WorldWideScience

Sample records for air-water bubbly flow

  1. Interfacial structures of confined air-water two-phase bubbly flow

    International Nuclear Information System (INIS)

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-01-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C 0 = 1.35

  2. Interfacial structures of confined air-water two-phase bubbly flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Ishii, M.; Wu, Q.; McCreary, D.; Beus, S.G.

    2000-08-01

    The interfacial structure of the two-phase flows is of great importance in view of theoretical modeling and practical applications. In the present study, the focus is made on obtaining detailed local two-phase parameters in the air-water bubbly flow in a rectangular vertical duct using the double-sensor conductivity probe. The characteristic wall-peak is observed in the profiles of the interracial area concentration and the void fraction. The development of the interfacial area concentration along the axial direction of the flow is studied in view of the interfacial area transport and bubble interactions. The experimental data is compared with the drift flux model with C{sub 0} = 1.35.

  3. Numerical analysis of flow field formed by air bubble dischanging through a sparger

    International Nuclear Information System (INIS)

    Kim, H. W.; Bae, Y. Y.

    2002-01-01

    In both a boiling water reactor and an advanced type of pressurized water reactor APR1400 being constructed in Korea, water, air and steam successively discharge into a subcooled water pool through spargers, when a pressure relieving system is in operation. During the discharging processes, the air bubble clouds produce a low-frequency and high-amplitude oscillatory loading, which may result in significant damages to the submerged structures if the resonance between bubble clouds and structures occur. This study deals with a numerical analysis of the flow field due to the oscillation of air bubble clouds by using a commercial thermal hydraulic analysis code FLUENT, version 4.5. The VOF (Volume Of Fluid) model was used to simulate the interface of water, air and steam flows, since it is known to be suitable for the large bubble simulation and it enables to treat air as a compressible fluid. A good agreement between the analysis results and the ABB-Atom test results, which had been performed for the development of BWR sparger, was obtained

  4. Scales and structures in bubbly flows. Experimental analysis of the flow in bubble columns and in bubbling fluidized beds

    NARCIS (Netherlands)

    Groen, J.S.

    2004-01-01

    In this project a detailed experimental analysis was performed of the dynamic flow field in bubbly flows, with the purpose of determining local hydrodynamics and scale effects. Measurements were done in gas-liquid systems (air-water bubble columns) and in gas-solid systems (air-sand bubbing

  5. Bubble-size distributions produced by wall injection of air into flowing freshwater, saltwater and surfactant solutions

    Science.gov (United States)

    Winkel, Eric S.; Ceccio, Steven L.; Dowling, David R.; Perlin, Marc

    2004-12-01

    As air is injected into a flowing liquid, the resultant bubble characteristics depend on the properties of the injector, near-wall flow, and flowing liquid. Previous research has shown that near-wall bubbles can significantly reduce skin-friction drag. Air was injected into the turbulent boundary layer on a test section wall of a water tunnel containing various concentrations of salt and surfactant (Triton-X-100, Union Carbide). Photographic records show that the mean bubble diameter decreased monotonically with increasing salt and surfactant concentrations. Here, 33 ppt saltwater bubbles had one quarter, and 20 ppm Triton-X-100 bubbles had one half of the mean diameter of freshwater bubbles.

  6. Measurements of local liquid velocity and interfacial parameters of air-water bubbly flows in a horizontal tube

    International Nuclear Information System (INIS)

    Yang Jian; Zhang Mingyuan; Zhang Chaojie; Su Yuliang

    2002-01-01

    Distribution of local kinematic parameters of air-water bubbly flows in a horizontal tube with an ID of 35 mm was investigated. The local liquid velocity was measured with a cylindrical hot film probe, and local void fraction, bubble frequency and bubble velocity were measured with a double-sensor probe. It was found that the axial liquid velocity has a same profile as that of single liquid phase flow in the lower part of the tube, and it suffers a sudden reduction in the upper part of the tube. With increasing airflow rate, the liquid velocity would increase in the lower part of the tube, and further decrease at the upper part of the tube, respectively. Most bubbles are congested at the upper part of the tube, and the void fraction and bubble frequencies have similar profile and both are asymmetrical with the tube axis with their maximum values located near the upper tube wall

  7. Turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air-bubbles clustered near the wall

    Science.gov (United States)

    Lakehal, D.; Métrailler, D.; Reboux, S.

    2017-06-01

    This paper presents Direct Numerical Simulation (DNS) results of a turbulent water flow in a channel at Reτ = 400 laden with 0.25 mm diameter air bubbles clustered near the wall (maximum void fraction of α = 8% at y+ ˜ 20). The bubbles were fully resolved using the level set approach built within the CFD/CMFD code TransAT. The fluid properties (air and water) were kept real, including density, viscosity, and surface tension coefficient. The aim of this work is to understand the effects of the bubbles on near-wall turbulence, paving the way towards convective wall-boiling flow studies. The interactions between the gas bubbles and the water stream were studied through an in-depth analysis of the turbulence statistics. The near-wall flow is overall affected by the bubbles, which act like roughness elements during the early phase, prior to their departure from the wall. The average profiles are clearly altered by the bubbles dynamics near the wall, which somewhat contrasts with the findings from similar studies [J. Lu and G. Tryggvason, "Dynamics of nearly spherical bubbles in a turbulent channel upflow," J. Fluid Mech. 732, 166 (2013)], most probably because the bubbles were introduced uniformly in the flow and not concentrated at the wall. The shape of the bubbles measured as the apparent to initial diameter ratio is found to change by a factor of at least two, in particular at the later stages when the bubbles burst out from the boundary layer. The clustering of the bubbles seems to be primarily localized in the zone populated by high-speed streaks and independent of their size. More importantly, the bubbly flow seems to differ from the single-phase flow in terms of turbulent stress distribution and energy exchange, in which all the stress components seem to be increased in the region very close to the wall, by up to 40%. The decay in the energy spectra near the wall was found to be significantly slower for the bubbly flow than for a single-phase flow, which

  8. Numerical study on the characteristics of air bubble oscillation in water

    International Nuclear Information System (INIS)

    Kim, Hwan Yeol; Bae, Yoon Yeong

    2003-01-01

    In both a boiling water reactor and an advanced type of pressurized water reactor under construction in Korea named APR1400, when a pressure relieving system is in operation, water, air and steam discharge successively into a sub-cooled water pool through spargers. Among the phenomena occurring during the discharging processes, the air bubble clouds with a low-frequency and high-amplitude oscillation may result in significant damage to the submerged structures if the resonance between the bubble clouds and structures occur. The phenomena involved are so complicated that most predictions of frequency and pressure loads have resorted to experimental work and computational approach has been precluded. This study deals with a numerical prediction of the pressure field generated by the oscillation of air bubble. The analysis was performed by using a commercial thermal hydraulic analysis code, FLUENT, version 4.5. The multiphase flows of water, air and steam were simulated by the VOF (Volume Of Fluid) model contained in the code. Unlike the author's previous study, the LRR (Load Reduction Ring) of the sparger is artificially blocked for the investigation of LRR effects on the pressure field. It also includes the effect of air mass and inlet pressure in the piping on the pressure field. (author)

  9. The multiphase flow system used in exploiting depleted reservoirs: water-based Micro-bubble drilling fluid

    International Nuclear Information System (INIS)

    Zheng Lihui; He Xiaoqing; Wang Xiangchun; Fu Lixia

    2009-01-01

    Water-based micro-bubble drilling fluid, which is used to exploit depleted reservoirs, is a complicated multiphase flow system that is composed of gas, water, oil, polymer, surfactants and solids. The gas phase is separate from bulk water by two layers and three membranes. They are 'surface tension reducing membrane', 'high viscosity layer', 'high viscosity fixing membrane', 'compatibility enhancing membrane' and 'concentration transition layer of liner high polymer (LHP) and surfactants' from every gas phase centre to the bulk water. 'Surface tension reducing membrane', 'high viscosity layer' and 'high viscosity fixing membrane' bond closely to pack air forming 'air-bag', 'compatibility enhancing membrane' and 'concentration transition layer of LHP and surfactants' absorb outside 'air-bag' to form 'incompact zone'. From another point of view, 'air-bag' and 'incompact zone' compose micro-bubble. Dynamic changes of 'incompact zone' enable micro-bubble to exist lonely or aggregate together, and lead the whole fluid, which can wet both hydrophilic and hydrophobic surface, to possess very high viscosity at an extremely low shear rate but to possess good fluidity at a higher shear rate. When the water-based micro-bubble drilling fluid encounters leakage zones, it will automatically regulate the sizes and shapes of the bubbles according to the slot width of fracture, the height of cavern as well as the aperture of openings, or seal them by making use of high viscosity of the system at a very low shear rate. Measurements of the rheological parameters indicate that water-based micro-bubble drilling fluid has very high plastic viscosity, yield point, initial gel, final gel and high ratio of yield point and plastic viscosity. All of these properties make the multiphase flow system meet the requirements of petroleum drilling industry. Research on interface between gas and bulk water of this multiphase flow system can provide us with information of synthesizing effective

  10. Impact of bubble wakes on a developing bubble flow in a vertical pipe

    International Nuclear Information System (INIS)

    Tomiyama, A.; Makino, Y.; Miyoshi, K.; Tamai, H.; Serizawa, A.; Zun, I.

    1998-01-01

    Three-dimensional two-way bubble tracking simulation of single large air bubbles rising through a stagnant water filled in a vertical pipe was conducted to investigate the structures of bubble wakes. Spatial distributions of time-averaged liquid velocity field, turbulent intensity and Reynolds stress caused by bubble wakes were deduced from the calculated local instantaneous liquid velocities. It was confirmed that wake structures are completely different from the ones estimated by a conventional wake model. Then, we developed a simple wake model based on the predicted time-averaged wake velocity fields, and implemented it into a 3D one-way bubble tracking method to examine the impact of bubble wake structures on time-spatial evolution of a developing air-water bubble flow in a vertical pipe. As a results, we confirmed that the developed wake model can give better prediction for flow pattern evolution than a conventional wake model

  11. One-group interfacial area transport in vertical air-water bubbly flow

    International Nuclear Information System (INIS)

    Wu, Q.; Kim, S.; Ishii, M.; Beus, S.G.

    1997-01-01

    In the two-fluid model for two-phase flows, interfacial area concentration is one of the most important closure relations that should be obtained from careful mechanistic modeling. The objective of this study is to develop a one-group interfacial area transport equation together with the modeling of the source and sink terms due to bubble breakage and coalescence. For bubble coalescence, two mechanisms are considered to be dominant in vertical two-phase bubbly flow. These are the random collisions between bubbles due to turbulence in the flow field, and the wake entrainment process due to the relative motion of the bubbles in the wake region of a seeding bubble. For bubble breakup, the impact of turbulent eddies is considered. These phenomena are modeled individually, resulting in a one-group interfacial area concentration transport equation with certain parameters to be determined from experimental data. Compared to the measured axial distribution of the interfacial area concentration under various flow conditions, these parameters are obtained for the reduced one-group, one-dimensional transport equation. The results indicate that the proposed models for bubble breakup and coalescence are appropriate

  12. The use of air flow through water for water evaporation

    International Nuclear Information System (INIS)

    Lashin, A.A.

    1996-01-01

    In water desalination system the productivity rate is improved by increasing the rate of eater evaporation either by heating the water or by forcing air to carry more vapor before condensation. This paper describe an experimental investigation into the effect of forcing the air to flow through a hot water contained in a closed tank through a perforated end of inlet tube. When the air bubbles pass through the water, it increases the rate of vaporization. The effect of some operating parameters are investigated and the results are presented and discussed. 6 figs

  13. Influence of water depth on the sound generated by air-bubble vibration in the water musical instrument

    Science.gov (United States)

    Ohuchi, Yoshito; Nakazono, Yoichi

    2014-06-01

    We have developed a water musical instrument that generates sound by the falling of water drops within resonance tubes. The instrument can give people who hear it the healing effect inherent in the sound of water. The sound produced by falling water drops arises from air- bubble vibrations. To investigate the impact of water depth on the air-bubble vibrations, we conducted experiments at varying values of water pressure and nozzle shape. We found that air-bubble vibration frequency does not change at a water depth of 50 mm or greater. Between 35 and 40 mm, however, the frequency decreases. At water depths of 30 mm or below, the air-bubble vibration frequency increases. In our tests, we varied the nozzle diameter from 2 to 4 mm. In addition, we discovered that the time taken for air-bubble vibration to start after the water drops start falling is constant at water depths of 40 mm or greater, but slower at depths below 40 mm.

  14. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    International Nuclear Information System (INIS)

    Sun, X.; Kim, S.; Cheng, L.; Ishii, M.; Beus, S.G.

    2001-01-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in a cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 20-cm in width and 1-cm in gap. The miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions

  15. Development of Interfacial Structure in a Confined Air-Water Cap-Turbulent and Churn-Turbulent Flow

    International Nuclear Information System (INIS)

    Xiaodong Sun; Seungjin Kim; Ling Cheng; Mamoru Ishii; Beus, Stephen G.

    2002-01-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined test section. Experiments of a total of 9 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200-mm in width and 10-mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. The bubbles captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired parameters are time-averaged local void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for both groups of bubbles. Also, the line-averaged and area-averaged data are presented and discussed. The comparisons of these parameters at different elevations demonstrate the development of interfacial structure along the flow direction due to bubble interactions. (authors)

  16. Air-water two-phase flow through a pipe junction

    International Nuclear Information System (INIS)

    Suu, Tetsuo

    1991-01-01

    The distribution of the local void fraction across the section of the conduit was studied experimentally in air-water two-phase flow flowing through a pipe junction with the branching angle of 90deg and the area ratio of unity. As in the previous report, the main conduit of the junction was set up vertically and upward air-water bubbly and slug flows were arranged in the main upstream section. If the flow regime, the quality and the ratio of lateral mass flow discharge of water to total mass flow discharge of water are the same, the larger the Reynolds number is, the more violent the variety of the local void fraction distribution adjacent to the branching part in the lateral conduit is. However, the variety in the main downstream section is scarcely influenced by the Reynolds number. (author)

  17. Interfacial area transport in a confined Bubbly flow

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Sun, X.; Ishii, M. [Purdue Univ., Lafayette, IN (United States). School of Nuclear Engineering; Lincoln, F. [Bettis Atomic Power Lab., West Mifflin, Bechtel Bettis, Inc., PA (United States)

    2001-07-01

    The interfacial area transport equation applicable to the bubbly flow is presented. The model is evaluated against the data acquired in an adiabatic air-water upward two-phase flow loop with a test section of 20 cm in width and 1 cm in gap. In general, a good agreement, within the measurement error of {+-}10%, is observed for a wide range in the bubbly flow regime. The sensitivity analysis on the individual particle interaction mechanisms demonstrates the active interactions between the bubbles and highlights the mechanisms playing the dominant role in interfacial area transport. (author)

  18. Gas Bubbles Investigation in Contaminated Water Using Optical Tomography Based on Independent Component Analysis Method

    Directory of Open Access Journals (Sweden)

    Mohd Taufiq Mohd Khairi

    2016-01-01

    Full Text Available This paper presents the results of concentration profiles for gas bubble flow in a vertical pipeline containing contaminated water using an optical tomography system. The concentration profiles for the bubble flow quantities are investigated under five different flows conditions, a single bubble, double bubbles, 25% of air opening, 50% of air opening, and 100% of air opening flow rates where a valve is used to control the gas flow in the vertical pipeline. The system is aided by the independent component analysis (ICA algorithm to reconstruct the concentration profiles of the liquid-gas flow. The behaviour of the gas bubbles was investigated in contaminated water in which the water sample was prepared by adding 25 mL of colour ingredients to 3 liters of pure water. The result shows that the application of ICA has enabled the system to detect the presence of gas bubbles in contaminated water. This information provides vital information on the flow inside the pipe and hence could be very significant in increasing the efficiency of the process industries.

  19. Motion of air bubbles in stagnant water condition

    International Nuclear Information System (INIS)

    Bezdegumeli, U.; Ozdemir, S.; Yesin, O.

    2004-01-01

    Full text: In this study, air bubble motion in stagnant water condition in a vertical pipe is investigated experimentally. For this purpose, a test set-up was designed and constructed. Motions of single bubbles, having different diameters in the range of 3.0-4.8 mm, were recorded by using a monochrome camera, an image capture card and a PC. Recorded video images were processed to analyse bubble motion and to obtain the necessary data. The purpose of the study is to determine the variation of bubble axial velocity and bubble drag coefficient as a function of equivalent bubble diameter and bubble Reynolds number, Re b . Therefore, detailed information for this range of bubble diameters was obtained. The results have shown good consistency with the previous studies found in the literature

  20. Motion of air bubbles in stagnant water condition

    International Nuclear Information System (INIS)

    Bezdegumeli, U.; Ozdemir, S.; Yesin, O.

    2004-01-01

    In this study, air bubble motion in stagnant water condition in a vertical pipe of 4.6 cm diameter is investigated experimentally. For this purpose, a test set-up was designed and constructed. Motions of single bubbles, having different diameters in the range of 3.0-4.8 mm, were recorded by using a monochrome camera, an image capture card and a PC. Recorded video images were processed to analyse bubble motion and to obtain the necessary data. The purpose of the study is to determine the variation of bubble axial velocity and bubble drag coefficient as a function of equivalent bubble diameter and bubble Reynolds number, Re b . Therefore, detailed information for this range of bubble diameters was obtained. The results have shown good consistency with the previous studies found in the literature. (author)

  1. Cold Heat Release Characteristics of Solidified Oil Droplet-Water Solution Latent Heat Emulsion by Air Bubbles

    Science.gov (United States)

    Inaba, Hideo; Morita, Shin-Ichi

    The present work investigates the cold heat-release characteristics of the solidified oil droplets (tetradecane, C14H30, freezing point 278.9 K)/water solution emulsion as a latent heat-storage material having a low melting point. An air bubbles-emulsion direct-contact heat exchange method is selected for the cold heat-results from the solidified oil droplet-emulsion layer. This type of direct-contact method results in the high thermal efficiency. The diameter of air bubbles in the emulsion increases as compared with that in the pure water. The air bubbles blown from a nozzle show a strong mixing behavior during rising in the emulsion. The temperature effectiveness, the sensible heat release time and the latent heat release time have been measured as experimental parameters. The useful nondimensional emulsion level equations for these parameters have been derived in terms of the nondimensional emalsion level expressed the emulsion layer dimensions, Reynolds number for air flow, Stefan number and heat capacity ratio.

  2. Vapor bubble behavior in subcooled flow boiling in annuli heated by water

    International Nuclear Information System (INIS)

    Licheng Sun; Zhongning Sun; Changqi Yan

    2005-01-01

    Full text of publication follows: This paper describes experimental and theoretical work conducted on vapor bubble behavior in subcooled flow boiling at atmospheric pressure. The test section is mainly consisted of two concentrically installed circular tubes, the outside tube is made of quartz and therefore all test courses can be visualized. Water is forced to flow through annuli with gap sizes of 3 mm and 5 mm, and is heated by high temperature water in the inner tube. The main objective is to visually study the bubble behavior of subcooled flow boiling water in the condition of surface heated by water. The results show that bubbles depart from wall directly or slide a certain distance before departure, this is same as that heated by electricity. There exists a bubble layer near the wall, most bubbles move and disappear in the layer after departure, the bubble sliding behavior is not very obvious in 5 mm annulus, however, we found that most bubbles in 3 mm annulus will slide a long distance before departure and their growth courses are different from usual experimental results. The bubbles are not always growing, but shrinking a little quickly after growing for some time, and then the course will repeat for some times till they depart from wall or disappeared, the collision and coalescence of bubbles is very common and makes the bubbles depart from wall more easily in 3 mm annulus. At last, the forces on bubbles growing and detaching in flow along the wall are analyzed to comprehend these phenomena more accurately. (authors)

  3. Study of stream flow effects on bubble motion

    International Nuclear Information System (INIS)

    Sami, S.S.

    1983-01-01

    The formation of air bubbles at constant-pressure by submerged orifices was investigated in both quiescent and moving streams inside a vertical tube. Parameters affecting the bubble rise velocity, such as bubble generating frequency and diameter, were studied and analyzed for bubbles rising in a chain and homogeneous mixture. A special technique for measuring bubble motion parameters has been developed, tested, and employed throughout the experimental investigation. The method is based on a water-air impedance variation. Results obtained in stagnant liquid show that increasing the bubble diameter serves to increase bubble rise velocity, while an opposite trend has been observed for stream liquid where the bubble diameter increase reduces the bubble rise velocity. The increase of bubble generation frequency generally increases the bubble rise velocity. Experimental data covered with bubble radial distribution showed symmetrical profiles of bubble velocity and frequency, and the radial distribution of the velocity profiles sometimes has two maxima and one minimum depending on the liquid velocity. Finally, in stagnant liquid, a normalized correlation has been developed to predict the terminal rise velocity in terms of bubble generating frequency, bubble diameter, single bubble rise velocity, and conduit dimensions. Another correlation is presented for forced bubbly flow, where the bubble rise velocity is expressed as a function of bubble generating frequency, bubble diameter, and water superficial velocity

  4. Bubbly flows around a two-dimensional circular cylinder

    Science.gov (United States)

    Lee, Jubeom; Park, Hyungmin

    2016-11-01

    Two-phase cross flows around a bluff body occur in many thermal-fluid systems like steam generators, heat exchangers and nuclear reactors. However, our current knowledge on the interactions among bubbles, bubble-induced flows and the bluff body are limited. In the present study, the gas-liquid bubbly flows around a solid circular cylinder are experimentally investigated while varying the mean void fraction from 5 to 27%. The surrounding liquid (water) is initially static and the liquid flow is only induced by the air bubbles. For the measurements, we use the high-speed two-phase particle image velocimetry techniques. First, depending on the mean void fraction, two regimes are classified with different preferential concentration of bubbles in the cylinder wake, which are explained in terms of hydrodynamic force balances acting on rising bubbles. Second, the differences between the two-phase and single-phase flows (while matching their Reynolds numbers) around a circular cylinder will be discussed in relation to effects of bubble dynamics and the bubble-induced turbulence on the cylinder wake. Supported by a Grant (MPSS-CG-2016-02) through the Disaster and Safety Management Institute funded by Ministry of Public Safety and Security of Korean government.

  5. 3-dimensional Simulation of an Air-lift Pump from Bubbly to Slug Flow

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Hongrae; Jo, Daeseong [Kyungpook National Univ, Daegu (Korea, Republic of)

    2015-10-15

    The air-lift pump has been used in various applications with its merit that it can pump up without any moving parts. E.g. coffee percolator, petroleum industry, suction dredge, OTEC i.e. ocean thermal energy conversion and so on. By the merit, it has high durability for high temperature water or vapor, and fluid-solid mixture like waste water, muddy water and crude, which cause problems when it's pumped up with general pumps. In this regard, the air-lift pump has been one of the most desirable technology. A typical air-lift pump configuration is illustrated in Figure 01. The principle of this pump is very simple. When air is injected from the injector at bottom of a submerged tube, i.e., air bubbles are suspended in the liquid, the average density of the mixture in the tube is less than that of the surrounding fluid in the reservoir. Then hydrostatic pressure over the length of the tube is decreased. This buoyancy force causes a pumping action. The comparison of the simulated results, experimental result, and theoretical result is been able by data shown as Figure 04. They have similar trends but they also have a little differences because there are some limits of simulating the flow regimes. At the different flow condition, different coefficients for friction factor or pressure drop should be used, but this simulation uses a laminar condition and the theoretical equations are valid only for slug regime where the air flow rate is lower than the other regimes. From these causes, the differences has arisen, and difference comes bigger as the air flow rate increases, i.e., becoming annular flow regime or churn flow regime.

  6. Effect of free-air nuclei on fully developed individual bubble cavitation

    International Nuclear Information System (INIS)

    Danel, F.; Lecoffre, Y.

    1976-01-01

    Fully developed individual-bubble cavitation was studied. Nuclei population and pressure distribution at the boundary of a cavitating converging-diverging test section were measured. It was shown that some cavitation tests can only yield valid results if the free air content of the water is known. During the initial stages of bubble growth the wall pressure in the cavitation region is lower than the vapor pressure. Wall pressure rises later. For a given cavitation number and flow velocity, the pressure distribution depends on the number of expanding bubbles on the hydrofoil. Minimum pressure coefficient depends only on the cavitation number, the flow velocity and the number of expanding bubbles present. Bubbles generate pressure pulses at the wall; combined effect of all such pulses is to shift the wall pressure away from the value that would be obtained at the same cavitation number if no cavitation was present. The greater the number of expanding bubbles, the more the wall pressure tends to approach the vapor pressure. An important result of the work is to pin-point free air contents of water tunnel which lead to correct scaling of cavitation flows [fr

  7. Structure of two-phase air-water flows. Study of average void fraction and flow patterns

    International Nuclear Information System (INIS)

    Roumy, R.

    1969-01-01

    This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V sg = f( ) * g(V sl ). The function g(V sl ) for the case of independent bubbles has been found to be: g(V sl ) = V sl + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V sg /V sl . (author) [fr

  8. Liquid velocity in upward and downward air-water flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Paranjape, Sidharth; Kim, Seungjin; Ozar, Basar; Ishii, Mamoru

    2004-01-01

    Local characteristics of the liquid phase in upward and downward air-water two-phase flows were experimentally investigated in a 50.8-mm inner-diameter round pipe. An integral laser Doppler anemometry (LDA) system was used to measure the axial liquid velocity and its fluctuations. No effect of the flow direction on the liquid velocity radial profile was observed in single-phase liquid benchmark experiments. Local multi-sensor conductivity probes were used to measure the radial profiles of the bubble velocity and the void fraction. The measurement results in the upward and downward two-phase flows are compared and discussed. The results in the downward flow demonstrated that the presence of the bubbles tended to flatten the liquid velocity radial profile, and the maximum liquid velocity could occur off the pipe centerline, in particular at relatively low flow rates. However, the maximum liquid velocity always occurred at the pipe center in the upward flow. Also, noticeable turbulence enhancement due to the bubbles in the two-phase flows was observed in the current experimental flow conditions. Furthermore, the distribution parameter and the void-weighted area-averaged drift velocity were obtained based on the definitions

  9. Bubble Generation in a Flowing Liquid Medium and Resulting Two-Phase Flow in Microgravity

    Science.gov (United States)

    Pais, S. C.; Kamotani, Y.; Bhunia, A.; Ostrach, S.

    1999-01-01

    The present investigation reports a study of bubble generation under reduced gravity conditions, using both a co-flow and a cross-flow configuration. This study may be used in the conceptual design of a space-based thermal management system. Ensuing two-phase flow void fraction can be accurately monitored using a single nozzle gas injection system within a continuous liquid flow conduit, as utilized in the present investigation. Accurate monitoring of void fraction leads to precise control of heat and mass transfer coefficients related to a thermal management system; hence providing an efficient and highly effective means of removing heat aboard spacecraft or space stations. Our experiments are performed in parabolic flight aboard the modified DC-9 Reduced Gravity Research Aircraft at NASA Lewis Research Center, using an air-water system. For the purpose of bubble dispersion in a flowing liquid, we use both a co-flow and a cross-flow configuration. In the co-flow geometry, air is introduced through a nozzle in the same direction with the liquid flow. On the other hand, in the cross-flow configuration, air is injected perpendicular to the direction of water flow, via a nozzle protruding inside the two-phase flow conduit. Three different flow conduit (pipe) diameters are used, namely, 1.27 cm, 1.9 cm and 2.54 cm. Two different ratios of nozzle to pipe diameter (D(sub N))sup * are considered, namely (D(sub N))sup * = 0.1 and 0.2, while superficial liquid velocities are varied from 8 to 70 cm/s depending on flow conduit diameter. It is experimentally observed that by holding all other flow conditions and geometry constant, generated bubbles decrease in size with increase in superficial liquid velocity. Detached bubble diameter is shown to increase with air injection nozzle diameter. Likewise, generated bubbles grow in size with increasing pipe diameter. Along the same lines, it is shown that bubble frequency of formation increases and hence the time to detachment of a

  10. Experimental investigation of single small bubble motion in linear shear flow in water

    International Nuclear Information System (INIS)

    Li, Zhongchun; Zhao, Yang; Song, Xiaoming; Yu, Hongxing; Jiang, Shengyao; Ishii, Mamoru

    2016-01-01

    Highlights: • The bubble motion in simple linear shear flow was experimentally investigated. • The bubble trajectories, bubble velocity and drag and lift force were obtained using image process routine. • The bubble trajectory was coupled with a zigzag motion and incline path. • The lift force was kept negative and it decreased when bubble diameter and shear flow magnitude increased. - Abstract: The motion of small bubble in a simple shear flow in water was experimental studied. Stable shear flow with low turbulence level was achieved with curved screen and measured using LDV. The bubbles were captured by high speed camera and the captured images were processed with digital image routine. The bubble was released from a capillary tube. The instantaneous bubble position, bubble velocity and forces were obtained based on the captured parameters. The quasi-steady lift coefficient was determined by the linear fitting of the bubble trajectory of several cycles. The results indicated that the lateral migration was coupled with the zigzag motion of bubble in the present experiment. The bubble migrated to the left side and its quasi-steady lift coefficient was negative. Good repeatable results were observed by measurements of 18 bubbles. The bubble motion in shear flow in water was first experimental studied and negative lift force was observed in the present study condition. The lift coefficient decreased when shear stress magnitude or bubble diameter increased in the present experiment condition.

  11. Development and performance evaluation of air fine bubbles on water quality of thai catfish rearing

    Science.gov (United States)

    Subhan, Ujang; Muthukannan, Vanitha; Azhary, Sundoro Yoga; Mulhadi, Muhammad Fakhri; Rochima, Emma; Panatarani, Camellia; Joni, I. Made

    2018-02-01

    The efficiency and productivity of aquaculture strongly depends on the development of advanced technology for water quality management system. The most important factor for the success of intensive aquaculture system is controlling the water quality of fish rearing media. This paper reports the design of fine bubbles (FBs) generator and performance evaluation of the system to improve water quality in thai catfish media (10 g/ind) with density (16.66 ind./L). The FBs generator was designed to control the size distribution of bubble by controlling its air flow rate entry to the mixing chamber of the generator. The performance of the system was evaluated based on the produced debit, dissolved oxygen rate and ammonia content in the catfish medium. The size distribution was observed by using a high speed camera image followed by processing using ImageJ. freeware application. The results show that air flow rate 0.05 L/min and 0.1 L/min received average bubble size of 29 µm and 31 µm respectively. The generator produced bubbles with capacity of 6 L/min and dissolved oxygen rate 0.2 ppm/min/L. The obtained DO growth was 0.455 ppm/second/L while the average decay rate was 0.20 ppm/second/L. (0.011/0.005 fold). In contrast, the recieved DO growth rate is faster compared to the DO consumption rate of the Thai catfish. This results indicated that the potential application of FBs enhanced the density of thai catfish seed rearing. In addition, ammonia can be reduced at 0.0358 ppm/hour/L and it is also observed that the inhibition of bacterial growth of air FBs is postive to Aeromonas hydrophila bacteria compared to the negative control. It is concluded that as-developed FBs system can be potentially applied for intensive thai catfish culture and expected to improve the feeding efficiency rate.

  12. Enhanced CHF with Bubble Cutter and Artificial Flow in Nuclear Plants

    International Nuclear Information System (INIS)

    Jung, Chan Hee; Suh, Kune Y.

    2013-01-01

    The main goal of this paper is to body out the notions of forced convection system for enhanced local streams and air bubbles cutting (and/or pushing, breaking) system to explain how CHF can be improved and how those bubble cutter systems are applicable to NPPs. In this paper, the bubble cutter system and an artificial flow system which can cut (and/or push and break) air bubbles is bodied out to drag bubbles. It also make the surface wet condition of heated surfaces and improve heat transfer and prevent on creation of bubbles on the heated surfaces or heat exchangers or reactor cores. Namely, concepts and application methods to increase CHF are presented for NPPs. Enhanced critical heat flux (CHF) is one of our prospective aims for nuclear power plants (NPPs). Previous work has studied the flow boiling CHF enhancement with surfactant solutions under atmospheric pressure because surfactant solutions or surface conditions have an effect on the behavior of occurrence air bubbles on a heated surface. Another possible improvement is to improve efficiency of heat transfer or to body out some types of bubble breaking (and/or pushing, breaking) systems or an artificial flow of fluid that can tear off air bubbles or push hot liquid and bubbles on a surface of heater. During this study, it will be observed that those possible structures can elicit increased CHF by means of maintenance of contact with a coolant such as water

  13. Interfacial area transport of bubbly flow in a small diameter pipe

    International Nuclear Information System (INIS)

    Hibiki, Takashi; Takamasa, Tomoji; Ishii, Mamoru

    2001-01-01

    In relation to the development of the interfacial area transport equation, this study focused on modeling of the interfacial area transport mechanism of vertical adiabatic air-water bubbly flows in a relatively small diameter pipe where the bubble size-to-pipe diameter ratio was relatively high and the radial motion of bubbles was restricted by the presence of the pipe wall. The sink term of the interfacial area concentration was modeled by considering wake entrainment as a possible bubble coalescence mechanism, whereas the source term was neglected by assuming negligibly small bubble breakup for low liquid velocity conditions based on visual observation. One-dimensional interfacial area transport equation with the derived sink term was evaluated by using five datasets of vertical adiabatic air-water bubbly flows measured in a 9.0 mm-diameter pipe (superficial gas velocity: 0.013-0.052 m/s, superficial liquid velocity: 0.58-1.0 m/s). The modeled interfacial area transport equation could reproduce the proper trend of the axial interfacial area transport and predict the measured interfacial area concentrations within an average relative deviation of ±11.1%. It was recognized that the present model would be promising for predicting the interfacial area transport of the examined bubbly flows. (author)

  14. Presence and absence of a water film between moving air bubbles and a plate

    International Nuclear Information System (INIS)

    Remenyik, C.J.

    1990-01-01

    The thickness of water films between an inclined Lucite plate submerged in water and air bubbles moving beneath it was measured with a small impedance probe. The instrument was calibrated with a laser interferometer built for this purpose. The bubbles released beneath the plate varied in size from 10 cc to 100 cc. At a plate inclination angle of 0.98 degree, and in tap water, an uninterrupted water film covered most of the bubbles. Some bubbles, however, dewetted the plate, and the water film covered only a forward part of the bubble. When the film was uninterrupted, its thickness was very uniform from front to rear. When the bubble dewetted the plate, a large forward section of the film had the same uniform thickness, but this was followed by a hump on the film the rear slope of which ended at the plate surface. For some of the experiments, the surface tension of the water was reduced by admixing a detergent. In these experiments, dewetting was not observed. In a second set of experiments, a hand held transparent container filled with water and a 1.3 cm3 air bubble was used to observe visually the behavior of the moving bubble and its associated water film

  15. Interfacial structures in downward two-phase bubbly flow

    International Nuclear Information System (INIS)

    Paranjape, S.S.; Kim, S.; Ishii, M.; Kelly, J.

    2003-01-01

    Downward two-phase flow was studied considering its significance in view of Light Water Reactor Accidents (LWR) such as Loss of Heat Sink (LOHS) by feed water loss or secondary pipe break. The flow studied, was an adiabatic, air-water, co-current, vertically downward two-phase flow. The experimental test sections had internal hydraulic diameters of 25.4 mm and 50.8 mm. Flow regime map was obtained using the characteristic signals obtained from an impedance void meter, employing neural network based identification methodology to minimize the subjective judgment in determining the flow regimes. A four sensor conductivity probe was used to measure the local two phase flow parameters, which characterize the interfacial structures. The local time averaged two-phase flow parameters measured were: void fraction (α), interfacial area concentration (a i ), bubble velocity (v g ), and Sauter mean diameter (D Sm ). The flow conditions were from the bubbly flow regime. The local profiles of these parameters as well as their axial development revealed the nature of the interfacial structures and the bubble interaction mechanisms occurring in the flow. Furthermore, this study provided a good database for the development of the interfacial area transport equation, which dynamically models the changes in the interfacial area along the flow field. An interfacial area transport equation was developed for downward flow based on that developed for the upward flow, with certain modifications in the bubble interaction terms. The area averaged values of the interfacial area concentration were compared with those predicted by the interfacial area transport model. (author)

  16. Simulating Bubble Plumes from Breaking Waves with a Forced-Air Venturi

    Science.gov (United States)

    Long, M. S.; Keene, W. C.; Maben, J. R.; Chang, R. Y. W.; Duplessis, P.; Kieber, D. J.; Beaupre, S. R.; Frossard, A. A.; Kinsey, J. D.; Zhu, Y.; Lu, X.; Bisgrove, J.

    2017-12-01

    It has been hypothesized that the size distribution of bubbles in subsurface seawater is a major factor that modulates the corresponding size distribution of primary marine aerosol (PMA) generated when those bubbles burst at the air-water interface. A primary physical control of the bubble size distribution produced by wave breaking is the associated turbulence that disintegrates larger bubbles into smaller ones. This leads to two characteristic features of bubble size distributions: (1) the Hinze scale which reflects a bubble size above which disintegration is possible based on turbulence intensity and (2) the slopes of log-linear regressions of the size distribution on either side of the Hinze scale that indicate the state of plume evolution or age. A Venturi with tunable seawater and forced air flow rates was designed and deployed in an artificial PMA generator to produce bubble plumes representative of breaking waves. This approach provides direct control of turbulence intensity and, thus, the resulting bubble size distribution characterizable by observations of the Hinze scale and the simulated plume age over a range of known air detrainment rates. Evaluation of performance in different seawater types over the western North Atlantic demonstrated that the Venturi produced bubble plumes with parameter values that bracket the range of those observed in laboratory and field experiments. Specifically, the seawater flow rate modulated the value of the Hinze scale while the forced-air flow rate modulated the plume age parameters. Results indicate that the size distribution of sub-surface bubbles within the generator did not significantly modulate the corresponding number size distribution of PMA produced via bubble bursting.

  17. Experimental study of bubbly flow using image processing techniques

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Yucheng, E-mail: ycfu@vt.edu; Liu, Yang, E-mail: liu130@vt.edu

    2016-12-15

    This paper presents an experimental study of bubbly flows at relatively high void fractions using an advanced image processing method. Bubble overlapping is a common problem in such flows and the past studies often treat the overlapping bubbles as a whole, which introduces considerable measurement uncertainties. In this study, a hybrid method combining intersection point detection and watershed segmentation is used to separate the overlapping bubbles. In order to reconstruct bubbles from separated segments, a systematic procedure is developed which can preserve more features captured in the raw image compared to the simple ellipse fitting method. The distributions of void fraction, interfacial area concentration, number density and velocity are obtained from the extracted bubble information. High-speed images of air-water bubbly flows are acquired and processed for eight test runs conducted in a 30 mm × 10 mm rectangular channel. The developed image processing scheme can effectively separate overlapping bubbles and the results compare well with the measurements by the gas flow meter and double-sensor conductivity probe. The development of flows in transverse and mainstream directions are analyzed and compared with the prediction made by the one-dimensional interfacial area transport equation (IATE) and the bubble number density transport equation.

  18. Three dimensional turbulence structure measurements in air/water two phase flow

    International Nuclear Information System (INIS)

    Wang, S.K.L.

    1986-01-01

    The phenomena of turbulent air/water two phase upward and downward flows in a circular test section were investigated. Important flow quantities such as void fraction, liquid velocity, and Reynolds stresses were measured by using both single sensor and three sensor hot film probes. A digital data processing technique based on combined derivative and level thresholding was developed to determine the local void fraction from hot-film anemometer signals. The measured local void fraction was integrated and the result was compared with the chordal averaged void fraction measured by a gamma ray densitometer. It was found that the local measurement underestimated local void fraction due to surface tension effects and bubble deflection by the probe. A correlation based on local parameters characterizing probe/bubble interaction was developed, and it corrected the measured void fraction successfully. The measured void fraction profiles in upward flow and downward flow showed two distinct patterns. In upward flow, bubbles tend to migrate toward the wall and the void fraction profile shows a sharp peak near the wall. In downward flow, as the liquid velocity increases, the wall peaking phenomenon fades out and bubbles tend to migrate toward the center of the pipe

  19. Measuring neutron noise induced by travelling air bubbles in a research reactor

    International Nuclear Information System (INIS)

    Por, G.; Horanyi, S.

    1983-05-01

    Travelling air bubble experiments carried out in a research reactor confirm an earlier proposed model. The sink structure could be found experimentally in APSD of neutron signals and was used to determine the bubble velocity. The measurements show that neutron detectors measure the velocity of the travelling bubbles, the thermocouples that of the water flow. (author)

  20. Optical characterization of bubbly flows with a near-critical-angle scattering technique

    Energy Technology Data Exchange (ETDEWEB)

    Onofri, Fabrice R.A.; Krzysiek, Mariusz [IUSTI, UMR, CNRS, University of Provence, Polytech' DME, Technopole Chateau-Gombert, Marseille (France); Mroczka, Janusz [CEPM, Technical University of Wroclaw, Wroclaw (Poland); Ren, Kuan-Fang [CORIA, UMR, CNRS, University of Rouen, Saint-Etienne-du-Rouvray (France); Radev, Stefan [IMECH, Bulgarian Academy of Sciences, Sofia (Bulgaria); Bonnet, Jean-Philippe [M2P2, UMR, CNRS, University Paul Cezanne, Aix-en-Provence (France)

    2009-10-15

    The newly developed critical angle refractometry and sizing technique (CARS) allows simultaneous and instantaneous characterization of the local size distribution and the relative refractive index (i.e. composition) of a cloud of bubbles. The paper presents the recent improvement of this technique by comparison of different light scattering models and inversion procedures. Experimental results carried in various air/water and air/water-ethanol bubbly flows clearly demonstrate the efficiency and the potential of this technique. (orig.)

  1. Bubble Pinch-Off in a Rotating Flow

    DEFF Research Database (Denmark)

    Bergmann, Raymond; Andersen, Anders Peter; van der Meer, Devaraj

    2009-01-01

    We create air bubbles at the tip of a "bathtub vortex" which reaches to a finite depth. The bathtub vortex is formed by letting water drain through a small hole at the bottom of a rotating cylindrical container. The tip of the needlelike surface dip is unstable at high rotation rates and releases...... bubbles which are carried down by the flow. Using high-speed imaging we find that the minimal neck radius of the unstable tip decreases in time as a power law with an exponent close to 1/3. This exponent was found by Gordillo et al. [Phys. Rev. Lett. 95, 194501 (2005)] to govern gas flow driven pinch...

  2. Hot-film anemometry in air-water flow

    International Nuclear Information System (INIS)

    Delahaye, J.M.; Galaup, J.P.

    1975-01-01

    Local measurements of void fraction and liquid velocity in a steady-state air-water bubbly flow at atmospheric pressure are presented. Use was made of a constant temperature anemometer and of a conical hot-film probe. The signal was processed with a multi-channel analyzer. Void fraction and liquid velocities are determined from the amplitude histogram of the signal. The integrated void fraction over a diameter is compared with the average void fraction along the same diameter obtained with a γ-ray absorption method. The liquid volumetric flow-rate is calculated from the void fraction and liquid velocity profiles and compared with the indication given by a turbine flowmeter [fr

  3. Directed weighted network structure analysis of complex impedance measurements for characterizing oil-in-water bubbly flow.

    Science.gov (United States)

    Gao, Zhong-Ke; Dang, Wei-Dong; Xue, Le; Zhang, Shan-Shan

    2017-03-01

    Characterizing the flow structure underlying the evolution of oil-in-water bubbly flow remains a contemporary challenge of great interests and complexity. In particular, the oil droplets dispersing in a water continuum with diverse size make the study of oil-in-water bubbly flow really difficult. To study this issue, we first design a novel complex impedance sensor and systematically conduct vertical oil-water flow experiments. Based on the multivariate complex impedance measurements, we define modalities associated with the spatial transient flow structures and construct modality transition-based network for each flow condition to study the evolution of flow structures. In order to reveal the unique flow structures underlying the oil-in-water bubbly flow, we filter the inferred modality transition-based network by removing the edges with small weight and resulting isolated nodes. Then, the weighted clustering coefficient entropy and weighted average path length are employed for quantitatively assessing the original network and filtered network. The differences in network measures enable to efficiently characterize the evolution of the oil-in-water bubbly flow structures.

  4. Letter: Entrapment and interaction of an air bubble with an oscillating cavitation bubble

    Science.gov (United States)

    Kannan, Y. S.; Karri, Badarinath; Sahu, Kirti Chandra

    2018-04-01

    The mechanism of the formation of an air bubble due to an oscillating cavitation bubble in its vicinity is reported from an experimental study using high-speed imaging. The cavitation bubble is created close to the free surface of water using a low-voltage spark circuit comprising two copper electrodes in contact with each other. Before the bubble is created, a third copper wire is positioned in contact with the free surface of water close to the two crossing electrodes. Due to the surface tension at the triple point (wire-water-air) interface, a small dip is observed in the free surface at the point where the wire is immersed. When the cavitation bubble is created, the bubble pushes at the dip while expanding and pulls at it while collapsing. The collapse phase leads to the entrapment of an air bubble at the wire immersion point. During this phase, the air bubble undergoes a "catapult" effect, i.e., it expands to a maximum size and then collapses with a microjet at the free surface. To the best of our knowledge, this mechanism has not been reported so far. A parametric study is also conducted to understand the effects of wire orientation and bubble distance from the free surface.

  5. Modeling quiescent phase transport of air bubbles induced by breaking waves

    Science.gov (United States)

    Shi, Fengyan; Kirby, James T.; Ma, Gangfeng

    Simultaneous modeling of both the acoustic phase and quiescent phase of breaking wave-induced air bubbles involves a large range of length scales from microns to meters and time scales from milliseconds to seconds, and thus is computational unaffordable in a surfzone-scale computational domain. In this study, we use an air bubble entrainment formula in a two-fluid model to predict air bubble evolution in the quiescent phase in a breaking wave event. The breaking wave-induced air bubble entrainment is formulated by connecting the shear production at the air-water interface and the bubble number intensity with a certain bubble size spectra observed in laboratory experiments. A two-fluid model is developed based on the partial differential equations of the gas-liquid mixture phase and the continuum bubble phase, which has multiple size bubble groups representing a polydisperse bubble population. An enhanced 2-DV VOF (Volume of Fluid) model with a k - ɛ turbulence closure is used to model the mixture phase. The bubble phase is governed by the advection-diffusion equations of the gas molar concentration and bubble intensity for groups of bubbles with different sizes. The model is used to simulate air bubble plumes measured in laboratory experiments. Numerical results indicate that, with an appropriate parameter in the air entrainment formula, the model is able to predict the main features of bubbly flows as evidenced by reasonable agreement with measured void fraction. Bubbles larger than an intermediate radius of O(1 mm) make a major contribution to void fraction in the near-crest region. Smaller bubbles tend to penetrate deeper and stay longer in the water column, resulting in significant contribution to the cross-sectional area of the bubble cloud. An underprediction of void fraction is found at the beginning of wave breaking when large air pockets take place. The core region of high void fraction predicted by the model is dislocated due to use of the shear

  6. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit. 2. Flow characteristics of bubbly countercurrent flow

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu.

    1997-01-01

    The authors have developed a measurement system which is composed of an ultrasonic velocity profile monitor and a video data processing unit in order to clarify its multi-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system was applied for bubbly countercurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. Next, turbulence intensity in a continuous liquid phase was defined as a standard deviation of velocity fluctuation, and the two-phase multiplier profile of turbulence intensity in the channel was clarified as a ratio of the standard deviation of flow fluctuation in a bubbly countercurrent flow to that in a water single phase flow. Finally, the distribution parameter and drift velocity used in the drift flux model for bubbly countercurrent flows were calculated from the obtained velocity profiles of both phases and void fraction profile, and were compared with the correlation proposed for bubbly countercurrent flows. (author)

  7. Spectra of single-bubble sonoluminescence in water and glycerin-water mixtures

    International Nuclear Information System (INIS)

    Gaitan, D.F.; Atchley, A.A.; Lewia, S.D.; Carlson, J.T.; Maruyama, X.K.; Moran, M.; Sweider, D.

    1996-01-01

    A single gas bubble, acoustically levitated in a standing-wave field and oscillating under the action of that field, can emit pulses of blue-white light with duration less than 50 ps. Measurements of the spectrum of this picosecond sonoluminescence with a scanning monochrometer are reported for air bubbles levitated in water and in glycerin-water mixtures. While the spectrum has been reported previously by others for air bubbles in water, the spectrum for air bubbles in water-glycerin mixtures has not. Expected emission lines from glycerin were conspicuously absent, suggesting a different mechanism for light production in single-bubble sonoluminescence. Other conclusions are the spectrum for air bubbles in water is consistent with that previously reported, the radiated energy decreases as the glycerin concentration increases, and the peak of the spectrum appears to shift to longer wavelengths for the water-glycerin mixtures. copyright 1996 The American Physical Society

  8. Measurement system of bubbly flow using Ultrasonic Velocity Profile Monitor and Video Data Processing Unit. 3. Comparison of flow characteristics between bubbly cocurrent and countercurrent flows

    International Nuclear Information System (INIS)

    Zhou, Shirong; Suzuki, Yumiko; Aritomi, Masanori; Matsuzaki, Mitsuo; Takeda, Yasushi; Mori, Michitsugu

    1998-01-01

    The authors have developed a new measurement system which consisted of an Ultrasonic Velocity Profile Monitor (UVP) and a Video Data Processing Unit (VDP) in order to clarify the two-dimensional flow characteristics in bubbly flows and to offer a data base to validate numerical codes for two-dimensional two-phase flow. In the present paper, the proposed measurement system is applied to fully developed bubbly cocurrent flows in a vertical rectangular channel. At first, both bubble and water velocity profiles and void fraction profiles in the channel were investigated statistically. In addition, the two-phase multiplier profile of turbulence intensity, which was defined as a ratio of the standard deviation of velocity fluctuation in a bubbly flow to that in a water single phase flow, were examined. Next, these flow characteristics were compared with those in bubbly countercurrent flows reported in our previous paper. Finally, concerning the drift flux model, the distribution parameter and drift velocity were obtained directly from both bubble and water velocity profiles and void fraction profiles, and their results were compared with those in bubbly countercurrent flows. (author)

  9. Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations

    KAUST Repository

    Oubei, Hassan M.; Elafandy, Rami T.; Park, Kihong; Ng, Tien Khee; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    We experimentally evaluate the performance of underwater wireless optical communication (UWOC) links in the presence of different air bubbles. Air bubbles of different sizes and densities are generated by using an air pipe in conjunction with a submersible water pump of variable flow rate that help break up large bubbles into smaller bubbles. Received signal intensity measurements show that bubbles significantly degrade the performance of UWOC links. Large bubbles completely obstruct the optical beam and cause a deep fade. However, as the bubble size decreases, the level of deep fade also decreases because the optical beam is less susceptible to complete obstruction and more light reaches the detector. We also show that beam expansion could help mitigate the performance degradation due to the deep fade caused by air bubbles scatters in the channel.

  10. Performance Evaluation of Underwater Wireless Optical Communications Links in the Presence of Different Air Bubble Populations

    KAUST Repository

    Oubei, Hassan M.

    2017-03-16

    We experimentally evaluate the performance of underwater wireless optical communication (UWOC) links in the presence of different air bubbles. Air bubbles of different sizes and densities are generated by using an air pipe in conjunction with a submersible water pump of variable flow rate that help break up large bubbles into smaller bubbles. Received signal intensity measurements show that bubbles significantly degrade the performance of UWOC links. Large bubbles completely obstruct the optical beam and cause a deep fade. However, as the bubble size decreases, the level of deep fade also decreases because the optical beam is less susceptible to complete obstruction and more light reaches the detector. We also show that beam expansion could help mitigate the performance degradation due to the deep fade caused by air bubbles scatters in the channel.

  11. Air-water flow in a vertical pipe with sudden changes of superficial water velocity

    International Nuclear Information System (INIS)

    Horst-Michael Prasser; Eckhard Krepper; Thomas Frank

    2005-01-01

    tests showing a monodisperse bubble size distribution were compared to CFD calculations using the code CFX-5. Applying the two fluid approach, the momentum interaction between the liquid and gas phase was considered. Additional to the interphase drag the non-drag forces like lift, wall lubrication and turbulent dispersion forces were taken into account, where the latter lead to the finally observable gas volume fraction distributions in the measurement cross section at z = 3.03 m due to their lateral balance perpendicular to the main flow direction. Detailed transient numerical simulations provide deep insight into the phase interaction, the physics and the transient behavior of the studied air-water two-phase flows. For the experimental conditions of dispersed bubbly flows without or with neglectable bubble coalescence and breakup the main flow features observed in the experiments could be reproduced qualitatively and quantitatively by the numerical simulation. Further research will be undertaken for the investigation of flow regime transition from gaseous phase volume fraction wall peak to core peak dominated flows. Further investigations will also include compressibility effects for the disperse bubbly phase. (authors)

  12. Average properties of bidisperse bubbly flows

    Science.gov (United States)

    Serrano-García, J. C.; Mendez-Díaz, S.; Zenit, R.

    2018-03-01

    Experiments were performed in a vertical channel to study the properties of a bubbly flow composed of two distinct bubble size species. Bubbles were produced using a capillary bank with tubes with two distinct inner diameters; the flow through each capillary size was controlled such that the amount of large or small bubbles could be controlled. Using water and water-glycerin mixtures, a wide range of Reynolds and Weber number ranges were investigated. The gas volume fraction ranged between 0.5% and 6%. The measurements of the mean bubble velocity of each species and the liquid velocity variance were obtained and contrasted with the monodisperse flows with equivalent gas volume fractions. We found that the bidispersity can induce a reduction of the mean bubble velocity of the large species; for the small size species, the bubble velocity can be increased, decreased, or remain unaffected depending of the flow conditions. The liquid velocity variance of the bidisperse flows is, in general, bound by the values of the small and large monodisperse values; interestingly, in some cases, the liquid velocity fluctuations can be larger than either monodisperse case. A simple model for the liquid agitation for bidisperse flows is proposed, with good agreement with the experimental measurements.

  13. Modelling and critical analysis of bubbly flows of dilute nanofluids in a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiangdong; Yuan, Yang [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Tu, Jiyuan, E-mail: jiyuan.tu@rmit.edu.au [School of Aerospace, Mechanical and Manufacturing Engineering, RMIT University, PO Box 71, Bundoora, VIC 3083 (Australia); Key Laboratory of Ministry of Education for Advanced Reactor Engineering and Safety, Institute of Nuclear and New Energy Technology, Tsinghua University, PO Box 1021, Beijing 100086 (China)

    2016-04-15

    Highlights: • The classic two-fluid model needs improvement for nanofluid bubbly flows. • The nanoparticle self-assembly changes the interfacial behaviours of bubbles. • Key job is to reformulate the interfacial transfer terms. - Abstract: The bubbly flows of air–nanofluid and air–water in a vertical tube were numerically simulated using the two-fluid model. Comparison of the numerical results against the experimental data of Park and Chang (2011) demonstrated that the classic two-fluid model, although agreed well with the air–water data, was not applicable to the air–nanofluid bubbly flow. It was suggested that in a bubbly flow system, the existence of interfaces allows the spontaneous formation of a thin layer of nanoparticle assembly at the interfaces, which significantly changes the interfacial behaviours of the air bubbles and the roles of the interfacial forces. As the conservation equations of the classic two-fluid model are still applicable to nanofluids, the mechanisms underlying the modified interfacial behaviours need to be carefully taken into account when modelling air–nanofluid bubbly flows. Thus, one of the key tasks when modelling bubbly flows of air–nanofluid using the two-fluid model is to reformulate the interfacial transfer terms according to the interfacial behaviour modifications induced by nanoparticles.

  14. A test section design to simulate horizontal two-phase air-water flow

    International Nuclear Information System (INIS)

    Faccini, Jose Luiz H.; Cesar, Silvia B.G.; Coutinho, Jorge A.; Freitas, Sergio Carlos; Addor, Pedro N.

    2002-01-01

    In this work an air-water two-phase flow horizontal test section assembling at Nuclear Engineering Institute (IEN) is presented. The test section was designed to allow four-phase flow patterns to be simulated: bubble flow, stratified flow, wave flow and slug flow. These flow patterns will be identified by non-conventional ultrasonic techniques which have been developed to meet this particular application. Based on the separated flow and drift-flux models the test section design steps are shown. A description of the test section and its instrumentation and data acquisition system is also provided. (author)

  15. μ-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble.

    Science.gov (United States)

    Yamaguchi, Eiichiro; Smith, Bradford J; Gaver, Donald P

    2009-08-01

    Microscale particle image velocimetry (μ-PIV) measurements of ensemble flow fields surrounding a steadily-migrating semi-infinite bubble through the novel adaptation of a computer controlled linear motor flow control system. The system was programmed to generate a square wave velocity input in order to produce accurate constant bubble propagation repeatedly and effectively through a fused glass capillary tube. We present a novel technique for re-positioning of the coordinate axis to the bubble tip frame of reference in each instantaneous field through the analysis of the sudden change of standard deviation of centerline velocity profiles across the bubble interface. Ensemble averages were then computed in this bubble tip frame of reference. Combined fluid systems of water/air, glycerol/air, and glycerol/Si-oil were used to investigate flows comparable to computational simulations described in Smith and Gaver (2008) and to past experimental observations of interfacial shape. Fluorescent particle images were also analyzed to measure the residual film thickness trailing behind the bubble. The flow fields and film thickness agree very well with the computational simulations as well as existing experimental and analytical results. Particle accumulation and migration associated with the flow patterns near the bubble tip after long experimental durations are discussed as potential sources of error in the experimental method.

  16. μ-PIV measurements of the ensemble flow fields surrounding a migrating semi-infinite bubble

    Science.gov (United States)

    Yamaguchi, Eiichiro; Smith, Bradford J.; Gaver, Donald P.

    2012-01-01

    Microscale particle image velocimetry (μ-PIV) measurements of ensemble flow fields surrounding a steadily-migrating semi-infinite bubble through the novel adaptation of a computer controlled linear motor flow control system. The system was programmed to generate a square wave velocity input in order to produce accurate constant bubble propagation repeatedly and effectively through a fused glass capillary tube. We present a novel technique for re-positioning of the coordinate axis to the bubble tip frame of reference in each instantaneous field through the analysis of the sudden change of standard deviation of centerline velocity profiles across the bubble interface. Ensemble averages were then computed in this bubble tip frame of reference. Combined fluid systems of water/air, glycerol/air, and glycerol/Si-oil were used to investigate flows comparable to computational simulations described in Smith and Gaver (2008) and to past experimental observations of interfacial shape. Fluorescent particle images were also analyzed to measure the residual film thickness trailing behind the bubble. The flow fields and film thickness agree very well with the computational simulations as well as existing experimental and analytical results. Particle accumulation and migration associated with the flow patterns near the bubble tip after long experimental durations are discussed as potential sources of error in the experimental method. PMID:23049158

  17. A study on the characteristics of upward air-water two-phase flow in a large pipe

    International Nuclear Information System (INIS)

    Shen, Xiuzhong; Mishima, Kaichiro; Nakamura, Hideo

    2003-01-01

    Adiabatic upward air-water two-phase flow in a vertical large pipe (inner diameter, D: 0.2 m, ratio of pipe length to diameter, L/D: 60.5.) was experimentally investigated under various inlet conditions. Flow regime was observed and void fraction, bubble frequency, Sauter mean diameter, interfacial area concentration (IAC) and interfacial direction were measured with optical four-sensor probe. Characteristics of various flow regimes were analyzed carefully. Both the void fraction and the IAC demonstrated radial wall-peak and core-peak distributions in the undisturbed bubbly flow and the other flow regimes, respectively. The existence of bubbly secondary flow accounts for the core-peak distribution in the agitated bubbly, churn bubbly, churn slug and churn froth flow. The bubble frequency showed a wall-peak radial distribution only when the bubbles were small in diameter and the flow was in the undisturbed bubbly flow. The Sauter mean diameter of bubbles did not change much in the main flow of undisturbed bubbly, agitated bubbly and churn bubbly flow regimes and showed a core peak radial distribution in the churn slug flow. In the latter flow regime, the secondary flow disintegrated the bubbles, resulting in the decrease of the Sauter mean diameter. The measurements of the interfacial direction showed that the bubbly main flow and secondary flow can be displayed by the main flow peak and the secondary flow peak, respectively, in the PDF of the interfacial directional angle between the interfacial direction and the z-axis, η zi . The local average η zi at the bubble front hemispheres reflects the local bubble movement and is in direct connection with the flow regimes. Based on the analysis, the authors classified the flow regimes in the vertical large pipe quantitatively by the local average η zi . Bubbles in the liquid phase moved in a zigzag line with no inclination toward any direction in the plane vertical to z-axis in the pipe core. The axial differential

  18. Dynamic features of bubble induced by a nanosecond pulse laser in still and flowing water

    Science.gov (United States)

    Charee, Wisan; Tangwarodomnukun, Viboon

    2018-03-01

    Underwater laser ablation techniques have been developed and employed to synthesis nanoparticles, to texture workpiece surface and to assist the material removal in laser machining process. However, the understanding of laser-material-water interactions, bubble formation and effects of water flow on ablation performance has still been very limited. This paper thus aims at exploring the formation and collapse of bubbles during the laser ablation of silicon in water. The effects of water flow rate on bubble formation and its consequences to the laser disturbance and cut features obtained in silicon were observed by using a high speed camera. A nanosecond pulse laser emitting the laser pulse energy of 0.2-0.5 mJ was employed in the experiment. The results showed that the bubble size was found to increase with the laser pulse energy. The use of high water flow rate can importantly facilitate the ejection of ablated particles from the workpiece surface, hence resulting in less deposition to the work surface and minimizing any disturbance to the laser beam during the ablation in water. Furthermore, a clean micro-groove in silicon wafer can successfully be produced when the process was performed in the high water flow rate condition. The findings of this study could provide an essential guideline for process selection, control and improvement in the laser micro-/submicro-fabrication using the underwater technique.

  19. Internal structure and interfacial velocity development for bubbly two-phase flow

    International Nuclear Information System (INIS)

    Kocamustafaogullari, G.; Huang, W.D.

    1994-01-01

    This paper describes an experimental study of the internal structure of air-water flowing horizontally. The double-sensor resistivity probe technique was applied for measurements of local interfacial parameters, including void fraction, interfacial area concentration, bubble size distributions, bubble passing frequency and bubble interface velocity. Bubbly flow patterns at several flow conditions were examined at three axial locations, L/D=25, 148 and 253, in which the first measurement represents the entrance region where the flow develops, and the second and third may represent near fully developed bubbly flow patterns. The experimental results are presented in three-dimensional perspective plots of the interfacial parameters over the cross-section. These multi-dimensional presentations showed that the local values of the void fraction, interfacial area concentration and bubble passing frequency were nearly constant over the cross-section at L/D=25, with slight local peaking close to the channel wall. Although similar local peakings were observed at the second and third locations, the internal flow structure segregation due to buoyancy appeared to be very strong in the axial direction. A simple comparison of profiles of the interfacial parameters at the three locations indicated that the flow pattern development was a continuous process. Finally, it was shown that the so-called ''fully developed'' bubbly two-phase flow pattern cannot be established in a horizontal pipe and that there was no strong correspondence between void fraction and interface velocity profiles. ((orig.))

  20. Application of the ultrasonic technique and high-speed filming for the study of the structure of air-water bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Carvalho, R.D.M.; Venturini, O.J.; Tanahashi, E.I. [Universidade Federal de Itajuba (UNIFEI), Itajuba (Brazil); Neves, F. Jr. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba (Brazil); Franca, F.A. [Universidade Estadual de Campinas (UNICAMP), Campinas (Brazil)

    2009-10-15

    Multiphase flows are very common in industry, oftentimes involving very harsh environments and fluids. Accordingly, there is a need to determine the dispersed phase holdup using noninvasive fast responding techniques; besides, knowledge of the flow structure is essential for the assessment of the transport processes involved. The ultrasonic technique fulfills these requirements and could have the capability to provide the information required. In this paper, the potential of the ultrasonic technique for application to two-phase flows was investigated by checking acoustic attenuation data against experimental data on the void fraction and flow topology of vertical, upward, air-water bubbly flows in the zero to 15% void fraction range. The ultrasonic apparatus consisted of one emitter/receiver transducer and three other receivers at different positions along the pipe circumference; simultaneous high-speed motion pictures of the flow patterns were made at 250 and 1000 fps. The attenuation data for all sensors exhibited a systematic interrelated behavior with void fraction, thereby testifying to the capability of the ultrasonic technique to measure the dispersed phase holdup. From the motion pictures, basic gas phase structures and different flows patterns were identified that corroborated several features of the acoustic attenuation data. Finally, the acoustic wave transit time was also investigated as a function of void fraction. (author)

  1. Gas transfer in a bubbly wake flow

    Science.gov (United States)

    Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.

    2016-05-01

    The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.

  2. Comparative study of wall-force models for the simulation of bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Rzehak, Roland, E-mail: r.rzehak@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, POB 510119, D-01314 Dresden (Germany); Krepper, Eckhard, E-mail: E.Krepper@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Institute of Fluid Dynamics, POB 510119, D-01314 Dresden (Germany); Lifante, Conxita, E-mail: Conxita.Lifante@ansys.com [ANSYS Germany GmbH, Staudenfeldweg 12, 83624 Otterfing (Germany)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer Comparison of common models for the wall force with an experimental database. Black-Right-Pointing-Pointer Identification of suitable closure for bubbly flow. Black-Right-Pointing-Pointer Enables prediction of location and height of wall peak in void fraction profiles. - Abstract: Accurate numerical prediction of void-fraction profiles in bubbly multiphase-flow relies on suitable closure models for the momentum exchange between liquid and gas phases. We here consider forces acting on the bubbles in the vicinity of a wall. A number of different models for this so-called wall-force have been proposed in the literature and are implemented in widely used CFD-codes. Simulations using a selection of these models are compared with a set of experimental data on bubbly air-water flow in round pipes of different diameter. Based on the results, recommendations on suitable closures are given.

  3. Numerical simulations of air–water cap-bubbly flows using two-group interfacial area transport equation

    International Nuclear Information System (INIS)

    Wang, Xia; Sun, Xiaodong

    2014-01-01

    Highlights: • Two-group interfacial area transport equation was implemented into a three-field two-fluid model in Fluent. • Numerical model was developed for cap-bubbly flows in a narrow rectangular flow channel. • Numerical simulations were performed for cap-bubbly flows with uniform void inlets and with central peaked void inlets. • Code simulations showed a significant improve over the conventional two-fluid model. - Abstract: Knowledge of cap-bubbly flows is of great interest due to its role in understanding of the flow regime transition from bubbly to slug or churn-turbulent flows. One of the key characteristics of such flows is the existence of bubbles in different sizes and shapes associated with their distinctive dynamic natures. This important feature is, however, generally not well captured by many available two-phase flow modeling approaches. In this study, a modified two-fluid model, namely a three-field, two-fluid model, is proposed. In this model, bubbles are categorized into two groups, i.e., spherical/distorted bubbles as Group-1 while cap/churn-turbulent bubbles as Group-2. A two-group interfacial area transport equation (IATE) is implemented to describe dynamic changes of interfacial structure in each bubble group, resulting from intra- and inter-group interactions and phase changes due to evaporation and condensation. Attention is also paid to appropriate constitutive relations of the interfacial transfers due to mechanical and thermal non-equilibrium between the different fields. The proposed three-field, two-fluid model is used to predict the phase distributions of adiabatic air–water flows in a confined rectangular duct. Good agreement between the simulation results from the proposed model and relevant experimental data indicates that the proposed model is promising as an improved computational tool for two-phase cap-bubbly flow simulations in rectangular flow ducts

  4. HUBBLE-BUBBLE 1. A computer program for the analysis of non-equilibrium flows of water

    International Nuclear Information System (INIS)

    Mather, D.J.

