WorldWideScience

Sample records for air-conditioning units part

  1. Plate heat exchangers in air conditioning applications. Development of air-coolers, air-heaters and air-conditioning units with low pressure loss. Plattenwaermetauscher in raumlufttechnischen Anlagen. Entwicklung stroemungsoptimierter Luftkuehler, Lufterhitzer und Klimageraete

    Energy Technology Data Exchange (ETDEWEB)

    Bach, H; Diemer, R; Eisenmann, G; Goettling, D; Madjidi, M

    1989-08-01

    To prepare the development of a water to air plate heat exchanger the state of the art, i.e. the technological knowhow and the design basis are given. The concept and ideas are presented which lead to a slightly wavy plate. Furthermore an exemplary design of a plate heat exchanger and an air-conditioning unit is described and finally the application of plate heat exchangers as direct evaporators and the potential icing problems are investigated. Comparing measured and calculated data shows that the performance of plates with plane surfaces can be predicted fairly well by the presented design methods. The performance of plates with strongly wavy surface however has to be measured. Optimization calculations yield to an air gap of slightly over 4 mm. Comparison with an air-conditioning unit demonstrates that the strongest advantage is for the air cooler (one third of the pressure loss) that a new concept of an air-conditioning unit has lower losses in the fan unit and that it does not need an eliminator. This results in half the volume for the new unit, in a pressure drop of 88%, fan power of 90% and fan revolutions of 50%. (orig./GL).

  2. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  3. Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit

    International Nuclear Information System (INIS)

    Wang, Yang; Zhao, Fu-Yun; Kuckelkorn, Jens; Liu, Di; Liu, Li-Qun; Pan, Xiao-Chuan

    2014-01-01

    The recently-built school buildings have adopted novel heat recovery ventilator and air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification and indoor air quality indicated by the CO 2 concentration have been numerically modeled concerning the effects of delivering ventilation flow rate and supplying air temperature. Numerical results indicate that the promotion of mechanical ventilation rate can simultaneously boost the dilution of indoor air pollutants and the non-uniformity of indoor thermal and pollutant distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air conditioning unit decreases with the increasing temperatures of supplying air. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented. - Highlights: • Low energy school buildings and classroom environment. • Heat recovery facility operating with an air conditioning unit. • Displacement ventilation influenced by the heat recovery efficiency. • Energy conservation of cooling and ventilation through heat recovery. • Enhancement of classroom environment with reduction of school building energy

  4. Experimental studies on improvement of coefficient of performance of window air conditioning unit

    Directory of Open Access Journals (Sweden)

    Tharves Mohideen Sheik Ismail

    2017-01-01

    Full Text Available This paper presents the performance analysis of a window air conditioner unit incorporated with wick less loop heat pipes (WLHP. The WLHP are located on the evaporator side of the air conditioning unit. The working medium for the WLHP is R134a refrigerant gas, an alternate refrigerant. The supply and return humidity of room air, the heat removal rat, and the coefficient of performance of the unit are analyzed for various ambient and room temperatures before and after incorporation of WLHP. The performance curves are drawn by comparing the power consumption and humidity collection rates for various room and ambient temperatures. The results show that coefficient of performance of the unit is improved by 18% to 20% after incorporation of WLHP due to pre-cooling of return air by WLHP, which reduces the thermal load on compressor. Similarly, the energy consumption is reduced by 20% to 25% due to higher thermostat setting and the humidity collection is improved by 35% due to pre-cooling effect of WLHP. The results are tabulated and conclusion drawn is presented based on the performance.

  5. Relationship between the merit factor of thermoelectric materials and the air conditioning unit of urban electric cars

    International Nuclear Information System (INIS)

    Buffet, J.

    1994-01-01

    The main benefit of electric cars is to reduce air pollution in cities that is thus desirable to equip them with non polluting air conditioning units and this rules out frigorific compressors operating with CFC. The planned replacement of CFC by HFC is at best an interim solution. The best solution is certainly to use thermoelectric air conditioning units, which are inherently pollution-free. However, these have a fairly low COPF when compared to traditional compressor units. We study the relationship between the cooling of the interior of urban electric cars and the merit factor of the thermoelectric material in their Peltier unit. This should help provide concrete target properties of future T E materials. copyright 1995 American Institute of Physics

  6. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  7. Ventilation and air conditioning systems in maritime productions units; Panorama dos sistemas de VAC em unidades maritimas de producao

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Fernando Pedrosa; Sztajnbok, Ernani Luis [PETROBRAS, Rio de Janeiro, RJ (Brazil); Padua, Carlos Eduardo Dantas de; Passos, Alfredo Silveira [DUOVAC Engenharia Ltda. (Brazil)

    2004-07-01

    In an Offshore Stationary Production Unit (SPU), the adequate project of the Ventilation and Air Conditioning (VAC) System is not only a thermal comfort requirement but part of the essential safety services of the installation and complement for area classification requirements associated with electrical equipment. The VAC installations are sometimes the object of complaints by onboard team. Problems such as unsatisfactory system performance, high noise levels in the accommodation quarters, offices and other areas and the discomfort caused by unbalanced ventilation and air conditioning systems, are some of the most frequent complaints. Air Conditioning systems are classified as Direct and Indirect Expansion. Decentralized systems with Indirect Expansion has been adopted in PETROBRAS projects. This conception is not used in VAC Systems for platforms installed in North Sea, where the use of Centralized Systems with Direct Expansion are more common. The objective of this work is to compare the VAC conception projects, analyzing their advantages and disadvantages . The evaluation of VAC System in PETROBRAS project, and their steps in SPU development, is also scope of this paper. (author)

  8. A RADIANT AIR-CONDITIONING SYSTEM USING SOLAR-DRIVEN

    Directory of Open Access Journals (Sweden)

    S. A. ABDALLA

    2006-12-01

    Full Text Available Every air-conditioning system needs some fresh air to provide adequate ventilation air required to remove moisture, gases like ammonia and hydrogen sulphide, disease organisms, and heat from occupied spaces. However, natural ventilation is difficult to control because urban areas outside air is often polluted and cannot be supplied to inner spaces before being filtered. Besides the high electrical demand of refrigerant compression units used by most air-conditioning systems, and fans used to transport the cool air through the thermal distribution system draw a significant amount of electrical energy in comparison with electrical energy used by the building thermal conditioning systems. Part of this electricity heats the cooled air; thereby add to the internal thermal cooling peak load. In addition, refrigerant compression has both direct and indirect negative effects on the environment on both local and global scales. In seeking for innovative air-conditioning systems that maintain and improve indoor air quality under potentially more demanding performance criteria without increasing environmental impact, this paper presents radiant air-conditioning system which uses a solar-driven liquid desiccant evaporative cooler. The paper describes the proposed solar-driven liquid desiccant evaporative cooling system and the method used for investigating its performance in providing cold water for a radiant air-conditioning system in Khartoum (Central Sudan. The results of the investigation show that the system can operate in humid as well as dry climates and that employing such a system reduces air-conditioning peak electrical demands as compared to vapour compression systems.

  9. Acanthamoeba belonging to T3, T4, and T11: genotypes isolated from air-conditioning units in Santiago, Chile.

    Science.gov (United States)

    Astorga, Berbeli; Lorenzo-Morales, Jacob; Martín-Navarro, Carmen M; Alarcón, Verónica; Moreno, Johanna; González, Ana C; Navarrete, Elizabeth; Piñero, José E; Valladares, Basilio

    2011-01-01

    Free-living amoebae (FLA) of the genus Acanthamoeba are widely distributed in the environment, in the air, soil, and water, and have also been isolated from air-conditioning units. The objective of this work was to investigate the presence of this genus of FLA in the air-conditioning equipment at the Institute of Public Health of Chile in Santiago, Chile. Water and air samples were collected from air-conditioning systems and were checked for the presence of Acanthamoeba spp. Positive samples were further classified at the genotype level after sequencing the highly variable diagnostic fragment 3 (DF3) region of the 18S rRNA gene. This is the first report of the T3, T4, and T11 genotypes of Acanthamoeba in air-conditioning units from Chile. Overall, the widespread distribution of potentially pathogenic Acanthamoeba strains in the studied source demands more awareness within the public and health professionals in Chile as this pathogen is emerging as a risk for human health worldwide. © 2011 The Author(s) Journal of Eukaryotic Microbiology © 2011 International Society of Protistologists.

  10. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    Science.gov (United States)

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  11. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Directory of Open Access Journals (Sweden)

    Snegirjovs A.

    2016-12-01

    Full Text Available Information on the electrical-driven solar air conditioning (SAC is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW. In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  12. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Science.gov (United States)

    Snegirjovs, A.; Shipkovs, P.; Lebedeva, K.; Kashkarova, G.; Migla, L.; Gantenbein, P.; Omlin, L.

    2016-12-01

    Information on the electrical-driven solar air conditioning (SAC) is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC) systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average) systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW). In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  13. Experimental determination of the energy efficiency of an air-cooled chiller under part load conditions

    International Nuclear Information System (INIS)

    Yu, F.W.; Chan, K.T.

    2005-01-01

    In cities located in a subtropical climate, air-cooled chillers are commonly used to provide cooling to the indoor environment. This accounts for the increasing electricity demand of buildings over the decades. This paper investigates how the condensing temperature serves to accurately determine the energy efficiency, or coefficient of performance (COP), of air-cooled chillers under part load conditions. An experiment on an air-cooled reciprocating chiller showed that for any given operating condition, the COP of the chiller varies, depending on how the condensing temperature is controlled. A sensitivity analysis is implemented to investigate to what extent COP is responding to changes in operating variables and confirms that the condensing temperature is an adequate variable to gauge COP under various operating conditions. The specifications of the upper limit for the condensing temperature in order to improve the energy efficiency of air-cooled chillers are discussed. The results of this work will give designers and researchers a good idea about how to model chiller energy performance curves in the thermal and energy computation exercises

  14. Experimental and Numerical Study of the Radiant Induction-Unit and the Induction Radiant Air-Conditioning System

    Directory of Open Access Journals (Sweden)

    Qiang Si

    2016-12-01

    Full Text Available In this paper we proposed the novel air-conditioning system which combined induction ventilation and radiant air-conditioning. The indoor terminal device is the radiant induction-unit (RIDU. The RIDU is the induction unit combined with the pore radiant panel on which the copper pipes with rigid aluminum diffusion fins are installed. The two-stage evaporator chiller with the non-azeotropic mixture refrigerant is utilized in the system to reduce the initial investment in equipment. With the performance test and the steady state heat transfer model based on the theory of radiative heat transfer, the relationship between the induction ratio of the RIDU and the characteristic of the air supply was studied. Based on this, it is verified that the RIDU has a lower dew-point temperature and better anti-condensation performance than a traditional plate-type radiant panel. The characteristics of the radiation and convection heat transfer of the RIDU were studied. The total heat exchange of the RIDU can be 16.5% greater than that of the traditional plate-type radiant terminal.

  15. Ant-nest corrosion of copper tubing in air-conditioning units

    Directory of Open Access Journals (Sweden)

    Bastidas, D. M.

    2006-10-01

    Full Text Available Ant-nest corrosion is a specific type of premature failure (2-3 months of copper tubes used in air-conditioning units causing the loss of refrigerant liquid and the consequent environment pollution. It is known that attack requires the simultaneous presence of moisture, oxygen and a corrodent, usually an organic acid, such as formic, acetic, propionic or butyric acid or other volatile organic substances like methanol, ethanol, formaldehyde or acetoaldehyde. Approximately 10% of all premature failures of copper tubes used in the heating, ventilation and air-conditioning (HVAC industry are the result of ant-nest corrosion. This type of corrosion usually occurs in thin-wall copper pipes, especially when copper is de-sulphurised, and is known by several names: formicary corrosion, unusual corrosion, branched pits, pinhole corrosion, etc.

    Corrosión por “nido de hormigas” es un tipo específico de fallo prematuro (2-3 meses que tiene lugar en tubos de cobre utilizados en sistemas de aire acondicionado originando la pérdida de líquido refrigerante y la consecuente contaminación ambiental. Es conocido que este tipo de ataque requiere la presencia simultánea de humedad, oxígeno y un medio agresivo, habitualmente un ácido orgánico, como fórmico, acético  propiónico o butírico u otras sustancias orgánicas volátiles tales como metanol, etanol, formaldehido o acetoaldehido. Aproximadamente el 10% de los fallos prematuros en tubos de cobre utilizados en calefacción, ventilación y en la industria de aire acondicionado son el resultado de corrosión por nido de hormigas. Frecuentemente, este tipo de corrosión tiene lugar en tubos de cobre de pared delgada, especialmente cuando el cobre es del tipo desulfurizado, y se conoce con varios nombres: corrosión por ácido fórmico, corrosión no habitual, picaduras ramificadas, corrosión con forma de alfiler, etc.

  16. Unit for air decontamination

    International Nuclear Information System (INIS)

    Mariano H, E.

    1991-02-01

    To fulfill the applicable requirements of safety to the ventilation systems in nuclear facilities, it is necessary to make a cleaning of the air that hurtles to the atmosphere. For that which was designed and it manufactured an unit for decontamination of the air for the Pilot plant of production of Nuclear Fuel that this built one with national parts, uses Hepa national filters and the design can adapt for different dimensions of filters, also can be added a lodging for a prefilter or to adopt two Hepa filters. (Author)

  17. Air Conditioning and Refrigeration. Book One.

    Science.gov (United States)

    Wantiez, Gary W.

    Designed to provide students with the basic skills for an occupation in air conditioning and refrigeration, this curriculum guide includes seven major areas, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Orientation (history and development, and job opportunities), Safety…

  18. Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Diz, Ruben; Uhia, Francisco J.; Dopazo, Alberto; Ferro, Jose M.

    2011-01-01

    This paper deals with the experimental analysis of an air-to-air heat recovery unit equipped with a sensible polymer plate heat exchanger (PHE) for balanced ventilation systems in residential buildings. The PHE is arranged in parallel triangular ducts. An experimental facility was designed to reproduce the typical outdoor and exhaust air conditions with regard to temperature and humidity. The unit was tested under balanced operation conditions, as commonly used in practice. A set of tests was conducted under the reference operating conditions to evaluate the PHE performance. Afterwards, an experimental parametric analysis was conducted to investigate the influence of changing the operating conditions on the PHE performance. Experiments were carried out varying the inlet fresh air temperature, the exhaust air relative humidity and the air flow rate. The experimental results are shown and discussed in this paper.

  19. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    Science.gov (United States)

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  20. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    Science.gov (United States)

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  1. Performance improvement of a hybrid air conditioning system using the indirect evaporative cooler with internal baffles as a pre-cooling unit

    Directory of Open Access Journals (Sweden)

    A.E. Kabeel

    2017-12-01

    Full Text Available In the present paper, the effects of the indirect evaporative cooler with internal baffle on the performance of the hybrid air conditioning system are numerically investigated. The hybrid air conditioning system contains two indirect evaporative coolers with internal baffle, one is utilized to pre-cool the air inlet to the desiccant wheel and the other is utilized to pre-cool the supply air inlet to the room. The effects of the inlet conditions of the process and reactivation air and working air ratio on the thermal performance of the hybrid air conditioning system have been analyzed. The results of this study show that in the hybrid air conditioning system for using the indirect evaporative cooler with internal baffle as a pre-cooling unit, the supply air temperature reduced by 21% and the coefficient of performance improved by 71% as compared to previous designs of the hybrid air conditioning system at the same inlet conditions. For increasing process air inlet temperature from 25 °C to 45 °C, supply air temperature increases from 12.7 °C to 14.2 °C, thermal COP increases from 1.87 to 2.84, and supply air relative humidity increases from 76.7% to 77.4%. Also, for increasing the reactivation air inlet temperature from 70 °C to 110 °C, supply air temperature dropped from 15.9 °C to 10.9 °C, supply air relative humidity dropped from 82.7% to 71.8%, and thermal COP dropped from 4.5 to 1.7. The recommended optimal air working ratio in the indirect evaporative cooler with internal baffle should be 0.15. Keywords: Desiccant material, Solar air collector, Evaporative cooler, Internal baffles, Air conditioning

  2. Unit for air decontamination; Unidad para descontaminacion de aire

    Energy Technology Data Exchange (ETDEWEB)

    Mariano H, E

    1991-02-15

    To fulfill the applicable requirements of safety to the ventilation systems in nuclear facilities, it is necessary to make a cleaning of the air that hurtles to the atmosphere. For that which was designed and it manufactured an unit for decontamination of the air for the Pilot plant of production of Nuclear Fuel that this built one with national parts, uses Hepa national filters and the design can adapt for different dimensions of filters, also can be added a lodging for a prefilter or to adopt two Hepa filters. (Author)

  3. Air conditioning system and component therefore distributing air flow from opposite directions

    Science.gov (United States)

    Obler, H. D.; Bauer, H. B. (Inventor)

    1974-01-01

    The air conditioning system comprises a plurality of separate air conditioning units coupled to a common supply duct such that air may be introduced into the supply duct in two opposite flow directions. A plurality of outlets such as registers or auxiliary or branch ducts communicate with the supply duct and valve means are disposed in the supply duct at at least some of the outlets for automatically channelling a controllable amount of air from the supply duct to the associated outlet regardless of the direction of air flow within the supply duct. The valve means comprises an automatic air volume control apparatus for distribution within the air supply duct into which air may be introduced from two opposite directions. The apparatus incorporates a freely swinging movable vane in the supply duct to automatically channel into the associated outlet only the deflected air flow which has the higher relative pressure.

  4. Development of ZL400 Mine Cooling Unit Using Semi-Hermetic Screw Compressor and Its Application on Local Air Conditioning in Underground Long-Wall Face

    Science.gov (United States)

    Chu, Zhaoxiang; Ji, Jianhu; Zhang, Xijun; Yan, Hongyuan; Dong, Haomin; Liu, Junjie

    2016-12-01

    Aiming at heat injuries occurring in the process of deep coal mining in China, a ZL400 mine-cooling unit employing semi-hermetic screw compressor with a cooling capacity of 400 kW is developed. This paper introduced its operating principle, structural characteristics and technical indexes. By using the self-built testing platform, some parameters for indication of its operation conditions were tested on the ground. The results show that the aforementioned cooling unit is stable in operation: cooling capacity of the unit was 420 kW underground-test conditions, while its COP (coefficient of performance) reached 3.4. To address the issue of heat injuries existing in No. 16305 U-shaped long-wall ventilation face of Jining No. 3 coal mine, a local air conditioning system was developed with ZL400 cooling unit as the system's core. The paper presented an analysis of characteristics of the air current flowing in the air-mixing and cooling mode of ZL400 cooling unit used in air intake way. Through i-d patterns we described the process of the airflow treatment, such as cooling, mixing and heating, etc. The cooling system decreased dry bulb temperature on working face by 3°C on average and 3.8°C at most, while lowered the web bulb temperature by 3.6°C on average and 4.8°C at most. At the same time, it reduced relative humidity by 5% on average and 8.6% at most. The field application of the ZL400 cooling unit had gain certain effects in air conditioning and provided support for the solution of mine heat injuries in China in terms of technology and equipment.

  5. Development of a method for calculating steady-state equipment sensible heat ratio of direct expansion air conditioning units

    International Nuclear Information System (INIS)

    Xia Liang; Chan, M.Y.; Deng Shiming

    2008-01-01

    A complete set of calculation method for steady-state equipment sensible heat ratio (SHR) for a direct expansion (DX) cooling coil has been developed and reported. The method was based on the fundamentals of energy conservation and heat and mass transfer taking place in the DX cooling coil, and was experimentally validated using an experimental DX A/C rig. With the method developed, the effect of refrigerant evaporating temperature at fixed inlet air conditions on equipment SHR has been theoretically analyzed. The validated method can be useful in further studying the inherent operating characteristics of a DX air conditioning (A/C) unit and in developing suitable control strategies for achieving higher energy efficiency and better indoor thermal environment

  6. Technical Requirements and Principles for the Standards Development of the Key Parts for Rotor Air-conditioning Compressors

    Institute of Scientific and Technical Information of China (English)

    Sun Min; Wen Yun; Fan Zhangzeng

    2011-01-01

    ntroductionSince 2000,air-conditioning sales continues to grow,and the development of air-conditioning market makes a booming market of compressor.At the present time,compressor production rising all the way,and the sales steps up the new steps constantly.Tendency chart is shown in figure 1.Rotor compressor with its simple structure,small volume,light weight,easy processed mechanical parts,reliable operation and other excellent characteristics occupied the dominant position in the market.Compared with reciprocating compressor on the same application situation,decreased in the size by 40%~50%,weight was reduced by 40%~50%.But there were also disadvantages,mainly large friction loss,friction power consumption was about 10%of compressor's total power input.

  7. THE USE OF AIR LAYERS IN BUILDING ENVELOPES FOR ENERGY SAVING DURING AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2017-01-01

    Full Text Available Since there are no large natural energy resources in Belarus, energy savings ought to be a point of the special attention. With this regard it is important to develop modern ways of savings during the process of air conditioning inside new buildings with an air layer in the enclosure, especially in translucent ones. The system of ventilation of air layers in the enclosure of a building has been introduced in which air movement is caused by the gravitational and aerodynamic forces. It makes it possible to arrange further ventilation – a natural, forced or a hybrid one. With the purpose of increasing and streamlining natural draught the partitions are used separating the different parts of air layers. For natural ventilation with the use of gravitational forces the holes in the upper and lower parts of the partitions between adjacent air layers are applied. Natural ventilation in the holes of the partitions is regulated by movable shutters, blinds or other adjusting devices. For combined or forced air exchange between adjacent zones of air layers fans are used pumping air from the air layer zones with a higher temperature to zones of air layers with lower temperature and vice versa. When air exchange is forced, in order to intensify the infiltration of air into zones of air layers jets are laid on a hard surface. In order to cool a multi-layered enclosure of a building, where the movement of air between the air layers (that have been formed by internal partitions is being fulfilled by a natural, forced or combined mode, a part of the air or the total air processed inside the building (i.e. conditioned or non-conditioned air cooler as compared with the outside one is being sent to these strata. Combined or forced flow of the air processed inside the building into the air layers is done through the ducts associated with the output channels of the air conditioners. The internal partitions are equipped with the air valve hole.

  8. A robust model predictive control strategy for improving the control performance of air-conditioning systems

    International Nuclear Information System (INIS)

    Huang Gongsheng; Wang Shengwei; Xu Xinhua

    2009-01-01

    This paper presents a robust model predictive control strategy for improving the supply air temperature control of air-handling units by dealing with the associated uncertainties and constraints directly. This strategy uses a first-order plus time-delay model with uncertain time-delay and system gain to describe air-conditioning process of an air-handling unit usually operating at various weather conditions. The uncertainties of the time-delay and system gain, which imply the nonlinearities and the variable dynamic characteristics, are formulated using an uncertainty polytope. Based on this uncertainty formulation, an offline LMI-based robust model predictive control algorithm is employed to design a robust controller for air-handling units which can guarantee a good robustness subject to uncertainties and constraints. The proposed robust strategy is evaluated in a dynamic simulation environment of a variable air volume air-conditioning system in various operation conditions by comparing with a conventional PI control strategy. The robustness analysis of both strategies under different weather conditions is also presented.

  9. Air conditioning with small power gas appliances

    International Nuclear Information System (INIS)

    Canci, Franco

    1997-01-01

    This article describes research and test activities on small power air conditioning appliances for residential use carried out in the United States, Japan and Europe. The absorption technology aims at the following objectives: to develop appliances requiring reduced maintenance and having a size comparable with electric units of the same output; to reduce production costs and therefore the final prince by adopting special manufacturing technologies such as welded plate exchangers; to obtain appliances which operate both in summer and winter ( as heat pumps), allowing to minimize management and installation costs in southern European climates. The final aim is to offer the customer one appliance only for the following purposes: hot water production for sanitary use, water refrigeration for summer air conditioning, hot water production production for winter heating. This kind of appliance should have management and maintenance costs similar to current individual boilers

  10. Fuzzy logic control of air-conditioning system in residential buildings

    Directory of Open Access Journals (Sweden)

    Abdel-Hamid Attia

    2015-09-01

    Full Text Available There has been a rising concern in reducing the energy consumption in building. Heating ventilation and air condition system is the biggest consumer of energy in building. In this study, fuzzy logic control of the air conditioning system of building for efficient energy operation and comfortable environment is investigated. A theoretical model of the fan coil unit (FCU and the heat transfer between air and coolant fluid is derived. The controlled variables are the room temperature and relative humidity and control consequents are the percentage of chilled and hot water flow rates at summer and the percentage of hot water and steam injected flow rates at winter. A computer simulation has been conducted and fuzzy control results are compared with that of conventional Proportional-Integral-Derivative control. It was found that the proposed control strategy satisfies the space load and at the same time to achieve the comfort zone, as defined by the ASHRAE code. Meanwhile PID control fails to adjust the room temperature at part-load operations. It has been demonstrated that fuzzy controller operation is more efficient and consumes less energy than PID control.

  11. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    International Nuclear Information System (INIS)

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-01-01

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented

  12. Thermal and economical optimization of air conditioning units with vapor compression refrigeration system

    Energy Technology Data Exchange (ETDEWEB)

    Sanaye, S.; Malekmohammadi, H.R. [Iran University of Science and Technology, Tehran (Iran). Dept. of Mechanical Engineering

    2004-09-01

    A new method of thermal and economical optimum design of air conditioning units with vapor compression refrigeration system, is presented. Such a system includes compressor, condenser, evaporator, centrifugal and axial fans. Evaporator and condenser temperatures, their heating surface areas (frontal surface area and number of tubes), centrifugal and axial fan powers, and compressor power are among the design variables. The data provided by manufacturers for fan (volume flow rate versus pressure drop) and compressor power (using evaporator and condenser temperatures) was used to choose these components directly from available data for consumers. To study the performance of the system under various situations, and implementing the optimization procedure, a simulation program including all thermal and geometrical parameters was developed. The objective function for optimization was the total cost per unit cooling load of the system including capital investment for components as well as the required electricity cost. To find the system design parameters, this objective function was minimized by Lagrange multipliers method. The effects of changing the cooling load on optimal design parameters were studied. (author)

  13. [Relationships between air conditioning, airborne microorganisms and health].

    Science.gov (United States)

    Parat, S; Perdrix, A; Baconnier, P

    1999-01-01

    Concurrently with the increase of air-conditioning, potentially severe or frequent new diseases have emerged, giving rise to social and economical consequences. The first part of this work is a state of the art review of the relationships between air-conditioning, airborne microorganisms and health, through a technical, metrological and medical approach. The second part presents four studies performed in this field. Two of them deal with the relationship between airborne microorganisms and technical features of air-conditioning. Measurements performed on actual sites demonstrated the benefit of using high efficiency filters and low risk components in air-conditioning systems. The third study was aimed to look for a relationship between airborne microorganisms and sick building syndrome symptoms. Statistical analyses of individual data revealed significant associations between airborne bacteria or fungi and symptoms. These results may be the first step in determining a dose-response relationship, in order to define threshold limit values in this field. In the fourth study, the contribution of particle counting in assessing exposure to airborne microorganisms was explored by monitoring simultaneous variations of microbial and particle concentrations. The results showed that associating particle counting may allow to detect microbial variations instantaneously, and therefore improve the assessment of exposure to airborne microorganisms.

  14. Energy savings potential of a hybrid desiccant dehumidification air conditioning system in Beirut

    International Nuclear Information System (INIS)

    Ghali, Kamel

    2008-01-01

    In this work, the transient performance of a hybrid desiccant vapor compression air conditioning system is numerically simulated for the ambient conditions of Beirut. The main feature of this hybrid system is that the regenerative heat needed by the desiccant wheel is partly supplied by the condenser dissipated heat while the rest is supplied by an auxiliary gas heater. The hybrid air conditioning system of the present study replaces a 23 kW vapor compression unit for a typical office in Beirut characterized by a high latent load. The vapor compression subsystem size in the hybrid air conditioning system is reduced to 15 kW at the peak load when the regeneration temperature was fixed at 75 deg. C. Also the sensible heat ratio of the combined hybrid system increased from 0.47 to 0.73. Based on hour by hour simulation studies for a wide range of recorded ambient conditions of Beirut city, this paper predicts the annual energy consumption of the hybrid system in comparison with the conventional vapor compression system for the entire cooling season. The annual running costs savings for the hybrid system is 418.39 USD for a gas cost price of 0.141 USD/kg. The pay back period of the hybrid system is less than five years when the initial cost of the hybrid air conditioning system priced an additional 1712.00 USD. Hence, for a 20-year life cycle, the life cycle savings of the hybrid air conditioning system are 4295.19 USD

  15. History of ventilation and of air conditioning in Dolni Rozinka uranium mines

    International Nuclear Information System (INIS)

    Voltr, S.

    1987-01-01

    At a time of the start of mining operations in the Dolni Rozinka uranium mine, ventilation had been provided using the underpressure technique with diagonal winding shafts. From 1967 the overpressure system had been used. The system is described in detail and its constraints are listed. In 1983, on the basis of an analysis and model tests, the ventilation system was replaced by a underpressure system which satisfied the current hygiene specifications, was costsaving and reliable. Since 1985, an air conditioning system has been in operation featuring mobile cooling units and a closed-circuit air conditioning water system that is separated from the mining water pumping system. In view of the favourable temperature factors of the deposit, the mobile air conditioning units are only installed in blind headings. When the through-flow wind stream is achieved, air conditioning is abandoned. (J.B.). 2 figs., 5 refs

  16. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    Science.gov (United States)

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  17. Thermal conditions and perceived air quality in an air-conditioned auditorium

    Science.gov (United States)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  18. A mixed air/air and air/water heat pump system ensures the air-conditioning of a cinema; Un systeme mixte PAC air/air et air/eau climatise un cinema

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-03-01

    This article presents the air conditioning system of a new cinema complex of Boulogne (92, France) which comprises a double-flux air processing plant and two heat pumps. Each heat pump has two independent refrigerating loops: one with a air condenser and the other with a water condenser. This system allows to limit the power of the loop and to reduce the size of the cooling tower and of the vertical ducts. This article describes the technical characteristics of the installation: thermodynamic units, smoke clearing, temperature control, air renewing. (J.S.)

  19. Computer Model to Estimate Reliability Engineering for Air Conditioning Systems

    International Nuclear Information System (INIS)

    Afrah Al-Bossly, A.; El-Berry, A.; El-Berry, A.

    2012-01-01

    Reliability engineering is used to predict the performance and optimize design and maintenance of air conditioning systems. Air conditioning systems are expose to a number of failures. The failures of an air conditioner such as turn on, loss of air conditioner cooling capacity, reduced air conditioning output temperatures, loss of cool air supply and loss of air flow entirely can be due to a variety of problems with one or more components of an air conditioner or air conditioning system. Forecasting for system failure rates are very important for maintenance. This paper focused on the reliability of the air conditioning systems. Statistical distributions that were commonly applied in reliability settings: the standard (2 parameter) Weibull and Gamma distributions. After distributions parameters had been estimated, reliability estimations and predictions were used for evaluations. To evaluate good operating condition in a building, the reliability of the air conditioning system that supplies conditioned air to the several The company's departments. This air conditioning system is divided into two, namely the main chilled water system and the ten air handling systems that serves the ten departments. In a chilled-water system the air conditioner cools water down to 40-45 degree F (4-7 degree C). The chilled water is distributed throughout the building in a piping system and connected to air condition cooling units wherever needed. Data analysis has been done with support a computer aided reliability software, this is due to the Weibull and Gamma distributions indicated that the reliability for the systems equal to 86.012% and 77.7% respectively. A comparison between the two important families of distribution functions, namely, the Weibull and Gamma families was studied. It was found that Weibull method performed for decision making.

  20. Analysis on a hybrid desiccant air-conditioning system

    International Nuclear Information System (INIS)

    Jia, C.X.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z.

    2006-01-01

    Hybrid desiccant-assisted preconditioner and split cooling coil system, which combines the merits of moisture removal by desiccant and cooling coil for sensible heat removal, is a potential alternative to conventional vapor compression cooling systems. In this paper, experiments on a hybrid desiccant air-conditioning system, which is actually an integration of a rotary solid desiccant dehumidification and a vapor compression air-conditioning unit, had been carried out. It is found that, compared with the conventional VC (vapor compression) system, the hybrid desiccant cooling system economizes 37.5% electricity powers when the process air temperature and relative humidity are maintained at 30 o C, and 55% respectively. The reason why the hybrid desiccant cooling system features better performance relative to the VC system lies in the improvement brought about in the performance of the evaporator in VC unit due to desiccant dehumidification. A thermodynamic model of the hybrid desiccant system with R-22 as the refrigerant has been developed and the impact of operating parameters on the sensible heat ratio of the evaporator and the electric power saving rate has been analyzed. It is found that a majority of evaporators can operate in the dry condition even if the regeneration temperature is lower (i.e. 80 o C)

  1. Online optimal control of variable refrigerant flow and variable air volume combined air conditioning system for energy saving

    International Nuclear Information System (INIS)

    Zhu, Yonghua; Jin, Xinqiao; Du, Zhimin; Fang, Xing

    2015-01-01

    The variable refrigerant flow (VRF) and variable air volume (VAV) combined air conditioning system can solve the problem of the VRF system in outdoor air ventilation while taking advantage of its high part load energy efficiency. Energy performance of the combined air conditioning system can also be optimized by joint control of both the VRF and the VAV parts. A model-based online optimal control strategy for the combined air conditioning system is presented. Simplified adaptive models of major components of the combined air conditioning system are firstly developed for predicting system performances. And a cost function in terms of energy consumption and thermal comfort is constructed. Genetic algorithm is used to search for the optimal control sets. The optimal control strategy is tested and evaluated through two case studies based on the simulation platform. Results show that the optimal strategy can effectively reduce energy consumption of the combined air conditioning system while maintaining acceptable thermal comfort. - Highlights: • A VRF and VAV combined system is proposed. • A model-based online optimal control strategy is proposed for the combined system. • The strategy can reduce energy consumption without sacrificing thermal comfort. • Novel simplified adaptive models are firstly developed for the VRF system

  2. Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong

    International Nuclear Information System (INIS)

    Guo, H.; Lee, S.C.; Chan, L.Y.

    2004-01-01

    To characterize indoor air quality at the markets in Hong Kong, three non-air-conditioned and two air-conditioned markets were selected for this study. The indoor air pollutants measured included PM 10 (particulate matters with aerodynamic diameter less than 10 μm), total bacteria count (TBC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ). The indoor and outdoor concentrations of these target air pollutants at these markets were measured and compared. The effects of air conditioning, temperature/relative humidity variation and different stalls on the indoor air quality were also investigated. The results indicated that all of the average indoor concentrations of PM 10 , TBC, CO and NO 2 at the markets were below the Hong Kong Indoor Air Quality Objectives (HKIAQO) standards with a few exceptions for PM 10 and TBC. The elevated PM 10 concentrations at Hung Hom, Ngau Tau Kok and Wan Chai markets were probably due to the air filtration of outdoor airborne particulates emitted from vehicular exhaust, whereas high concentrations of airborne bacteria at Sai Ying Pun and Tin Shing markets were linked to the use of air conditioning. Correlation analysis demonstrated that indoor bacteria concentrations were correlated with temperature and relative humidity. The operation of air conditioning did not significantly reduce the levels of air pollutants at the markets. However, the higher indoor/outdoor ratios demonstrated that the operation of air conditioning had influence on the levels of bacteria at the markets. It was found that average PM 10 concentration at poultry stalls was higher than the HKIAQO standard of 180 μg/m 3 , and was over two times that measured at vegetable, fish and meat stalls. Furthermore, the concentration of airborne bacteria at the poultry stalls was as high as 1031 CFU/m 3 , which was above the HKIAQO standard of 1000 CFU/m 3 . The bacteria levels at other three stalls were all below the HKIAQO standard

  3. The optimum intermediate pressure of two-stages vapor compression refrigeration cycle for Air-Conditioning unit

    Science.gov (United States)

    Ambarita, H.; Sihombing, H. V.

    2018-03-01

    Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.

  4. Experimental and numerical study of an evaporatively-cooled condenser of air-conditioning systems

    International Nuclear Information System (INIS)

    Islam, M.R.; Jahangeer, K.A.; Chua, K.J.

    2015-01-01

    The performance of an air-conditioning unit with evaporately-cooled condenser coil is studied experimentally and numerically. An experimental setup is fabricated by retrofitting a commercially available air-conditioning unit and installing comprehensive measuring sensors and controllers. Experimental result shows that the COP (Coefficient of Performance) of the evaporately-cooled air-conditioning unit increases by about 28% compared to the conventional air cooled air-conditioning unit. To analyze the heat and mass transfer processes involved in the evaporately-cooled condenser, a detailed theoretical model has been developed based on the fluid flow characteristics of the falling film and the thermodynamic aspect of the evaporation process. Simulated results agree well with experimental data. The numerical model provides new insights into the intrinsic links between operating variables and heat transfer characteristics of water film in evaluating the performance of evaporatively-cooled condenser system. Two heat transfer coefficients, namely, wall to bulk and bulk to interface are introduced and computed from the simulation results under different operating conditions. Finally, the overall heat transfer coefficient for the water film is computed and presented as a function of dimensionless variables which can conveniently be employed by engineers to design and analyze high performance evaporatively-cooled heat exchangers. - Highlights: • Performance of evaporatively-cooled condenser is investigated. • Local convective heat transfer coefficients of water film are determined. • Thermal resistance of water film is negligible. • Heat transfer with evaporated vapor plays significant role on performance. • Better condenser performance translates to an improvement in COP

  5. Air pollution problem in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, H

    1964-10-01

    Air pollution in the United States as a problem affecting health, as well as man's enjoyment of his property, was first noted in 1912 in the reports of the investigators at the Mellon Institute of the University of Pittsburgh. The Selby copper smelter incident in 1915 was among the first episodic air pollution events documented. The US Public Health Service studied carbon monoxide buildup in vehicular tunnels in 1928 and 1929. the Donora (Pennsylvania) pollution episode, where 17 people died, occurred in 1949. It and the onset of smog conditions in the Los Angeles area really initiated broad public awareness of air pollution as a public health hazard in the USA. The symptoms of air pollution-related injuries are discussed, the role of the US Public Health Service in dealing with air pollution, and the effect of the Clean Air Act of 1963 are discussed. 26 references.

  6. Operational experience of air washer based ventilation system for power conditioning system of Indus-2

    International Nuclear Information System (INIS)

    Pandey, R.M.; Baghel, S.L.; Parate, J.K.; Ahlawat, Sandeep; Rawlani, B.K.; Chouksey, Sanjay

    2015-01-01

    Indus-2 Synchrotron Accelerator requires high quality conditioned uninterrupted AC mains power for their smooth and reliable operation. Three units of 1670 kVA and one unit of 1100 kVA capacity rotary uninterruptible power conditioning systems (UPS) were installed and commissioned. These UPS units require dust free and cool ambient conditions for smooth operation. In order to meet the ventilation requirements, an evaporative cooling system of 80000 cubic meter/hour capacity with filtration units was designed, installed and commissioned in February 2011 and is operational on round-the-clock basis. Evaporative cooling scheme was chosen as has various advantages over a refrigerated system like lower initial capital costs, lower energy usage, lower running costs, less greenhouse gas and it does not contribute to ozone depletion. The ventilation system filters the environment air in stages up to 5 micron level and being conditioned with an automatic controlled soft water circulating system with cooling pads. An instrumentation and control scheme is included in the system to provide the automation requirements for operating 24 x 7 through the year. All the mechanical, hydraulic and electrical devices are maintained by providing preventive maintenance work without affecting the accelerator machine operation. Availability and reliability of the system was analysed based on the failure data. In Year 2014, the ventilation system was upgraded to accommodate standby blower unit, coupling unit and improved quality of supply air with new air conditioning devices. The control panel monitors the condition of air in the UPS hall and maintainsup to 28°C air temperature and 85% maximum relative humidity in round-the clock shift with more than 98% operational reliability. In this paper, we present design philosophy, installation, instrumentation, testing, operation experience and availability of the ventilation system for Power Conditioning System, Indus complex. (author)

  7. Information Assurance within the United States Air Force

    Science.gov (United States)

    Cherry, John D.

    2010-01-01

    According to the Department of Defense (DoD), a review of information assurance (IA) in the United States Air Force (USAF) in 2009, cyber security is jeopardized because of information loss. This situation has occurred in large part because of less than optimal training practices or adherence to training protocols. The purpose of this study was…

  8. The germicidal effect of the open air in different parts of The Netherlands

    NARCIS (Netherlands)

    Mik, G. de; Groot, I. de

    1977-01-01

    Using the microthread technique the survival of Escherichia coli MRE 162 in open air was measured in different parts of The Netherlands. The presence of bactericidal compounds (open air factor=OAF) could be demonstrated on several days and quantitated in relative units of OAF concentration. In the

  9. A basic condition-based maintenance strategy for air-cooled turbine generators

    International Nuclear Information System (INIS)

    Laird, T.; Griffith, G.; Hoof, M.

    2005-01-01

    This paper discusses the methods of using condition-based maintenance (CBM) for turbine generators. Even though it is focused on the maintenance strategy for air-cooled generators, all types of power producers can realize benefits from a better maintenance strategy at lower costs. A reliable assessment of the actual unit condition requires detailed knowledge of the unit design, operational weaknesses, cost of maintenance and operational capabilities. (author)

  10. Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children's health

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying; Raja, Suresh; Ferro, Andrea R.; Jaques, Peter A.; Hopke, Philip K. [Clarkson University, 8 Clarkson Avenue, Center for Air Resources Engineering and Science, Potsdam, NY 13699 (United States); Gressani, Cheryl; Wetzel, Larry E. [Air Innovations, Inc, 7000 Performance Drive, North Syracuse, NY 13212 (United States)

    2010-02-15

    Poor indoor air quality has been linked to the exacerbation of asthma symptoms in children. Because people spend most of their time indoors, improving indoor air quality may provide some relief to asthma sufferers. A study was conducted to assess whether operating an air cleaning/ventilating unit (HEPAiRx {sup registered}) in a child's bedroom can improve his/her respiratory health. Thirty children diagnosed with asthma were randomly split into two groups. For the first six weeks, group A had the air cleaning/ventilating unit (HEPAiRx {sup registered}) running in the bedrooms of the participants and group B did not; for the second six weeks, both groups had the cleaners running in the bedrooms; and, for the final six weeks, group A turned the cleaners off and group B kept theirs running. Indoor air quality parameters, including temperature, relative humidity, particulate matter (PM 0.5-10 {mu}m), carbon monoxide, carbon dioxide and total volatile organic compound (TVOC) concentrations, were monitored in each bedroom using an AirAdvice indoor air quality multi-meter. As a measure of pulmonary inflammation, exhaled breath condensate (EBC) was collected every sixth day and analyzed for nitrate and pH. Peak expiratory flow (PEF) was also measured. PM and TVOC concentrations decreased with operation of the HEPAiRx an average of 72% and 59%, respectively. The EBC nitrate concentrations decreased significantly and the EBC pH and PEF values increased significantly with operation of the unit (p < 0.001 when comparing on/off sample means). These results indicate that air cleaning in combination with ventilation can effectively reduce symptoms for asthma sufferers. (author)

  11. Badly maintained air conditioning installations (Part 2); Schlecht gewartete Klimaanlagen (Teil 2)

    Energy Technology Data Exchange (ETDEWEB)

    Haefliger, P. E.; Thies, U.

    2002-07-01

    This article is the second of a series of four articles that discuss hygiene problems that often occur in ventilation and air-conditioning installations. They describe the problems encountered in detail, provide the reader with appropriate know-how on hygiene-related topics and present an overview of the regulations appertaining to the problems along with inspection and analysis methods. In particular, this second article examines the so-called 'Sick Building Syndrome', its technical, chemical, biological and psychosocial causes and mentions the results of studies made in this area. Typical illnesses such as allergic alveolitis and legionnaires illness are discussed. Definitions of hygiene and comfort with respect to ventilation and air-conditioning installations are presented and problem areas such as filters, ducting, humidifiers and cooling are discussed. The article is rounded off - as are all articles of this series - with a comprehensive literature list.

  12. Part load efficiency of packaged air-cooled water chillers with inverter driven scroll compressors

    International Nuclear Information System (INIS)

    Cecchinato, Luca

    2010-01-01

    In this paper different packaged air-cooled systems, operating on scroll compressors, are experimentally analysed from the point of view of the relation between energy efficiency and actual capacity. Single compressor, double compressors and double compressors with uneven volumetric capacity units are tested. Experimental tests demonstrated that cooling capacity control by means of variation of rotational speed is an suitable solution for improving the part load efficiency of these systems. Step capacity units obtained by splitting the system volumetric capacity between two compressors are also effective solutions. Nevertheless they appear to be more efficient than single inverter driven chillers only for part load conditions lower than 60%. In the analysed cooling capacity range (25-50 kW), tandem compressors chillers with one inverter driven compressor appear the most efficient solution combining rotational speed with step capacity control. Seasonal energy efficiency ratios were obtained with prEN 14825 calculation method confirming reduced energy consumption associated to continuous and step cooling capacity control.

  13. Small photovoltaic setup for the air conditioning system

    Directory of Open Access Journals (Sweden)

    Masiukiewicz Maciej

    2017-01-01

    Full Text Available The increasing interest in air conditioning systems for residential applications in Poland will certainly increase the demand for electricity during the summer period. Due to this fact a growing interest in solutions that help to lower the electricity consumption in this sector is observed. The problem of increased energy demand for air conditioning purposes can be solved by transfer the consumption of electricity from the grid system to renewable energy sources (RES. The greatest demand for cooling occurs during the biggest sunlight. This is the basis for the analysis of technical power system based on photovoltaic cells (PV to power the split type air conditioner. The object of the study was the commercial residential airconditioning inverter units with a capacity of 2.5kW. A network electricity production system for their own use with the possibility of buffering energy in batteries (OFF-GRID system. Currently, on the Polish market, there are no developed complete solutions dedicated to air conditioning systems based on PV. In Poland, solar energy is mainly used for heat production in solar collectors. The proposed solution will help to increase the popularity of PV systems in the Polish market as an alternative to other RES. The basic conclusion is that the amount of PV energy generated was sufficient to cover the daily energy requirement of the air conditioner.

  14. Small photovoltaic setup for the air conditioning system

    Science.gov (United States)

    Masiukiewicz, Maciej

    2017-10-01

    The increasing interest in air conditioning systems for residential applications in Poland will certainly increase the demand for electricity during the summer period. Due to this fact a growing interest in solutions that help to lower the electricity consumption in this sector is observed. The problem of increased energy demand for air conditioning purposes can be solved by transfer the consumption of electricity from the grid system to renewable energy sources (RES). The greatest demand for cooling occurs during the biggest sunlight. This is the basis for the analysis of technical power system based on photovoltaic cells (PV) to power the split type air conditioner. The object of the study was the commercial residential airconditioning inverter units with a capacity of 2.5kW. A network electricity production system for their own use with the possibility of buffering energy in batteries (OFF-GRID system). Currently, on the Polish market, there are no developed complete solutions dedicated to air conditioning systems based on PV. In Poland, solar energy is mainly used for heat production in solar collectors. The proposed solution will help to increase the popularity of PV systems in the Polish market as an alternative to other RES. The basic conclusion is that the amount of PV energy generated was sufficient to cover the daily energy requirement of the air conditioner.

  15. Geohydrologic units and water-level conditions in the Terrace alluvial aquifer and Paluxy Aquifer, May 1993 and February 1994, near Air Force Plant 4, Fort Worth area, Texas

    Science.gov (United States)

    Rivers, Glen A.; Baker, Ernest T.; Coplin, L.S.

    1996-01-01

    The terrace alluvial aquifer underlying Air Force Plant 4 and the adjacent Naval Air Station (formerly Carswell Air Force Base) in the Fort Worth area, Texas, is contaminated locally with organic and metal compounds. Residents south and west of Air Force Plant 4 and the Naval Air Station are concerned that contaminants might enter the underlying Paluxy aquifer, which provides water to the city of White Settlement, south of Air Force Plant 4, and to residents west of Air Force Plant 4. The U.S. Environmental Protection Agency has qualified Air Force Plant 4 for Superfund cleanup. The pertinent geologic units include -A~rom oldest to youngest the Glen Rose, Paluxy, and Walnut Formations, Goodland Limestone, and terrace alluvial deposits. Except for the Glen Rose Formation, all units crop out at or near Air Force Plant 4 and the Naval Air Station. The terrace alluvial deposits, which nearly everywhere form the land surface, range from 0 to about 60 feet thick. These deposits comprise a mostly unconsolidated mixture of gravel, sand, silt, and clay. Mudstone and sandstone of the Paluxy Formation crop out north, west, and southwest of Lake Worth and total between about 130 and about 175 feet thick. The terrace alluvial deposits and the Paluxy Formation comprise the terrace alluvial aquifer and the Paluxy aquifer, respectively. These aquifers are separated by the Goodland-Walnut confining unit, composed of the Goodland Limestone and (or) Walnut Formation. Below the Paluxy aquifer, the Glen Rose Formation forms the Glen Rose confining unit. Water-level measurements during May 1993 and February 1994 from wells in the terrace alluvial aquifer indicate that, regionally, ground water flows toward the east-southeast beneath Air Force Plant 4 and the Naval Air Station. Locally, water appears to flow outward from ground-water mounds maintained by the localized infiltration of precipitation and reportedly by leaking water pipes and sanitary and (or) storm sewer lines beneath the

  16. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Science.gov (United States)

    2010-01-01

    ... RULEâ) Pt. 305, App. H Appendix H to Part 305—Cooling Performance and Cost for Central Air Conditioners... Split System Units Central Air Conditioners (Cooling Only): All capacities 10.9 23.0 Heat Pumps (Cooling... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Cooling Performance and Cost for Central Air...

  17. Air Filtration as Protection against Fouling of Ventilation and Air Conditioning Units

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Lajčíková, Ariana

    2005-01-01

    Currently, air filters are one of the most critical components of air treatment systems as they decontaminate the air delivered to living space. During the operation, however, the level of harmful surface deposits increases, and at certain times, an uncleaned filter can itself become a source...... of undesirable contaminents influencing negatively the IAQ of a living space. This is the phenomenon that has been a subject of the current research. The article presents a new, alternative view on indoor air contaminents and filtration requirements. It describes alternative means of filtration and assesses...... issues of inadequate maintenance and/or long term use of applied air filters. An experimental method of evealuating the air quality by means of chemical analysis and state-of-the-art spectrometer is also described....

  18. Assessment of indoor air quality in comparison using air conditioning and fan system in printing premise

    Directory of Open Access Journals (Sweden)

    Ramlan Nazirah

    2017-01-01

    Full Text Available Printers contribute to various emissions consist with chemical contaminants. High concentration of the particulate matter can cause serious health problems. This study focuses on the indoor air quality in printing premise unit in Universiti Tun Hussein Onn, Malaysia. Field testing involving air sampling methods were taken from 900 hours to 1600 hours, for every 30 minutes using physical measurement which is Multi-Channel Air Quality Monitor (YESAIR, E-Sampler and Ozone Meter. Air sampling was recorded based on one sampling point and most suitable point for production. A comparison based on different ventilation using fan and air-conditioning were also taken and results is being compared based on OSHA and NIOSH standards. Besides that, the statistical analysis is being conducted in order to predict the effect on number of printers. From the result, the O3 concentrations show, 10% reduced for printing premise using fan ventilation compared to air-conditioning but remain the same value for PM2.5. The concentration of O3 increased when the number of printers decreased, while the concentration of PM2.5 increased the increase of printers number. Overall, the use of fan in printing premise is more suggested since the level is slightly lower than the printing premise using air-conditioning.

  19. Evaluation of seasonal exergy efficiency of air handing unit

    Directory of Open Access Journals (Sweden)

    Kęstutis Genys

    2015-10-01

    Full Text Available The article deals with the air handling unit seasonal exergy efficiency. TRNSYS simulation tool is used to evaluate it. The object of research is air treatment device used to treat an air for the ventilation of laboratory. The mathematical model of air handling unit using TRNSYS simulation tool was developed when the technical parameters of air handling unit and energy exchange in it were analysed. The developed model according to the made observations during the warm and cold periods was tested and validation of elements was performed. The simulation of air handling unit operation after the verification of reliability and permitted tolerances was performed. The control mechanisim which allows simulating the operation of air handling unit during cold and warm periods of the year was made. The mathematical algorithm for calculation of air handling unit exergy efficiency coefficient applying the principles of exergy analysis was developed. The seasonal exergy efficiency of air handling unit equal to 3.94 percent during the simulation was obtained.

  20. V-TECS Guide for Automobile Air Conditioning and Electrical System Technician.

    Science.gov (United States)

    Meyer, Calvin F.; Benson, Robert T.

    This curriculum guide provides an outline for an eight-unit course to train automobile air conditioning and electrical system technicians. Each unit focuses on a duty that is composed of a number of performance objectives. For each objective, these materials are provided: a task, a standard of performance of task, source of standard, conditions…

  1. Performance enhancement of a subcooled cold storage air conditioning system

    International Nuclear Information System (INIS)

    Hsiao, M.-J.; Cheng, C.-H.; Huang, M.-C.; Chen, S.-L.

    2009-01-01

    This article experimentally investigates the enhancement of thermal performance for an air conditioning system utilizing a cold storage unit as a subcooler. The cold storage unit is composed of an energy storage tank, liquid-side heat exchanger, suction-side heat exchanger and energy storage material (ESM), water. When the cooling load is lower than the nominal cooling capacity of the system, the cold storage unit can store extra cold energy of the system to subcool the condenser outlet refrigerant. Hence, both the cooling capacity and coefficient of performance (COP) of the system will be increased. This experiment tests the two operation modes: subcooled mode with energy storage and non-subcooled mode without energy storage. The results show that for fixed cooling loads at 3.05 kW, 3.5 kW and 3.95 kW, the COP of the subcooled mode are 16.0%, 15.6% and 14.1% higher than those of the non-subcooled mode, respectively. In the varied cooling load experiments, the COP of the subcooled cold storage air conditioning system is 15.3% higher than the conventional system.

  2. Development of residential solar air conditioning system for electricity power peak cut 3

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Gwon Jong [Korea Inst. of Energy and Resources, Daeduk (Korea, Republic of)

    1995-12-31

    In this research, the converter rectifier unit of the inverter air conditioner is substituted into the bidirectional PWM converter. The DC/DC power converter is established on the DC link between the photovoltaic array and the inverter air conditioner, and the photovoltaic air conditioning system which can be parallel driven which utility is developed. (author). 35 ref., 112 figs.

  3. Step response and frequency response of an air conditioning system

    NARCIS (Netherlands)

    Crommelin, R.D.; Jackman, P.J.

    1978-01-01

    A system of induction units of an existing air conditioning system has been analyzed with respect to its dynamic properties. Time constants were calculated and measured by analogue models. Comparison with measurements at the installation itself showed a reasonable agreement. Frequency responses were

  4. The application of fuzzy control on energy saving for multi-unit room air-conditioners

    International Nuclear Information System (INIS)

    Chiou, C.B.; Chiou, C.H.; Chu, C.M.; Lin, S.L.

    2009-01-01

    Most research, on energy saving methods for air-conditioners have focused on large chillers as its subject. As most school offices, laboratories, and classrooms are equipped with unitary systems for air-conditioning, this paper discusses methods for energy savings with regard to unitary systems. This paper will put forward the fuzzy temperature control method for multi-unit air-conditioners to enhance energy efficiency. The results show that the use of fuzzy control is efficient for energy saving as well as causing temperature control be steadier, even if there is a change to the thermal loading, the fuzzy control system is able to control the air-conditioning in stable conditions

  5. Radon mitigation in schools utilising heating, ventilating and air conditioning systems

    International Nuclear Information System (INIS)

    Fisher, G.; Ligman, B.; Brennan, T.; Shaughnessy, R.; Turk, B.H.; Snead, B.

    1994-01-01

    As part of a continuing radon in schools technology development effort, EPA's School Evaluation Team has performed radon mitigation in schools by the method of ventilation/pressurisation control technology. Ventilation rates were increased, at a minimum, to meet the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) standard, Ventilation for Acceptable Indoor Air Quality (ASHRAE 62-1989). This paper presents the results and the preliminary evaluations which led to the team's decision to implement this technology. Factors considered include energy penalties, comfort, indoor air quality (IAQ), building shell tightness, and equipment costs. Cost benefit of heat recovery ventilation was also considered. Earlier results of the SEP team's efforts have indicated a severe ventilation problem within the schools of the United States. Two case studies are presented where HVAC technology was implemented for controlling radon concentrations. One involved the installation of a heat recovery ventilator to depressurise a crawl space and provide ventilation to the classrooms which previously had no mechanical ventilation. The other involved the restoration of a variable air volume system in a two-storey building. The HVAC system's controls were restored and modified to provide a constant building pressure differential to control the entry of radon. Pre-mitigation and post-mitigation indoor air pollutant measurements were taken, including radon, carbon dioxide (CO 2 ), particulates, and bio-aerosols. Long-term monitoring of radon, CO 2 , building pressure differentials, and indoor/outdoor temperature and relative humidity is presented. (author)

  6. Relationship between Air Pollution and Weather Conditions under Complicated Geographical conditions

    Science.gov (United States)

    Cheng, Q.; Jiang, P.; Li, M.

    2017-12-01

    Air pollution is one of the most serious issues all over the world, especially in megacities with constrained geographical conditions for air pollution diffusion. However, the dynamic mechanism of air pollution diffusion under complicated geographical conditions is still be confused. Researches to explore relationship between air pollution and weather conditions from the perspective of local atmospheric circulations can contribute more to solve such problem. We selected three megacities (Beijing, Shanghai and Guangzhou) under different geographical condition (mountain-plain transition region, coastal alluvial plain and coastal hilly terrain) to explore the relationship between air pollution and weather conditions. RDA (Redundancy analysis) model was used to analyze how the local atmospheric circulation acts on the air pollutant diffusion. The results show that there was a positive correlation between the concentration of air pollutants and air pressure, while temperature, precipitation and wind speed have negative correlations with the concentration of air pollutants. Furthermore, geographical conditions, such as topographic relief, have significant effects on the direction, path and intensity of local atmospheric circulation. As a consequence, air pollutants diffusion modes in different cities under various geographical conditions are diverse from each other.

  7. Principles of Refrigeration. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    Science.gov (United States)

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with the principles of refrigeration. Covered in the module are defining the term heat, defining the term British Thermal Unit (BTU), defining the term latent heat, listing…

  8. [Microbial air purity in hospitals. Operating theatres with air conditioning system].

    Science.gov (United States)

    Krogulski, Adam; Szczotko, Maciej

    2010-01-01

    The aim of this study was to show the influence of air conditioning control for microbial contamination of air inside the operating theatres equipped with correctly working air-conditioning system. This work was based on the results of bacteria and fungi concentration in hospital air obtained since 2001. Assays of microbial air purity conducted on atmospheric air in parallel with indoor air demonstrated that air filters applied in air-conditioning systems worked correctly in every case. To show the problem of fluctuation of bacteria concentration more precisely, every sequences of single results from successive measure series were examined independently.

  9. Performance evaluation of an integrated automotive air conditioning and heat pump system

    International Nuclear Information System (INIS)

    Hosoz, M.; Direk, M.

