballistic manuals of cannonballs fired in air, a comparison of their shapes with those calculated for the classic case of a projectile moving in a linear resisting medium is made. In considering the asymmetrical nature of such trajectories, the initial launch…

  2. Making Ceramic Cameras

    Science.gov (United States)

    Squibb, Matt

    2009-01-01

    This article describes how to make a clay camera. This idea of creating functional cameras from clay allows students to experience ceramics, photography, and painting all in one unit. (Contains 1 resource and 3 online resources.)

  3. Influence of ballistic bench press on upper body power output in professional rugby players.

    Science.gov (United States)

    West, Daniel J; Cunningham, Daniel J; Crewther, Blair T; Cook, Christian J; Kilduff, Liam P

    2013-08-01

    The use of heavy resistance exercise provides an effective preload stimulus for inducing postactivation potentiation (PAP) and increasing peak power output (PPO). However, this approach has limited application in many sporting situations (e.g., incorporation in a precompetition warm-up); and therefore, more practical strategies for inducing PAP need to be investigated. The aim of the present study was to compare the PPO changes after performing a preload stimulus of either a ballistic exercise or a traditional heavy resistance exercise. Twenty professional rugby union players completed 3 testing sessions, each separated by 48 hours. On the first occasion, subjects underwent a 3 repetition maximum (3RM)-bench press testing session. On the next 2 occasions, subjects performed a ballistic bench throw at baseline (30% of 1RM), followed by a preload stimulus of either heavy resistance training (HRT) (heavy bench press: 3 sets of 3 repetitions at 87% 1RM) or BBP (3 sets of 3 repetitions at 30% on 1RM) followed by ballistic bench throw after 8 minutes recovery. The trials were randomized and counterbalanced. Both preload stimuli protocols increased PPO compared with baseline (BBP baseline 892 ± 108 vs. 8 minutes 924 ± 119 W, p < 0.001; HRT baseline 893 ± 104 vs. 8 minutes 931 ± 116 W; p < 0.001). There were no conditional differences between PPO at 8 minutes (p = 0.141); moreover, the change in PPO from baseline was also similar between conditions (BBP Δ + 33 ± 18; HRT Δ + 38 ± 21 W; p = 0.112). In conclusion, a ballistic exercise provided an effective method of inducing PAP and increasing upper-body PPO; moreover, this elicited similar increases in PPO as a traditional heavy resistance exercise preloading stimulus.

  4. Camera Movement in Narrative Cinema

    DEFF Research Database (Denmark)

    Nielsen, Jakob Isak

    2007-01-01

    section unearths what characterizes the literature on camera movement. The second section of the dissertation delineates the history of camera movement itself within narrative cinema. Several organizational principles subtending the on-screen effect of camera movement are revealed in section two...... but they are not organized into a coherent framework. This is the task that section three meets in proposing a functional taxonomy for camera movement in narrative cinema. Two presumptions subtend the taxonomy: That camera movement actively contributes to the way in which we understand the sound and images on the screen......, commentative or valuative manner. 4) Focalization: associating the movement of the camera with the viewpoints of characters or entities in the story world. 5) Reflexive: inviting spectators to engage with the artifice of camera movement. 6) Abstract: visualizing abstract ideas and concepts. In order...

  5. Dynamics of ballistically injected latex particles in living human endothelial cells

    NARCIS (Netherlands)

    Li, Y.; Vanapalli Veera, V.S.A.R.; Vanapalli, Srinivas; Duits, Michael H.G.

    2009-01-01

    We studied the dynamics of ballistically injected latex particles (BIP) inside endothelial cells, using video particle tracking to measure the mean squared displacement (MSD) as a function of lag time. The MSD shows a plateau at short times and a linear behavior at longer times, indicating that the

  6. Debris Examination Using Ballistic and Radar Integrated Software

    Science.gov (United States)

    Griffith, Anthony; Schottel, Matthew; Lee, David; Scully, Robert; Hamilton, Joseph; Kent, Brian; Thomas, Christopher; Benson, Jonathan; Branch, Eric; Hardman, Paul; hide

    2012-01-01

    The Debris Examination Using Ballistic and Radar Integrated Software (DEBRIS) program was developed to provide rapid and accurate analysis of debris observed by the NASA Debris Radar (NDR). This software provides a greatly improved analysis capacity over earlier manual processes, allowing for up to four times as much data to be analyzed by one-quarter of the personnel required by earlier methods. There are two applications that comprise the DEBRIS system: the Automated Radar Debris Examination Tool (ARDENT) and the primary DEBRIS tool.

  7. Quantum logic gates based on ballistic transport in graphene

    Energy Technology Data Exchange (ETDEWEB)

    Dragoman, Daniela [Faculty of Physics, University of Bucharest, P.O. Box MG-11, 077125 Bucharest (Romania); Academy of Romanian Scientists, Splaiul Independentei 54, 050094 Bucharest (Romania); Dragoman, Mircea, E-mail: mircea.dragoman@imt.ro [National Institute for Research and Development in Microtechnology (IMT), P.O. Box 38-160, 023573 Bucharest (Romania)

    2016-03-07

    The paper presents various configurations for the implementation of graphene-based Hadamard, C-phase, controlled-NOT, and Toffoli gates working at room temperature. These logic gates, essential for any quantum computing algorithm, involve ballistic graphene devices for qubit generation and processing and can be fabricated using existing nanolithographical techniques. All quantum gate configurations are based on the very large mean-free-paths of carriers in graphene at room temperature.

  8. Production and Mechanical Characterization of Ballistic Thermoplastic Composite Materials

    OpenAIRE

    D. Korsacilar; C. Atas

    2014-01-01

    In this study, first thermoplastic composite materials /plates that have high ballistic impact resistance were produced. For this purpose, the thermoplastic prepreg and the vacuum bagging technique were used to produce a composite material. Thermoplastic prepregs (resin-impregnated fiber) that are supplied ready to be used, namely high-density polyethylene (HDPE) was chosen as matrix and unidirectional glass fiber was used as reinforcement. In order to compare the fiber c...

  9. Conventional Prompt Global Strike and Long-Range Ballistic Missiles: Background and Issues

    Science.gov (United States)

    2016-02-24

    FY2008, Congress rejected the requested funding for this program, but the Navy has continued to consider the possibility of deploying intermediate ...10 Submarine-Launched Intermediate -Range Global Strike .................................................. 11 Air Force Programs...Missiles............................................................................ 36 Submarine-Launched Intermediate -Range Ballistic Missiles

  10. Monitoring of airborne bacteria and aerosols in different wards of hospitals - Particle counting usefulness in investigation of airborne bacteria.