    1978-02-01

    A description is given of the computer program HUBBLE-BUBBLE I which simulates the non-equilibrium flow of water and steam in a pipe. The code is designed to examine the transient flow developing in a pipe containing hot compressed water following the rupture of a retaining diaphragm. Allowance is made for an area change in the pipe. Particular attention is paid to the non-equilibrium development of vapour bubbles and to the transition from a bubble-liquid regime to a droplet-vapour regime. The mathematical and computational model is described together with a summary of the FORTRAN subroutines and listing of data input. (UK)

  5. Measurement of bubble velocity in an air/water flow through a narrow gap by using high-speed cinematography; Ermittlung der Blasengeschwindigkeit einer Luft/Wasser-Spaltstroemung mit Hilfe der Hochgeschwindigkeitskinematographie

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, S.; Friedel, L. [Technische Univ. Hamburg-Harburg, Hamburg (Germany). Arbeitsbereich Stroemungsmechanik

    1998-05-01

    For the prediction of the establishing two-phase massflow for a given pressure difference across a narrow rectangular gap, beside others, the knowledge of the change of state of the gas phase and the fluiddynamic non-equilibrium in form of the slip velocity between the phases is needed. For an air/water bubbly flow it turned out by using high-speed cinematography that apart from the quick pressure decrease during the rapid acceleration at the gap inlet no significant difference between the measured and the predicted bubble size changes assuming an isothermal change of state of the air bubbles could be detected. The measured mean bubble velocities do not considerably deviate from the values calculated on the basis of a homogeneous flow. (orig.) [Deutsch] Zur Vorhersage des sich bei gegebener Druckdifferenz einstellenden Massenstroms eines Zweiphasengemischs durch enge Spalte ist neben der Zustandsaenderung der Gasphase waehrend der Druckabsenkung u.a. auch die Kenntnis des sich dabei einstellenden fluiddynamischen Ungleichgewichts in Form einer Relativgeschwindigkeit zwischen den Phasen von Bedeutung. Diese beiden Einfluesse wurden mit Hilfe der Hochgeschwindigkeitskinematographie fuer eine Wasser/Luft-Blasenstroemung untersucht. Abgesehen von der raschen Druckabsenkung aufgrund der ploetzlichen Querschnittsverengung im Spalteintritt treten keine nennenswerten Unterschiede zwischen den experimentell ermittelten und den unter der Annahme einer isothermen Zustandsaenderungen berechneten Volumenaenderung verschiedengrosser Blasen auf. Die mittlere Geschwindigkeit der Blasen unterscheidet sich dabei nicht wesentlich von der unter der Annahme einer homogenen Stroemung berechneten. (orig.)

  6. Interaction of equal-size bubbles in shear flow.

    Science.gov (United States)

    Prakash, Jai; Lavrenteva, Olga M; Byk, Leonid; Nir, Avinoam

    2013-04-01

    The inertia-induced forces on two identical spherical bubbles in a simple shear flow at small but finite Reynolds number, for the case when the bubbles are within each other's inner viscous region, are calculated making use of the reciprocal theorem. This interaction force is further employed to model the dynamics of air bubbles injected to a viscous fluid sheared in a Couette device at the first shear flow instability where the bubbles are trapped inside the stable Taylor vortex. It was shown that, during a long time scale, the inertial interaction between the bubbles in the primary shear flow drives them away from each other and, as a result, equal-size bubbles eventually assume an ordered string with equal separation distances between all neighbors. We report on experiments showing the dynamic evolution of various numbers of bubbles. The results of the theory are in good agreement with the experimental observations.

  7. Experimental investigations and modelling on the transition from bubble to slug flow in vertical pipes

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.M.

    2003-01-01

    To qualify CFD codes for two-phase flows, they have to be equipped with constitutive laws describing the interaction between the gaseous and the liquid phases. In the case of bubble flow this particularly concerns the forces acting on the bubbles and bubble coalescence and break-up. To obtain detailed experimental data, an electrode wire-mesh sensor was used, which enables the measurement of the phase distribution with a very high resolution in space and in time. Air-water flow at ambient conditions in a vertical pipe (51.2 mm inner diameter) is investigated to have well defined boundary conditions. Local bubble size distributions are calculated from the data. The measurements were done in different distances from the gas injection device. As a result the development of bubble size distributions as well as the development of the radial gas fraction profiles can be studied. It was found, that the bubble size distribution as well as local effects determine the transition from bubble flow to slug flow. The data are used for the development of a model, which predicts the development of the bubble size distribution and the transition from bubble flow to slug flow in case of stationary flow in a vertical pipe. (orig.)

  8. Image processing analysis on the air-water slug two-phase flow in a horizontal pipe

    Science.gov (United States)

    Dinaryanto, Okto; Widyatama, Arif; Majid, Akmal Irfan; Deendarlianto, Indarto

    2016-06-01

    Slug flow is a part of intermittent flow which is avoided in industrial application because of its irregularity and high pressure fluctuation. Those characteristics cause some problems such as internal corrosion and the damage of the pipeline construction. In order to understand the slug characteristics, some of the measurement techniques can be applied such as wire-mesh sensors, CECM, and high speed camera. The present study was aimed to determine slug characteristics by using image processing techniques. Experiment has been carried out in 26 mm i.d. acrylic horizontal pipe with 9 m long. Air-water flow was recorded 5 m from the air-water mixer using high speed video camera. Each of image sequence was processed using MATLAB. There are some steps including image complement, background subtraction, and image filtering that used in this algorithm to produce binary images. Special treatments also were applied to reduce the disturbance effect of dispersed bubble around the bubble. Furthermore, binary images were used to describe bubble contour and calculate slug parameter such as gas slug length, gas slug velocity, and slug frequency. As a result the effect of superficial gas velocity and superficial liquid velocity on the fundamental parameters can be understood. After comparing the results to the previous experimental results, the image processing techniques is a useful and potential technique to explain the slug characteristics.

  9. Observations of electric discharge streamer propagation and capillary oscillations on the surface of air bubbles in water

    Energy Technology Data Exchange (ETDEWEB)

    Sommers, B S; Foster, J E [Department of Nuclear Engineering and Radiological Science, University of Michigan, Ann Arbor, MI, 48109 (United States); Babaeva, N Yu; Kushner, Mark J [Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, 48109 (United States)

    2011-03-02

    The propagation of electric discharge streamers inside bubbles in liquids is of interest for the remediation of toxins in water and plasma-based surgical instruments. The manner of streamer propagation has an important influence on the production of reactive species that are critical to these applications. Streamer propagation along the surface of electrode-attached bubbles of air in water, previously predicted by numerical simulations, has been experimentally imaged using a fast frame-rate camera. The successive pulsing of the streamer discharge inside the bubbles produced oscillations along the air-water interface. Subsequent streamers were observed to closely follow surface distortions induced by such oscillations. The oscillations likely arise from the non-uniform perturbation of the bubble driven by the electric field of the streamer and were found to be consistent with Kelvin's equation for capillary oscillations. For a narrow range of applied voltage pulse frequencies, the oscillation amplitude increased over several pulse periods indicating, potentially, resonant behaviour. We also observed coupling between bubbles wherein oscillations in a second bubble without an internal discharge were induced by the presence of a streamer in a fixed bubble. (fast track communication)

  10. Experimental investigation of the hydrodynamics of confined bubble plumes in water and viscous media

    International Nuclear Information System (INIS)

    Brahma N Reddy Vanga; Martin A Lopez de Bertodano; Alexandr Zaruba; Eckhard Krepper; Horst-Michael Prasser

    2005-01-01

    Wire-mesh tomography measurements of void fraction and bubble size distribution in a rectangular bubble column 10 cm wide and 2 cm deep have been conducted. Experiments were performed in an air-water and ethylene glycol system with the column operating in the dispersed bubbly flow regime.Experiments were conducted for plumes with different aspect ratios between 2.2 to 13. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. The behaviour of the long plumes (larger aspect ratio) was found to be significantly different than that of the short plumes (aspect ratios 2 to 4). The oscillating nature of the bubble plume is preserved over the entire height of the water column for the short plumes. The longer plumes are characterized by two distinct regions, the near injector oscillating region and a further downstream region where the bubbles rise in a string like motion. The void fraction distribution in the oscillating region of the plume exhibits a center-peak profile. A 'wall peak' has been observed in the measured void fraction profiles (for higher gas flow rates) in the downstream string-like region. The effect of column height and superficial gas velocity on the void distribution has been investigated. This paper presents the measurement principle and the experimental results for short and long plumes in an air-water system and for short plumes rising in viscous media. The results of the visualization experiment characterizing the structure of the bubble plume and the oscillation frequency of the bubble plumes are reported. (authors)

  11. Development of Bubble Driven Flow CFD Model Applied for Aluminium Smelting Cells

    Directory of Open Access Journals (Sweden)

    Y.Q. Feng

    2010-09-01

    Full Text Available This paper presents the development of a computational fluid dynamics (CFD model for the study of bubble driven bath flow in aluminium reduction cells. For validation purposes, the model development was conducted using a full scale air -water model of part of an aluminium reduction cell as a test-bed. The bubble induced turbulence has been modelled by either modifying bubble induced turbulence viscosity directly or by modifying bubble induced turbulence kinetic energy in a standard k- ε turbulence model. The relative performance of the two modelling approaches has been examined through comparison with experimental data taken under similar conditions using Particle Image Velocimetry (PIV. Detailed comparison has been conducted by point-wise comparison of liquid velocities to quantify the level of agreement between CFD simulation and PIV measurement. Both models can capture the key flow patterns determined by PIV measurement, while the modified turbulence kinetic energy model gives better agreement with flow patterns in the gap between anode and cathode.

  12. A Generalized turbulent dispersion model for bubbly flow numerical simulation in NEPTUNE-CFD

    Energy Technology Data Exchange (ETDEWEB)

    Laviéville, Jérôme, E-mail: Jerome-marcel.lavieville@edf.fr; Mérigoux, Nicolas, E-mail: nicolas.merigoux@edf.fr; Guingo, Mathieu, E-mail: mathieu.guingo@edf.fr; Baudry, Cyril, E-mail: Cyril.baudry@edf.fr; Mimouni, Stéphane, E-mail: stephane.mimouni@edf.fr

    2017-02-15

    The NEPTUNE-CFD code, based upon an Eulerian multi-fluid model, is developed within the framework of the NEPTUNE project, financially supported by EDF (Electricité de France), CEA (Commissariat à l’Energie Atomique et aux Energies Alternatives), IRSN (Institut de Radioprotection et de Sûreté Nucléaire) and AREVA-NP. NEPTUNE-CFD is mainly focused on Nuclear Safety applications involving two-phase water-steam flows, like two-phase Pressurized Shock (PTS) and Departure from Nucleate Boiling (DNB). Many of these applications involve bubbly flows, particularly, for application to flows in PWR fuel assemblies, including studies related to DNB. Considering a very usual model for interfacial forces acting on bubbles, including drag, virtual mass and lift forces, the turbulent dispersion force is often added to moderate the lift effect in orthogonal directions to the main flow and get the right dispersion shape. This paper presents a formal derivation of this force, considering on the one hand, the fluctuating part of drag and virtual mass, and on the other hand, Turbulent Pressure derivation obtained by comparison between Lagrangian and Eulerian description of bubbles motion. An extension of the Tchen’s theory is used to express the turbulent kinetic energy of bubbles and the two-fluid turbulent covariance tensor in terms of liquid turbulent velocities and time scale. The model obtained by this way, called Generalized Turbulent Dispersion Model (GTD), does not require any user parameter. The model is validated against Liu & Bankoff air-water experiment, Arizona State University (ASU) experiment, DEBORA experiment and Texas A&M University (TAMU) boiling flow experiments.

  13. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer

    International Nuclear Information System (INIS)

    Delhaye, J.

    1968-01-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a γ-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [fr

  14. Turbulence, aeration and bubble features of air-water flows in macro- and intermediate roughness conditions

    Directory of Open Access Journals (Sweden)

    Stefano Pagliara

    2011-06-01

    Full Text Available Free surface flows in macro- and intermediate roughness conditions have a high aeration potential causing the flow characteristics to vary with slopes and discharges. The underlying mechanism of two-phase flow characteristics in macro- and intermediate roughness conditions were analyzed in an experimental setup assembled at the Laboratory of Hydraulic Protection of the Territory (PITLAB of the University of Pisa, Italy. Crushed angular rocks and hemispherical boulders were used to intensify the roughness of the bed. Flow rates per unit width ranging between 0.03 m2/s and 0.09 m2/s and slopes between 0.26 and 0.46 were tested over different arrangements of a rough bed. Analyses were mainly carried out in the inner flow region, which consists of both bubbly and intermediate flow regions. The findings revealed that the two-phase flow properties over the rough bed were much affected by rough bed arrangements. Turbulence features of two-phase flows over the rough bed were compared with those of the stepped chute data under similar flow conditions. Overall, the results highlight the flow features in the inner layers of the two-phase flow, showing that the maximum turbulence intensity decreases with the relative submergence, while the bubble frequency distribution is affected by the rough bed elements.

  15. Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code

    International Nuclear Information System (INIS)

    Banas, A.O.; Carver, M.B.; Unrau, D.

    1995-01-01

    This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the open-quotes standardclose quotes κ-ε transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels

  16. Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code

    Energy Technology Data Exchange (ETDEWEB)

    Banas, A.O.; Carver, M.B. [Chalk River Laboratories (Canada); Unrau, D. [Univ. of Toronto (Canada)

    1995-09-01

    This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.

  17. Size distribution of air bubbles entering the brain during cardiac surgery.

    Directory of Open Access Journals (Sweden)

    Emma M L Chung

    Full Text Available Thousands of air bubbles enter the cerebral circulation during cardiac surgery, but whether high numbers of bubbles explain post-operative cognitive decline is currently controversial. This study estimates the size distribution of air bubbles and volume of air entering the cerebral arteries intra-operatively based on analysis of transcranial Doppler ultrasound data.Transcranial Doppler ultrasound recordings from ten patients undergoing heart surgery were analysed for the presence of embolic signals. The backscattered intensity of each embolic signal was modelled based on ultrasound scattering theory to provide an estimate of bubble diameter. The impact of showers of bubbles on cerebral blood-flow was then investigated using patient-specific Monte-Carlo simulations to model the accumulation and clearance of bubbles within a model vasculature.Analysis of Doppler ultrasound recordings revealed a minimum of 371 and maximum of 6476 bubbles entering the middle cerebral artery territories during surgery. This was estimated to correspond to a total volume of air ranging between 0.003 and 0.12 mL. Based on analysis of a total of 18667 embolic signals, the median diameter of bubbles entering the cerebral arteries was 33 μm (IQR: 18 to 69 μm. Although bubble diameters ranged from ~5 μm to 3.5 mm, the majority (85% were less than 100 μm. Numerous small bubbles detected during cardiopulmonary bypass were estimated by Monte-Carlo simulation to be benign. However, during weaning from bypass, showers containing large macro-bubbles were observed, which were estimated to transiently affect up to 2.2% of arterioles.Detailed analysis of Doppler ultrasound data can be used to provide an estimate of bubble diameter, total volume of air, and the likely impact of embolic showers on cerebral blood flow. Although bubbles are alarmingly numerous during surgery, our simulations suggest that the majority of bubbles are too small to be harmful.

  18. A comparative study of turbulence models for dissolved air flotation flow analysis

    International Nuclear Information System (INIS)

    Park, Min A; Lee, Kyun Ho; Chung, Jae Dong; Seo, Seung Ho

    2015-01-01

    The dissolved air flotation (DAF) system is a water treatment process that removes contaminants by attaching micro bubbles to them, causing them to float to the water surface. In the present study, two-phase flow of air-water mixture is simulated to investigate changes in the internal flow analysis of DAF systems caused by using different turbulence models. Internal micro bubble distribution, velocity, and computation time are compared between several turbulence models for a given DAF geometry and condition. As a result, it is observed that the standard κ-ε model, which has been frequently used in previous research, predicts somewhat different behavior than other turbulence models

  19. Continuous ultrasonic waves to detect steam bubbles in water under high pressure

    Energy Technology Data Exchange (ETDEWEB)

    Hulshof, H J.M.; Schurink, F

    1985-01-01

    Steam in the recirculation circuit of boilers may lead to unacceptable high thermal loads on the evaporator tubes. The ability to detect steam in the recirculation circuit during process transients is therefore important. A simple detector using continuous ultrasonic waves and able to detect bubbles in water contained in steel tubes is described in this paper. The variation of the transmitted wave caused by the bubbles was determined by demodulation. The results have met the objectives set for cold water with air bubbles. A clear indication of the presence of steam bubbles was found in fast-flowing hot water in a steel tube with a diameter of 60 mm. A change in the low-frequency region of the modulation was the only indication of the presence of steam bubbles in the large-diameter downcomer of the water-separator drum of a boiler in an electrical power plant. Possible causes of the differences in the results obtained are discussed on the basis of differences in bubble sizes and in focusing and reflection of the ultrasonic waves. (orig.). 11 refs.; 10 figs.

  20. Continuous ultrasonic waves to detect steam bubbles in water under high pressure

    International Nuclear Information System (INIS)

    Hulshof, H.J.M.; Schurink, F.

    1985-01-01

    Steam in the recirculation circuit of boilers may lead to unacceptable high thermal loads on the evaporator tubes. The ability to detect steam in the recirculation circuit during process transients is therefore important. A simple detector using continuous ultrasonic waves and able to detect bubbles in water contained in steel tubes is described in this paper. The variation of the transmitted wave caused by the bubbles was determined by demodulation. The results have met the objectives set for cold water with air bubbles. A clear indication of the presence of steam bubbles was found in fast-flowing hot water in a steel tube with a diameter of 60 mm. A change in the low-frequency region of the modulation was the only indication of the presence of steam bubbles in the large-diameter downcomer of the water-separator drum of a boiler in an electrical power plant. Possible causes of the differences in the results obtained are discussed on the basis of differences in bubble sizes and in focusing and reflection of the ultrasonic waves. (orig.)

  1. Detachment of colloidal particles from collector surfaces with different electrostatic charge and hydrophobicity by attachment to air bubbles in a parallel plate flow chamber

    NARCIS (Netherlands)

    Suarez, CG; van der Mei, HC; Busscher, HJ

    1999-01-01

    The detachment of polystyrene particles adhering to collector surfaces with different electrostatic charge and hydrophobicity by attachment to a passing air bubble has been studied in a parallel plate flow chamber. Particle detachment decreased linearly with increasing air bubble velocity and

  2. Fluid dynamics of bubbly flows

    International Nuclear Information System (INIS)

    Ziegenhein, Thomas

    2016-01-01

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  3. Fluid dynamics of bubbly flows

    Energy Technology Data Exchange (ETDEWEB)

    Ziegenhein, Thomas

    2016-07-08

    Bubbly flows can be found in many applications in chemical, biological and power engineering. Reliable simulation tools of such flows that allow the design of new processes and optimization of existing one are therefore highly desirable. CFD-simulations applying the multi-fluid approach are very promising to provide such a design tool for complete facilities. In the multi-fluid approach, however, closure models have to be formulated to model the interaction between the continuous and dispersed phase. Due to the complex nature of bubbly flows, different phenomena have to be taken into account and for every phenomenon different closure models exist. Therefore, reliable predictions of unknown bubbly flows are not yet possible with the multi-fluid approach. A strategy to overcome this problem is to define a baseline model in which the closure models including the model constants are fixed so that the limitations of the modeling can be evaluated by validating it on different experiments. Afterwards, the shortcomings are identified so that the baseline model can be stepwise improved without losing the validity for the already validated cases. This development of a baseline model is done in the present work by validating the baseline model developed at the Helmholtz-Zentrum Dresden-Rossendorf mainly basing on experimental data for bubbly pipe flows to bubble columns, bubble plumes and air-lift reactors that are relevant in chemical and biological engineering applications. In the present work, a large variety of such setups is used for validation. The buoyancy driven bubbly flows showed thereby a transient behavior on the scale of the facility. Since such large scales are characterized by the geometry of the facility, turbulence models cannot describe them. Therefore, the transient simulation of bubbly flows with two equation models based on the unsteady Reynolds-averaged Navier-Stokes equations is investigated. In combination with the before mentioned baseline model these

  4. Performance Tests for Bubble Blockage Device

    International Nuclear Information System (INIS)

    Ha, Kwang Soon; Wi, Kyung Jin; Park, Rae Joon; Wan, Han Seong

    2014-01-01

    Postulated severe core damage accidents have a high threat risk for the safety of human health and jeopardize the environment. Versatile measures have been suggested and applied to mitigate severe accidents in nuclear power plants. To improve the thermal margin for the severe accident measures in high-power reactors, engineered corium cooling systems involving boiling-induced two-phase natural circulation have been proposed for decay heat removal. A boiling-induced natural circulation flow is generated in a coolant path between a hot vessel wall and cold coolant reservoir. In general, it is possible for some bubbles to be entrained in the natural circulation loop. If some bubbles entrain in the liquid phase flow passage, flow instability may occur, that is, the natural circulation mass flow rate may be oscillated. A new device to block the entraining bubbles is proposed and verified using air-water test loop. To avoid bubbles entrained in the natural circulation flow loop, a new device was proposed and verified using an air-water test loop. The air injection and liquid circulation loop was prepared, and the tests for the bubble blockage devices were performed by varying the geometry and shape of the devices. The performance of the bubble blockage device was more effective as the area ratio of the inlet to the down-comer increased, and the device height decreased. If the device has a rim to generate a vortex zone, the bubbles will be most effectively blocked

  5. Interfacial area transport of vertical upward air-water two-phase flow in an annulus at elevated pressures

    International Nuclear Information System (INIS)

    Ozar, Basar; Hibiki, Takashi; Ishii, Mamoru; Euh, Dong-Jin

    2009-01-01

    The interfacial area transport of vertical, upward, air-water two-phase flows in an annular channel has been investigated at different system pressures. The inner and outer diameters of the annular channel were 19.1 mm and 38.1 mm, respectively. Twenty three inlet flow conditions were selected, which coverED bubbly, cap-slug, and churn-turbulent flows. These flow conditions also overlapped with twelve conditions of our previous study for comparison. The local flow parameters, such as void fractions, interfacial area concentrations (IAC), and bubble interface velocities, were measured at nine radial positions for the three axial locations (z/D h =52, 149 and 230) and converted into area-averaged parameters. The axial evolutions of local flow structure was interpreted in terms of bubble coalescence, breakup, expansion of the gas-phase due to pressure drop and system pressure. An assessment of interfacial area transport equation (IATE) was made and compared with the experimental data. A discussion of the comparison between model prediction and the experimental results were made. (author)

  6. Investigation of air-water flow in a horizontal pipe with 90 degree bends using wire mesh sensors

    Energy Technology Data Exchange (ETDEWEB)

    Bowden, R.C.; Yang, S.K., E-mail: robert.bowden@cnl.ca, E-mail: sun-kyu.yang@cnl.ca [Canadian Nuclear Laboratories, Chalk River, ON (Canada)

    2015-07-01

    Wire mesh sensors were used to investigate the void fraction distribution along a 9 meter long, 50.8 mm diameter, horizontal test section that contained two 90 degree bends. Deionised water and compressed air were used as the working fluids, with the bubbly flow regime achieved at a superficial liquid velocity of 3.5 m/s and superficial gas velocities that varied between 0.1 and 1.2 m/s. The effects of superficial gas velocity and axial location on the void fraction distribution were investigated. Bubble and slug flow patterns were identified using a probability density function analysis based on a Gaussian mixture model. (author)

  7. Flow measurement in bubbly and slug flow regimes using the electromagnetic flowmeter developed

    International Nuclear Information System (INIS)

    Cha, Jae Eun; Ahn, Yeh Chan; Seo, Kyung Woo; Kim, Moo Hwan

    2002-01-01

    In order to investigate the characteristics of electromagnetic flowmeter in two-phase flow, an AC electromagnetic flowmeter was designed and manufactured. In various flow conditions, the signals and noises from the flowmeter were obtained and analyzed by comparison with the observed flow patterns with a high speed CCD camera. The experiment with the void simulators in which rod shaped non-conducting material was used was carried out to investigate the effect of the bubble position and the void fraction on the flowmeter. Based on the results from the void simulator, two-phase flow experiments encompassed from bubbly to slug flow regime were conducted. The simple relation ΔU TP = ΔU SP /(1-α) was verified with measurements of the potential difference and the void fraction. Due to the lack of homogeneity in a real two-phase flow, the discrepancy between the relation and the present measurement was slightly increased with void fraction and also liquid volumetric flux j f . Whereas there is no difference in the shape of the raw signal between single-phase flow and bubbly flow, the signal amplitude for bubbly flow is higher than that for single-phase flow at the same water flow rate, since the passage area of the water flow is reduced. In the case of slug flow, the phase and the amplitude of the flowmeter output show dramatically the flow characteristics around each slug bubble and the position of a slug bubble itself. Therefore, the electromagnetic flowmeter shows a good possibility of being useful for identifying the flow regimes

  8. Structure analysis of bubble driven flow by time-resolved PIV and POD techniques

    International Nuclear Information System (INIS)

    Kim, Hyun Dong; Yi, Seung Jae; Kim, Jong Wook; Kim, Kyung Chun

    2010-01-01

    In this paper, the recirculation flow motion and turbulence characteristics of liquid flow driven by air bubble stream in a rectangular water tank are studied. The time-resolved Particle Image Velocimetry (PIV) technique is adopted for the quantitative visualization and analysis. 532nm Diode CW laser is used for illumination and orange fluorescent (λex = 540nm, λem = 584nm) particle images are acquired by a 1280X1024 high-speed camera. To obtain clean particle images, 545nm long pass optical filter and an image intensifier are employed and the flow rate of compressed air is 3/min at 0.5MPa. The recirculation and mixing flow field is further investigated by timeresolved Proper Orthogonal Decomposition (POD) analysis technique. It is observed that the large scale recirculation resulting from the interaction between rising bubble stream and side wall is the most dominant flow structure and there are small scale vortical structures moving along with the large scale recirculation flow. It is also verified that the sum of 20 modes of velocity field has about 67.4% of total turbulent energy

  9. Effects of mixing methods on phase distribution in vertical bubble flow

    International Nuclear Information System (INIS)

    Monji, Hideaki; Matsui, Goichi; Sugiyama, Takayuki.

    1992-01-01

    The mechanism of the phase distribution formation in a bubble flow is one of the most important problems in the control of two-phase flow systems. The effect of mixing methods on the phase distribution was experimentally investigated by using upward nitrogen gas-water bubble flow under the condition of fixed flow rates. The experimental results show that the diameter of the gas injection hole influences the phase distribution through the bubble size. The location of the injection hole and the direction of injection do not influence the phase distribution of fully developed bubble flow. The transitive equivalent bubble size from the coring bubble flow to the sliding bubble flow corresponds to the bubble shape transition. The analytical results show that the phase distribution may be predictable if the phase profile is judged from the bubble size. (author)

  10. Experiment and numerical simulation of bubbly two-phase flow across horizontal and inclined rod bundles

    International Nuclear Information System (INIS)

    Serizawa, A.; Huda, K.; Yamada, Y.; Kataoka, I.

    1997-01-01

    Experimental and numerical analyses were carried out on vertically upward air-water bubbly two-phase flow behavior in both horizontal and inclined rod bundles with either in-line or staggered array. The inclination angle of the rod bundle varied from 0 to 60 with respect to the horizontal. The measured phase distribution indicated non-uniform characteristics, particularly in the direction of the rod axis when the rods were inclined. The mechanisms for this non-uniform phase distribution is supposed to be due to: (1) Bubble segregation phenomenon which depends on the bubble size and shape: (2) bubble entrainment by the large scale secondary flow induced by the pressure gradient in the horizontal direction which crosses the rod bundle; (3) effects of bubble entrapment by vortices generated in the wake behind the rods which travel upward along the rod axis; and (4) effect of bubble entrainment by local flows sliding up along the front surface of the rods. The liquid velocity and turbulence distributions were also measured and discussed. In these speculations, the mechanisms for bubble bouncing at the curved rod surface and turbulence production induced by a bubble were discussed, based on visual observations. Finally, the bubble behaviors in vertically upward bubbly two-phase flow across horizontal rod bundle were analyzed based on a particle tracking method (one-way coupling). The predicted bubble trajectories clearly indicated the bubble entrapment by vortices in the wake region. (orig.)

  11. Local Void Fractions and Bubble Velocity in Vertical Air-Water Two-Phase Flows Measured by Needle-Contact Capacitance Probe

    Directory of Open Access Journals (Sweden)

    Shanfang Huang

    2018-01-01

    Full Text Available Multiphase flow measurements have become increasingly important in a wide range of industrial fields. In the present study, a dual needle-contact capacitance probe was newly designed to measure local void fractions and bubble velocity in a vertical channel, which was verified by digital high-speed camera system. The theoretical analyses and experiments show that the needle-contact capacitance probe can reliably measure void fractions with the readings almost independent of temperature and salinity for the experimental conditions. In addition, the trigger-level method was chosen as the signal processing method for the void fraction measurement, with a minimum relative error of −4.59%. The bubble velocity was accurately measured within a relative error of 10%. Meanwhile, dynamic response of the dual needle-contact capacitance probe was analyzed in detail. The probe was then used to obtain raw signals for vertical pipe flow regimes, including plug flow, slug flow, churn flow, and bubbly flow. Further experiments indicate that the time series of the output signals vary as the different flow regimes and are consistent with each flow structure.

  12. A study of water hammer phenomena in a one-component two-phase bubbly flow

    International Nuclear Information System (INIS)

    Fujii, Terushige; Akagawa, Koji

    2000-01-01

    Water hammer phenomena caused by a rapid valve closure, that is, shock phenomena in two-phase flows, are an important problem for the safety assessment of a hypothetical LOCA. This paper presents the results of experimental and analytical studies of the water hammer phenomena in a one-component tow-phase bubbly flow. In order to clarify the characteristics of water hammer phenomena, experiments for a one-component two-phase flow of Freon R-113 were conducted and a numerical simulation of pressure transients was developed. An overall picture of the water hammer phenomena in a one-component two-phase flow is presented an discussed. (author)

  13. Bubbles as a means for the deaeration of water bodies

    NARCIS (Netherlands)

    Zhang, Yuhang; Zhou, Gedi; Prosperetti, Andrea

    2017-01-01

    Occasional dissolved-air supersaturation - such as may occur, for instance, downstream of dams - is harmful to fish because it causes gas bubble disease. A counterintuitive but effective means of reducing dissolved air content is the injection of bubbles in the supersaturated water. The bubbles

  14. The bubble method of water purification

    Science.gov (United States)

    Smirnov, B. M.; Babaeva, N. Yu.; Naidis, G. V.; Panov, V. A.; Saveliev, A. S.; Son, E. E.; Tereshonok, D. V.

    2018-02-01

    The processes of water purification from admixture molecules are analyzed. The purification rate is limited due to a low diffusion coefficient of the admixture molecules in water. At non-small concentrations of the admixture molecules, the water purication can proceed through association of molecules in condensed nanoparticles which fall on the bottom of the water volume. The rate of association may be increased in an external electric field, but in reality this cannot change significantly the rate of the purification process. The bubble method of water purification is considered, where air bubbles formed at the bottom of the water volume, transfer admixture molecules to the interface. This method allows one to clean small water volumes fast. This mechanism of water purification is realized experimentally and exhibits the promises of the bubble purification method.

  15. Local Nusselt number enhancement during gas-liquid Taylor bubble flow in a square mini-channel: An experimental study

    International Nuclear Information System (INIS)

    Majumder, Abhik; Mehta, Balkrishna; Khandekar, Sameer

    2013-01-01

    Taylor bubble flow takes place when two immiscible fluids (liquid-liquid or gas-liquid) flow inside a tube of capillary dimensions within specific range of volume flow ratios. In the slug flows where gas and liquid are two different phases, liquid slugs are separated by elongated Taylor bubbles. This singular flow pattern is observed in many engineering mini-/micro-scale devices like pulsating heat pipes, gas-liquid-solid monolithic reactors, micro-two-phase heat exchangers, digital micro-fluidics, micro-scale mass transfer process, fuel cells, etc. The unique and complex flow characteristics require understanding on local, as well as global, spatio-temporal scales. In the present work, the axial stream-wise profile of the fluid and wall temperature for air-water (i) isolated single Taylor bubble and, (ii) a train of Taylor bubbles, in a horizontal square channel of size 3.3 mm x 3.3 mm x 350 mm, heated from the bottom (heated length = 175 mm), with the other three sides kept insulated, are reported at different gas volume flow ratios. The primary aim is to study the enhancement of heat transfer due to the Taylor bubble train flow, in comparison with thermally developing single-phase flows. Intrusion of a bubble in the liquid flow drastically changes the local temperature profiles. The axial distribution of time-averaged local Nusselt number (Nu z ) shows that Taylor bubble train regime increases the transport of heat up to 1.2-1.6 times more as compared with laminar single-phase liquid flow. In addition, for a given liquid flow Reynolds number, the heat transfer enhancement is a function of the geometrical parameters of the unit cell, i.e., the length of adjacent gas bubble and water plug. (authors)

  16. Measurement of bubble velocity in an air/water flow through a narrow gap by using high-speed cinematography; Ermittlung der Blasengeschwindigkeit einer Luft/Wasser-Spaltstroemung mit Hilfe der Hochgeschwindigkeitskinematographie

    Energy Technology Data Exchange (ETDEWEB)

    Koerner, S.; Friedel, L. [Technische Univ. Hamburg-Harburg, Hamburg (Germany)

    1997-12-01

    To predict the mass flow of a two phase mixture at a given pressure difference through narrow gaps, apart from the change in state of the gas phase during pressure reduction, the knowledge of the fluid dynamics on balance which occurs in the form of a relative velocity between the phases is important. These two influences were examined with the aid of high speed cinematography for a water/air bubble flow. Apart from the quick reduction in pressure due to the sudden reduction in crossection at the entry to the gap, there are no significant differences between the experimentally determined volume change in bubbles of different sizes and that calculated assuming an isothermal change in state. The mean velocity of the bubbles does not differ appreciably from that calculated assuming an homogeneous flow. [Deutsch] Zur Vorhersage des sich bei gegebener Druckdifferenz einstellenden Massenstroms eines Zweiphasengemischs durch enge Spalte ist neben der Zustandsaenderung der Gasphase waehrend der Druckabsenkung u.a. auch die Kenntnis des sich dabei einstellenden fluiddynamischen Ungleichgewichts in Form einer Relativgeschwindigkeit zwischen den Phasen von Bedeutung. Diese beiden Einfluesse wurden mit Hilfe der Hochgeschwindigkeitskinematographie fuer eine Wasser/Luft-Blasenstroemung untersucht. Abgesehen von der raschen Druckabsenkung aufgrund der ploetzlichen Querschnittsverengung im Spalteintritt treten keine nennenswerten Unterschiede zwischen den experimentell ermittelten und den unter der Annahme einer isothermen Zustandsaenderungen berechneten Volumenaenderung verschiedengrosser Blasen auf. Die mittlere Geschwindigkeit der Blasen unterscheidet sich dabei nicht wesentlich von der unter der Annahme einer homogenen Stroemung berechneten. (orig.)

  17. Prediction of adiabatic bubbly flows in TRACE using the interfacial area transport equation

    International Nuclear Information System (INIS)

    Talley, J.; Worosz, T.; Kim, S.; Mahaffy, J.; Bajorek, S.; Tien, K.

    2011-01-01

    The conventional thermal-hydraulic reactor system analysis codes utilize a two-field, two-fluid formulation to model two-phase flows. To close this model, static flow regime transition criteria and algebraic relations are utilized to estimate the interfacial area concentration (a i ). To better reflect the continuous evolution of two-phase flow, an experimental version of TRACE is being developed which implements the interfacial area transport equation (IATE) to replace the flow regime based approach. Dynamic estimation of a i is provided through the use of mechanistic models for bubble coalescence and disintegration. To account for the differences in bubble interactions and drag forces, two-group bubble transport is sought. As such, Group 1 accounts for the transport of spherical and distorted bubbles, while Group 2 accounts for the cap, slug, and churn-turbulent bubbles. Based on this categorization, a two-group IATE applicable to the range of dispersed two-phase flows has been previously developed. Recently, a one-group, one-dimensional, adiabatic IATE has been implemented into the TRACE code with mechanistic models accounting for: (1) bubble breakup due to turbulent impact of an eddy on a bubble, (2) bubble coalescence due to random collision driven by turbulent eddies, and (3) bubble coalescence due to the acceleration of a bubble in the wake region of a preceding bubble. To demonstrate the enhancement of the code's capability using the IATE, experimental data for a i , void fraction, and bubble velocity measured by a multi-sensor conductivity probe are compared to both the IATE and flow regime based predictions. In total, 50 air-water vertical co-current upward and downward bubbly flow conditions in pipes with diameters ranging from 2.54 to 20.32 cm are evaluated. It is found that TRACE, using the conventional flow regime relation, always underestimates a i . Moreover, the axial trend of the a i prediction is always quasi-linear because a i in the

  18. Numerical study of the bubbly flow regime in micro-channel flow boiling

    Science.gov (United States)

    Bhuvankar, Pramod; Dabiri, Sadegh

    2017-11-01

    Two-phase flow accompanied by boiling in micro-channel heat sinks is an effective means for heat removal from computer chips. We present a numerical study of flow boiling in micro-channels with conjugate heat transfer with a focus on the bubbly flow regime. The bubbles are assumed to nucleate at a pre-determined location and frequency. The Navier Stokes equations are solved using a single fluid formulation with the Front tracking method. Phase change is implemented using the deficit in heat flux across the bubble interface. The analytical solution for bubble growth in a superheated liquid is used as a benchmark to validate the mentioned numerical method. Water and FC-72 are studied as the operating fluids in a micro-channel made of Copper with a focus on hotspot mitigation. The micro-channel of cross-section 231 μm × 1000 μm , is used to study the effects of vertical up-flow, vertical down-flow and horizontal flow of the mentioned fluids on the heat transfer coefficients. A simple film model accounting for mass and energy conservation is applied wherever the bubble approaches closer than a cell width to the wall. The results of the simulation are compared with existing experimental data for bubble growth rates and heat transfer coefficients.

  19. Measurement of liquid turbulent structure in bubbly flow at low void fraction using ultrasonic doppler method

    International Nuclear Information System (INIS)

    Murakawa, Hideki; Kikura, Hiroshige; Aritomi, Masanori

    2003-01-01

    Microscopic structure in bubbly flows has been a topic of interest in the study of fluid dynamics. In the present paper, the ultrasonic Doppler method was applied to the measurement of bubbly. The experiments were carried out for an air-water dispersed bubbly flow in a 20 mm x 100 mm vertical rectangular channel having a void fraction smaller than 3%. Two ultrasonic transducers were installed on the outer surface of the test section with a contact angle of 45deg off the vertical axis, one facing upward and the other facing downward. By applying statistical methods to the two directional velocity profiles. Reynolds stress profiles were calculated. Furthermore, to clarify the wake effect induced by the leading bubbles, the velocity profiles were divided into two types of data. The first one is for all of the liquid data and the other is the data which did not include the wake effect. For Re m ≥ 1,593, it was observed that the bubbles suppressed the liquid turbulence. Furthermore, comparing with the Reynolds stress profiles in bubbly flow, it was found that Reynolds stress profiles varied with the amount of bubbles present in the flow and the effect of wake causes turbulence in the liquid. (author)

  20. Fluid Mechanics of Taylor Bubbles and Slug Flows in Vertical Channels

    International Nuclear Information System (INIS)

    Anglart, Henryk; Podowski, Michael Z.

    2002-01-01

    Fluid mechanics of Taylor bubbles and slug flows is investigated in vertical, circular channels using detailed, three-dimensional computational fluid dynamics simulations. The Volume of Fluid model with the interface-sharpening algorithm, implemented in the commercial CFX4 code, is used to predict the shape and velocity of Taylor bubbles moving along a vertical channel. Several cases are investigated, including both a single Taylor bubble and a train of bubbles rising in water. It is shown that the potential flow solution underpredicts the water film thickness around Taylor bubbles. Furthermore, the computer simulations that are performed reveal the importance of properly modeling the three-dimensional nature of phenomena governing the motion of Taylor bubbles. Based on the present results, a new formula for the evaluation of bubble shape is derived. Both the shape of Taylor bubbles and the bubble rise velocity predicted by the proposed model agree well with experimental observations. Furthermore, the present model shows good promise in predicting the coalescence of Taylor bubbles

  1. Bubbling behavior of a fluidized bed of fine particles caused by vibration-induced air inflow.

    Science.gov (United States)

    Matsusaka, Shuji; Kobayakawa, Murino; Mizutani, Megumi; Imran, Mohd; Yasuda, Masatoshi

    2013-01-01

    We demonstrate that a vibration-induced air inflow can cause vigorous bubbling in a bed of fine particles and report the mechanism by which this phenomenon occurs. When convective flow occurs in a powder bed as a result of vibrations, the upper powder layer with a high void ratio moves downward and is compressed. This process forces the air in the powder layer out, which leads to the formation of bubbles that rise and eventually burst at the top surface of the powder bed. A negative pressure is created below the rising bubbles. A narrow opening at the bottom allows the outside air to flow into the powder bed, which produces a vigorously bubbling fluidized bed that does not require the use of an external air supply system.

  2. CFD simulations of a bubbly flow in a vertical pipe

    International Nuclear Information System (INIS)

    Krepper, E.

    2000-01-01

    Even at the very simple conditions of two phase flow in a vertical pipe, strong 3D effects are observed. The distribution of the gas phase over the cross section varies significantly between the different flow patterns, which are known for the vertical two-phase flow. The air water flow in a vertical tube having a diameter of 50 mm and a length of about 3 m was investigated in steady state tests for different liquid and gas superficial velocities. Several two phase flow measuring techniques were used. Applying a wire mesh sensor, developed in FZR, the void fraction could be determined over the whole cross section of the pipe. The working principle is based on the measurement of the local instantaneous conductivity of the two-phase mixture. At the investigated flow velocities, the rate of the image acquisition is sufficient to record the same bubble several times. This enables to determine bubble diameter distributions. Applying two similar wire mesh sensors with a distance of 50 mm one above the other, the influence of the wire mesh to the flow could be investigated. No essential disturbances of the two-phase flow by the mesh could be found for the investigated flow regimes. Performing an auto correlation between the signals of both sensors, also profiles of the gas velocity were determined. In the CFD code CFX-4.2 several two-phase flow models were available. Using the code, volume fraction profiles were calculated and compared to the measured results for bubble flow regimes, to investigate the capability of these models (see also Krepper and Prasser [4] (1999)). (orig.)

  3. Augmentation of forced flow boiling heat transfer by introducing air flow into subcooled water flow

    International Nuclear Information System (INIS)

    Koizumi, Y.; Ohtake, H.; Yuasa, T.; Matsushita, N.

    2001-01-01

    The effect of air injection into a subcooled water flow on boiling heat transfer and a critical heat flux (CHF) was examined experimentally. Experiments were conducted in the range of subcooling of 50 K, a superficial velocity of water and air Ul = 0.17 ∼ 3.4 and Ug = 0 ∼ 15 m/s, respectively. A test heat transfer surface was a 5 mm wide, 40 mm long and 0.5 mm thick stainless steel sheet embedded on the bottom wall of a 10 mm high and 20 mm wide rectangular flow channel. Nine times enhancement of the heat transfer coefficient in the non-boiling region was attained at the most by introducing an air flow into a water single-phase flow. The heat transfer improvement was prominent when the water flow rate was low and the air introduction was large. The present results of the non-boiling heat transfer were well correlated with the Lockhart-Martinelli parameter X tt ; h TP /h L0 = 5.0(1/ X tt ) 0.5 . The air introduction has some effect on the augmentation of heat transfer in the boiling region, however, the two-phase flow effect was little and the boiling was dominant in the fully developed boiling region. The CHF was improved a little by the air introduction in the high water flow region. However, that was rather greatly reduced in the low flow region. Even so, the general trend by the air introduction was that qCHF increased as the air introduction was increased. The heat transfer augmentation in the non-boiling region was attained by less power increase than that in the case that only the water flow rate was increased. From the aspect of the power consumption and the heat transfer enhancement, the small air introduction in the low water flow rate region seemed more profitable, although the air introduction in the high water flow rate region and also the large air introduction were still effective in the augmentation of the heat transfer in the non-boiling region. (author)

  4. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Xinquan [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Sun, Xiaodong, E-mail: sun.200@osu.edu [Nuclear Engineering Program, Department of Mechanical and Aerospace Engineering, The Ohio State University, 201 W. 19th Ave., Columbus, OH 43210 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Tech, 635 Prices Fork Road, Blacksburg, VA 24061 (United States)

    2016-12-15

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  5. Liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions

    International Nuclear Information System (INIS)

    Zhou, Xinquan; Sun, Xiaodong; Liu, Yang

    2016-01-01

    This paper focuses on liquid-phase turbulence measurements in air-water two-phase flows over a wide range of void fractions and flow regimes, spanning from bubbly, cap-bubbly, slug, to churn-turbulent flows. The measurements have been conducted in two test facilities, the first one with a circular test section and the second one with a rectangular test section. A particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system was used to acquire local liquid-phase turbulence information, including the time-averaged velocity and velocity fluctuations in the streamwise and spanwise directions, and Reynolds stress. An optical phase separation method using fluorescent particles and optical filtration technique was adopted to extract the liquid-phase velocity information. An image pre-processing scheme was imposed on the raw PIV images acquired to remove noise due to the presence of bubble residuals and optically distorted particles in the raw PIV images. Four-sensor conductivity probes and high-speed images were also used to acquire the gas-phase information, which was aimed to understand the flow interfacial structure. The highest area-averaged void fraction covered in the measurements for the circular and rectangular test sections was about 40%.

  6. Tunneling effects in resonant acoustic scattering of an air bubble in unbounded water

    Directory of Open Access Journals (Sweden)

    ANDRÉ G. SIMÃO

    2016-06-01

    Full Text Available Abstract The problem of acoustic scattering of a gaseous spherical bubble immersed within unbounded liquid surrounding is considered in this work. The theory of partial wave expansion related to this problem is revisited. A physical model based on the analogy between acoustic scattering and potential scattering in quantum mechanics is proposed to describe and interpret the acoustical natural oscillation modes of the bubble, namely, the resonances. In this context, a physical model is devised in order to describe the air water interface and the implications of the high density contrast on the various regimes of the scattering resonances. The main results are presented in terms of resonance lifetime periods and quality factors. The explicit numerical calculations are undertaken through an asymptotic analysis considering typical bubble dimensions and underwater sound wavelengths. It is shown that the resonance periods are scaled according to the Minnaert’s period, which is the short lived resonance mode, called breathing mode of the bubble. As expected, resonances with longer lifetimes lead to impressive cavity quality Q-factor ranging from 1010 to 105. The present theoretical findings lead to a better understanding of the energy storage mechanism in a bubbly medium.

  7. Beneficial effect of enriched air nitrox on bubble formation during scuba diving. An open-water study.

    Science.gov (United States)

    Brebeck, Anne-Kathrin; Deussen, Andreas; Range, Ursula; Balestra, Costantino; Cleveland, Sinclair; Schipke, Jochen D

    2018-03-01

    Bubble formation during scuba diving might induce decompression sickness. This prospective randomised and double-blind study included 108 advanced recreational divers (38 females). Fifty-four pairs of divers, 1 breathing air and the other breathing nitrox28 undertook a standardised dive (24 ± 1 msw; 62 ± 5min) in the Red Sea. Venous gas bubbles were counted (Doppler) 30-air) vs. 11% (air28®) (n.s.) were bubble-free after a dive. Independent of sampling time and breathing gas, there were more bubbles in the jugular than in the femoral vein. More bubbles were counted in the air-group than in the air28-group (pooled vein: early: 1845 vs. 948; P = 0.047, late: 1817 vs. 953; P = 0.088). The number of bubbles was sex-dependent. Lastly, 29% of female air divers but only 14% of male divers were bubble-free (P = 0.058). Air28® helps to reduce venous gas emboli in recreational divers. The bubble number depended on the breathing gas, sampling site and sex. Thus, both exact reporting the dive and in particular standardising sampling characteristics seem mandatory to compare results from different studies to further investigate the hitherto incoherent relation between inert gas bubbles and DCS.

  8. Dissolution of spherical cap CO2 bubbles attached to flat surfaces in air-saturated water

    Science.gov (United States)

    Peñas, Pablo; Parrales, Miguel A.; Rodriguez-Rodriguez, Javier

    2014-11-01

    Bubbles attached to flat surfaces immersed in quiescent liquid environments often display a spherical cap (SC) shape. Their dissolution is a phenomenon commonly observed experimentally. Modelling these bubbles as fully spherical may lead to an inaccurate estimate of the bubble dissolution rate. We develop a theoretical model for the diffusion-driven dissolution or growth of such multi-component SC gas bubbles under constant pressure and temperature conditions. Provided the contact angle of the bubble with the surface is large, the concentration gradients in the liquid may be approximated as spherically symmetric. The area available for mass transfer depends on the instantaneous bubble contact angle, whose dynamics is computed from the adhesion hysteresis model [Hong et al., Langmuir, vol. 27, 6890-6896 (2011)]. Numerical simulations and experimental measurements on the dissolution of SC CO2 bubbles immersed in air-saturated water support the validity of our model. We verify that contact line pinning slows down the dissolution rate, and the fact that any bubble immersed in a saturated gas-liquid solution eventually attains a final equilibrium size. Funded by the Spanish Ministry of Economy and Competitiveness through Grant DPI2011-28356-C03-0.

  9. Titrated flow versus fixed flow Bubble Nasal CPAP for respiratory distress in preterm neonates.

    Directory of Open Access Journals (Sweden)

    Srinivas eMurki

    2015-10-01

    Full Text Available Background: The clinical effects of a pre-fixed flow of air-oxygen versus a flow titrated according to visible bubbling are not well understood.Objective: To compare the effects of a fixed flow (5 L/min and titrated flow ( flow just enough to ensure bubbling at different set pressures on delivered intra-prong pressure, gas exchange and clinical parameters in preterm infants on bubble CPAP for respiratory distress.Methods: Preterm infants less than 35 weeks gestation on bubble CPAP and less than 96 h of age, were enrolled in this cross over study. They were subjected to 30 minute periods of titrated flow and fixed flow. At the end of both epochs, gas flow rate, set pressure, FiO2, SpO2, Silverman retraction score, respiratory rate , abdominal girth, and blood gases were recorded. The delivered intra-prong pressure was measured by an electronic manometer. Results: Sixty nine recordings were made in 54 infants. For each of the set CPAP pressures (4, 5 and 6 cm H2O, the mean delivered pressure with a fixed flow of 5 L/min was higher than that delivered by the titrated flow. During the fixed flow epoch, the delivered pressure was closer to and higher than the set pressure resulting in higher PaO2 and lower PaCO2 as compared to titrated flow epoch. In the titrated flow period, the delivered pressure was consistently lower than the set pressure. Conclusion: In preterm infants on bubble CPAP with set pressures of 4 to 6 cm H2O, a fixed flow of 5 L/min is more effective than a flow titrated to ensure adequate visible bubbling. It achieves higher delivered pressures, better oxygenation and ventilation.

  10. Anti-Bubbles

    Science.gov (United States)

    Tufaile, Alberto; Sartorelli, José Carlos

    2003-08-01

    An anti-bubble is a striking kind of bubble in liquid that seemingly does not comply the buoyancy, and after few minutes it disappears suddenly inside the liquid. Different from a simple air bubble that rises directly to the liquid surface, an anti-bubble wanders around in the fluid due to its slightly lesser density than the surrounding liquid. In spite of this odd behavior, an anti-bubble can be understood as the opposite of a conventional soap bubble in air, which is a shell of liquid surrounding air, and an anti-bubble is a shell of air surrounding a drop of the liquid inside the liquid. Two-phase flow has been a subject of interest due to its relevance to process equipment for contacting gases and liquids applied in industry. A chain of bubbles rising in a liquid formed from a nozzle is a two-phase flow, and there are certain conditions in which spherical air shells, called anti-bubbles, are produced. The purpose of this work is mainly to note the existence of anti-bubbling regime as a sequel of a bubbling system. We initially have presented the experimental apparatus. After this we have described the evolution of the bubbling regimes, and emulated the effect of bubbling coalescence with simple maps. Then is shown the inverted dripping as a consequence of the bubble coalescence, and finally the conditions for anti-bubble formation.

  11. CFD simulations of a bubbly flow in a vertical pipe

    International Nuclear Information System (INIS)

    Krepper, E.

    1999-01-01

    Even at the very simple conditions of two phase flow in a vertical pipe, strong 3D effects are observed. The distribution of the gas phase over the cross section varies significantly between the different flow patterns, which are known for the vertical two-phase flow. The air water flow in a vertical tube having a diameter of 50 mm and a length of about 3 m was investigated in steady state tests for different liquid and gas superficial velocities. Several two phase flow measuring techniques were used. Applying a wire mesh sensor, developed in FZR, the void fraction could be determined over the whole cross section of the pipe. The working principle is based on the measurement of the local instantaneous conductivity of the two-phase mixture. At the investigated flow velocities, the rate of the image acquisition is sufficient to record the same bubble several times. This enables to determine bubble diameter distributions. Applying two similar wire mesh sensors with a distance of 50 mm one above the other, the influence of the wire mesh to the flow could be investigated. No essential disturbances of the two-phase flow by the mesh could be found for the investigated flow regimes. Performing an auto correlation between the signals of both sensors, also profiles of the gas velocity were determined. (orig.)

  12. Bubble and boundary layer behaviour in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Sattelmayer, Thomas [Lehrstuhl fuer Thermodynamik, Technische Universitaet Muenchen, 85747 Garching (Germany)

    2006-03-15

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The horizontal orientated test-section consists of a rectangular channel with a one side heated copper strip and good optical access. Various optical observation techniques were applied to study the bubble behaviour and the characteristics of the fluid phase. The bubble behaviour was recorded by the high-speed cinematography and by a digital high resolution camera. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, the bubbles were automatically analysed and the bubble size, bubble lifetime, waiting time between two cycles were evaluated. Due to the huge number of observed bubbles a statistical analysis was performed and distribution functions were derived. Using a two-dimensional cross-correlation algorithm, the averaged axial phase boundary velocity profile could be extracted. In addition, the fluid phase velocity profile was characterised by means of the particle image velocimetry (PIV) for the single phase flow as well as under subcooled flow boiling conditions. The results indicate that the bubbles increase the flow resistance. The impact on the flow exceeds by far the bubbly region and it depends on the magnitude of the boiling activity. Finally, the ratio of the averaged phase boundary velocity and of the averaged fluid velocity was evaluated for the bubbly region. (authors)

  13. Bubble gate for in-plane flow control.

    Science.gov (United States)

    Oskooei, Ali; Abolhasani, Milad; Günther, Axel

    2013-07-07

    We introduce a miniature gate valve as a readily implementable strategy for actively controlling the flow of liquids on-chip, within a footprint of less than one square millimetre. Bubble gates provide for simple, consistent and scalable control of liquid flow in microchannel networks, are compatible with different bulk microfabrication processes and substrate materials, and require neither electrodes nor moving parts. A bubble gate consists of two microchannel sections: a liquid-filled channel and a gas channel that intercepts the liquid channel to form a T-junction. The open or closed state of a bubble gate is determined by selecting between two distinct gas pressure levels: the lower level corresponds to the "open" state while the higher level corresponds to the "closed" state. During closure, a gas bubble penetrates from the gas channel into the liquid, flanked by a column of equidistantly spaced micropillars on each side, until the flow of liquid is completely obstructed. We fabricated bubble gates using single-layer soft lithographic and bulk silicon micromachining procedures and evaluated their performance with a combination of theory and experimentation. We assessed the dynamic behaviour during more than 300 open-and-close cycles and report the operating pressure envelope for different bubble gate configurations and for the working fluids: de-ionized water, ethanol and a biological buffer. We obtained excellent agreement between the experimentally determined bubble gate operational envelope and a theoretical prediction based on static wetting behaviour. We report case studies that serve to illustrate the utility of bubble gates for liquid sampling in single and multi-layer microfluidic devices. Scalability of our strategy was demonstrated by simultaneously addressing 128 bubble gates.

  14. A Model of the Bubble Break-up in a Turbulent Flow; Modelizacion de la rotura de una Burbuja en un Flujo Turbulento

    Energy Technology Data Exchange (ETDEWEB)

    Bayod, R.; Rodriguez Rodriguez, J.; Martinez Bazan, C.

    2005-07-01

    In this report, a simplified model of the break-up of an air bubble in a turbulent water flow is proposed and analyzed numerically. According to Hinze's theory, and our experimental observations, the external flow field is assumed asymmetric and irrotational for away from the bubble. furthermore the turbulent flow-field is modelled by an asymmetric hyperbolic flow-field and the evolution of the air-water interface is calculated by the levels-set method for a wide range of Reynolds and Weber numbers. Therefore, the break-up times are obtained for super-critical weber numbers and different Reynolds numbers. Therefore, the break-up times are obtained for super-critical Weber and Reynolds numbers allows the comparison of the numeric with our experimental results. Other possible break-up mechanisms for subcritical Weber number, i. e. the break-up by resonance, are also considered. (Author) 20 refs.

  15. Detachment of polystyrene particles from collector surfaces by surface tension forces induced by air-bubble passage through a parallel plate flow chamber

    NARCIS (Netherlands)

    Wit, PJ; vanderMei, HC; Busscher, HJ

    1997-01-01

    By allowing an air-bubble to pass through a parallel plate flow chamber with negatively charged, colloidal polystyrene particles adhering to the bottom collector plate of the chamber, the detachment of adhering particles stimulated by surface tension forces induced by the passage of a liquid-air

  16. Air bubble-induced detachment of polystyrene particles with different sizes from collector surfaces in a parallel plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; van der Mei, HC; Busscher, HJ

    2001-01-01

    Particle size was found to be an important factor in air bubble-induced detachment of colloidal particles from collector surfaces in a parallel plate flow chamber and generally polystyrene particles with a diameter of 806 nm detached less than particles with a diameter of 1400 nm. Particle

  17. The analogy between the bubbling of air into water and nucleate boiling at saturation temperature

    International Nuclear Information System (INIS)

    Wallis, G.B.

    1960-01-01

    This paper presents a case for the separate consideration of the hydrodynamic and thermal aspects of nucleate boiling. It is shown how boiling phenomena may be simulated in detail by the use of porous media to introduce air bubbles into water. Points of similarity and equivalence are described and analysed. (author)

  18. EXPERIMENTAL BUBBLE FORMATION IN A LARGE SCALE SYSTEM FOR NEWTONIAN AND NONNEWTONIAN FLUIDS

    Energy Technology Data Exchange (ETDEWEB)

    Leishear, R; Michael Restivo, M

    2008-06-26

    The complexities of bubble formation in liquids increase as the system size increases, and a photographic study is presented here to provide some insight into the dynamics of bubble formation for large systems. Air was injected at the bottom of a 28 feet tall by 30 inch diameter column. Different fluids were subjected to different air flow rates at different fluid depths. The fluids were water and non-Newtonian, Bingham plastic fluids, which have yield stresses requiring an applied force to initiate movement, or shearing, of the fluid. Tests showed that bubble formation was significantly different in the two types of fluids. In water, a field of bubbles was formed, which consisted of numerous, distributed, 1/4 to 3/8 inch diameter bubbles. In the Bingham fluid, large bubbles of 6 to 12 inches in diameter were formed, which depended on the air flow rate. This paper provides comprehensive photographic results related to bubble formation in these fluids.

  19. Morphological bubble evolution induced by air diffusion on submerged hydrophobic structures

    Science.gov (United States)

    Lv, Pengyu; Xiang, Yaolei; Xue, Yahui; Lin, Hao; Duan, Huiling

    2017-03-01

    Bubbles trapped in the cavities always play important roles in the underwater applications of structured hydrophobic surfaces. Air exchange between bubbles and surrounding water has a significant influence on the morphological bubble evolution, which in turn frequently affects the functionalities of the surfaces, such as superhydrophobicity and drag reduction. In this paper, air diffusion induced bubble evolution on submerged hydrophobic micropores under reduced pressures is investigated experimentally and theoretically. The morphological behaviors of collective and single bubbles are observed using confocal microscopy. Four representative evolution phases of bubbles are captured in situ. After depressurization, bubbles will not only grow and coalesce but also shrink and split although the applied pressure remains negative. A diffusion-based model is used to analyze the evolution behavior and the results are consistent with the experimental data. A criterion for bubble growth and shrinkage is also derived along with a phase diagram, revealing that the competition of effective gas partial pressures across the two sides of the diffusion layer dominates the bubble evolution process. Strategies for controlling the bubble evolution behavior are also proposed based on the phase diagram. The current work provides a further understanding of the general behavior of bubble evolution induced by air diffusion and can be employed to better designs of functional microstructured hydrophobic surfaces.

  20. Determination of size distribution of bubbles in a bubbly column two phase flows by ultrasound and neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Baroni, Douglas B.; Lamy, Carlos A.; Bittencourt, Marcelo S.Q.; Pereira, Claudio M.N.A., E-mail: douglasbaroni@ien.gov.b, E-mail: lamy@ien.gov.b, E-mail: bittenc@ien.gov.b, E-mail: cmnap@ien.gov.b [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil); Cunha Filho, Jurandyr S. [Escola Tecnica Estadual Visconde de Maua (ETEVM/RJ), Rio de Janeiro, RJ (Brazil); Motta, Mauricio S., E-mail: mmotta@cefet-rj.b [Centro Federal de Educacao Tecnologica Celso Suckow da Fonseca (CEFET/RJ), Rio de Janeiro, RJ (Brazil)

    2011-07-01

    The development of advanced nuclear reactor conceptions depends largely on the amount of available data to the designer. Non invasive ultrasonic techniques can contribute to the evaluation of gas-liquid two-phase regimes in the nuclear thermo-hydraulic circuits. A key-point for success of those techniques is the interpretation of the ultrasonic signal. In this work, a methodology based in artificial neural networks (ANN) is proposed to predict size distribution of bubbles in a bubbly flow. To accomplish that, an air feed system control was used to obtain specific bubbly flows in an experimental system utilizing a Plexiglas vertical bubbly column. Four different size distribution of bubbles were generated. The bubbles were photographed and measured. To evaluate the different size distribution of bubbles it was used the ultrasonic reflected echo on the opposite wall of the column. Then, an ANN has been developed for predicting size distribution of bubbles by using the frequency spectra of the ultrasonic signal as input. A trained artificial neural network using ultrasonic signal in the frequency domain can evaluate with a good precision the size distribution of bubbles generated in this system. (author)

  1. Determination of size distribution of bubbles in a bubbly column two phase flows by ultrasound and neural networks

    International Nuclear Information System (INIS)

    Baroni, Douglas B.; Lamy, Carlos A.; Bittencourt, Marcelo S.Q.; Pereira, Claudio M.N.A.; Cunha Filho, Jurandyr S.; Motta, Mauricio S.

    2011-01-01

    The development of advanced nuclear reactor conceptions depends largely on the amount of available data to the designer. Non invasive ultrasonic techniques can contribute to the evaluation of gas-liquid two-phase regimes in the nuclear thermo-hydraulic circuits. A key-point for success of those techniques is the interpretation of the ultrasonic signal. In this work, a methodology based in artificial neural networks (ANN) is proposed to predict size distribution of bubbles in a bubbly flow. To accomplish that, an air feed system control was used to obtain specific bubbly flows in an experimental system utilizing a Plexiglas vertical bubbly column. Four different size distribution of bubbles were generated. The bubbles were photographed and measured. To evaluate the different size distribution of bubbles it was used the ultrasonic reflected echo on the opposite wall of the column. Then, an ANN has been developed for predicting size distribution of bubbles by using the frequency spectra of the ultrasonic signal as input. A trained artificial neural network using ultrasonic signal in the frequency domain can evaluate with a good precision the size distribution of bubbles generated in this system. (author)

  2. Bubble properties of heterogeneous bubbly flow in a square bubble column

    NARCIS (Netherlands)

    Bai, Wei; Deen, Niels G.; Kuipers, J.A.M.

    2010-01-01

    The present work focuses on the measurements of bubble properties in heterogeneous bubbly flows in a square bubble column. A four-point optical fibre probe was used for this purpose. The accuracy and intrusive effect of the optical probe was investigated first. The results show that the optical

  3. Experimental study on characteristics of interfacial parameter distribution for upward bubbly flow in inclined tube

    International Nuclear Information System (INIS)

    Xing Dianchuan; Yan Changqi; Sun Licheng; Liu Jingyu

    2013-01-01

    Experimental study on characteristics of interfacial parameter distribution for air-water bubbly flow in an inclined circular tube was performed by using the double sensor probe method. Parameters including radial distributions of local void fraction, bubble passing frequency, interfacial area concentration and bubble equivalent diameter were measured using the probe. The inner diameter of test section is 50 mm, and the liquid superficial velocity is 0.144 m/s, with the gas superficial velocity ranging from 0 to 0.054 m/is. The results show that bubbles obviously move toward the upper wall and congregate. The local interfacial area concentration, bubble passing frequency and void fraction have similar radial distribution profiles. Different from the vertical condition, for a cross-sectional area of the test section, the peak value near the upper side increases, while decreases or even disappears near the underside. The local parameter increases as the radial positions change from lower to upper location, and the increased slope becomes larger as the inclination angles increase. The equivalent bubble diameter doesn't vary with radial position, superficial gas velocity and inclination angle, and bubble aggregation and breaking up nearly doesn't occur. The mechanism of effects of inclination on local parameter distribution for bubbly flow is explained by analyzing the transverse force governing the bubble motion. (authors)

  4. Development of a three-dimensional PIV measurement technique for the experimental study of air bubble collapse phenomena

    International Nuclear Information System (INIS)

    Yang, Y.H.; Hassan, Y.A.; Schmidl, W.D.

    1995-01-01

    Particle image velocimetry (PIV) is a quantitative flow measurement technique. The objective of this study is to develop a new three-dimensional PIV technique for the experimental study of air bubble collapse phenomena. A three-dimensional measurement technique is necessary since bubble collapse is a three-dimensional phenomenon. The investigation of the velocity flow field around a collapsing air bubble can provide detailed three-dimensional quantitative information to help improve the understanding of the related heat transfer processes

  5. Air-water two-phase flow in a four by four rod bundle with partial length rods

    International Nuclear Information System (INIS)

    Ohta, Motoki; Kamei, Akihiro; Mizutani, Yoshitaka; Hosokawa, Shigeo; Tomiyama, Akio

    2009-01-01

    Partial length rods (PLR) are used in fuel bundles of BWR to reduce pressure drops in two-phase regions and to optimize the power distribution. Since little is known about effects of PLR on two-phase flows, air-water two-phase flow around PLRs in a four by four rod bundle is visualized by using a high-speed video camera. The experimental apparatus consists of acrylic channel box and transparent rods. Air and water at atmospheric pressure and room temperature are used for the gas and liquid phases, respectively. The ranges of the gas and liquid volume fluxes, J G and J L , are 0.4 L G L , the flow pattern in the downstream of PLR transits to slug flow, and the flow patterns in the surrounding subchannels transit to bubbly flow due to the redistribution of gas flow. (2) In annular flow, the liquid film on the PLR forms a liquid column above the end cap of PLR. Droplets are generated by column breakup and deposit on liquid films on the neighboring rods. (3) The liquid film thickness on the surface of neighbor rods facing the PLR increases and it reduces that on their opposite surface in the downstream of PLR. (author)

  6. Flow visualization using bubbles

    International Nuclear Information System (INIS)

    Henry, J.P.

    1974-01-01

    Soap bubbles were used for visualizing flows. The tests effected allowed some characteristics of flows around models in blow tunnels to be precised at mean velocities V 0 5 . The velocity of a bubble is measured by chronophotography, the bulk envelope of the trajectories is also registered [fr

  7. Heat transfer in a laminar separation bubble affected by oscillating external flow

    International Nuclear Information System (INIS)

    Wissink, J.G.; Michelassi, V.; Rodi, W.

    2004-01-01

    A three-dimensional Direct Numerical Simulation (DNS) of passive heat transfer in a Laminar Separation Bubble (LSB) over a flat plate affected by oscillating external flow is presented. The oscillation imposes a periodicity which is employed for phase-averaging. The flat plate is kept at a uniform, low temperature. The local Nusselt number, Nu, is determined as a function of phase. In the dead-air region of the bubble Nu is found to be relatively small, while it peaks in the recirculation region where hot outer fluid gets entrained and is transported towards the flat plate. Each period a new separation bubble is formed, that merges with the old separation bubble. The reverse flow inside the separation bubble reaches values of up to 60% of the local free-stream velocity, which is sufficient to make the separation bubble absolutely unstable such that self-sustained turbulence can exist. For the phase-averaged flow, neither the turbulent viscosity hypothesis nor the temperature gradient-diffusion hypothesis is found to hold

  8. Avoiding steam-bubble-collapse-induced water hammers in piping systems

    International Nuclear Information System (INIS)

    Chou, Y.; Griffith, P.