    2006-01-01

    This study deals with the performance characteristics of an R134a automotive air conditioning system capable of operating as an air-to-air heat pump using ambient air as a heat source. For this aim, an experimental analysis has been performed on a plant made up of original components from an automobile air conditioning system and some extra equipment employed to operate the system in the reverse direction. The system has been tested in the air conditioning and heat pump modes by varying the compressor speed and air temperatures at the inlets of the indoor and outdoor coils. Evaluation of the data gathered in steady state test runs has shown the effects of the operating conditions on the capacity, coefficient of performance, compressor discharge temperature and the rate of exergy destroyed by each component of the system for both operation modes. It has been observed that the heat pump operation provides adequate heating only in mild weather conditions, and the heating capacity drops sharply with decreasing outdoor temperature. However, compared with the air conditioning operation, the heat pump operation usually yields a higher coefficient of performance and a lower rate of exergy destruction per unit capacity. It is also possible to improve the heating mode performance of the system by redesigning the indoor coil, using another refrigerant with a higher heat rejection rate in the condenser and employing a better heat source such as the engine coolant or exhaust gases

  10. Proposal for energy saving in air conditioning equipment; Propuesta para ahorro energetico en acondicionadores de aire

    Energy Technology Data Exchange (ETDEWEB)

    Solis Recendez, Daniel H [Division de Ingenieria Electrica, Universidad Nacional Autonoma de Mexico (Mexico)

    2008-10-15

    In the last decades, the air conditioning systems have become a crucial part in the search from comfort in extreme climates. Nevertheless, they have also become one of the greatest energy consumers. In this article it is proposed that the final conditions that the air conditioning equipment looks for not to be fixed, but variable in respect to a certain comfort zone. This zone is a variation of the used one in the bio-climatic chart of Olgyay that considers the rapidity whereupon the reached conditions tend to leave the comfort zone. It is analyzed how to choose the point on the zone that costs less energy in arriving to it. [Spanish] En las ultimas decadas, los sistemas de aire acondicionado se han vuelto una parte crucial en la busqueda de confort en climas extremosos. Sin embargo, tambien se han vuelto de los mayores consumidores de energia. En este articulo se propone que las condiciones finales que busquen lograr los acondicionadores no sean fijas, si no variables respecto a una determinada zona de confort. Dicha zona es una variacion de la utilizada en la carta bioclimatica de Olgyay, que considera la rapidez con que las condiciones alcanzadas tienden a abandonar la zona de confort. Se discute como elegir el punto sobre la zona que cueste menos energia en llegara el.

  11. A study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an air source heat pump – Part I: Experiments

    International Nuclear Information System (INIS)

    Qu, Minglu; Xia, Liang; Deng, Shiming; Jiang, Yiqiang

    2012-01-01

    Highlights: ► We experimental study the defrosting performance on a multi-circuit outdoor coil unit in an ASHP unit. ► We find that defrosting is quicker on the airside of upper circuits than that on the lower circuits. ► We discuss the effects of downwards flowing of the melted frost along the outdoor coil surface on defrosting performance. -- Abstract: When an air source heat pump (ASHP) unit operates in heating mode, frost can be accumulated on the surface of its finned outdoor coil which normally has multiple parallel circuits on its refrigerant side for minimized refrigerant pressure loss and enhanced heat transfer efficiency. On its airside, however, there is usually no segmentation corresponding to the number of refrigerant circuit. Frosting deteriorates the operation and energy efficiency of the ASHP unit and periodic defrosting becomes necessary. Currently the most widely used standard defrosting method for ASHPs is reverse cycle defrost. This paper, the first part of a two-part series, reports on the experimental part of a study of the reverse cycle defrosting performance on a multi-circuit outdoor coil unit in an experimental 6.5 kW heating capacity residential ASHP unit. Firstly the experimental ASHP unit is described and experimental procedures detailed. Secondly, the experimental results are reported. This is followed by the discussion on the effects of downwards flowing of the melted frost along a multi-circuit outdoor coil surface on defrosting performance. Finally, the evaluation of the defrosting efficiency for the experimental ASHP unit is provided. In the second part of the series, a modeling analysis on the effects of downwards flowing of the melted frost along the multi-circuit outdoor coil surface on defrosting performance of the experimental ASHP unit will be presented.

  12. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    International Nuclear Information System (INIS)

    Fleming, Evan; Wen, Shaoyi; Shi, Li; Silva, Alexandre K. da

    2013-01-01

    Highlights: • We developed an automotive thermal storage air conditioning system model. • The thermal storage unit utilizes phase change materials. • We use semi-analytic solution to the coupled phase change and forced convection. • We model the airside heat exchange using the NTU method. • The system model can incorporate dynamic inputs, e.g. variable inlet airflow. - Abstract: A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system’s dynamic behavior, such as a dynamic air flow rate into the vehicle’s cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle’s cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid–air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semi-analytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid–air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system

  13. A preliminary assessment of the Montréal process indicators of air pollution for the United States

    Science.gov (United States)

    John W. Coulston; Kurt H. Riitters; Grethchen C. Smith

    2004-01-01

    Air pollutants pose a risk to forest health and vitality in the United States. Here we present the major findings from a national scale air pollution assessment that is part of the United States’ 2003 Report on Sustainable Forests. We examine trends and the percent forest subjected to specific levels of ozone and wet deposition of sulfate, nitrate, and ammonium....

  14. Report of study 7.3: cooling and air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Russo, F.

    2000-07-01

    This report describes the results of the study carried out by the study group 7.3 in the triennium 1997-2000. The study was focused on industrial refrigeration and air conditioning for the large building utilising natural gas. The goal of this study, carried out in collaboration of the members of study group 7.3, was to analyse the markets of industrial refrigeration and air conditioning for large buildings to identify possibilities to increase the natural gas share in these sectors. The available technology in the two sectors of the market are described in a single section, i.e. the 'State of the art of the technology'. In this section, technical characteristics, applications, performances, new developments and others topics are discussed for absorbers, gas engines, gas turbines and fuel cells. In the 'Industrial Refrigeration' section an analysis of the present global market for the industrial sector is presented. Economics, advantages and barriers to gas units compared with the electrical units are discussed. Information on existing industrial plants, possible application options and new technology developments are described as well. The 'Air conditioning for the large building' section deals with offices, hotels, commercial buildings, hospitals and shopping centres with a cooling capacity of 350 kW or higher. It appears that the use of natural gas for cooling of large buildings has been increasing during the last decade, thanks to the greater availability of natural gas and the development of new technologies. A marketing survey of gas air-conditioning was carried out in cooperation with a group of Intergas Marketing. Based on the survey, the report describes the market position of natural gas relative to electricity. It provides the strategic prospects for further developing natural gas as a competitive option for air-conditioning of large buildings using a combination of state-of-the-art technologies. It is important to highlight

  15. Evaluation of High-Performance Rooftop HVAC Unit Naval Air Station Key West, Florida

    Energy Technology Data Exchange (ETDEWEB)

    Howett, Daniel H. [ORNL; Desjarlais, Andre Omer [ORNL; Cox, Daryl [ORNL

    2018-01-01

    This report documents performance of a high performance rooftop HVAC unit (RTU) at Naval Air Station Key West, FL. This report was sponsored by the Federal Energy Management Program as part of the "High Performance RTU Campaign".

  16. Fungal colonization of air-conditioning systems

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2008-01-01

    Full Text Available Fungi have been implicated as quantitatively the most important bioaerosol component of indoor air associated with contaminated air-conditioning systems. rarely, indoor fungi may cause human infections, but more commonly allergenic responses ranging from pneumonitis to asthma-like symptoms. From all air conditioner filters analyzed, 16 fungal taxa were isolated and identified. Aspergillus fumigatus causes more lethal infections worldwide than any other mold. Air-conditioning filters that adsorb moisture and volatile organics appear to provide suitable substrates for fungal colonization. It is important to stress that fungal colonization of air-conditioning systems should not be ignored, especially in hospital environments.

  17. Air conditioning systems to clean radioactive air

    International Nuclear Information System (INIS)

    Ganz, G.

    1987-01-01

    The author reports a study by the Institutes fuer Klimatechnik and Umweltschutz Giessen that shows that air conditioning systems not only make the atmosphere more comfortable, they also extract dust particles. This cleaning action is also valid for radioactively contaminated air. (G.T.H./Auth.)

  18. The air quality in ventilation installations. Practical guidelines; Qualite de l'air dans les installations aerauliques. Guide pratique

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, L. [France Air, 91 - Chilly Mazarin (France); Bianchina, M. [Unelvent, 93 - Le Bourget (France); Blazy, M. [Anjos, 01 - Torcieu (France); Boulanger, X. [Aldes, 21 - Chenove (France); Chiesa, M. [Atlantic (France); Duclos, M. [Groupe Titanair, 69 - Lyon (France); Hubert, D.; Kridorian, O. [Groupe Astato, Blanc Mesnil (France); Josserand, O. [Carrier (Belgium); Lancieux, C. [Camfil, 60 - Saint Martin Longueau (France); Lemaire, J.C. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Petit, Ph. [Compagnie Industrielle d' Applications Thermiques ( CIAT ), 75 - Paris (France); Ribot, B. [Electricite de France (EDF), 75 - Paris (France); Tokarek, S. [Gaz de France (GDF), 75 - Paris (France); Bernard, A.M.; Tissot, A. [Centre Technique des Industries Aerauliques et Thermiques (CETIAT), 69 - Villeurbanne (France)

    2004-07-01

    The present guide aims to provide design departments, maintenance companies and builders with practical guidelines and recommendations for the installation of ventilation and air-conditioning systems. The objective is to ensure good Indoor Air Quality (IAQ) and to safeguard the health and well-being of the occupants. The guide deals with aspects of design, dimensioning, installation and servicing, all of which play a major role in guaranteeing IAQ and duct-work hygiene. These steps are reviewed for the principal ventilation systems met in both residential and commercial premises. The first part presents the system and draws the attention of the user to specific points which require particular care in term of IAQ. The second part details recommended practice component by component, in respect of design, installation and servicing. Application of these simple guidelines during the various project stages is essential, in order to ensure a good IAQ in ventilation systems. Content: introduction; good ventilation; systems: exhaust ventilation, balanced ventilation, air handling unit, terminal ventilation units, impact of systems on indoor air quality, components: air inlet, air filter, heat recovery unit, heating or cooling coil, humidifier, mechanical fan unit, cowl and hybrid ventilation fan, mixing box, ventilation duct-work, air outlet and air terminal device; references.

  19. A novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor humidity control

    International Nuclear Information System (INIS)

    Yan, Huaxia; Deng, Shiming; Chan, Ming-yin

    2016-01-01

    Highlights: • A novel capacity controller for TEAC systems for improved indoor humidity control is developed. • The novel controller was developed by integrating two previous control algorithms. • Experimental controllability tests were carried out. • Improved control over indoor humidity levels and higher energy efficiency can be achieved. - Abstract: Using a multi-evaporator air conditioning (MEAC) system to correctly control indoor air temperatures only in a multi-room application is already a challenging and difficult task, let alone the control of both indoor air temperature and humidity. This is because in an MEAC system, a number of indoor units are connected to a common condensing unit. Hence, the interferences among operation parameters of different indoor units would make the desired control of an MEAC system hard to realize. Limited capacity control algorithms for MEAC systems have been developed, with most of them focusing only on the control of indoor air temperature, and no previous studies involving control of indoor air humidity using MEAC systems can be identified. In this paper, the development of a novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor air humidity control is reported. The novel controller was developed by integrating two previous control algorithms for a dual-evaporator air conditioning system for temperature control and for a single-evaporator air conditioning system for improved indoor humidity control. Experimental controllability tests were carried out and the controllability test results showed that, with the novel controller, improved control over indoor humidity levels and better energy efficiency for a TEAC system could be obtained as compared to the traditional On–Off controllers extensively used by MEAC systems.

  20. Experimental performance study of a proposed desiccant based air conditioning system.

    Science.gov (United States)

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.

  1. Instability of automotive air conditioning system with a variable displacement compressor. Part 1. Experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Changqing; Dou, Chunpeng; Yang, Xinjiang; Li, Xianting [Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084 (People' s Republic of China)

    2005-11-01

    A test system is built first in order to investigate the instability of the automotive air conditioning (AAC) system with a variable displacement compressor (VDC), and hunting phenomena caused by the large external disturbance in the AAC system with a VDC and a thermal expansion valve, and in the AAC system with a VDC and a fixed-area throttling device are investigated experimentally in part 1 of this paper. The experimental results indicate that there also exist the hunting phenomena in the AAC system with a fixed-area throttling device. The system stability is found to be dependent on the direction of the external disturbance, and the system is apt to cause hunting when the condensing pressure decreases excessively since it may cause two-phase state at the throttling device inlet and make a large disturbance to the system. The piston stroke length will oscillate only when the oscillation amplitudes of forces acting on the wobble plate are great enough, otherwise the piston stroke length will be kept invariable, and then the system instability rule is also suitable for the AAC system with a fixed displacement compressor. From the experimental results, it is concluded that the two-phase flow at the throttling device inlet or at the evaporator outlet is the necessary condition but not sufficient condition for system hunting. Finally, a new concept, conservative stable region, is proposed based on the experimental results and theoretical analysis. (author)

  2. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    Science.gov (United States)

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry ( 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  3. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Instructor Edition. Introduction to Construction Series.

    Science.gov (United States)

    Oklahoma State Dept. of Vocational and Technical Education, Stillwater. Curriculum and Instructional Materials Center.

    This instructor's guide contains the materials required to teach a competency-based introductory course in heating, ventilating, and air conditioning (HVAC) to students who have chosen to explore careers in construction. It contains three units: HVAC materials, HVAC tools, and applied skills. Each instructional unit includes some or all of the…

  4. Investigation of the compressor part-load behaviour and its effects on the per annum energy consumption of the air conditioner; Untersuchung des Kompressor-Teillastverhaltens im Hinblick auf den Jahresverbrauch der Klimaanlage

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Klaus; Lechner, Bernhard [Virtual Vehicle. Kompetenzzentrum - Das virtuelle Fahrzeug Forschungsgesellschaft mbH (ViF), Graz (Austria); Rieberer, Rene [Technische Univ. Graz (Austria); Moenkediek, Thomas [Audi AG, Ingolstadt (Germany)

    2010-07-01

    The air conditioning system is one of the most important ancillary units of a motor vehicle. Energetic optimization of air conditioners has been a key issue of research at AUDI AG during the past few years. As a rule, the cooling capacity of the air conditioner is controlled by adapting the compressor lift if the compressor is driven by the car engine and control via the rotational speed is not possible. As air conditioners ted to be designed for extreme conditions, the compressor will work at part load in most operating conditions. Optimization of the energetic efficiency of the air conditioner also means to look at the part-load behaviour of the compressor. Simulations have been used successfully by AUDI AG for many years now; the have helped to shorten development times and improve the product quality. The contribution describes an advanced model of a swivel plate compressor of a R134a cooling cycle with particular consideration of part-lift operation. The simulation model is based on measurements with continous recording of the piston lift. The focus is on the influence of reduced lift on the compressor efficiency. Another point of interest is the successful integration of the compressor model in the overall refrigerating cycle model which will be used for simulations of system performance and efficiency and for further optimization of the air conditioner. (orig.)

  5. Central air conditioning based on adsorption and solar energy

    International Nuclear Information System (INIS)

    Pralon Ferreira Leite, Antonio; Belo, Francisco Antonio; Martins, Moacir Machado; Bressan Riffel, Douglas

    2011-01-01

    This paper presents the characterization and the pre-dimensioning of an adsorption chiller as part of a 20 kW air conditioning central unit for cooling a set of rooms that comprises an area of 110 m 2 . The system is basically made up of a cold water storage tank supplied by an activated carbon-methanol adsorption chiller, a hot water storage tank, fed by solar energy and natural gas, and a fan-coil. During an acclimatization of 8 h (9-17 h), the following parameters were obtained for dimensioning the cooling system: 504 kg of activated carbon, 180 L of methanol, 7000 L of hot water, 10,300 L of cold water with its temperature varying in the fan-coil from 1 deg. C to 14 C. Considering the mean value of the total daily irradiation in Joao Pessoa (7 o 8'S, 34 o 50'WG), and a cover of regenerating heat supplied by solar energy equivalent to 70%, the adsorption chiller's expected coefficient of performance (COP) was found to be around 0.6.

  6. Intelligent energy management control of vehicle air conditioning system coupled with engine

    International Nuclear Information System (INIS)

    Khayyam, Hamid; Abawajy, Jemal; Jazar, Reza N.

    2012-01-01

    Vehicle Air Conditioning (AC) systems consist of an engine powered compressor activated by an electrical clutch. The AC system imposes an extra load to the vehicle's engine increasing the vehicle fuel consumption and emissions. Energy management control of the vehicle air conditioning is a nonlinear dynamic system, influenced by uncertain disturbances. In addition, the vehicle energy management control system interacts with different complex systems, such as engine, air conditioning system, environment, and driver, to deliver fuel consumption improvements. In this paper, we describe the energy management control of vehicle AC system coupled with vehicle engine through an intelligent control design. The Intelligent Energy Management Control (IEMC) system presented in this paper includes an intelligent algorithm which uses five exterior units and three integrated fuzzy controllers to produce desirable internal temperature and air quality, improved fuel consumption, low emission, and smooth driving. The three fuzzy controllers include: (i) a fuzzy cruise controller to adapt vehicle cruise speed via prediction of the road ahead using a Look-Ahead system, (ii) a fuzzy air conditioning controller to produce desirable temperature and air quality inside vehicle cabin room via a road information system, and (iii) a fuzzy engine controller to generate the required engine torque to move the vehicle smoothly on the road. We optimised the integrated operation of the air conditioning and the engine under various driving patterns and performed three simulations. Results show that the proposed IEMC system developed based on Fuzzy Air Conditioning Controller with Look-Ahead (FAC-LA) method is a more efficient controller for vehicle air conditioning system than the previously developed Coordinated Energy Management Systems (CEMS). - Highlights: ► AC interacts: vehicle, environment, driver components, and the interrelationships between them. ► Intelligent AC algorithm which uses

  7. Infrasonic waves and air-conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Hoenmann, W.

    1986-08-01

    This article is a critical investigation of the recently-suggested possibility that the infrasound generated by an air conditioning system (up to 2o kHz) may adversely affect the well-being of human beings. After an introductory explanation of the infrasonic wave band and the dependency of the sound pressure level on the frequency for decibel values of 20 to 100 (diagram), the relevant results of studies by various experts are quoted. It became apparent that the influence of the inaudible infrasound has been greatly overestimated, whereas audibility was underestimated. Inaudible infrasound was shown to be completely harmless. A number of frequency variation analysis diagrams of various residences (old building, new building) with audibility thresholds marked in. The measurement results discussed in more detail indicate that it is possible not to raise the basic noise level of an air conditioning system in the low-frequency range. Therein lies the actual acoustic chance for air conditioning: In an air-conditioned building, there is no need to ventilate by means of open windows, thereby letting in traffic noise, the nuisance value of which is beyond dispute. (HWJ).

  8. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  9. Air Conditioning Compressor Air Leak Detection by Image Processing Techniques for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Pookongchai Kritsada

    2015-01-01

    Full Text Available This paper presents method to detect air leakage of an air conditioning compressor using image processing techniques. Quality of air conditioning compressor should not have air leakage. To test an air conditioning compressor leak, air is pumped into a compressor and then submerged into the water tank. If air bubble occurs at surface of the air conditioning compressor, that leakage compressor must be returned for maintenance. In this work a new method to detect leakage and search leakage point with high accuracy, fast, and precise processes was proposed. In a preprocessing procedure to detect the air bubbles, threshold and median filter techniques have been used. Connected component labeling technique is used to detect the air bubbles while blob analysis is searching technique to analyze group of the air bubbles in sequential images. The experiments are tested with proposed algorithm to determine the leakage point of an air conditioning compressor. The location of the leakage point was presented as coordinated point. The results demonstrated that leakage point during process could be accurately detected. The estimation point had error less than 5% compared to the real leakage point.

  10. Analysis and Choice of Optimal Heating Ventilation Air Conditioning System for a Teaching Unit

    Directory of Open Access Journals (Sweden)

    Marina Verdeş

    2007-01-01

    Full Text Available Under the conditions of present society in which providing an optimum interior comfort is confronted with the necessity of the energy consumption reduction, solving this problem depends on the factors which contribute to the achievements of this comfort. Modern buildings -- implicitly teaching unit -- may be equipped with installations which have low energy consumption, respective a heating, cooling and ventilating integrated system with heat pumps system which can assure all the required comfort conditions. This paper underlines the necessity to use the heat pump in heating system for a teaching unit, energetic and economic guides and the possibility to increase them when using cooling and heating mixed. The solution of heat pumps for heating of the teaching unit and the energetic and economic advantages of the system is made in study.

  11. Microbial communities related to volatile organic compound emission in automobile air conditioning units.

    Science.gov (United States)

    Diekmann, Nina; Burghartz, Melanie; Remus, Lars; Kaufholz, Anna-Lena; Nawrath, Thorben; Rohde, Manfred; Schulz, Stefan; Roselius, Louisa; Schaper, Jörg; Mamber, Oliver; Jahn, Dieter; Jahn, Martina

    2013-10-01

    During operation of mobile air conditioning (MAC) systems in automobiles, malodours can occur. We studied the microbial communities found on contaminated heat exchanger fins of 45 evaporators from car MAC systems which were operated in seven different regions of the world and identified corresponding volatile organic compounds. Collected biofilms were examined by scanning electron microscopy and fluorescent in situ hybridization. The detected bacteria were loosely attached to the metal surface. Further analyses of the bacteria using PCR-based single-strand conformation polymorphism and sequencing of isolated 16S rRNA gene fragments identified highly divergent microbial communities with multiple members of the Alphaproteobacteriales, Methylobacteria were the prevalent bacteria. In addition, Sphingomonadales, Burkholderiales, Bacillales, Alcanivorax spp. and Stenotrophomonas spp. were found among many others depending on the location the evaporators were operated. Interestingly, typical pathogenic bacteria related to air conditioning systems including Legionella spp. were not found. In order to determine the nature of the chemical compounds produced by the bacteria, the volatile organic compounds were examined by closed loop stripping analysis and identified by combined gas chromatography/mass spectrometry. Sulphur compounds, i.e. di-, tri- and multiple sulphides, acetylthiazole, aromatic compounds and diverse substituted pyrazines were detected. Mathematical clustering of the determined microbial community structures against their origin identified a European/American/Arabic cluster versus two mainly tropical Asian clusters. Interestingly, clustering of the determined volatiles against the origin of the corresponding MAC revealed a highly similar pattern. A close relationship of microbial community structure and resulting malodours to the climate and air quality at the location of MAC operation was concluded.

  12. Geothermal as a heat sink application for raising air conditioning efficency

    Science.gov (United States)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  13. Robust Sliding Mode Control of Air Handling Unit for Energy Efficiency Enhancement

    Directory of Open Access Journals (Sweden)

    Awais Shah

    2017-11-01

    Full Text Available In order to achieve feasible and copacetic low energy consuming building, a robust and efficient air conditioning system is necessary. Since heating ventilation and air conditioning systems are nonlinear and temperature and humidity are coupled, application of conventional control is inappropriate. A multi-input multi-output nonlinear model is presented. The temperature and humidity of thermal zone are ascendance by the manipulation of the water and air flow rates. A sliding mode controller (SMC is designed to ensure robust performance of air handling unit in the presence of uncertainties. A simple proportional-integral-derivative (PID controller is used as a comparison template to highlight the efficiency of the proposed controller. To accomplish tracking targets, a variety of desired temperature and relative humidity commands (including ramp and combination with sequence of steps are investigated. According to simulation results, SMC transcends the PID controller in terms of settling time, steady state and rise time, which makes SMC more energy efficient.

  14. Comparison of desiccant air conditioning systems with different indirect evaporative air coolers

    International Nuclear Information System (INIS)

    Pandelidis, Demis; Anisimov, Sergey; Worek, William M.; Drąg, Paweł

    2016-01-01

    Highlights: • A numerical study of desiccant air conditioning systems is presented. • The ε-NTU model is used for the analysis. • Different arrangements of the desiccant systems were compared. • The systems were compared under different operating conditions. - Abstract: This paper presents a numerical analysis of three desiccant air-conditioning systems equipped with different indirect evaporative air coolers: (1) the cross-flow Maisotsenko cycle heat and mass exchanger (HMX), (2) the regenerative counter-flow Maisotsenko cycle heat and mass exchanger and (3) the standard cross-flow evaporative air cooler. To analyze the desiccant wheel and the indirect evaporative air coolers, the modified ε-NTU-model was used. The simulations were performed under assumption that the desiccant wheel is regenerated with air heated to relatively low temperature values (50–60 °C), which can be produced with solar panels in typical moderate climatic conditions. It was established that the main advantage of the presented solutions is that they can provide comfort conditions even with less effective dehumidification. The different systems were compared under variable selected operational factors (i.e. inlet air temperature, humidity and regeneration air temperature). The analysis allowed establishing the advantages and disadvantages of presented solutions and allowed estimating their application potential.

  15. Heating, ventilating, and air-conditioning applications

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers: Comfort air conditioning and heating of residences: Space HVAC systems; Industrial and special air conditioning and ventilation for nuclear facilities, and for mines; Energy sources, such as Geothermal energy, solar utilization, and energy resources; Building operation and maintenance; energy management, and Thermal storage

  16. Compressed Air Quality, A Case Study In Paiton Coal Fired Power Plant Unit 1 And 2

    Science.gov (United States)

    Indah, Nur; Kusuma, Yuriadi; Mardani

    2018-03-01

    The compressed air system becomes part of a very important utility system in a Plant, including the Steam Power Plant. In PLN’S coal fired power plant, Paiton units 1 and 2, there are four Centrifugal air compressor types, which produce compressed air as much as 5.652 cfm and with electric power capacity of 1200 kW. Electricity consumption to operate centrifugal compressor is 7.104.117 kWh per year. Compressed air generation is not only sufficient in quantity (flow rate) but also meets the required air quality standards. compressed air at Steam Power Plant is used for; service air, Instrument air, and for fly Ash. This study aims to measure some important parameters related to air quality, followed by potential disturbance analysis, equipment breakdown or reduction of energy consumption from existing compressed air conditions. These measurements include counting the number of dust particles, moisture content, relative humidity, and also compressed air pressure. From the measurements, the compressed air pressure generated by the compressor is about 8.4 barg and decreased to 7.7 barg at the furthest point, so the pressure drop is 0.63 barg, this number satisfies the needs in the end user. The measurement of the number of particles contained in compressed air, for particle of 0.3 micron reaches 170,752 particles, while for the particle size 0.5 micron reaches 45,245 particles. Measurements of particles conducted at several points of measurement. For some point measurements the number of dust particle exceeds the standard set by ISO 8573.1-2010 and also NACE Code, so it needs to be improved on the air treatment process. To see the amount of moisture content in compressed air, it is done by measuring pressure dew point temperature (PDP). Measurements were made at several points with results ranging from -28.4 to 30.9 °C. The recommendation of improving compressed air quality in steam power plant, Paiton unit 1 and 2 has the potential to extend the life of

  17. The effect of inlet conditions on the air side hydraulic resistance and flow maldistribution in industrial air heaters

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann-Vocke, Jonas, E-mail: jh63@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Neale, James, E-mail: jamesn@waikato.ac.nz [University of Waikato, Energy Research Group, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand); Walmsley, Michael, E-mail: walmsley@waikato.ac.nz [University of Waikato, Department of Engineering, School of Science and Engineering, Private Bag 3105, Hamilton 3240 (New Zealand)

    2011-08-15

    Highlights: > Measured the effects of air heater inlet header geometry on hydraulic performance. > Measured the effects of inlet header flow maldistribution on hydraulic performance. > Inlet header flow maldistribution increases air heater system hydraulic resistance. - Abstract: Experimental system hydraulic resistance measurements on a scale air heater unit have highlighted the excessive hydraulic resistance of typical industry configurations. Both poor header inlet conditions and large header expansion angles are shown to contribute to system hydraulic resistance magnitudes 20-100% higher than suitable benchmark cases. Typical centrifugal fan system efficiencies well under 80% multiply the system resistance effects resulting in larger fan power penalties. Velocity profile measurements taken upstream and downstream of the test heat exchanger under flow maldistribution conditions provide insight into the flow maldistribution spreading caused by the heat exchanger resistance. The anisotropic resistance of the plate fin-and-tube heat exchanger is shown to result in resistance induced flow dispersion being concentrated in the axis parallel to the plate fins.

  18. The effect of inlet conditions on the air side hydraulic resistance and flow maldistribution in industrial air heaters

    International Nuclear Information System (INIS)

    Hoffmann-Vocke, Jonas; Neale, James; Walmsley, Michael

    2011-01-01

    Highlights: → Measured the effects of air heater inlet header geometry on hydraulic performance. → Measured the effects of inlet header flow maldistribution on hydraulic performance. → Inlet header flow maldistribution increases air heater system hydraulic resistance. - Abstract: Experimental system hydraulic resistance measurements on a scale air heater unit have highlighted the excessive hydraulic resistance of typical industry configurations. Both poor header inlet conditions and large header expansion angles are shown to contribute to system hydraulic resistance magnitudes 20-100% higher than suitable benchmark cases. Typical centrifugal fan system efficiencies well under 80% multiply the system resistance effects resulting in larger fan power penalties. Velocity profile measurements taken upstream and downstream of the test heat exchanger under flow maldistribution conditions provide insight into the flow maldistribution spreading caused by the heat exchanger resistance. The anisotropic resistance of the plate fin-and-tube heat exchanger is shown to result in resistance induced flow dispersion being concentrated in the axis parallel to the plate fins.

  19. Performance of desiccant air conditioning system with geothermal energy under different climatic conditions

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; Kabeel, A.E.

    2014-01-01

    Highlights: • The performance of the hybrid air conditioning system is studied. • The influence of important operating parameters are estimated. • The ventilation, makeup and mix cycles are investigated at different climate. • The highest COP of the hybrid air conditioning system is 1.03. • The hybrid system provides a human thermal comfort at different climates. - Abstract: Energy saving still and continue a major seek in our life, due to the continuous increase in energy consumptions. So, a desiccant air conditioning system with geothermal energy is conducted in the current study. The thermal analysis of air conditioning system with its different components desiccant wheel, solar collector, heat exchanger, ground heat exchanger and water spray evaporative cooler is presented. Three different air conditioning cycles are simulated in the current study for different zones like: hot-dry zone, warm-dry zone, hot-humid zone and the warm-humid zone. The results show that the desiccant air conditioning system successfully provides a better thermal comfort condition in different climates. This hybrid system significantly decreases the supplied air temperature from 12.7 to 21.7 °C at different climate zones. When ω in , air and T Reg increasing, COP decreases and the ventilation cycle provides the better COP. The highest COP value of the desiccant air conditioning system is about 1.03 while the lowest value is about 0.15. The SHR of makeup cycle is higher than that ventilation cycle at warm and hot-humid zone and vice versa at warm and hot-dry zone. The highest SHR value of the desiccant air conditioning system is about 0.99 while the lowest value is about 0.2. The T sup,air , ω sup,air , COP and SHR isolines may easily be used for pre-evaluating of various cooling cycles in different climates. The hybrid system provides a human thermal comfort at different climates

  20. Measurement of Vehicle Air Conditioning Pull-Down Period

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John F [ORNL; Huff, Shean P [ORNL; Moore, Larry G [ORNL; West, Brian H [ORNL

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner system would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.

  1. Study of containment air cooler capacity in steam air environment during accident conditions

    International Nuclear Information System (INIS)

    Kansal, M.; Mohan, N.; Bhawal, R.N.; Bajaj, S.S.

    2002-01-01

    Full text: The air coolers are provided for controlling the temperature in the reactor building during normal operation. These air coolers also serve as the main heat sink for the removal of energy from high enthalpy air-steam mixture expected in reactor building under accident conditions. A subroutine COOLER has been developed to estimate the heat removal rate of the air coolers at high temperature and steam conditions. The subroutine COOLER has been attached with the code PACSR (post accident containment system response) used for containment pressure temperature calculation. The subroutine was validated using design parameters at normal operating condition. A study was done to estimate the heat removal rate for some postulated accident conditions. The study reveals that, under accident conditions, the heat removal rate of air coolers increases several times compared with normal operating conditions

  2. Feasibility of a solar-assisted winter air-conditioning system using evaporative air-coolers

    Energy Technology Data Exchange (ETDEWEB)

    El-Awad, Mohamed M. [Mechanical Engineering Department, the University of Khartoum, P.O. Box 321 Khartoum (Sudan)

    2011-07-01

    The paper presents a winter air-conditioning system which is suitable for regions with mildly cold but dry winters. The system modifies the evaporative air-cooler that is commonly used for summer air-conditioning in such regions by adding a heating process after the humidification process. The paper describes a theoretical model that is used to estimate the system's water and energy consumption. It is shown that a 150-LPD solar heater is adequate for air-conditioning a 500 ft3/min (14.4 m3/min) air flow rate for four hours of operation. The maximum air-flow rate that can be heated by a single solar water-heater for four hours of operation is about 900-cfm, unless a solar water heater large than a 250-LPD heater is used. For the 500 ft3/min air flow rate the paper shows that the 150, 200, 250 and 300 LPD solar water-heaters can provide air-conditioning for 4, 6, 8 and 10 hours, respectively, while consuming less energy than the equivalent refrigerated-type air-conditioner.

  3. Actual measurement, hygrothermal response experiment and growth prediction analysis of microbial contamination of central air conditioning system in Dalian, China.

    Science.gov (United States)

    Lv, Yang; Hu, Guangyao; Wang, Chunyang; Yuan, Wenjie; Wei, Shanshan; Gao, Jiaoqi; Wang, Boyuan; Song, Fangchao

    2017-04-03

    The microbial contamination of central air conditioning system is one of the important factors that affect the indoor air quality. Actual measurement and analysis were carried out on microbial contamination in central air conditioning system at a venue in Dalian, China. Illumina miseq method was used and three fungal samples of two units were analysed by high throughput sequencing. Results showed that the predominant fungus in air conditioning unit A and B were Candida spp. and Cladosporium spp., and two fungus were further used in the hygrothermal response experiment. Based on the data of Cladosporium in hygrothermal response experiment, this paper used the logistic equation and the Gompertz equation to fit the growth predictive model of Cladosporium genera in different temperature and relative humidity conditions, and the square root model was fitted based on the two environmental factors. In addition, the models were carried on the analysis to verify the accuracy and feasibility of the established model equation.

  4. Ventilation-air conditioning system

    International Nuclear Information System (INIS)

    Kubokoya, Takashi.

    1991-01-01

    Heretofore, in ventilation-air conditioning systems in a nuclear power plant, exhaust gases from each of the ventilation-air conditioning systems of a reactor building, a turbine building, a waste processing building are joined and they are released into atmosphere from the top of a high main exhaustion stack. In order to build such a high main exhaustion stack, a considerable construction cost is required and, in addition, there is a worry of lacking balance with surrounding scenery. Then, in the present invention, exhaust gases are heated by waste heat in a turbine during their introduction from the ventilation-air conditioning facility in the building of a power plant to the main exhaust stack. With such a constitution, since the exhaust gases are heated and their temperature is elevated, they uprise by natural convection when they are released from the top of the main exhaustion stack to the atmosphere. Accordingly, they are released to a level higher than the conventional case in view of the volume of the blower which sends the exhaust gases under pressure, to diffuse them to the atmosphere more sufficiently compared with a conventional case. Further, the height of the main exhaustion stack can be reduced, enabling to minimize the cost for moving the blower. (T.M.)

  5. Control of the outlet air temperature in an air handling unit

    DEFF Research Database (Denmark)

    Brath, P.; Rasmussen, Henrik; Hägglund, T.

    1998-01-01

    This paper discuss modeling and control of the inlet temperature in an Air Handling Unit, AHU. The model is based on step response experiments made at a full scale test plant. We use gain scheduling to lower the correlation of the air flow with the process dynamic which simplify the control task...

  6. AIRS/Aqua Level 3 Pentad quantization in physical units (AIRS-only) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — AIRS/Aqua Level 3 pentad quantization product in physical units (AIRS Only). The quantization products (QP) are distributional summaries derived from the Level-2...

  7. Study of the thermal behavior of a latent heat cold storage unit operating under frosting conditions

    International Nuclear Information System (INIS)

    Simard, A.P.; Lacroix, M.

    2003-01-01

    A study is performed of the thermal behavior of a latent heat cold storage unit operating under frosting conditions. This unit is employed to maintain the temperature inside the refrigerated compartment of a truck below 265 K. The system consists of parallel plates filled with a phase change material (PCM) that absorbs heat from the flow of warm moist air. A mathematical model for the system is first presented and, next, validated with numerical and experimental data. It is then exploited to assess the effects of design parameters and operating conditions on the performance of the system. The recommended thickness and distance separating the PCM plates are found to be 50x10 -3 and 30x10 -3 m, respectively. The results indicate that the performance of the unit is enhanced by turbulent air flow in spite of the increased pressure loss and accentuated frost growth. The unit also performs well even when the surrounding relative humidity is 100%

  8. Air quality and passenger comfort in an air-conditioned bus micro-environment.

    Science.gov (United States)

    Zhu, Xiaoxuan; Lei, Li; Wang, Xingshen; Zhang, Yinghui

    2018-04-12

    In this study, passenger comfort and the air pollution status of the micro-environmental conditions in an air-conditioned bus were investigated through questionnaires, field measurements, and a numerical simulation. As a subjective analysis, passengers' perceptions of indoor environmental quality and comfort levels were determined from questionnaires. As an objective analysis, a numerical simulation was conducted using a discrete phase model to determine the diffusion and distribution of pollutants, including particulate matter with a diameter air quality and dissatisfactory thermal comfort conditions in Jinan's air-conditioned bus system. To solve these problems, three scenarios (schemes A, B, C) were designed to alter the ventilation parameters. According to the results of an improved simulation of these scenarios, reducing or adding air outputs would shorten the time taken to reach steady-state conditions and weaken the airflow or lower the temperature in the cabin. The airflow pathway was closely related to the layout of the air conditioning. Scheme B lowered the temperature by 0.4 K and reduced the airflow by 0.01 m/s, while scheme C reduced the volume concentration of PM 10 to 150 μg/m 3 . Changing the air supply angle could further improve the airflow and reduce the concentration of PM 10 . With regard to the perception of airflow and thermal comfort, the scheme with an airflow provided by a 60° nozzle was considered better, and the concentration of PM 10 was reduced to 130 μg/m 3 .

  9. Utilization of Solar Energy for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Sutikno Juwari Purwo

    2018-01-01

    Full Text Available The purposes of this research are to do a system simulation of air conditioning utilizing solar energy with single effect absorption refrigeration method, analyze the coefficient of performance (COP for each absorbent-refrigerant variable and compare the effectivity of every absorbent-refrigerant variable used. COP is a constant that denotes the effeciency of a refrigeration system, that is ratio of work or useful output to the amount of work or energy input. The higher the number of COP, the more efficient the system is. Absorbent-refrigerant (working fluids variables used in this research depend on its chemical and thermodynamics properties. Steps in this research are including data collection and tabulation from literature and do a simulation of air conditioning system both commercial air conditioning system (using electrical energy and solar energy air conditioning system with Aspen Plus software. Next, run the simulation for each working fluid variables used and calculate the COP for each variable. Subsequently, analyze and compare the effectivity of all variables used from COP value and economical point of view with commercial air conditioning system. From the result of the simulation, can be concluded that solar air conditioning can achieve 98,85 % of energy savings than commercial air conditioning. Furthermore, from the calculation of COP, the highest COP value is achieved by solar conditioning system with LiNO3-NH3 as working fluid where 55% of the composition is the refrigerant and 45% of absorbent.

  10. Articulated, Performance-Based Instruction Objectives Guide for Air Conditioning, Refrigeration, and Heating. Volume II (Second Year).

    Science.gov (United States)

    Henderson, William Edward, Jr., Ed.

    This articulation guide contains 17 units of instruction for the second year of a two-year vocational program designed to prepare the high school graduate to install, maintain, and repair various types of residential and commercial heating, air conditioning, and refrigeration equipment. The units are designed to help the student to expand and…

  11. Experimental investigation of the effect of air velocity on a unit cooler under frosting condition: a case study

    Science.gov (United States)

    Bayrak, Ergin; Çağlayan, Akın; Konukman, Alp Er S.

    2017-10-01

    Finned tube evaporators are used in a wide range of applications such as commercial and industrial cold/freezed storage rooms with high traffic loading under frosting conditions. In this case study, an evaporator with an integrated fan was manufactured and tested under frosting conditions by only changing the air flow rate in an ambient balanced type test laboratory compared to testing in a wind tunnel with a more uniform flow distribution in order to detect the effect of air flow rate on frosting. During the test, operation was performed separately based on three different air flow rates. The parameters concerning test operation such as the changes of air temperature, air relative humidity, surface temperature, air-side pressure drop and refrigerant side capacity etc. were followed in detail for each air flow rate. At the same time, digital images were captured in front of the evaporator; thus, frost thicknesses and blockage ratios at the course of fan stall were determined by using an image-processing technique. Consequently, the test and visual results showed that the trendline of air-side pressure drop increased slowly at the first stage of test operations, then increased linearly up to a top point and then the linearity was disrupted instantly. This point speculated the beginning of defrost operation for each case. In addition, despite detecting a velocity that needs to be avoided, a test applied at minimum air velocity is superior to providing minimum capacity in terms of loss of capacity during test operations.

  12. Solar air-conditioning. Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-07-01

    Within the 3rd International Conference on solar air-conditioning in Palermo (Italy) at 30th September to 2nd October, 2009 the following lectures were held: (1) Removal of non-technological barriers to solar cooling technology across Southern European islands (Stefano Rugginenti); (2) The added economic and environmental value of solar thermal systems in microgrids with combined heat and power (Chris Marney); (3) Australian solar cooling interest group (Paul Kohlenbach); (4) Designing of a technology roadmap for solar assisted air conditioning in Austria (Hilbert Focke); (5) Solar cooling in the new context of renewable policies at European level (Raffaele Piria); (6) Prototype of a solar driven steam jet ejector chiller (Clemens Pollerberg); (7) New integrated solar air conditioning system (Joan Carlos Bruno); (8) Primary energy optimised operation of solar driven desiccant evaporative cooling systems through innovative control strategies; (9) Green chiller association (Uli Jakob); (10) Climate Well {sup registered} (Olof Hallstrom); (11) Low capacity absorption chillers for solar cooling applications (Gregor Weidner); (12) Solar cooling in residential, small scale commercial and industrial applications with adsorption technology (Walter Mittelbach); (13) French solar heating and cooling development programme based on energy performance (Daniel Mugnier); (14) Mirrox fresnel process heat collectors for industrial applications and solar cooling (Christian Zahler); (15) Modelling and analyzing solar cooling systems in polysun (Seyen Hossein Rezaei); (16) Solar cooling application in Valle Susa Italy (Sufia Jung); (17) Virtual case study on small solar cooling systems within the SolarCombi+Project (Bjoern Nienborg); (18) Design of solar cooling plants under uncertainty (Fernando Dominguez-Munoz); (19) Fast pre-design of systems using solar thermally driven chillers (Hans-Martin Henning); (20) Design of a high fraction solar heating and cooling plant in southern

  13. Achieving better energy-efficient air conditioning – A review of technologies and strategies

    International Nuclear Information System (INIS)

    Chua, K.J.; Chou, S.K.; Yang, W.M.; Yan, J.

    2013-01-01

    Air conditioning is essential for maintaining thermal comfort in indoor environments, particularly for hot and humid climates. Today, air conditioning, comprising cooling and dehumidification, has become a necessity in commercial and residential buildings and industrial processes. It accounts for a major share of the energy consumption of a building or facility. In tropical climates, the energy consumed by heating, ventilation and air-conditioning (HVAC) can exceed 50% of the total energy consumption of a building. This significant figure is primarily due to the heavy duty placed on cooling technologies to remove both sensible and latent heat loads. Therefore, there is tremendous potential to improve the overall efficiency of the air-conditioning systems in buildings. Based on today’s practical technology for cooling, the major components of a chiller plant are (1) compressors, (2) cooling towers, (3) pumps (chilled and cooling water) and (4) fans in air handling units. They all consume mainly electricity to operate. When specifying the kW/R ton of a plant, there are two levels of monitoring cooling efficiency: (1) at the efficiency of the chiller machines or the compressors which consume a major amount of electricity; and (2) at the overall efficiency of cooling plants which include the cooling towers, pumps for moving coolant (chilled and cooling water) to all air-handling units. Pragmatically, a holistic approach is necessary towards achieving a low energy input per cooling achieved such as 0.6 kW/R ton cooling or lower by considering all aspects of the cooling plant. In this paper, we present a review of recent innovative cooling technology and strategies that could potentially lower the kW/R ton of cooling systems – from the existing mean of 0.9 kW/R ton towards 0.6 kW/R ton or lower. The paper, broadly divided into three key sections (see Fig. 2), begins with a review of the recent novel devices that enhances the energy efficiency of cooling systems at

  14. The minimum work required for air conditioning process

    International Nuclear Information System (INIS)

    Alhazmy, Majed M.

    2006-01-01

    This paper presents a theoretical analysis based on the second law of thermodynamics to estimate the minimum work required for the air conditioning process. The air conditioning process for hot and humid climates involves reducing air temperature and humidity. In the present analysis the inlet state is the state of the environment which has also been chosen as the dead state. The final state is the human thermal comfort fixed at 20 o C dry bulb temperature and 60% relative humidity. The general air conditioning process is represented by an equivalent path consisting of an isothermal dehumidification followed by a sensible cooling. An exergy analysis is performed on each process separately. Dehumidification is analyzed as a separation process of an ideal mixture of air and water vapor. The variations of the minimum work required for the air conditioning process with the ambient conditions is estimated and the ratio of the work needed for dehumidification to the total work needed to perform the entire process is presented. The effect of small variations in the final conditions on the minimum required work is evaluated. Tolerating a warmer or more humid final condition can be an easy solution to reduce the energy consumptions during critical load periods

  15. Part load performance of air-cooled centrifugal chillers with variable speed condenser fan control

    Energy Technology Data Exchange (ETDEWEB)

    Yu, F.W.; Chan, K.T. [Department of Building Services Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong (China)

    2007-11-15

    Air-cooled centrifugal chillers are commonly used in commercial buildings but their performance analysis is lacking. This paper investigates the part load performance of the chillers via a thermodynamic model. The model was validated using a wide range of operating data from an existing chiller with specific settings of outdoor temperature and condensing pressure in controlling the condensing temperature. The validated model was developed specifically to ascertain the maximum coefficient of performance of chiller (COP) together with the strategy for optimizing the condensing temperature under various operating conditions. It is found that the highest COP occurs at a part load ratio (PLR) of 0.71-0.84, depending on the outdoor temperature and the control of condensing temperature, rather than at full load. Yet the chillers operating at such part load conditions will cause extra energy used for the early staging of chilled water pumps. To minimize the overall chiller plant energy consumption, it is still preferable to implement chiller sequencing based on the full load condition than on the aforementioned PLRs. The results of this paper present criteria for implementing low-energy strategies for operating air-cooled chillers satisfying a given building cooling load profile. (author)

  16. The microbiological quality of air improves when using air conditioning systems in cars.

    Science.gov (United States)

    Vonberg, Ralf-Peter; Gastmeier, Petra; Kenneweg, Björn; Holdack-Janssen, Hinrich; Sohr, Dorit; Chaberny, Iris F

    2010-06-01

    Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle--and by this its impact on the risk of an allergic reaction--is yet unknown. Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 microm diameter were counted by a laser particle counter device. Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals.

  17. Multivariable robust control of an air-handling unit: A comparison between pole-placement and H∞ controllers

    International Nuclear Information System (INIS)

    Moradi, Hamed; Bakhtiari-Nejad, Firooz; Saffar-Avval, Majid

    2012-01-01

    Highlights: ► Robust control of a multivariable air-handling unit (AHU). ► Controllers designed based on pole-placement and μ-synthesis. ► Robust performance in the presence of model uncertainties. ► Achievement of various tracking objectives in temperature and relative humidity. ► Comfort conditions in buildings with low energy consumption and operation cost. - Abstract: Control of air-conditioner units is essential to achieve satisfactory comfort conditions in buildings while keeping low energy consumption and operation costs. In this paper, a nonlinear multiinput and multioutput model (MIMO) of an air-handling unit (AHU) is considered. After linearization of the state equations around the operating points, an observer and a regulator are designed for the estimation of state variables and disturbance rejection, respectively. A realistic uncertain model is considered which constitutes various uncertainties associated with complex nonlinear model of AHU. In the presence of model uncertainties, a H ∞ -robust controller is designed to guarantee robust performance of the air-handling unit. In addition, a simple controller based on pole-placement approach is developed. Indoor temperature and relative humidity are controlled via manipulation of valve positions of air and cold water flow rates. Achievement of tracking objectives is investigated through various desired commands of indoor temperature and relative humidity (including a sequence of steps and ramps-steps). According to results, the H ∞ -robust controller guarantees the robust performance of the AHU in tracking of desired set-paths (while using the simple pole-placement controller leads to high oscillatory behavior of the output variables and control efforts). Moreover, using H ∞ -robust controller results in less energy consumption in comparison with the pole-placement controller.

  18. Flow in air conditioned rooms

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    1974-01-01

    Flow in air conditioned r ooms is examined by means of model experiments . The different gearnetries giving unsteady, steady three- dimensional and steady twodimensional flow are determined . Velacity profiles and temperature profiles are measured in some of the geometries. A numerical solution...... of the flow equations is demonstrated and the flow in air conditioned rooms in case of steady two dimensional flow is predi cted. Compari son with measured results is shown i n the case of small Archimedes numbers, and predictions are shown at high Archimedes numbers. A numerical prediction of f low and heat...

  19. The Histoty of Ventilation and Air Conditioning: is CERN Up to Date with the latest Technological Developments?

    OpenAIRE

    Kühnl-Kinel, J

    2000-01-01

    The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its i...

  20. Structural evaluation of FHX for PGSFR at steady state condition

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Nak-Hyun; Lee, S. Y.; Kim, S. K. [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    Liquid sodium flows inside the heat transfer tubes and atmospheric air flows over the finned tubes. The configuration and overall shape of the unit are shown in Figure 1. The unit is placed in the upper region of the reactor building and has function of dumping the system heat load into the final heat sink, i.e., the atmosphere. Heat is transmitted from the primary cold sodium pool into the ADHRS sodium loop via DHX (Decay Heat Exchanger), and a direct heat exchange occurs between the tube-side sodium and the shell-side air through the FHX tube wall. Cold atmospheric air is introduced into the air inlet duct at the lower part of the unit by using an electrically operated air blower or by the natural circulation force. Air flows across the finned tube bank rising upward direction to make uniform air flow with perfect mixing across the tubes. The finned tube bundle is placed inside a well-insulated casing. The air heated at the tube bank region is collected at the top of the unit and then is discharged through the air stack above the unit. Although a blower supplies atmospheric cooling air into the FHX unit, a tall air stack of 30 m in height is also provided to secure natural draft head of natural circulation air flow against a loss of power supply. The structural analysis of a FHX are carried out and its structural integrity under the given service levels is evaluated per ASME Code rule. The design loads according to design condition and normal operating steady condition are classified and stresses calculated from stress analyses are linearized and summarized in their stress components.

  1. Optimization and Performance Study of Select Heating Ventilation and Air Conditioning Technologies for Commercial Buildings

    Science.gov (United States)

    Kamal, Rajeev

    Buildings contribute a significant part to the electricity demand profile and peak demand for the electrical utilities. The addition of renewable energy generation adds additional variability and uncertainty to the power system. Demand side management in the buildings can help improve the demand profile for the utilities by shifting some of the demand from peak to off-peak times. Heating, ventilation and air-conditioning contribute around 45% to the overall demand of a building. This research studies two strategies for reducing the peak as well as shifting some demand from peak to off-peak periods in commercial buildings: 1. Use of gas heat pumps in place of electric heat pumps, and 2. Shifting demand for air conditioning from peak to off-peak by thermal energy storage in chilled water and ice. The first part of this study evaluates the field performance of gas engine-driven heat pumps (GEHP) tested in a commercial building in Florida. Four GEHP units of 8 Tons of Refrigeration (TR) capacity each providing air-conditioning to seven thermal zones in a commercial building, were instrumented for measuring their performance. The operation of these GEHPs was recorded for ten months, analyzed and compared with prior results reported in the literature. The instantaneous COPunit of these systems varied from 0.1 to 1.4 during typical summer week operation. The COP was low because the gas engines for the heat pumps were being used for loads that were much lower than design capacity which resulted in much lower efficiencies than expected. The performance of equivalent electric heat pump was simulated from a building energy model developed to mimic the measured building loads. An economic comparison of GEHPs and conventional electrical heat pumps was done based on the measured and simulated results. The average performance of the GEHP units was estimated to lie between those of EER-9.2 and EER-11.8 systems. The performance of GEHP systems suffers due to lower efficiency at

  2. Hospital-acquired infections associated with poor air quality in air-conditioned environments

    Directory of Open Access Journals (Sweden)

    Daniela Pinheiro da Silva

    2013-10-01

    Full Text Available Backgound and Objectives: Individuals living in cities increasingly spend more time indoors in air-conditioned environments. Air conditioner contamination can be caused by the presence of aerosols from the external or internal environment, which may be associated with disease manifestations in patients present in this type of environment. Therefore, the aim of this review was to assess the air quality in air-conditioned hospital environments as a risk factor for hospital-acquired infections – HAI – as the air can be a potential source of infection, as well as assess the exposure of professionals and patients to different pollutants. Material and Methods: A literature review was performed in the LILACS, MEDLINE, SCIELO, SCIENCE DIRECT databases, CAPES thesis database and Ministry of Health – Brazil, including studies published between 1982 and 2008. The literature search was grouped according to the thematic focus, as follows: ventilation, maintenance and cleaning of systems that comprehend the environmental quality standard. Discussion and Conclusion: Outbreaks of hospital-acquired infections associated with Aspergillus, Acinetobacter, Legionella, and other genera such as Clostridium and Nocardia, which were found in air conditioners, were observed, thus indicating the need for air-conditioning quality control in these environments.

  3. Experimental study of a novel capacity control algorithm for a multi-evaporator air conditioning system

    International Nuclear Information System (INIS)

    Xu Xiangguo; Pan Yan; Deng Shiming; Xia Liang; Chan Mingyin

    2013-01-01

    The use of a multi-evaporator air conditioning (MEAC) system is advantageous in terms of installation convenience, high design flexibility, being easy to maintain and commission, better indoor thermal comfort control and higher energy efficiency. While MEAC units worth billions of dollars are sold worldwide, the detailed accounts on compressor capacity control and refrigeration flow distribution amongst evaporators remain unavailable in public domain, mainly due to commercial confidentiality. Limited control algorithms for MEAC systems have been developed based on system simulation, and no experimental-based capacity controller developments and their controllability tests may be identified in open literature. In the study reported in this paper, a novel capacity control algorithm, which imitated On–Off control of a single evaporator air conditioning (A/C) system in each indoor unit of a MEAC system by using variable speed compressor and electronic expansion valves (EEVs), was developed. Controllability tests under various settings for experimentally validating the novel capacity control algorithm were carried out and the control algorithm was further improved based on the experimental results. - Highlights: ► A capacity control algorithm for a multi-evaporator air conditioning system was developed. ► Experimental controllability tests under various settings were carried out. ► The control algorithm was further improved based on the experimental results.

  4. The Histoty of Ventilation and Air Conditioning is CERN Up to Date with the latest Technological Developments?

    CERN Document Server

    Kühnl-Kinel, J

    2000-01-01

    The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its influence on everyday life. Some examples of previous air-conditioning plants are described and different approaches to the way of calculation of ventilation systems discussed. It gives an overview of the Heating, Ventilation and Air Conditioning (HVAC) installations at CERN and points out their particularities. It also compares them with the latest technological developments in the field as well as showing the new trends that are being applied at CERN.

  5. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  6. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  7. Partial air conditioning in the production hall of VW-Mechatronics. Part 2; Teilklima-Anlagen in der Fertigungshalle VW-Mechatronic. Teil 2

    Energy Technology Data Exchange (ETDEWEB)

    Stroeder, R. [BKI Brab und Kahl Ingenieurgesellschaft mbH, Aachen (Germany)

    2005-07-01

    While part 1 presented the technical facilities for mechanical production and air filtering, part 2 describes the assembly section with the clean room and the space HVAC systems for testing, measuring, and auxiliary rooms. (orig.)

  8. Reduced energy reqirement for air conditioning by using air diffusion with air flow from floor to ceiling

    Energy Technology Data Exchange (ETDEWEB)

    Bach, H; Dittes, W; Mangelsdorf, R; Detzer, R; Jungbaeck, E; Fitzner, K; Radtke, W; Soethout, F

    1982-02-01

    The condition of the air in the occupied zone in airconditioned rooms is influenced by the mixing of supply air with room air. When supplying air from the ceiling there is a mixing all over the room, when supplying from the floor or from desks there is a mixing region only in the lower area. Above this their is warm air from which the return air is drawn. For air supply from below the cooling load can be decreased. In combination with the possible enthalpy difference between room air and supply air this decrease of the cooling load influences the necessary air rate. The interdependence of various air conditioning systems and various air temperatures is shown with a computer program. The load factor for various air distribution system at various cooling loads have been measured in a room of (8 x 5)m/sup 2/ x 3m. Experiments in a smaller model room (scale 1:3) showed how the heat was transported from the mixing region to the stratification region. The theoretically gained influence of the supply air jets of the height of the mixing region and on the load rate could be verified by the experiments. For the design of the fresh air rate, experience has been gained by measurements with tracegas (N/sub 2/O) in a third room. In comparing calculations the annual energy consumption has been computed for a building assuming various air conditioning systems and typical operation data. From experience with the existing systems the conclusions have been drawn how air distribution from floor to ceiling can be installed and operated.

  9. Oxidation of monolayers of partly converted dimethoxy-substituted poly(p-phenylenevinylene) precursor polymers at the air-water interface

    NARCIS (Netherlands)

    Hagting, J.G.; Schouten, A.J.; Hagting, A

    2000-01-01

    We observed that the poly(p-phenylenevinylene) units in Langmuir monolayers of partly converted dimethoxy-substituted poly(p-phenylenevinylene) precursor polymers oxidize at the air-water interface. This reaction even happened in the dark and therefore can not be attributed to a photooxygenation

  10. Terms and definitions in the field of radiological technique. Dose quantities and units

    International Nuclear Information System (INIS)

    1985-12-01

    The standard gives the terms and definitions of concepts, dose quantities and units. The radiation field condition 'secondary electron equilibrium', which forms part of the definition of standard ion dose, is given more precisely. The term 'free in air' is used in its original meaning, i.e. characterization of measuring conditions excluding avoidable stray radiation, which deviates from DIN 6814, part 3/06.72. Dosemeters for measurement of standard ion dose of air kerma are calibrated 'free in air', but this calibration condition is not part of the quantity definition. The quantities standard ion dose or air kerma therefore can also be measured in any other material. The qunatitative relationships between standard ion dose and the quantities 'exposure' and air kerma, as given in the ICRU publication 33 'Quantities and Units' (1980), are explained. The standard introduces the SI units Gray (for energy dose), Sievert (for dose equivalent), and Becquerel (for the activity of a radioactive substance). As the change to the SI units conceals the approximated equality of the numerical values of the standrd ion dose of photon radiation in roentgen, of the energy dose for soft tissue in rad, and of the dose equivalent in rem, new definitions are given in accordance with ICRU 33 for the quantities specified dose rate, dose rate constant, and area exposure product. These definitions use the terms 'energy dose' and 'kerma'. The dose concepts applied in the field of radiation protection, especially ambient dose and individual dose, are defined as dose equivalents in compliance with the Radiation Protection Ordinance. The relevant sections present information on the conversion of standard ion dose values to the corresponding values of kerma, energy dose, or dose equivalent. (orig./HP) [de

  11. Solar air conditioning. Dresden colloquium; Solare Klimatisierung. Dresdner Kolloquium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Subjects: R + D activities in solar air conditioning; dessicative and evaporative cooling (DEC) - systems and components; Chances of solar air conditioning in Europe; Practical experience with solar-assisted air conditioning; Performance of a solar system at Lissabon; DEC system in the Alsenblock building, Berlin; Does solar air conditioning require specially designed buildings; Performance of solar heated adsorption refrigerators; Low-capacity absacity absorption systems for solar air conditioning. [German] Die Kolloquiumsschrift beinhaltet Unterlagen ueber die abgehandelten Themen. Sie lauten: F and E-Aktivitaeten im Bereich Solare Klimatisierung; SGK(DEC-Technik) - ausgefuehrte Anlagen und deren Komponenten; Chancen der solaren Klimatisierung in Europa; Erfahrungen mit der solarunterstuetzten Klimatisierung; Energieverbrauch und Regelung von SGK-Anlagen; Betriebserfahrungen einer Solaranlage in Lissabon; Realisierung der SGK im Alsenblock Berlin; Erfordert die solare Klimatisierung besondere Gebaeude?; Betriebserfahrungen mit solar beheizten Adsorptionskaeltemaschinen; Absorptionsanlagen kleiner Leistung fuer solare Klimatisierung. (orig.)

