WorldWideScience

Sample records for air-shower array combined

  1. An air shower array for LOFAR: LORA

    NARCIS (Netherlands)

    Thoudam, S.; Aar, G. V.; Akker, M. V. D.; Bähren, L.; Corstanje, A.; Falcke, H.; Hörandel, J. R.; Horneffer, A.; James, C.; Mevius, M.; Scholten, O.; Singh, K.; Ter Veen, S.

    2011-01-01

    LOFAR is a new form of radio telescope which can detect radio emission from air showers induced by very high-energy cosmic rays. It can also look for radio emission from particle cascades on the Moon induced by ultra high-energy cosmic rays or neutrinos. To complement the radio detection, we are

  2. Preliminary results from the Chicago air shower array and the Michigan muon array

    International Nuclear Information System (INIS)

    Krimm, H.A.; Cronin, J.W.; Fick, B.E.; Gibbs, K.G.; Mascarenhas, N.C.; McKay, T.A.; Mueller, D.; Newport, B.J.; Ong, R.A.; Rosenberg, L.J.; Wiedenbeck, M.E.; Green, K.D.; Matthews, J.; Nitz, D.; Sinclair, D.; van der Velde, J.C.

    1991-01-01

    The Chicago Air Shower Array (CASA) is a large area surface array designed to detect extensive air showers (EAS) produced by primaries with energy ∼100 TeV. It operates in coincidence with the underground Michigan Muon Array (MIA). Preliminary results are presented from a search for steady emission and daily emission from three astrophysical sources: Cygnus X-3, Hercules X-1, and the Crab nebula and pulsar. There is no evidence for a significant signal from any of these sources in the 1989 data

  3. Improving the angular resolution of existing air shower arrays by adding a thin layer of lead

    International Nuclear Information System (INIS)

    Poirier, J.; Mikocki, S.

    1987-01-01

    Calculations show that placing a thin sheet of lead above conventional extensive air shower counters yields an additional signal which is earlier in time. This will improve the array's angular resolution. (orig.)

  4. Method of separation of air showers initiated by γ-quanta and protons using Cherenkov light angular characteristics in combination and angular resolution estimate for an array of several optical telescopes

    International Nuclear Information System (INIS)

    Anokhina, A.M.; Galkin, V.I.; Ivanenko, I.P.; Roganova, T.M.

    1990-01-01

    Computer simulation of optical characteristics of air showers was carried out. On the basis of multidimensional analysis of Cherenkov light angular distribution possibility is considered to distinguish γ-showers from proton showers. Also an estimate for angular resolution is given for an array of five optical telescopes situated at Mt.Aragats. 7 refs.; 10 figs.; 11 tabs

  5. The Data Acquisition System of the Stockholm Educational Air Shower Array

    Science.gov (United States)

    Hofverberg, P.; Johansson, H.; Pearce, M.; Rydstrom, S.; Wikstrom, C.

    2005-12-01

    The Stockholm Educational Air Shower Array (SEASA) project is deploying an array of plastic scintillator detector stations on school roofs in the Stockholm area. Signals from GPS satellites are used to time synchronise signals from the widely separated detector stations, allowing cosmic ray air showers to be identified and studied. A low-cost and highly scalable data acquisition system has been produced using embedded Linux processors which communicate station data to a central server running a MySQL database. Air shower data can be visualised in real-time using a Java-applet client. It is also possible to query the database and manage detector stations from the client. In this paper, the design and performance of the system are described

  6. Use of a neutrino detector for muon identification by the CYGNUS air-shower array

    Energy Technology Data Exchange (ETDEWEB)

    Allen, R.C.; DeLay, R.S.; Lu, X.Q.; Yodh, G.B. (Univ. of California, Irvine (United States)); Burman, R.L.; Cady, D.R.; Lloyd-Evans, J.; Nagle, D.E.; Sandberg, V.D.; Sena, A.J. (Los Alamos National Lab., NM (United States)); Chang, C.Y.; Dingus, B.L.; Gupta, S.; Goodman, J.A.; Haines, T.J.; Krakauer, D.A.; Talaga, R.L. (Univ. of Maryland, College Park (United States)); Ellsworth, R.W. (George Mason Univ., Fairfax, VA (United States)); Potter, M.E.; Thompson, T.N. (Univ. of California, Irvine (United States) Los Alamos National Lab., NM (United States))

    1992-01-01

    The muon content of extensive air showers observed by the CYGNUS experiment are measured by a well-shielded apparatus originally used for accelerator neutrino detection. Primary identification and counting of muons relies on a 44 m{sup 2} array of multiwire proportional counters that has operated continously since the experiment's inception to the present time. During the experiment's first 20 months, the central detector, consisting of flash-tube chambers, was used for high-resolution reconstruction of muon trajectories for a limited subsample of air showers. The ability to distinguish individual muons in the tracking device enabled verification and calibration of the muon counting by the proportional-counter system. The tracking capability was also used to verify the systematic pointing accuracy of the extensive air-shower arrival direction, as determined, as determined by the CYGNUS array, to better than 0.5{sup 0}. (orig.).

  7. The cosmic-ray energy spectrum above 1016 eV measured with the LOFAR radboud air shower array

    NARCIS (Netherlands)

    Thoudam, S.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; Ter Veen, S.; Trinh, T. N G; Van Kessel, L.

    2015-01-01

    The LOFAR Radboud Air Shower Array (LORA) is an array of 20 plastic scintillation detectors installed in the center of the LOFAR radio telescope in the Netherlands to measure extensive air showers induced by cosmic rays in the Earth's atmosphere. The primary goals of LORA are to trigger the read-out

  8. Future Extensive Air Shower arrays: From Gamma-Ray Astronomy to Cosmic Rays

    Directory of Open Access Journals (Sweden)

    Sciascio Giuseppe Di

    2016-01-01

    Full Text Available Despite large progresses in building new detectors and in the analysis techniques, the key questions concerning the origin, acceleration and propagation of Galactic Cosmic Rays are still open. A number of new EAS arrays is in progress. The most ambitious and sensitive project between them is LHAASO, a new generation multi-component experiment to be installed at very high altitude in China (Daocheng, Sichuan province, 4400 m a.s.l.. The experiment will face the open problems through a combined study of photon- and charged particle-induced extensive air showers in the wide energy range 1011 – 1018 eV. In this paper the status of the experiment will be summarized, the science program presented and the outlook discussed in comparison with leading new projects.

  9. Do cosmic ray air showers initiate lightning? : A statistical analysis of cosmic ray air showers and lightning mapping array data

    NARCIS (Netherlands)

    Hare, B. M.; Dwyer, J. R.; Winner, L. H.; Uman, M. A.; Jordan, D. M.; Kotovsky, D. A.; Caicedo, J. A.; Wilkes, R. A.; Carvalho, F. L.; Pilkey, J. T.; Ngin, T. K.; Gamerota, W. R.; Rassoul, H. K.

    2017-01-01

    It has been argued in the technical literature, and widely reported in the popular press, that cosmic ray air showers (CRASs) can initiate lightning via a mechanism known as relativistic runaway electron avalanche (RREA), where large numbers of high-energy and low-energy electrons can, somehow,

  10. Measurement of horizontal air showers with the Auger Engineering Radio Array

    Science.gov (United States)

    Kambeitz, Olga

    2017-03-01

    The Auger Engineering Radio Array (AERA), at the Pierre Auger Observatory in Argentina, measures the radio emission of extensive air showers in the 30-80 MHz frequency range. AERA consists of more than 150 antenna stations distributed over 17 km2. Together with the Auger surface detector, the fluorescence detector and the underground muon detector (AMIGA), AERA is able to measure cosmic rays with energies above 1017 eV in a hybrid detection mode. AERA is optimized for the detection of air showers up to 60° zenith angle, however, using the reconstruction of horizontal air showers with the Auger surface array, very inclined showers can also be measured. In this contribution an analysis of the AERA data in the zenith angle range from 62° to 80° will be presented. CoREAS simulations predict radio emission footprints of several km2 for horizontal air showers, which are now confirmed by AERA measurements. This can lead to radio-based composition measurements and energy determination of horizontal showers in the future and the radio detection of neutrino induced showers is possible.

  11. Instrumentation development for an array of water Cherenkov detectors for extensive air shower experiments

    Science.gov (United States)

    Sheidaei, F.; Bahmanabadi, M.; Keivani, A.; Samimi, J.

    2009-11-01

    A new small array of Cherenkov detectors has been deployed in Tehran, 1200 m above sea level. This array contains four tanks of distilled water with a diameter of 64 cm and a height of 130 cm. The effective area of each tank is about 1382 cm2. They are used to detect air showers and to record the arrival time of the secondary particles. We have collected about 640 000 extensive air showers (EAS) in 8298 h of observation time from November 2006 to October 2007. The distribution of air showers in zenith and azimuth angles has been studied and a cosnθ distribution with n = 6.02 ± 0.01 was obtained for the zenith angle distribution. An asymmetry has been observed in the azimuthal distribution of EAS of cosmic rays due to geomagnetic field. The first and second amplitudes of the asymmetry are AI = 0.183 ± 0.001 and AII = 0.038 ± 0.001. Since the recent results are in good agreement with our previous results of scintillation detectors, and tanks of distilled water are cheaper, we prefer to use them instead of scintillators in a future larger array. By simulation, we have improved the size of the detectors to yield the highest efficiency. The best dimensions for each tank with a photomultiplier tube in the center of its lid are 40 cm in diameter and 60 cm in height.

  12. The UCD/FLWO extensive air shower array at Mt. Hopkins Arizona

    Science.gov (United States)

    Gillanders, G. H.; Fegan, D. J.; McKeown, P. K.; Weekes, T. C.

    The design and operation of an extensive air shower (EAS) array being installed around the 10-m optical Cerenkov reflector at F.L. Whipple Observatory on Mt. Hopkins for high-energy gamma-ray astronomy are described. The advantages of an EAS array colocated with a Cerenkov facility at a mountain location are reviewed; the arrangement of the 13 1-sq m scintillation detectors in the array is indicated; the signal-processing and data-acquisition procedures are explained; and preliminary calibration data indicating an effective energy threshold of 60 TeV are presented.

  13. Measurement of the cosmic-ray energy spectrum above 1016 eV with the LOFAR Radboud Air Shower Array

    NARCIS (Netherlands)

    Thoudam, S.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; ter Veen, S.; Trinh, T.N.G.; van Kessel, L.

    2016-01-01

    The energy reconstruction of extensive air showers measured with the LOFAR Radboud Air Shower Array (LORA) is presented in detail. LORA is a particle detector array located in the center of the LOFAR radio telescope in the Netherlands. The aim of this work is to provide an accurate and independent

  14. Air shower array designed for cosmic ray variation measurements and high energy gamma ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Morello, C; Navarra, G [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1981-08-15

    We describe an array for performing measurements of counting rates and arrival directions of extensive air showers at primary energy E/sub 0/ approx. equal to 3 x 10/sup 9/ eV. The aim of the research is to study the time variations and the anisotropies of cosmic rays and the observable gamma ray sources in the high energy region. The installation, composed of four large area scintillation counters and completely controlled by a microcomputer system, operates at mountain altitude (3500 m a.s.l.). The preanalysis of data, stability tests and periodic calibrations are performed by on-line programs. The method for obtaining the required stability and the corrections on temperature and gain variations are also described.

  15. An optimized method for the reconstruction of the direction of air showers for scintillator arrays

    Energy Technology Data Exchange (ETDEWEB)

    Krawczynski, H.; Prahl, J.; Arqueros, F.; Bradbury, S.; Cortina, J.; Deckers, T.; Eckmann, R.; Feigl, E.; Fernandez, J.; Fonseca, V.; Funk, B.; Gebauer, J.; Gonzalez, J.C.; Haustein, V.; Heinzelmann, G.; Holl, I.; Kirstein, O.; Kornmeyer, H.; Krennrich, F.; Lindner, A.; Lorenz, E.; Magnussen, N.; Martinez, S.; Merck, M.; Meyer, H.; Mirzoyan, R.; Moeller, H.; Moralejo, A.; Mueller, N.; Padilla, L.; Petry, D.; Plaga, R.; Prosch, C.; Rauterberg, G.; Rhode, W.; Samorski, M.; Sanchez, J.A.; Schmele, D.; Sooth, R.N.; Stamm, W.; Westerhoff, S.; Wiebel-Sooth, B.; Willmer, M. [Hamburg Univ. (Germany). 2. Inst. fuer Experimentalphys.]|[Universidad Complutense, Facultad de Ciencias Fisicas, Ciudad Universitaria, E-28040 Madrid (Spain)]|[Max Planck Institut fuer Physik, Foehringer Ring 6, D-80805 Muenchen (Germany)]|[Universitaet Kiel, Institut fuer Kernphysik, Olshausenstr. 40, D-24118 Kiel (Germany)]|[Universitaet Wuppertal, Fachbereich Physik, Gaussstr.20, D-42097 Wuppertal (Germany)

    1996-12-11

    An optimized method is presented for the reconstruction of air shower directions for scintillator arrays. The method takes into account that both the expectation value and the spread of the measured arrival times not only depend on the distance of a counter from the shower axis, but also on the number of particles registered in that counter. It also takes into account that the distributions of the measured arrival times are not Gaussian. For showers recorded with the HEGRA scintillator array above the threshold energy of E{sub thres}= 20 TeV the mean angular resolution obtained with this method is left angle {sigma}{sup {theta}}{sub 63%} right angle =1.0 {sup circle}, and above a threshold E{sub thres}= 50 TeV it is left angle {sigma}{sup {theta}}{sub 63%} right angle =0.6 {sup circle}. Comparing the new procedure with the HEGRA standard procedure the angular resolution has improved on average by a factor of 1.33. The mis-pointing has been determined with an accuracy of 0.15 {sup circle}. The method is developed using experimental data. (orig.).

  16. An optimized method for the reconstruction of the direction of air showers for scintillator arrays

    International Nuclear Information System (INIS)

    Krawczynski, H.; Prahl, J.; Arqueros, F.; Bradbury, S.; Cortina, J.; Deckers, T.; Eckmann, R.; Feigl, E.; Fernandez, J.; Fonseca, V.; Funk, B.; Gebauer, J.; Gonzalez, J.C.; Haustein, V.; Heinzelmann, G.; Holl, I.; Kirstein, O.; Kornmeyer, H.; Krennrich, F.; Lindner, A.; Lorenz, E.; Magnussen, N.; Martinez, S.; Merck, M.; Meyer, H.; Mirzoyan, R.; Moeller, H.; Moralejo, A.; Mueller, N.; Padilla, L.; Petry, D.; Plaga, R.; Prosch, C.; Rauterberg, G.; Rhode, W.; Samorski, M.; Sanchez, J.A.; Schmele, D.; Sooth, R.N.; Stamm, W.; Westerhoff, S.; Wiebel-Sooth, B.; Willmer, M.

    1996-01-01

    An optimized method is presented for the reconstruction of air shower directions for scintillator arrays. The method takes into account that both the expectation value and the spread of the measured arrival times not only depend on the distance of a counter from the shower axis, but also on the number of particles registered in that counter. It also takes into account that the distributions of the measured arrival times are not Gaussian. For showers recorded with the HEGRA scintillator array above the threshold energy of E thres = 20 TeV the mean angular resolution obtained with this method is left angle σ θ 63% right angle =1.0 circle , and above a threshold E thres = 50 TeV it is left angle σ θ 63% right angle =0.6 circle . Comparing the new procedure with the HEGRA standard procedure the angular resolution has improved on average by a factor of 1.33. The mis-pointing has been determined with an accuracy of 0.15 circle . The method is developed using experimental data. (orig.)

  17. OBSERVATION OF COSMIC-RAY ANISOTROPY WITH THE ICETOP AIR SHOWER ARRAY

    Energy Technology Data Exchange (ETDEWEB)

    Aartsen, M. G. [School of Chemistry and Physics, University of Adelaide, Adelaide, SA 5005 Australia (Australia); Abbasi, R.; Ahlers, M.; Andeen, K.; Auffenberg, J.; Baker, M. [Department of Physics and Wisconsin IceCube Particle Astrophysics Center, University of Wisconsin, Madison, WI 53706 (United States); Abdou, Y. [Department of Physics and Astronomy, University of Gent, B-9000 Gent (Belgium); Ackermann, M. [DESY, D-15735 Zeuthen (Germany); Adams, J. [Department of Physics and Astronomy, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Aguilar, J. A. [Departement de physique nucleaire et corpusculaire, Universite de Geneve, CH-1211 Geneve (Switzerland); Altmann, D. [Institut fuer Physik, Humboldt-Universitaet zu Berlin, D-12489 Berlin (Germany); Bai, X. [Bartol Research Institute and Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Barwick, S. W. [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Baum, V. [Institute of Physics, University of Mainz, Staudinger Weg 7, D-55099 Mainz (Germany); Bay, R. [Department of Physics, University of California, Berkeley, CA 94720 (United States); Beattie, K. [Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Beatty, J. J. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States); Bechet, S. [Science Faculty CP230, Universite Libre de Bruxelles, B-1050 Brussels (Belgium); Tjus, J. Becker [Fakultaet fuer Physik and Astronomie, Ruhr-Universitaet Bochum, D-44780 Bochum (Germany); Becker, K.-H. [Department of Physics, University of Wuppertal, D-42119 Wuppertal (Germany); Collaboration: IceCube Collaboration; and others

    2013-03-01

    We report on the observation of anisotropy in the arrival direction distribution of cosmic rays at PeV energies. The analysis is based on data taken between 2009 and 2012 with the IceTop air shower array at the south pole. IceTop, an integral part of the IceCube detector, is sensitive to cosmic rays between 100 TeV and 1 EeV. With the current size of the IceTop data set, searches for anisotropy at the 10{sup -3} level can, for the first time, be extended to PeV energies. We divide the data set into two parts with median energies of 400 TeV and 2 PeV, respectively. In the low energy band, we observe a strong deficit with an angular size of about 30 Degree-Sign and an amplitude of (- 1.58 {+-} 0.46{sub stat} {+-} 0.52{sub sys}) Multiplication-Sign 10{sup -3} at a location consistent with previous observations of cosmic rays with the IceCube neutrino detector. The study of the high energy band shows that the anisotropy persists to PeV energies and increases in amplitude to (- 3.11 {+-} 0.38{sub stat} {+-} 0.96{sub sys}) Multiplication-Sign 10{sup -3}.

  18. The effect of the atmospheric condition on the extensive air shower analysis at the Telescope Array experiment

    International Nuclear Information System (INIS)

    Kobayashi, Y.; Tsunesada, Y.; Tokuno, H.; Kakimoto, F.; Tomida, T.

    2011-01-01

    The accuracies in determination of air shower parameters such as longitudinal profiles or primary energies with the fluorescence detection technique are strongly dependent on atmospheric conditions of the molecular and aerosol components. Moreover, air fluorescence photon yield depends on the atmospheric density, and the transparency of the air for fluorescence photons depends on the atmospheric conditions from EAS to FDs. In this paper, we describe the atmospheric monitoring system in the Telescope Array (TA experiment), and the impact of the atmospheric conditions in air shower reconstructions. The systematic uncertainties of the determination of the primary cosmic ray energies and of the measurement of depth of maximum development (X max ) of EASs due to atmospheric variance are evaluated by Monte Carlo simulation.

  19. Northern Sky Galactic Cosmic Ray Anisotropy between 10 and 1000 TeV with the Tibet Air Shower Array

    Energy Technology Data Exchange (ETDEWEB)

    Amenomori, M. [Department of Physics, Hirosaki University, Hirosaki 036-8561 (Japan); Bi, X. J.; Chen, W. Y.; Ding, L. K.; Feng, Zhaoyang; Gou, Q. B.; Guo, Y. Q.; He, H. H.; Hu, H. B.; Huang, J. [Key Laboratory of Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, D. [National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Chen, T. L.; Danzengluobu; Hu, Haibing [Department of Mathematics and Physics, Tibet University, Lhasa 850000 (China); Cui, S. W.; He, Z. T. [Department of Physics, Hebei Normal University, Shijiazhuang 050016 (China); Feng, C. F. [Department of Physics, Shandong University, Jinan 250100 (China); Feng, Z. Y. [Institute of Modern Physics, Southwest Jiaotong University, Chengdu 610031 (China); Hibino, K. [Faculty of Engineering, Kanagawa University, Yokohama 221-8686 (Japan); Hotta, N. [Faculty of Education, Utsunomiya University, Utsunomiya 321-8505 (Japan); Collaboration: Tibet AS γ Collaboration; and others

    2017-02-20

    We report on the analysis of the 10–1000 TeV large-scale sidereal anisotropy of Galactic cosmic rays (GCRs) with the data collected by the Tibet Air Shower Array from 1995 October to 2010 February. In this analysis, we improve the energy estimate and extend the decl. range down to −30°. We find that the anisotropy maps above 100 TeV are distinct from that at a multi-TeV band. The so-called tail-in and loss-cone features identified at low energies get less significant, and a new component appears at ∼100 TeV. The spatial distribution of the GCR intensity with an excess (7.2 σ pre-trial, 5.2 σ post-trial) and a deficit (−5.8 σ pre-trial) are observed in the 300 TeV anisotropy map, in close agreement with IceCube’s results at 400 TeV. Combining the Tibet results in the northern sky with IceCube’s results in the southern sky, we establish a full-sky picture of the anisotropy in hundreds of TeV band. We further find that the amplitude of the first order anisotropy increases sharply above ∼100 TeV, indicating a new component of the anisotropy. All these results may shed new light on understanding the origin and propagation of GCRs.

  20. ON TEMPORAL VARIATIONS OF THE MULTI-TeV COSMIC RAY ANISOTROPY USING THE TIBET III AIR SHOWER ARRAY

    International Nuclear Information System (INIS)

    Amenomori, M.; Bi, X. J.; Ding, L. K.; Fan, C.; Feng Zhaoyang; Gou, Q. B.; He, H. H.; Chen, D.; Cui, S. W.; Danzengluobu; Ding, X. H.; Guo, H. W.; Hu Haibing; Feng, C. F.; He, M.; Feng, Z. Y.; Gao, X. Y.; Geng, Q. X.; Hibino, K.; Hotta, N.

    2010-01-01

    We analyze the large-scale two-dimensional sidereal anisotropy of multi-TeV cosmic rays (CRs) by the Tibet Air Shower Array, with the data taken from 1999 November to 2008 December. To explore temporal variations of the anisotropy, the data set is divided into nine intervals, each with a time span of about one year. The sidereal anisotropy of magnitude, about 0.1%, appears fairly stable from year to year over the entire observation period of nine years. This indicates that the anisotropy of TeV Galactic CRs remains insensitive to solar activities since the observation period covers more than half of the 23rd solar cycle.

  1. Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: the energy spectrum of cosmic rays

    International Nuclear Information System (INIS)

    Ivanov, A A; Knurenko, S P; Sleptsov, I Ye

    2009-01-01

    The energy spectrum of cosmic rays in the range E∼10 15 eV to 6x10 19 eV is studied in this paper using air Cherenkov light detectors of the Yakutsk array. The total flux of photons produced by the relativistic electrons (including positrons as well, hereafter) of extensive air showers in the atmosphere is used as an energy estimator of the primary particle initiating a shower. The resultant differential flux of cosmic rays exhibits, in agreement with previous measurements, a knee and ankle feature at energies of 3x10 15 and ∼10 19 eV, respectively. A comparison of observational data with simulations is made in the knee and ankle regions in order to choose the models of galactic and extragalactic components of cosmic rays that describe well the energy spectrum measured.

  2. Measuring extensive air showers with Cherenkov light detectors of the Yakutsk array: the energy spectrum of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A A; Knurenko, S P; Sleptsov, I Ye [Shafer Institute for Cosmophysical Research and Aeronomy, Yakutsk 677980 (Russian Federation)], E-mail: ivanov@ikfia.ysn.ru

    2009-06-15

    The energy spectrum of cosmic rays in the range E{approx}10{sup 15} eV to 6x10{sup 19} eV is studied in this paper using air Cherenkov light detectors of the Yakutsk array. The total flux of photons produced by the relativistic electrons (including positrons as well, hereafter) of extensive air showers in the atmosphere is used as an energy estimator of the primary particle initiating a shower. The resultant differential flux of cosmic rays exhibits, in agreement with previous measurements, a knee and ankle feature at energies of 3x10{sup 15} and {approx}10{sup 19} eV, respectively. A comparison of observational data with simulations is made in the knee and ankle regions in order to choose the models of galactic and extragalactic components of cosmic rays that describe well the energy spectrum measured.

  3. Air shower measurements with LOFAR

    NARCIS (Netherlands)

    Horneffer, A.; Bähren, L.; Buitink, S.; Falcke, H.; Hörandel, J.R.; Kuijpers, J.; Lafebre, S.; Nigl, A.; Scholten, O.; Singh, K.

    2009-01-01

    Air showers from cosmic rays emit short, intense radio pulses. The Low Frequency Array (LOFAR) is a new radio telescope, that is being built in the Netherlands and Europe. Designed primarily as a radio interferometer, the core of LOFAR will have a high density of radio antennas, which will be

  4. World's largest air shower array now on track of super-high-energy cosmic-rays Pierre Auger Observatory seeks source of highest-energy extraterrestrial particles

    CERN Multimedia

    2003-01-01

    "With the completion of its hundredth surface detector, the Pierre Auger Observatory, under construction in Argentina, this week became the largest cosmic-ray air shower array in the world. Managed by scientists at the Department of Energy's Fermi National Accelerator Laboratory, the Pierre Auger project so far encompasses a 70-square-mile array of detectors that are tracking the most violent-and perhaps most puzzling- processes in the entire universe" (1 page).

  5. Studies of Muons in Extensive Air Showers from Ultra-High Energy Cosmic Rays Observed with the Telescope Array Surface Detector

    Science.gov (United States)

    Takeishi, R.; Sagawa, H.; Fukushima, M.; Takeda, M.; Nonaka, T.; Kawata, K.; Kido, E.; Sakurai, N.; Okuda, T.; Ogio, S.; Matthews, J. N.; Stokes, B.

    The number of muons in the air shower induced by ultra-high energy cosmic rays (UHECRs) has been measured with surface detector (SD) arrays of various experiments. Monte Carlo (MC) prediction of the number of muons in air showers depends on hadronic interaction models and the primary cosmic ray composition. By comparing the measured number of muons with the MC prediction, hadronic interaction models can be tested. The Pierre Auger Observatory reported that the number of muons measured by water Cherenkov type SD is about 1.8 times larger than the MC prediction for proton with QGSJET II-03 model. The number of muons in the Auger data is also larger than the MC prediction for iron. The Telescope Array experiment adopts plastic scintillator type SD, which is sensitive to the electromagnetic component that is the major part of secondary particles in the air shower. To search for the high muon purity condition in air showers observed by the TA, we divided air shower events into subsets by the zenith angle θ, the azimuth angle ϕ relative to the shower arrival direction projected onto the ground, and the distance R from shower axis. As a result, we found subsets with the high muon purity 65%, and compared the charge density between observed data and MC. The typical ratios of the charge density of the data to that of the MC are 1.71 ± 0.10 at 1870 m muon purity. These results imply that the excess of the charge density in the data is partly explained by the muon excess.

  6. Search for PeVatrons at the Galactic Center using a radio air-shower array at the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Balagopal V, A.; Schroeder, F.G. [Karlsruher Institut fuer Technologie (KIT), Institut fuer Experimentelle Teilchenphysik, Karlsruhe (Germany); Haungs, A.; Huege, T. [Karlsruher Institut fuer Technologie (KIT), Institut fuer Kernphysik, Karlsruhe (Germany)

    2018-02-15

    The South Pole, which hosts the IceCube Neutrino Observatory, has a complete and around-the-clock exposure to the Galactic Center. Hence, it is an ideal location to search for gamma rays of PeV energy coming from the Galactic Center. However, it is hard to detect air showers initiated by these gamma rays using cosmic-ray particle detectors due to the low elevation of the Galactic Center. The use of antennas to measure the radio footprint of these air showers will help in this case, and would allow for a 24/7 operation time. So far, only air showers with energies well above 10{sup 16} eV have been detected with the radio technique. Thus, the energy threshold has to be lowered for the detection of gamma-ray showers of PeV energy. This can be achieved by optimizing the frequency band in order to obtain a higher level of signal-to-noise ratio. With such an approach, PeV gamma-ray showers with high inclination can be measured at the South Pole. (orig.)

  7. The ultimate air shower observatory

    International Nuclear Information System (INIS)

    Jones, L.W.

    1981-01-01

    The possibility of constructing an international air shower observatory in the Himalayas is explored. A site at about 6500 m elevation (450 g/cm 2 ) would provide more definitive measurements of composition and early interaction properties of primaries above 10 16 eV than can be achieved with existing arrays. By supplementing a surface array with a Fly's Eye and muon detectors, information on the highest energy cosmic rays may be gained which is not possible in any other way. Potential sites, technical aspects, and logistical problems are explored

  8. A large air shower array to search for astrophysical sources emitting γ-rays with energies ≥1014 eV

    International Nuclear Information System (INIS)

    Borione, A.; Covault, C.E.; Cronin, J.W.; Fick, B.E.; Gibbs, K.G.; Krimm, H.A.; Mascarenhas, N.C.; McKay, T.A.; Mueller, D.; Newport, B.J.; Ong, R.A.; Rosenberg, L.J.; Sanders, H.; Catanese, M.; Ciampa, D.; Green, K.D.; Kolodziejczak, J.; Matthews, J.; Nitz, D.; Sinclair, D.; Van der Velde, J.C.

    1994-01-01

    We describe the technical details and the performance of a large array which detects both the electron and muon components in extensive air showers with energies ≥10 14 eV. The array was designed to search for γ-rays from astrophysical sources. The background of cosmic rays is reduced by the selection of muon poor events. The array consists of 1089 scintillation detectors on the surface covering an area of 0.23 km 2 and 1024 scintillation counters of 2.5 m 2 each, buried 3 m below the surface for muon detection. Each of the surface detectors has its own local electronics and local data storage controlled by a microprocessor. The array is located at Dugway, Utah USA (40.2 N, 112.8 W) where the average atmospheric depth is 870 g/cm 2 . ((orig.))

  9. JASA: A prototype water-Cerenkov air-shower detector

    International Nuclear Information System (INIS)

    Berley, D.; Dion, C.; Goodman, J.A.; Haines, T.J.; Kwok, P.W.; Stark, M.J.; Svoboda, R.C.; Ferguson, H.; Hoffman, C.M.; Horch, E.; Ellsworth, R.W.; Delay, R.S.; Lu, X.; Yodh, G.B.

    1991-01-01

    A small pilot experiment to examine the use of the water-Cerenkov technique for air shower detection was installed near the center of the CYGNUS air shower array. Preliminary results showing general agreement with simulations are presented. Thus, the technique promises to offer significant advances for VHE-UHE γ-ray astronomy

  10. Radio detection of cosmic ray induced air showers at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Fliescher, Stefan, E-mail: fliescher@physik.rwth-aachen.de [3. Physikalisches Institut A, RWTH Aachen, University (Germany)

    2012-01-11

    AERA - the Auger Engineering Radio Array - is currently being set up at the southern site of the Pierre Auger Observatory. AERA will explore the potential of the radio-detection technique to cosmic ray induced air showers with respect to the next generation of large-scale surface detectors. As AERA is co-located with the low-energy enhancements of the Pierre Auger Observatory, the observation of air showers in coincidence with the Auger surface and fluorescence detector will allow to study the radio emission processes in detail and to calibrate the radio signal. Finally, the combined reconstruction of shower parameters with three independent techniques promises new insights into the nature of cosmic rays in the transition region from 10{sup 17} to 10{sup 19} eV. Besides the detection of coherent radiation in the MHz frequency range, the setups AMBER - Air-shower Microwave Bremsstrahlung Experimental Radiometer - and MIDAS - MIcrowave Detection of Air Showers - prepare to check the possibility to detect air showers due the emission of molecular bremsstrahlung in the GHz range at the Auger site. This article presents the status of the radio-detection setups and discusses their physics potential as well as experimental challenges. Special focus is laid on the first stage of AERA which is the startup to the construction of a 20 km{sup 2} radio array.

  11. Cherenkov light based measurement of extensive air showers around the knee with the HEGRA experiment

    Energy Technology Data Exchange (ETDEWEB)

    Aharonian, F.; Akhperjanian, A.G.; Barrio, J.A.; Belgarian, A.S.; Bernloehr, K.; Bojahr, H.; Contreras, J.L.; Cortina, J.; Daum, A.; Deckers, T.; Denninghoff, S.; Fernandez, J.; Fonseca, V.; Gonzales, J.C.; Heinzelmann, G.; Hemberger, M.; Hermann, G.; Hess, M.; Heusler, A.; Hofmann, W.; Hohl, H.; Horns, D.; Kankanyan, R.; Kestel, M.; Kirstein, O.; Koehler, C.; Konopelko, A.; Kornmayer, H.; Kranich, D.; Krawczynski, H.; Lampeitl, H.; Lindner, A.; Lorenz, E.; Magnussen, N.; Meyer, H.; Mirzoyan, R.; Moralejo, A.; Padilla, L.; Panter, M.; Petry, D.; Plaga, R.; Plyasheshnikov, A.; Prahl, J.; Prosch, C.; Puehlhofer, G.; Rauterberg, G.; Renault, C.; Rhode, W.; Roehring, A.; Sahakian, V.; Samorski, M.; Schmele, D.; Schroeder, F.; Stamm, W.; Voelk, H.J.; Wiebel-Sooth, B

    1999-03-01

    Data of the wide angle atmospheric Cherenkov light detector array AIROBICC and the scintillator matrix of the HEGRA air shower detector complex are combined to determine the energy spectrum and coarse composition of charged cosmic rays in the energy interval from 300 TeV to 10 PeV.

  12. Extensive air showers

    CERN Document Server

    Rao, M V S

    1997-01-01

    Ultrahigh energy cosmic rays carry information about their sources and the intervening medium apart from providing a beam of particles for studying certain features of high energy interactions currently inaccessible at man-made accelerators. They can at present be studied only via the extensive air showers (EAS's) they generate while passing through the Earth's atmosphere, since their fluxes are too low for the experiments of limited capability flown in balloons and satellites. The EAS is generated by a series of interactions of the primary cosmic ray and its progeny with the atmospheric nucle

  13. The “Carpet-3” air shower array to search for diffuse gamma rays with energy Eγ>100TeV

    Science.gov (United States)

    Dzhappuev, D. D.; I, V. B. Petkov V.; Kudzhaev, A. U.; Lidvansky, A. S.; Volchenko, V. I.; Volchenko, G. V.; Gorbacheva, E. A.; Dzaparova, I. M.; Klimenko, N. F.; Kurenya, A. N.; Mikhilova, O. I.; Khadzhiev, M. M.; Yanin, A. F.

    2017-12-01

    At present an experiment for measuring the flux of cosmic diffuse gamma rays with energy higher than 100 TeV (experiment “Carpet-3”) is being prepared at the Baksan Neutrino Observatory of the Institute for Nuclear Research, Russian Academy of Sciences. The preparation of the experiment implies considerable enlargement of the area of both muon detector and surface part of the shower array. At the moment the plastic scintillation counters with a total continuous area of 410 m2 are installed in the muon detector (MD) underground tunnels, and they are totally equipped with electronics. Adjusting of the counters and their electronic circuits is in progress. Six modules of shower detectors (out of twenty planned to be installed) have already been placed on the surface of the MD absorber. A new liquid scintillation detector is developed for modules of the ground -surface part of the array, whose characteristics are presented. It is shown that the “Carpet-3” air shower array will have the best sensitivity to the flux of primary gamma rays with energies in the range 100TeV - 1PeV, being quite competitive in gamma-ray astronomy at such energies.

  14. Depth of Ultra High Energy Cosmic Ray Induced Air Shower Maxima Measured by the Telescope Array Black Rock and Long Ridge FADC Fluorescence Detectors and Surface Array in Hybrid Mode

    Science.gov (United States)

    Abbasi, R. U.; Abe, M.; Abu-Zayyad, T.; Allen, M.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Blake, S. A.; Cady, R.; Cheon, B. G.; Chiba, J.; Chikawa, M.; di Matteo, A.; Fujii, T.; Fujita, K.; Fukushima, M.; Furlich, G.; Goto, T.; Hanlon, W.; Hayashi, M.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jeong, H. M.; Jeong, S. M.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kishigami, S.; Kitamura, S.; Kitamura, Y.; Kuzmin, V.; Kuznetsov, M.; Kwon, Y. J.; Lee, K. H.; Lubsandorzhiev, B.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuyama, T.; Matthews, J. N.; Mayta, R.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, R.; Nakamura, T.; Nonaka, T.; Oda, H.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Okuda, T.; Omura, Y.; Ono, M.; Onogi, R.; Oshima, A.; Ozawa, S.; Park, I. H.; Pshirkov, M. S.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sahara, R.; Saito, K.; Saito, Y.; Sakaki, N.; Sakurai, N.; Scott, L. M.; Seki, T.; Sekino, K.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Shin, H. S.; Smith, J. D.; Sokolsky, P.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takagi, Y.; Takahashi, Y.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Wong, T.; Yamamoto, M.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zhezher, Y.; Zundel, Z.; Telescope Array Collaboration

    2018-05-01

    The Telescope Array (TA) observatory utilizes fluorescence detectors and surface detectors (SDs) to observe air showers produced by ultra high energy cosmic rays in Earth’s atmosphere. Cosmic-ray events observed in this way are termed hybrid data. The depth of air shower maximum is related to the mass of the primary particle that generates the shower. This paper reports on shower maxima data collected over 8.5 yr using the Black Rock Mesa and Long Ridge fluorescence detectors in conjunction with the array of SDs. We compare the means and standard deviations of the observed {X}\\max distributions with Monte Carlo {X}\\max distributions of unmixed protons, helium, nitrogen, and iron, all generated using the QGSJet II-04 hadronic model. We also perform an unbinned maximum likelihood test of the observed data, which is subjected to variable systematic shifting of the data {X}\\max distributions to allow us to test the full distributions, and compare them to the Monte Carlo to see which elements are not compatible with the observed data. For all energy bins, QGSJet II-04 protons are found to be compatible with TA hybrid data at the 95% confidence level after some systematic {X}\\max shifting of the data. Three other QGSJet II-04 elements are found to be compatible using the same test procedure in an energy range limited to the highest energies where data statistics are sparse.

  15. A study of the air-shower response of current-limited spark chambers

    International Nuclear Information System (INIS)

    Porter, M.R.; Hodson, A.L.; Bull, R.M.

    1982-01-01

    The efficiency of current-limited spark chambers (discharge chambers) and their relative response to shower electrons and photons are investigated. A stack of six horizontal 1m x 10 cm discharge chambers, above one another, is triggered by air showers falling on an adjacent discharge-chamber array. Particular combinations of discharges show that the efficiency of the chambers is very high and that a significant fraction of the discharges is due to incident photons

  16. Modelling of radio emission from cosmic ray air showers

    Science.gov (United States)

    Ludwig, Marianne

    2011-06-01

    Cosmic rays entering the Earth's atmosphere induce extensive air showers consisting of up to billions of secondary particles. Among them, a multitude of electrons and positrons are generated. These get deflected in the Earth's magnetic field, creating time-varying transverse currents. Thereby, the air shower emits coherent radiation in the MHz frequency range measured by radio antenna arrays on the ground such as LOPES at the KIT. This detection method provides a possibility to study cosmic rays with energies above 1017 eV. At this time, the radio technique undergoes the change from prototype experiments to large scale application. Thus, a detailed understanding of the radio emission process is needed more than ever. Before starting this work, different models made conflicting predictions on the pulse shape and the amplitude of the radio signal. It turned out that a radiation component caused by the variation of the number of charged particles within the air shower was missed in several models. The Monte Carlo code REAS2 superposing the radiation of the individual air shower electrons and positrons was one of those. At this time, it was not known how to take the missing component into account. For REAS3, we developed and implemented the endpoint formalism, a universal approach, to calculate the radiation from each single particle. For the first time, we achieve a good agreement between REAS3 and MGMR, an independent and completely different simulation approach. In contrast to REAS3, MGMR is based on a macroscopic approach and on parametrisations of the air shower. We studied the differences in the underlying air shower models to explain the remaining deviations. For comparisons with LOPES data, we developed a new method which allows "top-down" simulations of air showers. From this, we developed an air shower selection criterion based on the number of muons measured with KASCADE to take shower-to-shower fluctuations for a single event analysis into account. With

  17. Air shower density spectrum

    International Nuclear Information System (INIS)

    Porter, M.R.; Foster, J.M.; Hodson, A.L.; Hazen, W.E.; Hendel, A.Z.; Bull, R.M.

    1982-01-01

    Measurements of the differential local density spectrum have been made using a 1 m 2 discharge chamber mounted in the Leeds discharge chamber array. The results are fitted to a power law of the form h(δ)dδ = kδsup(-ν)dδ, where ν=2.47+-0.04; k=0.21 s - 1 , for 7 m - 2 - 2 ; ν=2.90+-0.22; k=2.18 s - 1 , for δ > 200 m - 2 . Details of the measurement techniques are given with particular reference to the treatment of closely-spaced discharges. A comparison of these results with previous experiments using different techniques is made

  18. Cosmic ray air showers in the knee energy region

    Indian Academy of Sciences (India)

    The cosmic ray extensive air showers in the knee energy region have been studied by the North Bengal University array. The differential size spectra at different atmospheric depths show a systematic shift of the knee towards smaller shower size with the increase in atmospheric depth. The measured values of spectral ...

  19. A combined cosmic ray muon spectrometer and high energy air shower array

    International Nuclear Information System (INIS)

    Cherry, M.L.; Ayres, D.S.; Halzen, F.

    1986-01-01

    Cosmic rays have been detected at energies in excess of 10 20 eV, and individual sources have been conclusively identified as intense emitters of gamma rays at energies up to 10 16 eV. There is clearly a great deal of exciting astrophysics to be learned from such studies, but it has been suggested that there may be particle physics to be learned from the cosmic beam as well. Based in particular on the reports of surprisingly high fluxes of underground muons from the direction of Cygnus X-3 modulated by the known orbital period, there have been several suggestions recently invoking stable supersymmetric particles produced at Cygnus X-3, enhanced muon production from high energy photons, quark matter, and ''cygnets.'' Although the underground muon results have been questioned, it may still be worthwhile to consider the possibility of new physics beyond the standard model with energy scale (G/sub F/)/sup -1/2/ ≥ 0.25 TeV. For example, there have been recent discussions on the experimental signatures to be observed from new high energy photon couplings to matter, exchanges between constituent quarks and leptons, and stable gluinos and photinos mixed in with the cosmic gamma ray flux. We describe here a possible detector to search for such effects. We utilize the possibility that point sources like Cygnus X-3 can be used to provide a directional time-modulated ''tagged'' high energy photon beam

  20. Large high altitude air shower observatory (LHAASO) project

    International Nuclear Information System (INIS)

    He Huihai

    2010-01-01

    The Large High Altitude Air Shower Observatory (LHAASO) project focuses mainly on the study of 40 GeV-1 PeV gamma ray astronomy and 10 TeV-1 EeV cosmic ray physics. It consists of a 1 km 2 extensive air shower array with 40 000 m 2 muon detectors, 90,000m 2 water Cerenkov detector array, 5 000 m 2 shower core detector array and an air Cerenkov/fluorescence telescope array. Prototype detectors are designed with some of them already in operation. A prototype array of 1% size of LHAASO will be built at the Yangbajing Cosmic Ray Observatory and used to coincidently measure cosmic rays with the ARGO-YBJ experiment. (authors)

  1. Microwave detection of air showers with MIDAS

    Czech Academy of Sciences Publication Activity Database

    Facal San Luis, P.; Alekotte, I.; Alvarez, J.; Berlin, A.; Bertou, X.; Bogdan, M.; Boháčová, Martina; Bonifazi, C.; Carvalho, W.R.; de Mello Neto, J.R.T.; Genat, J.F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I.C.; d´Orfeuil, B.R.; Santos, E.M.; Wayne, S.; Williams, C.; Zas, E.

    2012-01-01

    Roč. 662, Sup. 1 (2012), "S118"-"S123" ISSN 0168-9002 R&D Projects: GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502 Keywords : MIDAS (Microwave Detector of Air Showers) * extensive air showers Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.142, year: 2012

  2. Microwave detection of air showers with MIDAS

    Energy Technology Data Exchange (ETDEWEB)

    Facal San Luis, P., E-mail: facal@kicp.uchicago.edu [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Alekotte, I. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Alvarez, J. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Berlin, A. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bertou, X. [Centro Atomico Bariloche and Instituto Balseiro (CNEA-UNCuyo-CONICET), 8400 San Carlos de Bariloche, Rio Negro (Argentina); Bogdan, M.; Bohacova, M. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); Bonifazi, C. [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Carvalho, W.R. [Universidad de Santiago de Compostela, Departamento de Fisica de Particulas, Campus Sur, E-15782 Santiago de Compostela (Spain); Mello Neto, J.R.T. de [Univ. Federal do Rio de Janeiro (UFRJ), Instituto de Fisica, Cidade Universitaria, Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ (Brazil); Genat, J.F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I.C.; Rouille d& #x27; Orfeuil, B. [University of Chicago, Enrico Fermi Institue and Kavli Institute for Cosmological Physics, 5640 South Ellis Avenue, Chicago, IL 60637 (United States); and others

    2012-01-11

    MIDAS (MIcrowave Detector of Air Showers) is a prototype of a microwave telescope to detect extensive air showers: it images a 20{sup Degree-Sign } Multiplication-Sign 10{sup Degree-Sign} region of the sky with a 4.5 m parabolic reflector and 53 feeds in the focal plane. It has been commissioned in March 2010 and is currently taking data. We present the design, performance and first results of MIDAS.

  3. Microwave detection of air showers with MIDAS

    International Nuclear Information System (INIS)

    Facal San Luis, P.; Alekotte, I.; Alvarez, J.; Berlin, A.; Bertou, X.; Bogdan, M.; Bohacova, M.; Bonifazi, C.; Carvalho, W.R.; Mello Neto, J.R.T. de; Genat, J.F.; Mills, E.; Monasor, M.; Privitera, P.; Reyes, I.C.; Rouille d’Orfeuil, B.

    2012-01-01

    MIDAS (MIcrowave Detector of Air Showers) is a prototype of a microwave telescope to detect extensive air showers: it images a 20 ° ×10 ° region of the sky with a 4.5 m parabolic reflector and 53 feeds in the focal plane. It has been commissioned in March 2010 and is currently taking data. We present the design, performance and first results of MIDAS.

  4. Fγ: A new observable for photon-hadron discrimination in hybrid air shower events

    Science.gov (United States)

    Niechciol, M.; Risse, M.; Ruehl, P.; Settimo, M.; Younk, P. W.; Yushkov, A.

    2018-01-01

    To search for ultra-high-energy photons in primary cosmic rays, air shower observables are needed that allow a good separation between primary photons and primary hadrons. We present a new observable, Fγ, which can be extracted from ground-array data in hybrid events, where simultaneous measurements of the longitudinal and the lateral shower profile are performed. The observable is based on a template fit to the lateral distribution measured by the ground array with the template taking into account the complementary information from the measurement of the longitudinal profile, i.e. the primary energy and the geometry of the shower. Fγ shows a very good photon-hadron separation, which is even superior to the separation given by the well-known Xmax observable (the atmospheric depth of the shower maximum). At energies around 1 EeV (10 EeV), Fγ provides a background rejection better than 97.8 % (99.9 %) at a signal efficiency of 50 %. Advantages of the observable Fγ are its technical stability with respect to irregularities in the ground array (i.e. missing or temporarily non-operating stations) and that it can be applied over the full energy range accessible to the air shower detector, down to its threshold energy. Furthermore, Fγ complements nicely to Xmax such that both observables can well be combined to achieve an even better discrimination power, exploiting the rich information available in hybrid events.

  5. Application of an image intensifier to the study on hadrons in air shower, 4

    International Nuclear Information System (INIS)

    Tsushima, Itsuro; Kawasumi, Norio; Hashimoto, Katsumi; Machida, Masaharu

    1975-01-01

    As the apparatus for observing cosmic ray air shower, the particle detection apparatus combining spark chamber, scintillator and photomultiplier tube is frequently used, but the exact detection of particle number is impossible with it when particle density is large. The authors have carried out the experiment to measure nuclear active particles in air shower and to grasp the central part of air shower as energy flow by utilizing an image intensifier tube. On the roof of building S, a laboratory was built, and a core detector of 2 m x 2 m area, 13 AS detectors of 0.25 m 2 and an AS detector of 1 m 2 were installed. The gate of the II was opened by utilizing coincidence pulses, and the position and amount of scintillation in the core detector was taken into a camera through the II. The time of observation was 289 hours, and the time of II operation was 113 hours. Total number of air shower recorded was 218 cases, and the centers of 120 cases among them were determined in the AS detectors at four corners. The centers of 39 cases were within the area of the core detector. In the coincident counting of air shower and burst carried out in the present experiment, the total delay time from the arrival of air shower to the gate pulse actuating the II was 1.6 sec. The core of air shower of about 10 6 size and 1.3 age was caught by this method. The problems for future are the determination of core position for the air shower of smaller size, and the meaning of spot images of II. (Kako, I.)

  6. Investigating cosmic rays and air shower physics with IceCube/IceTop

    Science.gov (United States)

    Dembinski, Hans

    2017-06-01

    IceCube is a cubic-kilometer detector in the deep ice at South Pole. Its square-kilometer surface array, IceTop, is located at 2800 m altitude. IceTop is large and dense enough to cover the cosmic-ray energy spectrum from PeV to EeV energies with a remarkably small systematic uncertainty, thanks to being close to the shower maximum. The experiment offers new insights into hadronic physics of air showers by observing three components: the electromagnetic signal at the surface, GeV muons in the periphery of the showers, and TeV muons in the deep ice. The cosmic-ray flux is measured with the surface signal. The mass composition is extracted from the energy loss of TeV muons observed in the deep ice in coincidence with signals at the surface. The muon lateral distribution is obtained from GeV muons identified in surface signals in the periphery of the shower. The energy spectrum of the most energetic TeV muons is also under study, as well as special events with laterally separated TeV muon tracks which originate from high-pT TeV muons. A combination of all these measurements opens the possibility to perform powerful new tests of hadronic interaction models used to simulate air showers. The latest results will be reviewed from this perspective.

  7. Investigating cosmic rays and air shower physics with IceCube/IceTop

    Directory of Open Access Journals (Sweden)

    Dembinski Hans

    2017-01-01

    Full Text Available IceCube is a cubic-kilometer detector in the deep ice at South Pole. Its square-kilometer surface array, IceTop, is located at 2800 m altitude. IceTop is large and dense enough to cover the cosmic-ray energy spectrum from PeV to EeV energies with a remarkably small systematic uncertainty, thanks to being close to the shower maximum. The experiment offers new insights into hadronic physics of air showers by observing three components: the electromagnetic signal at the surface, GeV muons in the periphery of the showers, and TeV muons in the deep ice. The cosmic-ray flux is measured with the surface signal. The mass composition is extracted from the energy loss of TeV muons observed in the deep ice in coincidence with signals at the surface. The muon lateral distribution is obtained from GeV muons identified in surface signals in the periphery of the shower. The energy spectrum of the most energetic TeV muons is also under study, as well as special events with laterally separated TeV muon tracks which originate from high-pT TeV muons. A combination of all these measurements opens the possibility to perform powerful new tests of hadronic interaction models used to simulate air showers. The latest results will be reviewed from this perspective.

  8. The CYGNUS extensive air-shower experiment

    Energy Technology Data Exchange (ETDEWEB)

    Alexandreas, D.E.; Allen, R.C.; Biller, S.D.; Delay, R.S.; Dion, G.M.; Lu, X.Q.; Vishwanath, P.R.; Yodh, G.B. (Univ. of California, Irvine (United States)); Berley, D.; Chang, C.Y.; Dingus, B.L.; Goodman, J.A.; Haines, T.J.; Gupta, S.; Krakauer, D.A.; Stark, M.J.; Talaga, R.L. (Univ. of Maryland, College Park (United States)); Burman, R.L.; Butterfield, K.; Cady, R.; Hoffman, C.M.; Lloyd-Evans, J.; Nagle, D.E.; Potter, M.E.; Sandberg, V.D.; Sinnis, C.; Stanislaus, S.; Thompson, T.N.; Wilkinson, C.A.; Zhang, W. (Los Alamos National Lab., NM (United States)); Ellsworth, R.W. (George Mason Univ., Fairfax, VA (United States))

    1992-01-01

    The CYGNUS extensive air-shower experiment is described. The design criteria, construction and operation details, and performance characteristics are presented. A discussion of the data analysis techniques is given. Finally, several enhancements and improvements in the apparatus are described. (orig.).

  9. Cosmic Rays and Extensive Air Showers

    CERN Document Server

    Stanev, Todor

    2010-01-01

    We begin with a brief introduction of the cosmic ray energy spectrum and its main features. At energies higher than 105 GeV cosmic rays are detected by the showers they initiate in the atmosphere. We continues with a brief description of the energy spectrum and composition derived from air shower data.

  10. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Messina, S.; Scholten, O.; van den Berg, A.M.

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS)

  11. The radio emission pattern of air showers as measured with LOFAR—a tool for the reconstruction of the energy and the shower maximum

    NARCIS (Netherlands)

    Nelles, A.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, Gia

    2015-01-01

    The pattern of the radio emission of air showers is finely sampled with the Low-Frequency ARray (LOFAR). A set of 382 measured air showers is used to test a fast, analytic parameterization of the distribution of pulse powers. Using this parameterization we are able to reconstruct the shower axis and

  12. The Chicago Air Shower Array (CASA)

    International Nuclear Information System (INIS)

    Gibbs, K.G.

    1988-01-01

    In order to improve the ultrahigh energy flux sensitivity beyond that of existing detectors a new class of very large detectors must be built. In this paper we will discuss one approach to this goal. (orig.)

  13. The new South Pole air shower experiment - SPASE-2

    CERN Document Server

    Dickinson, J E; Gaisser, T K; Gill, J R; Hart, S P; Hinton, J A; Lloyd-Evans, J; Martello, D; Miller, T C; Ogden, P A; Patel, M; Rochester, K; Spiczak, G M; Stanev, T; Watson, A A

    2000-01-01

    This paper describes a new coincidence experiment designed to improve understanding of the composition of the primary cosmic-ray beam around the knee of the spectrum. The experiment consists of an air shower array on the surface (SPASE-2), which works in coincidence with an array of air-Cherenkov detectors (VULCAN), and the Antarctic Muon and Neutrino Detector Array (AMANDA) deep in the ice. The experiment must cover the energy range from approx 10 sup 1 sup 4 to approx 3x10 sup 1 sup 6 eV to overlap with direct measurements at lower energy and encompass the regions of the knee and beyond in the cosmic ray spectrum.

  14. Penetrating particles in horizontal air showers

    International Nuclear Information System (INIS)

    Wohlenberg, J.; Boehm, E.

    1975-01-01

    Particle density and arrival time of muons has been measured in Horizontal Air Showers. 5,600 showers have been recorded in 7,800 hours. Using stringent selection criteria 155 showers have been found horizontal (zenith angle larger 70 0 ) in the size range 4.1 > lg N > 5.5. The muons observed in these showers can be explained by purely electromagnetic origin of horizontal showers. (orig.) [de

  15. Radar reflection off extensive air showers

    CERN Document Server

    Stasielak, J; Bertaina, M; Blümer, J; Chiavassa, A; Engel, R; Haungs, A; Huege, T; Kampert, K -H; Klages, H; Kleifges, M; Krömer, O; Ludwig, M; Mathys, S; Neunteufel, P; Pekala, J; Rautenberg, J; Riegel, M; Roth, M; Salamida, F; Schieler, H; Šmída, R; Unger, M; Weber, M; Werner, F; Wilczyński, H; Wochele, J

    2012-01-01

    We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  16. Studying High pT muons in Cosmic-Ray Air Showers

    International Nuclear Information System (INIS)

    Klein, Spencer R.

    2006-01-01

    Most cosmic-ray air shower arrays have focused on detecting electromagnetic shower particles and low energy muons. A few groups (most notably MACRO + EASTOP and SPASE + AMANDA) have studied the high energy muon component of showers. However, these experiments had small solid angles, and did not study muons far from the core. The IceTop + IceCube combination, with its 1 km 2 muon detection area can study muons far from the shower core. IceCube can measure their energy loss (dE/dx), and hence their energy. With the energy, and the known distribution of production heights, the transverse momentum (p T ) spectrum of high p T muons can be determined. The production of the semuons is calculable in perturbative QCD, so the measured muon spectra can be used to probe the composition of incident cosmic-rays

  17. First upper limits on the radar cross section of cosmic-ray induced extensive air showers

    Science.gov (United States)

    Abbasi, R. U.; Abe, M.; Abou Bakr Othman, M.; Abu-Zayyad, T.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J. W.; Bergman, D. R.; Besson, D.; Blake, S. A.; Byrne, M.; Cady, R.; Chae, M. J.; Cheon, B. G.; Chiba, J.; Chikawa, M.; Cho, W. R.; Farhang-Boroujeny, B.; Fujii, T.; Fukushima, M.; Gillman, W. H.; Goto, T.; Hanlon, W.; Hanson, J. C.; Hayashi, Y.; Hayashida, N.; Hibino, K.; Honda, K.; Ikeda, D.; Inoue, N.; Ishii, T.; Ishimori, R.; Ito, H.; Ivanov, D.; Jayanthmurthy, C.; Jui, C. C. H.; Kadota, K.; Kakimoto, F.; Kalashev, O.; Kasahara, K.; Kawai, H.; Kawakami, S.; Kawana, S.; Kawata, K.; Kido, E.; Kim, H. B.; Kim, J. H.; Kim, J. H.; Kitamura, S.; Kitamura, Y.; Kunwar, S.; Kuzmin, V.; Kwon, Y. J.; Lan, J.; Lim, S. I.; Lundquist, J. P.; Machida, K.; Martens, K.; Matsuda, T.; Matsuyama, T.; Matthews, J. N.; Minamino, M.; Mukai, K.; Myers, I.; Nagasawa, K.; Nagataki, S.; Nakamura, T.; Nonaka, T.; Nozato, A.; Ogio, S.; Ogura, J.; Ohnishi, M.; Ohoka, H.; Oki, K.; Okuda, T.; Ono, M.; Oshima, A.; Ozawa, S.; Park, I. H.; Prohira, S.; Pshirkov, M. S.; Rezazadeh-Reyhani, A.; Rodriguez, D. C.; Rubtsov, G.; Ryu, D.; Sagawa, H.; Sakurai, N.; Sampson, A. L.; Scott, L. M.; Schurig, D.; Shah, P. D.; Shibata, F.; Shibata, T.; Shimodaira, H.; Shin, B. K.; Smith, J. D.; Sokolsky, P.; Springer, R. W.; Stokes, B. T.; Stratton, S. R.; Stroman, T. A.; Suzawa, T.; Takai, H.; Takamura, M.; Takeda, M.; Takeishi, R.; Taketa, A.; Takita, M.; Tameda, Y.; Tanaka, H.; Tanaka, K.; Tanaka, M.; Thomas, S. B.; Thomson, G. B.; Tinyakov, P.; Tkachev, I.; Tokuno, H.; Tomida, T.; Troitsky, S.; Tsunesada, Y.; Tsutsumi, K.; Uchihori, Y.; Udo, S.; Urban, F.; Vasiloff, G.; Venkatesh, S.; Wong, T.; Yamane, R.; Yamaoka, H.; Yamazaki, K.; Yang, J.; Yashiro, K.; Yoneda, Y.; Yoshida, S.; Yoshii, H.; Zollinger, R.; Zundel, Z.

    2017-01-01

    TARA (Telescope Array Radar) is a cosmic ray radar detection experiment colocated with Telescope Array, the conventional surface scintillation detector (SD) and fluorescence telescope detector (FD) near Delta, Utah, U.S.A. The TARA detector combines a 40 kW, 54.1 MHz VHF transmitter and high-gain transmitting antenna which broadcasts the radar carrier over the SD array and within the FD field of view, towards a 250 MS/s DAQ receiver. TARA has been collecting data since 2013 with the primary goal of observing the radar signatures of extensive air showers (EAS). Simulations indicate that echoes are expected to be short in duration (∼ 10 μs) and exhibit rapidly changing frequency, with rates on the order 1 MHz/μs. The EAS radar cross-section (RCS) is currently unknown although it is the subject of over 70 years of speculation. A novel signal search technique is described in which the expected radar echo of a particular air shower is used as a matched filter template and compared to waveforms obtained by triggering the radar DAQ using the Telescope Array fluorescence detector. No evidence for the scattering of radio frequency radiation by EAS is obtained to date. We report the first quantitative RCS upper limits using EAS that triggered the Telescope Array Fluorescence Detector. The transmitter is under the direct control of experimenters, and in a radio-quiet area isolated from other radio frequency (RF) sources. The power and radiation pattern are known at all times. Forward power up to 40 kW and gain exceeding 20 dB maximize energy density in the radar field. Continuous wave (CW) transmission gives 100% duty cycle, as opposed to pulsed radar. TARA utilizes a high sample rate DAQ (250 MS/s). TARA is colocated with a large state-of-the-art conventional CR observatory, allowing the radar data stream to be sampled at the arrival times of known cosmic ray events. Each of these attributes of the TARA detector has been discussed in detail in the literature [8]. A map

  18. Probing Atmospheric Electric Fields through Radio Emission from Cosmic-Ray-Induced Air Showers

    NARCIS (Netherlands)

    Scholten, Olaf; Trinh, Gia; Buitink, Stijn; Corstanje, Arthur; Ebert, Ute; Enriquez, Emilio; Falcke, Heino; Hoerandel, Joerg; Nelles, Anna; Schellart, Pim; Rachen, Joerg; Rutjes, Casper; ter Veen, Sander; Rossetto, Laura; Thoudam, Satyendra

    2016-01-01

    Energetic cosmic rays impinging on the atmosphere create a particle avalanche called an extensive air shower. In the leading plasma of this shower electric currents are induced that generate coherent radio wave emission that has been detected with LOFAR, a large and dense array of simple radio

  19. High-precision measurements of extensive air showers with the SKA

    NARCIS (Netherlands)

    Huege, T.; Bray, J. D.; Buitink, S.; Dallier, R.; Ekers, R. D.; Falcke, H.; Haungs, A.; James, C. W.; Martin, L.; Revenu, B.; Scholten, O.; Schröder, F. G.; Zilles, A.