    Science.gov (United States)

    Mirhoseini, Seyed Hamed; Nikaeen, Mahnaz; Khanahmd, Hossein; Hatamzadeh, Maryam; Hassanzadeh, Akbar

    2015-01-01

    The presence of airborne bacteria in hospital environments is of great concern because of their potential role as a source of hospital-acquired infections (HAI). The aim of this study was the determination and comparison of the concentration of airborne bacteria in different wards of four educational hospitals, and evaluation of whether particle counting could be predictive of airborne bacterial concentration in different wards of a hospital. The study was performed in an operating theatre (OT), intensive care unit (ICU), surgery ward (SW) and internal medicine (IM) ward of four educational hospitals in Isfahan, Iran. A total of 80 samples were analyzed for the presence of airborne bacteria and particle levels. The average level of bacteria ranged from 75-1194 CFU/m (3) . Mean particle levels were higher than class 100,000 cleanrooms in all wards. A significant correlation was observed between the numbers of 1-5 µm particles and levels of airborne bacteria in operating theatres and ICUs. The results showed that factors which may influence the airborne bacterial level in hospital environments should be properly managed to minimize the risk of HAIs especially in operating theaters. Microbial air contamination of hospital settings should be performed by the monitoring of airborne bacteria, but particle counting could be considered as a good operative method for the continuous monitoring of air quality in operating theaters and ICUs where higher risks of infection are suspected.

  11. In-flight dynamics of volcanic ballistic projectiles

    Science.gov (United States)

    Taddeucci, J.; Alatorre-Ibargüengoitia, M. A.; Cruz-Vázquez, O.; Del Bello, E.; Scarlato, P.; Ricci, T.

    2017-09-01

    Centimeter to meter-sized volcanic ballistic projectiles from explosive eruptions jeopardize people and properties kilometers from the volcano, but they also provide information about the past eruptions. Traditionally, projectile trajectory is modeled using simplified ballistic theory, accounting for gravity and drag forces only and assuming simply shaped projectiles free moving through air. Recently, collisions between projectiles and interactions with plumes are starting to be considered. Besides theory, experimental studies and field mapping have so far dominated volcanic projectile research, with only limited observations. High-speed, high-definition imaging now offers a new spatial and temporal scale of observation that we use to illuminate projectile dynamics. In-flight collisions commonly affect the size, shape, trajectory, and rotation of projectiles according to both projectile nature (ductile bomb versus brittle block) and the location and timing of collisions. These, in turn, are controlled by ejection pulses occurring at the vent. In-flight tearing and fragmentation characterize large bombs, which often break on landing, both factors concurring to decrease the average grain size of the resulting deposits. Complex rotation and spinning are ubiquitous features of projectiles, and the related Magnus effect may deviate projectile trajectory by tens of degrees. A new relationship is derived, linking projectile velocity and size with the size of the resulting impact crater. Finally, apparent drag coefficient values, obtained for selected projectiles, mostly range from 1 to 7, higher than expected, reflecting complex projectile dynamics. These new perspectives will impact projectile hazard mitigation and the interpretation of projectile deposits from past eruptions, both on Earth and on other planets.

  12. Muscle activity during leg strengthening exercise using free weights and elastic resistance: effects of ballistic vs controlled contractions.

    Science.gov (United States)

    Jakobsen, Markus Due; Sundstrup, Emil; Andersen, Christoffer H; Aagaard, Per; Andersen, Lars L

    2013-02-01

    The present study's aim was to evaluate muscle activity during leg exercises using elastic vs. isoinertial resistance at different exertion and loading levels, respectively. Twenty-four women and eighteen men aged 26-67 years volunteered to participate in the experiment. Electromyographic (EMG) activity was recorded in nine muscles during a standardized forward lunge movement performed with dumbbells and elastic bands during (1) ballistic vs. controlled exertion, and (2) at low, medium and high loads (33%, 66% and 100% of 10 RM, respectively). The recorded EMG signals were normalized to MVC EMG. Knee joint angle was measured using electronic inclinometers. The following results were obtained. Loading intensity affected EMG amplitude in the order: lowBallistic contractions always produced greater EMG activity than slow controlled contractions, and for most muscles ballistic contractions with medium load showed similar EMG amplitude as controlled contractions with high load. At flexed knee joint positions with elastic resistance, quadriceps and gluteus EMG amplitude during medium-load ballistic contractions exceeded that recorded during high-load controlled contractions. Quadriceps and gluteus EMG amplitude increased at flexed knee positions. In contrast, hamstrings EMG amplitude remained constant throughout ROM during dumbbell lunge, but increased at more extended knee joint positions during lunges using elastic resistance. Based on these results, it can be concluded that lunges performed using medium-load ballistic muscle contractions may induce similar or even higher leg muscle activity than lunges using high-load slow-speed contractions. Consequently, lunges using elastic resistance appear to be equally effective in inducing high leg muscle activity as traditional lunges using isoinertial resistance. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Potentiation: Effect of Ballistic and Heavy Exercise on Vertical Jump Performance.

    Science.gov (United States)

    Hester, Garrett M; Pope, Zachary K; Sellers, John H; Thiele, Ryan M; DeFreitas, Jason M

    2017-03-01

    Hester, GM, Pope, ZK, Sellers, JH, Thiele, RM, and DeFreitas, JM. Potentiation: Effect of ballistic and heavy exercise on vertical jump performance. J Strength Cond Res 31(3): 660-666, 2017-The purpose of this study was to compare the acute effects of heavy and ballistic conditioning protocols on vertical jump performance in resistance-trained men. Fourteen resistance-trained men (mean ± SD: age = 22 ± 2.1 years, body mass = 86.29 ± 9.95 kg, and height = 175.39 ± 9.34 cm) with an average relative full squat of 2.02 ± 0.28 times their body mass participated in this study. In randomized, counterbalanced order, subjects performed two countermovement vertical jumps before and 1, 3, 5, and 10 minutes after either performing 10 rapid jump squats or 5 heavy back squats. The back squat protocol consisted of 5 repetitions at 80% one repetition maximum (1RM), whereas the jump squat protocol consisted of 10 repetitions at 20% 1RM. Peak jump height (in centimeters) using a jump mat, along with power output (in Watts) and velocity (in meters per second) through a linear transducer, was recorded for each time interval. There was no significant condition × time interaction for any of the dependent variables (p = 0.066-0.127). In addition, there was no main effect for condition for any of the dependent variables (p = 0.457-0.899). Neither the ballistic nor heavy protocol used in this study enhanced vertical jump performance at any recovery interval. The use of these protocols in resistance-trained men to produce postactivation potentiation is not recommended.

  14. Force-velocity properties' contribution to bilateral deficit during ballistic push-off.

    Science.gov (United States)

    Samozino, Pierre; Rejc, Enrico; di Prampero, Pietro Enrico; Belli, Alain; Morin, Jean-Benoît

    2014-01-01

    The objective of this study is to quantify the contribution of the force-velocity (F-v) properties to bilateral force deficit (BLD) in ballistic lower limb push-off and to relate it to individual F-v mechanical properties of the lower limbs. The F-v relation was individually assessed from mechanical measurements for 14 subjects during maximal ballistic lower limb push-offs; its contribution to BLD was then investigated using a theoretical macroscopic approach, considering both the mechanical constraints of movement dynamics and the maximal external capabilities of the lower limb neuromuscular system. During ballistic lower limb push-off, the maximum force each lower limb can produce was lower during bilateral than unilateral actions, thus leading to a BLD of 36.7% ± 5.7%. The decrease in force due to the F-v mechanical properties amounted to 19.9% ± 3.6% of the force developed during BL push-offs, which represents a nonneural contribution to BLD of 43.5% ± 9.1%. This contribution to BLD that cannot be attributed to changes in neural features was negatively correlated to the maximum unloaded extension velocity of the lower limb (r = -0.977, P push-off, BLD is due to both neural alterations and F-v mechanical properties, the latter being associated with the change in movement velocity between bilateral and unilateral actions. The level of the contribution of the F-v properties depends on the individual F-v mechanical profile of the entire lower limb neuromuscular system: the more the F-v profile is oriented toward velocity capabilities, the lower the loss of force from unilateral to bilateral push-offs due to changes in movement velocity.