  12. The United States Air Force in Southeast Asia: Tactical Airlift

    Science.gov (United States)

    1983-01-01

    absent, but on balance the airlift effort was managed and executed intelligently. Probably the most serious failing was the Air Force’s tardiness in...Clark Air Base, Philippines receives a red cross; Maj. James E. Marrott at the controls of the first C-141 flown into Hanoi; a jubilant ex-POW deplanes...parachutes and rigging for airdrops.t Surface and air shipments from the United States similarly converged at the Philippines . * The unit was first

  13. Study of a vapor-compression air-conditioning system for jetliners

    Energy Technology Data Exchange (ETDEWEB)

    Roeyttae, P.

    2009-07-01

    Most modern passenger aeroplanes use air cycle cooling. A high-speed air cycle is a reliable and light option, but not very efficient. This thesis presents research work done to design a novel vapour cooling cycle for aeroplanes. Due to advancements in high-speed permanent magnet motors, the vapour cycle is seen as a competitive option for the air cycle in aeroplanes. The aerospace industry placews tighter demands on the weight, reliability and environmental effects of the machinery than those met by conventional chillers, and thus modifications to conventional design are needed. The thesis is divided into four parts: the initial screening of the working fluid, 1-D design and performance values of the compressor, 1-D off-design value predictions of the compressor and the 3-D design of the compressor. The R24fa was selected as the working fluid based the study. The off-design range of the compressor was predicted to be wide and suitable for the application. The air-conditioning system developed is considerably smaller than previous designs using centrifugal compressors. (orig.)

  14. FAULT TREE ANALYSIS FOR EXPOSURE TO REFRIGERANTS USED FOR AUTOMOTIVE AIR CONDITIONING IN THE U.S.

    Science.gov (United States)

    A fault tree analysis was used to estimate the number of refrigerant exposures of automotive service technicians and vehicle occupants in the United States. Exposures of service technicians can occur when service equipment or automotive air-conditioning systems leak during servic...

  15. Performance Analysis of Air-to-Water Heat Pump in Latvian Climate Conditions

    Science.gov (United States)

    Kazjonovs, Janis; Sipkevics, Andrejs; Jakovics, Andris; Dancigs, Andris; Bajare, Diana; Dancigs, Leonards

    2014-12-01

    Strategy of the European Union in efficient energy usage demands to have a higher proportion of renewable energy in the energy market. Since heat pumps are considered to be one of the most efficient heating and cooling systems, they will play an important role in the energy consumption reduction in buildings aimed to meet the target of nearly zero energy buildings set out in the EU Directive 2010/31/EU. Unfortunately, the declared heat pump Coefficient of Performance (COP) corresponds to a certain outdoor temperature (+7 °C), therefore different climate conditions, building characteristics and settings result in different COP values during the year. The aim of this research is to investigate the Seasonal Performance factor (SPF) values of air-to-water heat pump which better characterize the effectiveness of heat pump in a longer selected period of time, especially during the winter season, in different types of residential buildings in Latvian climate conditions. Latvia has four pronounced seasons of near-equal length. Winter starts in mid-December and lasts until mid-March. Latvia is characterized by cold, maritime climate (duration of the average heating period being 203 days, the average outdoor air temperature during the heating period being 0.0 °C, the coldest five-day average temperature being -20.7 °C, the average annual air temperature being +6.2 °C, the daily average relative humidity being 79 %). The first part of this research consists of operational air-towater heat pump energy performance monitoring in different residential buildings during the winter season. The second part of the research takes place under natural conditions in an experimental construction stand which is located in an urban environment in Riga, Latvia. The inner area of this test stand, where air-to-water heat pump performance is analyzed, is 9 m2. The ceiling height is 3 m, all external wall constructions (U = 0.16 W/(m2K)) have ventilated facades. To calculate SPF, the

  16. Ventilation and air-conditioning system for PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ohmoto, Kenji

    1987-01-01

    This report outlines the ventilation and air conditioning facilities for PWR nuclear power plant as well as design re-evaluation and optimization of ventilation and air-conditioning. The primary PWR installations are generally housed in the nuclear reactor building, auxiliary buildings and control building, which are equipped with their own ventilation and air-conditioning systems to serve for their specific purposes. A ventilation/air-conditioning system should be able to work effectively not only for maintaining the ordinary reactor operation but also for controlling the environmental temperature in the event of an accident. Designing of a ventilation/air-conditioning system relied on empirical data in the past, but currently it is performed based on information obtained from various analyses to optimize the system configuration and ventilation capacity. Design re-evaluation of ventilation/air-conditioning systems are conducted widely in various areas, aiming at the integration of safety systems, optimum combination of air-cooling and water-cooling systems, and optimization of the ventilation rate for controlling the concentrations of radioactive substances in the atmosphere in the facilities. It is pointed out that performance evaluation of ventilation/air-conditioning systems, which has been conducted rather macroscopically, should be carried out more in detal in the future to determine optimum air streams and temperature distribution. (Nogami, K.)

  17. Air conditioning system with supplemental ice storing and cooling capacity

    Science.gov (United States)

    Weng, Kuo-Lianq; Weng, Kuo-Liang

    1998-01-01

    The present air conditioning system with ice storing and cooling capacity can generate and store ice in its pipe assembly or in an ice storage tank particularly equipped for the system, depending on the type of the air conditioning system. The system is characterized in particular in that ice can be produced and stored in the air conditioning system whereby the time of supplying cooled air can be effectively extended with the merit that the operation cycle of the on and off of the compressor can be prolonged, extending the operation lifespan of the compressor in one aspect. In another aspect, ice production and storage in great amount can be performed in an off-peak period of the electrical power consumption and the stored ice can be utilized in the peak period of the power consumption so as to provide supplemental cooling capacity for the compressor of the air conditioning system whereby the shift of peak and off-peak power consumption can be effected with ease. The present air conditioning system can lower the installation expense for an ice-storing air conditioning system and can also be applied to an old conventional air conditioning system.

  18. Ice thermal storage air conditioning system for electric load leveling; Denryoku heijunka to hyochikunetsu system

    Energy Technology Data Exchange (ETDEWEB)

    Shigenaga, Y. [Daikin Industries Ltd., Osaka (Japan)

    1998-08-15

    Thermal storage air conditioning system is the one to use energy stored into thermal storing materials by using night electric power and to operate effective air conditioning. Therefore, as load can be treated by the stored energy, volume of the apparatus can be reduced. And, by reduction of the consumed power at day time, it can contribute to leveling of electric power demand. In general, there are two types in the thermal storage method: one is a method to store as thermal energy, and the other is that to store as chemical energy. For conditions required for the storing materials, important elements on their actual uses are not only physical properties such as large thermal storage per unit and easy thermal in- and out-puts, but also safety, long-term reliability, and easy receiving and economics containing future. The ice thermal storage air conditioning system is classified at the viewpoint of type of ice, kind of thermal storing medium, melting method on using cooling and heating, kinds of thermal medium on cooling and heating. 3 refs., 5 figs., 2 tabs.

  19. 2013 German refrigeration and air conditioning meeting. Proceedings

    International Nuclear Information System (INIS)

    2013-01-01

    These proceedings cover the following main topics: cryoengineering - superconduction / energy storage; cryoapplications in biology and medicine; metrology; adsorption processes; condensation/evaporation; working fluids / simulation; ice production; plants and compressors; expansion and ejectors or recooling; use of cooling (passenger car air conditioning, supermarket); refrigerants; plant efficiency; emissions and legislation; air conditioning and use of heat pumps; air quality and control; building technology and block-type thermal power stations. [de

  20. Modelling of air-conditioned and heated spaces

    Energy Technology Data Exchange (ETDEWEB)

    Moehl, U

    1987-01-01

    A space represents a complex system involving numerous components, manipulated variables and disturbances which need to be described if dynamic behaviour of space air is to be determined. A justifiable amount of simulation input is determined by the application of adjusted modelling of the individual components. The determination of natural air exchange in heated spaces and of space-air flow in air-conditioned space are a primary source of uncertainties. (orig.).

  1. 2014 German refrigeration and air conditioning meeting. Proceedings

    International Nuclear Information System (INIS)

    2014-01-01

    The proceedings of the 2014 German refrigeration and air conditioning meeting contain contributions on the following topics: cryotechnology, fundamentals and materials for the refrigeration and heat pump technology, devices and components for the refrigeration and heat pump technology, applications of refrigeration technologies, air conditioning technology and heat pump applications, cryotechnology in biology and medicine, heat transfer and ventilation, guidelines and legal topics, refrigerant fluid - oil mixtures, control and surveillance, simulation and control, ambient air.

  2. Introduction to Heating, Ventilation and Air Conditioning (HVAC). Introduction to Construction Series. Instructor Edition.

    Science.gov (United States)

    Associated General Contractors of America, Washington, DC.

    This module on introductory heating, ventilating, and air conditioning (HVAC) is one of a series of modules designed to teach basic skills necessary for entry-level employment in this field. The module contains four instructional units that cover the following topics: (1) HVAC materials; (2) HVAC tools; (3) HVAC layout; and (4) HVAC basic skills.…

  3. DISAIN SIMULATOR AUTOMOTIVE AIR CONDITIONING UNTUK MENINGKATKAN KOMPETENSI MAHASISWA

    Directory of Open Access Journals (Sweden)

    Kamin Sumardi

    2015-08-01

    Full Text Available Perkembangan teknologi automotive air conditioning dan aplikasinya sangat cepat, salah satunya dengan menerapkan green technology. Penerapan green technology pada teknologi air conditioning, karena masih menggunakan refrigeran yang mengandung unsur kimia yang merusak lapisan ozon dan pemanasan global. Alih teknologi bidang air conditioning yang ramah lingkungan, belum dibarengi dengan ketersediaan tenaga kerja pada tingkat SMK dan perguruan tinggi yang memadai, baik kuantitas maupun kompetensinya. Pada level SMK dan perguruan tinggi, kompetensi akademik dan vokasional bidang automotive air conditioning harus terus ditingkatkan dan diperbaharui sesuai dengan perkembangan teknologinya. Penelitian ini bertujuan untuk menghasilkan simulator automotive air conditioner dan model pembelajaran tata udara pada otomotif berwawasan teknologi ramah lingkungan. Penelitian menggunakan metode research and development dengan langkah-langkah: studi pendahuluan, perencanaan, pengembangan melalui uji coba simulator, validasi, dan produk akhir. Simulator dibuat sesuai dengan kondisi di dunia kerja agar tidak terjadi miskonsepsi dan mala-praktek automotive air conditioning. Simulator ini dibuat secara kompak dan mobile atau dapat dipindah dan dibawa. Model pembelajaran disesuaikan dengan kebutuhan kompetensi yang dipersyaratkan. Hasil penelitian menunjukkan bahwa dengan bantuan simulator automotive air conditioner dan model pembelajaran yang tepat mahasiswa mampu menyerap konsep dan praktek lebih cepat 85%. Hasil belajar pada ranah afektif, kognitif, psikomotor dan kompetensi meningkat secara signifikan.

  4. Performance assessment and transient optimization of air precooling in multi-stage solid desiccant air conditioning systems

    International Nuclear Information System (INIS)

    Gadalla, Mohamed; Saghafifar, Mohammad

    2016-01-01

    Highlights: • Studying three two-stage solid desiccant cooling systems using Maisotsenko cooler. • Proposing precooling to improve two-stage desiccant systems’ COP for humid climates. • Performing transient analysis for a two-stage solid desiccant cooler in UAE. • Optimizing daily performance of a two-stage solid desiccant cooler for UAE. - Abstract: Renewable energy is one of the most promising solutions to both energy and global warming crisis. Energy consumption can be minimized considerably by utilizing solar energy in air conditioning systems operation. One of the popular solar air conditioning technologies is desiccant air conditioning. Nonetheless, conventional desiccant air conditioning systems have a relatively low coefficient of performance (COP). In consequence, two-stage desiccant air-conditioning systems are proposed to improve desiccant air conditioning systems’ COP. Moreover, a recently commercialized cooling method named Maisotsenko cooling cycle which is capable of cooling air near to its dew point temperature is considered to be integrated within the proposed multi-stage desiccant cooling systems. In this paper, three new two-stage desiccant air conditioning systems incorporating Maisotsenko cooling cycle are proposed and investigated in details for hot and humid climates such as UAE. Furthermore, air precooling is considered to improve two stage desiccant air conditioning systems’ COP. Moreover, full transient analysis and optimization are carried out in UAE within June–October. The proposed system can minimize the required solar heating during noon time as the ambient air dry bulb temperature rises. Average COP of the system during electricity load peak hours (10:00–14:00) for all five considered and combined months is 1.77. Average rate of heat input required to operate the system and average building cooling load are determined to be 100.3 kW and 46.2 kW, respectively. Therefore, system average COP is computed to be 0.46.

  5. Air conditioning for data processing system areas

    Directory of Open Access Journals (Sweden)

    Hernando Camacho García

    1996-09-01

    Full Text Available The appropiate selection of air conditioners for data processing system areas requires the knowledge of the environmental desing conditions, the air conditioning systems succssfully used computer and the cooling loads to handle. This work contains information about a wide variety of systems designed for computer room applications. a complete example of calculation to determine the amount of heat to be removed for satisfactory operation, is also included.

  6. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  7. Condition based spare parts supply

    NARCIS (Netherlands)

    Lin, X.; Basten, Robertus Johannes Ida; Kranenburg, A.A.; van Houtum, Geert-Jan

    2012-01-01

    We consider a spare parts stock point that serves an installed base of machines. Each machine contains the same critical component, whose degradation behavior is described by a Markov process. We consider condition based spare parts supply, and show that an optimal, condition based inventory policy

  8. Aqua AIRS Level 3 Quantization in Physical Units (AIRS+AMSU) V006

    Data.gov (United States)

    National Aeronautics and Space Administration — AIRS/Aqua Level 3 monthly quantization product in physical units (Without HSB). The quantization products (QP) are distributional summaries derived from the Level-2...

  9. 16 CFR Appendix E to Part 305 - Room Air Conditioners

    Science.gov (United States)

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Room Air Conditioners E Appendix E to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS RULE... Appendix E to Part 305—Room Air Conditioners Range Information Manufacturer's rated cooling capacity in Btu...

  10. Integration optimisation of elevated pressure air separation unit with gas turbine in an IGCC power plant

    International Nuclear Information System (INIS)

    Han, Long; Deng, Guangyi; Li, Zheng; Wang, Qinhui; Ileleji, Klein E.

    2017-01-01

    Highlights: • IGCC thermodynamic model was setup carefully. • Simulations focus on integration between an elevated pressure ASU with gas turbine. • Different recommended solutions from those of low pressure ASUs are figured out. • Full N 2 injection and 80% air extraction was suggested as the optimum integration. - Abstract: The integration optimisation between an elevated pressure air separation unit (EP-ASU) and gas turbine is beneficial to promote net efficiency of an integrated gasification combined cycle (IGCC) power plant. This study sets up the thermodynamic model for a 400 MW plant specially coupled with an EP-ASU, aiming to examine system performances under different integrations and acquire the optimum solution. Influences of air extraction rate at conditions of without, partial and full N 2 injection, as well as the effects of N 2 injection rate when adopting separate ASU, partial and full integrated ASU were both analysed. Special attention has been paid to performance differences between utilising an EP-ASU and a low pressure unit. Results indicated that integration solution with a separate EP-ASU or without N 2 injection would not be reasonable. Among various recommended solutions for different integration conditions, N 2 injection rate increased with the growth of air extraction rate. The integration with an air extraction rate of 80% and full N 2 injection was suggested as the optimum solution. It is concluded that the optimum integration solution when adopting an EP-ASU is different from that using a low pressure one.

  11. Articulated, Performance-Based Instruction Objectives Guide for Air Conditioning, Refrigeration, and Heating (Environmental Control System Installer/Servicer). Edition I.

    Science.gov (United States)

    Henderson, William Edward, Jr., Ed.

    This articulation guide contains 17 units of instruction for the first year of a two-year vocational program designed to prepare the high school graduate to install, maintain, and repair various types of residential and commercial heating, air conditioning, and refrigeration equipment. The units are to introduce the student to fundamental theories…

  12. Exergy storage to exploit solar energy in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Navarrete-Gonzalez, J.J.; Torres-Reyes, E. [Guanajuato Univ., Guanajuato (Mexico). Inst. de Investigaciones Cientificas; Cervantes-de Gortari, J.G. [Univ. of Cuidad, Mexico City (Mexico). Dept. de Termoenergia y Mejoramiento Ambiental

    2006-07-01

    A thermodynamic procedure was developed to analyze the exergy of a rock bed thermal storage unit that used solar power to acclimatize a pig farm. Thermal behaviour was described by means of a control volume that included the entire system and assumed a unidirectional air flow and an adiabatic process. The thermodynamic properties of the system were determined as a function of the experimental temperature profiles developed during thermal storage from solar to thermal energy conversion provided by a solar collector at a fixed mass rate of air flow. Experimental data were used to calculate the energy yield and to determine the entropy generation inside the system. The aim of the study was to determine how well the thermodynamic model matched the real data obtained experimentally during normal operating conditions. Results indicated that an exergy accumulation existed inside the control volume, which was the net result of the energy gain during the heating process. However, entropy generation due to irreversibilities was studied for just 1 air flow. Further research is needed to establish a semi-empirical model of the process with the minimum of entropy generation. It was concluded that the thermal energy storage system was suitable for use in pig farms. 5 refs., 8 figs.

  13. Environmental Assessment for the National Museum of the United States Air Force Addition, Wright-Patterson Air Force Base, Ohio

    Science.gov (United States)

    2013-02-01

    AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) United States Air Force 88th...Air Base Wing Wright-Patterson Air Force Base, Ohio 8. PERFORMING ORGANIZATION REPORT NUMBER 9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES...visitors nationwide and from foreign countries. Softball and soccer fields are located adjacent to the Museum grounds and are operated by the 88 Air

  14. COMPARATIVE ANALYSIS OF PHRASEOLOGICAL UNITS WITH LEXICAL UNIT ВОЗДУХ/AIR/L’AIR IN RUSSIAN, ENGLISH AND FRENCH

    Directory of Open Access Journals (Sweden)

    Lineva, E.

    2017-03-01

    Full Text Available The perception and interpretation of the realia surrounding us is different among the representatives of different nations of the world. It manifests itself very clearly in phraseological units of the language as idioms accumulate the knowledge of the people and reflect culture, history, wisdom, beliefs, customs and traditions of the certain ethnic group. Comparative syntactic and grammatical analysis of phraseological units with the word воздух/air/l'air in the Russian, English and French languages represented in the article can reveal some aspects of the national mindset, linguistic and cultural peculiarities of the three nationalities.

  15. Cladding oxidation during air ingress. Part II: Synthesis of modelling results

    International Nuclear Information System (INIS)

    Beuzet, E.; Haurais, F.; Bals, C.; Coindreau, O.; Fernandez-Moguel, L.; Vasiliev, A.; Park, S.

    2016-01-01

    Highlights: • A state-of-the-art for air oxidation modelling in the frame of severe accident is done. • Air oxidation models from main severe accident codes are detailed. • Simulations from main severe accident codes are compared against experimental results. • Perspectives in terms of need for further model development and experiments are given. - Abstract: Air ingress is a potential risk in some low probable situations of severe accidents in a nuclear power plant. Air is a highly oxidizing atmosphere that can lead to an enhanced Zr-based cladding oxidation and core degradation affecting the release of fission products. This is particularly true speaking about ruthenium release, due to its high radiotoxicity and its ability to form highly volatile oxides in a significant manner in presence of air. The oxygen affinity is decreasing from the Zircaloy cladding, fuel and ruthenium inclusions. It is consequently of great need to understand the phenomena governing cladding oxidation by air as a prerequisite for the source term issues in such scenarios. In the past years, many works have been done on cladding oxidation by air under severe accident conditions. This paper with in addition the paper “Cladding oxidation during air ingress – Part I: Synthesis of experimental results” of this journal issue aim at assessing the state of the art on this phenomenon. In this paper, the modelling of air ingress phenomena in the main severe accident codes (ASTEC, ATHLET-CD, MAAP, MELCOR, RELAP/SCDAPSIM, SOCRAT) is described in details, as well as the validation against the integral experiments QUENCH-10, QUENCH-16 and PARAMETER-SF4. A full review of cladding oxidation by air is thus established.

  16. Health effects of air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Molina, C.; Caillaud, D.

    The air conditioning used in residential or commercial buildings (offices, hotels, sterile areas of hospitals, computer and electronics industries) is responsible for a certain number of well identified ailments which can be classified in three groups: infections (legionnaires'disease, ornithosis), allergies (mainly respiratory) eg. rhinitis, asthma, alveolitis but also Monday morning illness or humidifier fever, various functional disorders grouped under the name Sick Building Syndrome. To avoid these problems, a certain number of recommendations may be made. They concern: installation of air conditioning, humidification which is the cause of bacterial and fungal contamination, filtration, monitoring of the installation by qualitative and quantitative measurements, maintenance. The legal problems relating to these illnesses, the responsibility for which is ultimately laid at the door of the installers, should also be mentioned. Allergies are recognized to be of professional origin in Table 66 of allergic illnesses issued by the Social Security.

  17. Experimental Assessment of residential split type air-conditioning systems using alternative refrigerants to R-22 at high ambient temperatures

    International Nuclear Information System (INIS)

    Joudi, Khalid A.; Al-Amir, Qusay R.

    2014-01-01

    Highlights: • R290, R407C and R410A in residential split A/C units at high ambient. • 1 and 2 TR residential air conditioners with R22 alternatives at high ambient. • Residential split unit performance at ambients up to 55 °C with R22 alternatives. - Abstract: Steady state performance of residential air conditioning systems using R22 and alternatives R290, R407C, R410A, at high ambient temperatures, have been investigated experimentally. System performance parameters such as optimum refrigerant charge, coefficient of performance, cooling capacity, power consumption, pressure ratio, power per ton of refrigeration and TEWI environmental factor have been determined. All refrigerants were tested in the cooling mode operation under high ambient air temperatures, up to 55 °C, to determine their suitability. Two split type air conditioner of 1 and 2 TR capacities were used. A psychrometric test facility was constructed consisting of a conditioned cool compartment and an environmental duct serving the condenser. Air inside the conditioned compartment was maintained at 25 °C dry bulb and 19 °C wet bulb for all tests. In the environmental duct, the ambient air temperature was varied from 35 °C to 55 °C in 5 °C increments. The study showed that R290 is the better candidate to replace R22 under high ambient air temperatures. It has lower TEWI values and a better coefficient of performance than the other refrigerants tested. It is suitable as a drop-in refrigerant. R407C has the closest performance to R22, followed by R410A

  18. Microbial contamination of dental unit waterlines and effect on quality of indoor air.

    Science.gov (United States)

    Kadaifciler, Duygu Göksay; Cotuk, Aysin

    2014-06-01

    The microbiological quality in dental unit waterlines (DUWLs) is considered to be important because patients and dental staff with suppressed immune systems are regularly exposed to water and aerosols generated from dental units (DUs). Opportunistic pathogens like Pseudomonas, Legionella, Candida, and Aspergillus can be present in DUWLs, while during consultations, bioaerosols can be dispersed in the air, thus resulting in effects on microbiological quality of indoor air. This present study represents microbiological air and water quality in dental offices (DOs) and also concerns the relationship between the quality of DO air and dental unit water. This study aimed to assess both the microbial quality of dental unit water and the indoor air in 20 DOs and to survey the effect on the quality of the indoor air with the existing microorganisms in dental unit water. Fourteen out of 20 (70 %) DUWLs were found to be contaminated with a high number of aerobic mesophilic heterotrophic bacteria. In terms of bacterial air contamination levels, in 90 % of DOs, a medium level (contamination was determined, while in terms of microfungal air contamination, in all DOs, a low level (contamination was determined. Potential infection or allergen agents, such as Pseudomonas, Micrococcus, Staphylococcus, Alternaria, Cladosporium, Penicillium, Aspergillus, and Paecilomyces were isolated from water and air samples. This study's determination of contamination sources and evaluation of microbial load in DOs could contribute to the development of quality control methods in the future.

  19. The issue of radon and daughters in water and in air detection using the detection unit 'YAPMARE'

    International Nuclear Information System (INIS)

    Thinova, L.; Trojek, T.; Kunka, A.; Maly, P.; Blazek, K.; Notaristefani, F. de; Moucka, L.

    2004-01-01

    The specialized detection unit YAPMARE was developed by company CRYTUR Ltd. The main part of the detection unit is a detection probe based on a 100 mm x 25 mm diam. YAP:Ce detector, made of monocrystalline YAP:Ce (chemical formula is YAlO 3 doped Ce) grown by Crytur Ltd. YAP:Ce crystal advantages are in chemical resistance, good mechanical properties, nonhygroscopicity and ease of polishing; remainder of radionuclides deposited on the Teflon surface can be easily deactivated using HCl acid. The detection unit was developed for 222 Rn and its daughter's measurement in water under extreme conditions (pressure, temperature and acidity) to obtain additional information about flow dynamics in Earth crust. The detection volume for water (or air) is 12 ml and in this case the measured medium covers approximately 95% of the crystal surface, while the remaining 5% is a spiral groove machined into the Teflon enclosure (used as a reflector). Spectrometry results of the measurement are an advantage for data processing. The main points of 'YAPMARE' unit testing are as follows: Methodology of water sample collection, defining the optimum measurement time interval; Energetic stability monitoring; Gamma ray energetic calibration using etalons and natural radioactive rock; Alpha ray energetic calibration using dry (air) standards of 222 Rn and 220 Rn, with peaks in alpha spectrum identification; The gamma background elimination during measurement and in data processing; Measuring the high 222 Rn water activity (Svornost mine in Jachymov - radon activity 17 kBq/l); Probe calibration for radon-in-water determination (using fresh water from a drilled well in Lounovice near Prague and using a 222 Rn water standard). Due to the large crystal volume all measurements were conducted inside a Pb shield 25 mm thick. The water alpha activity was also monitored using radon monitor RADIM 4. All results of testing will be presented. (author)

  20. Assessment of indoor air quality in comparison using air conditioning and fan system in printing premise

    OpenAIRE

    Ramlan Nazirah; Nurhalimatul Husna Ahmad Siti; Aminuddin Eeydzah; Abdul Hamid Hazrul; Khalijah Yaman Siti; Halid Abdullah Abd

    2017-01-01

    Printers contribute to various emissions consist with chemical contaminants. High concentration of the particulate matter can cause serious health problems. This study focuses on the indoor air quality in printing premise unit in Universiti Tun Hussein Onn, Malaysia. Field testing involving air sampling methods were taken from 900 hours to 1600 hours, for every 30 minutes using physical measurement which is Multi-Channel Air Quality Monitor (YESAIR), E-Sampler and Ozone Meter. Air sampling wa...

  1. Application of solar energy to air conditioning systems

    Science.gov (United States)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  2. Performance advancement of solar air-conditioning through integrated system design for building

    International Nuclear Information System (INIS)

    Fong, K.F.; Lee, C.K.

    2014-01-01

    This study is to advance the energy performance of solar air-conditioning system through appropriate component integration from the absorption refrigeration cycle and proper high-temperature cooling. In the previous studies, the solar absorption air-conditioning using the working pair of water – lithium bromide (H 2 O–LiBr) is found to have prominent primary energy saving than the conventional compression air-conditioning for buildings in the hot-humid climate. In this study, three integration strategies have been generated for solar cooling, namely integrated absorption air-conditioning; integrated absorption-desiccant air-conditioning; and integrated absorption-desiccant air-conditioning for radiant cooling. To realize these ideas, the working pair of ammonia – water (NH 3 –H 2 O) was used in the absorption cycle, rather than H 2 O–LiBr. As such, the evaporator and the condenser can be separate from the absorption refrigeration cycle for the new configuration of various integrated design alternatives. Through dynamic simulation, the year-round primary energy saving of the proposed integration strategies for solar NH 3 –H 2 O absorption air-conditioning systems could be up to 50.6% and 25.5%, as compared to the conventional compression air-conditioning and the basic solar H 2 O–LiBr absorption air-conditioning respectively. Consequently, carbon reduction of building air-conditioning can be achieved more effectively through the integrated system design in the hot and humid cities. - Highlights: • Three integration strategies, IAAU, IADAU and IADAU-RC, are proposed to advance solar air-conditioning. • NH 3 –H 2 O is adopted for absorption refrigeration instead of H 2 O–LiBr. • Separate evaporator and condenser, desiccant cooling and radiant cooling are designed for IADAU-RC. • IADAU-RC can have 50.6% primary energy saving against the conventional air-conditioning

  3. Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei-Jiang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang, Chun-Lu [College of Mechanical Engineering, Tongji University, 4800 Cao An Highway, Shanghai 201804 (China)

    2011-01-15

    Rapid cycling the compressor is an alternative of the variable speed compressor to modulate the capacity of refrigeration systems for the purpose of energy saving at part-load conditions. The multi-evaporator air conditioner combined with the rapid cycling compressor brings difficulties in control design because of the sophisticated system physics and dynamics. In this paper the transient model of a multi-split air conditioner with a digital scroll compressor is developed for predicting the system transients under performance modulations. The predicted cycling dynamics are in good agreement with the experimental data. Based on the validated model, the impact of compressor idle power and cycle period to the part load performance is discussed. (author)

  4. Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Weijiang [Institute of Refrigeration and Cryogenics, Shanghai Jiaotong University, Shanghai 200240 (China); Zhang Chunlu, E-mail: chunlu.zhang@carrier.utc.co [College of Mechanical Engineering, Tongji University, 4800 Cao An Highway, Shanghai 201804 (China)

    2011-01-15

    Rapid cycling the compressor is an alternative of the variable speed compressor to modulate the capacity of refrigeration systems for the purpose of energy saving at part-load conditions. The multi-evaporator air conditioner combined with the rapid cycling compressor brings difficulties in control design because of the sophisticated system physics and dynamics. In this paper the transient model of a multi-split air conditioner with a digital scroll compressor is developed for predicting the system transients under performance modulations. The predicted cycling dynamics are in good agreement with the experimental data. Based on the validated model, the impact of compressor idle power and cycle period to the part load performance is discussed.

  5. Transient modeling of an air conditioner with a rapid cycling compressor and multi-indoor units

    International Nuclear Information System (INIS)

    Zhang Weijiang; Zhang Chunlu

    2011-01-01

    Rapid cycling the compressor is an alternative of the variable speed compressor to modulate the capacity of refrigeration systems for the purpose of energy saving at part-load conditions. The multi-evaporator air conditioner combined with the rapid cycling compressor brings difficulties in control design because of the sophisticated system physics and dynamics. In this paper the transient model of a multi-split air conditioner with a digital scroll compressor is developed for predicting the system transients under performance modulations. The predicted cycling dynamics are in good agreement with the experimental data. Based on the validated model, the impact of compressor idle power and cycle period to the part load performance is discussed.

  6. Resource Conservation and Recovery Act (RCRA) Part B permit application for container storage units at the Oak Ridge Y-12 Plant

    International Nuclear Information System (INIS)

    1994-08-01

    This document contains Part B of the Permit Application for Container Storage Units at the Oak Ridge Y-12 Plant. Sections cover the following areas: Facility description; Waste characteristics; Process information; Ground water monitoring; Procedures to prevent hazards; Contingency plan; Personnel training; Closure plan, post closure plan, and financial requirements; Recordkeeping; Other federal laws; Organic air emissions; Solid waste management units; and Certification

  7. Resource Conservation and Recovery Act (RCRA) Part B permit application for container storage units at the Oak Ridge Y-12 Plant

    Energy Technology Data Exchange (ETDEWEB)

    1994-08-01

    This document contains Part B of the Permit Application for Container Storage Units at the Oak Ridge Y-12 Plant. Sections cover the following areas: Facility description; Waste characteristics; Process information; Ground water monitoring; Procedures to prevent hazards; Contingency plan; Personnel training; Closure plan, post closure plan, and financial requirements; Recordkeeping; Other federal laws; Organic air emissions; Solid waste management units; and Certification.

  8. FY1999 Meeting of The Society of Heating, Air-Conditioning and Sanitary Engineering of Japan. Air flow analysis II; 1999 nendo gakujutsu koenkai gaiyo. Kiryu kaiseki 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-05

    B-4 reported the result on particle size distribution experiment and numerical calculation with FEM and {kappa}- {epsilon} model using a welding simulation equipment for generation and removal of welding fume in a narrow site. Discussion was held on the position of an exhaust hood. B-5 reported the study results on indoor air flow conditions derived from a movable nozzle air conditioning system by model experiment and numerical analysis. Disagreement of both results between the experiment and calculation in the case of two diffusing nozzles attached at 30 degrees toward the inside was improved by shortening a sampling time for calculation. B-6 reported the study results on some parameters such as wind velocity, flow rate and inlet position, and the energy saving effect of an air curtain (wall outlet, floor inlet) to control air conditioning areas for a part of large spaces by numerical analysis of air flow. Discussion was held on calculation of 2-D flow and layered flow. B-7 is the 5th research report on measurement of air flow conditions such as measurement of large space environment by video camera and balloon. Study on the camera for automatic measurement, and the identification technique of balloon positions was reported. (translated by NEDO)

  9. The system of thermoelectric air conditioning based on permeable thermoelements

    Directory of Open Access Journals (Sweden)

    Cherkez R. G.

    2009-04-01

    Full Text Available There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of computer analysis concerning the application of the thermoelement legs material on the basis of Bi2Te3 have shown the possibility of coefficient of performance increase by a factor of 1,6—1,7 as compared with conventional thermoelectric systems.

  10. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2009-06-17

    This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

  11. Air conditioning device for reactor buildings

    International Nuclear Information System (INIS)

    Kikuchi, Shiro.

    1982-01-01

    Purpose: To decrease the opening areas of pipe lines for an air conditioning device at the portions passing through the shielding walls of a reactor building for a FBR type reactor, as well as reduce the size of the building. Constitution: Airs in the building for containing reactor are liquefied in an air liquefying mechanism. The liquefied airs are sent by way of pipe lines to each of evaporators, wherein each of the chambers are cooled because of latent heat of evaporation and evaporated airs are released to each of the chambers. The airs released to each of the chambers are collected into an exhaust chamber and sent by way of a duct to the air liquefying mechanism and liquefied again. Since the volume of the liquefied airs may be smaller than the amount conventionally required for usual cooled airs, the pipe lines passing through the shielding walls of the building can be of smaller diameter. This can decrease the opening areas of the pipe lines at the portions passing through the walls of the shieldings and, since the opening areas are smaller, the structure of the radiation shieldings can be simplified in these portions. Further, since the space of the pipe lines in the building is reduced extremely, the size of the building can be reduced. (Moriyama, K.)

  12. AIRS/Aqua Level 3 Pentad quantization in physical units (AIRS+AMSU) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — AIRS/Aqua Level 3 pentad quantization product in physical units (Without HSB). The geophysical parameters have been averaged and binned into 1 x 1 deg grid cells,...

  13. [Bacterial contamination of the indoor air in a transplant unit].

    Science.gov (United States)

    Matoušková, Ivanka; Holý, Ondřej

    2013-12-01

    For one year (August 2010 to July 2011), microbial contamination of the indoor air in the Transplant Unit of the Haemato-Oncology Clinic, Olomouc University Hospital was monitored monthly. Twenty sampling sites were singled out and a total of 240 indoor air samples were collected. An MAS-100 air sampler (Merck, GER) was used, air flow rate of 100 liters per minute, 1 minute. The measured values of indoor air temperature were stable. The relative air humidity ranged from 17% to 68%. The highest average value of microbial air contamination was found in the "staff entry room" (1170 CFU/m3). The lowest microbial air contamination (150-250 CFU/m3) was measured in the patient isolation units. The most frequently isolated bacterial strains were coagulase-negative staphylococci (94.3%), followed by Micrococcus spp. (67%) and Bacillus subtilis (11%). It can be assumed that the -source of these airborne bacterial strains are both patients and medical staff. They are classified as -opportunistic pathogens and as such can cause hospital infections among haemato-oncology patients.

  14. Influence of different outdoor design conditions on design cooling load and design capacities of air conditioning equipments

    International Nuclear Information System (INIS)

    Aktacir, Mehmet Azmi; Bueyuekalaca, Orhan; Bulut, Huesamettin; Yilmaz, Tuncay

    2008-01-01

    Outdoor design conditions are important parameters for energy efficiency of buildings. The result of incorrect selection of outdoor design conditions can be dramatic in view of comfort and energy consumption. In this study, the influence of different outdoor design conditions on air conditioning systems is investigated. For this purpose, cooling loads and capacities of air conditioning equipments for a sample building located in Adana, Turkey are calculated using different outdoor design conditions recommended by ASHRAE, the current design data used in Turkey and the daily maximum dry and wet bulb temperatures of July 21st, which is generally accepted as the design day. The cooling coil capacities obtained from the different outdoor design conditions considered in this study are compared with each other. The cost analysis of air conditioning systems is also performed. It is seen that the selection of outdoor design conditions is a very critical step in calculation of the building cooling loads and design capacities of air conditioning equipments

  15. 76 FR 82323 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units

    Science.gov (United States)

    2011-12-30

    ... Filtration and Adsorption Units AGENCY: Nuclear Regulatory Commission. ACTION: Draft regulatory guide... for Air Filtration and Adsorption Units of Postaccident Engineered-Safety-Feature Atmosphere Cleanup... testing of air filtration and iodine adsorption units of engineered-safety-feature (ESF) atmosphere...

  16. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo.

    Directory of Open Access Journals (Sweden)

    Takeshi Nishimura

    2016-03-01

    Full Text Available We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved "Out of Africa" to explore the more

  17. Optimizing condenser fan control for air-cooled centrifugal chillers

    Energy Technology Data Exchange (ETDEWEB)

    Yu, F.W.; Chan, K.T. [Dept. of Building Services Engineering, The Hong Kong Polytechnic Univ., Hung Hom, Hong Kong (China)

    2008-07-15

    The current design and operation of air-cooled condensers can cause a significant decrease in chiller performance under part load conditions. This paper demonstrates optimal condenser fan control to improve the coefficient of performance (COP) of air-cooled chillers. This control involves identifying the optimum set point of condensing temperature with the optimized power relationships of the compressors and condenser fans and enhancing the airflow and heat transfer area of the condensers. An example application of this control for an air-cooled centrifugal chiller indicated that the COP could increase by 11.4-237.2%, depending on the operating conditions. Such the increase of the COP results in a reduction of up to 14.1 kWh/m{sup 2}, or 27.3% in the annual electricity consumption per unit A/C floor area of chillers, given that the chillers serve an office building requiring an annual cooling energy per unit A/C floor area of 173.3 kWh/m{sup 2}. The simulation results of this study will give HVAC engineers a better understanding of how to optimize the design and operation of air-cooled chillers. (author)

  18. PROSPECTS FOR THE DEVELOPMENT OF TECHNOLOGY AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    O. V. Chernyshova

    2008-03-01

    Full Text Available In the article the evaporation cooling and spray (aqueous and air-to-water types of the air-conditioning systems are considered, their merits and demerits are analyzed; the new scheme of a conditioner is offered.

  19. Effects of suspension of air-conditioning on airtight-type racks.

    Science.gov (United States)

    Kanzaki, M; Fujieda, M; Furukawa, T

    2001-10-01

    Although isolation racks are superior to open-type racks in terms of securing breeding conditions for laboratory animals, the contingency-proofing capability of the former has yet to be determined. Therefore, from the view of risk management, we studied the environmental change in isolation racks by forcibly suspending ventilation and air-conditioning and confirming the maximal time length for complete recovery to the original condition after restarting their operations. The isolation racks were placed in a room that was equipped with an independent air-conditioning system. When the inside condition of the racks reached 22-24 degrees C and 59-64% of relative humidity, the air-conditioning and ventilation were forcibly suspended and the subsequent temperature, relative humidity, ammonium and CO2 concentrations in the racks were measured over time. We found that after suspending the air-conditioning and ventilation, it took 40-60 min for temperature, and about 10 min for relative humidity to exceed the maximum values (temperature and relative humidity) referred to in the Showa 58 Nenban Guideline Jikken Doubutsu Shisetsu no Kenchiku oyobi Setsubi (Guidelines of buildings and facilities for experimental animals in Japan; Year 1983 edition). After 17 hr 25 min of the suspension of air-conditioning and ventilation, two rats were found dead. Then, the air-conditioning and ventilation were restarted. It took about 2 hr for temperature, and 50 min for relative humidity to regain the guideline values. The ammonium concentration stayed within the guideline value with a maximum concentration of 2 ppm in the experimental period, whereas the CO2 concentration was found to exceed 9% at the time of animal death.

  20. Monitoring and analysis of an absorption air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Perez de Vinaspre, M.; Bourouis, M.; Coronas, A. [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, Tarragona (Spain); Garcia, A.; Soto, V.; Pinazo, J.M. [E.T.S. Ingenieros Industriales, Valencia (Spain)

    2004-09-01

    In the last few years, high-energy consumption due to air-conditioning has led to a growing interest in the efficient use of energy in buildings. Although simulation programs have always been the main tools for analyzing energy in buildings, the reliability of their results is often compromised by a lack of certainty to reflect real conditions. The aim of this work is to monitorize and analyze the thermal behavior of an absorption-based air-conditioning installation of a university building in Tarragona, Spain. The existing monitoring system of the installation has been improved by implementing additional sensors and flow meters. The data has been stored during summer 2002 and used to assess the energy balance of the air-conditioning installation and the operational regime of the absorption chiller. [Author].

  1. Central Air-Conditioning Plant (CAP) extension

    International Nuclear Information System (INIS)

    Shetty, P.S.; Kaul, S.K.; Mishra, H.

    2017-01-01

    Central Air-Conditioning Plant (CAP) and its associated chilled water network of BARC is one among the largest central plants in India for such application. The plant was planned in 1960s to cater to the air-conditioning and process water requirements of laboratories, workshops and buildings spread over a distance of 1.5 Km in three directions from CAP through underground network of chilled water pipelines. The plant was designed for a total capacity of 6600 TR. The present installed capacity of the plant is 7250 TR. The connected load at present is 9800 TR. After the XII plan capacity will be augmented to 7650 TR. The connected load is expected to cross 11,000 TR after the commissioning of new Engg. Halls 9, 10 and 11

  2. Air conditioning systems as non-infectious health hazards inducing acute respiratory symptoms.

    Science.gov (United States)

    Gerber, Alexander; Fischer, Axel; Willig, Karl-Heinz; Groneberg, David A

    2006-04-01

    Chronic and acute exposure to toxic aerosols belongs to frequent causes of airway diseases. However, asthma attacks due to long-distance inhalative exposure to organic solvents, transmitted via an air condition system, have not been reported so far. The present case illustrates the possibility of air conditioning systems as non-infectious health hazards in occupational medicine. So far, only infectious diseases such as legionella pneumophila pneumonia have commonly been associated to air-conditioning exposures but physicians should be alert to the potential of transmission of toxic volatile substances via air conditioning systems. In view of the events of the 11th of September 2001 with a growing danger of large building terrorism which may even use air conditioning systems to transmit toxins, facility management security staff should be alerted to possible non-infectious toxic health hazards arising from air-conditioning systems.

  3. Online Air-Conditioning Energy Management under Coalitional Game Framework in Smart Community

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2016-08-01

    Full Text Available Motivated by the potential ability of air conditioning (A/C units in demand response, this paper explores how to utilize A/C units to increase the profit of a smart community. A coalitional game between the households and the load serving entity (LSE in a smart community is studied, where the LSE joins by selling renewable energy to householders and providing an energy saving service to them through an A/C controller. The A/C controller is designed to reduce the amount of electricity purchased from the main grid by controlling A/C units. An online A/C energy management algorithm is developed, based on Lyapunov optimization, that considers both the A/C energy consumption and the thermal comfort level of consumers. In order to quantify the contribution of A/C units, the Shapley value is adopted for distribution of the reward among the participating householders and the LSE, based on their contribution. The simulation result verifies the effectiveness of the proposed coalitional game for a smart community and the algorithm for A/C.

  4. AIRS/Aqua Level 3 Pentad quantization in physical units (AIRS+AMSU+HSB) V005

    Data.gov (United States)

    National Aeronautics and Space Administration — AIRS/Aqua Level 3 pentad quantization product in physical units (With HSB). The quantization products (QP) are distributional summaries derived from the Level-2...

  5. Dry coolers and air-condensing units (Review)

    Science.gov (United States)

    Milman, O. O.; Anan'ev, P. A.

    2016-03-01

    The analysis of factors affecting the growth of shortage of freshwater is performed. The state and dynamics of the global market of dry coolers used at electric power plants are investigated. Substantial increase in number and maximum capacity of air-cooled condensers, which have been put into operation in the world in recent years, are noted. The key reasons facilitating the choice of developers of the dry coolers, in particular the independence of the location of thermal power plant from water sources, are enumerated. The main steam turbine heat removal schemes using air cooling are considered, their comparison of thermal efficiency is assessed, and the change of three important parameters, such as surface area of heat transfer, condensate pump flow, and pressure losses in the steam exhaust system, are estimated. It is shown that the most effective is the scheme of direct steam condensation in the heat-exchange tubes, but other schemes also have certain advantages. The air-cooling efficiency may be enhanced much more by using an air-cooling hybrid system: a combination of dry and wet cooling. The basic applied constructive solutions are shown: the arrangement of heat-exchange modules and the types of fans. The optimal mounting design of a fully shopassembled cooling system for heat-exchange modules is represented. Different types of heat-exchange tubes ribbing that take into account the operational features of cooling systems are shown. Heat transfer coefficients of the plants from different manufacturers are compared, and the main reasons for its decline are named. When using evaporative air cooling, it is possible to improve the efficiency of air-cooling units. The factors affecting the faultless performance of dry coolers (DC) and air-condensing units (ACU) and the ways of their elimination are described. A high velocity wind forcing reduces the efficiency of cooling systems and creates preconditions for the development of wind-driven devices. It is noted that

  6. Solar-Driven Air-Conditioning Cycles: A Review

    Directory of Open Access Journals (Sweden)

    A. M. Abu-Zour

    2007-12-01

    Full Text Available Most conventional cooling/refrigeration systems are driven by fossil fuel combustion, and therefore give rise to emission of environmentally damaging pollutants. In addition, many cooling systems employ refrigerants, which are also harmful to the environment in terms of their Global Warming Potential (GWP and Ozone Depletion Potential (ODP. Development of a passive or hybrid solar-driven air-conditioning system is therefore of interest as exploitation of such systems would reduce the demand for grid electricity particularly at times of peak load. This paper presents a review of various cooling cycles and summarises work carried out on solar-driven air-conditioning systems.

  7. Air-conditioning and ventilation systems and components of nuclear facilities

    International Nuclear Information System (INIS)

    2006-01-01

    The Guide defines the requirements for the design, implementation and operation of the air-conditioning and ventilation systems of nuclear facilities belonging to safety classes 3 and 4, and for the related documents to be submitted to STUK (Radiation and Nuclear Safety Authority, Finland). Furthermore, the Guide describes the inspections of air-conditioning and ventilation systems to be conducted by STUK during construction and operation of the facilities. As far as systems and components belonging to safety class 2 are concerned, STUK sets additional requirements case by case. In general, air-conditioning systems refer to systems designed to manage the indoor air cleanness, temperature, humidity and movement. In some rooms of a nuclear power plant, ventilation systems are also used to prevent radioactive materials from spreading outside the rooms. Guide YVL1.0 defines the safety principles concerning the air-conditioning and ventilation of nuclear power plants. Guide YVL2.0 gives the requirements for the design of nuclear power plant systems. In addition, YVLGuide groups 3, 4, 5 and 7 deal with the requirements for air-conditioning and ventilation systems with regard to the mechanical equipment, fire prevention, electrical systems, instrumentation and control technology, and the restriction of releases. The rules and regulations issued by the Ministry of the Environment and the Ministry of the Interior (RakMK, the Finnish building code) concerning the design and operation of air-conditioning and ventilation systems and the related fire protection design bases also apply to nuclear facilities. Exhaust gas treatment systems, condenser vacuum systems of boiling water reactor plants and leak collection systems are excluded from the scope of this Guide

  8. Performance study of desiccant coated heat exchanger air conditioning system in winter

    International Nuclear Information System (INIS)

    Ge, T.S.; Dai, Y.J.; Wang, R.Z.

    2016-01-01

    Highlights: • Performance of desiccant coated heat exchanger AC system is predicted. • Effects of main operation parameters and climatic conditions are discussed. • Regeneration temperature of 30 °C is recommended under simulation condition. • Higher ambient humidity ratio results in increased humidity ratio of supply air. • Temperature of ambient air has neglectable effect on supply air. - Abstract: Conventional air source heat pump system faces several challenges when adopted in winter season. Solid desiccant air conditioning system can provide humidification and heating power simultaneously and can be driven by low grade thermal energy; it provides a good alternative for air source heat pump systems. However, conventional solid desiccant air conditioning system adopts desiccant wheel with high cost as core component, which hinders the development of such system. Recently, desiccant coated heat exchanger (DCHE) with low initial cost and high efficiency was developed and this paper aims to investigate performance of DCHE air conditioning system adopted in Shanghai winter season. Performance of the system is predicted by a developed mathematical model where supply air states, mass of humidification and coefficient of performance (COP) are adopted as performance indices to evaluate the feasibility and energy utilization ratio of the system. Effects of regeneration water temperature on system performance are analyzed. It is found that under the simulation condition, relatively low regeneration temperature (such as 20 °C) cannot meet the designed standard and relatively high regeneration temperature (such as 40 °C) provides too much extra heating power, thus moderate regeneration temperature around 30 °C is recommended. Meanwhile, switch time is a crucial operation parameter for the system to obtain satisfied supply air, switch time from 40 s to 80 s and from 70 s to 240 s are recommended for transient and average supply air states, respectively. Both

  9. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    Science.gov (United States)

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  10. A trigeneration system based on polymer electrolyte fuel cell and desiccant wheel – Part B: Overall system design and energy performance analysis

    International Nuclear Information System (INIS)

    Intini, M.; De Antonellis, S.; Joppolo, C.M.; Casalegno, A.

    2015-01-01

    Highlights: • Seasonal simulation of a trigeneration system for building air-conditioning. • Effects of technical constraints on trigeneration system power consumption. • Optimal PEMFC unit size for maximizing trigeneration primary energy savings. - Abstract: This paper represents the second part of a major work focusing on a trigeneration system integrating a low temperature polymer electrolyte fuel cell (PEMFC) and a desiccant wheel-based air handling unit. Low temperature PEMFC systems have a significant potential in combined heating, cooling and power applications. However cogenerated heat temperature is relatively low (up to 65–70 °C), resulting in low efficiency of the cooling process, and the fuel processor is far from being flexible, hindering the operation of the system at low load conditions. Therefore a trigeneration system based on PEMFC should be carefully designed through accurate simulation tools. In the current paper a detailed analysis of the energy performance of the trigenerative system is provided, taking into account constraints of real applications, such as PEMFC part load behavior, desiccant wheel effectiveness, heat storage losses and air handling unit electrical consumptions. The methodology adopted to model system components is deeply described. Energy simulations are performed on yearly basis with variable building air conditioning loads and climate conditions, in order to investigate the optimal trigenerative unit size. A sensitivity analysis on crucial design parameters is provided. It is shown that constrains of actual applications have relevant effects on system energy consumption, which is significantly far from expected values based on a simplified analysis. Primary energy savings can be positive in winter time if the ratio of PEMFC heating capacity to air conditioning peak heating load is close to 0.15. Instead on yearly basis primary energy savings cannot be achieved with present components performance. Positive savings

  11. Air-cooled LiBr-water absorption chillers for solar air conditioning in extremely hot weathers

    International Nuclear Information System (INIS)

    Kim, D.S.; Infante Ferreira, C.A.

    2009-01-01

    A low temperature-driven absorption cycle is theoretically investigated for the development of an air-cooled LiBr-water absorption chiller to be combined with low-cost flat solar collectors for solar air conditioning in hot and dry regions. The cycle works with dilute LiBr-water solutions so that risk of LiBr crystallization is less than for commercially available water-cooled LiBr-water absorption chillers even in extremely hot ambient conditions. Two-phase heat exchangers in the system were modelled taking account of the heat and mass transfer resistances in falling film flows by applying the film theory in thermal and concentration boundary layers. Both directly and indirectly air-cooled chillers were modelled by properly combining component models and boundary conditions in a matrix system and solved with an algebraic equation solver. Simulation results predict that the chillers would deliver chilled water around 7.0 deg. C with a COP of 0.37 from 90 deg. C hot water under 35 deg. C ambient condition. At 50 deg. C ambient temperature, the chillers retained about 36% of their cooling power at 35 deg. C ambient. Compared with the directly air-cooled chiller, the indirectly air-cooled chiller presented a cooling power performance reduction of about 30%

  12. Thermodynamic analysis of the two-phase ejector air-conditioning system for buses

    International Nuclear Information System (INIS)

    Ünal, Şaban; Yilmaz, Tuncay

    2015-01-01

    Air-conditioning compressors of the buses are usually operated with the power taken from the engine of the buses. Therefore, an improvement in the air-conditioning system will reduce the fuel consumption of the buses. The improvement in the coefficient of performance (COP) of the air-conditioning system can be provided by using the two-phase ejector as an expansion valve in the air-conditioning system. In this study, the thermodynamic analysis of bus air-conditioning system enhanced with a two-phase ejector and two evaporators is performed. Thermodynamic analysis is made assuming that the mixing process in ejector occurs at constant cross-sectional area and constant pressure. The increase rate in the COP with respect to conventional system is analyzed in terms of the subcooling, condenser and evaporator temperatures. The analysis shows that COP improvement of the system by using the two phase ejector as an expansion device is 15% depending on design parameters of the existing bus air-conditioning system. - Highlights: • Thermodynamic analysis of the two-phase ejector refrigeration system. • Analysis of the COP increase rate of bus air-conditioning system. • Analysis of the entrainment ratio of the two-phase ejector refrigeration system

  13. Analytical solutions for evaluating the thermal performances of wet air cooling coils under both unit and non-unit Lewis Factors

    International Nuclear Information System (INIS)

    Xia Liang; Chan, M.Y.; Deng, S.M.; Xu, X.G.

    2010-01-01

    Analytical solutions for evaluating the thermal performances of both chilled water wet cooling coils and direct expansion (DX) wet cooling coils, respectively, under both unit and non-unit Lewis Factors are developed and reported in this paper. The analytical solution was validated by comparing its predictions with those from numerically solving the fundamental governing equations of heat and mass transfer taking place in a wet cooling coil. With the analytical solutions, the distributions of air temperature and humidity ratio along air flow direction in a wet cooling coil can be predicted, and the differences in the thermal performances of the cooling coils under both unit and non-unit Lewis Factors can be identified. The analytical solutions, on one hand, can be a low-cost replacement to numerically solving the fundamental heat and mass transfer governing equations, and on the other hand, is able to deal with evaluating thermal performance for wet air cooling coils operated under both unit and non-unit Lewis Factors.

  14. Design and transient analyses of passive emergency feedwater system of CPR1000. Part 1. Air cooling condition

    International Nuclear Information System (INIS)

    Zhang Yapei; Qiu Suizheng; Su Guanghui; Tian Wenxi; Cao Jianhua; Lu Donghua; Fu Xiangang

    2011-01-01

    The steam generator secondary passive emergency feedwater system is a new design for traditional generation Ⅱ + reactor CPR1000. The passive emergency feedwater system is designed to supply water to the SG shell side and improve the safety and reliability of CPR1000 by completely or partially replacing traditional emergency water cooling system in the event of the feed line break (FLB) or loss of heat sink accident. The passive emergency feedwater system consists of steam generator (SG), heat exchanger (HX), air cooling tower, emergency makeup tank (EMT), and corresponding pipes and valves for air cooling condition. In order to improve the safety and reliability of CPR1000, the model of the primary loop system and the passive emergency feedwater system was developed to investigate residual heat removal capability of the passive emergency feedwater system and the transient characteristics of the primary loop system affected by the passive emergency feedwater system using RELAP5/MOD3.4. The transient characteristics of the primary loop system and the passive emergency feedwater system were calculated in the event of feed line break accident. Sensitivity studies of the passive emergency feedwater system were also conducted to investigate the response of the primary loop and the passive emergency feedwater system on the main parameters of the passive emergency feedwater system. The passive emergency feedwater system could supply water to the SG shell side from the EMT successfully. The calculation results showed that the passive emergency feedwater system could take away the decay heat from the primary loop effectively for air cooling condition, and that the single-phase and two-phase natural circulations were established in the primary loop and passive emergency feedwater system loop, respectively. (author)

  15. Integrated Unit Deployments: Rethinking Air National Guard Fighter Mobilizations

    Science.gov (United States)

    2016-06-01

    participation in the homeland defense mission. But they emphasized that homeland defense would not become an exclusive ANG mission. Operation...station that can absorb pilots and maintainers left behind. Few Air National Guard squadrons enjoy this luxury . Only Air Guard squadrons that are part

  16. China's international trade and air pollution in the United States.

    Science.gov (United States)

    Lin, Jintai; Pan, Da; Davis, Steven J; Zhang, Qiang; He, Kebin; Wang, Can; Streets, David G; Wuebbles, Donald J; Guan, Dabo

    2014-02-04

    China is the world's largest emitter of anthropogenic air pollutants, and measurable amounts of Chinese pollution are transported via the atmosphere to other countries, including the United States. However, a large fraction of Chinese emissions is due to manufacture of goods for foreign consumption. Here, we analyze the impacts of trade-related Chinese air pollutant emissions on the global atmospheric environment, linking an economic-emission analysis and atmospheric chemical transport modeling. We find that in 2006, 36% of anthropogenic sulfur dioxide, 27% of nitrogen oxides, 22% of carbon monoxide, and 17% of black carbon emitted in China were associated with production of goods for export. For each of these pollutants, about 21% of export-related Chinese emissions were attributed to China-to-US export. Atmospheric modeling shows that transport of the export-related Chinese pollution contributed 3-10% of annual mean surface sulfate concentrations and 0.5-1.5% of ozone over the western United States in 2006. This Chinese pollution also resulted in one extra day or more of noncompliance with the US ozone standard in 2006 over the Los Angeles area and many regions in the eastern United States. On a daily basis, the export-related Chinese pollution contributed, at a maximum, 12-24% of sulfate concentrations over the western United States. As the United States outsourced manufacturing to China, sulfate pollution in 2006 increased in the western United States but decreased in the eastern United States, reflecting the competing effect between enhanced transport of Chinese pollution and reduced US emissions. Our findings are relevant to international efforts to reduce transboundary air pollution.