    2015-01-01

    As of 2023, the Square Kilometre Array will constitute the world's largest radio telescope, offering unprecedented capabilities for a diverse science programme in radio astronomy. At the same time, the SKA will be ideally suited to detect extensive air showers initiated by cosmic rays in the Earth's

  20. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    NARCIS (Netherlands)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J. J.; Matthews, A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration, [No Value

    2015-01-01

    We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence

  1. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    NARCIS (Netherlands)

    Pierre Auger Collaboration, [No Value; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; D\\'\\iaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garc\\'\\ia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agëra, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Mart\\'\\inez Bravo, O.; Martraire, D.; Mas\\'\\ias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodr\\'\\iguez-Fr\\'\\ias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiał kowski, A.; Šm\\'\\ida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2014-01-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade

  2. Cosmic Ray-Air Shower Measurement from Space

    Science.gov (United States)

    Takahashi, Yoshiyuki

    1997-01-01

    A feasibility study has been initiated to observe from space the highest energy cosmic rays above 1021 eV. A satellite observatory concept, the Maximum-energy Auger (Air)-Shower Satellite (MASS), is recently renamed as the Orbital Wide-angle Collector (OWL) by taking its unique feature of using a very wide field-of-view (FOV) optics. A huge array of imaging devices (about 10(exp 6) pixels) is required to detect and record fluorescent light profiles of cosmic ray cascades in the atmosphere. The FOV of MASS could extend to as large as about 60 in. diameter, which views (500 - 1000 km) of earth's surface and more than 300 - 1000 cosmic ray events per year could be observed above 1020 eV. From far above the atmosphere, the MASS/OWL satellite should be capable of observing events at all angles including near horizontal tracks, and would have considerable aperture for high energy photon and neutrino observation. With a large aperture and the spatial and temporal resolution, MASS could determine the energy spectrum, the mass composition, and arrival anisotropy of cosmic rays from 1020 eV to 1022 eV; a region hitherto not explored by ground-based detectors such as the Fly's Eye and air-shower arrays. MASS/OWL's ability to identify cosmic neutrinos and gamma rays may help providing evidence for the theory which attributes the above cut-off cosmic ray flux to the decay of topological defects. Very wide FOV optics system of MASS/OWL with a large array of imaging devices is applicable to observe other atmospheric phenomena including upper atmospheric lightning. The wide FOV MASS optics being developed can also improve ground-based gamma-ray observatories by allowing simultaneous observation of many gamma ray sources located at different constellations.

  3. Radar reflection off extensive air showers

    Directory of Open Access Journals (Sweden)

    Werner F.

    2013-06-01

    Full Text Available We investigate the possibility of detecting extensive air showers by the radar technique. Considering a bistatic radar system and different shower geometries, we simulate reflection of radio waves off the static plasma produced by the shower in the air. Using the Thomson cross-section for radio wave reflection, we obtain the time evolution of the signal received by the antennas. The frequency upshift of the radar echo and the power received are studied to verify the feasibility of the radar detection technique.

  4. Calibrating the absolute amplitude scale for air showers measured at LOFAR

    International Nuclear Information System (INIS)

    Nelles, A.; Hörandel, J. R.; Karskens, T.; Krause, M.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Buitink, S.; Erdmann, M.; Krause, R.; Haungs, A.; Hiller, R.; Huege, T.; Link, K.; Schröder, F. G.; Norden, M. J.; Scholten, O.

    2015-01-01

    Air showers induced by cosmic rays create nanosecond pulses detectable at radio frequencies. These pulses have been measured successfully in the past few years at the LOw-Frequency ARray (LOFAR) and are used to study the properties of cosmic rays. For a complete understanding of this phenomenon and the underlying physical processes, an absolute calibration of the detecting antenna system is needed. We present three approaches that were used to check and improve the antenna model of LOFAR and to provide an absolute calibration of the whole system for air shower measurements. Two methods are based on calibrated reference sources and one on a calibration approach using the diffuse radio emission of the Galaxy, optimized for short data-sets. An accuracy of 19% in amplitude is reached. The absolute calibration is also compared to predictions from air shower simulations. These results are used to set an absolute energy scale for air shower measurements and can be used as a basis for an absolute scale for the measurement of astronomical transients with LOFAR

  5. Radio detection of extensive air showers at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Berat, C.

    2013-01-01

    The Pierre Auger Observatory explores the potential of radio-detection techniques to measure extensive air showers (EAS) induced by ultra-high energy cosmic rays. To study in detail the mechanisms responsible for radio emission in the MHz range, the Auger Engineering Radio Array has been installed at the Observatory. Presently consisting of 24 radio-detection stations, this number will grow to 150 units covering an area of almost 20 km 2 . Novel detection techniques based on the GHz emission from the EAS are currently being studied. AMBER (Air-shower Microwave Bremsstrahlung Experimental Radiometer) and MIDAS (Microwave Detection of Air Showers) are prototypes for a large imaging dish antenna. In EASIER (Extensive Air Shower Identification using Electron Radiometer), the microwave emission is detected by antenna horns located on each surface detector. MIDAS is a self-triggering system while AMBER and EASIER use the trigger from the Auger detectors to record the emission. The status of these radio-detection R and D efforts at the Pierre Auger Observatory will be reported

  6. Radio detection of extensive air showers at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Berat, C., E-mail: berat@lpsc.in2p3.fr [LPSC, Université Joseph Fourier Grenoble 1, CNRS/IN2P3, Institut Polytechnique de Grenoble, 53 rue des Martyrs, 38000 Grenoble (France)

    2013-08-01

    The Pierre Auger Observatory explores the potential of radio-detection techniques to measure extensive air showers (EAS) induced by ultra-high energy cosmic rays. To study in detail the mechanisms responsible for radio emission in the MHz range, the Auger Engineering Radio Array has been installed at the Observatory. Presently consisting of 24 radio-detection stations, this number will grow to 150 units covering an area of almost 20 km{sup 2}. Novel detection techniques based on the GHz emission from the EAS are currently being studied. AMBER (Air-shower Microwave Bremsstrahlung Experimental Radiometer) and MIDAS (Microwave Detection of Air Showers) are prototypes for a large imaging dish antenna. In EASIER (Extensive Air Shower Identification using Electron Radiometer), the microwave emission is detected by antenna horns located on each surface detector. MIDAS is a self-triggering system while AMBER and EASIER use the trigger from the Auger detectors to record the emission. The status of these radio-detection R and D efforts at the Pierre Auger Observatory will be reported.

  7. pp interactions in extended air showers

    Directory of Open Access Journals (Sweden)

    Kendi Kohara A.

    2015-01-01

    Full Text Available Applying the recently constructed analytic representation for the pp scattering amplitudes, we present a study of p-air cross sections, with comparison to the data from Extensive Air Shower (EAS measurements. The amplitudes describe with precision all available accelerator data at ISR, SPS and LHC energies, and its theoretical basis, together with the very smooth energy dependence of parameters controlled by unitarity and dispersion relations, permit reliable extrapolation to higher energies and to asymptotic ranges. The comparison with cosmic ray data is very satisfactory in the whole pp energy interval from 1 to 100 TeV. High energy asymptotic behaviour of cross sections is investigated in view of the geometric scaling property of the amplitudes. The amplitudes predict that the proton does not behave as a black disk even at asymptotically high enegies, and we discuss possible non-trivial consequences of this fact for pA collision cross sections at higher energies.

  8. Longitudinal development of air-shower electrons studied from the arrival time distributions of atmospheric Cerenkov light measured at 5200 m above sea level

    International Nuclear Information System (INIS)

    Inoue, N.; Kaneko, T.; Yoshii, H.

    1985-01-01

    The longitudinal development of electrons in extensive air showers before the maximum has been studied by measuring the arrival time distributions of atmospheric Cerenkov light from air showers, with primary energies in the range 6 x 10 15 to 2 x 10 17 eV, in the Chacaltaya air-shower array. These arrival time distributions are consistent with those calculated using a model of particle interactions which contain Feynman scaling in the fragmentation region, an Esup(1/2) multiplicity law in the pionisation region and a rising cross section for primary protons. Such a model also reproduces the arrival time distributions of Cerenkov light measured in the Akeno air-shower array as described in the preceding paper, which implies a very fast development before the maximum and a slow development after the maximum. (author)

  9. Time correlation measurements from extensive air showers detected by the EEE telescopes

    CERN Document Server

    Abbrescia, M; Fabbri, F L; Gnesi, I; Bressan, E; Tosello, F; Librizzi, F; Coccia, E; Paoletti, R; Yanez, G; Li, S; Votano, L; Scribano, A; Avanzini, C; Piragino, G; Perasso, L; Regano, A; Ferroli, R Baldini; De Gruttola, D; Sartorelli, G; Siddi, E; Cifarelli, L; Di Giovanni, A; Frolov, V; Serci, S; Selvi, M; Zouyevski, R; Dreucci, M; Squarcia, S; Righini, G C; Agocs, A; Zichichi, A; La Rocca, P; Pilo, F; Miozzi, S; Massai, M; Cicalo, C; D'Incecco, M; Panareo, M; Gemme, G; Garbini, M; Aiola, S; Riggi, F; Hatzifotiadou, D; Scapparone, E; Chiavassa, A; Maggiora, A; Bencivenni, G; Gustavino, C; Spandre, G; Taiuti, M; Williams, M C S; Bossini, E; De Pasquale, S

    2013-01-01

    Time correlated events due to cosmic muons from extensive air showers have been detected by means of telescope pairs of the EEE (Extreme Energy Events) Project array. The coincidence rate, properly normalized for detector acceptance, efficiency and altitude location, has been extracted as a function of the relative distance between the telescopes. The results have been also compared with additional measurements carried out by small scintillator detectors at various distances.

  10. Cooperative observations of air showers in Tasmania looking for anisotropies in 1013 - 1014 eV primaries (COALA project)

    International Nuclear Information System (INIS)

    Fenton, A.G.; Fenton, K.B.; Humble, J.E.

    1981-01-01

    Observations of cosmic ray air showers (median primary energy: 5.10 13 eV) in Tasmania have been planned to start during 1981. The observations will be carried out through collaboration of the Hobart and Nagoya groups, in order to catch cosmic ray flows in a somewhat stereoscopic manner with simultaneous observations in the northern hemisphere (Mt. Norikura). The air shower array consists of 18 unit trays of 4 m 2 proportional counters deployed over an area of 20 m x 160 m. The shower frequency in a fundamental coincidence mode is expected to be about 16,000 events per hour

  11. Nitrogen fluorescence in air for observing extensive air showers

    CERN Document Server

    Keilhauer, B; Fraga, M; Matthews, J; Sakaki, N; Tameda, Y; Tsunesada, Y; Ulrich, A

    2012-01-01

    Extensive air showers initiate the fluorescence emissions from nitrogen molecules in air. The UV-light is emitted isotropically and can be used for observing the longitudinal development of extensive air showers in the atmosphere over tenth of kilometers. This measurement technique is well-established since it is exploited for many decades by several cosmic ray experiments. However, a fundamental aspect of the air shower analyses is the description of the fluorescence emission in dependence on varying atmospheric conditions. Different fluorescence yields affect directly the energy scaling of air shower reconstruction. In order to explore the various details of the nitrogen fluorescence emission in air, a few experimental groups have been performing dedicated measurements over the last decade. Most of the measurements are now finished. These experimental groups have been discussing their techniques and results in a series of \\emph{Air Fluorescence Workshops} commenced in 2002. At the 8$^{\\rm{th}}$ Air Fluoresc...

  12. Extensive Air Showers with unusual structure

    Directory of Open Access Journals (Sweden)

    Beznosko Dmitriy

    2017-01-01

    Full Text Available A total of 23500 Extensive Air Showers (EAS with energies above ∼ 1016 eV have been detected during the ∼3500 hours of the Horizon-T (HT detectors system operations before Aug. 2016. Among these EAS, more than a thousand had an unusual spatial and temporary structure that showed pulses with several maxima (modals or modes from several detection points of the HT at the same time. These modes are separated in time from each other starting from tens to thousands of ns. These EAS have been called multi-modal. Analysis shows that the multi-modal EAS that have been detected by Horizon-T have the following properties: 1. Multi-modal EAS have energy above ∼1017 eV. 2. Pulses with several modes are located at large distances from the EAS axis. An overview of the collected data will be provided. General comments about the unusual structure of the multi-modal EAS will be presented.

  13. Correlation of high energy muons with primary composition in extensive air shower

    Science.gov (United States)

    Chou, C.; Higashi, S.; Hiraoka, N.; Ozaki, S.; Sato, T.; Suwada, T.; Takahasi, T.; Umeda, H.

    1985-01-01

    An experimental investigation of high energy muons above 200 GeV in extensive air showers has been made for studying high energy interaction and primary composition of cosmic rays of energies in the range 10 to the 14th power approx. 10 to the 15th power eV. The muon energies are estimated from the burst sizes initiated by the muons in the rock, which are measured by four layers of proportional counters, each of area 5 x 2.6 sq m, placed at 30 m.w.e. deep, Funasaka tunnel vertically below the air shower array. These results are compared with Monte Carlo simulations based on the scaling model and the fireball model for two primary compositions, all proton and mixed.

  14. Microwave detection of air showers with the MIDAS experiment

    International Nuclear Information System (INIS)

    Privitera, Paolo; Alekotte, I.; Alvarez-Muniz, J.; Berlin, A.; Bertou, X.; Bogdan, M.; Bohacova, M.; Bonifazi, C.; Carvalho, W.R.; Mello Neto, J.R.T. de; Facal San Luis, P.; Genat, J.F.; Hollon, N.; Mills, E.; Monasor, M.; Reyes, L.C.; Rouille d'Orfeuil, B.; Santos, E.M.; Wayne, S.; Williams, C.

    2011-01-01

    Microwave emission from Extensive Air Showers could provide a novel technique for ultra-high energy cosmic rays detection over large area and with 100% duty cycle. We describe the design, performance and first results of the MIDAS (MIcrowave Detection of Air Showers) detector, a 4.5 m parabolic dish with 53 feeds in its focal plane, currently installed at the University of Chicago.

  15. Radio morphing - towards a full parametrisation of the radio signal from air showers

    Science.gov (United States)

    Zilles, A.; Charrier, D.; Kotera, K.; Le Coz, S.; Martineau-Huynh, O.; Medina, C.; Niess, V.; Tueros, M.; de Vries, K.

    2017-12-01

    Over the last decades, radio detection of air showers has been established as a detection technique for ultra-high-energy cosmic-rays impinging on the Earth's atmosphere with energies far beyond LHC energies. Today’s second-generation of digital radio-detection experiments, as e.g. AERA or LOFAR, are becoming competitive in comparison to already standard techniques e.g. fluorescence light detection. Thanks to a detailed understanding of the physics of the radio emission in extensive air showers, simulations of the radio signal are already successfully tested and applied in the reconstruction of cosmic rays. However the limits of the computational power resources are easily reached when it comes to computing electric fields at the numerous positions requested by large or dense antenna arrays. In the case of mountainous areas as e.g. for the GRAND array, where 3D shower simulations are necessary, the problem arises with even stronger acuity. Therefore we developed a full parametrisation of the emitted radio signal on the basis of generic shower simulations which will reduce the simulation time by orders of magnitudes. In this talk we will present this concept after a short introduction to the concept of the radio detection of air-shower induced by cosmic rays.

  16. Small changes in the atmospheric electric field from extensive air showers. [E > 10/sup 16/ eV

    Energy Technology Data Exchange (ETDEWEB)

    Bonino, G; Dardo, M [Turin Univ. (Italy); Pavese, P; Piano, A [Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica

    1977-05-28

    The authors present data on small changes in the atmospheric electric field related to the passage of extensive air showers initiated by primary particles of energy >=10/sup 16/ eV. Such changes were detected by electrometric methods in conjunction with a particle shower array.

  17. Novel method for detecting the hadronic component of extensive air showers

    International Nuclear Information System (INIS)

    Gromushkin, D. M.; Volchenko, V. I.; Petrukhin, A. A.; Stenkin, Yu. V.; Stepanov, V. I.; Shchegolev, O. B.; Yashin, I. I.

    2015-01-01

    A novel method for studying the hadronic component of extensive air showers (EAS) is proposed. The method is based on recording thermal neutrons accompanying EAS with en-detectors that are sensitive to two EAS components: an electromagnetic (e) component and a hadron component in the form of neutrons (n). In contrast to hadron calorimeters used in some arrays, the proposed method makes it possible to record the hadronic component over the whole area of the array. The efficiency of a prototype array that consists of 32 en-detectors was tested for a long time, and some parameters of the neutron EAS component were determined

  18. Delayed hadrons in air showers observed in Chacaltaya

    International Nuclear Information System (INIS)

    Kakimoto, Fumio

    1984-01-01

    Bolivian Air Shower Joint Experiment group has studied high energy interaction by measuring the aspect of vertical growth of air showers of 10 16 eV or more at Mt. Chacaltaya Space Physics Observatory at 5200 m above sea level and atmospheric depth of 550 g/cm 2 . The aspect of vertical growth of electrons from about 100 g/cm 2 to about 400 g/cm 2 of atmospheric depth obtained by the measured results of the time of arrival distribution of air Cherenkov radiation at Mt. Chacaltaya agreed with the one predicted from the enhanced 1/2 power of E model. Since the vertical growth of electrons and muons in about 10 17 eV air showers from the atmospheric apex was difficult to give the unified explanation with known interaction models, the University of Tokyo group has proposed a two-component model for air shower growth. If this second component is formed from heavy particles or heavy quantum state as parents, it should be observed as the component which arrives later in air shower. Thus, the measurement and experiment on the delayed hadrons in air showers have been started. In this paper, the experiment, analysis and results are reported. It is clear that the parent particles which caused such a phenomenon were not pions which were multiply generated by the interaction generally known. Therefore, an exact simulating calculation must be performed and compared with the experimental results to obtain the final conclusion from the measured results of this time. (Wakatsuki, Y.)

  19. Measurement of the muon content in air showers at the Pierre Auger Observatory

    Directory of Open Access Journals (Sweden)

    Veberič Darko

    2016-01-01

    Full Text Available The muon content of extensive air showers produced by ultra-high energy cosmic rays is an observable sensitive to the composition of primary particles and to the properties of hadronic interactions governing the evolution of air-shower cascades. We present different methods for estimation of the number of muons at the ground and the muon production depth. These methods use measurements of the longitudinal, lateral, and temporal distribution of particles in air showers recorded by the detectors of the Pierre Auger Observatory. The results, obtained at about 140 TeV center-of-mass energy for proton primaries, are compared to the predictions of LHC-tuned hadronic-interaction models used in simulations with different primary masses. The models exhibit a deficitin the predicted muon content. The combination of these results with other independent mass composition analyses, such as those involving the depth of shower maximum observablemax, provide additional constraints on hadronic-interaction models for energies beyond the reach of the LHC.

  20. Spatial structure of extensive air showers near the axis

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, E N; Gal' perin, M D; Glemba, P Ya [AN SSSR, Moscow. Inst. Yadernykh Issledovanij; Moskovskij Gosudarstvennyj Univ. (USSR). Nauchno-Issledovatel' skij Inst. Yadernoj Fiziki; Consiglio Nazionale delle Ricerche, Turin (Italy). Lab. di Cosmo-Geofisica)

    1978-07-01

    The spatial structure of the extensive air showers has been investigated. The tests have been staged on the 400 scintillation counter installation. It has been shown, that spatial distribution of the extensive air showers in the vicinity of the axis does not vary in case of the Nsub(e) electron number showers in the 10/sup 5/-10/sup 6/ range. The share of the showers having a clear-cut multicore structure is approximately 3% with Nsub(e) >= 2x10/sup 5/.

  1. Cosmic ray radio emission as air shower detection

    International Nuclear Information System (INIS)

    Curutiu, Alexandru; Rusu, Mircea; Isar, Gina; Zgura, Sorin

    2004-01-01

    The possibility of radio-detection of ultra-high energy cosmic rays (within the 10 to 100 MHz range) are discussed. Currently, air showers are detected by various methods, mainly based on particle detectors (KASCADE, Auger) or optical detection (Cerenkov radiation). Recently,to detect radio emission from cosmic ray air showers a method using electromagnetic radiation in low frequency domain (LOFAR) was proposed. We are investigating this possibility, using simulation codes created to investigate electromagnetic radiation of intricate antennae structure, for example fractal antennas. Some of the preliminary results will be communicated in this session. (authors)

  2. Extensive Air Showers Detected by Aragats Neutron Monitor

    International Nuclear Information System (INIS)

    Badalyan, A.; Chilingarian, A.; Hovsepyan, G.; Grigoryan, A.; Khanikyants, Y.; Manukyan, A.; Pokhsraryan, D.; Soghomonyan, S.

    2017-01-01

    Extensive Air Shower (EAS) duration as registered by the surface particle detectors does not exceed a few tens of nanosecond. However, Neutron monitors containing plenty of absorbing matter can respond to EAS core traversal during 1 ∼ms by registering secondary slow neutrons born by EAS hadrons in the soil, walls of buildings and in the matter of detector itself. Thus, the time distribution of the pulses from the proportional counters of the neutron monitor after EAS propagation extends to ∼l ms, ∼5 orders of magnitude larger than the EAS passing time. The Aragats Neutron Monitor (ArNM) has a special option for the EAS core detection. In general, the dead time of NM is ∼1 ms that provides the one-to-one relation of incident hadrons and detector counts. The pulses generated by the neutrons possibly entering the proportional chamber after the first one will be neglected. In ArNM, we use several “electronic” dead times, and with the shortest one, 400 ns, the detector counts all pulses that enter the proportional chambers. If ArNM one-second time series corresponding to the shortest dead time contain much more signals (a neutron burst) than with l-ms dead time, then we conclude that the EAS core hits the detector. We assume that he distribution of registered burst multiplicities is proportional to the energy of the primary particle. The primary cosmic ray energy spectrum was obtained by the frequency analysis through the counting frequencies of the multiplicities of different magnitudes and relating them to the integral energy spectrum measured by the MAKET array at the same place several years ago. (author)

  3. The cosmic ray primary composition between $10^{15}$ and $10^{16}$ ev from Extensive Air Showers electromagnetic and TeV muon data

    CERN Document Server

    Aglietta, M; Ambrosio, M; Antolini, R; Antonioli, P; Arneodo, F; Baldini, A; Barbarino, G C; Barish, B C; Battistoni, G; Becherini, Y; Bellotti, R; Bemporad, C; Bergamasco, L; Bernardini, P; Bertaina, M; Bilokon, H; Bower, C; Brigida, M; Bussino, S; Cafagna, F; Calicchio, M; Campana, D; Carboni, M; Caruso, R; Castagnoli, C; Castellina, A; Cecchini, S; Cei, F; Chiarella, V; Chiavassa, A; Choudhary, B C; Cini, G; Coutu, S; Cozzi, M; D'Ettorre-Piazzoli, B; De Cataldo, G; De Marzo, C; De Mitri, I; De Vincenzi, M; Dekhissi, H; Derkaoui, J; Di Credico, A; Di Sciascio, G; Erriquez, O; Favuzzi, C; Forti, C; Fulgione, W; Fusco, P; Galeotti, P; Ghia, P L; Giacomelli, G; Giannini, G; Giglietto, N; Giorgini, M; Grassi, M; Grillo, A; Guarino, F; Gustavino, C; Habig, A; Hanson, K; Heinz, R; Iacovacci, M; Iarocci, E; Katsavounidis, E; Katsavounidis, I; Kearns, E; Kim, H; Kyriazopoulou, S; Lamanna, E; Lane, C; Levin, D S; Lipari, P; Longley, N P; Longo, M J; Loparco, F; Maaroufi, F; Mancarella, G; Mandrioli, G; Mannocchi, G; Margiotta, A; Marini, A; Martello, D; Marzari-Chiesa, A; Mazziotta, M N; Michael, D G; Monacelli, P; Montaruli, T; Monteno, M; Morello, C; Mufson, S; Musser, J; Navarra, G; Nicolò, D; Nolty, R; Orth, C; Osteria, G; Palamara, O; Patera, V; Patrizii, L; Pazzi, R; Peck, C W; Perrone, L; Petrera, S; Popa, V; Rainó, A; Reynoldson, J; Ronga, F; Saavedra, O; Satriano, C; Scapparone, E; Scholberg, K; Sciubba, A; Serra, P; Sioli, M; Sirri, G; Sitta, M; Spinelli, P; Spinetti, M; Spurio, M; Stamerra, A; Steinberg, R; Stone, J L; Sulak, L R; Surdo, A; Tarle, G; Togo, V; Trinchero, G C; Vakili, M; Valchierotti, S; Vallania, P; Vernetto, S; Vigorito, C; Walter, C W; Webb, R; 10.1016/j.astropartphys.2003.10.004

    2004-01-01

    The cosmic ray primary composition in the energy range between 10/sup 15/ and 10/sup 16/ eV, i.e., around the "knee" of the primary spectrum, has been studied through the combined measurements of the EAS-TOP air shower array (2005 m a.s.l., 10/sup 5/ m/sup 2/ collecting area) and the MACRO underground detector (963 m a.s.l., 3100 m w.e. of minimum rock overburden, 920 m/sup 2/ effective area) at the National Gran Sasso Laboratories. The used observables are the air shower size (N/sub e/) measured by EAS-TOP and the muon number (N /sub mu /) recorded by MACRO, The two detectors are separated on average by 1200 m of rock, and located at a respective zenith angle of about 30 degrees . The energy threshold at the surface for muons reaching the MACRO depth is approximately 1.3 TeV. Such muons are produced in the early stages of the shower development and in a kinematic region quite different from the one relevant for the usual N/sub mu /-N/sub e/ studies. The measurement leads to a primary composition becoming hea...

  4. Simple ADC unit for cosmic ray air shower experiments

    Energy Technology Data Exchange (ETDEWEB)

    Goswami, G C; Ghosh, B; Ghoshdastidar, M R; Sengupta, S K; Chaudhuri, N [North Bengal Univ., Darjeeling (India). Dept. of Physics

    1982-02-01

    The design of a new low cost analog-to-digital converter system is described. It is based upon the method of linearising the charging process of a storage condenser and is controlled by logic gates. Its tested characteristics have been found to be reliable for application in cosmic ray air shower experiments.

  5. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    Science.gov (United States)

    The Pierre Auger Collaboration

    2016-01-01

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a ``beacon transmitter'' which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA.

  6. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    International Nuclear Information System (INIS)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E.J.; Al Samarai, I.; Albuquerque, I.F.M.; Allekotte, I.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.

    2016-01-01

    To exploit the full potential of radio measurements of cosmic-ray air showers at MHz frequencies, a detector timing synchronization within 1 ns is needed. Large distributed radio detector arrays such as the Auger Engineering Radio Array (AERA) rely on timing via the Global Positioning System (GPS) for the synchronization of individual detector station clocks. Unfortunately, GPS timing is expected to have an accuracy no better than about 5 ns. In practice, in particular in AERA, the GPS clocks exhibit drifts on the order of tens of ns. We developed a technique to correct for the GPS drifts, and an independent method is used to cross-check that indeed we reach a nanosecond-scale timing accuracy by this correction. First, we operate a ''beacon transmitter'' which emits defined sine waves detected by AERA antennas recorded within the physics data. The relative phasing of these sine waves can be used to correct for GPS clock drifts. In addition to this, we observe radio pulses emitted by commercial airplanes, the position of which we determine in real time from Automatic Dependent Surveillance Broadcasts intercepted with a software-defined radio. From the known source location and the measured arrival times of the pulses we determine relative timing offsets between radio detector stations. We demonstrate with a combined analysis that the two methods give a consistent timing calibration with an accuracy of 2 ns or better. Consequently, the beacon method alone can be used in the future to continuously determine and correct for GPS clock drifts in each individual event measured by AERA

  7. The search for extended air showers at the Jicamarca Radio Observatory

    International Nuclear Information System (INIS)

    Wahl, D.; Chau, J.; Galindo, F.; Huaman, A.; Solano, C. J.

    2009-01-01

    This paper presents the status of the project to detect extended air showers at the Jicamarca Radio Observatory. We report on detected anomalous signals and present a toy model to estimate at what altitudes we might expect to see air shower signals. According to this model, a significant number of high altitude horizontal air showers could be observed by radar techniques.

  8. New measurements and analysis of high-energy muons in cosmic ray extensive air showers

    International Nuclear Information System (INIS)

    Sarkar, S.K.; Ghose, B.; Murkherjee, N.; Sanyal, S.; Chaudhuri, N.; Chhetri, R.; Basak, D.K.

    1991-01-01

    Cosmic ray air shower structure measurements and measurement of density and energy of air shower muons of a wide energy range simultaneously in individual air showers by two magnet spectrographs are presented. The measured muon densities have been used to compare with some of the previous measurements on muon densities in air showers of nearly the same size. The measured muon densities have also been applied for distinguishing between various interaction models and between light and heavier air shower primaries. In the air shower size range 10 4 -10 6 particles the present measurements do not provide evidence for iron primaries and the different interaction models seem not to be distinguishable by air shower observations. (Author)

  9. GREX/COVER-PLASTEX: an experiment to analyze the space-time structure of extensive air showers produced by primary cosmic rays of 1015 eV

    International Nuclear Information System (INIS)

    Agnetta, G.; Ambrosio, M.; Beaman, J.; Barbarino, G.C.; Biondo, B.; Catalano, O.; Colesanti, L.; Dali, G.; Guarino, F.; Lauro, A.; Lloyd-Evans, J.; Mangano, A.; Popova, L.; Watson, A.A.

    1995-01-01

    A novel experimental installation is described in which the traditional method of detecting extensive air showers with scintillation counters is significantly extended by the addition of limited streamer tube hodoscopes (LST) and layers of resistive plate counters (RPC). Runs with the scintillator array, GREX, at Haverah Park have demonstrated the power of the LST hodoscopes to determine the direction of arrival of muons, electrons and photons in air showers while the RPC system permits the relative arrival time of individual particles and the temporal thickness and structure of the shower disc to be obtained. The potential of these technical advances for studying the longitudinal profile of air showers produced by primaries of about 1000 TeV is briefly discussed. First measurements of thickness and time profile of EAS front are also reported. (orig.)

  10. The AMY experiment: Microwave emission from air shower plasmas

    Directory of Open Access Journals (Sweden)

    Alvarez-Muñiz J.

    2016-01-01

    Full Text Available You The Air Microwave Yield (AMY experiment investigate the molecular bremsstrahlung radiation emitted in the GHz frequency range from an electron beam induced air-shower. The measurements have been performed at the Beam Test Facility (BTF of Frascati INFN National Laboratories with a 510 MeV electron beam in a wide frequency range between 1 and 20 GHz. We present the apparatus and the results of the tests performed.

  11. Determining Thunderstorm Electric Fields using Radio Emission from Cosmic-Ray Air Showers

    Science.gov (United States)

    Hare, B.; Scholten, O.; Trinh, G. T. N.; Ebert, U.; Rutjes, C.

    2017-12-01

    We report on a novel non-intrusive way to investigate electric fields in thunderclouds.Energetic cosmic rays penetrating the atmosphere create a particle avalanche called an extensive air shower. The front of the shower is a plasma cloud that contains 10^6 or more free electrons and positrons moving towards the Earth's surface at the speed of light. The electric fields that exists in thunderclouds induces electric currents in the plasma cloud that emit radio waves. The radio footprint for intensity, linear and circular polarization thus contains the finger print of the atmospheric electric fields along the path of the air shower.Here we report on the analysis of many cosmic-ray radio footprints as have been measured at LOFAR, a dense array of simple radio antennas (several thousands of dual-polarized antennas) primarily developed for radio-astronomy observations. We show that this method can be used to determine the charge structure in thunderclouds and discuss the accuracy of the method. We have observed seasonal dependencies.

  12. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Science.gov (United States)

    Pierre Auger Collaboration; Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Samarai, I. Al; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; D\\'\\iaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; Garc\\'\\ia, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agëra, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Mart\\'\\inez Bravo, O.; Martraire, D.; Mas\\'\\ias Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; Pȩkala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodr\\'\\iguez-Fr\\'\\ias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiał kowski, A.; Šm\\'\\ida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.

    2014-08-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory.

  13. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    2014-01-01

    We describe the method devised to reconstruct inclined cosmic-ray air showers with zenith angles greater than 60° detected with the surface array of the Pierre Auger Observatory. The measured signals at the ground level are fitted to muon density distributions predicted with atmospheric cascade models to obtain the relative shower size as an overall normalization parameter. The method is evaluated using simulated showers to test its performance. The energy of the cosmic rays is calibrated using a sub-sample of events reconstructed with both the fluorescence and surface array techniques. The reconstruction method described here provides the basis of complementary analyses including an independent measurement of the energy spectrum of ultra-high energy cosmic rays using very inclined events collected by the Pierre Auger Observatory

  14. Arrival time distributions of electrons in air showers with primary energies above 10 (18)eV observed at 900m above sea level

    Science.gov (United States)

    Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.

    1985-01-01

    Detection of air showers with primary energies above 10 to the 19th power eV with sufficient statistics is extremely important in an astrophysical aspect related to the Greisen cut off and the origin of such high energy cosmic rays. Recently, a method is proposed to observe such giant air showers by measuring the arrival time distributions of air-shower particles at large core distances with a mini array. Experiments to measure the arrival time distributions of muons were started in 1981 and those of electrons in early 1983 in the Akeno air-shower array (930 gcm cm squared atmospheric depth, 900m above sea level). During the time of observation, the detection area of the Akeno array was expanded from 1 sq km to sq km in 1982 and to 20 sq km in 1984. Now the arrival time distribution of electrons and muons can be measured for showers with primary energies above 1019eV at large core distances.

  15. Receiver system for radio observation of high-energy cosmic ray air showers and its behaviour in self trigger mode

    International Nuclear Information System (INIS)

    Kroemer, Oliver

    2008-04-01

    The observation of high-energy cosmic rays is carried out by indirect measurements. Thereby the primary cosmic particle enters into the earth's atmosphere and generates a cosmic ray air shower by interactions with the air molecules. The secondary particles arriving at ground level are detected with particle detector arrays. The fluorescence light from the exited nitrogen molecules along the shower axis is observed with reflector telescopes in the near-ultraviolet range. In addition to these well-established detection methods, the radio observation of the geosynchrotron emission from cosmic ray air showers is investigated at present as a new observation method. Geosynchrotron emission is generated by the acceleration of the relativistic electron-positron-pairs contained in the air shower by Lorentz forces in the earth's magnetic field. At ground level this causes a single pulse of the electric field strength with a continuous frequency spectrum ranging from a few MHz to above 100 MHz. In this work, a suitable receiver concept is developed based on the signal properties of the geosynchrotron emission and the analysis of the superposed noise and radio frequency interferences. As the required receiver system was not commercially available, it was designed in the framework of this work and realised as system including the antenna, the receiver electronics and suitable data acquisition equipment. In this concept considerations for a large scale radio detector array have already been taken into account, like low power consumption to enable solar power supply and cost effectiveness. The result is a calibrated, multi-channel, digital wideband receiver for the complete range from 40 MHz to 80 MHz. Its inherent noise and RFI suppression essentially results from the antenna directional characteristic and frequency selectivity and allows effective radio observation of cosmic ray air showers also in populated environment. Several units of this receiver station have been deployed

  16. Milagro: A low energy threshold extensive air shower array

    Energy Technology Data Exchange (ETDEWEB)

    Sinnis, C.

    1994-12-31

    Observations of high-energy gamma rays from astronomical sources have revolutionized our view of the cosmos. Gamma rays with energies up to {approximately}10 GeV can be observed directly with space-based instruments. Above 100 GeV the low flux of gamma rays requires one to utilize ground-based instruments. Milagro is a new type of gamma-ray detector based on water Cerenkov technology. This new design will enable to continuously observe the entire overhead sky, and be sensitive to cosmic rays with energies above {approximately}250 GeV. These attributes make Milagro an ideal detector for the study of high-energy transient phenomenon.

  17. Transition effect of extensive air showers in thick scintillators

    International Nuclear Information System (INIS)

    Lidvanskij, A.S.; Navarra, Dzh.; Chernyaev, A.V.

    1985-01-01

    Transition effect of extensive air showers has been measured by means of the ''Kover'' facility of the Baksan neutrino laboratory. The transition effect represents the ratio of ''scintillation'' particle density detected with detectors and particle density under the facility concrete roof (21 gxcm -2 ). Measurement results are compared with data obtained by means of the program of electron-photon cascade gaming. Good agreement of experimental and calculational data has been obtained. It follows from the data in the paper that the transition effect for one scintillator in the absence of roof can be produced by the gaming rather reliably

  18. Sidereal anisotropy of small air showers observed at Mt. Norikura

    International Nuclear Information System (INIS)

    Nagashima, K.; Sakakibara, S.; Fujimoto, K.; Fujii, Z.; Ueno, H.; Kondo, I.

    1977-01-01

    Observation of small air showers has been continued from August 1970, using a part of the multidirectional cosmic ray telescope at Mt. Norikura. Most significant result obtained from this observation was a sidereal diurnal anisotropy of amplitude 0.051 +- 0.004% with maximum at 1.0 +- 0.5 h, which showed a persistent trend over six years. Based on the results of the observation together with those obtained by Gombosi et al. and Fenton et al., a tentative model of sidereal anisotropies is presented. (author)

  19. Measurement of the Muon Content of Air Showers with IceTop

    Science.gov (United States)

    Gonzalez, JG; IceCube Collaboration

    2016-05-01

    IceTop, the surface component of the IceCube detector, has measured the energy spectrum of cosmic ray primaries in the range between 1.6 PeV and 1.3 EeV. IceTop can also be used to measure the average density of GeV muons in the shower front at large radial distances (> 300 m) from the shower axis. Wei present the measurement of the muon lateral distribution function for primary cosmic rays with energies between 1.6 PeV and about 0.1 EeV, and compare it to proton and iron simulations. We also discuss how this information can be exploited in the reconstruction of single air shower events. By combining the information on the muon component with that of the electromagnetic component of the air shower, we expect to reduce systematic uncertainties in the inferred mass composition of cosmic rays arising from theoretical uncertainties in hadronic interaction models.

  20. Muons in air showers at the Pierre Auger Observatory: Measurement of atmospheric production depth

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahlers, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, F.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Cheng, S. H.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Coutu, S.; Covault, C. E.; Criss, A.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diep, P. N.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fuji, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gomez Albarracin, F.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; Gookin, B.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hansen, P.; Harari, D.; Harrison, T. A.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; La Rosa, G.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Lopez Agüera, A.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Malacari, M.; Maldera, S.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, A. J.; Matthews, J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Moreno, J. C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Pastor, S.; Paul, T.; Pech, M.; PÈ©kala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Peters, C.; Petrera, S.; Petrolini, A.; Petrov, Y.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Cabo, I.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Rühle, C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schulz, A.; Schulz, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Thao, N. T.; Theodoro, V. M.; Tiffenberg, J.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Whelan, B. J.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Pierre Auger Collaboration

    2014-07-01

    The surface detector array of the Pierre Auger Observatory provides information about the longitudinal development of the muonic component of extensive air showers. Using the timing information from the flash analog-to-digital converter traces of surface detectors far from the shower core, it is possible to reconstruct a muon production depth distribution. We characterize the goodness of this reconstruction for zenith angles around 60° and different energies of the primary particle. From these distributions, we define Xmaxμ as the depth along the shower axis where the production of muons reaches maximum. We explore the potentiality of Xmaxμ as a useful observable to infer the mass composition of ultrahigh-energy cosmic rays. Likewise, we assess its ability to constrain hadronic interaction models.

  1. The implication of charged particle lateral distribution function for extensive air shower studies

    International Nuclear Information System (INIS)

    Fomin, Yu.A.; Kalmykov, N.N.; Kempa, J.; Kulikov, G.V.; Sulakov, V.P.

    2008-01-01

    The knowledge of charged particle lateral distribution function (LDF) is of prime importance in extensive air shower (EAS) investigations. This function is necessary for the determination of the total number of particles as well as some other classification parameters. The Nishimura-Kamata-Greisen (NKG) function is being actively employed by many researchers in spite of the fact that it was derived under rather crude assumptions (in so-called B Approximation of the electromagnetic cascade theory). Our paper discusses the dependence of the EAS size spectrum on the LDF form adopted and compares two LDFs: the traditional NKG-function and the scaling function suggested recently. Prominence is given to the EAS MSU data but the results of other EAS arrays (AGASA, Yakutsk and KASCADE) are also considered

  2. A new way of air shower detection: measuring the properties of cosmic rays with LOFAR

    NARCIS (Netherlands)

    Nelles, A.; Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, T.N.G.

    2015-01-01

    High-energy cosmic rays impinging onto the atmosphere of the Earth initiate cascades of secondary particles: extensive air showers. Many of the particles in a shower are electrons and positrons. During the development of the air shower and by interacting with the geomagnetic field, the

  3. Macroscopic treatment of radio emission from cosmic ray air showers based on shower simulations

    NARCIS (Netherlands)

    Werner, Klaus; Scholten, Olaf

    We present a macroscopic calculation of coherent electro-magnetic radiation from air showers initiated by ultra-high energy cosmic rays, based on currents obtained from Monte Carlo simulations of air showers in a realistic geo-magnetic field. We can clearly relate the time signal to the time

  4. Extensive Air Showers: from the muonic smoking guns to the hadronic backbone

    Directory of Open Access Journals (Sweden)

    Cazon L.

    2013-06-01

    Full Text Available Extensive Air Showers are complex macroscopic objects initiated by single ultra-high energy particles. They are the result of millions of high energy reactions in the atmosphere and can be described as the superposition of hadronic and electromagnetic cascades. The hadronic cascade is the air shower backbone, and it is mainly made of pions. Decays of neutral pions initiate electromagnetic cascades, while the decays of charged pions produce muons which leave the hadronic core and travel many kilometers almost unaffected. Muons are smoking guns of the hadronic cascade: the energy, transverse momentum, spatial distribution and depth of production are key to reconstruct the history of the air shower. In this work, we overview the phenomenology of muons on the air shower and its relation to the hadronic cascade. We briefly review the experimental efforts to analyze muons within air showers and discuss possible paths to use this information.

  5. Constraining Microwave Emission from Extensive Air Showers via the MIDAS Experiment

    Science.gov (United States)

    Richardson, Matthew; Privitera, Paolo

    2017-01-01

    Ultra high energy cosmic rays (UHECRs) are accelerated by the most energetic processes in the universe. Upon entering Earth’s atmosphere they produce particle showers known as extensive air showers (EASs). Observatories like the Pierre Auger Observatory sample the particles and light produced by the EASs through large particle detector arrays or nitrogen fluorescence detectors to ascertain the fundamental properties of UHECRs. The large sample of high quality data provided by the Pierre Auger Observatory can be attributed to the hybrid technique which utilizes the two aforementioned techniques simultaneously; however, the limitation of only being able to observe nitrogen fluorescence from EASs on clear moonless nights yields a limited 10% duty cycle for the hybrid technique. One proposal for providing high quality data at increased statistics is the observation of isotropic microwave emission from EASs, as such emission would be observed with a 100% duty cycle. Measurements of microwave emission from laboratory air plasmas conducted by Gorham et al. (2008) produced promising results indicating that the microwave emission should be observable using inexpensive detectors. The Microwave Detection of Air Showers (MIDAS) experiment was built at the University of Chicago to characterize the isotropic microwave emission from EASs and has collected 359 days of observational data at the location of the Pierre Auger experiment. We have performed a time coincidence analysis between this data and data from Pierre Auger and we report a null result. This result places stringent limits on microwave emission from EASs and demonstrates that the laboratory measurements of Gorham et al. (2008) are not applicable to EASs, thus diminishing the feasibility of using isotropic microwave emission to detect EASs.

  6. Influence of diffractive interactions on cosmic ray air showers

    International Nuclear Information System (INIS)

    Luna, R.; Zepeda, A.; Garcia Canal, C.A.; Sciutto, S.J.

    2004-01-01

    A comparative study of commonly used hadronic collision simulation packages is presented. The characteristics of the products of hadron-nucleus collisions are analyzed from a general perspective, but focusing on their correlation with diffractive processes. One of the purposes of our work is to give quantitative estimations of the impact that different characteristics of the hadronic models have on air shower observables. Several sets of shower simulations using different settings for the parameters controlling the diffractive processes are used to analyze the correlations between diffractivity and shower observables. We find that the relative probability of diffractive processes during the shower development have a non-negligible influence over the longitudinal profile as well as the distribution of muons at ground level. The implications on experimental data analysis are discussed

  7. Depth Distribution Of The Maxima Of Extensive Air Shower

    Science.gov (United States)

    Adams, J. H.; Howell, L. W.

    2003-01-01

    Observations of the extensive air showers from space can be free from interference by low altitude clouds and aerosols if the showers develop at a sufficiently high altitude. In this paper we explore the altitude distribution of shower maxima to determine the fraction of all showers that will reach their maxima at sufficient altitudes to avoid interference from these lower atmosphere phenomena. Typically the aerosols are confined within a planetary boundary layer that extends from only 2-3 km above the Earth's surface. Cloud top altitudes extend above 15 km but most are below 4 km. The results reported here show that more than 75% of the showers that will be observed by EUSO have maxima above the planetary boundary layer. The results also show that more than 50% of the showers that occur on cloudy days have their maxima above the cloud tops.

  8. Gamma-ray astronomy by the air shower technique: performance and perspectives

    International Nuclear Information System (INIS)

    Cronin, J.W.

    1996-01-01

    The techniques for γ-ray astronomy at energies ≥10 TeV using air shower detectors are discussed. The results, based on a number of large arrays, are negative, with no point sources being identified. While the contributions to γ-ray astronomy so far have been only upper limits, these arrays in the future will make significant progress in the understanding of cosmic rays in the energy range 10 13 eV to 10 16 eV. Also, contributions to solar physics are being made by observations of shape and time dependence of the shadow of the Sun as observed in cosmic rays. For the advancement of γ-ray astronomy a greater sensitivity is required in the energy region of 10 TeV. A number of promising techniques to accomplish a greater sensitivity are discussed. They include the enlargement of the Tibet array at 4300 meters altitude, the array of open photomultipliers at La Palma (AIROBICC), which views the shower by the Cherenkov photons produced in the atmosphere, and the instrumentation of a pond at Los Alamos with photomultipliers (Milagro)

  9. Gamma-ray astronomy by the air shower technique: performance and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Cronin, J.W. [Chicago, Univ. of Chicago (United States). Dept. of Phisycs and Enrico Fermi Inst.

    1996-11-01

    The techniques for {gamma}-ray astronomy at energies {>=}10 TeV using air shower detectors are discussed. The results, based on a number of large arrays, are negative, with no point sources being identified. While the contributions to {gamma}-ray astronomy so far have been only upper limits, these arrays in the future will make significant progress in the understanding of cosmic rays in the energy range 10{sup 13} eV to 10{sup 16} eV. Also, contributions to solar physics are being made by observations of shape and time dependence of the shadow of the Sun as observed in cosmic rays. For the advancement of {gamma}-ray astronomy a greater sensitivity is required in the energy region of 10 TeV. A number of promising techniques to accomplish a greater sensitivity are discussed. They include the enlargement of the Tibet array at 4300 meters altitude, the array of open photomultipliers at La Palma (AIROBICC), which views the shower by the Cherenkov photons produced in the atmosphere, and the instrumentation of a pond at Los Alamos with photomultipliers (Milagro).

  10. GRASP. Development of an event reconstruction method using a gamma ray air shower parameterisation and applications to γ-ray sources with H.E.S.S

    Energy Technology Data Exchange (ETDEWEB)

    Hillert, Andreas

    2014-07-24

    The H.E.S.S. experiment, with its high sensitivity and large field-of-view, is an ideal instrument to survey the Milky Way in VHE γ-rays. An accurate reconstruction of the γ-ray direction as well as a strong reduction of the hadronic background is essential for the analysis of the data. In this work a reconstruction algorithm is developed that applies a fit of pixel amplitudes to an expected image obtained from a Gamma Ray Air Shower Parameterisation (GRASP). This parameterisation was obtained using Monte Carlo air shower simulations by parameterising the angular Cherenkov photon distribution with suitable analytical functions. Furthermore, it provides new classifying variables to differentiate γ-ray induced air showers from hadronic ones. The reconstruction of air shower parameters is achieved by a maximum likelihood fit and improves the angular resolution by 20-30% with respect to traditional image moment analysis methods. In combination with a MVA-based background rejection method using these new classifying variables the sensitivity can be improved by about 70%. An analysis of the Pulsar Wind Nebula MSH 15-5-2 and investigation of its morphology and spectral properties show an indication of energy dependent morphology in VHE γ-rays.

  11. Air shower simulation for WASAVIES: warning system for aviation exposure to solar energetic particles

    International Nuclear Information System (INIS)

    Sato, T.; Kataoka, R.; Yasuda, H.; Yashiro, S.; Kuwabara, T.; Shiota, D.; Kubo, Y.

    2014-01-01

    WASAVIES, a warning system for aviation exposure to solar energetic particles (SEPs), is under development by collaboration between several institutes in Japan and the USA. It is designed to deterministically forecast the SEP fluxes incident on the atmosphere within 6 h after flare onset using the latest space weather research. To immediately estimate the aircrew doses from the obtained SEP fluxes, the response functions of the particle fluxes generated by the incidence of monoenergetic protons into the atmosphere were developed by performing air shower simulations using the Particle and Heavy Ion Transport code system. The accuracy of the simulation was well verified by calculating the increase count rates of a neutron monitor during a ground-level enhancement, combining the response function with the SEP fluxes measured by the PAMELA spectrometer. The response function will be implemented in WASAVIES and used to protect air crews from additional SEP exposure. When galactic cosmic rays (GCRs) or solar energetic particles (SEPs) are incident on the atmosphere, they can induce air showers by producing various secondary particles. These secondary particles can reach conventional flight altitudes (∼12 km); hence, air crews are exposed to enhanced levels of radiation. The most important difference between GCR and SEP exposure arises from their temporal variations and dose rates; GCRs induce continuous exposure with low dose rates, usually up to several μSv h -1 , whereas SEPs produce pulsed exposure with high dose rates, occasionally >1 mSv h -1 , though such severe events rarely occur. Thus, subsequent evaluation is sufficient for estimating the aircrew dose due to GCR exposure, whereas forecasting is desirable for SEP exposure. Several calculation codes, e.g. CARI-6(3), EPCARD(4), JISCARD-EX(5), and PCAIRE(6), have been developed for post-exposure evaluation of GCR doses. On the other hand, empirical and phenomenological models have been developed for real-time or

  12. Extensive Air Showers High Energy Phenomena and Astrophysical Aspects - A Tutorial, Reference Manual and Data Book

    CERN Document Server

    Grieder, Peter K.F

    2010-01-01

    Extensive air showers are a very unique phenomenon. In the more than six decades since their discovery by Auger et al. we have learned a great deal about these extremely energetic events and gained deep insights into high-energy phenomena, particle physics and astrophysics. In this Tutorial, Reference Manual and Data Book Peter K. F. Grieder provides the reader with a comprehensive view of the phenomenology and facts of the various types of interactions and cascades, theoretical background, experimental methods, data evaluation and interpretation, and air shower simulation. He discusses astrophysical aspects of the primary radiation and addresses the questions that continue to puzzle researchers. The book is divided into two parts, each in its own separate volume: Part I in Volume I deals mainly with the basic theoretical framework of the processes that determine an air shower and ends with a summary of ways to extract information on the primary radiation from air shower observations. It also presents a compi...

  13. Extensive air showers, lightnings and thunderstorm ground enhancements

    International Nuclear Information System (INIS)

    Chilingarian, A.; Hovsepyan, G.; Kozliner, L.

    2016-01-01

    For the lightning research, we monitor the particle fluxes from thunderclouds, the so called Thunderstorm Ground Enhancements (TGEs) initiated by the runaway electrons, and Extensive Air Showers (EASs) originated from high energy protons or fully stripped nuclei that enter the Earth’s atmosphere. Besides, we monitor the near-surface electric field and the atmospheric discharges with the help of a network of electric field mills. The Aragats “electron accelerator” produced plenty of TGE and lightning events in spring 2015. Using 1-sec time series, we investigated the relation of lightnings and particle fluxes. Lightning flashes often terminated the particle flux; during some of TGEs the lightning would terminate the particle flux 3 times after successive recovery. It was postulated that a lightning terminates a particle flux mostly in the beginning of TGE or on the decay phase of it; however, we observed two events (19 October 2013 and 20 April 2015) when the huge particle flux was terminated just on a maximum of its development. We discuss the possibility that a huge EAS facilitates lightning leader to find its path to the ground. (author)

  14. The arrival time distribution of muons in extensive air showers

    International Nuclear Information System (INIS)

    Van der Walt, D.J.

    1984-01-01

    An experiment was done to investigate the lateral dependence of the muon arrival time distribution in extensive air showers at small core distances. In the present experiment the muon arrival time distribution was investigated by measuring the relative arrival times between single muons in five fast Cerenkov detectors beneath 500g/cm 2 of concrete and at an atmospheric depth of 880g/cm 2 . It is shown that, although it is not possible to determine the arrival time distribution as such, it is possible to interpret the relative arrival times between muons in terms of the differences between the order statistics of a sample drawn from the arrival time distribution. The relationship between the arrival time distribution of muons relative to the first detected muon and the muon arrival time distribution is also derived. It was found that the dispersion of the muon arrival time distribution does not increase significantly with increasing core distance between 10m and 60m from the core. A comparison with theoretical distributions obtained from model calculations for proton initiated showers indicate that 1. the mean delay of muons with respect to the first detected muon is significantly larger than that expected from the model and 2. the observed dispersion is also significantly larger than the predicted dispersion for core distances between 10m and 60m

  15. Muons in air showers at the Pierre Auger Observatory: Mean number in highly inclined events

    Science.gov (United States)

    Aab, A.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Al Samarai, I.; Albuquerque, I. F. M.; Allekotte, I.; Allen, J.; Allison, P.; Almela, A.; Alvarez Castillo, J.; Alvarez-Muñiz, J.; Alves Batista, R.; Ambrosio, M.; Aminaei, A.; Anchordoqui, L.; Andringa, S.; Aramo, C.; Aranda, V. M.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avenier, M.; Avila, G.; Badescu, A. M.; Barber, K. B.; Bäuml, J.; Baus, C.; Beatty, J. J.; Becker, K. H.; Bellido, J. A.; Berat, C.; Bertaina, M. E.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanco, M.; Bleve, C.; Blümer, H.; Boháčová, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brancus, I.; Brogueira, P.; Brown, W. C.; Buchholz, P.; Bueno, A.; Buitink, S.; Buscemi, M.; Caballero-Mora, K. S.; Caccianiga, B.; Caccianiga, L.; Candusso, M.; Caramete, L.; Caruso, R.; Castellina, A.; Cataldi, G.; Cazon, L.; Cester, R.; Chavez, A. G.; Chiavassa, A.; Chinellato, J. A.; Chudoba, J.; Cilmo, M.; Clay, R. W.; Cocciolo, G.; Colalillo, R.; Coleman, A.; Collica, L.; Coluccia, M. R.; Conceição, R.; Contreras, F.; Cooper, M. J.; Cordier, A.; Coutu, S.; Covault, C. E.; Cronin, J.; Curutiu, A.; Dallier, R.; Daniel, B.; Dasso, S.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; de Jong, S. J.; de Mello Neto, J. R. T.; De Mitri, I.; de Oliveira, J.; de Souza, V.; del Peral, L.; Deligny, O.; Dembinski, H.; Dhital, N.; Di Giulio, C.; Di Matteo, A.; Diaz, J. C.; Díaz Castro, M. L.; Diogo, F.; Dobrigkeit, C.; Docters, W.; D'Olivo, J. C.; Dorofeev, A.; Dorosti Hasankiadeh, Q.; Dova, M. T.; Ebr, J.; Engel, R.; Erdmann, M.; Erfani, M.; Escobar, C. O.; Espadanal, J.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Fang, K.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferguson, A. P.; Fernandes, M.; Fick, B.; Figueira, J. M.; Filevich, A.; Filipčič, A.; Fox, B. D.; Fratu, O.; Fröhlich, U.; Fuchs, B.; Fujii, T.; Gaior, R.; García, B.; Garcia Roca, S. T.; Garcia-Gamez, D.; Garcia-Pinto, D.; Garilli, G.; Gascon Bravo, A.; Gate, F.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giammarchi, M.; Giller, M.; Glaser, C.; Glass, H.; Gómez Berisso, M.; Gómez Vitale, P. F.; Gonçalves, P.; Gonzalez, J. G.; González, N.; Gookin, B.; Gordon, J.; Gorgi, A.; Gorham, P.; Gouffon, P.; Grebe, S.; Griffith, N.; Grillo, A. F.; Grubb, T. D.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hampel, M. R.; Hansen, P.; Harari, D.; Harrison, T. A.; Hartmann, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Heimann, P.; Herve, A. E.; Hill, G. C.; Hojvat, C.; Hollon, N.; Holt, E.; Homola, P.; Hörandel, J. R.; Horvath, P.; Hrabovský, M.; Huber, D.; Huege, T.; Insolia, A.; Isar, P. G.; Islo, K.; Jandt, I.; Jansen, S.; Jarne, C.; Josebachuili, M.; Kääpä, A.; Kambeitz, O.; Kampert, K. H.; Kasper, P.; Katkov, I.; Kégl, B.; Keilhauer, B.; Keivani, A.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Krause, R.; Krohm, N.; Krömer, O.; Kruppke-Hansen, D.; Kuempel, D.; Kunka, N.; LaHurd, D.; Latronico, L.; Lauer, R.; Lauscher, M.; Lautridou, P.; Le Coz, S.; Leão, M. S. A. B.; Lebrun, D.; Lebrun, P.; Leigui de Oliveira, M. A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Link, K.; López, R.; Louedec, K.; Lozano Bahilo, J.; Lu, L.; Lucero, A.; Ludwig, M.; Malacari, M.; Maldera, S.; Mallamaci, M.; Maller, J.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Mariş, I. C.; Marsella, G.; Martello, D.; Martin, L.; Martinez, H.; Martínez Bravo, O.; Martraire, D.; Masías Meza, J. J.; Mathes, H. J.; Mathys, S.; Matthews, J. J.; Matthews, A. J.; Matthiae, G.; Maurel, D.; Maurizio, D.; Mayotte, E.; Mazur, P. O.; Medina, C.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menshikov, A.; Messina, S.; Meyhandan, R.; Mićanović, S.; Micheletti, M. I.; Middendorf, L.; Minaya, I. A.; Miramonti, L.; Mitrica, B.; Molina-Bueno, L.; Mollerach, S.; Monasor, M.; Monnier Ragaigne, D.; Montanet, F.; Morello, C.; Mostafá, M.; Moura, C. A.; Muller, M. A.; Müller, G.; Münchmeyer, M.; Mussa, R.; Navarra, G.; Navas, S.; Necesal, P.; Nellen, L.; Nelles, A.; Neuser, J.; Newton, D.; Niechciol, M.; Niemietz, L.; Niggemann, T.; Nitz, D.; Nosek, D.; Novotny, V.; Nožka, L.; Ochilo, L.; Olinto, A.; Oliveira, M.; Olmos-Gilbaja, V. M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Papenbreer, P.; Parente, G.; Parra, A.; Paul, T.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Petermann, E.; Peters, C.; Petrera, S.; Petrov, Y.; Phuntsok, J.; Piegaia, R.; Pierog, T.; Pieroni, P.; Pimenta, M.; Pirronello, V.; Platino, M.; Plum, M.; Porcelli, A.; Porowski, C.; Prado, R. R.; Privitera, P.; Prouza, M.; Purrello, V.; Quel, E. J.; Querchfeld, S.; Quinn, S.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Revenu, B.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Rizi, V.; Roberts, J.; Rodrigues de Carvalho, W.; Rodriguez Fernandez, G.; Rodriguez Rojo, J.; Rodríguez-Frías, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Roulet, E.; Rovero, A. C.; Saffi, S. J.; Saftoiu, A.; Salamida, F.; Salazar, H.; Saleh, A.; Salesa Greus, F.; Salina, G.; Sánchez, F.; Sanchez-Lucas, P.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, B.; Sarmento, R.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Scholten, O.; Schoorlemmer, H.; Schovánek, P.; Schröder, F. G.; Schulz, A.; Schulz, J.; Schumacher, J.; Sciutto, S. J.; Segreto, A.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Sigl, G.; Sima, O.; Śmiałkowski, A.; Šmída, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Squartini, R.; Srivastava, Y. N.; Stanič, S.; Stapleton, J.; Stasielak, J.; Stephan, M.; Stutz, A.; Suarez, F.; Suomijärvi, T.; Supanitsky, A. D.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Szuba, M.; Taborda, O. A.; Tapia, A.; Tartare, M.; Tepe, A.; Theodoro, V. M.; Timmermans, C.; Todero Peixoto, C. J.; Toma, G.; Tomankova, L.; Tomé, B.; Tonachini, A.; Torralba Elipe, G.; Torres Machado, D.; Travnicek, P.; Trovato, E.; Ulrich, R.; Unger, M.; Urban, M.; Valdés Galicia, J. F.; Valiño, I.; Valore, L.; van Aar, G.; van den Berg, A. M.; van Velzen, S.; van Vliet, A.; Varela, E.; Vargas Cárdenas, B.; Varner, G.; Vázquez, J. R.; Vázquez, R. A.; Veberič, D.; Verzi, V.; Vicha, J.; Videla, M.; Villaseñor, L.; Vlcek, B.; Vorobiov, S.; Wahlberg, H.; Wainberg, O.; Walz, D.; Watson, A. A.; Weber, M.; Weidenhaupt, K.; Weindl, A.; Werner, F.; Widom, A.; Wiencke, L.; Wilczyńska, B.; Wilczyński, H.; Will, M.; Williams, C.; Winchen, T.; Wittkowski, D.; Wundheiler, B.; Wykes, S.; Yamamoto, T.; Yapici, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zamorano, B.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Zhou, J.; Zhu, Y.; Zimbres Silva, M.; Ziolkowski, M.; Zuccarello, F.; Pierre Auger Collaboration

    2015-02-01

    We present the first hybrid measurement of the average muon number in air showers at ultrahigh energies, initiated by cosmic rays with zenith angles between 62° and 80°. The measurement is based on 174 hybrid events recorded simultaneously with the surface detector array and the fluorescence detector of the Pierre Auger Observatory. The muon number for each shower is derived by scaling a simulated reference profile of the lateral muon density distribution at the ground until it fits the data. A 1019 eV shower with a zenith angle of 67°, which arrives at the surface detector array at an altitude of 1450 m above sea level, contains on average (2.68 ±0.04 ±0.48 (sys))×107 muons with energies larger than 0.3 GeV. The logarithmic gain d ln Nμ/d ln E of muons with increasing energy between 4 ×1018 eV and 5 ×1019 eV is measured to be (1.029 ±0.024 ±0.030 (sys)) .