  15. Airborne Lidar Surface Topography (LIST) Simulator

    Science.gov (United States)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis; Winkert, Tom; Plants, Michael; hide

    2011-01-01

    In this paper we will discuss our development effort of an airborne instrument as a pathfinder for the Lidar Surface Technology (LIST) mission. This paper will discuss the system approach, enabling technologies, instrument concept and performance of the Airborne LIST Simulator (A-LISTS).

  16. Efficient thermal diode with ballistic spacer

    Science.gov (United States)

    Chen, Shunda; Donadio, Davide; Benenti, Giuliano; Casati, Giulio

    2018-03-01

    Thermal rectification is of importance not only for fundamental physics, but also for potential applications in thermal manipulations and thermal management. However, thermal rectification effect usually decays rapidly with system size. Here, we show that a mass-graded system, with two diffusive leads separated by a ballistic spacer, can exhibit large thermal rectification effect, with the rectification factor independent of system size. The underlying mechanism is explained in terms of the effective size-independent thermal gradient and the match or mismatch of the phonon bands. We also show the robustness of the thermal diode upon variation of the model's parameters. Our finding suggests a promising way for designing realistic efficient thermal diodes.

  17. Star-grain rocket motor - nonsteady internal ballistics

    Energy Technology Data Exchange (ETDEWEB)

    Loncaric, S.; Greatrix, D.R.; Fawaz, Z. [Ryerson University, Dept. of Aerospace Engineering, Toronto (Canada)

    2004-01-01

    The nonsteady internal ballistics of a star-grain solid-propellant rocket motor are investigated through a numerical simulation model that incorporates both the internal flow and surrounding structure. The effects of structural vibration on burning rate augmentation and wave development in nonsteady operation are demonstrated. The amount of damping plays a role in influencing the predicted axial combustion instability symptoms of the motor. The variation in oscillation frequencies about a given star grain section periphery, and along the grain with different levels of burn-back, also influences the means by which the local acceleration drives the combustion and flow behaviour. (authors)

  18. Recovery of the Irving Whale oil barge: overflights with the laser environmental airborne fluorosensor

    International Nuclear Information System (INIS)

    Brown, C. E.; Nelson, R. D.; Fingas, M.

    1997-01-01

    Contribution of Environment Canada's laser environmental airborne fluorosensor (LEAF) to the recovery in 1996 of the oil barge 'Irving Whale' from the St. Lawrence River was described. Additional equipment employed on board the DC-3 aircraft included an RC-10 colour mapping camera and two down-looking video cameras. Leaking of Bunker C fuel oil was detected around the sunken barge in the days immediately prior to and during the day of the raising of the vessel. During each overflight, the LEAF system produced timely, concise map-based contamination information in hard copy form. The LEAF system also detected extremely thin, sub-sheen levels of oil on the day of the lift over the majority of the southern Gulf of St. Lawrence. The extent of coverage was greatly reduced by the next day and essentially eliminated by the second day after the lift. The LEAF system continued to monitor the 'Irving Whale' as it was transported to Halifax on the deck of the submersible vessel Boabarge 10. There was no evidence of oil leakage during the transit attributable to the 'Irving Whale'. During the entire period of lift and recovery the LEAF system performed flawlessly, and demonstrated the usefulness of remote sensing flights during oil spill response operations. 3 refs., 4 figs

  19. Room-Temperature Quantum Ballistic Transport in Monolithic Ultrascaled Al-Ge-Al Nanowire Heterostructures.

    Science.gov (United States)

    Sistani, Masiar; Staudinger, Philipp; Greil, Johannes; Holzbauer, Martin; Detz, Hermann; Bertagnolli, Emmerich; Lugstein, Alois

    2017-08-09

    Conductance quantization at room temperature is a key requirement for the utilizing of ballistic transport for, e.g., high-performance, low-power dissipating transistors operating at the upper limit of "on"-state conductance or multivalued logic gates. So far, studying conductance quantization has been restricted to high-mobility materials at ultralow temperatures and requires sophisticated nanostructure formation techniques and precise lithography for contact formation. Utilizing a thermally induced exchange reaction between single-crystalline Ge nanowires and Al pads, we achieved monolithic Al-Ge-Al NW heterostructures with ultrasmall Ge segments contacted by self-aligned quasi one-dimensional crystalline Al leads. By integration in electrostatically modulated back-gated field-effect transistors, we demonstrate the first experimental observation of room temperature quantum ballistic transport in Ge, favorable for integration in complementary metal-oxide-semiconductor platform technology.

  20. Influence of the vacuum resin process, on the ballistic behaviour of lightweight armouring solutions

    Directory of Open Access Journals (Sweden)

    Coutellier D.

    2012-08-01

    Full Text Available The armour of vehicles against conventional threats is mainly composed with steel or aluminium panels. Efficient heavy solutions exist, but the involved industries require new lightweight structures. Moreover, unconventional threats as IEDs (Improvised Explosive Devices may cause severe damages on these structural and protective panel solutions. Thus, combination of aluminium or steel plates with textile composite structures used as a backing, leads to the mass reduction and better performance under delamination behaviour against these new threats. This paper is a part of a study dealing with the impact behaviour of three warp interlocks weaving structures under Fragment Simulating Projectile (FSP impact. During this research, several parameters has being studied as the influence of the yarns insertions [1–4], the degradation of the yarns during the weaving process [5–7], and the influence of the resin rate on the ballistic behaviour. The resin rate inside composite materials is dependant on the final application. In ballistic protection, we need to control the resin rate in order to have a deformable structure in order to absorb the maximum of energy. However, with the warp interlocks weaving structure, the yarns insertions induce empty spaces between the yarns where the resin takes place without being evacuated. The resin rate inside the warp interlocks structures is in the most of cases less than 50%, which lead to have brittle and hard material during the impact. Contrary to interlocks structures, the existing protection based on prepreg structure have a high fibres ratio around 88% of weight. That leads to have the best ballistic properties during the impact and good deformability of the structure. The aim of this paper is to evaluate the influence of the resin rate on the ballistic results of the composites materials. For that, we have chosen two kinds of warp interlocks fabrics which were infused with epoxy resin following two

  1. Theory of spin-polarized transport in ferromagnet-semiconductor structures: Unified description of ballistic and diffusive transport

    International Nuclear Information System (INIS)

    Lipperheide, R.; Wille, U.

    2006-01-01

    A theory of spin-polarized electron transport in ferromagnet-semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductors, is outlined. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. Transport inside the (nondegenerate) semiconductor is described in terms of a thermoballistic current, in which electrons move ballistically in the electric field arising from internal and external electrostatic potentials, and are thermalized at randomly distributed equilibration points. Spin relaxation is allowed to take place during the ballistic motion. For arbitrary potential profile and arbitrary values of the momentum and spin relaxation lengths, an integral equation for a spin transport function determining the spin polarization in the semiconductor is derived. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the spin drift-diffusion equation. The spin polarization in ferromagnet-semiconductor structures is obtained by matching the spin-resolved chemical potentials at the interfaces, with allowance for spin-selective interface resistances. Illustrative examples are considered

  2. Ballistic performance of a Kevlar-29 woven fibre composite under varied temperatures

    Science.gov (United States)

    Soykasap, O.; Colakoglu, M.