    1989-10-01

    In terms of the frequency of occurrence, steam bubble collapse in subcooled water is the dominant initiating mechanism for water hammer events in nuclear power plants. Water hammer due to steam bubble collapse occurs when water slug forms in stratified horizontal flow, or when steam bubble is trapped at the end of the pipe. These types of water hammer events have been studied experimentally and analytically in order to develop stability maps showing those combinations of filling velocities and liquid subcooling that cause water hammer and those which don't. In developing the stability maps, experiments with different piping orientations were performed in a low pressure laboratory apparatus. Details of these experiments are described, including piping arrangement, test procedures, and test results. Visual tests using a transparent Lexan pipe are also performed to study the flow regimes accompanying the water hammer events. All analytical models were tested by comparison with the corresponding experimental results. Based on these models, and step-by-step approach for each flow geometry is presented for plant designers and engineers to follow in avoiding water hammer induced by steam bubble collapse when admitting cold water into pipes filled with steam. 37 refs., 54 figs., 2 tabs

  9. Patterns of a slow air-water flow in a semispherical container

    DEFF Research Database (Denmark)

    Balci, Adnan; Brøns, Morten; Herrada, Miguel A.

    2016-01-01

    This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis-bottom int......This numerical study analyzes the development of eddies in a slow steady axisymmetric air-water flow in a sealed semispherical container, driven by a rotating top disk. As the water height, Hw, increases, new flow cells emerge in both water and air. First, an eddy emerges near the axis...... on the air flow. In contrast to flows in cylindrical and conical containers, there is no interaction with Moffatt corner vortices here....

  10. On the Clouds of Bubbles Formed by Breaking Wind-Waves in Deep Water, and their Role in Air -- Sea Gas Transfer

    Science.gov (United States)

    Thorpe, S. A.

    1982-02-01

    Clouds of small bubbles generated by wind waves breaking and producing whitecaps in deep water have been observed below the surface by using an inverted echo sounder. The bubbles are diffused down to several metres below the surface by turbulence against their natural tendency to rise. Measurements have been made at two sites, one in fresh water at Loch Ness and the other in the sea near Oban, northwest Scotland. Sonagraph records show bubble clouds of two distinct types, `columnar clouds' which appear in unstable or convective conditions when the air temperature is less than the surface water temperature, and `billow clouds' which appear in stable conditions when the air temperature exceeds that of the water. Clouds penetrate deeper as the wind speed increases, and deeper in convective conditions than in stable conditions at the same wind speed. The response to a change in wind speed occurs in a period of only a few minutes. Measurements of the acoustic scattering cross section per unit volume, Mv, of the bubbles have been made at several depths. The distributions of Mv at constant depth are close to logarithmic normal. The time-averaged value of Mv, {M}v, decreases exponentially with depth over scales of 40-85 cm (winds up to 12 m s-1),, the scale increasing as the wind increases. Values of {M}v at the same depth and at the same wind speed are greater in the sea than in the fresh-water loch, even at smaller fetches. Estimates have been made of the least mean vertical speed at which bubbles must be advected for them to reach the observed depths. Several centimetres per second are needed, the speeds increasing with wind. Results depend on the conditions at the surfaces of the bubbles, that is whether they are covered by a surface active-film. The presence of oxygen (or gases other than nitrogen) in the gas composing the bubbles appears not to be important in determining their general behaviour. The presence of turbulence in the water also appears unlikely to affect

  11. Transition from slug to annular flow in horizontal air-water flow

    International Nuclear Information System (INIS)

    Reismann, J.; John, H.; Seeger, W.

    1981-11-01

    The transition from slug to annular flow in horizontal air-water and steam-water flow was investigated. Test sections of 50; 66.6 and 80 mm ID were used. The system pressure was 0.2 and 0.5 MPa in the air-water experiments and 2.5; 5; 7.5 and 10 MPa in the steam-water experiments. For flow pattern detection local impedance probes were used. This method was compared in a part of the experiments with differential pressure and gamma-beam measurements. The flow regime boundary is shifting strongly to smaller values of the superficial gas velocity with increasing pressure. Correlations from literature fit unsatisfactorily the experimental results. A new correlation is presented. (orig.) [de

  12. High-performance colorimeter with an electronic bubble gate for use in miniaturized continuous-flow analyzers.

    Science.gov (United States)

    Neeley, W E; Wardlaw, S C; Yates, T; Hollingsworth, W G; Swinnen, M E

    1976-02-01

    We describe a high-performance colorimeter with an electronic bubble gate for use with miniaturized continuous-flow analyzers. The colorimeter has a flow-through cuvette with optically flat quartz windows that allows a bubbled stream to pass freely without any breakup or retention of bubbles. The fluid volume in the light path is only 1.8 mul. The electronic bubble gate selectively removes that portion of the photodector signal produced by the air bubbles passing through the flow cell and allows that portion of the signal attributable to the fluid segment to pass to the recorder. The colorimeter is easy to use, rugged, inexpensive, and requires minimal adjustments.

  13. Measurement of air distribution and void fraction of an upwards air–water flow using electrical resistance tomography and a wire-mesh sensor

    International Nuclear Information System (INIS)

    Olerni, Claudio; Jia, Jiabin; Wang, Mi

    2013-01-01

    Measurements on an upwards air–water flow are reported that were obtained simultaneously with a dual-plane electrical resistance tomograph (ERT) and a wire-mesh sensor (WMS). The ultimate measurement target of both ERT and WMS is the same, the electrical conductivity of the medium. The ERT is a non-intrusive device whereas the WMS requires a net of wires that physically crosses the flow. This paper presents comparisons between the results obtained simultaneously from the ERT and the WMS for evaluation and calibration of the ERT. The length of the vertical testing pipeline section is 3 m with an internal diameter of 50 mm. Two distinct sets of air–water flow rate scenarios, bubble and slug regimes, were produced in the experiments. The fast impedance camera ERT recorded the data at an approximate time resolution of 896 frames per second (fps) per plane in contrast with the 1024 fps of the wire-mesh sensor WMS200. The set-up of the experiment was based on well established knowledge of air–water upwards flow, particularly the specific flow regimes and wall peak effects. The local air void fraction profiles and the overall air void fraction were produced from two systems to establish consistency for comparison of the data accuracy. Conventional bulk flow measurements in air mass and electromagnetic flow metering, as well as pressure and temperature, were employed, which brought the necessary calibration to the flow measurements. The results show that the profiles generated from the two systems have a certain level of inconsistency, particularly in a wall peak and a core peak from the ERT and WMS respectively, whereas the two tomography instruments achieve good agreement on the overall air void fraction for bubble flow. For slug flow, when the void fraction is over 30%, the ERT underestimates the void fraction, but a linear relation between ERT and WMS is still observed. (paper)

  14. Transient Air-Water Flow and Air Demand following an Opening Outlet Gate

    Directory of Open Access Journals (Sweden)

    James Yang

    2018-01-01

    Full Text Available In Sweden, the dam-safety guidelines call for an overhaul of many existing bottom outlets. During the opening of an outlet gate, understanding the transient air-water flow is essential for its safe operation, especially under submerged tailwater conditions. Three-dimensional CFD simulations are undertaken to examine air-water flow behaviors at both free and submerged outflows. The gate, hoisted by wire ropes and powered by AC, opens at a constant speed. A mesh is adapted to follow the gate movement. At the free outflow, the CFD simulations and model tests agree well in terms of outlet discharge capacity. Larger air vents lead to more air supply; the increment becomes, however, limited if the vent area is larger than 10 m2. At the submerged outflow, a hydraulic jump builds up in the conduit when the gate reaches approximately 45% of its full opening. The discharge is affected by the tailwater and slightly by the flow with the hydraulic jump. The flow features strong turbulent mixing of air and water, with build-up and break-up of air pockets and collisions of defragmented water bodies. The air demand rate is several times as much as required by steady-state hydraulic jump with free surface.

  15. Phase distribution phenomena in upward cocurrent bubbly flows. A critical review of the experimental and theoretical works

    International Nuclear Information System (INIS)

    Grossetete, C.

    1992-09-01

    The most important and challenging problems in two-phase bubbly flow today are related to the physical understanding and the modeling of multidimensional phenomena such as the distribution of phases in space. We present here a critical review of the available experimental and theoretical studies in gas-liquid adiabatic and non-reactive upward bubbly flows which have been carried out to define and improve the physical models needed to close the three-dimensional two-fluid model equations. It appears that: so far, the axial development of two-phase upward bubbly flows has not been handled thoroughly. Little is known about the way the pressure gradient as well as the gas-liquid mixing conditions affect the distribution of phases, the problems related to the closing of the two-fluid model equations are far from being solved. The physical models proposed seem often to be too much complex considering how little we know about the mechanisms involved, there are still very few multidimensional numerical models whose results have been compared with experimental data on bubbly flows. The boundary conditions introduced in the codes as well as the sensitivity of the results to the parameters of the codes are never precisely stated. To bridge some of those gaps, we propose to perform an experimental and numerical study of the axial development of two-phase air-water upward bubbly flows in vertical pipes

  16. Shapes of an Air Taylor Bubble in Stagnant Liquids Influenced by Different Surface Tensions

    Science.gov (United States)

    Lertnuwat, B.

    2018-02-01

    The aim of this work is to propose an empirical model for predicting shapes of a Taylor bubble, which is a part of slug flows, under different values of the surface tension in stagnant liquids by employing numerical simulations. The k - Ɛ turbulence model was used in the framework of finite volume method for simulating flow fields in a unit of slug flow and also the pressure distribution on a Taylor bubble surface. Assuming that an air pressure distribution inside the Taylor bubble must be uniform, a grid search method was exploited to find an appropriate shape of a Taylor bubble for six values of surface tension. It was found that the shape of a Taylor bubble would be blunter if the surface tension was increased. This was because the surface tension affected the Froude number, controlling the flow around a Taylor bubble. The simulation results were also compared with the Taylor bubble shape, created by the Dumitrescu-and-Taylor model and former studies in order to ensure that they were consistent. Finally, the empirical model was presented from the simulation results.

  17. Oscillation of large air bubble cloud

    International Nuclear Information System (INIS)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K.

    2001-01-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  18. Oscillation of large air bubble cloud

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Y.Y.; Kim, H.Y.; Park, J.K. [Korea Atomic Energy Research Inst., Daejeon (Korea, Republic of)

    2001-07-01

    The behavior of a large air bubble cloud, which is generated by the air discharged from a perforated sparger, is analyzed by solving Rayleigh-Plesset equation, energy equations and energy balance equation. The equations are solved by Runge-Kutta integration and MacCormack finite difference method. Initial conditions such as driving pressure, air volume, and void fraction strongly affect the bubble pressure amplitude and oscillation frequency. The pool temperature has a strong effect on the oscillation frequency and a negligible effect on the pressure amplitude. The polytropic constant during the compression and expansion processes of individual bubbles ranges from 1.0 to 1.4, which may be attributed to the fact that small bubbles oscillated in frequencies different from their resonance. The temperature of the bubble cloud rapidly approaches the ambient temperature, as is expected from the polytropic constants being between 1.0 and 1.4. (authors)

  19. A dry-spot model for the prediction of critical heat flux in water boiling in bubbly flow regime

    International Nuclear Information System (INIS)

    Ha, Sang Jun; No, Hee Cheon

    1997-01-01

    This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variation in pressure, tube diameter and length, mass flux and inlet subcooling

  20. Hydrodynamic effects of air sparging on hollow fiber membranes in a bubble column reactor.

    Science.gov (United States)

    Xia, Lijun; Law, Adrian Wing-Keung; Fane, Anthony G

    2013-07-01

    Air sparging is now a standard approach to reduce concentration polarization and fouling of membrane modules in membrane bioreactors (MBRs). The hydrodynamic shear stresses, bubble-induced turbulence and cross flows scour the membrane surfaces and help reduce the deposit of foulants onto the membrane surface. However, the detailed quantitative knowledge on the effect of air sparging remains lacking in the literature due to the complex hydrodynamics generated by the gas-liquid flows. To date, there is no valid model that describes the relationship between the membrane fouling performance and the flow hydrodynamics. The present study aims to examine the impact of hydrodynamics induced by air sparging on the membrane fouling mitigation in a quantitative manner. A modelled hollow fiber module was placed in a cylindrical bubble column reactor at different axial heights with the trans-membrane pressure (TMP) monitored under constant flux conditions. The configuration of bubble column without the membrane module immersed was identical to that studied by Gan et al. (2011) using Phase Doppler Anemometry (PDA), to ensure a good quantitative understanding of turbulent flow conditions along the column height. The experimental results showed that the meandering flow regime which exhibits high flow instability at the 0.3 m is more beneficial to fouling alleviation compared with the steady flow circulation regime at the 0.6 m. The filtration tests also confirmed the existence of an optimal superficial air velocity beyond which a further increase is of no significant benefit on the membrane fouling reduction. In addition, the alternate aeration provided by two air stones mounted at the opposite end of the diameter of the bubble column was also studied to investigate the associated flow dynamics and its influence on the membrane filtration performance. It was found that with a proper switching interval and membrane module orientation, the membrane fouling can be effectively

  1. Structure of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel with water

    Directory of Open Access Journals (Sweden)

    V. I. Solonin

    2014-01-01

    Full Text Available The article presents a research of two-phase adiabatic flow in air sparging regime in vertical cylindrical channel filled with water. A purpose of the work is to obtain experimental data for further analysis of a character of the moving phases. Research activities used the optic methods PIV (Particle Image Visualization because of their noninvasiveness to obtain data without disturbing effect on the flow. A laser sheet illuminated the fluorescence particles, which were admixed in water along the channel length. A digital camera recorded their motion for a certain time interval that allowed building the velocity vector fields. As a result, gas phase velocity components typical for a steady area of the channel and their relations for various intensity of volume air rate were obtained. A character of motion both for an air bubble and for its surrounding liquid has been conducted. The most probable direction of phases moving in the channel under sparging regime is obtained by building the statistic scalar fields. The use of image processing enabled an analysis of the initial area of the air inlet into liquid. A characteristic curve of the bubbles offset from the axis for various intensity of volume gas rate and channel diameter is defined. A character of moving phases is obtained by building the statistic scalar fields. The values of vertical components of liquid velocity in the inlet part of channel are calculated. Using the obtained data of the gas phase velocities a true void fraction was calculated. It was compared with the values of void fraction, calculated according to the liquid level change in the channel. Obtained velocities were compared with those of the other researchers, and a small difference in their values was explained by experimental conditions. The article is one of the works to research the two-phase flows with no disturbing effect on them. Obtained data allow us to understand a character of moving the two-phase flows in

  2. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system

    Energy Technology Data Exchange (ETDEWEB)

    Zboray, Robert [Paul Scherrer Institute, PSI Villigen 5232 (Switzerland); Dangendorf, Volker; Bromberger, Benjamin; Tittelmeier, Kai [Physikalisch-Technische Bundesanstalt (PTB), Braunschweig 38116 (Germany); Mor, Ilan [Soreq NRC, Yavne 81800 (Israel)

    2015-07-15

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  3. Time-resolved fast-neutron radiography of air-water two-phase flows in a rectangular channel by an improved detection system.

    Science.gov (United States)

    Zboray, Robert; Dangendorf, Volker; Mor, Ilan; Bromberger, Benjamin; Tittelmeier, Kai

    2015-07-01

    In a previous work, we have demonstrated the feasibility of high-frame-rate, fast-neutron radiography of generic air-water two-phase flows in a 1.5 cm thick, rectangular flow channel. The experiments have been carried out at the high-intensity, white-beam facility of the Physikalisch-Technische Bundesanstalt, Germany, using an multi-frame, time-resolved detector developed for fast neutron resonance radiography. The results were however not fully optimal and therefore we have decided to modify the detector and optimize it for the given application, which is described in the present work. Furthermore, we managed to improve the image post-processing methodology and the noise suppression. Using the tailored detector and the improved post-processing, significant increase in the image quality and an order of magnitude lower exposure times, down to 3.33 ms, have been achieved with minimized motion artifacts. Similar to the previous study, different two-phase flow regimes such as bubbly slug and churn flows have been examined. The enhanced imaging quality enables an improved prediction of two-phase flow parameters like the instantaneous volumetric gas fraction, bubble size, and bubble velocities. Instantaneous velocity fields around the gas enclosures can also be more robustly predicted using optical flow methods as previously.

  4. Flow characteristics of centrifugal gas-liquid separator. Investigation with air-water two-phase flow experiment

    International Nuclear Information System (INIS)

    Yoneda, Kimitoshi; Inada, Fumio

    2004-01-01

    Air-water two-phase flow experiment was conducted to examine the basic flow characteristics of a centrifugal gas-liquid separator. Vertical transparent test section, which is 4 m in height, was used to imitate the scale of a BWR separator. Flow rate conditions of gas and liquid were fixed at 0.1 m 3 /s and 0.033 m 3 /s, respectively. Radial distributions of two-phase flow characteristics, such as void fraction, gas velocity and bubble chord length, were measured by traversing dual optical void probes in the test section, horizontally. The flow in the standpipe reached to quasi-developed state within the height-to-diameter aspect ratio H/D=10, which in turn can mean the maximum value for an ideal height design of a standpipe. The liquid film in the barrel showed a maximum thickness at 0.5 to 1 m in height from the swirler exit, which was a common result for three different standpipe length conditions, qualitatively and quantitatively. The empirical database obtained in this study would contribute practically to the validation of numerical analyses for an actual separator in a plant, and would also be academically useful for further investigations of two-phase flow in large-diameter pipes. (author)

  5. Effect of water and air flow on concentric tubular solar water desalting system

    International Nuclear Information System (INIS)

    Arunkumar, T.; Jayaprakash, R.; Ahsan, Amimul; Denkenberger, D.; Okundamiya, M.S.

    2013-01-01

    Highlights: ► We optimized the augmentation of condense by enhanced desalination methodology. ► We measured ambient together with solar radiation intensity. ► The effect of cooling air and water flowing over the cover was studied. -- Abstract: This work reports an innovative design of tubular solar still with a rectangular basin for water desalination with flowing water and air over the cover. The daily distillate output of the system is increased by lowering the temperature of water flowing over it (top cover cooling arrangement). The fresh water production performance of this new still is observed in Sri Ramakrishna Mission Vidyalaya College of Arts and Science, Coimbatore (11° North, 77° East), India. The water production rate with no cooling flow was 2050 ml/day (410 ml/trough). However, with cooling air flow, production increased to 3050 ml/day, and with cooling water flow, it further increased to 5000 ml/day. Despite the increased cost of the water cooling system, the increased output resulted in the cost of distilled water being cut in roughly half. Diurnal variations of a few important parameters are observed during field experiments such as water temperature, cover temperature, air temperature, ambient temperature and distillate output.

  6. Vapour and air bubble collapse analysis in viscous compressible water

    Directory of Open Access Journals (Sweden)

    Gil Bazanini

    2001-01-01

    Full Text Available Numerical simulations of the collapse of bubbles (or cavities are shown, using the finite difference method, taking into account the compressibility of the liquid, expected to occur in the final stages of the collapse process. Results are compared with experimental and theoretical data for incompressible liquids, to see the influence of the compressibility of the water in the bubble collapse. Pressure fields values are calculated in an area of 800 x 800 mm, for the case of one bubble under the hypothesis of spherical symmetry. Results are shown as radius versus time curves for the collapse (to compare collapse times, and pressure curves in the plane, for pressure fields. Such calculations are new because of their general point of view, since the existing works do not take into account the existence of vapour in the bubble, neither show the pressure fields seen here. It is also expected to see the influence of the compressibility of the water in the collapse time, and in the pressure field, when comparing pressure values.

  7. Hydraulic Properties of Porous Media Saturated with Nanoparticle-Stabilized Air-Water Foam

    Directory of Open Access Journals (Sweden)

    Xianglei Zheng

    2016-12-01

    Full Text Available The foam generated by the mixture of air and water has a much higher viscosity and lower mobility than those of pure water or gas that constitutes the air-water foam. The possibility of using the air-water foam as a flow barrier for the purpose of groundwater and soil remediation is explored in this paper. A nanoparticle-stabilized air-water foam was fabricated by vigorously stirring the nano-fluid in pressurized condition. The foam bubble size distribution was analyzed with a microscope. The viscosities of foams generated with the solutions with several nanoparticle concentrations were measured as a function of time. The breakthrough pressure of foam-saturated microfluidic chips and sand columns were obtained. The hydraulic conductivity of a foam-filled sand column was measured after foam breakthrough. The results show that: (1 bubble coalescence and the Ostwald ripening are believed to be the reason of bubble size distribution change; (2 the viscosity of nanoparticle-stabilized foam and the breakthrough pressures decreased with time once the foam was generated; (3 the hydraulic conductivity of the foam-filled sand column was almost two orders of magnitude lower than that of a water-saturated sand column even after the foam-breakthrough. Based on the results in this study, the nanoparticle-stabilized air-water foam could be injected into contaminated soils to generate vertical barriers for temporary hydraulic conductivity reduction.

  8. Two-phase air-water stratified flow measurement using ultrasonic techniques

    International Nuclear Information System (INIS)

    Fan, Shiwei; Yan, Tinghu; Yeung, Hoi

    2014-01-01

    In this paper, a time resolved ultrasound system was developed for investigating two-phase air-water stratified flow. The hardware of the system includes a pulsed wave transducer, a pulser/receiver, and a digital oscilloscope. The time domain cross correlation method is used to calculate the velocity profile along ultrasonic beam. The system is able to provide velocities with spatial resolution of around 1mm and the temporal resolution of 200μs. Experiments were carried out on single phase water flow and two-phase air-water stratified flow. For single phase water flow, the flow rates from ultrasound system were compared with those from electromagnetic flow (EM) meter, which showed good agreement. Then, the experiments were conducted on two-phase air-water stratified flow and the results were given. Compared with liquid height measurement from conductance probe, it indicated that the measured velocities were explainable

  9. Visualisation of air–water bubbly column flow using array Ultrasonic Velocity Profiler

    Directory of Open Access Journals (Sweden)

    Munkhbat Batsaikhan

    2017-11-01

    Full Text Available In the present work, an experimental study of bubbly two-phase flow in a rectangular bubble column was performed using two ultrasonic array sensors, which can measure the instantaneous velocity of gas bubbles on multiple measurement lines. After the sound pressure distribution of sensors had been evaluated with a needle hydrophone technique, the array sensors were applied to two-phase bubble column. To assess the accuracy of the measurement system with array sensors for one and two-dimensional velocity, a simultaneous measurement was performed with an optical measurement technique called particle image velocimetry (PIV. Experimental results showed that accuracy of the measurement system with array sensors is under 10% for one-dimensional velocity profile measurement compared with PIV technique. The accuracy of the system was estimated to be under 20% along the mean flow direction in the case of two-dimensional vector mapping.

  10. A dry-spot model for the prediction of critical heat flux in water boiling in bubbly flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Sang Jun; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1998-12-31

    This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variations in pressure, tube diameter and length, mass flux and inlet subcooling. 16 refs., 6 figs., 1 tab. (Author)

  11. A dry-spot model for the prediction of critical heat flux in water boiling in bubbly flow regime

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Sang Jun; No, Hee Cheon [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)

    1997-12-31

    This paper presents a prediction of critical heat flux (CHF) in bubbly flow regime using dry-spot model proposed recently by authors for pool and flow boiling CHF and existing correlations for forced convective heat transfer coefficient, active site density and bubble departure diameter in nucleate boiling region. Without any empirical constants always present in earlier models, comparisons of the model predictions with experimental data for upward flow of water in vertical, uniformly-heated round tubes are performed and show a good agreement. The parametric trends of CHF have been explored with respect to variations in pressure, tube diameter and length, mass flux and inlet subcooling. 16 refs., 6 figs., 1 tab. (Author)

  12. A simple bubbling system for measuring radon (222Rn) gas concentrations in water samples based on the high solubility of radon in olive oil.

    Science.gov (United States)

    Al-Azmi, D; Snopek, B; Sayed, A M; Domanski, T

    2004-01-01

    Based on the different levels of solubility of radon gas in organic solvents and water, a bubbling system has been developed to transfer radon gas, dissolving naturally in water samples, to an organic solvent, i.e. olive oil, which is known to be a good solvent of radon gas. The system features the application of a fixed volume of bubbling air by introducing a fixed volume of water into a flask mounted above the system, to displace an identical volume of air from an air cylinder. Thus a gravitational flow of water is provided without the need for pumping. Then, the flushing air (radon-enriched air) is directed through a vial containing olive oil, to achieve deposition of the radon gas by another bubbling process. Following this, the vial (containing olive oil) is measured by direct use of gamma ray spectrometry, without the need of any chemical or physical processing of the samples. Using a standard solution of 226Ra/222Rn, a lowest measurable concentration (LMC) of radon in water samples of 9.4 Bq L(-1) has been achieved (below the maximum contaminant level of 11 Bq L(-1)).

  13. Size distribution of oceanic air bubbles entrained in sea-water by wave-breaking

    Science.gov (United States)

    Resch, F.; Avellan, F.

    1982-01-01

    The size of oceanic air bubbles produced by whitecaps and wave-breaking is determined. The production of liquid aerosols at the sea surface is predicted. These liquid aerosols are at the origin of most of the particulate materials exchanged between the ocean and the atmosphere. A prototype was designed and built using an optical technique based on the principle of light scattering at an angle of ninety degrees from the incident light beam. The output voltage is a direct function of the bubble diameter. Calibration of the probe was carried out within a range of 300 microns to 1.2 mm. Bubbles produced by wave-breaking in a large air-sea interaction simulating facility. Experimental results are given in the form of size spectrum.

  14. PIV measurement of turbulent bubbly mixing layer flow with polymer additives

    International Nuclear Information System (INIS)

    Ning, T; Guo, F; Chen, B; Zhang, X

    2009-01-01

    Based on experimental investigation of single-phase turbulent mixing layer flow with polymer additives, bubbly mixing layer was experimentally investigated by PIV. The velocity ratio between high and low speed is 4:1 and the Reynolds number based on the velocity difference of two steams and hydraulic diameter of the channel ranges is 73333. Gas bubbles with about 0.5% gas fraction were injected into pure water mixing layer with/without polymer additives from three different parts at the end of the splitter plate. The comparison between single phase and bubbly mixing layer shows clearly that the dynamic development of mixing layer is great influenced by the bubble injection. Similar with single phase, the Reynolds stress and vorticity still concentrate in a coniform area of central mixing flow field part and the width will increase with increasing the Reynolds number. Mean Reynolds stress will decrease with bubble injection in high Reynolds numbers and the decreasing of Reynolds stress with polymer additives is much more than pure water case.

  15. Interface tracking simulations of bubbly flows in PWR relevant geometries

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Jun, E-mail: jfang3@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Rasquin, Michel, E-mail: michel.rasquin@colorado.edu [Aerospace Engineering Department, University of Colorado, Boulder, CO 80309 (United States); Bolotnov, Igor A., E-mail: igor_bolotnov@ncsu.edu [Department of Nuclear Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2017-02-15

    Highlights: • Simulations were performed for turbulent bubbly flows in PWR subchannel geometry. • Liquid turbulence is fully resolved by direct numerical simulation approach. • Bubble behavior is captured using level-set interface tracking method. • Time-averaged single- and two-phase turbulent flow statistical quantities are obtained. - Abstract: The advances in high performance computing (HPC) have allowed direct numerical simulation (DNS) approach coupled with interface tracking methods (ITM) to perform high fidelity simulations of turbulent bubbly flows in various complex geometries. In this work, we have chosen the geometry of the pressurized water reactor (PWR) core subchannel to perform a set of interface tracking simulations (ITS) with fully resolved liquid turbulence. The presented research utilizes a massively parallel finite-element based code, PHASTA, for the subchannel geometry simulations of bubbly flow turbulence. The main objective for this research is to demonstrate the ITS capabilities in gaining new insight into bubble/turbulence interactions and assisting the development of improved closure laws for multiphase computational fluid dynamics (M-CFD). Both single- and two-phase turbulent flows were studied within a single PWR subchannel. The analysis of numerical results includes the mean gas and liquid velocity profiles, void fraction distribution and turbulent kinetic energy profiles. Two sets of flow rates and bubble sizes were used in the simulations. The chosen flow rates corresponded to the Reynolds numbers of 29,079 and 80,775 based on channel hydraulic diameter (D{sub h}) and mean velocity. The finite element unstructured grids utilized for these simulations include 53.8 million and 1.11 billion elements, respectively. This has allowed to fully resolve all the turbulence scales and the deformable interfaces of individual bubbles. For the two-phase flow simulations, a 1% bubble volume fraction was used which resulted in 17 bubbles in

  16. CFD Analyses for Water-Air Flow With the Euler-Euler Two-Phase Model in the Fluent4 CFD Code

    International Nuclear Information System (INIS)

    Miettinen, Jaakko; Schmidt, Holger

    2002-01-01

    Framatome ANP develops a new boiling water reactor called SWR 1000. For the case of a hypothetical core melt accident it is designed in such a way that the core melt is retained in the Reactor Pressure Vessel (RPV) at low pressure owing to cooling of the RPV exterior and high reliable depressurization devices. Framatome ANP performs - in co-operation with VTT - tests to quantify the safety margins of the exterior cooling concept for the SWR 1000, for determining the limits to avoid the critical heat fluxes (CHFs). The three step procedure has been set up to investigate the phenomenon: 1. Water-air study for a 1:10 scaled global model, with the aim to investigate the global flow conditions 2. Water-air study for a 1:10 scaled, 10 % sector model, with the aim to find a flow sector with almost similar flow conditions as in the global model. 3. Final CHF experiments for a 1:1-scaled, 10 % sector., the boarders of this model have been selected based on the first two steps. The instrumentation for the water/air experiments included velocity profiles, the vertically averaged average void fraction and void fraction profiles in selected positions. The experimental results from the air-water experiments have been analyzed at VTT using the Fluent-4.5.2 code with its Eulerian multiphase flow modeling capability. The aim of the calculations was to learn how to model complex two-phase flow conditions. The structural mesh required by Fluent-4 is a strong limitation in the complex geometry, but modeling of the 1/4 sector from the facility was possible, when the GAMBIT pre-processor was used for the mesh generation. The experiments were analyzed with the 150 x 150 x 18 grid for the geometry. In the analysis the fluid viscosity was the main dials for adjusting the vertical liquid velocity profiles and the bubble diameter for adjusting the phase separation. The viscosity ranged between 1 to 10000 times the molecular viscosity, and bubble diameter between 3 to 100 mm, when the

  17. Photothermally controlled Marangoni flow around a micro bubble

    International Nuclear Information System (INIS)

    Namura, Kyoko; Nakajima, Kaoru; Kimura, Kenji; Suzuki, Motofumi

    2015-01-01

    We have experimentally investigated the control of Marangoni flow around a micro bubble using photothermal conversion. Using a focused laser spot acting as a highly localized heat source on Au nanoparticles/dielectric/Ag mirror thin film enables us to create a micro bubble and to control the temperature gradient around the bubble at a micrometer scale. When we irradiate the laser next to the bubble, a strong main flow towards the bubble and two symmetric rotation flows on either side of it develop. The shape of this rotation flow shows a significant transformation depending on the relative position of the bubble and the laser spot. Using this controllable rotation flow, we have demonstrated sorting of the polystyrene spheres with diameters of 2 μm and 0.75 μm according to their size

  18. Photothermally controlled Marangoni flow around a micro bubble

    Science.gov (United States)

    Namura, Kyoko; Nakajima, Kaoru; Kimura, Kenji; Suzuki, Motofumi

    2015-01-01

    We have experimentally investigated the control of Marangoni flow around a micro bubble using photothermal conversion. Using a focused laser spot acting as a highly localized heat source on Au nanoparticles/dielectric/Ag mirror thin film enables us to create a micro bubble and to control the temperature gradient around the bubble at a micrometer scale. When we irradiate the laser next to the bubble, a strong main flow towards the bubble and two symmetric rotation flows on either side of it develop. The shape of this rotation flow shows a significant transformation depending on the relative position of the bubble and the laser spot. Using this controllable rotation flow, we have demonstrated sorting of the polystyrene spheres with diameters of 2 μm and 0.75 μm according to their size.

  19. Physical cleaning by bubbly streaming flow in an ultrasound field

    Science.gov (United States)

    Yamashita, Tatsuya; Ando, Keita

    2017-11-01

    Low-intensity ultrasonic cleaning with gas-supersaturated water is a promising method of physical cleaning without erosion; we are able to trigger cavitation bubble nucleation by weak ultrasound under gas supersaturation and thus clean material surfaces by mild bubble dynamics. Here, we perform particle image velocimetry (PIV) measurement of liquid flow and cavitation bubble translation in an ultrasonic cleaning bath driven at 28 kHz and then relate it to cleaning tests using glass slides at which silica particles are attached. The ultrasound pressure amplitude at the cleaning spot is set at 1.4 atm. We select the supersaturation level of dissolved oxygen (DO) as a parameter and control it by oxygen microbubble aeration. It follows from the PIV measurement that the liquid flow is enhanced by the cavitation bubble translation driven by acoustic radiation force; this trend becomes clearer when the bubbles appear more densely as the DO supersaturation increases. In the cleaning tests, the cleaned areas appear as straight streaks. This suggests that physical cleaning is achieved mainly by cavitation bubbles that translate in ultrasound fields.

  20. Structure and kinematics of bubble flow

    International Nuclear Information System (INIS)

    Lackme, C.

    1967-01-01

    This report deals with the components and use of resistivity probes in bubble flow. With a single probe, we have studied the longitudinal and radial structure of the flow. The very complicated evolution of the radial structure is shown by the measurement of the mean bubble flux at several points in the tube. A double probe associated with a device the principle of which is given in this report, permits the measure of the local velocity of bubbles. Unlike the mean bubble flux profile, the change in the velocity profile along the tube is not significant. We have achieved the synthesis of these two pieces of information, mean local bubble flux and local velocity, by computing the mean weighed velocity in the tube. This weighed velocity compares remarkably with the velocity computed from the volumetric gas flow rate and the mean void fraction. (author) [fr

  1. A Fixed Flow is More Effective than Titrated Flow during Bubble Nasal CPAP for Respiratory Distress in Preterm Neonates.

    Science.gov (United States)

    Murki, Srinivas; Das, Ratan Kumar; Sharma, Deepak; Kumar, Praveen

    2015-01-01

    The clinical effects of a pre-fixed flow of air-oxygen versus a flow titrated according to visible bubbling are not well understood. To compare the effects of a fixed flow (5 L/min) and titrated flow (flow just enough to ensure bubbling) at different set pressures on delivered intra-prong pressure, gas exchange and clinical parameters in preterm infants on bubble CPAP for respiratory distress. Preterm infants rate, set pressure, FiO2, SpO2, Silverman retraction score, respiratory rate, abdominal girth, and blood gases were recorded. The delivered intra-prong pressure was measured by an electronic manometer. 69 recordings were made in 54 infants. For each of the set CPAP pressures (4, 5, and 6 cm H2O), the mean delivered pressure with a fixed flow of 5 L/min was higher than that delivered by the titrated flow. During the fixed flow epoch, the delivered pressure was closer to and higher than the set pressure resulting in higher PaO2 and lower PaCO2 as compared to titrated flow epoch. In the titrated flow period, the delivered pressure was consistently lower than the set pressure. In preterm infants on bubble CPAP with set pressures of 4-6 cm H2O, a fixed flow of 5 L/min is more effective than a flow titrated to ensure adequate visible bubbling. It achieves higher delivered pressures, better oxygenation and ventilation.

  2. An investigation into a laboratory scale bubble column humidification dehumidification desalination system powered by biomass energy

    International Nuclear Information System (INIS)

    Rajaseenivasan, T.; Srithar, K.

    2017-01-01

    Highlights: • A biomass based humidification dehumidification desalination system is tested. • System is analyzed with the direct and preheated air supply. • Highest distillate rate of 6.1 kg/h is collected with the preheated air supply. • The minimum fuel feed of 0.2 kg is needed to produce 1 kg of fresh water. - Abstract: This article describes a biomass powered bubble column humidification-dehumidification desalination system. This system mainly consists of a biomass stove, air heat exchanger, bubble column humidifier and dehumidifier. Saw dust briquettes are used as biomass fuel in the stove. First level of experiments are carried out in bubble column humidifier with ambient air supply to select the best water depth, bubble pipe hole diameter and water temperature. Experiments are conducted by integrating the humidifier with the dehumidifier. Air is sent to the humidifier with and without pre-heating. Preheating of air is carried out in the air heat exchanger by using the flue gas and flame from the combustion chamber. It is observed that the humidifier ability is augmented with the rise in water depth, water temperature, mass flow rate of air and cooling water flow rate, and reduction in bubble pipe hole diameter. It is found from Taguchi analysis that the water temperature dominates in controlling the humidifier performance compared to other parameters. Better specific humidity is recorded with a bubble pipe hole diameter of 1 mm, water depth of 170 mm and water temperature of 60 °C. Highest distillate of 6.1 kg/h and 3.5 kg/h is collected for the HDH desalination system with preheated air and direct air supply respectively. Recovery of waste heat using an air heat exchanger reduces the fuel consumption from 0.36 kg to 0.2 kg for producing 1 kg of distilled water. Lowest distilled water cost of 0.0133 US $/kg through preheated air supply and 0.0231 US $/kg through direct air supply is observed. A correlation is developed to estimate the mass transfer

  3. Two-Phase Flow in Packed Columns and Generation of Bubbly Suspensions for Chemical Processing in Space

    Science.gov (United States)

    Motil, Brian J.; Green, R. D.; Nahra, H. K.; Sridhar, K. R.

    2000-01-01

    For long-duration space missions, the life support and In-Situ Resource Utilization (ISRU) systems necessary to lower the mass and volume of consumables carried from Earth will require more sophisticated chemical processing technologies involving gas-liquid two-phase flows. This paper discusses some preliminary two-phase flow work in packed columns and generation of bubbly suspensions, two types of flow systems that can exist in a number of chemical processing devices. The experimental hardware for a co-current flow, packed column operated in two ground-based low gravity facilities (two-second drop tower and KC- 135 low-gravity aircraft) is described. The preliminary results of this experimental work are discussed. The flow regimes observed and the conditions under which these flow regimes occur are compared with the available co-current packed column experimental work performed in normal gravity. For bubbly suspensions, the experimental hardware for generation of uniformly sized bubbles in Couette flow in microgravity conditions is described. Experimental work was performed on a number of bubbler designs, and the capillary bubble tube was found to produce the most consistent size bubbles. Low air flow rates and low Couette flow produce consistent 2-3 mm bubbles, the size of interest for the "Behavior of Rapidly Sheared Bubbly Suspension" flight experiment. Finally the mass transfer implications of these two-phase flows is qualitatively discussed.

  4. Multi-dimensional modeling of gas-liquid two-phase flows. Application to the simulation of ascending bubble flows in vertical ducts

    International Nuclear Information System (INIS)

    Morel, Ch.

    1997-01-01

    The aim of this thesis is the 3-D modeling and numerical simulation of liquid/gas (water/vapor or water/air) two-phase flows in cooling circuits of nuclear power plants during normal and accidental situations. The development of a multidimensional dual-fluid model encounters two problems: the statistical effects of turbulence and the interface mass, momentum and energy transfers. The models developed in this study were introduced in the 3-D module of the CATHARE code developed by the CEA and the results were compared to experimental results available in the literature. The first chapter describes the equations of the local dual-fluid model for the 3-D description of two-phase flows. Closing relations adapted to dispersed flows with isothermal bubbles and without phase transformation are proposed and focus on the momentum transfer at the interfaces. The theoretical study of turbulence in the liquid phase of a bubble flow is modelled in chapter 2. Chapter 3 deals with the voluminal interface area used in the interface mass, momentum and energy transfers, and chapters 4 and 5 concern the application of the developed models to concrete situations. Chapter 4 describes in details the 3-D module of the CATHARE code while chapter 5 gives a comparison of numerical results obtained using the CATHARE code with other experimental results obtained at EdF. (J.S.)

  5. Growth and detachment of single hydrogen bubbles in a magnetohydrodynamic shear flow

    Science.gov (United States)

    Baczyzmalski, Dominik; Karnbach, Franziska; Mutschke, Gerd; Yang, Xuegeng; Eckert, Kerstin; Uhlemann, Margitta; Cierpka, Christian

    2017-09-01

    This study investigates the effect of a magnetohydrodynamic (MHD) shear flow on the growth and detachment of single sub-millimeter-sized hydrogen gas bubbles. These bubbles were electrolytically generated at a horizontal Pt microelectrode (100 μ m in diameter) in an acidic environment (1 M H2SO4 ). The inherent electric field was superimposed by a homogeneous electrode-parallel magnetic field of up to 700 mT to generate Lorentz forces in the electrolyte, which drive the MHD flow. The growth and motion of the hydrogen bubble was analyzed by microscopic high-speed imaging and measurements of the electric current, while particle tracking velocimetry (μ PTV ) and particle image velocimetry (μ PIV ) were applied to measure the surrounding electrolyte flow. In addition, numerical flow simulations were performed based on the experimental conditions. The results show a significant reduction of the bubble growth time and detachment diameter with increasing magnetic induction, which is known to improve the efficiency of water electrolysis. In order to gain further insight into the bubble detachment mechanism, an analysis of the forces acting on the bubble was performed. The strong MHD-induced drag force causes the bubble to slowly slide away from the center of the microelectrode before its detachment. This motion increases the active electrode area and enhances the bubble growth rate. The results further indicate that at large current densities the coalescence of tiny bubbles formed at the foot of the main bubble might play an important role for the bubble detachment. Moreover, the occurrence of Marangoni stresses at the gas-liquid interface is discussed.

  6. Air bubbles induce a critical continuous stress to prevent marine biofouling accumulation

    Science.gov (United States)

    Belden, Jesse; Menesses, Mark; Dickenson, Natasha; Bird, James

    2017-11-01

    Significant shear stresses are needed to remove established hard fouling organisms from a ship hull. Given that there is a link between the amount of time that fouling accumulates and the stress required to remove it, it is not surprising that more frequent grooming requires less shear stress. One approach to mitigate marine biofouling is to continuously introduce a curtain of air bubbles under a submerged surface; it is believed that this aeration exploits the small stresses induced by rising bubbles to continuously prevent accumulation. Although curtains of rising bubbles have successfully prevented biofouling accumulation, it is unclear if a single stream of bubbles could maintain a clean surface. In this talk, we show that single bubble stream aeration can prevent biofouling accumulation in regions for which the average wall stress exceeds approximately 0.01 Pa. This value is arrived at by comparing observations of biofouling growth and prevention from field studies with laboratory measurements that probe the associated flow fields. We also relate the spatial and temporal characteristics of the flow to the size and frequency of the rising bubbles, which informs the basic operating conditions required for aeration to continuously prevent biofouling accumulation.

  7. Air-water tests in support of LLTR series II Test A-4

    International Nuclear Information System (INIS)

    Chen, K.

    1980-07-01

    A series of tests injecting air into a tank of stagnant water was conducted in June 1980 utilizing the GE Plenum Mixing Test Facility in San Jose, California. The test was concerned with investigating the behavior of air jets at a submerged orifice in water over a wide range of flow rates. The main objective was to improve the basic understanding of gas-liquid phenomena (e.g., leak dynamics, gas bubble agglomeration, etc.) in a simulated tube bundle through visualization. The experimental results from these air-water tests will be used as a guide to help select the leak size for LLTR Series II Test A-4 because air-water system is a good simulation of water-sodium mixture

  8. Air bubble migration is a random event post embryo transfer.

    Science.gov (United States)

    Confino, E; Zhang, J; Risquez, F

    2007-06-01

    Air bubble location following embryo transfer (ET) is the presumable placement spot of embryos. The purpose of this study was to document endometrial air bubble position and migration following embryo transfer. Multicenter prospective case study. Eighty-eight embryo transfers were performed under abdominal ultrasound guidance in two countries by two authors. A single or double air bubble was loaded with the embryos using a soft, coaxial, end opened catheters. The embryos were slowly injected 10-20 mm from the fundus. Air bubble position was recorded immediately, 30 minutes later and when the patient stood up. Bubble marker location analysis revealed a random distribution without visible gravity effect when the patients stood up. The bubble markers demonstrated splitting, moving in all directions and dispersion. Air bubbles move and split frequently post ET with the patient in the horizontal position, suggestive of active uterine contractions. Bubble migration analysis supports a rather random movement of the bubbles and possibly the embryos. Standing up changed somewhat bubble configuration and distribution in the uterine cavity. Gravity related bubble motion was uncommon, suggesting that horizontal rest post ET may not be necessary. This report challenges the common belief that a very accurate ultrasound guided embryo placement is mandatory. The very random bubble movement observed in this two-center study suggests that a large "window" of embryo placement maybe present.

  9. Pulsed laser ablation of wire-shaped target in a thin water jet: effects of plasma features and bubble dynamics on the PLAL process

    International Nuclear Information System (INIS)

    Dell’Aglio, Marcella; De Giacomo, Alessandro; Kohsakowski, Sebastian; Barcikowski, Stephan; Wagener, Philipp; Santagata, Antonio

    2017-01-01

    In this paper, emission spectroscopy and fast imaging surveys during pulsed laser ablation in liquid (PLAL) for nanoparticles (NPs) production have been used, in order to provide further details about the process involved and the potentialities offered by a wire-shaped sample ablated in a flowing water jet. This kind of set-up has been explored because the laser ablation efficiency in water increases when a thin water layer and a wire-shaped target are used. In order to understand the physical processes causing the increasing ablation efficiency, both the laser-induced plasma and bubble dynamics generated in a flowing liquid jet have been analysed. The plasma parameters and the bubble behaviour in such a system have been compared with those observed in conventional PLAL experiments, where either a bulk or a wire-shaped target is immersed in bulk water. From the data presented here it is evidenced that the plasma and shockwave induced during the breakdown process can play a direct role in the ablation efficiency variation observed. With regard to the cavitation bubbles evolving near a free surface (the interface between water and air) it should be noted that these have to be treated with caution as a consequence of the strong influence played in these circumstances by the boundary of the water jet during its expansion dynamics. The effects due to the size of the liquid layer, the presence of the water/air interface, the liquid characteristics, the target shape, the plasma evolution and the bubble dynamics together with their outcomes on the NPs’ production, are presented and discussed. (paper)

  10. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: validation with experimental data using multi-sensor conductivity probes and laser doppler anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, J.L. [Univ. Politecnica de Valencia, Inst. de Ingenieria Energetica, Valencia (Spain); Chiva, S. [Univ. Jaume I, Dept. of Mechnical Engineering and Construction, Castellon (Spain); Abd El Aziz Essa, M. [Univ. Politecnica de Valencia, Inst. de Ingenieria Energetica, Valencia (Spain); Mendes, S. [Univ. Autonoma de Nuevo Leon, Facultad de Ingenieria Mecanica y Electrica (Mexico)

    2011-07-01

    A set of air-water experiments have been performed under isothermal upward concurrent flow in a vertical column. The interfacial velocity, interfacial area of the bubbles and the void fraction distributions was obtained. Numerical validation of these results for bubbly flow conditions were performed by coupling a Lagrangian code which tracks the 3D motion of the individual bubbles, with an Eulerian one. Both Lagrangian and Eulerian calculations were performed in parallel and iterative self-consistent method was developed. The bubbles-induced turbulence is an important issue considered, to obtain good predictions of experimental results. (author)

  11. Bubble shape in horizontal and near horizontal intermittent flow

    International Nuclear Information System (INIS)

    Gu, Hanyang; Guo, Liejin

    2015-01-01

    Highlights: • The bubble shapes in intermittent flows are presented experimentally. • The nose-tail inversion phenomenon appears at a low Froude number in downward pipe. • Transition from plug to slug flow occurs when the bubble tail changes from staircase pattern to hydraulic jump. - Abstract: This paper presents an experimental study of the shape of isolated bubbles in horizontal and near horizontal intermittent flows. It is found that the shapes of the nose and body of bubble depend on the Froude number defined by gas/liquid mixture velocity in a pipe, whereas the shape of the back of bubble region depends on both the Froude number and bubble length. The photographic studies show that the transition from plug to slug flow occurs when the back of the bubble changes from staircase pattern to hydraulic jump with the increase of the Froude number and bubble length. The effect of pipe inclination on characteristics of bubble is significant: The bubble is inversely located in a downwardly inclined pipe when the Froude number is low, and the transition from plug flow to slug flow in an upward inclined pipe is more ready to occur compared with that in a downwardly inclined pipe

  12. Experimental study of formation and dynamics of cavitation bubbles and acoustic flows in NaCl, KCl water solutions

    Science.gov (United States)

    Rybkin, K. A.; Bratukhin, Yu. K.; Lyubimova, T. P.; Fatallov, O.; Filippov, L. O.

    2017-07-01

    The acoustic flows and the phenomena associated with them arising under the action of ultrasound of different power on distilled water and aqueous solutions of a mixture of NaCl and KCl salts of various concentrations are studied experimentally. It is found that in the distilled water, under the action of ultrasound, the appearance of inertial and non-inertial cavitation bubbles takes place, then the formation of stable clusters, the distance between which depends on the power of the ultrasound source is observed. Experiments show that an increase in the mass concentration of salts in water leads to the decrease in the average diameter of the arising inertial cavitation bubbles and to the gradual decrease in their number, up to an almost complete disappearance at nearly 13% of the concentration of the salt mixture in the water.

  13. Light Scattering by Ice Crystals Containing Air Bubbles

    Science.gov (United States)

    Zhang, J.; Panetta, R. L.; Yang, P.; Bi, L.

    2014-12-01

    The radiative effects of ice clouds are often difficult to estimate accurately, but are very important for interpretation of observations and for climate modeling. Our understanding of these effects is primarily based on scattering calculations, but due to the variability in ice habit it is computationally difficult to determine the required scattering and absorption properties, and the difficulties are only compounded by the need to include consideration of air and carbon inclusions of the sort frequently observed in collected samples. Much of the previous work on effects of inclusions in ice particles on scattering properties has been conducted with variants of geometric optics methods. We report on simulations of scattering by ice crystals with enclosed air bubbles using the pseudo-spectral time domain method (PSTD) and improved geometric optics method (IGOM). A Bouncing Ball Model (BBM) is proposed as a parametrization of air bubbles, and the results are compared with Monte Carlo radiative transfer calculations. Consistent with earlier studies, we find that air inclusions lead to a smoothing of variations in the phase function, weakening of halos, and a reduction of backscattering. We extend these studies by examining the effects of the particular arrangement of a fixed number of bubbles, as well as the effects of splitting a given number of bubbles into a greater number of smaller bubbles with the same total volume fraction. The result shows that the phase function will not change much for stochastic distributed air bubbles. It also shows that local maxima of phase functions are smoothed out for backward directions, when we break bubbles into small ones, single big bubble scatter favors more forward scattering than multi small internal scatters.

  14. Interfacial area concentration in gas–liquid bubbly to churn-turbulent flow regime

    International Nuclear Information System (INIS)

    Ozar, B.; Dixit, A.; Chen, S.W.; Hibiki, T.; Ishii, M.

    2012-01-01

    Highlights: ► A systematic approach to predict the interfacial area concentration is presented. ► Two group approach for categorizing bubbles is used. ► Prediction of Group-1 bubble size and void fraction are key elements of this work. ► The proposed approach compares well with selected databases. - Abstract: There are very few established correlations to predict the interfacial area concentration beyond the bubbly flow regime in cap-slug and churn-turbulent flow regimes. Present study shows a systematic approach to estimate the interfacial area concentration in bubbly, cap-slug and churn-turbulent flow regimes. Ishii and Mishima’s (1980) formulation and the two group approach for categorizing bubbles (Group-1: spherical or distorted bubble, Group-2: cap bubble) are used to estimate the interfacial area concentration. The key parameters in this framework are the estimation of Group-1 bubble size and the amount of void in the liquid slug, which is a function of Group-1 void fraction. Hibiki and Ishii’s (2002) correlation is utilized to predict the size of the Group-1 bubbles. A correlation is developed to estimate the Group-1 void fraction. The developed model for the estimation of interfacial area concentration is compared with the three existing datasets. These are data for air–water flow taken in annular geometry and round tube and also for air–NaOH solution taken in round tube. The estimation accuracies for these data sets are ±36.4%, ±26.5% and ±37.4%, respectively. These datasets cover a wide range of flow regimes and different physical properties.

  15. Three-dimensional investigation of the two-phase flow structure in a bubbly pipe flow

    International Nuclear Information System (INIS)

    Hassan, Y.A.; Schmidl, W.D.; Ortiz-Villafuerte, J.

    1997-01-01

    Particle Image Velocimetry (PIV) is a non-intrusive measurement technique, which can be used to study the structure of various fluid flows. PIV is used to measure the time varying full field velocity data of a particle-seeded flow field within either a two-dimensional plane or three-dimensional volume. PIV is a very efficient measurement technique since it can obtain both qualitative and quantitative spatial information about the flow field being studied. This information can be further processed into information such as vorticity and pathlines. Other flow measurement techniques (Laser Doppler Velocimetry, Hot Wire Anemometry, etc...) only provide quantitative information at a single point. PIV can be used to study turbulence structures if a sufficient amount of data can be acquired and analyzed, and it can also be extended to study two-phase flows if both phases can be distinguished. In this study, the flow structure around a bubble rising in a pipe filled with water was studied in three-dimensions. The velocity of the rising bubble and the velocity field of the surrounding water was measured. Then the turbulence intensities and Reynolds stresses were calculated from the experimental data. (author)

  16. Adsorption of egg phosphatidylcholine to an air/water and triolein/water bubble interface: use of the 2-dimensional phase rule to estimate the surface composition of a phospholipid/triolein/water surface as a function of surface pressure.

    Science.gov (United States)

    Mitsche, Matthew A; Wang, Libo; Small, Donald M

    2010-03-11

    Phospholipid monolayers play a critical role in the structure and stabilization of biological interfaces, including all membranes, the alveoli of the lungs, fat droplets in adipose tissue, and lipoproteins. The behavior of phospholipids in bilayers and at an air-water interface is well understood. However, the study of phospholipids at oil-water interfaces is limited due to technical challenges. In this study, egg phosphatidylcholine (EPC) was deposited from small unilamellar vesicles onto a bubble of either air or triolein (TO) formed in a low-salt buffer. The surface tension (gamma) was measured using a drop tensiometer. We observed that EPC binds irreversibly to both interfaces and at equilibrium exerts approximately 12 and 15 mN/m of pressure (Pi) at an air and TO interface, respectively. After EPC was bound to the interface, the unbound EPC was washed out of the cuvette, and the surface was compressed to study the Pi/area relationship. To determine the surface concentration (Gamma), which cannot be measured directly, compression isotherms from a Langmuir trough and drop tensiometer were compared. The air-water interfaces had identical characteristics using both techniques; thus, Gamma on the bubble can be determined by overlaying the two isotherms. Both TO and EPC are surface-active, so in a mixed TO/EPC monolayer, both molecules will be exposed to water. Since TO is less surface-active than EPC, as Pi increases, the TO is progressively ejected. To understand the Pi/area isotherm of EPC on a TO bubble, a variety of TO-EPC mixtures were spread at the air-water interface. The isotherms show an abrupt break in the curve caused by the ejection of TO from the monolayer into a new bulk phase. By overlaying the compression isotherm above the ejection point with a TO bubble compression isotherm, Gamma can be estimated. This allows determination of Gamma of EPC on a TO bubble as a function of Pi.

  17. Gas bubble dimensions in Archean lava flows indicate low air pressure at 2.7 Ga

    Science.gov (United States)

    Som, S. M.; Buick, R.; Hagadorn, J.; Blake, T.; Perreault, J.; Harnmeijer, J.; Catling, D. C.

    2014-12-01

    Air pressure constrains atmospheric composition, which, in turn, is linked to the Earth system through biogeochemical cycles and fluxes of volatiles from and to the Earth's interior. Previous studies have only placed maximum levels on surface air pressure for the early Earth [1]. Here, we calculate an absolute value for Archean barometric pressure using gas bubble size (vesicle) distributions in uninflated basaltic lava flows that solidified at sea level 2.7 billion years ago in the Pilbara Craton, Western Australia. These vesicles have been filled in by secondary minerals deposited during metasomatism and so are now amydules, but thin sections show that infilling did not change vesicle dimensions. Amygdule dimensions are measured using high-resolution X-ray tomography from core samples obtained from the top and bottom of the lava flows. The modal size expressed at the top and at the bottom of an uninflated flow can be linked to atmospheric pressure using the ideal gas law. Such a technique has been verified as a paleoaltimeter using Hawaiian Quaternary lava flows [2]. We use statistical methods to estimate the mean and standard deviation of the volumetric size of the amygdules by applying 'bootstrap'resampling and the Central Limit Theorem. Our data indicate a surprisingly low atmospheric pressure. Greater nitrogen burial under anaerobic conditions likely explains lower pressure. Refs: [1] Som et al. (2012) Nature 484, 359-262. D. L. Sahagian et al. (2002) J. Geol., 110, 671-685.

  18. Modelling of boiling bubbly flows using a polydisperse approach

    International Nuclear Information System (INIS)

    Zaepffel, D.

    2011-01-01

    The objective of this work was to improve the modelling of boiling bubbly flows.We focused on the modelling of the polydisperse aspect of a bubble population, i.e. the fact that bubbles have different sizes and different velocities. The multi-size aspect of a bubble population can originate from various mechanisms. For the bubbly flows we are interested in, bubble coalescence, bubble break-up, phase change kinematics and/or gas compressibility inside the bubbles can be mentioned. Since, bubble velocity depends on bubble size, the bubble size spectrum also leads to a bubble velocity spectrum. An averaged model especially dedicated to dispersed flows is introduced in this thesis. Closure of averaged interphase transfer terms are written in a polydisperse framework, i.e. using a distribution function of the bubble sizes and velocities. A quadratic law and a cubic law are here proposed for the modelling of the size distribution function, whose evolution in space and time is then obtained with the use of the moment method. Our averaged model has been implemented in the NEPTUNE-CFD computation code in order to simulate the DEBORA experiment. The ability of our model to deal with sub-cooled boiling flows has therefore been evaluated. (author) [fr

  19. Experimental study for flow regime of downward air-water two-phase flow in a vertical narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T. H.; Yun, B. J.; Jeong, J. H. [Pusan National University, Geunjeong-gu, Busan (Korea, Republic of)

    2015-05-15

    Studies were mostly about flow in upward flow in medium size circular tube. Although there are great differences between upward and downward flow, studies on vertical upward flow are much more active than those on vertical downward flow in a channel. In addition, due to the increase of surface forces and friction pressure drop, the pattern of gas-liquid two-phase flow bounded to the gap of inside the rectangular channel is different from that in a tube. The downward flow in a rectangular channel is universally applicable to cool the plate type nuclear fuel in research reactor. The sub-channel of the plate type nuclear fuel is designed with a few millimeters. Downward air-water two-phase flow in vertical rectangular channel was experimentally observed. The depth, width, and length of the rectangular channel is 2.35 mm, 66.7 mm, and 780 mm, respectively. The test section consists of transparent acrylic plates confined within a stainless steel frame. The flow patterns of the downward flow in high liquid velocity appeared to be similar to those observed in previous studies with upward flow. In downward flow, the transition lines for bubbly-slug and slug-churn flow shift to left in the flow regime map constructed with abscissa of the superficial gas velocity and ordinate of the superficial liquid velocity. The flow patterns observed with downward flow at low liquid velocity are different from those with upward flow.

  20. Front‐tracking simulations of bubbles rising in non‐Newtonian fluids

    OpenAIRE

    Battistella, Alessandro; Van Schijndel, J.G.; Baltussen, Maike W.

    2017-01-01

    In the wide and complex field of multiphase flows, bubbly flows with non-Newtonian liquids are encountered in several important applications, such as in polymer solutions or fermentation broths. Despite the widespread application of non-Newtonian liquids, most of the models and closures used in industry are valid for Newtonian fluids only, if not even restricted to air-water systems. However, it is well known that the non-Newtonian rheology significantly influences the liquid and bubble behav...

  1. Structure of two-phase air-water flows. Study of average void fraction and flow patterns; Structure des ecoulements diphasiques eau-air. Etude de la fraction de vide moyenne et des configurations d'ecoulement

    Energy Technology Data Exchange (ETDEWEB)

    Roumy, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1969-07-01

    This report deals with experimental work on a two phase air-water mixture in vertical tubes of different diameters. The average void fraction was measured in a 2 metre long test section by means of quick-closing valves. Using resistive probes and photographic techniques, we have determined the flow patterns and developed diagrams to indicate the boundaries between the various patterns: independent bubbles, agglomerated bubbles, slugs, semi-annular, annular. In the case of bubble flow and slug flow, it is shown that the relationship between the average void fraction and the superficial velocities of the phases is given by: V{sub sg} = f(<{alpha}>) * g(V{sub sl}). The function g(V{sub sl}) for the case of independent bubbles has been found to be: g(V{sub sl}) = V{sub sl} + 20. For semi-annular and annular flow conditions; it appears that the average void fraction depends, to a first approximation only on the ratio V{sub sg}/V{sub sl}. (author) [French] Ce rapport est une etude experimentale d'un melange diphasique eau-air dans des tubes verticaux de differents diametres. Nous avons mesure la fraction de vide moyenne dans une portion de canal de longueur 2 m, au moyen d'un systeme de vannes a fermeture rapide et simultanee. Au moyen de sondes resistives et de photographies nous avons determine la configuration de l'ecoulement et trace des cartes donnant les frontieres entre les differentes configurations d'ecoulement: bulles independantes, bulles agglomerees, bouchons, semi-annulaire, annulaire. Nous montrons que pour les regimes a bulles et a bouchons, une equation de la forme V{sub sg} = f(<{alpha}>) * g(V{sub sl}) relie la fraction de vide moyenne aux vitesses superficielles de chacune des phases. Nous avons pu determiner la fonction g(V{sub sl}) dans le cas du regime a bulles independantes, et nous trouvons g(V{sub sl}) = V{sub sl} + 20. Pour les regimes semi-annulaire et annulaire, il semble qu'en premiere approximation, la fraction de vide moyenne ne depende que

  2. Draining Water from Aircraft Fuel Using Nitrogen Enriched Air

    Directory of Open Access Journals (Sweden)

    Michael Frank

    2018-04-01

    Full Text Available This paper concerns a computational study of the process of removing water from an aircraft’s fuel tank by pumping nitrogen enriched air (NEA from the bottom of the tank. This is an important procedure for the smooth, efficient, and safe operation of the aircraft’s engine. Due to the low partial pressure of water in the pumped NEA, it absorbs water from the fuel. The water-laden bubbles enter the ullage, the empty space above the fuel, and escape into the environment. The effects of the number of NEA inlets and the NEA mass flow rate on the timescale of the NEA pumping were investigated using Computational Fluid Dynamics. The results reveal that the absorption of water by the NEA bubbles is low and is not affected by the number of the inlets used. Yet, the water content in the fuel decreases fast during the procedure, which is the desired outcome. We show that this is due to the relatively dry NEA entering the ullage and displacing the moist air, thus reducing the partial pressure of water at the fuel/ullage interface. This shift from equilibrium conditions forces water to evaporate from the fuel’s entire surface. Furthermore, the amount of water migrating from the fuel directly into the ullage is significantly greater than that absorbed by the rising bubbles. In turn, the rate of decrease of the water content in the ullage is determined by the total NEA mass flow rate and this is the dominant contributor to the draining time, with the number of NEA nozzles playing a minor role. We confirmed this by pumping NEA directly into the ullage, where we observe a significant decrease of water even when the NEA is not pumped through the fuel. We also show that doubling the mass flow rate halves the draining time. When considering the capability of most modern aircraft to pump NEA through the fuel as part of their inerting system, the proposed method for removing water is particularly attractive, requiring very little (if at all design modification.

  3. Effect of air bubble localization after transfer on embryo transfer outcomes.

    Science.gov (United States)

    Tiras, Bulent; Korucuoglu, Umit; Polat, Mehtap; Saltik, Ayse; Zeyneloglu, Hulusi Bulent; Yarali, Hakan

    2012-09-01

    Our study aimed to provide information about the effects of air bubble localization after transfer on embryo transfer outcomes. Retrospective analysis of 7489 ultrasound-guided embryo transfers. Group 1 included 6631 embryo transfers in which no movement of the air bubbles was observed after transfer. Group 2 consisted of 407 embryo transfers in which the air bubbles moved towards the uterine fundus spontaneously, a little time after transfer. Group 3 included 370 embryo transfers in which the air bubbles moved towards the uterine fundus with ejection, immediately after transfer. Group 4 consisted of 81 embryo transfers in which the air bubbles moved towards the cervical canal. The four patient groups were different from one another with respect to positive pregnancy tests. Post hoc test revealed that this difference was between group 4 and other groups. An initial finding of our study was significantly decreased positive pregnancy test rates and clinical pregnancy rates with air bubbles moving towards the cervical canal after transfer. Although air bubbles moving towards the uterine fundus with ejection were associated with higher pregnancy rates, higher miscarriage rates and similar live birth rates were observed compared to air bubbles remaining stable after transfer. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  4. Bubble Size Distribution in a Vibrating Bubble Column

    Science.gov (United States)

    Mohagheghian, Shahrouz; Wilson, Trevor; Valenzuela, Bret; Hinds, Tyler; Moseni, Kevin; Elbing, Brian

    2016-11-01

    While vibrating bubble columns have increased the mass transfer between phases, a universal scaling law remains elusive. Attempts to predict mass transfer rates in large industrial scale applications by extrapolating laboratory scale models have failed. In a stationary bubble column, mass transfer is a function of phase interfacial area (PIA), while PIA is determined based on the bubble size distribution (BSD). On the other hand, BSD is influenced by the injection characteristics and liquid phase dynamics and properties. Vibration modifies the BSD by impacting the gas and gas-liquid dynamics. This work uses a vibrating cylindrical bubble column to investigate the effect of gas injection and vibration characteristics on the BSD. The bubble column has a 10 cm diameter and was filled with water to a depth of 90 cm above the tip of the orifice tube injector. BSD was measured using high-speed imaging to determine the projected area of individual bubbles, which the nominal bubble diameter was then calculated assuming spherical bubbles. The BSD dependence on the distance from the injector, injector design (1.6 and 0.8 mm ID), air flow rates (0.5 to 5 lit/min), and vibration conditions (stationary and vibration conditions varying amplitude and frequency) will be presented. In addition to mean data, higher order statistics will also be provided.

  5. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells.

    Science.gov (United States)

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-09-17

    The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the "water film phenomenon" produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor.

  6. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells

    Directory of Open Access Journals (Sweden)

    Chuan Wu

    2016-09-01

    Full Text Available The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the “water film phenomenon” produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor.

  7. Research on the Conductivity-Based Detection Principles of Bubbles in Two-Phase Flows and the Design of a Bubble Sensor for CBM Wells

    Science.gov (United States)

    Wu, Chuan; Wen, Guojun; Han, Lei; Wu, Xiaoming

    2016-01-01

    The parameters of gas-liquid two-phase flow bubbles in field coalbed methane (CBM) wells are of great significance for analyzing coalbed methane output, judging faults in CBM wells, and developing gas drainage and extraction processes, which stimulates an urgent need for detecting bubble parameters for CBM wells in the field. However, existing bubble detectors cannot meet the requirements of the working environments of CBM wells. Therefore, this paper reports findings on the principles of measuring the flow pattern, velocity, and volume of two-phase flow bubbles based on conductivity, from which a new bubble sensor was designed. The structural parameters and other parameters of the sensor were then computed, the “water film phenomenon” produced by the sensor was analyzed, and the appropriate materials for making the sensor were tested and selected. After the sensor was successfully devised, laboratory tests and field tests were performed, and the test results indicated that the sensor was highly reliable and could detect the flow patterns of two-phase flows, as well as the quantities, velocities, and volumes of bubbles. With a velocity measurement error of ±5% and a volume measurement error of ±7%, the sensor can meet the requirements of field use. Finally, the characteristics and deficiencies of the bubble sensor are summarized based on an analysis of the measurement errors and a comparison of existing bubble-measuring devices and the designed sensor. PMID:27649206

  8. Air-lift pumps characteristics under two-phase flow conditions

    International Nuclear Information System (INIS)

    Kassab, Sadek Z.; Kandil, Hamdy A.; Warda, Hassan A.; Ahmed, Wael H.