  17. An energy impact assessment of indoor air quality acceptance for air-conditioned offices

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.; Shi, K.L.; Hui, P.S.

    2008-01-01

    Treatment of fresh air in ventilation systems for the air-conditioning consumes a considerable amount of energy and affects the indoor air quality (IAQ). The ventilation demand is primarily related to the occupant load. In this study, the ventilation demands due to occupant load variations and occupant acceptability were examined against certain IAQ objectives using the mass balance of carbon dioxide (CO 2 ) concentrations in an air-conditioned office. In particular, this study proposed a ventilation model for the consideration of the occupant load variations and occupant acceptability based on the regional survey of typical offices (422 samples) in Hong Kong. The model was applied to evaluate the relative energy performance of different IAQ objectives in ventilation systems for typical office buildings in Hong Kong. The results showed that the energy consumption of a ventilation system would be correlated with the occupant load and acceptability in the air-conditioned office. Indicative CO 2 levels of 800 ppmv, 1000 ppmv and 1200 ppmv corresponding to 83%, 97% and 99.7% survey samples were shown, corresponding to the thermal energy consumptions of 1500 MJ m -2 yr -1 , 960 MJ m -2 yr -1 and 670 MJ m -2 yr -1 , respectively. In regards to the monetary issue, an annual value of HK$ 762 million per year in electrical consumption could be saved in all office buildings in Hong Kong when the indoor target CO 2 concentration is increased from 1000 ppmv to 1200 ppmv. To achieve an excellent IAQ following the existing design standard, i.e. to decrease the CO 2 level from 1000 ppmv to 800 ppmv, 56% additional energy would be consumed, corresponding to an annual value of HK$ 1,419 million, even though the occupant acceptability is only improved from 81% to 86%. The development of the models in this study would be useful for the energy performance evaluation of ventilation systems in air-conditioned offices

  18. Uncertainty Evaluation of Residential Central Air-conditioning Test System

    Science.gov (United States)

    Li, Haoxue

    2018-04-01

    According to national standards, property tests of air-conditioning are required. However, test results could be influenced by the precision of apparatus or measure errors. Therefore, uncertainty evaluation of property tests should be conducted. In this paper, the uncertainties are calculated on the property tests of Xinfei13.6 kW residential central air-conditioning. The evaluation result shows that the property tests are credible.

  19. The application of gas ejector for road transport air conditioning system

    Science.gov (United States)

    Sumeru, Nasution, Henry; Ani, Farid Nasir

    2012-06-01

    The depletion of fossil fuel supply requires fuel and energy saving in energy utilization system. Therefore, these required the development of new and efficient technologies as to reduce fuel consumption especially in air conditioning of road vehicles. Currently, the air conditioning for road vehicles uses vapor compression system. Although the vapor compression system has high COP, the compressor is driven by vehicle engines, which take additional fuel consumption when the air conditioning system is in operation. In this study, the waste heat of radiator drives the ejector refrigeration for air conditioning. Although the ejector refrigeration system has low COP, the use of heat driven air conditioning will reduce the fuel consumption as compared with conventional system. This is because the systems do not use the mechanical engine load. The analysis of this study is based on the ejector refrigeration system using natural refrigerant (isobutene). The evaporation temperature is 10°C, condensation temperature is 35°C, generator temperature is 90°C with ejector isentropic efficiency of 0.7, and the COP system is 0.25. The heat released by the radiator of typical small road vehicles is between 60 to 100 kW and if the generator absorbs 20% of the heat, the heat contained in the generator is 12 to 20 kW. When the ejector air conditioning system has a COP 0.25, it will generate cooling capacity between 3 to 5 kW, compared with the conventional air conditioning of similar vehicles, which is approximately 2 to 4.4 kW.

  20. Analysis of chiller units capacity for different heat loads considering variation of ambient air and cooling water temperature

    International Nuclear Information System (INIS)

    Coman, Aurelia Camelia; Tenescu, Mircea

    2010-01-01

    The paper purpose is to analyze the chiller units capacity to determine whether they can cope with high air and cooling water temperatures during summer time to remove heat loads imposed from Heating, Ventilation and Air Conditioning (HVAC) units in a CANDU 6 Nuclear Power Plant. The starting point is calculation of the overall heat transfer coefficient at the evaporator and condenser. They are used in heat balance equations of heat exchangers. A mathematical model was developed that simulates the refrigeration cycle to assess the response of chilled water system and its performance at different heat loads. In this analysis there were calculated values for inlet/outlet chilled water temperature and the refrigerant cycle thermodynamic parameters (condenser and evaporator pressure/temperature, refrigerant mass flowrate, refrigerant quality at the evaporator, refrigerant vapour superheated temperature at the compressor outlet, refrigerant subcooled temperature at the condenser outlet). To find the adequate functioning parameters of the installation, the MathCAD 13 software was used in all cases analyzed. The behaviour of the chiller units was investigated by examining the variation of three basic parameters, namely: - cooling water (river water) temperature; - air temperature; - heat load. The simultaneous variation of these three independent parameters allows to identify the actual chillers unit operating point (including chiller trip). (authors)

  1. Energy saving opportunity with variable speed drive in primary air-handling unit

    International Nuclear Information System (INIS)

    Li, J.S.M.

    2007-01-01

    Air conditioners used in the court buildings in Kowloon City, Hong Kong were retrofitted with variable speed drives in the primary air handling unit (PAU) in an effort to reduce energy consumption. The initial effect of this retrofit was investigated along with the feasibility of using a carbon dioxide (CO 2 ) based demand control ventilation to reduce energy consumption while optimizing indoor air quality. The air flow in most air conditioning fans is either constant or controlled by motorized inlet guide vanes. Although this controls the flow and may reduce the load on the fan, this constriction adds an energy loss, resulting in inefficient operation. Variable speed drives should be used on the PAU in order to maintain system efficiency. As the speed of the fans are reduced, the flow will decrease proportionally, while the power required by the fan will reduce the cube of the speed. Therefore, if the fresh air supply can be controlled by reducing the speed of the fan motor, then flow control would be more efficient. The energy saving associated with variable fresh air supply flow rate was evaluated along with the cost to building owners. This paper presented the results of the potential energy and cost savings associated with this retrofit, and included implementation cost and pay back period. It was estimated that about 20 per cent of power consumption and electricity costs can be saved per year, with a simple payback period of 2 years. 7 refs., 3 tabs., 3 figs

  2. Cooperation of Horizontal Ground Heat Exchanger with the Ventilation Unit During Summer - Case Study

    Science.gov (United States)

    Romańska-Zapała, Anna; Furtak, Marcin; Dechnik, Mirosław

    2017-10-01

    Renewable energy sources are used in the modern energy-efficient buildings to improve their energy balance. One of them is used in the mechanical ventilation system ground air heat exchanger (earth-air heat exchanger - EAHX). This solution, right after heat recovery from exhaust air (recuperation), allows the reduction in the energy needed to obtain the desired temperature of supply air. The article presents the results of "in situ" measurements of pipe ground air heat exchanger cooperating with the air handling unit, supporting cooling the building in the summer season, in Polish climatic conditions. The laboratory consists of a ventilation unit intake - exhaust with rotor for which the source of fresh air is the air intake wall and two air intakes field cooperating with the tube with ground air heat exchangers. Selection of the source of fresh air is performed using sprocket with actuators. This system is part of the ventilation system of the Malopolska Laboratory of Energy-Efficient Building (MLBE) building of Cracow University of Technology. The measuring system are, among others, the sensors of parameters of air inlets and outlets of the heat exchanger channels EAHX and weather station that senses the local weather conditions. The measurement data are recorded and archived by the integrated process control system in the building of MLBE. During the study measurements of operating parameters of the ventilation unit cooperating with the selected source of fresh air were performed. Two cases of operation of the system: using EAHX heat exchanger and without it, were analyzed. Potentially the use of ground air heat exchanger in the mechanical ventilation system can reduce the energy demand for heating or cooling rooms by the pre-adjustment of the supply air temperature. Considering the results can be concluded that the continuous use of these exchangers is not optimal. This relationship is appropriate not only on an annual basis for the transitional periods (spring

  3. [Assessment of the air quality improment of cleaning and disinfection on central air-conditioning ventilation system].

    Science.gov (United States)

    Liu, Hongliang; Zhang, Lei; Feng, Lihong; Wang, Fei; Xue, Zhiming

    2009-09-01

    To assess the effect of air quality of cleaning and disinfection on central air-conditioning ventilation systems. 102 air-conditioning ventilation systems in 46 public facilities were sampled and investigated based on Hygienic assessment criterion of cleaning and disinfection of public central air-conditioning systems. Median dust volume decreased from 41.8 g/m2 to 0.4 g/m2, and the percentage of pipes meeting the national standard for dust decreased from 17.3% (13/60) to 100% (62/62). In the dust, median aerobic bacterial count decreased from 14 cfu/cm2 to 1 cfu/cm2. Median aerobic fungus count decreased from 10 cfu/cm2 to 0 cfu/cm2. The percentage of pipes with bacterial and fungus counts meeting the national standard increased from 92.4% (171/185) and 82.2% (152/185) to 99.4% (165/166) and 100% (166/166), respectively. In the ventilation air, median aerobic bacterial count decreased from 756 cfu/m3 to 229 cfu/m3. Median aerobic fungus count decreased from 382 cfu/m3 to 120 cfu/m3. The percentage of pipes meeting the national standard for ventilation air increased from 33.3% (81/243) and 62.1% (151/243) to 79.8% (292/366) and 87.7% (242/276), respectively. But PM10 rose from 0.060 mg/m3 to 0.068 mg/m3, and the percentage of pipes meeting the national standard for PM10 increased from 74.2% (13/60) to 90.2% (46/51). The cleaning and disinfection of central air-conditioning ventilation systems could have a beneficial effect of air quality.

  4. Mitigating an increase of specific power consumption in a cryogenic air separation unit at reduced oxygen production

    Science.gov (United States)

    Singla, Rohit; Chowdhury, Kanchan

    2017-02-01

    Specific power consumed in a Linde double column air separation unit (ASU) increases as the quantity of oxygen produced at a given purity is decreased due to the changes of system requirement or market demand. As the plant operates in part load condition, the specific power consumption (SPC) increases as the total power consumption remains the same. In order to mitigate the increase of SPC at lower oxygen production, the operating pressure of high pressure column (HPC) can be lowered by extending the low pressure column (LPC) by a few trays and adding a second reboiler. As the duty of second reboiler in LPC is increased, the recovery of oxygen decreases with a lowering of the HPC pressure. This results in mitigation of the increase of SPC of the plant. A Medium pressure ASU with dual reboiler that produces pressurised gaseous and liquid products of oxygen and nitrogen is simulated in Aspen Hysys 8.6®, a commercial process simulator to determine SPC at varying oxygen production. The effects of reduced pressure of air feed into the cold box on the size of heat exchangers (HX) are analysed. Operation strategy to obtain various oxygen production rates at varying demand is also proposed.

  5. Applications of the monitor of loose parts in the cycle 6 of the Laguna Verde Unit 2 power plant

    International Nuclear Information System (INIS)

    Calleros, G.; Mendez, A.; Gomez, R.A.; Castillo, R.; Bravo, J.M.

    2004-01-01

    The monitor of loose parts (Loose Parts Monitoring System) installed in the Unit 2 of the Laguna Verde Central is a tool to detect strange objects or parts loose in the system of refrigeration of the reactor that could be impacted in the walls of the recirculation knots or in the internal of the reactor. In this work two applications are shown carried out with the Monitor of Loose Parts, determining the characteristics of the stable nominal conditions, those which when changing, they are used to diagnose during the Cycle 6 of the Unit 2, failures in the components of the the recirculation circuits or to identify mechanical vibrations of the recirculation knots induced by a flow of recirculation bistable associated to operative conditions of the reactor. (Author)

  6. Statistical modeling of urban air temperature distributions under different synoptic conditions

    Science.gov (United States)

    Beck, Christoph; Breitner, Susanne; Cyrys, Josef; Hald, Cornelius; Hartz, Uwe; Jacobeit, Jucundus; Richter, Katja; Schneider, Alexandra; Wolf, Kathrin

    2015-04-01

    Within urban areas air temperature may vary distinctly between different locations. These intra-urban air temperature variations partly reach magnitudes that are relevant with respect to human thermal comfort. Therefore and furthermore taking into account potential interrelations with other health related environmental factors (e.g. air quality) it is important to estimate spatial patterns of intra-urban air temperature distributions that may be incorporated into urban planning processes. In this contribution we present an approach to estimate spatial temperature distributions in the urban area of Augsburg (Germany) by means of statistical modeling. At 36 locations in the urban area of Augsburg air temperatures are measured with high temporal resolution (4 min.) since December 2012. These 36 locations represent different typical urban land use characteristics in terms of varying percentage coverages of different land cover categories (e.g. impervious, built-up, vegetated). Percentage coverages of these land cover categories have been extracted from different sources (Open Street Map, European Urban Atlas, Urban Morphological Zones) for regular grids of varying size (50, 100, 200 meter horizonal resolution) for the urban area of Augsburg. It is well known from numerous studies that land use characteristics have a distinct influence on air temperature and as well other climatic variables at a certain location. Therefore air temperatures at the 36 locations are modeled utilizing land use characteristics (percentage coverages of land cover categories) as predictor variables in Stepwise Multiple Regression models and in Random Forest based model approaches. After model evaluation via cross-validation appropriate statistical models are applied to gridded land use data to derive spatial urban air temperature distributions. Varying models are tested and applied for different seasons and times of the day and also for different synoptic conditions (e.g. clear and calm

  7. [Biological contamination in office buildings related to ventilation/air conditioning system].

    Science.gov (United States)

    Bródka, Karolina; Sowiak, Małgorzata; Kozajda, Anna; Cyprowski, Marcin; Irena, Szadkowska-Stańczyk

    2012-01-01

    Indoor air is contaminated with microorganisms coming from both the atmospheric air and sources present in premises. The aim of this study was to analyze the concentrations of biological agents in office buildings, dependending on ventilation/air conditioning system and season. The study covered office buildings (different in the system of ventila-tion/air conditioning). Air samples for assessing the levels of inhalable dust, endotoxins and (1-->3)-beta-D-glucans, were taken at the selected stationary points of each building during summer and winter. The air was sampled for 6 h, using portable sets consisting of the GilAir 5 pump and the head filled with a filter of fiber glass. The samples for the presence of airborne bacteria and fungi were collected twice during the day using the impaction method. Average concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans in office premises were 0.09 mg/m3, 6.00 x 10(2) cfu/m3, 4.59 x 10(1) cfu/m3, 0.42 ng/m3 and 3.91 ng/m3, respectively. Higher concentrations of the investigated agents were found in summer. In premises with air conditioning concentrations of airborne fungi, (1-->3)-beta-D-glucans and inhalable dust were significantly lower in winter. In summer the trend was reverse except for (1-->3)-beta-D-glucans. Concentrations of biological agents were affected by the season and the presence of air conditioning. Concentrations of inhalable dust, bacteria, fungi, endotoxins and (1-->3)-beta-D-glucans, observed inside the office buildings, were significantly higher in summer than in winter. The presence of the air conditioning system modified in various ways the levels of biological agents. Its influence was greater on the concentration of fungi and (1-->3)-beta-D-glucans than on that of bacteria and endotoxins.

  8. The Fate of Mengovirus on Fiberglass Filter of Air Handling Units.

    Science.gov (United States)

    Bandaly, Victor; Joubert, Aurélie; Le Cann, Pierre; Andres, Yves

    2017-12-01

    One of the most important topics that occupy public health problems is the air quality. That is the reason why mechanical ventilation and air handling units (AHU) were imposed by the different governments in the collective or individual buildings. Many buildings create an artificial climate using heating, ventilation, and air-conditioning systems. Among the existing aerosols in the indoor air, we can distinguish the bioaerosol with biological nature such as bacteria, viruses, and fungi. Respiratory viral infections are a major public health issue because they are usually highly infective. We spend about 90% of our time in closed environments such as homes, workplaces, or transport. Some studies have shown that AHU contribute to the spread and transport of viral particles within buildings. The aim of this work is to study the characterization of viral bioaerosols in indoor environments and to understand the fate of mengovirus eukaryote RNA virus on glass fiber filter F7 used in AHU. In this study, a set-up close to reality of AHU system was used. The mengovirus aerosolized was characterized and measured with the electrical low pressure impact and the scanner mobility particle size and detected with RT-qPCR. The results about quantification and the level of infectivity of mengovirus on the filter and in the biosampler showed that mengovirus can pass through the filter and remain infectious upstream and downstream the system. Regarding the virus infectivity on the filter under a constant air flow, mengovirus was remained infectious during 10 h after aerosolization.

  9. The Effect of Air-Conditioning on Student and Teacher Performance.

    Science.gov (United States)

    Phoenix Union High School District, AZ. Dept. of Research and Planning.

    The literature is reviewed to see if research shows a relationship between student and teacher performance and air conditioning of classrooms. The benefits of air conditioning in promoting learning are substantiated by studies that are summarized but not cited. The relationship of the report to the Phoenix Union High School System Advisory…

  10. Criticality Analysis of SFP Region I under Dry Air Condition

    International Nuclear Information System (INIS)

    Kim, Ki Yong; Kim, Min Chul

    2016-01-01

    This paper is to provide a result of the criticality evaluation under the condition that new fuel assemblies for initial fuel loading are storing in Region 1 of SFP in the dry air. The objective of this analysis is to ensure the effective neutron multiplication factor(k_e_f_f) of SFP is less than 0.95 under that condition. This analysis ensured the effective neutron multiplication factor(k_e_f_f) of Region 1 of SFP is less than 0.95 under the condition in the air. The keff in Region I of SFP under the condition of the dry air is 0.5865. The increased k_c_a_l_c of the Region 1 after the mislocated fuel assembly accident is 0.0444 at the pool flooded with un-borated water

  11. Open absorption system for cooling and air conditioning using membrane contactors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R.; Dorer, V. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2008-07-01

    Air conditioning systems based upon the open absorption principle, essentially an absorption device operating at atmospheric pressure, have been proposed and investigated at many instances in the past eighty years. Their potential for improving energy efficiency is clearly recognized in the earliest research reports. By the mid 1950ies, solar thermal energy was being applied to drive open absorption-based air conditioning systems. For several reasons, however, the open absorption technology was not mature enough to take place in the mainstream. In the past two decades, vigorous efforts have been undertaken to reverse this situation, but success continued to elude, despite the fact that the main problems, such as corrosion, aerosols in the supply air, etc., have been identified. This report details the work and the main results from the MemProDEC Project. In this project innovative solutions were proposed, and successfully investigated, for the corrosion problem and the improvement of efficiency of the absorption process, in particular a new method to cool a very compact absorber. The practically uniform flow distribution for all three streams in the absorber (air, water and desiccant) warrants the contact of the air to be dehumidified with the desiccant over the whole surface of exchange (across a porous membrane). This, together with the cooling with water in counter flow to the air, are the key factors for the excellent effectiveness of the absorber. As the results show, the dehydration effectiveness of the prototype absorber is up to 150 % higher than that previously obtained by others. The solutions developed for compactness and modularity represent an important step in the way to flexible manufacturing, i.e. using a single element size to assemble autonomous air handling units of various nominal capacities. And although the manufacturing methods of the individual elements require improvement, namely by avoiding adhesive bonding, the choice of materials and the

  12. Terms and definitions in the field of radiological technique. Dose quantities and units. Begriffe und Benennungen in der radiologischen Technik. Dosisgroessen und Dosiseinheiten

    Energy Technology Data Exchange (ETDEWEB)

    1985-01-01

    The standard gives the terms and definitions of concepts, dose quantities and units. The radiation field condition 'secondary electron equilibrium', which forms part of the definition of standard ion dose, is given more precisely. The term 'free in air' is used in its original meaning, i.e. characterization of measuring conditions excluding avoidable stray radiation, which deviates from DIN 6814, part 3/06.72. Dosemeters for measurement of standard ion dose of air kerma are calibrated 'free in air', but this calibration condition is not part of the quantity definition. The quantities standard ion dose or air kerma therefore can also be measured in any other material. The qunatitative relationships between standard ion dose and the quantities 'exposure' and air kerma, as given in the ICRU publication 33 'Quantities and Units' (1980), are explained. The standard introduces the SI units Gray (for energy dose), Sievert (for dose equivalent), and Becquerel (for the activity of a radioactive substance). As the change to the SI units conceals the approximated equality of the numerical values of the standrd ion dose of photon radiation in roentgen, of the energy dose for soft tissue in rad, and of the dose equivalent in rem, new definitions are given in accordance with ICRU 33 for the quantities specified dose rate, dose rate constant, and area exposure product. These definitions use the terms 'energy dose' and 'kerma'. The dose concepts applied in the field of radiation protection, especially ambient dose and individual dose, are defined as dose equivalents in compliance with the Radiation Protection Ordinance. The relevant sections present information on the conversion of standard ion dose values to the corresponding values of kerma, energy dose, or dose equivalent.

  13. Sustainability Challenges from Climate Change and Air Conditioning Use in Urban Areas

    Directory of Open Access Journals (Sweden)

    Karin Lundgren

    2013-07-01

    Full Text Available Global climate change increases heat loads in urban areas causing health and productivity risks for millions of people. Inhabitants in tropical and subtropical urban areas are at especial risk due to high population density, already high temperatures, and temperature increases due to climate change. Air conditioning is growing rapidly, especially in South and South-East Asia due to income growth and the need to protect from high heat exposures. Studies have linked increased total hourly electricity use to outdoor temperatures and humidity; modeled future predictions when facing additional heat due to climate change, related air conditioning with increased street level heat and estimated future air conditioning use in major urban areas. However, global and localized studies linking climate variables with air conditioning alone are lacking. More research and detailed data is needed looking at the effects of increasing air conditioning use, electricity consumption, climate change and interactions with the urban heat island effect. Climate change mitigation, for example using renewable energy sources, particularly photovoltaic electricity generation, to power air conditioning, and other sustainable methods to reduce heat exposure are needed to make future urban areas more climate resilient.

  14. Waste energy driven air conditioning system (WEDACS)

    NARCIS (Netherlands)

    Eichhorn, R.H.L.; Boot, M.D.; Luijten, C.C.M.

    2009-01-01

    In the port injected Spark Ignition (SI) engine, the single greatest part load efficiency reducing factor are energy losses over the throttle valve. The need for this throttle valve arises from the fact that engine power is controlled by the amount of air in the cylinders, since combustion occurs

  15. Scale-Free Networks and Commercial Air Carrier Transportation in the United States

    Science.gov (United States)

    Conway, Sheila R.

    2004-01-01

    Network science, or the art of describing system structure, may be useful for the analysis and control of large, complex systems. For example, networks exhibiting scale-free structure have been found to be particularly well suited to deal with environmental uncertainty and large demand growth. The National Airspace System may be, at least in part, a scalable network. In fact, the hub-and-spoke structure of the commercial segment of the NAS is an often-cited example of an existing scale-free network After reviewing the nature and attributes of scale-free networks, this assertion is put to the test: is commercial air carrier transportation in the United States well explained by this model? If so, are the positive attributes of these networks, e.g. those of efficiency, flexibility and robustness, fully realized, or could we effect substantial improvement? This paper first outlines attributes of various network types, then looks more closely at the common carrier air transportation network from perspectives of the traveler, the airlines, and Air Traffic Control (ATC). Network models are applied within each paradigm, including discussion of implied strengths and weaknesses of each model. Finally, known limitations of scalable networks are discussed. With an eye towards NAS operations, utilizing the strengths and avoiding the weaknesses of scale-free networks are addressed.

  16. Open absorption system for cooling and air conditioning using membrane contactors. 2006 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R. [Materials Science and Technology (EMPA), Abteilung Bautechnologien, Duebendorf (Switzerland)

    2006-11-15

    This illustrated annual report for 2006 for the Swiss Federal Office of Energy (SFOE) reports on work being done on the development of an open absorption system for cooling and air-conditioning. The report reviews the construction of a first prototype and the manufacture of its components. The conceptual design of this new type of air handling unit (AHU), operating with a liquid desiccant, is discussed. The AHU is to be autonomous and the system will not require additional mechanical refrigeration. It is to be thermally driven at temperatures below 80 {sup o}C. Waste heat sources, solar collectors, district heating plants and co-generation systems are targeted as providers of thermal energy at this temperature level. Work carried out is reported on, including that on two-stream membrane contactors.

  17. Support of the launching of motor car air conditioning systems with the coolant CO{sub 2} (R744). Test bench measurements and practical trials; Unterstuetzung der Markteinfuehrung von Pkw-Klimaanlagen mit dem Kaeltemittel CO{sub 2} (R744). Pruefstandsmessungen und Praxistest

    Energy Technology Data Exchange (ETDEWEB)

    Lemke, Nicholas; Mildenberger, Julia [Technische Univ. Braunschweig (Germany); Graz, Martin [Obrist Engineering GmbH, Lustenau (Austria)

    2011-10-15

    In the research project two passenger car air-conditioning systems were analyzed with regard to cooling capacity and efficiency. The results were compared with one another. The first system was a standard air-conditioning unit using R134a as a refrigerant. As a second system a CO{sub 2} (R744) prototype HVAC unit was used. Both units were investigated on one hand installed in a car on a dynamometer by Obrist Engineering GmbH and on the other hand installed in a calorimetric test rig by Technische Universitaet Braunschweig, Institut fuer Thermodynamik. While the tests in the calorimetric test rig showed comparable efficiencies and cooling capacities for both setups, consumption advantages were determined for the R744- air-conditioning unit installed in the vehicle by the company Obrist. With CO{sub 2} (R744) as a refrigerant for mobile air-conditioning systems an environmental friendly solution is available. (orig.)

  18. The influence of typical ways of operating and air-handling unit on the sensory pollution load from used bag filters

    DEFF Research Database (Denmark)

    Mysen, M.; Clausen, Geo; Bekö, Gabriel

    2003-01-01

    An experiment was performed to determine whether the sensory pollution emitted from a bag filter that had been used for 3 months in a suburban area in Denmark was influenced by different ways of operating the air-handling unit (AHU). Samples of the used filter were pre-conditioned to simulate thr...... the airflow outside working hours would significantly increase the sensory pollution emitted by a used bag filter immediately after the AHU is turned on, in comparison with continuous airflow through the AHU (P...... operating conditions: 1) switched off overnight; 2) airflow reduced to 10% overnight; and 3) continuous 100% operation. Outside air passed through the samples and the acceptability of the air after the filter was assessed by a panel of subjects. The results indicate that turning off the AHU or reducing...

  19. Effect of mobile unidirectional air flow unit on microbial contamination of air in standard urologic procedures.

    Science.gov (United States)

    Ferretti, Stefania; Pasquarella, Cesira; Fornia, Samanta; Saccani, Elisa; Signorelli, Carlo; Vitali, Pietro; Sansebastiano, Giuliano Ezio

    2009-12-01

    Infection is one of the most feared complications of surgery. New instrumentation is being developed to reduce deposition of bacteria. We investigated 45 major surgical procedures (21 radical nephrectomies [RN] and 24 radical retropubic prostatectomies [RRP]) in our urology department during 2007. In about one-half of the interventions, an ultraclean air flow mobile (UAF) unit was used. Bacterial sedimentation was evaluated by nitrocellulose membranes placed on the instrument tray and by settle plates positioned at four points in the operating room. In 27 operations, an additional membrane was located near the incision. Bacterial counts on the nitrocellulose membranes during RN were 230 colony-forming units (cfu)/m(2)/h with the UAF unit and 2,254 cfu/m(2)/h without the unit (p = 0.001). During RRP, the values were 288 cfu/m(2)/h and 3,126 cfu/m(2)/h respectively (p = 0.001). The membrane placed near the incision during RN showed a microbial count of 1,235 cfu/m(2)/h with the UAF unit and 5,093 cfu/m(2)/h without the unit (p = 0.002); during RRP, the values were 1,845 cfu/m(2)/h and 3,790 cfu/m(2)/h, respectively (difference not significant). Bacterial contamination detected by settle plates during RN showed a mean value of 2,273 cfu/m(2)/h when the UAF unit was used and 2,054 cfu/m(2)/h without the unit; during RRP, the values were 2,332 cfu/m(2)/h and 2,629 cfu/m(2)/h with and without the UAF unit, respectively (NS). No statistically significant differences were detected in the clinical data registered in patients operated on under standard conditions and while the UAF unit was functioning. The UAF appears able to reduce microbial contamination at the operating table, reaching a bacterial number obtained in ultraclean operating theatres.

  20. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    Science.gov (United States)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  1. Data characteristic analysis of air conditioning load based on fast Fourier transform

    Science.gov (United States)

    Li, Min; Zhang, Yanchi; Xie, Da

    2018-04-01

    With the development of economy and the improvement of people's living standards, air conditioning equipment is more and more popular. The influence of air conditioning load for power grid is becoming more and more serious. In this context it is necessary to study the characteristics of air conditioning load. This paper analyzes the data of air conditioning power consumption in an office building. The data is used for Fast Fourier Transform by data analysis software. Then a series of maps are drawn for the transformed data. The characteristics of each map were analyzed separately. The hidden rules of these data are mined from the angle of frequency domain. And these rules are hard to find in the time domain.

  2. Feasibility study of a novel dew point air conditioning system for China building application

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Xudong; Yang, Shuang; Duan, Zhiyin; Riffat, Saffa B. [School of the Built Environment, University of Nottingham, University Park, Nottingham NG7 2RD (United Kingdom)

    2009-09-15

    The paper investigated the feasibility of a novel dew point evaporative cooling for air conditioning of buildings in China regions. The issues involved include analyses of China weather conditions, investigation of availability of water for dew point cooling, and assessment of cooling capacity of the system within various regions of China. It is concluded that the dew point system is suitable for most regions of China, particularly northern and west regions of China where the climate is hot and dry during the summer season. It is less suitable for Guangzhou and Shanghai where climates are hot and humid. However, an air pre-treatment process involving a silica-gel dehumidification will enable the technology to be used for these humid areas. Lower humidity results in a higher difference between the dry bulb and dew point of the air, which benefits the system in terms of enhancing its cooling performance. Tap water has adequate temperature to feed the system for cooling and its consumption rate is in the range 2.6-3 litres per kWh cooling output. The cooling output of the system ranges from 1.1 to 4.3 W per m{sup 3}/h air flow rate in China, depending on the region where the system applies. For a unit with 2 kW of cooling output, the required air volume flow rate varies with its application location and is in the range 570-1800 m{sup 3}/h. For a 50 m{sup 2} building with 60 W/m{sup 2} cooling load, if the system operates at working hours, i.e., 09:00 to 17:00 h, its daily water consumption would be in the range of 60-70 litres. Compared with mild or humid climates, the dry and hot climates need less air volume flow rate and less water. (author)

  3. China’s international trade and air pollution in the United States

    Science.gov (United States)

    Lin, Jintai; Pan, Da; Davis, Steven J.; Zhang, Qiang; He, Kebin; Wang, Can; Streets, David G.; Wuebbles, Donald J.; Guan, Dabo

    2014-01-01

    China is the world’s largest emitter of anthropogenic air pollutants, and measurable amounts of Chinese pollution are transported via the atmosphere to other countries, including the United States. However, a large fraction of Chinese emissions is due to manufacture of goods for foreign consumption. Here, we analyze the impacts of trade-related Chinese air pollutant emissions on the global atmospheric environment, linking an economic-emission analysis and atmospheric chemical transport modeling. We find that in 2006, 36% of anthropogenic sulfur dioxide, 27% of nitrogen oxides, 22% of carbon monoxide, and 17% of black carbon emitted in China were associated with production of goods for export. For each of these pollutants, about 21% of export-related Chinese emissions were attributed to China-to-US export. Atmospheric modeling shows that transport of the export-related Chinese pollution contributed 3–10% of annual mean surface sulfate concentrations and 0.5–1.5% of ozone over the western United States in 2006. This Chinese pollution also resulted in one extra day or more of noncompliance with the US ozone standard in 2006 over the Los Angeles area and many regions in the eastern United States. On a daily basis, the export-related Chinese pollution contributed, at a maximum, 12–24% of sulfate concentrations over the western United States. As the United States outsourced manufacturing to China, sulfate pollution in 2006 increased in the western United States but decreased in the eastern United States, reflecting the competing effect between enhanced transport of Chinese pollution and reduced US emissions. Our findings are relevant to international efforts to reduce transboundary air pollution. PMID:24449863

  4. Portable air quality sensor unit for participatory monitoring: an end-to-end VESNA-AQ based prototype

    Science.gov (United States)

    Vucnik, Matevz; Robinson, Johanna; Smolnikar, Miha; Kocman, David; Horvat, Milena; Mohorcic, Mihael

    2015-04-01

    Key words: portable air quality sensor, CITI-SENSE, participatory monitoring, VESNA-AQ The emergence of low-cost easy to use portable air quality sensors units is opening new possibilities for individuals to assess their exposure to air pollutants at specific place and time, and share this information through the Internet connection. Such portable sensors units are being used in an ongoing citizen science project called CITI-SENSE, which enables citizens to measure and share the data. The project aims through creating citizens observatories' to empower citizens to contribute to and participate in environmental governance, enabling them to support and influence community and societal priorities as well as associated decision making. An air quality measurement system based on VESNA sensor platform was primarily designed within the project for the use as portable sensor unit in selected pilot cities (Belgrade, Ljubljana and Vienna) for monitoring outdoor exposure to pollutants. However, functionally the same unit with different set of sensors could be used for example as an indoor platform. The version designed for the pilot studies was equipped with the following sensors: NO2, O3, CO, temperature, relative humidity, pressure and accelerometer. The personal sensor unit is battery powered and housed in a plastic box. The VESNA-based air quality (AQ) monitoring system comprises the VESNA-AQ portable sensor unit, a smartphone app and the remote server. Personal sensor unit supports wireless connection to an Android smartphone via built-in Wi-Fi. The smartphone in turn serves also as the communication gateway towards the remote server using any of available data connections. Besides the gateway functionality the role of smartphone is to enrich data coming from the personal sensor unit with the GPS location, timestamps and user defined context. This, together with an accelerometer, enables the user to better estimate ones exposure in relation to physical activities, time

  5. A Condition Based Maintenance Approach to Forecasting B-1 Aircraft Parts

    Science.gov (United States)

    2017-03-23

    Air Force Institute of Technology AFIT Scholar Theses and Dissertations 3-23-2017 A Condition Based Maintenance Approach to Forecasting B-1 Aircraft...component’s life history where reliability forecasts could be stipulated based on a component’s current condition . One of the major issues their report noted...Engine Condition Monitoring System Specification. Contract Number DOT-CG-80513-A. Grand Prairie, TX. Air Force Materiel Command. (2011) Requirements For

  6. Filters from taxis air conditioning system: A tool to characterize driver's occupational exposure to bioburden?

    Science.gov (United States)

    Viegas, Carla; Monteiro, Ana; Dos Santos, Mateus; Faria, Tiago; Caetano, Liliana Aranha; Carolino, Elisabete; Quintal Gomes, Anita; Marchand, Geneviève; Lacombe, Nancy; Viegas, Susana

    2018-07-01

    Bioburden proliferation in filters from air conditioning systems of taxis represents a possible source of occupational exposure. The aim of this study was to determine the occurrence of fungi and bacteria in filters from the air conditioning system of taxis used for patient transportation and to assess the exposure of drivers to bioburden. Filters from the air conditioning systems of 19 taxis and 28 personal vehicles (used as controls) operating in three Portuguese cities including the capital Lisbon, were collected during the winter season. The occurrence and significance of bioburden detected in the different vehicles are reported and discussed in terms of colony-forming units (CFU) per 1 m 2 of filter area and by the identification of the most frequently detected fungal isolates based on morphology. Azole-resistant mycobiota, fungal biomass, and molecular detection of Aspergillus species/strains were also determined. Bacterial growth was more prevalent in taxis (63.2%) than in personal vehicles (26.3%), whereas fungal growth was more prevalent in personal vehicles (53.6%) than in taxis (21.1-31.6%). Seven different azole-resistant species were identified in this study in 42.1% taxi filters. Levels of fungal biomass were above the detection limit in 63% taxi filters and in 75% personal vehicle filters. No toxigenic species were detected by molecular analysis in the assessed filters. The results obtained show that bioburden proliferation occurs widely in filters from the air conditioning systems of taxis, including the proliferation of azole-resistant fungal species, suggesting that filters should be replaced more frequently. The use of culture based-methods and molecular tools combined enabled an improved risk characterization in this setting. Copyright © 2018 Elsevier Inc. All rights reserved.

  7. 14 CFR 203.5 - Compliance as condition on operations in air transportation.

    Science.gov (United States)

    2010-01-01

    ... air transportation. 203.5 Section 203.5 Aeronautics and Space OFFICE OF THE SECRETARY, DEPARTMENT OF... DEFENSES § 203.5 Compliance as condition on operations in air transportation. It shall be a condition on the authority of all direct U.S. and foreign carriers to operate in air transportation that they have...

  8. Energy-Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms

    Directory of Open Access Journals (Sweden)

    Min-Suk Jo

    2017-11-01

    Full Text Available This paper aimed to evaluate the applicability of adiabatic humidification in the heating, ventilation, and air conditioning (HVAC systems of semiconductor cleanrooms. Accurate temperature and humidity control are essential in semiconductor cleanrooms and high energy consumption steam humidification is commonly used. Therefore, we propose an adiabatic humidification system employing a pressurized water atomizer to reduce the energy consumption. The annual energy consumption of three different HVAC systems were analyzed to evaluate the applicability of adiabatic humidification. The studied cases were as follows: (1 CASE 1: a make-up air unit (MAU with a steam humidifier, a dry cooling coil (DCC, and a fan filter unit (FFU; (2 CASE 2: a MAU with the pressurized water atomizer, a DCC, and a FFU; and (3 CASE 3: a MAU, a DCC, and a FFU, and the pressurized water atomizer installed in the return duct. The energy saving potential of adiabatic humidification over steam humidification has been proved, with savings of 8% and 23% in CASE 2 and CASE 3 compared to CASE 1, respectively. Furthermore, the pressurized water atomizer installed in the return duct exhibits greater energy saving effect than when installed in the MAU.

  9. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    Science.gov (United States)

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  10. Effects of Gas-Phase Adsorption air purification on passengers and cabin crew in simulated 11-hour flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei

    2006-01-01

    In a 3-row, 21-seat section of a simulated aircraft cabin that had been installed in a climate chamber, 4 groups of 17 subjects, acting as passengers and crew, took part in simulated 11-hour flights. Each group experienced 4 conditions in balanced order, defined by two outside air supply rates (2.......4 and 3.3 L/s per person), with and without a Gas-Phase Adsorption (GPA) unit in the re-circulated air system. Objective physical and physiological measurements and subjective human assessments of symptom intensity were obtained. The GPA unit provided advantages with no apparent disadvantages....

  11. Influence of indoor air conditions on radon concentration in a detached house

    International Nuclear Information System (INIS)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-01-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50–60%. - Highlights: ► We use CFD to simulate indoor radon concentration and distribution. ► The effects of ventilation rate, temperature and moisture are investigated. ► Model validation is performed through analytical solution and measurement results. ► Results show that ventilation rate is inversely proportional to radon level. ► There is a range of temperature and relative humidity that minimize radon level.

  12. Performance Assessment of a Solar-Assisted Desiccant-Based Air Handling Unit Considering Different Scenarios

    Directory of Open Access Journals (Sweden)

    Giovanni Angrisani

    2016-09-01

    Full Text Available In this paper, three alternative layouts (scenarios of an innovative solar-assisted hybrid desiccant-based air handling unit (AHU are investigated through dynamic simulations. Performance is evaluated with respect to a reference system and compared to those of the innovative plant without modifications. For each scenario, different collector types, surfaces and tilt angles are considered. The effect of the solar thermal energy surplus exploitation for other low-temperature uses is also investigated. The first alternative scenario consists of the recovery of the heat rejected by the condenser of the chiller to pre-heat the regeneration air. The second scenario considers the pre-heating of regeneration air with the warmer regeneration air exiting the desiccant wheel (DW. The last scenario provides pre-cooling of the process air before entering the DW. Results reveal that the plants with evacuated solar collectors (SC can ensure primary energy savings (15%–24% and avoid equivalent CO2 emissions (14%–22%, about 10 percentage points more than those with flat-plate collectors, when the solar thermal energy is used only for air conditioning and the collectors have the best tilt angle. If all of the solar thermal energy is considered, the best results with evacuated tube collectors are approximately 73% in terms of primary energy saving, 71% in terms of avoided equivalent CO2 emissions and a payback period of six years.

  13. Air-conditioning Australian households: The impact of dynamic peak pricing

    International Nuclear Information System (INIS)

    Strengers, Yolande

    2010-01-01

    International mandates for smart metering are enabling variable and real-time pricing regimes such as dynamic peak pricing (DPP), which charges 10-40 times the off-peak rate for electricity during short periods. This regime aims to reduce peak electricity demand (predominantly due to increase in residential air-conditioning usage) and curb greenhouse gas emissions. Although trials indicate that DPP can achieve significant demand reductions, particularly in summer, little is known about how or why households change their cooling practices in response to this strategy. This paper discusses the outcomes of a small qualitative study assessing the impact of a DPP trial on household cooling practices in the Australian state of New South Wales. The study challenges common assumptions about the necessity of air-conditioning and impact of price signals. It finds that DPP engages households as co-managers of their cooling practices through a series of notification signals (SMS, phone, in-home display, email, etc.). Further, by linking the price signal to air-conditioning, some householders consider this practice discretionary for short periods of time. The paper concludes by warning that policy makers and utilities may serve to legitimise air-conditioning usage and/or negate demand reductions by failing to acknowledge the non-rational dynamics of DPP and household cooling practices. - Research highlights: →Most householders consider air-conditioning discretionary during DPP events →DPP engages householders as co-managers of their demand →Notification of an upcoming DPP event is significant to the response →Householders feel obligated to respond to DPP for a range of non-financial reasons

  14. An expert fault diagnosis system for vehicle air conditioning product development

    NARCIS (Netherlands)

    Tan, C.F.; Tee, B.T.; Khalil, S.N.; Chen, W.; Rauterberg, G.W.M.

    2015-01-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to

  15. International system of units traceable results of Hg mass concentration at saturation in air from a newly developed measurement procedure.

    Science.gov (United States)

    Quétel, Christophe R; Zampella, Mariavittoria; Brown, Richard J C; Ent, Hugo; Horvat, Milena; Paredes, Eduardo; Tunc, Murat

    2014-08-05

    Data most commonly used at present to calibrate measurements of mercury vapor concentrations in air come from a relationship known as the "Dumarey equation". It uses a fitting relationship to experimental results obtained nearly 30 years ago. The way these results relate to the international system of units (SI) is not known. This has caused difficulties for the specification and enforcement of limit values for mercury concentrations in air and in emissions to air as part of national or international legislation. Furthermore, there is a significant discrepancy (around 7% at room temperature) between the Dumarey data and data calculated from results of mercury vapor pressure measurements in the presence of only liquid mercury. As an attempt to solve some of these problems, a new measurement procedure is described for SI traceable results of gaseous Hg concentrations at saturation in milliliter samples of air. The aim was to propose a scheme as immune as possible to analytical biases. It was based on isotope dilution (ID) in the liquid phase with the (202)Hg enriched certified reference material ERM-AE640 and measurements of the mercury isotope ratios in ID blends, subsequent to a cold vapor generation step, by inductively coupled plasma mass spectrometry. The process developed involved a combination of interconnected valves and syringes operated by computer controlled pumps and ensured continuity under closed circuit conditions from the air sampling stage onward. Quantitative trapping of the gaseous mercury in the liquid phase was achieved with 11.5 μM KMnO4 in 2% HNO3. Mass concentrations at saturation found from five measurements under room temperature conditions were significantly higher (5.8% on average) than data calculated from the Dumarey equation, but in agreement (-1.2% lower on average) with data based on mercury vapor pressure measurement results. Relative expanded combined uncertainties were estimated following a model based approach. They ranged from 2

  16. United States Air Force Nurse Crops Captains' Perceived Leadership Effectiveness

    National Research Council Canada - National Science Library

    Randall, Marjorie

    1998-01-01

    The purpose of this study was to examine perceived leadership effectiveness of nurses who attended the United States Air Force Nursing Service Management residence course with the perceived leadership...

  17. DESIGN OF WATER-COOLED PACKAGED AIR-CONDITIONING SYSTEMS BASED ON RELIABILITY ASSESSMENT

    OpenAIRE

    関口, 圭輔; 中尾, 正喜; 藁谷, 至誠; 植草, 常雄; 羽山, 広文

    2007-01-01

    Water-cooled packaged air-conditioning systems are reevaluated in terms of alleviating the heat island phenomenon in cities and effectively utilizing building rooftops. Up to now, such reliability assessment has been insufficient, and this has limited the use of this kind of air-conditioning system in the information and communications sectors that demand a high reliability. This work has led to the development of a model for evaluating the reliability of water-cooled package air-conditioning...

  18. Open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water

    International Nuclear Information System (INIS)

    Hou Shaobo; Li Huacong; Zhang Hefei

    2007-01-01

    This paper presents an open air-vapor compression refrigeration system for air conditioning and hot water cooled by cool water and proves its feasibility through performance simulation. Pinch technology is used in analysis of heat exchange in the surface heat exchanger, and the temperature difference at the pinch point is selected as 6 o C. Its refrigeration depends mainly on both air and vapor, more efficient than a conventional air cycle, and the use of turbo-machinery makes this possible. This system could use the cool in the cool water, which could not be used to cool air directly. Also, the heat rejected from this system could be used to heat cool water to 33-40 o C. The sensitivity analysis of COP to η c and η t and the simulated results T 4 , T 7 , T 8 , q 1 , q 2 and W m of the cycle are given. The simulations show that the COP of this system depends mainly on T 7 , η c and η t and varies with T 3 or T wet and that this cycle is feasible in some regions, although the COP is sensitive to the efficiencies of the axial compressor and turbine. The optimum pressure ratio in this system could be lower, and this results in a fewer number of stages of the axial compressor. Adjusting the rotation speed of the axial compressor can easily control the pressure ratio, mass flow rate and the refrigerating capacity. The adoption of this cycle will make the air conditioned room more comfortable and reduce the initial investment cost because of the obtained very low temperature air. Humid air is a perfect working fluid for central air conditioning and no cost to the user. The system is more efficient because of using cool water to cool the air before the turbine. In addition, pinch technology is a good method to analyze the wet air heat exchange with water

  19. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  20. Eielson Air Force Base Operable Unit 2 baseline risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, R.E.; Jarvis, T.T.; Jarvis, M.R.; Whelan, G.

    1994-10-01

    Operable Unit 2 at Eielson Air Force Base (AFB) near Fairbanks, is one of several operable units characterized by petroleum, oil, and lubricant contamination, and by the presence of organic products floating at the water table, as a result of Air Force operations since the 1940s. The base is approximately 19,270 acres in size, and comprises the areas for military operations and a residential neighborhood for military dependents. Within Operable Unit 2, there are seven source areas. These source areas were grouped together primarily because of the contaminants released and hence are not necessarily in geographical proximity. Source area ST10 includes a surface water body (Hardfill Lake) next to a fuel spill area. The primary constituents of concern for human health include benzene, toluene, ethylbenzene, and xylenes (BTEX). Monitored data showed these volatile constituents to be present in groundwater wells. The data also showed an elevated level of trace metals in groundwater.

  1. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  2. Smart Sensors Enable Smart Air Conditioning Control

    Directory of Open Access Journals (Sweden)

    Chin-Chi Cheng

    2014-06-01

    Full Text Available In this study, mobile phones, wearable devices, temperature and human motion detectors are integrated as smart sensors for enabling smart air conditioning control. Smart sensors obtain feedback, especially occupants’ information, from mobile phones and wearable devices placed on human body. The information can be used to adjust air conditioners in advance according to humans’ intentions, in so-called intention causing control. Experimental results show that the indoor temperature can be controlled accurately with errors of less than ±0.1 °C. Rapid cool down can be achieved within 2 min to the optimized indoor capacity after occupants enter a room. It’s also noted that within two-hour operation the total compressor output of the smart air conditioner is 48.4% less than that of the one using On-Off control. The smart air conditioner with wearable devices could detect the human temperature and activity during sleep to determine the sleeping state and adjusting the sleeping function flexibly. The sleeping function optimized by the smart air conditioner with wearable devices could reduce the energy consumption up to 46.9% and keep the human health. The presented smart air conditioner could provide a comfortable environment and achieve the goals of energy conservation and environmental protection.

  3. The characteristics of welded joints for air conditioning application

    Science.gov (United States)

    Weglowski, M. St.; Weglowska, A.; Miara, D.; Kwiecinski, K.; Błacha, S.; Dworak, J.; Rykala, J.; Pikula, J.; Ziobro, G.; Szafron, A.; Zimierska-Nowak, P.; Richert, M.; Noga, P.

    2017-10-01

    In the paper the results of metallographic examination of welded joints for air-conditioning elements are presented. The European directives 2006/40/EC on the greenhouse gasses elimination demand to stop using traditional refrigerant and to change it to R744 (CO2) medium in air conditioning installation. The R744 refrigerant is environmental friendly medium if compared with standard solution such as R12, R134a or R1234yf and safer for passengers than R1234yf. The non-standard thermodynamic parameters of the R744 which translate into high pressure and high temperature require specific materials to develop the shape and to specify the technology of manufacturing for the particular elements of the conduits and moreover the technologies of joining for the whole structure, which would meet the exploitation requirements of the new air-conditioning system. To produce the test welded joints of stainless steels four different joining technologies were applied: laser welding, plasma welding, electron beam welding as well as high speed rotation welding. This paper describes the influence of the selected welding process on the macrostructure and microstructure of welded joints of AISI 304 and AISI 316L steels. The results indicated that plasma welding laser welding and electron beam welding technologies guaranty the proper quality of welded joints and can be used for the air conditioning application in automotive industry. However, high speed rotation welding not guarantee the good quality of welded joints and cannot be used for above application.

  4. Contribution of air conditioning adoption to future energy use under global warming

    Science.gov (United States)

    Davis, Lucas W.; Gertler, Paul J.

    2015-01-01

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  5. Contribution of air conditioning adoption to future energy use under global warming.

    Science.gov (United States)

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.

  6. Sterilization of health care products - Chemical indicators - Part 5: Class 2 indicators for Bowie and Dick-type air removal tests. 2. ed.

    International Nuclear Information System (INIS)

    2007-01-01

    The air removal test is used to evaluate the efficacy of air removal during the pre-vacuum phase of a prevacuum sterilization cycle or during the pulsing stage of positive pulsing cycles if non-condensable gases were present in the steam. Retention of air due to an inefficient air removal stage or the presence of an air leak or non-condensable gases during the air removal stage are circumstances which can lead to failure of the test. This part of ISO 11140 describes the requirements for Class 2 indicators for Bowie and Dick-type air removal test sheets and packs. For a description of the classes of chemical indicators, see ISO 11140-1. The difference between the steam penetration test (ISO 11140-3 and ISO 11140-4) and the air removal test (ISO 11140-5) is described in the chemical indicator guidance document (ISO 15882). This part of ISO 11140 specifies the requirements for Class 2 indicators for Bowie and Dick-type air removal tests used to evaluate the effectiveness of air removal during the pre-vacuum phase of pre-vacuum steam sterilization cycles. Additionally, this part of ISO 11140 includes test methods and equipment used to meet these performance requirements. The paper provides information on scope, normative references, terms and definitions, general requirements, indicator system, its format and performance, indicator, its format and performance, packaging and labelling, quality assurance and sampling conditioning. 7 annexes report on the determination of the degree of contrast between the colour of the substrate and the indicator agent, the method of determining uniform colour change on exposure to saturated steam, the method of determining indicator colour change on exposure to dry heat, the method of determining transfer of indicator agent to standard test pack, standard test pack, the method of determining non-uniform colour change on exposure to a standard fault condition, and the steam exposure apparatus. Finally a bibliography is provided

  7. Air-water flow measurement for ERVC conditions by LIF/PIV

    International Nuclear Information System (INIS)

    Yoon, Jong Woong; Jeong, Yong Hoon

    2016-01-01

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  8. Air-water flow measurement for ERVC conditions by LIF/PIV

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Jong Woong; Jeong, Yong Hoon [KAIST, Daejeon (Korea, Republic of)

    2016-05-15

    Critical heat flux (CHF) of the external reactor vessel wall is a safety limit that indicate the integrity of the reactor vessel during the situation. Many research conducted CHF experiments in the IVR-ERVC conditions. However, the flow velocity field which is an important factor in the CHF mechanism were not studied enough in the IVR-ERVC situations. In this study, flow measurements including velocity vector field and the liquid velocity in the IVR-ERVC conditions were studied. The air-water two phase flow loop simulating IVRERVC conditions was set up and liquid velocity field was measured by LIF/PIV technique in this study. The experiment was conducted with and without air injection conditions. For the air-water flow experiment, liquid velocity at the outside of two phase boundary layer became higher and the two phase boundary layer thickness became smaller when the mass flux increases. The velocity data obtained in this study are expected to improve the CHF correlation in the IVR-ERVC situations.

  9. Calculation of the Chilling Requirement for Air Conditioning in the Excavation Roadway

    Directory of Open Access Journals (Sweden)

    Yueping Qin

    2015-10-01

    Full Text Available To effectively improve the climate conditions of the excavation roadway in coal mine, the calculation of the chilling requirement taking air conditioning measures is extremely necessary. The temperature field of the surrounding rock with moving boundary in the excavation roadway was numerically simulated by using finite volume method. The unstable heat transfer coefficient between the surrounding rock and air flow was obtained via the previous calculation. According to the coupling effects of the air flow inside and outside air duct, the differential calculation mathematical model of air flow temperature in the excavation roadway was established. The chilling requirement was calculated with the selfdeveloped computer program for forecasting the required cooling capacity of the excavation roadway. A good air conditioning effect had been observed after applying the calculated results to field trial, which indicated that the prediction method and calculation procedure were reliable.

  10. Air pollution removal by urban trees and shrubs in the United States

    Science.gov (United States)

    David J. Nowak; Daniel E. Crane; Jack C. Stevens

    2006-01-01

    A modeling study using hourly meteorological and pollution concentration data from across the coterminous United States demonstrates that urban trees remove large amounts of air pollution that consequently improve urban air quality. Pollution removal (03, PM10, NO2, SO2, CO)...

  11. Effects of air pollution on ecosystems and biological diversity in the eastern United States.

    Science.gov (United States)

    Lovett, Gary M; Tear, Timothy H; Evers, David C; Findlay, Stuart E G; Cosby, B Jack; Dunscomb, Judy K; Driscoll, Charles T; Weathers, Kathleen C

    2009-04-01

    Conservation organizations have most often focused on land-use change, climate change, and invasive species as prime threats to biodiversity conservation. Although air pollution is an acknowledged widespread problem, it is rarely considered in conservation planning or management. In this synthesis, the state of scientific knowledge on the effects of air pollution on plants and animals in the Northeastern and Mid-Atlantic regions of the United States is summarized. Four air pollutants (sulfur, nitrogen, ozone, and mercury) and eight ecosystem types ranging from estuaries to alpine tundra are considered. Effects of air pollution were identified, with varying levels of certainty, in all the ecosystem types examined. None of these ecosystem types is free of the impacts of air pollution, and most are affected by multiple pollutants. In aquatic ecosystems, effects of acidity, nitrogen, and mercury on organisms and biogeochemical processes are well documented. Air pollution causes or contributes to acidification of lakes, eutrophication of estuaries and coastal waters, and mercury bioaccumulation in aquatic food webs. In terrestrial ecosystems, the effects of air pollution on biogeochemical cycling are also very well documented, but the effects on most organisms and the interaction of air pollution with other stressors are less well understood. Nevertheless, there is strong evidence for effects of nitrogen deposition on plants in grasslands, alpine areas, and bogs, and for nitrogen effects on forest mycorrhizae. Soil acidification is widespread in forest ecosystems across the eastern United States and is likely to affect the composition and function of forests in acid-sensitive areas over the long term. Ozone is known to cause reductions in photosynthesis in many terrestrial plant species. For the most part, the effects of these pollutants are chronic, not acute, at the exposure levels common in the eastern United States. Mortality is often observed only at experimentally

  12. 10 CFR 71.74 - Accident conditions for air transport of plutonium.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Accident conditions for air transport of plutonium. 71.74 Section 71.74 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) PACKAGING AND TRANSPORTATION OF RADIOACTIVE MATERIAL Package, Special Form, and LSA-III Tests 2 § 71.74 Accident conditions for air transport of...

  13. Unit 1 and Unit 2 Nuclear Power Plant Mochovce construction finishing from primary contractor of technological part. Skoda Praha a. s. point of view

    International Nuclear Information System (INIS)

    Horky, F.

    2000-01-01

    In this paper the history of delivery of technological part for NPP V-1 Mochovce as well as of reconstruction and safety improvements by the Skoda Praha a.s. is presented. Primary contractor of technological part Skoda Praha together with its final suppliers proved ability to realize under hard conditions such a complicated work what was indisputedly Units 1 and 2 finishing. Company proved capability to conform itself flexibly in the course of work to requirements of customer for realization of safety measures which means that Units 1 and 2 fully satisfy international standards. By fulfilment of primary contractor of technology obligations and above all by takeover of complex responsibility for both Units putting in operation including responsibility for 'past' Skoda Praha put away one of basic problems which occurred in decision making to whom will be assigned construction finishing contract. These facts fully qualify Skoda Praha to be selected for possible Units 3 and 4 construction finishing as one of chief construction finishing participant

  14. SESSA: Expert system for the selection of air conditioning equipment; SESEAA: Sistema experto para la seleccion de equipos de aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Kemper Valverde, Nicolas; Cardenas Perez, Edgar [Laboratorio de Sistemas Inteligentes, Centro de Instrumentos de la Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D. F. (Mexico)

    1998-12-31

    The problem of selecting air conditioning and refrigeration equipment is quite wide and complex, since it encompasses from the application of the basic principles of physics and of thermodynamics up to the classic engineering design problems; these in turn can be numberless since they vary from place to place depending on multiple factors such as the region geographic and economic conditions. On the other hand, account most be taken of several elements such as windows, walls, and its specific geographical orientation, roofs, floors, partitions, equipment, lighting, etc., all this exerts influence in the complexity that represents the selection process. This paper describes a useful informatics tool to make it easy the selection process in air conditioning installations, taking into account multiple saving and efficient use of energy criteria, reflected in the operation process of these installations. [Espanol] El problema de seleccion de sistemas de aire acondicionado y de refrigeracion es bastante amplio y complejo, ya que abarca desde la aplicacion de los principios basicos de la fisica y la termodinamica hasta los problemas clasicos de diseno de ingenieria; estos a la vez pueden ser innumerables ya que varian de un lugar a otro y de un proyecto a otro, dependiendo de multiples factores tales como las condiciones geograficas y economicas de la region. Por otra parte se deben tomar en cuenta diversos elementos como son: ventanas, muros y sus orientaciones especificas, techos, pisos, particiones, equipos, iluminacion, etc., todo esto influye en la complejidad que representa el proceso de seleccion. En el presente trabajo se describe una herramienta informatica para facilitar el proceso de seleccion de instalaciones de aire acondicionado, tomando en cuenta multiples criterios de ahorro y uso eficiente de energia que se reflejan durante el proceso de operacion de estas instalaciones.