    2010-05-01

    Armours are usually manufactured from polymer matrix composites and used for both military and non-military purposes in different seasons, climates, and regions. The mechanical properties of the composites depend on temperature, which also affects their ballistic characteristics. The armour is used to absorb the kinetic energy of a projectile without any major injury to a person. Therefore, besides a high strength and lightness, a high damping capacity is required to absorb the impact energy transferred by the projectile. The ballistic properties of a Kevlar 29/polyvinyl butyral composite are investigated under varied temperatures in this study. The elastic modulus of the composite is determined from the natural frequency of composite specimens at different temperatures by using a damping monitoring method. Then, the backside deformation of composite plates is analysed experimentally and numerically employing the finite-element program Abaqus. The experimental and numeric results obtained are in good agreement.

  3. Study on Ballistic Absorbing Energy Character of High Performance Polyethylene Needle Felt

    Science.gov (United States)

    Kailiang, Zhu; Jianqiao, Fu

    2017-11-01

    The ballistic performance of polyethylene needle felt is tested and the failure morphology after test is also observed. The results showed that when the non-dimensionally non-stressed fibers in polyethylene needles are subjected to high-speed projectile, secondary movement such as stretching and twisting occurs first. This secondary movement is very full, it is the main way of ballistic absorbing energy of the polyethylene needle felt which can avoid the polyethylene fiber short-term rapid heating-up and destroyed. Analysis results show that under normal temperature and humidity conditions, the V50 of 6-layer forded polyethylene needle felt sample is 250m/s. At (450 ± 50) m/s speed range of the target missile, the mean value of the penetrative specific energy absorption for 3-layer forded polyethylene needle felt anti-1.1g simulated projectiles (tapered column) reaches 24.1J·m2/kg.

  4. Mixel camera--a new push-broom camera concept for high spatial resolution keystone-free hyperspectral imaging.

    Science.gov (United States)

    Høye, Gudrun; Fridman, Andrei

    2013-05-06

    Current high-resolution push-broom hyperspectral cameras introduce keystone errors to the captured data. Efforts to correct these errors in hardware severely limit the optical design, in particular with respect to light throughput and spatial resolution, while at the same time the residual keystone often remains large. The mixel camera solves this problem by combining a hardware component--an array of light mixing chambers--with a mathematical method that restores the hyperspectral data to its keystone-free form, based on the data that was recorded onto the sensor with large keystone. A Virtual Camera software, that was developed specifically for this purpose, was used to compare the performance of the mixel camera to traditional cameras that correct keystone in hardware. The mixel camera can collect at least four times more light than most current high-resolution hyperspectral cameras, and simulations have shown that the mixel camera will be photon-noise limited--even in bright light--with a significantly improved signal-to-noise ratio compared to traditional cameras. A prototype has been built and is being tested.

  5. Development of an Advanced Composite Material Model Suitable for Blast and Ballistic Impact Simulations

    National Research Council Canada - National Science Library

    Yen, C. F; Cheeseman, B. A

    2004-01-01

    A robust composite progressive failure model has been successfully developed to account for the strain-rate and pressure dependent behavior of composite materials subjected to high velocity ballistic impact...

  6. VUV testing of science cameras at MSFC: QE measurement of the CLASP flight cameras

    Science.gov (United States)

    Champey, P.; Kobayashi, K.; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-08-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint MSFC, National Astronomical Observatory of Japan (NAOJ), Instituto de Astrofisica de Canarias (IAC) and Institut D'Astrophysique Spatiale (IAS) sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512 × 512 detector, dual channel analog readout and an internally mounted cold block. At the flight CCD temperature of -20C, the CLASP cameras exceeded the low-noise performance requirements (UV, EUV and X-ray science cameras at MSFC.

  7. Neutron cameras for ITER

    International Nuclear Information System (INIS)

    Johnson, L.C.; Barnes, C.W.; Batistoni, P.

    1998-01-01

    Neutron cameras with horizontal and vertical views have been designed for ITER, based on systems used on JET and TFTR. The cameras consist of fan-shaped arrays of collimated flight tubes, with suitably chosen detectors situated outside the biological shield. The sight lines view the ITER plasma through slots in the shield blanket and penetrate the vacuum vessel, cryostat, and biological shield through stainless steel windows. This paper analyzes the expected performance of several neutron camera arrangements for ITER. In addition to the reference designs, the authors examine proposed compact cameras, in which neutron fluxes are inferred from 16 N decay gammas in dedicated flowing water loops, and conventional cameras with fewer sight lines and more limited fields of view than in the reference designs. It is shown that the spatial sampling provided by the reference designs is sufficient to satisfy target measurement requirements and that some reduction in field of view may be permissible. The accuracy of measurements with 16 N-based compact cameras is not yet established, and they fail to satisfy requirements for parameter range and time resolution by large margins

  8. Automatic inference of geometric camera parameters and intercamera topology in uncalibrated disjoint surveillance cameras

    NARCIS (Netherlands)

    Hollander, R.J.M. den; Bouma, H.; Baan, J.; Eendebak, P.T.; Rest, J.H.C. van

    2015-01-01

    Person tracking across non-overlapping cameras and other types of video analytics benefit from spatial calibration information that allows an estimation of the distance between cameras and a relation between pixel coordinates and world coordinates within a camera. In a large environment with many

  9. Eclipse Science Results from the Airborne Infrared Spectrometer (AIR-Spec)

    Science.gov (United States)

    Samra, J.; Cheimets, P.; DeLuca, E.; Golub, L.; Judge, P. G.; Lussier, L.; Madsen, C. A.; Marquez, V.; Tomczyk, S.; Vira, A.

    2017-12-01

    We present the first science results from the commissioning flight of the Airborne Infrared Spectrometer (AIR-Spec), an innovative solar spectrometer that will observe the 2017 solar eclipse from the NSF/NCAR High-Performance Instrumented Airborne Platform for Environmental Research (HIAPER). During the eclipse, AIR-Spec will image five magnetically sensitive coronal emission lines between 1.4 and 4 microns to determine whether they may be useful probes of coronal magnetism. The instrument will measure emission line intensity, FWHM, and Doppler shift from an altitude of over 14 km, above local weather and most of the absorbing water vapor. Instrumentation includes an image stabilization system, feed telescope, grating spectrometer, infrared camera, and visible slit-jaw imager. Results from the 2017 eclipse are presented in the context of the mission's science goals. AIR-Spec will identify line strengths as a function of position in the solar corona and search for the high frequency waves that are candidates for heating and acceleration of the solar wind. The instrument will also identify large scale flows in the corona, particularly in polar coronal holes. Three of the five lines are expected to be strong in coronal hole plasmas because they are excited in part by scattered photospheric light. Line profile analysis will probe the origins of the fast and slow solar wind. Finally, the AIR-Spec measurements will complement ground based eclipse observations to provide detailed plasma diagnostics throughout the corona. AIR-Spec will measure infrared emission of ions observed in the visible from the ground, giving insight into plasma heating and acceleration at radial distances inaccessible to existing or planned spectrometers.