  16. Longitudinal development of muons in large air showers studies from the arrival time distributions measured at 900m above sea level

    Science.gov (United States)

    Kakimoto, F.; Tsuchimoto, I.; Enoki, T.; Suga, K.; Nishi, K.

    1985-01-01

    The arrival time distributions of muons with energies above 1.0GeV and 0.5GeV have been measured in the Akeno air-shower array to study the longitudinal development of muons in air showers with primary energies in the range 10 to the 17th power to 10 to the 18th power ev. The average rise times of muons with energies above 1.0GeV at large core distances are consistent with those expected from very high multiplicity models and, on the contrary, with those expected from the low multiplicity models at small core distances. This implies that the longitudinal development at atmospheric depth smaller than 500 cm square is very fast and that at larger atmospheric depths is rather slow.

  17. What the radio signal tells about the cosmic-ray air shower

    Directory of Open Access Journals (Sweden)

    Werner Klaus

    2013-06-01

    Full Text Available The physics of radio emission from cosmic-ray induced air showers is shortly summarized. It will be shown that the radio signal at different distances from the shower axis provides complementary information on the longitudinal shower evolution, in particular the early part, and on the distribution of the electrons in the shower core. This complements the information obtained from surface, fluorescence, and muon detectors and is very useful in getting a comprehensive picture of an air shower.

  18. Investigating the Cherenkov light lateral distribution function for primary proton and iron nuclei in extensive air showers

    International Nuclear Information System (INIS)

    Al-Rubaiee, A.A.; Hashim, U.; Al-Douri, Y.

    2015-01-01

    The lateral distribution function (LDF) of Cherenkov radiation in extensive air showers (EAS) was simulated by CORSIKA program for the conditions of Yakutsk Cherenkov array at high energy range (10 13 -10 16 eV) for two primary particles (p and Fe) for different zenith angles. Using Breit-Wigner function for analyzing Cherenkov light LDF, a parameterization of Cherenkov light LDF was reconstructed by depending on CORSIKA simulation as a function of primary energy. The comparison between the estimated Cherenkov light LDF and the LDF that was measured on the Yakutsk EAS array gives the ability of particle identification that initiated the shower and determination of particle's energy around the knee region. The extrapolation of approximated Cherenkov light LDF for energies 20 and 30 PeV was obtained for primary particles (p and Fe)

  19. The current status of the GRAPES-3 extensive air shower experiment

    International Nuclear Information System (INIS)

    Gupta, S.K.; Antia, H.M.; Dugad, S.R.; Goswami, U.D.; Hayashi, Y.; Iyer, A.; Ito, N.; Jagadeesan, P.; Jain, A.; Karthikeyan, S.; Kawakami, S.; Minamino, M.; Mohanty, P.K.; Morris, S.D.; Nayak, P.K.; Nonaka, T.; Oshima, A.; Rao, B.S.; Ravindran, K.C.; Tanaka, H.

    2009-01-01

    The GRAPES-3 is a dense extensive air shower array operating with ∼400 scintillator detectors and it also contains a 560 m 2 tracking muon detector (E μ >1GeV), at Ooty in India. 25% of scintillator detectors are instrumented with two fast photomultiplier tubes (PMTs) for extending the dynamic range to ∼5x10 3 particles m -2 . The scintillators, signal processing electronics and data recording systems were fabricated in-house to cut costs and optimize performance. The muon multiplicity distribution of the EAS is used to probe the composition of primary cosmic rays below the 'knee', with an overlap with direct measurements. Search for multi-TeV γ-rays from point sources is done with the aid of the muon detector. A good angular resolution of 0.7 deg. at 30 TeV, is measured from the shadow of the Moon on the isotropic flux of cosmic rays. A sensitive limit on the diffuse flux of 100 TeV γ-rays is placed by using muon detector to filter the charged cosmic ray background. A tracking muon detector allows sensitive measurements on coronal mass ejections and solar flares through Forbush decrease events. We have major expansion plans to enhance the sensitivity of the GRAPES-3 experiment in the areas listed above.

  20. New estimates of extensive-air-shower energies on the basis of signals in scintillation detectors

    Energy Technology Data Exchange (ETDEWEB)

    Anyutin, N. V.; Dedenko, L. G., E-mail: ddn@dec1.sinp.msu.ru [Moscow State University, Faculty of Physics (Russian Federation); Roganova, T. M.; Fedorova, G. F. [Moscow State University, Skobeltsyn Institute of Nuclear Physics (Russian Federation)

    2017-03-15

    New formulas for estimating the energy of inclined extensive air showers (EASs) on the basis of signals in detectors by means of an original method and detailed tables of signals induced in scintillation detectors by photons, electrons, positrons, and muons and calculated with the aid of the GEANT4 code package were proposed in terms of the QGSJETII-04, EPOS LHC, and GHEISHA models. The parameters appearing in the proposed formulas were calculated by employing the CORSIKA code package. It is shown that, for showers of zenith angles in the range of 20◦–45◦, the standard constant-intensity-cut method, which is used to interpret data from the Yakutsk EAS array, overestimates the shower energy by a factor of 1.2 to 1.5. It is proposed to employ the calculated VEM (Vertical Equivalent Muon) signal units of 10.8 and 11.4 MeV for, respectively, ground-based and underground scintillation detectors and to take into account the dependence of signals on the azimuthal angle of the detector position and fluctuations in the development of showers.

  1. The wavefront of the radio signal emitted by cosmic ray air showers

    Energy Technology Data Exchange (ETDEWEB)

    Apel, W.D.; Bekk, K.; Blümer, J.; Bozdog, H.; Daumiller, K.; Doll, P.; Engel, R. [Institut für Kernphysik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Arteaga-Velázquez, J.C. [Instituto de Física y Matemáticas, Universidad Michoacana, Edificio C-3, Cd. Universitaria, C.P. 58040 Morelia, Michoacán (Mexico); Bähren, L.; Falcke, H. [ASTRON, Oude Hoogeveensedijk 4, 7991 PD Dwingeloo (Netherlands); Bertaina, M.; Cantoni, E.; Chiavassa, A.; Pierro, F. Di [Dipartimento di Fisica, Università degli Studi di Torino, Via Giuria 1, 10125 Torino (Italy); Biermann, P.L. [Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, 53121 Bonn (Germany); Brancus, I.M. [National Institute of Physics and Nuclear Engineering, Str. Reactorului no. 30, P.O. Box MG-6, Bucharest-Magurele (Romania); De Souza, V. [Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador São-Carlense 400, Pq. Arnold Schmidt, São Carlos (Brazil); Fuchs, B. [Institut für Experimentelle Kernphysik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Gemmeke, H. [Institut für Prozessdatenverarbeitung und Elektronik, Karlsruhe Institute of Technology (KIT), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Grupen, C., E-mail: frank.schroeder@kit.edu [Faculty of Natural Sciences and Engineering, Universität Siegen, Walter-Flex-Straße 3, 57072 Siegen (Germany); and others

    2014-09-01

    Analyzing measurements of the LOPES antenna array together with corresponding CoREAS simulations for more than 300 measured events with energy above 10{sup 17} eV and zenith angles smaller than 45{sup o}, we find that the radio wavefront of cosmic-ray air showers is of approximately hyperbolic shape. The simulations predict a slightly steeper wavefront towards East than towards West, but this asymmetry is negligible against the measurement uncertainties of LOPES. At axis distances ∼> 50 m, the wavefront can be approximated by a simple cone. According to the simulations, the cone angle is clearly correlated with the shower maximum. Thus, we confirm earlier predictions that arrival time measurements can be used to study the longitudinal shower development, but now using a realistic wavefront. Moreover, we show that the hyperbolic wavefront is compatible with our measurement, and we present several experimental indications that the cone angle is indeed sensitive to the shower development. Consequently, the wavefront can be used to statistically study the primary composition of ultra-high energy cosmic rays. At LOPES, the experimentally achieved precision for the shower maximum is limited by measurement uncertainties to approximately 140 g/c {sup 2}. But the simulations indicate that under better conditions this method might yield an accuracy for the atmospheric depth of the shower maximum, X{sub max}, better than 30 g/c {sup 2}. This would be competitive with the established air-fluorescence and air-Cherenkov techniques, where the radio technique offers the advantage of a significantly higher duty-cycle. Finally, the hyperbolic wavefront can be used to reconstruct the shower geometry more accurately, which potentially allows a better reconstruction of all other shower parameters, too.

  2. Separation of gamma and hadron initiated air showers with energies between 20 and 500 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Arqueros, F. [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Fisicas; Karle, A. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Lorenz, E. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Martinez, S. [Universidad Complutense de Madrid (Spain). Facultad de Ciencias Fisicas; Plaga, R. [Max-Planck-Institut fuer Physik, Muenchen (Germany); Rozanska, M. [Institute of Nuclear Physics, Cracow (Poland)

    1994-04-24

    The discrimination between air showers initiated by {gamma} rays and by hadrons is one of the fundamental problems in experimental cosmic-ray physics. The physics of this `{gamma}/hadron separation` is discussed in this paper. We restrict ourselves to the energy range from about 20 to 500 TeV, and take only the information contained in the lateral Cerenkov light distribution and the number of electrons at the detector level into consideration. An understanding of the differences between air showers generated by {gamma} rays and those due to hadrons leads us to formulate suitable observables for the separation process. Angle integrating Cerenkov arrays (AICA) offer a promising new approach to ground-based {gamma}-ray astronomy in the energy region from about 20 to 500 TeV. In order to establish this technique, an efficient suppression of the overwhelming hadronic background radiation is required. As an example for our general discussion, we present one method for {gamma}/hadron separation in AICAs called ``LES``. It is based on the simultaneous determination of the shower size and some characteristic parameters of the lateral distribution of the Cerenkov light. The potential inherent within this technique is demonstrated in quantitative detail for the existing ``AIROBICC`` AICA. We also propose an objective measure of the intrinsic sensitivity of a detection scheme in ground-based {gamma}-ray astronomy, the ``reduced quality factor``. It is shown that AICAs may reach a sensitivity to {gamma}-ray point sources in the high VHE range similar to that of the Cerenkov-telescope imaging technique in the low VHE region. (orig.)

  3. Separation of gamma and hadron initiated air showers with energies between 20 and 500 TeV

    International Nuclear Information System (INIS)

    Arqueros, F.; Lorenz, E.; Martinez, S.; Rozanska, M.

    1995-01-01

    The discrimination between air showers initiated by γ rays and by hadrons is one of the fundamental problems in experimental cosmic-ray physics. The physics of this 'γ/hadron separation' is discussed in this paper. We restrict ourselves to the energy range from about 20 to 500 TeV, and take only the information contained in the lateral Cerenkov light distribution and the number of electrons at the detector level into consideration. An understanding of the differences between air showers generated by γ rays and those due to hadrons leads us to formulate suitable observables for the separation process. Angle integrating Cerenkov arrays (AICA) offer a promising new approach to ground-based γ-ray astronomy in the energy region from about 20 to 500 TeV. In order to establish this technique, an efficient suppression of the overwhelming hadronic background radiation is required. As an example for our general discussion, we present one method for γ/hadron separation in AICAs called ''LES''. It is based on the simultaneous determination of the shower size and some characteristic parameters of the lateral distribution of the Cerenkov light. The potential inherent within this technique is demonstrated in quantitative detail for the existing ''AIROBICC'' AICA. We also propose an objective measure of the intrinsic sensitivity of a detection scheme in ground-based γ-ray astronomy, the ''reduced quality factor''. It is shown that AICAs may reach a sensitivity to γ-ray point sources in the high VHE range similar to that of the Cerenkov-telescope imaging technique in the low VHE region. (orig.)

  4. Cooperative observations of air showers in Tasmania looking for anisotropies in 10 to the 13th - 10 to the 14th eV primaries /COALA project/

    Science.gov (United States)

    Fenton, A. G.; Fenton, K. B.; Humble, J. E.; Jacklyn, R. M.; Vrana, A.; Murakami, K.; Fujii, Z.; Yamada, T.; Sakakibara, S.; Fujimoto, K.; Ueno, H.; Nagashima, K.; Kondo, I.

    Observations of cosmic ray air showers in Tasmania beginning in 1981 are discussed. The shower array consists of 18 unit trays of 4-sq m proportional counters deployed over an area of 20 m x 160 m, and showers around a median primary energy of 5 x 10 to the 13th are to be observed. The observations are carried out in order to catch cosmic ray flows in a stereoscopic manner with simultaneous observations in the northern hemisphere, and the shower frequency in a fundamental coincidence mode is expected to be about 16,000 events per year.

  5. Analytic calculation of radio emission from parametrized extensive air showers : A tool to extract shower parameters

    NARCIS (Netherlands)

    Scholten, O.; Trinh, T. N. G.; de Vries, K. D.; Hare, B. M.

    2018-01-01

    The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of the integrated charge-current distribution in the

  6. The air shower maximum probed by Cherenkov effects from radio emission

    NARCIS (Netherlands)

    de Vries, Krijn D.; Scholten, Olaf; Werner, Klaus

    Radio detection of cosmic-ray-induced air showers has come to a flight the last decade. Along with the experimental efforts, several theoretical models were developed. The main radio-emission mechanisms are established to be the geomagnetic emission due to deflection of electrons and positrons in

  7. Interpretation of the cosmic-ray air shower signal in Askaryan radio detectors

    NARCIS (Netherlands)

    de Vries, Krijn D.; Buitink, Stijn; van Eijndhoven, Nick; Meures, Thomas; O'Murchadha, Aongus; Scholten, Olaf

    2017-01-01

    We discuss the radio emission from a cosmic-ray air shower propagating in air before it hits an air-ice boundary after which it completes its propagation inside the ice. The in-air emission, the in-ice emission, as well as the transition radiation from the shower crossing the boundary is considered.

  8. Effects of massive photons from the dark sector on the muon content in extensive air showers

    Czech Academy of Sciences Publication Activity Database

    Ebr, Jan; Nečesal, Petr

    2013-01-01

    Roč. 725, 4-5 (2013), s. 185-189 ISSN 0370-2693 R&D Projects: GA MŠk(CZ) LA08016 Institutional support: RVO:68378271 Keywords : dark matter * bremsstrahlung * extensive air shower * muon production Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 6.019, year: 2013

  9. Influence of atmospheric electric fields on the radio emission from extensive air showers

    DEFF Research Database (Denmark)

    Trinh, T. N. G.; Scholten, O.; Buitink, S.

    2016-01-01

    The atmospheric electric fields in thunderclouds have been shown to significantly modify the intensity and polarization patterns of the radio footprint of cosmic-ray-induced extensive air showers. Simulations indicated a very nonlinear dependence of the signal strength in the frequency window of ...

  10. What the radio signal tells about the cosmic-ray air shower

    NARCIS (Netherlands)

    Scholten, Olaf; de Vries, Krijn D.; Werner, Klaus

    2013-01-01

    The physics of radio emission from cosmic-ray induced air showers is shortly summarized. It will be shown that the radio signal at different distances from the shower axis provides complementary information on the longitudinal shower evolution, in particular the early part, and on the distribution

  11. ''Anomalous'' air showers from point sources: Mass limits and light curves

    International Nuclear Information System (INIS)

    Domokos, G.; Elliott, B.; Kovesi-Domokos, S.

    1993-01-01

    We describe a method to obtain upper limits on the mass of the primaries of air showers associated with point sources. One also obtains the UHE pulse shape of a pulsar if its period is observed in the signal. As an example, we analyze the data obtained during a recent burst of Hercules-X1

  12. Measurement of the circular polarization in radio emission from extensive air showers confirms emission mechanisms

    NARCIS (Netherlands)

    Scholten, O.; Trinh, T. N. G.; Bonardi, A.; Buitink, S.; Correa, P.; Corstanje, A.; Hasankiadeh, Q. Dorosti; Falcke, H.; Horandel, J. R.; Mitra, P.; Mulrey, K.; Nelles, A.; Rachen, J. P.; Rossetto, L.; Schellart, P.; Thoudam, S.; ter Veen, S.; de Vries, K. D.; Winchen, T.

    2016-01-01

    We report here on a novel analysis of the complete set of four Stokes parameters that uniquely determine the linear and/or circular polarization of the radio signal for an extensive air shower. The observed dependency of the circular polarization on azimuth angle and distance to the shower axis is a

  13. Determining Thunderstorm Electric Fields using Radio Emission from Cosmic-Ray Air Showers

    NARCIS (Netherlands)

    Hare, B.; Scholten, O.; Trinh, G. T. N.; Ebert, U.; Rutjes, C.

    2017-01-01

    We report on a novel non-intrusive way to investigate electric fields in thunderclouds.Energetic cosmic rays penetrating the atmosphere create a particle avalanche called an extensive air shower. The front of the shower is a plasma cloud that contains 10^6 or more free electrons and positrons moving

  14. Comparison of methods for determining the centers of extensive air showers

    International Nuclear Information System (INIS)

    Poirier, J.; Funk, E.; Mikocki, S.; Rohrer, N.

    1987-01-01

    Monte Carlo techniques are used to generate extensive air shower data. Two methods of determining the core location of the shower have been investigated: the method of least squares and the method of maximizing the likelihood function. The likelihood function method gives a precision of shower center location two times better than the χ 2 method for small numbers of detected particles. (orig.)

  15. Radio detection of high-energy cosmic rays with the Auger Engineering Radio Array

    Science.gov (United States)

    Schröder, Frank G.; Pierre Auger Collaboration

    2016-07-01

    The Auger Engineering Radio Array (AERA) is an enhancement of the Pierre Auger Observatory in Argentina. Covering about 17km2, AERA is the world-largest antenna array for cosmic-ray observation. It consists of more than 150 antenna stations detecting the radio signal emitted by air showers, i.e., cascades of secondary particles caused by primary cosmic rays hitting the atmosphere. At the beginning, technical goals had been in focus: first of all, the successful demonstration that a large-scale antenna array consisting of autonomous stations is feasible. Moreover, techniques for calibration of the antennas and time calibration of the array have been developed, as well as special software for the data analysis. Meanwhile physics goals come into focus. At the Pierre Auger Observatory air showers are simultaneously detected by several detector systems, in particular water-Cherenkov detectors at the surface, underground muon detectors, and fluorescence telescopes, which enables cross-calibration of different detection techniques. For the direction and energy of air showers, the precision achieved by AERA is already competitive; for the type of primary particle, several methods are tested and optimized. By combining AERA with the particle detectors we aim for a better understanding of cosmic rays in the energy range from approximately 0.3 to 10 EeV, i.e., significantly higher energies than preceding radio arrays.

  16. Simulation of the charge ratio of cosmic ray muons in extensive air showers using CORSIKA

    Energy Technology Data Exchange (ETDEWEB)

    Ochilo, Livingstone [University of Siegen (Germany); Kenyatta University, Nairobi (Kenya); Hashim, Nadir; Okumu, John [Kenyatta University, Nairobi (Kenya)

    2013-07-01

    The interaction of primary cosmic rays in the atmosphere produces, among other particles, pions and kaons. They decay to muons, which form an important component of extensive air showers. The ratio of positively to negatively charged muons, called the muon charge ratio, provides important information about the cosmic ray interactions in the atmosphere. In this study, the theoretical hadronic interaction models in the cosmic ray simulation code CORSIKA have been used to study the charge ratio of cosmic ray muons simulated in extensive air showers. An East - West effect on the charge ratio of simulated cosmic ray muons is observed. It is more pronounced for inclined and low-energy muons (momentum less than 100 GeV/c and zenith angle greater than 80 ). Experimental data from ''MINOS Near'' experiment gives similar results.

  17. Studies of Cosmic Ray Composition and Air Shower Structure with the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, : J.; Abreu, P.; Aglietta, M.; Aguirre, C.; Ahn, E.J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.

    2009-06-01

    These are presentations to be presented at the 31st International Cosmic Ray Conference, in Lodz, Poland during July 2009. It consists of the following presentations: (1) Measurement of the average depth of shower maximum and its fluctuations with the Pierre Auger Observatory; (2) Study of the nuclear mass composition of UHECR with the surface detectors of the Pierre Auger Observatory; (3) Comparison of data from the Pierre Auger Observatory with predictions from air shower simulations: testing models of hadronic interactions; (4) A Monte Carlo exploration of methods to determine the UHECR composition with the Pierre Auger Observatory; (5) The delay of the start-time measured with the Pierre Auger Observatory for inclined showers and a comparison of its variance with models; (6) UHE neutrino signatures in the surface detector of the Pierre Auger Observatory; and (7) The electromagnetic component of inclined air showers at the Pierre Auger Observatory.

  18. The Roland Maze Project - school-based extensive air shower network

    International Nuclear Information System (INIS)

    Feder, J.; Jedrzejczak, K.; Karczmarczyk, J.; Lewandowski, R.; Swarzynski, J.; Szabelska, B.; Szabelski, J.; Wibig, T.

    2006-01-01

    We plan to construct the large area network of extensive air shower detectors placed on the roofs of high school buildings in the city of Lodz. Detection points will be connected by INTERNET to the central server and their work will be synchronized by GPS. The main scientific goal of the project are studies of ultra high energy cosmic rays. Using existing town infrastructure (INTERNET, power supply, etc.) will significantly reduce the cost of the experiment. Engaging high school students in the research program should significantly increase their knowledge of science and modern technologies, and can be a very efficient way of science popularisation. We performed simulations of the projected network capabilities of registering Extensive Air Showers and reconstructing energies of primary particles. Results of the simulations and the current status of project realisation will be presented

  19. Search for neutrino generated air shower candidates with energy ≥ 1019 eV and Zenith angle θ

    Science.gov (United States)

    Knurenko, Stanislav; Petrov, Igor; Sabourov, Artem

    2017-06-01

    The description of the methodology and results of searching for air showers generated by neutral particles such as high energy gamma quanta and astroneutrinos are presented. For this purpose, we conducted a comprehensive analysis of the data: the electron, the muon and the EAS Cerenkov light, and their response time in scintillation and Cherenkov detectors. Air showers with energy more than 5·1018 eV and zenith angle θ ≥ 55∘ are selected and analyzed. Search results indicate a lack of air shower events formed by gamma-rays or high-energy neutrinos, but it does not mean that such air showers do not exist in nature; for example, experiments that recorded showers having a marked low muon content, i.e., "Muonless", are likely to be candidates for showers produced by neutral primary particles.

  20. Muons in air showers at the Pierre Auger Observatory: measurement of atmospheric production depth

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2014-01-01

    Roč. 90, č. 1 (2014), "012012-1"-"012012-15" ISSN 1550-7998 R&D Projects: GA ČR(CZ) GA14-17501S; GA MŠk(CZ) 7AMB14AR005; GA MŠk(CZ) LG13007 Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * detector * cosmic rays * muons * air shower s Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  1. Muons in air showers at the Pierre Auger Observatory: mean number in highly inclined events

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2015-01-01

    Roč. 91, č. 3 (2015), , "032003-1"-"032003-12" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * air shower s * ultrahigh energies * cosmic rays * detector Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  2. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. II. Composition implications

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2014-01-01

    Roč. 90, č. 12 (2014), "122006-1"-"122006-12" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * air- shower * fluorescence telescopes Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  3. Testing hadronic interactions at ultrahigh energies with air showers measured by the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Blažek, Jiří; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2016-01-01

    Roč. 117, č. 19 (2016), 1-9, č. článku 192001. ISSN 0031-9007 R&D Projects: GA MŠk LM2015038; GA MŠk LG15014; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * testing hadronic Interactions * ultrahigh energies * air showers Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 8.462, year: 2016

  4. A computerised recording and monitoring system for extensive air shower experiments

    International Nuclear Information System (INIS)

    Naranan, S.; Rao, M.V.S.; Sivaprasad, K.; Subramaniam, P.B.

    1975-01-01

    A digital computer, TDC-12, with a memory capacity of 8 K 12-bit words and memory cycle time of 2 μs has been installed at the Cosmic Ray Laboratory at Kolar Gold Fields, India for real time operation with the KGF Air Shower Experiment. The computer system records the selected events and monitors and calibrates all the 90 detectors of various types in real time. (orig./WL) [de

  5. Analytic calculation of radio emission from parametrized extensive air showers: A tool to extract shower parameters

    Science.gov (United States)

    Scholten, O.; Trinh, T. N. G.; de Vries, K. D.; Hare, B. M.

    2018-01-01

    The radio intensity and polarization footprint of a cosmic-ray induced extensive air shower is determined by the time-dependent structure of the current distribution residing in the plasma cloud at the shower front. In turn, the time dependence of the integrated charge-current distribution in the plasma cloud, the longitudinal shower structure, is determined by interesting physics which one would like to extract, such as the location and multiplicity of the primary cosmic-ray collision or the values of electric fields in the atmosphere during thunderstorms. To extract the structure of a shower from its footprint requires solving a complicated inverse problem. For this purpose we have developed a code that semianalytically calculates the radio footprint of an extensive air shower given an arbitrary longitudinal structure. This code can be used in an optimization procedure to extract the optimal longitudinal shower structure given a radio footprint. On the basis of air-shower universality we propose a simple parametrization of the structure of the plasma cloud. This parametrization is based on the results of Monte Carlo shower simulations. Deriving the parametrization also teaches which aspects of the plasma cloud are important for understanding the features seen in the radio-emission footprint. The calculated radio footprints are compared with microscopic CoREAS simulations.

  6. QGSJET-II: physics, recent improvements, and results for air showers

    Directory of Open Access Journals (Sweden)

    Ostapchenko S.

    2013-06-01

    Full Text Available Modeling of high energy hadronic and nuclear interactions by the QGSJET-II generator is discussed. Recent updates related to the treatment of nonlinear effects inthe interaction dynamics and to the model calibration with new LHC data are described. A special attention is devoted to the predictions of the new model version forcharacteristics of extensive air showers initiated by high energy cosmic rays. In particular, an improved description of charge exchange processes in pion collisionsis discussed and the respective enhancement of the shower muon content is analyzed.

  7. Measuring the muon content of air showers with IceTop

    Science.gov (United States)

    Gonzalez, Javier G.

    2015-08-01

    IceTop, the surface component of the IceCube detector, has been used to measure the energy spectrum of cosmic ray primaries in the range between 1.58 PeV and 1.26 EeV. It can also be used to study the low energy muons in air showers by looking at large distances (> 300 m) from the shower axis. We will show the muon lateral distribution function at large lateral distances as measured with IceTop and discuss the implications of this measurement. We will also discuss the prospects for low energy muon studies with IceTop.

  8. Measuring the muon content of air showers with IceTop

    Directory of Open Access Journals (Sweden)

    Gonzalez Javier G.

    2015-01-01

    Full Text Available IceTop, the surface component of the IceCube detector, has been used to measure the energy spectrum of cosmic ray primaries in the range between 1.58 PeV and 1.26 EeV. It can also be used to study the low energy muons in air showers by looking at large distances (> 300 m from the shower axis. We will show the muon lateral distribution function at large lateral distances as measured with IceTop and discuss the implications of this measurement. We will also discuss the prospects for low energy muon studies with IceTop.

  9. Microprocessor-based data acquisition system for extensive air shower studies

    International Nuclear Information System (INIS)

    Mazumdar, G.K.D.; Kalita, P.M.; Bordoloi, T.C.; Pathak, K.M.

    1989-01-01

    Studies on electromagnetic radiation from large extensive air showers (Esub(p) ≥> 10 16 eV) have been of recent importance in the investigation of properties of EAS in problems involving mass composition, arrival time, radio emission. Cerenkov radiation etc. Such studies need fast electronic circuitry preferably for digitisation. A microprocessor based data acquisition system having scintillation counters, PA, MA, Pd, S/H and control unit has been developed and is being used in the EAS studies at Gauhati University Cosmic Ray Research Laboratory. Description of the different units along with their functioning and method of standardisation is presented in this paper. (author). 3 figs

  10. Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, Pedro; et al.

    2013-02-01

    To interpret the mean depth of cosmic ray air shower maximum and its dispersion, we parametrize those two observables as functions of the first two moments of the ln A distribution. We examine the goodness of this simple method through simulations of test mass distributions. The application of the parameterization to Pierre Auger Observatory data allows one to study the energy dependence of the mean ln A and of its variance under the assumption of selected hadronic interaction models. We discuss possible implications of these dependences in term of interaction models and astrophysical cosmic ray sources.

  11. Extensive air showers accompanied by γ-ray families with summationE/sub γ//sub ,//sub H/≥10 TeV and general extensive air showers

    International Nuclear Information System (INIS)

    Fukushima, Y.; Hamayasu, C.; Mitsumune, T.

    1989-01-01

    Extensive air showers (EAS's) accompanied by families of high-energy cascade showers were observed at Mt. Norikura (738 g cm/sup -2/). 99 families of γ-ray- and hadron-origin showers with total energies summationE/sub γ//sub ,//sub H/≥10 TeV were obtained. The success rate of the combination between families and EAS's reaches to almost 90% (87 events). The families are associated with young EAS's, with mean age parameter s∼0.7, whose sizes distribute widely over three orders of magnitude up to 10 8 . The size spectrum of the family-associated EAS's coincides with the general EAS's in the size region above 5 x 10 6 but the former drops rapidly from the latter below this critical size. From the absolute intensity of summationE/sub γ//sub ,//sub H/ spectrum the proton fraction in the primary cosmic rays is deduced to be (14 +- 5)%, with an error of one standard deviation, in the primary energies (5 x 10/sup 14/)--10/sup 16/ eV, in comparison with a Monte Carlo simulation assuming an adequate interaction model. This agrees with the result obtained by the work with other mountain data and is also compatible with the result inferred from the size spectrum gap between the family-associated EAS's and the general EAS's in the region below the critical size

  12. Ultra-high energy cosmic rays: analysis of extensive air showers and their associated electromagnetic signal in the MHz domain

    International Nuclear Information System (INIS)

    Revenu, B.

    2012-01-01

    In this HDR (accreditation to supervise research) report, the author proposes a review of the present results in the field of ultra-high energy cosmic rays. After a presentation of some results about the Fermi mechanism to accelerate cosmic rays, the author more particularly addresses the reconstruction of air showers, and the search for sources. He also addresses the radio signal emitted by air shower secondary positrons and electrons. He proposes an overview of the present knowledge on the basis of present experiments. Data show that the electric field is mainly due to the influence of the Earth magnetic field which acts on electrons and positrons, but more recently, the contribution due to electrons in excess seems to appear in data. The author reports the last advances in the field of simulation of the electric field, with notably the prediction of new signal produced by the disappearance of the air shower during its absorption by the soil [fr

  13. Reconstruction of extensive air showers using the MIDAS molecular Bremsstrahlung detector

    International Nuclear Information System (INIS)

    Castro, Andre Ramos de; Bonifazi, Carla; Santos, Edivaldo Moura; Soares, Elvis do Amaral; Mello Neto, Joao Ramos Torres de; Almeida, Rogerio Menezes de

    2011-01-01

    Full text: The weakly ionized plasma created in the atmosphere after the passage of an Extensive Air Shower (EAS) gives rise to the emission of continuous radiation known as Molecular Bremsstrahlung Radiation (MBR) as free electrons scatter off neutral nitrogen (and less frequently oxygen) molecules. The isotropic and unpolarized nature of MBR rises the possibility of an EAS detection similar to that using fluorescence telescopes to capture the ultraviolet light emitted by the ionized nitrogen molecules. The MBR emission, however, falls into the centimeter wavelength range, requiring the use of radio/microwave antennas instead of optical telescopes. In order to test the feasibility of the technique, the MIDAS (Microwave Detection of Air Showers) Collaboration has built a prototype detector where a parabolical reflector illuminates a multi-pixel camera of commercial TV satellite C-band (3.4-4.2 GHz) feeds. This work addresses the geometrical reconstruction of EAS induced by Ultra High Energy Cosmic Rays (UHECR) using the MIDAS detector. The reconstruction chain is similar to that currently applied to the Auger Fluorescence detector events. We have simulated the shower MBR emission assuming two different scenarios: coherent and incoherent emission, i.e., radiation intensity scaling quadratically and linearly with the energy of the primary particle. The MIDAS prototype detector's response is then simulated. Finally, given the simulated events in real data format, we reconstruct the shower's arrival direction, including direction uncertainties and estimate the expected rate of observed events. (author)

  14. A multi-transputer system for parallel Monte Carlo simulations of extensive air showers

    International Nuclear Information System (INIS)

    Gils, H.J.; Heck, D.; Oehlschlaeger, J.; Schatz, G.; Thouw, T.

    1989-01-01

    A multiprocessor computer system has been brought into operation at the Kernforschungszentrum Karlsruhe. It is dedicated to Monte Carlo simulations of extensive air showers induced by ultra-high energy cosmic rays. The architecture consists of two independently working VMEbus systems each with a 68020 microprocessor as host computer and twelve T800 transputers for parallel processing. The two systems are linked via Ethernet for data exchange. The T800 transputers are equipped with 4 Mbyte RAM each, sufficient to run rather large codes. The host computers are operated under UNIX 5.3. On the transputers compilers for PARALLEL FORTRAN, C, and PASCAL are available. The simple modular architecture of this parallel computer reflects the single purpose for which it is intended. The hardware of the multiprocessor computer is described as well as the way how the user software is handled and distributed to the 24 working processors. The performance of the parallel computer is demonstrated by well-known benchmarks and by realistic Monte Carlo simulations of air showers. Comparisons with other types of microprocessors and with large universal computers are made. It is demonstrated that a cost reduction by more than a factor of 20 is achieved by this system as compared to universal computer. (orig.)

  15. First results from the TUS orbital detector in the extensive air shower mode

    Energy Technology Data Exchange (ETDEWEB)

    Khrenov, B.A.; Klimov, P.A.; Panasyuk, M.I.; Sharakin, S.A.; Zotov, M.Yu.; Chirskaya, N.P.; Eremeev, V.E.; Garipov, G.K.; Kalmykov, N.N. [Lomonosov Moscow State University, GSP-1, Leninskie Gory, Moscow, 119991 (Russian Federation); Tkachev, L.G.; Biktemerova, S.V.; Grebenyuk, V.M.; Grinyuk, A.A.; Lavrova, M.V. [Joint Institute for Nuclear Research, Joliot-Curie, 6, Dubna, Moscow region, Russia, 141980 (Russian Federation); Botvinko, A.A. [Space Regatta Consortium, ul. Lenina, 4a, 141070 Korolev, Moscow region (Russian Federation); Jeong, S.; Kim, M.; Lee, J.; Park, I.H. [Department of Physics and ISTS, Sungkyunkwan University, Seobu-ro 2066, Suwon, \\mbox440-746 (Korea, Republic of); Martinez, O., E-mail: zotov@eas.sinp.msu.ru [Benemérita Universidad Autónoma de Puebla, 4 sur 104 Centro Histórico C.P. 72000, Puebla (Mexico); and others

    2017-09-01

    TUS (Tracking Ultraviolet Set-up), the first orbital detector of extreme energy cosmic rays (EECRs), those with energies above 50 EeV, was launched into orbit on April 28, 2016, as a part of the Lomonosov satellite scientific payload. The main aim of the mission is to test a technique of registering fluorescent and Cherenkov radiation of extensive air showers generated by EECRs in the atmosphere with a space telescope. We present preliminary results of its operation in a mode dedicated to registering extensive air showers in the period from August 16, 2016, to November 4, 2016. No EECRs have been conclusively identified in the data yet, but the diversity of ultraviolet emission in the atmosphere was found to be unexpectedly rich. We discuss typical examples of data obtained with TUS and their possible origin. The data is important for obtaining more accurate estimates of the nocturnal ultraviolet glow of the atmosphere, necessary for successful development of more advanced orbital EECR detectors including those of the KLYPVE (K-EUSO) and JEM-EUSO missions.

  16. The present status of the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nonaka, T. [Institute for Cosmic Ray Research University of Tokyo, 5-1-5 Kashiwanoha Kashiwa Chiba (Japan); Abu-Zayyad, T.; Allen, M. [University of Utah - High Energy Astrophysics Institute, 115 S 1400 E 201, Salt Lake City, UT 84112-0830 (United States); Azuma, R. [Tokyo Institute of Technology, 2-12-1 Ohokayama Meguro-ku, Tokyo 152-8550 (Japan); Belz, J.W. [University of Utah - High Energy Astrophysics Institute, 115 S 1400 E 201, Salt Lake City, UT 84112-0830 (United States); Bergman, D.R. [Rutgers University, 136 Frelinghuysen Road, Piscataway, NJ 08854 (United States); Blake, S.A.; Brusova, O.; Cady, R.; Cao, Z. [University of Utah - High Energy Astrophysics Institute, 115 S 1400 E 201, Salt Lake City, UT 84112-0830 (United States); Chiba, J. [Tokyo University of Science, 2641 Yamazaki Noda-shi, Chiba 278-8510 (Japan); Chikawa, M. [Kinki University, 3-4-1 Kowakae, Higashiosaka-shi, Osaka 577-8582 (Japan); Cho, I.S. [Yonsei University, 134 Sinchon-dong, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [KEK - Institute of Particle And Nuclear Studies, 1-1 Oho Tsukuba-shi, Ibaraki 305-0801 (Japan); Fujii, T. [Osaka City University, 3-3-138 Sugimoto-cho, Sumiyoshi-ku, Osaka 558-8585 (Japan); Fukuda, T. [Tokyo Institute of Technology, 2-12-1 Ohokayama Meguro-ku, Tokyo 152-8550 (Japan); Fukushima, M. [Institute for Cosmic Ray Research University of Tokyo, 5-1-5 Kashiwanoha Kashiwa Chiba (Japan); Hayashi, K. [Tokyo Institute of Technology, 2-12-1 Ohokayama Meguro-ku, Tokyo 152-8550 (Japan); Hayashida, N. [Institute for Cosmic Ray Research University of Tokyo, 5-1-5 Kashiwanoha Kashiwa Chiba (Japan); Hibino, K. [Kanagawa University, 3-27-1 Rokkakubashi Kanagawa-ku, Yokohama-shi, Kanagawa 221-8686 (Japan)

    2009-05-15

    The Telescope Array(TA) experiment located at western desert in Utah USA (N39.3,W112.9) is designed for observation of air shower from extreme high energy cosmic rays. The TA detector consists of 2 types of detector to enable a cross check on systematic difference from the two main methods of observation for the energy region. One is a Fluorescence detector (FD) for detecting fluorescence light from air shower and another is surface detector (SD) array for detecting air shower particles at ground level. Each SD consists of 2 layers of plastic scintillator with 3m{sup 2} of surface and more sensitive to electromagnetic component in air shower. The full operation using 3FD stations and full SD array has started. Here we present the updated status of Telescope Array experiment.

  17. Measurement of the Depth of Maximum of Extensive Air Showers above 10(18) eV

    NARCIS (Netherlands)

    Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Baecker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barroso, S. L. C.; Barbosa, A. F.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De la Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Diaz Castro, M. L.; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrero, A.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Froehlich, U.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Gamez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Goncalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gora, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Horandel, J. R.; Horneffer, A.; Hrabovsky, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D. -H.; Krieger, A.; Kroemer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, K.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Lopez, R.; Lopez Agueera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Micanovic, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafa, M.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Nyklicek, M.; Oehlschlaeger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Pakk Selmi-Dei, D.; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parlati, S.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Riviere, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santo, C. E.; Santos, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F.; Schulte, S.; Schuessler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shadkam, A.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tapia, A.; Tarutina, T.; Tascau, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Todero Peixoto, C. J.; Tome, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van den Berg, A. M.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Venters, T.; Verzi, V.; Videla, M.; Villasenor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Williams, C.; Winchen, T.; Winnick, M. G.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2010-01-01

    We describe the measurement of the depth of maximum, X-max, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10(18) eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are

  18. The influence of the atmospheric refractive index on radio Xmax measurements of air showers

    Directory of Open Access Journals (Sweden)

    Corstanje Arthur

    2017-01-01

    Full Text Available The refractive index of the atmosphere, which is n ≈ 1:0003 at sea level, varies with altitude and with local temperature, pressure and humidity. When performing radio measurements of air showers, natural variations in n will change the radio lateral intensity distribution, by changing the Cherenkov angle. Using CoREAS simulations, we have evaluated the systematic error on measurements of the shower maximum Xmax due to variations in n. It was found that a 10% increase in refractivity (n – 1 leads to an underestimation of Xmax between 8 and 22 g/cm2 for proton-induced showers at zenith angles from 15 to 45 degrees, respectively.

  19. A discrimination technique for extensive air showers based on multiscale, lacunarity and neural network analysis

    International Nuclear Information System (INIS)

    Pagliaro, Antonio; D'Ali Staiti, G.; D'Anna, F.

    2011-01-01

    We present a new method for the identification of extensive air showers initiated by different primaries. The method uses the multiscale concept and is based on the analysis of multifractal behaviour and lacunarity of secondary particle distributions together with a properly designed and trained artificial neural network. In the present work the method is discussed and applied to a set of fully simulated vertical showers, in the experimental framework of ARGO-YBJ, to obtain hadron to gamma primary separation. We show that the presented approach gives very good results, leading, in the 1-10 TeV energy range, to a clear improvement of the discrimination power with respect to the existing figures for extended shower detectors.

  20. Extensive air showers and diffused Cherenkov light detection: The ULTRA experiment

    International Nuclear Information System (INIS)

    Agnetta, G.; Assis, P.; Biondo, B.

    2007-01-01

    The Uv Light Transmission and Reflection in the Atmosphere (ULTRA) experiment has been designed to provide quantitative measurements of the backscattered Cherenkov signal associated to the Extensive Air Showers (EAS) at the impact point on the Earth surface. The knowledge of such information will test the possibility to detect the diffused Cherenkov light spot from space within the Ultra high-energy cosmic ray observation. The Cherenkov signal is necessary to give an absolute reference for the track, allowing the measurement of the shower maximum and easing the separation between neutrino and hadronic showers. In this paper we discuss the experimental set-up with detailed information on the detection method; the in situ and laboratory calibrations; the simulation of the expected detector response and finally the preliminary results on the detector performance

  1. Investigating the physics performance of air shower universality at the Pierre Auger Observatory

    Energy Technology Data Exchange (ETDEWEB)

    Bridgeman, Ariel; Schulz, Alexander; Roth, Markus [Karlsruhe Institute of Technology (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    Recent updates to the air shower universality reconstruction of surface detector data at the Pierre Auger Observatory have reduced the bias and improved the resolution of mass-sensitive variables: the depth of shower maximum and the relative number of muons. For better-informed studies of a possible anisotropy in the arrival direction of ultra-high-energy cosmic rays, a quantification of the power of these parameters to separate a proton-like signal from background is presented. The analysis is furthered with an outlook to the detector's overall sensitivity to a proton-like signal as well as a projection of our ability to distinguish between different astrophysical flux scenarios.

  2. A deep learning-based reconstruction of cosmic ray-induced air showers

    Science.gov (United States)

    Erdmann, M.; Glombitza, J.; Walz, D.

    2018-01-01

    We describe a method of reconstructing air showers induced by cosmic rays using deep learning techniques. We simulate an observatory consisting of ground-based particle detectors with fixed locations on a regular grid. The detector's responses to traversing shower particles are signal amplitudes as a function of time, which provide information on transverse and longitudinal shower properties. In order to take advantage of convolutional network techniques specialized in local pattern recognition, we convert all information to the image-like grid of the detectors. In this way, multiple features, such as arrival times of the first particles and optimized characterizations of time traces, are processed by the network. The reconstruction quality of the cosmic ray arrival direction turns out to be competitive with an analytic reconstruction algorithm. The reconstructed shower direction, energy and shower depth show the expected improvement in resolution for higher cosmic ray energy.

  3. Results of fractal analysis of the Kiel extensive air shower data

    International Nuclear Information System (INIS)

    Kempa, J.; Samorski, M.

    1998-01-01

    For years there has been a problem in cosmic ray studies of how to distinguish individual extensive air showers (EAS) originating from primary protons, heavy nuclei or primary photons. In this paper results of experimental data obtained from the fractal analysis of particle density distributions in individual EAS detected in the range of shower sizes N e between 1.4x10 5 -5x10 6 by the old Kiel experiment are presented. The Lipschitz-Hoelder exponent distributions of EAS detected by the Kiel experiment are discussed. The examples of EAS most probably originating from primary protons, heavy nuclei and high-energy gamma-rays are presented. The lateral distributions of charged particle densities at small distances, angular and size spectra and the mass composition of primary cosmic ray particles around the 'knee' of the energy spectrum are discussed. The Monte Carlo simulation data illustrating the problem of interest are also shown. (author)

  4. What do we learn about hadronic interactions at ultrahigh energies from extensive air shower observations?

    International Nuclear Information System (INIS)

    Rebel, H.

    2002-01-01

    The interpretation of extensive air shower (EAS) observations needs a sufficiently accurate knowledge of the interactions driving the cascade development in the atmosphere. While the electromagnetic and weak interaction parts do not provide principal problems, the hadronic interaction is a subject of uncertainties and debates, especially in the ultrahigh energy region extending the energy limits of man made accelerators and experimental knowledge from collider experiments. Since the EAS development is dominantly governed by soft processes, which are presently not accessible to a perturbative QCD treatment, one has to rely on QCD inspired phenomenological interaction models, in particular on string-models based on the Gribov-Regge theory like QGSJET, VENUS and SYBILL. Recent results of the EAS experiments KASCADE are scrutinized in terms of such models used as generators in the Monte Carlo EAS simulation code CORSIKA. (author)

  5. Air shower simulation for background estimation in muon tomography of volcanoes

    Directory of Open Access Journals (Sweden)

    S. Béné

    2013-01-01

    Full Text Available One of the main sources of background for the radiography of volcanoes using atmospheric muons comes from the accidental coincidences produced in the muon telescopes by charged particles belonging to the air shower generated by the primary cosmic ray. In order to quantify this background effect, Monte Carlo simulations of the showers and of the detector are developed by the TOMUVOL collaboration. As a first step, the atmospheric showers were simulated and investigated using two Monte Carlo packages, CORSIKA and GEANT4. We compared the results provided by the two programs for the muonic component of vertical proton-induced showers at three energies: 1, 10 and 100 TeV. We found that the spatial distribution and energy spectrum of the muons were in good agreement for the two codes.

  6. UHE Cosmic Ray Observations Using the Cygnus Water - Array

    Science.gov (United States)

    Dion, Cynthia L.

    1995-01-01

    The CYGNUS water-Cerenkov array, consisting of five surface water-Cerenkov detectors, was built in the CYGNUS extensive air shower array at Los Alamos, New Mexico (latitude 36^circ N, longitude 107^circ W, altitude 2310 meters) to search for point sources of ultra-high energy particles (>1014 eV per particle) with the CYGNUS extensive air shower array. The water-Cerenkov detectors are used to improve the angular resolution of the extensive air shower array. This experiment searches for point sources of UHE gamma-radiation that may be of galactic or extra-galactic origin. The data set from December 1991 to January 1994 consists of data from both the water-Cerenkov array and the CYGNUS extensive air shower array. These data are combined, and the angular resolution of this combined data set is measured to be 0.34^circ+0.03 ^circ-0.04^circ. The measurement is made by observing the cosmic-ray shadowing of the Sun and the Moon. Using a subset of these data, three potential sources of UHE emission are studied: the Crab Pulsar, and the active galactic nuclei Markarian 421 and Markarian 501. A search is conducted for continuous emission from these three sources, and emission over shorter time scales. This experiment is particularly sensitive to emission over these shorter time scales. There is no evidence of UHE emission from these three sources over any time scales studied, and upper bounds to the flux of gamma radiation are determined. The flux upper limit for continuous emission from the Crab Pulsar is found to be 1.2times10^ {-13}/rm cm^2/s above 70 TeV. The flux upper limit for continuous emission from Markarian 421 is found to be 1.3times10^ {-13}/rm cm^2/s above 50 TeV. The flux upper limit for continuous emission from Markarian 501 is found to be 3.8times10^ {-13}/rm cm^2/s above 50 TeV.

  7. Study of the lateral and temporal distributions of particles in the extensive air shower front

    International Nuclear Information System (INIS)

    Toma, G.; Brancus, I. M.; Mitrica, B.; Badea, A. F.; Rebel, H.; Haungs, A.; Sima, O.

    2004-01-01

    To understand the influence of the primary particle (mass and energy) on the development of the Extensive Air Showers (EAS) a study has been performed on simulated events. A number of showers have been simulated using CORSIKA simulation program for different primary particles (p, C, Fe) and different energies (5.62x10 16 and 10 17 eV). The arrival time distributions of particles arriving at ground (detector level) have been studied for different primary energies and masses. Arrival time quartiles have been calculated and compared for different primaries. Arrival time distributions for different distances to shower core and different threshold energies have been compared. To obtain information about the influence of the primary particle on the shape of the lateral distribution of detected shower particles, the simulated lateral density distribution has been approximated with a parametric Lateral Density Function (LDF). The interaction of the shower particles with the detectors has been simulated and the energy deposited in the detectors has been evaluated. This method was used for obtaining the reconstructed (equivalent to the experimental) lateral density distribution, afterwards approximated with the same LDF. To check the quality of the fit and to investigate the sensitivity to fitting conditions, the study was done for three radial ranges, 40-200 m, 350-650 m, 0-1000 m. The total number of particles in the shower front and the truncated number of particles (in the fitting range) have been reconstructed to be compared with the real number of particles from CORSIKA simulations and to investigate the potential use of these parameters in a multiparametric study of extensive air showers. (authors)

  8. Measurement of muon content in inclined air showers above 4 x 10{sup 18} eV

    Energy Technology Data Exchange (ETDEWEB)

    Dembinski, Hans; Roth, Markus [IKP, Karlsruhe Institut of Technology (KIT) (Germany); Collaboration: Pierre-Auger-Collaboration

    2013-07-01

    The Pierre Auger Observatory in Malarguee, Argentina, is sensitive to air showers up to almost horizontal angles of incidence. Air showers with zenith angles between 60 and 80 degrees are suited to measure the muon component of the shower with the Auger Surface Detector since the primary electromagnetic component gets absorbed in the atmosphere before the shower reaches ground. Some of those events are also observed by the Fluorescence Detector which allows us to determine the total energy of the shower independent of the Surface Detector. Based on these hybrids events the size of muon component for a given cosmic ray energy is determined, which can then be compared to model predictions. We present an update of this analysis.

  9. IceVeto. An extension of IceTop to veto air showers for neutrino astronomy with IceCube

    Energy Technology Data Exchange (ETDEWEB)

    Auffenberg, Jan; Kemp, Julian; Raedel, Leif; Rongen, Martin; Schaufel, Merlin; Stahlberg, Martin; Hansmann, Bengt; Wiebusch, Christopher [RWTH Aachen University, Physikalische Institut III b (Germany); Collaboration: IceCube-Collaboration

    2015-07-01

    IceCube is the world's largest high-energy neutrino observatory, built at the geographic South Pole. For neutrino astronomy, a large background-free sample of well-reconstructed astrophysical neutrinos is essential. The main background for this signal are muons and neutrinos which are produced in cosmic-ray air showers in the Earth's atmosphere. The coincident detection of these air showers by the surface detector IceTop has been proven to be a powerful veto for atmospheric neutrinos and muons in the field of view of the southern hemisphere. This motivates a significant extension of IceTop. First estimates indicate that such a veto detector will more than double the discovery potential of current point source analyses. Here, we present the motivation and capabilities of different technologies based on simulations and measurements.

  10. Investigation concerning the existence of quarks near the nuclei of great air showers with the help of a cloud chamber

    International Nuclear Information System (INIS)

    Wiemken, U.

    1974-01-01

    In order to compare the results of McCusker's (1969) experiment, this paper presents an experiment with improved technical details. For this purpose, a large cloud chamber in connection with the Kiel air shower set-up was available. First, the expected quark induced ionisation has been determined by a calibration measurement on minimum ionising muons. These data are in extremely good agreement with values from the literature. Then, measurements in air showers with a mean primary energy of 10 16 eV have been performed during an effective measuring time of 66 days. The mean distance from the nucleus amounts to about 9 m. In contradiction to the quark abundance of McCusker, which predicts six quarks for the Kiel set-up, no track was found with 'quark suspicion'. Some tracks with low droplet densities could be explained already in a preliminary stage of the evaluation by normal cloud chamber effects. (orig.) [de

  11. Measurements in the Forward Phase-Space with the CMS Experiment and their Impact on Physics of Extensive Air Showers

    CERN Document Server

    AUTHOR|(CDS)2083313; Quast, Günter; Ulrich, Ralf

    2015-11-18

    The astrophysical interpretation of ultra-high energy cosmic rays is based on detection of extensive air showers in indirect measurements. Hadronic interaction models that are needed for such analyses require parameters to be adjusted to collider data since soft particle production cannot be calculated from first principles. Within this work, the program CRMC was developed that unifies all air shower hadronic interaction models and supports the output formats used by collider experiments. Almost all LHC experiments have adopted the use these hadronic interaction models thanks to CRMC. The program can even be used in detector simulations to make direct comparison to reconstructed quantities from which the cosmic ray and the particle physics communities benefit immensely. Furthermore, nuclear effects were studied with the CMS experiments at the LHC. The production cross section was derived in recent proton-lead collision data at sqrt(s(NN)) = 5.02 TeV in order to study nuclear effects. The measurement constrain...

  12. Results from Pion-Carbon Interactions Measured by NA61/SHINE for Improved Understanding of Extensive Air Showers

    CERN Document Server

    Herve, Alexander

    2015-07-21

    The interpretation of extensive air shower measurements, produced by ultra-high energy cosmic rays, relies on the correct modeling of the hadron-air interactions that occur during the shower development. The majority of hadronic particles are produced at equivalent beam energies below the TeV range. NA61/SHINE is a fixed target experiment using secondary beams produced at CERN at the SPS. Hadron-hadron interactions have been recorded at beam momenta between 13 and 350 GeV/c with a wide-acceptance spectrometer. In this contribution we present measurements of the spectra of charged pions and the $\\rho^0$ production in pion-carbon interactions, which are essential for modeling of air showers.

  13. Self-triggering of radio signals from cosmic ray air showers

    International Nuclear Information System (INIS)

    Asch, Thomas

    2009-02-01

    LOPES STAR is a prototype detector for future experiments on the observation of radio emission of ultra high energy cosmic rays. Absolutely calibrated measurements of the electric field strength with the LOPES STAR detector were performed in coincidence with the well-established air shower detector KASCADE-Grande. The experinmental configuration allowed a simultaneous observation of east-west and north-south polarised components of the electric field per antenna used. This thesis discusses in detail the influence of background sources on the detector configuration as well as the resulting self-trigger system. The implemented trigger suppresses strong background signals from the industrial environment on the site of the Forschungszentrum Karlsruhe (rejection >99.9 %) and is the basis for a hardware self-trigger. Therefore, the system is adequate for any other detector site. Two different calibration methods are performed and cross-checked to convert the measured raw data into an electric field strength. Both methods result in the same frequency dependent calibration values within their uncertainties. Furthermore, the probable scale parameter of d 0 =(137±18) m. The comparison of selected events with Monte Carlo simulations on an event-by-event basis points out a good correspondence within the given uncertainties and confirms the geosynchrotron model. The overall angular resolution of the arrival direction results in only a few degrees. The presented methods and algorithms are developed for the trigger system and the analysis and are now standard tools for the data analysis in the LOPES collaboration. (orig.)

  14. Mass production of extensive air showers for the Pierre Auger Collaboration using Grid Technology

    Science.gov (United States)

    Lozano Bahilo, Julio; Pierre Auger Collaboration

    2012-06-01

    When ultra-high energy cosmic rays enter the atmosphere they interact producing extensive air showers (EAS) which are the objects studied by the Pierre Auger Observatory. The number of particles involved in an EAS at these energies is of the order of billions and the generation of a single simulated EAS requires many hours of computing time with current processors. In addition, the storage space consumed by the output of one simulated EAS is very high. Therefore we have to make use of Grid resources to be able to generate sufficient quantities of showers for our physics studies in reasonable time periods. We have developed a set of highly automated scripts written in common software scripting languages in order to deal with the high number of jobs which we have to submit regularly to the Grid. In spite of the low number of sites supporting our Virtual Organization (VO) we have reached the top spot on CPU consumption among non LHC (Large Hadron Collider) VOs within EGI (European Grid Infrastructure).

  15. Symbol Stream Combining Versus Baseband Combining for Telemetry Arraying

    Science.gov (United States)

    Divsalar, D.

    1983-01-01

    The objectives of this article are to investigate and analyze the problem of combining symbol streams from many Deep Space Network stations to enhance bit signal-to-noise ratio and to compare the performance of this combining technique with baseband combining. Symbol stream combining (SSC) has some advantages and some disadvantages over baseband combining (BBC). The SSC suffers almost no loss in combining the digital data and no loss due to the transmission of the digital data by microwave links between the stations. The BBC suffers 0.2 dB loss due to alignment and combining the IF signals and 0.2 dB loss due to transmission of signals by microwave links. On the other hand, the losses in the subcarrier demodulation assembly (SDA) and in the symbol synchronization assembly (SSA) for SSC are more than the losses in the SDA and SSA for BBC. It is shown that SSC outperforms BBC by about 0.35 dB (in terms of the required bit energy-to-noise spectral density for a bit error rate of 1,000) for an array of three DSN antennas, namely 64 m, 34m(T/R) and 34m(R).

  16. The Giant Radio Array for Neutrino Detection

    DEFF Research Database (Denmark)

    Martineau-Huynh, Olivier; Bustamante, Mauricio; Carvalho, Washington

    2017-01-01

    The Giant Radio Array for Neutrino Detection (GRAND) is a planned array of ~200 000 radio antennas deployed over ~200 000 km2 in a mountainous site. It aims primarly at detecting high-energy neutrinos via the observation of extensive air showers induced by the decay in the atmosphere of taus...

  17. Study of Implosion of Combined Nested Arrays

    Science.gov (United States)

    Mitrofanov, K. N.; Aleksandrov, V. V.; Grabovski, E. V.; Sasorov, P. V.; Branitsky, A. V.; Gritsuk, A. N.; Frolov, I. N.; Laukhin, Ya. N.

    2017-12-01

    New experimental data on the implosion of plasma of nested kapron-tungsten arrays are obtained at the Angara-5-1 facility. The mode of plasma implosion is implemented in which a shock wave region forms in the space between the inner and outer arrays where a transition from the super-Alfvénic ( V r > V A ) to sub-Alfvénic ( V r Z-pinch and generation of a soft X-ray pulse with a peak power of 4 TW and duration of about 5 ns.

  18. EAS selection in the EMMA underground array

    DEFF Research Database (Denmark)

    Sarkamo, J.; Bezrukov, L.; Enqvist, T.

    2013-01-01

    The first measurements of the Experiment with MultiMuon Array (EMMA) have been analyzed for the selection of the Extensive Air Showers (EAS). Test data were recorded with an underground muon tracking station and a satellite station separated laterally by 10 metres. Events with tracks distributed...

  19. Measurement of the Depth of Maximum of Extensive Air Showers above 10^18 eV

    Energy Technology Data Exchange (ETDEWEB)

    Abraham, J.; /Buenos Aires, CONICET; Abreu, P.; /Lisbon, IST; Aglietta, M.; /Turin U. /INFN, Turin; Ahn, E.J.; /Fermilab; Allard, D.; /APC, Paris; Allekotte, I.; /Centro Atomico Bariloche /Buenos Aires, CONICET; Allen, J.; /New York U.; Alvarez-Muniz, J.; /Santiago de Compostela U.; Ambrosio, M.; /Naples U.; Anchordoqui, L.; /Wisconsin U., Milwaukee; Andringa, S.; /Lisbon, IST /Boskovic Inst., Zagreb

    2010-02-01

    We describe the measurement of the depth of maximum, X{sub max}, of the longitudinal development of air showers induced by cosmic rays. Almost 4000 events above 10{sup 18} eV observed by the fluorescence detector of the Pierre Auger Observatory in coincidence with at least one surface detector station are selected for the analysis. The average shower maximum was found to evolve with energy at a rate of (106{sub -21}{sup +35}) g/cm{sup 2}/decade below 10{sup 18.24 {+-} 0.05}eV, and (24 {+-} 3) g/cm{sup 2}/decade above this energy. The measured shower-to-shower fluctuations decrease from about 55 to 26 g/cm{sup 2}. The interpretation of these results in terms of the cosmic ray mass composition is briefly discussed.

  20. Optimization of an FPGA Trigger Based on an Artificial Neural Network for the Detection of Neutrino-Induced Air Showers

    Science.gov (United States)

    Szadkowski, Zbigniew; Głas, Dariusz; Pytel, Krzysztof; Wiedeński, Michał

    2017-06-01

    Neutrinos play a fundamental role in the understanding of the origin of ultrahigh-energy cosmic rays. They interact through charged and neutral currents in the atmosphere generating extensive air showers. However, the very low rate of events potentially generated by neutrinos is a significant challenge for detection techniques and requires both sophisticated algorithms and high-resolution hardware. Air showers initiated by protons and muon neutrinos at various altitudes, angles, and energies were simulated in CORSIKA and the Auger OffLine event reconstruction platforms, giving analog-to-digital convertor (ADC) patterns in Auger water Cherenkov detectors on the ground. The proton interaction cross section is high, so proton “old” showers start their development early in the atmosphere. In contrast to this, neutrinos can generate “young” showers deeply in the atmosphere relatively close to the detectors. Differences between “old” proton and “young” neutrino showers are visible in attenuation factors of ADC waveforms. For the separation of “old” proton and “young” neutrino ADC traces, many three-layer artificial neural networks (ANNs) were tested. They were trained in MATLAB (in a dedicated way -only “old” proton and “young” neutrino showers as patterns) by simulated ADC traces according to the Levenberg-Marquardt algorithm. Unexpectedly, the recognition efficiency is found to be almost independent of the size of the networks. The ANN trigger based on a selected 8-6-1 network was tested in the Cyclone V E FPGA 5CEFA9F31I7, the heart of prototype front-end boards developed for testing new algorithms in the Pierre Auger surface detectors.