  15. SESSA: Expert system for the selection of air conditioning equipment; SESEAA: Sistema experto para la seleccion de equipos de aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Kemper Valverde, Nicolas; Cardenas Perez, Edgar [Laboratorio de Sistemas Inteligentes, Centro de Instrumentos de la Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D. F. (Mexico)

    1999-12-31

    The problem of selecting air conditioning and refrigeration equipment is quite wide and complex, since it encompasses from the application of the basic principles of physics and of thermodynamics up to the classic engineering design problems; these in turn can be numberless since they vary from place to place depending on multiple factors such as the region geographic and economic conditions. On the other hand, account most be taken of several elements such as windows, walls, and its specific geographical orientation, roofs, floors, partitions, equipment, lighting, etc., all this exerts influence in the complexity that represents the selection process. This paper describes a useful informatics tool to make it easy the selection process in air conditioning installations, taking into account multiple saving and efficient use of energy criteria, reflected in the operation process of these installations. [Espanol] El problema de seleccion de sistemas de aire acondicionado y de refrigeracion es bastante amplio y complejo, ya que abarca desde la aplicacion de los principios basicos de la fisica y la termodinamica hasta los problemas clasicos de diseno de ingenieria; estos a la vez pueden ser innumerables ya que varian de un lugar a otro y de un proyecto a otro, dependiendo de multiples factores tales como las condiciones geograficas y economicas de la region. Por otra parte se deben tomar en cuenta diversos elementos como son: ventanas, muros y sus orientaciones especificas, techos, pisos, particiones, equipos, iluminacion, etc., todo esto influye en la complejidad que representa el proceso de seleccion. En el presente trabajo se describe una herramienta informatica para facilitar el proceso de seleccion de instalaciones de aire acondicionado, tomando en cuenta multiples criterios de ahorro y uso eficiente de energia que se reflejan durante el proceso de operacion de estas instalaciones.

  16. Human requirements in future air-conditioned environments

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    1999-01-01

    Although air-conditioning has played a positive role for economic development in warm climates, its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from Sick Building Syndrome (SBS) symptoms...

  17. Human requirements in future air-conditioned environments

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2001-01-01

    Although air-conditioning has played a positive role for economic development in warm climates, its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from Sick Building Syndrome (SBS) symptoms...

  18. Potential Alternative Lower Global Warming Refrigerants for Air Conditioning in Hot Climates

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL; Shen, Bo [ORNL

    2017-01-01

    The earth continues to see record increase in temperatures and extreme weather conditions that is largely driven by anthropogenic emissions of warming gases such as carbon dioxide and other more potent greenhouse gases such as refrigerants. The cooperation of 188 countries in the Conference of the Parties in Paris 2015 (COP21) resulted in an agreement aimed to achieve a legally binding and universal agreement on climate, with the aim of keeping global warming below 2 C. A global phasedown of hydrofluorocarbons (HFCs) can prevent 0.5 C of warming by 2100. However, most of the countries in hot climates are considered as developing countries and as such are still using R-22 (a Hydrochlorofluorocarbon (HCFC)) as the baseline refrigerant and are currently undergoing a phase-out of R-22 which is controlled by current Montreal Protocol to R-410A and other HFC based refrigerants. These HFCs have significantly high Global Warming Potential (GWP) and might not perform as well as R-22 at high ambient temperature conditions. In this paper we present recent results on evaluating the performance of alternative lower GWP refrigerants for R-22 and R-410A for small residential mini-split air conditioners and large commercial packaged units. Results showed that several of the alternatives would provide adequate replacement for R-22 with minor system modification. For the R-410A system, results showed that some of the alternatives were almost drop-in ready with benefit in efficiency and/or capacity. One of the most promising alternatives for R-22 mini-split unit is propane (R-290) as it offers higher efficiency; however it requires compressor and some other minor system modification to maintain capacity and minimize flammability risk. Between the R-410A alternatives, R-32 appears to have a competitive advantage; however at the cost of higher compressor discharge temperature. With respect to the hydrofluoroolefin (HFO) blends, there existed a tradeoff in performance and system design

  19. United States Air Force Nurse Crops Captains' Perceived Leadership Effectiveness

    National Research Council Canada - National Science Library

    Randall, Marjorie

    1998-01-01

    ... effectiveness of nurses who lacked the additional training. Two hundred and seventy-nine United States Air Force Nurse Corps Captains with management experience completed Kouzes and Posner's Leadership Practice Inventory-Self (LPI...

  20. Does the air condition system in busses spread allergic fungi into driver space?

    Science.gov (United States)

    Sowiak, Małgorzata; Kozajda, Anna; Jeżak, Karolina; Szadkowska-Stańczyk, Irena

    2018-02-01

    The aim of this study was to establish whether the air-conditioning system in buses constitutes an additional source of indoor air contamination with fungi, and whether or not the fungi concentration depends on the period from the last disinfection of the system, combined with replacement of the cabin dust particle filter. The air samples to fungi analysis using impact method were taken in 30 buses (20 with an air-conditioning system, ACS; 10 with a ventilation system, VS) in two series: 1 and 22 weeks after cabin filter replacement and disinfection of the air-conditioning system. During one test in each bus were taken two samples: before the air-conditioning or ventilation system switched on and 6 min after operating of these systems. The atmospheric air was the external background (EB). After 1 week of use of the system, the fungi concentrations before starting of the ACS and VS system were 527.8 and 1053.0 cfu/m 3 , respectively, and after 22 weeks the concentrations were 351.9 and 1069.6 cfu/m 3 , respectively. While in the sample after 6 min of ACS and VS system operating, the fungi concentration after 1 week of use was 127.6 and 233.7 cfu/m 3 , respectively, and after 22 weeks it was 113.3 and 324.9 cfu/m 3 , respectively. Results do not provide strong evidence that air-conditioning system is an additional source of indoor air contamination with fungi. A longer operation of the system promoted increase of fungi concentration in air-conditioned buses only.

  1. Duct corrosion in the ventilating air conditioning system for Main Control Room

    International Nuclear Information System (INIS)

    Yamada, Kohei; Kobayashi, Takashi; Minami, Akiko; Fukuba, Kazushi

    2014-01-01

    Higashidori Nuclear Power Station, start-of-operation in December 2005, is a relatively new plant. We decided to get original data of air duct condition to determine maintenance policy of air duct, because planned maintenance of air duct has never been done and the corrosion of air duct has occurred in other plant. In January 2014, we found a corrosion-hole at the downstream of the inlet damper in the ventilating air conditioning system for Main Control Room (MCR). We supposed that the cause of rapid corrosion is related to the characteristic environment of this site. (author)

  2. Air conditioning device for pool facilities in nuclear power plant buildings

    International Nuclear Information System (INIS)

    Taruishi, Yoshiaki; Ishida, Seiji.

    1981-01-01

    Purpose: To improve the temperature and humidity conditions for the working circumstance, prevent condensations on the wall surface and enable the reduction in the irradiation exposure to workers. Constitution: Air intake ports are provided on the side wall of a fuel storage pool or an equipment installation pool above the water level and connected by way of their exhaust ducts to the exhaust ducts of an air ventilation system. While on the other hand, air feed ducts having horizontally opened blowing ports and air exhaust ducts having horizontally opened exhaust ports above and in adjacent to the air feed ducts are provided on the side walls of the pool buildings at the height near the floor level. With this structure, fresh outdoor airs blown out horizontally from the blowing ports provided near the floor level can improve the temperature and humidity conditions of the working circumstance for the workers working on the floor. Further, an air clean up device is provided to the feed and exhaust systems for clean up the feed and exhaust airs. (Furukawa, Y.)

  3. Indoor air purificaton using heterogeneous photocatalytic oxidation, Part 2: Kinetic study

    NARCIS (Netherlands)

    Yu, Q.; Ballari, M.; Brouwers, H.J.H.

    2010-01-01

    In part I to this article [1], the application of the heterogeneous photocatalytic oxidation (PCO) theory for the indoor air quality improvement was presented. With a modified TiO2 that can be activated by visible light as the photocatalyst coated on a special wall paper, and one typical indoor air

  4. TiO2-Impregnated Porous Silica Tube and Its Application for Compact Air- and Water-Purification Units

    Directory of Open Access Journals (Sweden)

    Tsuyoshi Ochiai

    2015-09-01

    Full Text Available A simple, convenient, reusable, and inexpensive air- and water-purification unit including a one-end sealed porous amorphous-silica (a-silica tube coated with TiO2 photocatalyst layers has been developed. The porous a-silica layers were formed through outside vapor deposition (OVD. TiO2 photocatalyst layers were formed through impregnation and calcination onto a-silica layers. The resulting porous TiO2-impregnated a-silica tubes were evaluated for air-purification capacity using an acetaldehyde gas decomposition test. The tube (8.5 mm e.d. × 150 mm demonstrated a 93% removal rate for high concentrations (ca. 300 ppm of acetaldehyde gas at a single-pass condition with a 250 mL/min flow rate under UV irradiation. The tube also demonstrated a water purification capacity at a rate 2.0 times higher than a-silica tube without TiO2 impregnation. Therefore, the tubes have a great potential for developing compact and in-line VOC removal and water-purification units.

  5. Human requirements in future air-conditioned environments

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2002-01-01

    Air-conditioning of buildings has played a very positive role for economic development in warm climates. Still its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from SBS symptoms, even...

  6. An air-conditioning, ventilation and automatic ventilation monitoring and recording system constructed in an unsealed radioisotope laboratory. Energy-saving measures in Nagasaki University Radioisotope Center

    International Nuclear Information System (INIS)

    Takatsuji, Toshihiro; Yoshida, Masahiro; Takao, Hideaki; Okumura, Yutaka; Ooura, Tosinobu; Kotoura, Kazuki; Yamanaka, Yasushi; Yanagita, Hiroyoshi.

    1998-01-01

    We constructed an automatic operation system of air-conditioners and ventilators in a radiation controlled area to minimize electric consumption. The system operates the air-conditioner and the ventilator of each ventilation unit when someone is staying in rooms belonging to the unit based on information from an access control system to the controlled area and lighting switches in front of individual room. For understanding of operation conditions and confirmation of radioactive concentration in air lower than the legal limit at the ventilation stack, we also constructed an automatic ventilation monitoring and recording system, which makes complete operation records of each ventilator automatically. These systems enabled to achieve sharp energy-saving compatible with radiation protection. (author)

  7. Design of Air Conditioning Automation for Patisserie Shopwindow

    OpenAIRE

    Kemal Tutuncu; Recai Ozcan

    2013-01-01

    Having done in this study, air-conditioning automation for patisserie shopwindow was designed. In the cooling sector it is quite important to cooling up the air temperature in the shopwindow within short time interval. Otherwise the patisseries inside of the shopwindow will be spoilt in a few days. Additionally the humidity is other important parameter for the patisseries kept in shopwindow. It must be raised up to desired level in a quite short time. Traditional patisser...

  8. Analysis and simulation of mobile air conditioning system coupled with engine cooling system

    International Nuclear Information System (INIS)

    Qi, Zhao-gang; Chen, Jiang-ping; Chen, Zhi-jiu

    2007-01-01

    Many components of the mobile air conditioning system and engine cooling system are closely interrelated and make up the vehicle climate control system. In the present paper, a vehicle climate control system model including air conditioning system and engine cooling system has been proposed under different operational conditions. All the components have been modeled on the basis of experimental data. Based on the commercial software, a computer simulation procedure of the vehicle climate control system has been developed. The performance of the vehicle climate control system is simulated, and the calculational data have good agreement with experimental data. Furthermore, the vehicle climate control simulation results have been compared with an individual air conditioning system and engine cooling system. The influences between the mobile air conditioning system and the engine cooling system are discussed

  9. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    OpenAIRE

    Agus Dwi Hariyanto

    2005-01-01

    This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen ...

  10. FY1999 Meeting of The Society of Heating, Air-Conditioning and Sanitary Engineering of Japan. Air conditioning systems for various facilities; 1999 nendo gakujutsu koenkai gaiyo. Kakushu shisetsu kucho system

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, K. [Takenaka Corp., Osaka (Japan)

    1999-12-05

    B-49 reported the outline of an artificial weather room composed of one inner room and two outer rooms, and its temperature change and temperature profiles during air conditioning. The room is scheduled to be used for evaluation of air conditioning systems, thermal performance evaluation of building materials and study on ventilation efficiency. B-50 reported the seasonal measurement results on thermal environment, and cooling and heating use patterns of living rooms and common spaces of 4 welfare homes for aged persons, and showed that room temperature difference in winter should be considered. Measurement data on facilities with floor heating were required. B-51 reported the experiment and numerical analysis results on thermal environment, draft sensation, condensation and radiation effect of patient bedrooms by using a full-scale 4-bed room model with a specific outlet developed for patient bedroom air conditioning. B-52 reported the outline of an air conditioning system for vegetable factories, and its performance evaluation result during cooling. The effect of blackout curtains and local air conditioning was reported. B-53 reported the comparison study result on air conditioning for animal breeding rooms by full-scale model experiment and numerical analysis. The line outlet + hanging wall + rack back exhaust system was most favorable from the viewpoint of temperature profile and prevention of pollutants from diffusion. (translated by NEDO)

  11. Analysis of Direct Outdoor Air Cooling Efficency for Combined Variable Air Volume Air-conditioning System in Stores in Cold Climates of China

    OpenAIRE

    Luo, Zhiwen

    2006-01-01

    Direct outdoor air cooling contributes a lot not only to the improvement of the indoor air quality but also to the energy saving. Its full use will reduce the water chiller’s running time especially in some stores where cooling load keeps much higher and longer than that in other buildings. A novel air-conditioning system named Combined Variable Air Volume system (CVAV), combining a normal AHU with a separate outdoor air supply system, was proposed firstly by the authors. The most attractive ...

  12. Determination of technical and economic parameters of an ionic transport membrane air separation unit working in a supercritical power plant

    Directory of Open Access Journals (Sweden)

    Kotowicz Janusz

    2016-09-01

    Full Text Available In this paper an air separation unit was analyzed. The unit consisted of: an ionic transport membrane contained in a four-end type module, an air compressor, an expander fed by gas that remains after oxygen separation and heat exchangers which heat the air and recirculated flue gas to the membrane operating temperature (850 °C. The air separation unit works in a power plant with electrical power equal to 600 MW. This power plant additionally consists of: an oxy-type pulverized-fuel boiler, a steam turbine unit and a carbon dioxide capture unit. Life steam parameters are 30 MPa/650 °C and reheated steam parameters are 6 MPa/670 °C. The listed units were analyzed. For constant electrical power of the power plant technical parameters of the air separation unit for two oxygen recovery rate (65% and 95% were determined. One of such parameters is ionic membrane surface area. In this paper the formulated equation is presented. The remaining technical parameters of the air separation unit are, among others: heat exchange surface area, power of the air compressor, power of the expander and auxiliary power. Using the listed quantities, the economic parameters, such as costs of air separation unit and of individual components were determined. These quantities allowed to determine investment costs of construction of the air separation unit. In addition, they were compared with investment costs for the entire oxy-type power plant.

  13. Energy impact of indoor environmental policy for air-conditioned offices of Hong Kong

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.; Shi, K.L.

    2008-01-01

    Air-conditioned office buildings are one of the biggest energy consumers of electricity in developed cities in the subtropical climate regions. A good energy policy for the indoor environment should respond to both the needs of energy conservation and the needs for a desirable indoor healthy environment with a reduction in carbon dioxide (CO 2 ) generation. This study evaluates energy implications and the corresponding CO 2 generation of some indoor environmental policies for air-conditioned office buildings in the subtropical climate. In particular, the thermal energy consumption in an air-conditioned office building was evaluated by the heat gains through the building fabric, the transport of outdoor fresh air for ventilation, and the heat generated by the occupant and equipment in the space. With the Monte-Carlo sampling technique and the parameters from the existing office building stocks of Hong Kong, the energy consumption profiles of air-conditioned office buildings in Hong Kong were evaluated. Energy consumption profiles were simulated for certain indoor environmental quality (IEQ) policies on indoor air temperature and CO 2 concentration settings in the offices, with other building parameters remaining unchanged. The impact assessment and the regression models described in this study may be useful for evaluation of energy performances of IEQ policies. They will also be useful for the promotion of energy-saving measures in air-conditioned office buildings in Hong Kong. This study presented a useful source of references for policymakers, building professionals and end users to quantify the energy and environmental impacts due to an IEQ policy for air-conditioned office buildings

  14. Load Distribution of Semi-Central Evaporative Cooling Air-Conditioning System Based on the TRNSYS Platform

    Directory of Open Access Journals (Sweden)

    Ji Li

    2018-05-01

    Full Text Available Evaporative cooling is a green, energy-efficient cooling technology adopted in hot and dry regions, which has wider application in the field of air-conditioning systems. Outdoor meteorological parameters have a great influence on the operation mode and control strategy of evaporative cooling air-conditioning systems, and the system load distribution and system configuration will be affected. This paper aims at investigating the load distribution of semi-central evaporative cooling air-conditioning systems under the condition of hourly outdoor meteorological parameters. Firstly, this paper introduced the design partition, operation mode, controlling strategy and load distribution method on semi-central evaporative cooling air-conditioning system. Then, taking an office building in Lanzhou (China as an example, the evaporative cooling air-conditioning system was divided into five regions and the load distribution was simulated by TRNSYS (The Transient Energy System Simulation Tool under the condition of hourly outdoor meteorological parameters. Finally, the results have shown that the evaporative cooling air-conditioning system can provide 25.46% of the building loads, which was of great significance to reduce the energy consumption of air-conditioning system.

  15. Air quality monitoring at Seoul, Korea as a part of East-Asian air surveillance network

    International Nuclear Information System (INIS)

    Hashimoto, Y.; Sekine, Y.; Kim, H.K.; Otoshi, T.

    1989-01-01

    Global scale air pollution study is a recent trend due to a perception that air pollution is changing climate and other essential earth's conditions that could seriously affect our lives. One of the important tasks which can contribute to protect our natural environment must be to know about the present and changing air quality. For this purpose, a regional air monitoring plan was designed by a research group and has proceeded to set up stations in the eastern Asia including Japan, Korea and China to get continuous data which can contribute to world wide data base of air quality. This project was initiated at Seoul, Korea in April, 1986 by the method of National Air Surveillance Network, Japan. Airborne particles were collected by so-called Hi-vol and Lo-vol, and their components were analyzed by neutron activation analysis and others. The results of Seoul sampling as a first step of this network plan are presented

  16. Detection of oral streptococci in dental unit water lines after therapy with air turbine handpiece: biological fluid retraction more frequent than expected.

    Science.gov (United States)

    Petti, Stefano; Moroni, Catia; Messano, Giuseppe Alessio; Polimeni, Antonella

    2013-03-01

    Oral streptococci detected in water from dental unit water lines (DUWLs) are a surrogate marker of patients' biological fluid retraction during therapy. We investigated oral streptococci detection rate in DUWLs in a representative sample of private offices in real-life conditions. Samples of nondisinfected water (100 ml) were collected from the DUWL designated for the air turbine handpiece in 81 dental units, immediately after dental treatment of patients with extensive air turbine handpiece use. Water was filtered and plated on a selective medium for oral streptococci and, morphologically, typical colonies of oral streptococci were counted. The lowest detection limit was 0.01 CFU/ml. The oral streptococci detection rate was 72% (95% CI: 62-81%), with a mean level of 0.7 CFU/ml. Oral streptococci detection was not affected by handpiece age or dental treatment type, but was associated with dental unit age. Biological fluid retraction into DUWLs during patient treatment and, possibly, the risk for patient-to-patient blood- or air-borne pathogen transmission are more frequent than expected.

  17. Carcinogenic Air Toxics Exposure and Their Cancer-Related Health Impacts in the United States.

    Science.gov (United States)

    Zhou, Ying; Li, Chaoyang; Huijbregts, Mark A J; Mumtaz, M Moiz

    2015-01-01

    Public health protection from air pollution can be achieved more effectively by shifting from a single-pollutant approach to a multi-pollutant approach. To develop such multi-pollutant approaches, identifying which air pollutants are present most frequently is essential. This study aims to determine the frequently found carcinogenic air toxics or hazardous air pollutants (HAPs) combinations across the United States as well as to analyze the health impacts of developing cancer due to exposure to these HAPs. To identify the most commonly found carcinogenic air toxics combinations, we first identified HAPs with cancer risk greater than one in a million in more than 5% of the census tracts across the United States, based on the National-Scale Air Toxics Assessment (NATA) by the U.S. EPA for year 2005. We then calculated the frequencies of their two-component (binary), and three-component (ternary) combinations. To quantify the cancer-related health impacts, we focused on the 10 most frequently found HAPs with national average cancer risk greater than one in a million. Their cancer-related health impacts were calculated by converting lifetime cancer risk reported in NATA 2005 to years of healthy life lost or Disability-Adjusted Life Years (DALYs). We found that the most frequently found air toxics with cancer risk greater than one in a million are formaldehyde, carbon tetrachloride, acetaldehyde, and benzene. The most frequently occurring binary pairs and ternary mixtures are the various combinations of these four air toxics. Analysis of urban and rural HAPs did not reveal significant differences in the top combinations of these chemicals. The cumulative annual cancer-related health impacts of inhaling the top 10 carcinogenic air toxics included was about 1,600 DALYs in the United States or 0.6 DALYs per 100,000 people. Formaldehyde and benzene together contribute nearly 60 percent of the total cancer-related health impacts. Our study shows that although there are many

  18. Carcinogenic Air Toxics Exposure and Their Cancer-Related Health Impacts in the United States.

    Directory of Open Access Journals (Sweden)

    Ying Zhou

    Full Text Available Public health protection from air pollution can be achieved more effectively by shifting from a single-pollutant approach to a multi-pollutant approach. To develop such multi-pollutant approaches, identifying which air pollutants are present most frequently is essential. This study aims to determine the frequently found carcinogenic air toxics or hazardous air pollutants (HAPs combinations across the United States as well as to analyze the health impacts of developing cancer due to exposure to these HAPs. To identify the most commonly found carcinogenic air toxics combinations, we first identified HAPs with cancer risk greater than one in a million in more than 5% of the census tracts across the United States, based on the National-Scale Air Toxics Assessment (NATA by the U.S. EPA for year 2005. We then calculated the frequencies of their two-component (binary, and three-component (ternary combinations. To quantify the cancer-related health impacts, we focused on the 10 most frequently found HAPs with national average cancer risk greater than one in a million. Their cancer-related health impacts were calculated by converting lifetime cancer risk reported in NATA 2005 to years of healthy life lost or Disability-Adjusted Life Years (DALYs. We found that the most frequently found air toxics with cancer risk greater than one in a million are formaldehyde, carbon tetrachloride, acetaldehyde, and benzene. The most frequently occurring binary pairs and ternary mixtures are the various combinations of these four air toxics. Analysis of urban and rural HAPs did not reveal significant differences in the top combinations of these chemicals. The cumulative annual cancer-related health impacts of inhaling the top 10 carcinogenic air toxics included was about 1,600 DALYs in the United States or 0.6 DALYs per 100,000 people. Formaldehyde and benzene together contribute nearly 60 percent of the total cancer-related health impacts. Our study shows that although

  19. Air conditioning system

    Science.gov (United States)

    Lowenstein, Andrew; Miller, Jeffrey; Gruendeman, Peter; DaSilva, Michael

    2005-02-01

    An air conditioner comprises a plurality of plates arranged in a successively stacked configuration with portions thereof having a spaced apart arrangement, and defining between successive adjacent pairs of plates at the spaced apart portions a first and second series of discrete alternating passages wherein a first air stream is passed through the first series of passages and a second air stream is passed through the second series of passages; and said stacked configuration of plates forming integrally therewith a liquid delivery means for delivering from a source a sufficient quantity of a liquid to the inside surfaces of the first series of fluid passages in a manner which provides a continuous flow of the liquid from a first end to a second end of the plurality of plates while in contact with the first air stream.

  20. Environmental impact of the programs of substitution of room type air conditioning equipment; Impacto ambiental de los programas de sustitucion de equipos de aire tipo cuarto

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon Aleman, Jose Mauricio [OLADE, Quito (Ecuador)

    2002-09-01

    The present article approaches in a general way the relation that exists between the environment and the saving of electrical energy, especially in the Programs of Demand Side Management (DSM). In particular form the potential environmental impacts are described, derived of the use and the discard of the room type air conditioning equipment, goes deep into the characteristics of their cooling fluids, as well as in the relation that these keep with the protocols of Montreal and Kyoto. Finally, this article comments the incidence which have, the manufacturers as the institutions that implement DSM programs, on the environmental part of the programs of substitution of room type air conditioning equipment. In addition it is briefly described, the pilot program developed by Fideicomiso para el Ahorro de Energia Electrica (FIDE) as a successful case. [Spanish] En forma general, el presente articulo aborda la relacion que existe entre el medio ambiente y el ahorro de energia electrica, especialmente en los Programas de Administracion por el Lado de la Demanda (ALD). En forma particular se describen los impactos ambientales potenciales, derivados del uso y desecho de los equipos de aire acondicionado tipo cuarto, se ahonda en las caracteristicas de sus refrigerantes, asi como en la relacion que estos guardan con los protocolos de Montreal y Kioto. Finalmente, se comenta la incidencia que tienen, tanto los fabricantes como las instituciones que implementan programas de ALD, sobre la parte ambiental de los programas de sustitucion de equipos de aire acondicionado tipo cuarto. Ademas se describe brevemente, el programa piloto desarrollado por el Fideicomiso para el Ahorro de Energia Electrica (FIDE) como un caso exitoso.

  1. Cleaning and air conditioning device for atmosphere in thermonuclear reactor chamber

    International Nuclear Information System (INIS)

    Ishida, Seiji.

    1993-01-01

    The device of the present invention removes tritium efficiently and attains ventilation and conditioning of a great amount of air flow. That is, there are disposed a humidity separator, a filter, a heater, a catalyst filled layer, a water jetting type humidifying heat insulation cooler and a cooler in this order from an inlet side (upstream) of contaminated room atmospheric gases. The catalyst filled layer, etc. are incorporated integrally into the ventilation air conditioning facility for ventilating air in the chamber of the thermonuclear reactor, to clean a tritium atmosphere at the same time. Accordingly, the device is made compact as a whole. A limit for the air flow rate owing to the use of the conventional catalyst tower and adsorbing tower is eliminated. Then a ventilating air conditioning for a great flow rate can be attained. Tritium is removed by cooling and dehumidification without using any adsorbent. Accordingly, an adsorbing tower is no more necessary and conventional regeneration operation is not required. As a result, space for installation is reduced, the system is simplified and the cost for construction and facility can be reduced. (I.S.)

  2. HEAT ENGINEERING TESTING OF AIR COOLING UNIT OF HORIZONTAL TYPE

    OpenAIRE

    Rohachov, Valerii Andriiovych; Semeniako, Oleksandr Volodymyrovych; Лазоренко, Р. О.; Середа, Р. М.; Parafeinyk, Volodymyr Petrovych

    2018-01-01

    The results of the thermal tests of the section of air cooler, the heat-exchange surface of which is made up of chess package of bimetal finned tubes are presented. The methods of research are presented, the experimental stand is described, the measurement errors are given. The efficiency of the experimental stand and the accuracy of the experimental data on it are confirmed. Proposed to use the stand for researches of air cooling units with other types and sections of finned tubes.

  3. A rule-based fault detection method for air handling units

    Energy Technology Data Exchange (ETDEWEB)

    Schein, J.; Bushby, S. T.; Castro, N. S. [National Institute of Standards and Technology, Gaithersburg, MD (United States); House, J. M. [Iowa Energy Center, Ankeny, IA (United States)

    2006-07-01

    Air handling unit performance assessment rules (APAR) is a fault detection tool that uses a set of expert rules derived from mass and energy balances to detect faults in air handling units (AHUs). Control signals are used to determine the mode of operation of the AHU. A subset of the expert rules which correspond to that mode of operation are then evaluated to determine whether a fault exists. APAR is computationally simple enough that it can be embedded in commercial building automation and control systems and relies only upon the sensor data and control signals that are commonly available in these systems. APAR was tested using data sets collected from a 'hardware-in-the-loop' emulator and from several field sites. APAR was also embedded in commercial AHU controllers and tested in the emulator. (author)

  4. Thermal comfort in air-conditioned mosques in the dry desert climate

    Energy Technology Data Exchange (ETDEWEB)

    Al-ajmi, Farraj F. [Department of Civil Engineering, College of Technological Studies, Shuwaikh 70654 (Kuwait)

    2010-11-15

    In Kuwait, as in most countries with a typical dry desert climate, the summer season is long with a mean daily maximum temperature of 45 C. Centralized air-conditioning, which is generally deployed from the beginning of April to the end of October, can have tremendous impact on the amount of electrical energy utilized to mechanically control the internal environment in mosque buildings. The indoor air temperature settings for all types of air-conditioned buildings and mosque buildings in particular, are often calculated based on the analytical model of ASHRAE 55-2004 and ISO 7730. However, a field study was conducted in six air-conditioned mosque buildings during the summers of 2007 to investigate indoor climate and prayers thermal comfort in state of Kuwait. The paper presents statistical data about the indoor environmental conditions in Kuwait mosque buildings, together with an analysis of prayer thermal comfort sensations for a total of 140 subjects providing 140 sets of physical measurements and subjective questionnaires were used to collect data. Results show that the neutral temperature (T{sub n}) of the prayers is found to be 26.1 C, while that for PMV is 23.3 C. Discrepancy of these values is in fact about 2.8 C higher than those predicted by PMV model. Therefore, thermal comfort temperature in Kuwait cannot directly correlate with ISO 7730 and ASHRAE 55-2004 standards. Findings from this study should be considered when designing air conditioning for mosque buildings. This knowledge can contribute towards the development of future energy-related design codes for Kuwait. (author)

  5. Transfair. An air method of floor heating and cooling; Transfair. Procede de chauffage et de rafraichissement par le sol a air

    Energy Technology Data Exchange (ETDEWEB)

    Desvouas, C [Tarnsfair TTR, 77 - Perthes en Gatinais (France)

    1998-12-31

    This paper presents the `Transfair` method which consists in the use of air instead of water in heating and cooling systems. This presentation comprises 4 parts. Part 1 is a general presentation of the activities of the French TTR company which has developed the Transfair method and its realizations in industrial space heating and in chemical industry (refrigeration units for sulfuric acid). Part 2 is a comparative evaluation of equivalent water and air systems in order to emphasize the advantages of air cooling systems (simplicity and reliability). Part 3 is a presentation of a software for the optimization of the dimensioning of components and investment costs of industrial air space heating systems. Part 4 is a presentation of the feasibility study of a floor cooled by air circulation and with a self-balancing of circuits confirmed by flow rate measurements. (J.S.)

  6. Transfair. An air method of floor heating and cooling; Transfair. Procede de chauffage et de rafraichissement par le sol a air

    Energy Technology Data Exchange (ETDEWEB)

    Desvouas, C. [Tarnsfair TTR, 77 - Perthes en Gatinais (France)

    1997-12-31

    This paper presents the `Transfair` method which consists in the use of air instead of water in heating and cooling systems. This presentation comprises 4 parts. Part 1 is a general presentation of the activities of the French TTR company which has developed the Transfair method and its realizations in industrial space heating and in chemical industry (refrigeration units for sulfuric acid). Part 2 is a comparative evaluation of equivalent water and air systems in order to emphasize the advantages of air cooling systems (simplicity and reliability). Part 3 is a presentation of a software for the optimization of the dimensioning of components and investment costs of industrial air space heating systems. Part 4 is a presentation of the feasibility study of a floor cooled by air circulation and with a self-balancing of circuits confirmed by flow rate measurements. (J.S.)

  7. Costic's technical day: thermodynamical heating and air conditioning in accommodations (heat pumps and heating/cooling floors). Air systems and their application in collective installations; Journee technique Costic: chauffage thermodynamique et climatisation dans l'habitat (les pompes a chaleur, les planchers chauffants-rafraichissants). Les systemes a air les applications en collectif

    Energy Technology Data Exchange (ETDEWEB)

    Lenotte, J.J.

    2002-07-01

    Direct expansion air systems are now currently used in individual residential houses. Some of these systems are used also in collective residential buildings where they allow to take into account the individualization of consumptions, as wished by some property developers. Some other centralized air-conditioning systems can be used. They require a distribution water loop for the supply of terminal units of ventilation-convection type. This document presents successively: the direct expansion air systems (direct emission air/air heat pumps, aeraulic distribution air/air heat pumps, production dimensioning, implementation, regulation, systems with variable flow rate of refrigerant); the centralized air/water systems with ventilation-convection systems (production dimensioning, implementation, regulation); the air distribution and diffusion. (J.S.)

  8. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    Air-conditioning is not only a matter of temperature control. Thermal comfort and good indoor air quality are mainly a matter of humidity. Human health and well being may suffer seriously from inadequate humidity and/or too low temperatures in a room. A case study involving supermarket air......%. For indoor air temperature and humidity control, the use of an ice slurry (´Binary Ice´)was compared to conventional chilled water. The use of Binary Ice instead of chilled water makes the air handling and air distribution installation much simpler, recirculation of air becomes obsolete, and a higher portion...... of ambient air can be supplied, thus improving the indoor air quality still further. Reheating of air is not necessary when using Binary Ice. The introduction of chilled air into a room requires a different type of air outlet, however. When using Binary Ice, energy savings are high for climates with low...

  9. Sensory evaluation of heating and air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Evin, F.; Siekierski, E. [Electricite de France, Research and Development Division, Les Renardieres, Moret Sur Loing (France)

    2002-07-01

    Existing standards and models, such as ISO 7730 or the work of Fanger [Thermal Comfort], are not sufficient to characterise the satisfaction and pleasantness of end-users provided by heating or air conditioning systems. For this reason Electricite de France (EDF) has initiated a project with the aim of using sensory evaluation techniques in the design of HVAC systems. Sensory evaluation has been used for more than 30 years in the food industry, and now involves the cosmetics, the phone and the automotive industries. It is based on a dual evaluation: sensation measurements carried out by a small panel of trained expert assessors; preference studies performed by a large panel of representative consumers. A correlation between the data of both studies is then used to explain the preferences in terms of sensations (preference mapping). The first experiments performed in 1999 and 2000 have provided lists of descriptors of thermal sensation and acoustic sensation associated with heating and air conditioning appliances. They show that it is possible to define discriminative descriptors, to train a panel and to reliably quantify these descriptors. It is then possible to draw the sensory profiles of different heating, ventilation and air conditioning (HVAC) systems. The future experimental laboratory that EDF has decided to build is also presented, where the trained panels and end-users will evaluate the sensations and the preferences of real systems in eight 'realistic environmental chambers' designed, furnished and decorated like offices and flats. (author)

  10. 77 FR 38857 - Design, Inspection, and Testing Criteria for Air Filtration and Adsorption Units of Normal...

    Science.gov (United States)

    2012-06-29

    ... Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water- Cooled Nuclear Power... Criteria for Air Filtration and Adsorption Units of Normal Atmosphere Cleanup Systems in Light-Water-Cooled... draft regulatory guide (DG), DG-1280, ``Design, Inspection, and Testing Criteria for Air Filtration and...

  11. MODELS OF AIR TRAFFIC CONTROLLERS ERRORS PREVENTION IN TERMINAL CONTROL AREAS UNDER UNCERTAINTY CONDITIONS

    Directory of Open Access Journals (Sweden)

    Volodymyr Kharchenko

    2017-03-01

    Full Text Available Purpose: the aim of this study is to research applied models of air traffic controllers’ errors prevention in terminal control areas (TMA under uncertainty conditions. In this work the theoretical framework descripting safety events and errors of air traffic controllers connected with the operations in TMA is proposed. Methods: optimisation of terminal control area formal description based on the Threat and Error management model and the TMA network model of air traffic flows. Results: the human factors variables associated with safety events in work of air traffic controllers under uncertainty conditions were obtained. The Threat and Error management model application principles to air traffic controller operations and the TMA network model of air traffic flows were proposed. Discussion: Information processing context for preventing air traffic controller errors, examples of threats in work of air traffic controllers, which are relevant for TMA operations under uncertainty conditions.

  12. Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study

    Directory of Open Access Journals (Sweden)

    Chi-Chun Lo

    2016-02-01

    Full Text Available This paper presents an optimal dispatch model of an ice storage air-conditioning system for participants to quickly and accurately perform energy saving and demand response, and to avoid the over contact with electricity price peak. The schedule planning for an ice storage air-conditioning system of demand response is mainly to transfer energy consumption from the peak load to the partial-peak or off-peak load. Least Squares Regression (LSR is used to obtain the polynomial function for the cooling capacity and the cost of power consumption with a real ice storage air-conditioning system. Based on the dynamic electricity pricing, the requirements of cooling loads, and all technical constraints, the dispatch model of the ice-storage air-conditioning system is formulated to minimize the operation cost. The Improved Ripple Bee Swarm Optimization (IRBSO algorithm is proposed to solve the dispatch model of the ice storage air-conditioning system in a daily schedule on summer. Simulation results indicate that reasonable solutions provide a practical and flexible framework allowing the demand response of ice storage air-conditioning systems to demonstrate the optimization of its energy savings and operational efficiency and offering greater energy efficiency.

  13. Experimental study on airflow fluctuation characteristic of an underfloor air supply terminal unit

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jinping [School of Electric Power, South China University of Technology, Guangzhou 510640 (China); State Key Laboratory of Subtropical Building Science, South China University of Technology, Guangzhou 510640 (China); Wu, Yanfang [Design Institute of Guangzhou Metro Corporation, Guangzhou 510010 (China)

    2010-11-15

    In order to investigate dynamic characteristic of underfloor air supply terminal unit, an IFV900A hot-wire anemometer was used to measure the corresponding velocity field. Turbulence intensity and power spectrum density exponent of air velocity signal were analyzed. The result showed that the outlet velocity distribution of underfloor air supply terminal unit was uniform. With increment of height, the velocity distribution trends to be uniform. Two velocity attenuation regions appear during airflow development. Turbulence intensity changes obviously with height. It is lower than that of mechanical wind. Turbulence intensity goes up with the increment of jetting distance. Power spectrum density exponent trends to the value of natural wind with increase of jetting distance and decrease of wind velocity. The exponent value approaches to the value of typical natural wind for the air velocity is 0.5 m/s under high supply air rate. With airflow diffusion, the fluctuation characteristic of airflow varies obviously with the jetting direction. The fluctuation characteristic of airflow changes to that of natural wind with the increase of height which can improve comfort of indoor environment. (author)

  14. Air condensation plants

    International Nuclear Information System (INIS)

    Kelp, F.; Pohl, H.H.

    1978-01-01

    In this plant the steam is distributed by a ventilator from the bottom to symmetrically fixed, inclined cooling elements with tubes. The upper part of the current side of the cooling elements as well as the bottom part of the outflow side can be covered by cover plates via a control circuit. This way, part of the air amount is deviated and in case of unfavourable atmospheric conditions (cold) the air is heated. This heating is enough to prevent freezing of the condensate on the cooling tubes. (DG) [de

  15. A Case Study On Human Capital Mismanagement In The United States Air Force

    Science.gov (United States)

    2016-05-08

    AIR COMMAND AND STAFF COLLEGE AIR UNIVERSITY A Case Study on Human Capital Mismanagement in the United States Air Force By John P...Force does not effectively manage its human capital to develop and retain a technically literate acquisitions workforce. A detailed look at the...Several solutions are suggested to improve the human capital management and increase the quality and relevancy of the acquisitions community at

  16. Effect of Intake Air Filter Condition on Vehicle Fuel Economy

    Energy Technology Data Exchange (ETDEWEB)

    Norman, Kevin M [ORNL; Huff, Shean P [ORNL; West, Brian H [ORNL

    2009-02-01

    The U.S. Department of Energy (DOE) Office of Energy Efficiency and Renewable Energy and the U.S. Environmental Protection Agency (EPA) jointly maintain a fuel economy website (www.fueleconomy.gov), which helps fulfill their responsibility under the Energy Policy Act of 1992 to provide accurate fuel economy information [in miles per gallon (mpg)] to consumers. The site provides information on EPA fuel economy ratings for passenger cars and light trucks from 1985 to the present and other relevant information related to energy use such as alternative fuels and driving and vehicle maintenance tips. In recent years, fluctuations in the price of crude oil and corresponding fluctuations in the price of gasoline and diesel fuels have renewed interest in vehicle fuel economy in the United States. (User sessions on the fuel economy website exceeded 20 million in 2008 compared to less than 5 million in 2004 and less than 1 million in 2001.) As a result of this renewed interest and the age of some of the references cited in the tips section of the website, DOE authorized the Oak Ridge National Laboratory (ORNL) Fuels, Engines, and Emissions Research Center (FEERC) to initiate studies to validate and improve these tips. This report documents a study aimed specifically at the effect of engine air filter condition on fuel economy. The goal of this study was to explore the effects of a clogged air filter on the fuel economy of vehicles operating over prescribed test cycles. Three newer vehicles (a 2007 Buick Lucerne, a 2006 Dodge Charger, and a 2003 Toyota Camry) and an older carbureted vehicle were tested. Results show that clogging the air filter has no significant effect on the fuel economy of the newer vehicles (all fuel injected with closed-loop control and one equipped with MDS). The engine control systems were able to maintain the desired AFR regardless of intake restrictions, and therefore fuel consumption was not increased. The carbureted engine did show a decrease in

  17. High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air Quality.

    Science.gov (United States)

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Henderson, Barron H; Carlton, Annmarie G

    2016-08-02

    On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world.

  18. Deaths Due to Accidental Air Conditioner Compressor Explosion: A Case Series.

    Science.gov (United States)

    Behera, Chittaranjan; Bodwal, Jatin; Sikary, Asit K; Chauhan, Mohit Singh; Bijarnia, Manjul

    2017-01-01

    In an air-conditioning system, the compressor is a large electric pump that pressurizes the refrigerant gas as part of the process of turning it back into a liquid. The explosion of an air conditioner (AC) compressor is an uncommon event, and immediate death resulted from the blast effect is not reported in forensic literature. We report three such cases in which young AC mechanics were killed on the spot due to compressor blast, while repairing the domestic split AC unit. The autopsy findings, the circumstances leading to the explosion of the compressor, are discussed in this study. © 2016 American Academy of Forensic Sciences.

  19. Air-side performance of a micro-channel heat exchanger in wet surface conditions

    Directory of Open Access Journals (Sweden)

    Srisomba Raviwat

    2017-01-01

    Full Text Available The effects of operating conditions on the air-side heat transfer, and pressure drop of a micro-channel heat exchanger under wet surface conditions were studied experimentally. The test section was an aluminum micro-channel heat exchanger, consisting of a multi-louvered fin and multi-port mini-channels. Experiments were conducted to study the effects of inlet relative humidity, air frontal velocity, air inlet temperature, and refrigerant temperature on air-side performance. The experimental data were analyzed using the mean enthalpy difference method. The test run was performed at relative air humidities ranging between 45% and 80%; air inlet temperature ranges of 27, 30, and 33°C; refrigerant-saturated temperatures ranging from 18 to 22°C; and Reynolds numbers between 128 and 166. The results show that the inlet relative humidity, air inlet temperature, and the refrigerant temperature had significant effects on heat transfer performance and air-side pressure drop. The heat transfer coefficient and pressure drop for the micro-channel heat exchanger under wet surface conditions are proposed in terms of the Colburn j factor and Fanning f factor.

  20. Perception of cabin air quality in airline crew related to air humidification, on intercontinental flights.

    Science.gov (United States)

    Lindgren, T; Norbäck, D; Wieslander, G

    2007-06-01

    The influence of air humidification in aircraft, on perception of cabin air quality among airline crew (N = 71) was investigated. In-flight investigations were performed in the forward part and in the aft part on eight intercontinental flights with one Boeing 767 individually, equipped with an evaporation humidifier combined with a dehumidifying unit, to reduce accumulation of condensed water in the wall construction. Four flights had the air humidification active when going out, and turned off on the return flight. The four others had the inverse humidification sequence. The sequences were randomized, and double blind. Air humidification increased relative air humidity (RH) by 10% in forward part, and by 3% in aft part of the cabin and in the cockpit. When the humidification device was active, the cabin air was perceived as being less dry (P = 0.008), and fresher (P = 0.002). The mean concentration of viable bacteria (77-108 cfu/m(3)), viable molds (74-84 cfu/m(3)), and respirable particles (1-8 microg/m3) was low, both during humidified and non-humidified flights. On flights with air humidification, there were less particles in the forward part of the aircraft (P = 0.01). In conclusion, RH can be slightly increased by using ceramic evaporation humidifier, without any measurable increase of microorganisms in cabin air. The cabin air quality was perceived as being better with air humidification. PRACTICAL IMPLICATION: Relative air humidity is low (10-20%) during intercontinental flights, and can be increased by using ceramic evaporation humidifier, without any measurable increase of microorganism in cabin air. Air humidification could increase the sensation of better cabin air quality.

  1. Numerical Analysis of Exergy for Air-Conditioning Influenced by Ambient Temperature

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-07-01

    Full Text Available The article presents numerical analysis of exergy for air-conditioning influenced by ambient temperature. The model of numerical simulation uses an integrated air conditioning system exposed in varied ambient temperature to observe change of the four main devices, the compressor, the condenser, the capillary, and the evaporator in correspondence to ambient temperature. The analysis devices of the four devices’s exergy influenced by the varied ambient temperature and found that the capillary has unusual increasing exergy loss vs. increasing ambient temperature in comparison to the other devices. The result shows that reducing exergy loss of the capillary influenced by the ambient temperature is the key for improving working efficiency of an air-conditioning system when influence of the ambient temperature is considered. The higher ambient temperature causes the larger pressure drop of capillary and more exergy loss.

  2. Feasibility for the medium efficiency filter as a postfilter in the air cleaning unit

    International Nuclear Information System (INIS)

    Lim, H. S.; Jung, D. Y.; Byun, S. C.; Kim, S. H.

    2002-01-01

    The Air Cleaning Unit (ACU) is provided in a nuclear facility to filter the radioactive materials in gaseous effluents released from the facility during normal operation and during a postulated accident. The Air Cleaning Unit (ACU) consists of pre-HEPA filters, charcoal adsorber, post HEPA filters, fans, etc. The charcoal filters keep on-site dose and off-site effluents ALARA, consistent with regulatory requirements. The function of HEPA filter downstream of charcoal(carbon) adsorber in ACU is to catch potential radioactive carbon dust and to be a backup in the event of failure of upstream HEPA. Previous Regulatory Guide use only post HEPA filter of charcoal adsorber downstream but the Regulatory Guide of current revisions allows use of 95% dust spot efficiency filters in lieu of HEPA at the downstream of the carbon adsorber. In this paper is described that the background information of filters, Current Regulatory Guide of revised by the United States Nuclear Regulatory Commission and the feasibility for the medium efficiency filter as a carbon adsorber post filter in the Air Cleaning Unit

  3. [Fungus microbiota in air conditioners in intensive care units in Teresina, Piauí].

    Science.gov (United States)

    Mobin, Mitra; do Amparo Salmito, Maria

    2006-01-01

    With the aim of identifying the fungus microbiota in air conditioners in intensive care units (ICUs) within public and private hospitals in Teresina, Piauí, solid material was collected from ten different ICUs. Thirty-three species of Moniliaceae and Dematiaceae were isolated, which was the first report of these in Piauí. High frequencies of Aspergillus niger Van Tieghem (60%), Aspergillus fumigatus Fres (50%), Trichoderma koningii Oudem (50%) and Aspergillus flavus Link: Fr. (40%) were recorded. The air conditioner cleanliness validity had expired in all the ICUs, and the quantity of colony-forming units exceeded the levels permitted by Law 176/00 from the Ministry of Health. It is important to provide individual protection equipment for professionals, adopt hospital infection control measures, raise the awareness of the presence of fungus infection, improve air circulation around the environment, periodically clean the air conditioners, and make health professionals alert to the importance of these fungi in the hospital environment.

  4. An evaluation tool kit of air quality micro-sensing units

    Czech Academy of Sciences Publication Activity Database

    Fishbain, B.; Lerner, U.; Castell-Balaguer, N.; Cole-Hunter, T.; Popoola, O.; Broday, D. M.; Martinez Iniguez, T.; Nieuwenhuijsen, M.; Jovasevic-Stojanovic, M.; Topalovic, D.; Roderic, L.J.; Gaela, K.; Etzion, Y.; Kizel, F.; Golumbic, Y.N.; Baram-Tsabari, A.; Yacobi, T.; Drahler, D.; Robinson, J.A.; Kocman, D.; Horvát, M.; Švecová, Vlasta; Arpaci, A.; Bartoňová, A.

    2017-01-01

    Roč. 575, jan (2017), s. 639-648 ISSN 0048-9697 Institutional support: RVO:68378041 Keywords : air quality * environmental monitoring * micro sensing units Subject RIV: DN - Health Impact of the Environment Quality OBOR OECD: Public and environmental health Impact factor: 4.900, year: 2016

  5. Prediction of thermal sensation in non-air-conditioned buildings in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  6. Air and Weather Seychelles Integrated Science. [Teacher and Pupil Booklets]. Unit 2.

    Science.gov (United States)

    Brophy, M.; Fryars, M.

    Seychelles Integrated Science (SIS), a 3-year laboratory-based science program for students (ages 11-15) in upper primary grades 7, 8, and 9, was developed from an extensive evaluation and modification of previous P7-P9 materials. This P7 SIS unit focuses on: (1) the importance of air and air pressure in students' everyday lives; (2) oxidation…

  7. Effects and control of long-range transboundary air pollution. Report prepared within the framework of the Convention on Long-range Transboundary Air Pollution

    International Nuclear Information System (INIS)

    1995-01-01

    This eleventh volume of the series of Air Pollution Studies, published under the auspices of the Executive Body for the Convention on Long-range Transboundary Air Pollution, contains the documents reviewed and approved for publication at the twelfth session of the Executive Body held at Geneva from 28 November to 1 December 1994. Part one focuses on the possible impact of acid deposition on the quality of groundwater in the ECE region. The objective of this report is to present an updated review of available knowledge on the possible impact of deposition of sulphur and nitrogen compounds on the status of groundwater, including a brief survey of recent research results in this field. It updates an earlier report on the effects of air pollutants on groundwater, prepared within the Convention (EB.AIR/WG.1/R.9). Part two is an executive summary of the 1993 Report on the Forest Condition in Europe (Forest Condition in Europe. Results of the 1993 Survey. 1994 Report, EC-UN/ECE, Brussels, Geneva, 1994). The report describes the results of both the national and the transnational surveys which are conducted annually within the International Cooperative Programme on the Assessment and Monitoring of Air Pollution Effects on Forests (ICP Forests) of the United Nations Economic Commission for Europe (ECE) and under European Community Council Regulation (EEC) 3528/86 on the protection of the Community's Forests against Atmospheric Pollution. Part three is a summary report on the options for further reduction of nitrogen oxide emissions from road heavy-duty vehicles (HDVs). This report is primarily focused on reduction options for road HDVs, but some of the technical measures reviewed can, however, also be applied to some non-road diesel engines, such as machinery in construction, agriculture or forestry

  8. Automated cleaning of fan coil units with a natural detergent-disinfectant product

    Directory of Open Access Journals (Sweden)

    Di Onofrio Valeria

    2010-10-01

    Full Text Available Abstract Background Air conditioning systems represent one important source of microbial pollutants for indoor air. In the past few years, numerous strategies have been conceived to reduce the contamination of air conditioners, mainly in hospital settings. The biocidal detergent BATT2 represents a natural product obtained through extraction from brown seaweeds, that has been tested previously on multidrug-resistant microorganisms. Methods BATT2 has been utilized for the disinfection of fan coil units from four air conditioning systems located in hospital environments with a mean degree of risk. Samples were collected from the air supplied by the conditioning systems and from the surfaces of fan coil units, before and after sanitization procedures. Total microbial counts at 37°C and 22°C and mycotic count at 32°C were evaluated. Staphylococci and Pseudomonas aeruginosa were also detected on surfaces samples. Results The biodetergent was able to reduce up 50% of the microbial pollution of fan coil units surfaces and air supplied by the air conditioners. Conclusions BATT2 could be considered for cleaning/disinfection of air conditioning systems, that should be performed on the basis of accurate and verifiable sanitization protocols.

  9. Nondestructive inspection of the condition of oil pipeline cleaning units

    International Nuclear Information System (INIS)

    Berdonosov, V.A.; Boiko, D.A.; Lapshin, B.M.; Chakhlov, V.L.

    1989-01-01

    One of the reasons for shutdowns of main oil pipelines is stoppage of the cleaning unit in cleaning of the inner surface of paraffin deposits caused by damage to the cleaning unit. The authors propose a method of searching for and determining the condition of the cleaning unit not requiring dismantling of the pipeline according to which the initial search for the cleaning unit is done with acoustic instruments (the increased acoustic noise at the point of stoppage of its is recorded) and subsequent inspection by a radiographic method. An experimental model of an instrument was developed making it possible to determine the location of a cleaning unit in an oil pipeline in stoppage of it from the acoustic noise. The instrument consists of two blocks, the remote sensor and the indicator block, which are connected to each other with a cable up to 10 m long. The design makes it possible to place the sensor at any accessible point of a linear part of the pipeline (in a pit, on a valve, etc.) while the indicator block may remain on the surface of the ground. The results obtained make it possible to adopt the optimum solutions on elimination of their malfunctioning and to prevent emergency situations without dismantling of the pipeline. With the equipment developed it is possible to inspect oil and gas pipelines with different reasons for a reduction in their throughput

  10. Physiological and subjective responses in the elderly when using floor heating and air conditioning systems.

    Science.gov (United States)

    Hashiguchi, Nobuko; Tochihara, Yutaka; Ohnaka, Tadakatsu; Tsuchida, Chiaki; Otsuki, Tamio

    2004-11-01

    The purpose of this study was to investigate the effects of a floor heating and air conditioning system on thermal responses of the elderly. Eight elderly men and eight university students sat for 90 minutes in a chair under the following 3 conditions: air conditioning system (A), floor heating system (F) and no heating system (C). The air temperature of sitting head height for condition A was 25 degrees C, and the maximum difference in vertical air temperature was 4 degrees C. The air and floor temperature for condition F were 21 and 29 degrees C, respectively. The air temperature for condition C was 15 degrees C. There were no significant differences in rectal temperature and mean skin temperature between condition A and F. Systolic blood pressure of the elderly men in condition C significantly increased compared to those in condition A and F. No significant differences in systolic blood pressure between condition A and F were found. The percentage of subjects who felt comfortable under condition F was higher than that of those under condition A in both age groups, though the differences between condition F and A was not significant. Relationships between thermal comfort and peripheral (e.g., instep, calf, hand) skin temperature, and the relationship between thermal comfort and leg thermal sensation were significant for both age groups. However, the back and chest skin temperature and back thermal sensation for the elderly, in contrast to that for the young, was not significantly related to thermal comfort. These findings suggested that thermal responses and physiological strain using the floor heating system did not significantly differ from that using the air conditioning system, regardless of the subject age and despite the fact that the air temperature with the floor heating system was lower. An increase in BP for elderly was observed under the condition in which the air temperature was 15 degrees C, and it was suggested that it was necessary for the elderly

  11. Alternative air-conditioning with the use of solar energy

    International Nuclear Information System (INIS)

    Algarbi, N. M.

    2006-01-01

    The paper concerns the investigation of the alternative air condition systems on the basis of the open absorbtion cycle with the use of solar energy as a heat source. Schematic solution of systems has been carried. The design analysis of working characteristics was performed for a wide rang of initial parameters (teperature and humidity of ambient air, the type and concentration of liquid sorbents, etc.) and construction features of heat and mass transfer.(Author)

  12. Amelioration of Heat-Stress Conditions of Egyptian Summer Season on Friesian Calves Using Air Condition

    International Nuclear Information System (INIS)

    Nessim, M.Z.; Kamal, T.H.; Khalil, W.K.B.

    2010-01-01

    Male Friesian calves were used to evaluate cool air condition (AC) in alleviating heat stress (HS) determined by Heat Shock Protein genes expression (HSP), hormonal, biochemical and physiological parameters. The animals were exposed to summer heat stress (HS) under shade for two weeks (control). The maximum temperature humidity index (THI) during summer HS was from 81 to 88. Afterward the animals were exposed to AC, inside a climatic chamber for 6 hours daily for two weeks, where, the THI was from 70 to 71. The results revealed that expression level of the Hsp genes (Hsp72, Hsp70.1, Hsp70 and Hsp47) was lower under air condition treatment than under summer heat stress. Rectal temperature and respiration rate were significantly lower (p< 0.01) under air condition treatment than those under heat stress. Total triiodothyronin (T3) level was significantly higher (P< 0.05) in AC cooling treatments than in HS, while cortisol level was significantly lower (P < 0.01) in AC cooling treatment than in HS calves. Creatinine and Urea -N levels were significantly lower (P < 0.01) in AC cooling treatment than in HS calves. Triglycerides, ALT and AST levels were significantly lower (p<0.01), (P< 0.01) and (p<0.05), respectively in AC cooling treatment than in HS calves. These results demonstrated that there is a relationship between the molecular weight of HSPs and the level of HSPs gene exprisson. The higher the molecular weight (HSP 72) the lower is the HSPs gene expression level (0.82 in HS and 0.39 in AC) and vise versa. This holds true in both heat stress and air condition. AC treatment is capable to ameliorate heat stress of Friesian calves under hot summer climate

  13. Optimization of the level and range of working temperature of the PCM in the gypsum-microencapsulated PCM thermal energy storage unit for summer conditions in Central Poland

    Science.gov (United States)

    Łapka, P.; Jaworski, M.

    2017-10-01

    In this paper thermal energy storage (TES) unit in a form of a ceiling panel made of gypsum-microencapsulated PCM composite with internal U-shaped channels was considered and optimal characteristics of the microencapsulated PCM were determined. This panel may be easily incorporated into, e.g., an office or residential ventilation system in order to reduce daily variations of air temperature during the summer without additional costs related to the consumption of energy for preparing air parameters to the desired level. For the purpose of the analysis of heat transfer in the panel, a novel numerical simulator was developed. The numerical model consists of two coupled parts, i.e., the 1D which deals with the air flowing through the U-shaped channel and the 3D which deals with heat transfer in the body of the panel. The computational tool was validated based on the experimental study performed on the special set-up. Using this tool an optimization of parameters of the gypsum-microencapsulated PCM composite was performed in order to determine its most appropriate properties for the application under study. The analyses were performed for averaged local summer conditions in Warsaw, Poland.

  14. Indoor air purification using heterogeneous photocatalytic oxidation. Part I: Experimental study

    NARCIS (Netherlands)

    Yu, Q.; Brouwers, H.J.H.

    2009-01-01

    Heterogeneous photocatalytic oxidation (PCO) has shown to be a promising air purifying technology in outdoor conditions using TiO2 as photocatalyst activated with UV light. Also to indoor air quality more and more attention is paid because of the very important role it plays on human health, and it

  15. Impact of chemical lateral boundary conditions in a regional air quality forecast model on surface ozone predictions during stratospheric intrusions

    Science.gov (United States)

    Pendlebury, Diane; Gravel, Sylvie; Moran, Michael D.; Lupu, Alexandru

    2018-02-01

    A regional air quality forecast model, GEM-MACH, is used to examine the conditions under which a limited-area air quality model can accurately forecast near-surface ozone concentrations during stratospheric intrusions. Periods in 2010 and 2014 with known stratospheric intrusions over North America were modelled using four different ozone lateral boundary conditions obtained from a seasonal climatology, a dynamically-interpolated monthly climatology, global air quality forecasts, and global air quality reanalyses. It is shown that the mean bias and correlation in surface ozone over the course of a season can be improved by using time-varying ozone lateral boundary conditions, particularly through the correct assignment of stratospheric vs. tropospheric ozone along the western lateral boundary (for North America). Part of the improvement in surface ozone forecasts results from improvements in the characterization of near-surface ozone along the lateral boundaries that then directly impact surface locations near the boundaries. However, there is an additional benefit from the correct characterization of the location of the tropopause along the western lateral boundary such that the model can correctly simulate stratospheric intrusions and their associated exchange of ozone from stratosphere to troposphere. Over a three-month period in spring 2010, the mean bias was seen to improve by as much as 5 ppbv and the correlation by 0.1 depending on location, and on the form of the chemical lateral boundary condition.