    2009-01-01

    Air-lift pumps are finding increasing use where pump reliability and low maintenance are required, where corrosive, abrasive, or radioactive fluids in nuclear applications must be handled and when a compressed air is readily available as a source of a renewable energy for water pumping applications. The objective of the present study is to evaluate the performance of a pump under predetermined operating conditions and to optimize the related parameters. For this purpose, an air-lift pump was designed and tested. Experiments were performed for nine submergence ratios, and three risers of different lengths with different air injection pressures. Moreover, the pump was tested under different two-phase flow patterns. A theoretical model is proposed in this study taking into account the flow patterns at the best efficiency range where the pump is operated. The present results showed that the pump capacity and efficiency are functions of the air mass flow rate, submergence ratio, and riser pipe length. The best efficiency range of the air-lift pumps operation was found to be in the slug and slug-churn flow regimes. The proposed model has been compared with experimental data and the most cited models available. The proposed model is in good agreement with experimental results and found to predict the liquid volumetric flux for different flow patterns including bubbly, slug and churn flow patterns

  9. Numerical study on the influence of entrapped air bubbles on the time-dependent pore pressure distribution in soils due to external changes in water level

    Directory of Open Access Journals (Sweden)

    Ausweger Georg M.

    2016-01-01

    Full Text Available In practical geotechnical engineering soils below the groundwater table are usually regarded as a two-phase medium, consisting of solids and water. The pore water is assumed to be incompressible. However, under certain conditions soils below the groundwater table may exhibit a liquid phase consisting of water and air. The air occurs in form of entrapped air bubbles and dissolved air. Such conditions are named quasi-saturated and the assumption of incompressibility is no longer justified. In addition the entrapped air bubbles influence the hydraulic conductivity of soils. These effects are usually neglected in standard problems of geotechnical engineering. However, sometimes it is required to include the pore fluid compressibility when modelling the hydraulic behaviour of soils in order to be able to explain certain phenomena observed in the field. This is for example true for fast fluctuating water levels in reservoirs. In order to study these phenomena, numerical investigations on the influence of the pore fluid compressibility on the pore water pressure changes in a soil layer beneath a reservoir with fast fluctuating water levels were performed. Preliminary results of this study are presented and it could be shown that numerical analysis and field data are in good agreement.

  10. Modeling studies of electrolyte flow and bubble behavior in advanced Hall cells

    Science.gov (United States)

    Shekhar, R.; Evans, J. W.

    Much research was performed in recent years by corporations and university/government labs on materials for use in advanced Hall-Heroult cells. Attention has focussed on materials for use as wettable cathodes and inert anodes and much was achieved in terms of material development. Comparatively less attention was devoted to how these materials might be incorporated in new or existing cells, i.e., to how the cells should be designed and redesigned, to take full advantage of these materials. The effort, supported by the U.S. Department of Energy, to address this issue, is described. The primary objectives are cell design where electrolyte flow can be managed to promote both the removal of the anode gas bubbles and the convection of dissolved alumina in the inter-electrode region, under conditions where the anode-cathode distance is small. The principal experimental tool was a water model consisting of a large tank in which simulated anodes can be suspended in either the horizontal or vertical configurations. Gas generation was by forcing compressed air through porous graphite and the fine bubbles characteristic of inert anodes were produced by adding butanol to the water. Velocities were measured using a laser Doppler velocimeter. Velocity measurements with two different anode designs (one that is flat and the other that has grooves) are presented. The results show that the electrode configuration has a significant effect on the fluid flow pattern in the inter-electrode region. Furthermore, it is shown that rapid fluid flow is obtained when the cell is operated with a submerged anode.

  11. Numerical study of the air-flow in an oscillating water column wave energy converter

    Energy Technology Data Exchange (ETDEWEB)

    Paixao Conde, J.M. [Department of Mechanical and Industrial Engineering, Faculty of Sciences and Technology, New University of Lisbon, Monte de Caparica, 2829-516 Caparica (Portugal); IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal); Gato, L.M.C. [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, 1049-001 Lisboa (Portugal)

    2008-12-15

    The paper presents a numerical study of the air-flow in a typical pneumatic chamber geometry of an oscillating water column (OWC)-type wave energy converter (WEC), equipped with two vertical-axis air turbines, asymmetrically placed on the top of the chamber. Outwards and inwards, steady and periodic, air-flow calculations were performed to investigate the flow distribution at the turbines' inlet sections, as well as the properties of the air-jet impinging on the water free-surface. The original design of the OWC chamber is likely to be harmful for the operation of the turbines due to the possible air-jet-produced water-spray at the water free-surface subsequently ingested by the turbine. A geometry modification of the air chamber, using a horizontal baffle-plate to deflect the air from the turbines, is proposed and proved to be very effective in reducing the risk of water-spray production from the inwards flow. The flow distribution at the turbines' inlet sections for the outwards flow was found to be fairly uniform for the geometries considered, providing good inlet flow conditions for the turbines. Steady flow was found to be an acceptable model to study the air-flow inside the pneumatic chamber of an OWC-WEC. (author)

  12. Mechanism of bubble detachment from vibrating walls

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dongjun; Park, Jun Kwon, E-mail: junkeun@postech.ac.kr; Kang, Kwan Hyoung [Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of); Kang, In Seok [Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784 (Korea, Republic of)

    2013-11-15

    We discovered a previously unobserved mechanism by which air bubbles detach from vibrating walls in glasses containing water. Chaotic oscillation and subsequent water jets appeared when a wall vibrated at greater than a critical level. Wave forms were developed at water-air interface of the bubble by the wall vibration, and water jets were formed when sufficiently grown wave-curvatures were collapsing. Droplets were pinched off from the tip of jets and fell to the surface of the glass. When the solid-air interface at the bubble-wall attachment point was completely covered with water, the bubble detached from the wall. The water jets were mainly generated by subharmonic waves and were generated most vigorously when the wall vibrated at the volume resonant frequency of the bubble. Bubbles of specific size can be removed by adjusting the frequency of the wall's vibration.

  13. Air bubble-induced detachment of positively and negatively charged polystyrene particles from collector surfaces in a parallel-plate flow chamber

    NARCIS (Netherlands)

    Gomez-Suarez, C; Van der Mei, HC; Busscher, HJ

    2000-01-01

    Electrostatic interactions between colloidal particles and collector surfaces were found tcr be important in particle detachment as induced by the passage of air bubbles in a parallel-plate Row chamber. Electrostatic interactions between adhering particles and passing air bubbles, however, a-ere

  14. Propagation of Local Bubble Parameters of Subcooled Boiling Flow in a Pressurized Vertical Annulus Channel

    International Nuclear Information System (INIS)

    Chu, In-Cheol; Lee, Seung Jun; Youn, Young Jung; Park, Jong Kuk; Choi, Hae Seob; Euh, Dong Jin

    2015-01-01

    CMFD (Computation Multi-Fluid Dynamics) tools have been being developed to simulate two-phase flow safety problems in nuclear reactor, including the precise prediction of local bubble parameters in subcooled boiling flow. However, a lot of complicated phenomena are encountered in the subcooled boiling flow such as bubble nucleation and departure, interfacial drag of bubbles, lateral migration of bubbles, bubble coalescence and break-up, and condensation of bubbles, and the constitutive models for these phenomena are not yet complete. As a result, it is a difficult task to predict the radial profile of bubble parameters and its propagation along the flow direction. Several experiments were performed to measure the local bubble parameters for the validation of the CMFD code analysis and improvement of the constitutive models of the subcooled boiling flow, and to enhance the fundamental understanding on the subcooled boiling flow. The information on the propagation of the local flow parameters along the flow direction was not provided because the measurements were conducted at the fixed elevation. In SUBO experiments, the radial profiles of local bubble parameters, liquid velocity and temperature were obtained for steam-water subcooled boiling flow in a vertical annulus. The local flow parameters were measured at six elevations along the flow direction. The pressure was in the range of 0.15 to 0.2 MPa. We have launched an experimental program to investigate quantify the local subcooled boiling flow structure under elevated pressure condition in order to provide high precision experimental data for thorough validation of up-to-date CMFD codes. In the present study, the first set of experimental data on the propagation of the radial profile of the bubble parameters was obtained for the subcooled boiling flow of R-134a in a pressurized vertical annulus channel. An experimental program was launched for an in-depth investigation of a subcooled boiling flow in an elevated

  15. A study of bubbly flow characteristics in a vertical tube using wire mesh tomography

    International Nuclear Information System (INIS)

    Wangjiraniran, Weerin; Motegi, Yuichi; Kikura, Hiroshige; Aritomi, Masanori; Richter, Steffen; Yamamoto, Kazuhiko

    2003-01-01

    For the development of nuclear reactors and the assessment of their safety features, the development of computer code with the high quantity database from the measurement as well as the understanding of the multiphase flow physics are necessary. In this study, the characteristics of bubbly flow in a vertical tube are investigated using Wire Mesh Tomography (WMT). Void fraction is detected from the dependency of electrical conductivity on the local void fraction. The developed sensor is a circular type with two parallel measuring planes to have the capability of gas velocity and bubble size evaluation. The experiment is conducted in a 50 mm ID tube at the fully developed condition (93D). The mean bubble size is treated as a constant parameter independent from the superficial gas and liquid velocity by using the bubble generator with a water sub flow. The result shows the capability of WMT for bubbly flow characteristic study. The effects of superficial gas and liquid velocity and the additional bubble intensity on the void fraction distribution are presented. These effects are supposed to change the lateral lift force in both magnitude and directions which induce the bubble migrated toward to or depart from the wall. (author)

  16. Two-phase flow characterisation by nuclear magnetic resonance

    International Nuclear Information System (INIS)

    Leblond, J.; Javelot, S.; Lebrun, D.; Lebon, L.

    1998-01-01

    The results presented in this paper demonstrate the performance of the PFGSE-NMR to obtain a complete characterisation of two-phase flows. Different methods are proposed to characterise air-water flows in different regimes: stationary two-phase flows and flows in transient condition. Finally a modified PFGSE is proposed to analyse the turbulence of air-water bubbly flow. (author)

  17. Characterization of Bubble Size Distributions within a Bubble Column

    Directory of Open Access Journals (Sweden)

    Shahrouz Mohagheghian

    2018-02-01

    Full Text Available The current study experimentally examines bubble size distribution (BSD within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm, injection tube diameter (0.8–1.6 mm and superficial gas velocity (1.4–55 mm/s were varied. Large samples (up to 54,000 bubbles of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs. The PDFs were used to identify an alternative length scale termed the most frequent bubble size (dmf and defined as the peak in the PDF. This length scale as well as the traditional Sauter mean diameter were used to assess the sensitivity of the BSD to gas injection rate, injector tube diameter, injection tube angle and column diameter. The dmf was relatively insensitive to most variation, which indicates these bubbles are produced by the turbulent wakes. In addition, the current work examines higher order statistics (standard deviation, skewness and kurtosis and notes that there is evidence in support of using these statistics to quantify the influence of specific parameters on the flow-field as well as a potential indicator of regime transitions.

  18. Visualization of bubble behaviors in forced convective subcooled flow boiling

    International Nuclear Information System (INIS)

    Inaba, Noriaki; Matsuzaki, Mitsuo; Kikura, Hiroshige; Aritomi, Masanori; Komeno, Toshihiro

    2007-01-01

    Condensation characteristics of vapor bubble after the departure from a heated section in forced convective subcooled flow boiling were studied visually by using a high speed camera. The purpose of the present study was to measure two-phase flow parameters in subcooled flow boiling. These two-phase flow parameters are void fraction, interfacial area concentration and Sauter mean diameter, which express bubble interface behaviors. The experimental set-up was designed to measure the two-phase flow parameters necessary for developing composite equations for the two fluid models in subcooled flow boiling. In the present experiments, the mass flux, liquid subcooling and the heater were varied within 100-1000kg/m 2 s, 2-10K and 100-300kW/m 2 respectively. Under these experimental conditions, the bubble images were obtained by a high-speed camera, and analyzed paying attention to the condensation of vapor bubbles. These two-phase parameters were obtained by the experimental data, such as the bubble parameter, the bubble volume and the bubble surface. In the calculation process of the two phase flow parameters, it was confirmed that these parameters are related to the void fraction. (author)

  19. Vapor Bubbles in Flow and Acoustic Fields

    NARCIS (Netherlands)

    Prosperetti, Andrea; Hao, Yue; Sadhal, S.S

    2002-01-01

    A review of several aspects of the interaction of bubbles with acoustic and flow fields is presented. The focus of the paper is on bubbles in hot liquids, in which the bubble contains mostly vapor, with little or no permanent gas. The topics covered include the effect of translation on condensation

  20. Local measurements in turbulent bubbly flows

    International Nuclear Information System (INIS)

    Suzanne, C.; Ellingsen, K.; Risso, F.; Roig, V.

    1998-01-01

    Local measurements methods in bubbly flows are discussed. Concerning liquid velocity measurement, problems linked to HFA and LDA are first analysed. Then simultaneously recorded velocity signals obtained by both anemometers are compared. New signal processing are developed for the two techniques. Bubble sizes and velocities measurements methods using intrusive double optical sensor probe are presented. Plane bubbly mixing layer has been investigated. Local measurements using the described methods are presented as examples. (author)

  1. Bubble behaviour and mean diameter in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Zeitoun, O.; Shoukri, M. [McMaster Univ., Hamilton, Ontario (Canada)

    1995-09-01

    Bubble behaviour and mean bubble diameter in subcooled upward flow boiling in a vertical annular channel were investigated under low pressure and mass flux conditions. A high speed video system was used to visualize the subcooled flow boiling phenomenon. The high speed photographic results indicated that, contrary to the common understanding, bubbles tend to detach from the heating surface upstream of the net vapour generation point. Digital image processing technique was used to measure the mean bubble diameter along the subcooled flow boiling region. Data on the axial area-averaged void fraction distributions were also obtained using a single beam gamma densitometer. Effects of the liquid subcooling, applied heat flux and mass flux on the mean bubble size were investigated. A correlation for the mean bubble diameter as a function of the local subcooling, heat flux and mass flux was obtained.

  2. CFD simulation of flow pattern in a bubble column reactor for forming aerobic granules and its development.

    Science.gov (United States)

    Fan, Wenwen; Yuan, LinJiang; Li, Yonglin

    2018-06-04

    The flow pattern is considered to play an important role in the formation of aerobic granular sludge in a bubble column reactor; therefore, it is necessary to understand the behavior of the flow in the reactor. A three-dimensional computational fluid dynamics (CFD) simulation for bubble column reactor was established to visualize the flow patterns of two-phase air-liquid flow and three-phase air-liquid-sludge flow under different ratios of height to diameter (H/D ratio) and superficial gas upflow velocities (SGVs). Moreover, a simulation of the three-phase flow pattern at the same SGV and different characteristics of the sludge was performed in this study. The results show that not only SGV but also properties of sludge involve the transformation of flow behaviors and relative velocity between liquid and sludge. For the original activated sludge floc to cultivate aerobic granules, the flow pattern has nothing to do with sludge, but is influenced by SGV, and the vortices is occurred and the relative velocity is increased with an increase in SGV; the two-phase flow can simplify the three-phase flow that predicts the flow pattern development in bubble column reactor (BCR) for aerobic granulation. For the aerobic granules, the liquid flow behavior developed from the symmetrical circular flow to numbers and small-size vortices with an increase in the sludge diameter, the relative velocity is amount up to u r =5.0, it is 29.4 times of original floc sludge.

  3. Interface tracking computations of bubble dynamics in nucleate flow boiling

    International Nuclear Information System (INIS)

    Giustini, G.

    2015-01-01

    The boiling process is of utter importance for the design and operation of water-cooled nuclear reactors. Despite continuous effort over the past decades, a fully mechanistic model of boiling in the presence of a solid surface has not yet been achieved. Uncertainties exist at fundamental level, since the microscopic phenomena governing nucleate boiling are still not understood, and as regards 'component scale' modelling, which relies heavily on empirical representations of wall boiling. Accurate models of these phenomena at sub-milli-metric scale are capable of elucidating the various processes and to produce quantitative data needed for up-scaling. Within this context, Direct Numerical Simulation (DNS) represents a powerful tool for CFD analysis of boiling flows. In this contribution, DNS coupled with an Interface Tracking method (Y. Sato, B. Niceno, Journal of Computational Physics, Volume 249, 15 September 2013, Pages 127-161) are used to analyse the hydrodynamics and heat transfer associated with heat diffusion controlled bubble growth at a solid substrate during nucleate flow boiling. The growth of successive bubbles from a single nucleation site is simulated with a computational model that includes heat conduction in the solid substrate and evaporation from the liquid film (micro-layer) present beneath the bubble. Bubble evolution is investigated and the additional (with respect to single phase convection) heat transfer mechanisms due to the ebullition cycle are quantified. The simulations show that latent heat exchange due to evaporation in the micro-layer and sensible heat exchange during the waiting time after bubble departure are the main heat transfer mechanisms. It is found that the presence of an imposed flow normal to the bubble rising path determines a complex velocity and temperature distribution near the nucleation site. This conditions can result in bubble sliding, and influence bubble shape, departure diameter and departure frequency

  4. Countercurrent air/water and steam/water flow above a perforated plate. Report for October 1978-October 1979

    International Nuclear Information System (INIS)

    Hsieh, C.; Bankoff, S.G.; Tankin, R.S.; Yuen, M.C.

    1980-11-01

    The perforated plate weeping phenomena have been studied in both air/water and steam/cold water systems. The air/water experiment is designed to investigate the effect of geometric factors of the perforated plate on the rate of weeping. A new dimensionless flow rate in the form of H star is suggested. The data obtained are successfully correlated by this H star scaling in the conventional flooding equation. The steam/cold water experiment is concentrated on locating the boundary between weeping and no weeping. The effects of water subcooling, water inlet flow rate, and position of water spray are investigated. Depending on the combination of these factors, several types of weeping were observed. The data obtained at high water spray position can be related to the air/water flooding correlation by replacing the stream flow rate to an effective stream flow rate, which is determined by the mixing efficiency above the plate

  5. Hydrodynamic of a deformed bubble in linear shear flow

    International Nuclear Information System (INIS)

    Adoua, S.R.

    2007-07-01

    This work is devoted to the study of an oblate spheroidal bubble of prescribed shape set fixed in a linear shear flow using direct numerical simulation. The three dimensional Navier-Stokes equations are solved in orthogonal curvilinear coordinates using a finite volume method. The bubble response is studied over a wide range of the aspect ratio (1-2.7), the bubble Reynolds number (50-2000) and the non-dimensional shear rate (0.-1.2). The numerical simulations shows that the shear flow imposes a plane symmetry of the wake whatever the parameters of the flow. The trailing vorticity is organized into two anti-symmetrical counter rotating tubes with a sign imposed by the competition of two mechanisms (the Lighthill mechanism and the instability of the wake). Whatever the Reynolds number, the lift coefficient reaches the analytical value obtained in an inviscid, weakly sheared flow corresponding to a lift force oriented in the same direction as that of a spherical bubble. For moderate Reynolds numbers, the direction of the lift force reverses when the bubble aspect ratio is large enough as observed in experiments. This reversal occurs for aspect ratios larger than 2.225 and is found to be directly linked to the sign of the trailing vorticity which is concentrated within two counter-rotating threads which propel the bubble in a direction depending of their sign of rotation. The behavior of the drag does not revel any significant effect induced by the wake structure and follows a quadratic increase with the shear rate. Finally, the torque experienced by the bubble also reverses for the same conditions inducing the reversal of the lift force. By varying the orientation of the bubble in the shear flow, a stable equilibrium position is found corresponding to a weak angle between the small axis of the bubble and the flow direction. (author)

  6. Bubbling and foaming assisted clearing of mucin plugs in microfluidic Y-junctions.

    Science.gov (United States)

    Abdula, Daner; Lerud, Ryan; Rananavare, Shankar

    2017-11-07

    Microfluidic Y-junctions were used to study mechanical mechanisms involved in pig gastric mucin (PGM) plug removal from within one of two bifurcation branches with 2-phase air and liquid flow. Water control experiments showed moderate plug removal due to shear from vortex formation in the blockage branch and suggest a PGM yield stress of 35Pa, as determined by computational fluid dynamics. Addition of hexadecyltrimethylammonium bromide (CTAB) surfactant improved clearing effectiveness due to bubbling in 1mm diameter channels and foaming in 500μm diameter channels. Plug removal mechanisms have been identified as vortex shear, bubble scouring, and then foam scouring as air flow rate is increased with constant liquid flow. The onset of bubbling and foaming is attributed to a flow regime transition from slug to slug-annular. Flow rates explored for 1mm channels are typically experienced by bronchioles in generations 8 and 9 of lungs. Results have implications on treatment of cystic fibrosis and other lung diseases. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Air-water flow measurement for ERVC conditions by LIF/PIV

    International Nuclear Information System (INIS)

    Yoon, Jong Woong; Jeong, Yong Hoon

    2016-01-01

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  8. Air-water flow measurement for ERVC conditions by LIF/PIV

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Woong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  9. Investigation of Gas Holdup in a Vibrating Bubble Column

    Science.gov (United States)

    Mohagheghian, Shahrouz; Elbing, Brian

    2015-11-01

    Synthetic fuels are part of the solution to the world's energy crisis and climate change. Liquefaction of coal during the Fischer-Tropsch process in a bubble column reactor (BCR) is a key step in production of synthetic fuel. It is known from the 1960's that vibration improves mass transfer in bubble column. The current study experimentally investigates the effect that vibration frequency and amplitude has on gas holdup and bubble size distribution within a bubble column. Air (disperse phase) was injected into water (continuous phase) through a needle shape injector near the bottom of the column, which was open to atmospheric pressure. The air volumetric flow rate was measured with a variable area flow meter. Vibrations were generated with a custom-made shaker table, which oscillated the entire column with independently specified amplitude and frequency (0-30 Hz). Geometric dependencies can be investigated with four cast acrylic columns with aspect ratios ranging from 4.36 to 24, and injector needle internal diameters between 0.32 and 1.59 mm. The gas holdup within the column was measured with a flow visualization system, and a PIV system was used to measure phase velocities. Preliminary results for the non-vibrating and vibrating cases will be presented.

  10. Study of dynamics of two-phase flow through a minichannel by means of recurrences

    Science.gov (United States)

    Litak, Grzegorz; Górski, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2017-05-01

    By changing air and water flow rates in the two-phase (air-water) flow through a minichannel, we observed the evolution of air bubbles and slugs patterns. This spatiotemporal behaviour was identified qualitatively by using a digital camera. Simultaneously, we provided a detailed analysis of these phenomena by using the corresponding sequences of light transmission time series recorded with a laser-phototransistor sensor. To distinguish particular patterns, we used recurrence plots and recurrence quantification analysis. Finally, we showed that the maxima of various recurrence quantificators obtained from the laser time series could follow the bubble and slugs patterns in studied ranges of air and water flows.

  11. Void fraction for gas bubbling in shallow viscous pools-application to molten core concrete interaction

    International Nuclear Information System (INIS)

    Journeau, C.; Haquet, J.F.

    2005-01-01

    During Molten Core-Concrete Interaction, the concrete will release gases (mainly steam and carbon oxides) that will flow through the corium pool. To obtain reliable heat transfer prediction, it is necessary to model the void fraction in the pool as a function of the gas mass flow (or superficial velocity at the interface). A series of simulant-materials have been performed with water-air and sugar syrup-air in order to study how the drift model could be applied to a shallow pool (where the bubbly flow is not fully developed) and to liquids which are more viscous (with higher Morton numbers) than water. The bubble average diameter was estimated around 3 mm with spherical to ellipsoidal shapes. For all the configurations, even with the shallowest pools (6 cm height for 38 cm diameter) the experimental void fractions follow the drift-model relationship. In water, the distribution coefficient C 0 tends to the classical value of 1.2 while the drift velocity V jg tends to the 23 cm/s predicted by Ishii (1975) model for churn flows. For the more viscous syrup, the drift velocity tends to 13 cm/s which is significantly lower than the value obtained from the Ishii correlation for bubbly or churn flows (established for water). These results are then applied to MCCI experimental configurations. (authors)

  12. CFD modelling of polydispersed bubbly two-phase flow around an obstacle

    International Nuclear Information System (INIS)

    Krepper, Eckhard; Beyer, Matthias; Frank, Thomas; Lucas, Dirk; Prasser, Horst-Michael

    2009-01-01

    A population balance model (the Inhomogeneous MUSIG model) has recently been developed in close cooperation between ANSYS-CFX and Forschungszentrum Dresden-Rossendorf and implemented into the CFD-Code CFX [Krepper, E., Lucas, D., Prasser, H.-M, 2005. On the modelling of bubbly flow in vertical pipes. Nucl. Eng. Des. 235, 597-611; Frank, T., Zwart, P.J., Shi, J.-M., Krepper, E., Rohde, U., 2005. Inhomogeneous MUSIG Model-a population balance approach for polydispersed bubbly flows, International Conference 'Nuclear Energy for New Europe 2005', Bled, Slovenia, September 5-8, 2005; Krepper, E., Beyer, M., Frank, Th., Lucas, D., Prasser, H.-M., 2007. Application of a population balance approach for polydispersed bubbly flows, 6th Int. Conf. on Multiphase Flow Leipzig 2007, (paper 378)]. The current paper presents a brief description of the model principles. The capabilities of this model are discussed via the example of a bubbly flow around a half-moon shaped obstacle arranged in a 200 mm pipe. In applying the Inhomogeneous MUSIG approach, a deeper understanding of the flow structures is possible and the model allows effects of polydispersion to be investigated. For the complex flow around the obstacle, the general structure of the flow was well reproduced in the simulations. This test case demonstrates the complicated interplay between size dependent bubble migration and the effects of bubble coalescence and breakup on real flows. The closure models that characterize the bubble forces responsible for the simulation of bubble migration show agreement with the experimental observations. However, clear deviations occur for bubble coalescence and fragmentation. The models applied here, which describe bubble fragmentation and coalescence could be proved as a weakness in the validity of numerous CFD analyses of vertical upward two-phase pipe flow. Further work on this topic is under way.

  13. Investigation of bubble flow regimes in nucleate boiling of highly-wetting liquids

    International Nuclear Information System (INIS)

    Tong, W.; Bar-Cohen, A.; Simon, T.W.

    1991-01-01

    This paper describes an investigation of the bubble flow regimes in nucleate boiling of FC-72, a highly-wetting liquid. Theoretically analysis of vapor bubble generation and departure from the heated surface reveals that the heat fluxes required for the merging of consecutive bubbles, for highly-wetting liquids, lie in the upper range of the nucleate boiling heat flux. A visual and photographic study of nucleate boiling from sputtered platinum surfaces has supported the theoretical results and shown that the isolated bubble behavior extends to at least 50-80% of the critical heat flux, considerably higher than observed by others with water. Lateral coalescence of adjacent bubbles has been found to be a more likely cause of the termination of the isolated bubble regime. These findings suggest that thermal transport models which are based on isolated bubble behavior may be applicable to nearly the entire range of nucleate boiling of electronic cooling fluids

  14. Interaction of the Helium, Hydrogen, Air, Argon, and Nitrogen Bubbles with Graphite Surface in Water.

    Science.gov (United States)

    Bartali, Ruben; Otyepka, Michal; Pykal, Martin; Lazar, Petr; Micheli, Victor; Gottardi, Gloria; Laidani, Nadhira

    2017-05-24

    The interaction of the confined gas with solid surface immersed in water is a common theme of many important fields such as self-cleaning surface, gas storage, and sensing. For that reason, we investigated the gas-graphite interaction in the water medium. The graphite surface was prepared by mechanical exfoliation of highly oriented pyrolytic graphite (HOPG). The surface chemistry and morphology were studied by X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy. The surface energy of HOPG was estimated by contact angle measurements using the Owens-Wendt method. The interaction of gases (Ar, He, H 2 , N 2 , and air) with graphite was studied by a captive bubble method, in which the gas bubble was in contact with the exfoliated graphite surface in water media. The experimental data were corroborated by molecular dynamics simulations and density functional theory calculations. The surface energy of HOPG equaled to 52.8 mJ/m 2 and more of 95% of the surface energy was attributed to dispersion interactions. The results on gas-surface interaction indicated that HOPG surface had gasphilic behavior for helium and hydrogen, while gasphobic behavior for argon and nitrogen. The results showed that the variation of the gas contact angle was related to the balance between the gas-surface and gas-gas interaction potentials. For helium and hydrogen the gas-surface interaction was particularly high compared to gas-gas interaction and this promoted the favorable interaction with graphite surface.

  15. Air bubbles and hemolysis of blood samples during transport by pneumatic tube systems.

    Science.gov (United States)

    Mullins, Garrett R; Bruns, David E

    2017-10-01

    Transport of blood samples through pneumatic tube systems (PTSs) generates air bubbles in transported blood samples and, with increasing duration of transport, the appearance of hemolysis. We investigated the role of air-bubble formation in PTS-induced hemolysis. Air was introduced into blood samples for 0, 1, 3 or 5min to form air bubbles. Hemolysis in the blood was assessed by (H)-index, lactate dehydrogenase (LD) and potassium in plasma. In an effort to prevent PTS-induced hemolysis, blood sample tubes were completely filled, to prevent air bubble formation, and compared with partially filled samples after PTS transport. We also compared hemolysis in anticoagulated vs clotted blood subjected to PTS transport. As with transport through PTSs, the duration of air bubble formation in blood by a gentle stream of air predicted the extent of hemolysis as measured by H-index (pair space in a blood sample prevented bubble formation and fully protected the blood from PTS-induced hemolysis (ptransport and was partially protected from hemolysis vs anticoagulated blood as indicated by lower LD (ptransport. Prevention of air bubble formation in blood samples during PTS transport protects samples from hemolysis. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Visualization of an air-water interface on superhydrophobic surfaces in turbulent channel flows

    Science.gov (United States)

    Kim, Hyunseok; Park, Hyungmin

    2017-11-01

    In the present study, three-dimensional deformation of air-water interface on superhydrophobic surfaces in turbulent channel flows at the Reynolds numbers of Re = 3000 and 10000 is measured with RICM (Reflection Interference Contrast Microscopy) technique. Two different types of roughness feature of circular hole and rectangular grate are considered, whose depth is 20 μm and diameter (or width) is varied between 20-200 μm. Since the air-water interface is always at de-pinned state at the considered condition, air-water interface shape and its sagging velocity is maintained to be almost constant as time goes one. In comparison with the previous results under the laminar flow, due to turbulent characteristics of the flow, sagging velocity is much faster. Based on the measured sagging profiles, a modified model to describe the air-water interface dynamics under turbulent flows is suggested. Supported by City of Seoul through Seoul Urban Data Science Laboratory Project (Grant No 0660-20170004) administered by SNU Big Data Institute.

  17. Horizontal Air-Water Flow Analysis with Wire Mesh Sensor

    International Nuclear Information System (INIS)

    De Salve, M; Monni, G; Panella, B

    2012-01-01

    A Wire Mesh Sensor, based on the measurement of the local instantaneous conductivity of the two-phase mixture, has been used to characterize the fluid dynamics of the gas–liquid interface in a horizontal pipe flow. Experiments with a pipe of a nominal diameter of 19.5 mm and total length of 6 m, have been performed with air/water mixtures, at ambient conditions. The flow quality ranges from 0.00016 to 0.22 and the superficial velocities range from 0.1 to 10.5 m/s for air and from 0.02 to 1.7 m/s for water; the flow pattern is stratified, slug/plug and annular. A sensor (WMS200) with an inner diameter of 19.5 mm and a measuring matrix of 16×16 points equally distributed over the cross-section has been chosen for the measurements. From the analysis of the Wire Mesh Sensor digital signals the average and the local void fraction are evaluated and the flow patterns are identified with reference to space, time and flow rate boundary conditions.

  18. The influence of bubbles on the perception carbonation bite.

    Directory of Open Access Journals (Sweden)

    Paul M Wise

    Full Text Available Although many people naively assume that the bite of carbonation is due to tactile stimulation of the oral cavity by bubbles, it has become increasingly clear that carbonation bite comes mainly from formation of carbonic acid in the oral mucosa. In Experiment 1, we asked whether bubbles were in fact required to perceive carbonation bite. Subjects rated oral pungency from several concentrations of carbonated water both at normal atmospheric pressure (at which bubbles could form and at 2.0 atmospheres pressure (at which bubbles did not form. Ratings of carbonation bite under the two pressure conditions were essentially identical, indicating that bubbles are not required for pungency. In Experiment 2, we created controlled streams of air bubbles around the tongue in mildly pungent CO2 solutions to determine how tactile stimulation from bubbles affects carbonation bite. Since innocuous sensations like light touch and cooling often suppress pain, we predicted that bubbles might reduce rated bite. Contrary to prediction, air bubbles flowing around the tongue significantly enhanced rated bite, without inducing perceived bite in blank (un-carbonated solutions. Accordingly, though bubbles are clearly not required for carbonation bite, they may well modulate perceived bite. More generally, the results show that innocuous tactile stimulation can enhance chemogenic pain. Possible physiological mechanisms are discussed.

  19. Bubble parameters analysis of gas-liquid two-phase sparse bubbly flow based on image method

    International Nuclear Information System (INIS)

    Zhou Yunlong; Zhou Hongjuan; Song Lianzhuang; Liu Qian

    2012-01-01

    The sparse rising bubbles of gas-liquid two-phase flow in vertical pipe were measured and studied based on image method. The bubble images were acquired by high-speed video camera systems, the characteristic parameters of bubbles were extracted by using image processing techniques. Then velocity variation of rising bubbles were drawn. Area and centroid variation of single bubble were also drawn. And then parameters and movement law of bubbles were analyzed and studied. The test results showed that parameters of bubbles had been analyzed well by using image method. (authors)

  20. Bubble behavior in a vertical Taylor-Couette flow

    International Nuclear Information System (INIS)

    Murai, Y; Oiwa, H; Takeda, Y

    2005-01-01

    Bubble distributions organized in a vertical Taylor-Couette flow are experimentally investigated. Modification of shear stress due to bubbles is measured with a torque sensor installed on the rotating inner cylinder. The wall shear stress decreases as bubbles are injected in all the tested range of Re from 600 to 4500. The drag reduction ratio per void fraction measured in the present experiment, which indicates net gain of the drag reduction, has been evaluated. The gain was more than unity for Re 4000. The maximum gain achieved was around 10 at Re = 600, at which point the bubbles dispersed widely on the inner cylinder surface and effectively restrict momentum exchange of fluid between the two walls. The expansion of Taylor vortices in the vertical direction by the presence of bubbles was confirmed by flow visualization including particle tracking velocimetry. Such bubble behaviours interacting with Taylor vortices are discussed in detail in this paper

  1. Evolution of the two-phase flow in a vertical tube-decomposition of gas fraction profiles according to bubble size classes using wire-mesh sensors

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M.; Krepper, E.; Lucas, D. [Forschungszentrum Rossendorf e.V., Dresden (Germany)

    2002-01-01

    The wire-mesh sensor developed by the Forschungszentrum Rossendorf produces sequences of instantaneous gas fraction distributions in a cross section with a time resolution of 1200 frames per second and a spatial resolution of about 2-3 mm. At moderate flow velocities (up to 1-2 m.s{sup -1}), bubble size distributions can be obtained, since each individual bubble is mapped in several successive distributions. The method was used to study the evolution of the bubble size distribution in a vertical two-phase flow. For this purpose, the sensor was placed downstream of an air injector, the distance between air injection and sensor was varied. The bubble identification algorithm allows to select bubbles of a given range of the effective diameter and to calculate partial gas fraction profiles for this diameter range. In this way, the different behaviour of small and large bubbles in respect to the action of the lift force was observed in a mixture of small and large bubbles. (authors)

  2. The Minnaert bubble: an acoustic approach

    Energy Technology Data Exchange (ETDEWEB)

    Devaud, Martin; Hocquet, Thierry; Bacri, Jean-Claude [Laboratoire Matiere et Systemes Complexes, Universite Paris Diderot and CNRS UMR 7057, 10 rue Alice Domont et Leonie Duquet, 75013 Paris (France); Leroy, Valentin [Laboratoire Ondes et Acoustique, Universite Paris 7 and CNRS UMR 7587, ESPCI, 10 rue Vauquelin, 75005 Paris (France)], E-mail: martin.devaud@univ-paris-diderot.fr

    2008-11-15

    We propose an ab initio introduction to the well-known Minnaert pulsating bubble at graduate level. After a brief recall of the standard stuff, we begin with a detailed discussion of the radial movements of an air bubble in water. This discussion is managed from an acoustic point of view, and using the Lagrangian rather than the Eulerian variables. In unbounded water, the air-water system has a continuum of eigenmodes, some of them correspond to regular Fabry-Perot resonances. A singular resonance, the lowest one, is shown to coincide with that of Minnaert. In bounded water, the eigenmodes spectrum is discrete, with a finite fundamental frequency. A spectacular quasi-locking of the latter occurs if it happens to exceed the Minnaert frequency, which provides an unforeseen one-bubble alternative version of the famous 'hot chocolate effect'. In the (low) frequency domain in which sound propagation inside the bubble reduces to a simple 'breathing' (i.e. inflation/deflation), the light air bubble can be 'dressed' by the outer water pressure forces, and is turned into the heavy Minnaert bubble. Thanks to this unexpected renormalization process, we demonstrate that the Minnaert bubble definitely behaves like a true harmonic oscillator of the spring-bob type, but with a damping term and a forcing term in apparent disagreement with those commonly admitted in the literature. Finally, we underline the double role played by the water. In order to tell the water motion associated with water compressibility (i.e. the sound) from the simple incompressible accompaniment of the bubble breathing, we introduce a new picture analogous to the electromagnetic radiative picture in Coulomb gauge, which naturally leads us to split the water displacement in an instantaneous and a retarded part. The Minnaert renormalized mass of the dressed bubble is then automatically recovered.

  3. Experiments on hydraulically-compensated Compressed Air Energy Storage (CAES) system using large-diameter vertical pipe two-phase flow test facility: test facility and test procedure

    International Nuclear Information System (INIS)

    Ohtsu, Iwao; Murata, Hideo; Kukita, Yutaka; Kumamaru, Hiroshige.

    1996-07-01

    JAERI, the University of Tokyo, the Central Research Institute of Electric Power Industry and Shimizu Corporation jointing performed and experimental study on two-phase flow in the hydraulically-compensated Compressed Air Energy Storage (CAES) system with a large-diameter vertical pipe two-phase flow test facility from 1993 to 1995. A hydraulically-compensated CAES system is a proposed, conceptual energy storage system where energy is stored in the form of compressed air in an underground cavern which is sealed by a deep (several hundred meters) water shaft. The shaft water head maintains a constant pressure in the cavern, of several mega Pascals, even during loading or unloading of the cavern with air. The dissolved air in the water, however, may create voids in the shaft when the water rises through the shaft during the loading, being forced by the air flow into the cavern. The voids may reduce the effective head of the shaft, and thus the seal may fail, if significant bubbling should occur in the shaft. This bubbling phenomenon (termed 'Champaign effect') and potential failure of the water seal ('blowout') are simulated in a scaled-height, scaled-diameter facility. Carbon dioxide is used to simulate high solubility of air in the full-height, full-pressure system. This report describes the expected and potential two-phase flow phenomena in a hydraulically-compensated CAES system, the test facility and the test procedure, a method to estimate quantities which are not directly measured by using measured quantities and hydrodynamic basic equations, and desirable additional instrumentation. (author)

  4. Modeling of bubble coalescence and disintegration in confined upward two-phase flow

    International Nuclear Information System (INIS)

    Sun Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.

    2004-01-01

    This paper presents the modeling of bubble interaction mechanisms in the two-group interfacial area transport equation (IATE) for confined gas-liquid two-phase flow. The transport equation is applicable to bubbly, cap-turbulent, and churn-turbulent flow regimes. In the two-group IATE, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest, and are analytically modeled as the source/sink terms for the transport equation in the confined flow. These models include both intra-group and inter-group bubble interactions

  5. Period adding cascades: experiment and modeling in air bubbling.

    Science.gov (United States)

    Pereira, Felipe Augusto Cardoso; Colli, Eduardo; Sartorelli, José Carlos

    2012-03-01

    Period adding cascades have been observed experimentally/numerically in the dynamics of neurons and pancreatic cells, lasers, electric circuits, chemical reactions, oceanic internal waves, and also in air bubbling. We show that the period adding cascades appearing in bubbling from a nozzle submerged in a viscous liquid can be reproduced by a simple model, based on some hydrodynamical principles, dealing with the time evolution of two variables, bubble position and pressure of the air chamber, through a system of differential equations with a rule of detachment based on force balance. The model further reduces to an iterating one-dimensional map giving the pressures at the detachments, where time between bubbles come out as an observable of the dynamics. The model has not only good agreement with experimental data, but is also able to predict the influence of the main parameters involved, like the length of the hose connecting the air supplier with the needle, the needle radius and the needle length.

  6. Regularities of growth, condensation, solution of vapour and gaseous bubbles in turbulent flows

    International Nuclear Information System (INIS)

    Avdeev, A.A.

    1988-01-01

    Corrections for interphase transfer exchange intensity and for bubbles dynamics in the forced turbulent flow as well are obtained on the basis of the surface periodical restoration model. Analysis of the effects, caused by turbulence additional generation due to bubbles floating-up within gravity field, is carried out. Formulae for calculating interphase heat and mass transfer at bubbling are suggested. Application limits for the developed model are determined. Comparison of calculation results according to the derived universal dependence with experimental data on growth rates and condensation of vapour bubble, and on solution rates of gaseous bubbles in water (Re=8x10 3 -2x10 6 ; Pr0.83-568, pressure up to 10 MPa) has revealed their good agreeme nt

  7. Interfacial structures in confined cap-turbulent and churn-turbulent flows

    International Nuclear Information System (INIS)

    Sun Xiaodong; Kim, Seungjin; Cheng Ling; Ishii, Mamoru; Beus, Stephen G.

    2004-01-01

    The objective of the present work is to study and model the interfacial structure development of air-water two-phase flow in a confined flow passage. Experiments of a total of 13 flow conditions in cap-turbulent and churn-turbulent flow regimes are carried out in a vertical air-water upward two-phase flow experimental loop with a test section of 200 mm in width and 10 mm in gap. Miniaturized four-sensor conductivity probes are used to measure local two-phase parameters at three different elevations for each flow condition. Bubble characteristics captured by the probes are categorized into two groups in view of the two-group interfacial area transport equation, i.e., spherical/distorted bubbles as Group 1 and cap/churn-turbulent bubbles as Group 2. The acquired local parameters are time-averaged void fraction, interfacial velocity, bubble number frequency, interfacial area concentration, and bubble Sauter mean diameter for each group of bubbles. Also, the line-averaged and area-averaged data are presented and discussed in detail. The comparisons of these parameters at different elevations demonstrate the development of interfacial structures along the flow direction due to bubble interactions and the hydrodynamic effects. Furthermore, these data can serve as one part of the experimental data for investigation of the interfacial area transport in a confined two-phase flow

  8. Shapes and rising velocities of single bubbles rising through an inner subchannel

    International Nuclear Information System (INIS)

    Tomiyama, Akio; Nakahara, Yusuke; Adachi, Yoshihiro; Hosokawa, Shigeo

    2003-01-01

    Shapes and velocities of single air bubbles rising through stagnant and flowing waters in an inner subchannel are measured by making use of fluorocarbon tubes. It is confirmed that (1) bubble shapes and motions in the subchannel are by far different from those in simple geometry, and they depend on the ratio λ of the bubble diameter to the subchannel hydraulic diameter, (2) when λ > 0.9, a part of a bubble intrudes into neighboring subchannels, and thereby a kind of void drift takes place even with a single bubble, (3) the terminal velocity V T of a small bubble (λ T for cell-Taylor bubbles (λ > 0.9) is presented, and (5) the rising velocity V B in laminar an turbulent flow conditions are well evaluated by substituting the proposed V T models and the ratio of the maximum liquid velocity to the mean liquid velocity into the Nicklin correlation. (author)

  9. Visualized investigation on flow regimes for vertical upward steam–water flow in a heated narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Junfeng; Huang Yanping; Wang Yanlin; Song Mingliang

    2012-01-01

    Highlights: ► Flow regimes were visually investigated in a heated narrow rectangular channel. ► Bubbly, churn, and annular flow were observed. Slug flow was never observed. ► Flow regime transition boundary could be predicted by existing criteria. ► Churn zone in present flow regime maps were poorly predicted by existing criteria. - Abstract: Flow regimes are very important in understanding two-phase flow resistance and heat transfer characteristics. In present work, two-phase flow regimes for steam–water flows in a single-side heated narrow rectangular channel, having a width of 40 mm and a gap of 3 mm, were visually studied at relatively low pressure and low mass flux condition. The flow regimes observed in this experiment could be classified into bubbly, churn and annular flow. Slug flow was never observed at any of the conditions in our experiment. Flow regime maps at the pressure of 0.7 MPa and 1.0 MPa were developed, and then the pressure effect on flow regime transition was analyzed. Based on the experimental results, the comparisons with some existing flow regime maps and transition criteria were conducted. The comparison results show that the bubbly transition boundary and annular formation boundary of heated steam–water flow were consistent with that of adiabatic air–water flow. However, the intermediate flow pattern between bubbly and annular flow was different. Hibiki and Mishima criteria could predict the bubbly transition boundary and annular formation boundary satisfactorily, but it poorly predicted churn zone in present experimental data.

  10. Dynamics of a two-phase flow through a minichannel: Transition from churn to slug flow

    Science.gov (United States)

    Górski, Grzegorz; Litak, Grzegorz; Mosdorf, Romuald; Rysak, Andrzej

    2016-04-01

    The churn-to-slug flow bifurcations of two-phase (air-water) flow patterns in a 2mm diameter minichannel were investigated. With increasing a water flow rate, we observed the transition of slugs to bubbles of different sizes. The process was recorded by a digital camera. The sequences of light transmission time series were recorded by a laser-phototransistor sensor, and then analyzed using the recurrence plots and recurrence quantification analysis (RQA). Due to volume dependence of bubbles velocities, we observed the formation of periodic modulations in the laser signal.

  11. Inhomogeneous MUSIG Model - a population balance approach for polydispersed bubbly flows

    International Nuclear Information System (INIS)

    Frank, T.; Zwart, P.J.; Shi, J.; Krepper, E.; Lucas, D.; Rohde, U.

    2005-01-01

    Many flow regimes in Nuclear Reactor Safety (NRS) Research are characterized by multiphase flows, with one phase being a continuous liquid and the other phase consisting of gas or vapour of the liquid phase. In the range of low to intermediate volume fraction of the gaseous phase the multiphase flow under consideration is a bubbly or slug flow, where the disperse phase is characterized by an evolving bubble size distribution due to bubble breakup and coalescence processes. The paper presents a generalized inhomogeneous Multiple Size Group (MUSIG) Model. Within this model the disperse gaseous phase is divided into N inhomogeneous velocity groups (phases) and each of these groups is subdivided into M bubble size classes. Bubble breakup and coalescence processes between all bubble size classes are taken into account by appropriate models. The derived inhomogeneous MUSIG model has been validated against experimental data from the TOPFLOW test facility at the Research Center Rossendorf (FZR). Comparisons of gas volume fraction and velocity profiles with TOPFLOW-074 test case data are provided, showing the applicability and accuracy of the model for polydispersed bubbly flow in large diameter vertical pipe flow. (author)

  12. Mode transition in bubbly Taylor-Couette flow measured by PTV

    International Nuclear Information System (INIS)

    Yoshida, K; Tasaka, Y; Murai, Y; Takeda, T

    2009-01-01

    The drag acting to the inner cylinder in Taylor-Couette flow system can be reduced by bubble injection. In this research, relationship between drag reduction and change of vortical structure in a Taylor-Couette flow is investigated by Particle Tracking Velocimetry (PTV). The velocity vector field in the r-z cross section and the bubble concentration in the front view (z-θ plane) are measured. This paper describes the change of vortical structures with bubbles, and the mode transition that is sensitively affected by the bubbles is discussed. The bubbles accumulate in the three parts relative to vortex position by the interaction between bubbles and vortices. The status of bubble's distribution is different depending on position. This difference affects mode transition as its trigger significantly. The presence of bubbles affects the transition from toroidal mode to spiral mode but does not induce the transition from spiral mode to toroidal mode. Further we found that Taylor vortex bifurcates and a pair of vortices coalesces when the flow switches between spiral mode and toroidal mode.

  13. Wire-Mesh Tomography Measurements of Void Fraction in Rectangular Bubble Columns

    International Nuclear Information System (INIS)

    Reddy Vanga, B.N.; Lopez de Bertodano, M.A.; Zaruba, A.; Prasser, H.M.; Krepper, E.

    2004-01-01

    Bubble Columns are widely used in the process industry and their scale-up from laboratory scale units to industrial units have been a subject of extensive study. The void fraction distribution in the bubble column is affected by the column size, superficial velocity of the dispersed phase, height of the liquid column, size of the gas bubbles, flow regime, sparger design and geometry of the bubble column. The void fraction distribution in turn affects the interfacial momentum transfer in the bubble column. The void fraction distribution in a rectangular bubble column 10 cm wide and 2 cm deep has been measured using Wire-Mesh Tomography. Experiments were performed in an air-water system with the column operating in the dispersed bubbly flow regime. The experiments also serve the purpose of studying the performance of wire-mesh sensors in batch flows. A 'wall peak' has been observed in the measured void fraction profiles, for the higher gas flow rates. This 'wall peak' seems to be unique, as this distribution has not been previously reported in bubble column literature. Low gas flow rates yielded the conventional 'center peak' void profile. The effect of column height and superficial gas velocity on the void distribution has been investigated. Wire-mesh Tomography also facilitates the measurement of bubble size distribution in the column. This paper presents the measurement principle and the experimental results for a wide range of superficial gas velocities. (authors)

  14. Effect of an entrained air bubble on the acoustics of an ink channel

    NARCIS (Netherlands)

    Jeurissen, R.J.M.; Jong, de J.; Reinten, H.; Berg, van den M.; Wijshoff, H.M.A.; Versluis, M.; Lohse, D.

    2008-01-01

    Piezo-driven inkjet systems are very sensitive to air entrapment. The entrapped air bubbles grow by rectified diffusion in the ink channel and finally result in nozzle failure. Experimental results on the dynamics of fully grown air bubbles are presented. It is found that the bubble counteracts the

  15. Bubble propagation on a rail: a concept for sorting bubbles by size

    Science.gov (United States)

    Franco-Gómez, Andrés; Thompson, Alice B.; Hazel, Andrew L.; Juel, Anne

    We demonstrate experimentally that the introduction of a rail, a small height constriction, within the cross-section of a rectangular channel could be used as a robust passive sorting device in two-phase fluid flows. Single air bubbles carried within silicone oil are generally transported on one side of the rail. However, for flow rates marginally larger than a critical value, a narrow band of bubble sizes can propagate (stably) over the rail, while bubbles of other sizes segregate to the side of the rail. The width of this band of bubble sizes increases with flow rate and the size of the most stable bubble can be tuned by varying the rail width. We present a complementary theoretical analysis based on a depth-averaged theory, which is in qualitative agreement with the experiments. The theoretical study reveals that the mechanism relies on a non-trivial interaction between capillary and viscous forces that is fully dynamic, rather than being a simple modification of capillary static solutions.

  16. Bubble-free on-chip continuous-flow polymerase chain reaction: concept and application.

    Science.gov (United States)

    Wu, Wenming; Kang, Kyung-Tae; Lee, Nae Yoon

    2011-06-07

    Bubble formation inside a microscale channel is a significant problem in general microfluidic experiments. The problem becomes especially crucial when performing a polymerase chain reaction (PCR) on a chip which is subject to repetitive temperature changes. In this paper, we propose a bubble-free sample injection scheme applicable for continuous-flow PCR inside a glass/PDMS hybrid microfluidic chip, and attempt to provide a theoretical basis concerning bubble formation and elimination. Highly viscous paraffin oil plugs are employed in both the anterior and posterior ends of a sample plug, completely encapsulating the sample and eliminating possible nucleation sites for bubbles. In this way, internal channel pressure is increased, and vaporization of the sample is prevented, suppressing bubble formation. Use of an oil plug in the posterior end of the sample plug aids in maintaining a stable flow of a sample at a constant rate inside a heated microchannel throughout the entire reaction, as compared to using an air plug. By adopting the proposed sample injection scheme, we demonstrate various practical applications. On-chip continuous-flow PCR is performed employing genomic DNA extracted from a clinical single hair root sample, and its D1S80 locus is successfully amplified. Also, chip reusability is assessed using a plasmid vector. A single chip is used up to 10 times repeatedly without being destroyed, maintaining almost equal intensities of the resulting amplicons after each run, ensuring the reliability and reproducibility of the proposed sample injection scheme. In addition, the use of a commercially-available and highly cost-effective hot plate as a potential candidate for the heating source is investigated.

  17. Direct numerical simulation of turbulent channel flow with deformed bubbles

    International Nuclear Information System (INIS)

    Yamamoto, Yoshinobu; Kunugi, Tomoaki

    2010-01-01

    In this study, the direct numerical simulation of a fully-developed turbulent channel flow with deformed bubbles were conducted by means of the refined MARS method, turbulent Reynolds number 150, and Bubble Reynolds number 120. As the results, large-scale wake motions were observed round the bubbles. At the bubble located region, mean velocity was degreased and turbulent intensities and Reynolds shear stress were increased by the effects of the large-scale wake motions round bubbles. On the other hands, near wall region, bubbles might effect on the flow laminarlize and drag reduction. Two types of drag coefficient of bubble were estimated from the accelerated velocity of bubble and correlation equation as a function of Particle Reynolds number. Empirical correlation equation might be overestimated the drag effects in this Particle Reynolds number range. (author)

  18. Characterization of horizontal air–water two-phase flow

    Energy Technology Data Exchange (ETDEWEB)

    Kong, Ran; Kim, Seungjin, E-mail: skim@psu.edu

    2017-02-15

    Highlights: • A visualization study is performed to develop flow regime map in horizontal flow. • Database in horizontal bubbly flow is extended using a local conductivity probe. • Frictional pressure drop analysis is performed in horizontal bubbly flow. • Drift flux analysis is performed in horizontal bubbly flow. - Abstract: This paper presents experimental studies performed to characterize horizontal air–water two-phase flow in a round pipe with an inner diameter of 3.81 cm. A detailed flow visualization study is performed using a high-speed video camera in a wide range of two-phase flow conditions to verify previous flow regime maps. Two-phase flows are classified into bubbly, plug, slug, stratified, stratified-wavy, and annular flow regimes. While the transition boundaries identified in the present study compare well with the existing ones (Mandhane et al., 1974) in general, some discrepancies are observed for bubbly-to-plug/slug, and plug-to-slug transition boundaries. Based on the new transition boundaries, three additional test conditions are determined in horizontal bubbly flow to extend the database by Talley et al. (2015a). Various local two-phase flow parameters including void fraction, interfacial area concentration, bubble velocity, and bubble Sauter mean diameter are obtained. The effects of increasing gas flow rate on void fraction, bubble Sauter mean diameter, and bubble velocity are discussed. Bubbles begin to coalesce near the gas–liquid layer instead of in the highly packed region when gas flow rate increases. Using all the current experimental data, two-phase frictional pressure loss analysis is performed using the Lockhart–Martinelli method. It is found that the coefficient C = 24 yields the best agreement with the data with the minimum average difference. Moreover, drift flux analysis is performed to predict void-weighted area-averaged bubble velocity and area-averaged void fraction. Based on the current database, functional

  19. Turbulence-induced bubble collision force modeling and validation in adiabatic two-phase flow using CFD

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Subash L., E-mail: sharma55@purdue.edu [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907-1290 (United States); Hibiki, Takashi; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907-1290 (United States); Brooks, Caleb S. [Department of Nuclear, Plasma, and Radiological Engineering, University of Illinois, Urbana, IL 61801 (United States); Schlegel, Joshua P. [Nuclear Engineering Program, Missouri University of Science and Technology, Rolla, MO 65409 (United States); Liu, Yang [Nuclear Engineering Program, Department of Mechanical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061 (United States); Buchanan, John R. [Bechtel Marine Propulsion Corporation, Bettis Laboratory, West Mifflin, PA 15122 (United States)

    2017-02-15

    Highlights: • Void distribution in narrow rectangular channel with various non-uniform inlet conditions. • Modeling of void diffusion due to bubble collision force. • Validation of new modeling in adiabatic air–water two-phase flow in a narrow channel. - Abstract: The prediction capability of the two-fluid model for gas–liquid dispersed two-phase flow depends on the accuracy of the closure relations for the interfacial forces. In previous studies of two-phase flow Computational Fluid Dynamics (CFD), interfacial force models for a single isolated bubble has been extended to disperse two-phase flow assuming the effect in a swarm of bubbles is similar. Limited studies have been performed investigating the effect of the bubble concentration on the lateral phase distribution. Bubbles, while moving through the liquid phase, may undergo turbulence-driven random collision with neighboring bubbles without significant coalescence. The rate of these collisions depends upon the bubble approach velocity and bubble spacing. The bubble collision frequency is expected to be higher in locations with higher bubble concentrations, i.e., volume fraction. This turbulence-driven random collision causes the diffusion of the bubbles from high concentration to low concentration. Based on experimental observations, a phenomenological model has been developed for a “turbulence-induced bubble collision force” for use in the two-fluid model. For testing the validity of the model, two-phase flow data measured at Purdue University are utilized. The geometry is a 10 mm × 200 mm cross section channel. Experimentally, non-uniform inlet boundary conditions are applied with different sparger combinations to vary the volume fraction distribution across the wider dimension. Examining uniform and non-uniform inlet data allows for the influence of the volume fraction to be studied as a separate effect. The turbulence-induced bubble collision force has been implemented in ANSYS CFX. The

  20. Optimizing the Air Dissolution Parameters in an Unpacked Dissolved Air Flotation System

    Directory of Open Access Journals (Sweden)

    Adam Dassey

    2011-12-01

    Full Text Available Due to the various parameters that influence air solubility and microbubble production in dissolved air flotation (DAF, a multitude of values that cover a large range for these parameters are suggested for field systems. An unpacked saturator and an air quantification unit were designed to specify the effects of power, pressure, temperature, hydraulic retention time, and air flow on the DAF performance. It was determined that a pressure of 621 kPa, hydraulic retention time of 18.2 min, and air flow of 8.5 L/h would be the best controlled parameters for maximum efficiency in this unit. A temperature of 7 °C showed the greatest microbubble production, but temperature control would not be expected in actual application. The maximum microbubble flow from the designed system produced 30 mL of air (±1.5 per L of water under these conditions with immediate startup. The maximum theoretical dissolved air volume of 107 mL (±6 was achieved at a retention time of 2 h and a pressure of 621 kPa. To isolate and have better control over the various DAF operational parameters, the DAF unit was operated without the unsaturated flow stream. This mode of operation led to the formation of large bubbles at peak bubble production rates. In a real-world application, the large bubble formation will be avoided by mixing with raw unsaturated stream and by altering the location of dissolved air output flow.

  1. A heat transfer model for evaporating micro-channel coalescing bubble flow

    International Nuclear Information System (INIS)

    Consolini, L.; Thome, J.R.

    2009-01-01

    The current study presents a one-dimensional model of confined coalescing bubble flow for the prediction of micro-channel convective boiling heat transfer. Coalescing bubble flow has recently been identified as one of the characteristic flow patterns to be found in micro-scale systems, occurring at intermediate vapor qualities between the isolated bubble and the fully annular regimes. As two or more bubbles bond under the action of inertia and surface tension, the passage frequency of the bubble liquid slug pair declines, with a redistribution of liquid among the remaining flow structures. Assuming heat transfer to occur only by conduction through the thin evaporating liquid film surrounding individual bubbles, the present model includes a simplified description of the dynamics of the thin film evaporation process that takes into account the added mass transfer by breakup of the bridging liquid slugs. The new model has been confronted against experimental data taken within the coalescing bubble flow mode that have been identified by a diabatic micro-scale flow pattern map. The comparisons for three different fluids (R-134a, R-236fa and R-245fa) gave encouraging results with 83% of the database predicted within a ± 30% error band. (author)

  2. Visualization of airflow growing soap bubbles

    Science.gov (United States)

    Al Rahbi, Hamood; Bock, Matthew; Ryu, Sangjin

    2016-11-01

    Visualizing airflow inside growing soap bubbles can answer questions regarding the fluid dynamics of soap bubble blowing, which is a model system for flows with a gas-liquid-gas interface. Also, understanding the soap bubble blowing process is practical because it can contribute to controlling industrial processes similar to soap bubble blowing. In this study, we visualized airflow which grows soap bubbles using the smoke wire technique to understand how airflow blows soap bubbles. The soap bubble blower setup was built to mimic the human blowing process of soap bubbles, which consists of a blower, a nozzle and a bubble ring. The smoke wire was placed between the nozzle and the bubble ring, and smoke-visualized airflow was captured using a high speed camera. Our visualization shows how air jet flows into the growing soap bubble on the ring and how the airflow interacts with the soap film of growing bubble.

  3. Modeling on bubbly to churn flow pattern transition in narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng

    2012-01-01

    A theoretical model based on some reasonable concepts was developed to predict the bubbly flow to churn flow pattern transition in vertical narrow rectangular channel under flow boiling condition. The maximum size of ideal bubble in narrow rectangular channel was calculated based on previous literature. The thermal hydraulics boundary condition of bubbly to churn flow pattern transition was exported from Helmholtz and maximum size of ideal bubble. The theoretical model was validated by existent experimental data. (authors)

  4. Ultrasonic determination of interfacial area, void fraction and Sauter mean diameter in bubbly flow

    International Nuclear Information System (INIS)

    Bensler, Henri-Paul

    1990-01-01

    In this research thesis, the author shows that it is possible to determine, by means of a single measurement, the interface surface, the vacuum rate, and the Sauter mean diameter in a bubbly water-air flow. The developed technique relies on the measurement of the attenuation of an ultrasound beam by the two-phase medium, and on the use of broadband transducers associated with a multi-frequency screening method. Tests in standing water or in forced convection are performed in ducts with a square cross section with a side of 40, 80, or 120 mm. Values obtained with ultrasounds are compared with those determined by using photographs (interface surfaces, Sauter diameters) or by using a gauge pressure, or by using X rays (vacuum rate). This method based on ultrasound attenuation reveals to be simple and in good agreement with reference methods [fr

  5. Detailed evaluation of the natural circulation mass flow rate of water propelled by using an air injection

    International Nuclear Information System (INIS)

    Park, Rae-Joon; Ha, Kwang-Soon; Kim, Jae-Cheol; Hong, Seong-Wan; Kim, Sang-Baik

    2008-01-01

    One-dimensional (1D) air-water two-phase natural circulation flow in the thermohydraulic evaluation of reactor cooling mechanism by external self-induced flow - one-dimensional' (THERMES-1D) experiment has been verified and evaluated by using the RELAP5/MOD3 computer code. Experimental results on the 1D natural circulation mass flow rate of water propelled by using an air injection have been evaluated in detail. The RELAP5 results have shown that an increase in the air injection rate to 50% of the total heat flux leads to an increase in the water circulation mass flow rate. However, an increase in the air injection rate from 50 to 100% does not affect the water circulation mass flow rate, because of the inlet area condition. As the height increases in the air injection part, the void fraction increases. However, the void fraction in the upper part of the air injector maintains a constant value. An increase in the air injection mass flow rate leads to an increase in the local void fraction, but it has no influence on the local pressure. An increase in the coolant inlet area leads to an increase in the water circulation mass flow rate. However, the water outlet area does not have an influence on the water circulation mass flow rate. As the coolant outlet moves to a lower position, the water circulation mass flow rate decreases. (author)

  6. Characterization of Bubble Size Distributions within a Bubble Column

    OpenAIRE

    Shahrouz Mohagheghian; Brian R. Elbing

    2018-01-01

    The current study experimentally examines bubble size distribution (BSD) within a bubble column and the associated characteristic length scales. Air was injected into a column of water via a single injection tube. The column diameter (63–102 mm), injection tube diameter (0.8–1.6 mm) and superficial gas velocity (1.4–55 mm/s) were varied. Large samples (up to 54,000 bubbles) of bubble sizes measured via 2D imaging were used to produce probability density functions (PDFs). The PDFs were used to...

  7. CFD analysis of bubble microlayer and growth in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Owoeye, Eyitayo James, E-mail: msgenius10@ufl.edu; Schubring, DuWanye, E-mail: dlschubring@ufl.edu

    2016-08-01

    Highlights: • A new LES-microlayer model is introduced. • Analogous to the unresolved SGS in LES, analysis of bubble microlayer was performed. • The thickness of bubble microlayer was computed at both steady and transient states. • The macroscale two-phase behavior was captured with VOF coupled with AMR. • Numerical validations were performed for both the micro- and macro-region analyses. - Abstract: A numerical study of single bubble growth in turbulent subcooled flow boiling was carried out. The macro- and micro-regions of the bubble were analyzed by introducing a LES-microlayer model. Analogous to the unresolved sub-grid scale (SGS) in LES, a microlayer analysis was performed to capture the unresolved thermal scales for the micro-region heat transfer by deriving equations for the microlayer thickness at steady and transient states. The phase change at the macro-region was based on Volume-of-Fluid (VOF) interface tracking method coupled with adaptive mesh refinement (AMR). Large Eddy Simulation (LES) was used to model the turbulence characteristics. The numerical model was validated with multiple experimental data from the open literature. This study includes parametric variations that cover the operating conditions of boiling water reactor (BWR) and pressurized water reactor (PWR). The numerical model was used to study the microlayer thickness, growth rate, dynamics, and distortion of the bubble.

  8. Effects of bubbling operations on a thermally stratified reservoir: implications for water quality amelioration.

    Science.gov (United States)

    Fernandez, R L; Bonansea, M; Cosavella, A; Monarde, F; Ferreyra, M; Bresciano, J

    2012-01-01

    Artificial thermal mixing of the water column is a common method of addressing water quality problems with the most popular method of destratification being the bubble curtain. The air or oxygen distribution along submerged multiport diffusers is based on similar basic principles as those of outfall disposal systems. Moreover, the disposal of sequestered greenhouse gases into the ocean, as recently proposed by several researchers to mitigate the global warming problem, requires analogous design criteria. In this paper, the influence of a bubble-plume is evaluated using full-scale temperature and water quality data collected in San Roque Reservoir, Argentina. A composite system consisting of seven separated diffusers connected to four 500 kPa compressors was installed at this reservoir by the end of 2008. The original purpose of this air bubble system was to reduce the stratification, so that the water body may completely mix under natural phenomena and remain well oxygenated throughout the year. By using a combination of the field measurements and modelling, this work demonstrates that thermal mixing by means of compressed air may improve water quality; however, if improperly sized or operated, such mixing can also cause deterioration. Any disruption in aeration during the destratification process, for example, may result in a reduction of oxygen levels due to the higher hypolimnetic temperatures. Further, the use of artificial destratification appears to have insignificant influence on reducing evaporation rates in relatively shallow impoundments such as San Roque reservoir.

  9. Fluid-elastic instability in tube arrays subjected to air-water and steam-water cross-flow

    Science.gov (United States)

    Mitra, D.; Dhir, V. K.; Catton, I.