  1. Status of the expansion of the CYGNUS array at Los Alamos

    International Nuclear Information System (INIS)

    Berley, D.; Chang, C.Y.; Dingus, B.L.

    1989-01-01

    The CYGNUS air shower array, located in Los Alamos, New Mexico, has been operating since April, 1986. The expansion of the array from 108 to 200 counters is described along with the increase in muon detection area. The new array, to be fully operational by the end of 1989, will have three times the sensitivity to UHE sources. 5 refs., 2 figs

  2. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    Science.gov (United States)

    An, Q.; Bai, Y. X.; Bi, X. J.; Cao, Z.; Chang, J. F.; Chen, G.; Chen, M. J.; Chen, S. M.; Chen, S. Z.; Chen, T. L.; Chen, X.; Chen, Y. T.; Cui, S. W.; Dai, B. Z.; Du, Q.; Danzengluobu; Feng, C. F.; Feng, S. H.; Gao, B.; Gao, S. Q.; Ge, M. M.; Gu, M. H.; Hao, X. J.; He, H. H.; Hou, C.; Hu, H. B.; Hu, X. B.; Huang, J.; Huang, W. P.; Jia, H. Y.; Jiang, K.; Liu, J.; Liu, J. L.; Liu, J. S.; Liu, S. B.; Liu, Y.; Liu, Y. N.; Li, Q. J.; Li, C.; Li, F.; Li, H. C.; Li, X. R.; Lu, H.; Lv, H. K.; Mao, Y. J.; Ma, L. L.; Ma, X. H.; Shao, J.; Shao, M.; Sheng, X. D.; Sun, G. X.; Sun, Z. B.; Tang, Z. B.; Wu, C. Y.; Wu, H. R.; Wu, Q.; Xiao, G.; Xu, Y.; Yang, Q. Y.; Yang, R.; Yao, Z. G.; You, X. H.; Yuan, A. F.; Zhang, B. K.; Zhang, H. M.; Zhang, S. R.; Zhang, S. S.; Zhang, X. Y.; Zhang, Y.; Zhang, L.; Zhai, L. M.; Zhao, J.; Zhao, L.; Zhao, Z. G.; Zha, M.; Zhou, B.; Zhu, F. R.; Zhu, K. J.; Zhuang, J.; Zuo, X.

    2013-10-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given.

  3. A Topological Array Trigger for AGIS, the Advanced Gamma ray Imaging System

    Science.gov (United States)

    Krennrich, F.; Anderson, J.; Buckley, J.; Byrum, K.; Dawson, J.; Drake, G.; Haberichter, W.; Imran, A.; Krawczynski, H.; Kreps, A.; Schroedter, M.; Smith, A.

    2008-12-01

    Next generation ground based γ-ray observatories such as AGIS1 and CTA2 are expected to cover a 1 km2 area with 50-100 imaging atmospheric Cherenkov telescopes. The stereoscopic view ol air showers using multiple view points raises the possibility to use a topological array trigger that adds substantial flexibility, new background suppression capabilities and a reduced energy threshold. In this paper we report on the concept and technical implementation of a fast topological trigger system, that makes use of real time image processing of individual camera patterns and their combination in a stereoscopic array analysis. A prototype system is currently under construction and we discuss the design and hardware of this topological array trigger system.

  4. Reconstruction of extensive air showers and measurement of the cosmic ray energy spectrum in the range of 1 - 80 PeV at the South Pole

    Energy Technology Data Exchange (ETDEWEB)

    Klepser, Stefan

    2008-06-24

    IceTop is a km{sup 2} scale detector array for highly energetic cosmic radiation. It is a part of the IceCube Observatory that is presently being built at the geographic South Pole. It aims for the detection of huge particle cascades induced by PeV cosmic rays in the atmosphere. These extensive air showers are detected by cylindrical ice tanks that collect the Cherenkov light produced by penetrating particles. The main goal of IceTop is the investigation of the energy distribution and chemical composition of PeV to EeV cosmic rays. This thesis presents the first analysis of highly energetic cosmic ray data taken with IceTop. First, the light response of the IceTop tanks is parametrised as a function of energy and particle type. An expectation function for the distribution of shower signals in the detector plane is developed. The likelihood fit based on that can reconstruct the recorded shower events with resolutions of 1.5 in direction, 9m in location of the shower center, and 12% in energy. This is well competitive with other experiments. The resulting energy response of the array is studied to set up response matrices for different primary nuclei and inclinations. These allow for a deconvolution of the distribution of reconstructed energies to derive the real energy spectrum. Two unfolding algorithms are implemented and studied, and response matrices are modeled for four different composition assumptions. With each assumption, energy spectra are unfolded for three different bins in inclination, using a data sample with an exposure of 3.86.10{sup 11} m{sup 2} s sr, taken in August 2007. The range of the spectrum is 1-80 PeV. Finally, a new analysis method is developed that uses the fact that cosmic rays in the PeV range are expected to be isotropic. It is shown that this requirement can be used for a likelihood estimation that is sensitive to composition without using additional information from other detector components. The analysis shows a clear preference of

  5. Reconstruction of extensive air showers and measurement of the cosmic ray energy spectrum in the range of 1 - 80 PeV at the South Pole

    International Nuclear Information System (INIS)

    Klepser, Stefan

    2008-01-01

    IceTop is a km 2 scale detector array for highly energetic cosmic radiation. It is a part of the IceCube Observatory that is presently being built at the geographic South Pole. It aims for the detection of huge particle cascades induced by PeV cosmic rays in the atmosphere. These extensive air showers are detected by cylindrical ice tanks that collect the Cherenkov light produced by penetrating particles. The main goal of IceTop is the investigation of the energy distribution and chemical composition of PeV to EeV cosmic rays. This thesis presents the first analysis of highly energetic cosmic ray data taken with IceTop. First, the light response of the IceTop tanks is parametrised as a function of energy and particle type. An expectation function for the distribution of shower signals in the detector plane is developed. The likelihood fit based on that can reconstruct the recorded shower events with resolutions of 1.5 in direction, 9m in location of the shower center, and 12% in energy. This is well competitive with other experiments. The resulting energy response of the array is studied to set up response matrices for different primary nuclei and inclinations. These allow for a deconvolution of the distribution of reconstructed energies to derive the real energy spectrum. Two unfolding algorithms are implemented and studied, and response matrices are modeled for four different composition assumptions. With each assumption, energy spectra are unfolded for three different bins in inclination, using a data sample with an exposure of 3.86.10 11 m 2 s sr, taken in August 2007. The range of the spectrum is 1-80 PeV. Finally, a new analysis method is developed that uses the fact that cosmic rays in the PeV range are expected to be isotropic. It is shown that this requirement can be used for a likelihood estimation that is sensitive to composition without using additional information from other detector components. The analysis shows a clear preference of the mixed

  6. The Advanced Gamma-ray Imaging System (AGIS): A Nanosecond Time Scale Stereoscopic Array Trigger System.

    Science.gov (United States)

    Krennrich, Frank; Buckley, J.; Byrum, K.; Dawson, J.; Drake, G.; Horan, D.; Krawzcynski, H.; Schroedter, M.

    2008-04-01

    Imaging atmospheric Cherenkov telescope arrays (VERITAS, HESS) have shown unprecedented background suppression capabilities for reducing cosmic-ray induced air showers, muons and night sky background fluctuations. Next-generation arrays with on the order of 100 telescopes offer larger collection areas, provide the possibility to see the air shower from more view points on the ground, have the potential to improve the sensitivity and give additional background suppression. Here we discuss the design of a fast array trigger system that has the potential to perform a real time image analysis allowing substantially improved background rate suppression at the trigger level.

  7. Measurement of the radiation energy in the radio signal of extensive air showers as a universal estimator of cosmic-ray energy

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Blažek, Jiří; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2016-01-01

    Roč. 116, č. 24 (2016), 1-9, č. článku 241101. ISSN 0031-9007 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * detector * cosmic rays * air showers Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 8.462, year: 2016

  8. Simulation studies of the information content of muon arrival time observations of high energy extensive air showers

    International Nuclear Information System (INIS)

    Brancus, I.; Duma, M.; Badea, A. F.; Aiftimiei, C.; Rebel, M. H.; Oehlschlaeger, J.

    2001-01-01

    By extensive Monte Carlo calculations, using the air shower simulation code CORSIKA, EAS muon arrival time distributions and EAS time profiles up to 320 m distances from the shower centre have been generated, for proton, oxygen and iron induced showers using different hadronic interaction models as Monte Carlo generators. The model dependence and mass discriminating features have been scrutinized for three energy ranges, (1-1.7783) 10 15 eV, (1.-1.78) 10 16 eV and (1.78-3.16) 10 16 eV, by use of non-parametric statistical inference method applied to multidimensional distributions, correlating the EAS time quantities with different other EAS observables. The correlations of local muon arrival times with the local muon density and the shower age indicate a good mass separation quality at larger shower distances. The best discrimination was obtained by adding the correlation with N μ tr quantity. The comparison between 'local times', with reference to the first registered muon and 'global times' with reference to the arrival time of the shower core, indicates a slightly better mass discrimination in the case of muon 'global' time distributions. (authors)

  9. Numerical simulations of compact intracloud discharges as the Relativistic Runaway Electron Avalanche-Extensive Air Shower process

    Science.gov (United States)

    Arabshahi, S.; Dwyer, J. R.; Nag, A.; Rakov, V. A.; Rassoul, H. K.

    2014-01-01

    Compact intracloud discharges (CIDs) are sources of the powerful, often isolated radio pulses emitted by thunderstorms. The VLF-LF radio pulses are called narrow bipolar pulses (NBPs). It is still not clear how CIDs are produced, but two categories of theoretical models that have previously been considered are the Transmission Line (TL) model and the Relativistic Runaway Electron Avalanche-Extensive Air Showers (RREA-EAS) model. In this paper, we perform numerical calculations of RREA-EASs for various electric field configurations inside thunderstorms. The results of these calculations are compared to results from the other models and to the experimental data. Our analysis shows that different theoretical models predict different fundamental characteristics for CIDs. Therefore, many previously published properties of CIDs are highly model dependent. This is because of the fact that measurements of the radiation field usually provide information about the current moment of the source, and different physical models with different discharge currents could have the same current moment. We have also found that although the RREA-EAS model could explain the current moments of CIDs, the required electric fields in the thundercloud are rather large and may not be realistic. Furthermore, the production of NBPs from RREA-EAS requires very energetic primary cosmic ray particles, not observed in nature. If such ultrahigh-energy particles were responsible for NBPs, then they should be far less frequent than is actually observed.

  10. Stereo-scopy of γ-ray air showers with the H.E.S.S. telescopes: first images of the supernova remnants at TeV

    International Nuclear Information System (INIS)

    Lemoine-Goumard, Marianne

    2006-05-01

    The H.E.S.S. (High Energy Stereoscopic System) experiment in gamma-ray Astronomy consists of four imaging atmospheric Cherenkov telescopes devoted to the observation of the gamma-ray sky in the energy domain above 100 GeV and extending up to several tens of TeV. This thesis presents a new reconstruction method of gamma-ray induced air showers which takes full advantage of the stereo-scopy and of the fine-grain imaging of the H.E.S.S. cameras. This new method provides an angular resolution better than 0.1 angle, an energy resolution of about 15% at zenith and a very efficient hadronic rejection based on a cut on the lateral spread of the electromagnetic shower which does not depend on simulations. A new background subtraction method, well adapted to the study of extended sources, was also developed. No assumption, either on the distribution of gamma-rays in the field of view, or on the distribution of hadrons are necessary. It provides two sky maps obtained from a maximum likelihood fit: one for γ-rays and the other for hadrons. These two analysis methods were applied to the study of the shell-type supernova remnants RX J1713.7-3946 and RX J0852.0-4622 (Vela Junior), allowing for the first time to resolve their morphology in the gamma-ray domain. The study of these sources should answer the question: 'can shell-type supernova remnants accelerate cosmic-rays up to the knee (5 x 10 15 eV)?'. A morphological and spectral study of these sources combined with a comparison of a simple model of emission processes (from electrons and protons accelerated in supernova remnants) provides some constraints on the parameters of the leptonic process. Nevertheless, this scenario cannot be excluded. The different results obtained are discussed and compared with a third shell-type supernova remnant observed by H.E.S.S. but not detected: SN 1006. (author)

  11. Coherent beam combining architectures for high power tapered laser arrays

    Science.gov (United States)

    Schimmel, G.; Janicot, S.; Hanna, M.; Decker, J.; Crump, P.; Erbert, G.; Witte, U.; Traub, M.; Georges, P.; Lucas-Leclin, G.

    2017-02-01

    Coherent beam combining (CBC) aims at increasing the spatial brightness of lasers. It consists in maintaining a constant phase relationship between different emitters, in order to combine them constructively in one single beam. We have investigated the CBC of an array of five individually-addressable high-power tapered laser diodes at λ = 976 nm, in two architectures: the first one utilizes the self-organization of the lasers in an interferometric extended-cavity, which ensures their mutual coherence; the second one relies on the injection of the emitters by a single-frequency laser diode. In both cases, the coherent combining of the phase-locked beams is ensured on the front side of the array by a transmission diffractive grating with 98% efficiency. The passive phase-locking of the laser bar is obtained up to 5 A (per emitter). An optimization algorithm is implemented to find the proper currents in the five ridge sections that ensured the maximum combined power on the front side. Under these conditions we achieve a maximum combined power of 7.5 W. In the active MOPA configuration, we can increase the currents in the tapered sections up to 6 A and get a combined power of 11.5 W, corresponding to a combining efficiency of 76%. It is limited by the beam quality of the tapered emitters and by fast phase fluctuations between emitters. Still, these results confirm the potential of CBC approaches with tapered lasers to provide a high-power and high-brightness beam, and compare with the current state-of-the-art with laser diodes.

  12. Energy spectrum of primary cosmic rays from 1016eV to 1019eV determined from air showers observed at 5200 m a.s.l

    International Nuclear Information System (INIS)

    Aguirre, C.; Mejia, G.R.; Yoshii, H.; Toyoda, Y.

    1977-01-01

    Energy spectra of primary cosmic rays from 10 16 eV to 10 19 eV have been determined from electron-sizes as well as from muon-sizes of the same air showers observed at Mt. Chacaltaya. The spectrum from electron-sizes is significantly higher than that from muon-sizes. The discrepancy is discussed and an explanation is given under the assumption of possible existence of copious direct production of photons besides the production of charged and neutral pions at these high energies. The spectra are also compared with those by other groups and the discrepancies are discussed. (author)

  13. The angular distributions of charged secondaries in electromagnetic and hadronic extensive air showers at 10, 100, 1000 and 10 000 TeV

    International Nuclear Information System (INIS)

    Trzupek, A.; Mikocki, S.; Gress, J.; Kochocki, J.; Poirier, J.

    1991-01-01

    The angular distributions of secondary electrons and muons in extensive air showers (EAS) initiated by 10, 100, 1000 and 10 000 TeV gamma rays and protons are obtained with the aid of a new, hybrid Monte Carlo simulation method. In this method, a three-dimensional program is constructed out of two existing software codes: SHOWERSIM and EGS4. This procedure allows for fast, yet precise, calculations down to low secondary particle energies. The dependence of the angular distributions for different threshold energies is presented for 1000 TeV primary gamma ray and proton energy. (author)

  14. Combining gene expression data from different generations of oligonucleotide arrays

    Directory of Open Access Journals (Sweden)

    Kong Sek

    2004-10-01

    Full Text Available Abstract Background One of the important challenges in microarray analysis is to take full advantage of previously accumulated data, both from one's own laboratory and from public repositories. Through a comparative analysis on a variety of datasets, a more comprehensive view of the underlying mechanism or structure can be obtained. However, as we discover in this work, continual changes in genomic sequence annotations and probe design criteria make it difficult to compare gene expression data even from different generations of the same microarray platform. Results We first describe the extent of discordance between the results derived from two generations of Affymetrix oligonucleotide arrays, as revealed in cluster analysis and in identification of differentially expressed genes. We then propose a method for increasing comparability. The dataset we use consists of a set of 14 human muscle biopsy samples from patients with inflammatory myopathies that were hybridized on both HG-U95Av2 and HG-U133A human arrays. We find that the use of the probe set matching table for comparative analysis provided by Affymetrix produces better results than matching by UniGene or LocusLink identifiers but still remains inadequate. Rescaling of expression values for each gene across samples and data filtering by expression values enhance comparability but only for few specific analyses. As a generic method for improving comparability, we select a subset of probes with overlapping sequence segments in the two array types and recalculate expression values based only on the selected probes. We show that this filtering of probes significantly improves the comparability while retaining a sufficient number of probe sets for further analysis. Conclusions Compatibility between high-density oligonucleotide arrays is significantly affected by probe-level sequence information. With a careful filtering of the probes based on their sequence overlaps, data from different

  15. Trigger and aperture of the surface detector array of the Pierre Auger Observatory

    NARCIS (Netherlands)

    Abraham, J.; Abreu, P.; Aglietta, M.; Ahn, E. J.; Allard, D.; Allekotte, I.; Allen, J.; Alvarez-Muniz, J.; Ambrosio, M.; Anchordoqui, L.; Andringa, S.; Anticic, T.; Anzalone, A.; Aramo, C.; Arganda, E.; Arisaka, K.; Arqueros, F.; Asorey, H.; Assis, P.; Aublin, J.; Ave, M.; Avila, G.; Baecker, T.; Badagnani, D.; Balzer, M.; Barber, K. B.; Barbosa, A. F.; Barroso, S. L. C.; Baughman, B.; Bauleo, P.; Beatty, J. J.; Becker, B. R.; Becker, K. H.; Belletoile, A.; Bellido, J. A.; BenZvi, S.; Berat, C.; Bergmann, T.; Bertou, X.; Biermann, P. L.; Billoir, P.; Blanch-Bigas, O.; Blanco, F.; Blanco, M.; Bleve, C.; Bluemer, H.; Bohacova, M.; Boncioli, D.; Bonifazi, C.; Bonino, R.; Borodai, N.; Brack, J.; Brogueira, P.; Brown, W. C.; Bruijn, R.; Buchholz, P.; Bueno, A.; Burton, R. E.; Busca, N. G.; Caballero-Mora, K. S.; Caramete, L.; Caruso, R.; Castellina, A.; Catalano, O.; Cataldi, G.; Cazon, L.; Cester, R.; Chauvin, J.; Chiavassa, A.; Chinellato, J. A.; Chou, A.; Chudoba, J.; Clay, R. W.; Colombo, E.; Coluccia, M. R.; Conceicao, R.; Contreras, F.; Cook, H.; Cooper, M. J.; Coppens, J.; Cordier, A.; Cotti, U.; Coutu, S.; Covault, C. E.; Creusot, A.; Criss, A.; Cronin, J.; Curutiu, A.; Dagoret-Campagne, S.; Dallier, R.; Daumiller, K.; Dawson, B. R.; de Almeida, R. M.; De Domenico, M.; De Donato, C.; de Jong, S. J.; De La Vega, G.; de Mello Junior, W. J. M.; de Mello Neto, J. R. T.; De Mitri, I.; de Souza, V.; de Vries, K. D.; Decerprit, G.; del Peral, L.; Deligny, O.; Della Selva, A.; Delle Fratte, C.; Dembinski, H.; Di Giulio, C.; Diaz, J. C.; Castro, M. L. Diaz; Diep, P. N.; Dobrigkeit, C.; D'Olivo, J. C.; Dong, P. N.; Dorofeev, A.; dos Anjos, J. C.; Dova, M. T.; D'Urso, D.; Dutan, I.; DuVernois, M. A.; Ebr, J.; Engel, R.; Erdmann, M.; Escobar, C. O.; Etchegoyen, A.; Facal San Luis, P.; Falcke, H.; Farrar, G.; Fauth, A. C.; Fazzini, N.; Ferrero, A.; Fick, B.; Filevich, A.; Filipcic, A.; Fleck, I.; Fliescher, S.; Fracchiolla, C. E.; Fraenkel, E. D.; Froehlich, U.; Fulgione, W.; Gamarra, R. F.; Gambetta, S.; Garcia, B.; Garcia Gamez, D.; Garcia-Pinto, D.; Garrido, X.; Gelmini, G.; Gemmeke, H.; Ghia, P. L.; Giaccari, U.; Giller, M.; Glass, H.; Goggin, L. M.; Gold, M. S.; Golup, G.; Gomez Albarracin, F.; Gomez Berisso, M.; Goncalves, P.; Gonzalez, D.; Gonzalez, J. G.; Gora, D.; Gorgi, A.; Gouffon, P.; Gozzini, S. R.; Grashorn, E.; Grebe, S.; Grigat, M.; Grillo, A. F.; Guardincerri, Y.; Guarino, F.; Guedes, G. P.; Hague, J. D.; Halenka, V.; Hansen, P.; Harari, D.; Harmsma, S.; Harton, J. L.; Haungs, A.; Hebbeker, T.; Heck, D.; Herve, A. E.; Hojvat, C.; Holmes, V. C.; Homola, P.; Hoerandel, J. R.; Horneffer, A.; Hrabovsky, M.; Huege, T.; Hussain, M.; Iarlori, M.; Insolia, A.; Ionita, F.; Italiano, A.; Jiraskova, S.; Kadija, K.; Kaducak, M.; Kampert, K. H.; Karova, T.; Kasper, P.; Kegl, B.; Keilhauer, B.; Keivani, A.; Kelley, J.; Kemp, E.; Kieckhafer, R. M.; Klages, H. O.; Kleifges, M.; Kleinfeller, J.; Knapik, R.; Knapp, J.; Koang, D. -H.; Krieger, A.; Kroemer, O.; Kruppke-Hansen, D.; Kuehn, F.; Kuempel, D.; Kulbartz, K.; Kunka, N.; Kusenko, A.; La Rosa, G.; Lachaud, C.; Lago, B. L.; Lautridou, P.; Leao, M. S. A. B.; Lebrun, D.; Lebrun, P.; Lee, J.; Leigui de Oliveira, M. A.; Lemiere, A.; Letessier-Selvon, A.; Lhenry-Yvon, I.; Lopez, R.; Lopez Aguera, A.; Louedec, K.; Lozano Bahilo, J.; Lucero, A.; Ludwig, M.; Lyberis, H.; Maccarone, M. C.; Macolino, C.; Maldera, S.; Mandat, D.; Mantsch, P.; Mariazzi, A. G.; Marin, V.; Maris, I. C.; Marquez Falcon, H. R.; Marsella, G.; Martello, D.; Martinez Bravo, O.; Mathes, H. J.; Matthews, J.; Matthews, J. A. J.; Matthiae, G.; Maurizio, D.; Mazur, P. O.; McEwen, M.; Medina-Tanco, G.; Melissas, M.; Melo, D.; Menichetti, E.; Menshikov, A.; Meurer, C.; Micanovic, S.; Micheletti, M. I.; Miller, W.; Miramonti, L.; Mollerach, S.; Monasor, M.; Ragaigne, D. Monnier; Montanet, F.; Morales, B.; Morello, C.; Moreno, E.; Moreno, J. C.; Morris, C.; Mostafa, M.; Mueller, S.; Muller, M. A.; Mussa, R.; Navarra, G.; Navarro, J. L.; Navas, S.; Necesal, P.; Nellen, L.; Nhung, P. T.; Nierstenhoefer, N.; Nitz, D.; Nosek, D.; Nozka, L.; Nyklicek, M.; Oehlschlaeger, J.; Olinto, A.; Oliva, P.; Olmos-Gilbaja, V. M.; Ortiz, M.; Pacheco, N.; Selmi-Dei, D. Pakk; Palatka, M.; Pallotta, J.; Palmieri, N.; Parente, G.; Parizot, E.; Parlati, S.; Parra, A.; Parrisius, J.; Parsons, R. D.; Pastor, S.; Paul, T.; Pavlidou, V.; Payet, K.; Pech, M.; Pekala, J.; Pelayo, R.; Pepe, I. M.; Perrone, L.; Pesce, R.; Petermann, E.; Petrera, S.; Petrinca, P.; Petrolini, A.; Petrov, Y.; Petrovic, J.; Pfendner, C.; Piegaia, R.; Pierog, T.; Pimenta, M.; Pirronello, V.; Platino, M.; Ponce, V. H.; Pontz, M.; Privitera, P.; Prouza, M.; Quel, E. J.; Rautenberg, J.; Ravel, O.; Ravignani, D.; Redondo, A.; Revenu, B.; Rezende, F. A. S.; Ridky, J.; Riggi, S.; Risse, M.; Ristori, P.; Riviere, C.; Rizi, V.; Robledo, C.; Rodriguez, G.; Rodriguez Martino, J.; Rodriguez Rojo, J.; Rodriguez-Cabo, I.; Rodriguez-Frias, M. D.; Ros, G.; Rosado, J.; Rossler, T.; Roth, M.; Rouille-d'Orfeuil, B.; Roulet, E.; Rovero, A. C.; Salamida, F.; Salazar, H.; Salina, G.; Sanchez, F.; Santander, M.; Santo, C. E.; Santo, E.; Santos, E. M.; Sarazin, F.; Sarkar, S.; Sato, R.; Scharf, N.; Scherini, V.; Schieler, H.; Schiffer, P.; Schmidt, A.; Schmidt, F.; Schmidt, T.; Scholten, O.; Schoorlemmer, H.; Schovancova, J.; Schovanek, P.; Schroeder, F.; Schulte, S.; Schuessler, F.; Schuster, D.; Sciutto, S. J.; Scuderi, M.; Segreto, A.; Semikoz, D.; Settimo, M.; Shellard, R. C.; Sidelnik, I.; Siffert, B. B.; Sigl, G.; Smialkowski, A.; Smida, R.; Snow, G. R.; Sommers, P.; Sorokin, J.; Spinka, H.; Squartini, R.; Stasielak, J.; Stephan, M.; Strazzeri, E.; Stutz, A.; Suarez, F.; Suomijarvi, T.; Supanitsky, A. D.; Susa, T.; Sutherland, M. S.; Swain, J.; Szadkowski, Z.; Tamashiro, A.; Tamburro, A.; Tapia, A.; Tarutina, T.; Tascau, O.; Tcaciuc, R.; Tcherniakhovski, D.; Tegolo, D.; Thao, N. T.; Thomas, D.; Tiffenberg, J.; Timmermans, C.; Tkaczyk, W.; Peixoto, C. J. Todero; Tome, B.; Tonachini, A.; Travnicek, P.; Tridapalli, D. B.; Tristram, G.; Trovato, E.; Tueros, M.; Ulrich, R.; Unger, M.; Urban, M.; Valdes Galicia, J. F.; Valino, I.; Valore, L.; van den Berg, A. M.; Vazquez, J. R.; Vazquez, R. A.; Veberic, D.; Venters, T.; Verzi, V.; Videla, M.; Villasenor, L.; Vorobiov, S.; Voyvodic, L.; Wahlberg, H.; Wahrlich, P.; Wainberg, O.; Warner, D.; Watson, A. A.; Westerhoff, S.; Whelan, B. J.; Wieczorek, G.; Wiencke, L.; Wilczynska, B.; Wilczynski, H.; Williams, C.; Winchen, T.; Winnick, M. G.; Wundheiler, B.; Yamamoto, T.; Younk, P.; Yuan, G.; Yushkov, A.; Zas, E.; Zavrtanik, D.; Zavrtanik, M.; Zaw, I.; Zepeda, A.; Ziolkowski, M.

    2010-01-01

    The surface detector array of the Pierre Auger Observatory consists of 1600 water-Cherenkov detectors, for the study of extensive air showers (EAS) generated by ultra-high-energy cosmic rays. We describe the trigger hierarchy, from the identification of candidate showers at the level of a single

  16. The new Tunka-133 EAS Cherenkov array: Status of 2009

    International Nuclear Information System (INIS)

    Antokhonov, B.V.; Beregnev, S.F.; Budnev, N.M.; Chvalaev, O.B.; Chiavassa, A.; Gress, O.A.; Kalmykov, N.N.; Karpov, N.N.; Korosteleva, E.E.; Kozhin, V.A.; Kuzmichev, L.A.; Lubsandorzhiev, B.K.; Mirgazov, R.R.; Panasyuk, M.I.; Pankov, L.V.; Prosin, V.V.; Ptuskin, V.S.; Semeney, Yu.A.; Shaibonov, B.; Silaev, A.A.

    2011-01-01

    The deployment of the new Extensive air shower Cherenkov installation Tunka-133 with about 1 km 2 geometric acceptance area was completed in October 2009. The array will permit a detailed long-term study of the cosmic ray energy spectrum and mass composition in the energy range 10 15 -10 18 eV with a unique and more elaborate method. The array construction and data acquisition system, preliminary results and plans for future development are presented.

  17. The surface detector array of the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Abu-Zayyad, T. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Aida, R. [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Allen, M.; Anderson, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Azuma, R. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R. [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Cheon, B.G. [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J. [Tokyo University of Science, Noda, Chiba (Japan); Chikawa, M. [Kinki University, Higashi Osaka, Osaka (Japan); Cho, E.J. [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Cho, W.R. [Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Fujii, H. [Institute of Particle and Nuclear Studies, KEK, Tsukuba, Ibaraki (Japan); Fujii, T. [Osaka City University, Osaka, Osaka (Japan); Fukuda, T. [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Fukushima, M. [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan); University of Tokyo, Institute for the Physics and Mathematics of the Universe, Kashiwa, Chiba (Japan); Gorbunov, D. [Institute for Nuclear Research of the Russian Academy of Sciences, Moscow (Russian Federation); and others

    2012-10-11

    The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  18. The surface detector array of the Telescope Array experiment

    International Nuclear Information System (INIS)

    Abu-Zayyad, T.; Aida, R.; Allen, M.; Anderson, R.; Azuma, R.; Barcikowski, E.; Belz, J.W.; Bergman, D.R.; Blake, S.A.; Cady, R.; Cheon, B.G.; Chiba, J.; Chikawa, M.; Cho, E.J.; Cho, W.R.; Fujii, H.; Fujii, T.; Fukuda, T.; Fukushima, M.; Gorbunov, D.

    2012-01-01

    The Telescope Array (TA) experiment, located in the western desert of Utah, USA, is designed for the observation of extensive air showers from extremely high energy cosmic rays. The experiment has a surface detector array surrounded by three fluorescence detectors to enable simultaneous detection of shower particles at ground level and fluorescence photons along the shower track. The TA surface detectors and fluorescence detectors started full hybrid observation in March, 2008. In this article we describe the design and technical features of the TA surface detector.

  19. Arrival-time distribution of muons in extensive air showers at energies of 1017 eV to 1018 eV

    International Nuclear Information System (INIS)

    Blake, P.R.; Mann, D.M.; Nash, W.F.; O'Connell, B.; Strutt, R.B.

    1982-01-01

    The results of measurements of the rise-time of muon scintillator responses recorded from extensive air showers detected at Haverah Park are described. A high-speed storage oscilloscope recording system has been used to study both the average characteristics of muon time spreads and the fluctuations in arrival-time distributions between individual showers. The average muon time spreads are found to be a function of core distance, zenith angle and muon threshold energy. There is evidence that velocity delays are an important contribution to the muon rise-times for detectors with threshold energies < approximately 500 MeV. Significant fluctuations in the muon time spreads between individual showers are found. The average characteristics of the muon arrival-time distributions are also compared with the shower computer simulations. (author)

  20. Separation of γ-ray, electron and proton induced air showers applied to diffuse emission studies with H.E.S.S

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Tanya

    2017-01-18

    A fundamental issue in ground-based gamma-ray astronomy is the identification of γ-ray events among the overwhelming background of air showers induced by charged cosmic rays. Reconstruction techniques exist to distinguish most of the background of hadrons but an irreducible background of electrons and gamma-like protons still remain. I present here a new technique making use of high-altitude Cherenkov light emitted by the charged primary particle and air shower development properties. This method provides a way to distinguish between electrons and gamma rays on a statistical basis. In addition to this, the remaining proton background can also be identified. The technique was developed, tested and applied to studies using the High Energy Stereoscopic System (H.E.S.S.) located in Namibia. The analysis method is especially important in the detection of diffuse signals and eliminates the necessity of a background region in the field of view. The technique was applied to three scientific studies. The latitude profile of the Galactic diffuse γ-ray emission was analysed. A width of σ=0.25±0.05 (0.20±0.06 ) for energies of 380 to 900 GeV(1 to 6 TeV) was determined. The cosmic electron spectrum was measured between 0.38 and 14 TeV and a broken power law was fit to the data. The spectrum steepens from Γ=3.08±0.06 to Γ=3.72±0.12 at a break in energy of 1.11±0.04 TeV. In addition, upper limits on the maximum γ-ray contamination from the Isotropic γ-Ray Background was placed at 4 x 10{sup -3}(5 x 10{sup -3}) MeVcm{sup -2}s{sup -1}sr{sup -1} for energies of 1 to 6 TeV(380 to 900 GeV).

  1. The Status of the Telescope Array experiment

    Energy Technology Data Exchange (ETDEWEB)

    Tokuno, H; Azuma, R [Tokyo Institute of Technology, Meguro, Tokyo (Japan); Abu-Zayyad, T; Allen, M; Barcikowski, E; Belz, J W; Blake, S A; Brusova, O; Cady, R [University of Utah, High Energy Astrophysics Institute, Salt Lake City, Utah (United States); Aida, R [University of Yamanashi, Interdisciplinary Graduate School of Medicine and Engineering, Kofu, Yamanashi (Japan); Benno, T; Chikawa, M; Doura, K [Kinki University, Higashi Osaka, Osaka (Japan); Bergman, D R [Rutgers University, Piscataway (United States); Cheon, B G; Cho, E J [Hanyang University, Seongdong-gu, Seoul (Korea, Republic of); Chiba, J [Tokyo University of Science, Noda, Chiba (Japan); Cho, L S; Cho, W R [Yonsei University, Seodaemun-gu, Seoul (Korea, Republic of); Cohen, F, E-mail: htokuno@cr.phys.titech.ac.jp [Institute for Cosmic Ray Research, University of Tokyo, Kashiwa, Chiba (Japan)

    2011-04-01

    The purpose of The Telescope Array experiment is to identify origin of the ultra high energy cosmic rays. The Telescope Array is a hybrid detector consists of a surface detector array and air fluorescence detectors. This hybrid detector is observing extensive air showers to measure the energy spectrum, anisotropy and composition of Ultra High Energy Cosmic Rays. The detector construction has been completed in March 2008, and the hybrid observation with the full configuration has been running since that time. In this talk, the status of observation and our prospects are described.

  2. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    Energy Technology Data Exchange (ETDEWEB)

    An, Q. [University of Science and Technology of China, Hefei 230026 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Bai, Y.X.; Bi, X.J.; Cao, Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chang, J.F. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); State Key Laboratory of Particle Detection and Electronics, Beijing 100049 (China); Chen, G.; Chen, M.J. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, S.M. [Tsinghua University, Beijing 100084 (China); Chen, S.Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, T.L. [University of Tibet, Lhasa 851600 (China); Chen, X. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Chen, Y.T. [University of Yunnan, Kunming 650091 (China); Cui, S.W. [Normal University of Hebei, Shijiazhuang 050016 (China); Dai, B.Z. [University of Yunnan, Kunming 650091 (China); Du, Q. [Tsinghua University, Beijing 100084 (China); Danzengluobu [University of Tibet, Lhasa 851600 (China); Feng, C.F. [University of Shandong, Jinan 250100 (China); Feng, S.H.; Gao, B. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Gao, S.Q. [National Space Science Center, Chinese Academy of Sciences, Beijing 100190 (China); and others

    2013-10-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given. -- Highlights: • The technique of the water Cherenkov array is studied. • Engineering issues of the water Cherenkov array are investigated. • The PMTs and electronics of the water Cherenkov array are tested. • Some key parameters of the water Cherenkov array are measured.

  3. The performance of a prototype array of water Cherenkov detectors for the LHAASO project

    International Nuclear Information System (INIS)

    An, Q.; Bai, Y.X.; Bi, X.J.; Cao, Z.; Chang, J.F.; Chen, G.; Chen, M.J.; Chen, S.M.; Chen, S.Z.; Chen, T.L.; Chen, X.; Chen, Y.T.; Cui, S.W.; Dai, B.Z.; Du, Q.; Danzengluobu; Feng, C.F.; Feng, S.H.; Gao, B.; Gao, S.Q.

    2013-01-01

    A large high-altitude air-shower observatory (LHAASO) is to be built at Shangri-La, Yunnan Province, China. This observatory is intended to conduct sub-TeV gamma astronomy, and as an important component of the LHAASO project, a water Cherenkov detector array (WCDA) is proposed. To investigate engineering issues and fully understand the water Cherenkov technique for detecting air showers, a prototype array at 1% scale of the LHAASO-WCDA has been built at Yang-Ba-Jing, Tibet, China. This paper introduces the prototype array setup and studies its performance by counting rate of each photomultiplier tube (PMT), trigger rates at different PMT multiplicities, and responses to air showers. Finally, the reconstructed shower directions and angular resolutions of the detected showers for the prototype array are given. -- Highlights: • The technique of the water Cherenkov array is studied. • Engineering issues of the water Cherenkov array are investigated. • The PMTs and electronics of the water Cherenkov array are tested. • Some key parameters of the water Cherenkov array are measured

  4. EAS spectrum in the primary energy region above 10 to the 15th power eV by the Akeno and Yakutsk array data

    Science.gov (United States)

    Krasilnikov, D. D.; Knurenko, S. P.; Krasilnikov, A. D.; Pavlov, V. N.; Sleptsov, I. Y.; Yegorova, V. P.

    1985-01-01

    The extensive air showers spectrum on scintillation desity Rko in primary energy region E sub approx. 10 to the 15th power - 10 to the 20th power eV on the Yakutsk array data and recent results of the Akeno is given.

  5. A digitalising board for the prototype array of LHAASO WCDA

    International Nuclear Information System (INIS)

    Hao Xinjun; Liu Shubin; Zhao Lei; An Qi

    2011-01-01

    In this paper, a digitalising board for readout of PMT signals in the prototype array of WCDA (water Cerenkov detector array) for LHAASO (Large high altitude air shower observatory)is designed. The prototype array is composed of 9 PMTs, including the pulse time and charge measurement from the PMTs, and clock generation and trigger decision. In the digitalising board, FPGA reconfiguration and data readout via VME bus are implemented. Test results show that the performances meet well with the requirements of readout electronics. It has been installed in Yangbajing and tests with the prototype array and DAQ is ongoing. (authors)

  6. A method of simulation of large air showers of cosmic radiation. Application to High Energy Physics and to Astrophysics (10"1"3 - 10"2"1 eV)

    International Nuclear Information System (INIS)

    Capdevielle, Jean-Noel

    1972-01-01

    This research thesis addresses the study of large air showers and the field of high energy physics and of astrophysics. The author discusses fluctuations undergone by large showers, and reports the development of a simulation method which is used for the determination of the morphology of these large air showers, that is their longitudinal and lateral development. Simulation results are compared with experimental results, and the influence of fluctuations is discussed. The author reports the application of the simulation method to high energy physics and to astrophysics, notably through an example of use of the simulation method in application to the Kiel Group experiment performed at the Pic du Midi. Possible developments are then discussed [fr

  7. Depth of maximum of air-shower profiles at the Pierre Auger Observatory. I. Measurements at energies above 10.sup.17.8./sup.  eV

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2014-01-01

    Roč. 90, č. 12 (2014), "122005-1"-"122005-25" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) 7AMB14AR005; GA MŠk(CZ) LG13007; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : astroparticle physics * Pierre Auger Observatory * cosmic rays * air showers * depth of maximum * Xmax Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  8. Multiple production around 1000 TeV observed in the emulsion chamber experiments at Mt. Fuji and linkage experiments with air shower

    International Nuclear Information System (INIS)

    Torii, Syoji

    1980-01-01

    The multiple production around 1000 TeV is discussed in this paper by using the experimental data at Mt. Fuji and the results of the Monte Carlo simulation. Six events with the total energy more than 1000 TeV were observed in the emulsion chamber (EC) exposed for 600 m 2 year at Mt. Fuji. Various Monte Carlo calculations with the scaling model were performed. The relation between the transverse momentum and The Feynman scaling law is discussed. The frequency of the total gamma energy spectrum and the lateral distribution of the family were compared with the calculation. In the case that protons are dominant in primary cosmic ray, the multiplicity in the interaction increased according to 1/4 th power of energy. In the case of heavy nuclei, the experimental results can be reproduced by assuming the increase of cross-section, when the scaling holds. It is still hard to make definite conclusion on the break of scaling. Simultaneous observation of air family and air shower is proposed. (Kato, T.)

  9. Simulation of the time structure of Extensive Air Showers with CORSIKA initiated by various primary particles at Alborz-I observatory level

    Science.gov (United States)

    Bahmanabadi, Mahmud; Moghaddam, Saba Mortazavi

    2018-05-01

    A detailed simulation of showers with various zenith angles in atmosphere produced by different primary particles including gamma, proton, carbon, and iron at Alborz-I observatory level (35∘43‧N, 51∘20‧E, 1200 m a.s.l= 890 gcm-2), in the energy range 3 × 1013 eV-3 × 1015 eV, has been performed by means of the CORSIKA Monte Carlo code. The aim of this study is to examine the time structure of secondary particles in Extensive Air Showers (EAS) produced by the different primary particles. For each primary particle, the distribution of the mean values of the time delays of secondary particles relative to the first particle hitting the ground level in each EAS, = , and the distribution of their mean standard deviations, in terms of distance from the shower core are obtained. The mean thickness and profile of showers as a function of their energy, primary mass, and zenith angle is described.

  10. Efficient coherent beam combination of two-dimensional phase-locked laser arrays

    International Nuclear Information System (INIS)

    Li, Bing; Yan, Aimin; Liu, Liren; Dai, Enwen; Sun, Jianfeng; Shen, Baoliang; Lv, Xiaoyu; Wu, Yapeng

    2011-01-01

    An efficient technique in which a two-dimensional (2D) phase-locked laser array can be coherently combined into a high power and high quality beam by using a conjugate Dammann grating (CDG) is presented. A theoretical model is established to provide a physical interpretation of the proposed scheme. Using this technique, we investigate analytically and numerically the coherent combination of 2D laser arrays such as 5 × 5 and 32 × 32 arrangements. Far-field distributions and the near-field pattern of the combined beam are calculated and compared with experimental results. A verification experiment with a simulated 5 × 5 2D laser array using an aperture mask has been performed. Calculations and experimental results show that the proposed technique in this paper is an efficient coherent beam combination method to obtain a high power and high quality beam from laser arrays

  11. Results on the spectrum and composition of cosmic rays from the IceTop air shower array of the IceCube Observatory

    Directory of Open Access Journals (Sweden)

    Tilav Serap

    2013-06-01

    Full Text Available We report on measurements of the energy spectrum and mass composition of cosmic rays above 1 PeV with the data taken during the construction phase of the IceTop and IceCube detectors. We discuss our current systematics and observation of a structure in the energy spectrum above 20 PeV where the mass composition gets heavier than iron nuclei.

  12. The water Cherenkov detector array for studies of cosmic rays at the University of Puebla

    International Nuclear Information System (INIS)

    Cotzomi, J.; Moreno, E.; Murrieta, T.; Palma, B.; Perez, E.; Salazar, H.; Villasenor, L.

    2005-01-01

    We describe the design and performance of a hybrid extensive air shower detector array built on the Campus of the University of Puebla (19 - bar N, 90 - bar W, 800g/cm 2 ) to measure the energy, arrival direction and composition of primary cosmic rays with energies around 1PeV, i.e., around the knee of the cosmic ray spectrum. The array consists of 3 water Cherenkov detectors of 1.86m 2 cross-section and 12 liquid scintillator detectors of 1m 2 distributed in a square grid with a detector spacing of 20m over an area of 4000m 2 . We discuss the calibration and stability of the array for both sets of detectors and report on preliminary measurements and reconstruction of the lateral distributions for the electromagnetic (EM) and muonic components of extensive air showers. We also discuss how the hybrid character of the array can be used to measure mass composition of the primary cosmic rays by estimating the relative contents of muons with respect to the EM component of extensive air showers. This facility is also used to train students interested in the field of cosmic rays

  13. Primary CR energy spectrum and mass composition by the data of Tunka-133 array

    Directory of Open Access Journals (Sweden)

    Prosin V.V.

    2015-01-01

    Full Text Available The Cherenkov light array for the registration of extensive air showers (EAS Tunka-133 collected data during 5 winter seasons from 2009 to 2014. The differential energy spectrum of all particles and the dependence of the average maximum depth on the energy in the range of 6 ⋅ 1015–1018 eV measured for 1540 hours of observation are presented.

  14. A 16-channel combined loop-dipole transceiver array for 7 Tesla body MRI

    NARCIS (Netherlands)

    Ertürk, M. Arcan; Raaijmakers, Alexander J.E.; Adriany, Gregor; Uğurbil, Kâmil; Metzger, Gregory J.

    2017-01-01

    Purpose: To develop a 16-channel transceive body imaging array at 7.0 T with improved transmit, receive, and specific absorption rate (SAR) performance by combining both loop and dipole elements and using their respective and complementary near and far field characteristics. Methods: A 16-channel

  15. Determining the primary cosmic ray energy from the total flux of Cherenkov light measured at the Yakutsk EAS array

    International Nuclear Information System (INIS)

    Ivanov, A. A.; Knurenko, S. P.; Sleptsov, I. E.

    2007-01-01

    We present a method for determining the energy of the primary particle that generates an extensive air shower (EAS) of comic rays based on measuring the total flux of Cherenkov light from the shower. Applying this method to Cherenkov light measurements at the Yakutsk EAS array has allowed us to construct the cosmic ray energy spectrum in the range 10 15 - 3 x 10 19 eV

  16. Synthesis of ultrawideband radiation of combined antenna arrays excited by nanosecond bipolar voltage pulses

    International Nuclear Information System (INIS)

    Koshelev, V I; Plisko, V V; Sevostyanov, E A

    2017-01-01

    To broaden the spectrum of high-power ultrawideband radiation, it is suggested to synthesize an electromagnetic pulse summing the pulses of different length in free space. On the example of model pulses corresponding to radiation of combined antennas excited by bipolar voltage pulses of the length of 2 and 3 ns, the possibility of twofold broadening of the radiation spectrum was demonstrated. Radiation pulses with the spectrum width exceeding three octaves were obtained. Pattern formation by the arrays of different geometry excited by the pulses having different time shifts was considered. Optimum array structure with the pattern maximum in the main direction was demonstrated on the example of a 2×2 array. (paper)

  17. Electrostatic Discharge Test of Multi-Junction Solar Array Coupons After Combined Space Environmental Exposures

    Science.gov (United States)

    Wright, Kenneth H.; Schneider, Todd; Vaughn, Jason; Hoang, Bao; Funderburk, Victor V.; Wong, Frankie; Gardiner, George

    2010-01-01

    A set of multi-junction GaAs/Ge solar array test coupons were subjected to a sequence of 5-year increments of combined environmental exposure tests. The test coupons capture an integrated design intended for use in a geosynchronous (GEO) space environment. A key component of this test campaign is conducting electrostatic discharge (ESD) tests in the inverted gradient mode. The protocol of the ESD tests is based on the ISO/CD 11221, the ISO standard for ESD testing on solar array panels. This standard is currently in its final review with expected approval in 2010. The test schematic in the ISO reference has been modified with Space System/Loral designed circuitry to better simulate the on-orbit operational conditions of its solar array design. Part of the modified circuitry is to simulate a solar array panel coverglass flashover discharge. All solar array coupons used in the test campaign consist of 4 cells. The ESD tests are performed at the beginning of life (BOL) and at each 5-year environment exposure point. The environmental exposure sequence consists of UV radiation, electron/proton particle radiation, thermal cycling, and ion thruster plume. This paper discusses the coverglass flashover simulation, ESD test setup, and the importance of the electrical test design in simulating the on-orbit operational conditions. Results from 5th-year testing are compared to the baseline ESD characteristics determined at the BOL condition.

  18. Propagation of coherently combined truncated laser beam arrays with beam distortions in non-Kolmogorov turbulence.

    Science.gov (United States)

    Tao, Rumao; Si, Lei; Ma, Yanxing; Zhou, Pu; Liu, Zejin

    2012-08-10

    The propagation properties of coherently combined truncated laser beam arrays with beam distortions through non-Kolmogorov turbulence are studied in detail both analytically and numerically. The analytical expressions for the average intensity and the beam width of coherently combined truncated laser beam arrays with beam distortions propagating through turbulence are derived based on the combination of statistical optics methods and the extended Huygens-Fresnel principle. The effect of beam distortions, such as amplitude modulation and phase fluctuation, is studied by numerical examples. The numerical results reveal that phase fluctuations have significant influence on the spreading of coherently combined truncated laser beam arrays in non-Kolmogorov turbulence, and the effects of the phase fluctuations can be negligible as long as the phase fluctuations are controlled under a certain level, i.e., a>0.05 for the situation considered in the paper. Furthermore, large phase fluctuations can convert the beam distribution rapidly to a Gaussian form, vary the spreading, weaken the optimum truncation effects, and suppress the dependence of spreading on the parameters of the non-Kolmogorov turbulence.

  19. A digital combining-weight estimation algorithm for broadband sources with the array feed compensation system

    Science.gov (United States)

    Vilnrotter, V. A.; Rodemich, E. R.

    1994-01-01

    An algorithm for estimating the optimum combining weights for the Ka-band (33.7-GHz) array feed compensation system was developed and analyzed. The input signal is assumed to be broadband radiation of thermal origin, generated by a distant radio source. Currently, seven video converters operating in conjunction with the real-time correlator are used to obtain these weight estimates. The algorithm described here requires only simple operations that can be implemented on a PC-based combining system, greatly reducing the amount of hardware. Therefore, system reliability and portability will be improved.

  20. [Combined burn trauma in the array of modern civilian and combat burns].

    Science.gov (United States)

    Ivchenko, E V; Borisov, D N; Golota, A S; Krassiĭ, A B; Rusev, I T

    2015-02-01

    The current article positions the combined burn and non-burn injuries in the general array of civilian and combat burns. For that purpose the official state statistics and scientific medical publications, domestic as well as foreign, have been analyzed. It has been shown that in peace time the combined burn/trauma injuries are infrequent. But the same type of injury becomes routine especially among the civilian population in the conditions of the modern so called "hybrid war". And the medical service should be prepared for it.

  1. Four-to-one power combiner for 20 GHz phased array antenna using RADC MMIC phase shifters

    Science.gov (United States)

    1991-01-01

    The design and microwave simulation of two-to-one microstrip power combiners is described. The power combiners were designed for use in a four element phase array receive antenna subarray at 20 GHz. Four test circuits are described which were designed to enable testing of the power combiner and the four element phased array antenna. Test Circuit 1 enables measurement of the two-to-one power combiner. Test Circuit 2 enables measurement of the four-to-one power combiner. Test Circuit 3 enables measurement of a four element antenna array without phase shifting MMIC's in order to characterize the power combiner with the antenna patch-to-microstrip coaxial feedthroughs. Test circuit 4 is the four element phased array antenna including the RADC MMIC phase shifters and appropriate interconnects to provide bias voltages and control phase bits.

  2. The TAIGA timing array HiSCORE - first results

    Directory of Open Access Journals (Sweden)

    Tluczykont M.

    2017-01-01

    Full Text Available Observations of gamma rays up to several 100 TeV are particularly important to spectrally resolve the cutoff regime of the long-sought Pevatrons, the cosmic-ray PeV accelerators. One component of the TAIGA hybrid detector is the TAIGA-HiSCORE timing array, which currently consists of 28 wide angle (0.6 sr air Cherenkov timing stations distributed on an area of 0.25 km2. The HiSCORE concept is based on (non-imaging air shower front sampling with Cherenkov light. First results are presented.

  3. Demonstrating of Cosmic Ray Characteristics by Estimating the Cherenkov Light Lateral Distribution Function for Yakutsk Array as a Function of the Zenith Angle

    OpenAIRE

    Abdulsttar, Marwah M.; Al-Rubaiee, A. A.; Ali, Abdul Halim Kh.

    2016-01-01

    Cherenkov light lateral distribution function (CLLDF) in Extensive Air Showers (EAS) for different primary particles (e-, n , p, F, K and Fe) was simulated using CORSIKA code for conditions and configurations of Yakutsk EAS array with the fixed primary energy 3 PeV around the knee region at different zenith angles. Basing on the results of CLLDF numerical simulation, sets of approximated functions are reconstructed for different primary particles as a function of the zenith angle. A compariso...

  4. Power combiners/dividers for loop pickup and kicker arrays for FNAL stochastic cooling rings

    International Nuclear Information System (INIS)

    Johnson, J.K.; Nemetz, R.

    1985-05-01

    The anti-proton accumulator and debuncher at FNAL will use stochastic methods to ''cool'' the beam. Pairs of quarter-wavelength directional-coupler loops are used to detect and kick the beam. The loops are copper plates which are flush with the upper and lower wall of a rectangular beam pipe. The plates, when surrounded by a properly sized pocket, form a 100-ohm transmission-line directional coupler. As the beam passes, a signal which gives position and time information, is induced in the plates. But, because the signal levels are low (<.5 picowatts per pair), a power combiner (usually several primary combiners feeding a secondary combiner) is used to combine the outputs of many loops. Subsequently, the combined signal is amplified, filtered and then fed into a divider, (that is, a combiner operating in reverse). The divider distributes the signal into a different set of loops which modify (kick) the beam's position. Since the loop couplers are arranged linearly, in arrays of various lengths, combiners also provide a convenient method of reducing the number of vacuum feedthroughs and preamplifiers and their related costs in performance and dollars. In this note we describe various stripline combiner systems that add the outputs of 4, 8, 16 or 32 loops

  5. Primary proton and helium spectra at energy range from 50 TeV to 1015 eV observed with the new Tibet AS core detector array

    Directory of Open Access Journals (Sweden)

    Huang Jing

    2013-06-01

    Full Text Available A new EAS hybrid experiment has been designed by constructing a YAC (Yangbajing Air shower Core detector array inside the existing Tibet-III air shower array. The first step of YAC, called “YAC-I” has been successfully carried out in 2009–2010 together with Tibet-III air-shower array. YAC-II has also been operated from 2011. Preliminary results of YAC-I and performance of YAC-II are presented in this paper. The primary proton and helium spectra at energy range from50 TeV to 1015 eV derived from YAC-I data based on QGSJET2 and SIBYLL2.1 are reported. The obtained P+He spectrum is smoothly connected with directobservation data below 100 TeV and also with our previously reported results at higher energies within statistical error s. Based on these results and the sharp kneeof all-particle energy spectrum observed by our experiment, the possible origin of the sharp knee is discussed. See the published papers.

  6. A novel coil array for combined TMS/fMRI experiments at 3 T.

    Science.gov (United States)

    Navarro de Lara, Lucia I; Windischberger, Christian; Kuehne, Andre; Woletz, Michael; Sieg, Jürgen; Bestmann, Sven; Weiskopf, Nikolaus; Strasser, Bernhard; Moser, Ewald; Laistler, Elmar

    2015-11-01

    To overcome current limitations in combined transcranial magnetic stimulation (TMS) and functional magnetic resonance imaging (fMRI) studies by employing a dedicated coil array design for 3 Tesla. The state-of-the-art setup for concurrent TMS/fMRI is to use a large birdcage head coil, with the TMS between the subject's head and the MR coil. This setup has drawbacks in sensitivity, positioning, and available imaging techniques. In this study, an ultraslim 7-channel receive-only coil array for 3 T, which can be placed between the subject's head and the TMS, is presented. Interactions between the devices are investigated and the performance of the new setup is evaluated in comparison to the state-of-the-art setup. MR sensitivity obtained at the depth of the TMS stimulation is increased by a factor of five. Parallel imaging with an acceleration factor of two is feasible with low g-factors. Possible interactions between TMS and the novel hardware were investigated and were found negligible. The novel coil array is safe, strongly improves signal-to-noise ratio in concurrent TMS/fMRI experiments, enables parallel imaging, and allows for flexible positioning of the TMS on the head while ensuring efficient TMS stimulation due to its ultraslim design. © 2014 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.

  7. Rapid fabrication of an ordered nano-dot array by the combination of nano-plastic forming and annealing methods

    International Nuclear Information System (INIS)

    Yoshino, Masahiko; Ohsawa, Hiroki; Yamanaka, Akinori

    2011-01-01

    In this paper, a new fabrication method for an ordered nano-dot array is developed. Combination of coating, nano-plastic forming and annealing processes is studied to produce uniformly sized and ordered gold nano-dot array on a quartz glass substrate. The experimental results reveal that patterning of a groove grid on the gold-coated substrate with NPF is effective to obtain the ordered gold nano-dot array. In the proposed fabrication process, the size of the gold nano-dot can be controlled by adjusting the groove grid size. A minimum gold nano-dot array fabricated on a quartz-glass substrate was 93 nm in diameter and 100 nm in pitch. Furthermore, the mechanism of nano-dot array generation by the presented process is investigated. Using a theoretical model it is revealed that the proposed method is capable of fabrication of smaller nano-dots than 10 nm by controlling process conditions adequately.

  8. Cell manipulation tool with combined microwell array and optical tweezers for cell isolation and deposition

    International Nuclear Information System (INIS)

    Wang, Xiaolin; Gou, Xue; Chen, Shuxun; Yan, Xiao; Sun, Dong

    2013-01-01

    Isolation from rare cells and deposition of sorted cells with high accuracy for further study are critical to a wide range of biomedical applications. In the current paper, we report an automated cell manipulation tool with combined optical tweezers and a uniquely designed microwell array, which functions for recognition, isolation, assembly, transportation and deposition of the interesting cells. The microwell array allows the passive hydrodynamic docking of cells, while offering the opportunity to inspect the interesting cell phenotypes with high spatio-temporal resolution based on the flexible image processing technique. In addition, dynamic and parallel cell manipulation in three dimensions can realize the target cell levitation from microwell and pattern assembly with multiple optical traps. Integrated with the programmed motorized stage, the optically levitated and assembled cells can be transported and deposited to the predefined microenvironment, so the tool can facilitate the integration of other on-chip functionalities for further study without removing these isolated cells from the chip. Experiments on human embryonic stem cells and yeast cells are performed to demonstrate the effectiveness of the proposed cell manipulation tool. Besides the application to cell isolation and deposition, three other biological applications with this tool are also presented. (paper)

  9. Genetic profiles of gastroesophageal cancer: combined analysis using expression array and tiling array--comparative genomic hybridization

    DEFF Research Database (Denmark)

    Isinger-Ekstrand, Anna; Johansson, Jan; Ohlsson, Mattias

    2010-01-01

    15, 13q34, and 12q13, whereas different profiles with gains at 5p15, 7p22, 2q35, and 13q34 characterized gastric cancers. CDK6 and EGFR were identified as putative target genes in cancers of the esophagus and the gastroesophageal junction, with upregulation in one quarter of the tumors. Gains......We aimed to characterize the genomic profiles of adenocarcinomas in the gastroesophageal junction in relation to cancers in the esophagus and the stomach. Profiles of gains/losses as well as gene expression profiles were obtained from 27 gastroesophageal adenocarcinomas by means of 32k high......-resolution array-based comparative genomic hybridization and 27k oligo gene expression arrays, and putative target genes were validated in an extended series. Adenocarcinomas in the distal esophagus and the gastroesophageal junction showed strong similarities with the most common gains at 20q13, 8q24, 1q21-23, 5p...

  10. Combination of Polymer Technology and Carbon Nanotube Array for the Development of an Effective Drug Delivery System at Cellular Level

    Directory of Open Access Journals (Sweden)

    Riggio Cristina

    2009-01-01

    Full Text Available Abstract In this article, a carbon nanotube (CNT array-based system combined with a polymer thin film is proposed as an effective drug release device directly at cellular level. The polymeric film embedded in the CNT array is described and characterized in terms of release kinetics, while in vitro assays on PC12 cell line have been performed in order to assess the efficiency and functionality of the entrapped agent (neural growth factor, NGF. PC12 cell differentiation, following incubation on the CNT array embedding the alginate delivery film, demonstrated the effectiveness of the proposed solution. The achieved results indicate that polymeric technology could be efficiently embedded in CNT array acting as drug delivery system at cellular level. The implication of this study opens several perspectives in particular in the field of neurointerfaces, combining several functions into a single platform.

  11. Applications of the automatic ultrasonic testing system ALOK combined with a phased array system

    International Nuclear Information System (INIS)

    Stanger, H.K.; Kappes, W.; Licht, R.; Bohn, H.; Barbian, O.A.

    1987-01-01

    The combination of the automatic testing system ALOK with a controlled probe in the form of a phased array device is a possibility to meet the high requirements on the test method with regard to the statements of the test as well as the requirements on the reduction of operation and preparation times. The system's applications are not limited to the testing of reactors in nuclear technology (basic tests and recurring tests of the RPV and other primary circuit components); they are also of great importance in the non-nuclear sector e.g. the testing of pipelines, of reactors in the chemical field and of offshore structures as well as tests of components in the field of production. The modularity of the system permits an adaptation to the particular testing task with the possibility of using different manipulation and hardware systems. (orig./DG) [de

  12. Status, performance, and first results of the IceTop array

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States)

    2009-12-15

    We describe the design and performance of IceTop, the air shower array on top of the IceCube neutrino detector. After the 2008/09 antarctic summer season both detectors are deployed at almost 3/4 of their design size. With the current IceTop 59 stations we can start the study of showers of energy well above 10{sup 17}eV. The paper also describes the first results from IceTop and our plans to study the cosmic ray composition using several different types of analysis.