  16. Exergy analysis of heating, refrigerating and air conditioning methods and applications

    CERN Document Server

    Dincer, Ibrahim

    2015-01-01

    Improve and optimize efficiency of HVAC and related energy systems from an exergy perspective. From fundamentals to advanced applications, Exergy Analysis of Heating, Air Conditioning, and Refrigeration provides readers with a clear and concise description of exergy analysis and its many uses. Focusing on the application of exergy methods to the primary technologies for heating, refrigerating, and air conditioning, Ibrahim Dincer and Marc A. Rosen demonstrate exactly how exergy can help improve and optimize efficiency, environmental performance, and cost-effectiveness. The book also discusses the analysis tools available, and includes many comprehensive case studies on current and emerging systems and technologies for real-world examples. From introducing exergy and thermodynamic fundamentals to presenting the use of exergy methods for heating, refrigeration, and air conditioning systems, this book equips any researcher or practicing engineer with the tools needed to learn and master the application of exergy...

  17. Energy saving: optimal use of air conditioning equipment by means of the solar control; Ahorro de energia: uso optimo de los acondicionadores de aire mediante el control solar

    Energy Technology Data Exchange (ETDEWEB)

    Mejia D, David; Morillon G, David; Rodriguez V, Luis [Universidad Nacional Autonoma de Mexico (Mexico)

    2001-09-01

    In this article the evaluation of the solar heat gains through the transparent parts of a building (houses of social interest) is presented; with the purpose of determining the heat gains through windows during summer time and under the following conditions: without solar protection, with the use of eaves, solar breakers and, finally, with the use of both elements. With the determined percentage of the diminution of heat gains, the considered potential of energy saving in air conditioning was obtained that would be available if the houses were constructed with solar control. [Spanish] En este articulo se presenta la evaluacion de las ganancias de calor solar a traves de las partes transparentes de un edificio (viviendas de interes social); con el objeto de determinar las ganancias de calor a traves de ventanas para la epoca de verano y bajo las siguientes condiciones: sin proteccion solar, con el empleo de aleros, con quiebrasoles y, finalmente, con el empleo de ambos elementos. Con el porcentaje determinado de la disminucion de ganancias de calor, se obtuvo el potencial estimado de ahorro de energia en aire acondicionado que se tendria si las viviendas se construyen con control solar.

  18. Stabilization of gas turbine unit power

    Science.gov (United States)

    Dolotovskii, I.; Larin, E.

    2017-11-01

    We propose a new cycle air preparation unit which helps increasing energy power of gas turbine units (GTU) operating as a part of combined cycle gas turbine (CCGT) units of thermal power stations and energy and water supply systems of industrial enterprises as well as reducing power loss of gas turbine engines of process blowers resulting from variable ambient air temperatures. Installation of GTU power stabilizer at CCGT unit with electric and thermal power of 192 and 163 MW, respectively, has resulted in reduction of produced electrical energy production costs by 2.4% and thermal energy production costs by 1.6% while capital expenditures after installation of this equipment increased insignificantly.

  19. Effects of Sexual Harassment on Job Satisfaction, Retention, Cohesion, Commitment and Unit Effectiveness: The Case of the Air Force

    Science.gov (United States)

    2010-07-01

    quid pro quo ). Examples of questions that were used in previous studies to measure crude/offensive behavior, as well as, other forms of sexual ...includes, but is not limited to, harassment in which submission is made a condition of employment (or quid pro quo ). Global or organizational...Effects of Sexual Harassment on Job Satisfaction, Retention, Cohesion, Commitment and Unit Effectiveness: The Case of the Air Force Dr. Brenda

  20. Experimental analysis of pressurised humidification tower for humid air gas turbine cycles. Part A: Experimental campaign

    International Nuclear Information System (INIS)

    Pedemonte, A.A.; Traverso, A.; Massardo, A.F.

    2008-01-01

    One of the most interesting methods of water introduction in a gas turbine circuit is represented by the humid air turbine cycle (HAT). In the HAT cycle, the humidification can be provided by a pressurised saturator (i.e. humidification tower or saturation tower), this solution being known to offer several attractive features. This part A is focused on an experimental study of a pressurised humidification tower, with structured packing inside. After a description of the test rig employed to carry out the measuring campaign, the results relating to the thermodynamic process are presented and discussed. The experimental campaign was carried out over 162 working points, covering a relatively wide range of possible operating conditions. Details about measured data are provided in the appendix. It is shown that the saturator's behaviour, in terms of air outlet humidity and temperature, is primarily driven by, in decreasing order of relevance, the inlet water temperature, the inlet water over inlet dry air mass flow ratio and the inlet air temperature. Finally, the exit relative humidity is shown to be consistently over 100%, which may be explained partially by measurement accuracy and droplet entrainment, and partially by the non-ideal behaviour of air-steam mixtures close to saturation

  1. Penggunaan Unit Slow Sand Filter, Ozon Generator dan Rapid Sand Filter Skala Rumah Tangga Untuk Meningkatkan Kualitas Air Sumur Dangkal Menjadi Air Layak Minum (Parameter Zat Organik dan Deterjen

    Directory of Open Access Journals (Sweden)

    Anindya Prawita Sari

    2014-09-01

    Full Text Available Air sumur merupakan air tanah yang sering kali digunakan masyarakat untuk aktivitas sehari-hari. Air sumur dengan kadar organik dan deterjen tinggi tidak layak dikonsumsi masyarakat karena dapat menyebabkan berbagai macam penyakit. Selain itu, adanya zat organik dan deterjen mempengaruhi warna dan bau air sumur sehingga tidak layak konsumsi. Slow sand filter merupakan unit pengolahan yang mampu meremoval zat organik pada air. Slow sand filter dan rapid sand filter tidak menggunakan bahan kimia dalam proses pengolahan sehingga lebih ekonomis dan efektif. Sedangkan ozon, efektif digunakan untuk meremoval zat organik yang ada dalam air dengan mengubah rantai zat organik menjadi lebih sederhana. Tujuan penelitian ini adalah untuk mengetahui keefektifan penggunaan slow sand filter, ozon generator dan rapid sand filter dalam menyisihkan beban deterjen dan zat organik pada air sumur. Hasil penelitian menunjukkan bahwa efisiensi removal pada unit slow sand filter untuk beban organik dan deterjen sebesar 57,6% dan 60,5 %, pada unit ozonasi sebesar 47,4% dan 17,5%, dan pada unit rapid sand filter sebesar 50,0% dan 50,9 %.

  2. Application of ground-to-air heat exchanger for preheating of supply air

    Science.gov (United States)

    Sorokins, Juris; Borodinecs, Anatolijs; Zemitis, Jurgis

    2017-10-01

    This study focuses on assessing the contribution of the passive ground-coupled air heat exchanger system to decreasing the energy consumption of air conditioning and ventilation systems for office buildings in the Latvian climate conditions. The theoretical part of the thesis deals with methods of office building ventilation, supply air preheating and heat recovery as well as particularities of using ground-coupled air heat exchangers, their design parameters and their joint impact on the thermal performance. The engineering project part includes a ventilation system for an office building with an integrated ground-coupled air heat exchanger. By simulating energy consumption of the ventilation system for a duration of one year, the thesis analyzes the contribution of the heat exchanger to the overall energy consumption, which totals 9.53 MWh and 4.02 MWh a year, according to the desired parameters of the indoor climate. The possible alternative heat recovery solutions are investigated to reach by European Regional Development Fund project Nr.1.1.1.1/16/A/048 “NEARLY ZERO ENERGY SOLUTIONS FOR UNCLASSIFIED BUILDINGS”.

  3. A Delphi Study Using Value-Focused Thinking for United States Air Force Mission Dependency Index Values

    Science.gov (United States)

    2015-03-26

    intended to allow for a more transparent and effective funding model as part of the new system. One of the models the Air Force considered but did not...conditions and commander’s preferences are accounted for by the other metrics applied to the funding model . The research goal was to correct the...metric for the SRM funding model . (MDI is 60% and the MAJCOM Priority is 40%) i. Does the MAJCOM priority adequately account for the local

  4. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Science.gov (United States)

    2010-01-01

    ... RULEâ) Pt. 305, App. I Appendix I to Part 305—Heating Performance and Cost for Central Air Conditioners... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Heating Performance and Cost for Central Air Conditioners I Appendix I to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC...

  5. Development and Design of a User Interface for a Computer Automated Heating, Ventilation, and Air Conditioning System

    International Nuclear Information System (INIS)

    Anderson, B.

    1999-01-01

    A user interface is created to monitor and operate the heating, ventilation, and air conditioning system. The interface is networked to the system's programmable logic controller. The controller maintains automated control of the system. The user through the interface is able to see the status of the system and override or adjust the automatic control features. The interface is programmed to show digital readouts of system equipment as well as visual queues of system operational statuses. It also provides information for system design and component interaction. The interface is made easier to read by simple designs, color coordination, and graphics. Fermi National Accelerator Laboratory (Fermi lab) conducts high energy particle physics research. Part of this research involves collision experiments with protons, and anti-protons. These interactions are contained within one of two massive detectors along Fermilab's largest particle accelerator the Tevatron. The D-Zero Assembly Building houses one of these detectors. At this time detector systems are being upgraded for a second experiment run, titled Run II. Unlike the previous run, systems at D-Zero must be computer automated so operators do not have to continually monitor and adjust these systems during the run. Human intervention should only be necessary for system start up and shut down, and equipment failure. Part of this upgrade includes the heating, ventilation, and air conditioning system (HVAC system). The HVAC system is responsible for controlling two subsystems, the air temperatures of the D-Zero Assembly Building and associated collision hall, as well as six separate water systems used in the heating and cooling of the air and detector components. The BYAC system is automated by a programmable logic controller. In order to provide system monitoring and operator control a user interface is required. This paper will address methods and strategies used to design and implement an effective user interface

  6. Radioactive air emissions notice of construction portable/temporary radioactive air emission units - August 1998

    International Nuclear Information System (INIS)

    FRITZ, D.W.

    1999-01-01

    This notice of construction (NOC) requests a categorical approval for construction and operation of three types of portable/temporary radionuclide airborne emission units (PTRAEUs). These three types are portable ventilation-filter systems (Type I), mobile sample preparation facilities (Type II), and mobile sample screening and analysis facilities (Type III). Approval of the NOC application is intended to allow construction and operation of the three types of PTRAEUs without prior project-specific approval. Environmental cleanup efforts on the Hanford Site often require the use of PTRAEUs. The PTRAEUs support site characterization activities, expedited response actions (ERAs), sampling and monitoring activities, and other routine activities. The PTRAEUs operate at various locations around the Hanford Site. Radiation Air Emissions Program, Washington Administrative Code (WAC) 246-247, requires that the Washington State Department of Health (WDOH) be notified before construction of any new emission that would release airborne radioactivity. The WDOH also must receive notification before any modification of an existing source. This includes changes in the source term or replacement of emission control equipment that might significantly contribute to the offsite maximum dose from a licensed facility. During site characterization activities, ERAs, sampling and monitoring activities, and other routine activities, the PTRAEUs might require startup immediately. The notification period hampers efforts to complete such activities in an effective and timely manner. Additionally, notification is to be submitted to the WDOH when the PTRAEUs are turned off. The U.S. Department of Energy, Richland Operations Office (DOE-RL) potentially could generate several notifications monthly. The WDOH would be required to review and provide approval on each NOC as well as review the notices of discontinued sources. The WDOH regulation also allows facilities the opportunity to request a

  7. Experimental investigation of a novel configuration of desiccant based evaporative air conditioning system

    International Nuclear Information System (INIS)

    Uçkan, İrfan; Yılmaz, Tuncay; Hürdoğan, Ertaç; Büyükalaca, Orhan

    2013-01-01

    Highlights: ► A novel desiccant based evaporative cooling system is developed and tested. ► Cooling capacity, COP and energy consumption of the system are evaluated. ► Indoor air conditions are in the range of thermal comfort zone and expanded comfort zone. ► Designing of the system have considerable effect on the energy consumption. - Abstract: A novel configuration of desiccant based evaporative cooling system for air conditioning application is developed and tested. At the beginning of the design stage of the system, an analysis is carried out in order to maximize the performance of the system. It is found based on configuration that outdoor air must be used for regeneration to increase performance of the system and so three air channels are used. Experiments are carried out to investigate the total performance of the system and performance of the components used during summer season in a hot and humid climate. Effectiveness values for both heat exchangers and evaporative coolers are calculated through this work. In addition to the cooling capacity, coefficient of performance (COP) and energy consumption of the system are also evaluated. Results show that the effectiveness for the heat exchangers and evaporative coolers are very high under different outdoor conditions. It is also shown from the results that indoor air conditions are in the range of thermal comfort zone defined by ASHRAE and expanded comfort zone for evaporative air conditioning applications.

  8. Effects of Automobile Emissions on Air Pollution in the United States

    Science.gov (United States)

    Cohen, Ryan; Singh, Ramesh

    2016-07-01

    Currently, about more than 253,000,000 automobiles and trucks, some are new, old, gas and electric, ply on the roads in the United States of America. Around the world, human activities and energy demand are the main sources for the air pollution and ozone depletion, causing dense haze, fog and smog especially during winter season in the country like China and India and also observed in different parts of the world. In recent years, automakers have been pushed by new governmental regulations and global expectations to create more fuel-efficient vehicles that burn less fossil fuels and create fewer harmful emissions. Automakers are exploring alternative fuel options such as hydrogen, natural gas, hybrids, and completely electric vehicles. Since the Nissan Leaf's introduction in 2010, fully electric vehicles have become widely produced and just fewer than 400,000 fully electric cars have been sold in the United States. Taking the influx of more fuel-efficient and alternative energy vehicles in the market into account, we have analyzed satellite and ground observed atmospheric pollution and greenhouse gases during 2009-2014 in the United States of America. Our results show that the increasing population of hybrid and fuel efficient vehicles have cut down the atmospheric pollution and greenhouse emissions in US in general, whereas in California the pollution level has increased as a result frequency of fog and haze events are seen during winter season. We will present a comparison of atmospheric pollution over US and California State in view of the increasing hybrid and fuel efficient vehicles.

  9. A simulation Model of the Reactor Hall Ventilation and air Conditioning Systems of ETRR-2

    International Nuclear Information System (INIS)

    Abd El-Rahman, M.F.

    2004-01-01

    Although the conceptual design for any system differs from one designer to another. each of them aims to achieve the function of the system required. the ventilation and air conditioning system of reactors hall is one of those systems that really differs but always dose its function for which it is designed. thus, ventilation and air conditioning in some reactor hall constitute only one system whereas in some other ones, they are separate systems. the Egypt Research Reactor-2 (ETRR-2)represents the second type. most studies conducted on ventilation and air conditioning simulation models either in traditional building or for research rectors show that those models were not designed similarly to the model of the hall of ETRR-2 in which ventilation and air conditioning constitute two separate systems.besides, those studies experimented on ventilation and air conditioning simulation models of reactor building predict the temperature and humidity inside these buildings at certain outside condition and it is difficult to predict when the outside conditions are changed . also those studies do not discuss the influences of reactor power changes. therefore, the present work deals with a computational study backed by infield experimental measurements of the performance of the ventilation and air conditioning systems of reactor hall during normal operation at different outside conditions as well as at different levels of reactor power

  10. Experimental Study on Intelligent Control Scheme for Fan Coil Air-Conditioning System

    Directory of Open Access Journals (Sweden)

    Yanfeng Li

    2013-01-01

    Full Text Available An intelligent control scheme for fan coil air-conditioning systems has been put forward in order to overcome the shortcomings of the traditional proportion-integral-derivative (PID control scheme. These shortcomings include the inability of anti-interference and large inertia. An intelligent control test rig of fan coil air-conditioning system has been built, and MATLAB/Simulink dynamics simulation software has been adopted to implement the intelligent control scheme. A software for data exchange has been developed to combine the intelligence control system and the building automation (BA system. Experimental tests have been conducted to investigate the effectiveness of different control schemes including the traditional PID control, fuzzy control, and fuzzy-PID control for fan coil air-conditioning system. The effects of control schemes have been compared and analyzed in robustness, static and dynamic character, and economy. The results have shown that the developed data exchange interface software can induce the intelligent control scheme of the BA system more effectively. Among the proposed control strategies, fuzzy-PID control scheme which has the advantages of both traditional PID and fuzzy schemes is the optimal control scheme for the fan coil air-conditioning system.

  11. 2017 German refrigeration and air conditioning meeting. Proceedings

    International Nuclear Information System (INIS)

    2017-01-01

    This year's lecture programme includes 117 presentations in the five working departments of DKV and 10 lectures at the special event ''Energy-efficient air conditioning in data centres''. The main topics in the respective departments were: (1) Cryogenics: Space applications; Cryogenic plants; Cryomedicine and cryobiology; Components, developments; Processes and plants; Valves, design. (2) Basics: Evaporation, material values; evaporation, condensation; absorption; adsorption, latent storage; cycle simulation. (3) Components: CO 2 plant engineering and components; refrigerants; process control, adsorption, sublimation and storage technology; refrigerating machine oils, heat exchangers and corrosion; components 4.0, sensors and control technology; simulation of plant processes. (4) Cold application: Application; Application / Natural Refrigerants; Mobile Applications Car; Mobile Applications; Supermarket / Efficiency; Optimization / Efficiency. (5) Air conditioning and heat pump applications: load shifting, smart home, flexibility; heat sources and industrial heat pumps; modelling, simulations; energy concepts heat pumps and photovoltaics; monitoring, evaluation; technology trends / working materials. Six papers are separately analyzed for this database. [de

  12. Estimation of thermal sensation during varied air temperature conditions.

    Science.gov (United States)

    Katsuura, T; Tabuchi, R; Iwanaga, K; Harada, H; Kikuchi, Y

    1998-03-01

    Seven male students were exposed to four varied air temperature environments: hot (37 degrees C) to neutral (27 degrees C) (HN), neutral to hot (NH), cool (17 degrees C) to neutral (CN), and neutral to cool (NC). The air temperature was maintained at the first condition for 20 min, then was changed to the second condition after 15 min and was held there for 20 min. Each subject wore a T-shirt, briefs, trunks, and socks. Each sat on a chair and was continuously evaluated for thermal sensation, thermal comfort, and air velocity sensation. Some physiological and thermal parameters were also measured every 5 s during the experiment. The correlation between thermal sensation and skin temperature at 15 sites was found to be poor. The subjects felt much warmer during the rising phase of the air temperature (CN, NH) than during the descending phase (HN, NC) at a given mean skin temperature. However, thermal sensation at the same heat flux or at the same value of the difference between skin and air temperature (delta(Tsk - Ta)) was not so different among the four experimental conditions, and the correlation between thermal sensation and heat flux or delta(Tsk - Ta) was fairly good. The multiple regression equation of the thermal sensation (TS) on 15 sites of skin temperature (Tsk; degrees C) was calculated and the coefficient of determination (R*2) was found to be 0.656. Higher coefficients of determination were found in the equations of thermal sensation for the heat flux (H; kcal.m-2.h-1) at the right and left thighs of the subjects and on delta(Tsk - Ta) (degrees C) at 4 sites. They were as follows: TS = 2.04 - 0.016 Hright - 0.036 Hleft; R*2 = 0.717, TS = 1.649 + 0.013 delta(Tsk - Ta)UpperArm - 0.036 delta(Tsk - Ta)Chest - 0.223 delta(Tsk - Ta)Thigh-0.083 delta(Tsk - Ta)LowerLeg; R*2 = 0.752, respectively.

  13. Modelling and hardware-in-the-loop simulation of the blowout tract components for passenger compartment air conditioning of motor vehicles; Modellierung und Hardware-in-the-Loop-Simulation der Komponenten des Ausblastraktes zur Kraftfahrzeuginnenraumklimatisierung

    Energy Technology Data Exchange (ETDEWEB)

    Michalek, David

    2009-07-01

    The author investigated the modelling and hardware-in-the-loop simulation of components of the blowout tract of motor car air conditioning systems. The control systems and air conditioning systems are gone into, from the air entering the car to the control systems and sensors for monitoring state variables. The function of the control equipment hardware and software was to be analyzed reproducibly in order to save time and cost. The models were verified using available data. Validation criteria were established for the hardware-in-the-loop simulator. On the basis of selected operating conditions, the performance of the air conditioning control unit inside the vehicle was compared with the simulation results and was evaluated on the basis of the established criteria. (orig.)

  14. Energy Conservation In Compressed Air Systems

    International Nuclear Information System (INIS)

    Yusuf, I.Y.; Dewu, B.B.M.

    2004-01-01

    Compressed air is an essential utility that accounts for a substantial part of the electricity consumption (bill) in most industrial plants. Although the general saying Air is free of charge is not true for compressed air, the utility's cost is not accorded the rightful importance due to its by most industries. The paper will show that the cost of 1 unit of energy in the form of compressed air is at least 5 times the cost electricity (energy input) required to produce it. The paper will also provide energy conservation tips in compressed air systems

  15. Modeling air concentration over macro roughness conditions by Artificial Intelligence techniques

    Science.gov (United States)

    Roshni, T.; Pagliara, S.

    2018-05-01

    Aeration is improved in rivers by the turbulence created in the flow over macro and intermediate roughness conditions. Macro and intermediate roughness flow conditions are generated by flows over block ramps or rock chutes. The measurements are taken in uniform flow region. Efficacy of soft computing methods in modeling hydraulic parameters are not common so far. In this study, modeling efficiencies of MPMR model and FFNN model are found for estimating the air concentration over block ramps under macro roughness conditions. The experimental data are used for training and testing phases. Potential capability of MPMR and FFNN model in estimating air concentration are proved through this study.

  16. Silver zeolite antimicrobial activity in aluminium heating, ventilation and air conditioning system ducts.

    Science.gov (United States)

    Rizzetto, R; Mansi, A; Panatto, D; Rizzitelli, E; Tinteri, C; Sasso, T; Gasparini, R; Crovari, P

    2008-03-01

    Air pollution in confined environments is a serious health problem, in that most people spend long periods indoors (in homes, offices, classrooms etc.). Some people (children, the elderly, heart disease patients, asthmatic or allergic subjects) are at greater risk because of their conditions of frailty. The growing use of air-conditioning systems in many public and private buildings aggravates this health risk, especially when these systems are not correctly installed or regularly serviced. The aim of our study was to verify the capacity of Ag+ ions to stop the growth of bacteria and moulds inside the ducts of Heating, Ventilation and Air Conditioning system ducts (HVAC) systems when these ducts were lined with active Ag+ ions zeolite-coated panels. A Y-shaped HVAC model with two branches was used; one branch was made of traditional galvanized iron, as was the whole system, while the other was lined with active Ag+ zeolite-coated polyurethane panels. During the test, samples of dust present inside both ducts were collected and seeded in liquid and solid media to detect bacteria and moulds. The presence of bacteria was also sought in the air emerging from the outlets of both ducts. Tests made on samples of particulate collected from the two different ducts revealed a lower total bacterial load in the samples collected from the Ag+ zeolite-coated duct than in the samples from the traditional Zn galvanized duct. In addition, the values of bacterial load found in the air emerging from the Ag+ ions zeolite-lined duct were 5 times lower than those found in the air from the traditional galvanized iron duct. The utilization of Ag+ zeolite-coated panels in air-conditioning systems could improve the quality of the emerging air in comparison with traditional installations in galvanized iron. This innovation could prove particularly advantageous in the event of accidents during the installation of air-conditioning systems or of contaminated aerosols coming from outside.

  17. Field Study on Humidification Performance of a Desiccant Air-Conditioning System Combined with a Heat Pump

    Directory of Open Access Journals (Sweden)

    Koichi Kawamoto

    2016-01-01

    Full Text Available A desiccant air-conditioning system was developed as a latent-load-processing air conditioner in a dedicated outdoor air system during the summer. This study investigated the application of this air-conditioning system to humidification during the winter without using make-up water, thereby eliminating the cause of microbial contamination in air-conditioning systems. The experiments were conducted with a system used for summer applications to determine the feasibility of adsorbing vapor from outdoor air and supplying it to an indoor space. The humidification performance, energy efficiency, and operating conditions were examined. Although the conditions were subpar because the experiments were performed with an actual dedicated outdoor air system, the results showed that it is possible to supply air with a minimum humidity ratio of 5.8 g/kg dry air (DA when the humidity ratio of outdoor air ranges from 1.8 to 2.3 g/kg DA. The minimum humidification performance required for a dedicated outdoor air system was achieved by increasing the airflow rate of the moisture-adsorption side to 2–3 times that of the humidification side. In addition, air leaking from the moisture-adsorption side to the humidification side, improving the mechanical structure, such as by the insulation of the moisture-adsorption side, and an efficient operating method were examined for humidification during the winter.

  18. Performance analysis of proposed hybrid air conditioning and humidification–dehumidification systems for energy saving and water production in hot and dry climatic regions

    International Nuclear Information System (INIS)

    Nada, S.A.; Elattar, H.F.; Fouda, A.

    2015-01-01

    Highlights: • Integrative air-conditioning (A/C) and humidification–dehumidification desalination systems are proposed. • Effects of operating parameters on the proposed systems are investigated. • System configurations that have the highest fresh water production rate, power saving and total cost saving are identified. - Abstract: Performance of integrative air-conditioning (A/C) and humidification–dehumidification desalination systems proposed for hot and dry climatic regions is theoretically investigated. The proposed systems aim to energy saving and systems utilization in fresh water production. Four systems with evaporative cooler and heat recovery units located at different locations are proposed, analyzed and evaluated at different operating parameters (fresh air ratio, supply air temperature and outside air wet bulb temperature). Other two basic systems are used as reference systems in proposed systems assessment. Fresh water production rate, A/C cooling capacity, A/C electrical power consumption, saving in power consumptions and total cost saving (TCS) parameters are used for systems evaluations and comparisons. The results show that (i) the fresh water production rates of the proposed systems increase with increasing fresh air ratio, supply air temperature and outdoor wet bulb temperature, (ii) powers saving of the proposed systems increase with increasing fresh air ratio and supply air temperature and decreasing of the outdoor air wet bulb temperature, (iii) locating the evaporative cooling after the fresh air mixing remarkably increases water production rate, and (vi) incorporating heat recovery in the air conditioning systems with evaporative cooling may adversely affect both of the water production rate and the total cost saving of the system. Comparison study has been presented to identify systems configurations that have the highest fresh water production rate, highest power saving and highest total cost saving. Numerical correlations for

  19. Development of Fuzzy Logic Control for Vehicle Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Henry Nasution

    2008-08-01

    Full Text Available A vehicle air conditioning system is experimentally investigated. Measurements were taken during the experimental period at a time interval of one minute for a set point temperature of 22, 23 and 24oC with internal heat loads of 0, 1 and 2 kW. The cabin temperature and the speed of the compressor were varied and the performance of the system, energy consumption and energy saving ware analyzed. The main objective of the experimental work is to evaluate the energy saving obtained when the fuzzy logic control (FLC algorithm, through an inverter, continuously regulates the compressor speed. It demonstrates better control of the compressor operation in terms of energy consumption as compared to the control by using a thermostat imposing On/Off cycles on the compressor at the nominal frequency of 50 Hz. The experimental set-up consists of original components from the air conditioning system of a compact passenger vehicle. The experimental results indicate that the proposed technique can save energy and improve indoor comfort significantly for vehicle air conditioning systems compared to the conventional (On/Off control technique.

  20. Application of a solar refrigeration system by absorption for the air conditioning of buildings

    Energy Technology Data Exchange (ETDEWEB)

    Machielsen, Cees H. M [Delft University of Technology, Mekelweg (Netherlands); Hagendijk, Andre E [Consultancy and Research (Netherlands)

    2000-07-01

    This paper describes the Sofri project, a cooperation between Ceeran Ltd and The Delft University of Technology. The main objective of this project is to develop the necessary knowledge and experience to commercialize solar-assisted air conditioning and dehumidification systems in the Dutch Caribbean. The project is motivated by the present needs of the Dutch Caribbean for renewable energy sources and the fact that the Caribbean has a high and uniform insolation throughout the year. Furthermore, hotels and offices in this area use more than 40% of their energy for air-conditioning purposes. Therefore solar-assisted air conditioning systems are a logic approach in reducing the energy demand and to lower the peak electricity reducing the energy demands for the local power station. Ceeran Ltd has the objective to reach full commercialization of the proposed technologies in the Dutch Caribbean. The research is concentrated on liquid absorption machines and solar collection systems such as flat plates with selective surfaces, heat pipe evacuated tubes flat plate collectors, and Compound Parabolic Concentrators. The first demonstration unit is planned to be installed in an office building in Curacao. The installation consists of a 35 kW LiBr/H{sub 2}O absorption machine driven by 100 m{sup 2} flat pate collectors with a gas backup system. The system will provide comfort air-conditioning for this these type of office buildings during daytime. [Spanish] Este documento describe el proyecto SOFRI, una cooperacion entre Ceeran, Ltd, y la Universidad Tecnologica del Delft. El principal objetivo de este proyecto es el de desarrollar el conocimiento necesario y la experiencia para comercializar los sistemas de aire acondicionado y deshumidificacion ayudados por la energia solar en el Caribe Holandes. Este proyecto ha sido motivado por las actuales necesidades del Caribe Holandes de fuentes de energia renovable y por el hecho de que el Caribe tiene una alta y uniforme insolacion

  1. Learning from 25 years of experience with the United States clean air act

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, R.H. [Trinity Consultants Incorporated, Dallas, TX (United States)

    1995-12-31

    Twenty-five years ago, the United States embarked on a quest to attain clean air. President Nixon, in signing the Clean Air Act of 1970, defined clean air as the objective for the `70s. Although enormous progress has been made, much remains to be done. Newly constructed industry is quite clean, but many older facilities continue to operate with antiquated controls. Significant advances have been made in cleaning up the emissions from new automobiles, but two factors have impaired progress. First, cars last longer than they did in 1970, so the average age of the fleet has increased. Second, travel has increased as people have moved to the suburbs. Thus, the emission decreases from clean cars have not been as great as expected. This presentation will address some of the lessons learned from the efforts in the United States to implement clean air programs. In a large number of countries, excessively elaborate studies have been substituted for action programs. Since much is now known about air quality, fairly brief studies can define programs that should be undertaken. What may take longer is developing public support and enthusiasm for improved air quality. In most cases, it is desirable to reduce spending on studies and increase spending on devising and implementing plans, as well as effectively communicating the necessary changes to the public. Balanced spending on studies- and action programs is essential to a sound air quality control program. (author)

  2. Learning from 25 years of experience with the United States clean air act

    Energy Technology Data Exchange (ETDEWEB)

    Schulze, R H [Trinity Consultants Incorporated, Dallas, TX (United States)

    1996-12-31

    Twenty-five years ago, the United States embarked on a quest to attain clean air. President Nixon, in signing the Clean Air Act of 1970, defined clean air as the objective for the `70s. Although enormous progress has been made, much remains to be done. Newly constructed industry is quite clean, but many older facilities continue to operate with antiquated controls. Significant advances have been made in cleaning up the emissions from new automobiles, but two factors have impaired progress. First, cars last longer than they did in 1970, so the average age of the fleet has increased. Second, travel has increased as people have moved to the suburbs. Thus, the emission decreases from clean cars have not been as great as expected. This presentation will address some of the lessons learned from the efforts in the United States to implement clean air programs. In a large number of countries, excessively elaborate studies have been substituted for action programs. Since much is now known about air quality, fairly brief studies can define programs that should be undertaken. What may take longer is developing public support and enthusiasm for improved air quality. In most cases, it is desirable to reduce spending on studies and increase spending on devising and implementing plans, as well as effectively communicating the necessary changes to the public. Balanced spending on studies- and action programs is essential to a sound air quality control program. (author)

  3. Performance Investigation of Air Velocity Effects on PV Modules under Controlled Conditions

    Directory of Open Access Journals (Sweden)

    Muzaffar Ali

    2017-01-01

    Full Text Available Junction temperature of PV modules is one of the key parameters on which the performance of PV modules depends. In the present work, an experimental investigation was carried out to analyze the effects of air velocity on the performance of two PV modules, that is, monocrystalline silicon and polycrystalline silicon under the controlled conditions of a wind tunnel in the presence of an artificial solar simulator. The parameters investigated include the surface temperature variation, power output, and efficiency of PV modules under varying air velocity from near zero (indoor lab. conditions to 15 m/s. Additionally, the results were also determined at two different module angular positions: at 0° angle, that is, parallel to air direction and at 10° angle with the direction of coming air to consider the effects of tilt angles. Afterwards, the thermal analysis of the modules was performed using Ansys-Fluent in which junction temperature and heat flux of modules were determined by applying appropriate boundary conditions, such as air velocity, heat flux, and solar radiation. Finally, the numerical results are compared with the experiment in terms of junction temperatures of modules and good agreement was found. Additionally, the results showed that the maximum module temperature drops by 17.2°C and the module efficiency and power output increased from 10 to 12% with increasing air velocity.

  4. Sterilization efficacy of ultraviolet irradiation on microbial aerosols under dynamic airflow by experimental air conditioning systems

    International Nuclear Information System (INIS)

    Nakamura, Hiroshi

    1987-01-01

    In order to know the sterilization efficacy of ultraviolet irradiation on microbial aerosols, the size and the weight of the aerosol particles were evaluated, and these were irradiated under dynamic air flow created by an experimental air conditioning system. The experimental apparatus consisted of a high efficiency particulate air (HEPA) filter, an aerosol generator, spiral UV lamps placed around a quart glass tube, an Andersen air sampler and a vacuum pump. They were connected serially by stainless steel ducts (85 mm in diameter, 8 m in length). Six types of microbial aerosols generated from an ultrasonic nebulizer were irradiated by UV rays (wavelength 254 nm, mean density 9400 μW/cm 2 ). Their irradiation time ranged from 1.0 to 0.0625 seconds. The microbial aerosols were collected onto the trypticase soy agar (TSA) medium in the Andersen air sampler. After incubation, the number of colony forming units (CFU) were counted, and converted to particle counts. The diameter of microbial aerosol particles calculated by their log normal distribution were found to match the diameter of a single bacteria cell measured by a microscope. The sterilization efficacy of UV in standard airflow conditions (0.5 sec. irradiation) were found to be over 99.5 % in Staphylococcus aureus, Staphylococcus epidermidis, Serratia marcescens, Bacillus subtilis (vegetative cell) and Bacillus subtilis (spore) and 67 % in Aspergillus niger (conidium). In A. niger, which was the most resistant microbe to UV irradiation, the efficacy rose up to 79 % when irradiated for 1.0 sec., and it was observed that the growth speed of the colonies was slower than that of the controls. It was thought that UV rays caused some damage to the proliferation of A. niger cells. (author)

  5. Conceptual Design of Automotive Compressor for Integrated Portable Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Ishak Muhammad Ikman

    2017-01-01

    Full Text Available This study introduces a new concept of portable air conditioner which integrated with some available components in automotive air conditioning system. This new idea intends to solve the storage problems as well as to reduce the price of current portable air conditioner since some devices could directly be used from the automotive air conditioning system. The primary emphasis of this study was on the modification of automotive compressor design so as the system may alternately be operated. The length of conventional compressor shaft is extended to place an additional clutch pulley, a drive plate and a clutch coil. The new concept particularly the shaft and pulley were analysed through slope deflection and computational finite element analyses. The result of engineering analyses exhibited that the new design of compressor shaft and clutch pulleys promote a low risk of failure as the data values recorded are lower than the critical value for each criterion investigated.

  6. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    Directory of Open Access Journals (Sweden)

    Agus Dwi Hariyanto

    2005-01-01

    Full Text Available This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen for the study. Results show that more than 80% of the occupants accepted the indoor thermal conditions even though both the environmental and comfort indices exceeded the limit of the standard (ASHRAE Standard 55 and ISO 7730. In addition, non-uniformity of spatial temperature was present in this studio. Some practical recommendations were made to improve the thermal comfort in the design studio.

  7. Experimental analysis of the thermal entrainment factor of air curtains in vertical open display cabinets for different ambient air conditions

    International Nuclear Information System (INIS)

    Gaspar, Pedro Dinis; Carrilho Goncalves, L.C.; Pitarma, R.A.

    2011-01-01

    The vertical open refrigerated display cabinets suffer alterations of their thermal performance and energy efficiency due to variations of ambient air conditions. The air curtain provides an aerothermodynamics insulation effect that can be evaluated by the thermal entrainment factor calculation as an engineering approximation or by the calculus of all sensible and latent thermal loads. This study presents the variation of heat transfer rate and thermal entrainment factor obtained through experimental tests carried out for different ambient air conditions, varying air temperature, relative humidity, velocity and its direction relatively to the display cabinet frontal opening. The thermal entrainment factor are analysed and compared with the total sensible and latent heats results for the experimental tests. From an engineering point of view, it is concluded that thermal entrainment factor cannot be used indiscriminately, although its use is suitable to design better cabinet under the same climate class condition.

  8. Advantages for passengers and cabin crew of operating a Gas-Phase Adsorption air purifier in 11-h simulated flights

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Zukowska, Daria; Fang, Lei

    2008-01-01

    Experiments were carried out in a 3-row, 21-seat section of a simulated aircraft cabin installed in a climate chamber to evaluate the extent to which passengers’ perception of cabin air quality is affected by the operation of a Gas-Phase Adsorption (GPA) purification unit. A total of 68 subjects......, divided into four groups of 17 subjects took part in simulated 11-hour flights. Each group experienced 4 conditions in balanced order, defined by two outside air supply rates (2.4 and 3.3 L/s per person), with and without the GPA purification unit installed in the recirculated air system. During each...... flight the subjects completed questionnaires five times to provide subjective assessments of air quality, cabin environment, intensity of symptoms, and thermal comfort. Additionally, the subjects’ visual acuity, finger temperature, skin dryness and nasal peak flow were measured three times during each...

  9. Thermal-economic optimization of an air-cooled heat exchanger unit

    International Nuclear Information System (INIS)

    Alinia Kashani, Amir Hesam; Maddahi, Alireza; Hajabdollahi, Hassan

    2013-01-01

    Thermodynamic modeling and optimal design of an air-cooled heat exchanger (ACHE) unit are developed in this study. For this purpose, ε–NTU method and mathematical relations are applied to estimate the fluids outlet temperatures and pressure drops in tube and air sides. The main goal of this study is minimizing of two conflicting objective functions namely the temperature approach and the minimum total annual cost, simultaneously. For this purpose, fast and elitist non-dominated sorting genetic-algorithm (NSGA-II) is applied to minimize the objective functions by considering ten design parameters. In addition, a set of typical constraints, governing on the ACHE unit design, is subjected to obtain more practical optimum design points. Furthermore, sensitivity analysis of change in the objective functions, when the optimum design parameters vary, is conducted and the degree of each parameter on conflicting objective functions has been investigated. Finally, a selection procedure of the best optimum point is introduced and final optimum design point is determined. -- Highlights: ► Multi-objective optimization of air-cooled heat exchanger. ► Considering ten new design parameters in this type of heat exchanger. ► A detailed cost function is used to estimate the heat exchanger investment cost. ► Presenting a mathematical relation for optimum total cost vs. temperature approach. ► The sensitivity analysis of parameters in the optimum situation

  10. Experimental Analysis on Solar Desiccant Air Conditioner

    OpenAIRE

    Dr. U. V. Kongre, C. M. Singh, A. B. Biswas

    2014-01-01

    The experiment investigated and evaluated the feasibility of an solar desiccant air conditioner. Its effectiveness as a possible air conditioner option used in household air conditioner or as an energy efficient and environmentally friendly alternative to conventional air conditioning units used in houses are evaluated. A solar water heater was used as heat gain. The model utilizes the technology of solar air conditioner system. The purpose in the long term wou...

  11. Discrete Optimization of Internal Part Structure via SLM Unit Structure-Performance Database

    Directory of Open Access Journals (Sweden)

    Li Tang

    2018-01-01

    Full Text Available The structural optimization of the internal structure of parts based on three-dimensional (3D printing has been recognized as being important in the field of mechanical design. The purpose of this paper is to present a creation of a unit structure-performance database based on the selective laser melting (SLM, which contains various structural units with different functions and records their structure and performance characteristics so that we can optimize the internal structure of parts directly, according to the database. The method of creating the unit structure-performance database was introduced in this paper and several structural units of the unit structure-performance database were introduced. The bow structure unit was used to show how to create the structure-performance database of the unit as an example. Some samples of the bow structure unit were designed and manufactured by SLM. These samples were tested in the WDW-100 compression testing machine to obtain their performance characteristics. After this, the paper collected all data regarding unit structure parameters, weight, performance characteristics, and other data; and, established a complete set of data from the bow structure unit for the unit structure-performance database. Furthermore, an aircraft part was reconstructed conveniently to be more lightweight according to the unit structure-performance database. Its weight was reduced by 36.8% when compared with the original structure, while the strength far exceeded the requirements.

  12. Classified directory of the field of refrigeration and air conditioning technology 2006. Register of the expert companies in the field of refrigeration and air conditioning plants craft including a supply and service list - register of the suppliers in the field of refrigeration and air conditioning technology including the complete ranges of material groups offered - register of expert schools, technical experts, technical expert information and norms; Branchenbuch der Kaelte- und Klimatechnik 2006. Verzeichnis der Fachbetriebe des Kaelte- und Klimaanlagenbauerhandwerks mit Liefer- und Leistungsangebot - Verzeichnis der Lieferanten von Kaelte- und Klimatechnik mit vollstaendigem Warengruppenangebot - Verzeichnis von Fachschulen, Sachverstaendigen u.v.a. - Technische Fachinformationen und Normen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The present edition of the ''Classified directory of the field of refrigeration and air conditioning technology'' 2006 contains useful addresses, data and facts of the field: (a) approximately 1.500 addresses of expert companies in the field of refrigeration and air conditioning technology; (b) a register of suppliers and material groups in the field of refrigeration and air conditioning technology; (c) a technical part containing the most important norms of the field, laws and regulations in order to inform the reader for his daily work. The reference book is supposed to provide a good overview for the work in the field of technical building equipment. (orig./AKF)

  13. Heat pipe heat exchanger for heat recovery in air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Abd El-Baky, Mostafa A.; Mohamed, Mousa M. [Mechanical Power Engineering Department, Faculty of Engineering, Minufiya University, Shebin El-Kom (Egypt)

    2007-03-15

    The heat pipe heat exchangers are used in heat recovery applications to cool the incoming fresh air in air conditioning applications. Two streams of fresh and return air have been connected with heat pipe heat exchanger to investigate the thermal performance and effectiveness of heat recovery system. Ratios of mass flow rate between return and fresh air of 1, 1.5 and 2.3 have been adapted to validate the heat transfer and the temperature change of fresh air. Fresh air inlet temperature of 32-40{sup o}C has been controlled, while the inlet return air temperature is kept constant at about 26{sup o}C. The results showed that the temperature changes of fresh and return air are increased with the increase of inlet temperature of fresh air. The effectiveness and heat transfer for both evaporator and condenser sections are also increased to about 48%, when the inlet fresh air temperature is increased to 40{sup o}C. The effect of mass flow rate ratio on effectiveness is positive for evaporator side and negative for condenser side. The enthalpy ratio between the heat recovery and conventional air mixing is increased to about 85% with increasing fresh air inlet temperature. The optimum effectiveness of heat pipe heat exchanger is estimated and compared with the present experimental data. The results showed that the effectiveness is close to the optimum effectiveness at fresh air inlet temperature near the fluid operating temperature of heat pipes. (author)

  14. Evaluation of Rankine cycle air conditioning system hardware by computer simulation

    Science.gov (United States)

    Healey, H. M.; Clark, D.

    1978-01-01

    A computer program for simulating the performance of a variety of solar powered Rankine cycle air conditioning system components (RCACS) has been developed. The computer program models actual equipment by developing performance maps from manufacturers data and is capable of simulating off-design operation of the RCACS components. The program designed to be a subroutine of the Marshall Space Flight Center (MSFC) Solar Energy System Analysis Computer Program 'SOLRAD', is a complete package suitable for use by an occasional computer user in developing performance maps of heating, ventilation and air conditioning components.

  15. Applications of the monitor of loose parts in the cycle 6 of the Laguna Verde Unit 2 power plant; Aplicaciones del monitor de partes sueltas en el ciclo 6 de la Unidad 2 de la central Laguna Verde

    Energy Technology Data Exchange (ETDEWEB)

    Calleros, G.; Mendez, A.; Gomez, R.A. [Comision Federal de Electricidad, Central Nucleoelectrica Laguna Verde, Veracruz (Mexico); Castillo, R.; Bravo, J.M. [ININ, A.P. 18-1027, 11801 Mexico D.F. (Mexico)]. E-mail: gcm9acpp@cfe.gob.mx

    2004-07-01

    The monitor of loose parts (Loose Parts Monitoring System) installed in the Unit 2 of the Laguna Verde Central is a tool to detect strange objects or parts loose in the system of refrigeration of the reactor that could be impacted in the walls of the recirculation knots or in the internal of the reactor. In this work two applications are shown carried out with the Monitor of Loose Parts, determining the characteristics of the stable nominal conditions, those which when changing, they are used to diagnose during the Cycle 6 of the Unit 2, failures in the components of the the recirculation circuits or to identify mechanical vibrations of the recirculation knots induced by a flow of recirculation bistable associated to operative conditions of the reactor. (Author)

  16. 8th International Symposium on Heating, Ventilation and Air Conditioning

    CERN Document Server

    Zhu, Yingxin; Li, Yuguo; Vol.1 Indoor and Outdoor Environment; Vol.2 HVAC&R Component and Energy System; Vol.3 Building Simulation and Information Management

    2014-01-01

    Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning is based on the 8th International Symposium of the same name (ISHVAC2013), which took place in Xi’an on October 19-21, 2013. The conference series was initiated at Tsinghua University in 1991 and has since become the premier international HVAC conference initiated in China, playing a significant part in the development of HVAC and indoor environmental research and industry around the world. This international conference provided an exclusive opportunity for policy-makers, designers, researchers, engineers and managers to share their experience. Considering the recent attention on building energy consumption and indoor environments, ISHVAC2013 provided a global platform for discussing recent research on and developments in different aspects of HVAC systems and components, with a focus on building energy consumption, energy efficiency and indoor environments. These categories span a broad range of topics, and the proce...

  17. Desain Mobile Unit Instalasi Pengolahan Air Minum Untuk Kondisi Darurat Bencana Banjir Menggunakan Membran Mikrofiltrasi

    Directory of Open Access Journals (Sweden)

    Angie Prabhata Putra

    2015-03-01

    Full Text Available Banjir dan kekeringan merupakan sebuah fenomena yang rutin dihadapi di berbagai daerah dengan kerugian yang tidak kecil contohnya di wilayah Jabodetabek pada bulan februari tahun 2007, banjir yang terjadi selama 5 hari mencapai kerugian sekitar 8,6 triliyun rupiah. Saat terjadi banjir pengungsi sangat sulit untuk mendapat air bersih maupun air minum, di karenakan sumur penduduk yang dipenuhi lumpur dan kotoran. Kesulitan dalam memperoleh air bersih maupun air minum pada saat maupun paska bencana banjir, berdampak pada timbulnya berbagai penyakit terkait air bersih yaitu seperti muntaber, diare dan gatal-gatal. Oleh karena itu diperlukan solusi atau penanggulangan masalah air bersih dan air siap minum baik saat maupun paska bencana banjir. Menurut buku Introduction to International Disaster Management (2007, disebutkan bahwa ada beberapa alternatif dalam penyediaan air bersih dan air siap minum pada saat kondisi banjir yaitu  penyediaan air melalui tangki truk, atau dari tangki yang di datangkan  dari luar daerah banjir, melakukan proses pengolahan air banjir itu sendiri untuk menghasilkan air bersih sebagai contoh menggunakan filter. Solusi dalam hal masalah ini adalah pengolahan air minum yang berbasis mobile water treatment. Dalam kaitan tentang masalah ini perlu adanya perencanaan tentang desain instalasi pengolahan air minum secara mobile untuk kondisi darurat bencana banjir. Dalam hal ini rencana desain atau DED (Detail Engineering Design yang akan digunakan adalah mobile water treatment membran mikrofiltrasi, keuntungan dari menggunakan membran ini adalah dapat menyisihkan bakteri patogenik dan beberapa jenis virus. Pada perencanaan ini direncanakan unit-unit sebelum dan sesudah membran mikrofiltrasi agar kualitas air hasil pengolahan (effluent memenuhi baku mutu air siap minum yang sesuai dengan PERMENKES RI No.492/MEN.KES/PER/IV/2010.

  18. Comparison of boundary conditions from Global Chemistry Model (GCM) for regional air quality application

    Science.gov (United States)

    Lam, Yun Fat; Cheung, Hung Ming; Fu, Joshua; Huang, Kan

    2015-04-01

    Applying Global Chemistry Model (GCM) for regional Boundary Conditions (BC) has become a common practice to account for long-range transport of air pollutants in the regional air quality modeling. The limited domain model such as CMAQ and CAMx requires a global BC to prescribe the real-time chemical flux at the boundary grids, in order to give a realistic estimate of boundary impacts. Several GCMs have become available recently for use in regional air quality studies. In this study, three GCM models (i.e., GEOS-chem, CHASER and IFS-CB05 MACC provided by Seoul National University, Nagoya University and ECWMF, respectively) for the year of 2010 were applied in CMAQ for the East Asia domain under the framework of Model Inter-comparison Study Asia Phase III (MISC-Asia III) and task force on Hemispheric Transport of Air Pollution (HTAP) jointed experiments. Model performance evaluations on vertical profile and spatial distribution of O3 and PM2.5 have been made on those three models to better understand the model uncertainties from the boundary conditions. Individual analyses on various mega-cities (i.e., Hong Kong, Guangzhou, Taipei, Chongqing, Shanghai, Beijing, Tianjin, Seoul and Tokyo) were also performed. Our analysis found that the monthly estimates of O3 for CHASER were a bit higher than GEOS-Chem and IFS-CB05 MACC, particularly in the northern part of China in the winter and spring, while the monthly averages of PM2.5 in GEOS-Chem were the lowest among the three models. The hourly maximum values of PM2.5 from those three models (GEOS-Chem, CHASER and IFS-CB05 MACC are 450, 321, 331 μg/m3, while the maximum O3 are 158, 212, 380 ppbv, respectively. Cross-comparison of CMAQ results from the 45 km resolution were also made to investigate the boundary impacts from the global GCMs. The results presented here provide insight on how global GCM selection influences the regional air quality simulation in East Asia.

  19. The association between daily concentrations of air pollution and visits to a psychiatric emergency unit: a case-crossover study.

    Science.gov (United States)

    Oudin, Anna; Åström, Daniel Oudin; Asplund, Peter; Steingrimsson, Steinn; Szabo, Zoltan; Carlsen, Hanne Krage

    2018-01-10

    Air pollution is one of the leading causes of mortality and morbidity worldwide. Experimental studies, and a few epidemiological studies, suggest that air pollution may cause acute exacerbation of psychiatric disorders, and even increase the rate of suicide attempts, but epidemiological studies on air pollution in association with psychiatric disorders are still few. Our aim was to investigate associations between daily fluctuations in air pollution concentrations and the daily number of visits to a psychiatric emergency unit. Data from Sahlgrenska University Hospital, Gothenburg, Sweden, on the daily number of visits to the Psychiatric emergency unit were combined with daily data on monitored concentrations of respirable particulate matter(PM 10 ), ozone(O 3 ), nitrogen dioxides(NO 2 ) and temperature between 1st July 2012 and 31st December 2016. We used a case-crossover design to analyze data with conditional Poisson regression models allowing for over-dispersion. We stratified data on season. Visits increased with increasing PM 10 levels during the warmer season (April to September) in both single-pollutant and two-pollutant models. For example, an increase of 3.6% (95% Confidence Interval, CI, 0.4-7.0%) was observed with a 10 μg/m3 increase in PM 10 adjusted for NO 2 . In the three-pollutant models (adjusting for NO 2 and O 3 simultaneously) the increase was 3.3% (95% CI, -0.2-6.9). There were no clear associations between the outcome and NO 2 , O 3 , or PM 10 during the colder season (October to March). Ambient air particle concentrations were associated with the number of visits to the Psychiatric emergency unit in the warm season. The results were only borderline statistically significant in the fully adjusted (three-pollutant) models in this small study. The observation could be interpreted as indicative of air pollution as either exacerbating an underlying psychiatric disorder, or increasing mental distress, even in areas with comparatively low levels of

  20. Extension of the PMV model to non-air-conditioned building in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  1. Assessment of air quality benefits from national air pollution control policies in China. Part II: Evaluation of air quality predictions and air quality benefits assessment

    Science.gov (United States)

    Wang, Litao; Jang, Carey; Zhang, Yang; Wang, Kai; Zhang, Qiang; Streets, David; Fu, Joshua; Lei, Yu; Schreifels, Jeremy; He, Kebin; Hao, Jiming; Lam, Yun-Fat; Lin, Jerry; Meskhidze, Nicholas; Voorhees, Scott; Evarts, Dale; Phillips, Sharon

    2010-09-01

    Following the meteorological evaluation in Part I, this Part II paper presents the statistical evaluation of air quality predictions by the U.S. Environmental Protection Agency (U.S. EPA)'s Community Multi-Scale Air Quality (Models-3/CMAQ) model for the four simulated months in the base year 2005. The surface predictions were evaluated using the Air Pollution Index (API) data published by the China Ministry of Environmental Protection (MEP) for 31 capital cities and daily fine particulate matter (PM 2.5, particles with aerodiameter less than or equal to 2.5 μm) observations of an individual site in Tsinghua University (THU). To overcome the shortage in surface observations, satellite data are used to assess the column predictions including tropospheric nitrogen dioxide (NO 2) column abundance and aerosol optical depth (AOD). The result shows that CMAQ gives reasonably good predictions for the air quality. The air quality improvement that would result from the targeted sulfur dioxide (SO 2) and nitrogen oxides (NO x) emission controls in China were assessed for the objective year 2010. The results show that the emission controls can lead to significant air quality benefits. SO 2 concentrations in highly polluted areas of East China in 2010 are estimated to be decreased by 30-60% compared to the levels in the 2010 Business-As-Usual (BAU) case. The annual PM 2.5 can also decline by 3-15 μg m -3 (4-25%) due to the lower SO 2 and sulfate concentrations. If similar controls are implemented for NO x emissions, NO x concentrations are estimated to decrease by 30-60% as compared with the 2010 BAU scenario. The annual mean PM 2.5 concentrations will also decline by 2-14 μg m -3 (3-12%). In addition, the number of ozone (O 3) non-attainment areas in the northern China is projected to be much lower, with the maximum 1-h average O 3 concentrations in the summer reduced by 8-30 ppb.

  2. Final Environmental Assessment Travis Air Force Base Burke Property Housing

    National Research Council Canada - National Science Library

    1999-01-01

    ... (40 CFR Parts 1500-1508) and Air Force Instruction 32-7061, the U.S. Air Force conducted an assessment of the potential environmental consequences of the construction of up to 281 military family housing units at Travis AFB...

  3. Optimizing the Air Dissolution Parameters in an Unpacked Dissolved Air Flotation System

    Directory of Open Access Journals (Sweden)

    Adam Dassey

    2011-12-01

    Full Text Available Due to the various parameters that influence air solubility and microbubble production in dissolved air flotation (DAF, a multitude of values that cover a large range for these parameters are suggested for field systems. An unpacked saturator and an air quantification unit were designed to specify the effects of power, pressure, temperature, hydraulic retention time, and air flow on the DAF performance. It was determined that a pressure of 621 kPa, hydraulic retention time of 18.2 min, and air flow of 8.5 L/h would be the best controlled parameters for maximum efficiency in this unit. A temperature of 7 °C showed the greatest microbubble production, but temperature control would not be expected in actual application. The maximum microbubble flow from the designed system produced 30 mL of air (±1.5 per L of water under these conditions with immediate startup. The maximum theoretical dissolved air volume of 107 mL (±6 was achieved at a retention time of 2 h and a pressure of 621 kPa. To isolate and have better control over the various DAF operational parameters, the DAF unit was operated without the unsaturated flow stream. This mode of operation led to the formation of large bubbles at peak bubble production rates. In a real-world application, the large bubble formation will be avoided by mixing with raw unsaturated stream and by altering the location of dissolved air output flow.

  4. Plant injury due to air pollution - similar symptoms. Part I

    Energy Technology Data Exchange (ETDEWEB)

    Matsuoka, Y

    1976-01-01

    Many plant diseases cause injuries to leaves which mimic the damage inflicted by air pollution. The relationship between air pollution injuries and those caused by meteorological conditions are discussed. Rice plants often contract akagare which causes reddish-brown spots on leaves similar to the symptoms caused by photochemical oxidants. Spider mites produce leaf damage in kidney beans which mimics the spotting caused by photochemical oxidants. Lace bugs produce minute white spots on azaleas similar to those caused by photochemical oxidants.

  5. IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Danish participation 2007-2010. Appendix; IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Dansk deltagelse 2007-2010. Bilag

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K [Ellehauge og Kildemoes, Aarhus (Denmark); Muenster, E [PlanEnergi, Skoerping (Denmark); Reinholdt, L [Teknologisk Institut, Aarhus (Denmark); Munds, S [AC-Sun Aps, Horsens (Denmark)

    2011-03-15

    IEA SHC Task 38 'Solar Air-Conditioning and Refrigeration' ran from October 2006 to December 2010. Denmark was represented in the task from January 2007 to December 2010. The aim of the task was to encourage use of solar powered refrigeration and air conditioning systems in particular at residential, commercial and industrial sectors. Furthermore, the aim was to contribute to new research and development activities on new systems and concepts. The appendix contains the publications prepared by the Danish project group.(LN)

  6. 2016 German refrigeration and air conditioning meeting. Proceedings

    International Nuclear Information System (INIS)

    2016-01-01

    The following topics were dealt with: Large cryogenic facilities, relief valves, liquid helium, liquid-nitrogen and liquid hydrogen cooling, new concepts, foundations and materials of the heat-pump techniques, evaporation, phase-change materials, absorption, afterheat usage, ionic liquids, sorption, condensers, heat exchangers, back-cooling systems, refrigerants, caron dioxide, mobile applications, efficiency and optimization, air conditioning.

  7. Multidimensional HAM-conditions

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place

    Heat, Air and Moisture (HAM) conditions, experimental data are needed. Tests were performed in the large climate simulator at SBi involving full-scale wall elements. The elements were exposed for steady-state conditions, and temperature cycles simulating April and September climate in Denmark....... The effect on the moisture and temperature conditions of the addition of a vapour barrier and an outer cladding on timber frame walls was studied. The report contains comprehensive appendices documenting the full-scale tests. The tests were performed as a part of the project 'Model for Multidimensional Heat......, Air and Moisture Conditions in Building Envelope Components' carried out as a co-project between DTU Byg and SBi....

  8. An energy performance assessment for indoor environmental quality (IEQ) acceptance in air-conditioned offices

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.