    2009-10-01

    Flow induced vibrations in heat exchanger tubes have led to numerous accidents and economic losses in the past. Efforts have been made to systematically study the cause of these vibrations and develop remedial design criteria for their avoidance. In this research, experiments were systematically carried out with air-water and steam-water cross-flow over horizontal tubes. A normal square tube array of pitch-to-diameter ratio of 1.4 was used in the experiments. The tubes were suspended from piano wires and strain gauges were used to measure the vibrations. Tubes made of aluminum; stainless steel and brass were systematically tested by maintaining approximately the same stiffness in the tube-wire systems. Instability was clearly seen in single phase and two-phase flow and the critical flow velocity was found to be proportional to tube mass. The present study shows that fully flexible arrays become unstable at a lower flow velocity when compared to a single flexible tube surrounded by rigid tubes. It is also found that tubes are more stable in steam-water flow as compared to air-water flow. Nucleate boiling on the tube surface is also found to have a stabilizing effect on fluid-elastic instability.

  10. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer; Mesure du taux de vide local en ecoulement diphasique eau-air par un anemometre a film chaud

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, J. [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a {gamma}-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [French] Nous proposons une methode de mesure du taux de vide local a en ecoulement diphasique, basee sur l'emploi d'un anemometre a film chaud a temperature constante dont on etudie la repartition du signal en amplitude dans un analyseur multicanaux. Ayant trace un profil de taux de vide local suivant un diametre d'une conduite verticale de section circulaire parcourue par un ecoulement ascendant d'eau et d'air, nous avons compare la moyenne de {alpha} sur ce diametre a la valeur obtenue par une methode d'absorption de rayons {gamma}. Les essais ont ete faits en ecoulements a bulles et a bouchons. Les deux methodes donnent des resultats concordants en particulier pour les ecoulements a bulles. Le taux de vide moyenne dans la section, calcule a partir des differents profils, a egalement ete compare avec succes aux resultats experimentaux de R. ROUMY. Dans l'etude de la structure radiale des ecoulements a bulles, nous avons verifie l'hypothese de S.G. BAJMKOFF. (auteur)

  11. Measurement of the local void fraction in two-phase air-water flow with a hot-film anemometer; Mesure du taux de vide local en ecoulement diphasique eau-air par un anemometre a film chaud

    Energy Technology Data Exchange (ETDEWEB)

    Delhaye, J [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1968-07-01

    The experimental knowledge of the local void-fraction is basic for the derivation of the constitutive equations of two-phase flows. This report deals with measurements of the local void-fraction based on the use of a constant temperature hot-film anemometer associated with a multichannel analyser. After determining the void-fraction profile along a diameter of a vertical pipe (40 mm I.D.), in which air and water flow upwards, we compare the void-fraction averaged over the diameter with the average value measured directly by a {gamma}-ray method. Two runs were made in bubble flow and a third in slug flow. The two methods give results in a good agreement especially for bubble flow. The void-fraction averaged over the cross-section was also calculated from the different profiles and compared in a good manner with the experimental results of R. ROUMY. For bubble flow we verified the theory of S.G. BANKOFF about the shape of the void-fraction profiles. (author) [French] Nous proposons une methode de mesure du taux de vide local a en ecoulement diphasique, basee sur l'emploi d'un anemometre a film chaud a temperature constante dont on etudie la repartition du signal en amplitude dans un analyseur multicanaux. Ayant trace un profil de taux de vide local suivant un diametre d'une conduite verticale de section circulaire parcourue par un ecoulement ascendant d'eau et d'air, nous avons compare la moyenne de {alpha} sur ce diametre a la valeur obtenue par une methode d'absorption de rayons {gamma}. Les essais ont ete faits en ecoulements a bulles et a bouchons. Les deux methodes donnent des resultats concordants en particulier pour les ecoulements a bulles. Le taux de vide moyenne dans la section, calcule a partir des differents profils, a egalement ete compare avec succes aux resultats experimentaux de R. ROUMY. Dans l'etude de la structure radiale des ecoulements a bulles, nous avons verifie l'hypothese de S.G. BAJMKOFF. (auteur)

  12. Relating water and air flow characteristics in coarse granular materials

    DEFF Research Database (Denmark)

    Andreasen, Rune Røjgaard; Canga, Eriona; Poulsen, Tjalfe Gorm

    2013-01-01

    Water pressure drop as a function of velocity controls w 1 ater cleaning biofilter operation 2 cost. At present this relationship in biofilter materials must be determined experimentally as no 3 universal link between pressure drop, velocity and filter material properties have been established. 4...... Pressure drop - velocity in porous media is much simpler and faster to measure for air than for water. 5 For soils and similar materials, observations show a strong connection between pressure drop – 6 velocity relations for air and water, indicating that water pressure drop – velocity may be estimated 7...... from air flow data. The objective of this study was, therefore, to investigate if this approach is valid 8 also for coarse granular biofilter media which usually consists of much larger particles than soils. In 9 this paper the connection between the pressure drop – velocity relationships for air...

  13. Hydrogeology, simulated ground-water flow, and ground-water quality, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    Dumouchelle, D.H.; Schalk, C.W.; Rowe, G.L.; De Roche, J.T.

    1993-01-01

    Ground water is the primary source of water in the Wright-Patterson Air Force Base area. The aquifer consists of glacial sands and gravels that fill a buried bedrock-valley system. Consolidated rocks in the area consist of poorly permeable Ordovician shale of the Richmondian stage, in the upland areas, the Brassfield Limestone of Silurian age. The valleys are filled with glacial sediments of Wisconsinan age consisting of clay-rich tills and coarse-grained outwash deposits. Estimates of hydraulic conductivity of the shales based on results of displacement/recovery tests range from 0.0016 to 12 feet per day; estimates for the glacial sediments range from less than 1 foot per day to more than 1,000 feet per day. Ground water flow from the uplands towards the valleys and the major rivers in the region, the Great Miami and the Mad Rivers. Hydraulic-head data indicate that ground water flows between the bedrock and unconsolidated deposits. Data from a gain/loss study of the Mad River System and hydrographs from nearby wells reveal that the reach of the river next to Wright-Patterson Air Force Base is a ground-water discharge area. A steady-state, three-dimensional ground-water-flow model was developed to simulate ground-water flow in the region. The model contains three layers and encompasses about 100 square miles centered on Wright-Patterson Air Force Base. Ground water enters the modeled area primarily by river leakage and underflow at the model boundary. Ground water exits the modeled area primarily by flow through the valleys at the model boundaries and through production wells. A model sensitivity analysis involving systematic changes in values of hydrologic parameters in the model indicates that the model is most sensitive to decreases in riverbed conductance and vertical conductance between the upper two layers. The analysis also indicates that the contribution of water to the buried-valley aquifer from the bedrock that forms the valley walls is about 2 to 4

  14. Experimental study of flow monitoring instruments in air-water, two-phase downflow

    International Nuclear Information System (INIS)

    Sheppard, J.D.; Hayes, P.H.; Wynn, M.C.

    1976-01-01

    The performance of a turbine meter, target flow meter (drag disk), and a gamma densitometer was studied in air-water, two-phase vertical downflow. Air and water were metered into an 0.0889-m-ID (3.5-in.) piping system; air flows ranged from 0.007 to 0.3 m 3 /sec (16 to 500 scfm) and water flows ranged from 0.0006 to 0.03 m 3 /sec (10 to 500 gpm). The study included effects of flow rate, quality, flow regime, and flow dispersion on the mean and fluctuating components of the instrument signals. Wire screen flow dispersers located at the inlet to the test section had a significant effect on the readings of the drag disk and gamma densitometer, but had little effect on the turbine. Further, when flow dispersers were used, mass flow rates determined from the three instrument readings and a two-velocity, slip flow model showed good agreement with actual mass flow rate over a three-fold range in quality; mass flows determined with the drag disk and densitometer readings assuming homogeneous flow were nearly as accurate. However, when mass flows were calculated using the turbine and densitometer or turbine and drag disk readings assuming homogeneous flow, results were scattered and relatively inaccurate compared to the actual mass flows. Turbine meter data were used with a two-velocity turbine model and continuity relationships for each phase to determine the void fraction and mean phase velocities in the test section. The void fraction was compared with single beam gamma densitometer results and fluid momentum calculated from a two-velocity model was compared with drag disk readings

  15. Structure and kinematics of bubble flow; Structure et cinematique des ecoulements diphasiques a bulles

    Energy Technology Data Exchange (ETDEWEB)

    Lackme, C [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires

    1967-07-01

    This report deals with the components and use of resistivity probes in bubble flow. With a single probe, we have studied the longitudinal and radial structure of the flow. The very complicated evolution of the radial structure is shown by the measurement of the mean bubble flux at several points in the tube. A double probe associated with a device the principle of which is given in this report, permits the measure of the local velocity of bubbles. Unlike the mean bubble flux profile, the change in the velocity profile along the tube is not significant. We have achieved the synthesis of these two pieces of information, mean local bubble flux and local velocity, by computing the mean weighed velocity in the tube. This weighed velocity compares remarkably with the velocity computed from the volumetric gas flow rate and the mean void fraction. (author) [French] Ce rapport traite d'une etude methodologique des ecoulements diphasiques a bulles. Les fluides sont l'air et l'eau, ils circulent du bas vers le haut dans un tube vertical de 32 mm de diametre et 2 metres de long. Cette etude a pour but de permettre une description fine de l'ecoulement. Pour cela, il a ete necessaire de developper des appareillages nouveaux et de mettre au point les methodes d'analyses correspondantes. La valeur des mesures effectuees et des methodes utilisees apparait dans une comparaison concluante et conclusive entre des resultats de mesures globales et des resultats integres de mesures locales. (auteur)

  16. Modeling on bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel

    International Nuclear Information System (INIS)

    Wang Yanlin; Chen Bingde; Huang Yanping; Wang Junfeng

    2011-01-01

    A theoretical model was developed to predict the bubbly to churn flow pattern transition for vertical upward flows in narrow rectangular channel. The model was developed based on the imbalance theory of Helmholtz and some reasonable assumptions. The maximum ideal bubble in narrow rectangular channel and the thermal hydraulics boundary condition leading to bubbly flow to churn flow pattern transition was calculated. The model was validated by experimental data from previous researches. Comparison between predicted result and experimental result shows a reasonable good agreement. (author)

  17. Automated high-speed video analysis of the bubble dynamics in subcooled flow boiling

    Energy Technology Data Exchange (ETDEWEB)

    Maurus, Reinhold; Ilchenko, Volodymyr; Sattelmayer, Thomas [Technische Univ. Muenchen, Lehrstuhl fuer Thermodynamik, Garching (Germany)

    2004-04-01

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The test-section consists of a rectangular channel with a one side heated copper strip and a very good optical access. For the optical observation of the bubble behaviour the high-speed cinematography is used. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, a huge number of bubble cycles could be analysed. The structure of the developed algorithms for the detection of the bubble diameter, the bubble lifetime, the lifetime after the detachment process and the waiting time between two bubble cycles is described. Subsequently, the results from using these automated procedures are presented. A remarkable novelty is the presentation of all results as distribution functions. This is of physical importance because the commonly applied spatial and temporal averaging leads to a loss of information and, moreover, to an unjustified deterministic view of the boiling process, which exhibits in reality a very wide spread of bubble sizes and characteristic times. The results show that the mass flux dominates the temporal bubble behaviour. An increase of the liquid mass flux reveals a strong decrease of the bubble life - and waiting time. In contrast, the variation of the heat flux has a much smaller impact. It is shown in addition that the investigation of the bubble history using automated algorithms delivers novel information with respect to the bubble lift-off probability. (Author)

  18. Automated high-speed video analysis of the bubble dynamics in subcooled flow boiling

    International Nuclear Information System (INIS)

    Maurus, Reinhold; Ilchenko, Volodymyr; Sattelmayer, Thomas

    2004-01-01

    Subcooled flow boiling is a commonly applied technique for achieving efficient heat transfer. In the study, an experimental investigation in the nucleate boiling regime was performed for water circulating in a closed loop at atmospheric pressure. The test-section consists of a rectangular channel with a one side heated copper strip and a very good optical access. For the optical observation of the bubble behaviour the high-speed cinematography is used. Automated image processing and analysis algorithms developed by the authors were applied for a wide range of mass flow rates and heat fluxes in order to extract characteristic length and time scales of the bubbly layer during the boiling process. Using this methodology, a huge number of bubble cycles could be analysed. The structure of the developed algorithms for the detection of the bubble diameter, the bubble lifetime, the lifetime after the detachment process and the waiting time between two bubble cycles is described. Subsequently, the results from using these automated procedures are presented. A remarkable novelty is the presentation of all results as distribution functions. This is of physical importance because the commonly applied spatial and temporal averaging leads to a loss of information and, moreover, to an unjustified deterministic view of the boiling process, which exhibits in reality a very wide spread of bubble sizes and characteristic times. The results show that the mass flux dominates the temporal bubble behaviour. An increase of the liquid mass flux reveals a strong decrease of the bubble life- and waiting time. In contrast, the variation of the heat flux has a much smaller impact. It is shown in addition that the investigation of the bubble history using automated algorithms delivers novel information with respect to the bubble lift-off probability

  19. Air-water upward flow in prismatic channel of rectangular base

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de.

    1984-01-01

    Experiments had carried out to investigate the two-phase upward air-water flow structure, in a rectangular test section, by using independent measuring techniques, which comprise direct viewing and photography, electrical probes and gamma-ray attenuation. Flow pattern maps and correlations for flow pattern transitions, void fraction profiles, liquid film thickness and superficial average void fraction are proposed and compared to available data. (Author) [pt

  20. Modeling of turbulent bubbly flows; Modelisation des ecoulements turbulents a bulles

    Energy Technology Data Exchange (ETDEWEB)

    Bellakhal, Ghazi

    2005-03-15

    The two-phase flows involve interfacial interactions which modify significantly the structure of the mean and fluctuating flow fields. The design of the two-fluid models adapted to industrial flows requires the taking into account of the effect of these interactions in the closure relations adopted. The work developed in this thesis concerns the development of first order two-fluid models deduced by reduction of second order closures. The adopted reasoning, based on the principle of decomposition of the Reynolds stress tensor into two statistically independent contributions turbulent and pseudo-turbulent parts, allows to preserve the physical contents of the second order relations closure. Analysis of the turbulence structure in two basic flows: homogeneous bubbly flows uniform and with a constant shear allows to deduce a formulation of the two-phase turbulent viscosity involving the characteristic scales of bubbly turbulence, as well as an analytical description of modification of the homogeneous turbulence structure induced by the bubbles presence. The Eulerian two-fluid model was then generalized with the case of the inhomogeneous flows with low void fractions. The numerical results obtained by the application of this model integrated in the computer code MELODIF in the case of free sheared turbulent bubbly flow of wake showed a satisfactory agreement with the experimental data and made it possible to analyze the modification of the characteristic scales of such flow by the interfacial interactions. The two-fluid first order model is generalized finally with the case of high void fractions bubbly flows where the hydrodynamic interactions between the bubbles are not negligible any more. (author)

  1. Stratification of bubbly horizontal flows: modeling and experimental validation

    International Nuclear Information System (INIS)

    Bottin, M.

    2010-01-01

    Hot films and optical probes enabled the acquisition of measurements in bubbly flows at 5, 20 and 40 diameters from the inlet of the vein on the METERO facility which test section is a horizontal circular pipe of 100 mm inner diameter. The distribution of the different phases, the existence of coalescence and sedimentation mechanisms, the influence of the liquid and gas flow rates, the radial and axial evolutions are analyzed thanks to fast camera videos and numerous and varied experimental results (void fraction, bubbles sizes, interfacial area, mean and fluctuating velocities and turbulent kinetic energy of the liquid phase). Some models, based on the idea that the flow reaches an equilibrium state sufficiently far from the inlet of the pipe, were developed to simulate mean interfacial area and turbulent kinetic energy transports in bubbly flows. (author)

  2. Water hammer due to rapid bubble growth at a severe accident

    International Nuclear Information System (INIS)

    Aya, Izuo; Adachi, Masaki; Shiozaki, Koki; Inasaka, Fujio

    2000-01-01

    On a severe accident of the light water reactor (LWR), by steam explosion and so forth due to hydrogen formation by water-metal reaction and direct contact of molted core with water, it is presumed that a lot of vapor forms for a short time in water at reactor vessel and under part of containment vessel. This study aims at and carries out, under reference of the conventional study results, experimental elucidation on coherence of water block motion due to rapid bubble growth, proposal on reduction method of water hammering, development of water hammer estimating method in an actual reactor, and proposal for upgrading of reliability on severe accident evaluation. In 1998 fiscal year, an 'Experimental apparatus on water hammering elements on sever accident' simulated rapid bubble growth due to steam explosion by injecting high pressure air into water was produced to carry out its function test. As a result of the carried out function tests, extreme water hammering phenomena were observed, by which validity of establishment on the study objects could be confirmed. (G.K.)

  3. Organic compounds generated after the flow of water through micro-orifices: Were they synthesized?

    Directory of Open Access Journals (Sweden)

    Tomiichi Hasegawa

    2017-08-01

    Full Text Available Micro-fluid mechanics is an important area of research in modern fluid mechanics because of its many potential industrial and biological applications. However, the field is not fully understood yet. In previous work, when passing ultrapure water (UPW in which air was dissolved (UPW* through micro-orifices, we found that the flow velocity decreased and stopped over time, and membranes were frequently formed in the orifice when the flow stopped. The membrane came from the dissolved air in UPW*, and membrane formation was closely related to electric charges generated in orifices by the flow. In the present paper, we clarified the components of the membrane and suggested a mechanism for membrane formation. We examined the effect of contaminants on the membrane formation and confirmed our previous results. We identified the chemical components of the membrane and those present in the UPW* itself by using an electron probe microanalyzer and found that the proportion of each element differed between the membrane and UPW*. Raman and infrared (IR spectroscopy showed that the membrane consisted of organic substances such as carotenoids, amides, esters, and sugars. We irradiated UPW* with ultraviolet light to cut organic chains that may be left in UPW* as contaminants. We found a similar membrane and organic compounds as in nonirradiated UPW*. Furthermore, although the UPW that was kept from contact with air after it was supplied from the UPW maker (UPW0 and bubbled with Ar gas (UPW0 bubbled with Ar formed no membrane, the UPW0 bubbled with CO2 formed thin membranes, and Raman and IR analysis showed that this membrane contained carboxylic acid salts, carotenoids, or a mixture of both. We found that electric grounding of the orifice reduces the probability of membrane formation and that the jets issuing from an aperture bear negative charges, and we assumed that the micro-orifices possess positive charges generated by flows. Consequently, we suggest that

  4. Measurement of micro Bubbles generated by a pressurized dissolution method

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, S; Tanaka, K; Tomiyama, A [Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 (Japan); Maeda, Y; Yamaguchi, S; Ito, Y, E-mail: hosokawa@mech.kobe-u.ac.j [Panasonic Electric Works Co., Ltd., 1048 Kadoma, Osaka 571-8686 (Japan)

    2009-02-01

    Diameters of micro-bubbles are apt to range from about one mm to several-hundred mm, and therefore, it is difficult to measure a correct diameter distribution using a single measurement method. In this study, diameters of bubbles generated by a pressurized dissolution method are measured by using phase Doppler anemometry (PDA) and an image processing method, which is based on the Sobel filter and Hough transform. The diameter distribution and the Sauter mean diameter of micro bubbles are evaluated based on the diameters measured by both methods. Experiments are conducted for several mass flow rates of dissolved gas and of air bubbles entrained in the upstream of the decompression nozzle to examine effects of the entrained bubbles on bubble diameter. As a result, the following conclusions are obtained: (1) Diameter distribution of micro bubbles can be accurately measured for a wide range of diameter by using PDA and the image processing method. (2) The mean diameter of micro-bubbles generated by gasification of dissolved gas is smaller than that generated by breakup of air bubbles entrained in the upstream of the decompression nozzle. (3) The mean bubble diameter increases with the entrainment of air bubbles in the upstream of the decompression nozzle at a constant mass flow rate of dissolved gas.

  5. Measurement of micro Bubbles generated by a pressurized dissolution method

    International Nuclear Information System (INIS)

    Hosokawa, S; Tanaka, K; Tomiyama, A; Maeda, Y; Yamaguchi, S; Ito, Y

    2009-01-01

    Diameters of micro-bubbles are apt to range from about one mm to several-hundred mm, and therefore, it is difficult to measure a correct diameter distribution using a single measurement method. In this study, diameters of bubbles generated by a pressurized dissolution method are measured by using phase Doppler anemometry (PDA) and an image processing method, which is based on the Sobel filter and Hough transform. The diameter distribution and the Sauter mean diameter of micro bubbles are evaluated based on the diameters measured by both methods. Experiments are conducted for several mass flow rates of dissolved gas and of air bubbles entrained in the upstream of the decompression nozzle to examine effects of the entrained bubbles on bubble diameter. As a result, the following conclusions are obtained: (1) Diameter distribution of micro bubbles can be accurately measured for a wide range of diameter by using PDA and the image processing method. (2) The mean diameter of micro-bubbles generated by gasification of dissolved gas is smaller than that generated by breakup of air bubbles entrained in the upstream of the decompression nozzle. (3) The mean bubble diameter increases with the entrainment of air bubbles in the upstream of the decompression nozzle at a constant mass flow rate of dissolved gas.

  6. Comparison of drift-velocity and drag coefficient approaches for one-dimensional two-fluid models in bubbly flow regime and validation with experimental data

    Energy Technology Data Exchange (ETDEWEB)

    Gómez-Zarzuela, C.; Miró, R.; Verdú, G. [Institute for Industrial Safety, Radiology and Environmental (ISIRYM), Universitat Politècnica de València (Spain); Peña-Monferrer, C.; Chiva, S. [Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellón de la Plana (Spain); Muñoz-Cobo, J.L., E-mail: congoque@iqn.upv.es, E-mail: cpena@uji.es [Institute for Energy Engineering, Universitat Politècnica de València (Spain)

    2017-07-01

    Two-phase flow simulation has been an extended research topic over the years due to the importance of predicting with accuracy the flow behavior within different installations, including nuclear power plants. Some of them are low pressure events, like low water pressure injection, nuclear refueling or natural circulation. This work is devoted to investigate the level of accuracy of the results when a two-phase flow experiment, which has been carried out at low pressure, is performed in a one-dimensional simulation code. In particular, the codes that have been selected to represent the experiment are the best-estimate system codes RELAP5/MOD3 and TRACE v5.0 patch4. The experiment consists in a long vertical pipe along which an air-water fluid in bubbly regime moves upwards in adiabatic conditions and atmospheric pressure. The simulations have been first performed in both codes with their original correlations, which are based on the drift flux model for the case of bubbly regime in vertical pipes. Then, a different implementation for the drag force has been undertaken, in order to perform a simulation with equivalent bubble diameter to the experiment. Results show that the calculation obtained from the codes are within the ranges of validity of the experiment with some discrepancies, which leads to the conclusion that the use of a drag correlation approach is more realistic than drift flux model. (author)

  7. Comparison of drift-velocity and drag coefficient approaches for one-dimensional two-fluid models in bubbly flow regime and validation with experimental data

    International Nuclear Information System (INIS)

    Gómez-Zarzuela, C.; Miró, R.; Verdú, G.; Peña-Monferrer, C.; Chiva, S.; Muñoz-Cobo, J.L.

    2017-01-01

    Two-phase flow simulation has been an extended research topic over the years due to the importance of predicting with accuracy the flow behavior within different installations, including nuclear power plants. Some of them are low pressure events, like low water pressure injection, nuclear refueling or natural circulation. This work is devoted to investigate the level of accuracy of the results when a two-phase flow experiment, which has been carried out at low pressure, is performed in a one-dimensional simulation code. In particular, the codes that have been selected to represent the experiment are the best-estimate system codes RELAP5/MOD3 and TRACE v5.0 patch4. The experiment consists in a long vertical pipe along which an air-water fluid in bubbly regime moves upwards in adiabatic conditions and atmospheric pressure. The simulations have been first performed in both codes with their original correlations, which are based on the drift flux model for the case of bubbly regime in vertical pipes. Then, a different implementation for the drag force has been undertaken, in order to perform a simulation with equivalent bubble diameter to the experiment. Results show that the calculation obtained from the codes are within the ranges of validity of the experiment with some discrepancies, which leads to the conclusion that the use of a drag correlation approach is more realistic than drift flux model. (author)

  8. Visual study of air--water mixtures flowing inside serpentine tubes

    International Nuclear Information System (INIS)

    Farukhi, M.N.; Parker, J.D.

    1974-01-01

    Hydrodynamic behavior of air-water mixtures flowing inside serpentine tubes, with bends in the vertical plane, was investigated. Flow visualization was accomplished by injecting dye into the liquid phase and recording the events on color slides and color movies. For certain combinations of gas and liquid flow rates, in the annular type flow regime, ''film inversion'' was observed in the bend as well as in the straight section immediately downstream of the bend. A new flow regime map particularly applicable to two phase flow inside serpentine tubes is presented. (U.S.)

  9. Flow Regimes of Air-Water Counterflow Through Cross Corrugated Parallel Plates

    Energy Technology Data Exchange (ETDEWEB)

    de Almeida, V.F.

    2000-06-07

    Heretofore unknown flow regimes of air-water counterflow through a pair of transparent vertical parallel cross corrugated plates were observed via high-speed video. Air flows upward driven by pressure gradient and water, downward driven by gravity. The crimp geometry of the corrugations was drawn from typical corrugated sheets used as filling material in modern structured packed towers. Four regimes were featured, namely, rivulet, bicontinuous, flooding fronts, and flooding waves. It is conceivable that the regimes observed might constitute the basis for understanding how gas and liquid phases contend for available space in the interstices of structured packings in packed towers. Flow regime transitions were expressed in terms of liquid load (liquid superficial velocity) and gas flow factor parameters commonly used in pressure drop and capacity curves. We have carefully examined the range of parameters equivalent to the ill-understood high-liquid-flow operation in packed towers. More importantly, our findings should prove valuable in validating improved first-principles modeling of gas-liquid flows in these industrially important devices.

  10. Effect of metabolic gases and water vapor, perfluorocarbon emulsions, and nitric oxide on tissue bubbles during decompression sickness.

    Science.gov (United States)

    Randsøe, Thomas

    2016-05-01

    In aviation and diving, fast decrease in ambient pressure, such as during accidental loss of cabin pressure or when a diver decompresses too fast to sea level, may cause nitrogen (N2) bubble formation in blood and tissue resulting in decompression sickness (DCS). Conventional treatment of DCS is oxygen (O2) breathing combined with recompression.  However, bubble kinetic models suggest, that metabolic gases, i.e. O2 and carbon dioxide (CO2), and water vapor contribute significantly to DCS bubble volume and growth at hypobaric altitude exposures. Further, perfluorocarbon emulsions (PFC) and nitric oxide (NO) donors have, on an experimental basis, demonstrated therapeutic properties both as treatment and prophylactic intervention against DCS. The effect was ascribed to solubility of respiratory gases in PFC, plausible NO elicited nuclei demise and/or N2 washout through enhanced blood flow rate. Accordingly, by means of monitoring injected bubbles in exposed adipose tissue or measurements of spinal evoked potentials (SEPs) in anaesthetized rats, the aim of this study was to: 1) evaluate the contribution of metabolic gases and water vapor to bubble volume at different barometrical altitude exposures, 2) clarify the O2 contribution and N2 solubility from bubbles during administration of PFC at normo- and hypobaric conditions and, 3) test the effect of different NO donors on SEPs during DCS upon a hyperbaric air dive and, to study the influence of  NO on tissue bubbles at high altitude exposures. The results support the bubble kinetic models and indicate that metabolic gases and water vapor contribute significantly to bubble volume at 25 kPa (~10,376 m above sea level) and constitute a threshold for bubble stabilization or decay at the interval of 47-36 kPa (~6,036 and ~7,920 m above sea level). The effect of the metabolic gases and water vapor seemed to compromise the therapeutic properties of both PFC and NO at altitude, while PFC significantly increased bubble

  11. Interaction between bubble and air-backed plate with circular hole

    Science.gov (United States)

    Liu, Y. L.; Wang, S. P.; Zhang, A. M.

    2016-06-01

    This paper investigates the nonlinear interaction between a violent bubble and an air-backed plate with a circular hole. A numerical model is established using the incompressible potential theory coupled with the boundary integral method. A double-node technique is used to solve the overdetermined problem caused by the intersection between the solid wall and the free surface. A spark-generated bubble near the air-backed plate with a circular hole is observed experimentally using a high-speed camera. Our numerical results agree well with the experimental results. Both experimental and numerical results show that a multilevel spike emerges during the bubble's expansion and contraction. Careful numerical simulation reveals that this special type of spike is caused by the discontinuity in the boundary condition. The influences of the hole size and depth on the bubble and spike dynamics are also analyzed.

  12. Particle Transport and Size Sorting in Bubble Microstreaming Flow

    Science.gov (United States)

    Thameem, Raqeeb; Rallabandi, Bhargav; Wang, Cheng; Hilgenfeldt, Sascha

    2014-11-01

    Ultrasonic driving of sessile semicylindrical bubbles results in powerful steady streaming flows that are robust over a wide range of driving frequencies. In a microchannel, this flow field pattern can be fine-tuned to achieve size-sensitive sorting and trapping of particles at scales much smaller than the bubble itself; the sorting mechanism has been successfully described based on simple geometrical considerations. We investigate the sorting process in more detail, both experimentally (using new parameter variations that allow greater control over the sorting) and theoretically (incorporating the device geometry as well as the superimposed channel flow into an asymptotic theory). This results in optimized criteria for size sorting and a theoretical description that closely matches the particle behavior close to the bubble, the crucial region for size sorting.

  13. Modeling and Measurements of Multiphase Flow and Bubble Entrapment in Steel Continuous Casting

    Science.gov (United States)

    Jin, Kai; Thomas, Brian G.; Ruan, Xiaoming

    2016-02-01

    In steel continuous casting, argon gas is usually injected to prevent clogging, but the bubbles also affect the flow pattern, and may become entrapped to form defects in the final product. To investigate this behavior, plant measurements were conducted, and a computational model was applied to simulate turbulent flow of the molten steel and the transport and capture of argon gas bubbles into the solidifying shell in a continuous slab caster. First, the flow field was solved with an Eulerian k- ɛ model of the steel, which was two-way coupled with a Lagrangian model of the large bubbles using a discrete random walk method to simulate their turbulent dispersion. The flow predicted on the top surface agreed well with nailboard measurements and indicated strong cross flow caused by biased flow of Ar gas due to the slide-gate orientation. Then, the trajectories and capture of over two million bubbles (25 μm to 5 mm diameter range) were simulated using two different capture criteria (simple and advanced). Results with the advanced capture criterion agreed well with measurements of the number, locations, and sizes of captured bubbles, especially for larger bubbles. The relative capture fraction of 0.3 pct was close to the measured 0.4 pct for 1 mm bubbles and occurred mainly near the top surface. About 85 pct of smaller bubbles were captured, mostly deeper down in the caster. Due to the biased flow, more bubbles were captured on the inner radius, especially near the nozzle. On the outer radius, more bubbles were captured near to narrow face. The model presented here is an efficient tool to study the capture of bubbles and inclusion particles in solidification processes.

  14. Dynamic behaviors of cavitation bubble for the steady cavitating flow

    Science.gov (United States)

    Cai, Jun; Huai, Xiulan; Li, Xunfeng

    2009-12-01

    In this paper, by introducing the flow velocity item into the classical Rayleigh-Plesset dynamic equation, a new equation, which does not involve the time term and can describe the motion of cavitation bubble in the steady cavitating flow, has been obtained. By solving the new motion equation using Runge-Kutta fourth order method with adaptive step size control, the dynamic behaviors of cavitation bubble driven by the varying pressure field downstream of a venturi cavitation reactor are numerically simulated. The effects of liquid temperature (corresponding to the saturated vapor pressure of liquid), cavitation number and inlet pressure of venturi on radial motion of bubble and pressure pulse due to the radial motion are analyzed and discussed in detail. Some dynamic behaviors of bubble different from those in previous papers are displayed. In addition, the internal relationship between bubble dynamics and process intensification is also discussed. The simulation results reported in this work reveal the variation laws of cavitation intensity with the flow conditions of liquid, and will lay a foundation for the practical application of hydrodynamic cavitation technology.

  15. Studies on shock phenomena in two-phase flow, (4). Characteristics in channel flow consisting of bubbly mixture and liquid in series

    Energy Technology Data Exchange (ETDEWEB)

    Akagawa, Koji; Fujii, Terushige; Ito, Yutaka; Hiraki, Sei

    1982-04-01

    The research carried out so far was related to the case in which the mean void ratio in a pipe distributed almost invariably in axial direction. However, in actual piping system, the distribution of void ratio sometimes changes in axial direction such as evaporating tubes. In this study, in order to clarify the basic characteristics of shock phenomena in a piping system in which the density of two-phase flow changes in axial direction, experiment was carried out on air and water two-component bubbly flow, in which single phase was in upstream, and two-phase flow with constant void ratio in axial direction was in downstream. Also, the theoretical study on the phenomena was performed. The experimental setup and experimental method, the result of the waveform of pressure response, the behavior of pressure waves at the interface of two-phase flow and single phase flow, the qualitative analysis of the waveform of pressure response, and the analysis of pressure rise are reported. By the sudden closure of a valve, the pressure in two-phase flow rose by the initial potential surge, thereafter stepped pressure rise was observed. This phenomenon can be explained by the reflection of pressure waves at the interface of two-phase flow and single phase flow.

  16. Optimizing dissolved air flotation design system

    Directory of Open Access Journals (Sweden)

    L.A. Féris

    2000-12-01

    Full Text Available Dissolved Air (Pressure Flotation-DAF, is a well-established separation process that employs micro-bubbles as a carrier phase. This work shows results concerning bubble generation at low working pressures in modified DAF-units to improve the collection of fragile coagula by bubbles. DAF of Fe (OH3 (as model was studied as a function of saturation pressure in the absence and presence of surfactants in the saturator. DAF was possible at 2 atm by lowering the air/water surface tension. This fact, which leads to substantial energy savings, was explained in terms of decreasing the "minimum" energy required for bubble nucleation and cavity in the nozzle. More, bubbles-fragile coagula attachment was improved by dividing the recycling water into two: 1 the inclined inlet to the cell (traditional and 2 inside the separation tank through a water flow inlet situated below the floating bed using a "mushroom" type diffuser. Because of the reduction observed in the degree of turbulence in the conventional collection zone, DAF performance improved yielding high precipitate recoveries.

  17. Transient Flow Dynamics in Optical Micro Well Involving Gas Bubbles

    Science.gov (United States)

    Johnson, B.; Chen, C. P.; Jenkins, A.; Spearing, S.; Monaco, L. A.; Steele, A.; Flores, G.

    2006-01-01

    The Lab-On-a-Chip Application Development (LOCAD) team at NASA s Marshall Space Flight Center is utilizing Lab-On-a-Chip to support technology development specifically for Space Exploration. In this paper, we investigate the transient two-phase flow patterns in an optic well configuration with an entrapped bubble through numerical simulation. Specifically, the filling processes of a liquid inside an expanded chamber that has bubbles entrapped. Due to the back flow created by channel expansion, the entrapped bubbles tend to stay stationary at the immediate downstream of the expansion. Due to the huge difference between the gas and liquid densities, mass conservation issues associated with numerical diffusion need to be specially addressed. The results are presented in terms of the movement of the bubble through the optic well. Bubble removal strategies are developed that involve only pressure gradients across the optic well. Results show that for the bubble to be moved through the well, pressure pulsations must be utilized in order to create pressure gradients across the bubble itself.

  18. Measurement of bubble shape and size in bubbly flow structure for stagnant and pulsating liquid flow using an undivided electrochlorination cell and Telecentric Direct Image Method

    DEFF Research Database (Denmark)

    Andersen, Nikolaj; Stroe, Rodica-Elisabeta; Hedensted, Lau

    2016-01-01

    in MATLAB and NI Vision in LabVIEW to determine shape and diameter of the bubbles. Three bubble regions are observed; adherence, bubble diffusion and bulk region. For stagnant liquid flow the mean bubble diameter increases from 30 to 60 μm going from the adherence region to the bulk region, which...

  19. Slug flooding in air-water countercurrent vertical flow

    International Nuclear Information System (INIS)

    Lee, Jae Young; Raman, Roger; Chang, Jen-Shih

    2000-01-01

    This paper is to study slug flooding in the vertical air-water countercurrent flow loop with a porous liquid injector in the upper plenum. More water penetration into the bottom plenum in slug flooding is observed than the annular flooding because the flow regime changes from the slug flow regime or periodic slug/annular flow regime to annular flow regime due to the hysteresis between the onset of flooding and the bridging film. Experiments were made tubes of 0.995 cm, 2.07 cm, and 5.08 cm in diameter. A mechanistic model for the slug flooding with the solitary wave whose height is four time of the mean film thickness is developed to produce relations of the critical liquid flow rate and the mean film thickness. After fitting the critical liquid flow rate with the experimental data as a function of the Bond number, the gas flow rate for the slug flooding is obtained by substituting the critical liquid flow rate to the annular flooding criteria. The present experimental data evaluate the slug flooding condition developed here by substituting the correlations for mean film thickness models in the literature. The best prediction was made by the correlation for the mean film thickness of the present study which is same as Feind's correlation multiplied by 1.35. (author)

  20. A Study of Heat Transfer and Flow Characteristics of Rising Taylor Bubbles

    Science.gov (United States)

    Scammell, Alexander David

    2016-01-01

    Practical application of flow boiling to ground- and space-based thermal management systems hinges on the ability to predict the systems heat removal capabilities under expected operating conditions. Research in this field has shown that the heat transfer coefficient within two-phase heat exchangers can be largely dependent on the experienced flow regime. This finding has inspired an effort to develop mechanistic heat transfer models for each flow pattern which are likely to outperform traditional empirical correlations. As a contribution to the effort, this work aimed to identify the heat transfer mechanisms for the slug flow regime through analysis of individual Taylor bubbles.An experimental apparatus was developed to inject single vapor Taylor bubbles into co-currently flowing liquid HFE 7100. The heat transfer was measured as the bubble rose through a 6 mm inner diameter heated tube using an infrared thermography technique. High-speed flow visualization was obtained and the bubble film thickness measured in an adiabatic section. Experiments were conducted at various liquid mass fluxes (43-200 kgm2s) and gravity levels (0.01g-1.8g) to characterize the effect of bubble drift velocityon the heat transfer mechanisms. Variable gravity testing was conducted during a NASA parabolic flight campaign.Results from the experiments showed that the drift velocity strongly affects the hydrodynamics and heat transfer of single elongated bubbles. At low gravity levels, bubbles exhibited shapes characteristic of capillary flows and the heat transfer enhancement due to the bubble was dominated by conduction through the thin film. At moderate to high gravity, traditional Taylor bubbles provided small values of enhancement within the film, but large peaks in the wake heat transfer occurred due to turbulent vortices induced by the film plunging into the trailing liquid slug. Characteristics of the wake heat transfer profiles were analyzed and related to the predicted velocity field

  1. On the One-Dimensional Modeling of Vertical Upward Bubbly Flow

    Directory of Open Access Journals (Sweden)

    C. Peña-Monferrer

    2018-01-01

    Full Text Available The one-dimensional two-fluid model approach has been traditionally used in thermal-hydraulics codes for the analysis of transients and accidents in water–cooled nuclear power plants. This paper investigates the performance of RELAP5/MOD3 predicting vertical upward bubbly flow at low velocity conditions. For bubbly flow and vertical pipes, this code applies the drift-velocity approach, showing important discrepancies with the experiments compared. Then, we use a classical formulation of the drag coefficient approach to evaluate the performance of both approaches. This is based on the critical Weber criteria and includes several assumptions for the calculation of the interfacial area and bubble size that are evaluated in this work. A more accurate drag coefficient approach is proposed and implemented in RELAP5/MOD3. Instead of using the Weber criteria, the bubble size distribution is directly considered. This allows the calculation of the interfacial area directly from the definition of Sauter mean diameter of a distribution. The results show that only the proposed approach was able to predict all the flow characteristics, in particular the bubble size and interfacial area concentration. Finally, the computational results are analyzed and validated with cross-section area average measurements of void fraction, dispersed phase velocity, bubble size, and interfacial area concentration.

  2. Sensitivity of Hollow Fiber Spacesuit Water Membrane Evaporator Systems to Potable Water Constituents, Contaminants and Air Bubbles

    Science.gov (United States)

    Bue, Grant C.; Trevino, Luis A.; Fritts, Sharon; Tsioulos, Gus

    2008-01-01

    The Spacesuit Water Membrane Evaporator (SWME) is the baseline heat rejection technology selected for development for the Constellation lunar suit. The first SWME prototype, designed, built, and tested at Johnson Space Center in 1999 used a Teflon hydrophobic porous membrane sheet shaped into an annulus to provide cooling to the coolant loop through water evaporation to the vacuum of space. This present study describes the test methodology and planning and compares the test performance of three commercially available hollow fiber materials as alternatives to the sheet membrane prototype for SWME, in particular, a porous hydrophobic polypropylene, and two variants that employ ion exchange through non-porous hydrophilic modified Nafion. Contamination tests will be performed to probe for sensitivities of the candidate SWME elements to ordinary constituents that are expected to be found in the potable water provided by the vehicle, the target feedwater source. Some of the impurities in potable water are volatile, such as the organics, while others, such as the metals and inorganic ions are nonvolatile. The non-volatile constituents will concentrate in the SWME as evaporated water from the loop is replaced by the feedwater. At some point in the SWME mission lifecycle as the concentrations of the non-volatiles increase, the solubility limits of one or more of the constituents may be reached. The resulting presence of precipitate in the coolant water may begin to plug pores and tube channels and affect the SWME performance. Sensitivity to macroparticles, lunar dust simulant, and air bubbles will also be investigated.

  3. Three-dimensional one-way bubble tracking method for the prediction of developing bubble-slug flows in a vertical pipe. 1st report, models and demonstration

    International Nuclear Information System (INIS)

    Tamai, Hidesada; Tomiyama, Akio

    2004-01-01

    A three-dimensional one-way bubble tracking method is one of the most promising numerical methods for the prediction of a developing bubble flow in a vertical pipe, provided that several constitutive models are prepared. In this study, a bubble shape, an equation of bubble motion, a liquid velocity profile, a pressure field, turbulent fluctuation and bubble coalescence are modeled based on available knowledge on bubble dynamics. Bubble shapes are classified into four types in terms of bubble equivalent diameter. A wake velocity model is introduced to simulate approaching process among bubbles due to wake entrainment. Bubble coalescence is treated as a stochastic phenomenon with the aid of coalescence probabilities that depend on the sizes of two interacting bubbles. The proposed method can predict time-spatial evolution of flow pattern in a developing bubble-slug flow. (author)

  4. Bernoulli Suction Effect on Soap Bubble Blowing?

    Science.gov (United States)

    Davidson, John; Ryu, Sangjin

    2015-11-01

    As a model system for thin-film bubble with two gas-liquid interfaces, we experimentally investigated the pinch-off of soap bubble blowing. Using the lab-built bubble blower and high-speed videography, we have found that the scaling law exponent of soap bubble pinch-off is 2/3, which is similar to that of soap film bridge. Because air flowed through the decreasing neck of soap film tube, we studied possible Bernoulli suction effect on soap bubble pinch-off by evaluating the Reynolds number of airflow. Image processing was utilized to calculate approximate volume of growing soap film tube and the volume flow rate of the airflow, and the Reynolds number was estimated to be 800-3200. This result suggests that soap bubbling may involve the Bernoulli suction effect.

  5. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume I. Chapters 1-5)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  6. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume IV. Chapters 15-19)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  7. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume II. Chapters 6-10)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  8. Interfacial Area and Interfacial Transfer in Two-Phase Flow Systems (Volume III. Chapters 11-14)

    Energy Technology Data Exchange (ETDEWEB)

    Guo, T.; Park, J.; Kojasoy, G.

    2003-03-15

    Experiments were performed on horizontal air-water bubbly two-phase flow, axial flow, stratified wavy flow, and annular flow. Theoretical studies were also undertaken on interfacial parameters for a horizontal two-phase flow.

  9. Treatment of micro air bubbles in rat adipose tissue at 25 kPa altitude exposures with perfluorocarbon emulsions and nitric oxide.

    Science.gov (United States)

    Randsøe, Thomas; Hyldegaard, O

    2014-01-01

    Perfluorocarbon emulsions (PFC) and nitric oxide (NO) releasing agents have on experimental basis demonstrated therapeutic properties in treating and preventing the formation of venous gas embolism as well as increased survival rate during decompression sickness from diving. The effect is ascribed to an increased solubility and transport capacity of respiratory gases in the PFC emulsion and possibly enhanced nitrogen washout through NO-increased blood flow rate and/or the removal of endothelial micro bubble nuclei precursors. Previous reports have shown that metabolic gases (i.e., oxygen in particular) and water vapor contribute to bubble growth and stabilization during altitude exposures. Accordingly, we hypothesize that the administration of PFC and NO donors upon hypobaric pressure exposures either (1) enhance the bubble disappearance rate through faster desaturation of nitrogen, or in contrast (2) promote bubble growth and stabilization through an increased oxygen supply. In anesthetized rats, micro air bubbles (containing 79% nitrogen) of 4-500 nl were injected into exposed abdominal adipose tissue. Rats were decompressed in 36 min to 25 kPa (~10,376 m above sea level) and bubbles studied for 210 min during continued oxygen breathing (FIO2 = 1). Rats were administered PFC, NO, or combined PFC and NO. In all groups, most bubbles grew transiently, followed by a stabilization phase. There were no differences in the overall bubble growth or decay between groups or when compared with previous data during oxygen breathing alone at 25 kPa. During extreme altitude exposures, the contribution of metabolic gases to bubble growth compromises the therapeutic effects of PFC and NO, but PFC and NO do not induce additional bubble growth.

  10. A Physical Model to Study the Effects of Nozzle Design on Dispersed Two-Phase Flows in a Slab Mold Casting Ultra-Low-Carbon Steels

    Science.gov (United States)

    Salazar-Campoy, María M.; Morales, R. D.; Nájera-Bastida, A.; Calderón-Ramos, Ismael; Cedillo-Hernández, Valentín; Delgado-Pureco, J. C.

    2018-04-01

    The effects of nozzle design on dispersed, two-phase flows of the steel-argon system in a slab mold are studied using a water-air model with particle image velocimetry and ultrasound probe velocimetry techniques. Three nozzle designs were tested with the same bore size and different port geometries, including square (S), special bottom design with square ports (U), and circular (C). The meniscus velocities of the liquid increase two- or threefold in two-phase flows regarding one-phase flows using low flow rates of the gas phase. This effect is due to the dragging effects on bubbles by the liquid jets forming two-way coupled flows. Liquid velocities (primary phase) along the narrow face of the mold also are higher for two-phase flows. Flows using nozzle U are less dependent on the effects of the secondary phase (air). The smallest bubble sizes are obtained using nozzle U, which confirms that bubble breakup is dependent on the strain rates of the fluid and dissipation of kinetic energy in the nozzle bottom and port edges. Through dimensionless analysis, it was found that the bubble sizes are inversely proportional to the dissipation rate of the turbulent kinetic energy, ɛ 0.4. A simple expression involving ɛ, surface tension, and density of metal is derived to scale up bubble sizes in water to bubble sizes in steel with different degrees of deoxidation. The validity of water-air models to study steel-argon flows is discussed. Prior works related with experiments to model argon bubbling in steel slab molds under nonwetting conditions are critically reviewed.

  11. Interfacial area concentration in gas–liquid bubbly to churn flow regimes in large diameter pipes

    International Nuclear Information System (INIS)

    Shen, Xiuzhong; Hibiki, Takashi

    2015-01-01

    Highlights: • A systematic method to predict interfacial area concentration (IAC) is presented. • A correlation for group 1 bubble void fraction is proposed. • Correlations of IAC and bubble diameter are developed for group 1 bubbles. • Correlations of IAC and bubble diameter are developed for group 2 bubbles. • The newly-developed two-group IAC model compares well with collected databases. - Abstract: This study performed a survey on existing correlations for interfacial area concentration (IAC) prediction and collected an IAC experimental database of two-phase flows taken under various flow conditions in large diameter pipes. Although some of these existing correlations were developed by partly using the IAC databases taken in the low-void-fraction two-phase flows in large diameter pipes, no correlation can satisfactorily predict the IAC in the two-phase flows changing from bubbly, cap bubbly to churn flow in the collected database of large diameter pipes. So this study presented a systematic way to predict the IAC for the bubbly-to-churn flows in large diameter pipes by categorizing bubbles into two groups (group 1: spherical or distorted bubble, group 2: cap bubble). A correlation was developed to predict the group 1 void fraction by using the void fraction for all bubble. The group 1 bubble IAC and bubble diameter were modeled by using the key parameters such as group 1 void fraction and bubble Reynolds number based on the analysis of Hibiki and Ishii (2001, 2002) using one-dimensional bubble number density and interfacial area transport equations. The correlations of IAC and bubble diameter for group 2 cap bubbles were developed by taking into account the characteristics of the representative bubbles among the group 2 bubbles and the comparison between a newly-derived drift velocity correlation for large diameter pipes and the existing drift velocity correlation of Kataoka and Ishii (1987) for large diameter pipes. The predictions from the newly

  12. Size-sensitive particle trajectories in three-dimensional micro-bubble acoustic streaming flows

    Science.gov (United States)

    Volk, Andreas; Rossi, Massimiliano; Hilgenfeldt, Sascha; Rallabandi, Bhargav; Kähler, Christian; Marin, Alvaro

    2015-11-01

    Oscillating microbubbles generate steady streaming flows with interesting features and promising applications for microparticle manipulation. The flow around oscillating semi-cylindrical bubbles has been typically assumed to be independent of the axial coordinate. However, it has been recently revealed that particle motion is strongly three-dimensional: Small tracer particles follow vortical trajectories with pronounced axial displacements near the bubble, weaving a toroidal stream-surface. A well-known consequence of bubble streaming flows is size-dependent particle migration, which can be exploited for sorting and trapping of microparticles in microfluidic devices. In this talk, we will show how the three-dimensional toroidal topology found for small tracer particles is modified as the particle size increases up to 1/3 of the bubble radius. Our results show size-sensitive particle positioning along the axis of the semi-cylindrical bubble. In order to analyze the three-dimensional sorting and trapping capabilities of the system, experiments with an imposed flow and polydisperse particle solutions are also shown.

  13. Local gas- and liquid-phase measurements for air-water two-phase flows in a rectangular channel

    International Nuclear Information System (INIS)

    Zhou, X.; Sun, X.; Williams, M.; Fu, Y.; Liu, Y.

    2014-01-01

    Local gas- and liquid-phase measurements of various gas-liquid two-phase flows, including bubbly, cap-bubbly, slug, and churn-turbulent flows, were performed in an acrylic vertical channel with a rectangular cross section of 30 mm x 10 mm and height of 3.0 m. All the measurements were carried out at three measurement elevations along the flow channel, with z/D h = 9, 72, and 136, respectively, to study the flow development. The gas-phase velocity, void fraction, and bubble number frequency were measured using a double-sensor conductivity probe. A high-speed imaging system was utilized to perform the flow regime visualization and to provide additional quantitative information of the two-phase flow structure. An image processing scheme was developed to obtain the gas-phase velocity, void fraction, Sauter mean diameter, bubble number density, and interfacial area concentration. The liquid-phase velocity and turbulence measurements were conducted using a particle image velocimetry-planar laser-induced fluorescence (PIV-PLIF) system, which enables whole-field and high-resolution data acquisition. An optical phase separation method, which uses fluorescent particles and optical filtration technique, is adopted to extract the velocity information of the liquid phase. An image pre-processing scheme is imposed on the raw PIV images acquired to remove noises due to the presence of bubble residuals and optically distorted particles in the images captured by the PIV-PLIF system. Due to the better light access and less bubble distortion in the narrow rectangular channel, the PIV-PLIF system were able to perform reasonably well in flows of even higher void fractions as compared to the situations with circular pipe test sections. The flow conditions being studied covered various flow regime transitions, void fractions, and liquid-phase flow Reynolds numbers. The obtained experimental data can also be used to validate two-phase CFD results. (author)

  14. The distribution of air bubble size in the pneumo-mechanical flotation machine . Rozkład wielkości pęcherzyków powietrza w pneumo-mechanicznej maszynie flotacyjnej

    Science.gov (United States)

    Brożek, Marian; Młynarczykowska, Anna

    2012-12-01

    The flotation rate constant is the value characterizing the kinetics of cyclic flotation. In the statistical theory of flotation its value is the function of probabilities of collision, adhesion and detachment of particle from the air bubble. The particle - air bubble collision plays a key role since there must be a prior collision before the particle - air bubble adhesion happens. The probability of such an event to occur is proportional to the ratio of the particle diameter to the bubble diameter. When the particle size is given, it is possible to control the value of collision probability by means of the size of air bubble. Consequently, it is significant to find the effect of physical and physicochemical factors upon the diameter of air bubbles in the form of a mathematical dependence. In the pneumo-mechanical flotation machine the air bubbles are generated by the blades of the rotor. The dispergation rate is affected by, among others, rotational speed of the rotor, the air flow rate and the liquid surface tension, depending on the type and concentration of applied flotation reagents. In the proposed paper the authors will present the distribution of air bubble diameters on the grounds of the above factors, according to the laws of thermodynamics. The correctness of the derived dependences will be verified empirically.

  15. Interfacial Bubble Deformations

    Science.gov (United States)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  16. Flow regime classification in air-magnetic fluid two-phase flow.

    Science.gov (United States)

    Kuwahara, T; De Vuyst, F; Yamaguchi, H

    2008-05-21

    A new experimental/numerical technique of classification of flow regimes (flow patterns) in air-magnetic fluid two-phase flow is proposed in the present paper. The proposed technique utilizes the electromagnetic induction to obtain time-series signals of the electromotive force, allowing us to make a non-contact measurement. Firstly, an experiment is carried out to obtain the time-series signals in a vertical upward air-magnetic fluid two-phase flow. The signals obtained are first treated using two kinds of wavelet transforms. The data sets treated are then used as input vectors for an artificial neural network (ANN) with supervised training. In the present study, flow regimes are classified into bubbly, slug, churn and annular flows, which are generally the main flow regimes. To validate the flow regimes, a visualization experiment is also performed with a glycerin solution that has roughly the same physical properties, i.e., kinetic viscosity and surface tension, as a magnetic fluid used in the present study. The flow regimes from the visualization are used as targets in an ANN and also used in the estimation of the accuracy of the present method. As a result, ANNs using radial basis functions are shown to be the most appropriate for the present classification of flow regimes, leading to small classification errors.

  17. How are soap bubbles blown? Fluid dynamics of soap bubble blowing

    Science.gov (United States)

    Davidson, John; Lambert, Lori; Sherman, Erica; Wei, Timothy; Ryu, Sangjin

    2013-11-01

    Soap bubbles are a common interfacial fluid dynamics phenomenon having a long history of delighting not only children and artists but also scientists. In contrast to the dynamics of liquid droplets in gas and gas bubbles in liquid, the dynamics of soap bubbles has not been well documented. This is possibly because studying soap bubbles is more challenging due to there existing two gas-liquid interfaces. Having the thin-film interface seems to alter the characteristics of the bubble/drop creation process since the interface has limiting factors such as thickness. Thus, the main objective of this study is to determine how the thin-film interface differentiates soap bubbles from gas bubbles and liquid drops. To investigate the creation process of soap bubbles, we constructed an experimental model consisting of air jet flow and a soap film, which consistently replicates the conditions that a human produces when blowing soap bubbles, and examined the interaction between the jet and the soap film using the high-speed videography and the particle image velocimetry.

  18. On the design criteria for the evaporated water flow rate in a wet air cooler

    International Nuclear Information System (INIS)

    Bourillot, C.

    1982-01-01

    The author discusses Poppe's formulation used for the modelling of heat exchangers between air and water, in Electricite de France's TEFERI numerical wet atmospheric cooler model: heat transfer laws in unsaturated and saturated air, Bosnjakivic's formula, evaporation coefficient. The theorical results show good agreement with the measurements taken on Neurath's cooler C in West Germany, whatever the ambient temperature (evaporated water flow rate, condensate content of warm air). The author then demonstrates the inadequacy of Merkel's method for calculating evaporated water flow rates, and estimates the influence of the assumptions made on the total error [fr

  19. Numerical investigation on lateral migration and lift force of single bubble in simple shear flow in low viscosity fluid using volume of fluid method

    International Nuclear Information System (INIS)

    Zhongchun, Li; Xiaoming, Song; Shengyao, Jiang; Jiyang, Yu

    2014-01-01

    Highlights: • A VOF simulation of bubble in low viscosity fluid was conducted. • Lift force in different viscosity fluid had different lateral migration characteristics. • Bubble with different size migrated to different direction. • Shear stress triggered the bubble deformation process and the bubble deformation came along with the oscillation behaviors. - Abstract: Two phase flow systems have been widely used in industrial engineering. Phase distribution characteristics are vital to the safety operation and optimization design of two phase flow systems. Lift force has been known as perpendicular to the bubbles’ moving direction, which is one of the mechanisms of interfacial momentum transfer. While most widely used lift force correlations, such as the correlation of Tomiyama et al. (2002), were obtained by experimentally tracking single bubble trajectories in high viscosity glycerol–water mixture, the applicability of these models into low viscosity fluid, such as water in nuclear engineering system, needs to be further evaluated. In the present paper, bubble in low viscosity fluid in shear flow was investigated in a full 3D numerical simulation and the volume of fluid (VOF) method was applied to capture the interface. The fluid parameter: fluid viscosity, bubble parameter: diameter and external flow parameters: shear stress magnitude and liquid velocity were examined. Comparing with bubble in high viscosity shear flow and bubble in low viscosity still flow, relative large bubble in low viscosity shear flow keep an oscillation way towards the moving wall and experienced a shape deformation process. The oscillation amplitude increased as the viscosity of fluid decreased. Small bubble migrated to the static wall in a line with larger migration velocity than that in high viscosity fluid and no deformation occurred. The shear stress triggered the oscillation behaviors while it had no direct influence with the behavior. The liquid velocity had no effect on

  20. Experimental study on downward two-phase flow in narrow rectangular channel

    Energy Technology Data Exchange (ETDEWEB)

    Kim, T.H.; Jeong, J.H. [Pusan National Univ., Busan (Korea, Republic of)

    2014-07-01

    Adiabatic vertical two-phase flow of air and water through narrow rectangular channels was investigated. This study involved the observation of flow using a high speed camera and flow regimes were determined by image processing program using a MATLAB. The flows regimes in channel with downward flow are similar to those found by previous studies with upward flow. The flow regimes in downward flow at low liquid velocity are different from the previous studies in upward flow. The flow regimes can be classified into bubbly, cap-bubbly, slug and churn flow. (author)

  1. Gas-liquid flow around an obstacle in a vertical pipe

    International Nuclear Information System (INIS)

    Prasser, Horst-Michael; Beyer, Matthias; Frank, Thomas; Al Issa, Suleiman; Carl, Helmar; Pietruske, Heiko; Schuetz, Peter

    2008-01-01

    This paper presents a novel technique to study the two-phase flow field around an asymmetric obstruction in a vertical pipe with a nominal diameter of DN200. Main feature of the experiments is the shifting of a half-moon shaped diaphragm causing the obstruction along the axis of the pipe. In this way, the 3D void field is scanned with a stationary wire-mesh sensor that supplies data with a spatial resolution of 3 mm over the cross-section and a measuring frequency of 2.5 kHz. Besides the measurement of time-averaged void fraction fields and bubble-size distributions, novel data evaluation methods were developed to extract estimated liquid velocity profiles as well as lateral components of bubble velocities from the wire-mesh sensor data. The combination of void fraction fields and velocity profiles offer the opportunity to analyse a two-phase flow in a geometry that owns a series of features characteristic for complex components of power and chemical plant equipment. Such characteristics are sharp edges with flow separation, recirculation areas, jet formation, stagnation points and curved stream-lines. The tests were performed with an air-water flow at nearly ambient conditions and with a saturated steam-water mixture at 6.5 MPa. The superficial velocities of liquid and gas or, respectively, vapour were varied in a wide range. The flow structure upstream and downstream of the obstacle is characterized in detail. Bubble size dependent effects of bubble accumulation and migration are discussed on basis of void-fraction profiles decomposed into bubble-size classes. A pronounced influence of the fluid parameters was found in the behaviour of bubbles at the boundary of the jet coming from the non-obstructed part of the cross-section. In case of an air-water flow, bubbles are restrained from entering the jet, a phenomenon which was not observed in high-pressure steam-water flow. A detailed uncertainty analyse of the velocity assessments finishes the presented paper. A

  2. Experimental investigation of bubble plume structure instability

    Energy Technology Data Exchange (ETDEWEB)

    Marco Simiano; Robert Zboray; Francois de Cachard [Thermal-Hydraulics Laboratory, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Djamel Lakehal; George Yadigaroglu [Institute of Energy Technology, Swiss Federal Institute of Technology, ETH-Zentrum/CLT, 8092 Zurich (Switzerland)

    2005-07-01

    Full text of publication follows: The hydrodynamic properties of a 3D bubble plume in a large water pool are investigated experimentally. Bubble plumes are present in various industrial processes, including chemical plants, stirred reactors, and nuclear power plants, e.g. in BWR suppression pools. In these applications, the main issue is to predict the currents induced by the bubbles in the liquid phase, and to determine the consequent mixing. Bubble plumes, especially large and unconfined ones, present strong 3D effects and a superposition of different characteristic length scales. Thus, they represent relevant test cases for assessment and verification of 3D models in thermal-hydraulic codes. Bubble plumes are often unsteady, with fluctuations in size and shape of the bubble swarm, and global movements of the plume. In this case, local time-averaged data are not sufficient to characterize the flow. Additional information regarding changes in plume shape and position is required. The effect of scale on the 3D flow structure and stability being complex, there was a need to conduct studies in a fairly large facility, closer to industrial applications. Air bubble plumes, up to 30 cm in base diameter and 2 m in height were extensively studied in a 2 m diameter water pool. Homogeneously sized bubbles were obtained using a particular injector. The main hydrodynamic parameters. i.e., gas and liquid velocities, void fraction, bubble shape and size, plume shape and position, were determined experimentally. Photographic and image processing techniques were used to characterize the bubble shape, and double-tip optical probes to measure bubble size and void fraction. Electromagnetic probes measured the recirculation velocity in the pool. Simultaneous two-phase flow particle image velocimetry (STPFPIV) in a vertical plane containing the vessel axis provided instantaneous velocity fields for both phases and therefore the relative velocity field. Video recording using two CCD

  3. Role of air bubbles overlooked in the adsorption of perfluorooctanesulfonate on hydrophobic carbonaceous adsorbents.

    Science.gov (United States)

    Meng, Pingping; Deng, Shubo; Lu, Xinyu; Du, Ziwen; Wang, Bin; Huang, Jun; Wang, Yujue; Yu, Gang; Xing, Baoshan

    2014-12-02

    Hydrophobic interaction has been considered to be responsible for adsorption of perfluorooctanesulfonate (PFOS) on the surface of hydrophobic adsorbents, but the long C-F chain in PFOS is not only hydrophobic but also oleophobic. In this study, for the first time we propose that air bubbles on the surface of hydrophobic carbonaceous adsorbents play an important role in the adsorption of PFOS. The level of adsorption of PFOS on carbon nanotubes (CNTs), graphite (GI), graphene (GE), and powdered activated carbon (PAC) decreases after vacuum degassing. Vacuum degassing time and pressure significantly affect the removal of PFOS by these adsorbents. After vacuum degassing at 0.01 atm for 36 h, the extent of removal of PFOS by the pristine CNTs and GI decreases 79% and 74%, respectively, indicating the main contribution of air bubbles to PFOS adsorption. When the degassed solution is recontacted with air during the adsorption process, the removal of PFOS recovers to the value obtained without vacuum degassing, further verifying the key role of air bubbles in PFOS adsorption. By theoretical calculation, the distribution of PFOS in air bubbles on the adsorbent surfaces is discussed, and a new schematic sorption model of PFOS on carbonaceous adsorbents in the presence of air bubbles is proposed. The accumulation of PFOS at the interface of air bubbles on the adsorbents is primarily responsible for its adsorption, providing a new mechanistic insight into the transport, fate, and removal of PFOS.

  4. Measurement of local heat transfer coefficient during gas–liquid Taylor bubble train flow by infra-red thermography

    International Nuclear Information System (INIS)

    Mehta, Balkrishna; Khandekar, Sameer

    2014-01-01

    Highlights: • Infra-red thermographic study of Taylor bubble train flow in square mini-channel. • Design of experiments for measurement of local streamwise Nusselt number. • Minimizing conjugate heat transfer effects and resulting errors in data reduction. • Benchmarking against single-phase flow and three-dimensional computations. • Local heat transfer enhancement up to two times due to Taylor bubble train flow. -- Abstract: In mini/micro confined internal flow systems, Taylor bubble train flow takes place within specific range of respective volume flow ratios, wherein the liquid slugs get separated by elongated Taylor bubbles, resulting in an intermittent flow situation. This unique flow characteristic requires understanding of transport phenomena on global, as well as on local spatio-temporal scales. In this context, an experimental design methodology and its validation are presented in this work, with an aim of measuring the local heat transfer coefficient by employing high-resolution InfraRed Thermography. The effect of conjugate heat transfer on the true estimate of local transport coefficients, and subsequent data reduction technique, is discerned. Local heat transfer coefficient for (i) hydrodynamically fully developed and thermally developing single-phase flow in three-side heated channel and, (ii) non-boiling, air–water Taylor bubble train flow is measured and compared in a mini-channel of square cross-section (5 mm × 5 mm; D h = 5 mm, Bo ≈ 3.4) machined on a stainless steel substrate (300 mm × 25 mm × 11 mm). The design of the setup ensures near uniform heat flux condition at the solid–fluid interface; the conjugate effects arising from the axial back conduction in the substrate are thus minimized. For benchmarking, the data from single-phase flow is also compared with three-dimensional computational simulations. Depending on the employed volume flow ratio, it is concluded that enhancement of nearly 1.2–2.0 times in time

  5. Prominence Bubble Shear Flows and the Coupled Kelvin-Helmholtz — Rayleigh-Taylor Instability

    Science.gov (United States)

    Berger, Thomas; Hillier, Andrew

    2017-08-01

    Prominence bubbles are large arched structures that rise from below into quiescent prominences, often growing to heights on the order of 10 Mm before going unstable and generating plume upflows. While there is general agreement that emerging flux below pre-existing prominences causes the structures, there is lack of agreement on the nature of the bubbles and the cause of the instability flows. One hypothesis is that the bubbles contain coronal temperature plasma and rise into the prominence above due to both magnetic and thermal buoyancy, eventually breaking down via a magnetic Rayleigh-Taylor (RT) instability to release hot plasma and magnetic flux and helicity into the overlying coronal flux rope. Another posits that the bubbles are actually just “arcades” in the prominence indicating a magnetic separator line between the bipole and the prominence fields with the observed upflows and downflows caused by reconnection along the separator. We analyze Hinode/SOT, SDO/AIA, and IRIS observations of prominence bubbles, focusing on characteristics of the bubble boundary layers that may discriminate between the two hypotheses. We find speeds on the order of 10 km/s in prominence plasma downflows and lateral shear flows along the bubble boundary. Inflows to the boundary gradually increase the thickness and brightness of the layer until plasma drains from there, apparently around the dome-like bubble domain. In one case, shear flow across the bubble boundary develops Kelvin-Helmholtz (KH) vortices that we use to infer flow speeds in the low-density bubble on the order of 100 km/sec. IRIS spectra indicate that plasma flows on the bubble boundary at transition region temperatures achieve Doppler speeds on the order of 50 km/s, consistent with this inference. Combined magnetic KH-RT instability analysis leads to flux density estimates of 10 G with a field angle of 30° to the prominence, consistent with vector magnetic field measurements. In contrast, we find no evidence

  6. Preliminary three-dimensional potential flow simulation of a five-liter flask air injection experiment

    International Nuclear Information System (INIS)

    Davis, J.E.