  10. Evaluation of mobile phone camera benchmarking using objective camera speed and image quality metrics

    Science.gov (United States)

    Peltoketo, Veli-Tapani

    2014-11-01

    When a mobile phone camera is tested and benchmarked, the significance of image quality metrics is widely acknowledged. There are also existing methods to evaluate the camera speed. However, the speed or rapidity metrics of the mobile phone's camera system has not been used with the quality metrics even if the camera speed has become a more and more important camera performance feature. There are several tasks in this work. First, the most important image quality and speed-related metrics of a mobile phone's camera system are collected from the standards and papers and, also, novel speed metrics are identified. Second, combinations of the quality and speed metrics are validated using mobile phones on the market. The measurements are done toward application programming interface of different operating systems. Finally, the results are evaluated and conclusions are made. The paper defines a solution to combine different image quality and speed metrics to a single benchmarking score. A proposal of the combined benchmarking metric is evaluated using measurements of 25 mobile phone cameras on the market. The paper is a continuation of a previous benchmarking work expanded with visual noise measurement and updates of the latest mobile phone versions.

  11. CALIOPE airborne CO{sub 2} DIAL (CACDI) system design

    Energy Technology Data Exchange (ETDEWEB)

    Mietz, D.; Archuleta, B.; Archuleta, J. [and others

    1997-09-01

    Los Alamos National Laboratory is currently developing an airborne CO{sub 2} Differential Absorption Lidar (DIAL) system based on second generation technology demonstrated last summer at NTS. The CALIOPE Airborne CO{sub 2} DIAL (CACDI) system requirements have been compiled based on the mission objectives and SONDIAL model trade studies. Subsystem designs have been developed based on flow down from these system requirements, as well as experience gained from second generation ground tests and N-ABLE (Non-proliferation AirBorne Lidar Experiments) airborne experiments. This paper presents the CACDI mission objectives, system requirements, the current subsystem design, and provides an overview of the airborne experimental plan.

  12. Challenges and opportunities of airborne metagenomics.

    Science.gov (United States)

    Behzad, Hayedeh; Gojobori, Takashi; Mineta, Katsuhiko

    2015-05-06

    Recent metagenomic studies of environments, such as marine and soil, have significantly enhanced our understanding of the diverse microbial communities living in these habitats and their essential roles in sustaining vast ecosystems. The increase in the number of publications related to soil and marine metagenomics is in sharp contrast to those of air, yet airborne microbes are thought to have significant impacts on many aspects of our lives from their potential roles in atmospheric events such as cloud formation, precipitation, and atmospheric chemistry to their major impact on human health. In this review, we will discuss the current progress in airborne metagenomics, with a special focus on exploring the challenges and opportunities of undertaking such studies. The main challenges of conducting metagenomic studies of airborne microbes are as follows: 1) Low density of microorganisms in the air, 2) efficient retrieval of microorganisms from the air, 3) variability in airborne microbial community composition, 4) the lack of standardized protocols and methodologies, and 5) DNA sequencing and bioinformatics-related challenges. Overcoming these challenges could provide the groundwork for comprehensive analysis of airborne microbes and their potential impact on the atmosphere, global climate, and our health. Metagenomic studies offer a unique opportunity to examine viral and bacterial diversity in the air and monitor their spread locally or across the globe, including threats from pathogenic microorganisms. Airborne metagenomic studies could also lead to discoveries of novel genes and metabolic pathways relevant to meteorological and industrial applications, environmental bioremediation, and biogeochemical cycles. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  13. The proliferation of ballistic missiles: an aggravating factor of crises

    International Nuclear Information System (INIS)

    Rousset, Valery

    2015-01-01

    After a brief recall of the history of the development of ballistic missiles from World War II, the author discusses the various uses of these missiles, on the one hand by major powers, and on the other hand by other countries like Israel, Pakistan and India, and also Egypt and Iraq. He recalls the uses of these missiles during regional conflicts (Scuds by Iraq) and then discusses the issue of proliferation of ballistic missiles. He notices that most of these weapons are present in the arsenal of major powers under the form of intercontinental missiles, intermediate range weapons or theatre weapons. On the Third World side, proliferation concerns short- and medium-range missiles produced from technology transfers or national programmes. Mobile systems are now present in all conflicts (notably Libya, Syria) and are now based on more advanced technologies for propellers as well as for control and guidance systems. In the last part, the author discusses the perspectives associated with these missiles which are a strong offensive weapon, and are also modernised to carry nuclear warheads or multiple warheads. These evolutions could put the western superiority into question again

  14. Shape of scoria cones on Mars: Insights from numerical modeling of ballistic pathways

    Czech Academy of Sciences Publication Activity Database

    Brož, Petr; Čadek, O.; Hauber, E.; Rossi, A. P.

    2014-01-01

    Roč. 406, November (2014), s. 14-23 ISSN 0012-821X Institutional support: RVO:67985530 Keywords : Mars * explosive volcanism * scoria cone * ballistic pathway Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 4.734, year: 2014

  15. Improving Situational Awareness in camera surveillance by combining top-view maps with camera images

    NARCIS (Netherlands)

    Kooi, F.L.; Zeeders, R.

    2009-01-01

    The goal of the experiment described is to improve today's camera surveillance in public spaces. Three designs with the camera images combined on a top-view map were compared to each other and to the current situation in camera surveillance. The goal was to test which design makes spatial

  16. Airborne Evaluation Facility

    Data.gov (United States)

    Federal Laboratory Consortium — AFRL's Airborne Evaluation Facility (AEF) utilizes Air Force Aero Club resources to conduct test and evaluation of a variety of equipment and concepts. Twin engine...

  17. Predictors of Airborne Endotoxin Concentrations in Inner City Homes

    Science.gov (United States)

    Mazique, D; Diette, GB; Breysse, PN; Matsui, EC; McCormack, MC; Curtin-Brosnan, J; Williams, D; Peng, RD; Hansel, NN

    2011-01-01

    Few studies have assessed in-home factors which contribute to airborne endotoxin concentrations. In 85 inner-city Baltimore homes, we found no significant correlation between settled dust and airborne endotoxin concentrations. Certain household activities and characteristics, including frequency of dusting, air conditioner use and type of flooring, explained 36–42% of the variability of airborne concentrations. Measurements of both airborne and settled dust endotoxin concentrations may be needed to fully characterize domestic exposure in epidemiologic investigations. PMID:21429483

  18. Monte Carlo Uncertainty Quantification Using Quasi-1D SRM Ballistic Model

    Directory of Open Access Journals (Sweden)

    Davide Viganò

    2016-01-01

    Full Text Available Compactness, reliability, readiness, and construction simplicity of solid rocket motors make them very appealing for commercial launcher missions and embarked systems. Solid propulsion grants high thrust-to-weight ratio, high volumetric specific impulse, and a Technology Readiness Level of 9. However, solid rocket systems are missing any throttling capability at run-time, since pressure-time evolution is defined at the design phase. This lack of mission flexibility makes their missions sensitive to deviations of performance from nominal behavior. For this reason, the reliability of predictions and reproducibility of performances represent a primary goal in this field. This paper presents an analysis of SRM performance uncertainties throughout the implementation of a quasi-1D numerical model of motor internal ballistics based on Shapiro’s equations. The code is coupled with a Monte Carlo algorithm to evaluate statistics and propagation of some peculiar uncertainties from design data to rocker performance parameters. The model has been set for the reproduction of a small-scale rocket motor, discussing a set of parametric investigations on uncertainty propagation across the ballistic model.