    2009-01-01

    Maintaining an acceptable indoor environmental quality (IEQ) for air-conditioned office buildings consumes a considerable amount of thermal energy. This study correlates thermal energy consumption with the overall occupant acceptance of IEQ in some air-conditioned offices. An empirical expression of an IEQ index associated with thermal comfort, indoor air quality, aural and visual comfort is used to benchmark the offices. Employing input parameters obtained from the building stocks of Hong Kong, the office portfolios regarding the thermal energy consumption and the IEQ index are determined by Monte Carlo simulations. In particular, an energy-to-acceptance ratio and an energy-to-IEQ improvement ratio are proposed to measure the performance of energy consumption for the IEQ in the air-conditioned offices. The ratios give the thermal energy consumption corresponding to a desirable percentage of IEQ acceptances and to an IEQ upgrade, respectively. The results showed a non-linear increasing trend of annual thermal energy consumption for IEQ improvement at the offices of higher IEQ benchmarks. The thermal energy consumption for visual comfort and indoor air quality would also be significant in these offices. This study provides useful information that incorporates the IEQ in air-conditioned offices into the development of performance evaluation measures for thermal energy consumption.

  9. Local Air Quality Conditions and Forecasts

    Science.gov (United States)

    ... Monitor Location Archived Maps by Region Canada Air Quality Air Quality on Google Earth Links A-Z About AirNow AirNow International Air Quality Action Days / Alerts AirCompare Air Quality Index (AQI) ...

  10. Reducing indoor air pollution by air conditioning is associated with improvements in cardiovascular health among the general population.

    Science.gov (United States)

    Lin, Lian-Yu; Chuang, Hsiao-Chi; Liu, I-Jung; Chen, Hua-Wei; Chuang, Kai-Jen

    2013-10-01

    Indoor air pollution is associated with cardiovascular effects, however, little is known about the effects of improving indoor air quality on cardiovascular health. The aim of this study was to explore whether improving indoor air quality through air conditioning can improve cardiovascular health in human subjects. We recruited a panel of 300 healthy subjects from Taipei, aged 20 and over, to participate in six home visits each, to measure a variety of cardiovascular endpoints, including high sensitivity-C-reactive protein (hs-CRP), 8-hydroxy-2'-deoxyguanosine (8-OHdG), fibrinogen in plasma and heart rate variability (HRV). Indoor particles and total volatile organic compounds (VOCs) were measured simultaneously at the participant's home during each visit. Three exposure conditions were investigated in this study: participants were requested to keep their windows open during the first two visits, close their windows during the next two visits, and close the windows and turn on their air conditioners during the last two visits. We used linear mixed-effects models to associate the cardiovascular endpoints with individual indoor air pollutants. The results showed that increases in hs-CRP, 8-OHdG and fibrinogen, and decreases in HRV indices were associated with increased levels of indoor particles and total VOCs in single-pollutant and two-pollutant models. The effects of indoor particles and total VOCs on cardiovascular endpoints were greatest during visits with the windows open. During visits with the air conditioners turned on, no significant changes in cardiovascular endpoints were observed. In conclusion, indoor air pollution is associated with inflammation, oxidative stress, blood coagulation and autonomic dysfunction. Reductions in indoor air pollution and subsequent improvements in cardiovascular health can be achieved by closing windows and turning on air conditioners at home. Copyright © 2013 Elsevier B.V. All rights reserved.

  11. Design and Simulation of an Air Conditioning Project in a Hospital Based on Computational Fluid Dynamics

    OpenAIRE

    Ding X. R.; Guo Y. Y.; Chen Y. Y.

    2017-01-01

    This study aims to design a novel air cleaning facility which conforms to the current situation in China, and moreover can satisfy our demand on air purification under the condition of poor air quality, as well as discuss the development means of a prototype product. Air conditions in the operating room of a hospital were measured as the research subject of this study. First, a suitable turbulence model and boundary conditions were selected and computational fluid dynamics (CFD) software was ...

  12. Analisa Performansi Sistem Air Conditioning Mobil tipe ET 450 dengan Variasi Tekanan Kerja Kompresor

    Directory of Open Access Journals (Sweden)

    Adi Purnawan

    2012-11-01

    Full Text Available Comfort and coolness when traveling by vehicle especially car is highly needed. So many attempts have been made byhumans that comfortable traveling by car can be achieved. One of the effective ways in which comfortable traveling by car can beobtained is by installing air conditioning. The performance of air conditioning system is highly influenced by how the compressorworks. In other words, the pressure resulting from the suction highly determines the performance of air conditioning system,which then affects how the compressor works, the compressor power, the refrigeration effect, the efficiency of isentropic andcoefficient of performance (COP of the car air conditioning sytem especially that of the car air conditioner type ET 450. Fromwhat has been described above, the writer would like to conduct a research entiled “ Analysis of the Performance of the Car AirConditioning system Type ET 450 with Variation of the Compressor Pressure”.The test was conducted on the car air conditioner type ET 450 with variations of suction 2.8 bar, 3 bar, 3.2 bar, 3.4bar, 3.6 bar and 3.8 bar. The data were obtained from the pressure of compressor output (P2, the temperatures in each point areT1, T2, T3, T4, the compressor rotationn is n, the strength of electrical current is I, and the volumetric flow rate. The data werethen processed and analyzed so that so that the performance of each variation of the suction could be actually and theoreticallyobtained.The findings show that the bigger the suction, the bigger the performance of the car air conditioner type ET 450 wouldbe. The theoretical coefficient of performance (COP produced was bigger than the actual COP. The optimal COP took placewhen the suction was 441.325 kPa, the actual COP was 3.513177 and the theoretical COP was 3.632062

  13. 2014 German refrigeration and air conditioning meeting. Proceedings; Deutsche Kaelte- und Klimatagung 2014. Tagungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The proceedings of the 2014 German refrigeration and air conditioning meeting contain contributions on the following topics: cryotechnology, fundamentals and materials for the refrigeration and heat pump technology, devices and components for the refrigeration and heat pump technology, applications of refrigeration technologies, air conditioning technology and heat pump applications, cryotechnology in biology and medicine, heat transfer and ventilation, guidelines and legal topics, refrigerant fluid - oil mixtures, control and surveillance, simulation and control, ambient air.

  14. Effectiveness of photocatalytic filter for removing volatile organic compounds in the heating, ventilation, and air conditioning system.

    Science.gov (United States)

    Yu, Kuo-Pin; Lee, Grace Whei-May; Huang, Wei-Ming; Wu, Chih-Cheng; Lou, Chia-ling; Yang, Shinhao

    2006-05-01

    Nowadays, the heating, ventilation, and air conditioning (HVAC) system has been an important facility for maintaining indoor air quality. However, the primary function of typical HVAC systems is to control the temperature and humidity of the supply air. Most indoor air pollutants, such as volatile organic compounds (VOCs), cannot be removed by typical HVAC systems. Thus, some air handling units for removing VOCs should be added in typical HVAC systems. Among all of the air cleaning techniques used to remove indoor VOCs, photocatalytic oxidation is an attractive alternative technique for indoor air purification and deodorization. The objective of this research is to investigate the VOC removal efficiency of the photocatalytic filter in a HVAC system. Toluene and formaldehyde were chosen as the target pollutants. The experiments were conducted in a stainless steel chamber equipped with a simplified HVAC system. A mechanical filter coated with Degussa P25 titania photocatalyst and two commercial photocatalytic filters were used as the photocatalytic filters in this simplified HVAC system. The total air change rates were controlled at 0.5, 0.75, 1, 1.25, and 1.5 hr(-1), and the relative humidity (RH) was controlled at 30%, 50%, and 70%. The ultraviolet lamp used was a 4-W, ultraviolet-C (central wavelength at 254 nm) strip light bulb. The first-order decay constant of toluene and formaldehyde found in this study ranged from 0.381 to 1.01 hr(-1) under different total air change rates, from 0.34 to 0.433 hr(-1) under different RH, and from 0.381 to 0.433 hr(-1) for different photocatalytic filters.

  15. Multistage open-tube trap for enrichment of part-per-trillion trace components of low-pressure (below 27-kPa) air samples

    Science.gov (United States)

    Ohara, D.; Vo, T.; Vedder, J. F.

    1985-01-01

    A multistage open-tube trap for cryogenic collection of trace components in low-pressure air samples is described. The open-tube design allows higher volumetric flow rates than densely packed glass-bead traps commonly reported and is suitable for air samples at pressures below 27 kPa with liquid nitrogen as the cryogen. Gas blends containing 200 to 2500 parts per trillion by volume each of ethane and ethene were sampled and hydrocarbons were enriched with 100 + or - 4 percent trap efficiency. The multistage design is more efficient than equal-length open-tube traps under the conditions of the measurements.

  16. Life cycle cost analysis of HPVT air collector under different Indian climatic conditions

    International Nuclear Information System (INIS)

    Raman, Vivek; Tiwari, G.N.

    2008-01-01

    In this communication, a study is carried out to evaluate an annual thermal and exergy efficiency of a hybrid photovoltaic thermal (HPVT) air collector for different Indian climate conditions, of Srinagar, Mumbai, Jodhpur, New Delhi and Banglore. The study has been based on electrical, thermal and exergy output of the HPVT air collector. Further, the life cycle analysis in terms of cost/kWh has been carried out. The main focus of the study is to see the effect of interest rate, life of the HPVT air collector, subsidy, etc. on the cost/kWh HPVT air collector. A comparison is made keeping in view the energy matrices. The study reveals that (i) annual thermal and electrical efficiency decreases with increase in solar radiation and (ii) the cost/kWh is higher in case of exergy when compared with cost/kWh on the basis of thermal energy for all climate conditions. The cost/kWh for climate conditions of Jodhpur is most economical

  17. Air condensation thermo-pumps for residential and small commercial buildings; Les thermopompes a condensation par air dans le residentiel et le petit tertiaire

    Energy Technology Data Exchange (ETDEWEB)

    Carteret, P. [Societe Airwell, (France)

    1997-12-31

    The advantages of recent air conditioning systems in terms of temperature control, air quality, air renewal, humidity control, air distribution, acoustic comfort, flexibility, are reviewed and some aspects concerning the evolution of the market in France are discussed (steady growth of the AC residential market). The different types of air conditioning systems are presented (direct expansion with the split-system, and cool water system); the characteristics, advantages and investment/operation costs of split-system and multi-splits thermo-pumps and hot water / cooled water production central units are described

  18. Energy performance and optimal control of air-conditioned buildings with envelopes enhanced by phase change materials

    International Nuclear Information System (INIS)

    Zhu Na; Wang Shengwei; Ma Zhenjun; Sun Yongjun

    2011-01-01

    Highlights: → Impact of PCM on the energy consumption and peak load demand as well as electricity cost of air-conditioned buildings. → Impact of load shifting control on energy consumption, peak load and electricity cost of air-conditioned PCM buildings. → Impact of demand limiting control on energy consumption, peak load and electricity cost of air-conditioned PCM buildings. → Energy/cost effects of different control strategies and use of PCM in energy-plus-demand-based pricing policy. → Energy/cost effects of different control strategies and use of PCM in time-based pricing policy. - Abstract: Studies are conducted to investigate the impacts of shape-stabilized phase change material (SSPCM) and different control strategies on the energy consumption and peak load demand as well as electricity cost of building air-conditioning systems at typical summer conditions in two climates (subtropical and dry continental climates). An office building using a typical variable air volume (VAV) air-conditioning system was selected and simulated as the reference building in this study. Its envelopes were enhanced by integrating the SSPCM layers into its walls while the air-conditioning system and other configurations of the building remained unchanged. The building system was tested under two typical weather conditions and two typical electricity pricing policies (i.e. time-based pricing and energy-plus-demand-based pricing). Test results show that the use of SSPCM in the building could reduce the building electricity cost significantly (over 11% in electricity cost reduction and over 20% in peak load reduction), under two pricing policies by using load shifting control and demand limiting control respectively. This paper presents the test results and the evaluation on the energy performance and the optimal control strategies of air-conditioned commercial buildings with envelopes enhanced by SSPCM.

  19. Future climate impact on unfavorable meteorological conditions for the dispersion of air pollution in Brussels

    Science.gov (United States)

    De Troch, Rozemien; Berckmans, Julie; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet

    2015-04-01

    Belgium is one of the several countries in Europe where air quality levels of different pollutants such as ozone, NOx, and Particulate Matter (PM) still exceed the prescribed European norms multiple times a year (EEA, 2014). These pollution peaks have a great impact on health and environment, in particular in large cities and urban environments. It is well known that observed concentrations of air pollutants are strongly influenced by emissions and meteorological conditions and therefore is sensitive to climate change. As the effects of global climate change are increasingly felt in Belgium, policy makers express growing interest in quantifying its effect on air pollution and the effort required to meet the air quality targets in the next years and decennia (Lauwaet et al., 2014). In this study, two different stability indices are calculated for a 9-year period using present (1991-1999) and future (2047-2055) climate data that has been obtained from a dynamically downscaling of Global Climate Model data from the Arpège model using the ALARO model at 4 km spatial resolution. The ALARO model is described in detail in previous validation studies from De Troch et al. (2013) and Hamdi et al. (2013). The first index gives a measure of the horizontal and vertical transport of nonreactive pollutants in stable atmospheric conditions and has been proposed and tested by Termonia and Quinet (2004). It gives a characteristic length scale l which is the ratio of the mean horizontal wind speed and the Brunt-Väisälä frequency. In this way low values for l in the lower part of the boundary layer during an extended time span of 12 hours, correspond to calm situations and a stable atmosphere and thus indicate unfavorable conditions for the dispersion of air pollution. This transport index is similar to an index used in an old Pasquill-type scheme but is more convenient to use to detect the strongest pollution peaks. The well known Pasquill classes are also calculated in order to

  20. Impact of the Air-Conditioning System on the Power Consumption of an Electric Vehicle Powered by Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Brahim Mebarki

    2013-01-01

    Full Text Available The car occupies the daily universe of our society; however, noise pollution, global warming gas emissions, and increased fuel consumption are constantly increasing. The electric vehicle is one of the recommended solutions by the raison of its zero emission. Heating and air-conditioning (HVAC system is a part of the power system of the vehicle when the purpose is to provide complete thermal comfort for its occupants, however it requires far more energy than any other car accessory. Electric vehicles have a low-energy storage capacity, and HVAC may consume a substantial amount of the total energy stored, considerably reducing the vehicle range, which is one of the most important parameters for EV acceptability. The basic goal of this paper is to simulate the air-conditioning system impact on the power energy source of an electric vehicle powered by a lithium-ion battery.

  1. Studies of Radon and Radon Progeny in Air Conditioned Rooms in Hospitals

    International Nuclear Information System (INIS)

    Marley, F.; Denman, A.R.; Phillips, P.S.

    1998-01-01

    A series of continuous real-time radon and radon progeny measurements together with passive etched track detector measurements were performed in hospital premises during 1996. In one small room, detailed measurements over several weeks showed that both the radon concentration and the Equilibrium Factor depended on the intermittent operation of a filtered positive pressure displacement air-conditioning system, which was designed to conform to operating theatre standards. The average radon level measured while the air-conditioning was off was almost four times higher than that recorded whilst it was on. The progeny level was over five times higher than that whilst it was on. Thus, the Equilibrium Factor (F), was significantly lower when the air-conditioning was on. Measurements in similar rooms in two hospitals, confirmed that the reduction in radon level was a general finding. Thus staff working in such environments receive significantly lower radiation dose from radon than staff working in nearby normally ventilated rooms. (author)

  2. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    Science.gov (United States)

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-11-16

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  3. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Baiwang Zhao

    2015-11-01

    Full Text Available In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  4. Air-lift pumps characteristics under two-phase flow conditions

    International Nuclear Information System (INIS)

    Kassab, Sadek Z.; Kandil, Hamdy A.; Warda, Hassan A.; Ahmed, Wael H.

    2009-01-01

    Air-lift pumps are finding increasing use where pump reliability and low maintenance are required, where corrosive, abrasive, or radioactive fluids in nuclear applications must be handled and when a compressed air is readily available as a source of a renewable energy for water pumping applications. The objective of the present study is to evaluate the performance of a pump under predetermined operating conditions and to optimize the related parameters. For this purpose, an air-lift pump was designed and tested. Experiments were performed for nine submergence ratios, and three risers of different lengths with different air injection pressures. Moreover, the pump was tested under different two-phase flow patterns. A theoretical model is proposed in this study taking into account the flow patterns at the best efficiency range where the pump is operated. The present results showed that the pump capacity and efficiency are functions of the air mass flow rate, submergence ratio, and riser pipe length. The best efficiency range of the air-lift pumps operation was found to be in the slug and slug-churn flow regimes. The proposed model has been compared with experimental data and the most cited models available. The proposed model is in good agreement with experimental results and found to predict the liquid volumetric flux for different flow patterns including bubbly, slug and churn flow patterns

  5. 2015 German refrigeration and air conditioning meeting. Abstracts; Deutsche Kaelte- und Klimatagung 2015. Kurzfassungen

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2015-07-01

    The volume contains the abstracts of the 2015 German refrigeration and air conditioning meeting in 5 chapters: cryo-technology, fundamentals of materials for refrigeration engineering and heat pump technology, facilities and components for the refrigeration and heat pump technology; application of refrigeration engineering; air conditioning technology and heat pump application.

  6. A new method for controlling refrigerant flow in automobile air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Xuquan Li; Jiangping Chen; Zhijiu Chen [Shanghai Jiao Tong University (China). Institute of Refrigeration and Cryogenics Engineering; Weihua Liu; Wei Hu; Xiaobing Liu [Shanghai Delphi Automotive Air Conditiong Systems Co. Ltd., Changhai (China)

    2004-05-01

    This paper describes the improvement of the refrigerant flow control method by using an electronic expansion valve (EEV) which is driven by a stepper motor in automobile air conditioning system. An EEV can make a quick response to the abrupt change in the refrigerant flow rate during the change in automobile speed and the thermostatic on/off operation. The flow rate characteristic of the EEV for automobile air conditioning was presented. A microcontroller is used to receive the input signal and generate the output signal to control the opening of the EEV. The fuzzy self-tuning proportional-integral-derivative (PID) control method is employed. Experimental results show that the new control method can feed adequate refrigerant flow into the evaporator in various operations. The evaporator discharge air temperature has dropped by approximately 3{sup o}C as compared with that of the conventional PID control system. (author)

  7. A Historical Analysis of Basic Air Force Doctrine Education within the United States States Air Force Air Command and Staff College, 1947-1987.

    Science.gov (United States)

    1987-09-01

    doctrine, especially joint doctrine. Because of this we make mistakes. I believe that the Air Force needs to develop a formal doctrinallo education...jresenteo arguments for all three points of view, but ne was particularly critical of tne educacional system within tae United States military. He said tnat

  8. Effects of cathode channel size and operating conditions on the performance of air-blowing PEMFCs

    International Nuclear Information System (INIS)

    Kim, Bosung; Lee, Yongtaek; Woo, Ahyoung; Kim, Yongchan

    2013-01-01

    Highlights: • Effect of cathode channel size on the air-blowing PEMFC is analyzed. • Performance and EIS tests of air-blowing PEMFCs are conducted. • Test conditions include the operating temperature, fan voltage, and anode humidity. • Flooding is a limiting factor for decreasing channel size at low temperature. • Water management is investigated by analyzing ohmic resistance. - Abstract: Air-blowing proton exchange membrane fuel cells (PEMFCs) have been developed as a potential new power source for portable electronic devices. However, air-blowing PEMFCs show lower performance than compressed-air PEMFCs because of their adverse operating conditions. In this study, the effects of the cathode channel size and operating conditions on the performance of the air-blowing PEMFC were analyzed. At the normal operating temperature, the performance of the air-blowing PEMFC improved with the decrease in the cathode channel size. However, at a low operating temperature and low fan voltage, massive flooding limits the decrease in the cathode channel size. In addition, water management in the air-blowing PEMFC was investigated by analyzing ohmic resistance. The transition current density between the humidification and the flooding region decreased with decreasing cathode channel size and operating temperature

  9. Effect of CRAC units layout on thermal management of data center

    International Nuclear Information System (INIS)

    Nada, S.A.; Said, M.A.

    2017-01-01

    Highlights: • CFD study of thermal management in data centers. • Effects of layout arrangements of the CRACs units relative to the racks array on data center performance. • Design guide liens for data centers energy efficiency improvements. - Abstract: Comprehensive numerical studies of thermal management of data centers were presented by several investigators for different geometric and operating conditions of data centers. In the present work, a technical note regarding the effect of the computer room air conditioning (CRAC) units layout arrangements is presented. Two arrangements of CRAC units layouts are investigated; namely locating CRACs units in line with the racks row and locating the CRACs units perpendicular to the rack row. Temperature distributions, air flow characteristics particularly air recirculation and bypass and thermal management in data centers are evaluated in terms of the measureable overall performance parameters: supply/return heat indices (SHI/RHI) and return temperature indices (RTI). The results showed that locating CRAC units perpendicular to the racks row has the following effects: (i) enhances the uniformity of the air flow from the perforated tiles along the rack row, (ii) reduces the hot air recirculation at the ends racks of the row and the cold air bypass at the middle rack of the row and (iii) enhances the data center performance parameters RTI, SHI and RHI.

  10. Tree and forest effects on air quality and human health in the United States

    Science.gov (United States)

    David J. Nowak; Satoshi Hirabayashi; Allison Bodine; Eric. Greenfield

    2014-01-01

    Trees remove air pollution by the interception of particulate matter on plant surfaces and the absorption of gaseous pollutants through the leaf stomata. However, the magnitude and value of the effects of trees and forests on air quality and human health across the United States remains unknown. Computer simulations with local environmental data reveal that trees and...

  11. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    Energy Technology Data Exchange (ETDEWEB)

    Skwarczynski, M.A. [Faculty of Environmental Engineering, Institute of Environmental Protection Engineering, Department of Indoor Environment Engineering, Lublin University of Technology, Lublin (Poland); International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Melikov, A.K.; Lyubenova, V. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Kaczmarczyk, J. [Faculty of Energy and Environmental Engineering, Department of Heating, Ventilation and Dust Removal Technology, Silesian University of Technology, Gliwice (Poland)

    2010-10-15

    The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and local air velocity under a constant air temperature of 26 C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front toward the upper part of the body (upper chest, head). The subjects could control the flow rate (velocity) of the supplied air in the vicinity of their bodies. The results indicate an airflow with elevated velocity applied to the face significantly improves the acceptability of the air quality at the room air temperature of 26 C and relative humidity of 70%. (author)

  12. Persistence of Initial Conditions in Continental Scale Air Quality Simulations

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset contains the data used in Figures 1 – 6 and Table 2 of the technical note "Persistence of Initial Conditions in Continental Scale Air Quality...

  13. Parametric analysis of a combined dew point evaporative-vapour compression based air conditioning system

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Chauhan

    2016-09-01

    Full Text Available A dew point evaporative-vapour compression based combined air conditioning system for providing good human comfort conditions at a low cost has been proposed in this paper. The proposed system has been parametrically analysed for a wide range of ambient temperatures and specific humidity under some reasonable assumptions. The proposed system has also been compared from the conventional vapour compression air conditioner on the basis of cooling load on the cooling coil working on 100% fresh air assumption. The saving of cooling load on the coil was found to be maximum with a value of 60.93% at 46 °C and 6 g/kg specific humidity, while it was negative for very high humidity of ambient air, which indicates that proposed system is applicable for dry and moderate humid conditions but not for very humid conditions. The system is working well with an average net monthly power saving of 192.31 kW h for hot and dry conditions and 124.38 kW h for hot and moderate humid conditions. Therefore it could be a better alternative for dry and moderate humid climate with a payback period of 7.2 years.

  14. Production and exploitation of thermoelectric air conditioning systems for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Dudnik, Vladimir [Conditioner Ltd, Gagarin (Russian Federation); Skipidarov, Sergey [SCTB NORD, Moskau (Russian Federation); Rapp, Axel [Quick-Ohm Kupper und Co. GmbH, Wuppertal-Cronenberg (Germany)

    2011-07-01

    In the paper more than 10-year experience of thermoelectric devices batch manufacturing is described for the field of their obvious advantages. This field of application includes thermoelectric air conditioning systems which have shown their competitive advantage when used in vehicles of elevated vibration where compressor equipment application is difficult because of leakage of refrigerant. Energy characteristics of air conditioners for tractors, excavators, tanks, locomotive driver's cabins and cranes are described. Thermoelectric (TE) air conditioners mechanical test data as well as operation experience in vehicles are presented. It is shown that consumption of tellurium, which is a strategic component for thermoelectric materials manufacturing, may be lowered to 40 grams per 1 kW of cooling. (orig.)

  15. 76 FR 13661 - In the Matter of Certain Connecting Devices (“Quick Clamps”) for Use With Modular Compressed Air...

    Science.gov (United States)

    2011-03-14

    ... INTERNATIONAL TRADE COMMISSION [Investigation No. 337-TA-587] In the Matter of Certain Connecting Devices (``Quick Clamps'') for Use With Modular Compressed Air Conditioning Units, Including Filters... within the United States after importation of certain devices for modular compressed air conditioning...

  16. Efficiency assessment of indoor environmental policy for air-conditioned offices in Hong Kong

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.

    2009-01-01

    To reduce carbon dioxide (CO 2 ) emissions through thermal energy conservation, air-conditioned offices in the subtropics are recommended to operate within specified ranges of indoor temperature, relative humidity and air velocity. As thermal discomfort leads to productivity loss, some indoor environmental policies for air-conditioned offices in Hong Kong are investigated in this study with relation to thermal energy consumption, CO 2 emissions from electricity use, and productivity loss due to thermal discomfort. Occupant thermal response is specifically considered as an adaptive factor in evaluating the energy consumption and productivity loss. The energy efficiency of an office is determined by the productivity which corresponds to the CO 2 generated. The results found that a policy with little impact on occupant thermal comfort and worker productivity would improve the office efficiency while the one with excessive energy consumption reduction would result in a substantial productivity loss. This study is a useful reference source for evaluating an indoor thermal environmental policy regarding the energy consumption, CO 2 emissions reduction, thermal comfort and productivity loss in air-conditioned offices in subtropical areas.

  17. The study of operating an air conditioning system using Maisotsenko-Cycle

    Science.gov (United States)

    Khan, Mohammad S.; Tahan, Sami; Toufic El-Achkar, Mohamad; Abou Jamus, Saleh

    2018-03-01

    The project aims to design and build an air conditioning system that runs on the Maisotsenko cycle. The system is required to condition and cool down ambient air for a small residential space with the reduction in the use of electricity and eliminating the use of commercial refrigerants. This project can operate at its optimum performance in remote areas like oil diggers and other projects that run in the desert or any site that would not have a very high relative humidity level. The Maisotsenko cycle is known as the thermodynamic concept that captures energy from the air by using the psychometric renewable energy available in the latent heat in water evaporating in air. The heat and mass exchanger design was based on choosing a material that would-be water resistant and breathable, which was found to be layers of cardboard placed on top of each other and thus creating channels for air to pass through. Aiming for this design eliminates any high power electrical equipment such as compressors, condensers and evaporators that would be used in an AC system with the exception of a 600 W blower and a 10 W fan, thus making it a more environmentally friendly project. Moreover, the project is limited by the ambient temperature and humidity, as the model operates at an optimum when the relative humidity is lower.

  18. 40 CFR Appendix R to Part 50 - Interpretation of the National Ambient Air Quality Standards for Lead

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Interpretation of the National Ambient Air Quality Standards for Lead R Appendix R to Part 50 Protection of Environment ENVIRONMENTAL.... 50, App. R Appendix R to Part 50—Interpretation of the National Ambient Air Quality Standards for...

  19. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    Science.gov (United States)

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  20. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV systems.

    Directory of Open Access Journals (Sweden)

    Bing Feng Ng

    Full Text Available The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  1. Compressed air as a source of inhaled oxidants in intensive care units.

    Science.gov (United States)

    Thibeault, D W; Rezaiekhaligh, M H; Ekekezie, I; Truog, W E

    1999-01-01

    Exhaled gas from mechanically ventilated preterm infants was found to have similar oxidant concentrations, regardless of lung disease, leading to the hypothesis that wall outlet gases were an oxidant source. Oxidants in compressed room air and oxygen from wall outlets were assessed in three hospitals. Samples were collected by flowing wall outlet gas through a heated humidifier and an ice-packed condenser. Nitric oxide (NO) was measured in intensive care room air and in compressed air with and without a charcoal filter using a Sievers NOA280 nitric oxide analyzer (Boulder, CO). Oxidants were measured by spectrophotometry and expressed as nMol equivalents of H2O2/mL. The quantity of oxidant was also expressed as amount of Vitamin C (nMol/mL) added until the oxidant was nondetectable. This quantity of Vitamin C was also expressed in Trolox Equivalent Antioxidant Capacity (TEAC) units (mMol/L). Free and total chlorine were measured with a Chlorine Photometer. Oxidants were not found in compressed oxygen and were only found in compressed air when the compression method used tap water. At a compressed room air gas flow of 1.5 L/min, the total volume of condensate was 20.2 +/- 1 mL/hr. The oxidant concentration was 1.52 +/- 0.09 nMol/mL equivalents of H2O2/mL of sample and 30.8 +/- 1.2 nMol/hr; 17.9% of that found in tap water. Oxidant reduction required 2.05 +/-0.12 nMol/mL vitamin C, (1.78 +/- 0.1 x 10(-3) TEAC units). Free and total chlorine in tap water were 0.3 +/- 0.02 mg/mL and 2.9 +/- 0.002 mg/mL, respectively. Outlet gas contained 0.4 +/- 0.06 mg/mL and 0.07 + 0.01 mg/mL total and free chlorine, respectively; both 14% of tap water. When a charcoal filter was installed in the hospital with oxidants in compressed air, oxidants were completely removed. Nursery room air contained 12.4 +/- 0.5 ppb NO; compressed wall air without a charcoal filter, 8.1 +/- 0.1 ppb and compressed air with a charcoal filter 12.5 +/- 0.5 ppb. A charcoal filter does not remove NO. (Table

  2. Developed adaptive neuro-fuzzy algorithm to control air conditioning ...

    African Journals Online (AJOL)

    The paper developed artificial intelligence technique adaptive neuro-fuzzy controller for air conditioning systems at different pressures. The first order Sugeno fuzzy inference system was implemented and utilized for modeling and controller design. In addition, the estimation of the heat transfer rate and water mass flow rate ...

  3. 2012 German refrigeration and air conditioning meeting. Proceedings; Deutsche Kaelte-Klima-Tagung 2012 Tagungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Within the DKV conference of the Deutscher Kaelte- und Klimatechnischer Verein e.V. (Hanover, Federal Republic of Germany) from 21st to 23rd November, 2012, in Wuerzburg (Federal Republic of Germany) 121 lectures were held according to the following themes: Measurement and process control in cryotechnology; energy storage and energy application; application of cryotechnology in biology and medicine, new concepts and plants; fundamentals and materials for the technology of cold pumps and heat pumps - pool boiling; flow boiling / CO{sub 2}; adsorption processes; adsorption processes / phase change materials; condensation / dehumidification; plants and components of the technology of cold pumps and heat pumps - compressors; expansion and regulation; heat exchanger and reflux cooling; heat exchangers; systems simulation; systems and materials; application of cold - energy controlling / application; foodstuff / supermarket; air conditionings of passenger cars; air-conditioning of electric-powered automobiles; railway air-conditioning / system analyses; standardization and regulations; air conditioning and application of heat pumps - regulation / hardware-in-the-loop; net-zero-energy building; building engineering and simulation; standardization / IAQ / building materials; heat pumps; thermal comfort and performance in office accommodations.

  4. HVAC-DYNAMICS - a tool for quality assurance in relation to delivery of air-conditioning systems. [Heating, ventilating and air conditioning]. HVAC-DYNAMICS - et redskap for kvalitetsikring av sluttleveransen i klima-anlegg

    Energy Technology Data Exchange (ETDEWEB)

    Novakovic, V [SINTEF Varmeteknikk, Seksjon VVS (NO)

    1990-07-01

    HVAC-DYNAMICS is a computerized tool for quality assurance of the functioning of an air-conditioning system at the time of delivery. The system's efficiency in the case of fluctuating and critical operation is evaluated. The HVAC-DYNAMICS gives an optimal choice for air-conditioning systems regarding indoor climate, efficiency demands and energy consumption. The program can also be use for calibration of regulators, fault-finding, and training purposes. (CLS).

  5. Commentary: Air-conditioning as a risk for increased use of healthservices

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, Mark J.

    2004-06-01

    In this issue of the journal, Preziosi et al. [2004] report the first study to assess differences in the utilization of health care related to the presence of air-conditioning in office workplaces. Although the study was simple and cross-sectional, the data variables from questionnaires, and the findings subject to a variety of questions, the findings are striking enough to deserve clarification. The study used a large random national sample of French women assembled for another purpose (to study antioxidant nutrients and prevention of cancer and cardiovascular disease). Participants reported health services and health events in monthly questionnaires over 1 year, and in one questionnaire in the middle of that period also reported whether air-conditioning was in use at their workplace. Fifteen percent of participants reported air-conditioning at work. Analyses adjusting for age and smoking status of participants found increases in most outcomes assessed: use of specific kinds of physicians, sickness absence, and hospital stays. While the increases in odds ratios (OR) and 95% confidence intervals (CI) were statistically significant for only otorhinolaryngology [OR (95% CI) = 2.33 (1.35-4.04)] and sickness absence [1.70 (1.13-2.58)], other increases were notable--dermatology [1.6 (0.98-2.65)]; hospital stay [1.51 (0.92-2.45)], and pneumonology [2.10 (0.65-6.82)]. The least elevated outcomes were for general practice medicine [0.99 (0.65-1.48)] and global medical visits [1.18 (0.67-2.07)]. [Preziosi et al., 2004 ,(Table 2)] Odds ratios for relatively common health outcomes often lie farther from the null than the risk ratios most useful for quantifying the increase in risk. Risk ratios, or prevalence ratios (PRs, the equivalent measure of effect for cross-sectional data), have seldom been used because of the convenience and availability of logistic regression models that estimate odds ratios. With baseline prevalences ranging up to 85.7% in the data from Preziosi et

  6. Design and Simulation of an Air Conditioning Project in a Hospital Based on Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Ding X. R.

    2017-06-01

    Full Text Available This study aims to design a novel air cleaning facility which conforms to the current situation in China, and moreover can satisfy our demand on air purification under the condition of poor air quality, as well as discuss the development means of a prototype product. Air conditions in the operating room of a hospital were measured as the research subject of this study. First, a suitable turbulence model and boundary conditions were selected and computational fluid dynamics (CFD software was used to simulate indoor air distribution. The analysis and comparison of the simulation results suggested that increasing the area of air supply outlets and the number of return air inlets would not only increase the area of unidirectional flow region in main flow region, but also avoid an indoor vortex and turbulivity of the operating area. Based on the summary of heat and humidity management methods, the system operation mode and relevant parameter technologies as well as the characteristics of the thermal-humidity load of the operating room were analyzed and compiled. According to the load value and parameters of indoor design obtained after our calculations, the airflow distribution of purifying the air-conditioning system in a clean operating room was designed and checked. The research results suggested that the application of a secondary return air system in the summer could reduce energy consumption and be consistent with the concept of primaiy humidity control. This study analyzed the feasibility and energy conservation properties of cleaning air-conditioning technology in operating rooms, proposed some solutions to the problem, and performed a feasible simulation, which provides a reference for practical engineering.

  7. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  8. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-01-01

    Full Text Available This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  9. Microbiological burden in air culture at various units of a tertiary care government hospital in Nepal

    Directory of Open Access Journals (Sweden)

    Binaya Sapkota

    2016-01-01

    Full Text Available Background The environmental matrices (water, air, and surfaces play a vital role as reservoirs of Legionella spp. and Pseudomonas aeruginosa (Pseudomonas spp.. Hence, hospital environment control procedures are effective measures for reducing nosocomial infections. Aims This study was carried out to explore the profiles of microorganisms in air culture at various wards/units of a tertiary care hospital in Nepal. Methods A descriptive cross-sectional study was carried out at various wards/units of a tertiary care hospital in Nepal between January and September 2015 to explore the microbiological burden in inanimate objects. Each week one ward or unit was selected for the study. Bed, tap, the entire room, trolley, computer, phone, rack handles, table, chair, door, stethoscope, oxygen mask, gown, cupboard handles, and wash basins were selected for air culture testing. Ten different wards/units and 77 locations/pieces of equipment were selected for air culture by employing a simple random sampling technique. Information about the organisms was entered into the Statistical Package for the Social Sciences (SPSS Version 22 (IBM: Armonk, NY and descriptive analyses were carried out. Results Staphylococcus aureus (S. aureus, Micrococcus, coagulase negative staphylococcus (CONS, Bacillus, Pseudomonas aeruginosa, yeast, and Acinetobacter were the most commonly detected organisms. In the postoperative ward, S. aureus was the most frequently detected microorganism. Micrococcus was detected in four out of 10 locations. In the x-ray unit, S. aureus was detected in three out of four locations. Conclusion S. aureus, Micrococcus, CONS, Bacillus, Pseudomonas, yeast, and Acinetobacter were the most common organisms detected.

  10. Air-conditioning and antibiotics: Demand management insights from problematic health and household cooling practices

    International Nuclear Information System (INIS)

    Nicholls, Larissa; Strengers, Yolande

    2014-01-01

    Air-conditioners and antibiotics are two technologies that have both been traditionally framed around individual health and comfort needs, despite aspects of their use contributing to social health problems. The imprudent use of antibiotics is threatening the capacity of the healthcare system internationally. Similarly, in Australia the increasing reliance on air-conditioning to maintain thermal comfort is contributing to rising peak demand and electricity prices, and is placing an inequitable health and financial burden on vulnerable heat-stressed households. This paper analyses policy responses to these problems through the lens of social practice theory. In the health sector, campaigns are attempting to emphasise the social health implications of antibiotic use. In considering this approach in relation to the problem of air-conditioned cooling and how to change the ways in which people keep cool during peak times, our analysis draws on interviews with 80 Australian households. We find that the problem of peak electricity demand may be reduced through attention to the social health implications of air-conditioned cooling on very hot days. We conclude that social practice theory offers a fruitful analytical route for identifying new avenues for research and informing policy responses to emerging health and environmental problems. - Highlights: • Over-use of antibiotics and air-conditioning has social health implications. • Focusing on financial incentives limits the potential of demand management programs. • Explaining peak demand to households shifts the meanings of cooling practices. • Emphasising the social health implications of antibiotics and air-conditioning may resurrect alternative practices. • Analysing policy with social practice theory offers insights into policy approaches

  11. Flow and air conditioning simulations of computer turbinectomized nose models.

    Science.gov (United States)

    Pérez-Mota, J; Solorio-Ordaz, F; Cervantes-de Gortari, J

    2018-04-16

    Air conditioning for the human respiratory system is the most important function of the nose. When obstruction occurs in the nasal airway, turbinectomy is used to correct such pathology. However, mucosal atrophy may occur sometime after this surgery when it is overdone. There is not enough information about long-term recovery of nasal air conditioning performance after partial or total surgery. The purpose of this research was to assess if, based on the flow and temperature/humidity characteristics of the air intake to the choana, partial resection of turbinates is better than total resection. A normal nasal cavity geometry was digitized from tomographic scans and a model was printed in 3D. Dynamic (sinusoidal) laboratory tests and computer simulations of airflow were conducted with full agreement between numerical and experimental results. Computational adaptations were subsequently performed to represent six turbinectomy variations and a swollen nasal cavity case. Streamlines along the nasal cavity and temperature and humidity distributions at the choana indicated that the middle turbinate partial resection is the best alternative. These findings may facilitate the diagnosis of nasal obstruction and can be useful both to plan a turbinectomy and to reduce postoperative discomfort. Graphical Abstract ᅟ.

  12. Developed adaptive neuro-fuzzy algorithm to control air conditioning ...

    African Journals Online (AJOL)

    user

    ... conditioning system is highly appreciated and essential in most of our daily life. ... (Hossien and Karla, 2012) presented an overview work which provides an .... energy balance for SSSF and the mass flow balance for the water in the air are ..... of Automatic Control and Electrical Engineering at Siegen University, Germany.

  13. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  14. Performance curves of room air conditioners for building energy simulation tools

    International Nuclear Information System (INIS)

    Meissner, José W.; Abadie, Marc O.; Moura, Luís M.; Mendonça, Kátia C.; Mendes, Nathan

    2014-01-01

    Highlights: • Experimental characteristic curves for two room air conditioners are presented. • These results can be implemented in building simulation codes. • The energy consumption under different conditions can numerically determine. • The labeled higher energy efficiency product not always provides the best result. - Abstract: In order to improve the modeling of air conditioners in building simulation tools, the characteristic curves for total cooling capacity, sensible cooling capacity and energy efficiency ratio of two room units were determined. They were obtained by means of standard capacity tests on climatic chambers in a set of environmental conditions described by external dry- and internal wet bulb temperatures. Afterward, the performance of these two units and that of four other units, with and without taking into to account the thermodynamic variations of the surrounding environments on it, were compared using a whole building simulation program for simulating a conditioned space. The comparative analysis showed that the air conditioner with the higher energy efficiency rating not always provides the lowest power consumption in real conditions of use

  15. Thermo economical evaluation of retrofitting strategies in air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Tribess, Arlindo; Fiorelli, Flavio Augusto Sanzogo; Hernandez Neto, Alberto [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: atribess@usp.br; fiorelli@usp.br; ahneto@usp.br

    2000-07-01

    In a building project, several subsystems are designed, among them the air conditioning system. Electrical energy consumption profiles show that this subsystem is responsible for 40 to 50% of total consumption in a commercial building. Besides the study of technical aspects that should be considered in order to assure the thermal comfort of the occupants as well the temperature and humidity conditions for an efficient equipment operation, an economical evaluation of this subsystem should be also made. In retrofit projects, the economical aspect is also critical for such projects in order to assure bigger efficiency in an economically attractive way. This paper analyses some strategies that might be adopted in retrofitting an air conditioning system installed in a commercial building with mixed occupation. By mixed we mean that some floors have a typical office occupation profile and other floors are mainly occupied by electronic equipment. This analysis includes both technical and economical evaluation. The proposed solutions performance are compared to the old system, which allows to verify the retrofitting impact in energy consumption reduction and its economical feasibility. (author)

  16. Near-optimal order-reduced control for A/C (air-conditioning) system of EVs (electric vehicles)

    International Nuclear Information System (INIS)

    Chiu, Chien-Chin; Tsai, Nan-Chyuan; Lin, Chun-Chi

    2014-01-01

    This work is aimed to investigate the regulation problem for thermal comfortableness and propose control strategies for cabin environment of EVs (electric vehicles) by constructing a reduced-scale A/C (air-conditioning) system which mainly consists of two modules: ECB (environmental control box) and AHU (air-handling unit). Temperature and humidity in the ECB can be regulated by AHU via cooling, heating, mixing air streams and adjusting speed of fans. To synthesize the near-optimal controllers, the mathematical model for the system thermodynamics is developed by employing the equivalent lumped heat capacity approach, energy/mass conservation principle and the heat transfer theories. In addition, from the clustering pattern of system eigenvalues, the thermodynamics of the interested system can evidently be characterized by two-time-scale property. That is, the studied system can be decoupled into two subsystems, slow mode and fast mode, by singular perturbation technique. As to the optimal control strategies for EVs, by taking thermal comfortableness, humidity and energy consumption all into account, a series of optimal controllers is synthesized on the base of the order-reduced thermodynamic model. The feedback control loop for the experimental test rig is examined and realized by the aid of the control system development kit dSPACE DS1104 and the commercial software MATLAB/Simulink. To sum up, the intensive computer simulations and experimental results verify that the performance of the near-optimal order-reduced control law is almost as superior as that of standard LQR (Linear-Quadratic Regulator). - Highlights: • A reduced-scale test rig for A/C (air-conditioning) system to imitate the temperature/humidity of cabin in EV (electric vehicle) is constructed. • The non-linear thermodynamic model of A/C system can be decoupled by singular perturbation technique. • The temperature/humidity in cabin is regulated to the desired values by proposed optimal

  17. Part of the job: the role of physical work conditions in the nurse turnover process.

    Science.gov (United States)

    Vardaman, James M; Cornell, Paul T; Allen, David G; Gondo, Maria B; Muslin, Ivan S; Mobley, Robin N; Brock, Meagan E; Sigmon, Tracy L

    2014-01-01

    Retention of nursing staff remains an important issue for health care managers. Turnover research has focused primarily on motivational and social factors as keys to retention, whereas the role of the physical work conditions has received considerably less attention. However, work design theory suggests that physical work conditions may be an important factor in fostering retention among nursing staff. The aim of this study was to integrate work design theory with turnover process models to explore the influence of perceptions of physical work conditions on the development of turnover intentions among nursing staff. Drawing on two samples of registered nurses working in cancer units in metropolitan hospitals in the southeastern United States, this study explores the impact of perceptions of physical work conditions on turnover intentions using ordinary least squares regression. Hypotheses are tested in Study 1 and replicated in Study 2. A measure of perceptions of physical work conditions is also developed and validated using exploratory (Study 1) and confirmatory (Study 2) factor analyses. Perceptions of physical work conditions explain variance in turnover intentions above than that explained by motivational and social factors. Specifically, employee perceptions of noisy work conditions are found to significantly increase turnover intentions, whereas perceptions that work conditions facilitate tasks were found to significantly reduce turnover intentions. Perceptions of temperature and health hazard did not show significant effects. Results suggest that health care managers and scholars should re-examine the role of physical work conditions in the turnover process. Investments in upgrades that facilitate tasks may foster retention better than investments that simply improve employee comfort. Negative perceptions of work conditions may have no impact if they are considered a normal "part of the job," although negative perceptions of conditions that are viewed as

  18. System and method for conditioning intake air to an internal combustion engine

    Science.gov (United States)

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  19. Assessment of tobacco heating product THP1.0. Part 4: Characterisation of indoor air quality and odour.

    Science.gov (United States)

    Forster, Mark; McAughey, John; Prasad, Krishna; Mavropoulou, Eleni; Proctor, Christopher

    2018-03-01

    The tobacco heating product THP1.0, which heats but does not burn tobacco, was tested as part of a modified-risk tobacco product assessment framework for its impacts on indoor air quality and residual tobacco smoke odour. THP1.0 heats the tobacco to less than 240 °C ± 5 °C during puffs. An environmentally controlled room was used to simulate ventilation conditions corresponding to residential, office and hospitality environments. An analysis of known tobacco smoke constituents, included CO, CO 2 , NO, NO 2 , nicotine, glycerol, 3-ethenyl pyridine, sixteen polycyclic aromatic hydrocarbons, eight volatile organic compounds, four carbonyls, four tobacco-specific nitrosamines and total aerosol particulate matter. Significant emissions reductions in comparison to conventional cigarettes were measured for THP1.0. Levels of nicotine, acetaldehyde, formaldehyde and particulate matter emitted from THP1.0 exceeded ambient air measurements, but were more than 90% reduced relative to cigarette smoke emissions within the laboratory conditions defined Residual tobacco smoke odour was assessed by trained sensory panels after exposure of cloth, hair and skin to both mainstream and environmental emissions from the test products. Residual tobacco smoke odour was significantly lower from THP1.0 than from a conventional cigarette. These data show that using THP1.0 has the potential to result in considerably reduced environmental emissions that affect indoor air quality relative to conventional cigarettes. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Decoupling dehumidification and cooling for energy saving and desirable space air conditions in hot and humid Hong Kong

    International Nuclear Information System (INIS)

    Lee, W.L.; Chen Hua; Leung, Y.C.; Zhang, Y.

    2012-01-01

    Highlights: ► The combined use of dedicated ventilation and dry cooling (DCDV) system was investigated. ► Investigations were based actual equipment performance data and realistic building and system characteristics. ► DCDV system could save 54% of the annual energy use for air-conditioning. ► DCDV system could better achieve the desired space air conditions. ► DCDV system could decouple dehumidification and cooling. - Abstract: The combined use of dedicated outdoor air ventilation (DV) and dry cooling (DC) air-conditioning system to decouple sensible and latent cooling for desirable space air conditions, better indoor air quality, and energy efficiency is proposed for hot and humid climates like Hong Kong. In this study, the performance and energy saving potential of DCDV system in comparison to conventional systems (constant air volume (CAV) system with and without reheat) for air conditioning of a typical office building in Hong Kong are evaluated. Through hour-by-hour simulations, using actual equipment performance data and realistic building and system characteristics, the cooling load profile, resultant indoor air conditions, condensation at the DC coil, and energy consumptions are calculated and analyzed. The results indicate that with the use of DCDV system, the desirable indoor conditions could be achieved and the annual energy use could be reduced by 54% over CAV system with reheat. The condensate-free characteristic at the DC coil to reduce risk of catching disease could also be realized.

  1. The effect of environmental parameters to dust concentration in air-conditioned space

    Science.gov (United States)

    Ismail, A. M. M.; Manssor, N. A. S.; Nalisa, A.; Yahaya, N.

    2017-08-01

    Malaysia has a wet and hot climate, therefore most of the spaces are air conditioned. The environment might affect dust concentration inside a space and affect the indoor air quality (IAQ). The main objective of this study is to study the dust concentration collected inside enclosed air-conditioned space. The measurement was done physically at four selected offices and two classrooms using a number of equipment to measure the dust concentration and environmental parameters which are temperature and relative air humidity. It was found that the highest dust concentration produced in office (temperature of 24.7°C, relative humidity of 66.5%) is 0.075 mg/m3, as compared to classroom, the highest dust concentration produced is 0.060 mg/m3 office (temperature of 25.9°C, relative humidity of 64.0%). However, both measurements show that value still within the safety level set by DOSH Malaysia (2005-2010) and ASHRAE 62.2 2016. The office contained higher dust concentration compared to classroom because of frequent movement transpires daily due to the functional of the offices.

  2. Air radiation conditions in the working zone and evaluation of dose loading for personnel of the equipment decontamination shop

    International Nuclear Information System (INIS)

    Bakin, R.I.

    1992-01-01

    The decontamination shop, its location in respect to the Chernobyl' NPP fourth unit, microclimatic conditions, as well as the volume of control measurements for evaluation of air radiation state in the shop are described. Aerosol maximum concentrations and radionuclide compositions for different object under control are given. The conclusion is made that the equipment decontamination shop is one of the most dangerous objects in the Chernobyl' NPP 30-km zone from the radiation sanitary vienpoint nowadays according to single measurements the aerosol activity amounts to 10-fold permissible concentration. 9 refs.; 1 fig.; 2 tabs

  3. Impacts of rising air temperatures on electric transmission ampacity and peak electricity load in the United States

    Science.gov (United States)

    Bartos, Matthew; Chester, Mikhail; Johnson, Nathan; Gorman, Brandon; Eisenberg, Daniel; Linkov, Igor; Bates, Matthew

    2016-11-01

    Climate change may constrain future electricity supply adequacy by reducing electric transmission capacity and increasing electricity demand. The carrying capacity of electric power cables decreases as ambient air temperatures rise; similarly, during the summer peak period, electricity loads typically increase with hotter air temperatures due to increased air conditioning usage. As atmospheric carbon concentrations increase, higher ambient air temperatures may strain power infrastructure by simultaneously reducing transmission capacity and increasing peak electricity load. We estimate the impacts of rising ambient air temperatures on electric transmission ampacity and peak per-capita electricity load for 121 planning areas in the United States using downscaled global climate model projections. Together, these planning areas account for roughly 80% of current peak summertime load. We estimate climate-attributable capacity reductions to transmission lines by constructing thermal models of representative conductors, then forcing these models with future temperature projections to determine the percent change in rated ampacity. Next, we assess the impact of climate change on electricity load by using historical relationships between ambient temperature and utility-scale summertime peak load to estimate the extent to which climate change will incur additional peak load increases. We find that by mid-century (2040-2060), increases in ambient air temperature may reduce average summertime transmission capacity by 1.9%-5.8% relative to the 1990-2010 reference period. At the same time, peak per-capita summertime loads may rise by 4.2%-15% on average due to increases in ambient air temperature. In the absence of energy efficiency gains, demand-side management programs and transmission infrastructure upgrades, these load increases have the potential to upset current assumptions about future electricity supply adequacy.

  4. Natural gas air conditioning in the tertiary sector. Ambitions, realizations and tools; Climatisation au gaz naturel dans le tertiaire. Ambitions, realisations et outils

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-04-01

    This meeting, organized by the research center of Gaz de France (Cegibat), makes a status of the market of natural gas air conditioning in office and public buildings: experience feedback, improvements of the technology, available tools. After a brief presentation of the status and perspectives of this market in France, the representatives of different companies involved in the fitting of natural gas air conditioning systems present their point of view about this technology. A last part presents the 'climogaz.com' tool launched by Gaz de France. It consists in a web site devoted to the share of knowledge and experience about this technology between professionals and applied to hotels, swimming pools, office buildings, food trade and other trades. (J.S.)

  5. Assessment of productivity loss in air-conditioned buildings using PMV index

    Energy Technology Data Exchange (ETDEWEB)

    Kosonen, R. [Halton OY, Kausala (Finland); Tan, F. [CapitaLand Commercial Limited, Singapore (Singapore)

    2004-07-01

    This theoretical study reports on the assessment of productivity loss in air-conditioned office buildings using the PMV approach and makes use of Wyon's reviews [D.P. Wyon, P.O. Fanger, B.W. Olesen, C.J.K. Pedersen, The mental performance of subjects clothed for comfort at two different air temperatures, Ergonomics 18 (1975) 358-374; D.P. Wyon, Individual microclimate control: required range, probable benefits and current feasibility, in: Proceedings of Indoor Air '96, Institute of Public Health, Tokyo, 1996; D.P. Wyon, Indoor environmental effects on productivity. IAQ 96 Paths to better building environments/Keynote address. Y. Kevin. Atlanta, ASHRAE, pp. 5-15] as the basis to compare and to relate how the productivity loss could be minimised through improved thermal comfort design criteria. The finding shows that task-related performance is significantly correlated with the human perception of thermal environment that in turn is dependent on temperatures. Different combinations of thermal criteria (air velocity, clo, metabolic, etc.) can lead to similar PMV value and the PMV equation is useful to predict productivity loss that is due to the rate of change in thermal conditions. The study also highlights the issues that remain to be resolved in future research. (author)

  6. Air pollution and early deaths in the United States. Part I: Quantifying the impact of major sectors in 2005

    Science.gov (United States)

    Caiazzo, Fabio; Ashok, Akshay; Waitz, Ian A.; Yim, Steve H. L.; Barrett, Steven R. H.

    2013-11-01

    Combustion emissions adversely impact air quality and human health. A multiscale air quality model is applied to assess the health impacts of major emissions sectors in United States. Emissions are classified according to six different sources: electric power generation, industry, commercial and residential sources, road transportation, marine transportation and rail transportation. Epidemiological evidence is used to relate long-term population exposure to sector-induced changes in the concentrations of PM2.5 and ozone to incidences of premature death. Total combustion emissions in the U.S. account for about 200,000 (90% CI: 90,000-362,000) premature deaths per year in the U.S. due to changes in PM2.5 concentrations, and about 10,000 (90% CI: -1000 to 21,000) deaths due to changes in ozone concentrations. The largest contributors for both pollutant-related mortalities are road transportation, causing ∼53,000 (90% CI: 24,000-95,000) PM2.5-related deaths and ∼5000 (90% CI: -900 to 11,000) ozone-related early deaths per year, and power generation, causing ∼52,000 (90% CI: 23,000-94,000) PM2.5-related and ∼2000 (90% CI: -300 to 4000) ozone-related premature mortalities per year. Industrial emissions contribute to ∼41,000 (90% CI: 18,000-74,000) early deaths from PM2.5 and ∼2000 (90% CI: 0-4000) early deaths from ozone. The results are indicative of the extent to which policy measures could be undertaken in order to mitigate the impact of specific emissions from different sectors - in particular black carbon emissions from road transportation and sulfur dioxide emissions from power generation.

  7. Energy and Greenhouse Gas Emission Assessment of Conventional and Solar Assisted Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Xiaofeng Li

    2015-11-01

    Full Text Available Energy consumption in the buildings is responsible for 26% of Australia’s greenhouse gas emissions where cooling typically accounts for over 50% of the total building energy use. The aim of this study was to investigate the potential for reducing the cooling systems’ environmental footprint with applications of alternative renewable energy source. Three types of cooling systems, water cooled, air cooled and a hybrid solar-based air-conditioning system, with a total of six scenarios were designed in this work. The scenarios accounted for the types of power supply to the air-conditioning systems with electricity from the grid and with a solar power from highly integrated building photovoltaics (BIPV. Within and between these scenarios, systems’ energy performances were compared based on energy modelling while the harvesting potential of the renewable energy source was further predicted based on building’s detailed geometrical model. The results showed that renewable energy obtained via BIPV scenario could cover building’s annual electricity consumption for cooling and reduce 140 tonnes of greenhouse gas emissions each year. The hybrid solar air-conditioning system has higher energy efficiency than the air cooled chiller system but lower than the water cooled system.

  8. Installation of PMV Operation Program in DDC Controller and Air Conditioning Control Using PMV Directly as Set Point

    Science.gov (United States)

    Haramoto, Ken-Ichi

    In general, air conditioning control in a building is operated mainly by indoor air temperature control. Although the operators of the machine in the building accepted a claim for indoor air temperature presented by the building inhabitants, the indoor conditions have been often too cool or warm. Therefore, in an attempt to create better thermal environments, the author paid attention to the PMV that is a thermal comfort index. And then, the possibility of air conditioning control using the PMV directly as the set point was verified by employing actual equipment in an air conditioning testing room and an office building. Prior to the execution of this control, the operation program of the PMV was installed in a DDC controller for the air conditioning control. And information from indoor sensors and so on was inputted to the controller, and the computed PMV was used as the feedback variable.

  9. Energy Performance and Optimal Control of Air-conditioned Buildings Integrated with Phase Change Materials

    Science.gov (United States)

    Zhu, Na

    This thesis presents an overview of the previous research work on dynamic characteristics and energy performance of buildings due to the integration of PCMs. The research work on dynamic characteristics and energy performance of buildings using PCMs both with and without air-conditioning is reviewed. Since the particular interest in using PCMs for free cooling and peak load shifting, specific research efforts on both subjects are reviewed separately. A simplified physical dynamic model of building structures integrated with SSPCM (shaped-stabilized phase change material) is developed and validated in this study. The simplified physical model represents the wall by 3 resistances and 2 capacitances and the PCM layer by 4 resistances and 2 capacitances respectively while the key issue is the parameter identification of the model. This thesis also presents the studies on the thermodynamic characteristics of buildings enhanced by PCM and on the investigation of the impacts of PCM on the building cooling load and peak cooling demand at different climates and seasons as well as the optimal operation and control strategies to reduce the energy consumption and energy cost by reducing the air-conditioning energy consumption and peak load. An office building floor with typical variable air volume (VAV) air-conditioning system is used and simulated as the reference building in the comparison study. The envelopes of the studied building are further enhanced by integrating the PCM layers. The building system is tested in two selected cities of typical climates in China including Hong Kong and Beijing. The cold charge and discharge processes, the operation and control strategies of night ventilation and the air temperature set-point reset strategy for minimizing the energy consumption and electricity cost are studied. This thesis presents the simulation test platform, the test results on the cold storage and discharge processes, the air-conditioning energy consumption and demand

  10. The Aerial Dogfight: a Valid Part of Today’s and Tomorrow’s Air War

    Science.gov (United States)

    1990-06-01

    assistant secretary of defense for systems analysis, Dr Alain C. Enthoven. Enthoven testifying to the Senate Subcommittee of the Committee on Armed Services...Air Force by David A. Anderton chronicles the events of the U.S. Air Force from its earliest days as a balloon unit during the Civil War to its...BIBLIOGRAPHY BOOKS Anderton , David A. History of the U.S. Air Force. New York: The Military Press, 1989. Baker, David. The Shape Of Wars To Come. New

  11. Determination of the ejector dimensions of a bus air-conditioning system using analytical and numerical methods

    International Nuclear Information System (INIS)

    Ünal, Şaban

    2015-01-01

    Comfortable journey with commercial buses is an essential goal of transportation companies. An air-conditioning system can play an important role for this comfortable journey but it can put extra load on the engine and extra cost in the fuel consumption. The purpose of this work is to increase the performance of air-conditioning system of the buses by reducing the load on the engine and fuel consumption. Using a two-phase ejector as an expansion valve can increase the coefficient of performance (COP) of the air-conditioning system. An improvement in the COP can reduce the empty vehicle weight and fuel consumption of buses. Two-phase ejector dimensions can be determined using the empirical methods available in the literature. In this paper, the two-phase ejector dimensions of air conditioning system for a bus are calculated using the analytical and numerical methods. First of all, the thermodynamic analysis of the vapor-compression refrigeration cycle with a two-phase ejector is performed, and then the ejector dimensions are subsequently determined. The cooling loads of the midibus and bus with R134a as a refrigerant are assumed to be 14 kW and 32 kW, respectively. The total length of the two-phase ejector for the midibuses and buses due to these cooling loads, are computed to be 480.8 mm and 793.1 mm, respectively. Also, an experimental setup is installed on a midibus air conditioner to turn it into the ejector air conditioning system to validate theoretical results with the experimental study. - Highlights: • Determination of two-phase ejector dimensions of a bus air-conditioning system. • Thermodynamic analysis of the two-phase ejector cooling system. • Experimental study on a midibus air conditioner using two-phase ejector.