  13. Analysis of Correlation in MEMS Gyroscope Array and its Influence on Accuracy Improvement for the Combined Angular Rate Signal

    Directory of Open Access Journals (Sweden)

    Liang Xue

    2018-01-01

    Full Text Available Obtaining a correlation factor is a prerequisite for fusing multiple outputs of a mircoelectromechanical system (MEMS gyroscope array and evaluating accuracy improvement. In this paper, a mathematical statistics method is established to analyze and obtain the practical correlation factor of a MEMS gyroscope array, which solves the problem of determining the Kalman filter (KF covariance matrix Q and fusing the multiple gyroscope signals. The working principle and mathematical model of the sensor array fusion is briefly described, and then an optimal estimate of input rate signal is achieved by using of a steady-state KF gain in an off-line estimation approach. Both theoretical analysis and simulation show that the negative correlation factor has a favorable influence on accuracy improvement. Additionally, a four-gyro array system composed of four discrete individual gyroscopes was developed to test the correlation factor and its influence on KF accuracy improvement. The result showed that correlation factors have both positive and negative values; in particular, there exist differences for correlation factor between the different units in the array. The test results also indicated that the Angular Random Walk (ARW of 1.57°/h0.5 and bias drift of 224.2°/h for a single gyroscope were reduced to 0.33°/h0.5 and 47.8°/h with some negative correlation factors existing in the gyroscope array, making a noise reduction factor of about 4.7, which is higher than that of a uncorrelated four-gyro array. The overall accuracy of the combined angular rate signal can be further improved if the negative correlation factors in the gyroscope array become larger.

  14. Analysing radio-frequency coil arrays in high-field magnetic resonance imaging by the combined field integral equation method

    Energy Technology Data Exchange (ETDEWEB)

    Wang Shumin; Duyn, Jeff H [Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, 10/B1D728, Bethesda, MD 20892 (United States)

    2006-06-21

    We present the combined field integral equation (CFIE) method for analysing radio-frequency coil arrays in high-field magnetic resonance imaging (MRI). Three-dimensional models of coils and the human body were used to take into account the electromagnetic coupling. In the method of moments formulation, we applied triangular patches and the Rao-Wilton-Glisson basis functions to model arbitrarily shaped geometries. We first examined a rectangular loop coil to verify the CFIE method and also demonstrate its efficiency and accuracy. We then studied several eight-channel receive-only head coil arrays for 7.0 T SENSE functional MRI. Numerical results show that the signal dropout and the average SNR are two major concerns in SENSE coil array design. A good design should be a balance of these two factors.

  15. Muon Detector R&D in Telescope Array Experiment

    Science.gov (United States)

    Nonaka, T.; Takamura, M.; Honda, K.; Matthews, J. N.; Ogio, S.; Sakurai, N.; Sagawa, H.; Stokes, B. T.; Tsujimoto, M.; Yashiro, K.

    The Telescope Array (TA) experiment, located in the western desert of Utah, U.S.A., at 39.38° north and 112.9° west, is collecting data of ultra high energy cosmic rays in the energy range 1018-1020 eV. The experiment has a Surface Detector (SD) array surrounded by three Fluorescence Detector (FD) stations to enable simultaneous detection of shower particles and fluorescence photons generated by the extensive air shower. Measurement of shower particles at the ground level, with different absorber thickness, enables a more detailed studies of the experiment's energy scale and of hadron interaction models. In this report, we present a design and the first observation result of a surface muon detector using lead plates and concrete as absorbers.

  16. Methods for roof-top mini-arrays

    Science.gov (United States)

    Hazen, W. E.; Hazen, E. S.

    1985-08-01

    To test the idea of the Linsley effect mini array for the study of giant air showers, it is desirable to have a trigger that exploits the effect itself. In addition to the trigger, it is necessary to have a method for measuring the relative arrival times of the particle swarm selected by the trigger. Since the idea of mini arrays is likely to appeal to small research groups, it is desirable to try to design relatively simple and inexpensive methods, and methods that utilize existing detectors. Clusters of small detectors have been designed for operation in the local particle density realm where the probability of or = 2 particles per detector is small. Consequently, this method can discriminate pulses from each detector and thenceforth deal mainly with logic pulses.

  17. Stereo-scopy of {gamma}-ray air showers with the H.E.S.S. telescopes: first images of the supernova remnants at TeV; Stereoscopie de gerbes de {gamma} avec les telescopes H.E.S.S.: premieres images de vestiges de supernovae au TeV

    Energy Technology Data Exchange (ETDEWEB)

    Lemoine-Goumard, Marianne [Ecole Polytechnique, 91128 Palaiseau Cedex (France)

    2006-05-15

    The H.E.S.S. (High Energy Stereoscopic System) experiment in gamma-ray Astronomy consists of four imaging atmospheric Cherenkov telescopes devoted to the observation of the gamma-ray sky in the energy domain above 100 GeV and extending up to several tens of TeV. This thesis presents a new reconstruction method of gamma-ray induced air showers which takes full advantage of the stereo-scopy and of the fine-grain imaging of the H.E.S.S. cameras. This new method provides an angular resolution better than 0.1 angle, an energy resolution of about 15% at zenith and a very efficient hadronic rejection based on a cut on the lateral spread of the electromagnetic shower which does not depend on simulations. A new background subtraction method, well adapted to the study of extended sources, was also developed. No assumption, either on the distribution of gamma-rays in the field of view, or on the distribution of hadrons are necessary. It provides two sky maps obtained from a maximum likelihood fit: one for {gamma}-rays and the other for hadrons. These two analysis methods were applied to the study of the shell-type supernova remnants RX J1713.7-3946 and RX J0852.0-4622 (Vela Junior), allowing for the first time to resolve their morphology in the gamma-ray domain. The study of these sources should answer the question: 'can shell-type supernova remnants accelerate cosmic-rays up to the knee (5 x 10{sup 15} eV)?'. A morphological and spectral study of these sources combined with a comparison of a simple model of emission processes (from electrons and protons accelerated in supernova remnants) provides some constraints on the parameters of the leptonic process. Nevertheless, this scenario cannot be excluded. The different results obtained are discussed and compared with a third shell-type supernova remnant observed by H.E.S.S. but not detected: SN 1006. (author)

  18. Degradation of Solar Array Components in a Combined UV/VUV High Temperature Test Environment

    Directory of Open Access Journals (Sweden)

    Nömayr Christel

    2017-01-01

    A design verification test under UV/VUV conditions of sun exposed materials and technologies on component level is presented which forms part of the overall verification and qualification of the solar array design of the MTM and MPO. The test concentrates on the self-contamination aspects and the resulting performance losses of the solar array under high intensity and elevated temperature environment representative for the photovoltaic assembly (PVA.

  19. Imaging 2015 Mw 7.8 Gorkha Earthquake and Its Aftershock Sequence Combining Multiple Calibrated Global Seismic Arrays

    Science.gov (United States)

    LI, B.; Ghosh, A.

    2016-12-01

    The 2015 Mw 7.8 Gorkha earthquake provides a good opportunity to study the tectonics and earthquake hazards in the Himalayas, one of the most seismically active plate boundaries. Details of the seismicity patterns and associated structures in the Himalayas are poorly understood mainly due to limited instrumentation. Here, we apply a back-projection method to study the mainshock rupture and the following aftershock sequence using four large aperture global seismic arrays. All the arrays show eastward rupture propagation of about 130 km and reveal similar evolution of seismic energy radiation, with strong high-frequency energy burst about 50 km north of Kathmandu. Each single array, however, is typically limited by large azimuthal gap, low resolution, and artifacts due to unmodeled velocity structures. Therefore, we use a self-consistent empirical calibration method to combine four different arrays to image the Gorkha event. It greatly improves the resolution, can better track rupture and reveal details that cannot be resolved by any individual array. In addition, we also use the same arrays at teleseismic distances and apply a back-projection technique to detect and locate the aftershocks immediately following the Gorkha earthquake. We detect about 2.5 times the aftershocks recorded by the Advance National Seismic System comprehensive earthquake catalog during the 19 days following the mainshock. The aftershocks detected by the arrays show an east-west trend in general, with majority of the aftershocks located at the eastern part of the rupture patch and surrounding the rupture zone of the largest Mw 7.3 aftershock. Overall spatiotemporal aftershock pattern agrees well with global catalog, with our catalog showing more details relative to the standard global catalog. The improved aftershock catalog enables us to better study the aftershock dynamics, stress evolution in this region. Moreover, rapid and better imaging of aftershock distribution may aid rapid response

  20. Stability and behavior of the outer array of small water Cherenkov detectors, outriggers, in the HAWC observatory

    OpenAIRE

    Capistrán, T.; Torres, I.; Moreno, E.; collaboration, for the HAWC

    2017-01-01

    The High-Altitude Water Cherenkov (HAWC) Observatory is used for detecting TeV gamma rays. HAWC is operating at 4,100 meters above level sea on the slope of the Sierra Negra Volcano in the State of Puebla, Mexico, and consists of an array of 300 water Cherenkov detectors (WCDs) covering an area of 22,000 $m^2$. Each WCD is equipped with four photomultiplier tubes (PMTs) to detect Cherenkov emission in the water from secondary particles of extensive air-shower (EAS) that are produced in the in...

  1. Adhesive behaviour of gecko-inspired nanofibrillar arrays: combination of experiments and finite element modelling

    International Nuclear Information System (INIS)

    Wang Zhengzhi; Xu Yun; Gu Ping

    2012-01-01

    A polypropylene nanofibrillar array was successfully fabricated by template-assisted nanofabrication strategy. Adhesion properties of this gecko-inspired structure were studied through two parallel and independent approaches: experiments and finite element simulations. Experimental results show relatively good normal adhesion, but accompanied by high preloads. The interfacial adhesion was modelled by effective spring elements with piecewise-linear constitution. The effective elasticity of the fibre-array system was originally calculated from our measured elasticity of single nanowire. Comparisons of the experimental and simulative results reveal quantitative agreement except for some explainable deviations, which suggests the potential applicability of the present models and applied theories. (fast track communication)

  2. Beam steering for circular switched parasitic arrays using a combinational approach

    CSIR Research Space (South Africa)

    Mofolo, ROM

    2011-09-01

    Full Text Available In this paper, the authors present a method of electronic beam steering for circular switched parasitic array (SPA) antennas. In circular SPA antennas, one achieves azimuth beam steering by open-circuiting and short-circuiting different parasitic...

  3. Multispot array combined with S1 nuclease-mediated elimination of unpaired nucleotides

    DEFF Research Database (Denmark)

    Yoo, Seung Min; Kim, Dong Min; Lee, Sang Yup

    2015-01-01

    The accurate detection of mismatched base pairs is critical to many DNA hybridization-based applications in basic research and diagnostics. We herein demonstrate that mismatched DNAs on a multispot array can be accurately detected in a multiplexed way by employing the S1 nuclease-based mismatched...... base pair-specific cleavage system. After the optimization of the reaction condition, mismatched DNAs present in various pathogenic bacteria and genetic disorders could be successfully detected with stable hybridization signals regardless of the position of the fluorescent label relative to the probe......-target duplex. This technique of performing S1 nuclease-mediated cleavage on a multispot array offers high specificity and high-throughput detection of mismatched DNAs. It is expected that this assay system will prove useful for single-assay genotyping and/or the diagnosis of various diseases and pathogens....

  4. MARTA: A high-energy cosmic-ray detector concept with high-accuracy muon measurement

    Energy Technology Data Exchange (ETDEWEB)

    Abreu, P.; et al.

    2017-12-20

    A new concept for the direct measurement of muons in air showers is presented. The concept is based on resistive plate chambers (RPCs), which can directly measure muons with very good space and time resolution. The muon detector is shielded by placing it under another detector able to absorb and measure the electromagnetic component of the showers such as a water-Cherenkov detector, commonly used in air shower arrays. The combination of the two detectors in a single, compact detector unit provides a unique measurement that opens rich possibilities in the study of air showers.

  5. Units of signals in the surface and underground scintillation detectors of the Yakutsk array

    International Nuclear Information System (INIS)

    Dedenko, L G; Fedorova, G F; Roganova, T M

    2013-01-01

    Signals in the surface and underground scintillation detectors from the extensive air shower particles at the Yakutsk array are measured in some practical units. These units are signals in detectors caused by the near vertical muons. These signals from the near vertical muons in the surface and underground detectors have been simulated with the help of the GEANT4 package. These simulations follow up the real experimental calibration of the surface and underground detectors carried out at the Yakutsk array. Results of simulations show the noticeable difference of ∼5% in energies deposited in these two types of detectors. This difference should be taken into account to interpret correctly data on the fraction of muons observed at the Yakutsk array and to make real conclusions about the composition of the primary cosmic radiation at ultra-high energies.

  6. Study on single-channel signals of water Cherenkov detector array for the LHAASO project

    Energy Technology Data Exchange (ETDEWEB)

    Li, H.C., E-mail: lihuicai@ihep.ac.cn [University of Nankai, Tianjin 300071 (China); Yao, Z.G.; Chen, M.J. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Yu, C.X. [University of Nankai, Tianjin 300071 (China); Zha, M.; Wu, H.R.; Gao, B.; Wang, X.J. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Liu, J.Y.; Liao, W.Y. [University of Nankai, Tianjin 300071 (China); Huang, D.Z. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China)

    2017-05-11

    The Large High Altitude Air Shower Observatory (LHAASO) is planned to be built at Daocheng, Sichuan Province, China. The water Cherenkov detector array (WCDA), with an area of 78,000 m{sup 2} and capacity of 350,000 tons of purified water, is one of the major components of the LHAASO project. A 9-cell detector prototype array has been built at the Yangbajing site, Tibet, China to comprehensively understand the water Cherenkov technique and investigate the engineering issues of WCDA. In this paper, the rate and charge distribution of single-channel signals are evaluated using a full detail Monte Carlo simulation. The results are discussed and compared with the results obtained with prototype array.

  7. Results from and prospects for the Auger Engineering Radio Array

    Directory of Open Access Journals (Sweden)

    van den Berg A.M.

    2013-06-01

    Full Text Available The Auger Engineering Radio Array (AERA is one of the low-energy enhancements of the Pierre Auger Observatory. AERA is based on experience obtained with the LOPES and CODALEMA experiments in Europe and aims to study in the MHz region the details of the emission mechanism of radio signals from extensive air showers. The data from AERA will be used to assess the sensitivity of MHz radiation to the mass composition of cosmic rays. Because of its energy threshold at 2 × 1017 eV the dip region in the cosmic-ray flux spectrum can be studied in detail. We present first results of AERA and of its prototypes and we provide an outlook towards the future.

  8. Design of optical element combining Fresnel lens with microlens array for uniform light-emitting diode lighting.

    Science.gov (United States)

    Wang, Guangzhen; Wang, Lili; Li, Fuli; Kong, Depeng

    2012-09-01

    One kind of optical element combining Fresnel lens with microlens array is designed simply for LED lighting based on geometrical optics and nonimaging optics. This design method imposes no restriction on the source intensity pattern. The designed element has compact construction and can produce multiple shapes of illumination distribution. Taking square lighting as an example, tolerance analysis is carried out to determine tolerance limits for applying the element in the assembly process. This element can produce on-axis lighting and off-axis lighting.

  9. Study of dispersion of mass distribution of ultra-high energy cosmic rays using a surface array of muon and electromagnetic detectors

    Science.gov (United States)

    Vícha, Jakub; Trávníček, Petr; Nosek, Dalibor; Ebr, Jan

    2015-09-01

    We consider a hypothetical observatory of ultra-high energy cosmic rays consisting of two surface detector arrays that measure independently electromagnetic and muon signals induced by air showers. Using the constant intensity cut method, sets of events ordered according to each of both signal sizes are compared giving the number of matched events. Based on its dependence on the zenith angle, a parameter sensitive to the dispersion of the distribution of the logarithmic mass of cosmic rays is introduced. The results obtained using two post-LHC models of hadronic interactions are very similar and indicate a weak dependence on details of these interactions.

  10. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a radiator. The studies on the monopole antenna demonstrate the possibility of a high power short RF pulse\\'s efficient radiation even using simple antennas. The studies on the novel array design demonstrate that a reduced size array with lower pulse distortion and power decay can be constructed by assembling the array from elements each of which integrates a compressor and a radiator. This design idea can be used with any type of antenna array; in this work it is applied to a phased array.

  11. Combined natural convection heat and mass transfer from vertical fin arrays

    International Nuclear Information System (INIS)

    Giri, A.; Narasimham, G.S.V.L.; Krishna Murthy, M.V.

    2003-01-01

    Natural convection transport processes play an important role in many applications like ice-storage air-conditioning. A mathematical formulation of natural convection heat and mass transfer over a shrouded vertical fin array is developed. The base plate is maintained at a temperature below the dew point of the surrounding moist air. Hence there occurs condensation of moisture on the base plate, while the fins may be partially or fully wet. A numerical study is performed by varying the parameters of the problem. The local and average Nusselt numbers decrease in streamwise direction and tend to approach fully developed values for sufficiently large values of the fin length. The results show that beyond a certain streamwise distance, further fin length does not improve the sensible and latent heat transfer performance, and that if dry fin analysis is used under moisture condensation conditions, the overall heat transfer will be underestimated by about 50% even at low buoyancy ratios

  12. The cloud monitor by an infrared camera at the Telescope Array experiment

    International Nuclear Information System (INIS)

    Shibata, F.

    2011-01-01

    The mesurement of the extensive air shower using the fluorescence detectors (FDs) is affected by the condition of the atmosphere. In particular, FD aperture is limited by cloudiness. If cloud exists on the light path from extensive air shower to FDs, fluorescence photons will be absorbed drastically. Therefore cloudiness of FD's field of view (FOV) is one of important quality cut condition in FD analysis. In the Telescope Array (TA), an infrared (IR) camera with 320x236 pixels and a filed of view of 25.8 deg. x19.5 deg. has been installed at an observation site for cloud monitoring during FD observations. This IR camera measures temperature of the sky every 30 min during FD observation. IR camera is mounted on steering table, which can be changed in elevation and azimuthal direction. Clouds can be seen at a higher temperature than areas of cloudless sky from these temperature maps. In this paper, we discuss the quality of the cloud monitoring data, the analysis method, and current quality cut condition of cloudiness in FD analysis.

  13. Auralisations with loudspeaker arrays from a phased combination of the image source method and acoustical radiosity

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy

    2017-01-01

    In order to create a simulation tool that is well-suited for small rooms with low diffusion and highly absorbing ceilings, a new room acoustic simulation tool has been developed that combines a phased version of the image source with acoustical radiosity and that considers the angle dependence...... impulse response, because more directional information is available with acoustical radiosity. Small rooms with absorbing surfaces are tested, because this is the room type that PARISM is particularly useful for....

  14. Auralizations with loudspeaker arrays from a phased combination of the image source method and acoustical radiosity

    DEFF Research Database (Denmark)

    Marbjerg, Gerd Høy; Brunskog, Jonas; Jeong, Cheol-Ho

    2017-01-01

    In order to create a simulation tool that is well-suited for small rooms with low diffusion and highly absorbing ceilings, a new room acoustic simulation tool has been developed that combines a phased version of the image source with acoustical radiosity and that considers the angle dependence...... of the PARISM impulse response, because more directional information is available with acoustical radiosity. Small rooms with absorbing surfaces are tested, because this is the room type that PARISM is particularly useful for....

  15. Measurement of the modulation transfer function of a charge-coupled device array by the combination of the self-imaging effect and slanted edge method.

    Science.gov (United States)

    Najafi, Sedigheh; Madanipour, Khosro

    2013-07-01

    In this paper, by a combination of the self-imaging effect for Ronchi gratings and the standard slanted edge modulation transfer function (MTF) measurement method for CCD cameras, the MTF of the CCD array without optics is measured. For this purpose, a Ronchi-type grating is illuminated by an expanded He-Ne laser. A self-image of the grating appears without optics on the CCD array that is located on the Talbot distance. The lines of the self-image of the grating are used as a slanted edge array. This method has all the advantages of the slanted edge method, and also since the array of the edge is ready, the total area of the CCD can be tested. The measured MTF is related to the CCD array without optics.

  16. Operation and performance of the EEE network array for the detection of cosmic rays

    Energy Technology Data Exchange (ETDEWEB)

    Abbrescia, M. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN and Dipartimento di Fisica, Università di Bari, Bari (Italy); Avanzini, C.; Baldini, L. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN and Dipartimento di Fisica, Università di Pisa, Pisa (Italy); Baldini Ferroli, R. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN Laboratori Nazionali di Frascati, Frascati (RM) (Italy); Batignani, G. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN and Dipartimento di Fisica, Università di Pisa, Pisa (Italy); Bencivenni, G. [INFN Laboratori Nazionali di Frascati, Frascati (RM) (Italy); Bossini, E. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN Gruppo Collegato di Siena and Dipartimento di Fisica, Università di Siena, Siena (Italy); Chiavassa, A. [INFN and Dipartimento di Fisica, Università di Torino, Torino (Italy); Cicalò, C. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN and Dipartimento di Fisica, Università di Cagliari, Cagliari (Italy); Cifarelli, L. [Museo Storico della Fisica e Centro Studi e Ricerche “E. Fermi”, Roma (Italy); INFN and Dipartimento di Fisica e Astronomia, Università di Bologna, Bologna (Italy); and others

    2017-02-11

    The EEE (Extreme Energy Events) Project is an experiment for the detection of cosmic ray muons by means of a sparse array of telescopes, each made of three Multigap Resistive Plate Chambers (MRPC), distributed over all the Italian territory and at CERN. The main scientific goals of the Project are the investigation of the properties of the local muon flux, the detection of Extensive Air Showers (EAS) and the search for long-distance correlations between far telescopes. The Project is also characterized by a strong educational and outreach aspect since the telescopes are managed by teams of students and teachers who had previously constructed them at CERN. In this paper an overall description of the experiment is given, including the design, construction and performance of the telescopes. The operation of the whole array, which currently consists of more than 50 telescopes, is also presented by showing the most recent physics results.

  17. Calibrating the Auger Engineering Radio Array at the Pierre Auger Observatory using an Octocopter

    Energy Technology Data Exchange (ETDEWEB)

    Briechle, Florian; Erdmann, Martin; Krause, Raphael [III. Physikalisches Institut A, RWTH Aachen University (Germany)

    2016-07-01

    With the Auger Engineering Radio Array (AERA) at the Pierre Auger Observatory radio emission of extensive air showers induced by ultra high energy cosmic rays is observed. Characteristics of the primary cosmic ray, e.g., arrival direction, mass or energy, can be measured this way. To produce high quality data, the detector needs to be well understood and calibrated. A useful tool for calibration campaigns is an octocopter. With it, a calibration source can be placed above the array, which makes this a very flexible method useful for different types of calibrations. Special focus is put on the position reconstruction and the position accuracy of the octocopter during the calibration flights. A new optical method using two cameras for these position reconstructions is presented. Results of a measurement campaign in spring 2015 are presented. In this campaign, the sensitivity of the AERA stations as well as timing characteristics were measured. The results of the sensitivity measurement are compared to simulations.

  18. Operation and performance of the EEE network array for the detection of cosmic rays

    International Nuclear Information System (INIS)

    Abbrescia, M.; Avanzini, C.; Baldini, L.; Baldini Ferroli, R.; Batignani, G.; Bencivenni, G.; Bossini, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.

    2017-01-01

    The EEE (Extreme Energy Events) Project is an experiment for the detection of cosmic ray muons by means of a sparse array of telescopes, each made of three Multigap Resistive Plate Chambers (MRPC), distributed over all the Italian territory and at CERN. The main scientific goals of the Project are the investigation of the properties of the local muon flux, the detection of Extensive Air Showers (EAS) and the search for long-distance correlations between far telescopes. The Project is also characterized by a strong educational and outreach aspect since the telescopes are managed by teams of students and teachers who had previously constructed them at CERN. In this paper an overall description of the experiment is given, including the design, construction and performance of the telescopes. The operation of the whole array, which currently consists of more than 50 telescopes, is also presented by showing the most recent physics results.

  19. Combining Simulated and Experimental Data to Simulate Ultrasonic Array Data From Defects in Materials With High Structural Noise.

    Science.gov (United States)

    Bloxham, Harry A; Velichko, Alexander; Wilcox, Paul David

    2016-12-01

    Ultrasonic nondestructive testing inspections using phased arrays are performed on a wide range of components and materials. All real inspections suffer, to varying extents, from coherent noise, including image artifacts and speckle caused by complex geometries and grain scatter, respectively. By its nature, this noise is not reduced by averaging; however, it degrades the signal-to-noise ratio of defects and ultimately limits their detectability. When evaluating the effectiveness of an inspection, a large pool of data from samples containing a range of different defects are important to estimate the probability of detection of defects and to help characterize them. For a given inspection, coherent noise is easy to measure experimentally but hard to model realistically. Conversely, the ultrasonic response of defects can be simulated relatively easily. This paper proposes a novel method of simulating realistic array data by combining noise-free simulations of defect responses with coherent noise taken from experimental data. This removes the need for costly physical samples with known defects to be made and allows for large data sets to be created easily.

  20. The Giant Radio Array for Neutrino Detection

    Directory of Open Access Journals (Sweden)

    Martineau-Huynh Olivier

    2016-01-01

    Full Text Available High-energy neutrino astronomy will probe the working of the most violent phenomena in the Universe. The Giant Radio Array for Neutrino Detection (GRAND project consists of an array of ∼ 105 radio antennas deployed over ∼ 200 000 km2 in a mountainous site. It aims at detecting high-energy neutrinos via the measurement of air showers induced by the decay in the atmosphere of τ leptons produced by the interaction of cosmic neutrinos under the Earth surface. Our objective with GRAND is to reach a neutrino sensitivity of 5 × 10−11E−2 GeV−1 cm−2 s−1 sr−1 above 3 × 1016 eV. This sensitivity ensures the detection of cosmogenic neutrinos in the most pessimistic source models, and up to 100 events per year are expected for the standard models. GRAND would also probe the neutrino signals produced at the potential sources of UHECRs.

  1. The Giant Radio Array for Neutrino Detection

    Directory of Open Access Journals (Sweden)

    Martineau-Huynh Olivier

    2017-01-01

    Full Text Available The Giant Radio Array for Neutrino Detection (GRAND is a planned array of ~ 2·105 radio antennas deployed over ~ 200 000 km2 in a mountainous site. It aims primarly at detecting high-energy neutrinos via the observation of extensive air showers induced by the decay in the atmosphere of taus produced by the interaction of cosmic neutrinos under the Earth surface. GRAND aims at reaching a neutrino sensitivity of 5 · 10−11 E−2 GeV−1 cm−2 s−1 sr−1 above 3 · 1016 eV. This ensures the detection of cosmogenic neutrinos in the most pessimistic source models, and ~50 events per year are expected for the standard models. The instrument will also detect UHECRs and possibly FRBs. Here we show how our preliminary design should enable us to reach our sensitivity goals, and discuss the steps to be taken to achieve GRAND, while the compelling science case for GRAND is discussed in more details in [1].

  2. Array capabilities and future arrays

    International Nuclear Information System (INIS)

    Radford, D.

    1993-01-01

    Early results from the new third-generation instruments GAMMASPHERE and EUROGAM are confirming the expectation that such arrays will have a revolutionary effect on the field of high-spin nuclear structure. When completed, GAMMASHPERE will have a resolving power am order of magnitude greater that of the best second-generation arrays. When combined with other instruments such as particle-detector arrays and fragment mass analysers, the capabilites of the arrays for the study of more exotic nuclei will be further enhanced. In order to better understand the limitations of these instruments, and to design improved future detector systems, it is important to have some intelligible and reliable calculation for the relative resolving power of different instrument designs. The derivation of such a figure of merit will be briefly presented, and the relative sensitivities of arrays currently proposed or under construction presented. The design of TRIGAM, a new third-generation array proposed for Chalk River, will also be discussed. It is instructive to consider how far arrays of Compton-suppressed Ge detectors could be taken. For example, it will be shown that an idealised open-quote perfectclose quotes third-generation array of 1000 detectors has a sensitivity an order of magnitude higher again than that of GAMMASPHERE. Less conventional options for new arrays will also be explored

  3. Compression and radiation of high-power short rf pulses. II. A novel antenna array design with combined compressor/radiator elements

    KAUST Repository

    Sirenko, Kostyantyn; Pazynin, Vadim L.; Sirenko, Yu K.; Bagci, Hakan

    2011-01-01

    The paper discusses the radiation of compressed high power short RF pulses using two different types of antennas: (i) A simple monopole antenna and (ii) a novel array design, where each of the elements is constructed by combining a compressor and a

  4. MRI of the wrist at 7 tesla using an eight-channel array coil combined with parallel imaging: preliminary results.

    Science.gov (United States)

    Chang, Gregory; Friedrich, Klaus M; Wang, Ligong; Vieira, Renata L R; Schweitzer, Mark E; Recht, Michael P; Wiggins, Graham C; Regatte, Ravinder R

    2010-03-01

    To determine the feasibility of performing MRI of the wrist at 7 Tesla (T) with parallel imaging and to evaluate how acceleration factors (AF) affect signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and image quality. This study had institutional review board approval. A four-transmit eight-receive channel array coil was constructed in-house. Nine healthy subjects were scanned on a 7T whole-body MR scanner. Coronal and axial images of cartilage and trabecular bone micro-architecture (3D-Fast Low Angle Shot (FLASH) with and without fat suppression, repetition time/echo time = 20 ms/4.5 ms, flip angle = 10 degrees , 0.169-0.195 x 0.169-0.195 mm, 0.5-1 mm slice thickness) were obtained with AF 1, 2, 3, 4. T1-weighted fast spin-echo (FSE), proton density-weighted FSE, and multiple-echo data image combination (MEDIC) sequences were also performed. SNR and CNR were measured. Three musculoskeletal radiologists rated image quality. Linear correlation analysis and paired t-tests were performed. At higher AF, SNR and CNR decreased linearly for cartilage, muscle, and trabecular bone (r < -0.98). At AF 4, reductions in SNR/CNR were:52%/60% (cartilage), 72%/63% (muscle), 45%/50% (trabecular bone). Radiologists scored images with AF 1 and 2 as near-excellent, AF 3 as good-to-excellent (P = 0.075), and AF 4 as average-to-good (P = 0.11). It is feasible to perform high resolution 7T MRI of the wrist with parallel imaging. SNR and CNR decrease with higher AF, but image quality remains above-average.

  5. Efficient Narrowband Direction of Arrival Estimation Based on a Combination of Uniform Linear/Shirvani-Akbari Arrays

    Directory of Open Access Journals (Sweden)

    Shahriar Shirvani Moghaddam

    2012-01-01

    Full Text Available Uniform linear array (ULA geometry does not perform well for direction of arrival (DOA estimation at directions close to the array endfires. Shirvani and Akbari solved this problem by displacing two elements from both ends of the ULA to the top and/or bottom of the array axis. Shirvani-Akbari array (SAA presents a considerable improvement in the DOA estimation of narrowband sources arriving at endfire directions in terms of DOA estimation accuracy and angular resolution. In this paper, all new proposed SAA configurations are modelled and also examined, numerically. In this paper, two well-known DOA estimation algorithms, multiple signal classification (MUSIC and minimum variance distortionless response (MVDR, are used to evaluate the effectiveness of proposed arrays using total root mean square error (RMSE criterion. In addition, two new scenarios are proposed which divide angular search to two parts, directions close to array endfires as well as middle angles. For middle angles, which belong to (−70∘≤≤70∘, ULA is considered, and for endfire angles, the angles which belong to (−90∘≤≤−70∘ and (70∘≤≤90∘, SAA is considered. Simulation results of new proposed scenarios for DOA estimation of narrowband signals show the better performance with lower computational load.

  6. Fiber Laser Array

    National Research Council Canada - National Science Library

    Simpson, Thomas

    2002-01-01

    ...., field-dependent, loss within the coupled laser array. During this program, Jaycor focused on the construction and use of an experimental apparatus that can be used to investigate the coherent combination of an array of fiber lasers...

  7. The combined rapid detection and species-level identification of yeasts in simulated blood culture using a colorimetric sensor array.

    Science.gov (United States)

    Shrestha, Nabin K; Lim, Sung H; Wilson, Deborah A; SalasVargas, Ana Victoria; Churi, Yair S; Rhodes, Paul A; Mazzone, Peter J; Procop, Gary W

    2017-01-01

    A colorimetric sensor array (CSA) has been demonstrated to rapidly detect and identify bacteria growing in blood cultures by obtaining a species-specific "fingerprint" of the volatile organic compounds (VOCs) produced during growth. This capability has been demonstrated in prokaryotes, but has not been reported for eukaryotic cells growing in culture. The purpose of this study was to explore if a disposable CSA could differentially identify 7 species of pathogenic yeasts growing in blood culture. Culture trials of whole blood inoculated with a panel of clinically important pathogenic yeasts at four different microorganism loads were performed. Cultures were done in both standard BacT/Alert and CSA-embedded bottles, after adding 10 mL of spiked blood to each bottle. Color changes in the CSA were captured as images by an optical scanner at defined time intervals. The captured images were analyzed to identify the yeast species. Time to detection by the CSA was compared to that in the BacT/Alert system. One hundred sixty-two yeast culture trials were performed, including strains of several species of Candida (Ca. albicans, Ca. glabrata, Ca. parapsilosis, and Ca. tropicalis), Clavispora (synonym Candida) lusitaniae, Pichia kudriavzevii (synonym Candida krusei) and Cryptococcus neoformans, at loads of 8.2 × 105, 8.3 × 103, 8.5 × 101, and 1.7 CFU/mL. In addition, 8 negative trials (no yeast) were conducted. All negative trials were correctly identified as negative, and all positive trials were detected. Colorimetric responses were species-specific and did not vary by inoculum load over the 500000-fold range of loads tested, allowing for accurate species-level identification. The mean sensitivity for species-level identification by CSA was 74% at detection, and increased with time, reaching almost 95% at 4 hours after detection. At an inoculum load of 1.7 CFU/mL, mean time to detection with the CSA was 6.8 hours (17%) less than with the BacT/Alert platform. The CSA

  8. The combined rapid detection and species-level identification of yeasts in simulated blood culture using a colorimetric sensor array.

    Directory of Open Access Journals (Sweden)

    Nabin K Shrestha

    Full Text Available A colorimetric sensor array (CSA has been demonstrated to rapidly detect and identify bacteria growing in blood cultures by obtaining a species-specific "fingerprint" of the volatile organic compounds (VOCs produced during growth. This capability has been demonstrated in prokaryotes, but has not been reported for eukaryotic cells growing in culture. The purpose of this study was to explore if a disposable CSA could differentially identify 7 species of pathogenic yeasts growing in blood culture.Culture trials of whole blood inoculated with a panel of clinically important pathogenic yeasts at four different microorganism loads were performed. Cultures were done in both standard BacT/Alert and CSA-embedded bottles, after adding 10 mL of spiked blood to each bottle. Color changes in the CSA were captured as images by an optical scanner at defined time intervals. The captured images were analyzed to identify the yeast species. Time to detection by the CSA was compared to that in the BacT/Alert system.One hundred sixty-two yeast culture trials were performed, including strains of several species of Candida (Ca. albicans, Ca. glabrata, Ca. parapsilosis, and Ca. tropicalis, Clavispora (synonym Candida lusitaniae, Pichia kudriavzevii (synonym Candida krusei and Cryptococcus neoformans, at loads of 8.2 × 105, 8.3 × 103, 8.5 × 101, and 1.7 CFU/mL. In addition, 8 negative trials (no yeast were conducted. All negative trials were correctly identified as negative, and all positive trials were detected. Colorimetric responses were species-specific and did not vary by inoculum load over the 500000-fold range of loads tested, allowing for accurate species-level identification. The mean sensitivity for species-level identification by CSA was 74% at detection, and increased with time, reaching almost 95% at 4 hours after detection. At an inoculum load of 1.7 CFU/mL, mean time to detection with the CSA was 6.8 hours (17% less than with the BacT/Alert platform

  9. Development of the optical system for the SST-1M telescope of the Cherenkov Telescope Array observatory

    CERN Document Server

    Ostrowski, Michael; Błocki, J.; Bogacz, L.; Bulik, T.; Cadoux, F.; Christov, A.; Curyło, M.; della Volpe, D.; Dyrda, M.; Favre, Y.; Frankowski, A.; Grudnik, Ł.; Grudzińska, M.; Heller, M.; Idźkowski, B.; Jamrozy, M.; Janiak, M.; Kasperek, J.; Lalik, K.; Lyard, E.; Mach, E.; Mandat, D.; Marszałek, A.; Michałowski, J.; Moderski, R.; Montaruli, T.; Neronov, A.; Niemiec, J.; Paśko, P.; Pech, M.; Porcelli, A.; Prandini, E.; Pueschel, E.; Rajda, P.; Rameez, M.; Schioppa, E. jr; Schovanek, P.; Skowron, K.; Sliusar, V.; Sowiński, M.; Stawarz, Ł.; Stodulska, M.; Stodulski, M.; Toscano, S.; Troyano Pujadas, I.; Walter, R.; Wiȩcek, M.; Zagdański, A.; Ziȩtara, K.; Żychowski, P.; Barciński, T.; Karczewski, M.; Kukliński, J. Nicolau; Płatos, Ł.; Rataj, M.; Wawer, P.; Wawrzaszek, R.

    2016-01-01

    The prototype of a Davies-Cotton small size telescope (SST-1M) has been designed and developed by a consortium of Polish and Swiss institutions and proposed for the Cherenkov Telescope Array (CTA) observatory. The main purpose of the optical system is to focus the Cherenkov light emitted by extensive air showers in the atmosphere onto the focal plane detectors. The main component of the system is a dish consisting of 18 hexagonal mirrors with a total effective collection area of 6.47 m2 (including the shadowing and estimated mirror reflectivity). Such a solution was chosen taking into account the analysis of the Cherenkov light propagation and based on optical simulations. The proper curvature and stability of the dish is ensured by the mirror alignment system and the isostatic interface to the telescope structure. Here we present the design of the optical subsystem together with the performance measurements of its components.

  10. Arrays of suspended silicon nanowires defined by ion beam implantation: mechanical coupling and combination with CMOS technology

    Science.gov (United States)

    Llobet, J.; Rius, G.; Chuquitarqui, A.; Borrisé, X.; Koops, R.; van Veghel, M.; Perez-Murano, F.

    2018-04-01

    We present the fabrication, operation, and CMOS integration of arrays of suspended silicon nanowires (SiNWs). The functional structures are obtained by a top-down fabrication approach consisting in a resistless process based on focused ion beam irradiation, causing local gallium implantation and silicon amorphization, plus selective silicon etching by tetramethylammonium hydroxide, and a thermal annealing process in a boron rich atmosphere. The last step enables the electrical functionality of the irradiated material. Doubly clamped silicon beams are fabricated by this method. The electrical readout of their mechanical response can be addressed by a frequency down-mixing detection technique thanks to an enhanced piezoresistive transduction mechanism. Three specific aspects are discussed: (i) the engineering of mechanically coupled SiNWs, by making use of the nanometer scale overhang that it is inherently-generated with this fabrication process, (ii) the statistical distribution of patterned lateral dimensions when fabricating large arrays of identical devices, and (iii) the compatibility of the patterning methodology with CMOS circuits. Our results suggest that the application of this method to the integration of large arrays of suspended SiNWs with CMOS circuitry is interesting in view of applications such as advanced radio frequency band pass filters and ultra-high-sensitivity mass sensors.

  11. Combined use of expression and CGH arrays pinpoints novel candidate genes in Ewing sarcoma family of tumors

    International Nuclear Information System (INIS)

    Savola, Suvi; Knuutila, Sakari; Klami, Arto; Tripathi, Abhishek; Niini, Tarja; Serra, Massimo; Picci, Piero; Kaski, Samuel; Zambelli, Diana; Scotlandi, Katia

    2009-01-01

    Ewing sarcoma family of tumors (ESFT), characterized by t(11;22)(q24;q12), is one of the most common tumors of bone in children and young adults. In addition to EWS/FLI1 gene fusion, copy number changes are known to be significant for the underlying neoplastic development of ESFT and for patient outcome. Our genome-wide high-resolution analysis aspired to pinpoint genomic regions of highest interest and possible target genes in these areas. Array comparative genomic hybridization (CGH) and expression arrays were used to screen for copy number alterations and expression changes in ESFT patient samples. A total of 31 ESFT samples were analyzed by aCGH and in 16 patients DNA and RNA level data, created by expression arrays, was integrated. Time of the follow-up of these patients was 5–192 months. Clinical outcome was statistically evaluated by Kaplan-Meier/Logrank methods and RT-PCR was applied on 42 patient samples to study the gene of the highest interest. Copy number changes were detected in 87% of the cases. The most recurrent copy number changes were gains at 1q, 2, 8, and 12, and losses at 9p and 16q. Cumulative event free survival (ESFT) and overall survival (OS) were significantly better (P < 0.05) for primary tumors with three or less copy number changes than for tumors with higher number of copy number aberrations. In three samples copy number imbalances were detected in chromosomes 11 and 22 affecting the FLI1 and EWSR1 loci, suggesting that an unbalanced t(11;22) and subsequent duplication of the derivative chromosome harboring fusion gene is a common event in ESFT. Further, amplifications on chromosomes 20 and 22 seen in one patient sample suggest a novel translocation type between EWSR1 and an unidentified fusion partner at 20q. In total 20 novel ESFT associated putative oncogenes and tumor suppressor genes were found in the integration analysis of array CGH and expression data. Quantitative RT-PCR to study the expression levels of the most interesting

  12. ArrayMining: a modular web-application for microarray analysis combining ensemble and consensus methods with cross-study normalization

    Directory of Open Access Journals (Sweden)

    Krasnogor Natalio

    2009-10-01

    Full Text Available Abstract Background Statistical analysis of DNA microarray data provides a valuable diagnostic tool for the investigation of genetic components of diseases. To take advantage of the multitude of available data sets and analysis methods, it is desirable to combine both different algorithms and data from different studies. Applying ensemble learning, consensus clustering and cross-study normalization methods for this purpose in an almost fully automated process and linking different analysis modules together under a single interface would simplify many microarray analysis tasks. Results We present ArrayMining.net, a web-application for microarray analysis that provides easy access to a wide choice of feature selection, clustering, prediction, gene set analysis and cross-study normalization methods. In contrast to other microarray-related web-tools, multiple algorithms and data sets for an analysis task can be combined using ensemble feature selection, ensemble prediction, consensus clustering and cross-platform data integration. By interlinking different analysis tools in a modular fashion, new exploratory routes become available, e.g. ensemble sample classification using features obtained from a gene set analysis and data from multiple studies. The analysis is further simplified by automatic parameter selection mechanisms and linkage to web tools and databases for functional annotation and literature mining. Conclusion ArrayMining.net is a free web-application for microarray analysis combining a broad choice of algorithms based on ensemble and consensus methods, using automatic parameter selection and integration with annotation databases.

  13. ZnO nanorod arrays prepared by chemical bath deposition combined with rapid thermal annealing: structural, photoluminescence and field emission characteristics

    International Nuclear Information System (INIS)

    Chen, Hung-Wei; He, Hsin-Min; Lee, Yi-Mu; Yang, Hsi-Wen

    2016-01-01

    ZnO nanorod arrays were prepared by low temperature chemical bath deposition (CBD) combined with rapid thermal annealing (RTA) under different ambient conditions. The structure and morphology of the synthesized ZnO have been characterized by field-emission scanning electron microscopy (FESEM) and x-ray diffraction (XRD). The obtained ZnO samples are highly crystalline with a hexagonal wurtzite phase and also display well-aligned array structure. A pronounced effect on increased nanorod length was found for the RTA-treated ZnO as compared to the as-grown ZnO. Analysis of XRD indicates that the (0 0 2) feature peak of the as-grown ZnO was shifted towards a lower angle as compared to the peaks of RTA-treated ZnO samples due to the reduction of tensile strain along the c-axis by RTA. Photoluminescence (PL) studies reveal that the ZnO nanorod arrays receiving RTA in an O 2 environment have the sharpest UV emission band and greatest intensity ratio of near band-edge emission (NBE) to deep level emission (DLE). Additionally, the effects of RTA on the field emission properties were evaluated. The results demonstrate that RTA an O 2 environment can lower the turn-on field and improve the field enhancement factor. The stability of the field emission current was also tested for 4 h. (paper)

  14. A multi-site array for combined local electrochemistry and electrophysiology in the non-human primate brain.

    Science.gov (United States)

    Disney, Anita A; McKinney, Collin; Grissom, Larry; Lu, Xuekun; Reynolds, John H

    2015-11-30

    Currently, the primary technique employed in circuit-level study of the brain is electrophysiology, recording local field or action potentials (LFPs or APs). However most communication between neurons is chemical and the relationship between electrical activity within neurons and chemical signaling between them is not well understood in vivo, particularly for molecules that signal at least in part by non-synaptic transmission. We describe a multi-contact array and accompanying head stage circuit that together enable concurrent electrophysiological and electrochemical recording. The array is small (electrochemistry) recording. This system is designed for concurrent, dual-mode recording. It is also the only system designed explicitly to meet the challenges of recording in non-human primates. Our system offers the possibility for conducting in vivo studies in a range of species that examine the relationship between the electrical activity of neurons and their chemical environment, with exquisite spatial and temporal precision. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Performance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump

    NARCIS (Netherlands)

    Bakker, M.; Zondag, H.A.

    2005-01-01

    A photovoltaic/thermal (PVT) panel is a combination of photovoltaic cells with a solar thermal collector, generating solar electricity and solar heat simultaneously. Hence, PVT panels are an alternative for a combination of separate PV panels and solar thermal collectors. A promising system concept,

  16. Analysis of a Combined Antenna Arrays and Reverse-Link Synchronous DS-CDMA System over Multipath Rician Fading Channels

    Directory of Open Access Journals (Sweden)

    Kim Yong-Seok

    2005-01-01

    Full Text Available We present the BER analysis of antenna array (AA receiver in reverse-link asynchronous multipath Rician channels and analyze the performance of an improved AA system which applies a reverse-link synchronous transmission technique (RLSTT in order to effectively make a better estimation of covariance matrices at a beamformer-RAKE receiver. In this work, we provide a comprehensive analysis of user capacity which reflects several important factors such as the ratio of the specular component power to the Rayleigh fading power, the shape of multipath intensity profile, and the number of antennas. Theoretical analysis demonstrates that for the case of a strong specular path's power or for a high decay factor, the employment of RLSTT along with AA has the potential of improving the achievable capacity by an order of magnitude.

  17. The ASTRI mini-array within the future Cherenkov Telescope Array

    Directory of Open Access Journals (Sweden)

    Vercellone Stefano

    2016-01-01

    Full Text Available The Cherenkov Telescope Array (CTA is a large collaborative effort aimed at the design and operation of an observatory dedicated to very high-energy gamma-ray astrophysics in the energy range from a few tens of GeV to above 100 TeV, which will yield about an order of magnitude improvement in sensitivity with respect to the current major arrays (H.E.S.S., MAGIC, and VERITAS. Within this framework, the Italian National Institute for Astrophysics is leading the ASTRI project, whose main goals are the design and installation on Mt. Etna (Sicily of an end-to-end dual-mirror prototype of the CTA small size telescope (SST and the installation at the CTA Southern site of a dual-mirror SST mini-array composed of nine units with a relative distance of about 300 m. The innovative dual-mirror Schwarzschild-Couder optical solution adopted for the ASTRI Project allows us to substantially reduce the telescope plate-scale and, therefore, to adopt silicon photo-multipliers as light detectors. The ASTRI mini-array is a wider international effort. The mini-array, sensitive in the energy range 1–100 TeV and beyond with an angular resolution of a few arcmin and an energy resolution of about 10–15%, is well suited to study relatively bright sources (a few × 10−12 erg cm−2 s−1 at 10 TeV at very high energy. Prominent sources such as extreme blazars, nearby well-known BL Lac objects, Galactic pulsar wind nebulae, supernovae remnants, micro-quasars, and the Galactic Center can be observed in a previously unexplored energy range. The ASTRI mini-array will extend the current IACTs sensitivity well above a few tens of TeV and, at the same time, will allow us to compare our results on a few selected targets with those of current (HAWC and future high-altitude extensive air-shower detectors.

  18. Performance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump

    International Nuclear Information System (INIS)

    Bakker, M.; Zondag, H.A.; Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.

    2005-03-01

    A photovoltaic/thermal (PVT) panel is a combination of photovoltaic cells with a solar thermal collector, generating solar electricity and solar heat simultaneously. Hence, PVT panels are an alternative for a combination of separate PV panels and solar thermal collectors. A promising system concept, consisting of 25 m 2 of PVT panels and a ground coupled heat pump, has been simulated in TRNSYS. It has been found that this system is able to cover 100% of the total heat demand for a typical newly-built Dutch one-family dwelling, while covering nearly all of its own electricity use and keeping the long-term average ground temperature constant. The cost of such a system has been compared to the cost of a reference system, where the PVT panels have been replaced with separate PV panels (26 m 2 ) and solar thermal collectors (7 m 2 ), but which is otherwise identical. The electrical and thermal yield of this reference system is equal to that of the PVT system. It has been found that both systems require a nearly identical initial investment. Finally, a view on future PVT markets is given. In general, the residential market is by far the most promising market. The system discussed in this paper is expected to be most successful in newly-built low-energy housing concepts

  19. Performance and costs of a roof-sized PV/thermal array combined with a ground coupled heat pump

    International Nuclear Information System (INIS)

    Bakker, M.; Zondag, H.A.; Elswijk, M.J.; Strootman, K.J.; Jong, M.J.M.

    2005-01-01

    A photovoltaic/thermal (PVT) panel is a combination of photovoltaic cells with a solar thermal collector, generating solar electricity and solar heat simultaneously. Hence, PVT panels are an alternative for a combination of separate PV panels and solar thermal collectors. A promising system concept, consisting of 25 m 2 of PVT panels and a ground coupled heat pump, has been simulated in TRNSYS. It has been found that this system is able to cover 100% of the total heat demand for a typical newly-built Dutch one-family dwelling, while covering nearly all of its own electricity use and keeping the long-term average ground temperature constant. The cost of such a system has been compared to the cost of a reference system, where the PVT panels have been replaced with separate PV panels (26 m 2 ) and solar thermal collectors (7 m 2 ), but which is otherwise identical. The electrical and thermal yield of this reference system is equal to that of the PVT system. It has been found that both systems require a nearly identical initial investment. Finally, a view on future PVT markets is given. In general, the residential market is by far the most promising market. The system discussed in this paper is expected to be most successful in newly-built low-energy housing concepts. (Author)

  20. The GRANDE detector

    International Nuclear Information System (INIS)

    Adams, A.; Bond, R.; Coleman, L.; Rollefson, A.; Wold, D.; Bratton, C.B.; Gurr, H.; Kropp, W.; Nelson, M.; Price, L.R.; Reines, F.; Schultz, J.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Wilson, C.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    In this paper we present a detector facility which meets the requirements outlined above for a next-generation instrument. GRANDE (Gamma Ray and Neutrino DEtector) is an imaging, water Cerenkov detector, which combines in one facility an extensive air shower array and a high-energy neutrino detector. (orig.)

  1. Phased-array radars

    Science.gov (United States)

    Brookner, E.

    1985-02-01

    The operating principles, technology, and applications of phased-array radars are reviewed and illustrated with diagrams and photographs. Consideration is given to the antenna elements, circuitry for time delays, phase shifters, pulse coding and compression, and hybrid radars combining phased arrays with lenses to alter the beam characteristics. The capabilities and typical hardware of phased arrays are shown using the US military systems COBRA DANE and PAVE PAWS as examples.

  2. Probing the radio emission from air showers with polarization measurements

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2014-01-01

    Roč. 89, č. 5 (2014), "052002-1"-"052002-18" ISSN 1550-7998 R&D Projects: GA MŠk(CZ) LG13007; GA TA ČR TA01010517; GA MŠk(CZ) 7AMB12AR013 Institutional support: RVO:68378271 Keywords : Pierre Auger Observatory * detector * cosmic rays Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 4.643, year: 2014

  3. Air shower detection and the energy flow in electromagnetic cascades

    Energy Technology Data Exchange (ETDEWEB)

    Stanev, Todor (Nuclear Power Oversight Committee (United States)); Vankov, H.P. (Bylgarska Akademiya na Naukite, Sofia (Bulgaria). Inst. za Yadrena Izsledvaniya i Yadrena Energetika)

    1992-02-01

    We study the longitudinal behaviour of the energy carried by the shower particles E{sub c} and its lateral distribution, give simple parametrizations of the results of Monte Carlo simulations, and discuss the advantages of shower detectors that measure directly E{sub c}. (author).

  4. Rectenna array measurement results

    Science.gov (United States)

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining were demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  5. Arrayed waveguide Sagnac interferometer.

    Science.gov (United States)

    Capmany, José; Muñoz, Pascual; Sales, Salvador; Pastor, Daniel; Ortega, Beatriz; Martinez, Alfonso

    2003-02-01

    We present a novel device, an arrayed waveguide Sagnac interferometer, that combines the flexibility of arrayed waveguides and the wide application range of fiber or integrated optics Sagnac loops. We form the device by closing an array of wavelength-selective light paths provided by two arrayed waveguides with a single 2 x 2 coupler in a Sagnac configuration. The equations that describe the device's operation in general conditions are derived. A preliminary experimental demonstration is provided of a fiber prototype in passive operation that shows good agreement with the expected theoretical performance. Potential applications of the device in nonlinear operation are outlined and discussed.

  6. Observation of cosmic-ray anisotropy in the decade below 1 PeV with a pentagon array

    Science.gov (United States)

    Moghaddam, S. Mortazavi; Bahmanabadi, M.

    2018-03-01

    The study of the anisotropy of the arrival directions is an essential tool to investigate the origin and propagation of cosmic rays primaries. A pentagon array has been designed to collect data around the knee region of cosmic ray spectrum. The experimental results of this array obtained from October 2016 to October 2017. During this period, more than 5.3 ×105 extensive air shower events at energies in the decade below 1 PeV has been accumulated by this array at Sharif University of Technology in Tehran (3 5 ° 4 3'N , 5 1 ° 2 0'E , 1200m a .s .l =890 g cm-2 ). In analyzing the data set, we have used appropriate techniques of analysis and considered environmental effects. We report the analysis of the sidereal anisotropy of Galactic cosmic rays (GCRs). In this analysis, in addition to the Compton- Getting effect due to the motion of the earth in the Galaxy, an anisotropy has been observed which is due to a unidirectional anisotropy of cosmic ray flow along the Galactic arms.

  7. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry.

    Science.gov (United States)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-05

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r(2)=0.998) in the range of 3.0-85.0 μg L(-1) with a detection limit of 0.7 μg L(-1) for preconcentration of 25.0 mL of the sample and the relative standard deviation (n=6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Lab-on-chip system combining a microfluidic-ELISA with an array of amorphous silicon photosensors for the detection of celiac disease epitopes

    Directory of Open Access Journals (Sweden)

    Francesca Costantini

    2015-12-01

    Full Text Available This work presents a lab-on-chip system, which combines a glass-polydimethilsiloxane microfluidic network and an array of amorphous silicon photosensors for the diagnosis and follow-up of Celiac disease. The microfluidic chip implements an on-chip enzyme-linked immunosorbent assay (ELISA, relying on a sandwich immunoassay between antibodies against gliadin peptides (GPs and a secondary antibody marked with horseradish peroxidase (Ig-HRP. This enzyme catalyzes a chemiluminescent reaction, whose light intensity is detected by the amorphous silicon photosensors and transduced into an electrical signal that can be processed to recognize the presence of antibodies against GPs in the serum of people affected by Celiac syndrome.The correct operation of the developed lab-on-chip has been demonstrated using rabbit serum in the microfluidic ELISA. In particular, optimizing the dilution factors of both sera and Ig-HRP samples in the flowing solutions, the specific and non-specific antibodies against GPs can be successfully distinguished, showing the suitability of the presented device to effectively screen celiac disease epitopes. Keywords: Lab-on-chip, Celiac disease, Microfluidics, On-chip detection, ELISA, Amorphous silicon photosensors

  9. Solid phase microextraction of diclofenac using molecularly imprinted polymer sorbent in hollow fiber combined with fiber optic-linear array spectrophotometry

    Science.gov (United States)

    Pebdani, Arezou Amiri; Shabani, Ali Mohammad Haji; Dadfarnia, Shayessteh; Khodadoust, Saeid

    2015-08-01

    A simple solid phase microextraction method based on molecularly imprinted polymer sorbent in the hollow fiber (MIP-HF-SPME) combined with fiber optic-linear array spectrophotometer has been applied for the extraction and determination of diclofenac in environmental and biological samples. The effects of different parameters such as pH, times of extraction, type and volume of the organic solvent, stirring rate and donor phase volume on the extraction efficiency of the diclofenac were investigated and optimized. Under the optimal conditions, the calibration graph was linear (r2 = 0.998) in the range of 3.0-85.0 μg L-1 with a detection limit of 0.7 μg L-1 for preconcentration of 25.0 mL of the sample and the relative standard deviation (n = 6) less than 5%. This method was applied successfully for the extraction and determination of diclofenac in different matrices (water, urine and plasma) and accuracy was examined through the recovery experiments.

  10. Design and construction of hierarchical TiO2 nanorod arrays by combining layer-by-layer and hydrothermal crystallization techniques for electrochromic application

    Science.gov (United States)

    Chen, Yongbo; Li, Xiaomin; Bi, Zhijie; He, Xiaoli; Li, Guanjie; Xu, Xiaoke; Gao, Xiangdong

    2018-05-01

    The hierarchical TiO2 (H-TiO2) nanorod arrays (NRAs) composed of single-crystalline nanorods and nanocrystals were finely designed and successfully constructed for electrochromic (EC) application. By combining layer-by-layer (LBL) method and hydrothermal crystallization technique, the superfine nanocrystals (5-7 nm), which can provide abundant active sites and facilitate ion insertion/extraction during EC reactions, were uniformly and conformally assembled on the surface of single-crystalline TiO2 (SC-TiO2) NRAs. The as-formed H-TiO2 NRAs integrate the advantages of one-dimensional NRAs with fast kinetics and superfine nanocrystals with high ion capacity, showing highly enhanced EC performance. Large optical contrast (40.3%), shorter coloring/bleaching time (22/4 s), high coloration efficiency (11.2 cm2 C-1), and excellent cycling stability can be achieved in H-TiO2 NRAs, superior to the pristine SC-TiO2 NRAs and nanocrystalline TiO2 films. This work provides a feasible and well-designed strategy to explore high-performance materials for EC application.

  11. Combination of short-length TiO_2 nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells

    International Nuclear Information System (INIS)

    Zhang, Zhengguo; Shi, Chengwu; Chen, Junjun; Xiao, Guannan; Li, Long

    2017-01-01

    Graphical abstract: The TiO_2 nanorod array with the length of 600 nm, the diameter of 20 nm, the areal density of 500 μm"−"2 was successfully prepared. The compact PbS quantum-dot thin film was firstly obtained on the TiO_2 nanorod array by spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol. The photoelectric conversion efficiency (PCE) of the compact PbS quantum-dot thin film sensitized solar cells achieved 4.10% using spiro-OMeTAD as a hole transporting layer, while the PCE of the PbS quantum-dot sensitized solar cells was only 0.54%. - Highlights: • Preparation of TiO_2 nanorod arrays with the length of 600 nm, diameter of 20 nm. • The compact PbS QD thin film and short-length TiO_2 nanorod array were combined. • EDT addition improved PbS nanoparticle coverage and photovoltaic performance. • The compact PbS QD thin film sensitized solar cell achieved the PCE of 4.10%. - Abstract: Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO_2 nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm"−"2 is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO_2 nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO_2 nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO_2 nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion efficiency of 4.10%, along with an open

  12. Combination of short-length TiO{sub 2} nanorod arrays and compact PbS quantum-dot thin films for efficient solid-state quantum-dot-sensitized solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zhengguo [School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009 (China); School of Chemistry and Chemical Engineering, Beifang University of Nationalities, Yinchuan 750021 (China); Shi, Chengwu, E-mail: shicw506@foxmail.com [School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009 (China); Chen, Junjun; Xiao, Guannan; Li, Long [School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009 (China)

    2017-07-15

    Graphical abstract: The TiO{sub 2} nanorod array with the length of 600 nm, the diameter of 20 nm, the areal density of 500 μm{sup −2} was successfully prepared. The compact PbS quantum-dot thin film was firstly obtained on the TiO{sub 2} nanorod array by spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol. The photoelectric conversion efficiency (PCE) of the compact PbS quantum-dot thin film sensitized solar cells achieved 4.10% using spiro-OMeTAD as a hole transporting layer, while the PCE of the PbS quantum-dot sensitized solar cells was only 0.54%. - Highlights: • Preparation of TiO{sub 2} nanorod arrays with the length of 600 nm, diameter of 20 nm. • The compact PbS QD thin film and short-length TiO{sub 2} nanorod array were combined. • EDT addition improved PbS nanoparticle coverage and photovoltaic performance. • The compact PbS QD thin film sensitized solar cell achieved the PCE of 4.10%. - Abstract: Considering the balance of the hole diffusion length and the loading quantity of quantum-dots, the rutile TiO{sub 2} nanorod array with the length of 600 nm, the diameter of 20 nm, and the areal density of 500 μm{sup −2} is successfully prepared by the hydrothermal method using the aqueous grown solution of 38 mM titanium isopropoxide and 6 M hydrochloric acid at 170 °C for 105 min. The compact PbS quantum-dot thin film on the TiO{sub 2} nanorod array is firstly obtained by the spin-coating-assisted successive ionic layer absorption and reaction with using 1,2-ethanedithiol (EDT). The result reveals that the strong interaction between lead and EDT is very important to control the crystallite size of PbS quantum-dots and obtain the compact PbS quantum-dot thin film on the TiO{sub 2} nanorod array. The all solid-state sensitized solar cell with the combination of the short-length, high-density TiO{sub 2} nanorod array and the compact PbS quantum-dot thin film achieves the photoelectric conversion

  13. The exposure of the hybrid detector of the Pierre Auger Observatory

    OpenAIRE

    The Pierre Auger Collaboration

    2010-01-01

    Abstract The Pierre Auger Observatory is a detector for ultra-high energy cosmic rays. It consists of a surface array to measure secondary particles at ground level and a fluorescence detector to measure the development of air showers in the atmosphere above the array. The ?hybrid? detection mode combines the information from the two subsystems. We describe the determination of the hybrid exposure for events observed by the fluorescence telescopes in coincidence with at least one w...