  19. Location of civilian ballistic femoral fracture indicates likelihood of arterial injury.

    Science.gov (United States)

    Gitajn, Leah; Perdue, Paul; Hardcastle, John; O'Toole, Robert V

    2014-10-01

    We evaluated whether the location of a ballistic femoral fracture helps predict the presence of arterial injury. We hypothesized that fractures located in the distal third of the femur are associated with a higher rate of arterial injury. We conducted a retrospective review of electronic medical records at our level I trauma centre and found 133 consecutive patients with femoral fractures from civilian gunshots from 2002 to 2007, 14 of whom sustained arterial injury. Fracture extent was measured with computerized viewing software and recorded with a standard technique, calculating proximal, distal, and central locations of the fracture as a function of overall length of the bone. Analyses were conducted with Student's t, Chi-squared, and Fisher's exact tests. The location of any fracture line in the distal third of the femur was associated with increased risk of arterial injury (Pballistic injury is six times more likely to be associated with arterial injury and warrants careful evaluation. Our data show that fracture location can help alert clinicians to possible arterial injury after ballistic femoral fracture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Finite Element Based Optimization of Material Parameters for Enhanced Ballistic Protection

    Science.gov (United States)

    Ramezani, Arash; Huber, Daniel; Rothe, Hendrik

    2013-06-01

    The threat imposed by terrorist attacks is a major hazard for military installations, vehicles and other items. The large amounts of firearms and projectiles that are available, pose serious threats to military forces and even civilian facilities. An important task for international research and development is to avert danger to life and limb. This work will evaluate the effect of modern armor with numerical simulations. It will also provide a brief overview of ballistic tests in order to offer some basic knowledge of the subject, serving as a basis for the comparison of simulation results. The objective of this work is to develop and improve the modern armor used in the security sector. Numerical simulations should replace the expensive ballistic tests and find vulnerabilities of items and structures. By progressively changing the material parameters, the armor is to be optimized. Using a sensitivity analysis, information regarding decisive variables is yielded and vulnerabilities are easily found and eliminated afterwards. To facilitate the simulation, advanced numerical techniques have been employed in the analyses.

  1. VUV Testing of Science Cameras at MSFC: QE Measurement of the CLASP Flight Cameras

    Science.gov (United States)

    Champey, Patrick R.; Kobayashi, Ken; Winebarger, A.; Cirtain, J.; Hyde, D.; Robertson, B.; Beabout, B.; Beabout, D.; Stewart, M.

    2015-01-01

    The NASA Marshall Space Flight Center (MSFC) has developed a science camera suitable for sub-orbital missions for observations in the UV, EUV and soft X-ray. Six cameras were built and tested for the Chromospheric Lyman-Alpha Spectro-Polarimeter (CLASP), a joint National Astronomical Observatory of Japan (NAOJ) and MSFC sounding rocket mission. The CLASP camera design includes a frame-transfer e2v CCD57-10 512x512 detector, dual channel analog readout electronics and an internally mounted cold block. At the flight operating temperature of -20 C, the CLASP cameras achieved the low-noise performance requirements (less than or equal to 25 e- read noise and greater than or equal to 10 e-/sec/pix dark current), in addition to maintaining a stable gain of approximately equal to 2.0 e-/DN. The e2v CCD57-10 detectors were coated with Lumogen-E to improve quantum efficiency (QE) at the Lyman- wavelength. A vacuum ultra-violet (VUV) monochromator and a NIST calibrated photodiode were employed to measure the QE of each camera. Four flight-like cameras were tested in a high-vacuum chamber, which was configured to operate several tests intended to verify the QE, gain, read noise, dark current and residual non-linearity of the CCD. We present and discuss the QE measurements performed on the CLASP cameras. We also discuss the high-vacuum system outfitted for testing of UV and EUV science cameras at MSFC.

  2. Advanced CCD camera developments

    Energy Technology Data Exchange (ETDEWEB)

    Condor, A. [Lawrence Livermore National Lab., CA (United States)

    1994-11-15

    Two charge coupled device (CCD) camera systems are introduced and discussed, describing briefly the hardware involved, and the data obtained in their various applications. The Advanced Development Group Defense Sciences Engineering Division has been actively designing, manufacturing, fielding state-of-the-art CCD camera systems for over a decade. These systems were originally developed for the nuclear test program to record data from underground nuclear tests. Today, new and interesting application for these systems have surfaced and development is continuing in the area of advanced CCD camera systems, with the new CCD camera that will allow experimenters to replace film for x-ray imaging at the JANUS, USP, and NOVA laser facilities.

  3. Ballistic delivery of dyes for structural and functional studies of the nervous system

    Science.gov (United States)

    Gan, Wen-Biao; Grutzendler, Jaime; Wong, Rachel O.; Lichtman, Jeff W.

    2010-01-01

    This chapter describes a detail protocol for rapid labeling of cells in a variety of preparations by means of particle-mediated ballistic (gene gun) delivery of fluorescent dyes. This method has been used for rapid labeling of cells with either lipid or water-soluble dyes in a variety of preparations. In particular, carbocyanine lipophilic dyes such as DiI have been used to obtain Golgi-like labeling of neurons and glia in fixed and live cell cultures, brain slices, as well as fixed post-mortem human brain. Water-soluble calcium indicators such as calcium green-1 dextran have been used to image calcium dynamics in living brain slices and retinal explants. This ballistic labeling technique is thus useful for studying the structure and function of neurons and glia in both living and fixed specimens. PMID:20147144

  4. Combined Structural and Compositional Evolution of Planetary Rings Due to Micrometeoroid Impacts and Ballistic Transport

    Science.gov (United States)

    Estrada, Paul R.; Durisen, Richard H.; Cuzzi, Jeffrey N.; Morgan, Demitri A.

    2015-01-01

    We introduce improved numerical techniques for simulating the structural and compositional evolution of planetary rings due to micrometeoroid bombardment and subsequent ballistic transport of impact ejecta. Our current, robust code is capable of modeling structural changes and pollution transport simultaneously over long times on both local and global scales. In this paper, we describe the methodology based on the original structural code of Durisen et al. (1989, Icarus 80, 136-166) and on the pollution transport code of Cuzzi and Estrada (1998, Icarus 132, 1-35). We provide demonstrative simulations to compare with, and extend upon previous work, as well as examples of how ballistic transport can maintain the observed structure in Saturn's rings using available Cassini occultation optical depth data. In particular, we explicitly verify the claim that the inner B (and presumably A) ring edge can be maintained over long periods of time due to an ejecta distribution that is heavily biased in the prograde direction through a balance between the sharpening effects of ballistic transport and the broadening effects of viscosity. We also see that a "ramp"-like feature forms over time just inside that edge. However, it does not remain linear for the duration of the runs presented here unless a less steep ejecta velocity distribution is adopted. We also model the C ring plateaus and find that their outer edges can be maintained at their observed sharpness for long periods due to ballistic transport. We hypothesize that the addition of a significant component of a retrograde-biased ejecta distribution may help explain the linearity of the ramp and is probably essential for maintaining the sharpness of C ring plateau inner edges. This component would arise for the subset of micrometeoroid impacts which are destructive rather than merely cratering. Such a distribution will be introduced in future work.