    1977-01-01

    The preliminary results of an unsteady three-dimensional potential flow analysis of a five-liter flask air injection experiment (small-scale model simulation of a nuclear reactor steam condensation system) are presented. The location and velocity of the free water surface in the flask as a function of time are determined during pipe venting and bubble expansion processes. The analyses were performed using an extended version of the NASA-Ames Three-Dimensional Potential Flow Analysis System (POTFAN), which uses the vortex lattice singularity method of potential flow analysis. The pressure boundary condition at the free water surface and the boundary condition along the free jet boundary near the pipe exit were ignored for the purposes of the present study. The results of the analysis indicate that large time steps can be taken without significantly reducing the accuracy of the solutions and that the assumption of inviscid flow should not have an appreciable effect on the geometry and velocity of the free water surface. In addition, the computation time required for the solutions was well within acceptable limits

  7. Acoustic cavitation bubbles in the kidney induced by focused shock waves in extracorporeal shock wave lithotripsy (ESWL)

    Science.gov (United States)

    Kuwahara, M.; Ioritani, N.; Kambe, K.; Taguchi, K.; Saito, T.; Igarashi, M.; Shirai, S.; Orikasa, S.; Takayama, K.

    1990-07-01

    On an ultrasonic imaging system a hyperechoic region was observed in a focal area of fucused shock waves in the dog kidney. This study was performed to learn whether cavitation bubbles are responsible for this hyperechoic region. The ultrasonic images in water of varying temperatures were not markedly different. In the flowing stream of distilled water, the stream was demonstrated as a hyperechoic region only with a mixture of air bubbles. Streams of 5%-50% glucose solutions were also demonstrated as a hyperechoic region. However, such concentration changes in living tissue, as well as thermal changes, are hardly thought to be induced. The holographic interferometry showed that the cavitation bubbles remained for more than 500 msec. in the focal area in water. This finding indicate that the bubble can remain for longer period than previously supposed. These results support the contentions that cavitation bubbles are responsible for the hyperechoic region in the kidney in situ.

  8. Assessment of theoretical flow pattern maps for vertical upward two-phase flow

    International Nuclear Information System (INIS)

    Khare, Rajesh; Vijayan, P.K.; Saha, D.; Venkat Raj, V.

    1997-04-01

    Taitel-Dukler (1980), Mishima-Ishii (1984) and Solbrig (1986) flow pattern maps have been assessed against an experimental data bank compiled from different sources. The data bank consisted of a total of 1411 data points with 368 bubbly, 474 slug/churn and 545 annular flow points, the rest being transition points. The data bank consisted of mainly steam water data; some amount of air-water data are included as there were no steam-water data at low pressure ( gs - U ls plane. (author)

  9. PIV measurement of a contraction flow using micro-bubble tracer

    International Nuclear Information System (INIS)

    Ishikawa, Masaaki; Irabu, Kunio; Teruya, Isao; Nitta, Munehiro

    2009-01-01

    Recently, a technique using the micro-bubbles is focused. It was applied to many fields such as purification of rivers and lakes, washing the industrial parts, growth of plants and marine products. The characteristics of micro-bubbles are small size, wide surface area, low terminal velocity, and so on. If this micro-bubble is available as tracer of PIV (Particle Image Velocimetry), environment load would become lower because it doesn't need to discard particle. In this paper, we make a micro-bubble generator with Venturi type mechanism. The generated micro-bubbles are applied to a vertical channel flow with contraction. We validate about traceability of the micro-bubble tracer in comparison with the particle tracer.

  10. Generation of Submicron Bubbles using Venturi Tube Method

    Science.gov (United States)

    Wiraputra, I. G. P. A. E.; Edikresnha, D.; Munir, M. M.; Khairurrijal

    2016-08-01

    In this experiment, submicron bubbles that have diameters less than 1 millimeter were generated by mixing water and gas by hydrodynamic cavitation method. The water was forced to pass through a venturi tube in which the speed of the water will increase in the narrow section, the throat, of the venturi. When the speed of water increased, the pressure would drop at the throat of the venturi causing the outside air to be absorbed via the gas inlet. The gas was then trapped inside the water producing bubbles. The effects of several physical parameters on the characteristics of the bubbles will be discussed thoroughly in this paper. It was found that larger amount of gas pressure during compression will increase the production rate of bubbles and increase the density of bubble within water.

  11. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    International Nuclear Information System (INIS)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok

    1995-01-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within ±8%

  12. A criterion for the onset of slugging in horizontal stratified air-water countercurrent flow

    Energy Technology Data Exchange (ETDEWEB)

    Chun, Moon-Hyun; Lee, Byung-Ryung; Kim, Yang-Seok [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of)] [and others

    1995-09-01

    This paper presents an experimental and theoretical investigation of wave height and transition criterion from wavy to slug flow in horizontal air-water countercurrent stratified flow conditions. A theoretical formula for the wave height in a stratified wavy flow regime has been developed using the concept of total energy balance over a wave crest to consider the shear stress acting on the interface of two fluids. From the limiting condition of the formula for the wave height, a necessary criterion for transition from a stratified wavy flow to a slug flow has been derived. A series of experiments have been conducted changing the non-dimensional water depth and the flow rates of air in a horizontal pipe and a duct. Comparisons between the measured data and the predictions of the present theory show that the agreement is within {plus_minus}8%.

  13. Modeling of the evolution of bubble size distribution of gas-liquid flow inside a large vertical pipe. Influence of bubble coalescence and breakup models

    International Nuclear Information System (INIS)

    Liao, Yixiang; Lucas, Dirk

    2011-01-01

    The range of gas-liquid flow applications in today's technology is immensely wide. Important examples can be found in chemical reactors, boiling and condensation equipments as well as nuclear reactors. In gas-liquid flows, the bubble size distribution plays an important role in the phase structure and interfacial exchange behaviors. It is therefore necessary to take into account the dynamic change of the bubble size distribution to get good predictions in CFD. An efficient 1D Multi-Bubble-Size-Class Test Solver was introduced in Lucas et al. (2001) for the simulation of the development of the flow structure along a vertical pipe. The model considers a large number of bubble classes. It solves the radial profiles of liquid and gas velocities, bubble-size class resolved gas fraction profiles as well as turbulence parameters on basis of the bubble size distribution present at the given axial position. The evolution of the flow along the height is assumed to be solely caused by the progress of bubble coalescence and break-up resulting in a bubble size distribution changing in the axial direction. In this model, the bubble coalescence and breakup models are very important for reasonable predictions of the bubble size distribution. Many bubble coalescence and breakup models have been proposed in the literature. However, some obvious discrepancies exist in the models; for example, the daughter bubble size distributions are greatly different from different bubble breakup models, as reviewed in our previous publication (Liao and Lucas, 2009a; 2010). Therefore, it is necessary to compare and evaluate typical bubble coalescence and breakup models that have been commonly used in the literature. Thus, this work is aimed to make a comparison of several typical bubble coalescence and breakup models and to discuss in detail the ability of the Test Solver to predict the evolution of bubble size distribution. (orig.)

  14. CO2 saturated water as two-phase flow for fouling control in reverse electrodialysis.

    Science.gov (United States)

    Moreno, J; de Hart, N; Saakes, M; Nijmeijer, K

    2017-11-15

    When natural feed waters are used in the operation of a reverse electrodialysis (RED) stack, severe fouling on the ion exchange membranes and spacers occurs. Fouling of the RED stack has a strong influence on the gross power density output; which can decrease up to 50%. Moreover, an increase in the pressure loss occurs between the feed water inlet and outlet, increasing the pumping energy and thus decreasing the net power density that can be obtained. In this work, we extensively investigated the use of CO 2 saturated water as two-phase flow cleaning for fouling mitigation in RED using natural feed waters. Experiments were performed in the REDstack research facility located at the Afsluitdijk (the Netherlands) using natural feed waters for a period of 60 days. Two different gas combinations were experimentally investigated, water/air sparging and water/CO 2 (saturated) injection. Air is an inert gas mixture and induces air sparging in the stack. In the case of CO 2 , nucleation, i.e. the spontaneous formation of bubbles, occurs at the spacer filaments due to depressurization of CO 2 saturated water, inducing cleaning. Results showed that stacks equipped with CO 2 saturated water can produce an average net power density of 0.18 W/m 2 under real fouling conditions with minimal pre-treatment and at a low outside temperature of only 8 °C, whereas the stacks equipped with air sparging could only produce an average net power density of 0.04 W/m 2 . Electrochemical impedance spectroscopy measurements showed that the stacks equipped with air sparging increased in stack resistance due to the presence of stagnant bubbles remaining in the stack after every air injection. Furthermore, the introduction of CO 2 gas in the feed water introduces a pH decrease in the system (carbonated solution) adding an additional cleaning effect in the system, thus avoiding the use of environmentally unwanted cleaning chemicals. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All

  15. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors.

    Science.gov (United States)

    Tirunehe, Gossaye; Norddahl, B

    2016-04-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U(G)) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K(L)a) by a factor of 1.2-1.9 compared to the flat sheet membrane.

  16. Continuous measurement of the radon concentration in water using electret ion chamber method

    International Nuclear Information System (INIS)

    Dua, S.K.; Hopke, P.K.

    1992-10-01

    A radon concentration of 300 pCi/L has been proposed by the US Environmental Protection Agency as a limit for radon dissolved in municipal drinking water supplies. There is therefore a need for a continuous monitor to insure that the daily average concentration does not exceed this limit. In order to calibrate the system, varying concentrations of radon in water have been generated by bubbling radon laden air through a dynamic flowthrough water system. The value of steady state concentration of radon in water from this system depends on the concentration of radon in air, the air bubbling rate, and the water flow rate. The measurement system has been designed and tested using a 1 L volume electret ion chamber to determine the radon in water. In this dynamic method, water flows directly through the electret ion chamber. Radon is released to the air and measured with the electret. A flow of air is maintained through the chamber to prevent the build-up of high radon concentrations and too rapid discharge of the electret. It was found that the system worked well when the air flow was induced by the application of suction. The concentration in the water was calculated from the measured concentration in air and water and air flow rates. Preliminary results suggest that the method has sufficient sensitivity to measure concentrations of radon in water with acceptable accuracy and precision

  17. Effect of dissolved air content on single bubble sonoluminescence

    OpenAIRE

    Arakeri, Vijay H

    1993-01-01

    It has been recently demonstrated that a single gas bubble in a liquid medium can be driven hard enough by an acoustic pressure field to make it emit light which is visible to the naked eye in a dark room. This phenomenon termed as single bubble sonoluminescence has shown some extraordinary physical properties. In the present investigation the author has shown that dissolved air content has a significant influence on this phenomenon.

  18. Performance of a hydraulic air compressor for use in compressed air energy storage power systems

    Energy Technology Data Exchange (ETDEWEB)

    Berghmans, J. A.; Ahrens, F. W.

    1978-01-01

    A fluid mechanical analysis of a hydraulic air compression system for Compressed Air Energy Storage (CAES) application is presented. With this compression concept, air is charged into an underground reservoir, for later use in power generation, by entraining bubbles into a downward flow of water from a surface reservoir. Upon releasing the air in the underground reservoir, the water is pumped back to the surface. The analytical model delineated is used to predict the hydraulic compressor performance characteristics (pumping power, pump head, compression efficiency) as a function of water flow rate and system geometrical parameters. The results indicate that, although large water pumps are needed, efficiencies as high as 90% (relative to ideal isothermal compression) can be expected. This should result in lower compression power than for conventional compressor systems, while eliminating the need for the usual intercoolers and aftercooler.

  19. A study of vapor bubble departure in subcooled flow boiling at low pressure

    International Nuclear Information System (INIS)

    Donevski, Bozin; Saga, Tetsuo; Kobayashi, Toshio; Segawa, Shigeki

    1999-01-01

    An experimental study of vapor bubble dynamics in sub-cooled flow boiling was conducted using the flow visualization and digital image processing methods. Vapor bubble departure departure in subcooled flow boiling have been experimentally investigated over a range of mass flux G=0.384 (kg/m 2 s), and heat flux q w = 27.2 x 10 4 (W/m 2 ), for the subcooled flow boiling region. It has been observed that once a vapor bubble departs from a nucleation site, it typically slides along the heating surface at sonic finite distance down-stream of nucleation site. The image processing method proposed in this study is based on the detachment and tracing of the edges of the bubbles and their background. The proposed method can be used in various fields of engineering applications. (Original)

  20. Theoretical investigation of flow regime for boiling water two-phase flow in horizontal rectangular narrow channels

    International Nuclear Information System (INIS)

    Zhang Chunwei; Qiu Suizheng; Yan Mingyu; Wang Bulei; Nie Changhua

    2005-01-01

    The flow regime transition criteria for the boiling water two-phase flow in horizontal rectangular narrow channels (1 x 20 mm, 2 x 20 mm) were theoretically explored. The discernible flow patterns were bubble, intermittent slug, churn, annular and steam-water separation flow. By using two-fluid model, equations of conservation of momentum were established for the two-phase flow. New flow-regime criteria were obtained and agreed well with the experiment data. (authors)

  1. Interfacial bubbles formed by plunging thin liquid films in a pool

    Science.gov (United States)

    Salkin, Louis; Schmit, Alexandre; David, Richard; Delvert, Alexandre; Gicquel, Eric; Panizza, Pascal; Courbin, Laurent

    2017-06-01

    We show that the immersion of a horizontally suspended thin film of liquid in a pool of the same fluid creates an interfacial bubble, that is, a bubble at the liquid-air interface. Varying the fluid properties, the film's size, and its immersion velocity, our experiments unveil two formation regimes characterized by either a visco-capillary or an inertio-capillary mechanism that controls the size of a produced bubble. To rationalize these results, we compare the pressure exerted by the air flow under a plunging film with the Laplace pressure needed to generate film dimpling, which subsequently yields air entrapment and the production of a bubble. This physical model explains the power-law variations of the bubble size with the governing dimensionless number for each regime.

  2. Bubble Dynamics and Shock Waves

    CERN Document Server

    2013-01-01

    This volume of the Shock Wave Science and Technology Reference Library is concerned with the interplay between bubble dynamics and shock waves. It is divided into four parts containing twelve chapters written by eminent scientists. Topics discussed include shock wave emission by laser generated bubbles (W Lauterborn, A Vogel), pulsating bubbles near boundaries (DM Leppinen, QX Wang, JR Blake), interaction of shock waves with bubble clouds (CD Ohl, SW Ohl), shock propagation in polydispersed bubbly liquids by model equations (K Ando, T Colonius, CE Brennen. T Yano, T Kanagawa,  M Watanabe, S Fujikawa) and by DNS (G Tryggvason, S Dabiri), shocks in cavitating flows (NA Adams, SJ Schmidt, CF Delale, GH Schnerr, S Pasinlioglu) together with applications involving encapsulated bubble dynamics in imaging (AA Doinikov, A Novell, JM Escoffre, A Bouakaz),  shock wave lithotripsy (P Zhong), sterilization of ships’ ballast water (A Abe, H Mimura) and bubbly flow model of volcano eruptions ((VK Kedrinskii, K Takayama...

  3. An Eulerian-Eulerian CFD Simulation of Air-Water Flow in a Pipe Separator

    Directory of Open Access Journals (Sweden)

    E.A. Afolabi

    2014-06-01

    Full Text Available This paper presents a three dimensional Computational Fluid Dynamics (CFD of air-water flow using Eulerian –Eulerian multiphase model and RSM mixture turbulence model to investigate its hydrodynamic flow behaviour in a 30 mm pipe separator. The simulated results are then compared with the stereoscopic PIV measurements at different axial positions. The comparison shows that the velocity distribution can be predicted with high accuracy using CFD. The numerical velocity profiles are also found to be in good qualitative agreement with the experimental measurements. However, there were some discrepancies between the CFD results and the SPIV measurements at some axial positions away from the inlet section. Therefore, the CFD model could provide good physical understanding on the hydrodynamics flow behaviour for air-water in a pipe separator.

  4. PIV Visualization of Bubble Induced Flow Circulation in 2-D Rectangular Pool for Ex-Vessel Debris Bed Coolability

    Energy Technology Data Exchange (ETDEWEB)

    Han, Teayang; Kim, Eunho; Park, Hyun Sun; Moriyama, Kiyofumi [POSTECH, Pohang (Korea, Republic of)

    2015-10-15

    The previous research works demonstrated the debris bed formation on the flooded cavity floor in experiments. Even in the cases the core melt is once solidified, the debris bed can be re-melted due to the decay heat. If the debris bed is not cooled enough by the coolant, the re-melted debris bed will react with the concrete base mat. This situation is called the molten core-concrete interaction (MCCI) which threatens the integrity of the containment by generated gases which pressurize the containment. Therefore securing the long term coolability of the debris bed in the cavity is crucial. According to the previous research works, the natural convection driven by the rising bubbles affects the coolability and the formation of the debris bed. Therefore, clarification of the natural convection characteristics in and around the debris bed is important for evaluation of the coolability of the debris bed. In this study, two-phase flow around the debris bed in a 2D slice geometry is visualized by PIV method to obtain the velocity map of the flow. The DAVINCI-PIV was developed to investigate the flow around the debris bed. In order to simulate the boiling phenomena induced by the decay heat of the debris bed, the air was injected separately by the air chamber system which consists of the 14 air-flowmeters. The circulation flow developed by the rising bubbles was visualized by PIV method.

  5. Investigation of vertical slug flow with advanced two-phase flow instrumentation

    International Nuclear Information System (INIS)

    Mi, Y.; Ishii, M.; Tsoukalas, L.H.

    2001-01-01

    Extensive experiments of vertical slug flow were carried out with an electromagnetic flowmeter and an impedance void-meter in an air-water two-phase experimental loop. The basic principles of these instruments in vertical slug flow measurements are discussed. Time series of the liquid velocity and the impedance were separated into two parts corresponding to the Taylor bubble and the liquid slug. Characteristics of slug flow, such as the void fractions, probabilities and lengths of the Taylor bubble and liquid slug, slug unit velocity, area-averaged liquid velocity, and liquid film velocity of the Taylor bubble tail, etc., were obtained. For the first time, the area-averaged liquid velocity of slug flow was revealed by the electromagnetic flowmeter. It is realized that the void fraction of the liquid slug is determined by the turbulent intensity due to the relative liquid motion between the Taylor bubble tail region and its wake region. A correlation of the void fraction of the liquid slug is developed based on experimental results obtained from a test section with 50.8 mm i.d. The results of this study suggest a promising improvement in understanding of vertical slug flow

  6. Measurement system of bubbly flow using ultrasonic velocity profile monitor and video data processing unit

    International Nuclear Information System (INIS)

    Aritomi, Masanori; Zhou, Shirong; Nakajima, Makoto; Takeda, Yasushi; Mori, Michitsugu; Yoshioka, Yuzuru.

    1996-01-01

    The authors have been developing a measurement system for bubbly flow in order to clarify its multi-dimensional flow characteristics and to offer a data base to validate numerical codes for multi-dimensional two-phase flow. In this paper, the measurement system combining an ultrasonic velocity profile monitor with a video data processing unit is proposed, which can measure simultaneously velocity profiles in both gas and liquid phases, a void fraction profile for bubbly flow in a channel, and an average bubble diameter and void fraction. Furthermore, the proposed measurement system is applied to measure flow characteristics of a bubbly countercurrent flow in a vertical rectangular channel to verify its capability. (author)

  7. Two-phase cross-flow-induced forces acting on a circular cylinder

    International Nuclear Information System (INIS)

    Hara, F.

    1982-01-01

    This paper clarifies the characteristics of unsteady flow-induced lift and drag forces acting on a circular cylinder immersed perpendicular to a two-phase bubbly air-water flow, in conjunction with Karman vortex shedding and pressure fluctuations. Experimental results presented show that Karman vortex shedding disappears over a certain value of air concentration in the two-phase flow. Related to this disappearance, flow-induced forces are rather small and periodical in low air concentration but become very large and random in higher air concentration. 7 refs

  8. Effect of isobaric breathing gas shifts from air to heliox mixtures on resolution of air bubbles in lipid and aqueous tissues of recompressed rats

    DEFF Research Database (Denmark)

    Hyldegaard, Ole; Kerem, Dikla; Melamed, Y

    2011-01-01

    Deep tissue isobaric counterdiffusion that may cause unwanted bubble formation or transient bubble growth has been referred to in theoretical models and demonstrated by intravascular gas formation in animals, when changing inert breathing gas from nitrogen to helium after hyperbaric air breathing....... We visually followed the in vivo resolution of extravascular air bubbles injected at 101 kPa into nitrogen supersaturated rat tissues: adipose, spinal white matter, skeletal muscle or tail tendon. Bubbles were observed during isobaric breathing-gas shifts from air to normoxic (80:20) heliox mixture...... breathing. No such bubble growth was observed in spinal white matter, skeletal muscle or tendon. In spinal white matter, an immediate breathing gas shift after the hyperbaric air exposure from air to both (80:20) and (50:50) heliox, coincident with recompression to either 285 or 405 kPa, caused consistent...

  9. Assessment of three turbulence model performances in predicting water jet flow plunging into a liquid pool

    Directory of Open Access Journals (Sweden)

    Zidouni Kendil Faiza

    2010-01-01

    Full Text Available The main purpose of the current study is to numerically investigate, through computational fluid dynamics modeling, a water jet injected vertically downward through a straight circular pipe into a water bath. The study also aims to obtain a better understanding of jet behavior, air entrainment and the dispersion of bubbles in the developing flow region. For these purposes, three dimensional air and water flows were modeled using the volume of fluid technique. The equations in question were formulated using the density and viscosity of a 'gas-liquid mixture', described in terms of the phase volume fraction. Three turbulence models with a high Reynolds number have been considered i. e. the standard k-e model, realizable k-e model, and Reynolds stress model. The predicted flow patterns for the realizable k-e model match well with experimental measurements found in available literature. Nevertheless, some discrepancies regarding velocity relaxation and turbulent momentum distribution in the pool are still observed for both the standard k-e and the Reynolds stress model.

  10. Investigation of the condensing vapor bubble behavior through CFD simulation

    International Nuclear Information System (INIS)

    Sablania, Sidharth; Verma, Akash; Goyal, P.; Dutta, Anu; Singh, R.K.

    2013-09-01

    In nuclear systems the sub-cooled boiling flow is an important problem due to the behavior of condensing vapor bubble which has a large effect on the heat transfer characteristics as well as pressure drops and flow instability. The sub-cooled boiling flows become very complex and dynamic phenomena by the vapor bubble-water interaction. This happens due to the boiling/condensation, break-up, and coalescence of the bubble and needs to be addressed for characterizing the above mentioned flow parameters. There have been many researches to analyze the behavior of bubble experimentally and analytically. However, it is very difficult to get complete information about the behavior of bubble because of ever changing interface between vapor and water phase due to bubble condensation/evaporation Therefore, it is necessary to carry out a CFD simulation for better understanding the complex phenomenon of the bubble behavior. The present work focuses on the simulation of condensing bubble in subcooled boiling flow using (Volume of Fluid) VOF method in the CFD code CFD-ACE+. In order to simulate the heat and mass transfer through the bubble interface, CFD modeling for the bubble condensation was developed by modeling the source terms in the governing equations of VOF model using the User-Defined Function (UDF) in CFD-ACE+ code. The effect of condensation on bubble behavior was analyzed by comparing the behavior of condensing bubble with that of adiabatic bubble. It was observed that the behavior of condensing bubble was different from that of non condensing bubble in respect of bubble shape, diameter, velocity etc. The results obtained from the present simulation in terms of various parameters such as bubble velocity, interfacial area and bubble volume agreed well with the reported experimental results verified with FLUENT code in available literature. Hence, this CFD-ACE+ simulation of single bubble condensation will be a useful computational fluid dynamics tool for analyzing the

  11. Statistical criterion for Bubbly-slug flow transition

    Energy Technology Data Exchange (ETDEWEB)

    Zigler, J; Elias, E [Technion-Israel Inst. of Tech., Haifa (Israel). Dept. of Mechanical Engineering

    1996-12-01

    The investigation of flow pattern transitions is still an interesting problem in the research of multiphase Row. It has been studied theoretically, and experimental confirmation of the models has been found by many investigators. The present paper deals with a statistical approach to bubbly-slug transitions in a vertical upward two phase flow and a new transition criterion is deduced from experimental data (authors).

  12. Recognition and measurement gas-liquid two-phase flow in a vertical concentric annulus at high pressures

    Science.gov (United States)

    Li, Hao; Sun, Baojiang; Guo, Yanli; Gao, Yonghai; Zhao, Xinxin

    2018-02-01

    The air-water flow characteristics under pressure in the range of 1-6 MPa in a vertical annulus were evaluated in this report. Time-resolved bubble rising velocity and void fraction were also measured using an electrical void fraction meter. The results showed that the pressure has remarkable effect on the density, bubble size and rise velocity of the gas. Four flow patterns (bubble, cap-bubble, cap-slug, and churn) were also observed instead of Taylor bubble at high pressure. Additionally, the transition process from bubble to cap-bubble was investigated at atmospheric and high pressures, respectively. The results revealed that the flow regime transition criteria for atmospheric pressure do not work at high pressure, hence a new flow regime transition model for annular flow channel geometry was developed to predict the flow regime transition, which thereafter exhibited high accuracy at high pressure condition.

  13. Two-phase upward air water flow in a prismatic channel with rectangular base

    International Nuclear Information System (INIS)

    Carvalho Tofani, P. de

    1984-01-01

    Two-phase liquid-gas mixtures provide suitable means to simulate water-water vapor flows, which may occur in nuclear reactor cores. The mastery of physical transport phenomena is of great importance, as far as the analysis of such thermal systems is concerned. Within the framework of thermal-hydraulic programs, experiments have been carried out to investigate the two-phase upward air-water flow structure, in a rectangular test section, by using independent measuring techniques, which comprise direct viewing and photography, electrical probes and gamma-ray attenuation. In this paper, flow pattern maps and correlations for flow pattern transitions, void fraction profiles, liquid film thickness and superficial average void fraction are proposed and compared to available data. (Author) [pt

  14. Measurement of void fraction and bubble size distribution in two-phase flow system

    International Nuclear Information System (INIS)

    Huahun, G.

    1987-01-01

    The importance of study two phase flow parameter and microstructure has appeared increasingly, with the development of two-phase flow discipline. In the paper, the measurement methods of several important microstructure parameter in a two phase flow vertical channel have been studied. Using conductance probe the two phase flow pattern and the average void fraction have been measured previously by the authors. This paper concerns microstructure of the bubble size distribution and local void fraction. The authors studied the methods of measuring bubble velocity, size distribution and local void fraction using double conductance probes and a set of apparatus. Based on our experiments and Yoshihiro work, a formula of calculated local void fraction has been deduced by using the statistical characteristics of bubbles in two phase flow and the relation between calculated bubble size and voltage has been determined. Finally the authors checked by using photograph and fast valve, which is classical but reliable. The results are the same with what has been studied before

  15. Dynamic film thickness between bubbles and wall in a narrow channel

    Science.gov (United States)

    Ito, Daisuke; Damsohn, Manuel; Prasser, Horst-Michael; Aritomi, Masanori

    2011-09-01

    The present paper describes a novel technique to characterize the behavior of the liquid film between gas bubbles and the wall in a narrow channel. The method is based on the electrical conductance. Two liquid film sensors are installed on both opposite walls in a narrow rectangular channel. The liquid film thickness underneath the gas bubbles is recorded by the first sensor, while the void fraction information is obtained by measuring the conductance between the pair of opposite sensors. Both measurements are taken on a large two-dimensional domain and with a high speed. This makes it possible to obtain the two-dimensional distribution of the dynamic liquid film between the bubbles and the wall. In this study, this method was applied to an air-water flow ranging from bubbly to churn regimes in the narrow channel with a gap width of 1.5 mm.

  16. VOF modelling of gas–liquid flow in PEM water electrolysis cell micro-channels

    DEFF Research Database (Denmark)

    Lafmejani, Saeed Sadeghi; Olesen, Anders Christian; Kær, Søren Knudsen

    2017-01-01

    In this study, the gaseliquid flow through an interdigitated anode flow field of a PEM water electrolysis cell (PEMEC) is analysed using a three-dimensional, transient, computational fluid dynamics (CFD) model. To account for two-phase flow, the volume of fluid (VOF) method in ANSYS Fluent 17...... of the channel. The model is capable of revealing effect of different bubble shapes/lengths in the outgoing channel. Shape and the sequence of the bubbles affect the water flow distribution in the ATL. The model presented in this work is the first step in the development of a comprehensive CFD model...

  17. Prediction of bubble detachment diameter in flow boiling based on force analysis

    International Nuclear Information System (INIS)

    Chen Deqi; Pan Liangming; Ren Song

    2012-01-01

    Highlights: ► All the forces acting on the growing bubbles are taken into account in the model. ► The bubble contact diameter has significant effect on bubble detachment. ► Bubble growth force and surface tension are more significant in narrow channel. ► A good agreement between the predicted and the measured results is achieved. - Abstract: Bubble detachment diameter is one of the key parameters in the study of bubble dynamics and boiling heat transfer, and it is hard to be measured in a boiling system. In order to predict the bubble detachment diameter, a theoretical model is proposed based on forces analysis in this paper. All the forces acting on a bubble are taken into account to establish a model for different flow boiling configurations, including narrow and conventional channels, upward, downward and horizontal flows. A correlation of bubble contact circle diameter is adopted in this study, and it is found that the bubble contact circle diameter has significant effect on bubble detachment. A new correlation taking the bubble contact circle diameter into account for the evaluation of bubble growth force is proposed in this study, and it is found that the bubble growth force and surface tension force are more significant in narrow channel when comparing with that in conventional channel. A visual experiment was carried out in order to verify present model; and the experimental data from published literature are used also. A good agreement between predicted and measured results is achieved.

  18. Simulation of bubbly flow in vertical pipes by coupling Lagrangian and Eulerian models with 3D random walks models: Validation with experimental data using multi-sensor conductivity probes and Laser Doppler Anemometry

    Energy Technology Data Exchange (ETDEWEB)

    Munoz-Cobo, Jose L., E-mail: jlcobos@iqn.upv.es [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Chiva, Sergio [Department of Mechanical Engineering and Construction, Universitat Jaume I, Castellon (Spain); Essa, Mohamed Ali Abd El Aziz [Instituto de Ingenieria Energetica, Universidad Politecnica de Valencia, Valencia (Spain); Mendes, Santos [Facultad de Ingenieria Mecanica y Electrica, Universidad Autonoma de Nuevo Leon (Mexico)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer We have simulated bubbly flow in vertical pipes by coupling a Lagrangian model to an Eulerian one, and to a 3D random walk model. Black-Right-Pointing-Pointer A set of experiments in a vertical column with isothermal co-current two phase flow have been performed and used to validate the previous model. Black-Right-Pointing-Pointer We have investigated the influence of the turbulence induced by the bubbles on the results. Black-Right-Pointing-Pointer Comparison of experimental and computed results has been performed for different boundary conditions. - Abstract: A set of two phase flow experiments for different conditions ranging from bubbly flow to cap/slug flow have been performed under isothermal concurrent upward air-water flow conditions in a vertical column of 3 m height. Special attention in these experiments was devoted to the transition from bubbly to cap/slug flow. The interfacial velocity of the bubbles and the void fraction distribution was obtained using 2 and 4 sensors conductivity probes. Numerical simulations of these experiments for bubbly flow conditions were performed by coupling a Lagrangian code with an Eulerian one. The first one tracks the 3D motion of the individual bubbles in cylindrical coordinates (r, {phi}, z) inside the fluid field under the action of the following forces: buoyancy, drag, lift, wall lubrication. Also we have incorporated a 3D stochastic differential equation model to account for the random motion of the individual bubbles in the turbulent velocity field of the carrier liquid. Also we have considered the deformations undergone by the bubbles when they touch the walls of the pipe and are compressed until they rebound. The velocity and turbulence fields of the liquid phase were computed by solving the time dependent conservation equations in its Reynolds Averaged Transport Equation form (RANS). The turbulent kinetic energy k, and the dissipation rate {epsilon} transport equations

  19. Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, D.; Krepper, E.; Prasser, H.-M. [Forschungszentrum Rossendorf e.V., Institute of Safety Research, Dresden (Germany)

    2001-07-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  20. Modeling of radial gas fraction profiles for bubble flow in vertical pipes

    International Nuclear Information System (INIS)

    Lucas, D.; Krepper, E.; Prasser, H.-M.

    2001-01-01

    The paper presents a method for the prediction of radial gas fraction profiles from a given bubble size distribution. The method is based on the assumption of the equilibrium of the forces acting on a bubble perpendicularly to the flow direction. Assuming a large number of bubble size classes radial distributions are calculated separately for all bubble classes. The sum of these distributions is the radial profile of the gas fraction. The results of the model are compared with experimental data for a number of gas and liquid volume flow rates. The experiments were performed at a vertical test loop (inner diameter 50 mm) in FZ-Rossendorf using a wire mesh sensor. The sensor enables the determination of void distributions in the cross section of the loop. A special evaluation procedure supplies bubble size distributions as well as local distributions of bubbles within a predefined interval of bubble sizes. There is a good agreement between experimental and calculated data. In particular the change from wall peaking to core peaking is well predicted. (authors)

  1. The effect of air bubble position after blastocyst transfer on pregnancy rates in IVF cycles.

    Science.gov (United States)

    Friedman, Brooke E; Lathi, Ruth B; Henne, Melinda B; Fisher, Stephanie L; Milki, Amin A

    2011-03-01

    To investigate the relationship between air bubble position after blastocyst transfer (BT) and pregnancy rates (PRs). Retrospective cohort study. University-based infertility center. Three hundred fifteen consecutive nondonor BTs by a single provider. Catheters were loaded with 25 μL of culture media, 20 μL of air, 25 μL of media containing the blastocysts, 20 μL of air, and a small amount of additional media. The distance from the air bubble to the fundus, as seen on abdominal ultrasound examination, was measured at the time of transfer. Air bubble location was categorized as 20 mm from the fundus. Clinical pregnancy rate. After controlling for age, parity, FSH and frozen transfers, and accounting for repeated cycles per patient, the PRs for both the >20-mm (38.3%) and the 10-20-mm (42.0%) from the fundus group were significantly reduced compared with the group in which the bubble was Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  2. Bubbling in vibrated granular films.

    Science.gov (United States)

    Zamankhan, Piroz

    2011-02-01

    With the help of experiments, computer simulations, and a theoretical investigation, a general model is developed of the flow dynamics of dense granular media immersed in air in an intermediate regime where both collisional and frictional interactions may affect the flow behavior. The model is tested using the example of a system in which bubbles and solid structures are produced in granular films shaken vertically. Both experiments and large-scale, three-dimensional simulations of this system are performed. The experimental results are compared with the results of the simulation to verify the validity of the model. The data indicate evidence of formation of bubbles when peak acceleration relative to gravity exceeds a critical value Γ(b). The air-grain interfaces of bubblelike structures are found to exhibit fractal structure with dimension D=1.7±0.05.

  3. Dynamics of bubble formation in highly viscous liquids.

    Science.gov (United States)

    Pancholi, Ketan; Stride, Eleanor; Edirisinghe, Mohan

    2008-04-15

    There has recently been considerable interest in the development of devices for the preparation of monodisperse microbubble suspensions for use as ultrasound contrast agents and drug delivery vehicles. These applications require not only a high degree of bubble uniformity but also a maximum bubble size of 8 mum, and this provides a strong motivation for developing an improved understanding of the process of bubble formation in a given device. The aim of this work was to investigate bubble formation in a T-junction device and determine the influence of the different processing parameters upon bubble size, in particular, liquid viscosity. Images of air bubble formation in a specially designed T-junction were recorded using a high-speed camera for different ratios of liquid to gas flow rate (Ql/Qg) and different liquid viscosities (microl). It was found that theoretical predictions of the flow profile in the focal region based on analysis of axisymmetric Stokes flow were accurate to within 6% when compared with the experimental data, indicating that this provided a suitable means of describing the bubble formation process. Both the theoretical and experimental results showed that Ql/Qg and mul had a significant influence upon bubble formation and eventual size, with higher flow rates and higher viscosities producing smaller bubbles. There were, however, found to be limiting values of Ql/Qg and mul beyond which no further reduction in bubble size was achieved.

  4. Air water loop - an experimental facility to study thermal hydraulics of AHWR steam drum

    International Nuclear Information System (INIS)

    Bagul, R.K.; Pilkhwal, D.S.; Jain, V.; Vijayan, P.K.

    2014-05-01

    In the proposed Indian Advanced Heavy Water Reactor (AHWR) the coolant recirculation in the primary system is achieved by two-phase natural circulation. The two-phase steam-water mixture from the reactor core is separated in steam drum by gravity. Gravity separation of phases may lead to undesirable phenomena - carryover and carryunder. Carryover is the entrainment of liquid droplets in the vapor phase.Carryover needs to be minimized to avoid erosion corrosion of turbine blades. Carryunder is the entrainment of vapor bubbles with liquid flowing back to reactor core. Significant carryunder may in turn lead to reduced flow resulting in reduced CHF margin and stability in the coolant channel. An Air-Water Loop (AWL) has been designed to carry out the experiments relevant to AHWR steam drum. The design features and scaling philosophy is described in this report. (author)

  5. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    International Nuclear Information System (INIS)

    Kwon, J O; Yang, J S; Lee, S J; Rhee, K; Chung, S K

    2011-01-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  6. Electromagnetically actuated micromanipulator using an acoustically oscillating bubble

    Science.gov (United States)

    Kwon, J. O.; Yang, J. S.; Lee, S. J.; Rhee, K.; Chung, S. K.

    2011-11-01

    A novel non-invasive micromanipulation technique has been developed where a microrobot swimming in an aqueous medium manipulates micro-objects, through electromagnetic actuation using an acoustically oscillating bubble attached to the microrobot as a grasping tool. This micromanipulation concept was experimentally verified; an investigation of electromagnetic actuation and acoustic excitation was also performed. Two-dimensional propulsion of a magnetic piece was demonstrated through electromagnetic actuation, using three pairs of electric coils surrounding the water chamber, and confirming that the propulsion speed of the magnetic piece was linearly proportional to the applied current intensity. Micro-object manipulation was separately demonstrated using an air bubble with glass beads (80 µm diameter) and a steel ball (800 µm diameter) in an aqueous medium. Upon acoustic excitation of the bubble by a piezo-actuator around its resonant frequency, the generated radiation force attracted and captured the neighboring glass beads and steel ball. The grasping force was indirectly measured by exposing the glass beads captured by the oscillating bubble to a stream generated by an auto-syringe pump in a mini-channel. By measuring the maximum speed of the streaming flow when the glass beads detached from the oscillating bubble and flowed downstream, the grasping force was calculated as 50 nN, based on Stokes' drag approximation. Finally, a fish egg was successfully manipulated with the integration of electromagnetic actuation and acoustic excitation, using a mini-robot consisting of a millimeter-sized magnetic piece with a bubble attached to its bottom. This novel micromanipulation may be an efficient tool for both micro device assembly and single-cell manipulation.

  7. The effect of channel height on bubble nucleation in superhydrophobic microchannels due to subcritical heating

    Science.gov (United States)

    Cowley, Adam; Maynes, Daniel; Crockett, Julie; Iverson, Brian

    2017-11-01

    This work experimentally investigates the effects of heating on laminar flow in high aspect ratio superhydrophobic (SH) microchannels. When water that is saturated with dissolved air is used, the unwetted cavities of the SH surfaces act as nucleation sites and air effervesces out of solution onto the surfaces. The microchannels consist of a rib/cavity structured SH surface, that is heated, and a glass surface that is utilized for flow visualization. Two channel heights of nominally 183 and 366 μm are considered. The friction factor-Reynolds product (fRe) is obtained via pressure drop and volumetric flow rate measurements and the temperature profile along the channel is obtained via thermocouples embedded in an aluminum block below the SH surface. Five surface types/configurations are investigated: smooth hydrophilic, smooth hydrophobic, SH with ribs perpendicular to the flow, SH with ribs parallel to the flow, and SH with both ribs parallel to the flow and sparse ribs perpendicular to the flow. Depending on the surface type/configuration, large bubbles can form and adversely affect fRe and lead to higher temperatures along the channel. Once bubbles grow large enough, they are expelled from the channel. The channel size greatly effects the residence time of the bubbles and consequently fRe and the channel temperature. This research was supported by the National Science Foundation (NSF) (Grant No. CBET-1235881) and the Utah NASA Space Grant Consortium (NASA Grant NNX15A124H).

  8. Bubble behavior characteristics based on virtual binocular stereo vision

    Science.gov (United States)

    Xue, Ting; Xu, Ling-shuang; Zhang, Shang-zhen

    2018-01-01

    The three-dimensional (3D) behavior characteristics of bubble rising in gas-liquid two-phase flow are of great importance to study bubbly flow mechanism and guide engineering practice. Based on the dual-perspective imaging of virtual binocular stereo vision, the 3D behavior characteristics of bubbles in gas-liquid two-phase flow are studied in detail, which effectively increases the projection information of bubbles to acquire more accurate behavior features. In this paper, the variations of bubble equivalent diameter, volume, velocity and trajectory in the rising process are estimated, and the factors affecting bubble behavior characteristics are analyzed. It is shown that the method is real-time and valid, the equivalent diameter of the rising bubble in the stagnant water is periodically changed, and the crests and troughs in the equivalent diameter curve appear alternately. The bubble behavior characteristics as well as the spiral amplitude are affected by the orifice diameter and the gas volume flow.

  9. A novel drag force coefficient model for gas–water two-phase flows under different flow patterns

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Zhi, E-mail: shangzhi@tsinghua.org.cn

    2015-07-15

    Graphical abstract: - Highlights: • A novel drag force coefficient model was established. • This model realized to cover different flow patterns for CFD. • Numerical simulations were performed under wide range flow regimes. • Validations were carried out through comparisons to experiments. - Abstract: A novel drag force coefficient model has been developed to study gas–water two-phase flows. In this drag force coefficient model, the terminal velocities were calculated through the revised drift flux model. The revised drift flux is different from the traditional drift flux model because the natural curve movement of the bubble was revised through considering the centrifugal force. Owing to the revisions, the revised drift flux model was to extend to 3D. Therefore it is suitable for CFD applications. In the revised drift flux model, the different flow patterns of the gas–water two-phase flows were able to be considered. This model innovatively realizes the drag force being able to cover different flow patterns of gas–water two-phase flows on bubbly flow, slug flow, churn flow, annular flow and mist flow. Through the comparisons of the numerical simulations to the experiments in vertical upward and downward pipe flows, this model was validated.

  10. The air bubble entrapped under a drop impacting on a solid surface

    Science.gov (United States)

    Thoroddsen, S. T.; Etoh, T. G.; Takehara, K.; Ootsuka, N.; Hatsuki, Y.

    2005-12-01

    We present experimental observations of the disk of air caught under a drop impacting onto a solid surface. By imaging the impact through an acrylic plate with an ultra-high-speed video camera, we can follow the evolution of the air disk as it contracts into a bubble under the centre of the drop. The initial size and contraction speed of the disk were measured for a range of impact Weber and Reynolds numbers. The size of the initial disk is related to the bottom curvature of the drop at the initial contact, as measured in free-fall. The initial contact often leaves behind a ring of micro-bubbles, marking its location. The air disk contracts at a speed comparable to the corresponding air disks caught under a drop impacting onto a liquid surface. This speed also seems independent of the wettability of the liquid, which only affects the azimuthal shape of the contact line. For some impact conditions, the dynamics of the contraction leaves a small droplet at the centre of the bubble. This arises from a capillary wave propagating from the edges of the contracting disk towards the centre. As the wave converges its amplitude grows until it touches the solid substrate, thereby pinching off the micro-droplet at the plate, in the centre of the bubble. The effect of increasing liquid viscosity is to slow down the contraction speed and to produce a more irregular contact line leaving more micro-bubbles along the initial ring.

  11. Development of two-group interfacial area transport equation for confined flow-1. Modeling of bubble interactions

    International Nuclear Information System (INIS)

    Sun, Xiaodong; Kim, Seungjin; Ishii, Mamoru; Beus, Stephen G.

    2003-01-01

    This paper presents the modeling of bubble interaction mechanisms in the two-group interfacial area transport equation (IATE) for confined gas-liquid two-phase flow. The transport equation is applicable to bubbly, cap-turbulent, and churn-turbulent flow regimes. In the two-group IATE, bubbles are categorized into two groups: spherical/distorted bubbles as Group 1 and cap/slug/churn-turbulent bubbles as Group 2. Thus, two sets of equations are used to describe the generation and destruction rates of bubble number density, void fraction, and interfacial area concentration for the two groups of bubbles due to bubble expansion and compression, coalescence and disintegration, and phase change. Five major bubble interaction mechanisms are identified for the gas-liquid two-phase flow of interest, and are analytically modeled as the source/sink terms for the transport equations based on certain assumptions for the confined flow. These models include both intra-group (within a certain group) and inter-group (between two groups) bubble interactions. The comparisons of the prediction by the one-dimensional two-group IATE with experimental data are presented in the second paper of this series. (author)

  12. Thermal hydraulic test for reactor safety system; a visualization study on flow boiling and bubble behavior

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Soon Heung; Baek, Won Pil; Ban, In Cheol [Korea Advanced Institute of Science and Technology, Taejeon (Korea)

    2002-03-01

    The project contribute to understand and to clarify the physical mechanism of flow nucleate boiling and CHF phenomena through the visualization experiments. the results are useful in the development of the enhancement device of heat transfer and to enhance nuclear fuel safety 1. Visual experimental facility 2. Application method of visualization Technique 3. Visualization results of flow nucleate boiling regime - Overall Bubble Behavior on the Heated Surface - Bubble Behavior near CHF Condition - Identification of Flow Structure - Three-layer flow structure 4. Quantifying of bubble parameter through a digital image processing - Image Processing Techniques - Classification of objects and measurements of the size - Three dimensional surface plot with using the luminance 5. Development and estimation of a correlation between bubble diameter and flow parameter - The effect of system parameter on bubble diameter - The development of a bubble diameter correlation . 49 refs., 42 figs., 7 tabs. (Author)

  13. Cavitation bubble nucleation induced by shock-bubble interaction in a gelatin gel

    Science.gov (United States)

    Oguri, Ryota; Ando, Keita

    2018-05-01

    An optical visualization technique is developed to study cavitation bubble nucleation that results from interaction between a laser-induced shock and a preexisting gas bubble in a 10 wt. % gelatin gel; images of the nucleated cavitation bubbles are captured and the cavitation inception pressure is determined based on Euler flow simulation. A spherical gas cavity is generated by focusing an infrared laser pulse into a gas-supersaturated gel and the size of the laser-generated bubble in mechanical equilibrium is tuned via mass transfer of the dissolved gas into the bubble. A spherical shock is then generated, through rapid expansion of plasma induced by the laser focusing, in the vicinity of the gas bubble. The shock-bubble interaction is recorded by a CCD camera with flash illumination of a nanosecond green laser pulse. The observation captures cavitation inception in the gel under tension that results from acoustic impedance mismatching at the bubble interface interacting with the shock. We measure the probability of cavitation inception from a series of the repeated experiments, by varying the bubble radius and the standoff distance. The threshold pressure is defined at the cavitation inception probability equal to one half and is calculated, through comparisons to Euler flow simulation, at -24.4 MPa. This threshold value is similar to that from shock-bubble interaction experiments using water, meaning that viscoelasticity of the 10 wt. % gelatin gel has a limited impact on bubble nucleation dynamics.

  14. Numerical simulation of single bubbles rising through subchannels with interface tracking method

    International Nuclear Information System (INIS)

    Hiroyuki Yoshida; Takuji Nagayoshi; Hidesada Tamai; Tazuyuki Takase; Hajime Akimoto

    2005-01-01

    flow channel by these four tubes. As the initial condition of the simulation, an air bubble was placed to the lower part of the flow channel that was filled with water. The initial diameter and the initial position of the air bubble are the parameter of the numerical analysis. Predicted terminal velocities of the bubble were about 20 % larger than the measured terminal velocities. When the bubble diameters are small, the bubbles exhibit either zigzag or helical motion within center subchannel. The terminal velocities of case that the bubble moved zigzag were larger than that it did spiral motion. These results agreed with the experimental results qualitatively. The present study was conducted under collaboration among JAERI, JAPC, Hitachi Ltd., Toshiba Corp., Mitsubishi Ltd., Univ. of Tokyo and Univ. of Osaka with the governmental funding from Publicly Invited Research Projects for Development of Innovative Nuclear Technologies by the Ministry of Education, Culture, Sports, Science and Technology (MEXT). (authors)

  15. Plasma induced degradation of Indigo Carmine by bipolar pulsed dielectric barrier discharge(DBD) in the water-air mixture.

    Science.gov (United States)

    Zhang, Ruo-Bing; Wu, Yan; Li, Guo-Feng; Wang, Ning-Hui; Li, Jie

    2004-01-01

    Degradation of the Indigo Carmine (IC) by the bipolar pulsed DBD in water-air mixture was studied. Effects of various parameters such as gas flow rate, solution conductivity, pulse repetitive rate and ect., on color removal efficiency of dying wastewater were investigated. Concentrations of gas phase o3 and aqueous phase H2O2 under various conditions were measured. Experimental results showed that air bubbling facilitates the breakdown of water and promotes generation of chemically active species. Color removal efficiency of IC solution can be greatly improved by the air aeration under various solution conductivities. Decolorization efficiency increases with the increase of the gas flow rate, and decreases with the increase of the initial solution conductivity. A higher pulse repetitive rate and a larger pulse capacitor C(p) are favorable for the decolorization process. Ozone and hydrogen peroxide formed decreases with the increase of initial solution conductivity. In addition, preliminary analysis of the decolorization mechanisms is given.

  16. Modeling of isothermal bubbly flow with interfacial area transport equation and bubble number density approach

    Energy Technology Data Exchange (ETDEWEB)

    Sari, Salih [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey); Erguen, Sule [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey); Barik, Muhammet; Kocar, Cemil; Soekmen, Cemal Niyazi [Hacettepe University, Department of Nuclear Engineering, Beytepe, 06800 Ankara (Turkey)

    2009-03-15

    In this study, isothermal turbulent bubbly flow is mechanistically modeled. For the modeling, Fluent version 6.3.26 is used as the computational fluid dynamics solver. First, the mechanistic models that simulate the interphase momentum transfer between the gas (bubbles) and liquid (continuous) phases are investigated, and proper models for the known flow conditions are selected. Second, an interfacial area transport equation (IATE) solution is added to Fluent's solution scheme in order to model the interphase momentum transfer mechanisms. In addition to solving IATE, bubble number density (BND) approach is also added to Fluent and this approach is also used in the simulations. Different source/sink models derived for the IATE and BND models are also investigated. The simulations of experiments based on the available data in literature are performed by using IATE and BND models in two and three-dimensions. The results show that the simulations performed by using IATE and BND models agree with each other and with the experimental data. The simulations performed in three-dimensions give better agreement with the experimental data.

  17. Modeling of isothermal bubbly flow with interfacial area transport equation and bubble number density approach

    International Nuclear Information System (INIS)

    Sari, Salih; Erguen, Sule; Barik, Muhammet; Kocar, Cemil; Soekmen, Cemal Niyazi

    2009-01-01

    In this study, isothermal turbulent bubbly flow is mechanistically modeled. For the modeling, Fluent version 6.3.26 is used as the computational fluid dynamics solver. First, the mechanistic models that simulate the interphase momentum transfer between the gas (bubbles) and liquid (continuous) phases are investigated, and proper models for the known flow conditions are selected. Second, an interfacial area transport equation (IATE) solution is added to Fluent's solution scheme in order to model the interphase momentum transfer mechanisms. In addition to solving IATE, bubble number density (BND) approach is also added to Fluent and this approach is also used in the simulations. Different source/sink models derived for the IATE and BND models are also investigated. The simulations of experiments based on the available data in literature are performed by using IATE and BND models in two and three-dimensions. The results show that the simulations performed by using IATE and BND models agree with each other and with the experimental data. The simulations performed in three-dimensions give better agreement with the experimental data

  18. Flowing Air-Water Cooled Slab Nd: Glass Laser

    Science.gov (United States)

    Lu, Baida; Cai, Bangwei; Liao, Y.; Xu, Shifa; Xin, Z.

    1989-03-01

    A zig-zag optical path slab geometry Nd: glass laser cooled through flowing air-water is developed by us. Theoretical studies on temperature distribution of slab and rod configurations in the unsteady state clarify the advantages of the slab geometry laser. The slab design and processing are also reported. In our experiments main laser output characteristics, e. g. laser efficiency, polarization, far-field divergence angle as well as resonator misalignment are investigated. The slab phosphate glass laser in combination with a crossed Porro-prism resonator demonstrates a good laser performance.

  19. Enriched Air Nitrox Breathing Reduces Venous Gas Bubbles after Simulated SCUBA Diving: A Double-Blind Cross-Over Randomized Trial.

    Directory of Open Access Journals (Sweden)

    Vincent Souday

    Full Text Available To test the hypothesis whether enriched air nitrox (EAN breathing during simulated diving reduces decompression stress when compared to compressed air breathing as assessed by intravascular bubble formation after decompression.Human volunteers underwent a first simulated dive breathing compressed air to include subjects prone to post-decompression venous gas bubbling. Twelve subjects prone to bubbling underwent a double-blind, randomized, cross-over trial including one simulated dive breathing compressed air, and one dive breathing EAN (36% O2 in a hyperbaric chamber, with identical diving profiles (28 msw for 55 minutes. Intravascular bubble formation was assessed after decompression using pulmonary artery pulsed Doppler.Twelve subjects showing high bubble production were included for the cross-over trial, and all completed the experimental protocol. In the randomized protocol, EAN significantly reduced the bubble score at all time points (cumulative bubble scores: 1 [0-3.5] vs. 8 [4.5-10]; P < 0.001. Three decompression incidents, all presenting as cutaneous itching, occurred in the air versus zero in the EAN group (P = 0.217. Weak correlations were observed between bubble scores and age or body mass index, respectively.EAN breathing markedly reduces venous gas bubble emboli after decompression in volunteers selected for susceptibility for intravascular bubble formation. When using similar diving profiles and avoiding oxygen toxicity limits, EAN increases safety of diving as compared to compressed air breathing.ISRCTN 31681480.

  20. Entrainment and deposition studies in two-phase cross flow: comparison between air-water and steam-water in a square horizontal duct. Technical report (final)

    International Nuclear Information System (INIS)

    Berryman, R.J.; Ralph, J.C.; Wade, C.D.

    1981-03-01

    Air-water simulation studies of two phase steam water flow relevant to the upper plenum of a PWR during reflood situations have recently been undertaken at Harwell for the US Nuclear Regulatory Commission. In order to give confidence that the simulation fluids were capable of modelling the important features of the actual system, a relatively basic comparison experiment has been carried out. Water entrainment and deposition tests have been carried out on a pair of 2.5 cm diameter vertical rods mounted in a cross flow of steam or air in a 10.2 cm x 10.2 cm tunnel. The air and steam systems exhibited similar characteristics to one another. A 'critical' film flowrate was identified for the rods which, once reached, either by injection through the sinters or by entrainment from the main two phase stream, was not exceeded with further water addition. The 'critical' film flowrate decreased with increase of cross flow velocity and was lower for air than steam at the same velocity. The results from the air and steam tests were found to be reasonably well correlated on the basis of the cross flow momentum flux of the air or steam

  1. Analysis of bubbly flow using particle image velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Todd, D.R.; Ortiz-Villafuerte, J.; Schmidl, W.D.; Hassan, Y.A. [Texas A and M University, Nuclear Engineering Dept., College Stagion, TX (United States); Sanchez-Silva, F. [ESIME, INP (Mexico)

    2001-07-01

    The local phasic velocities can be determined in two-phase flows if the phases can be separated during analysis. The continuous liquid velocity field can be captured using standard Particle Image Velocimetry (PIV) techniques in two-phase flows. PIV is now a well-established, standard flow measurement technique, which provides instantaneous velocity fields in a two-dimensional plane of finite thickness. PIV can be extended to three dimensions within the plane with special considerations. A three-dimensional shadow PIV (SPIV) measurement apparatus can be used to capture the dispersed phase flow parameters such as velocity and interfacial area. The SPIV images contain only the bubble images, and can be easily analyzed and the results used to separate the dispersed phase from the continuous phase in PIV data. An experimental system that combines the traditional PIV technique with SPIV will be described and sample data will be analyzed to demonstrate an advanced turbulence measurement method in a two-phase bubbly flow system. Also, a qualitative error analysis method that allows users to reduce the number of erroneous vectors obtained from the PIV measurements will be discussed. (authors)

  2. Analysis of bubbly flow using particle image velocimetry

    International Nuclear Information System (INIS)

    Todd, D.R.; Ortiz-Villafuerte, J.; Schmidl, W.D.; Hassan, Y.A.; Sanchez-Silva, F.

    2001-01-01

    The local phasic velocities can be determined in two-phase flows if the phases can be separated during analysis. The continuous liquid velocity field can be captured using standard Particle Image Velocimetry (PIV) techniques in two-phase flows. PIV is now a well-established, standard flow measurement technique, which provides instantaneous velocity fields in a two-dimensional plane of finite thickness. PIV can be extended to three dimensions within the plane with special considerations. A three-dimensional shadow PIV (SPIV) measurement apparatus can be used to capture the dispersed phase flow parameters such as velocity and interfacial area. The SPIV images contain only the bubble images, and can be easily analyzed and the results used to separate the dispersed phase from the continuous phase in PIV data. An experimental system that combines the traditional PIV technique with SPIV will be described and sample data will be analyzed to demonstrate an advanced turbulence measurement method in a two-phase bubbly flow system. Also, a qualitative error analysis method that allows users to reduce the number of erroneous vectors obtained from the PIV measurements will be discussed. (authors)

  3. A multiphase compressible model for the simulation of multiphase flows

    International Nuclear Information System (INIS)

    Caltagirone, J.P.; Vincent, St.; Caruyer, C.

    2011-01-01

    A compressible model able to manage incompressible two-phase flows as well as compressible motions is proposed. After a presentation of the multiphase compressible concept, the new model and related numerical methods are detailed on fixed structured grids. The presented model is a 1-fluid model with a reformulated mass conservation equation which takes into account the effects of compressibility. The coupling between pressure and flow velocity is ensured by introducing mass conservation terms in the momentum and energy equations. The numerical model is then validated with four test cases involving the compression of an air bubble by water, the liquid injection in a closed cavity filled with air, a bubble subjected to an ultrasound field and finally the oscillations of a deformed air bubble in melted steel. The numerical results are compared with analytical results and convergence orders in space are provided. (authors)

  4. Effects of wall roughness and entry length on void profile in vertical bubbly flow

    International Nuclear Information System (INIS)

    Takamasa, Tomoji

    1988-01-01

    An experimental study of upward air-water bubbly two-phase flow in an entry region was performed with various rough wall test tubes. The objective of the work is to clarify the effects of wall roughness and entry length on void profile. The fluid flows in the vertical circular test tube of 25 mm I.D. under nearly atmospheric pressure, at room temperature. The void profile changes from a pattern similar in appearance to the saddle shape which has local void peaks near the wall, into the power law shape whose curve is approximated by a power law formula, with increasing wall roughness and/or entry length. That is, wall roughness and entry length have a similar effect upon void profile. There are two patterns in the power law shape, a pattern with sharp center peak and a pattern with obtuse center peak. As wall roughness and/or entry length increase, the void profile changes from the former pattern to the latter pattern. At enough long entry length (L/D ≅ 150), every void profile has almost the same power law shape independent of wall roughness. Some void profiles are asymmetric to the axis. (author)

  5. Influence of drag closures and inlet conditions on bubble dynamics and flow behavior inside a bubble column

    Directory of Open Access Journals (Sweden)

    Amjad Asad

    2017-01-01

    Full Text Available In this paper, the hydrodynamics of a bubble column is investigated numerically using the discrete bubble model, which tracks the dispersed bubbles individually in a liquid column. The discrete bubble model is combined with the volume of fluid approach to account for a proper free surface boundary condition at the liquid–gas interface. This improves describing the backflow region, which takes place close to the wall region. The numerical simulation is conducted by means of the open source computational fluid dynamics library OpenFOAM®. In order to validate the numerical model, experimental results of a bubble column are used. The numerical prediction shows an overall good agreement compared to the experimental data. The effect of injection conditions and the influence of the drag closures on bubble dynamics are investigated in the current paper. Here, the significant effect of injection boundary conditions on bubble dynamics and flow velocity in the studied cavity is revealed. Moreover, the impact of the choice of the drag closure on the liquid velocity field and on bubble behavior is indicated by comparing three drag closures derived from former studies.

  6. Wire-mesh sensors for two-phase flow investigations

    International Nuclear Information System (INIS)

    Prasser, H.M.

    1999-01-01

    In the annual report 1996 a new wire-mesh sensor for gas-liquid flows was presented. It was used to visualise the cavitation bubble behind a fast acting shut-off valve in a pipeline with a time resolution of over 1000 frames per second for the first time. In the last two years the sensor was applied to an air-water flow in a vertical pipeline (inner diameter D=51.2 mm) to study the flow structure in a wide range of superficial velocities. Besides the void fraction distributions, the high resolution of the sensor allows to calculate bubble size distributions from the primary measuring data. It was possible to study the evolution of the bubble size distribution along the flow path with growing distance from the gas injection (inlet length, L). (orig.)

  7. Wire-mesh sensors for two-phase flow investigations

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M.

    1999-07-01

    In the annual report 1996 a new wire-mesh sensor for gas-liquid flows was presented. It was used to visualise the cavitation bubble behind a fast acting shut-off valve in a pipeline with a time resolution of over 1000 frames per second for the first time. In the last two years the sensor was applied to an air-water flow in a vertical pipeline (inner diameter D=51.2 mm) to study the flow structure in a wide range of superficial velocities. Besides the void fraction distributions, the high resolution of the sensor allows to calculate bubble size distributions from the primary measuring data. It was possible to study the evolution of the bubble size distribution along the flow path with growing distance from the gas injection (inlet length, L). (orig.)

  8. Wire-mesh sensors for two-phase flow investigations

    Energy Technology Data Exchange (ETDEWEB)

    Prasser, H.M.

    1999-09-01

    In the annual report 1996 a new wire-mesh sensor for gas-liquid flows was presented. It was used to visualise the cavitation bubble behind a fast acting shut-off valve in a pipeline with a time resolution of over 1000 frames per second for the first time. In the last two years the sensor was applied to an air-water flow in a vertical pipeline (inner diameter D=51.2 mm) to study the flow structure in a wide range of superficial velocities. Besides the void fraction distributions, the high resolution of the sensor allows to calculate bubble size distributions from the primary measuring data. It was possible to study the evolution of the bubble size distribution along the flow path with growing distance from the gas injection (inlet length, L). (orig.)

  9. Visual Observations of Bubbly Flow in a Subchannel by using Optical Measurement Methods

    International Nuclear Information System (INIS)

    Chang, Seok Kyu; Choo, Yeon Jun; Kim, B. D.; Song, Chul Hwa

    2008-01-01

    PIV (Particle Image Velocimetry) measurement technique is widely used in the experimental study on the fluid flow in many industrial fields. In the study of the subchannel mixing in a nuclear reactor, there have been many works by using optical measurement techniques and almost of these were limited to the single phase flow. But many occasions of safety issues in a nuclear power plant are in a condition of two phase flow. In an application of two phase flow in subchannels, intrusive probes i.e., a conductivity sensor or an optical sensor were generally used. But these probes cause breaks or distortions of bubbles when contact. PIV technique is one of the non-intrusive measurement methods which can avoid the problem of intrusive probes. This study presents an applicability of the PIV technique on an experimental study of a bubbly flow in the subchannel geometry. The bubble peaking in a subchannel according to the bubble sizes was demonstrated. The HSC (high speed camera) was also used to confirm the PIV measurement results

  10. Spherical Solutions of an Underwater Explosion Bubble

    Directory of Open Access Journals (Sweden)

    Andrew B. Wardlaw

    1998-01-01

    Full Text Available The evolution of the 1D explosion bubble flow field out to the first bubble minimum is examined in detail using four different models. The most detailed is based on the Euler equations and accounts for the internal bubble fluid motion, while the simplest links a potential water solution to a stationary, Isentropic bubble model. Comparison of the different models with experimental data provides insight into the influence of compressibility and internal bubble dynamics on the behavior of the explosion bubble.

  11. Dynamics and noise emission of laser induced cavitation bubbles in a vortical flow field

    Science.gov (United States)

    Oweis, Ghanem F.; Choi, Jaehyug; Ceccio, Steven L.

    2004-03-01

    The sound produced by the collapse of discrete cavitation bubbles was examined. Laser-generated cavitation bubbles were produced in both a quiescent and a vortical flow. The sound produced by the collapse of the cavitation bubbles was recorded, and its spectral content was determined. It was found that the risetime of the sound pulse produced by the collapse of single, spherical cavitation bubbles in quiescent fluid exceeded that of the slew rate of the hydrophone, which is consistent with previously published results. It was found that, as collapsing bubbles were deformed by the vortical flow, the acoustic impulse of the bubbles was reduced. Collapsing nonspherical bubbles often created a sound pulse with a risetime that exceeded that of the hydrophone slew rate, although the acoustic impulse created by the bubbles was influenced largely by the degree to which the bubbles became nonspherical before collapse. The noise produced by the slow growth of cavitation bubbles in the vortex core was not detectable. These results have implications for the interpretation of hydrodynamic cavitation noise produced by vortex cavitation.

  12. Numerical simulation of bubble growth and departure during flow boiling period by lattice Boltzmann method

    International Nuclear Information System (INIS)

    Sun, Tao; Li, Weizhong; Yang, Shuai

    2013-01-01

    Highlights: • The bubble departure diameter is proportional to g −0.425 in quiescent fluid. • The bubble release frequency is proportional to g 0.678 in quiescent fluid. • The simulation result supports the transient micro-convection model. • The bubble departure diameter has exponential relation with inlet velocity. • The bubble release frequency has linear relation with inlet velocity. -- Abstract: Nucleate boiling flows on a horizontal plate are studied in this paper by a hybrid lattice Boltzmann method, where both quiescent and slowly flowing ambient are concerned. The process of a single bubble growth on and departure from the superheated wall is simulated. The simulation result supports the transient micro-convection model. The bubble departure diameter and the release frequency are investigated from the simulation result. It is found that the bubble departure diameter and the release frequency are proportional to g −0.425 and g 0.678 in quiescent fluid, respectively, where g is the gravitational acceleration. Nucleate boiling in slowly flowing ambient is also calculated in consideration of forced convection. It is presented that the bubble departure diameter and the release frequency have exponential relationship and linear relationship with inlet velocity in slowly flowing fluid, respectively

  13. Large amplitude oscillation of a boiling bubble growing at a wall in stagnation flow

    International Nuclear Information System (INIS)

    Geld, C.W.M. van der; Berg, R. van de; Peukert, P.