  14. Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex changes and multiple forms of chromosomal instability in colorectal cancers

    DEFF Research Database (Denmark)

    Gaasenbeek, Michelle; Howarth, Kimberley; Rowan, Andrew J

    2006-01-01

    Cancers with chromosomal instability (CIN) are held to be aneuploid/polyploid with multiple large-scale gains/deletions, but the processes underlying CIN are unclear and different types of CIN might exist. We investigated colorectal cancer cell lines using array-comparative genomic hybridization...

  15. SNP Arrays

    Directory of Open Access Journals (Sweden)

    Jari Louhelainen

    2016-10-01

    Full Text Available The papers published in this Special Issue “SNP arrays” (Single Nucleotide Polymorphism Arrays focus on several perspectives associated with arrays of this type. The range of papers vary from a case report to reviews, thereby targeting wider audiences working in this field. The research focus of SNP arrays is often human cancers but this Issue expands that focus to include areas such as rare conditions, animal breeding and bioinformatics tools. Given the limited scope, the spectrum of papers is nothing short of remarkable and even from a technical point of view these papers will contribute to the field at a general level. Three of the papers published in this Special Issue focus on the use of various SNP array approaches in the analysis of three different cancer types. Two of the papers concentrate on two very different rare conditions, applying the SNP arrays slightly differently. Finally, two other papers evaluate the use of the SNP arrays in the context of genetic analysis of livestock. The findings reported in these papers help to close gaps in the current literature and also to give guidelines for future applications of SNP arrays.

  16. Dynamics of bright solitons and soliton arrays in the nonlinear Schrödinger equation with a combination of random and harmonic potentials

    International Nuclear Information System (INIS)

    Chen Qianyong; Kevrekidis, Panayotis G; Malomed, Boris A

    2012-01-01

    We report results of systematic simulations of the dynamics of solitons in the framework of the one-dimensional nonlinear Schrödinger equation, which includes the harmonic oscillator potential and a random potential. The equation models experimentally relevant spatially disordered settings in Bose-Einstein condensates (BECs) and nonlinear optics. First, the generation of soliton arrays from a broad initial quasi-uniform state by the modulational instability (MI) is considered following a sudden switch of the nonlinearity from repulsive to attractive. Then, we study oscillations of a single soliton in this setting, which models a recently conducted experiment in a BEC. The basic characteristics of the MI-generated array, such as the number of solitons and their mobility, are reported as functions of the strength and correlation length of the disorder, and of the total norm. For the single oscillating soliton, its survival rate is found. The main features of these dependences are explained qualitatively. (paper)

  17. electrode array

    African Journals Online (AJOL)

    PROF EKWUEME

    A geoelectric investigation employing vertical electrical soundings (VES) using the Ajayi - Makinde Two-Electrode array and the ... arrangements used in electrical D.C. resistivity survey. These include ..... Refraction Tomography to Study the.

  18. Programmable cellular arrays. Faults testing and correcting in cellular arrays

    International Nuclear Information System (INIS)

    Cercel, L.

    1978-03-01

    A review of some recent researches about programmable cellular arrays in computing and digital processing of information systems is presented, and includes both combinational and sequential arrays, with full arbitrary behaviour, or which can realize better implementations of specialized blocks as: arithmetic units, counters, comparators, control systems, memory blocks, etc. Also, the paper presents applications of cellular arrays in microprogramming, in implementing of a specialized computer for matrix operations, in modeling of universal computing systems. The last section deals with problems of fault testing and correcting in cellular arrays. (author)

  19. Nanoelectrode array for electrochemical analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yelton, William G [Sandia Park, NM; Siegal, Michael P [Albuquerque, NM

    2009-12-01

    A nanoelectrode array comprises a plurality of nanoelectrodes wherein the geometric dimensions of the electrode controls the electrochemical response, and the current density is independent of time. By combining a massive array of nanoelectrodes in parallel, the current signal can be amplified while still retaining the beneficial geometric advantages of nanoelectrodes. Such nanoelectrode arrays can be used in a sensor system for rapid, non-contaminating field analysis. For example, an array of suitably functionalized nanoelectrodes can be incorporated into a small, integrated sensor system that can identify many species rapidly and simultaneously under field conditions in high-resistivity water, without the need for chemical addition to increase conductivity.

  20. Development of a SiPM Camera for a Schwarzschild-Couder Cherenkov Telescope for the Cherenkov Telescope Array

    CERN Document Server

    Otte, A N; Dickinson, H.; Funk, S.; Jogler, T.; Johnson, C.A.; Karn, P.; Meagher, K.; Naoya, H.; Nguyen, T.; Okumura, A.; Santander, M.; Sapozhnikov, L.; Stier, A.; Tajima, H.; Tibaldo, L.; Vandenbroucke, J.; Wakely, S.; Weinstein, A.; Williams, D.A.

    2015-01-01

    We present the development of a novel 11328 pixel silicon photomultiplier (SiPM) camera for use with a ground-based Cherenkov telescope with Schwarzschild-Couder optics as a possible medium-sized telescope for the Cherenkov Telescope Array (CTA). The finely pixelated camera samples air-shower images with more than twice the optical resolution of cameras that are used in current Cherenkov telescopes. Advantages of the higher resolution will be a better event reconstruction yielding improved background suppression and angular resolution of the reconstructed gamma-ray events, which is crucial in morphology studies of, for example, Galactic particle accelerators and the search for gamma-ray halos around extragalactic sources. Packing such a large number of pixels into an area of only half a square meter and having a fast readout directly attached to the back of the sensors is a challenging task. For the prototype camera development, SiPMs from Hamamatsu with through silicon via (TSV) technology are used. We give ...

  1. Combined antenna and localized plasmon resonance in Raman scattering from random arrays of silver-coated, vertically aligned multiwalled carbon nanotubes.

    Science.gov (United States)

    Dawson, P; Duenas, J A; Boyle, M G; Doherty, M D; Bell, S E J; Kern, A M; Martin, O J F; Teh, A-S; Teo, K B K; Milne, W I

    2011-02-09

    The electric field enhancement associated with detailed structure within novel optical antenna nanostructures is modeled using the surface integral equation technique in the context of surface-enhanced Raman scattering (SERS). The antennae comprise random arrays of vertically aligned, multiwalled carbon nanotubes dressed with highly granular Ag. Different types of "hot-spot" underpinning the SERS are identified, but contrasting characteristics are revealed. Those at the outer edges of the Ag grains are antenna driven with field enhancement amplified in antenna antinodes while intergrain hotspots are largely independent of antenna activity. Hot-spots between the tops of antennae leaning towards each other also appear to benefit from antenna amplification.

  2. The EEE Project: a sparse array of telescopes for the measurement of cosmic ray muons

    International Nuclear Information System (INIS)

    Rocca, P. La; Abbrescia, M.; Avanzini, C.; Baldini, L.; Ferroli, R. Baldini; Batignani, G.; Bossini, E.; Chiavassa, A.; Cicalò, C.; Cifarelli, L.; Coccetti, F.; Corvaglia, A.; Gruttola, D. De; Pasquale, S. De; Bencivenni, G.; Dreucci, M.; Fabbri, F.L.; Coccia, E.; Giovanni, A. Di; D'Incecco, M.

    2016-01-01

    The Extreme Energy Events (EEE) Project is meant to be the most extensive experiment to detect secondary cosmic particles in Italy. To this aim, more than 50 telescopes have been built at CERN and installed in high schools distributed all over the Italian territory. Each EEE telescope comprises three large area Multigap Resistive Plate Chambers (MRPCs) and is capable of reconstructing the trajectories of the charged particles traversing it with a good angular resolution. The excellent performance of the EEE telescopes allows a large variety of studies, from measuring the local muon flux in a single telescope, to detecting extensive air showers producing time correlations in the same metropolitan area, to searching for large-scale correlations between showers detected in telescopes tens, hundreds or thousands of kilometers apart. In addition to its scientific goal, the EEE Project also has an educational and outreach objective, its aim being to motivate young people by involving them directly in a real experiment. High school students and teachers are involved in the construction, testing and start-up of the EEE telescope in their school, then in its maintenance and data-acquisition, and later in the analysis of the data. During the last couple of years a great boost has been given to the EEE Project through the organization of simultaneous and centralized data taking with the whole telescope array. The raw data from all telescopes are transferred to CNAF (Bologna), where they are reconstructed and stored. The data are currently being analyzed, looking at various topics: variation of the rate of cosmic muons with time, upward going muons, muon lifetime, search for anisotropies in the muon angular distribution and for time coincidences between stations. In this paper an overall description of the experiment is given, including the design, construction and performance of the telescopes. The operation of the whole array is also presented by showing the most recent

  3. On the prospects of cross-calibrating the Cherenkov Telescope Array with an airborne calibration platform

    Science.gov (United States)

    Brown, Anthony M.

    2018-01-01

    Recent advances in unmanned aerial vehicle (UAV) technology have made UAVs an attractive possibility as an airborne calibration platform for astronomical facilities. This is especially true for arrays of telescopes spread over a large area such as the Cherenkov Telescope Array (CTA). In this paper, the feasibility of using UAVs to calibrate CTA is investigated. Assuming a UAV at 1km altitude above CTA, operating on astronomically clear nights with stratified, low atmospheric dust content, appropriate thermal protection for the calibration light source and an onboard photodiode to monitor its absolute light intensity, inter-calibration of CTA's telescopes of the same size class is found to be achievable with a 6 - 8 % uncertainty. For cross-calibration of different telescope size classes, a systematic uncertainty of 8 - 10 % is found to be achievable. Importantly, equipping the UAV with a multi-wavelength calibration light source affords us the ability to monitor the wavelength-dependent degradation of CTA telescopes' optical system, allowing us to not only maintain this 6 - 10 % uncertainty after the first few years of telescope deployment, but also to accurately account for the effect of multi-wavelength degradation on the cross-calibration of CTA by other techniques, namely with images of air showers and local muons. A UAV-based system thus provides CTA with several independent and complementary methods of cross-calibrating the optical throughput of individual telescopes. Furthermore, housing environmental sensors on the UAV system allows us to not only minimise the systematic uncertainty associated with the atmospheric transmission of the calibration signal, it also allows us to map the dust content above CTA as well as monitor the temperature, humidity and pressure profiles of the first kilometre of atmosphere above CTA with each UAV flight.

  4. Filter arrays

    Science.gov (United States)

    Page, Ralph H.; Doty, Patrick F.

    2017-08-01

    The various technologies presented herein relate to a tiled filter array that can be used in connection with performance of spatial sampling of optical signals. The filter array comprises filter tiles, wherein a first plurality of filter tiles are formed from a first material, the first material being configured such that only photons having wavelengths in a first wavelength band pass therethrough. A second plurality of filter tiles is formed from a second material, the second material being configured such that only photons having wavelengths in a second wavelength band pass therethrough. The first plurality of filter tiles and the second plurality of filter tiles can be interspersed to form the filter array comprising an alternating arrangement of first filter tiles and second filter tiles.

  5. Highly Sensitive Detection of Melamine Using a One-Step Sample Treatment Combined with a Portable Ag Nanostructure Array SERS Sensor.

    Directory of Open Access Journals (Sweden)

    Jie Cheng

    Full Text Available There is an urgent need for rapid and reliable methods able to detect melamine in animal feed. In this study, a quick, simple, and sensitive method for the determination of melamine content in animal feed was developed using surface-enhanced Raman spectroscopy on fabricated Ag nanorod (AgNR array substrates with a one-step sample extraction procedure. The AgNR array substrates washed by HNO3 solvent (10-7 M and methanol and showed the good stability within 6 months. The Raman shift at △ν = 682 cm-1 was used as the characteristic melamine peak in the calculations. Sufficient linearity was obtained in the 2-200 μg·g-1 range (R2 = 0.926. The limits of detection and quantification were 0.9 and 2 μg·g-1, respectively. The recovery rates were 89.7-93.3%, with coefficients of variation below 2.02%. The method showed good accuracy compared with the tradition GC-MS analysis. This new protocol only need 2 min to fininsh the detection which could be developed for rapid onsite screening of melamine contamination in quality control and market surveillance applications.

  6. Highly Sensitive Detection of Melamine Using a One-Step Sample Treatment Combined with a Portable Ag Nanostructure Array SERS Sensor.

    Science.gov (United States)

    Cheng, Jie; Su, Xiao-Ou; Yao, Yue; Han, Caiqin; Wang, Shi; Zhao, Yiping

    2016-01-01

    There is an urgent need for rapid and reliable methods able to detect melamine in animal feed. In this study, a quick, simple, and sensitive method for the determination of melamine content in animal feed was developed using surface-enhanced Raman spectroscopy on fabricated Ag nanorod (AgNR) array substrates with a one-step sample extraction procedure. The AgNR array substrates washed by HNO3 solvent (10-7 M) and methanol and showed the good stability within 6 months. The Raman shift at △ν = 682 cm-1 was used as the characteristic melamine peak in the calculations. Sufficient linearity was obtained in the 2-200 μg·g-1 range (R2 = 0.926). The limits of detection and quantification were 0.9 and 2 μg·g-1, respectively. The recovery rates were 89.7-93.3%, with coefficients of variation below 2.02%. The method showed good accuracy compared with the tradition GC-MS analysis. This new protocol only need 2 min to fininsh the detection which could be developed for rapid onsite screening of melamine contamination in quality control and market surveillance applications.

  7. Classification of the medicinal plants of the genus Atractylodes using high-performance liquid chromatography with diode array and tandem mass spectrometry detection combined with multivariate statistical analysis.

    Science.gov (United States)

    Cho, Hyun-Deok; Kim, Unyong; Suh, Joon Hyuk; Eom, Han Young; Kim, Junghyun; Lee, Seul Gi; Choi, Yong Seok; Han, Sang Beom

    2016-04-01

    Analytical methods using high-performance liquid chromatography with diode array and tandem mass spectrometry detection were developed for the discrimination of the rhizomes of four Atractylodes medicinal plants: A. japonica, A. macrocephala, A. chinensis, and A. lancea. A quantitative study was performed, selecting five bioactive components, including atractylenolide I, II, III, eudesma-4(14),7(11)-dien-8-one and atractylodin, on twenty-six Atractylodes samples of various origins. Sample extraction was optimized to sonication with 80% methanol for 40 min at room temperature. High-performance liquid chromatography with diode array detection was established using a C18 column with a water/acetonitrile gradient system at a flow rate of 1.0 mL/min, and the detection wavelength was set at 236 nm. Liquid chromatography with tandem mass spectrometry was applied to certify the reliability of the quantitative results. The developed methods were validated by ensuring specificity, linearity, limit of quantification, accuracy, precision, recovery, robustness, and stability. Results showed that cangzhu contained higher amounts of atractylenolide I and atractylodin than baizhu, and especially atractylodin contents showed the greatest variation between baizhu and cangzhu. Multivariate statistical analysis, such as principal component analysis and hierarchical cluster analysis, were also employed for further classification of the Atractylodes plants. The established method was suitable for quality control of the Atractylodes plants. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. A Combined Antenna Arrays and Reverse-Link Synchronous DS-CDMA System over Frequency-Selective Fading Channels with Power Control Error

    Directory of Open Access Journals (Sweden)

    Yong-Seok Kim

    2004-08-01

    Full Text Available An improved antenna array (AA has been introduced, in which reverse-link synchronous transmission technique (RLSTT is incorporated to effectively make better an estimation of covariance matrices at a beamformer-RAKE receiver. While RLSTT is effective in the first finger at the RAKE receiver in order to reject multiple-access interference (MAI, the beamformer estimates the desired user's complex weights, enhancing its signal and reducing cochannel interference (CCI from the other directions. In this work, it is attempted to provide a comprehensive analysis of user capacity which reflects several important factors such as the shape of multipath intensity profile (MIP, the number of antennas, and power control error (PCE. Theoretical analysis, confirmed by the simulations, demonstrates that the orthogonality provided by employing RLSTT along with AA may make the DS-CDMA system insensitive to the PCE even with fewer numbers of antennas.

  9. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    The configuration of a tomographic array in which the object can rotate about its axis is described. The X-ray detector is a cylindrical screen perpendicular to the axis of rotation. The X-ray source has a line-shaped focus coinciding with the axis of rotation. The beam is fan-shaped with one side of this fan lying along the axis of rotation. The detector screen is placed inside an X-ray image multiplier tube

  10. Tomographic array

    International Nuclear Information System (INIS)

    1976-01-01

    A tomographic array with the following characteristics is described. An X-ray screen serving as detector is placed before a photomultiplier tube which itself is placed in front of a television camera connected to a set of image processors. The detector is concave towards the source and is replacable. Different images of the object are obtained simultaneously. Optical fibers and lenses are used for transmission within the system

  11. Photovoltaic cell array

    Science.gov (United States)

    Eliason, J. T. (Inventor)

    1976-01-01

    A photovoltaic cell array consisting of parallel columns of silicon filaments is described. Each fiber is doped to produce an inner region of one polarity type and an outer region of an opposite polarity type to thereby form a continuous radial semi conductor junction. Spaced rows of electrical contacts alternately connect to the inner and outer regions to provide a plurality of electrical outputs which may be combined in parallel or in series.

  12. Gamma ray and neutrino detector facility (GRANDE), Task C

    International Nuclear Information System (INIS)

    Sobel, H.W.; Yodh, G.B.

    1991-08-01

    GRANDE is an imaging, water Cerenkov detector, which combines in one facility an extensive air shower array and a high-energy neutrino detector. We proposed that the detector be constructed in phases, beginning with an active detector area of 31,000 m 2 (GRANDE-I) 2 and expanding to a final size of 100,000--150,00 m 2 . Some of the characteristics of GRANDE-I are discussed in this paper

  13. Demonstration of diet-induced decoupling of fatty acid and cholesterol synthesis by combining gene expression array and 2H2O quantification.

    Science.gov (United States)

    Jensen, Kristian K; Previs, Stephen F; Zhu, Lei; Herath, Kithsiri; Wang, Sheng-Ping; Bhat, Gowri; Hu, Guanghui; Miller, Paul L; McLaren, David G; Shin, Myung K; Vogt, Thomas F; Wang, Liangsu; Wong, Kenny K; Roddy, Thomas P; Johns, Douglas G; Hubbard, Brian K

    2012-01-15

    The liver is a crossroad for metabolism of lipid and carbohydrates, with acetyl-CoA serving as an important metabolic intermediate and a precursor for fatty acid and cholesterol biosynthesis pathways. A better understanding of the regulation of these pathways requires an experimental approach that provides both quantitative metabolic flux measurements and mechanistic insight. Under conditions of high carbohydrate availability, excess carbon is converted into free fatty acids and triglyceride for storage, but it is not clear how excessive carbohydrate availability affects cholesterol biosynthesis. To address this, C57BL/6J mice were fed either a low-fat, high-carbohydrate diet or a high-fat, carbohydrate-free diet. At the end of the dietary intervention, the two groups received (2)H(2)O to trace de novo fatty acid and cholesterol synthesis, and livers were collected for gene expression analysis. Expression of lipid and glucose metabolism genes was determined using a custom-designed pathway focused PCR-based gene expression array. The expression analysis showed downregulation of cholesterol biosynthesis genes and upregulation of fatty acid synthesis genes in mice receiving the high-carbohydrate diet compared with the carbohydrate-free diet. In support of these findings, (2)H(2)O tracer data showed that fatty acid synthesis was increased 10-fold and cholesterol synthesis was reduced by 1.6-fold in mice fed the respective diets. In conclusion, by applying gene expression analysis and tracer methodology, we show that fatty acid and cholesterol synthesis are differentially regulated when the carbohydrate intake in mice is altered.

  14. Combining different types of multifunctional liposomes loaded with ammonium bicarbonate to fabricate microneedle arrays as a vaginal mucosal vaccine adjuvant-dual delivery system (VADDS).

    Science.gov (United States)

    Wang, Ning; Zhen, Yuanyuan; Jin, Yiguang; Wang, Xueting; Li, Ning; Jiang, Shaohong; Wang, Ting

    2017-01-28

    To develop effective mucosal vaccines, two types of multifunctional liposomes, the mannosylated lipid A-liposomes (MLLs) with a size of 200nm and the stealth lipid A-liposomes (SLLs) of 50nm, both loaded with a model antigen and NH 4 HCO 3 , were fabricated together into microneedles, forming the proSLL/MLL-constituted microneedle array (proSMMA), which upon rehydration dissolved rapidly recovering the initial MLLs and SLLs. Mice vaccinated with proSMMAs by vaginal mucosa patching other than conventional intradermal administration established robust antigen-specific humoral and cellular immunity at both systemic and mucosal levels, especially, in the reproductive and intestinal ducts. Further exploration demonstrated that the MLLs reconstituted from the administered proSMMAs were mostly taken up by vaginal mucosal dendritic cells, whereas the recovered SLLs trafficked directly to draining lymph nodes wherein to be picked up by macrophages. Moreover, the antigens delivered by either liposomes were also cross-presented for MHC-I displaying by APCs thanks to lysosome escape and ROS (reactive oxygen species) stimulation, both of which occurred when lysosomal acidifying the liposome-released NH 4 HCO 3 into CO 2 and NH 4 + /NH 3 to rupture lysosomes by gas expansion and to cause ROS production by excessive ammonia induction, resulting in a mixed Th1/Th2 type response which was also promoted by liposomal lipid A via activation of TLR4. In addition, vaginal vaccination of the engineered HSV2 antigen gD-loaded proSMMAs successfully protected mice from the virus challenge. Thus, the proSMMAs are in fact a vaccine adjuvant-dual delivery system capable of eliciting robust humoral and cellular immunity against the invading pathogens, especially, the sexually transmitted ones. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Wire Array Photovoltaics

    Science.gov (United States)

    Turner-Evans, Dan

    Over the past five years, the cost of solar panels has dropped drastically and, in concert, the number of installed modules has risen exponentially. However, solar electricity is still more than twice as expensive as electricity from a natural gas plant. Fortunately, wire array solar cells have emerged as a promising technology for further lowering the cost of solar. Si wire array solar cells are formed with a unique, low cost growth method and use 100 times less material than conventional Si cells. The wires can be embedded in a transparent, flexible polymer to create a free-standing array that can be rolled up for easy installation in a variety of form factors. Furthermore, by incorporating multijunctions into the wire morphology, higher efficiencies can be achieved while taking advantage of the unique defect relaxation pathways afforded by the 3D wire geometry. The work in this thesis shepherded Si wires from undoped arrays to flexible, functional large area devices and laid the groundwork for multijunction wire array cells. Fabrication techniques were developed to turn intrinsic Si wires into full p-n junctions and the wires were passivated with a-Si:H and a-SiNx:H. Single wire devices yielded open circuit voltages of 600 mV and efficiencies of 9%. The arrays were then embedded in a polymer and contacted with a transparent, flexible, Ni nanoparticle and Ag nanowire top contact. The contact connected >99% of the wires in parallel and yielded flexible, substrate free solar cells featuring hundreds of thousands of wires. Building on the success of the Si wire arrays, GaP was epitaxially grown on the material to create heterostructures for photoelectrochemistry. These cells were limited by low absorption in the GaP due to its indirect bandgap, and poor current collection due to a diffusion length of only 80 nm. However, GaAsP on SiGe offers a superior combination of materials, and wire architectures based on these semiconductors were investigated for multijunction

  16. Ashra Neutrino Telescope Array (NTA): Combined Imaging Observation of Astroparticles — For Clear Identification of Cosmic Accelerators and Fundamental Physics Using Cosmic Beams —

    Science.gov (United States)

    Sasaki, Makoto; Kifune, Tadashi

    In VHEPA (very high energy particle astronomy) 2014 workshop, focused on the next generation explorers for the origin of cosmic rays, held in Kashiwa, Japan, reviewing and discussions were presented on the status of the observation of GeV-TeV photons, TeV-PeV neutrinos, EeV-ZeV hadrons, test of interaction models with Large Hadron Collider (LHC), and theoretical aspects of astrophysics. The acceleration sites of hadrons, i.e., sources of PeV-EeV cosmic rays, should exist in the universe within the GZK-horizon even in the remotest case. We also affirmed that the hadron acceleration mechanism correlates with cosmic ray composition so that it is important to investigate the acceleration mechanism in relevance to the composition survey at PeV-EeV energy. We regard that LHC and astrophysics theories are ready to be used to probe into hadron acceleration mechanism in the universe. Recently, IceCube has reported detection of three events of neutrinos with energies around 1 PeV and additional events at lower energies, which significantly deviate from the expected level of background events. It is necessary to observe GeV-TeV photon, EeV-ZeV hadron and TeV-PeV neutrino all together, in order to understand hadronic interactions of cosmic rays in the PeV-EeV energy region. It is required to make a step further toward exploring the PeV-EeV universe with high accuracy and high statistics observations for both neutrinos and gamma rays simultaneously, by using the instrument such as Ashra Neutrino Telescope Array (NTA). Wide and fine survey of gamma-rays and neutrinos with simultaneously detecting Cherenkov and fluorescence light with NTA will guide us to a new intriguing stage of recognizing astronomical objects and non-thermal phenomena in ultra-high energy region, in addition, new aspect about the fundamental concepts of physics beyond our presently limited understanding; the longstanding problem of cosmic ray origin, the radiation mechanism of gamma-rays, neutrino and

  17. The Big Optical Array

    International Nuclear Information System (INIS)

    Mozurkewich, D.; Johnston, K.J.; Simon, R.S.

    1990-01-01

    This paper describes the design and the capabilities of the Naval Research Laboratory Big Optical Array (BOA), an interferometric optical array for high-resolution imaging of stars, stellar systems, and other celestial objects. There are four important differences between the BOA design and the design of Mark III Optical Interferometer on Mount Wilson (California). These include a long passive delay line which will be used in BOA to do most of the delay compensation, so that the fast delay line will have a very short travel; the beam combination in BOA will be done in triplets, to allow measurement of closure phase; the same light will be used for both star and fringe tracking; and the fringe tracker will use several wavelength channels

  18. A 4 probe array

    Energy Technology Data Exchange (ETDEWEB)

    Fernando, C E [CEGB, Marchwood Engineering Laboratories, Marchwood, Southampton, Hampshire (United Kingdom)

    1980-11-01

    A NDT system is described which moves away from the present manual method using a single send/receive transducer combination and uses instead an array of four transducers. Four transducers are shown sufficient to define a point reflector with a resolution of m{lambda}z/R where m{lambda} is the minimum detectable path difference in the system (corresponding to a m cycle time resolution), z the range and R the radius of the array. Signal averaging with an input ADC rate of 100 MHz is used with voice output for the range data. Typical resolution measurements in a water tank are presented. We expect a resolution of the order of mm in steel at a range of 80 mm. The system is expected to have applications in automated, high resolution, sizing of defects and in the inspection of austenitic stainless steel welds. (author)

  19. Large scale biomimetic membrane arrays

    DEFF Research Database (Denmark)

    Hansen, Jesper Søndergaard; Perry, Mark; Vogel, Jörg

    2009-01-01

    To establish planar biomimetic membranes across large scale partition aperture arrays, we created a disposable single-use horizontal chamber design that supports combined optical-electrical measurements. Functional lipid bilayers could easily and efficiently be established across CO2 laser micro......-structured 8 x 8 aperture partition arrays with average aperture diameters of 301 +/- 5 mu m. We addressed the electro-physical properties of the lipid bilayers established across the micro-structured scaffold arrays by controllable reconstitution of biotechnological and physiological relevant membrane...... peptides and proteins. Next, we tested the scalability of the biomimetic membrane design by establishing lipid bilayers in rectangular 24 x 24 and hexagonal 24 x 27 aperture arrays, respectively. The results presented show that the design is suitable for further developments of sensitive biosensor assays...

  20. Search for Galactic PeV gamma rays with the IceCube Neutrino Observatory

    NARCIS (Netherlands)

    Abbasi, R.; Abdou, Y.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Altmann, D.; Andeen, K.; Auffenberg, J.; Bai, X.; Baker, M.; Barwick, S. W.; Baum, V.; Bay, R.; Beattie, K.; Beatty, J. J.; Bechet, S.; Tjus, J. Becker; Becker, K.-H.; Bell, M.; Benabderrahmane, M. L.; BenZvi, S.; Berdermann, J.; Berghaus, P.; Berley, D.; Bernardini, E.; Bertrand, D.; Besson, D. Z.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohaichuk, S.; Bohm, C.; Bose, D.; Boeser, S.; Botner, O.; Brayeur, L.; Brown, A. M.; Bruijn, R.; Brunner, J.; Buitink, S.; Carson, M.; Casey, J.; Casier, M.; Chirkin, D.; Christy, B.; Clark, K.; Clevermann, F.

    2013-01-01

    Gamma-ray induced air showers are notable for their lack of muons, compared to hadronic showers. Hence, air shower arrays with large underground muon detectors can select a sample greatly enriched in photon showers by rejecting showers containing muons. IceCube is sensitive to muons with energies

  1. A Hybrid Pressure and Vector Sensor Towed Array

    National Research Council Canada - National Science Library

    Huang, Dehua

    2008-01-01

    The invention as disclosed is of a combined acoustic pressure and acoustic vector sensor array, where multiple acoustic pressure sensors are integrated with an acoustic vector sensor in a towed array...

  2. Coupling in reflector arrays

    DEFF Research Database (Denmark)

    Appel-Hansen, Jørgen

    1968-01-01

    In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present communic......In order to reduce the space occupied by a reflector array, it is desirable to arrange the array antennas as close to each other as possible; however, in this case coupling between the array antennas will reduce the reflecting properties of the reflector array. The purpose of the present...

  3. The Pierre Auger fluorescence detector. Cross-checking the absolute calibration using a drone

    Energy Technology Data Exchange (ETDEWEB)

    Tomankova, Lenka [Institute for Nuclear Physics (IKP), Karlsruhe Institute of Technology (KIT), 76021 Karlsruhe (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    The Pierre Auger Observatory combines the air shower fluorescence and surface array methods to study ultra-high energy cosmic rays. As the energy scale of the experiment is derived from calorimetric measurements by the fluorescence telescopes, their accurate calibration is of primary importance to all Auger data. We discuss a novel calibration method based on a remotely flown drone equipped with a specially designed light source that mimics a snapshot of an air shower traversing the atmosphere. Several drone measurement campaigns have been performed to study the properties of the Auger fluorescence telescopes and to derive an end-to-end calibration. We give an overview of the measurements and present the basic analysis chain as well as the first results of an independent cross-check of the Auger energy scale.

  4. Development of an Interferometric Phased Array Trigger for Balloon-Borne Detection of the Highest Energy Cosmic Particles

    Science.gov (United States)

    Vieregg, Abigail

    Through high energy neutrino astrophysics, we explore the structure and evolution of the universe in a unique way and learn about the physics inside of astrophysical sources that drives the acceleration of the highest energy particles. Neutrinos travel virtually unimpeded through the universe, making them unique messenger particles for cosmic sources and carrying information about very distant sources that would otherwise be unavailable. The highest energy neutrinos (E>10^{18} eV), created as a by-product of the interaction of the highest energy cosmic rays with the cosmic microwave background, are an important tool for determining the origin of the highest energy cosmic rays and still await discovery. Balloon-borne and ground-based experiments are poised to discover these ultra-high energy (UHE) cosmogenic neutrinos by looking for radio emission from two different types of neutrino interactions: particle cascades induced by neutrinos in glacial ice, and extensive air showers in the atmosphere induced by the charged-particle by-product of tau neutrinos interacting in the earth. These impulsive radio detectors are also sensitive to radio emission from extensive air showers induced directly by UHE cosmic rays. Balloon-borne experiments are especially well-suited for discovering the highest energy neutrinos, and are the only way to probe the high energy cutoff of the sources themselves to reveal the astrophysics that drives the central engines inside the most energetic accelerators in the universe. Balloon platforms offer the chance to monitor extremely large volumes of ice and atmosphere, but with a higher energy threshold compared to ground-based observatories, since the neutrino interaction happens farther from the detector. This tradeoff means that the sensitivity of balloon-borne experiments, such as the Antarctic Impulsive Transient Antenna (ANITA) or the ExaVolt Antenna, is optimized for discovery of the highest energy neutrinos. We are developing an

  5. The energy spectrum of cosmic rays measured with the HEAT extension at the Pierre Auger Observatory

    International Nuclear Information System (INIS)

    Scharf, Nils Sven Sebastian

    2013-01-01

    This thesis describes the calculation of the energy spectrum of cosmic rays, that is the absolute flux of cosmic rays as a function of energy, from data of air showers observed with the HEAT (High Elevation Auger Telescopes) extension and the fluorescence detector of the Pierre Auger Observatory. The Pierre Auger Observatory is the largest observatory for the study of cosmic rays. The Pierre Auger Observatory observes air showers, that are cascades of particles that were instigated by cosmic rays hitting the Earth's atmosphere, with two different detection concepts. The surface detector samples the secondary particles of air showers that hit the ground with an array of surface detector stations, whereas the fluorescence detector measures the energy loss profile of air showers by detecting fluorescence light, produced by the air showers when they travel through the atmosphere, with optical telescopes. The properties of the cosmic rays are not directly measurable but have to be reconstructed from the observed air shower parameters. Properties of particular interest are the type of the primary cosmic ray particle, its energy and its arrival direction. HEAT is an extension to the fluorescence detector of the Pierre Auger Observatory. It is designed to lower the energy threshold by one order of magnitude down to 10 17 eV or lower. HEAT is taking data since 2010. The calculation of the absolute flux of cosmic rays needs two ingredients: the number of detected air showers as a function of shower energy and the exposure of the detector as a function of energy. The studied air shower class are hybrid events, which are events that have been detected by a fluorescence detector and at least one surface detector station. The used air showers were observed in a time period of fifteen month starting from June 2010. A first step of the analysis is the reconstruction of air showers and cosmic ray parameters from raw data. To calculate the exposure, the uptime, that is the integral

  6. Space and power efficient hybrid counters array

    Science.gov (United States)

    Gara, Alan G [Mount Kisco, NY; Salapura, Valentina [Chappaqua, NY

    2009-05-12

    A hybrid counter array device for counting events. The hybrid counter array includes a first counter portion comprising N counter devices, each counter device for receiving signals representing occurrences of events from an event source and providing a first count value corresponding to a lower order bits of the hybrid counter array. The hybrid counter array includes a second counter portion comprising a memory array device having N addressable memory locations in correspondence with the N counter devices, each addressable memory location for storing a second count value representing higher order bits of the hybrid counter array. A control device monitors each of the N counter devices of the first counter portion and initiates updating a value of a corresponding second count value stored at the corresponding addressable memory location in the second counter portion. Thus, a combination of the first and second count values provide an instantaneous measure of number of events received.

  7. Selecting Sums in Arrays

    DEFF Research Database (Denmark)

    Brodal, Gerth Stølting; Jørgensen, Allan Grønlund

    2008-01-01

    In an array of n numbers each of the \\binomn2+nUnknown control sequence '\\binom' contiguous subarrays define a sum. In this paper we focus on algorithms for selecting and reporting maximal sums from an array of numbers. First, we consider the problem of reporting k subarrays inducing the k largest...... sums among all subarrays of length at least l and at most u. For this problem we design an optimal O(n + k) time algorithm. Secondly, we consider the problem of selecting a subarray storing the k’th largest sum. For this problem we prove a time bound of Θ(n · max {1,log(k/n)}) by describing...... an algorithm with this running time and by proving a matching lower bound. Finally, we combine the ideas and obtain an O(n· max {1,log(k/n)}) time algorithm that selects a subarray storing the k’th largest sum among all subarrays of length at least l and at most u....

  8. Combination of solid phase extraction and dispersive liquid–liquid microextraction for separation/preconcentration of ultra trace amounts of uranium prior to its fiber optic-linear array spectrophotometry determination

    International Nuclear Information System (INIS)

    Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz

    2013-01-01

    Graphical abstract: Pass the sample through the basic alumina column ⇒ elute retained uranium along with the cations ⇒ convert the uranium to its anionic benzoate complex ⇒ extract its ion pair with malachite green into small volume of chloroform by DLLME ⇒ measure its absorption at 621 nm using fiber optic-linear array detection spectrophotometry. -- Highlights: • By combination of SPE and DDLME a high preconcentration factor of 2500 was obtained. • Development of SPE-DDLME-Spectrophotometric method for det. of trace amounts of uranium. • Ultra trace amount of uranium in water samples was det. by the proposed method. • The detection limit of the proposed method is comparable to the most sensitive method. • The proposed method is a free interference spectrophotometric method for uranium det. -- Abstract: A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid–liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L −1 ) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid–liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L −1 , and a relative standard deviation of 4.1% (n = 6) at 400 ng L −1 were obtained. The method was

  9. Combined use of liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and high performance liquid chromatography with photodiode array detector (HPLC-DAD) in systematic toxicological analysis.

    Science.gov (United States)

    Broecker, Sebastian; Pragst, Fritz; Bakdash, Abdulsallam; Herre, Sieglinde; Tsokos, Michael

    2011-10-10

    Time of flight mass spectrometry provides new possibilities of substance identification by determination of the molecular formula from accurate molecular mass and isotope pattern. However, the huge number of possible isomers requires additional evidence. As a suitable way for routine performance of systematic toxicological analysis, a method for combined use of liquid chromatography-hybrid quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) and high performance liquid chromatography with diode array detector (HPLC-DAD) was developed and applied to blood samples from 77 death cases. The blood samples were prepared by extraction with CH(2)Cl(2) and by protein precipitation with acetonitrile (1:4 (v/v)). The evaporated extracts were reconstituted in 35% acetonitril/0.1% formic acid/H(2)O and aliquots were injected for analysis by LC-QTOF-MS (Agilent 6530) and HPLC-DAD (Agilent 1200). A valve switching system enabled simultaneous operation of both separated chromatographic lines under their respective optimal conditions using the same autosampler. The ESI-QTOF-MS instrument was run in data dependent acquisition mode with switching between MS and MS/MS (cycle time 1.1s) and measuring the full mass spectra and the collision induced dissociation (CID) fragment spectra of all essential [M+H](+) ions. Libraries of accurate mass CID spectra (~2500 substances) and of DAD-UV spectra (~3300 substances) of the authors were used for substance identification. The application of this procedure is demonstrated in detail at four examples with multiple drug intake or administration. In the 77 cases altogether 198 substances were identified (87 by DAD and 195 by QTOF-MS) with a frequency between 1 and 20. In practical application, the sample preparation proved to be suitable for both techniques and for a wide variety of substances with different polarity. The automatic performance of the measurements was efficient and robust. Mutual confirmation, decrease of false positive and

  10. Networked Sensor Arrays

    International Nuclear Information System (INIS)

    Tighe, R. J.

    2002-01-01

    A set of independent radiation sensors, coupled with real-time data telemetry, offers the opportunity to run correlation algorithms for the sensor array as well as to incorporate non-radiological data into the system. This may enhance the overall sensitivity of the sensors and provide an opportunity to project the location of a source within the array. In collaboration with Lawrence Livermore National Laboratory (LLNL) and Sandia National Laboratories (SNL), we have conducted field experiments to test a prototype system. Combining the outputs of a set of distributed sensors permits the correlation that the independent sensor outputs. Combined with additional information such as traffic patterns and velocities, this can reduce random/false detections and enhance detection capability. The principle components of such a system include: (1) A set of radiation sensors. These may be of varying type and complexity, including gamma and/or neutron detectors, gross count and spectral-capable sensors, and low to high energy-resolution sensors. (2) A set of non-radiation sensors. These may include sensors such as vehicle presence and imaging sensors. (3) A communications architecture for near real-time telemetry. Depending upon existing infrastructure and bandwidth requirements, this may be a radio or hard-wire based system. (4) A central command console to pole the sensors, correlate their output, and display the data in a meaningful form to the system operator. Both sensitivity and selectivity are important considerations when evaluating the performance of a detection system. Depending on the application, the optimization of sensitivity as well as the rejection of ''nuisance'' radioactive sources may or may not be critical

  11. Spacecraft Multiple Array Communication System Performance Analysis

    Science.gov (United States)

    Hwu, Shian U.; Desilva, Kanishka; Sham, Catherine C.

    2010-01-01

    The Communication Systems Simulation Laboratory (CSSL) at the NASA Johnson Space Center is tasked to perform spacecraft and ground network communication system simulations, design validation, and performance verification. The CSSL has developed simulation tools that model spacecraft communication systems and the space and ground environment in which the tools operate. In this paper, a spacecraft communication system with multiple arrays is simulated. Multiple array combined technique is used to increase the radio frequency coverage and data rate performance. The technique is to achieve phase coherence among the phased arrays to combine the signals at the targeting receiver constructively. There are many technical challenges in spacecraft integration with a high transmit power communication system. The array combining technique can improve the communication system data rate and coverage performances without increasing the system transmit power requirements. Example simulation results indicate significant performance improvement can be achieved with phase coherence implementation.

  12. Reconstruction of inclined air showers detected with the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2014-01-01

    Roč. 8, AUG (2014), 1-33 ISSN 1475-7516 R&D Projects: GA ČR(CZ) GA14-17501S; GA MŠk(CZ) 7AMB14AR005; GA MŠk(CZ) LG13007 Institutional support: RVO:68378271 Keywords : ultra high energy cosmic rays * cosmic ray experiments Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.810, year: 2014 http://iopscience.iop.org/1475-7516/2014/08/019/pdf/1475-7516_2014_08_019.pdf

  13. Interpretation of the depths of maximum of extensive air showers measured by the Pierre Auger Observatory

    Czech Academy of Sciences Publication Activity Database

    Abreu, P.; Aglietta, M.; Ahlers, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Tománková, L.; Trávníček, Petr; Vícha, Jakub

    2013-01-01

    Roč. 2013, č. 2 (2013), s. 1-21 ISSN 1475-7516 R&D Projects: GA MŠk LA08015; GA TA ČR TA01010517; GA MŠk(CZ) MEB111003; GA AV ČR KJB100100904; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : ultra high energy cosmic rays * cosmic ray experiments Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 5.877, year: 2013 http://iopscience.iop.org/1475-7516/2013/02/026/pdf/1475-7516_2013_02_026.pdf

  14. Method for high precision reconstruction of air shower Xmax using two-dimensional radio intensity profiles

    NARCIS (Netherlands)

    Buitink, S.; Corstanje, A.; Enriquez, J. E.; Falcke, H.; Hörandel, J. R.; Huege, T.; Nelles, A.; Rachen, J. P.; Schellart, P.; Scholten, O.; ter Veen, S.; Thoudam, S.; Trinh, Gia

    2014-01-01

    The mass composition of cosmic rays contains important clues about their origin. Accurate measurements are needed to resolve longstanding issues such as the transition from Galactic to extra-Galactic origin and the nature of the cutoff observed at the highest energies. Composition can be studied by

  15. Proposed experiment to detect air showers with the Jicamarca radar system

    International Nuclear Information System (INIS)

    Vinogradova, T.; Chapin, E.; Gorham, P.; Saltzberg, D.

    2001-01-01

    When an extremely high energy particle interacts in the atmosphere, the collision induces a multiplicative cascade of charged particles, which grows exponentially until the energy per secondary degrades enough to dissipate in ionization of the surrounding air. During this process the compact cloud of energetic secondary particles travels 10-20 km through the atmosphere, leaving a column of ionization behind it. This ionized column quickly recombines, but for a period of order 0.1 ms it is highly reflective at frequencies below 100 MHz. This ionization trail, which is comparable in ionization density to that of a micro-meteor, should be clearly detectable using standard radar methods. We propose radar measurements using the facilities operated by Cornell University and the Instituto Geofisico del Peru (IGP) at the Jicamarca Radio Observatory near Lima, Peru. This facility's primary instrument is 49.92 MHz incoherent scatter radar, transmitting up to 1.5 MW of pulse power

  16. Nanosecond-level time synchronization of autonomous radio detector stations for extensive air showers

    Czech Academy of Sciences Publication Activity Database

    Aab, A.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovánek, Petr; Trávníček, Petr; Vícha, Jakub

    2016-01-01

    Roč. 11, Jan (2016), 1-31, č. článku P01018. ISSN 1748-0221 R&D Projects: GA MŠk(CZ) LG13007; GA MŠk(CZ) 7AMB14AR005; GA ČR(CZ) GA14-17501S Institutional support: RVO:68378271 Keywords : pattern recognition * cluster finding * calibration and fitting methods * timing detectors * detector alignment and calibration methods Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 1.220, year: 2016

  17. Arrival time and incidence angle distributions of extensive air showers (EAS) muons

    International Nuclear Information System (INIS)

    Brancus, I.M.; Duma, M.; Vulpescu, B.; Foeller, M.; Rebel, H.; Voelker, G.; Chilingarian, A.A.

    1995-01-01

    The arrival time distributions of the muons can be related to the longitudinal EAS development and may provide additional information about the nature of the primary. Based on EAS simulations using the Monte-Carlo code CORSIKA, the correlations between arrival time and incidence angle distributions have been investigated in a case of a set of ideal detectors (10 m x 10 m) placed at various distances from the shower core. Applying advanced statistical techniques based on Bayes decision rule and non-parametric multivariate analysing methods it turns out that the correlations of muon arrival time and incidence angle at various separating distances of about 50 m exhibit promising features for mass discrimination (author)

  18. An extensive air shower trigger station for the Muon Portal detector

    International Nuclear Information System (INIS)

    Riggi, F.; Blancato, A.A.; La Rocca, P.; Riggi, S.; Santagati, G.

    2014-01-01

    The Muon Portal project (〈 (http://muoni.oact.inaf.it:8080/)〉 [1]; Riggi et al., 2013 [2,5,7]; Lo Presti et al., 2012 [3]; La Rocca et al., 2014 [4]; Bandieramonte et al., 2013 [6]; Pugliatti et al., 2014 [8]) aims at the construction of a large area detector to reconstruct cosmic muon tracks above and below a container, to search for hidden high-Z materials inside its volume by the muon tomography technique. Due to its sensitive area (about 18 m 2 ), with four XY detection planes, and its good tracking capabilities, the prototype under construction, which should be operational around mid-2015, also allows different studies in cosmic ray physics, including the detection of muon bundles. For such purpose, a trigger station based on three scintillation detectors operating in coincidence close to the main muon tracker has been built. This paper describes the design and preliminary results of the trigger station, together with the physics capabilities of the overall setup

  19. Simulation Study on Identifiability of UHE Gamma-ray Air Showers

    International Nuclear Information System (INIS)

    Wada, Y.; Inoue, N.; Miyazawa, K.; Vankov, H.P.

    2008-01-01

    The chemical composition of Ultra-High-Energy (UHE) comic rays is one of unsolved mysteries, and its study will give us fruitful information on the origin and acceleration mechanism of UHE cosmic rays. Especially, a detection of UHE gamma-rays by hybrid experiments, such as AUGER and TA, will be a key to solve these questions. The characteristics of UHE gamma-ray showers have been studied by comparing the lateral and longitudinal structures of shower particles calculated with AIRES and our own simulation code, so far. There are apparent differences in a slope of lateral distribution (η) and a depth of shower maximum (Xmax) between gamma-ray and proton induced showers because UHE gamma-ray showers are affected by the LPM effect and the geomagnetic cascading process in an energy region of >10 19.5 eV. Different features between gamma-ray and proton showers are pointed out from the simulation study and an identifiability of gamma-ray showers from proton ones is also discussed by the method of Neural-Network-Analysis

  20. An extensive air shower trigger station for the Muon Portal detector

    Energy Technology Data Exchange (ETDEWEB)

    Riggi, F., E-mail: francesco.riggi@ct.infn.it [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); INFN Sezione di Catania, Catania (Italy); Blancato, A.A. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); La Rocca, P. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); INFN Sezione di Catania, Catania (Italy); Riggi, S. [INAF, Osservatorio Astrofisico di Catania, Catania (Italy); Santagati, G. [Dipartimento di Fisica e Astronomia, Università di Catania, Catania (Italy); INFN Sezione di Catania, Catania (Italy)

    2014-11-11

    The Muon Portal project (〈 (http://muoni.oact.inaf.it:8080/)〉 [1]; Riggi et al., 2013 [2,5,7]; Lo Presti et al., 2012 [3]; La Rocca et al., 2014 [4]; Bandieramonte et al., 2013 [6]; Pugliatti et al., 2014 [8]) aims at the construction of a large area detector to reconstruct cosmic muon tracks above and below a container, to search for hidden high-Z materials inside its volume by the muon tomography technique. Due to its sensitive area (about 18 m{sup 2}), with four XY detection planes, and its good tracking capabilities, the prototype under construction, which should be operational around mid-2015, also allows different studies in cosmic ray physics, including the detection of muon bundles. For such purpose, a trigger station based on three scintillation detectors operating in coincidence close to the main muon tracker has been built. This paper describes the design and preliminary results of the trigger station, together with the physics capabilities of the overall setup.

  1. An extensive air shower trigger station for the Muon Portal detector

    Science.gov (United States)

    Riggi, F.; Blancato, A. A.; La Rocca, P.; Riggi, S.; Santagati, G.

    2014-11-01

    The Muon Portal project ( [1]; Riggi et al., 2013 [2,5,7]; Lo Presti et al., 2012 [3]; La Rocca et al., 2014 [4]; Bandieramonte et al., 2013 [6]; Pugliatti et al., 2014 [8]) aims at the construction of a large area detector to reconstruct cosmic muon tracks above and below a container, to search for hidden high-Z materials inside its volume by the muon tomography technique. Due to its sensitive area (about 18 m2), with four XY detection planes, and its good tracking capabilities, the prototype under construction, which should be operational around mid-2015, also allows different studies in cosmic ray physics, including the detection of muon bundles. For such purpose, a trigger station based on three scintillation detectors operating in coincidence close to the main muon tracker has been built. This paper describes the design and preliminary results of the trigger station, together with the physics capabilities of the overall setup.

  2. Simulation Study on Identifiability of UHE Gamma-ray Air Showers

    Energy Technology Data Exchange (ETDEWEB)

    Wada, Y.; Inoue, N.; Miyazawa, K. [Graduate School of Science and Engineering, Saitama University, Saitama 338-8570 (Japan); Vankov, H.P. [Institute for Nuclear Research and Nuclear Energy, Bulgaria Academy, Sofia (Bulgaria)

    2008-01-15

    The chemical composition of Ultra-High-Energy (UHE) comic rays is one of unsolved mysteries, and its study will give us fruitful information on the origin and acceleration mechanism of UHE cosmic rays. Especially, a detection of UHE gamma-rays by hybrid experiments, such as AUGER and TA, will be a key to solve these questions. The characteristics of UHE gamma-ray showers have been studied by comparing the lateral and longitudinal structures of shower particles calculated with AIRES and our own simulation code, so far. There are apparent differences in a slope of lateral distribution ({eta}) and a depth of shower maximum (Xmax) between gamma-ray and proton induced showers because UHE gamma-ray showers are affected by the LPM effect and the geomagnetic cascading process in an energy region of >10{sup 19.5}eV. Different features between gamma-ray and proton showers are pointed out from the simulation study and an identifiability of gamma-ray showers from proton ones is also discussed by the method of Neural-Network-Analysis.

  3. Study of Plasma Flow Modes in Imploding Nested Arrays

    Science.gov (United States)

    Mitrofanov, K. N.; Aleksandrov, V. V.; Gritsuk, A. N.; Branitsky, A. V.; Frolov, I. N.; Grabovski, E. V.; Sasorov, P. V.; Ol'khovskaya, O. G.; Zaitsev, V. I.

    2018-02-01

    Results from experimental studies of implosion of nested wire and fiber arrays at currents of up to 4 MA at the Angara-5-1 facility are presented. Depending on the ratio between the radii of the inner and outer arrays, different modes of the plasma flow in the space between the inner and outer arrays were implemented: the sub-Alfvénic ( V r V A ) modes and a mode with the formation of the transition shock wave (SW) region between the cascades. By varying the material of the outer array (tungsten wires or kapron fibers), it is shown that the plasma flow mode between the inner and outer arrays depends on the ratio between the plasma production rates ṁ in / ṁ out in the inner and outer arrays. The obtained experimental results are compared with the results of one-dimensional MHD simulation of the plasma flow between the arrays. Stable implosion of the inner array plasma was observed in experiments with combined nested arrays consisting of a fiber outer array and a tungsten inner array. The growth rates of magnetic Rayleigh-Taylor (MRT) instability in the inner array plasma at different numbers of fibers in the outer array and different ratios between the radii of the inner and outer arrays are compared. Suppression of MRT instability during the implosion of the inner array plasma results in the formation of a stable compact Z-pinch and generation of a soft X-ray pulse. A possible scenario of interaction between the plasmas of the inner and outer arrays is offered. The stability of the inner array plasma in the stage of final compression depends on the character of interaction of plasma jets from the outer array with the magnetic field of the inner array.

  4. Event reconstruction using the radio-interferometric technique in the frame of AERA

    Energy Technology Data Exchange (ETDEWEB)

    Rogozin, Dmytro [Institut fuer Experimentelle Kernphysik, Karlsruher Institut fuer Technologie (KIT) (Germany); Collaboration: Pierre-Auger-Collaboration

    2016-07-01

    It is a well-known fact that there is coherent radio emission induced by extensive air-showers. This fact is exploited in the Auger Engineering Radio Array (AERA), the radio extension of the Pierre Auger Observatory. This is a unique radio experiment due to its world-largest size of 17 km{sup 2}, and due to its precise nanosecond timing calibration. These features become crucial for detection of highly inclined air-showers with their very large foot-prints, and for the ability to apply interferometric reconstruction techniques. The standard reconstruction techniques typically treat all radio stations as separate detectors. Nevertheless there is a possibility to do an interferometric analysis. This means combining all detected signals from all antennas in a specific way. In this talk we present a beam-forming interferometric technique and its application to AERA. According to the definition of the beam-forming quantities one can expect its correlation with the shower parameters such as energy of the primary particle and distance to the shower maximum. At the first step, Monte-Carlo simulations of AERA events including the noise from measured events were used to test these dependencies. The results and the future perspectives of this method are discussed with a particular emphasis on very inclined air-showers where the aforementioned correlations are assumed to be strongest.

  5. Hybrid Arrays for Chemical Sensing

    Science.gov (United States)

    Kramer, Kirsten E.; Rose-Pehrsson, Susan L.; Johnson, Kevin J.; Minor, Christian P.

    intelligence and robotics, all share the same essential data fusion challenges. The design of a hybrid sensor array should draw on this extended body of knowledge. In this chapter, various techniques for data preprocessing, feature extraction, feature selection, and modeling of sensor data will be introduced and illustrated with data fusion approaches that have been implemented in applications involving data from hybrid arrays. The example systems discussed in this chapter involve the development of prototype sensor networks for damage control event detection aboard US Navy vessels and the development of analysis algorithms to combine multiple sensing techniques for enhanced remote detection of unexploded ordnance (UXO) in both ground surveys and wide area assessments.

  6. Multiwall carbon nanotube microcavity arrays

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, Rajib; Butt, Haider, E-mail: h.butt@bham.ac.uk [Nanotechnology Laboratory, School of Mechanical Engineering, University of Birmingham, Birmingham B15 2TT (United Kingdom); Rifat, Ahmmed A. [Integrated Lightwave Research Group, Department of Electrical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603 (Malaysia); Yetisen, Ali K.; Yun, Seok Hyun [Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, 65 Landsdowne Street, Cambridge, Massachusetts 02139 (United States); Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139 (United States); Dai, Qing [National Center for Nanoscience and Technology, Beijing 100190 (China)

    2016-03-21

    Periodic highly dense multi-wall carbon nanotube (MWCNT) arrays can act as photonic materials exhibiting band gaps in the visible regime and beyond terahertz range. MWCNT arrays in square arrangement for nanoscale lattice constants can be configured as a microcavity with predictable resonance frequencies. Here, computational analyses of compact square microcavities (≈0.8 × 0.8 μm{sup 2}) in MWCNT arrays were demonstrated to obtain enhanced quality factors (≈170–180) and narrow-band resonance peaks. Cavity resonances were rationally designed and optimized (nanotube geometry and cavity size) with finite element method. Series (1 × 2 and 1 × 3) and parallel (2 × 1 and 3 × 1) combinations of microcavities were modeled and resonance modes were analyzed. Higher order MWCNT microcavities showed enhanced resonance modes, which were red shifted with increasing Q-factors. Parallel microcavity geometries were also optimized to obtain narrow-band tunable filtering in low-loss communication windows (810, 1336, and 1558 nm). Compact series and parallel MWCNT microcavity arrays may have applications in optical filters and miniaturized optical communication devices.

  7. Phased Array Ultrasonic Inspection of Titanium Forgings

    International Nuclear Information System (INIS)

    Howard, P.; Klaassen, R.; Kurkcu, N.; Barshinger, J.; Chalek, C.; Nieters, E.; Sun, Zongqi; Fromont, F. de

    2007-01-01

    Aerospace forging inspections typically use multiple, subsurface-focused sound beams in combination with digital C-scan image acquisition and display. Traditionally, forging inspections have been implemented using multiple single element, fixed focused transducers. Recent advances in phased array technology have made it possible to perform an equivalent inspection using a single phased array transducer. General Electric has developed a system to perform titanium forging inspection based on medical phased array technology and advanced image processing techniques. The components of that system and system performance for titanium inspection will be discussed

  8. Antibody repertoire profiling with mimotope arrays

    OpenAIRE

    Pashova, Shina; Schneider, Christoph; von Gunten, Stephan; Pashov, Anastas

    2016-01-01

    Large-scale profiling and monitoring of antibody repertoires is possible through next generation sequencing (NGS), phage display libraries and microarrays. These methods can be combined in a pipeline, which ultimately maps the antibody reactivities onto defined arrays of structures - peptides or carbohydrates. The arrays can help analyze the individual specificities or can be used as complex patterns. In any case, the targets recognized should formally be considered mimotopes unless they are ...

  9. Carbon nanotube nanoelectrode arrays

    Science.gov (United States)

    Ren, Zhifeng; Lin, Yuehe; Yantasee, Wassana; Liu, Guodong; Lu, Fang; Tu, Yi

    2008-11-18

    The present invention relates to microelectode arrays (MEAs), and more particularly to carbon nanotube nanoelectrode arrays (CNT-NEAs) for chemical and biological sensing, and methods of use. A nanoelectrode array includes a carbon nanotube material comprising an array of substantially linear carbon nanotubes each having a proximal end and a distal end, the proximal end of the carbon nanotubes are attached to a catalyst substrate material so as to form the array with a pre-determined site density, wherein the carbon nanotubes are aligned with respect to one another within the array; an electrically insulating layer on the surface of the carbon nanotube material, whereby the distal end of the carbon nanotubes extend beyond the electrically insulating layer; a second adhesive electrically insulating layer on the surface of the electrically insulating layer, whereby the distal end of the carbon nanotubes extend beyond the second adhesive electrically insulating layer; and a metal wire attached to the catalyst substrate material.

  10. Nucleon decay, neutrino oscillations and super high energy particles: Progress report, February 1, 1987-January 31, 1988

    International Nuclear Information System (INIS)

    Lande, K.

    1987-12-01

    This paper discusses the scintillation hodoscope and air shower array, the search for cosmic ray point sources, cosmic ray composition measurements, underground muon multiplicity and decoherence distributions and massive slow magnetic monopoles. 6 figs

  11. Detection of 1014-eV gamma rays from Cygnus X-3 during 1986

    International Nuclear Information System (INIS)

    Nagle, D.E.; Bolton, R.D.; Burman, R.L.

    1987-01-01

    Cosmic ray muons associated with extensive air showers were detected by a scintillator array. Data were collected within a 30 degree cone centered about the zenith. About 20,000 showers per day were recorded. 5 refs., 4 figs

  12. Josephson junction arrays

    International Nuclear Information System (INIS)

    Bindslev Hansen, J.; Lindelof, P.E.

    1985-01-01

    In this review we intend to cover recent work involving arrays of Josephson junctions. The work on such arrays falls naturally into three main areas of interest: 1. Technical applications of Josephson junction arrays for high-frequency devices. 2. Experimental studies of 2-D model systems (Kosterlitz-Thouless phase transition, commensurate-incommensurate transition in frustrated (flux) lattices). 3. Investigations of phenomena associated with non-equilibrium superconductivity in and around Josephson junctions (with high current density). (orig./BUD)

  13. Storage array reflection considerations

    International Nuclear Information System (INIS)

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.

    1997-01-01

    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water reflected (i.e., surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established. When evaluating arrays, it has become more common for analysts to use calculations to demonstrate the safety of the array configuration. In performing these calculations, the analyst has considerable freedom concerning the assumptions made for modeling the reflection of the array. Considerations are given for the physical layout of the array with little or no discussion (or demonstration) of what conditions are bounded by the assumed reflection conditions. For example, an array may be generically evaluated by placing it in a corner of a room in which the opposing walls are far away. Typically, it is believed that complete flooding of the room is incredible, so the array is evaluated for various levels of water mist interspersed among array containers. This paper discusses some assumptions that are made regarding storage array reflection

  14. The EUROBALL array

    International Nuclear Information System (INIS)

    Rossi Alvarez, C.

    1998-01-01

    The quality of the multidetector array EUROBALL is described, with emphasis on the history and formal organization of the related European collaboration. The detector layout is presented together with the electronics and Data Acquisition capabilities. The status of the instrument, its performances and the main features of some recently developed ancillary detectors will also be described. The EUROBALL array is operational in Legnaro National Laboratory (Italy) since April 1997 and is expected to run up to November 1998. The array represents a significant improvement in detector efficiency and sensitivity with respect to the previous generation of multidetector arrays

  15. Series-parallel method of direct solar array regulation

    Science.gov (United States)

    Gooder, S. T.

    1976-01-01

    A 40 watt experimental solar array was directly regulated by shorting out appropriate combinations of series and parallel segments of a solar array. Regulation switches were employed to control the array at various set-point voltages between 25 and 40 volts. Regulation to within + or - 0.5 volt was obtained over a range of solar array temperatures and illumination levels as an active load was varied from open circuit to maximum available power. A fourfold reduction in regulation switch power dissipation was achieved with series-parallel regulation as compared to the usual series-only switching for direct solar array regulation.