  5. Testiranje balističke otpornosti zaštitnih prsluka / Ballistic resistance of body armour testing

    Directory of Open Access Journals (Sweden)

    Đuro Jovanić

    2006-04-01

    Full Text Available U radu je predstavljena osnova standarda NIJ 0101.04 (Nacionalni Institut Pravde, namenjenog za utvrđivanje minimuma tehničkih zahteva i propisivanje metoda ispitivanja balističke otpornosti zaštitnih prsluka, koji treba da zaštite gornji deo tela od dejstva streljačkog oružja. Standard jeste revizija standarda NIJ 0101.03 iz aprila 1987. i preciznije definiše zahteve u pogledu obeležavanja, kriterijume za prijem i postupke merenja otiska u materijalu iza prsluka. Područje ovog standarda odnosi se samo na balističku otpornost, ali ne i na pretnje od noža i predmeta sa oštrim vrhom. Takođe, ne odnosi se na zaštitne prsluke koji sadrže dopunske elemente ili varijacije u konstrukciji balističkih panela za malu površinu torza, radi povećanja osnovnog nivoa zaštite na ograničenim površinama (bilo balističke ili povrede od tupog vrha. / This work is a basic presentation of NIJ 0101.04 (National Institute of Justice standard, -whose purpose is to establish minimum performance requirements and methods of testing ballistic resistance of body armor intended to protect the torso against gunfire. This standard is a revision of NIJ Standard 0101.03 dated April 1987 and it clarifies the labeling requirements, acceptance criteria, and backface signature measurement procedure. The scope of this standard is limited only to ballistic resistance; and it does not include threats from knives and sharply pointed instruments. In addition, the standard does not include armor that incorporates inserts, or variations in construction of the ballistic panel over small areas of the torso, used for increasing the basic level of protection of the armor (whether ballistic or blunt trauma on localized areas.

  6. Modeling of uranium alloy response in plane impact and reverse ballistic experiments

    International Nuclear Information System (INIS)

    Herrmann, B.; Landau, A.; Shvarts, D.; Favorsky, V.; Zaretsky, E.

    2002-01-01

    The dynamic behavior of a solution heat-treated, water-quenched and aged U-0.75wt%Ti alloy was studied in planar (disk-on-disk) and reverse ballistic (disk-on-rod) impact experiments performed with a 25 mm light-gas gun. The impact velocity ranged from 100 to 500 m/sec. The impacted samples were softly recovered for further metallographic examination. The VISAR records of the sample free surface velocity, obtained in planar impact experiments, were simulated with 1-D hydrocode for calibrating the parameters of modified Steinberg-Cochran-Guinan (SCG) constitutive equation of the alloy. The same SCG equation was employed in 2-D AUTODYN simulation of the alloy response in the reverse ballistic experiments, with VISAR monitoring of the lateral sample surface velocity. Varying the parameters of the strain-dependent failure model allows relating the features of the recorded velocity profiles with the results of the examination of the damaged samples

  7. Research on capability of detecting ballistic missile by near space infrared system

    Science.gov (United States)

    Lu, Li; Sheng, Wen; Jiang, Wei; Jiang, Feng

    2018-01-01

    The infrared detection technology of ballistic missile based on near space platform can effectively make up the shortcomings of high-cost of traditional early warning satellites and the limited earth curvature of ground-based early warning radar. In terms of target detection capability, aiming at the problem that the formula of the action distance based on contrast performance ignores the background emissivity in the calculation process and the formula is only valid for the monochromatic light, an improved formula of the detecting range based on contrast performance is proposed. The near space infrared imaging system parameters are introduced, the expression of the contrastive action distance formula based on the target detection of the near space platform is deduced. The detection range of the near space infrared system for the booster stage ballistic missile skin, the tail nozzle and the tail flame is calculated. The simulation results show that the near-space infrared system has the best effect on the detection of tail-flame radiation.

  8. System Architecture for Anti-Ship Ballistic Missile Defense (ASBMD)

    OpenAIRE

    Hobgood, Jean; Madison, Kimberly; Pawlowski, Geoffrey; Nedd, Steven; Roberts, Michael; Rumberg, Paige

    2009-01-01

    Approved for public release; distribution is unlimited. Recent studies suggest that China is developing a new class of ballistic missiles that can be used against moving targets, such as ships. One such technology is anticipated to cover a range of 2,000 kilometers and operate at a speed of Mach 10. The threat is also capable of maneuvering both during the midcourse and terminal flight phases for the purposes of guidance, target acquisition, and countermeasures. This threat could greatl...

  9. 14 CFR 135.175 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Aircraft and Equipment § 135.175 Airborne weather radar equipment requirements. (a) No person may operate a large, transport category aircraft in passenger-carrying operations unless approved airborne weather...

  10. 14 CFR 135.173 - Airborne thunderstorm detection equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne thunderstorm detection equipment... Aircraft and Equipment § 135.173 Airborne thunderstorm detection equipment requirements. (a) No person may... the aircraft is equipped with either approved thunderstorm detection equipment or approved airborne...

  11. The effect of high-pressure devitrification and densification on ballistic-penetration resistance of fused silica

    Science.gov (United States)

    Avuthu, Vasudeva Reddy

    Despite the clear benefits offered by more advanced transparent materials, (e.g. transparent ceramics offer a very attractive combination of high stiffness and high hardness levels, highly-ductile transparent polymers provide superior fragment-containing capabilities, etc.), ballistic ceramic-glass like fused-silica remains an important constituent material in a majority of transparent impact-resistant structures (e.g. windshields and windows of military vehicles, portholes in ships, ground vehicles and spacecraft) used today. Among the main reasons for the wide-scale use of glass, the following three are most frequently cited: (i) glass-structure fabrication technologies enable the production of curved, large surface-area, transparent structures with thickness approaching several inches; (ii) relatively low material and manufacturing costs; and (iii) compositional modifications, chemical strengthening, and controlled crystallization have been demonstrated to be capable of significantly improving the ballistic properties of glass. In the present work, the potential of high-pressure devitrification and densification of fused-silica as a ballistic-resistance-enhancement mechanism is investigated computationally. In the first part of the present work, all-atom molecular-level computations are carried out to infer the dynamic response and material microstructure/topology changes of fused silica subjected to ballistic impact by a nanometer-sized hard projectile. The analysis was focused on the investigation of specific aspects of the dynamic response and of the microstructural changes such as the deformation of highly sheared and densified regions, and the conversion of amorphous fused silica to SiO2 crystalline allotropic modifications (in particular, alpha-quartz and stishovite). The microstructural changes in question were determined by carrying out a post-processing atom-coordination procedure. This procedure suggested the formation of high-density stishovite (and

  12. The influence of the in situ camera calibration for direct georeferencing of aerial imagery

    Science.gov (United States)

    Mitishita, E.; Barrios, R.; Centeno, J.