    2009-01-01

    A boiling bubble is created on an artificial site that is part of a bubble generator that is mounted at the center of a pipe. Downflow of water impinges on the bubble generator and creates a stagnation flow above the artificial cavity. Stable axisymmetric elongation in the direction away from the wall and multiple shape oscillation cycles are observed. The time of growth and attachment is typically of the order of 250 ms. Amongst the length scales that characterize the bubble shape is the radius of curvature of the upper part of the bubble, R. The period of oscillation, T, is strongly dependent on time, as is R. The parameters C and m in the defining equation T = C R m √(ρL/σ) have been determined by fitting to data of more than 100 bubbles. For each operating condition, the same values of C and m have been found. The value of m is 1.49 ± 0.02, which is explained from the continuous growth of the bubble and from the relation to the period of oscillation of a free bubble deforming in the fundamental mode corresponding to the third Legendre Polynomial. For the latter, R is the radius of the volume-equivalent sphere, R 0 , and C is √12, while for attached boiling bubbles C is found to amount 1.9√12. The difference is easily explained from the continuous growth, difference in definition, finite amplitude oscillation and proximity of the wall. (author)

  14. Large amplitude oscillation of a boiling bubble growing at a wall in stagnation flow

    Energy Technology Data Exchange (ETDEWEB)

    Geld, C.W.M. van der; Berg, R. van de; Peukert, P. [Eindhoven University of Technology, Eindhoven (Netherlands). Faculty of Mechanical Engineering], e-mail: C.W.M._v.d.Geld@tue.nl

    2009-07-01

    A boiling bubble is created on an artificial site that is part of a bubble generator that is mounted at the center of a pipe. Downflow of water impinges on the bubble generator and creates a stagnation flow above the artificial cavity. Stable axisymmetric elongation in the direction away from the wall and multiple shape oscillation cycles are observed. The time of growth and attachment is typically of the order of 250 ms. Amongst the length scales that characterize the bubble shape is the radius of curvature of the upper part of the bubble, R. The period of oscillation, T, is strongly dependent on time, as is R. The parameters C and m in the defining equation T = C R{sup m} {radical}({rho}L/{sigma}) have been determined by fitting to data of more than 100 bubbles. For each operating condition, the same values of C and m have been found. The value of m is 1.49 {+-} 0.02, which is explained from the continuous growth of the bubble and from the relation to the period of oscillation of a free bubble deforming in the fundamental mode corresponding to the third Legendre Polynomial. For the latter, R is the radius of the volume-equivalent sphere, R{sub 0}, and C is {radical}12, while for attached boiling bubbles C is found to amount 1.9{radical}12. The difference is easily explained from the continuous growth, difference in definition, finite amplitude oscillation and proximity of the wall. (author)

  15. Observation of interaction of shock wave with gas bubble by image converter camera

    Science.gov (United States)

    Yoshii, M.; Tada, M.; Tsuji, T.; Isuzugawa, Kohji

    1995-05-01

    When a spark discharge occurs at the first focal point of a semiellipsoid or a reflector located in water, a spherical shock wave is produced. A part of the wave spreads without reflecting on the reflector and is called direct wave in this paper. Another part reflects on the semiellipsoid and converges near the second focal point, that is named the focusing wave, and locally produces a high pressure. This phenomenon is applied to disintegrators of kidney stone. But it is concerned that cavitation bubbles induced in the body by the expansion wave following the focusing wave will injure human tissue around kidney stone. In this paper, in order to examine what happens when shock waves strike bubbles on human tissue, the aspect that an air bubble is truck by the spherical shock wave or its behavior is visualized by the schlieren system and its photographs are taken using an image converter camera. Besides,the variation of the pressure amplitude caused by the shock wave and the flow of water around the bubble is measured with a pressure probe.

  16. A three field two fluid CFD model for the bubbly-cap bubble regime

    International Nuclear Information System (INIS)

    Martin Lopez de Bertodano; Xiaodong Sun; Mamoru Ishii; Asim Ulke

    2005-01-01

    -fluid model. The analytical result for the interfacial turbulent diffusion force is implemented in a three field two fluid model. The three fields represent the water, the cap bubbles and the small bubbles. The FLUENT CFD code is used to solve the two-fluid model equations and the conductivity probe data are used to calibrate the turbulent diffusion force correlations for the cap bubbles and the small bubbles. References: [2] - Lopez de Bertodano, M. A., R. T. Lahey, Jr., and O. C. Jones, 'Development of a k- e model for bubbly two-phase flow', Journal of Fluids Eng., 116:128-134, 1994. [3] - Kim, S., Fu, X. Y., Wang, X. and Ishii, M., 'Development of the miniaturized four-sensor conductivity probe and the signal processing scheme', Int. J. Heat and Mass Transfer, Vol. 43, pp. 4101-4118, 2000. (authors)

  17. Role of mixed boundaries on flow in open capillary channels with curved air-water interfaces.

    Science.gov (United States)

    Zheng, Wenjuan; Wang, Lian-Ping; Or, Dani; Lazouskaya, Volha; Jin, Yan

    2012-09-04

    Flow in unsaturated porous media or in engineered microfluidic systems is dominated by capillary and viscous forces. Consequently, flow regimes may differ markedly from conventional flows, reflecting strong interfacial influences on small bodies of flowing liquids. In this work, we visualized liquid transport patterns in open capillary channels with a range of opening sizes from 0.6 to 5.0 mm using laser scanning confocal microscopy combined with fluorescent latex particles (1.0 μm) as tracers at a mean velocity of ∼0.50 mm s(-1). The observed velocity profiles indicate limited mobility at the air-water interface. The application of the Stokes equation with mixed boundary conditions (i.e., no slip on the channel walls and partial slip or shear stress at the air-water interface) clearly illustrates the increasing importance of interfacial shear stress with decreasing channel size. Interfacial shear stress emerges from the velocity gradient from the adjoining no-slip walls to the center where flow is trapped in a region in which capillary forces dominate. In addition, the increased contribution of capillary forces (relative to viscous forces) to flow on the microscale leads to increased interfacial curvature, which, together with interfacial shear stress, affects the velocity distribution and flow pattern (e.g., reverse flow in the contact line region). We found that partial slip, rather than the commonly used stress-free condition, provided a more accurate description of the boundary condition at the confined air-water interface, reflecting the key role that surface/interface effects play in controlling flow behavior on the nanoscale and microscale.

  18. Theoretical study on bubble formation and flow condensation in downflow channel with horizontal gas injection

    Science.gov (United States)

    Zhu, Kang; Li, Yanzhong; Wang, Jiaojiao; Ma, Yuan; Wang, Lei; Xie, Fushou

    2018-05-01

    Bubble formation and condensation in liquid pipes occur widely in industrial systems such as cryogenic propellant feeding system. In this paper, an integrated theoretical model is established to give a comprehensive description of the bubble formation, motion and condensation process. The model is validated by numerical simulations and bubble condensation experiments from references, and good agreements are achieved. The bubble departure diameter at the orifice and the flow condensation length in the liquid channel are predicted by the model, and effects of various influencing parameters on bubble behaviors are analyzed. Prediction results indicate that the orifice diameter, the gas feeding rate, and the liquid velocity are the primary influence factors on the bubble departure diameter. The interfacial heat transfer as well as the bubble departure diameter has a direct impact on the bubble flow condensation length, which increases by 2.5 times over a system pressure range of 0.1 0.4 MPa, and decreases by 85% over a liquid subcooling range of 5 30 K. This work could be beneficial to the prediction of bubble formation and flow condensation processes and the design of cryogenic transfer pipes.

  19. Sticky bubbles

    NARCIS (Netherlands)

    Antoniuk, O.; Bos, van der A.; Driessen, T.W.; Es, van B.; Jeurissen, R.J.M.; Michler, D.; Reinten, H.; Schenker, M.; Snoeijer, J.H.; Srivastava, S.; Toschi, F.; Wijshoff, H.M.A.

    2011-01-01

    We discuss the physical forces that are required to remove an air bubble immersed in a liquid from a corner. This is relevant for inkjet printing technology, as the presence of air bubbles in the channels of a printhead perturbs the jetting of droplets. A simple strategy to remove the bubble is to

  20. A method for bubble volume calculating in vertical two-phase flow

    International Nuclear Information System (INIS)

    Wang, H Y; Dong, F

    2009-01-01

    The movement of bubble is a basic subject in gas-liquid two-phase flow research. A method for calculating bubble volume which is one of the most important characters in bubble motion research was proposed. A suit of visualized experimental device was designed and set up. Single bubble rising in stagnant liquid in a rectangular tank was studied using the high-speed video system. Bubbles generated by four orifice with different diameter (1mm, 2mm, 3mm, 4mm) were recorded respectively. Sequences of recorded high-speed images were processed by digital image processing method, such as image noise remove, binary image transform, bubble filling, and so on. then, Several parameters could be obtained from the processed image. Bubble area, equivalent diameter, bubble velocity, bubble acceleration are all indispensable in bubble volume calculating. In order to get the force balance equation, forces that work on bubble along vertical direction, including drag force, virtual mass force, buoyancy, gravity and liquid thrust, were analyzed. Finally, the bubble volume formula could be derived from the force balance equation and bubble parameters. Examples were given to shown the computing process and results. Comparison of the bubble volume calculated by geomettic method and the present method have shown the superiority of the proposed method in this paper.

  1. Multi-dimensional modeling of gas-liquid two-phase flows. Application to the simulation of ascending bubble flows in vertical ducts; Modelisation multidimensionnelle des ecoulements diphasiques gaz-liquide. Application a la simulation des ecoulements a bulles ascendants en conduite verticale

    Energy Technology Data Exchange (ETDEWEB)

    Morel, Ch

    1997-10-31

    The aim of this thesis is the 3-D modeling and numerical simulation of liquid/gas (water/vapor or water/air) two-phase flows in cooling circuits of nuclear power plants during normal and accidental situations. The development of a multidimensional dual-fluid model encounters two problems: the statistical effects of turbulence and the interface mass, momentum and energy transfers. The models developed in this study were introduced in the 3-D module of the CATHARE code developed by the CEA and the results were compared to experimental results available in the literature. The first chapter describes the equations of the local dual-fluid model for the 3-D description of two-phase flows. Closing relations adapted to dispersed flows with isothermal bubbles and without phase transformation are proposed and focus on the momentum transfer at the interfaces. The theoretical study of turbulence in the liquid phase of a bubble flow is modelled in chapter 2. Chapter 3 deals with the voluminal interface area used in the interface mass, momentum and energy transfers, and chapters 4 and 5 concern the application of the developed models to concrete situations. Chapter 4 describes in details the 3-D module of the CATHARE code while chapter 5 gives a comparison of numerical results obtained using the CATHARE code with other experimental results obtained at EdF. (J.S.) 109 refs.

  2. Two-phase flow patterns in a four by four rod bundle

    International Nuclear Information System (INIS)

    Mizutani, Yoshitaka; Tomiyama, Akio; Hosokawa, Shigeo; Sou, Akira; Kudo, Yoshiro; Mishima, Kaichiro

    2007-01-01

    Air-water two-phase flow patterns in a four by four square lattice rod bundle consisting of an acrylic channel box of 68 mm in width and transparent rods of 12mm in diameter were observed by utilizing a high speed video camera, FEP (fluorinated ethylene propylene) tubes for rods, and a fiberscope inserted in a rod. The FEP possesses the same refractive index as water, and thereby, whole flow patterns in the bundle and local flow patterns in subchannels were successfully visualized with little optical distortion. The ranges of gas and liquid volume fluxes, (J G ) and (J L ), in the present experiments were 0.1 L ) G ) G )-(J L ) flow pattern diagram is so narrow that it can be regarded as a boundary between bubbly and churn flows. (2) the boundary between bubbly and churn flows is close to the boundary between bubbly and slug flows of the Mishima and Ishii's flow pattern transition model, and (3) the boundary between churn and annular flow is close to the Mishima and Ishii's model. (author)

  3. Two-Phase Flow Patterns in a Four by Four Rod Bundle

    International Nuclear Information System (INIS)

    Yoshitaka Mizutani; Shigeo Hosokawa; Akio Tomiyama

    2006-01-01

    Air-water two-phase flow patterns in a four by four square lattice rod bundle consisting of an acrylic channel box of 68 mm in width and transparent rods of 12 mm in diameter were observed by utilizing a high speed video camera, FEP (fluorinated ethylene propylene) tubes for rods, and a fiber-scope inserted in a rod. The FEP possesses the same refractive index as water, and thereby, whole flow patterns in the bundle and local flow patterns in subchannels were successfully visualized with little optical distortion. The ranges of liquid and gas volume fluxes, G > and L >, in the present experiments were 0.1 L > G > G > - L > flow pattern diagram is so narrow that it can be regarded as a boundary between bubbly and churn flows, (2) the boundary between bubbly and churn flows is close to the boundary between bubbly and slug flows of the Mishima and Ishii's flow pattern transition model, and (3) the boundary between churn and annular flows is well predicted by the Mishima and Ishii's model. (authors)

  4. Numerical simulation of the dynamic flow behaviour in a bubble column: comparison of the bubble-induced turbulence models in K-epsilon model

    NARCIS (Netherlands)

    Zhang, D.; Deen, N.G.; Kuipers, J.A.M.

    2005-01-01

    Numerical simulations of the gas-liquid bubbly flow in a bubble column were conducted with the commercial CFD package CFX-4.4 to investigate the performance of three models (Pfleger and Becker, 2001; Sato and Sekoguchi, 1975; Troshko and Hassan, 2001) to account for the bubble-induced turbulence in

  5. Some characteristics of developing bubbly flow in a vertical mini pipe

    International Nuclear Information System (INIS)

    Hibiki, T.; Hazuku, T.; Takamasa, T.; Ishii, M.

    2007-01-01

    Accurate prediction of the flow parameters is essential to successful development of the interfacial transfer terms in the two-phase flow formulation in a mini channel. From this point of view, axial measurements of flow parameters such as void fraction, interfacial area concentration, gas velocity, bubble Sauter mean diameter, and bubble number density were performed by the image processing method at five axial locations in vertical upward developing bubbly flows using a 1.02 mm-diameter pipe. The frictional pressure loss was also measured by a differential pressure cell. In the experiment, the superficial liquid velocity and the void fraction ranged from 1.02 m/s to 4.89 m/s and from 0.980% to 24.6%, respectively. The constitutive equation for the drift velocity applicable to mini channel flow was developed by considering the effect of the frictional pressure loss on the drift velocity. The constitutive equation for the distribution parameter was also developed by considering the flow transition from laminar to turbulent flows. The drift-flux model with the modeled constitutive equations for the distribution parameter and drift velocity agreed with the measured void fractions within the averaged prediction accuracy of ±6.76%. The applicability of the existing interfacial area concentration model to mini channel flow was validated by the measured interfacial data

  6. Modelling of bubble-mediated gas transfer: Fundamental principles and a laboratory test

    NARCIS (Netherlands)

    Woolf, D.K.; Leifer, I.S.; Nightingale, P.D.; Rhee, T.S.; Bowyer, P.; Caulliez, G.; Leeuw, G. de; Larsen, S.E.; Liddicoat, M.; Baker, J.; Andreae, M.O.

    2007-01-01

    The air-water exchange of gases can be substantially enhanced by wave breaking and specifically by bubble-mediated transfer. A feature of bubble-mediated transfer is the additional pressure on bubbles resulting from the hydrostatic forces on a submerged bubble and from surface tension and curvature.

  7. Behavior of oxygem bubbles during alkaline water electrolysis

    NARCIS (Netherlands)

    Wedershoven, H.M.S.; Jonge, de R.M.; Sillen, C.W.M.P.; Stralen, van S.J.D.

    1982-01-01

    Growth rate, departure radius and population of oxygen bubbles at the transparent anode during alkaline water electrolysis have been investigated experimentally. The supersaturation of dissolved oxygen in the electrolyte adjacent to the anode surface has been derived from bubble growth rates.

  8. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    Energy Technology Data Exchange (ETDEWEB)

    Borges, Joao Eduardo [IDMEC, Instituto Superior Tecnico, Technical University of Lisbon, Department of Mechanical Engineering, Lisbon (Portugal); Pereira, Nuno H.C. [EST Setubal, Polytechnic Institute of Setubal, Department of Mechanical Engineering, Setubal (Portugal); Matos, Jorge [Instituto Superior Tecnico, Technical University of Lisbon, Department of Civil Engineering and Architecture, Lisbon (Portugal); Frizell, Kathleen H. [U.S. Bureau of Reclamation, Denver, CO (United States)

    2010-01-15

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows. (orig.)

  9. Performance of a combined three-hole conductivity probe for void fraction and velocity measurement in air-water flows

    Science.gov (United States)

    Borges, João Eduardo; Pereira, Nuno H. C.; Matos, Jorge; Frizell, Kathleen H.

    2010-01-01

    The development of a three-hole pressure probe with back-flushing combined with a conductivity probe, used for measuring simultaneously the magnitude and direction of the velocity vector in complex air-water flows, is described in this paper. The air-water flows envisaged in the current work are typically those occurring around the rotors of impulse hydraulic turbines (like the Pelton and Cross-Flow turbines), where the flow direction is not known prior to the data acquisition. The calibration of both the conductivity and three-hole pressure components of the combined probe in a rig built for the purpose, where the probe was placed in a position similar to that adopted for the flow measurements, will be reported. After concluding the calibration procedure, the probe was utilized in the outside region of a Cross-Flow turbine rotor. The experimental results obtained in the present study illustrate the satisfactory performance of the combined probe, and are encouraging toward its use for characterizing the velocity field of other complex air-water flows.

  10. A unique circular path of moving single bubble sonoluminescence in water

    International Nuclear Information System (INIS)

    Sadighi-Bonabi, Rasoul; Mirheydari, Mona; Ebrahimi, Homa; Rezaee, Nastaran; Nikzad, Lida

    2011-01-01

    Based on a quasi-adiabatic model, the parameters of the bubble interior for a moving single bubble sonoluminescence (m-SBSL) in water are calculated. By using a complete form of the hydrodynamic force, a unique circular path for the m-SBSL in water is obtained. The effect of the ambient pressure variation on the bubble trajectory is also investigated. It is concluded that as the ambient pressure increases, the bubble moves along a circular path with a larger radius and all bubble parameters, such as gas pressure, interior temperature and light intensity, increase. A comparison is made between the parameters of the moving bubble in water and those in N-methylformamide. With fluid viscosity increasing, the circular path changes into an elliptic form and the light intensity increases. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. A study on bubble detachment and the impact of heated surface structure in subcooled nucleate boiling flows

    International Nuclear Information System (INIS)

    Wu Wen; Chen Peipei; Jones, Barclay G.; Newell, Ty A.

    2008-01-01

    This study examines the bubble detachment phenomena under subcooled nucleate boiling conditions, in order to obtain a better understanding of the bubble dynamics on horizontal flat heat exchangers. Refrigerant R134a is chosen as a simulant fluid due to its merits of having smaller surface tension, reduced latent heat, and lower boiling temperature than water. Experiments are run with varying experimental parameters, e.g. pressure, inlet subcooled level, flow rate, etc. Digital images are obtained at frame rates up to 4000 frames/s, showing the characteristics of bubble movements. Bubble departure and bubble lift-off, which are described as bubbles detaching from the original nucleation sites and bubbles detaching from the horizontal heated surface respectively, are both considered and measured. Results are compared against the model proposed by Klausner et al. for the prediction of bubble detachment sizes. While good overall agreement is shown, it is suggested that finite rather than zero bubble contact area should be assumed, which improves the model prediction at the pressure range of 300-500 kPa while playing no significant role at a lower pressure of 150 kPa where the model was originally benchmarked. The impact of heated surface structure is studied whose results provide support to the above assumption

  12. Pulsed electrical discharge in gas bubbles in water

    Science.gov (United States)

    Gershman, Sophia

    A phenomenological picture of pulsed electrical discharge in gas bubbles in water is produced by combining electrical, spectroscopic, and imaging methods. The discharge is generated by applying one microsecond long 5 to 20 kilovolt pulses between the needle and disk electrodes submerged in water. A gas bubble is generated at the tip of the needle electrode. The study includes detailed experimental investigation of the discharge in argon bubbles and a brief look at the discharge in oxygen bubbles. Imaging, electrical characteristics, and time-resolved optical emission data point to a fast streamer propagation mechanism and formation of a plasma channel in the bubble. Spectroscopic methods based on line intensity ratios and Boltzmann plots of line intensities of argon, atomic hydrogen, and argon ions and the examination of molecular emission bands from molecular nitrogen and hydroxyl radicals provide evidence of both fast beam-like electrons and slow thermalized ones with temperatures of 0.6 -- 0.8 electron-volts. The collisional nature of plasma at atmospheric pressure affects the decay rates of optical emission. Spectroscopic study of rotational-vibrational bands of hydroxyl radical and molecular nitrogen gives vibrational and rotational excitation temperatures of the discharge of about 0.9 and 0.1 electron-volt, respectively. Imaging and electrical evidence show that discharge charge is deposited on the bubble wall and water serves as a dielectric barrier for the field strength and time scales of this experiment. Comparing the electrical and imaging information for consecutive pulses applied at a frequency of 1 Hz indicates that each discharge proceeds as an entirely new process with no memory of the previous discharge aside from long-lived chemical species, such as ozone and oxygen. Intermediate values for the discharge gap and pulse duration, low repetition rate, and unidirectional character of the applied voltage pulses make the discharge process here unique

  13. Experimental study on two-phase flow natural circulation in a core catcher cooling channel for EU-APR1400 using air-water system

    Energy Technology Data Exchange (ETDEWEB)

    Song, Ki Won [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Nguyen, Thanh Hung [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Ha, Kwang Soon; Kim, Hwan Yeol; Song, Jinho [Korea Atomic Energy Research Institute, Daejeon 34057 (Korea, Republic of); Park, Hyun Sun [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Revankar, Shripad T., E-mail: shripad@postech.ac.kr [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); School of Nuclear Engineering, Purdue University, West Lafayette, IN 47906 (United States); Kim, Moo Hwan [Division of Advanced Nuclear Engineering, POSTECH, Pohang 790-784 (Korea, Republic of); Korea Institute of Nuclear Safety, Daejeon 305-338 (Korea, Republic of)

    2017-05-15

    Highlights: • Two-phase flow regimes and transition behavior were observed in the coolant channel. • Test were conducted for natural circulation with air-water. • Data were obtained on flow regime, void fraction, flow rates and re-wetting time. • The data were related to a cooling capability of core catcher system. - Abstract: Ex-vessel core catcher cooling system driven by natural circulation is designed using a full scaled air-water system. A transparent half symmetric section of a core catcher coolant channel of a pressurized water reactor was designed with instrumentations for local void fraction measurement and flow visualization. Two designs of air-water top separator water tanks are studied including one with modified ‘super-step’ design which prevents gas entrainment into down-comer. In the experiment air flow rates are set corresponding to steam generation rate for given corium decay power. Measurements of natural circulation flow rate, spatial local void fraction distribution and re-wetting time near the top wall are carried out for various air flow rates which simulate boiling-induced vapor generation. Since heat transfer and critical heat flux are strongly dependent on the water mass flow rate and development of two-phase flow on the heated wall, knowledge of two-phase flow characteristics in the coolant channel is essential. Results on flow visualization showing two phase flow structure specifically near the high void accumulation regions, local void profiles, rewetting time, and natural circulation flow rate are presented for various air flow rates that simulate corium power levels. The data are useful in assessing the cooling capability of and safety of the core catcher system.

  14. Critical scattering by bubbles

    International Nuclear Information System (INIS)

    Fiedler-Ferrari, N.; Nussenzveig, H.M.

    1986-11-01

    We apply the complex angular momentum theory to the problem of the critical scattering of light by spherical cavities in the high frequency limit (permittivity greater than the external media) (e.g, air bubble in water) (M.W.O.) [pt

  15. Developing the technique of image processing for the study of bubble dynamics in subcooled flow boiling

    International Nuclear Information System (INIS)

    Donevski, Bozin; Saga, Tetsuo; Kobayashi, Toshio; Segawa, Shigeki

    1998-01-01

    This study presents the development of an image processing technique for studying the dynamic behavior of vapor bubbles in a two-phase bubbly flow. It focuses on the quantitative assessment of some basic parameters such as a local bubble size and size distribution in the range of void fraction between 0.03 < a < 0.07. The image processing methodology is based upon the computer evaluation of high speed motion pictures obtained from the flow field in the region of underdeveloped subcooled flow boiling for a variety of experimental conditions. This technique has the advantage of providing computer measurements and extracting the bubbles of the two-phase bubbly flow. This method appears to be promising for determining the governing mechanisms in subcooled flow boiling, particularly near the point of net vapor generation. The data collected by the image analysis software can be incorporated into the new models and computer codes currently under development which are aimed at incorporating the effect of vapor generation and condensation separately. (author)

  16. Numerical simulation of secondary flow in bubbly turbulent flow in sub-channel

    International Nuclear Information System (INIS)

    Ikeno, Tsutomu; Kataoka, Isao

    2009-01-01

    Secondary flow in bubbly turbulent flow in sub-channel was simulated by using an algebraic turbulence stress model. The mass, momentum, turbulence energy and bubble diffusion equations were used as fundamental equation. The basis for these equations was the two-fluid model: the equation of liquid phase was picked up from the equation system theoretically derived for the gas-liquid two-fluid turbulent flow. The fundamental equation was transformed onto a generalized coordinate system fitted to the computational domain in sub-channel. It was discretized for the SIMPLE algorism using the finite-volume method. The shape of sub-channel causes a distortion of the computational mesh, and orthogonal nature of the mesh is sometimes broken. An iterative method to satisfy a requirement for the contra-variant velocity was introduced to represent accurate symmetric boundary condition. Two-phase flow at a steady state was simulated for different magnitude of secondary flow and void fraction. The secondary flow enhanced the momentum transport in sub-channel and accelerated the liquid phase in the rod gap. This effect was slightly mitigated when the void fraction increased. The acceleration can contribute to effective cooling in the rod gap. The numerical result implied a phenomenon of industrial interest. This suggested that experimental approach is necessary to validate the numerical model and to identify the phenomenon. (author)

  17. Influence and applicability of wire-mesh sensor to acquire two phase flow dynamics

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu

    2011-01-01

    Wire-mesh sensors (WMS) are able to measure void distributions and velocity profile at high speed. Immersing the wire-mesh affects the structure of two-phase flow. Experiments were performed for single rising air bubble in a vertical pipe of i.d. 50 mm and 224 mm at water velocities ranging from 0.05 to 0.52 m/s and 0.42 to 0.83 m/s. Distortion of a relatively large bubble with the wire-mesh was small in the water velocity over 0.25 m/s and confirmed by cross-correlation analysis as well. Bubble rising velocity acquired by WMS is in good agreement with that estimated high-speed camera in the experimental range. WMS has applicability to acquire two phase flow dynamics in the water velocity over 0.25 m/s. (author)

  18. CFD analysis of hydrodynamic studies of a bubbling fluidized bed

    Science.gov (United States)

    Rao, B. J. M.; Rao, K. V. N. S.; Ranga Janardhana, G.

    2018-03-01

    Fluidization velocity is one of the most important parameter to characterize the hydrodynamic studies of fluidized bed asit determines different flow regimes. Computational Fluid Dynamics simulations are carriedfor a cylindrical bubbling fluidized bed with a static bed height 1m with 0.150m diameter of gasification chamber. The parameter investigated is fluidization velocity in range of 0.05m/s to 0.7m/s. Sand with density 2600kg/m3 and with a constant particle diameter of sand 385μm is employed for all the simulations. Simulations are conducted using the commercial Computational Fluid Dynamics software, ANSYS-FLUENT.The bubbling flow regime is appeared above the air inlet velocity of 0.2m/s. Bubbling character is increased with increase in inlet air velocities indicated by asymmetrical fluctuations of volume fractions in radial directions at different bed heights

  19. Effect of supercritical water shell on cavitation bubble dynamics

    International Nuclear Information System (INIS)

    Shao Wei-Hang; Chen Wei-Zhong

    2015-01-01

    Based on reported experimental data, a new model for single cavitation bubble dynamics is proposed considering a supercritical water (SCW) shell surrounding the bubble. Theoretical investigations show that the SCW shell apparently slows down the oscillation of the bubble and cools the gas temperature inside the collapsing bubble. Furthermore, the model is simplified to a Rayleigh–Plesset-like equation for a thin SCW shell. The dependence of the bubble dynamics on the thickness and density of the SCW shell is studied. The results show the bubble dynamics depends on the thickness but is insensitive to the density of the SCW shell. The thicker the SCW shell is, the smaller are the wall velocity and the gas temperature in the bubble. In the authors’ opinion, the SCW shell works as a buffering agent. In collapsing, it is compressed to absorb a good deal of the work transformed into the bubble internal energy during bubble collapse so that it weakens the bubble oscillations. (paper)

  20. Studies of Ink Trapping III Direct Detection of Small Air Bubbles in Ink Layer

    Directory of Open Access Journals (Sweden)

    Ikuo Naito

    2006-12-01

    Full Text Available Ink trappings were studied by using polyethylene terephthalate (PET film with black inks for offset proofing and synthetic paper. By observing printed matter from reverse side through the PET film, we detected many air bubbles in the ink layer and between the ink layer and the PET film. They are classified roughly to two groups, small number of large ones (φ = 2 - 5 μm and many small ones (φ = 0.5 - 1.0 μm. The former ones were fixed air bubbles during the trapping. The latter ones decreased according to increase the amount of ink trapped (y. Because number of the air bubbles (Nair bubble increased with increasing the ink distribution time, they seemed to be yielded by suspension of air into the ink layer during ink distribution. By observing printed surface, we also detected many ink peaks (immediately after the trapping and pinholes (at 24 h. The numbers of the ink peaks and pinholes (Nink peak and Npinhole, respectively decreased also with increasing the y value and increased with increasing the ink distribution time. We studied effects of nip width on these values (distribution time = 2 min.; nip width = 2, 3 and 4 mm. The Nair bubble value decreased with increasing nip width contrary to increase the Nink peak and Npinhole values. The effects can be represented by differences in the values of 2 and 4 mm nip widths. At y = 2 gm-2, the difference in the Nair bubble value is about one third (synthetic paper ink or a half (offset proofing ink of the difference in the Nink peak values.

  1. Freezing Bubbles

    Science.gov (United States)

    Kingett, Christian; Ahmadi, Farzad; Nath, Saurabh; Boreyko, Jonathan

    2017-11-01

    The two-stage freezing process of a liquid droplet on a substrate is well known; however, how bubbles freeze has not yet been studied. We first deposited bubbles on a silicon substrate that was chilled at temperatures ranging from -10 °C to -40 °C, while the air was at room temperature. We observed that the freeze front moved very slowly up the bubble, and in some cases, even came to a complete halt at a critical height. This slow freezing front propagation can be explained by the low thermal conductivity of the thin soap film, and can be observed more clearly when the bubble size or the surface temperature is increased. This delayed freezing allows the frozen portion of the bubble to cool the air within the bubble while the top part is still liquid, which induces a vapor pressure mismatch that either collapses the top or causes the top to pop. In cases where the freeze front reaches the top of the bubble, a portion of the top may melt and slowly refreeze; this can happen more than just once for a single bubble. We also investigated freezing bubbles inside of a freezer where the air was held at -20 °C. In this case, the bubbles freeze quickly and the ice grows radially from nucleation sites instead of perpendicular to the surface, which provides a clear contrast with the conduction limited room temperature bubbles.

  2. Cavitation in confined water: ultra-fast bubble dynamics

    Science.gov (United States)

    Vincent, Olivier; Marmottant, Philippe

    2012-02-01

    In the hydraulic vessels of trees, water can be found at negative pressure. This metastable state, corresponding to mechanical tension, is achieved by evaporation through a porous medium. It can be relaxed by cavitation, i.e. the sudden nucleation of vapor bubbles. Harmful for the tree due to the subsequent emboli of sap vessels, cavitation is on the contrary used by ferns to eject spores very swiftly. We will focus here on the dynamics of the cavitation bubble, which is of primary importance to explain the previously cited natural phenomena. We use the recently developed method of artificial tress, using transparent hydrogels as the porous medium. Our experiments, on water confined in micrometric hydrogel cavities, show an extremely fast dynamics: bubbles are nucleated at the microsecond timescale. For cavities larger than 100 microns, the bubble ``rings'' with damped oscillations at MHz frequencies, whereas for smaller cavities the oscillations become overdamped. This rich dynamics can be accounted for by a model we developed, leading to a modified Rayleigh-Plesset equation. Interestingly, this model predicts the impossibility to nucleate bubbles above a critical confinement that depends on liquid negative pressure and corresponds to approximately 100 nm for 20 MPa tensions.

  3. Bubble nucleation of R134A refrigerant in a pressurized flow boiling system

    Energy Technology Data Exchange (ETDEWEB)

    Murshed, S.M. Sohel; Vereen, Keon; Kumar, Ranganathan [University of Central Florida, Orlando, FL (United States). Dept. of Mechanical, Materials and Aerospace Engineering], e-mail: rnkumar@mail.ucf.edu

    2009-07-01

    The effect of heat flux and pressure on bubble nucleation of R134a refrigerant in a flow boiling system is experimentally studied. An experimental facility was built and an innovative concept of thermochromic liquid crystal (TLC) technique was introduced for the high resolution and accurate measurement of the overall heater surface temperature. The visualization and image recording process is performed by employing two synchronized high resolution and high speed cameras which simultaneously capture colored TLC images as well as bubble nucleation activities at high frame rates. Experiments were conducted at different high pressures ranging from 690 to 830 kPa and at different heat flux conditions in order to identify their influence on flow boiling performance specially bubbling event. Present results demonstrate that both the heat flux and pressure influence the bubble generation rate and size. For example, bubble generation frequency and size are found to increase with heat flux. An increase in pressure of 137 kPa (from 690 to 827 kPa) increased the bubble frequency and size about 32 Hz and 20 {mu}m, respectively. (author)

  4. Bubble nucleation of R134A refrigerant in a pressurized flow boiling system

    International Nuclear Information System (INIS)

    Murshed, S.M. Sohel; Vereen, Keon; Kumar, Ranganathan

    2009-01-01

    The effect of heat flux and pressure on bubble nucleation of R134a refrigerant in a flow boiling system is experimentally studied. An experimental facility was built and an innovative concept of thermochromic liquid crystal (TLC) technique was introduced for the high resolution and accurate measurement of the overall heater surface temperature. The visualization and image recording process is performed by employing two synchronized high resolution and high speed cameras which simultaneously capture colored TLC images as well as bubble nucleation activities at high frame rates. Experiments were conducted at different high pressures ranging from 690 to 830 kPa and at different heat flux conditions in order to identify their influence on flow boiling performance specially bubbling event. Present results demonstrate that both the heat flux and pressure influence the bubble generation rate and size. For example, bubble generation frequency and size are found to increase with heat flux. An increase in pressure of 137 kPa (from 690 to 827 kPa) increased the bubble frequency and size about 32 Hz and 20 μm, respectively. (author)

  5. Dynamics of the central entrapped bubble during drop impact

    Science.gov (United States)

    Jian, Zhen; Channa, Murad Ali; Thoraval, Marie-Jean

    2017-11-01

    When a drop impacts onto a liquid surface, it entraps a thin central air disk. The air is then brought towards the axis of symmetry by surface tension. This contraction dynamics is very challenging to capture, due to the small length scales (a few micrometers thin air disk) and time scales (contracting in a few hundred microseconds). We use the open source two-phase flow codes Gerris and Basilisk to study this air entrapment phenomenon. The effects of liquid properties such as viscosity and surface tension, and of the impact velocity were investigated. We focus on the morphology of the contracting air disk. The bubble is expected to contract into a single spherical bubble. However, in some cases, the air can be stretched vertically by the liquid inertia and split into two smaller bubbles. The convergence of capillary waves on the air disk towards the axis of symmetry can also make it rupture at the center, thus forming a toroidal bubble. In other cases, vorticity shedding can deform the contracting bubble, leading to more complex structures. A parameter space analysis based on the Reynolds and Weber numbers was then done to classify the different regimes and explain the transitions. Full affiliation:State Key Laboratory for Strength and Vibration of Mechanical Structures,Shaanxi Key Laboratory of Environment and Control for Flight Vehicle,International Center for Applied Mechanics,School of Aerospace,Xi'an Jiaotong University.

  6. Hydrodynamics of gas-liquid slug flow along vertical pipes in turbulent regime-An experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Mayor, T.S.; Ferreira, V.; Pinto, A.M.F.R. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal); Campos, J.B.L.M. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Quimica, Faculdade de Engenharia da Universidade do Porto, Rua Dr. Roberto Frias 4200-465 Porto (Portugal)], E-mail: jmc@fe.up.pt

    2008-08-15

    An experimental study on free-bubbling gas-liquid (air-water) vertical slug flow was developed using a non-intrusive image analysis technique. The flow pattern in the near-wake of the bubbles and in the main liquid between bubbles was turbulent. A single correlation for the bubble-to-bubble interaction is proposed, relating the trailing bubble velocity to the length of the liquid slug ahead of the bubble. The proposed correlation is shown to be independent of column diameter, column vertical coordinate, superficial liquid and gas velocities and the velocity and length of the leading bubble. Frequency distribution curves, averages, modes and standard deviations are reported, for distributions of bubble velocity, bubble length and liquid slug length, for each experimental condition studied. Good agreement was found between theoretical predictions and experimental results regarding the upward velocity of undisturbed bubbles, in a 0.032 m internal diameter column. A considerable discrepancy was found, though, for a 0.052 m internal diameter column. The acquired experimental data are crucial for the development and validation of a robust slug flow simulator.

  7. Hydrodynamics of gas-liquid slug flow along vertical pipes in turbulent regime-An experimental study

    International Nuclear Information System (INIS)

    Mayor, T.S.; Ferreira, V.; Pinto, A.M.F.R.; Campos, J.B.L.M.

    2008-01-01

    An experimental study on free-bubbling gas-liquid (air-water) vertical slug flow was developed using a non-intrusive image analysis technique. The flow pattern in the near-wake of the bubbles and in the main liquid between bubbles was turbulent. A single correlation for the bubble-to-bubble interaction is proposed, relating the trailing bubble velocity to the length of the liquid slug ahead of the bubble. The proposed correlation is shown to be independent of column diameter, column vertical coordinate, superficial liquid and gas velocities and the velocity and length of the leading bubble. Frequency distribution curves, averages, modes and standard deviations are reported, for distributions of bubble velocity, bubble length and liquid slug length, for each experimental condition studied. Good agreement was found between theoretical predictions and experimental results regarding the upward velocity of undisturbed bubbles, in a 0.032 m internal diameter column. A considerable discrepancy was found, though, for a 0.052 m internal diameter column. The acquired experimental data are crucial for the development and validation of a robust slug flow simulator

  8. Determination of bubble parameters in two-phase flow

    International Nuclear Information System (INIS)

    Oliveira Lira, C.A.B. de.

    1980-01-01

    A development of a probe-detector system for measurement of bubble parameters like size, rise velocity and void fraction in two-phase flow is presented. The method uses an electro resistivity probe and a compact electronic circuit has been developed for obtain this purpose. (author)

  9. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    Science.gov (United States)

    Schneider von Deimling, J.; Papenberg, C.

    2012-03-01

    Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV) to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  10. Technical Note: Detection of gas bubble leakage via correlation of water column multibeam images

    Directory of Open Access Journals (Sweden)

    J. Schneider von Deimling

    2012-03-01

    Full Text Available Hydroacoustic detection of natural gas release from the seafloor has been conducted in the past by using singlebeam echosounders. In contrast, modern multibeam swath mapping systems allow much wider coverage, higher resolution, and offer 3-D spatial correlation. Up to the present, the extremely high data rate hampers water column backscatter investigations and more sophisticated visualization and processing techniques are needed. Here, we present water column backscatter data acquired with a 50 kHz prototype multibeam system over a period of 75 seconds. Display types are of swath-images as well as of a "re-sorted" singlebeam presentation. Thus, individual and/or groups of gas bubbles rising from the 24 m deep seafloor clearly emerge in the acoustic images, making it possible to estimate rise velocities. A sophisticated processing scheme is introduced to identify those rising gas bubbles in the hydroacoustic data. We apply a cross-correlation technique adapted from particle imaging velocimetry (PIV to the acoustic backscatter images. Temporal and spatial drift patterns of the bubbles are assessed and are shown to match very well to measured and theoretical rise patterns. The application of this processing to our field data gives clear results with respect to unambiguous bubble detection and remote bubble rise velocimetry. The method can identify and exclude the main source of misinterpretations, i.e. fish-mediated echoes. Although image-based cross-correlation techniques are well known in the field of fluid mechanics for high resolution and non-inversive current flow field analysis, we present the first application of this technique as an acoustic bubble detector.

  11. Transient analysis of air-water two-phase flow in channels and bends

    International Nuclear Information System (INIS)

    Khan, H.J.; Ye, W.; Pertmer, G.A.

    1992-01-01

    The algorithm used in this paper is the Newton Block Gauss Seidel method, which has been applied to both simple and complex flow conditions in two-phase flow. This paper contains a description of difference techniques and an iterative solution algorithm that is used to solve the field and constitutive equations of the two-fluid model. In practice, this solution procedure has been proven to be stable and capable of generating solutions in problems where other schemes have failed. The method converges rapidly for reasonable error tolerances and is easily extended to three-dimensional geometries. Using air-water as the two-phase medium, transient flow behavior in several geometries of interest are shown. Flow through a vertical channel with flow obstruction, large U bends, and 90-deg bends are being demonstrated with variation of inlet void fraction and slip ratio. Significant changes in the velocity and void distribution profiles have been observed. Various regions of flow recirculation are obtained in the flow domain for each phase. The phasic velocity and void distributions are dominated by gravity-induced phase separation causing air to accumulate in the upper region. The influence of inlet slip ratio and interfacial momentum transfer on the transient flow profile has been demonstrated in detail

  12. Heat transfer to air-water two-phase flow in slug/churn region

    International Nuclear Information System (INIS)

    Wadekar, V.V.; Tuzla, K.; Chen, J.C.

    1996-01-01

    Measured heat transfer data for air-water two-phase flow in the slug/churn flow region are reported. The measurements were obtained from a 1.3 m tall, 15.7 mm diameter vertical tube test-section. It is observed that the data exhibit different heat transfer characteristics to those predicted by the standard correlations for the convective component of flow boiling heat transfer. Comparison with the predictions of a slug flow model for evaporation shows a significant overprediction of the data. The reason for the overprediction is attributed to the sensible heating requirement of the gas phase. The slug flow model is therefore suitably modified for non-evaporating two-phase flow. This specially adapted model is found to give reasonably good predictions of the measured data

  13. Armoring confined bubbles in concentrated colloidal suspensions

    Science.gov (United States)

    Yu, Yingxian; Khodaparast, Sepideh; Stone, Howard

    2016-11-01

    Encapsulation of a bubble with microparticles is known to significantly improve the stability of the bubble. This phenomenon has recently gained increasing attention due to its application in a variety of technologies such as foam stabilization, drug encapsulation and colloidosomes. Nevertheless, the production of such colloidal armored bubble with controlled size and particle coverage ratio is still a great challenge industrially. We study the coating process of a long air bubble by microparticles in a circular tube filled with a concentrated microparticles colloidal suspension. As the bubble proceeds in the suspension of particles, a monolayer of micro-particles forms on the interface of the bubble, which eventually results in a fully armored bubble. We investigate the phenomenon that triggers and controls the evolution of the particle accumulation on the bubble interface. Moreover, we examine the effects of the mean flow velocity, the size of the colloids and concentration of the suspension on the dynamics of the armored bubble. The results of this study can potentially be applied to production of particle-encapsulated bubbles, surface-cleaning techniques, and gas-assisted injection molding.

  14. Liquid-Metal/Water Direct Contact Heat Exchange: Flow Visualization, Flow Stability, and Heat Transfer Using Real-Time X-Ray Imaging

    International Nuclear Information System (INIS)

    Abdulla, Sherif H.; Liu Xin; Anderson, Mark H.; Bonazza, Riccardo; Corradini, Michael L.; Cho, Dae; Page, Richard

    2005-01-01

    Advanced reactor system designs are being considered with liquid-metal cooling connected to a steam power cycle. In addition, current reactor safety systems are considering auxiliary cooling schemes that assure ex-vessel debris coolability utilizing direct water injection into molten material pools to achieve core quenching and eventual coolability. The phenomenon common in both applications is direct contact heat exchange. The current study focuses on detailed measurements of liquid-metal/water direct contact heat exchange that is directly applicable to improvements in effective heat transfer in devices that are being considered for both of these purposes.In this study, a test facility was designed at the University of Wisconsin-Madison to map the operating range of liquid-metal/water direct contact heat exchange. The test section (184-cm height, 45.75-cm width, and 10-cm depth) is a rectangular slice of a larger heat exchange device. This apparatus was used not only to provide measurements of integral thermal performance (i.e., volumetric heat transfer coefficient), but also local heat transfer coefficients in a bubbly flow regime with X-ray imaging based on measured parameters such as bubble formation time, bubble rise velocity, and bubble diameters.To determine these local heat transfer coefficients, a complete methodology of the X-ray radiography for two-phase flow measurement has been developed. With this methodology, a high-energy X-ray imaging system is optimized for our heat exchange experiments. With this real-time, large-area, high-energy X-ray imaging system, the two-phase flow was quantitatively visualized. An efficient image processing strategy was developed by combining several optimal digital image-processing algorithms into a software computational tool written in MATLAB called T-XIP. Time-dependent heat transfer-related variables such as bubble volumes and velocities, were determined. Finally, an error analysis associated with these measurements

  15. Modelling studies for influence factors of gas bubble in compressed air energy storage in aquifers

    International Nuclear Information System (INIS)

    Guo, Chaobin; Zhang, Keni; Li, Cai; Wang, Xiaoyu

    2016-01-01

    CAES (Compressed air energy storage) is credited with its potential ability for large-scale energy storage. Generally, it is more convenient using deep aquifers than employing underground caverns for energy storage, because of extensive presence of aquifers. During the first stage in a typical process of CAESA (compressed air energy storage in aquifers), a large amount of compressed air is injected into the target aquifer to develop an initial space (a gas bubble) for energy storage. In this study, numerical simulations were conducted to investigate the influence of aquifer's permeability, geological structure and operation parameters on the formation of gas bubble and the sustainability for the later cycling operation. The SCT (system cycle times) was designed as a parameter to evaluate the reservoir performance and the effect of operation parameters. Simulation results for pressure and gas saturation results of basic model confirm the feasibility of compressed air energy storage in aquifers. The results of different permeability cases show that, for a certain scale of CAESA system, there is an optimum permeability range for a candidate aquifer. An aquifer within this permeability range will not only satisfy the injectivity requirement but also have the best energy efficiency. Structural impact analysis indicates that the anticline structure has the best performance to hold the bubble under the same daily cycling schedule with the same initial injected air mass. In addition, our results indicate that the SCT shows a logarithmic growth as the injected air mass increase. During the formation of gas bubble, compressed air should be injected into aquifers with moderate rate and the injection can be done in several stages with different injection rate to avoid onset pressure. - Highlights: • Impact of permeability, geological structure, operation parameters was investigated. • With certain air production rate, an optimum permeability exists for performance.

  16. Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient

    International Nuclear Information System (INIS)

    Bahreini, Mohammad; Ramiar, Abas; Ranjbar, Ali Akbar

    2015-01-01

    Highlights: • Condensing bubble is numerically investigated using VOF model in OpenFOAM package. • Bubble mass reduces as it goes through condensation and achieves higher velocities. • At a certain time the slope of changing bubble diameter with time, varies suddenly. • Larger bubbles experience more lateral migration to higher velocity regions. • Bubbles migrate back to a lower velocity region for higher liquid subcooling rates. - Abstract: In this paper, numerical simulation of the bubble condensation in the subcooled boiling flow is performed. The interface between two-phase is tracked via the volume of fluid (VOF) method with continuous surface force (CSF) model, implemented in the open source OpenFOAM CFD package. In order to simulate the condensing bubble with the OpenFOAM code, the original energy equation and mass transfer model for phase change have been modified and a new solver is developed. The Newtonian flow is solved using the finite volume scheme based on the pressure implicit with splitting of operators (PISO) algorithm. Comparison of the simulation results with previous experimental data revealed that the model predicted well the behavior of the actual condensing bubble. The bubble lifetime is almost proportional to bubble initial size and is prolonged by increasing the system pressure. In addition, the initial bubble size, subcooling of liquid and velocity gradient play an important role in the bubble deformation behavior. Velocity gradient makes the bubble move to the higher velocity region and the subcooling rate makes it to move back to the lower velocity region.

  17. Numerical simulation of bubble behavior in subcooled flow boiling under velocity and temperature gradient

    Energy Technology Data Exchange (ETDEWEB)

    Bahreini, Mohammad, E-mail: m.bahreini1990@gmail.com; Ramiar, Abas, E-mail: aramiar@nit.ac.ir; Ranjbar, Ali Akbar, E-mail: ranjbar@nit.ac.ir

    2015-11-15

    Highlights: • Condensing bubble is numerically investigated using VOF model in OpenFOAM package. • Bubble mass reduces as it goes through condensation and achieves higher velocities. • At a certain time the slope of changing bubble diameter with time, varies suddenly. • Larger bubbles experience more lateral migration to higher velocity regions. • Bubbles migrate back to a lower velocity region for higher liquid subcooling rates. - Abstract: In this paper, numerical simulation of the bubble condensation in the subcooled boiling flow is performed. The interface between two-phase is tracked via the volume of fluid (VOF) method with continuous surface force (CSF) model, implemented in the open source OpenFOAM CFD package. In order to simulate the condensing bubble with the OpenFOAM code, the original energy equation and mass transfer model for phase change have been modified and a new solver is developed. The Newtonian flow is solved using the finite volume scheme based on the pressure implicit with splitting of operators (PISO) algorithm. Comparison of the simulation results with previous experimental data revealed that the model predicted well the behavior of the actual condensing bubble. The bubble lifetime is almost proportional to bubble initial size and is prolonged by increasing the system pressure. In addition, the initial bubble size, subcooling of liquid and velocity gradient play an important role in the bubble deformation behavior. Velocity gradient makes the bubble move to the higher velocity region and the subcooling rate makes it to move back to the lower velocity region.

  18. Two-phase flow induced parametric vibrations in structural systems

    International Nuclear Information System (INIS)

    Hara, Fumio

    1980-01-01

    This paper is divided into two parts concerning piping systems and a nuclear fuel pin system. The significant experimental results concerning the random vibration induced in an L-shaped pipe by air-water two-phase flow and the theoretical analysis of the vibration are described in the first part. It was clarified for the first time that the parametric excitation due to the periodic changes of system mass, centrifugal force and Coriolis force was the mechanism of exciting the vibration. Moreover, the experimental and theoretical analyses of the mechanism of exciting vibration by air-water two-phase flow in a straight, horizontal pipe were carried out, and the first natural frequency of the piping system was strongly related to the dominant frequency of void signals. The experimental results on the vibration of a nuclear fuel pin model in parallel air-water two-phase flow are reported in the latter part. The relations between vibrational strain variance and two-phase flow velocity or pressure fluctuation, and the frequency characteristics of vibrational strain variance were obtained. The theoretical analysis of the dynamic interaction between air-water two-phase flow and a fuel pin structure, and the vibrational instability of fuel pins in alternate air and water slugs or in large bubble flow are also reported. (Kako, I.)

  19. Laser controllable generation and manipulation of micro-bubbles in water

    Science.gov (United States)

    Angelsky, O. V.; Bekshaev, A. Ya.; Maksimyak, P. P.; Maksimyak, A. P.; Hanson, S. G.; Kontush, S. M.

    2018-01-01

    Micrometer-sized vapor bubbles are formed due to local heating of the water suspension containing absorptive pigment particles of 100 nm diameter. The heating is performed by the CW near-infrared laser radiation. By changing the laser power, four regimes are realized: (1) bubble generation, (2) stable growth of the existing bubbles; (3) stationary existence of the bubbles and (4) bubbles' shrinkage and collapse. The generation and evolution of single bubbles and ensembles of bubbles with controllable sizes and numbers is demonstrated. The bubbles are grouped within the laserilluminated region. They can be easily moved and transported together with the focal spot. The results can be useful for applications associated with the precise manipulation and the species delivery in nano- and micro-engineering problems.

  20. Balance of liquid-phase turbulence kinetic energy equation for bubble-train flow

    International Nuclear Information System (INIS)

    Ilic, Milica; Woerner, Martin; Cacuci, Dan Gabriel

    2004-01-01

    In this paper the investigation of bubble-induced turbulence using direct numerical simulation (DNS) of bubbly two-phase flow is reported. DNS computations are performed for a bubble-driven liquid motion induced by a regular train of ellipsoidal bubbles rising through an initially stagnant liquid within a plane vertical channel. DNS data are used to evaluate balance terms in the balance equation for the liquid phase turbulence kinetic energy. The evaluation comprises single-phase-like terms (diffusion, dissipation and production) as well as the interfacial term. Special emphasis is placed on the procedure for evaluation of interfacial quantities. Quantitative analysis of the balance equation for the liquid phase turbulence kinetic energy shows the importance of the interfacial term which is the only source term. The DNS results are further used to validate closure assumptions employed in modelling of the liquid phase turbulence kinetic energy transport in gas-liquid bubbly flows. In this context, the performance of respective closure relations in the transport equation for liquid turbulence kinetic energy within the two-phase k-ε and the two-phase k-l model is evaluated. (author)

  1. Hydrodynamics of single- and two-phase flow in inclined rod arrays

    International Nuclear Information System (INIS)

    Ebeling-Koning, D.B.; Todreas, N.E.

    1983-09-01

    Required inputs for thermal-hydraulic codes are constitutive relations for fluid-solid flow resistance, in single-phase flow, and interfacial momentum exchange (relative phase motion), in two-phase flow. An inclined rod array air-water experiment was constructed to study the hydrodynamics of multidimensional porous medium flow in rod arrays. Velocities, pressures, and bubble distributions were measured in square rod arrays of P/d = 1.5, at 0, 30, 45, and 90 degree inclinations to the vertical flow direction. Constitutive models for single-phase flow resistance are reviewed, new comprehensive models developed, and an assessment with previously published and new data made. The principle of superimposing one-dimensional correlations proves successful for turbulent single-phase inclined flow. For bubbly two-phase incline flow a new flow separation phenomena was observed and modeled. A two-region liquid velocity model is developed to explain the experimentally observed phenomena. Fundamental data for bubbles rising in rod arrays were also taken

  2. Acoustic trapping in bubble-bounded micro-cavities

    Science.gov (United States)

    O'Mahoney, P.; McDougall, C.; Glynne-Jones, P.; MacDonald, M. P.

    2016-12-01

    We present a method for controllably producing longitudinal acoustic trapping sites inside microfluidic channels. Air bubbles are injected into a micro-capillary to create bubble-bounded `micro-cavities'. A cavity mode is formed that shows controlled longitudinal acoustic trapping between the two air/water interfaces along with the levitation to the centre of the channel that one would expect from a lower order lateral mode. 7 μm and 10 μm microspheres are trapped at the discrete acoustic trapping sites in these micro-cavities.We show this for several lengths of micro-cavity.

  3. Effect of a uniform magnetic field on dielectric two-phase bubbly flows using the level set method

    International Nuclear Information System (INIS)

    Ansari, M.R.; Hadidi, A.; Nimvari, M.E.

    2012-01-01

    In this study, the behavior of a single bubble in a dielectric viscous fluid under a uniform magnetic field has been simulated numerically using the Level Set method in two-phase bubbly flow. The two-phase bubbly flow was considered to be laminar and homogeneous. Deformation of the bubble was considered to be due to buoyancy and magnetic forces induced from the external applied magnetic field. A computer code was developed to solve the problem using the flow field, the interface of two phases, and the magnetic field. The Finite Volume method was applied using the SIMPLE algorithm to discretize the governing equations. Using this algorithm enables us to calculate the pressure parameter, which has been eliminated by previous researchers because of the complexity of the two-phase flow. The finite difference method was used to solve the magnetic field equation. The results outlined in the present study agree well with the existing experimental data and numerical results. These results show that the magnetic field affects and controls the shape, size, velocity, and location of the bubble. - Highlights: ►A bubble behavior was simulated numerically. ► A single bubble behavior was considered in a dielectric viscous fluid. ► A uniform magnetic field is used to study a bubble behavior. ► Deformation of the bubble was considered using the Level Set method. ► The magnetic field affects the shape, size, velocity, and location of the bubble.

  4. Electrohydrodynamic bubbling: an alternative route to fabricate porous structures of silk fibroin based materials.

    Science.gov (United States)

    Ekemen, Zeynep; Ahmad, Zeeshan; Stride, Eleanor; Kaplan, David; Edirisinghe, Mohan

    2013-05-13

    Conventional fabrication techniques and structures employed in the design of silk fibroin (SF) based porous materials provide only limited control over pore size and require several processing stages. In this study, it is shown that, by utilizing electrohydrodynamic bubbling, not only can new hollow spherical structures of SF be formed in a single step by means of bubbles, but the resulting bubbles can serve as pore generators when dehydrated. The bubble characteristics can be controlled through simple adjustments to the processing parameters. Bubbles with diameters in the range of 240-1000 μm were fabricated in controlled fashion. FT-IR characterization confirmed that the rate of air infused during processing enhanced β-sheet packing in SF at higher flow rates. Dynamic mechanical analysis also demonstrated a correlation between air flow rate and film tensile strength. Results indicate that electrohydrodynamically generated SF and their composite bubbles can be employed as new tools to generate porous structures in a controlled manner with a range of potential applications in biocoatings and tissue engineering scaffolds.

  5. Astronaut Pedro Duque Watches A Water Bubble

    Science.gov (United States)

    2003-01-01

    Aboard the International Space Station (ISS), European Space Agency astronaut Pedro Duque of Spain watches a water bubble float between a camera and himself. The bubble shows his reflection (reversed). Duque was launched aboard a Russian Soyuz TMA-3 spacecraft from the Baikonur Cosmodrome, Kazakhstan on October 18th, along with expedition-8 crew members Michael C. Foale, Mission Commander and NASA ISS Science Officer, and Cosmonaut Alexander Y. Kaleri, Soyuz Commander and flight engineer.

  6. Interaction Mechanisms between Air Bubble and Molybdenite Surface: Impact of Solution Salinity and Polymer Adsorption.

    Science.gov (United States)

    Xie, Lei; Wang, Jingyi; Yuan, Duowei; Shi, Chen; Cui, Xin; Zhang, Hao; Liu, Qi; Liu, Qingxia; Zeng, Hongbo

    2017-03-07

    The surface characteristics of molybdenite (MoS 2 ) such as wettability and surface interactions have attracted much research interest in a wide range of engineering applications, such as froth flotation. In this work, a bubble probe atomic force microscope (AFM) technique was employed to directly measure the interaction forces between an air bubble and molybdenite mineral surface before/after polymer (i.e., guar gum) adsorption treatment. The AFM imaging showed that the polymer coverage on the surface of molybdenite could achieve ∼5.6, ∼44.5, and ∼100% after conditioning in 1, 5, and 10 ppm polymer solution, respectively, which coincided with the polymer coverage results based on contact angle measurements. The electrolyte concentration and surface treatment by polymer adsorption were found to significantly affect bubble-mineral interaction and attachment. The experimental force results on bubble-molybdenite (without polymer treatment) agreed well with the calculations using a theoretical model based on the Reynolds lubrication theory and augmented Young-Laplace equation including the effect of disjoining pressure. The overall surface repulsion was enhanced when the NaCl concentration decreased from 100 to 1 mM, which inhibited the bubble-molybdenite attachment. After conditioning the molybdenite surface in 1 ppm polymer solution, it was more difficult for air bubbles to attach to the molybdenite surface due to the weakened hydrophobic interaction with a shorter decay length. Increasing the polymer concentration to 5 ppm effectively inhibited bubble attachment on mineral surface, which was mainly due to the much reduced hydrophobic interaction as well as the additional steric repulsion between the extended polymer chains and bubble surface. The results provide quantitative information on the interaction mechanism between air bubbles and molybdenite mineral surfaces on the nanoscale, with useful implications for the development of effective polymer

  7. Dynamic Bubble Surface Tension Measurements in Northwest Atlantic Seawater

    Science.gov (United States)

    Kieber, D. J.; Long, M. S.; Keene, W. C.; Kinsey, J. D.; Frossard, A. A.; Beaupre, S. R.; Duplessis, P.; Maben, J. R.; Lu, X.; Chang, R.; Zhu, Y.; Bisgrove, J.

    2017-12-01

    Numerous reports suggest that most organic matter (OM) associated with newly formed primary marine aerosol (PMA) originates from the sea-surface microlayer. However, surface-active OM rapidly adsorbs onto bubble surfaces in the water column and is ejected into the atmosphere when bubbles burst at the air-water interface. Here we present dynamic surface tension measurements of bubbles produced in near surface seawater from biologically productive and oligotrophic sites and in deep seawater collected from 2500 m in the northwest Atlantic. In all cases, the surface tension of bubble surfaces decreased within seconds after the bubbles were exposed to seawater. These observations demonstrate that bubble surfaces are rapidly saturated by surfactant material scavenged from seawater. Spatial and diel variability in bubble surface evolution indicate corresponding variability in surfactant concentrations and/or composition. Our results reveal that surface-active OM is found throughout the water column, and that at least some surfactants are not of recent biological origin. Our results also support the hypothesis that the surface microlayer is a minor to negligible source of OM associated with freshly produced PMA.

  8. Slug flow transitions in horizontal gas/liquid two-phase flows. Dependence on channel height and system pressure for air/water and steam/water two-phase flows

    International Nuclear Information System (INIS)

    Nakamura, Hideo

    1996-05-01

    The slug flow transitions and related phenomena for horizontal two-phase flows were studied for a better prediction of two-phase flows that typically appear during the reactor loss-of-coolant accidents (LOCAs). For better representation of the flow conditions experimentally, two large-scaled facility: TPTF for high-pressure steam/water two-phase flows and large duct test facility for air/water two-phase flows, were used. The visual observation of the flow using a video-probe was performed in the TPTF experiments for good understanding of the phenomena. The currently-used models and correlations based mostly on the small-scale low-pressure experiments were reviewed and improved based on these experimental results. The modified Taitel-Dukler model for prediction of transition into slug flow from wavy flow and the modified Steen-Wallis correlation for prediction of onset of liquid entrainment from the interfacial waves were obtained. An empirical correlation for the gas-liquid interfacial friction factor was obtained further for prediction of liquid levels at wavy flow. The region of slug flow regime that is generally under influences of the channel height and system pressure was predicted well when these models and correlations were applied together. (author). 90 refs

  9. Numerical predictions of bubbly two-phase flows with OpenFOAM

    International Nuclear Information System (INIS)

    Michta, E.; Fu, K.; Anglart, H.; Angele, K.

    2011-01-01

    A new model for simulation of bubbly two-phase flows has been developed and implemented into an open-source Computational Fluid Dynamics (CFD) code OpenFOAM. The model employs the two-fluid framework with closure relationships for the interfacial momentum transfer. The bubble size is calculated based on the solution of the interfacial area concentration equations. The predictions are validated against a wide range of experimental data containing measured void fraction, the phasic velocity and the interfacial area concentration. The new model demonstrates the ability to capture the wall peaking of void fraction for small bubbles. The predicted levels of void fraction and phasic velocities are in good agreement with measured data. (author)

  10. Sensitivity study of poisson corruption in tomographic measurements for air-water flows

    International Nuclear Information System (INIS)

    Munshi, P.; Vaidya, M.S.

    1993-01-01

    An application of computerized tomography (CT) for measuring void fraction profiles in two-phase air-water flows was reported earlier. Those attempts involved some special radial methods for tomographic reconstruction and the popular convolution backprojection (CBP) method. The CBP method is capable of reconstructing void profiles for nonsymmetric flows also. In this paper, we investigate the effect of corrupted CT data for gamma-ray sources and aCBP algorithm. The corruption in such a case is due to the statistical (Poisson) nature of the source

  11. Local measurements in two-phase flow using a double-sensor conductivity probes and laser doppler anemometry in a vertical pipe

    International Nuclear Information System (INIS)

    Chiva, S.; Julia, E.; Hernandez, L.; Mendez, S.; Munoz-Cobo, J.L.

    2007-01-01

    An upward isothermal co-current air-water flow in a vertical pipe (50.2 mm inner diameter) has been experimental investigated. Local measurements of void fraction, interfacial area concentration (IAC), and interfacial velocity and Sauter mean diameter were measured using a double sensor conductivity probe. Liquid velocity and turbulence intensity were measured using laser Doppler anemometry. Different air-water flow configurations was investigated for a liquid flow rate ranged from 0.29 m/s to 2 m/s and a void fraction up to 15%. For each two-phase flow configuration 15 radial position and three axial positions was measured by the conductivity probe methodology, and several radial profiles was measured with LDA at different axial positions. Two theoretical calibration factors have been defined to relate the mean measurable parameter to the interfacial area concentrations obtained and the measured bubbles, including the missed bubbles. Those factors include the effects of bubble motions, and probe spacing. These calibration factors were obtained through new analytical and numerical method, using a Monte Carlo approach. (author)

  12. Development and validation of models for bubble coalescence and breakup. Final report

    International Nuclear Information System (INIS)

    Liao, Y.; Lucas, D.

    2013-02-01

    A new generalized model for bubble coalescence and breakup has been developed. It is based on physical considerations and takes into account various mechanisms that can lead to bubble coalescence and breakup. First, in a detailed literature review, the available models were compiled and analyzed. It turned out that many of them show a contradictory behaviour. None of these models allows the prediction of the evolution of bubble size distributions along a pipe flow for a wide range of combinations of flow rates of the gas and the liquid phase. The new model has been extensively studied in a simplified Test-Solver. Although this does not cover all details of a developing flow along the pipe, it allows - in contrast to a CFD code - to conduct a large number of variational calculations to investigate the influence of individual sizes and models. Coalescence and breakup cannot be considered separately from other phenomena and models that reflect these phenomena. There are close interactions with the turbulence of the liquid phase and the momentum exchange between phases. Since the dissipation rate of turbulent kinetic energy is a direct input parameter for the new model, the turbulence modelling has been studied very carefully. To validate the model, a special experimental series for air-water flows was used, conducted at the TOPFLOW facility in an 8-meter long DN200 pipe. The data are characterized by high quality and were produced within the TOPFLOW-II project. The test series aims to provide a basis for the work presented here. Predicting the evolution of the bubble size distribution along the pipe could be improved significantly in comparison to the previous standard models for bubble coalescence and breakup implemented in CFX. However some quantitative discrepancies remain. The full model equations as well as an implementation as ''User-FORTRAN'' in CFX are available and can be used for further work on the simulation of poly-disperse bubbly flows.

  13. On the interaction of Taylor bubbles rising in two-phase co-current slug flow in vertical columns: turbulent wakes

    Energy Technology Data Exchange (ETDEWEB)

    Pinto, A.M.F.R.; Campos, J.B.L. [Centro de Estudos de Fenomenos de Transporte, Universidade do Porto Rua (Portugal); Coelho Pinheiro, M.N. [Dept. de Engenharia Quimica, Politecnico de Coimbra (Portugal)

    2001-12-01

    An experimental study on the interaction between Taylor bubbles rising through a co-current flowing liquid in a vertical tube with 32 mm of internal diameter is reported. The flow pattern in the bubble's wake was turbulent and the flow regime in the liquid slug was either turbulent or laminar. When the flow regime in the liquid slug is turbulent (i) the minimum distance between bubbles above which there is no interaction is 5D-6D; (ii) the bubble's rising velocity is in excellent agreement with the Nicklin relation; (iii) the experimental values of the bubble length compare well with theoretical predictions (Barnea 1990); (iv) the distance between consecutive bubbles varied from 13D to 16D and is insensitive to the liquid Reynolds number. When the flow regime in the liquid slug is laminar (i) the wake length is about 5D-6D; (ii) the minimum distance between bubbles above which there is no interaction is higher than 25D; (iii) the bubble's rising velocity is significantly smaller than theoretical predictions. These results were explained in the light of the findings of Pinto et al. (1998) on coalescence of two Taylor bubbles rising through a co-current liquid. (orig.)