  16. Spatial normalization of array-CGH data

    Directory of Open Access Journals (Sweden)

    Brennetot Caroline

    2006-05-01

    Full Text Available Abstract Background Array-based comparative genomic hybridization (array-CGH is a recently developed technique for analyzing changes in DNA copy number. As in all microarray analyses, normalization is required to correct for experimental artifacts while preserving the true biological signal. We investigated various sources of systematic variation in array-CGH data and identified two distinct types of spatial effect of no biological relevance as the predominant experimental artifacts: continuous spatial gradients and local spatial bias. Local spatial bias affects a large proportion of arrays, and has not previously been considered in array-CGH experiments. Results We show that existing normalization techniques do not correct these spatial effects properly. We therefore developed an automatic method for the spatial normalization of array-CGH data. This method makes it possible to delineate and to eliminate and/or correct areas affected by spatial bias. It is based on the combination of a spatial segmentation algorithm called NEM (Neighborhood Expectation Maximization and spatial trend estimation. We defined quality criteria for array-CGH data, demonstrating significant improvements in data quality with our method for three data sets coming from two different platforms (198, 175 and 26 BAC-arrays. Conclusion We have designed an automatic algorithm for the spatial normalization of BAC CGH-array data, preventing the misinterpretation of experimental artifacts as biologically relevant outliers in the genomic profile. This algorithm is implemented in the R package MANOR (Micro-Array NORmalization, which is described at http://bioinfo.curie.fr/projects/manor and available from the Bioconductor site http://www.bioconductor.org. It can also be tested on the CAPweb bioinformatics platform at http://bioinfo.curie.fr/CAPweb.

  17. Focal plane array with modular pixel array components for scalability

    Science.gov (United States)

    Kay, Randolph R; Campbell, David V; Shinde, Subhash L; Rienstra, Jeffrey L; Serkland, Darwin K; Holmes, Michael L

    2014-12-09

    A modular, scalable focal plane array is provided as an array of integrated circuit dice, wherein each die includes a given amount of modular pixel array circuitry. The array of dice effectively multiplies the amount of modular pixel array circuitry to produce a larger pixel array without increasing die size. Desired pixel pitch across the enlarged pixel array is preserved by forming die stacks with each pixel array circuitry die stacked on a separate die that contains the corresponding signal processing circuitry. Techniques for die stack interconnections and die stack placement are implemented to ensure that the desired pixel pitch is preserved across the enlarged pixel array.

  18. Triggering the GRANDE array

    International Nuclear Information System (INIS)

    Wilson, C.L.; Bratton, C.B.; Gurr, J.; Kropp, W.; Nelson, M.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    A brief description of the Gamma Ray And Neutrino Detector Experiment (GRANDE) is presented. The detector elements and electronics are described. The trigger logic for the array is then examined. The triggers for the Gamma Ray and the Neutrino portions of the array are treated separately. (orig.)

  19. ISS Solar Array Management

    Science.gov (United States)

    Williams, James P.; Martin, Keith D.; Thomas, Justin R.; Caro, Samuel

    2010-01-01

    The International Space Station (ISS) Solar Array Management (SAM) software toolset provides the capabilities necessary to operate a spacecraft with complex solar array constraints. It monitors spacecraft telemetry and provides interpretations of solar array constraint data in an intuitive manner. The toolset provides extensive situational awareness to ensure mission success by analyzing power generation needs, array motion constraints, and structural loading situations. The software suite consists of several components including samCS (constraint set selector), samShadyTimers (array shadowing timers), samWin (visualization GUI), samLock (array motion constraint computation), and samJet (attitude control system configuration selector). It provides high availability and uptime for extended and continuous mission support. It is able to support two-degrees-of-freedom (DOF) array positioning and supports up to ten simultaneous constraints with intuitive 1D and 2D decision support visualizations of constraint data. Display synchronization is enabled across a networked control center and multiple methods for constraint data interpolation are supported. Use of this software toolset increases flight safety, reduces mission support effort, optimizes solar array operation for achieving mission goals, and has run for weeks at a time without issues. The SAM toolset is currently used in ISS real-time mission operations.

  20. Microfabricated hollow microneedle array using ICP etcher

    Science.gov (United States)

    Ji, Jing; Tay, Francis E. H.; Miao, Jianmin

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF6/O2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  1. Microfabricated hollow microneedle array using ICP etcher

    International Nuclear Information System (INIS)

    Ji Jing; Tay, Francis E H; Miao Jianmin

    2006-01-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF 6 /O 2 isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases

  2. Microfabricated hollow microneedle array using ICP etcher

    Energy Technology Data Exchange (ETDEWEB)

    Ji Jing [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, Francis E H [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore)

    2006-04-01

    This paper presents a developed process for fabrication of hollow silicon microneedle arrays. The inner hollow hole and the fluidic reservoir are fabricated in deep reactive ion etching. The profile of outside needles is achieved by the developed fabrication process, which combined isotropic etching and anisotropic etching with inductively coupled plasma (ICP) etcher. Using the combination of SF{sub 6}/O{sub 2} isotropic etching chemistry and Bosch process, the high aspect ratio 3D and high density microneedle arrays are fabricated. The generated needle external geometry can be controlled by etching variables in the isotropic and anisotropic cases.

  3. Ordered arrays of nanoporous gold nanoparticles

    Directory of Open Access Journals (Sweden)

    Dong Wang

    2012-09-01

    Full Text Available A combination of a “top-down” approach (substrate-conformal imprint lithography and two “bottom-up” approaches (dewetting and dealloying enables fabrication of perfectly ordered 2-dimensional arrays of nanoporous gold nanoparticles. The dewetting of Au/Ag bilayers on the periodically prepatterned substrates leads to the interdiffusion of Au and Ag and the formation of an array of Au–Ag alloy nanoparticles. The array of alloy nanoparticles is transformed into an array of nanoporous gold nanoparticles by a following dealloying step. Large areas of this new type of material arrangement can be realized with this technique. In addition, this technique allows for the control of particle size, particle spacing, and ligament size (or pore size by varying the period of the structure, total metal layer thickness, and the thickness ratio of the as-deposited bilayers.

  4. Sensor array signal processing

    CERN Document Server

    Naidu, Prabhakar S

    2009-01-01

    Chapter One: An Overview of Wavefields 1.1 Types of Wavefields and the Governing Equations 1.2 Wavefield in open space 1.3 Wavefield in bounded space 1.4 Stochastic wavefield 1.5 Multipath propagation 1.6 Propagation through random medium 1.7 ExercisesChapter Two: Sensor Array Systems 2.1 Uniform linear array (ULA) 2.2 Planar array 2.3 Distributed sensor array 2.4 Broadband sensor array 2.5 Source and sensor arrays 2.6 Multi-component sensor array2.7 ExercisesChapter Three: Frequency Wavenumber Processing 3.1 Digital filters in the w-k domain 3.2 Mapping of 1D into 2D filters 3.3 Multichannel Wiener filters 3.4 Wiener filters for ULA and UCA 3.5 Predictive noise cancellation 3.6 Exercises Chapter Four: Source Localization: Frequency Wavenumber Spectrum4.1 Frequency wavenumber spectrum 4.2 Beamformation 4.3 Capon's w-k spectrum 4.4 Maximum entropy w-k spectrum 4.5 Doppler-Azimuth Processing4.6 ExercisesChapter Five: Source Localization: Subspace Methods 5.1 Subspace methods (Narrowband) 5.2 Subspace methods (B...

  5. Introduction to adaptive arrays

    CERN Document Server

    Monzingo, Bob; Haupt, Randy

    2011-01-01

    This second edition is an extensive modernization of the bestselling introduction to the subject of adaptive array sensor systems. With the number of applications of adaptive array sensor systems growing each year, this look at the principles and fundamental techniques that are critical to these systems is more important than ever before. Introduction to Adaptive Arrays, 2nd Edition is organized as a tutorial, taking the reader by the hand and leading them through the maze of jargon that often surrounds this highly technical subject. It is easy to read and easy to follow as fundamental concept

  6. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of a piezoelectric micro-speaker. The speaker is an array of micro-machined piezoelectric membranes, fabricated on silicon wafer using advanced micro-machining techniques. Each array contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT), a top electrode of 300nm and a structural layer of 50

  7. Protein Functionalized Nanodiamond Arrays

    Directory of Open Access Journals (Sweden)

    Liu YL

    2010-01-01

    Full Text Available Abstract Various nanoscale elements are currently being explored for bio-applications, such as in bio-images, bio-detection, and bio-sensors. Among them, nanodiamonds possess remarkable features such as low bio-cytotoxicity, good optical property in fluorescent and Raman spectra, and good photostability for bio-applications. In this work, we devise techniques to position functionalized nanodiamonds on self-assembled monolayer (SAMs arrays adsorbed on silicon and ITO substrates surface using electron beam lithography techniques. The nanodiamond arrays were functionalized with lysozyme to target a certain biomolecule or protein specifically. The optical properties of the nanodiamond-protein complex arrays were characterized by a high throughput confocal microscope. The synthesized nanodiamond-lysozyme complex arrays were found to still retain their functionality in interacting with E. coli.

  8. Photonic Crystal Nanocavity Arrays

    National Research Council Canada - National Science Library

    Altug, Hatice; Vuckovic, Jelena

    2006-01-01

    We recently proposed two-dimensional coupled photonic crystal nanocavity arrays as a route to achieve a slow-group velocity of light in all crystal directions, thereby enabling numerous applications...

  9. Carbon nanotube array actuators

    International Nuclear Information System (INIS)

    Geier, S; Mahrholz, T; Wierach, P; Sinapius, M

    2013-01-01

    Experimental investigations of highly vertically aligned carbon nanotubes (CNTs), also known as CNT-arrays, are the main focus of this paper. The free strain as result of an active material behavior is analyzed via a novel experimental setup. Previous test experiences of papers made of randomly oriented CNTs, also called Bucky-papers, reveal comparably low free strain. The anisotropy of aligned CNTs promises better performance. Via synthesis techniques like chemical vapor deposition (CVD) or plasma enhanced CVD (PECVD), highly aligned arrays of multi-walled carbon nanotubes (MWCNTs) are synthesized. Two different types of CNT-arrays are analyzed, morphologically first, and optically tested for their active characteristics afterwards. One type of the analyzed arrays features tube lengths of 750–2000 μm with a large variety of diameters between 20 and 50 nm and a wave-like CNT-shape. The second type features a maximum, almost uniform, length of 12 μm and a constant diameter of 50 nm. Different CNT-lengths and array types are tested due to their active behavior. As result of the presented tests, it is reported that the quality of orientation is the most decisive property for excellent active behavior. Due to their alignment, CNT-arrays feature the opportunity to clarify the actuation mechanism of architectures made of CNTs. (paper)

  10. The offline combination of thin-layer chromatography and high-performance liquid chromatography with diode array detection and micrOTOF-Q mass spectrometry for the separation and identification of spinochromes from sea urchin (Strongylocentrotus droebachiensis) shells.

    Science.gov (United States)

    Shikov, Alexander N; Ossipov, Vladimir I; Martiskainen, Olli; Pozharitskaya, Olga N; Ivanova, Svetlana A; Makarov, Valery G

    2011-12-16

    Thin-layer chromatography (TLC) with off-line high-performance liquid chromatography coupled to diode array detection and micrOTOF-Q mass spectrometry (HPLC-DAD-MS) resulted in the successful fractionation, separation and identification of spinochrome pigments from sea urchin (Strongylocentrotus droebachiensis) shells. Two fractions of pigments were separated by TLC and eluted with methanol using a TLC-MS interface. HPLC-DAD-MS analysis of the fractions indicated the presence of six sea urchin pigments: spinochrome monomers B and D, three spinochrome dimers (anhydroethylidene-6,6'-bis(2,3,7-trihydroxynaphthazarin) and its isomer and ethylidene-6,6'-bis(2,3,7-trihydroxynaphthazarin)), and one pigment that was preliminary identified as a spinochrome dimer with the structural formula C(22)H(16)O(16). Copyright © 2011 Elsevier B.V. All rights reserved.

  11. High current density and nonlinearity combination of selection device based on TaO(x)/TiO2/TaO(x) structure for one selector-one resistor arrays.

    Science.gov (United States)

    Lee, Wootae; Park, Jubong; Kim, Seonghyun; Woo, Jiyong; Shin, Jungho; Choi, Godeuni; Park, Sangsu; Lee, Daeseok; Cha, Euijun; Lee, Byoung Hun; Hwang, Hyunsang

    2012-09-25

    We demonstrate a high-performance selection device by utilizing the concept of crested oxide barrier to suppress the sneak current in bipolar resistive memory arrays. Using a TaO(x)/TiO(2)/TaO(x) structure, high current density over 10(7) A cm(-2) and excellent nonlinear characteristics up to 10(4) were successfully demonstrated. On the basis of the defect chemistry and SIMS depth profile result, we found that some Ta atoms gradually diffused into TiO(2) film, and consequently, the energy band of the TiO(2) film was symmetrically bent at the top and bottom TaO(x)/TiO(2) interfaces and modified as a crested oxide barrier. Furthermore, the one selector-one resistor device exhibited significant suppression of the leakage current, indicating excellent selector characteristics.

  12. A muon array to complement the Fly's Eye

    International Nuclear Information System (INIS)

    Matthews, J.

    1987-01-01

    A buried muon counting array which will operate in coincidence with proposed and existing surface scintillators at the Fly's Eye experiment is described. The combined arrays will search for point sources of γ rays by selecting muon-poor showers. If recent reports are correct, a signal-to-background ratio of 33 will be possible before making use of phase information

  13. Microfabricated Silicon Microneedle Array for Transdermal Drug Delivery

    International Nuclear Information System (INIS)

    Ji, J; Tay, F E; Miao Jianmin; Iliescu, C

    2006-01-01

    This paper presents developed processes for silicon microneedle arrays microfabrication. Three types of microneedles structures were achieved by isotropic etching in inductively coupled plasma (ICP) using SF 6 /O 2 gases, combination of isotropic etching with deep etching, and wet etching, respectively. A microneedle array with biodegradable porous tips was further developed based on the fabricated microneedles

  14. Microfabricated Silicon Microneedle Array for Transdermal Drug Delivery

    Energy Technology Data Exchange (ETDEWEB)

    Ji, J [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Tay, F E [Mechanical Engineering National University of Singapore, 119260, Singapore (Singapore); Miao Jianmin [MicroMachines Center, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798 (Singapore); Iliescu, C [Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, Nanos, 04-01, 138669 (Singapore)

    2006-04-01

    This paper presents developed processes for silicon microneedle arrays microfabrication. Three types of microneedles structures were achieved by isotropic etching in inductively coupled plasma (ICP) using SF{sub 6}/O{sub 2} gases, combination of isotropic etching with deep etching, and wet etching, respectively. A microneedle array with biodegradable porous tips was further developed based on the fabricated microneedles.

  15. A Halo Event observed by the Hybrid Experiment at Mt. Chacaltaya

    International Nuclear Information System (INIS)

    Aoki, H.; Hashimoto, K.; Honda, K.; Inoue, N.; Kawasumi, N.; Martinic, N.; Navia O, C.; Ochi, N.; Ohmori, N.; Ohsawa, A.; Oliveira, C.; Shinozaki, K.; Tamada, M.; Ticona, R.; Tsushima, I.

    2006-01-01

    An experiment using an air shower array, a hadron calorimeter and an emulsion chamber is under way at Mt. Chacaltaya (5200 m, Bolivia). One of the highest energy events, having a halo (∼ 1 cm) in the centre of the family together with many γ-ray and hadron showers, is analyzed in detail. Available data for the event are on the halo (E halo =750 TeV) and on the high energy particles of electron/photon components by the emulsion chamber, and on the characteristics of the accompanied air shower (Ne=7.0x10 7 , s=0.59) by the air shower array. The diagram of the air shower size and the total energy of electron/photon components in the family, which shows discrepancy between the experimental data and simulated events (QGSJET code for nuclear collisions) in our previous reports, is discussed including the present event

  16. Rectenna array measurement results. [Satellite power transmission and reception

    Science.gov (United States)

    Dickinson, R. M.

    1980-01-01

    The measured performance characteristics of a rectenna array are reviewed and compared to the performance of a single element. It is shown that the performance may be extrapolated from the individual element to that of the collection of elements. Techniques for current and voltage combining are demonstrated. The array performance as a function of various operating parameters is characterized and techniques for overvoltage protection and automatic fault clearing in the array are demonstrated. A method for detecting failed elements also exists. Instrumentation for deriving performance effectiveness is described. Measured harmonic radiation patterns and fundamental frequency scattered patterns for a low level illumination rectenna array are presented.

  17. Testing of focal plane arrays

    International Nuclear Information System (INIS)

    Merriam, J.D.

    1988-01-01

    Problems associated with the testing of focal plane arrays are briefly examined with reference to the instrumentation and measurement procedures. In particular, the approach and instrumentation used as the Naval Ocean Systems Center is presented. Most of the measurements are made with flooded illumination on the focal plane array. The array is treated as an ensemble of individual pixels, data being taken on each pixel and array averages and standard deviations computed for the entire array. Data maps are generated, showing the pixel data in the proper spatial position on the array and the array statistics

  18. Identification of Three Kinds of Citri Reticulatae Pericarpium Based on Deoxyribonucleic Acid Barcoding and High-performance Liquid Chromatography-diode Array Detection-electrospray Ionization/Mass Spectrometry/Mass Spectrometry Combined with Chemometric Analysis

    Science.gov (United States)

    Yu, Xiaoxue; Zhang, Yafeng; Wang, Dongmei; Jiang, Lin; Xu, Xinjun

    2018-01-01

    Background: Citri Reticulatae Pericarpium is the dried mature pericarp of Citrus reticulata Blanco which can be divided into “Chenpi” and “Guangchenpi.” “Guangchenpi” is the genuine Chinese medicinal material in Xinhui, Guangdong province; based on the greatest quality and least amount, it is most expensive among others. Hesperidin is used as the marker to identify Citri Reticulatae Pericarpium described in the Chinese Pharmacopoeia 2010. However, both “Chenpi” and “Guangchenpi” contain hesperidin so that it is impossible to differentiate them by measuring hesperidin. Objective: Our study aims to develop an efficient and accurate method to separate and identify “Guangchenpi” from other Citri Reticulatae Pericarpium. Materials and Methods: The genomic deoxyribonucleic acid (DNA) of all the materials was extracted and then the internal transcribed spacer 2 was amplified, sequenced, aligned, and analyzed. The secondary structures were created in terms of the database and website established by Jörg Schultz et al. High-performance liquid chromatography-diode array detection-electrospray Ionization/mass spectrometry (HPLC-DAD-ESI-MS)/MS coupled with chemometric analysis was applied to compare the differences in chemical profiles of the three kinds of Citri Reticulatae Pericarpium. Results: A total of 22 samples were classified into three groups. The results of DNA barcoding were in accordance with principal component analysis and hierarchical cluster analysis. Eight compounds were deduced from HPLC-DAD-ESI-MS/MS. Conclusions: This method is a reliable and effective tool to differentiate the three Citri Reticulatae Pericarpium. SUMMARY The internal transcribed spacer 2 regions and the secondary structure among three kinds of Citri Reticulatae Pericarpium varied considerablyAll the 22 samples were analyzed by high-performance liquid chromatography (HPLC) to obtain the chemical profilesPrincipal component analysis and hierarchical cluster analysis

  19. Parallel Access of Out-Of-Core Dense Extendible Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Otoo, Ekow J; Rotem, Doron

    2007-07-26

    Datasets used in scientific and engineering applications are often modeled as dense multi-dimensional arrays. For very large datasets, the corresponding array models are typically stored out-of-core as array files. The array elements are mapped onto linear consecutive locations that correspond to the linear ordering of the multi-dimensional indices. Two conventional mappings used are the row-major order and the column-major order of multi-dimensional arrays. Such conventional mappings of dense array files highly limit the performance of applications and the extendibility of the dataset. Firstly, an array file that is organized in say row-major order causes applications that subsequently access the data in column-major order, to have abysmal performance. Secondly, any subsequent expansion of the array file is limited to only one dimension. Expansions of such out-of-core conventional arrays along arbitrary dimensions, require storage reorganization that can be very expensive. Wepresent a solution for storing out-of-core dense extendible arrays that resolve the two limitations. The method uses a mapping function F*(), together with information maintained in axial vectors, to compute the linear address of an extendible array element when passed its k-dimensional index. We also give the inverse function, F-1*() for deriving the k-dimensional index when given the linear address. We show how the mapping function, in combination with MPI-IO and a parallel file system, allows for the growth of the extendible array without reorganization and no significant performance degradation of applications accessing elements in any desired order. We give methods for reading and writing sub-arrays into and out of parallel applications that run on a cluster of workstations. The axial-vectors are replicated and maintained in each node that accesses sub-array elements.

  20. Generating Milton Babbitt's all-partition arrays

    OpenAIRE

    Bemman, Brian; Meredith, David

    2016-01-01

    In most of Milton Babbitt's (1916–2011) works written since the early 1960s, both the pitch and rhythmic content is organized according to a highly constrained structure known as the all-partition array. The all-partition array provides a framework that ensures that as many different forms of a tone row as possible (generated by any combination of transposition, inversion or reversal) are expressed 'horizontally' and that each integer partition of 12 whose cardinality is no greater than the n...

  1. Thermal physics of transition edge sensor arrays

    International Nuclear Information System (INIS)

    Hoevers, H.F.C.

    2006-01-01

    Thermal transport in transition edge sensor (TES)-based microcalorimeter arrays is reviewed. The fundamentals of thermal conductance in Si 3 N 4 membranes are discussed and the magnitude of the electron-phonon coupling and Kapitza coupling in practical devices is summarized. Next, the thermal transport in high-stopping power and low-heat capacity absorbers, required for arrays of TES microcalorimeters, is discussed in combination with a performance analysis of detectors with mushroom-absorbers. Finally, the phenomenology of unexplained excess noise, observed in both Mo- and Ti-based TESs, is briefly summarized and related with the coupling of the TES to the heat bath

  2. All optical programmable logic array (PLA)

    Science.gov (United States)

    Hiluf, Dawit

    2018-03-01

    A programmable logic array (PLA) is an integrated circuit (IC) logic device that can be reconfigured to implement various kinds of combinational logic circuits. The device has a number of AND and OR gates which are linked together to give output or further combined with more gates or logic circuits. This work presents the realization of PLAs via the physics of a three level system interacting with light. A programmable logic array is designed such that a number of different logical functions can be combined as a sum-of-product or product-of-sum form. We present an all optical PLAs with the aid of laser light and observables of quantum systems, where encoded information can be considered as memory chip. The dynamics of the physical system is investigated using Lie algebra approach.

  3. Capillarity-based preparation system for optical colorimetric sensor arrays.

    Science.gov (United States)

    Luo, Xiao-Gang; Yi, Xin; Bu, Xiang-Nan; Hou, Chang-Jun; Huo, Dan-Qun; Yang, Mei; Fa, Huan-Bao; Lei, Jin-Can

    2017-03-01

    In recent years, optical colorimetric sensor arrays have demonstrated beneficial features, including rapid response, high selectivity, and high specificity; as a result, it has been extensively applied in food inspection and chemical studies, among other fields. There are instruments in the current market available for the preparation of an optical colorimetric sensor array, but it lacks the corresponding research of the preparation mechanism. Therefore, in connection with the main features of this kind of sensor array such as consistency, based on the preparation method of contact spotting, combined with a capillary fluid model, Washburn equation, Laplace equation, etc., this paper develops a diffusion model of an optical colorimetric sensor array during its preparation and sets up an optical colorimetric sensor array preparation system based on this diffusion model. Finally, this paper compares and evaluates the sensor arrays prepared by the system and prepared manually in three aspects such as the quality of array point, response of array, and response result, and the results show that the performance index of the sensor array prepared by a system under this diffusion model is better than that of the sensor array of manual spotting, which meets the needs of the experiment.

  4. Topology optimization of Halbach magnet arrays using isoparametric projection

    International Nuclear Information System (INIS)

    Lee, Jaewook; Nomura, Tsuyoshi; Dede, Ercan M.

    2017-01-01

    Highlights: • Design method of Halbach magnet array is proposed using topology optimization. • Magnet strength and direction are simultaneously optimized by isoparametric projection. • For manufacturing feasibility of magnet, penalization and extrusion schemes are proposed. • Design results of circular shaped Halbach arrays are provided. • Halbach arrays in linear actuator are optimized to maximize magnetic force. - Abstract: Topology optimization using isoparametric projection for the design of permanent magnet patterns in Halbach arrays is proposed. Based on isoparametric shape functions used in the finite element analysis, the permanent magnet strength and magnetization directions in a Halbach array are simultaneously optimized for a given design goal. To achieve fabrication feasibility of a designed Halbach magnet array, two design schemes are combined with the isoparametric projection method. First, a penalization scheme is proposed for designing the permanent magnets to have discrete magnetization direction angles. Second, an extrusion scheme is proposed for the shape regularization of the permanent magnet segments. As a result, the method systematically finds the optimal permanent magnet patterns of a Halbach array considering manufacturing feasibility. In two numerical examples, a circular shaped permanent magnet Halbach array is designed to minimize the magnitude of the magnetic flux density and to maximize the upward direction magnetic flux density inside the magnet array. Logical extension of the method to the design of permanent magnet arrays in linear actuators is provided, where the design goal is to maximize the actuator magnetic force.

  5. Topology optimization of Halbach magnet arrays using isoparametric projection

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaewook, E-mail: jaewooklee@gist.ac.kr [School of Mechanical Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005 (Korea, Republic of); Nomura, Tsuyoshi [Toyota Central R& D Labs., Inc., 41-1 Yokomichi, Aichi 480-1192 (Japan); Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, MI 48105 (United States); Dede, Ercan M. [Toyota Research Institute of North America, 1555 Woodridge Avenue, Ann Arbor, MI 48105 (United States)

    2017-06-15

    Highlights: • Design method of Halbach magnet array is proposed using topology optimization. • Magnet strength and direction are simultaneously optimized by isoparametric projection. • For manufacturing feasibility of magnet, penalization and extrusion schemes are proposed. • Design results of circular shaped Halbach arrays are provided. • Halbach arrays in linear actuator are optimized to maximize magnetic force. - Abstract: Topology optimization using isoparametric projection for the design of permanent magnet patterns in Halbach arrays is proposed. Based on isoparametric shape functions used in the finite element analysis, the permanent magnet strength and magnetization directions in a Halbach array are simultaneously optimized for a given design goal. To achieve fabrication feasibility of a designed Halbach magnet array, two design schemes are combined with the isoparametric projection method. First, a penalization scheme is proposed for designing the permanent magnets to have discrete magnetization direction angles. Second, an extrusion scheme is proposed for the shape regularization of the permanent magnet segments. As a result, the method systematically finds the optimal permanent magnet patterns of a Halbach array considering manufacturing feasibility. In two numerical examples, a circular shaped permanent magnet Halbach array is designed to minimize the magnitude of the magnetic flux density and to maximize the upward direction magnetic flux density inside the magnet array. Logical extension of the method to the design of permanent magnet arrays in linear actuators is provided, where the design goal is to maximize the actuator magnetic force.

  6. Rocking convex array used for 3D synthetic aperture focusing

    DEFF Research Database (Denmark)

    Andresen, Henrik; Nikolov, Svetoslav; Pedersen, M M

    2008-01-01

    Volumetric imaging can be performed using 1D arrays in combination with mechanical motion. Outside the elevation focus of the array, the resolution and contrast quickly degrade compared to the azimuth plane, because of the fixed transducer focus. The purpose of this paper is to use synthetic...... aperture focusing (SAF) for enhancing the elevation focusing for a convex rocking array, to obtain a more isotropic point spread function. This paper presents further development of the SAF method, which can be used with curved array combined with a rocking motion. The method uses a virtual source (VS...... Kretztechnik, Zipf, Austria). The array has an elevation focus at 60 mm of depth, and the angular rocking velocity is up to 140deg/s. The scan sequence uses an fprf of 4500 - 7000 Hz allowing up to 15 cm of penetration. The full width at half max (FWHM) and main-lobe to side-lobe ratio (MLSL) is used...

  7. SWNT array resonant gate MOS transistor

    Energy Technology Data Exchange (ETDEWEB)

    Arun, A; Salet, P; Ionescu, A M [NanoLab, Ecole Polytechnique Federale de Lausanne, CH-1015, Lausanne (Switzerland); Campidelli, S; Filoramo, A; Derycke, V; Goffman, M F, E-mail: marcelo.goffman@cea.fr [Laboratoire d' Electronique Moleculaire, SPEC (CNRS URA 2454), IRAMIS, CEA, Gif-sur-Yvette (France)

    2011-02-04

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  8. SWNT array resonant gate MOS transistor.

    Science.gov (United States)

    Arun, A; Campidelli, S; Filoramo, A; Derycke, V; Salet, P; Ionescu, A M; Goffman, M F

    2011-02-04

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  9. SWNT array resonant gate MOS transistor

    International Nuclear Information System (INIS)

    Arun, A; Salet, P; Ionescu, A M; Campidelli, S; Filoramo, A; Derycke, V; Goffman, M F

    2011-01-01

    We show that thin horizontal arrays of single wall carbon nanotubes (SWNTs) suspended above the channel of silicon MOSFETs can be used as vibrating gate electrodes. This new class of nano-electromechanical system (NEMS) combines the unique mechanical and electronic properties of SWNTs with an integrated silicon-based motion detection. Its electrical response exhibits a clear signature of the mechanical resonance of SWNT arrays (120-150 MHz) showing that these thin horizontal arrays behave as a cohesive, rigid and elastic body membrane with a Young's modulus in the order of 1-10 GPa and ultra-low mass. The resonant frequency can be tuned by the gate voltage and its dependence is well understood within the continuum mechanics framework.

  10. Automated installation methods for photovoltaic arrays

    Science.gov (United States)

    Briggs, R.; Daniels, A.; Greenaway, R.; Oster, J., Jr.; Racki, D.; Stoeltzing, R.

    1982-11-01

    Since installation expenses constitute a substantial portion of the cost of a large photovoltaic power system, methods for reduction of these costs were investigated. The installation of the photovoltaic arrays includes all areas, starting with site preparation (i.e., trenching, wiring, drainage, foundation installation, lightning protection, grounding and installation of the panel) and concluding with the termination of the bus at the power conditioner building. To identify the optimum combination of standard installation procedures and automated/mechanized techniques, the installation process was investigated including the equipment and hardware available, the photovoltaic array structure systems and interfaces, and the array field and site characteristics. Preliminary designs of hardware for both the standard installation method, the automated/mechanized method, and a mix of standard installation procedures and mechanized procedures were identified to determine which process effectively reduced installation costs. In addition, costs associated with each type of installation method and with the design, development and fabrication of new installation hardware were generated.

  11. A review of array radars

    Science.gov (United States)

    Brookner, E.

    1981-10-01

    Achievements in the area of array radars are illustrated by such activities as the operational deployment of the large high-power, high-range-resolution Cobra Dane; the operational deployment of two all-solid-state high-power, large UHF Pave Paws radars; and the development of the SAM multifunction Patriot radar. This paper reviews the following topics: array radars steered in azimuth and elevation by phase shifting (phase-phase steered arrays); arrays steered + or - 60 deg, limited scan arrays, hemispherical coverage, and omnidirectional coverage arrays; array radars steering electronically in only one dimension, either by frequency or by phase steering; and array radar antennas which use no electronic scanning but instead use array antennas for achieving low antenna sidelobes.

  12. Detector array and method

    International Nuclear Information System (INIS)

    Timothy, J.G.; Bybee, R.L.

    1978-01-01

    A detector array and method are described in which sets of electrode elements are provided. Each set consists of a number of linear extending parallel electrodes. The sets of electrode elements are disposed at an angle (preferably orthogonal) with respect to one another so that the individual elements intersect and overlap individual elements of the other sets. Electrical insulation is provided between the overlapping elements. The detector array is exposed to a source of charged particles which in accordance with one embodiment comprise electrons derived from a microchannel array plate exposed to photons. Amplifier and discriminator means are provided for each individual electrode element. Detection means are provided to sense pulses on individual electrode elements in the sets, with coincidence of pulses on individual intersecting electrode elements being indicative of charged particle impact at the intersection of the elements. Electronic readout means provide an indication of coincident events and the location where the charged particle or particles impacted. Display means are provided for generating appropriate displays representative of the intensity and locaton of charged particles impacting on the detector array

  13. Diode lasers and arrays

    International Nuclear Information System (INIS)

    Streifer, W.

    1988-01-01

    This paper discusses the principles of operation of III-V semiconductor diode lasers, the use of distributed feedback, and high power laser arrays. The semiconductor laser is a robust, miniature, versatile device, which directly converts electricity to light with very high efficiency. Applications to pumping solid-state lasers and to fiber optic and point-to-point communications are reviewed

  14. Array Theory and Nial

    DEFF Research Database (Denmark)

    Falster, Peter; Jenkins, Michael

    1999-01-01

    This report is the result of collaboration between the authors during the first 8 months of 1999 when M. Jenkins was visiting professor at DTU. The report documents the development of a tool for the investigation of array theory concepts and in particular presents various approaches to choose...

  15. Piezoelectric transducer array microspeaker

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Conchouso Gonzalez, David; Castro, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    contains 2n piezoelectric transducer membranes, where “n” is the bit number. Every element of the array has a circular shape structure. The membrane is made out four layers: 300nm of platinum for the bottom electrode, 250nm or lead zirconate titanate (PZT

  16. Micromirror array nanostructures for anticounterfeiting applications

    Science.gov (United States)

    Lee, Robert A.

    2004-06-01

    The optical characteristics of pixellated passive micro mirror arrays are derived and applied in the context of their use as reflective optically variable device (OVD) nanostructures for the protection of documents from counterfeiting. The traditional design variables of foil based diffractive OVDs are shown to be able to be mapped to a corresponding set of design parameters for reflective optical micro mirror array (OMMA) devices. The greatly increased depth characteristics of micro mirror array OVDs provides an opportunity for directly printing the OVD microstructure onto the security document in-line with the normal printing process. The micro mirror array OVD architecture therefore eliminates the need for hot stamping foil as the carrier of the OVD information, thereby reducing costs. The origination of micro mirror array devices via a palette based data format and a combination electron beam lithography and photolithography techniques is discussed via an artwork example and experimental tests. Finally the application of the technology to the design of a generic class of devices which have the interesting property of allowing for both application and customer specific OVD image encoding and data encoding at the end user stage of production is described. Because of the end user nature of the image and data encoding process these devices are particularly well suited to ID document applications and for this reason we refer this new OVD concept as biometric OVD technology.

  17. Methods for roof-top mini-arrays

    International Nuclear Information System (INIS)

    Hazen, W.E.; Hazen, E.S.

    1985-01-01

    To test the idea of the Linsley effect miniarray for the study of giant air showers, it is desirable to have a trigger that exploits the effect itself. In addition to the trigger, it is necessary to have a method for measuring the relative arrival times of the particle swarm selected by the trigger. Since the idea of miniarrays is likely to appeal to small research groups, it is desirable to try to design relatively simple and inexpensive methods, and methods that utilize existing detectors. Clusters of small detectors have been designed for operation in the local particle density realm where the probability of more than 2 particles per detector is small. Consequently, this method can discriminate pulses from each detector and thus deal mainly with logic pulses

  18. Improved SNR of phased-array PERES coils via simulation study

    International Nuclear Information System (INIS)

    RodrIguez, Alfredo O; Medina, LucIa

    2005-01-01

    A computational comparison of signal-to-noise ratio (SNR) was performed between a conventional phased array of two circular-shaped coils and a petal resonator surface array. The quasi-static model and phased-array optimum SNR were combined to derive an SNR formula for each array. Analysis of mutual inductance between coil petals was carried out to compute the optimal coil separation and optimum number of petal coils. Mutual interaction between coil arrays was not included in the model because this does not drastically affect coil performance. Phased arrays of PERES coils show a 114% improvement in SNR over that of the simplest circular configuration. (note)

  19. The in-capillary DPPH-capillary electrophoresis-the diode array detector combined with reversed-electrode polarity stacking mode for screening and quantifying major antioxidants in Cuscuta chinensis Lam.

    Science.gov (United States)

    Liu, Jiao; Tian, Ji; Li, Jin; Azietaku, John Teye; Zhang, Bo-Li; Gao, Xiu-Mei; Chang, Yan-Xu

    2016-07-01

    An in-capillary 2, 2-diphenyl-1-picrylhydrazyl (DPPH)-CE-the DAD (in-capillary DPPH-CE-DAD) combined with reversed-electrode polarity stacking mode has been developed to screen and quantify the active antioxidant components of Cuscuta chinensis Lam. The operation parameters were optimized with regard to the pH and concentration of buffer solution, SDS, β-CDs, organic modifier, as well as separation voltage and temperature. Six antioxidants including chlorogenic acid, p-coumaric acid, rutin, hyperin, isoquercitrin, and astragalin were screened and the total antioxidant activity of the complex matrix was successfully evaluated based on the decreased peak area of DPPH by the established DPPH-CE-DAD method. Sensitivity was enhanced under reversed-electrode polarity stacking mode and 10- to 31-fold of magnitude improvement in detection sensitivity for each analyte was attained. The results demonstrated that the newly established in-capillary DPPH-CE-DAD method combined with reversed-electrode polarity stacking mode could integrate sample concentration, the oxidizing reaction, separation, and detection into one capillary to fully automate the system. It was considered a suitable technique for the separation, screening, and determination of trace antioxidants in natural products. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Concurrent array-based queue

    Science.gov (United States)

    Heidelberger, Philip; Steinmacher-Burow, Burkhard

    2015-01-06

    According to one embodiment, a method for implementing an array-based queue in memory of a memory system that includes a controller includes configuring, in the memory, metadata of the array-based queue. The configuring comprises defining, in metadata, an array start location in the memory for the array-based queue, defining, in the metadata, an array size for the array-based queue, defining, in the metadata, a queue top for the array-based queue and defining, in the metadata, a queue bottom for the array-based queue. The method also includes the controller serving a request for an operation on the queue, the request providing the location in the memory of the metadata of the queue.

  1. Criticality safety of low-density storage arrays

    International Nuclear Information System (INIS)

    Bauer, T.H.

    1996-01-01

    This note proposes a straightforward and simple method for the criticality safety analysis of fissionable materials configured into large arrays of standard containers. While criticality-safe storage limits have been well-established for standard containers--even under flooded conditions, it is also necessary to rule out the potential for criticality arising from neutronic interactions among multiple containers that might build up over long distances in a large array. Traditionally, the array problem has been approached by individual Monte Carlo analyses of explicit arrangements of single units and their surroundings. Here, the authors show how multiple Monte Carlo analyses can be usefully combined for wide-ranging general application. The technique takes advantage of low average density of fissionable material in typical storage arrays to separate neutron interactions that take place in the neutron's ''birth unit'' from subsequent interactions in a highly dilute array. Effects of array size, in particular, are conservatively calculated by straightforward analyses which simply smear array contents uniformly across the extent of the array. For given unit loadings in standard containers, practical expressions for neutron multiplication depend only on overall array shape, size and reflective boundary

  2. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    OpenAIRE

    Chen, Po Chun; Hsieh, Sheng Jen; Chen, Chien Chon; Zou, Jun

    2013-01-01

    We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D) structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless inj...

  3. Recent results from CODALEMA and the Nançay radio facilities related to cosmic-ray measurements

    Directory of Open Access Journals (Sweden)

    Dallier Richard

    2017-01-01

    Full Text Available Since 2003, the NanÇay Radio Observatory hosts the CODALEMA experiment, dedicated to radio detection of cosmic ray induced extensive air showers. CODALEMA also features the R&D EXTASIS project, aiming at detecting the lowfrequency signal ([2-6] MHz produced at the sudden disappearance of the air shower particles hitting the ground. The 3 current antenna arrays present different antenna density and extent, and can be operated in a joint mode to record simultaneously the radio signal coming from air showers. Therefore, the NanÇay facilities may offer a complete description of the air shower induced electric field at small, medium and large scale, and over an unique and very wide frequency band (from ~ 2 to 200 MHz.

  4. Radar techniques using array antennas

    CERN Document Server

    Wirth, Wulf-Dieter

    2013-01-01

    Radar Techniques Using Array Antennas is a thorough introduction to the possibilities of radar technology based on electronic steerable and active array antennas. Topics covered include array signal processing, array calibration, adaptive digital beamforming, adaptive monopulse, superresolution, pulse compression, sequential detection, target detection with long pulse series, space-time adaptive processing (STAP), moving target detection using synthetic aperture radar (SAR), target imaging, energy management and system parameter relations. The discussed methods are confirmed by simulation stud

  5. Timed arrays wideband and time varying antenna arrays

    CERN Document Server

    Haupt, Randy L

    2015-01-01

    Introduces timed arrays and design approaches to meet the new high performance standards The author concentrates on any aspect of an antenna array that must be viewed from a time perspective. The first chapters briefly introduce antenna arrays and explain the difference between phased and timed arrays. Since timed arrays are designed for realistic time-varying signals and scenarios, the book also reviews wideband signals, baseband and passband RF signals, polarization and signal bandwidth. Other topics covered include time domain, mutual coupling, wideband elements, and dispersion. The auth

  6. Challenging aspects of contemporary cochlear implant electrode array design.

    Science.gov (United States)

    Mistrík, Pavel; Jolly, Claude; Sieber, Daniel; Hochmair, Ingeborg

    2017-12-01

    A design comparison of current perimodiolar and lateral wall electrode arrays of the cochlear implant (CI) is provided. The focus is on functional features such as acoustic frequency coverage and tonotopic mapping, battery consumption and dynamic range. A traumacity of their insertion is also evaluated. Review of up-to-date literature. Perimodiolar electrode arrays are positioned in the basal turn of the cochlea near the modiolus. They are designed to initiate the action potential in the proximity to the neural soma located in spiral ganglion. On the other hand, lateral wall electrode arrays can be inserted deeper inside the cochlea, as they are located along the lateral wall and such insertion trajectory is less traumatic. This class of arrays targets primarily surviving neural peripheral processes. Due to their larger insertion depth, lateral wall arrays can deliver lower acoustic frequencies in manner better corresponding to cochlear tonotopicity. In fact, spiral ganglion sections containing auditory nerve fibres tuned to low acoustic frequencies are located deeper than 1 and half turn inside the cochlea. For this reason, a significant frequency mismatch might be occurring for apical electrodes in perimodiolar arrays, detrimental to speech perception. Tonal languages such as Mandarin might be therefore better treated with lateral wall arrays. On the other hand, closer proximity to target tissue results in lower psychophysical threshold levels for perimodiolar arrays. However, the maximal comfort level is also lower, paradoxically resulting in narrower dynamic range than that of lateral wall arrays. Battery consumption is comparable for both types of arrays. Lateral wall arrays are less likely to cause trauma to cochlear structures. As the current trend in cochlear implantation is the maximal protection of residual acoustic hearing, the lateral wall arrays seem more suitable for hearing preservation CI surgeries. Future development could focus on combining the

  7. Solar collector array

    Science.gov (United States)

    Hall, John Champlin; Martins, Guy Lawrence

    2015-09-06

    A method and apparatus for efficient manufacture, assembly and production of solar energy. In one aspect, the apparatus may include a number of modular solar receiver assemblies that may be separately manufactured, assembled and individually inserted into a solar collector array housing shaped to receive a plurality of solar receivers. The housing may include optical elements for focusing light onto the individual receivers, and a circuit for electrically connecting the solar receivers.

  8. Phased array antenna control

    Science.gov (United States)

    Doland, G. D. (Inventor)

    1978-01-01

    Several new and useful improvements in steering and control of phased array antennas having a small number of elements, typically on the order of 5 to 17 elements are provided. Among the improvements are increasing the number of beam steering positions, reducing the possibility of phase transients in signals received or transmitted with the antennas, and increasing control and testing capacity with respect to the antennas.

  9. Seismometer array station processors

    International Nuclear Information System (INIS)

    Key, F.A.; Lea, T.G.; Douglas, A.

    1977-01-01

    A description is given of the design, construction and initial testing of two types of Seismometer Array Station Processor (SASP), one to work with data stored on magnetic tape in analogue form, the other with data in digital form. The purpose of a SASP is to detect the short period P waves recorded by a UK-type array of 20 seismometers and to edit these on to a a digital library tape or disc. The edited data are then processed to obtain a rough location for the source and to produce seismograms (after optimum processing) for analysis by a seismologist. SASPs are an important component in the scheme for monitoring underground explosions advocated by the UK in the Conference of the Committee on Disarmament. With digital input a SASP can operate at 30 times real time using a linear detection process and at 20 times real time using the log detector of Weichert. Although the log detector is slower, it has the advantage over the linear detector that signals with lower signal-to-noise ratio can be detected and spurious large amplitudes are less likely to produce a detection. It is recommended, therefore, that where possible array data should be recorded in digital form for input to a SASP and that the log detector of Weichert be used. Trial runs show that a SASP is capable of detecting signals down to signal-to-noise ratios of about two with very few false detections, and at mid-continental array sites it should be capable of detecting most, if not all, the signals with magnitude above msub(b) 4.5; the UK argues that, given a suitable network, it is realistic to hope that sources of this magnitude and above can be detected and identified by seismological means alone. (author)

  10. Lectin-Array Blotting.

    Science.gov (United States)

    Pazos, Raquel; Echevarria, Juan; Hernandez, Alvaro; Reichardt, Niels-Christian

    2017-09-01

    Aberrant protein glycosylation is a hallmark of cancer, infectious diseases, and autoimmune or neurodegenerative disorders. Unlocking the potential of glycans as disease markers will require rapid and unbiased glycoproteomics methods for glycan biomarker discovery. The present method is a facile and rapid protocol for qualitative analysis of protein glycosylation in complex biological mixtures. While traditional lectin arrays only provide an average signal for the glycans in the mixture, which is usually dominated by the most abundant proteins, our method provides individual lectin binding profiles for all proteins separated in the gel electrophoresis step. Proteins do not have to be excised from the gel for subsequent analysis via the lectin array but are transferred by contact diffusion from the gel to a glass slide presenting multiple copies of printed lectin arrays. Fluorescently marked glycoproteins are trapped by the printed lectins via specific carbohydrate-lectin interactions and after a washing step their binding profile with up to 20 lectin probes is analyzed with a fluorescent scanner. The method produces the equivalent of 20 lectin blots in a single experiment, giving detailed insight into the binding epitopes present in the fractionated proteins. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley & Sons, Inc.

  11. Array processor architecture

    Science.gov (United States)

    Barnes, George H. (Inventor); Lundstrom, Stephen F. (Inventor); Shafer, Philip E. (Inventor)

    1983-01-01

    A high speed parallel array data processing architecture fashioned under a computational envelope approach includes a data base memory for secondary storage of programs and data, and a plurality of memory modules interconnected to a plurality of processing modules by a connection network of the Omega gender. Programs and data are fed from the data base memory to the plurality of memory modules and from hence the programs are fed through the connection network to the array of processors (one copy of each program for each processor). Execution of the programs occur with the processors operating normally quite independently of each other in a multiprocessing fashion. For data dependent operations and other suitable operations, all processors are instructed to finish one given task or program branch before all are instructed to proceed in parallel processing fashion on the next instruction. Even when functioning in the parallel processing mode however, the processors are not locked-step but execute their own copy of the program individually unless or until another overall processor array synchronization instruction is issued.

  12. Micromirror Arrays for Adaptive Optics; TOPICAL

    International Nuclear Information System (INIS)

    Carr, E.J.

    2000-01-01

    The long-range goal of this project is to develop the optical and mechanical design of a micromirror array for adaptive optics that will meet the following criteria: flat mirror surface ((lambda)/20), high fill factor ( and gt; 95%), large stroke (5-10(micro)m), and pixel size(approx)-200(micro)m. This will be accomplished by optimizing the mirror surface and actuators independently and then combining them using bonding technologies that are currently being developed

  13. Magneto-Electric Dipole Antenna Arrays

    OpenAIRE

    Gupta, Shulabh; Jiang, Li Jun; Caloz, Christophe

    2014-01-01

    A planar magneto-electric (ME) dipole antenna array is proposed and demonstrated by both full-wave analysis and experiments. The proposed structure leverages the infinite wavelength propagation characteristic of composite right/left-handed (CRLH) transmission lines to form high-gain magnetic radiators combined with radial conventional electric radiators, where the overall structure is excited by a single differential feed. The traveling-wave type nature of the proposed ME-dipole antenna enabl...

  14. Combination of solid phase extraction and dispersive liquid-liquid microextraction for separation/preconcentration of ultra trace amounts of uranium prior to its fiber optic-linear array spectrophotometry determination.

    Science.gov (United States)

    Dadfarnia, Shayessteh; Shabani, Ali Mohammad Haji; Shakerian, Farid; Shiralian Esfahani, Golnaz

    2013-12-15

    A simple and sensitive method for the separation and preconcentration of the ultra trace amounts of uranium and its determination by spectrophotometry was developed. The method is based on the combination of solid phase extraction and dispersive liquid-liquid microextraction. Thus, by passing the sample through the basic alumina column, the uranyl ion and some cations are separated from the sample matrix. The retained uranyl ion along with the cations are eluted with 5 mL of nitric acid (2 mol L(-1)) and after neutralization of the eluent, the extracted uranyl ion is converted to its anionic benzoate complex and is separated from other cations by extraction of its ion pair with malachite green into small volume of chloroform using dispersive liquid-liquid microextraction. The amount of uranium is then determined by the absorption measurement of the extracted ion pair at 621 nm using flow injection spectrophotometry. Under the optimum conditions, with 500 mL of the sample, a preconcentration factor of 1980, a detection limit of 40 ng L(-1), and a relative standard deviation of 4.1% (n=6) at 400 ng L(-1) were obtained. The method was successfully applied to the determination of uranium in mineral water, river water, well water, spring water and sea water samples. Copyright © 2013 Elsevier B.V. All rights reserved.

  15. APRON: A Cellular Processor Array Simulation and Hardware Design Tool

    Science.gov (United States)

    Barr, David R. W.; Dudek, Piotr

    2009-12-01

    We present a software environment for the efficient simulation of cellular processor arrays (CPAs). This software (APRON) is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.

  16. APRON: A Cellular Processor Array Simulation and Hardware Design Tool

    Directory of Open Access Journals (Sweden)

    David R. W. Barr

    2009-01-01

    Full Text Available We present a software environment for the efficient simulation of cellular processor arrays (CPAs. This software (APRON is used to explore algorithms that are designed for massively parallel fine-grained processor arrays, topographic multilayer neural networks, vision chips with SIMD processor arrays, and related architectures. The software uses a highly optimised core combined with a flexible compiler to provide the user with tools for the design of new processor array hardware architectures and the emulation of existing devices. We present performance benchmarks for the software processor array implemented on standard commodity microprocessors. APRON can be configured to use additional processing hardware if necessary and can be used as a complete graphical user interface and development environment for new or existing CPA systems, allowing more users to develop algorithms for CPA systems.

  17. Technique for Extension of Small Antenna Array Mutual-Coupling Data to Larger Antenna Arrays

    Science.gov (United States)

    Bailey, M. C.

    1996-01-01

    A technique is presented whereby the mutual interaction between a small number of elements in a planar array can be interpolated and extrapolated to accurately predict the combined interactions in a much larger array of many elements. An approximate series expression is developed, based upon knowledge of the analytical characteristic behavior of the mutual admittance between small aperture antenna elements in a conducting ground plane. This expression is utilized to analytically extend known values for a few spacings and orientations to other element configurations, thus eliminating the need to numerically integrate a large number of highly oscillating and slowly converging functions. This paper shows that the technique can predict very accurately the mutual coupling between elements in a very large planar array with a knowledge of the self-admittance of an isolated element and the coupling between only two-elements arranged in eight different pair combinations. These eight pair combinations do not necessarily have to correspond to pairs in the large array, although all of the individual elements must be identical.

  18. Analysis of monoamine oxidase (MAO) enzymatic activity by high-performance liquid chromatography-diode array detection combined with an assay of oxidation with a peroxidase and its application to MAO inhibitors from foods and plants.

    Science.gov (United States)

    Herraiz, Tomás; Flores, Andrea; Fernández, Lidia

    2018-01-15

    Monoamine oxidase (MAO) enzymes catalyze the oxidative deamination of biogenic amines and neurotransmitters and produce ammonia, aldehydes, and hydrogen peroxide which is involved in oxidative processes. Inhibitors of MAO-A and -B isozymes are useful as antidepressants and neuroprotectants. The assays of MAO usually measure amine oxidation products or hydrogen peroxide by spectrophotometric techniques. Those assays are often compromised by interfering compounds resulting in poor results. This research describes a new method that combines in the same assay the oxidative deamination of kynuramine to 4-hydroxyquinoline analyzed by HPLC-DAD with the oxidation of tetramethylbenzidine (TMB) (or Amplex Rex) by horseradish peroxidase (HRP) in presence of hydrogen peroxide. The new method was applied to study the inhibition of human MAO-A and -B by bioactive compounds including β-carboline alkaloids and flavonoids occurring in foods and plants. As determined by HPLC-DAD, β-carbolines, methylene blue, kaempferol and clorgyline inhibited MAO-A and methylene blue, 5-nitroindazole, norharman and deprenyl inhibited MAO-B, and all of them inhibited the oxidation of TMB in the same extent. The flavonoids catechin and cyanidin were not inhibitors of MAO by HPLC-DAD but highly inhibited the oxidation of TMB (or Amplex Red) by peroxidase whereas quercetin and resveratrol were moderate inhibitors of MAO-A by HPLC-DAD, but inhibited the peroxidase assay in a higher level. For some phenolic compounds, using the peroxidase-coupled assay to measure MAO activity led to mistaken results. The new method permits to discern between true inhibitors of MAO from those that are antioxidants and which interfere with peroxidase assays but do not inhibit MAO. For true inhibitors of MAO, inhibition as determined by HPLC-DAD correlated well with inhibition of the oxidation of TMB and this approach can be used to assess the in vitro antioxidant activity (less hydrogen peroxide production) resulting

  19. Calibration strategies for the Cherenkov Telescope Array

    Science.gov (United States)

    Gaug, Markus; Berge, David; Daniel, Michael; Doro, Michele; Förster, Andreas; Hofmann, Werner; Maccarone, Maria C.; Parsons, Dan; de los Reyes Lopez, Raquel; van Eldik, Christopher

    2014-08-01

    The Central Calibration Facilities workpackage of the Cherenkov Telescope Array (CTA) observatory for very high energy gamma ray astronomy defines the overall calibration strategy of the array, develops dedicated hardware and software for the overall array calibration and coordinates the calibration efforts of the different telescopes. The latter include LED-based light pulsers, and various methods and instruments to achieve a calibration of the overall optical throughput. On the array level, methods for the inter-telescope calibration and the absolute calibration of the entire observatory are being developed. Additionally, the atmosphere above the telescopes, used as a calorimeter, will be monitored constantly with state-of-the-art instruments to obtain a full molecular and aerosol profile up to the stratosphere. The aim is to provide a maximal uncertainty of 10% on the reconstructed energy-scale, obtained through various independent methods. Different types of LIDAR in combination with all-sky-cameras will provide the observatory with an online, intelligent scheduling system, which, if the sky is partially covered by clouds, gives preference to sources observable under good atmospheric conditions. Wide-field optical telescopes and Raman Lidars will provide online information about the height-resolved atmospheric extinction, throughout the field-of-view of the cameras, allowing for the correction of the reconstructed energy of each gamma-ray event. The aim is to maximize the duty cycle of the observatory, in terms of usable data, while reducing the dead time introduced by calibration activities to an absolute minimum.

  20. Imprinting of molecular recognition sites combined with π-donor-acceptor interactions using bis-aniline-crosslinked Au-CdSe/ZnS nanoparticles array on electrodes: Development of electrochemiluminescence sensor for the ultrasensitive and selective detection of 2-methyl-4-chlorophenoxyacetic acid.

    Science.gov (United States)

    Yang, Yukun; Fang, Guozhen; Wang, Xiaomin; Liu, Guiyang; Wang, Shuo

    2016-03-15

    A novel strategy is reported for the fabrication of bis-aniline-crosslinked Au nanoparticles (NPs)-CdSe/ZnS quantum dots (QDs) array composite by facil one-step co-electropolymerization of thioaniline-functionalized AuNPs and thioaniline-functionalized CdSe/ZnS QDs onto thioaniline-functionalized Au elctrodes (AuE). Stable and enhanced cathodic electrochemiluminescence (ECL) of CdSe/ZnS QDs is observed on the modified electrode in neutral solution, suggesting promising applications in ECL sensing. An advanced ECL sensor is explored for detection of 2-methyl-4-chlorophenoxyacetic acid (MCPA) which quenches the ECL signal through electron-transfer pathway. The sensitive determination of MCPA with limit of detection (LOD) of 2.2 nmolL(-1) (S/N=3) is achieved by π-donor-acceptor interactions between MCPA and the bis-aniline bridging units. Impressively, the imprinting of molecular recognition sites into the bis-aniline-crosslinked AuNPs-CdSe/ZnS QDs array yields a functionalized electrode with an extremely sensitive response to MCPA in a linear range of 10 pmolL(-1)-50 μmolL(-1) with a LOD of 4.3 pmolL(-1 ()S/N=3). The proposed ECL sensor with high sensitivity, good selectivity, reproducibility and stability has been successfully applied for the determination of MCPA in real samples with satisfactory recoveries. In this study, ECL sensor combined the merits of QDs-ECL and molecularly imprinting technology is reported for the first time. The developed ECL sensor holds great promise for the fabrication of QDs-based ECL sensors with improved sensitivity and furthermore opens the door to wide applications of QDs-based ECL in food safety and environmental monitoring. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Educational Cosmic Ray Arrays

    International Nuclear Information System (INIS)

    Soluk, R. A.

    2006-01-01

    In the last decade a great deal of interest has arisen in using sparse arrays of cosmic ray detectors located at schools as a means of doing both outreach and physics research. This approach has the unique advantage of involving grade school students in an actual ongoing experiment, rather then a simple teaching exercise, while at the same time providing researchers with the basic infrastructure for installation of cosmic ray detectors. A survey is made of projects in North America and Europe and in particular the ALTA experiment at the University of Alberta which was the first experiment operating under this paradigm

  2. Storage array reflection considerations

    International Nuclear Information System (INIS)

    Haire, M.J.; Jordan, W.C.; Taylor, R.G.

    1997-01-01

    The assumptions used for reflection conditions of single containers are fairly well established and consistently applied throughout the industry in nuclear criticality safety evaluations. Containers are usually considered to be either fully water-reflected (i.e. surrounded by 6 to 12 in. of water) for safety calculations or reflected by 1 in. of water for nominal (structural material and air) conditions. Tables and figures are usually available for performing comparative evaluations of containers under various loading conditions. Reflection considerations used for evaluating the safety of storage arrays of fissile material are not as well established

  3. Surface inspection technique with an eddy current testing array probe

    International Nuclear Information System (INIS)

    Nishimizu, Akira; Endo, Hisashi; Tooma, Masahiro; Otani, Kenichi; Ouchi, Hirofumi; Yoshida, Isao; Nonaka, Yoshio

    2010-01-01

    An eddy current testing (ECT) system has been developed for inspecting weld surfaces of components in the reactor pressure vessel of nuclear plants. The system can be applied to curved surfaces with an ECT array probe, it can discriminate flaws from other signal factors by using a combination of arrayed coils signal-phase. The system is applied to a mock-up of core internal components and the signal discrimination using the signal-phase clearly separated flaw and noise signals. (author)

  4. Design of Hybrid Nanostructural Arrays to Manipulate SERS-Active Substrates by Nanosphere Lithography.

    Science.gov (United States)

    Zhao, Xiaoyu; Wen, Jiahong; Zhang, Mengning; Wang, Dunhui; Wang, Yaxin; Chen, Lei; Zhang, Yongjun; Yang, Jinghai; Du, Youwei

    2017-03-01

    An easy-handling and low-cost method is utilized to controllably fabricate nanopattern arrays as the surface-enhanced Raman scattering (SERS) active substrates with high density of SERS-active areas (hot spots). A hybrid silver array of nanocaps and nanotriangles are prepared by combining magnetron sputtering and plasma etching. By adjusting the etching time of polystyrene (PS) colloid spheres array in silver nanobowls, the morphology of the arrays can be easily manipulated to control the formation and distribution of hot spots. The experimental results show that the hybrid nanostructural arrays have large enhancement factor, which is estimated to be seven times larger than that in the array of nanocaps and three times larger than that in the array of nanorings and nanoparticles. According to the results of finite-difference time-domain simulation, the excellent SERS performance of this array is ascribed to the high density of hot spots and enhanced electromagnetic field.

  5. Optimised 'on demand' protein arraying from DNA by cell free expression with the 'DNA to Protein Array' (DAPA) technology.

    Science.gov (United States)

    Schmidt, Ronny; Cook, Elizabeth A; Kastelic, Damjana; Taussig, Michael J; Stoevesandt, Oda

    2013-08-02

    We have previously described a protein arraying process based on cell free expression from DNA template arrays (DNA Array to Protein Array, DAPA). Here, we have investigated the influence of different array support coatings (Ni-NTA, Epoxy, 3D-Epoxy and Polyethylene glycol methacrylate (PEGMA)). Their optimal combination yields an increased amount of detected protein and an optimised spot morphology on the resulting protein array compared to the previously published protocol. The specificity of protein capture was improved using a tag-specific capture antibody on a protein repellent surface coating. The conditions for protein expression were optimised to yield the maximum amount of protein or the best detection results using specific monoclonal antibodies or a scaffold binder against the expressed targets. The optimised DAPA system was able to increase by threefold the expression of a representative model protein while conserving recognition by a specific antibody. The amount of expressed protein in DAPA was comparable to those of classically spotted protein arrays. Reaction conditions can be tailored to suit the application of interest. DAPA represents a cost effective, easy and convenient way of producing protein arrays on demand. The reported work is expected to facilitate the application of DAPA for personalized medicine and screening purposes. Copyright © 2013 Elsevier B.V. All rights reserved.

  6. Carbon Nanofiber Electrode Array for Neurochemical Monitoring

    Science.gov (United States)

    Koehne, Jessica E.

    2017-01-01

    A sensor platform based on vertically aligned carbon nanofibers (CNFs) has been developed. Their inherent nanometer scale, high conductivity, wide potential window, good biocompatibility and well-defined surface chemistry make them ideal candidates as biosensor electrodes. Here, we report using vertically aligned CNF as neurotransmitter recording electrodes for application in a smart deep brain stimulation (DBS) device. Our approach combines a multiplexed CNF electrode chip, developed at NASA Ames Research Center, with the Wireless Instantaneous Neurotransmitter Concentration Sensor (WINCS) system, developed at the Mayo Clinic. Preliminary results indicate that the CNF nanoelectrode arrays are easily integrated with WINCS for neurotransmitter detection in a multiplexed array format. In the future, combining CNF based stimulating and recording electrodes with WINCS may lay the foundation for an implantable smart therapeutic system that utilizes neurochemical feedback control while likely resulting in increased DBS application in various neuropsychiatric disorders. In total, our goal is to take advantage of the nanostructure of CNF arrays for biosensing studies requiring ultrahigh sensitivity, high-degree of miniaturization, and selective biofunctionalization.