    2014-11-01

    The direct determination of exterior orientation parameters (EOPs) of aerial images via GNSS/INS technologies is an essential prerequisite in photogrammetric mapping nowadays. Although direct sensor orientation technologies provide a high degree of automation in the process due to the GNSS/INS technologies, the accuracies of the obtained results depend on the quality of a group of parameters that models accurately the conditions of the system at the moment the job is performed. One sub-group of parameters (lever arm offsets and boresight misalignments) models the position and orientation of the sensors with respect to the IMU body frame due to the impossibility of having all sensors on the same position and orientation in the airborne platform. Another sub-group of parameters models the internal characteristics of the sensor (IOP). A system calibration procedure has been recommended by worldwide studies to obtain accurate parameters (mounting and sensor characteristics) for applications of the direct sensor orientation. Commonly, mounting and sensor characteristics are not stable; they can vary in different flight conditions. The system calibration requires a geometric arrangement of the flight and/or control points to decouple correlated parameters, which are not available in the conventional photogrammetric flight. Considering this difficulty, this study investigates the feasibility of the in situ camera calibration to improve the accuracy of the direct georeferencing of aerial images. The camera calibration uses a minimum image block, extracted from the conventional photogrammetric flight, and control point arrangement. A digital Vexcel UltraCam XP camera connected to POS AV TM system was used to get two photogrammetric image blocks. The blocks have different flight directions and opposite flight line. In situ calibration procedures to compute different sets of IOPs are performed and their results are analyzed and used in photogrammetric experiments. The IOPs

  13. Solid state video cameras

    CERN Document Server

    Cristol, Y

    2013-01-01

    Solid State Video Cameras reviews the state of the art in the field of solid-state television cameras as compiled from patent literature. Organized into 10 chapters, the book begins with the basic array types of solid-state imagers and appropriate read-out circuits and methods. Documents relating to improvement of picture quality, such as spurious signal suppression, uniformity correction, or resolution enhancement, are also cited. The last part considerssolid-state color cameras.

  14. Atmospheric Entry Studies for Venus Missions: 45 Sphere-Cone Rigid Aeroshells and Ballistic Entries

    Science.gov (United States)

    Prabhu, Dinesh K.; Spilker, Thomas R.; Allen, Gary A., Jr.; Hwang, Helen H.; Cappuccio, Gelsomina; Moses, Robert W.

    2013-01-01

    The present study considers direct ballistic entries into the atmosphere of Venus using a 45deg sphere-cone rigid aeroshell, a legacy shape that has been used successfully in the past in the Pioneer Venus Multiprobe Mission. For a number of entry mass and heatshield diameter combinations (i.e., various ballistic coefficients) and entry velocities, the trajectory space in terms of entry flight path angles between skip out and -30deg is explored with a 3DoF trajectory code, TRAJ. From these trajectories, the viable entry flight path angle space is determined through the use of mechanical and thermal performance limits on the thermal protection material and science payload; the thermal protection material of choice is entry-grade carbon phenolic, for which a material thermal response model is available. For mechanical performance, a 200 g limit is placed on the peak deceleration load experienced by the science instruments, and 10 bar is assumed as the pressure limit for entry-grade carbon-phenolic material. For thermal performance, inflection points in the total heat load distribution are used as cut off criteria. Analysis of the results shows the existence of a range of critical ballistic coefficients beyond which the steepest possible entries are determined by the pressure limit of the material rather than the deceleration load limit.

  15. Towards airborne nanoparticle mass spectrometry with nanomechanical string resonators

    DEFF Research Database (Denmark)

    Schmid, Silvan; Kurek, Maksymilian; Boisen, Anja

    2013-01-01

    airborne nanoparticle sensors. Recently, nanomechanical mass spectrometry was established. One of the biggest challenges of nanomechanical sensors is the low efficiency of diffusion-based sampling. We developed an inertial-based sampling method that enables the efficient sampling of airborne nanoparticles...... mode. Mass spectrometry of airborne nanoparticles requires the simultaneous operation in the first and second mode, which can be implemented in the transduction scheme of the resonator. The presented results lay the cornerstone for the realization of a portable airborne nanoparticle mass spectrometer....

  16. 14 CFR 125.223 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... Equipment Requirements § 125.223 Airborne weather radar equipment requirements. (a) No person may operate an airplane governed by this part in passenger-carrying operations unless approved airborne weather radar...

  17. 14 CFR 121.357 - Airborne weather radar equipment requirements.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 3 2010-01-01 2010-01-01 false Airborne weather radar equipment... § 121.357 Airborne weather radar equipment requirements. (a) No person may operate any transport... December 31, 1964, unless approved airborne weather radar equipment has been installed in the airplane. (b...

  18. Multiple Sensor Camera for Enhanced Video Capturing

    Science.gov (United States)

    Nagahara, Hajime; Kanki, Yoshinori; Iwai, Yoshio; Yachida, Masahiko

    A resolution of camera has been drastically improved under a current request for high-quality digital images. For example, digital still camera has several mega pixels. Although a video camera has the higher frame-rate, the resolution of a video camera is lower than that of still camera. Thus, the high-resolution is incompatible with the high frame rate of ordinary cameras in market. It is difficult to solve this problem by a single sensor, since it comes from physical limitation of the pixel transfer rate. In this paper, we propose a multi-sensor camera for capturing a resolution and frame-rate enhanced video. Common multi-CCDs camera, such as 3CCD color camera, has same CCD for capturing different spectral information. Our approach is to use different spatio-temporal resolution sensors in a single camera cabinet for capturing higher resolution and frame-rate information separately. We build a prototype camera which can capture high-resolution (2588×1958 pixels, 3.75 fps) and high frame-rate (500×500, 90 fps) videos. We also proposed the calibration method for the camera. As one of the application of the camera, we demonstrate an enhanced video (2128×1952 pixels, 90 fps) generated from the captured videos for showing the utility of the camera.

  19. 77 FR 6548 - Notice of Availability of Ballistic Survivability, Lethality and Vulnerability Analyses

    Science.gov (United States)

    2012-02-08

    ... DEPARTMENT OF DEFENSE Department of the Army Notice of Availability of Ballistic Survivability, Lethality and Vulnerability Analyses AGENCY: Department of the Army, DoD. ACTION: Notice of availability. SUMMARY: The US Army Research Laboratory's (ARL's), Survivability, Lethality Analysis Directorate (SLAD...

  20. Using DSLR cameras in digital holography

    Science.gov (United States)

    Hincapié-Zuluaga, Diego; Herrera-Ramírez, Jorge; García-Sucerquia, Jorge

    2017-08-01

    In Digital Holography (DH), the size of the bidimensional image sensor to record the digital hologram, plays a key role on the performance of this imaging technique; the larger the size of the camera sensor, the better the quality of the final reconstructed image. Scientific cameras with large formats are offered in the market, but their cost and availability limit their use as a first option when implementing DH. Nowadays, DSLR cameras provide an easy-access alternative that is worthwhile to be explored. The DSLR cameras are a wide, commercial, and available option that in comparison with traditional scientific cameras, offer a much lower cost per effective pixel over a large sensing area. However, in the DSLR cameras, with their RGB pixel distribution, the sampling of information is different to the sampling in monochrome cameras usually employed in DH. This fact has implications in their performance. In this work, we discuss why DSLR cameras are not extensively used for DH, taking into account the problem reported by different authors of object replication. Simulations of DH using monochromatic and DSLR cameras are presented and a theoretical deduction for the replication problem using the Fourier theory is also shown. Experimental results of DH implementation using a DSLR camera show the replication problem.