  14. Development and validation of models for bubble coalescence and breakup

    Energy Technology Data Exchange (ETDEWEB)

    Liao, Yiaxiang

    2013-10-08

    A generalized model for bubble coalescence and breakup has been developed, which is based on a comprehensive survey of existing theories and models. One important feature of the model is that all important mechanisms leading to bubble coalescence and breakup in a turbulent gas-liquid flow are considered. The new model is tested extensively in a 1D Test Solver and a 3D CFD code ANSYS CFX for the case of vertical gas-liquid pipe flow under adiabatic conditions, respectively. Two kinds of extensions of the standard multi-fluid model, i.e. the discrete population model and the inhomogeneous MUSIG (multiple-size group) model, are available in the two solvers, respectively. These extensions with suitable closure models such as those for coalescence and breakup are able to predict the evolution of bubble size distribution in dispersed flows and to overcome the mono-dispersed flow limitation of the standard multi-fluid model. For the validation of the model the high quality database of the TOPFLOW L12 experiments for air-water flow in a vertical pipe was employed. A wide range of test points, which cover the bubbly flow, turbulent-churn flow as well as the transition regime, is involved in the simulations. The comparison between the simulated results such as bubble size distribution, gas velocity and volume fraction and the measured ones indicates a generally good agreement for all selected test points. As the superficial gas velocity increases, bubble size distribution evolves via coalescence dominant regimes first, then breakup-dominant regimes and finally turns into a bimodal distribution. The tendency of the evolution is well reproduced by the model. However, the tendency is almost always overestimated, i.e. too much coalescence in the coalescence dominant case while too much breakup in breakup dominant ones. The reason of this problem is discussed by studying the contribution of each coalescence and breakup mechanism at different test points. The redistribution of the

  15. Development and validation of models for bubble coalescence and breakup

    International Nuclear Information System (INIS)

    Liao, Yiaxiang

    2013-01-01

    A generalized model for bubble coalescence and breakup has been developed, which is based on a comprehensive survey of existing theories and models. One important feature of the model is that all important mechanisms leading to bubble coalescence and breakup in a turbulent gas-liquid flow are considered. The new model is tested extensively in a 1D Test Solver and a 3D CFD code ANSYS CFX for the case of vertical gas-liquid pipe flow under adiabatic conditions, respectively. Two kinds of extensions of the standard multi-fluid model, i.e. the discrete population model and the inhomogeneous MUSIG (multiple-size group) model, are available in the two solvers, respectively. These extensions with suitable closure models such as those for coalescence and breakup are able to predict the evolution of bubble size distribution in dispersed flows and to overcome the mono-dispersed flow limitation of the standard multi-fluid model. For the validation of the model the high quality database of the TOPFLOW L12 experiments for air-water flow in a vertical pipe was employed. A wide range of test points, which cover the bubbly flow, turbulent-churn flow as well as the transition regime, is involved in the simulations. The comparison between the simulated results such as bubble size distribution, gas velocity and volume fraction and the measured ones indicates a generally good agreement for all selected test points. As the superficial gas velocity increases, bubble size distribution evolves via coalescence dominant regimes first, then breakup-dominant regimes and finally turns into a bimodal distribution. The tendency of the evolution is well reproduced by the model. However, the tendency is almost always overestimated, i.e. too much coalescence in the coalescence dominant case while too much breakup in breakup dominant ones. The reason of this problem is discussed by studying the contribution of each coalescence and breakup mechanism at different test points. The redistribution of the

  16. Application of Micropore Filter Technology: Exploring the Blood Flow Path in Arterial-Line Filters and Its Effect on Bubble Trapping Functions.

    Science.gov (United States)

    Herbst, Daniel P

    2017-03-01

    Conventional arterial-line filters commonly use a large volume circular shaped housing, a wetted micropore screen, and a purge port to trap, separate, and remove gas bubbles from extracorporeal blood flow. Focusing on the bubble trapping function, this work attempts to explore how the filter housing shape and its resulting blood flow path affect the clinical application of arterial-line filters in terms of gross air handling. A video camera was used in a wet-lab setting to record observations made during gross air-bolus injections in three different radially designed filters using a 30-70% glycerol-saline mixture flowing at 4.5 L/min. Two of the filters both had inlet ports attached near the filter-housing top with bottom oriented outlet ports at the bottom, whereas the third filter had its inlet and outlet ports both located at the bottom of the filter housing. The two filters with top-in bottom-out fluid paths were shown to direct the incoming flow downward as it passed through the filter, placing the forces of buoyancy and viscous drag in opposition to each other. This contrasted with the third filter's bottom-in bottom-out fluid path, which was shown to direct the incoming flow upward so that the forces of buoyancy and viscous drag work together. The direction of the blood flow path through a filter may be important to the application of arterial-line filter technology as it helps determine how the forces of buoyancy and flow are aligned with one another.

  17. Escape jumping by three age-classes of water striders from smooth, wavy and bubbling water surfaces.

    Science.gov (United States)

    Ortega-Jimenez, Victor Manuel; von Rabenau, Lisa; Dudley, Robert

    2017-08-01

    Surface roughness is a ubiquitous phenomenon in both oceanic and terrestrial waters. For insects that live at the air-water interface, such as water striders, non-linear and multi-scale perturbations produce dynamic surface deformations which may impair locomotion. We studied escape jumps of adults, juveniles and first-instar larvae of the water strider Aquarius remigis on smooth, wave-dominated and bubble-dominated water surfaces. Effects of substrate on takeoff jumps were substantial, with significant reductions in takeoff angles, peak translational speeds, attained heights and power expenditure on more perturbed water surfaces. Age effects were similarly pronounced, with the first-instar larvae experiencing the greatest degradation in performance; age-by-treatment effects were also significant for many kinematic variables. Although commonplace in nature, perturbed water surfaces thus have significant and age-dependent effects on water strider locomotion, and on behavior more generally of surface-dwelling insects. © 2017. Published by The Company of Biologists Ltd.

  18. Physical insight in the burnout region of water-subcooled flow boiling

    International Nuclear Information System (INIS)

    Piero Celata, G.; Cumo, M.; Mariani, A.; Zummo, G.

    1998-01-01

    The present paper reports the results of a visualization study of the burnout in subcooled flow boiling of water, with square cross-section annular geometry (formed by a central heater rod contained in a duct characterised by a square cross-section). In order to obtain clear pictures of the flow phenomena, he coolant velocity is in the range 3-9 m.s -1 and the resulting heat flux is in the range 7-13 MW.m -2 . From video images (single frames were taken with a light exposure of 1 μs) the following general behaviour of vapour bubbles was observed: when the rate of bubble generation is increasing, with bubbles growing in the superheated layer close to the heating wall, their coalescence produces a sort of elongated bubble called a vapour blanket. One of the main features of the vapour blanket is that it is rooted to the nucleation site on the heated surface. Bubble dimensions, as well as those of the hot spots, are given as a function of thermal-hydraulic tested conditions. (authors)

  19. Two-phase flow regimes for counter-current air-water flows in narrow rectangular channels

    International Nuclear Information System (INIS)

    Kim, Byong Joo; Sohn, Byung Hu; Jeong, Si Young

    2001-01-01

    A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760 mm long and 100 mm wide test section with 2.0 and 5.0 mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition became pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant

  20. Velocity and phase distribution measurements in vertical air-water annular flows

    International Nuclear Information System (INIS)

    Vassallo, P.

    1997-07-01

    Annular flow topology for three air-water conditions in a vertical duct is investigated through the use of a traversing double-sensor hot-film anemometry probe and differential pressure measurements. Near wall measurements of mean and fluctuating velocities, as well as local void fraction, are taken in the liquid film, with the highest turbulent fluctuations occurring for the flow condition with the largest pressure drop. A modified law-of-the-wall formulation for wall shear is presented which, using near wall values of mean velocity and kinetic energy, agrees reasonably well with the average stress obtained from direct pressure drop measurements. The linear profile using wall coordinates in the logarithmic layer is preserved in annular flow; however, the slope and intercept of the profile differ from the single-phase values for the annular flow condition which has a thicker, more turbulent, liquid film

  1. Effect of air flow on tubular solar still efficiency.

    Science.gov (United States)

    Thirugnanasambantham, Arunkumar; Rajan, Jayaprakash; Ahsan, Amimul; Kandasamy, Vinothkumar

    2013-01-01

    An experimental work was reported to estimate the increase in distillate yield for a compound parabolic concentrator-concentric tubular solar still (CPC-CTSS). The CPC dramatically increases the heating of the saline water. A novel idea was proposed to study the characteristic features of CPC for desalination to produce a large quantity of distillate yield. A rectangular basin of dimension 2 m × 0.025 m × 0.02 m was fabricated of copper and was placed at the focus of the CPC. This basin is covered by two cylindrical glass tubes of length 2 m with two different diameters of 0.02 m and 0.03 m. The experimental study was operated with two modes: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively. THE EXPERIMENTAL STUDY WAS OPERATED WITH TWO MODES: without and with air flow between inner and outer tubes. The rate of air flow was fixed throughout the experiment at 4.5 m/s. On the basis of performance results, the water collection rate was 1445 ml/day without air flow and 2020 ml/day with air flow and the efficiencies were 16.2% and 18.9%, respectively.

  2. Microscopic bubble behaviour in suppression pool during wetwell venting

    Science.gov (United States)

    Zablackaite, G.; Nagasaka, H.; Kikura, H.

    2017-10-01

    During a severe accident PCV failure should be avoided and fission products inside PCV should be confined as much as possible. In order to minimize FPs release, Wetwell venting is conducted by releasing steam-non-condensable gas mixture carrying FPs from the Drywell to Suppression Pool. Steam is condensed by subcooled water in the pool, and most of FPs are retained into water. The removal of FP in the water pool is referred to as “Pool Scrubbing effect”. Hydrodynamic parameters of bubbles have impact on pool scrubbing effect. However, there is only few data available to evaluate quantitatively the bubble behaviour under depressurization and/or thermal stratification conditions. Series of experiments were conducted to evaluate the influence of temperature distribution, non-condensable gas content and pressure in the Wetwell on bubble behaviour. Bubbles were visualized using High Speed Camera and adopting shadowgraphy technique. Applying Particle Tracking Velocimetry, bubble velocity and size distribution were obtained from recorded images. Experimental results show that with increasing suppression pool temperature, bubbles reaching the pool surface decreased in size and traveling velocity became slower. In pressurized wetwell, bubble behaviour was similar to that in the heated up suppression pool case, although bubble parameters were similar to the low temperature case. Higher air content induced water surface movement and bubbles were smaller due to break up.

  3. Influence of the pipe diameter on the structure of the gas-liquid interface in a vertical two-phase pipe flow

    International Nuclear Information System (INIS)

    Prasser, H. M.; Beyer, M.; Boettger, A.; Carl, H.; Lucas, D.; Schaffrath, A.; Schutz, P.; Weiss, F. P.; Zschau, J.

    2003-01-01

    Two-phase flow tests in a 194.1 mm diameter vertical pipe (DN200) with an air-water mixture are reported. Close to the upper end of a 9 m tall test section a wire-mesh sensor is installed that delivers instantaneous void fraction distributions over the entire cross section with time resolution of 2500 frames per second. The sensor disposes of 64 x 64 measuring points, which corresponds to a spatial resolution of 3 mm. Beside an fast flow visualisations, void-fraction profiles and bubble size distributions were obtained. Earlier, similar experiments were carried out in a pipe of 51.2 mm inner diameter (DN50). A comparison of the data from the two different facilities allows to study the scaling effects on void fraction profiles, bubbles size distributions and the flow patterns. In the small pipe, the increase of the air flow rate leads to a transition from bubbly via slug to churn turbulent flow. The transition to slug flow is accompanied by the appearance of a second peak in the bubble size distribution that corresponds to the class of large Taylor bubbles. A similar qualitative behaviour was found in the large pipe, though the large bubble fraction has a significantly bigger mean diameter at identical superficial velocities, the peak is less tall but wider. Bubbles move more freely than in the small pipe, since the confining action of the pipe walls to the flow is less pronounced, while the large Taylor bubbles occupy almost the entire cross section in case of the small pipe. Furthermore, the bubbles show much more deformations in the large pipe. Shapes of such large bubbles were characterised in three dimensions for the first time. They can rather be complicated and far from the shape of ideal Taylor bubbles. Also the small bubble fraction tends to bigger sizes in the large pipe

  4. Numerical calculation of velocity distribution near a vertical flat plate immersed in bubble flow

    International Nuclear Information System (INIS)

    Matsuura, Akihiro; Nakamura, Hajime; Horihata, Hideyuki; Hiraoka, Setsuro; Aragaki, Tsutomu; Yamada, Ikuho; Isoda, Shinji.

    1992-01-01

    Liquid and gas velocity distributions for bubble flow near a vertical flat plate were calculated numerically by using the SIMPLER method, where the flow was assumed to be laminar, two-dimensional, and at steady state. The two-fluid flow model was used in the numerical analysis. To calculate the drag force on a small bubble, Stokes' law for a rigid sphere is applicable. The dimensionless velocity distributions which were arranged with characteristic boundary layer thickness and maximum liquid velocity were adjusted with a single line and their forms were similar to that for single-phase wall-jet flow. The average wall shear stress derived from the velocity gradient at the plate wall was strongly affected by bubble diameter but not by inlet liquid velocity. The present dimensionless velocity distributions obtained numerically agreed well with previous experimental results, and the proposed numerical algorithm was validated. (author)

  5. Fluid-elastic vibration in two-phase cross flow

    International Nuclear Information System (INIS)

    Sasakawa, T.; Serizawa, A.; Kawara, Z.

    2003-01-01

    The present work aims at clarifying the mechanisms of fluid elastic vibration of tube bundles in two-phase cross flow. The experiment is conducted using air-water two-phase flow under atmospheric pressure. The test section is a 1.03m long transparent acrylic square duct with 128 x 128 mm 2 cross section, which consists of 3 rod-rows with 5 rods in each row. The rods are 125mm long aluminum rods with 22 mm in diameter (p/D=1.45). The natural frequency of rod vibration is about 30Hz. The result indicated a diversion of observed trend in vibration behavior depending on two-phase flow patterns either bubbly flow or churn flow. Specifically, in churn flow, the fluid elastic vibration has been observed to occur when the frequency in void fraction fluctuation approached to the natural frequency of the rods, but this was not the case in fluid elastic vibration in bubbly flow. This fact suggests the existence of mechanisms closely coupled with two-phase flow structures depending on the flow patterns, that is, static two-phase character-controlled mechanism in bubbly flow and dynamic character- controlled in churn flow

  6. Biofiltration of Air/Styrene and Air/Styrene/Acetone mixtures in a bubble column reactor

    OpenAIRE

    Vieira, Ana

    2009-01-01

    The goal of this work was the treatment of polluted waste gases in a bubble column reactor (BCR), in order to determinate the maximum value of reactor’s efficiency (RE), varying the inlet concentration (C in) of the pollutants. The gaseous mixtures studied were: (i) air with styrene and (ii) air with styrene and acetone. The liquid phase used to contain the biomass in the reactor was a basal salt medium (BSM), fundamental for the microorganisms’ development. The reactor used in this pro...

  7. Formation of gas bubbles in gas superheated water

    International Nuclear Information System (INIS)

    Finkelstein, Y.

    1984-05-01

    The phenomenon of bubbles formation in supersaturated solutions of gases in water is a transport process, the final result of which is a separation of phases. In spite of its widespread appearance in industry and in nature, no model exists that can explain it and predict the degree of supersaturation which a gas-water solution can tolerate before bubbles are formed. The objective of this study was to fill this gap, and indeed, an extensive experimental work was carried out, a model was established and simple but accurate means were developed for predicting the tolerable degree of supersaturation of gas-water solutions. The model is also capable of predicting quite accurately the activation phenomenon in water. Superheating and supercooling phenomena were also examined in the light of the new model. (author)

  8. Heat and mass transfers between two stratified liquid phases in a bubbly flow

    International Nuclear Information System (INIS)

    Lapuerta, C.

    2006-10-01

    During an hypothetical major accident in a pressurized water reactor, the deterioration of the core can produce a stratified pool crossed by a bubbly flow. This latter strongly impacts the heat transfers, whose intensities are crucial in the progression of the accident. In this context, this work is devoted to the diffuse interface modelling for the study of an-isothermal incompressible flows, composed of three immiscible components, with no phase change. In the diffuse interface methods, the system evolution is driven by the minimization of a free energy. The originality of our approach, derived from the Cahn-Hilliard model, is based on the particular form of the energy we proposed, which enables to have an algebraically and dynamically consistent model, in the following sense: on the one hand, the triphasic free energy is equal to the diphasic one when only two phases are present; on the other, if a phase is not initially present then it will not appear during system evolution, this last property being stable with respect to numerical errors. The existence and the uniqueness of weak and strong solutions are proved in two and three dimensions as well as a stability result for metastable states. The modelling of an an-isothermal three phase flow is further accomplished by coupling the Cahn-Hilliard equations with the energy balance and Navier-Stokes equations where surface tensions are taken into account through volume capillary forces. These equations are discretized in time and space in order to preserve properties of continuous model (volume conservation, energy estimate). Different numerical results are given, from the validation case of the lens spreading between two phases, to the study of the heat and mass transfers through a liquid/liquid interface crossed by a single bubble or a series of bubbles. (author)

  9. Experimental Analysis of a Bubble Wake Influenced by a Vortex Street

    Directory of Open Access Journals (Sweden)

    Sophie Rüttinger

    2018-01-01

    Full Text Available Bubble column reactors are ubiquitous in engineering processes. They are used in waste water treatment, as well as in the chemical, pharmaceutical, biological and food industry. Mass transfer and mixing, as well as biochemical or chemical reactions in such reactors are determined by the hydrodynamics of the bubbly flow. The hydrodynamics of bubbly flows is dominated by bubble wake interactions. Despite the fact that bubble wakes have been investigated intensively in the past, there is still a lack of knowledge about how mass transfer from bubbles is influenced by bubble wake interactions in detail. The scientific scope of this work is to answer the question how bubble wakes are influenced by external flow structures like a vortex street behind a cylinder. For this purpose, the flow field in the vicinity of a single bubble is investigated systematically with high spatial and temporal resolution. High-speed Particle Image Velocimetry (PIV measurements are conducted monitoring the flow structure in the equatorial plane of the single bubble. It is shown that the root mean square (RMS velocity profiles downstream the bubble are influenced significantly by the interaction of vortices. In the presence of a vortex street, the deceleration of the fluid behind the bubble is compensated earlier than in the absence of a vortex street. This happens due to momentum transfer by cross-mixing. Both effects indicate that the interaction of vortices enhances the cross-mixing close to the bubble. Time series of instantaneous velocity fields show the formation of an inner shear layer and coupled vortices. In conclusion, this study shows in detail how the bubble wake is influenced by a vortex street and gives deep insights into possible effects on mixing and mass transfer in bubbly flows.

  10. Size-selective sorting in bubble streaming flows: Particle migration on fast time scales

    Science.gov (United States)

    Thameem, Raqeeb; Rallabandi, Bhargav; Hilgenfeldt, Sascha

    2015-11-01

    Steady streaming from ultrasonically driven microbubbles is an increasingly popular technique in microfluidics because such devices are easily manufactured and generate powerful and highly controllable flows. Combining streaming and Poiseuille transport flows allows for passive size-sensitive sorting at particle sizes and selectivities much smaller than the bubble radius. The crucial particle deflection and separation takes place over very small times (milliseconds) and length scales (20-30 microns) and can be rationalized using a simplified geometric mechanism. A quantitative theoretical description is achieved through the application of recent results on three-dimensional streaming flow field contributions. To develop a more fundamental understanding of the particle dynamics, we use high-speed photography of trajectories in polydisperse particle suspensions, recording the particle motion on the time scale of the bubble oscillation. Our data reveal the dependence of particle displacement on driving phase, particle size, oscillatory flow speed, and streaming speed. With this information, the effective repulsive force exerted by the bubble on the particle can be quantified, showing for the first time how fast, selective particle migration is effected in a streaming flow. We acknowledge support by the National Science Foundation under grant number CBET-1236141.

  11. Recurrence network analysis of experimental signals from bubbly oil-in-water flows

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Zhong-Ke; Zhang, Xin-Wang; Du, Meng [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China); Jin, Ning-De, E-mail: ndjin@tju.edu.cn [School of Electrical Engineering and Automation, Tianjin University, Tianjin 300072 (China)

    2013-02-04

    Based on the signals from oil–water two-phase flow experiment, we construct and analyze recurrence networks to characterize the dynamic behavior of different flow patterns. We first take a chaotic time series as an example to demonstrate that the local property of recurrence network allows characterizing chaotic dynamics. Then we construct recurrence networks for different oil-in-water flow patterns and investigate the local property of each constructed network, respectively. The results indicate that the local topological statistic of recurrence network is very sensitive to the transitions of flow patterns and allows uncovering the dynamic flow behavior associated with chaotic unstable periodic orbits.

  12. Recurrence network analysis of experimental signals from bubbly oil-in-water flows

    International Nuclear Information System (INIS)

    Gao, Zhong-Ke; Zhang, Xin-Wang; Du, Meng; Jin, Ning-De

    2013-01-01

    Based on the signals from oil–water two-phase flow experiment, we construct and analyze recurrence networks to characterize the dynamic behavior of different flow patterns. We first take a chaotic time series as an example to demonstrate that the local property of recurrence network allows characterizing chaotic dynamics. Then we construct recurrence networks for different oil-in-water flow patterns and investigate the local property of each constructed network, respectively. The results indicate that the local topological statistic of recurrence network is very sensitive to the transitions of flow patterns and allows uncovering the dynamic flow behavior associated with chaotic unstable periodic orbits.

  13. Helium-filled soap bubbles tracing fidelity in wall-bounded turbulence

    Science.gov (United States)

    Faleiros, David Engler; Tuinstra, Marthijn; Sciacchitano, Andrea; Scarano, Fulvio

    2018-03-01

    The use of helium-filled soap bubbles (HFSB) as flow tracers for particle image velocimetry (PIV) and particle tracking velocimetry (PTV) to measure the properties of turbulent boundary layers is investigated in the velocity range from 30 to 50 m/s. The experiments correspond to momentum thickness-based Reynolds numbers of 3300 and 5100. A single bubble generator delivers nearly neutrally buoyant HFSB to seed the air flow developing over the flat plate. The HFSB motion analysis is performed by PTV using single-frame multi-exposure recordings. The measurements yield the local velocity and turbulence statistics. Planar two-component-PIV measurements with micron-sized droplets (DEHS) conducted under the same conditions provide reference data for the quantities of interest. In addition, the behavior of air-filled soap bubbles is studied where the effect of non-neutral buoyancy is more pronounced. The mean velocity profiles as well as the turbulent stresses obtained with HFSB are in good agreement with the flow statistics obtained with DEHS particles. The study illustrates that HFSB tracers can be used to determine the mean velocity and the turbulent fluctuations of turbulent boundary layers above a distance of approximately two bubble diameters from the wall. This work broadens the current range of application of HFSB from external aerodynamics of large-scale-PIV experiments towards wall-bounded turbulence.

  14. Detailed pressure drop measurements in single-and two-phase adiabatic air-water turbulent flows in realistic BWR fuel assembly geometry with spacer grids

    International Nuclear Information System (INIS)

    Caraghiaur, Diana; Frid, Wiktor; Tillmark, Nils

    2004-01-01

    In recent years, advance numerical simulation tools based on CFD methods have been increasingly used in various multi-phase flow applications. One of these is two-phase flow in fuel assemblies of Boiling Water Reactors. The important and often missing aspect of this development is validation of CFD codes against proper experimental data. The purpose of the current paper is to present detailed pressure measurements over a spacer grid in low pressure adiabatic single- and bubbly two-phase flow, which will be used to further develop a CFD code for BWR fuel bundle analysis. The experiments have been carried out in a n asymmetric 24-rod sub-bundle, representing one quarter of a Westinghouse SVEA-96 nuclear reactor fuel assembly. Single-phase flow measurements have been performed at superficial velocities between 0.90-4.50 m/s and in the two-phase flow, which was simulated by air-water mixture, measurements have been performed at void fractions ranging from 4 to 12% and liquid superficial velocity of 4.50 m/s. In order to increase the number of measuring points, five pressure taps were drilled in one of the rods, which was easily moved vertically by a traversing system, covering most of the points in axial direction. Any of the rods in the bundle could be substitute by the pressure sensing rod and the measurements were made for five pressure taps facing-angles. A detailed pressure distribution comparison between single- and two-phase flows for different sub-channel positions and different flow conditions was performed over one of the spacers. In addition, single-phase pressure drop measurements in the upper part of the test section comprising two spacer grids have been carried out. (author)

  15. Variations of free gas content in water during pressure fluctuations

    International Nuclear Information System (INIS)

    Keller, A.; Zielke, W.

    1977-01-01

    In this paper an experimental programme is described in order to determine the influence of the cavitation nuclei distribution on cavitation inception. This programme has been used to measure air bubbles dimensions and number and particularly to determine the influence of quick pressure variations on the size on the number of bubbles in a pipe. An optical device counting scattered light is used as a measuring technique. Gas bubbles go through an optical control volume where they receive a high intensity light beam and scatter the light, then led to a photomultiplier; the signals are sorted and counted according to their size. If the number of nuclei, the dimensions of the control volume and the velocity of the water are known, it is possible to determine bubbles concentrations and the bulk modulus of the water. This measuring technique has been applied to a flow in a 140 mm diameter pipe with quick pressure variations from 2 bar to 0-10 bar. During the variations, the void fraction depends on the Reynolds number of the flow and on the gas content of the water. The bulk modulus has been computed with different conditions. Most results concern pressures slightly over the vapor pressure. Air content has a strong influence on cavitation and on water compressibility after a vapor cavity collapse

  16. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    International Nuclear Information System (INIS)

    Takeuchi, N; Ishii, Y; Yasuoka, K

    2012-01-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  17. Modelling chemical reactions in dc plasma inside oxygen bubbles in water

    Science.gov (United States)

    Takeuchi, N.; Ishii, Y.; Yasuoka, K.

    2012-02-01

    Plasmas generated inside oxygen bubbles in water have been developed for water purification. Zero-dimensional numerical simulations were used to investigate the chemical reactions in plasmas driven by dc voltage. The numerical and experimental results of the concentrations of hydrogen peroxide and ozone in the solution were compared with a discharge current between 1 and 7 mA. Upon increasing the water vapour concentration inside bubbles, we saw from the numerical results that the concentration of hydrogen peroxide increased with discharge current, whereas the concentration of ozone decreased. This finding agreed with the experimental results. With an increase in the discharge current, the heat flux from the plasma to the solution increased, and a large amount of water was probably vaporized into the bubbles.

  18. Study on bubble column humidification and dehumidification system for coal mine wastewater treatment.

    Science.gov (United States)

    Gao, Penghui; Zhang, Meng; Du, Yuji; Cheng, Bo; Zhang, Donghai

    2018-04-01

    Water is important resource for human survival and development. Coal mine wastewater (CMW) is a byproduct of the process of coal mining, which is about 7.0 × 10 10 m 3 in China in 2016. Considering coal mine wastewater includes different ingredients, a new bubble column humidification and dehumidification system is proposed for CMW treatment. The system is mainly composed of a bubble column humidification and dehumidification unit, solar collector, fan and water tank, in which air is used as a circulating medium. The system can avoid water treatment component blocking for reverse osmosis (RO) and multi effect distillation (MED) dealing with CMW, and produce water greenly. By analysis of heat and mass transfer, the effects of solar radiation, air bubble velocity and mine water temperature on water treatment production characteristics are studied. Compared with other methods, thermal energy consumption (TEC) of bubble column humidification and dehumidification (BCHD) is moderate, which is about 700 kJ/kg (powered by solar energy). The results would provide a new method for CMW treatment and insights into the efficient coal wastewater treatment, besides, it helps to identify the parameters for the technology development in mine water treatment.

  19. Feasibility Study on Sterilization of Badge using Radiation and Cultivation by Nano-bubble Water for Matsutake Mushroom Cultivation

    International Nuclear Information System (INIS)

    Jung, Inha

    2013-12-01

    This report on the 'Sterilization of Badge using Radiation and Cultivation by Nano-bubble Water for Matsutake Mushroom Cultivation' is belonged to the final report on the preliminary study of the first subject in 2013 for civilian project. This was complimented on the responsible of the Korea Atomic Energy Research Institute for 1 st of June 2013 to 30 th of November 2013. We are going to make sterilization the badge using the gamma ray and supplying the oxygen by nano-bubble oxygen rich water for cultivating the Matsutake Mushroom, instead of the conventional process of sterilization of the badge by hot steam over 120 .deg. C consuming over 8 hours and expensive ventilation system for supplying the fresh air for delivering the oxygen

  20. Patterns and stability of a whirlpool flow

    Energy Technology Data Exchange (ETDEWEB)

    Carrión, Luis [Universidad de las Fuerzas Armadas-ESPE, Av. Gral. Rumiñahui s/n Sangolquí 171103 (Ecuador); Herrada, Miguel A; María López-Herrera, José [E.S.I, Universidad de Sevilla, Camino de los Descubrimientos s/n 41092 (Spain); Shtern, Vladimir N [Shtern Research and Consulting, Houston, Texas 77096, United States of America (United States)

    2017-04-15

    This numerical study reveals stable multi-eddy patterns of a steady axisymmetric air–water flow driven by the rotating bottom disk in a vertical sealed cylindrical container. As rotation strength Re increases, eddies emerge, coalesce, separate, and disappear in both air and water. The topological scenario varies with water volume fraction H{sub w} according to the results obtained for H{sub w}  = 0.3, 0.5, and 0.8. Interesting features are: (a) zipper-like chains of air and water eddies forming as the interface bends and (b) bubble-ring air eddies existing in the Re ranges specified in the paper. The stability analysis, performed with the help of a novel efficient technique for two-fluid flows, shows that these multi-eddy motions are stable. The shear-layer instability develops as the interface approaches either the top or bottom of the container and some eddies vanish. The physical reasoning behind the eddy formation and the flow instability is provided. The results are of fundamental interest and can have applications in bioreactors. (paper)

  1. Intraoperative visible bubbling of air may be the first sign of venous air embolism during posterior surgery for scoliosis.

    Science.gov (United States)

    Wills, John; Schwend, Richard M; Paterson, Andrew; Albin, Maurice S

    2005-10-15

    Case report of two children sustaining venous air embolism (VAE) during posterior surgery for scoliosis. To report 2 cases where visible bubbling at the operative site was the first clinical indication of VAE-induced cardiovascular collapse and to raise the level of consciousness that VAE in the prone position can occur, often with serious consequences. Twenty-two cases of VAE during surgery for scoliosis in the prone position have been reported. Ten were fatal and ten were in children. Visible bubbling at the operative site was noted in two published cases. Retrospective study of 2 cases of VAE at one institution. Clinical, anesthetic, and radiographic features are presented. Details of previously published cases are reviewed and discussed. Both patients were girls with adolescent scoliosis who underwent prone positioned posterior spinal fusion with instrumentation. Visible bubbling of air at the thoracic aspect of the surgical site was noted near the completion of instrumentation and was the first indication of VAE. In both cases, this was clinically recognized and promptly treated. One patient survived normally and the other died. Visible air bubbling at the operative site may herald the onset of massive VAE during multilevel posterior spinal fusion and instrumentation. A prospective multicenter study using precordial Doppler, central venous catheter, and end-tidal CO2 is recommended to determine the true incidence of VAE in spinal deformity surgery and to evaluate monitoring and treatment methods.

  2. A Study of CO2 Absorption Using Jet Bubble Column

    Directory of Open Access Journals (Sweden)

    Setiadi Setiadi

    2010-10-01

    Full Text Available The phenomenon of plunging jet gas-liquid contact occurs quite often in nature, it's momentum carries small air bubbles with it into the reactor medium. The momentum of the liquid stream can be sufficient to carry small bubbles completely to the bottom of the vessel. A stream of liquid falling toward a level surface of that liquid will pull the surrounding air along with it. It will indent the surface of the liquid to form a trumpet-like shape. If the velocity of the stream is high enough, air bubbles will be pulled down, i.e. entrained into the liquid. This happens for two main reasons: air that is trapped between the edge of the falling stream and the trumpet-shaped surface profile and is carried below the surface. This study investigates the potential of a vertical liquid plunging jet for a pollutant contained gas absorption technique. The absorber consists of liquid jet and gas bubble dispersed phase. The effects of operating variables such as liquid flowrate, nozzle diameter, separator pressure, etc. on gas entrainment and holdup were investigated. The mass transfer of the system is governed by the hydrodynamics of the system. Therefore a clear and precise understanding of the above is necessary : to characterize liquid and gas flow within the system, 2. Variation in velocity of the jet with the use of different nozzle diameters and flow rates, 3. Relationship between the liquid and entrained airflow rate, 4. Gas entrainment rate and gas void fraction.

  3. Effect of inhomogeneities on streamer propagation: II. Streamer dynamics in high pressure humid air with bubbles

    International Nuclear Information System (INIS)

    Babaeva, Natalia Yu; Kushner, Mark J

    2009-01-01

    The branching of electric discharge streamers in atmospheric pressure air, dense gases and liquids is a common occurrence whose origins are likely found with many causes, both deterministic and stochastic. One mechanism for streamer branching may be inhomogeneities in the path of a streamer which either divert the streamer (typically a region of lower ionization) or produce a new branch (a region of higher ionization). The propagation and branching of streamers in liquids is likely aided by low density inhomogeneities, bubbles; however, modeling of streamers in liquids is made difficult by the lack of transport coefficients. As a first step towards understanding the propagation and branching of streamers in liquids, we investigated the consequences of random inhomogeneities in the form of low pressure bubbles on the propagation of streamers in high pressure humid air. By virtue of their lower density, bubbles have larger E/N (electric field/gas number density) than the ambient gas with larger rates of ionization. The intersection of a streamer with a bubble will focus the plasma into the bubble by virtue of that higher rate of ionization but the details of the interaction depend on the relative sizes of the bubble and streamer. When a streamer intersects a field of bubbles, the large E/N in the bubble avalanches seed electrons produced by photoionization from the streamer. Each bubble then launches both a negative and positive going streamer that may link with those from adjacent bubbles or the original streamer. The total process then appears as streamer branching.

  4. Managing the Drivers of Air Flow and Water Vapor Transport in Existing Single Family Homes (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    Cummings, J.; Withers, C.; Martin, E.; Moyer, N.

    2012-10-01

    This document focuses on managing the driving forces which move air and moisture across the building envelope. While other previously published Measure Guidelines focus on elimination of air pathways, the ultimate goal of this Measure Guideline is to manage drivers which cause air flow and water vapor transport across the building envelope (and also within the home), control air infiltration, keep relative humidity (RH) within acceptable limits, avoid combustion safety problems, improve occupant comfort, and reduce house energy use.

  5. On the Application of Image Processing Methods for Bubble Recognition to the Study of Subcooled Flow Boiling of Water in Rectangular Channels

    Directory of Open Access Journals (Sweden)

    Concepción Paz

    2017-06-01

    Full Text Available This work introduces the use of machine vision in the massive bubble recognition process, which supports the validation of boiling models involving bubble dynamics, as well as nucleation frequency, active site density and size of the bubbles. The two algorithms presented are meant to be run employing quite standard images of the bubbling process, recorded in general-purpose boiling facilities. The recognition routines are easily adaptable to other facilities if a minimum number of precautions are taken in the setup and in the treatment of the information. Both the side and front projections of subcooled flow-boiling phenomenon over a plain plate are covered. Once all of the intended bubbles have been located in space and time, the proper post-process of the recorded data become capable of tracking each of the recognized bubbles, sketching their trajectories and size evolution, locating the nucleation sites, computing their diameters, and so on. After validating the algorithm’s output against the human eye and data from other researchers, machine vision systems have been demonstrated to be a very valuable option to successfully perform the recognition process, even though the optical analysis of bubbles has not been set as the main goal of the experimental facility.

  6. Countercurrent Air-Water Flow in a Scale-Down Model of a Pressurizer Surge Line

    Directory of Open Access Journals (Sweden)

    Takashi Futatsugi

    2012-01-01

    Full Text Available Steam generated in a reactor core and water condensed in a pressurizer form a countercurrent flow in a surge line between a hot leg and the pressurizer during reflux cooling. Characteristics of countercurrent flow limitation (CCFL in a 1/10-scale model of the surge line were measured using air and water at atmospheric pressure and room temperature. The experimental results show that CCFL takes place at three different locations, that is, at the upper junction, in the surge line, and at the lower junction, and its characteristics are governed by the most dominating flow limitation among the three. Effects of inclination angle and elbows of the surge line on CCFL characteristics were also investigated experimentally. The effects of inclination angle on CCFL depend on the flow direction, that is, the effect is large for the nearly horizontal flow and small for the vertical flow at the upper junction. The presence of elbows increases the flow limitation in the surge line, whereas the flow limitations at the upper and lower junctions do not depend on the presence of elbows.

  7. Effect of oxygen and heliox breathing on air bubbles in adipose tissue during 25-kPa altitude exposures

    DEFF Research Database (Denmark)

    Randsoe, T.; Kvist, T.M.; Hyldegaard, O.

    2008-01-01

    and heliox breathing. Preoxygenation enhanced bubble disappearance compared with oxygen and heliox breathing but did not prevent bubble growth. The results indicate that oxygen breathing at 25 kPa promotes air bubble growth in adipose tissue regardless of the tissue nitrogen pressure Udgivelsesdato: 2008/11...

  8. Modeling of Multisize Bubbly Flow and Application to the Simulation of Boiling Flows with the Neptune_CFD Code

    Directory of Open Access Journals (Sweden)

    Christophe Morel

    2009-01-01

    Full Text Available This paper describes the modeling of boiling multisize bubbly flows and its application to the simulation of the DEBORA experiment. We follow the method proposed originally by Kamp, assuming a given mathematical expression for the bubble diameter pdf. The original model is completed by the addition of some new terms for vapor compressibility and phase change. The liquid-to-interface heat transfer term, which essentially determines the bubbles condensation rate in the DEBORA experiment, is also modeled with care. First numerical results realized with the Neptune_CFD code are presented and discussed.

  9. Oil flow in the oil well tube annulus of vertical bearing assemblies (leakage)

    International Nuclear Information System (INIS)

    Piao, Yinghu

    1997-01-01

    A numerical simulation and experimental flow visualization study was conducted to better understand oil well leakage, particularly in the annular clearance space surrounding the oil well tube. A test rig was developed to simulate the bearing's oil well tube annulus. A major feature of this rig was to allow visual access to the annular clearance space and to the region beneath the rotating runner where strong secondary flow effects are known to exist. The main method for tracing the secondary flow pathlines was a light sheet visualization technique using micro air bubbles as the tracer. The effect of runner speed on the pathlines was studied. The velocity of the oil flow was measured experimentally and the results were compared with numerical data. A numerical technique was developed to trace the micro air bubbles in the oil flow field using a three dimensional CFD code for laminar, axisymmetric flow with a free surface. The buoyancy effects of gravitational and centrifugal forces were considered when determining the pathline of air bubbles. Bubble size, oil viscosity and runner speed were some of the parameters that affect the path of the air bubbles

  10. Undulations on the surface of elongated bubbles in confined gas-liquid flows

    Science.gov (United States)

    Magnini, M.; Ferrari, A.; Thome, J. R.; Stone, H. A.

    2017-08-01

    A systematic analysis is presented of the undulations appearing on the surface of long bubbles in confined gas-liquid flows. CFD simulations of the flow are performed with a self-improved version of the open-source solver ESI OpenFOAM (release 2.3.1), for Ca =0.002 -0.1 and Re =0.1 -1000 , where Ca =μ U /σ and Re =2 ρ U R /μ , with μ and ρ being, respectively, the viscosity and density of the liquid, σ the surface tension, U the bubble velocity, and R the tube radius. A model, based on an extension of the classical axisymmetric Bretherton theory, accounting for inertia and for the curvature of the tube's wall, is adopted to better understand the CFD results. The thickness of the liquid film, and the wavelength and decay rate of the undulations extracted from the CFD simulations, agree well with those obtained with the theoretical model. Inertial effects appear when the Weber number of the flow We =Ca Re =O (10-1) and are manifest by a larger number of undulation crests that become evident on the surface of the rear meniscus of the bubble. This study demonstrates that the necessary bubble length for a flat liquid film region to exist between the rear and front menisci rapidly increases above 10 R when Ca >0.01 and the value of the Reynolds number approaches 1000.

  11. Interfacial area, velocity and void fraction in two-phase slug flow

    International Nuclear Information System (INIS)

    Kojasoy, G.; Riznic, J.R.

    1997-01-01

    The internal flow structure of air-water plug/slug flow in a 50.3 mm dia transparent pipeline has been experimentally investigated by using a four-sensor resistivity probe. Liquid and gas volumetric superficial velocities ranged from 0.55 to 2.20 m/s and 0.27 to 2.20 m/s, respectively, and area-averaged void fractions ranged from about 10 to 70%. The local distributions of void fractions, interfacial area concentration and interface velocity were measured. Contributions from small spherical bubbles and large elongated slug bubbles toward the total void fraction and interfacial area concentration were differentiated. It was observed that the small bubble void contribution to the overall void fraction was small indicating that the large slug bubble void fraction was a dominant factor in determining the total void fraction. However, the small bubble interfacial area contribution was significant in the lower and upper portions of the pipe cross sections

  12. Bubble Formation in Yield Stress Fluids Using Flow-Focusing and T-Junction Devices.

    Science.gov (United States)

    Laborie, Benoit; Rouyer, Florence; Angelescu, Dan E; Lorenceau, Elise

    2015-05-22

    We study the production of bubbles inside yield stress fluids (YSFs) in axisymmetric T-junction and flow-focusing devices. Taking advantage of yield stress over capillary stress, we exhibit a robust break-up mechanism reminiscent of the geometrical operating regime in 2D flow-focusing devices for Newtonian fluids. We report that when the gas is pressure driven, the dynamics is unsteady due to hydrodynamic feedback and YSF deposition on the walls of the channels. However, the present study also identifies pathways for potential steady-state production of bubbly YSFs at large scale.

  13. Modeling Bubble Flow and Current Density Distribution in an Alkaline Electrolysis Cell

    Directory of Open Access Journals (Sweden)

    Ravichandra S. Jupudi

    2009-12-01

    Full Text Available The effect of bubbles on the current density distribution over the electrodes of an alkaline electrolyzer cell is studied using a two-dimensional computational fluid dynamics model. Model includes Eulerian-Eulerian two-phase flow methodology to model the multiphase flow of Hydrogen and Oxygen with water and the behavior of each phase is accounted for using first principle. Hydrogen/Oxygen evolution, flow field and current density distribution are incorporated in the model to account for the complicated physics involved in the process. Fluent 6.2 is used to solve two-phase flow and electrochemistry is incorporated using UDF (User Defined Function feature of Fluent. Model is validated with mesh refinement study and by comparison with experimental measurements. Model is found to replicate the effect of cell voltage and inter-electrode gap (distance between the electrodes on current density accurately. Further, model is found to capture the existence of optimum cell height. The validated model is expected to be a very useful tool in the design and optimization of alkaline electrolyzer cells.

  14. Bubbles in solvent microextraction: the influence of intentionally introduced bubbles on extraction efficiency.

    Science.gov (United States)

    Williams, D Bradley G; George, Mosotho J; Meyer, Riaan; Marjanovic, Ljiljana

    2011-09-01

    Significant improvements to microdrop extractions of triazine pesticides are realized by the intentional incorporation of an air bubble into the solvent microdroplet used in this microextraction technique. The increase is attributed partly to greater droplet surface area resulting from the air bubble being incorporated into the solvent droplet as opposed to it sitting thereon and partly to thin film phenomena. The method is useful at nanogram/liter levels (LOD 0.002-0.012 μg/L, LOQ 0.007-0.039 μg/L), is precise (7-12% at 10 μg/L concentration level), and is validated against certified reference materials containing 0.5 and 5.0 μg/L analyte. It tolerates water and fruit juice as matrixes without serious matrix effects. This new development brings a simple, inexpensive, and efficient preconcentration technique to bear which rivals solid phase microextraction methods.

  15. A numerical simulation of the water vapor bubble rising in ferrofluid by volume of fluid model in the presence of a magnetic field

    Science.gov (United States)

    Shafiei Dizaji, A.; Mohammadpourfard, M.; Aminfar, H.

    2018-03-01

    Multiphase flow is one of the most complicated problems, considering the multiplicity of the related parameters, especially the external factors influences. Thus, despite the recent developments more investigations are still required. The effect of a uniform magnetic field on the hydrodynamics behavior of a two-phase flow with different magnetic permeability is presented in this article. A single water vapor bubble which is rising inside a channel filled with ferrofluid has been simulated numerically. To capture the phases interface, the Volume of Fluid (VOF) model, and to solve the governing equations, the finite volume method has been employed. Contrary to the prior anticipations, while the consisting fluids of the flow are dielectric, uniform magnetic field causes a force acting normal to the interface toward to the inside of the bubble. With respect to the applied magnetic field direction, the bubble deformation due to the magnetic force increases the bubble rising velocity. Moreover, the higher values of applied magnetic field strength and magnetic permeability ratio resulted in the further increase of the bubble rising velocity. Also it is indicated that the flow mixing and the heat transfer rate is increased by a bubble injection and applying a magnetic field. The obtained results have been concluded that the presented phenomenon with applying a magnetic field can be used to control the related characteristics of the multiphase flows. Compared to the previous studies, implementing the applicable cases using the common and actual materials and a significant reduction of the CPU time are the most remarkable advantages of the current study.

  16. Measurements of two-phase flow patterns in a 4 x 4 rod bundle

    International Nuclear Information System (INIS)

    Akio tomiyama; Akira Sou; Shigeo Hosokawa; Masato Mitsuhashi; Kohei Noda; Yasushi Tsubo; Kaichiro Mishima; Yoshiro Kudo

    2005-01-01

    Air-water two-phase flow patterns in a 4 x 4 square lattice rod bundle consisting of an acrylic channel box of 68 mm in width and transparent rods of 12 mm in diameter were measured by utilizing FEP (fluorinated ethylene propylene) tubes for the rods. The FEP possesses the same refractive index with water, and therefore, whole flow patterns in the bundle and local flow patterns in subchannels were visualized with little optical distortion. In addition to the visualization, transmission rates of laser beam from one rod to its opponent rod and two-point correlation coefficients of phase indicator functions were measured to examine the feasibility of objective identification of flow patterns in subchannels. The ranges of liquid and gas volume fluxes, JL and JG, were 0.1 < JL < 2.0 m/s and 0.04 < JG < 8.85 m/s, respectively. As a result, the following conclusions were obtained: (1) slug flow pattern does not appear in the rod bundle and bubbly flow would directly transit to churn flow, (2) the measured boundary between bubbly and churn flows is close to the boundary between bubbly and slug flows given by Mishima and Ishii's flow pattern transition model, (3) critical void fraction causing bubbly to churn flow transition depends on a subchannel, i.e., about 0.3 for inner subchannels, about 0.2 for side subchannels and about 0.1 for corner subchannels, and (4) the two-point correlation coefficient of phase indicator functions for two inner subchannels shows a steep increase at the bubbly to churn flow transition, which, in turn, means that the two-point correlation is an appropriate indicator for detecting this transition. (authors)

  17. Acoustic radiation force on an air bubble and soft fluid spheres in ideal liquids: example of a high-order Bessel beam of quasi-standing waves.

    Science.gov (United States)

    Mitri, F G

    2009-04-01

    The partial wave series for the scattering of a high-order Bessel beam (HOBB) of acoustic quasi-standing waves by an air bubble and fluid spheres immersed in water and centered on the axis of the beam is applied to the calculation of the acoustic radiation force. A HOBB refers to a type of beam having an axial amplitude null and an azimuthal phase gradient. Radiation force examples obtained through numerical evaluation of the radiation force function are computed for an air bubble, a hexane, a red blood and mercury fluid spheres in water. The examples were selected to illustrate conditions having progressive, standing and quasi-standing waves with appropriate selection of the waves' amplitude ratio. An especially noteworthy result is the lack of a specific vibrational mode contribution to the radiation force determined by appropriate selection of the HOBB parameters.

  18. Bubbles generated from wind-steepened breaking waves: 1. Bubble plume bubbles

    NARCIS (Netherlands)

    Leifer, I.; Leeuw, G. de

    2006-01-01

    Measurements of bubble plumes from paddle-amplified, wind stress breaking waves were made in a large wind-wave channel during the LUMINY experiment in fresh (but not clean) water. Bubble plumes exhibited considerable variability with respect to dynamics, bubble size distribution, and physical

  19. Velocity measurements and identification of the flow pattern of vertical air-water flows with light-beam detectors

    International Nuclear Information System (INIS)

    Luebbesmeyer, D.; Leoni, B.

    1980-07-01

    A new detector for measuring fluid velocities in two-phase flows by means of Noise-Analysis (especially Transient-Cross-Correlation-technique) has been developed. The detector utilizes a light-beam which is modulated by changes in the transparency of the two-phase flow. The results of nine measurements for different flow-regimes of vertical air/water-flows are shown. A main topic of these investigations was to answer the question if it is possible to identify the flow-pattern by looking at the shape of different 'Noise-Analytical-functions' (like APSD, CPSD, CCF etc.). The results prove that light-beam sensors are good detectors for fluid-velocity measurements in different flow regimes and in a wide range of fluid velocities starting with values of about 0.08 m/s up to values of 40 m/s. With respect to flow-pattern identification only the time-signals and the shape of the cross-power-density-function (CPSD) seem to be useful. (Auth.)

  20. Well-posed Euler model of shock-induced two-phase flow in bubbly liquid

    Science.gov (United States)

    Tukhvatullina, R. R.; Frolov, S. M.

    2018-03-01

    A well-posed mathematical model of non-isothermal two-phase two-velocity flow of bubbly liquid is proposed. The model is based on the two-phase Euler equations with the introduction of an additional pressure at the gas bubble surface, which ensures the well-posedness of the Cauchy problem for a system of governing equations with homogeneous initial conditions, and the Rayleigh-Plesset equation for radial pulsations of gas bubbles. The applicability conditions of the model are formulated. The model is validated by comparing one-dimensional calculations of shock wave propagation in liquids with gas bubbles with a gas volume fraction of 0.005-0.3 with experimental data. The model is shown to provide satisfactory results for the shock propagation velocity, pressure profiles, and the shock-induced motion of the bubbly liquid column.

  1. Hydrodynamic of a deformed bubble in linear shear flow; Hydrodynamique d'une bulle deformee dans un ecoulement cisaille

    Energy Technology Data Exchange (ETDEWEB)

    Adoua, S.R

    2007-07-15

    This work is devoted to the study of an oblate spheroidal bubble of prescribed shape set fixed in a linear shear flow using direct numerical simulation. The three dimensional Navier-Stokes equations are solved in orthogonal curvilinear coordinates using a finite volume method. The bubble response is studied over a wide range of the aspect ratio (1-2.7), the bubble Reynolds number (50-2000) and the non-dimensional shear rate (0.-1.2). The numerical simulations shows that the shear flow imposes a plane symmetry of the wake whatever the parameters of the flow. The trailing vorticity is organized into two anti-symmetrical counter rotating tubes with a sign imposed by the competition of two mechanisms (the Lighthill mechanism and the instability of the wake). Whatever the Reynolds number, the lift coefficient reaches the analytical value obtained in an inviscid, weakly sheared flow corresponding to a lift force oriented in the same direction as that of a spherical bubble. For moderate Reynolds numbers, the direction of the lift force reverses when the bubble aspect ratio is large enough as observed in experiments. This reversal occurs for aspect ratios larger than 2.225 and is found to be directly linked to the sign of the trailing vorticity which is concentrated within two counter-rotating threads which propel the bubble in a direction depending of their sign of rotation. The behavior of the drag does not revel any significant effect induced by the wake structure and follows a quadratic increase with the shear rate. Finally, the torque experienced by the bubble also reverses for the same conditions inducing the reversal of the lift force. By varying the orientation of the bubble in the shear flow, a stable equilibrium position is found corresponding to a weak angle between the small axis of the bubble and the flow direction. (author)

  2. Turbulent shear control with oscillatory bubble injection

    International Nuclear Information System (INIS)

    Park, Hyun Jin; Oishi, Yoshihiko; Tasaka, Yuji; Murai, Yuichi; Takeda, Yasushi

    2009-01-01

    It is known that injecting bubbles into shear flow can reduce the frictional drag. This method has advantages in comparison to others in simplicity of installation and also in environment. The amount of drag reduction by bubbles depends on the void fraction provided in the boundary layer. It means, however, that certain power must be consumed to generate bubbles in water, worsening the total power-saving performance. We propose oscillatory bubble injection technique to improve the performance in this study. In order to prove this idea of new type of drag reduction, velocity vector field and shear stress profile in a horizontal channel flow are measured by ultrasonic velocity profiler (UVP) and shear stress transducer, respectively. We measure the gas-liquid interface from the UVP signal, as well. This compound measurement with different principles leads to deeper understanding of bubble-originated drag reduction phenomena, in particular for unsteady process of boundary layer alternation. At these experiments, the results have demonstrated that the intermittency promotes the drag reduction more than normal continuous injection for the same void fraction supplied.

  3. Feasibility Study on Sterilization of Badge using Radiation and Cultivation by Nano-bubble Water for Matsutake Mushroom Cultivation

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Inha

    2013-12-15

    This report on the 'Sterilization of Badge using Radiation and Cultivation by Nano-bubble Water for Matsutake Mushroom Cultivation' is belonged to the final report on the preliminary study of the first subject in 2013 for civilian project. This was complimented on the responsible of the Korea Atomic Energy Research Institute for 1{sup st} of June 2013 to 30{sup th} of November 2013. We are going to make sterilization the badge using the gamma ray and supplying the oxygen by nano-bubble oxygen rich water for cultivating the Matsutake Mushroom, instead of the conventional process of sterilization of the badge by hot steam over 120 .deg. C consuming over 8 hours and expensive ventilation system for supplying the fresh air for delivering the oxygen.

  4. Lattice Boltzmann Study of Bubbles on a Patterned Superhydrophobic Surface under Shear Flow

    Science.gov (United States)

    Chen, Wei; Wang, Kai; Hou, Guoxiang; Leng, Wenjun

    2018-01-01

    This paper studies shear flow over a 2D patterned superhydrophobic surface using lattice Boltzmann method (LBM). Single component Shan-Chen multiphase model and Carnahan-Starling EOS are adopted to handle the liquid-gas flow on superhydrophobic surface with entrapped micro-bubbles. The shape of bubble interface and its influence on slip length under different shear rates are investigated. With increasing shear rate, the bubble interface deforms. Then the contact lines are depinned from the slot edges and move downstream. When the shear rate is high enough, a continuous gas layer forms. If the protrusion angle is small, the gas layer forms and collapse periodically, and accordingly the slip length changes periodically. While if the protrusion angle is large, the gas layer is steady and separates the solid wall from liquid, resulting in a very large slip length.

  5. Bubble CPAP versus CPAP with variable flow in newborns with respiratory distress: a randomized controlled trial.

    Science.gov (United States)

    Yagui, Ana Cristina Zanon; Vale, Luciana Assis Pires Andrade; Haddad, Luciana Branco; Prado, Cristiane; Rossi, Felipe Souza; Deutsch, Alice D Agostini; Rebello, Celso Moura

    2011-01-01

    To evaluate the efficacy and safety of nasal continuous positive airway pressure (NCPAP) using devices with variable flow or bubble continuous positive airway pressure (CPAP) regarding CPAP failure, presence of air leaks, total CPAP and oxygen time, and length of intensive care unit and hospital stay in neonates with moderate respiratory distress (RD) and birth weight (BW) ≥ 1,500 g. Forty newborns requiring NCPAP were randomized into two study groups: variable flow group (VF) and continuous flow group (CF). The study was conducted between October 2008 and April 2010. Demographic data, CPAP failure, presence of air leaks, and total CPAP and oxygen time were recorded. Categorical outcomes were tested using the chi-square test or the Fisher's exact test. Continuous variables were analyzed using the Mann-Whitney test. The level of significance was set at p CPAP failure (21.1 and 20.0% for VF and CF, respectively; p = 1.000), air leak syndrome (10.5 and 5.0%, respectively; p = 0.605), total CPAP time (median: 22.0 h, interquartile range [IQR]: 8.00-31.00 h and median: 22.0 h, IQR: 6.00-32.00 h, respectively; p = 0.822), and total oxygen time (median: 24.00 h, IQR: 7.00-85.00 h and median: 21.00 h, IQR: 9.50-66.75 h, respectively; p = 0.779). In newborns with BW ≥ 1,500 g and moderate RD, the use of continuous flow NCPAP showed the same benefits as the use of variable flow NCPAP.

  6. Computational Studies of Positive and Negative Streamers in Bubbles Suspended in Distilled Water

    KAUST Repository

    Sharma, Ashish; Levko, Dmitry; Raja, Laxminarayan L.

    2017-01-01

    We perform computational studies of nanosecond streamers generated in helium bubbles immersed in distilled water under high pressure conditions. The model takes into account the presence of water vapor in the gas bubble for an accurate description

  7. Development of three-dimensional individual bubble-velocity measurement method by bubble tracking

    International Nuclear Information System (INIS)

    Kanai, Taizo; Furuya, Masahiro; Arai, Takahiro; Shirakawa, Kenetsu; Nishi, Yoshihisa

    2012-01-01

    A gas-liquid two-phase flow in a large diameter pipe exhibits a three-dimensional flow structure. Wire-Mesh Sensor (WMS) consists of a pair of parallel wire layers located at the cross section of a pipe. Both the parallel wires cross at 90o with a small gap and each intersection acts as an electrode. The WMS allows the measurement of the instantaneous two-dimensional void-fraction distribution over the cross-section of a pipe, based on the difference between the local instantaneous conductivity of the two-phase flow. Furthermore, the WMS can acquire a phasic-velocity on the basis of the time lag of void signals between two sets of WMS. Previously, the acquired phasic velocity was one-dimensional with time-averaged distributions. The authors propose a method to estimate the three-dimensional bubble-velocity individually WMS data. The bubble velocity is determined by the tracing method. In this tracing method, each bubble is separated from WMS signal, volume and center coordinates of the bubble is acquired. Two bubbles with near volume at two WMS are considered as the same bubble and bubble velocity is estimated from the displacement of the center coordinates of the two bubbles. The validity of this method is verified by a swirl flow. The proposed method can successfully visualize a swirl flow structure and the results of this method agree with the results of cross-correlation analysis. (author)

  8. Sonoluminescing Air Bubbles Rectify Argon

    NARCIS (Netherlands)

    Lohse, Detlef; Brenner, Michael P.; Dupont, Todd F.; Hilgenfeldt, Sascha; Johnston, Blaine

    1997-01-01

    The dynamics of single bubble sonoluminescence (SBSL) strongly depends on the percentage of inert gas within the bubble. We propose a theory for this dependence, based on a combination of principles from sonochemistry and hydrodynamic stability. The nitrogen and oxygen dissociation and subsequent

  9. Dynamic simulation of dispersed gas-liquid two-phase flow using a discrete bubble model.

    NARCIS (Netherlands)

    Delnoij, E.; Lammers, F.A.; Kuipers, J.A.M.; van Swaaij, Willibrordus Petrus Maria

    1997-01-01

    In this paper a detailed hydrodynamic model for gas-liquid two-phase flow will be presented. The model is based on a mixed Eulerian-Lagrangian approach and describes the time-dependent two-dimensional motion of small, spherical gas bubbles in a bubble column operating in the homogeneous regime. The

  10. The on-line graph processing study on phase separation of two-phase flow in T-tube

    International Nuclear Information System (INIS)

    Qian Yong; Xu Jijun; Yang Zhilin; Chen Yifen

    1997-01-01

    The on-line graph processing measure system is equipped with and experimental study of phase separation of air-water bubbly flow in the horizontal T-junction is carried out. For the first time, the author have found and defined the new type of complete phase separation, by the visual experiment, which shows that under certain conditions, the air flow entering the T junction will flow into the run outlet completely, which had never been reported in the literature Also, the pressure wave feed back effect and the branch bubble flow reorganization effect were found and analyzed. The complexity of this phase separation phenomenon in the T junction has been further revealed via the on-line graph processing technology. Meanwhile the influences of the inlet mass flow rate W1, the inlet mass quality X1, and the mass extraction rate G3/G1 on phase separation were analyzed

  11. Bubble systems

    CERN Document Server

    Avdeev, Alexander A

    2016-01-01

    This monograph presents a systematic analysis of bubble system mathematics, using the mechanics of two-phase systems in non-equilibrium as the scope of analysis. The author introduces the thermodynamic foundations of bubble systems, ranging from the fundamental starting points to current research challenges. This book addresses a range of topics, including description methods of multi-phase systems, boundary and initial conditions as well as coupling requirements at the phase boundary. Moreover, it presents a detailed study of the basic problems of bubble dynamics in a liquid mass: growth (dynamically and thermally controlled), collapse, bubble pulsations, bubble rise and breakup. Special emphasis is placed on bubble dynamics in turbulent flows. The analysis results are used to write integral equations governing the rate of vapor generation (condensation) in non-equilibrium flows, thus creating a basis for solving a number of practical problems. This book is the first to present a comprehensive theory of boil...

  12. The containment of heavy oil in flowing water

    International Nuclear Information System (INIS)

    Brown, H.M.; Goodman, R.H.; Nicholson, P.

    1992-01-01

    Viscous bitumen from Alberta oil sand deposits is diluted with a gas condensate before pipeline transport. Because of its unique properties, the diluent/bitumen mix (dilbit) may require novel containment and recovery techniques in the case of an accidental spill. Preliminary experiments were conducted in a large flowing water channel to determine whether several conventional containment devices could be utilized to trap weathered and emulsified dilbit and bitumen. These devices included a conventional river boom, a nylon fine-weave net, and a low-pressure bubble barrier. The behavior of the oil samples during boom failure was noted in order to understand more completely the mechanisms of failure. The river boom failed to hold viscous floating oil by vortex shedding at flows of under 0.25 m/s. A fine mesh net successfully trapped both floating and mid-channel neutrally buoyant oil but the retention time depends on the oil viscosity. The bubble barrier was not successful in trapping either floating viscous oil or neutrally buoyant oil. At low water velocities, the barrier was able to divert some oils but in an inconsistent manner. The results indicate that conventional barriers need improvement to be effective at higher water velocities and suggest that new concepts in containment should be considered. 9 refs., 3 figs., 2 tabs

  13. Comparison of Xe single bubble sonoluminescence in water and sulfuric acid

    International Nuclear Information System (INIS)

    An Yu

    2008-01-01

    Using the equations of fluid mechanics with proper boundary conditions and taking account of the gas properties, we can numerically simulate the process of single bubble sonoluminescence, in which electron–neutral atom bremsstrahlung, electron—ion bremsstrahlung and recombination radiation, and the radiative attachment of electrons to atoms and molecules contribute to the light emission. The calculation can quantitatively or qualitatively interpret the experimental results. We find that the accumulated heat energy inside the compressed gas bubble is mostly consumed by the chemical reaction, therefore, the maximum degree of ionization inside Xe bubble in water is much lower than that in sulfuric acid, of which the vapour pressure is very low. In addition, in sulfuric acid much larger p a and R 0 are allowed which makes the bubbles in it much brighter than that in water. (classical areas of phenomenology)

  14. Disturbances to Air-Layer Skin-Friction Drag Reduction at High Reynolds Numbers

    Science.gov (United States)

    Dowling, David; Elbing, Brian; Makiharju, Simo; Wiggins, Andrew; Perlin, Marc; Ceccio, Steven

    2009-11-01

    Skin friction drag on a flat surface may be reduced by more than 80% when a layer of air separates the surface from a flowing liquid compared to when such an air layer is absent. Past large-scale experiments utilizing the US Navy's Large Cavitation Channel and a flat-plate test model 3 m wide and 12.9 m long have demonstrated air layer drag reduction (ALDR) on both smooth and rough surfaces at water flow speeds sufficient to reach downstream-distance-based Reynolds numbers exceeding 100 million. For these experiments, the incoming flow conditions, surface orientation, air injection geometry, and buoyancy forces all favored air layer formation. The results presented here extend this prior work to include the effects that vortex generators and free stream flow unsteadiness have on ALDR to assess its robustness for application to ocean-going ships. Measurements include skin friction, static pressure, airflow rate, video of the flow field downstream of the injector, and profiles of the flowing air-water mixture when the injected air forms bubbles, when it is in transition to an air layer, and when the air layer is fully formed. From these, and the prior measurements, ALDR's viability for full-scale applications is assessed.

  15. A Survey of Scattering, Attenuation, and Size Spectra Studies of Bubble Layers and Plumes Beneath the Air-Sea Interface.

    Science.gov (United States)

    1991-08-30

    soluble iron in the ocean [201] - a factor which may have global ecological implications since these creatures may account for a significant removal...submerged plateau) and seamount -dense environments. In these contexts the existing measurements in lakes and shallow water need follow-up work in...Studies of Bubble Layers and Plumes Beneath the Air-Sea Interface EDWARD POWELL Acoustic Svstems Branch Acoustics Division August 30, 1991 Si~ T 91-10188

  16. Experimental researches on the single-bubble rising behavior in the water excited by oscillation

    International Nuclear Information System (INIS)

    Cai Jiejin; Zhong Minghuang; Wang Ke; Zeng Xixiang; Lin Yongcheng; WATANABE Tadashi

    2014-01-01

    This study try to carry out experiments to research the bubble rising behavior in the water excited by oscillation and focus on its dynamics characteristics under the oscillation condition with different oscillation frequencies and amplitudes, and get the relationship between bubble's characteristic parameter, such as the bubble shape, rising velocity, etc, and the influence parameters of time, oscillation frequencies, amplitudes, etc. The rising rule of the single bubble in the water excited by oscillation has been concluded. (authors)

  17. OH Production Enhancement in Bubbling Pulsed Discharges

    Science.gov (United States)

    Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut; Chiru, Petrica; Zaroschi, Valentin; Lungu, Ana M.; Saito, Nagahiro; Bratescu, Maria; Takai, Osamu; Velea, Theodor; Predica, Vasile

    2010-10-01

    The generation of active species, such as H2O2, O*, OH*, HO2*, O3, N2*, etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active species were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).

  18. OH Production Enhancement in Bubbling Pulsed Discharges

    International Nuclear Information System (INIS)

    Lungu, Cristian P.; Porosnicu, Corneliu; Jepu, Ionut; Chiru, Petrica; Zaroschi, Valentin; Lungu, Ana M.; Saito, Nagahiro; Bratescu, Maria; Takai, Osamu; Velea, Theodor; Predica, Vasile

    2010-01-01

    The generation of active species, such as H 2 O 2 , O * , OH*, HO 2 *, O 3 , N 2 * , etc, produced in aqueous solutions by HV pulsed discharges was studied in order to find the most efficient way in waste water treatment taking into account that these species are almost stronger oxidizers than ozone. Plasma was generated inside gas bubbles formed by the argon, air and oxygen gas flow between the special designed electrodes. The pulse width and pulse frequency influence was studied in order to increase the efficiency of the OH active species formation. The produced active species were investigated by optical emission spectroscopy and correlated with electrical parameters of the discharges (frequency, pulse width, amplitude, and rise and decay time).

  19. A new fabrication process for uniform SU-8 thick photoresist structures by simultaneously removing edge bead and air bubbles

    International Nuclear Information System (INIS)

    Lee, Hun; Lee, Kangsun; Ahn, Byungwook; Xu, Jing; Xu, Linfeng; Oh, Kwang W

    2011-01-01

    This paper proposes a new SU-8 fabrication process to simultaneously remove edge bead and tiny air bubbles by spraying out edge bead removal (EBR) fluid over the entire surface of photoresist. In particular, the edge bead and air bubbles can cause an air gap between a film mask and a photoresist surface during UV exposure. The diffraction effect of UV light by the air gap leads to inaccurate and non-uniform SU-8 patterns. In this study, we demonstrate a simple method using EBR treatment to simultaneously eliminate the edge bead at the edge of wafer and tiny air bubbles inside SU-8. The profiles of thickness variation of SU-8 films with/without the EBR treatment are measured. The results show that the proposed EBR treatment can successfully remove the edge bead and air bubbles over the entire SU-8 films. The average pattern uniformity of SU-8 is improved from 50.5% to 11.3% in the case of 200 µm thickness. This method is simple and inexpensive, compared to a standard EBR process, because it does not require specialized equipment and it can be applied regardless of substrate geometry (e.g. circular wafer and rectangular slide glass).

  20. The hydrodynamics of bubble rise and impact with solid surfaces.

    Science.gov (United States)

    Manica, Rogerio; Klaseboer, Evert; Chan, Derek Y C

    2016-09-01

    A bubble smaller than 1mm in radius rises along a straight path in water and attains a constant speed due to the balance between buoyancy and drag force. Depending on the purity of the system, within the two extreme limits of tangentially immobile or mobile boundary conditions at the air-water interface considerably different terminal speeds are possible. When such a bubble impacts on a horizontal solid surface and bounces, interesting physics can be observed. We study this physical phenomenon in terms of forces, which can be of colloidal, inertial, elastic, surface tension and viscous origins. Recent advances in high-speed photography allow for the observation of phenomena on the millisecond scale. Simultaneous use of such cameras to visualize both rise/deformation and the dynamics of the thin film drainage through interferometry are now possible. These experiments confirm that the drainage process obeys lubrication theory for the spectrum of micrometre to millimetre-sized bubbles that are covered in this review. We aim to bridge the colloidal perspective at low Reynolds numbers where surface forces are important to high Reynolds number fluid dynamics where the effect of the surrounding flow becomes important. A model that combines a force balance with lubrication theory allows for the quantitative comparison with experimental data under different conditions without any fitting parameter. Copyright © 2016 Elsevier B.V. All rights reserved.