  7. Combinatorial aspects of covering arrays

    Directory of Open Access Journals (Sweden)

    Charles J. Colbourn

    2004-11-01

    Full Text Available Covering arrays generalize orthogonal arrays by requiring that t -tuples be covered, but not requiring that the appearance of t -tuples be balanced.Their uses in screening experiments has found application in software testing, hardware testing, and a variety of fields in which interactions among factors are to be identified. Here a combinatorial view of covering arrays is adopted, encompassing basic bounds, direct constructions, recursive constructions, algorithmic methods, and applications.

  8. Array architectures for iterative algorithms

    Science.gov (United States)

    Jagadish, Hosagrahar V.; Rao, Sailesh K.; Kailath, Thomas

    1987-01-01

    Regular mesh-connected arrays are shown to be isomorphic to a class of so-called regular iterative algorithms. For a wide variety of problems it is shown how to obtain appropriate iterative algorithms and then how to translate these algorithms into arrays in a systematic fashion. Several 'systolic' arrays presented in the literature are shown to be specific cases of the variety of architectures that can be derived by the techniques presented here. These include arrays for Fourier Transform, Matrix Multiplication, and Sorting.

  9. A comparison of the cosmic-ray energy scales of Tunka-133 and KASCADE-Grande via their radio extensions Tunka-Rex and LOPES

    Directory of Open Access Journals (Sweden)

    W.D. Apel

    2016-12-01

    Full Text Available The radio technique is a promising method for detection of cosmic-ray air showers of energies around 100PeV and higher with an array of radio antennas. Since the amplitude of the radio signal can be measured absolutely and increases with the shower energy, radio measurements can be used to determine the air-shower energy on an absolute scale. We show that calibrated measurements of radio detectors operated in coincidence with host experiments measuring air showers based on other techniques can be used for comparing the energy scales of these host experiments. Using two approaches, first via direct amplitude measurements, and second via comparison of measurements with air shower simulations, we compare the energy scales of the air-shower experiments Tunka-133 and KASCADE-Grande, using their radio extensions, Tunka-Rex and LOPES, respectively. Due to the consistent amplitude calibration for Tunka-Rex and LOPES achieved by using the same reference source, this comparison reaches an accuracy of approximately 10% – limited by some shortcomings of LOPES, which was a prototype experiment for the digital radio technique for air showers. In particular we show that the energy scales of cosmic-ray measurements by the independently calibrated experiments KASCADE-Grande and Tunka-133 are consistent with each other on this level.

  10. Josephson junctions array resonators

    Energy Technology Data Exchange (ETDEWEB)

    Gargiulo, Oscar; Muppalla, Phani; Mirzaei, Iman; Kirchmair, Gerhard [Institute for Quantum Optics and Quantum Information, Innsbruck (Austria)

    2016-07-01

    We present an experimental analysis of the self- and cross-Kerr effect of extended plasma resonances in Josephson junction chains. The chain consists of 1600 individual junctions and we can measure quality factors in excess of 10000. The Kerr effect manifests itself as a frequency shift that depends linearly on the number of photons in a resonant mode. By changing the input power we are able to measure this frequency shift on a single mode (self-kerr). By changing the input power on another mode while measuring the same one, we are able to evaluate the cross-kerr effect. We can measure the cross-Kerr effect by probing the resonance frequency of one mode while exciting another mode of the array with a microwave drive.

  11. Diagnosable structured logic array

    Science.gov (United States)

    Whitaker, Sterling (Inventor); Miles, Lowell (Inventor); Gambles, Jody (Inventor); Maki, Gary K. (Inventor)

    2009-01-01

    A diagnosable structured logic array and associated process is provided. A base cell structure is provided comprising a logic unit comprising a plurality of input nodes, a plurality of selection nodes, and an output node, a plurality of switches coupled to the selection nodes, where the switches comprises a plurality of input lines, a selection line and an output line, a memory cell coupled to the output node, and a test address bus and a program control bus coupled to the plurality of input lines and the selection line of the plurality of switches. A state on each of the plurality of input nodes is verifiably loaded and read from the memory cell. A trusted memory block is provided. The associated process is provided for testing and verifying a plurality of truth table inputs of the logic unit.

  12. Low Frequency Space Array

    International Nuclear Information System (INIS)

    Dennison, B.; Weiler, K.W.; Johnston, K.J.

    1987-01-01

    The Low Frequency Space Array (LFSA) is a conceptual mission to survey the entire sky and to image individual sources at frequencies between 1.5 and 26 MHz, a frequency range over which the earth's ionosphere transmits poorly or not at all. With high resolution, high sensitivity observations, a new window will be opened in the electromagnetic spectrum for astronomical investigation. Also, extending observations down to such low frequencies will bring astronomy to the fundamental limit below which the galaxy becomes optically thick due to free-free absorption. A number of major scientific goals can be pursued with such a mission, including mapping galactic emission and absorption, studies of individual source spectra in a frequency range where a number of important processes may play a role, high resolution imaging of extended sources, localization of the impulsive emission from Jupiter, and a search for coherent emission processes. 19 references

  13. Scintillator detector array

    International Nuclear Information System (INIS)

    Cusano, D.A.; Dibianca, F.A.

    1981-01-01

    This patent application relates to a scintillator detector array for use in computerized tomography and comprises a housing including a plurality of chambers, the said housing having a front wall transmissive to x-rays and side walls opaque to x-rays, such as of tungsten and tantalum, a liquid scintillation medium including a soluble fluor, the solvent for the fluor being disposed in the chambers. The solvent comprises either an intrinsically high Z solvent or a solvent which has dissolved therein a high Z compound e.g. iodo or bromonaphthalene; or toluene, xylene or trimethylbenzene with a lead or tin alkyl dissolved therein. Also disposed about the chambers are a plurality of photoelectric devices. (author)

  14. Antennas for the detection of radio emission pulses from cosmic-ray induced air showers at the Pierre Auger Obervatory

    Czech Academy of Sciences Publication Activity Database

    Abreu, P.; Aglietta, M.; Ahlers, M.; Boháčová, Martina; Chudoba, Jiří; Ebr, Jan; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr; Vícha, Jakub

    2012-01-01

    Roč. 7, Oct (2012), s. 1-42 ISSN 1748-0221 R&D Projects: GA MŠk LC527; GA MŠk(CZ) 1M06002; GA MŠk(CZ) MEB111003; GA AV ČR KJB100100904; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : large detector systems for particle and astroparticle physics * antennas Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 1.869, year: 2011

  15. Measurement of the depth of maximum of extensive air showers above 10.sup.18./sup. eV

    Czech Academy of Sciences Publication Activity Database

    Abraham, J.; Abreu, P.; Aglietta, M.; Boháčová, Martina; Chudoba, Jiří; Kárová, Tatiana; Mandát, Dušan; Nečesal, Petr; Nožka, Libor; Nyklíček, Michal; Palatka, Miroslav; Pech, Miroslav; Prouza, Michael; Řídký, Jan; Schovancová, Jaroslava; Schovánek, Petr; Šmída, Radomír; Trávníček, Petr

    2010-01-01

    Roč. 104, č. 9 (2010), 091101/1-091101/7 ISSN 0031-9007 R&D Projects: GA MŠk LC527; GA MŠk(CZ) 1M06002; GA AV ČR KJB100100904; GA AV ČR KJB300100801; GA MŠk(CZ) LA08016 Institutional research plan: CEZ:AV0Z10100502; CEZ:AV0Z10100522 Keywords : composition * cosmic rays * Pierre Auger Observatory Subject RIV: BF - Elementary Particles and High Energy Physics Impact factor: 7.621, year: 2010

  16. Extensive air showers accompanied by gamma-families and fraction of protons in the primary cosmic rays

    International Nuclear Information System (INIS)

    Hamayasu, C.; Saito, To.; Sakata, M.

    1987-01-01

    Experimental data of EAS accompanied by gamma-families with a total energy greater than 10 TeV are taken at Mt. Norikura in 1980 -- 1981 and in 1985. An EX (emulsion and/or x-ray film) chamber is used, which consists six sensitive layers and iron plates as the absorber. The iron absorber chamber can detect more hadron origin cascades than a lead absorber chamber for the same chamber thickness in radiation length, though disadvantageous for separation of gamma-ray origin cascades from hadron origin ones. Analysis is made of the single gamma-ray energy spectrum, integral spectrum of total energies of gamma-families, zenith angle distributions of gamma-families, the scatter plot of EAS size - ΣE γ,H correlation, arrival zenith angle distribution of general EAS, and depth dependence of absolute vertical intensities of EAS. The data obtained are compared by the Monte Carlo simulation technique with a moderate rising cross section proportional to the collision energy in the form E 0.04 for p-air nucleus collisions. The absolute intensity of size spectrum of such EAS is strongly affected by the fraction of primary protonsin the 10 15 -- 10 16 eV region. The experimental size spectrum agrees with the simulated spectrum for the p-poor (up to 15 %) primary composition but it disagrees with the p-rich (up to 40 %) one in the first half, at least, of this energy region. (Nogami, K.)

  17. The differences in delay times for air showers initiated by 100 TeV gamma rays and protons

    International Nuclear Information System (INIS)

    Mikocki, S.; Poirier, J.; Linsley, J.; Consiglio Nazionale delle Ricerche, Palermo; Wrotniak, A.; Maryland Univ., College Park

    1987-01-01

    The purpose of this study is to investigate whether there are any differences in the time delay distributions between showers initiated by gamma rays and by protons. The results of Monte Carlo calculations of atmospheric showers initiated by gamma rays and protons at an energy of 100 TeV show systematic differences. These differences are negligible at small distances from the core of the showers; at larger distances the effects become large. However, at large distances the particle densities are small at an energy of 100 TeV and the subsequent statistical fluctuations would make an identification of gamma-ray showers unreliable. However, these large effects should be included in corrections for the curvature of gamma-ray and proton shower fronts. (author)

  18. Evaluating the Efficiency of Air Shower in Removing Lead from Army Combat Uniform Swatches Loaded with Gunshot Residue

    Science.gov (United States)

    2016-03-25

    about ASs ability to reduce Pb contamination on ACU resulting from activities on IFRs . The results of this study could impact the use of ASs at IFRs by...the 0-, 45-, and 90-degree angles of impact . Analysis of lead mass remaining on swatches after the exposure indicated the percent of lead removed...22 Number and Design of Nozzles ........................................................................ 23 Angle of Impact

  19. Cascading Constrained 2-D Arrays using Periodic Merging Arrays

    DEFF Research Database (Denmark)

    Forchhammer, Søren; Laursen, Torben Vaarby

    2003-01-01

    We consider a method for designing 2-D constrained codes by cascading finite width arrays using predefined finite width periodic merging arrays. This provides a constructive lower bound on the capacity of the 2-D constrained code. Examples include symmetric RLL and density constrained codes...

  20. A Method to Search for Correlations of Ultra-high Energy Cosmic-Ray Masses with the Large-scale Structures in the Local Galaxy Density Field

    Science.gov (United States)

    Ivanov, A. A.

    2013-02-01

    One of the main goals of investigations using present and future giant extensive air shower (EAS) arrays is the mass composition of ultra-high energy cosmic rays (UHECRs). A new approach to the problem is presented, combining the analysis of arrival directions with the statistical test of the paired EAS samples. One of the ideas of the method is to search for possible correlations between UHECR masses and their separate sources; for instance, if there are two sources in different areas of the celestial sphere injecting different nuclei, but the fluxes are comparable so that arrival directions are isotropic, then the aim is to reveal a difference in the mass composition of cosmic-ray fluxes. The method is based on a non-parametric statistical test—the Wilcoxon signed-rank routine—which does not depend on the populations fitting any parameterized distributions. Two particular algorithms are proposed: first, using measurements of the depth of the EAS maximum position in the atmosphere; and second, relying on the age variance of air showers initiated by different primary particles. The formulated method is applied to the Yakutsk array data, in order to demonstrate the possibility of searching for a difference in average mass composition between the two UHECR sets, arriving particularly from the supergalactic plane and a complementary region.

  1. A METHOD TO SEARCH FOR CORRELATIONS OF ULTRA-HIGH ENERGY COSMIC-RAY MASSES WITH THE LARGE-SCALE STRUCTURES IN THE LOCAL GALAXY DENSITY FIELD

    International Nuclear Information System (INIS)

    Ivanov, A. A.

    2013-01-01

    One of the main goals of investigations using present and future giant extensive air shower (EAS) arrays is the mass composition of ultra-high energy cosmic rays (UHECRs). A new approach to the problem is presented, combining the analysis of arrival directions with the statistical test of the paired EAS samples. One of the ideas of the method is to search for possible correlations between UHECR masses and their separate sources; for instance, if there are two sources in different areas of the celestial sphere injecting different nuclei, but the fluxes are comparable so that arrival directions are isotropic, then the aim is to reveal a difference in the mass composition of cosmic-ray fluxes. The method is based on a non-parametric statistical test—the Wilcoxon signed-rank routine—which does not depend on the populations fitting any parameterized distributions. Two particular algorithms are proposed: first, using measurements of the depth of the EAS maximum position in the atmosphere; and second, relying on the age variance of air showers initiated by different primary particles. The formulated method is applied to the Yakutsk array data, in order to demonstrate the possibility of searching for a difference in average mass composition between the two UHECR sets, arriving particularly from the supergalactic plane and a complementary region.

  2. A METHOD TO SEARCH FOR CORRELATIONS OF ULTRA-HIGH ENERGY COSMIC-RAY MASSES WITH THE LARGE-SCALE STRUCTURES IN THE LOCAL GALAXY DENSITY FIELD

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, A. A., E-mail: ivanov@ikfia.ysn.ru [Shafer Institute for Cosmophysical Research and Aeronomy, 31 Lenin Avenue, Yakutsk 677980 (Russian Federation)

    2013-02-15

    One of the main goals of investigations using present and future giant extensive air shower (EAS) arrays is the mass composition of ultra-high energy cosmic rays (UHECRs). A new approach to the problem is presented, combining the analysis of arrival directions with the statistical test of the paired EAS samples. One of the ideas of the method is to search for possible correlations between UHECR masses and their separate sources; for instance, if there are two sources in different areas of the celestial sphere injecting different nuclei, but the fluxes are comparable so that arrival directions are isotropic, then the aim is to reveal a difference in the mass composition of cosmic-ray fluxes. The method is based on a non-parametric statistical test-the Wilcoxon signed-rank routine-which does not depend on the populations fitting any parameterized distributions. Two particular algorithms are proposed: first, using measurements of the depth of the EAS maximum position in the atmosphere; and second, relying on the age variance of air showers initiated by different primary particles. The formulated method is applied to the Yakutsk array data, in order to demonstrate the possibility of searching for a difference in average mass composition between the two UHECR sets, arriving particularly from the supergalactic plane and a complementary region.

  3. Cosmic Ray Studies with IceCube

    Science.gov (United States)

    Gonzalez, Javier

    In this contribution we will give an overview of the cosmic ray studies conducted within the IceCube collaboration. The IceCube detector in the geographical south pole can be used to measure various characteristics of the extensive air showers induced by high energy cosmic rays. With IceTop, the surface component of the detector, we detect the electromagnetic and muon components of the air showers, while with the deep detector we detect the high energy muons. We have measured the energy spectrum of cosmic ray primaries in the range between 1.58PeV and 1.26 EeV. A combined analysis of the high energy muon bundles in the ice and the air shower footprint in IceTop provides a measure of primary composition. We will also discuss how the sensitivity to low energy muons in the air showers has the potential to produce additional measures of primary composition.

  4. Cyclotron-Resonance-Maser Arrays

    International Nuclear Information System (INIS)

    Kesar, A.; Lei, L.; Dikhtyar, V.; Korol, M.; Jerby, E.

    1999-01-01

    The cyclotron-resonance-maser (CRM) array [1] is a radiation source which consists of CRM elements coupled together under a common magnetic field. Each CRM-element employs a low-energy electron-beam which performs a cyclotron interaction with the local electromagnetic wave. These waves can be coupled together among the CRM elements, hence the interaction is coherently synchronized in the entire array. The implementation of the CRM-array approach may alleviate several technological difficulties which impede the development of single-beam gyro-devices. Furthermore, it proposes new features, such as the phased-array antenna incorporated in the CRM-array itself. The CRM-array studies may lead to the development of compact, high-power radiation sources operating at low-voltages. This paper introduces new conceptual schemes of CRM-arrays, and presents the progress in related theoretical and experimental studies in our laboratory. These include a multi-mode analysis of a CRM-array, and a first operation of this device with five carbon-fiber cathodes

  5. Submillimeter heterodyne arrays for APEX

    NARCIS (Netherlands)

    Güsten, R.; Baryshev, A.; Bell, A.; Belloche, A.; Graf, U.; Hafok, H.; Heyminck, S.; Hochgürtel, S.; Honingh, C. E.; Jacobs, K.; Kasemann, C.; Klein, B.; Klein, T.; Korn, A.; Krämer, I.; Leinz, C.; Lundgren, A.; Menten, K. M.; Meyer, K.; Muders, D.; Pacek, F.; Rabanus, D.; Schäfer, F.; Schilke, P.; Schneider, G.; Stutzki, J.; Wieching, G.; Wunsch, A.; Wyrowski, F.

    2008-01-01

    We report on developments of submillimeter heterodyne arrays for high resolution spectroscopy with APEX. Shortly, we will operate state-of-the-art instruments in all major atmospheric windows accessible from Llano de Chajnantor. CHAMP+, a dual-color 2×7 element heterodyne array for operation in the

  6. Ordered arrays of embedded Ga nanoparticles on patterned silicon substrates

    International Nuclear Information System (INIS)

    Bollani, M; Bietti, S; Sanguinetti, S; Frigeri, C; Chrastina, D; Reyes, K; Smereka, P; Millunchick, J M; Vanacore, G M; Tagliaferri, A; Burghammer, M

    2014-01-01

    We fabricate site-controlled, ordered arrays of embedded Ga nanoparticles on Si, using a combination of substrate patterning and molecular-beam epitaxial growth. The fabrication process consists of two steps. Ga droplets are initially nucleated in an ordered array of inverted pyramidal pits, and then partially crystallized by exposure to an As flux, which promotes the formation of a GaAs shell that seals the Ga nanoparticle within two semiconductor layers. The nanoparticle formation process has been investigated through a combination of extensive chemical and structural characterization and theoretical kinetic Monte Carlo simulations. (papers)

  7. A 7T spine array based on electric dipole transmitters.

    Science.gov (United States)

    Duan, Qi; Nair, Govind; Gudino, Natalia; de Zwart, Jacco A; van Gelderen, Peter; Murphy-Boesch, Joe; Reich, Daniel S; Duyn, Jeff H; Merkle, Hellmut

    2015-10-01

    The goal of this study was to explore the feasibility of using an array of electric dipole antennas for RF transmission in spine MRI at high fields. A two-channel transmit array based on an electric dipole design was quantitatively optimized for 7T spine imaging and integrated with a receive array combining eight loop coils. Using B1+ mapping, the transmit efficiency of the dipole array was compared with a design using quadrature loop pairs. The radiofrequency energy deposition for each array was measured using a home-built dielectric phantom and MR thermometry. The performance of the proposed array was qualitatively demonstrated in human studies. The results indicate dramatically improved transmit efficiency for the dipole design compared with the loop excitation. A gain of up to 76% was achieved within the spinal region. For imaging of the spine, electric dipole-based transmitters provide an attractive alternative to the traditional loop-based design. Easy integration with existing receive array technology facilitates practical use at high fields. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.

  8. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo

    2016-12-19

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  9. Digital electrostatic acoustic transducer array

    KAUST Repository

    Carreno, Armando Arpys Arevalo; Castro, David; Conchouso Gonzalez, David; Kosel, Jü rgen; Foulds, Ian G.

    2016-01-01

    In this paper we present the fabrication and characterization of an array of electrostatic acoustic transducers. The array is micromachined on a silicon wafer using standard micro-machining techniques. Each array contains 2n electrostatic transducer membranes, where “n” is the bit number. Every element of the array has a hexagonal membrane shape structure, which is separated from the substrate by 3µm air gap. The membrane is made out 5µm thick polyimide layer that has a bottom gold electrode on the substrate and a gold top electrode on top of the membrane (250nm). The wafer layout design was diced in nine chips with different array configurations, with variation of the membrane dimensions. The device was tested with 90 V giving and sound output level as high as 35dB, while actuating all the elements at the same time.

  10. Chunking of Large Multidimensional Arrays

    Energy Technology Data Exchange (ETDEWEB)

    Rotem, Doron; Otoo, Ekow J.; Seshadri, Sridhar

    2007-02-28

    Data intensive scientific computations as well on-lineanalytical processing applications as are done on very large datasetsthat are modeled as k-dimensional arrays. The storage organization ofsuch arrays on disks is done by partitioning the large global array intofixed size hyper-rectangular sub-arrays called chunks or tiles that formthe units of data transfer between disk and memory. Typical queriesinvolve the retrieval of sub-arrays in a manner that accesses all chunksthat overlap the query results. An important metric of the storageefficiency is the expected number of chunks retrieved over all suchqueries. The question that immediately arises is "what shapes of arraychunks give the minimum expected number of chunks over a query workload?"In this paper we develop two probabilistic mathematical models of theproblem and provide exact solutions using steepest descent and geometricprogramming methods. Experimental results, using synthetic workloads onreal life data sets, show that our chunking is much more efficient thanthe existing approximate solutions.

  11. Passive microfluidic array card and reader

    Science.gov (United States)

    Dugan, Lawrence Christopher [Modesto, CA; Coleman, Matthew A [Oakland, CA

    2011-08-09

    A microfluidic array card and reader system for analyzing a sample. The microfluidic array card includes a sample loading section for loading the sample onto the microfluidic array card, a multiplicity of array windows, and a transport section or sections for transporting the sample from the sample loading section to the array windows. The microfluidic array card reader includes a housing, a receiving section for receiving the microfluidic array card, a viewing section, and a light source that directs light to the array window of the microfluidic array card and to the viewing section.

  12. SAQC: SNP Array Quality Control

    Directory of Open Access Journals (Sweden)

    Li Ling-Hui

    2011-04-01

    Full Text Available Abstract Background Genome-wide single-nucleotide polymorphism (SNP arrays containing hundreds of thousands of SNPs from the human genome have proven useful for studying important human genome questions. Data quality of SNP arrays plays a key role in the accuracy and precision of downstream data analyses. However, good indices for assessing data quality of SNP arrays have not yet been developed. Results We developed new quality indices to measure the quality of SNP arrays and/or DNA samples and investigated their statistical properties. The indices quantify a departure of estimated individual-level allele frequencies (AFs from expected frequencies via standardized distances. The proposed quality indices followed lognormal distributions in several large genomic studies that we empirically evaluated. AF reference data and quality index reference data for different SNP array platforms were established based on samples from various reference populations. Furthermore, a confidence interval method based on the underlying empirical distributions of quality indices was developed to identify poor-quality SNP arrays and/or DNA samples. Analyses of authentic biological data and simulated data show that this new method is sensitive and specific for the detection of poor-quality SNP arrays and/or DNA samples. Conclusions This study introduces new quality indices, establishes references for AFs and quality indices, and develops a detection method for poor-quality SNP arrays and/or DNA samples. We have developed a new computer program that utilizes these methods called SNP Array Quality Control (SAQC. SAQC software is written in R and R-GUI and was developed as a user-friendly tool for the visualization and evaluation of data quality of genome-wide SNP arrays. The program is available online (http://www.stat.sinica.edu.tw/hsinchou/genetics/quality/SAQC.htm.

  13. DOA Estimation of Cylindrical Conformal Array Based on Geometric Algebra

    Directory of Open Access Journals (Sweden)

    Minjie Wu

    2016-01-01

    Full Text Available Due to the variable curvature of the conformal carrier, the pattern of each element has a different direction. The traditional method of analyzing the conformal array is to use the Euler rotation angle and its matrix representation. However, it is computationally demanding especially for irregular array structures. In this paper, we present a novel algorithm by combining the geometric algebra with Multiple Signal Classification (MUSIC, termed as GA-MUSIC, to solve the direction of arrival (DOA for cylindrical conformal array. And on this basis, we derive the pattern and array manifold. Compared with the existing algorithms, our proposed one avoids the cumbersome matrix transformations and largely decreases the computational complexity. The simulation results verify the effectiveness of the proposed method.

  14. Thermal analysis for folded solar array of spacecraft in orbit

    International Nuclear Information System (INIS)

    Yang, W.H.; Cheng, H.E.; Cai, A.

    2004-01-01

    The combined radiation-conduction heat transfer in folded solar array was considered as a three-dimensional anisotropic conduction without inner heat source. The three-dimensional equivalent conductivity in cell plate were obtained. The especially discrete equation coefficients of the nodes on the surfaces of adjacent cell plates were deduced by utilizing the simplified radiation network among the two adjacent cell plate surfaces and the deep cold space. All the thermal influence factors on the temperature response of the folded solar array were considered carefully. SIP method was used to solve the discrete equation. By comparing the calculation results under three cases, the temperature response and the maximum average difference of the folded solar array was obtained during the period of throw-radome of the launch vehicle and spread of the folded solar array. The obtained result is a valuable reference for the selection of the launch time of the spacecraft

  15. Dependently typed array programs don’t go wrong

    NARCIS (Netherlands)

    Trojahner, K.; Grelck, C.

    2009-01-01

    The array programming paradigm adopts multidimensional arrays as the fundamental data structures of computation. Array operations process entire arrays instead of just single elements. This makes array programs highly expressive and introduces data parallelism in a natural way. Array programming

  16. Dependently typed array programs don't go wrong

    NARCIS (Netherlands)

    Trojahner, K.; Grelck, C.

    2008-01-01

    The array programming paradigm adopts multidimensional arrays as the fundamental data structures of computation. Array operations process entire arrays instead of just single elements. This makes array programs highly expressive and introduces data parallelism in a natural way. Array programming

  17. DNA Array-Based Gene Profiling

    Science.gov (United States)

    Mocellin, Simone; Provenzano, Maurizio; Rossi, Carlo Riccardo; Pilati, Pierluigi; Nitti, Donato; Lise, Mario

    2005-01-01

    Cancer is a heterogeneous disease in most respects, including its cellularity, different genetic alterations, and diverse clinical behaviors. Traditional molecular analyses are reductionist, assessing only 1 or a few genes at a time, thus working with a biologic model too specific and limited to confront a process whose clinical outcome is likely to be governed by the combined influence of many genes. The potential of functional genomics is enormous, because for each experiment, thousands of relevant observations can be made simultaneously. Accordingly, DNA array, like other high-throughput technologies, might catalyze and ultimately accelerate the development of knowledge in tumor cell biology. Although in its infancy, the implementation of DNA array technology in cancer research has already provided investigators with novel data and intriguing new hypotheses on the molecular cascade leading to carcinogenesis, tumor aggressiveness, and sensitivity to antiblastic agents. Given the revolutionary implications that the use of this technology might have in the clinical management of patients with cancer, principles of DNA array-based tumor gene profiling need to be clearly understood for the data to be correctly interpreted and appreciated. In the present work, we discuss the technical features characterizing this powerful laboratory tool and review the applications so far described in the field of oncology. PMID:15621987

  18. Array Phase Shifters: Theory and Technology

    Science.gov (United States)

    Romanofsky, Robert R.

    2007-01-01

    While there are a myriad of applications for microwave phase shifters in instrumentation and metrology, power combining, amplifier linearization, and so on, the most prevalent use is in scanning phased-array antennas. And while this market continues to be dominated by military radar and tracking platforms, many commercial applications have emerged in the past decade or so. These new and potential applications span low-Earth-orbit (LEO) communications satellite constellations and collision warning radar, an aspect of the Intelligent Vehicle Highway System or Automated Highway System. In any case, the phase shifters represent a considerable portion of the overall antenna cost, with some estimates approaching 40 percent for receive arrays. Ferrite phase shifters continue to be the workhorse in military-phased arrays, and while there have been advances in thin film ferrite devices, the review of this device technology in the previous edition of this book is still highly relevant. This chapter will focus on three types of phase shifters that have matured in the past decade: GaAs MESFET monolithic microwave integrated circuit (MMIC), micro-electromechanical systems (MEMS), and thin film ferroelectric-based devices. A brief review of some novel devices including thin film ferrite phase shifters and superconducting switches for phase shifter applications will be provided. Finally, the effects of modulo 2 phase shift limitations, phase errors, and transient response on bit error rate degradation will be considered.

  19. ESPRIT And Uniform Linear Arrays

    Science.gov (United States)

    Roy, R. H.; Goldburg, M.; Ottersten, B. E.; Swindlehurst, A. L.; Viberg, M.; Kailath, T.

    1989-11-01

    Abstract ¬â€?ESPRIT is a recently developed and patented technique for high-resolution estimation of signal parameters. It exploits an invariance structure designed into the sensor array to achieve a reduction in computational requirements of many orders of magnitude over previous techniques such as MUSIC, Burg's MEM, and Capon's ML, and in addition achieves performance improvement as measured by parameter estimate error variance. It is also manifestly more robust with respect to sensor errors (e.g. gain, phase, and location errors) than other methods as well. Whereas ESPRIT only requires that the sensor array possess a single invariance best visualized by considering two identical but other-wise arbitrary arrays of sensors displaced (but not rotated) with respect to each other, many arrays currently in use in various applications are uniform linear arrays of identical sensor elements. Phased array radars are commonplace in high-resolution direction finding systems, and uniform tapped delay lines (i.e., constant rate A/D converters) are the rule rather than the exception in digital signal processing systems. Such arrays possess many invariances, and are amenable to other types of analysis, which is one of the main reasons such structures are so prevalent. Recent developments in high-resolution algorithms of the signal/noise subspace genre including total least squares (TLS) ESPRIT applied to uniform linear arrays are summarized. ESPRIT is also shown to be a generalization of the root-MUSIC algorithm (applicable only to the case of uniform linear arrays of omni-directional sensors and unimodular cisoids). Comparisons with various estimator bounds, including CramerRao bounds, are presented.

  20. The Owens Valley Millimeter Array

    International Nuclear Information System (INIS)

    Padin, S.; Scott, S.L.; Woody, D.P.; Scoville, N.Z.; Seling, T.V.

    1991-01-01

    The telescopes and signal processing systems of the Owens Valley Millimeter Array are considered, and improvements in the sensitivity and stability of the instrument are characterized. The instrument can be applied to map sources in the 85 to 115 GHz and 218 to 265 GHz bands with a resolution of about 1 arcsec in the higher frequency band. The operation of the array is fully automated. The current scientific programs for the array encompass high-resolution imaging of protoplanetary/protostellar disk structures, observations of molecular cloud complexes associated with spiral structure in nearby galaxies, and observations of molecular structures in the nuclei of spiral and luminous IRAS galaxies. 9 refs

  1. Fundamentals of ultrasonic phased arrays

    CERN Document Server

    Schmerr, Lester W

    2014-01-01

    This book describes in detail the physical and mathematical foundations of ultrasonic phased array measurements.?The book uses linear systems theory to develop a comprehensive model of the signals and images that can be formed with phased arrays. Engineers working in the field of ultrasonic nondestructive evaluation (NDE) will find in this approach a wealth of information on how to design, optimize and interpret ultrasonic inspections with phased arrays. The fundamentals and models described in the book will also be of significant interest to other fields, including the medical ultrasound and

  2. Thermal Management of Quantum Cascade Lasers in an individually Addressable Array Architecture

    Science.gov (United States)

    2016-02-08

    diode arrays, along with access to both front and rear facets. Hence, both laser and single-pass amplifier arrays can be accommodated. A module was... CW conditions at an emission wavelength of 9 m. OCIS codes: Semiconductor lasers , quantum cascade (140.5965), Laser arrays (140.3290) 1...Rubio, "Active coherent beam combining of diode lasers ," Opt. Lett. 36, 999-1001 (2011). 2. B. G. Saar, K. Creedon, L. Missaggia, C. A. Wang, M. K

  3. Restoring Low Sidelobe Antenna Patterns with Failed Elements in a Phased Array Antenna

    Science.gov (United States)

    2016-02-01

    optimum low sidelobes are demonstrated in several examples. Index Terms — Array signal processing, beams, linear algebra , phased arrays, shaped...beam antennas. I. INTRODUCTION For many phased array antenna applications , low spatial sidelobes are required, and it is desirable to maintain...represented by a linear combination of low sidelobe beamformers with no failed elements, ’s, in a neighborhood around under the constraint that the linear

  4. SQIF Arrays as RF Sensors (Briefing Charts)

    National Research Council Canada - National Science Library

    Yukon, Stanford P

    2007-01-01

    ... (Superconducting Quantum Interference Filter) arrays may be employed as sensitive RF sensors. RF SQIF arrays fabricated with high Tc Josephson junctions can be cooled with small Sterling microcoolers...

  5. Forecast Combinations

    OpenAIRE

    Timmermann, Allan G

    2005-01-01

    Forecast combinations have frequently been found in empirical studies to produce better forecasts on average than methods based on the ex-ante best individual forecasting model. Moreover, simple combinations that ignore correlations between forecast errors often dominate more refined combination schemes aimed at estimating the theoretically optimal combination weights. In this paper we analyse theoretically the factors that determine the advantages from combining forecasts (for example, the d...

  6. New air Cherenkov light detectors to study mass composition of cosmic rays with energies above knee region

    Energy Technology Data Exchange (ETDEWEB)

    Tsunesada, Yoshiki, E-mail: tsunesada@cr.phys.titech.ac.jp [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550 Japan (Japan); Katsuya, Ryoichi, E-mail: katsuya@cr.phys.titech.ac.jp [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550 Japan (Japan); Mitsumori, Yu; Nakayama, Keisuke; Kakimoto, Fumio; Tokuno, Hisao [Graduate School of Science and Engineering, Tokyo Institute of Technology, Meguro, Tokyo 152-8550 Japan (Japan); Tajima, Norio [RIKEN, Wako, Saitama 351-0198 (Japan); Miranda, Pedro; Salinas, Juan; Tavera, Wilfredo [Instituto de Investigaciones Físicas, Universidad Mayor de San Andrés, La Paz (Bolivia, Plurinational State of)

    2014-11-01

    We have installed a hybrid detection system for air showers generated by cosmic rays with energies greater than 3×10{sup 15}eV at Mount Chacaltaya (5200 m above the sea level), in order to study the mass composition of cosmic rays above the knee region. This detection system comprises an air shower array with 49 scintillation counters in an area of 500 m×650 m, and seven new Cherenkov light detectors installed in a radial direction from the center of the air shower array with a separation of 50 m. It is known that the longitudinal development of a particle cascade in the atmosphere strongly depends on the type of the primary nucleus, and an air shower initiated by a heavier nucleus develops faster than that by a lighter primary of the same energy, because of the differences in the interaction cross-section and the energy per nucleon. This can be measured by detecting the Cherenkov radiation emitted from charged particles in air showers at higher altitudes. In this paper we describe the design and performance of our new non-imaging Cherenkov light detectors at Mount Chacaltaya that are operated in conjunction with the air shower array. The arrival directions and energies of air showers are determined by the shower array, and information about the primary masses is obtained from the Cherenkov light data including the time profiles and lateral distributions. The detector consists of photomultiplier tube (PMT), high-speed ADCs, other control modules, and data storage device. The Cherenkov light signals from an air shower are typically 10–100 ns long, and the waveforms are digitized with a sampling frequency of 1 GHz and recorded in situ without long-distance analog signal transfers. All the Cherenkov light detectors record their time-series data by receiving a triggering signal transmitted from the trigger module of the air shower array, which is fired by a coincidence of shower signals in four neighboring scintillation counters. The optical characteristics of the

  7. Next Generation Microshutter Arrays Project

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose to develop the next generation MicroShutter Array (MSA) as a multi-object field selector for missions anticipated in the next two decades. For many...

  8. Fundamentals of spherical array processing

    CERN Document Server

    Rafaely, Boaz

    2015-01-01

    This book provides a comprehensive introduction to the theory and practice of spherical microphone arrays. It is written for graduate students, researchers and engineers who work with spherical microphone arrays in a wide range of applications.   The first two chapters provide the reader with the necessary mathematical and physical background, including an introduction to the spherical Fourier transform and the formulation of plane-wave sound fields in the spherical harmonic domain. The third chapter covers the theory of spatial sampling, employed when selecting the positions of microphones to sample sound pressure functions in space. Subsequent chapters present various spherical array configurations, including the popular rigid-sphere-based configuration. Beamforming (spatial filtering) in the spherical harmonics domain, including axis-symmetric beamforming, and the performance measures of directivity index and white noise gain are introduced, and a range of optimal beamformers for spherical arrays, includi...

  9. Screen printed thick film based pMUT arrays

    DEFF Research Database (Denmark)

    Hedegaard, Tobias; Pedersen, T; Thomsen, Erik Vilain

    2008-01-01

    This article reports on the fabrication and characterization of lambda-pitched piezoelectric micromachined ultrasound transducer (pMUT) arrays fabricated using a unique process combining conventional silicon technology and low cost screen printing of thick film PZT. The pMUTs are designed as 8...

  10. Evidence of performance for phased array/ALOK-inspection technique

    International Nuclear Information System (INIS)

    Bohn, H.; Kroening, M.; Rathgeb, W.; Gebhardt, W.; Kappes, W.; Barbian, O.A.

    1986-01-01

    Phased-array probes combined with the ALOK method give an US test system which results in major improvements of automated ultrasonic testing of pressure vessels. The authors discuss the improvements in test execution, defect detection and interpretation by means of tandem defects and defect detection in fault displays. (DG) [de

  11. A Macintosh based data system for array spectrometers (Poster)

    Science.gov (United States)

    Bregman, J.; Moss, N.

    An interactive data aquisition and reduction system has been assembled by combining a Macintosh computer with an instrument controller (an Apple II computer) via an RS-232 interface. The data system provides flexibility for operating different linear array spectrometers. The standard Macintosh interface is used to provide ease of operation and to allow transferring the reduced data to commercial graphics software.

  12. CMOS gate array characterization procedures

    Science.gov (United States)

    Spratt, James P.

    1993-09-01

    Present procedures are inadequate for characterizing the radiation hardness of gate array product lines prior to personalization because the selection of circuits to be used, from among all those available in the manufacturer's circuit library, is usually uncontrolled. (Some circuits are fundamentally more radiation resistant than others.) In such cases, differences in hardness can result between different designs of the same logic function. Hardness also varies because many gate arrays feature large custom-designed megacells (e.g., microprocessors and random access memories-MicroP's and RAM's). As a result, different product lines cannot be compared equally. A characterization strategy is needed, along with standardized test vehicle(s), methodology, and conditions, so that users can make informed judgments on which gate arrays are best suited for their needs. The program described developed preferred procedures for the radiation characterization of gate arrays, including a gate array evaluation test vehicle, featuring a canary circuit, designed to define the speed versus hardness envelope of the gate array. A multiplier was chosen for this role, and a baseline multiplier architecture is suggested that could be incorporated into an existing standard evaluation circuit chip.

  13. CCD and IR array controllers

    Science.gov (United States)

    Leach, Robert W.; Low, Frank J.

    2000-08-01

    A family of controllers has bene developed that is powerful and flexible enough to operate a wide range of CCD and IR focal plane arrays in a variety of ground-based applications. These include fast readout of small CCD and IR arrays for adaptive optics applications, slow readout of large CCD and IR mosaics, and single CCD and IR array operation at low background/low noise regimes as well as high background/high speed regimes. The CCD and IR controllers have a common digital core based on user- programmable digital signal processors that are used to generate the array clocking and signal processing signals customized for each application. A fiber optic link passes image data and commands to VME or PCI interface boards resident in a host computer to the controller. CCD signal processing is done with a dual slope integrator operating at speeds of up to one Megapixel per second per channel. Signal processing of IR arrays is done either with a dual channel video processor or a four channel video processor that has built-in image memory and a coadder to 32-bit precision for operating high background arrays. Recent developments underway include the implementation of a fast fiber optic data link operating at a speed of 12.5 Megapixels per second for fast image transfer from the controller to the host computer, and supporting image acquisition software and device drivers for the PCI interface board for the Sun Solaris, Linux and Windows 2000 operating systems.

  14. Flexible eddy current coil arrays

    International Nuclear Information System (INIS)

    Krampfner, Y.; Johnson, D.P.

    1987-01-01

    A novel approach was devised to overcome certain limitations of conventional eddy current testing. The typical single-element hand-wound probe was replaced with a two dimensional array of spirally wound probe elements deposited on a thin, flexible polyimide substrate. This provides full and reliable coverage of the test area and eliminates the need for scanning. The flexible substrate construction of the array allows the probes to conform to irregular part geometries, such as turbine blades and tubing, thereby eliminating the need for specialized probes for each geometry. Additionally, the batch manufacturing process of the array can yield highly uniform and reproducible coil geometries. The array is driven by a portable computer-based eddy current instrument, smartEDDY/sup TM/, capable of two-frequency operation, and offers a great deal of versatility and flexibility due to its software-based architecture. The array is coupled to the instrument via an 80-switch multiplexer that can be configured to address up to 1600 probes. The individual array elements may be addressed in any desired sequence, as defined by the software

  15. Thermal Conduction in Vertically Aligned Copper Nanowire Arrays and Composites.

    Science.gov (United States)

    Barako, Michael T; Roy-Panzer, Shilpi; English, Timothy S; Kodama, Takashi; Asheghi, Mehdi; Kenny, Thomas W; Goodson, Kenneth E

    2015-09-02

    The ability to efficiently and reliably transfer heat between sources and sinks is often a bottleneck in the thermal management of modern energy conversion technologies ranging from microelectronics to thermoelectric power generation. These interfaces contribute parasitic thermal resistances that reduce device performance and are subjected to thermomechanical stresses that degrade device lifetime. Dense arrays of vertically aligned metal nanowires (NWs) offer the unique combination of thermal conductance from the constituent metal and mechanical compliance from the high aspect ratio geometry to increase interfacial heat transfer and device reliability. In the present work, we synthesize copper NW arrays directly onto substrates via templated electrodeposition and extend this technique through the use of a sacrificial overplating layer to achieve improved uniformity. Furthermore, we infiltrate the array with an organic phase change material and demonstrate the preservation of thermal properties. We use the 3ω method to measure the axial thermal conductivity of freestanding copper NW arrays to be as high as 70 W m(-1) K(-1), which is more than an order of magnitude larger than most commercial interface materials and enhanced-conductivity nanocomposites reported in the literature. These arrays are highly anisotropic, and the lateral thermal conductivity is found to be only 1-2 W m(-1) K(-1). We use these measured properties to elucidate the governing array-scale transport mechanisms, which include the effects of morphology and energy carrier scattering from size effects and grain boundaries.

  16. A functional gene array for detection of bacterial virulence elements

    Energy Technology Data Exchange (ETDEWEB)

    Jaing, C

    2007-11-01

    We report our development of the first of a series of microarrays designed to detect pathogens with known mechanisms of virulence and antibiotic resistance. By targeting virulence gene families as well as genes unique to specific biothreat agents, these arrays will provide important data about the pathogenic potential and drug resistance profiles of unknown organisms in environmental samples. To validate our approach, we developed a first generation array targeting genes from Escherichia coli strains K12 and CFT073, Enterococcus faecalis and Staphylococcus aureus. We determined optimal probe design parameters for microorganism detection and discrimination, measured the required target concentration, and assessed tolerance for mismatches between probe and target sequences. Mismatch tolerance is a priority for this application, due to DNA sequence variability among members of gene families. Arrays were created using the NimbleGen Maskless Array Synthesizer at Lawrence Livermore National Laboratory. Purified genomic DNA from combinations of one or more of the four target organisms, pure cultures of four related organisms, and environmental aerosol samples with spiked-in genomic DNA were hybridized to the arrays. Based on the success of this prototype, we plan to design further arrays in this series, with the goal of detecting all known virulence and antibiotic resistance gene families in a greatly expanded set of organisms.

  17. Enhancing the beamforming map of spherical arrays at low frequencies using acoustic holography

    DEFF Research Database (Denmark)

    Tiana Roig, Elisabet; Torras Rosell, Antoni; Fernandez Grande, Efren

    2014-01-01

    Recent studies have shown that the localization of acoustic sources based on circular arrays can be improved at low frequencies by combining beamforming with acoustic holography. This paper extends this technique to the three dimensional case by making use of spherical arrays. The pressure captur...

  18. Design of Circularly-Polarised, Crossed Drooping Dipole, Phased Array Antenna Using Genetic Algorithm Optimisation

    DEFF Research Database (Denmark)

    Larsen, Niels Vesterdal

    2007-01-01

    A printed drooping dipole array is designed and constructed. The design is based on a genetic algorithm optimisation procedure used in conjunction with the software programme AWAS. By optimising the array G/T for specific combinations of scan angles and frequencies an optimum design is obtained...

  19. Time delay interferometry with moving spacecraft arrays

    International Nuclear Information System (INIS)

    Tinto, Massimo; Estabrook, F.B.; Armstrong, J.W.

    2004-01-01

    Space-borne interferometric gravitational wave detectors, sensitive in the low-frequency (millihertz) band, will fly in the next decade. In these detectors the spacecraft-to-spacecraft light-travel-times will necessarily be unequal, time varying, and (due to aberration) have different time delays on up and down links. The reduction of data from moving interferometric laser arrays in solar orbit will in fact encounter nonsymmetric up- and down-link light time differences that are about 100 times larger than has previously been recognized. The time-delay interferometry (TDI) technique uses knowledge of these delays to cancel the otherwise dominant laser phase noise and yields a variety of data combinations sensitive to gravitational waves. Under the assumption that the (different) up- and down-link time delays are constant, we derive the TDI expressions for those combinations that rely only on four interspacecraft phase measurements. We then turn to the general problem that encompasses time dependence of the light-travel times along the laser links. By introducing a set of noncommuting time-delay operators, we show that there exists a quite general procedure for deriving generalized TDI combinations that account for the effects of time dependence of the arms. By applying our approach we are able to re-derive the 'flex-free' expression for the unequal-arm Michelson combinations X 1 , and obtain the generalized expressions for the TDI combinations called relay, beacon, monitor, and symmetric Sagnac

  20. Code-modulated interferometric imaging system using phased arrays

    Science.gov (United States)

    Chauhan, Vikas; Greene, Kevin; Floyd, Brian

    2016-05-01

    Millimeter-wave (mm-wave) imaging provides compelling capabilities for security screening, navigation, and bio- medical applications. Traditional scanned or focal-plane mm-wave imagers are bulky and costly. In contrast, phased-array hardware developed for mass-market wireless communications and automotive radar promise to be extremely low cost. In this work, we present techniques which can allow low-cost phased-array receivers to be reconfigured or re-purposed as interferometric imagers, removing the need for custom hardware and thereby reducing cost. Since traditional phased arrays power combine incoming signals prior to digitization, orthogonal code-modulation is applied to each incoming signal using phase shifters within each front-end and two-bit codes. These code-modulated signals can then be combined and processed coherently through a shared hardware path. Once digitized, visibility functions can be recovered through squaring and code-demultiplexing operations. Pro- vided that codes are selected such that the product of two orthogonal codes is a third unique and orthogonal code, it is possible to demultiplex complex visibility functions directly. As such, the proposed system modulates incoming signals but demodulates desired correlations. In this work, we present the operation of the system, a validation of its operation using behavioral models of a traditional phased array, and a benchmarking of the code-modulated interferometer against traditional interferometer and focal-plane arrays.

  1. Transmission of light through periodic arrays of square holes : from a metallic wire mesh to an array of tiny holes

    NARCIS (Netherlands)

    Bravo-Abad, J.; Martin-Moreno, L.; Garcia-Vidal, F.J.; Hendry, E.; Gómez Rivas, J.

    2007-01-01

    A complete landscape is presented of the electromagnetic coupling between square holes forming a two-dimensional periodic array in a metallic film. By combining both experimental and theoretical results along with a first-principles Fano model, we study the crossover between the physics of metallic

  2. Monte Carlo calculation of the energy deposited in the KASCADE GRANDE detectors

    International Nuclear Information System (INIS)

    Mihai, Constantin

    2004-01-01

    The energy deposited by protons, electrons and positrons in the KASCADE GRANDE detectors is calculated with a simple and fast Monte Carlo method. The KASCADE GRANDE experiment (Forschungszentrum Karlsruhe, Germany), based on an array of plastic scintillation detectors, has the aim to study the energy spectrum of the primary cosmic rays around and above the 'knee' region of the spectrum. The reconstruction of the primary spectrum is achieved by comparing the data collected by the detectors with simulations of the development of the extensive air shower initiated by the primary particle combined with detailed simulations of the detector response. The simulation of the air shower development is carried out with the CORSIKA Monte Carlo code. The output file produced by CORSIKA is further processed with a program that estimates the energy deposited in the detectors by the particles of the shower. The standard method to calculate the energy deposit in the detectors is based on the Geant package from the CERN library. A new method that calculates the energy deposit by fitting the Geant based distributions with simpler functions is proposed in this work. In comparison with the method based on the Geant package this method is substantially faster. The time saving is important because the number of particles involved is large. (author)

  3. Combination solar photovoltaic heat engine energy converter

    Science.gov (United States)

    Chubb, Donald L.

    1987-01-01

    A combination solar photovoltaic heat engine converter is proposed. Such a system is suitable for either terrestrial or space power applications. The combination system has a higher efficiency than either the photovoltaic array or the heat engine alone can attain. Advantages in concentrator and radiator area and receiver mass of the photovoltaic heat engine system over a heat-engine-only system are estimated. A mass and area comparison between the proposed space station organic Rankine power system and a combination PV-heat engine system is made. The critical problem for the proposed converter is the necessity for high temperature photovoltaic array operation. Estimates of the required photovoltaic temperature are presented.

  4. Coded aperture imaging with uniformly redundant arrays

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Cannon, T.M.

    1980-01-01

    A system is described which uses uniformly redundant arrays to image non-focusable radiation. The array is used in conjunction with a balanced correlation technique to provide a system with no artifacts so that virtually limitless signal-to-noise ratio is obtained with high transmission characteristics. The array is mosaicked to reduce required detector size over conventional array detectors. 15 claims

  5. Phase-locked, high power, mid-infrared quantum cascade laser arrays

    Science.gov (United States)

    Zhou, W.; Slivken, S.; Razeghi, M.

    2018-04-01

    We demonstrate phase-locked, high power quantum cascade laser arrays, which are combined using a monolithic, tree array multimode interferometer, with emission wavelengths around 4.8 μm. A maximum output power of 15 W was achieved from an eight-element laser array, which has only a slightly higher threshold current density and a similar slope efficiency compared to a Fabry-Perot laser of the same length. Calculated multimode interferometer splitting loss is on the order of 0.27 dB for the in-phase supermode. In-phase supermode operation with nearly ideal behavior is demonstrated over the working current range of the array.

  6. Algorithm-structured computer arrays and networks architectures and processes for images, percepts, models, information

    CERN Document Server

    Uhr, Leonard

    1984-01-01

    Computer Science and Applied Mathematics: Algorithm-Structured Computer Arrays and Networks: Architectures and Processes for Images, Percepts, Models, Information examines the parallel-array, pipeline, and other network multi-computers.This book describes and explores arrays and networks, those built, being designed, or proposed. The problems of developing higher-level languages for systems and designing algorithm, program, data flow, and computer structure are also discussed. This text likewise describes several sequences of successively more general attempts to combine the power of arrays wi

  7. Underground cosmic-ray experiment EMMA

    DEFF Research Database (Denmark)

    Kuusiniemi, P.; Bezrukov, L.; Enqvist, T.

    2013-01-01

    EMMA (Experiment with MultiMuon Array) is a new approach to study the composition of cosmic rays at the knee region (1 – 10 PeV). The array will measure the multiplicity and lateral distribution of the high-energy muon component of an air shower and its arrival direction on an event-by-event basis...

  8. Successive Standardization of Rectangular Arrays

    Directory of Open Access Journals (Sweden)

    Richard A. Olshen

    2012-02-01

    Full Text Available In this note we illustrate and develop further with mathematics and examples, the work on successive standardization (or normalization that is studied earlier by the same authors in [1] and [2]. Thus, we deal with successive iterations applied to rectangular arrays of numbers, where to avoid technical difficulties an array has at least three rows and at least three columns. Without loss, an iteration begins with operations on columns: first subtract the mean of each column; then divide by its standard deviation. The iteration continues with the same two operations done successively for rows. These four operations applied in sequence completes one iteration. One then iterates again, and again, and again, ... In [1] it was argued that if arrays are made up of real numbers, then the set for which convergence of these successive iterations fails has Lebesgue measure 0. The limiting array has row and column means 0, row and column standard deviations 1. A basic result on convergence given in [1] is true, though the argument in [1] is faulty. The result is stated in the form of a theorem here, and the argument for the theorem is correct. Moreover, many graphics given in [1] suggest that except for a set of entries of any array with Lebesgue measure 0, convergence is very rapid, eventually exponentially fast in the number of iterations. Because we learned this set of rules from Bradley Efron, we call it “Efron’s algorithm”. More importantly, the rapidity of convergence is illustrated by numerical examples.

  9. Integrated Array/Metadata Analytics

    Science.gov (United States)

    Misev, Dimitar; Baumann, Peter

    2015-04-01

    Data comes in various forms and types, and integration usually presents a problem that is often simply ignored and solved with ad-hoc solutions. Multidimensional arrays are an ubiquitous data type, that we find at the core of virtually all science and engineering domains, as sensor, model, image, statistics data. Naturally, arrays are richly described by and intertwined with additional metadata (alphanumeric relational data, XML, JSON, etc). Database systems, however, a fundamental building block of what we call "Big Data", lack adequate support for modelling and expressing these array data/metadata relationships. Array analytics is hence quite primitive or non-existent at all in modern relational DBMS. Recognizing this, we extended SQL with a new SQL/MDA part seamlessly integrating multidimensional array analytics into the standard database query language. We demonstrate the benefits of SQL/MDA with real-world examples executed in ASQLDB, an open-source mediator system based on HSQLDB and rasdaman, that already implements SQL/MDA.

  10. Retrieval of Mir Solar Array

    Science.gov (United States)

    Rutledge, Sharon K.; deGroh, Kim K.

    1999-01-01

    A Russian solar array panel removed in November 1997 from the non-articulating photovoltaic array on the Mir core module was returned to Earth on STS-89 in January 1998. The panel had been exposed to low Earth orbit (LEO) for 10 years prior to retrieval. The retrieval provided a unique opportunity to study the effects of the LEO environment on a functional solar array. To take advantage of this opportunity, a team composed of members from RSC-Energia (Russia), the Boeing Company, and the following NASA Centers--Johnson Space Center, Kennedy Space Center, Langley Research Center, Marshall Space Flight Center, and Lewis Research Center--was put together to analyze the array. After post-retrieval inspections at the Spacehab Facility at Kennedy in Florida, the array was shipped to Lewis in Cleveland for electrical performance tests, closeup photodocumentation, and removal of selected solar cells and blanket material. With approval from RSC-Energia, five cell pairs and their accompanying blanket and mesh material, and samples of painted handrail materials were selected for removal on the basis of their ability to provide degradation information. Sites were selected that provided different sizes and shapes of micrometeoroid impacts and different levels of surface contamination. These materials were then distributed among the team for round robin testing.

  11. Dynamics of Josephson junction arrays

    International Nuclear Information System (INIS)

    Hadley, P.

    1989-01-01

    The dynamics of Josephson junction arrays is a topic that lies at the intersection of the fields of nonlinear dynamics and Josephson junction technology. The series arrays considered here consist of several rapidly oscillating Josephson junctions where each junction is coupled equally to every other junction. The purpose of this study is to understand phaselocking and other cooperative dynamics of this system. Previously, little was known about high dimensional nonlinear systems of this sort. Numerical simulations are used to study the dynamics of these arrays. Three distinct types of periodic solutions to the array equations were observed as well as period doubled and chaotic solutions. One of the periodic solutions is the symmetric, in-phase solution where all of the junctions oscillate identically. The other two periodic solutions are symmetry-broken solutions where all of the junction do not oscillate identically. The symmetry-broken solutions are highly degenerate. As many as (N - 1) stable solutions can coexist for an array of N junctions. Understanding the stability of these several solutions and the transitions among them is vital to the design of useful devices

  12. Homestake surface-underground scintillators: Initial results

    International Nuclear Information System (INIS)

    Cherry, M.L.; Corbato, S.; Daily, T.; Fenyves, E.J.; Kieda, D.; Lande, K.; Lee, C.K.

    1986-01-01

    The first 70 tons of the 140-ton Large Area Scintillation Detector (LASD) have been operating since Jan. 1985 at a depth of 4850 ft. (4200 m.w.e.) in the Homestake Gold Mine, Lead, S.D. A total of 4 x 10(4) high-energy muons (E sub mu is approx. 2.7 TeV at the surface) have been detected. The remainder of the detector is scheduled to be in operation by the Fall of 1985. In addition, a surface air shower array is under construction. The first 27 surface counters, spaced out over an area of 270' x 500', began running in June, 1985. The LASD performance, the potential of the combined shower array and underground muon experiment for detecting point sources, and the initial results of a search for periodic emission from Cygnus X-3 are discussed

  13. Simulation of solar array slewing of Indian remote sensing satellite

    Science.gov (United States)

    Maharana, P. K.; Goel, P. S.

    The effect of flexible arrays on sun tracking for the IRS satellite is studied. Equations of motion of satellites carrying a rotating flexible appendage are developed following the Newton-Euler approach and utilizing the constrained modes of the appendage. The drive torque, detent torque and friction torque in the SADA are included in the model. Extensive simulations of the slewing motion are carried out. The phenomena of back-stepping, step-missing, step-slipping and the influences of array flexibility in the acquisition mode are observed for certain combinations of parameters.

  14. Status of the UMC cosmic ray experiment

    International Nuclear Information System (INIS)

    Nitz, D.

    1989-01-01

    The UMC Ultra High Energy cosmic ray experiment is a collaboration among the University of Utah, the University of Michigan, and the University of Chicago. It is located at the site of the Fly's Eye II experiment at Dugway, Utah, at latitude 40.2 0 and an atmospheric depth of 850 gm/cm 2 . Extensive air shower (EAS) surface arrays, a large area muon counter array, tracking Cerenkov telescopes, and the Fly's Eye detector constitute the elements of a versatile cosmic ray observatory for > or approx. 10 14 eV extensive air showers. (orig.)

  15. High-Performance Elastically Self-Deployed Roll-Out Solar Array (ROSA), Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — Deployable Space Systems (DSS) has developed an ultra-lightweight elastically self-deployable roll-out solar array (ROSA) structural platform that when combined with...

  16. Quasi-optical antenna-mixer-array design for terahertz frequencies

    Science.gov (United States)

    Guo, Yong; Potter, Kent A.; Rutledge, David B.

    1992-01-01

    A new quasi-optical antenna-mixer-array design for terahertz frequencies is presented. In the design, antenna and mixer are combined into an entity, based on the technology in which millimeter-wave horn antenna arrays have been fabricated in silicon wafers. It consists of a set of forward- and backward-looking horns made with a set of silicon wafers. The front side is used to receive incoming signal, and the back side is used to feed local oscillator signal. Intermediate frequency is led out from the side of the array. Signal received by the horn array is picked up by antenna probes suspended on thin silicon-oxynitride membranes inside the horns. Mixer diodes will be located on the membranes inside the horns. Modeling of such an antenna-mixer-array design is done on a scaled model at microwave frequencies. The impedance matching, RF and LO isolation, and patterns of the array have been tested and analyzed.

  17. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    Directory of Open Access Journals (Sweden)

    Po Chun Chen

    2013-01-01

    Full Text Available We proposed fabricating an aluminum microneedle array with a nanochannel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The microneedle array provides a three-dimensional (3D structure that possesses several hundred times more surface area than a traditional nanochannel template. Therefore, the microneedle array can potentially be used in many technology applications. This 3D microneedle array device can not only be used for painless injection or extraction, but also for storage, highly sensitive detection, drug delivery, and microelectrodes. From the calculation we made, the microneedle array not only increases surface area, but also enlarges the capacity of the device. Therefore, the microneedle array can further be used on many detecting, storing, or drug delivering applications.

  18. A Three-Dimensional Enormous Surface Area Aluminum Microneedle Array with Nanoporous Structure

    International Nuclear Information System (INIS)

    Chen, P.Ch.; Zou, J.; Hsieh, Sh.J.; Chen, Ch.Ch.

    2013-01-01

    We proposed fabricating an aluminum micro needle array with a nano channel structure on the surface by combining micromachining, electrolyte polishing, and anodization methods. The micro needle array provides a three-dimensional (3D) structure that possesses several hundred times more surface area than a traditional nano channel template. Therefore, the micro needle array can potentially be used in many technology applications. This 3D micro needle array device can not only be used for painless injection or extraction, but also for storage, highly sensitive detection, drug delivery, and microelectrodes. From the calculation we made, the micro needle array not only increases surface area, but also enlarges the capacity of the device. Therefore, the micro needle array can further be used on many detecting, storing, or drug delivering applications.

  19. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  20. Innovations in IR projector arrays

    Science.gov (United States)

    Cole, Barry E.; Higashi, B.; Ridley, Jeff A.; Holmen, J.; Newstrom, K.; Zins, C.; Nguyen, K.; Weeres, Steven R.; Johnson, Burgess R.; Stockbridge, Robert G.; Murrer, Robert Lee; Olson, Eric M.; Bergin, Thomas P.; Kircher, James R.; Flynn, David S.

    2000-07-01

    In the past year, Honeywell has developed a 512 X 512 snapshot scene projector containing pixels with very high radiance efficiency. The array can operate in both snapshot and raster mode. The array pixels have near black body characteristics, high radiance outputs, broad band performance, and high speed. IR measurements and performance of these pixels will be described. In addition, a vacuum probe station that makes it possible to select the best die for packaging and delivery based on wafer level radiance screening, has been developed and is in operation. This system, as well as other improvements, will be described. Finally, a review of the status of the present projectors and plans for future arrays is included.