  12. Experimental Evaluation of a Total Heat Recovery Unit with Polymer Membrane Foils

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Nie, Jinzhe

    2014-01-01

    A laboratory experimental study was conducted to investigate the energy performance of a total heat recovery unit using a polymer membranes heat exchanger. The study was conducted in twin climate chambers. One of the chambers simulated outdoor climate conditions and the other simulated the climate...... condition indoors. The airflows taken from the two chambers were connected into the total heat recovery unit and exchange heat in a polymer membrane foil heat exchanger installed inside the unit. The temperature and humidity of the air upstream and downstream of the heat exchanger were measured. Based...... on the measured temperature and humidity values, the temperature, humidity, and enthalpy efficiencies of the total heat recovery unit were calculated. The experiment was conducted in different combinations of outdoor climate conditions simulating warm and humid outdoor climates and air-conditioned indoor climate...

  13. Tools for Performance Simulation of Heat, Air and Moisture Conditions of Whole Buildings

    DEFF Research Database (Denmark)

    Woloszyn, Monika; Rode, Carsten

    2008-01-01

    Humidity of indoor air is an important factor influencing the air quality and energy consumption of buildings as well as durability of building components. Indoor humidity depends on several factors, such as moisture sources, air change, sorption in materials and possible condensation. Since all...... and moisture transfer processes that take place in “whole buildings” by considering all relevant parts of its constituents. It is believed that full understanding of these processes for the whole building is absolutely crucial for future energy optimization of buildings, as this cannot take place without...

  14. Modelling and dynamics of an air separation rectification column as part of an IGCC power plant

    Energy Technology Data Exchange (ETDEWEB)

    Seliger, B.; Hanke-Rauschenbach, R.; Hannemann, F.; Sundmacher, K. [Otto Von Guericke University, Magdeburg (Germany)

    2006-04-15

    An Integrated Gasification Combined Cycle plant (IGCC) opens the well-proven and highly efficient combined cycle process to fossil fuels, like coal or heavy refinery residues. Such a plant thereby possesses a novel linkage of typical energy engineering related units, e.g. a gas turbine and typical process engineering parts, which in the present case is an air separation plant. Different responses from the connected components can cause undesired mass flow fluctuations within the system especially during changing load demands. The cryogenic rectification column, as the core of the air separation plant, strongly affects the system's transient behaviour. The upper part of such a heat-integrated double column, a packed column with structured packing, has therefore been more closely investigated in the present paper. For this purpose, a dynamic model of such a column has been developed which is also able to describe the pressure dynamics supposedly responsible for these mass flow fluctuations. The transient behaviour of the uncontrolled column is analysed and discussed with special regard to pressure dynamics. The column pressure responds to disturbances on two different time scales. The short-term response, which is in the range of 100-200 s, is governed by the transient behaviour of the fluid dynamics and is discussed in detail. The long-term response is dominated by the nonlinear dynamics of the concentration profiles. The time constant of this response depends strongly on the direction and intensity of the disturbance and takes from 10,000 up to several 100,000 s.

  15. Refrigeration and air-conditioning technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P. J.; Counce, D. M. [eds.

    1993-01-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the US Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFCs in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and, indirect CO{sub 2} emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before the year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFCs, HCFCs, and HFCs over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23--25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies. Individual papers are indexed separately.

  16. An investigation of the air dispersion characteristics of refinery land treatment units

    International Nuclear Information System (INIS)

    Brewer, K.R.; Zaizhong Wang; Lupo, M.J.

    1991-01-01

    Numerical simulations of air emission and dispersion of volatile organic waste constituents from the land treatment units (LTU's) of four refineries were performed using the ISCST model. Particular attention was given to benzene. In order to realistically model the area pollutant source, each LTU had to be subdivided into smaller cells and the cell concentrations summed. The emission rate of the waste from the LTU's, one of the key inputs to the dispersion model, was periodically adjusted to reflect the rapid decay in rate following waste application. Meteorological conditions were found to be significant in determining boundary concentrations. The specific meteorological conditions most favorable for dispersion were investigated. The results of these simulations showed that mixing height is only minimally important in the dispersion of wastes from LTU's as currently regulated by EPA. Wind speed and variation of wind direction were both more important in atmospheric mixing of the volatile waste. It was found that care should be exercised in attempting to correlate any single meteorological parameter with favorable periods for land treatment. In comparisons of the cases, the results suggest that differences in LTU geometry may also be important in the modeling of long-term pollutant concentrations. Model simulations were performed to ascertain the impact of LTU geometry on boundary concentration

  17. Dictionary of heating and air conditioning. Woerterbuch der Heizungs- und Klimatechnik

    Energy Technology Data Exchange (ETDEWEB)

    Laege, K

    1981-01-01

    This German-English and English-German dictionary includes some 4000 technical terms of the field of heating and air conditioning engineering. It represents the latest state of this technical terminology.

  18. The state of transboundary air pollution. Report prepared within the framework of the Convention on Long-range Transboundary Air Pollution

    International Nuclear Information System (INIS)

    1996-01-01

    This twelfth volume of the series of Air Pollution Studies, published under the auspices of the Executive Body for the Convention on Long-range Transboundary Air Pollution, contains the documents reviewed and approved for publication at the thirteenth session of the Executive Body held at Geneva from 28 November to 1 December 1995. Part One is the Annual Review of Strategies and Policies for Air Pollution Abatement. Part Two is an executive summary of the 1994 Report on the Forest Condition in Europe. The main objective of this report is to give a condensed description of the condition of forests in Europe, as it has been assessed by the transnational and national annual surveys, carried out jointly by ECE under the Convention on Long-range Transboundary Air Pollution and by the European Community (EC). Part Three is a summary report on the development of a library of default values for each of the input variables to the simple mass balance equation for the calculation of critical loads of nitrogen and for a range of ecosystems. Part Four presents the modelling results of European sulphur and nitrogen emissions, depositions for 1980 and 1993, and export/import budgets

  19. Vertical hydraulic generators experience with dynamic air gap monitoring

    International Nuclear Information System (INIS)

    Pollock, G.B.; Lyles, J.F.

    1992-01-01

    Until recently, dynamic monitoring of the rotor to stator air gap of hydraulic generators was not practical. Cost effective and reliable dyamic air gap monitoring equipment has been developed in recent years. Dynamic air gap monitoring was originally justified because of the desire of the owner to minimize the effects of catastrophic air gap failure. However, monitoring air gaps on a time basis has been shown to be beneficial by assisting in the assessment of hydraulic generator condition. The air gap monitor provides useful information on rotor and stator condition and generator vibration. The data generated by air gap monitors will assist managers in the decision process with respect to the timing and extent of required maintenance for a particular generating unit

  20. Radioactive air emissions notice of construction portable temporary radioactive air emission units - August 1998; FINAL

    International Nuclear Information System (INIS)

    FRITZ, D.W.

    1999-01-01

    This notice of construction (NOC) requests a categorical approval for construction and operation of three types of portable/temporary radionuclide airborne emission units (PTRAEUs). These three types are portable ventilation-filter systems (Type I), mobile sample preparation facilities (Type II), and mobile sample screening and analysis facilities (Type 111). Approval of the NOC application is intended to allow construction and operation of the three types of PTRAEUs without prior project-specific approval. Environmental cleanup efforts on the Hanford Site often require the use of PTRAEUs. The PTRAEUs support site characterization activities, expedited response actions (ERAs), sampling and monitoring activities, and other routine activities. The PTRAEUs operate at various locations around the Hanford Site. Radiation Air Emissions Program, Washington Administrative Code (WAC) 246-247, requires that the Washington State Department of Health (WDOH) be notified before construction of any new emission that would release airborne radioactivity. The WDOH also must receive notification before any modification of an existing source. This includes changes in the source term or replacement of emission control equipment that might significantly contribute to the offsite maximum dose from a licensed facility. During site characterization activities, ERAs, sampling and monitoring activities, and other routine activities, the PTRAEUs might require startup immediately. The notification period hampers efforts to complete such activities in an effective and timely manner. Additionally, notification is to be submitted to the WDOH when the PTRAEUs are turned off. The U.S. Department of Energy, Richland Operations Office (DOE-RL) potentially could generate several notifications monthly. The WDOH would be required to review and provide approval on each NOC as well as review the notices of discontinued sources. The WDOH regulation also allows facilities the opportunity to request a

  1. Design of energy efficient ventilation and air-conditioning systems

    CERN Document Server

    Seppänen, Olli; Bertilsson, Thore; Maripuu, Mari-Liis; Lamy, Hervé; Vanden Borre, Alex

    2012-01-01

    This guidebook covers numerous system components of ventilation and air-conditioning systems and shows how they can be improved by applying the latest technology products. Special attention is paid to details, which are often overlooked in the daily design practice, resulting in poor performance of high quality products once they are installed in the building system.

  2. Volatile Organic Compounds (VOCs) in the Ambient Air Of Concentration Unit of Sar-Cheshmeh Copper Complex

    International Nuclear Information System (INIS)

    Faghihi-Zrandi, A.; Akhgar, M. R.

    2016-01-01

    Air pollutants including gases, vapors and particles, are emitted from different sources. Volatile organic compounds are the most important pollutants in the ambient air of industries. The present study was carried out to identify and measurement of volatile organic compounds in concentration unit of Sar-Cheshmeh Copper Complex. In this study, sampling of the volatile organic compounds was done by using activated charcoal tube. To identify and measure these compounds gas chromatography/mass spectroscopy were used. Thirteen volatile organic compounds were identified in the ambient air of concentration unit. Among these compounds, the mean value and maximum concentration of isopropyl alcohol and nonane were 255, 640 μg/m3 and 1577, 14400 μg/m3, respectively. By using SPSS software and independent sample t- test, showed that there were no significant difference between mean value concentration of isopropyl alcohol and nonane in the ambient air and TLV values of these compounds (isopropyl alcohol; 200 ppm and nonane; 200 ppm) (P >0.05).

  3. Energy efficient hybrid nanocomposite-based cool thermal storage air conditioning system for sustainable buildings

    International Nuclear Information System (INIS)

    Parameshwaran, R.; Kalaiselvam, S.

    2013-01-01

    The quest towards energy conservative building design is increasingly popular in recent years, which has triggered greater interests in developing energy efficient systems for space cooling in buildings. In this work, energy efficient silver–titania HiTES (hybrid nanocomposites-based cool thermal energy storage) system combined with building A/C (air conditioning) system was experimentally investigated for summer and winter design conditions. HiNPCM (hybrid nanocomposite particles embedded PCM) used as the heat storage material has exhibited 7.3–58.4% of improved thermal conductivity than at its purest state. The complete freezing time for HiNPCM was reduced by 15% which was attributed to its improved thermophysical characteristics. Experimental results suggest that the effective energy redistribution capability of HiTES system has contributed for reduction in the chiller nominal cooling capacity by 46.3% and 39.6% respectively, under part load and on-peak load operating conditions. The HiTES A/C system achieved 27.3% and 32.5% of on-peak energy savings potential in summer and winter respectively compared to the conventional A/C system. For the same operating conditions, this system yield 8.3%, 12.2% and 7.2% and 10.2% of per day average and yearly energy conservation respectively. This system can be applied for year-round space conditioning application without sacrificing energy efficiency in buildings. - Highlights: • Energy storage is acquired by HiTES (hybrid nanocomposites-thermal storage) system. • Thermal conductivity of HiNPCM (hybrid nanocomposites-PCM) was improved by 58.4%. • Freezing time of HiNPCM was reduced by 15% that enabled improved energy efficiency. • Chiller nominal capacity was reduced by 46.3% and 39.6% in on-peak and part load respectively. • HiTES A/C system achieved appreciable energy savings in the range of 8.3–12.2%

  4. Characteristic Evaluation on the Cooling Performance of an Electrical Air Conditioning System Using R744 for a Fuel Cell Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-05-01

    Full Text Available The objective of this study was to investigate the cooling performance characteristics of an electrical air conditioning system using R744 as an alternative of R-134a for a fuel cell electric vehicle. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a fuel cell electric vehicle, an electrical air conditioning system using R744 was developed and tested under various operating conditions according to both inlet air conditions of the gas cooler and evaporator and compressor speed. The cooling capacity and coefficient of performance (COP forcooling of the tested air conditioning system were up to 6.4 kW and 2.5, respectively. In addition, the electrical air conditioning system with R744 using an inverter driven compressor showed better performance than the conventional air conditioning system with R-134a under the same operating conditions. The observed cooling performance of the developed electrical air conditioning system was found to be sufficient for cooling loads under various real driving conditions for a fuel cell electric vehicle.

  5. Integrated Testing of a 4-Bed Molecular Sieve, Air-Cooled Temperature Swing Adsorption Compressor, and Sabatier Engineering Development Unit

    Science.gov (United States)

    Knox, James C.; Miller, Lee; Campbell, Melissa; Mulloth, Lila; Varghese, Mini

    2006-01-01

    Accumulation and subsequent compression of carbon dioxide that is removed from the space cabin are two important processes involved in a closed-loop air revitalization scheme of the International Space Station (ISS). The 4-Bed Molecular Sieve (4BMS) of ISS currently operates in an open loop mode without a compressor. The Sabatier Engineering Development Unit (EDU) processes waste CO2 to provide water to the crew. This paper reports the integrated 4BMS, air-cooled Temperature Swing Adsorption Compressor (TSAC), and Sabatier EDU testing. The TSAC prototype was developed at NASA Ames Research Center (ARC). The 4BMS was modified to a functionally flight-like condition at NASA Marshall Space Flight Center (MSFC). Testing was conducted at MSFC. The paper provides details of the TSAC operation at various CO2 loadings and corresponding performance of the 4BMS and Sabatier.

  6. Part 5. Public health and air pollution in Asia (PAPA): a combined analysis of four studies of air pollution and mortality.

    Science.gov (United States)

    Wong, C M; Vichit-Vadakan, N; Vajanapoom, N; Ostro, B; Thach, T Q; Chau, P Y K; Chan, E K P; Chung, R Y N; Ou, C Q; Yang, L; Peiris, J S M; Thomas, G N; Lam, T H; Wong, T W; Hedley, A J; Kan, H; Chen, B; Zhao, N; London, S J; Song, G; Chen, G; Zhang, Y; Jiang, L; Qian, Z; He, Q; Lin, H M; Kong, L; Zhou, D; Liang, S; Zhu, Z; Liao, D; Liu, W; Bentley, C M; Dan, J; Wang, B; Yang, N; Xu, S; Gong, J; Wei, H; Sun, H; Qin, Z

    2010-11-01

    adjustments in methods to optimize the fit of health-effects models to each city's data set. It provides the basis for generating reproducible results in each city and for meta-estimates from combined data. By establishing a common methodology, factors that might influence the differences in results from previous studies can more easily be explored. Administrative support was provided to ensure that the highest quality data were used in the analysis. It is anticipated that the PAPA results will contribute to the international scientific discussion of how to conduct and interpret time-series studies of air pollution and will stimulate the development of high-quality routine systems for recording daily deaths and hospital admissions for time-series analysis. Mortality data were retrieved from routine databases with underlying causes of death coded using the World Health Organization (WHO) International Classification of Diseases, 9th revision or 10th revision (ICD-9, ICD-10). Air quality measurements included nitrogen dioxide (NO2), sulfur dioxide (SO2), particulate matter with aerodynamic diameter air monitoring stations that were located throughout the metropolitan areas of the four cities and that met the standards of procedures for quality assurance and quality control carried out by local government units in each city. Using the Common Protocol, an optimized core model was established for each city to assess the effects of each of the four air pollutants on daily mortality using generalized linear modeling with adjustments for time trend, seasonality, and other time-varying covariates by means of a natural-spline smoothing function. The models were adjusted to suit local situations by correcting for influenza activity, autocorrelation, and special weather conditions. Researchers in Hong Kong, for example, used influenza activity based on frequency of respiratory mortality; researchers in Hong Kong and Shanghai used autoregressive terms for daily outcomes at lag days; and

  7. Field demonstrations of radon adsorption units

    International Nuclear Information System (INIS)

    Abrams, R.F.

    1989-01-01

    Four radon gas removal units have been installed in homes in the Northeast U.S. These units utilize dynamic adsorption of the radon gas onto activated charcoal to remove the radon from room air. Two beds of charcoal are used so that one bed removes radon while the second bed is regenerated using outdoor air in a unique process. The beds reverse at the end of a predetermined cycle time, providing continuous removal of radon from the room air. The process and units have undergone extensive development work in the laboratory as well as in homes and a summary of this work is discussed. This work showed that the system performs very effectively over a range of operating conditions similar to those found in a home. The field test data that is presented shows that scale up from the laboratory work was without problem and the units are functioning as expected. This unit provides homeowners and mitigation contractors with another option to solve the radon gas problem in homes, particularly in homes that it is difficult to prevent radon from entering

  8. Transitioning to Low-GWP Alternatives in Motor Vehicle Air Conditioning Systems

    Science.gov (United States)

    This fact sheet provides information on low-GWP alternatives in newly manufactured motor vehicle air conditioning systems. It discusses HFC alternatives, market trends, challenges to market entry for alternatives, and potential solutions.

  9. Energy managemant through PCM based thermal storage system for building air-conditioning: Tidel Park, Chennai

    International Nuclear Information System (INIS)

    Nallusamy, N.; Sampath, S.; Velraj, R.

    2006-01-01

    Many modern building are designed for air-conditioning and the amount of electrical energy required for providing air-conditioning can be very significant especially in the tropics. Conservation of energy is major concern to improve the overall efficiency of the system. Integration is energy storage with the conventional system gives a lot of potential for energy saving and long-term economics. Thermal energy storage systems can improve energy management and help in matching supply and demand patterns. In the present work, a detailed study has been done on the existing thermal energy storage system used in the air-conditioning system in Tidel Park, Chennai. The present study focuses on the cool energy storage system. The modes of operation and advantages of such a system for energy management are highlighted. The reason for the adoption of combined storage system and the size of the storage medium in the air-conditioning plant are analyzed. The possibility of using this concept in other cooling and heating applications, such as storage type solar water heating system, has been explored

  10. A questionnaire survey on sleeping thermal environment and bedroom air conditioning in high-rise residences in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Z. [Institute of Heating, Ventilation, Air Conditioning and Gas Engineering, Tongji University, Shanghai (China); Deng, S. [Department of Building Services Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR (China)

    2006-07-01

    This paper reports on the results of a questionnaire survey on sleeping thermal environment and bedroom air conditioning in high-rise residential buildings in Hong Kong. The survey aimed at investigating the current situation of sleeping thermal environment and bedroom air conditioning, in order to gather relevant background information to develop strategies for bedroom air conditioning in the subtropics. It focused on the use patterns and types of bedroom air conditioning systems used, human factors such as the use of bedding and sleep wear during sleep, preference for indoor air temperature settings in bedrooms, ventilation control at nighttime with room air conditioner (RAC) turned on, etc. The results of the survey showed that most of the respondents would prefer a relatively low indoor air temperature at below 24 {sup o}C. Most of the respondents might however not be satisfied with the indoor air quality (IAQ) in bedrooms in Hong Kong. On the other hand, 68% of the respondents did not use any ventilation control intentionally during their sleep with their RACs turned on. A lack of knowledge of the ventilation control devices provided on window type room air conditioners (WRACs) indicated an urgent need for user education. (author)

  11. Air quality and human health impacts of grasslands and shrublands in the United States

    Science.gov (United States)

    Gopalakrishnan, Varsha; Hirabayashi, Satoshi; Ziv, Guy; Bakshi, Bhavik R.

    2018-06-01

    Vegetation including canopy, grasslands, and shrublands can directly sequester pollutants onto the plant surface, resulting in an improvement in air quality. Until now, several studies have estimated the pollution removal capacity of canopy cover at the level of a county, but no such work exists for grasslands and shrublands. This work quantifies the air pollution removal capacity of grasslands and shrublands at the county-level in the United States and estimates the human health benefits associated with pollution removal using the i-Tree Eco model. Sequestration of pollutants is estimated based on the Leaf Area Index (LAI) obtained from the Moderate Resolution Imaging Spectroradiometer (MODIS) derived dataset estimates of LAI and the percentage land cover obtained from the National Land Cover Database (NLCD) for the year 2010. Calculation of pollution removal capacity using local environmental data indicates that grasslands and shrublands remove a total of 6.42 million tonnes of air pollutants in the United States and the associated monetary benefits total 268 million. Human health impacts and associated monetary value due to pollution removal was observed to be significantly high in urban areas indicating that grasslands and shrublands are equally critical as canopy in improving air quality and human health in urban regions.

  12. MODELING THE AMBIENT CONDITION EFFECTS OF AN AIR-COOLED NATURAL CIRCULATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Rui; Lisowski, Darius D.; Bucknor, Matthew; Kraus, Adam R.; Lv, Qiuping

    2017-07-02

    The Reactor Cavity Cooling System (RCCS) is a passive safety concept under consideration for the overall safety strategy of advanced reactors such as the High Temperature Gas-Cooled Reactor (HTGR). One such variant, air-cooled RCCS, uses natural convection to drive the flow of air from outside the reactor building to remove decay heat during normal operation and accident scenarios. The Natural convection Shutdown heat removal Test Facility (NSTF) at Argonne National Laboratory (“Argonne”) is a half-scale model of the primary features of one conceptual air-cooled RCCS design. The facility was constructed to carry out highly instrumented experiments to study the performance of the RCCS concept for reactor decay heat removal that relies on natural convection cooling. Parallel modeling and simulation efforts were performed to support the design, operation, and analysis of the natural convection system. Throughout the testing program, strong influences of ambient conditions were observed in the experimental data when baseline tests were repeated under the same test procedures. Thus, significant analysis efforts were devoted to gaining a better understanding of these influences and the subsequent response of the NSTF to ambient conditions. It was determined that air humidity had negligible impacts on NSTF system performance and therefore did not warrant consideration in the models. However, temperature differences between the building exterior and interior air, along with the outside wind speed, were shown to be dominant factors. Combining the stack and wind effects together, an empirical model was developed based on theoretical considerations and using experimental data to correlate zero-power system flow rates with ambient meteorological conditions. Some coefficients in the model were obtained based on best fitting the experimental data. The predictive capability of the empirical model was demonstrated by applying it to the new set of experimental data. The

  13. CFD study on the effects of boundary conditions on air flow through an air-cooled condenser

    Science.gov (United States)

    Sumara, Zdeněk; Šochman, Michal

    2018-06-01

    This study focuses on the effects of boundary conditions on effectiveness of an air-cooled condenser (ACC). Heat duty of ACC is very often calculated for ideal uniform velocity field which does not correspond to reality. Therefore, this study studies the effect of wind and different landscapes on air flow through ACC. For this study software OpenFOAM was used and the flow was simulated with the use of RANS equations. For verification of numerical setup a model of one ACC cell with dimensions of platform 1.5×1.5 [m] was used. In this experiment static pressures behind fan and air flows through a model of surface of condenser for different rpm of fan were measured. In OpenFOAM software a virtual clone of this experiment was built and different meshes, turbulent models and numerical schemes were tested. After tuning up numerical setup virtual model of real ACC system was built. Influence of wind, landscape and height of ACC on air flow through ACC has been investigated.

  14. Lagrangian particle modeling of air pollution transport in southwestern United States

    Energy Technology Data Exchange (ETDEWEB)

    Uliasz, M. [Warsaw Univ. of Technology (Poland); Stocker, R.A.; Pielke, R.A. [Colorado State Univ., Fort Collins, CO (United States)

    1994-12-31

    Several modeling techniques of various complexity and accuracy are applied in a numerical modeling study of regional air pollution transport being performed within the Measurement Of Haze And Visual Effect (MOHAVE) project. The goal of this study is to assess the impact of the Mohave Power Project (MPP) and other potential sources of air pollution to specific Class I areas located in the desert southwest United States including the Grand Canyon National Park. The Colorado State University team is performing the daily meteorological and dispersion simulations for a year long study using a nonhydrostatic mesoscale meteorological model; the Regional Atmospheric Modeling System (RAMS) coupled with a Lagrangian particle dispersion (LPD) model. The modeling domain covers the southwestern United States with its extremely complex terrain. Two complementary dispersion modeling techniques: a traditional source-oriented approach and receptor-oriented approach are used to calculate concentration and influence function fields, respectively. All computations are performed on two IBM RISC-6000 workstations dedicated to the project. The goal of this paper is to present our design for daily dispersion simulations with an emphasis on influence function calculations using examples from the winter and summer intensive periods of the MOHAVE project.

  15. The effects of electrostatic particle filtration and supply-air filter condition in classrooms on the performance of schoolwork by children (RP-1257)

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Wyon, David Peter; Jensen, Kasper Lynge

    2008-01-01

    the lower the outdoor air supply rate. There were no consistent effects of this reduction on the performance of schoolwork, on the children's perception of the classroom environment, on symptom intensiiy, or on air quality as perceived by the sensory panel. This suggests there are no short-term (acute...... the filters in use in other schools were not changed. The conditions were established for one week at a time in a blind crossover design with repeated measures on ten-to-twelve-year-old children. Pupils performed six exercises exemplifying different aspects of schoolwork as part of normal lessons...... and indicated their environmental perceptions and the intensity of any symptoms. A sensory panel of adults judged the air quality in the classrooms soon after the pupils left. Operating the electrostatic air cleaners considerably reduced the concentration of particles in the classrooms. The effect was greater...

  16. Rhizopus-associated soft tissue infection in an immunocompetent air-conditioning technician after a road traffic accident: A case report and review of the literature

    Directory of Open Access Journals (Sweden)

    Nada B. Rabie

    2012-02-01

    Full Text Available Summary: Rhinocerebral or sinopulmonary mucromycosis is a well-recognized human fungal infection found among immunocompromised and diabetic patients. However, the infection is rare among immunocompetent hosts. We are reporting the case of an adult immunocompetent male patient working as an air-conditioning technician. The patient was a victim of a road traffic accident (RTA and sustained multiple fractures in the proximal part of the left tibia, distal femur, and scapula. Two weeks postoperatively, Rhizopus microspores were isolated from an infected traumatic wound over the distal femur. Surgical debridement was performed, and the patient was started on amphotericin B. Occupational exposure history and workplace environmental sanitation are crucial for the prevention of this potentially fatal yet preventable infection. Keywords: Rhizopus, Immunocompetent, Air conditioning

  17. Energy problems of the central systems of air conditioning; Problemas energeticos de los sistemas centrales de climatizacion

    Energy Technology Data Exchange (ETDEWEB)

    Cardero Corria, Gaspar [Cubanacan, S.A., Varadero (Cuba)

    2003-07-01

    The central systems of air conditioning are widely used in air conditioning production for several reasons among which excel: 1) Better aesthetic of the building, 2) Less noise in the air conditioning premises and 3) Greater yield of the consumed energy. This is indeed the third reason in which this paper will try to contribute with elements that will allow reveal the problem and to identify some possible causes that originate it. The centralized systems of air conditioning must produce conditioned air with lesser power cost than the individual systems, it is that saving which allows to recover an investment that normally surpasses them in 3 to 5 times. Nevertheless, the real numbers do not demonstrate that. [Spanish] Los sistemas centrales de climatizacion son ampliamente usados en la produccion de aire acondicionado por varias razones entre las que sobresalen: 1) Mejor estetica del edificio, 2) Menor ruido en los locales climatizados y 3) Mayor rendimiento de la energia consumida. Es precisamente la tercera razon en la cual este trabajo intentara aportar elementos que permitan develar el problema e identificar algunas posibles causas que lo originan. Los sistemas centralizados de climatizacion deben producir aire acondicionado con un menor gasto energetico que los sistemas individuales, es precisamente ese ahorro lo que permite recuperar una inversion que normalmente los supera en 3 a 5 veces. Sin embargo, los numeros reales no demuestran eso.

  18. IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Danish participation 2007-2010; IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Dansk deltagelse 2007-2010

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, Aarhus (Denmark)); Muenster, E. (PlanEnergi, Skoerping (Denmark)); Reinholdt, L. (Teknologisk Institut, Aarhus (Denmark)); Minds, S. (AC-Sun Aps, Horsens (Denmark))

    2011-03-15

    IEA SHC Task 38 'Solar Air-Conditioning and Refrigeration' ran from October 2006 to December 2010. Denmark was represented in the task from January 2007 to December 2010. The aim of the task was to encourage use of solar powered refrigeration and air conditioning systems in particular at residential, commercial and industrial sectors. Furthermore, the aim was to contribute to new research and development activities on new systems and concepts. Solar cooling is an energy efficient way to cool buildings, which can also be used in Denmark as there is a high correlation between solar radiation and the need for air conditioning. Part of the Danish team has also been the company AC Sun which in the period has worked with developing a new and revolutionary thermo-cooling technology. IEA SHC Task 38 Solar Air-Conditioning and Refrigeration was divided into 4 subtask: 1) Subtask A: Pre-engineered systems for residential and small commercial applications 2) Subtask B: Custom-made systems for large non-residential buildings and industrial applications 3) Subtask C: Modelling and fundamental analysis 4) Subtask D: Market transfer activities. The Danish participation consisted of: 1) Ellehauge and Kildemoes (Klaus Ellehauge), project management and overall information. Participated in the subtask A and C and D. 2) AC-Sun (Soeren Minds) participated in subtask A, C and D. 3) PlanEnergi (Ebbe Muenster) participated in subtask B and C. 4) Technological Institute (Lars Reinholdt) participated in subtask A, B and C. The main findings of the task are given in the new handbook that will be published in summer 2011. This report summarises some of the results in Danish and in particular the Danish effort. The Danish project group has provided input to the international reports of the task. A number of the materials prepared by the project are attached as annexes. PlanEnergi was involved in analysis of measurements of the absorption system of 105 kW established year 2007 in

  19. Study of Air Ingress Across the Duct During the Accident Conditions

    International Nuclear Information System (INIS)

    Hassan, Yassin

    2013-10-01

    The goal of this project is to study the fundamental physical phenomena associated with air ingress in very high temperature reactors (VHTRs). Air ingress may occur due to a rupture of primary piping and a subsequent breach in the primary pressure boundary in helium-cooled and graphite-moderated VHTRs. Significant air ingress is a concern because it introduces potential to expose the fuel, graphite support rods, and core to a risk of severe graphite oxidation. Two of the most probable air ingress scenarios involve rupture of a control rod or fuel access standpipe, and rupture in the main coolant pipe on the lower part of the reactor pressure vessel. Therefore, establishing a fundamental understanding of air ingress phenomena is critical in order to rationally evaluate safety of existing VHTRs and develop new designs that minimize these risks. But despite this importance, progress toward development these predictive capabilities has been slowed by the complex nature of the underlying phenomena. The combination of inter-diffusion among multiple species, molecular diffusion, natural convection, and complex geometries, as well as the multiple chemical reactions involved, impose significant roadblocks to both modeling and experiment design. The project team will employ a coordinated experimental and computational effort that will help gain a deeper understanding of multiphased air ingress phenomena. This project will enhance advanced modeling and simulation methods, enabling calculation of nuclear power plant transients and accident scenarios with a high degree of confidence. The following are the project tasks: Perform particle image velocimetry measurement of multiphase air ingresses; and, Perform computational fluid dynamics analysis of air ingress phenomena.

  20. Study of Air Ingress Across the Duct During the Accident Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Hassan, Yassin [Texas A & M Univ., College Station, TX (United States)

    2013-05-06

    The goal of this project is to study the fundamental physical phenomena associated with air ingress in very high temperature reactors (VHTRs). Air ingress may occur due to a rupture of primary piping and a subsequent breach in the primary pressure boundary in helium-cooled and graphite-moderated VHTRs. Significant air ingress is a concern because it introduces potential to expose the fuel, graphite support rods, and core to a risk of severe graphite oxidation. Two of the most probable air ingress scenarios involve rupture of a control rod or fuel access standpipe, and rupture in the main coolant pipe on the lower part of the reactor pressure vessel. Therefore, establishing a fundamental understanding of air ingress phenomena is critical in order to rationally evaluate safety of existing VHTRs and develop new designs that minimize these risks. But despite this importance, progress toward development these predictive capabilities has been slowed by the complex nature of the underlying phenomena. The combination of inter-diffusion among multiple species, molecular diffusion, natural convection, and complex geometries, as well as the multiple chemical reactions involved, impose significant roadblocks to both modeling and experiment design. The project team will employ a coordinated experimental and computational effort that will help gain a deeper understanding of multiphased air ingress phenomena. This project will enhance advanced modeling and simulation methods, enabling calculation of nuclear power plant transients and accident scenarios with a high degree of confidence. The following are the project tasks: Perform particle image velocimetry measurement of multiphase air ingresses; and, Perform computational fluid dynamics analysis of air ingress phenomena.

  1. 76 FR 41525 - Hewlett Packard Global Parts Supply Chain, Global Product Life Cycles Management Unit Including...

    Science.gov (United States)

    2011-07-14

    ... Parts Supply Chain, Global Product Life Cycles Management Unit Including Teleworkers Reporting to... workers of Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles Management Unit...). Since eligible workers of Hewlett Packard, Global Parts Supply Chain, Global Product Life Cycles...

  2. Model development for air conditioning system in heavy duty trucks

    NARCIS (Netherlands)

    Kessels, J.T.B.A.; van den Bosch, P.P.J.; Zhang, Quansheng; Li, Shengbo Eben; Deng, Kun

    2016-01-01

    This chapter presents a modelling approach for the air conditioning (AC) system in heavy duty trucks. The presented model entails two major elements: a mechanical compressor model and a thermal AC model. The compressor model describes the massflow of the refrigerant as well as the mechanical power

  3. Evaluating ozone air pollution effects on pines in the western United States

    Science.gov (United States)

    Paul R. Miller; Kenneth W. Stolte; Daniel M. Duriscoe; John Pronos

    1996-01-01

    Historical and technical background is provided about ozone air pollution effects on ponderosa (Pinus ponderosa Dougl. ex Laws) and Jeffrey (P. jeffreyi Grev. and Balf.) pines in forests of the western United States. The principal aim is to document the development of field survey methods to be applied to assessment of chronic...

  4. Air-Cooled Design of a Temperature-Swing Adsorption Compressor for Closed-Loop Air Revitalization Systems

    Science.gov (United States)

    Mulloth, Lila M.; Affleck, Dave L.; Rosen, Micha; LeVan, M. Douglas; Wang, Yuan; Cavalcante, Celio L.

    2004-01-01

    The air revitalization system of the International Space Station (ISS) operates in an open loop mode and relies on the resupply of oxygen and other consumables from earth for the life support of astronauts. A compressor is required for delivering the carbon dioxide from a removal assembly to a reduction unit to recover oxygen and thereby closing the air-loop. We have a developed a temperature-swing adsorption compressor (TSAC) for performing these tasks that is energy efficient, quiet, and has no rapidly moving parts. This paper discusses the mechanical design and the results of thermal model validation tests of a TSAC that uses air as the cooling medium.

  5. PTR-MS Assessment of Photocatalytic and Sorption-Based Purification of Recirculated Cabin Air during Simulated 7-h Flights with High Passenger Density

    DEFF Research Database (Denmark)

    Wisthaler, Armin; Strøm-Tejsen, Peter; Fang, Lei

    2007-01-01

    Four different air purification conditions were established in a simulated 3-row 21-seat section of an aircraft cabin: no air purifier; a photocatalytic oxidation unit with an adsorptive prefilter; a second photocatalytic unit with an adsorptive prefil-ter; and a two-stage sorptionbased air filter...... (gas-phase absorption and adsorption). The air purifiers placed in the cabin air recirculation system were commercial prototypes developed for use in aircraft cabin systems. The four conditions were established in balanced order on 4 successive days of each of 4 successive weeks during simulated 7-h...... flights with 17 occupants. Protontransfer reaction mass spectrometry was used to assess organic gas-phase pollutants and the performance of each air purifier. The concentration of most organic pollutants present in aircraft cabin air was effi-ciently reduced by all three units. The photocatalytic units...

  6. The application of condensate water as an additional cooling media intermittently in condenser of a split air conditioning

    Science.gov (United States)

    Ardita, I. N.; Subagia, I. W. A.

    2018-01-01

    The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%

  7. Air conditioning cool contribution to global warming?; Airconditioning koele bijdrage aan global warming?

    Energy Technology Data Exchange (ETDEWEB)

    Oudshoff, B.

    2010-06-15

    Similar to the Netherlands, the percentage of buildings with air-conditioning is growing steadily in the United Stated (US). This makes it an interesting area for energy saving. New technological developments offer opportunities to drastically reduce energy use for cooling. The best option is obviously to no longer deploy mechanical cooling but this is not a realistic option for warmer areas. This article addresses new technologies and several newly established companies in California and Colorado that target this market. [Dutch] In de Verenigde Staten (VS) groeit het percentage van gebouwen met airconditioning, net als in Nederland, de laatste jaren gestaag door. Hiermee is het een interessant gebied voor mogelijke energiebesparing. Nieuwe technologische ontwikkelingen bieden kansen om het energiegebruik voor koeling drastisch te verminderen. De beste oplossing is uiteraard geen mechanische koeling meer toe te passen maar voor warmere gebieden is die optie niet reeel. In dit artikel wordt ingegaan op nieuwe technologie en enkele startende bedrijven in Californie en Colorado die zich op deze markt richten.

  8. Coordinator(a) de Servicios Clinicos. Parte I (Unidad I-IV). Parte II (Unidad V-VI). Guia. Documento de Trabajo (Clinical Services Coordinator. Part I. Units I-IV. Part II. Units V-VI. Guide. Working Document).

    Science.gov (United States)

    Puerto Rico State Dept. of Education, Hato Rey. Area for Vocational and Technical Education.

    This guide is intended for instructing secondary students in the occupation of clinical services coordinator in a hospital. The first part contains four units on the following subjects: the occupation of clinical services coordinator; interpersonal relationships; ethical/legal aspects; and communications (telephone, intercom, and others). For each…

  9. [Influence of industrial pollution of ambient air on health of workers engaged into open air activities in cold conditions].

    Science.gov (United States)

    Chashchin, V P; Siurin, S A; Gudkov, A B; Popova, O N; Voronin, A Iu

    2014-01-01

    The article presents the results of a study on assessment of occupational exposure to air pollutants and related health effects in3792 outdoor workers engaged in operations performed in the vicinity of non-ferrous metallurgical facilities in Far North. Findings are that during cold season repeated climate and weather conditions are associated with higher level of chemical hazards and dust in surface air. At the air temperature below -17 degrees C, maximal single concentrations of major pollutants can exceed MAC up to 10 times. With that, transitory disablement morbidity parameters and occupational accidents frequency increase significantly. The workers with long exposure to cooling meteorological factors and air pollution demonstrate significantly increased prevalence of respiratory and circulatory diseases, despite relatively low levels of sculpture dioxide and dust in the air, not exceeding the occupational exposure limits. It has been concluded that severe cold is to be considered asa factor increasing occupational risk at air polluted outdoor worksites dueto more intense air pollution, higher traumatism risk and lower efficiency of filter antidust masks respiratory PPE and due to modification of the toxic effects.

  10. 40 CFR Table A-2 to Subpart A of... - Units of Measure Conversions

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Units of Measure Conversions A Table A-2 to Subpart A of Part 98 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... A-2 to Subpart A of Part 98—Units of Measure Conversions To convert from To Multiply by Kilograms...

  11. Management of air-conditioning systems in residential buildings by using fuzzy logic

    Directory of Open Access Journals (Sweden)

    Sohair F. Rezeka

    2015-06-01

    Full Text Available There has been a rising concern in reducing the energy consumption in buildings. Heating, ventilation and air-conditioning system is the biggest consumer of energy in buildings. In this study, management of the air-conditioning system of a building for efficient energy operation and comfortable environment is investigated. The strategy used in this work depends on classifying the rooms to three different groups: very important rooms, important rooms and normal rooms. The total mass flow rate is divided between all rooms by certain percentage using a fuzzy-logic system to get the optimum performance for each room. The suggested Building Management System (BMS was found capable of keeping errors in both temperature and humidity within the acceptable limits at different operating conditions. The BMS can save the chilled/hot water flow rate and the cooling/heating capacity of rooms.

  12. Performance of alternative refrigerants for residential air-conditioning applications

    International Nuclear Information System (INIS)

    Park, Ki-Jung; Seo, Taebeom; Jung, Dongsoo

    2007-01-01

    In this study, performances of two pure hydrocarbons and seven mixtures composed of propylene, propane, HFC152a, and dimethylether were measured to substitute for HCFC22 in residential air-conditioners and heat pumps. Thermodynamic cycle analysis was carried out to determine the optimum compositions before testing and actual tests were performed in a breadboard-type laboratory heat pump/air-conditioner at the evaporation and condensation temperatures of 7 and 45 deg. C, respectively. Test results show that the coefficient of performance of these mixtures is up to 5.7% higher than that of HCFC22. While propane showed a 11.5% reduction in capacity, most of the fluids had a similar capacity to that of HCFC22. For these fluids, compressor-discharge temperatures were reduced by 11-17 deg. C. For all fluids tested, the amount of charge was reduced by up to 55% as compared to HCFC22. Overall, these fluids provide good performances with reasonable energy-savings without any environmental problem and thus can be used as long-term alternatives for residential air-conditioning and heat-pumping applications

  13. Local Government Units in Indonesia: Demographic Attributes and Differences in Financial Condition

    Directory of Open Access Journals (Sweden)

    Rusmin Rusmin

    2014-06-01

    Full Text Available This study examines the outcome of decentralisation reforms in Indonesia, focusing on the association between demographic characteristics and differences in the financial condition of local governments units. It investigates cross-sectional data pertaining to demographic characteristics and financial statements audited by the Supreme Audit Body of 419 Indonesian local government units for the fiscal year 2007. It utilises demographic attributes including scope of entity, location, tenure (date of entry, gender, human development index (HDI and size of local governments to explain differences in the financial condition of Indonesia’s local government. Local government financial condition is proxied by quick ratio, debt ratio, services ratio, and ratio of local to total revenues. The results suggest that scope and location of local government units help explain all of the financial condition variables. The findings further infer that local government units domiciled in Java tend to report better financial conditions relative to those domiciled in other islands. Our results also show that local government units with greater female populations and higher HDI are more likely to have a local authority that (1 has better ability to finance their general services from their unrestricted net assets, and (2 has greater ability to earn more revenues from local sources. Finally, this study documents that the larger the population of a local government unit, the higher its liquidity position, the stronger its ability to funding general services, and the greater its possibility earning revenues from its local sources.

  14. Effects of air flow maldistribution on refrigeration system dynamics of air source heat pump chiller under frosting conditions

    International Nuclear Information System (INIS)

    Gong Jianying; Gao Tieyu; Yuan Xiuling; Huang Dong

    2008-01-01

    The effects of air flow maldistribution on the performance of an air source heat pump chiller under frosting conditions were investigated experimentally. The results indicated that air flow maldistribution was the dominant factor leading to hunting of the thermostatic expansion valve for medium and/or large size finned tube evaporators. With air flow maldistribution degree (AMD) increasing, frost occurred earlier, and the frost layer grew faster. The operating characteristics became lower when AMD was increased. We found such phenomenon seemed to be related to both the difference of refrigerant outlet superheat and the frosting velocity. In the hunting stage, the frost block effect became the main factor degrading the refrigeration system performance. With AMD increasing, the heat pump system pertinent performance data (suction pressure, evaporation temperature, discharge pressure, refrigerant outlet temperature, etc.) were degraded more dramatically

  15. The effect of air dried conditions on mechanical and physical ...

    African Journals Online (AJOL)

    STORAGESEVER

    2009-04-20

    Apr 20, 2009 ... small dimension wooden material is used and this affects the cost of ... The first serious application of laminating technique ... buildings, stock hangar, farms and stables constructions ... resistant lamine elements to air dried condition were easy .... the other was organic solvent water repellent protim WR230.

  16. Benefit Analysis Report, United States Air Force Technical Order Management Systems (AFTOMS)

    Science.gov (United States)

    1989-08-01

    This report prepared by the Transportation Systems Center (TSC) concludes an analysis of the Technical Order (TO) costs and benefits, which was originally undertaken as part of the US Air Force Computer-aided Acquisition and Logistics Support (CALS) ...

  17. Race, deprivation, and immigrant isolation: The spatial demography of air-toxic clusters in the continental United States.

    Science.gov (United States)

    Liévanos, Raoul S

    2015-11-01

    This article contributes to environmental inequality outcomes research on the spatial and demographic factors associated with cumulative air-toxic health risks at multiple geographic scales across the United States. It employs a rigorous spatial cluster analysis of census tract-level 2005 estimated lifetime cancer risk (LCR) of ambient air-toxic emissions from stationary (e.g., facility) and mobile (e.g., vehicular) sources to locate spatial clusters of air-toxic LCR risk in the continental United States. It then tests intersectional environmental inequality hypotheses on the predictors of tract presence in air-toxic LCR clusters with tract-level principal component factor measures of economic deprivation by race and immigrant status. Logistic regression analyses show that net of controls, isolated Latino immigrant-economic deprivation is the strongest positive demographic predictor of tract presence in air-toxic LCR clusters, followed by black-economic deprivation and isolated Asian/Pacific Islander immigrant-economic deprivation. Findings suggest scholarly and practical implications for future research, advocacy, and policy. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Innovative application of air ejector as a pump for continuous air monitors

    International Nuclear Information System (INIS)

    Dhanasekaran, A.; Ajoy, K.C.; Santhanam, R.; Rajagopal, V.; Jose, M.T.

    2016-01-01

    Workplace monitoring, one of the key components of the radiation protection program is generally carried out by means of instruments installed permanently in respective areas or through portable air sampling instruments. Continuous air monitor (CAM) is one such monitor that constantly monitors the radionuclide concentration in air and triggers alarm as and when the air concentration goes above the pre-set levels. Conventional CAM system has a filter head, detector, display unit and a pump as four major parts. Pump may be either rotary vane or a vibrating diaphragm which are electrically driven using motors. Air lift pumps using ejectors are widely used where pump reliability and low maintenance are required, and where corrosive, abrasive, or radioactive fluids are handled. Since ejectors are uncomplicated alternative to vacuum pumps, an attempt was made to use the same as a pump for conventional CAMs. An ejector based sampling set up was made, tested and the results are represented in this paper

  19. Thermodynamic analysis of an innovative liquid desiccant air conditioning system to supply potable water

    International Nuclear Information System (INIS)

    Ahmed, M.A.; Gandhidasan, P.; Zubair, Syed M.; Bahaidarah, Haitham M.

    2017-01-01

    Highlights: • The study objective is to reduce the energy consumption of desiccant AC system. • Heat and mass losses are recovered in the proposed system using a condenser. • The conventional and the proposed systems are compared in terms of COP. • The proposed system performance is better than the conventional system. • The proposed system produces freshwater in addition to space cooling. - Abstract: Liquid desiccant air conditioning systems are cost-effective, environmentally friendly and energy efficient techniques, especially in coastal areas. In the conventional liquid desiccant air conditioning system, the scavenging air is expelled into the atmosphere carrying a considerable amount of energy and water vapor. Thus, there is plenty of room to improve the system performance by recovering these losses. The proposed system consists of a conventional liquid desiccant air conditioning system plus a condenser. The aim of this study is to reduce the energy consumption by recovering the heat from the scavenging air using the condenser while also producing freshwater in addition to space cooling. Lithium chloride (LiCl) is used as the liquid desiccant for this study. The mathematical formulation for simultaneous heat and mass transfer between the condenser and the regenerator was developed to establish a comparison between the performance of the conventional and modified systems. Using the generated model, it is found that the modified system performance is 11.25% better than the conventional system and that it produces 86.4 kg of freshwater per hour as a by-product under the given conditions.

  20. 2013 German refrigeration and air conditioning meeting. Proceedings; Deutsche Kaelte- und Klimatagung 2013. Tagungsbericht

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-07-01

    These proceedings cover the following main topics: cryoengineering - superconduction / energy storage; cryoapplications in biology and medicine; metrology; adsorption processes; condensation/evaporation; working fluids / simulation; ice production; plants and compressors; expansion and ejectors or recooling; use of cooling (passenger car air conditioning, supermarket); refrigerants; plant efficiency; emissions and legislation; air conditioning and use of heat pumps; air quality and control; building technology and block-type thermal power stations. [German] Dieser Tagungsbericht enthaelt folgende Themenschwerpunkte: Kryotechnik - Supraleitung/Energiespeicher; Kryoanwendungen in der Biologie und Medizin; Messtechnik; Adsorptionsprozesse; Kondensation/Verdampfung; Arbeitsfluide/Simulation; Eiserzeugung; Anlagen und Verdichter; Expansion und Ejektoren bzw. Rueckkuehlung; Kaelteanwendung (PKW-Klimatisierung; Supermarkt); Kaeltemittel; Anlageneffizienz; Emissionen und Gesetzgebung; Klimatechnik und Waermepumpenanwendung; Luftqualitaet und Regelung; Gebaeudetechnik und BHKW.

  1. Heating, ventilating, and air conditioning deactivation thermal analysis of PUREX Plant

    Energy Technology Data Exchange (ETDEWEB)

    Chen, W.W.; Gregonis, R.A. [Westinghouse Hanford Company, Richland, WA (United States)

    1997-08-01

    Thermal analysis was performed for the proposed Plutonium Uranium Extraction Plant exhaust system after deactivation. The purpose of the analysis was to determine if enough condensation will occur to plug or damage the filtration components. A heat transfer and fluid flow analysis was performed to evaluate the thermal characteristics of the underground duct system, the deep-bed glass fiber filter No. 2, and the high-efficiency particulate air filters in the fourth filter building. The analysis is based on extreme variations of air temperature, relative humidity, and dew point temperature using 15 years of Hanford Site weather data as a basis. The results will be used to evaluate the need for the electric heaters proposed for the canyon exhaust to prevent condensation. Results of the analysis indicate that a condition may exist in the underground ductwork where the duct temperature can lead or lag changes in the ambient air temperature. This condition may contribute to condensation on the inside surfaces of the underground exhaust duct. A worst case conservative analysis was performed assuming that all of the water is removed from the moist air over the inside surface of the concrete duct area in the fully developed turbulent boundary layer while the moist air in the free stream will not condense. The total moisture accumulated in 24 hours is negligible. Water puddling would not be expected. The results of the analyses agree with plant operating experiences. The filters were designed to resist high humidity and direct wetting, filter plugging caused by slight condensation in the upstream duct is not a concern. 19 refs., 2 figs.

  2. A dynamic model for air-based photovoltaic thermal systems working under real operating conditions

    International Nuclear Information System (INIS)

    Sohel, M. Imroz; Ma, Zhenjun; Cooper, Paul; Adams, Jamie; Scott, Robert

    2014-01-01

    Highlights: • A dynamic model suitable for air-based photovoltaic thermal (PVT) systems is presented. • The model is validated with PVT data from two unique buildings. • The simulated output variables match very well with the experimental data. • The performance of the PVT system under changing working condition is analysed. - Abstract: In this paper a dynamic model suitable for simulating real operating conditions of air-based photovoltaic thermal (PVT) systems is presented. The performance of the model is validated by using the operational data collected from the building integrated photovoltaic (PVT) systems installed in two unique buildings. The modelled air outlet temperature and electrical power match very well with the experimental data. In Solar Decathlon house PVT, the average (RMS) error in air outlet temperatures was 4.2%. The average (RMS) error in electrical power was also 4.2%. In the Sustainable Buildings Research Centre PVT, the average errors (RMS) of PV and air temperatures were 3.8% and 2.2%, respectively. The performance of the PVT system under changing working condition is also analysed in this paper. The analysis includes the effect of ambient air temperature, air inlet temperature, air flow rate and solar irradiation on thermal, electrical, first law and second law efficiencies. Both the thermal and the 1st law efficiencies almost linearly increased with the increase of the ambient temperature. However, the PVT electrical efficiency and the second law efficiency decreased with the increase of the ambient temperature. All efficiencies expect the second law efficiency decreased with increase of the PVT air inlet temperature. The second law efficiency first increased and then reduced. With increasing the air flow rate all the efficiencies increased. The electrical and second law efficiencies become less sensitive when the air flow rate exceeded 300 l/s. Both the thermal and the 1st law efficiencies decreased while the electrical

  3. Condition assessment and strengthening of residential units

    Directory of Open Access Journals (Sweden)

    Tatheer Zahra

    2014-01-01

    Full Text Available About 40, ground plus one (G+1 residential units were designed using a hybrid structural framing system (RC frame and load bearing walls. A few months after the completion of the ground floor of the residential units, cracks appeared at several locations in the structure. Field and Laboratory testing was conducted to ascertain the in situ strength of concrete and steel reinforcement. The results of the experimental work were used in the analytical ETABS model for the structural stability calculations. The results indicated that residential units were marginally safe in the existing condition (completed ground floor, but the anticipated construction of the floor above the ground floor (G+1 could not be carried out as the strength of the structural system was inadequate. To increase the safety of existing ground floor and to provide the option of the construction of one floor above, rehabilitation and strengthening design was performed. The proposed strengthening design made use of welded wire fabric (WWF and carbon fibre reinforced polymer (CFRP laminates/sheets for the strengthening of walls, columns and slabs. The residential units will be strengthened in the near future.

  4. A dynamic switching strategy for air-conditioning systems operated in light-thermal-load conditions

    International Nuclear Information System (INIS)

    Lin, Jin-Long; Yeh, T.-J.; Hwang, Wei-Yang

    2009-01-01

    Recently, modern air-conditioners have begun to incorporate variable-speed compressors and variable-opening expansion valves, together with feedback control to improve the performance and energy efficiency. However, for the compressor there usually exists a low-speed limit below which its speed can not be continuously modulated unless it is completely turned off. When the air-conditioning system is operated in light-thermal-load conditions, the low-speed limit causes the compressor to run in an on-off manner which can significantly degrade the performance and efficiency. In this paper, a dynamic switching strategy is proposed for such scenarios. The strategy is basically an integration of a cascading control structure, an intuitive switching strategy, and a dynamic compensator. While the control structure provides the nominal performance, the intuitive switching strategy and the dynamic compensator together can account for the compressor's low-speed limitation. Theoretical analysis reveals that when the output matrix of the dynamic compensator is chosen properly, the proposed strategy can effectively reduce the output error caused by the on-off operation of the compressor. Experiments also demonstrate that the proposed strategy can simultaneously provide better regulation for the indoor temperature and improve the energy efficiency at steady state.

  5. Climate Change and Health Risks from Extreme Heat and Air Pollution in the Eastern United States

    Science.gov (United States)

    Limaye, V.; Vargo, J.; Harkey, M.; Holloway, T.; Meier, P.; Patz, J.

    2013-12-01

    Climate change is expected to exacerbate health risks from exposure to extreme heat and air pollution through both direct and indirect mechanisms. Directly, warmer ambient temperatures promote biogenic emissions of ozone precursors and favor the formation of ground-level ozone, while an anticipated increase in the frequency of stagnant air masses will allow fine particulates to accumulate. Indirectly, warmer summertime temperatures stimulate energy demand and exacerbate polluting emissions from the electricity sector. Thus, while technological adaptations such as air conditioning can reduce risks from exposures to extreme heat, they can trigger downstream damage to air quality and public health. Through an interdisciplinary modeling effort, we quantify the impacts of climate change on ambient temperatures, summer energy demand, air quality, and public health. The first phase of this work explores how climate change will directly impact the burden of heat-related mortality. Climatic patterns, demographic trends, and epidemiologic risk models suggest that populations in the eastern United States are likely to experience an increasing heat stress mortality burden in response to rising summertime air temperatures. We use North American Regional Climate Change Assessment Program modeling data to estimate mid-century 2-meter air temperatures and humidity across the eastern US from June-August, and quantify how long-term changes in actual and apparent temperatures from present-day will affect the annual burden of heat-related mortality across this region. With the US Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program, we estimate health risks using concentration-response functions, which relate temperature increases to changes in annual mortality rates. We compare mid-century summertime temperature data, downscaled using the Weather Research and Forecasting model, to 2007 baseline temperatures at a 12 km resolution in order to estimate

  6. Clean air in the Anthropocene.

    Science.gov (United States)

    Lelieveld, Jos

    2017-08-24

    In atmospheric chemistry, interactions between air pollution, the biosphere and human health, often through reaction mixtures from both natural and anthropogenic sources, are of growing interest. Massive pollution emissions in the Anthropocene have transformed atmospheric composition to the extent that biogeochemical cycles, air quality and climate have changed globally and partly profoundly. It is estimated that mortality attributable to outdoor air pollution amounts to 4.33 million individuals per year, associated with 123 million years of life lost. Worldwide, air pollution is the major environmental risk factor to human health, and strict air quality standards have the potential to strongly reduce morbidity and mortality. Preserving clean air should be considered a human right, and is fundamental to many sustainable development goals of the United Nations, such as good health, climate action, sustainable cities, clean energy, and protecting life on land and in the water. It would be appropriate to adopt "clean air" as a sustainable development goal.

  7. Feasibility study of using agriculture waste as desiccant for air conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Khedari, J.; Rawangkul, R.; Hirunlabh, J. [King Mongkut' s University of Technology Thonburi, Bangkok (Thailand). Buidling Scientific Research Center; Chimchavee, W. [University of Thai Chamber of Commerce, Bangkok (Thailand); Watanasungsuit, A. [South East Asia Univ., Bangkok (Thailand). Engineering Management

    2003-08-01

    This research was aimed at investigating the feasibility of using dried agricultural waste as desiccant for an open cycle air conditioning system. The natural fibers are, therefore, intended to replace chemical desiccant such as silica gel, molecular sieves etc. The investigation was limited to Coconut coir (Cocos nucifera) and Durian peels (Durio zibethinus). Experimental results confirmed that dry coconut coir and durian peel can absorb 30 g and 17 g H{sub 2}O per 100 g dry product, respectively, from air at the average condition of 32{sup o}C and 75% relative humidity. The optimum airflow rate is about 84 and 98 m{sup 3}/hr-100 g dry product, respectively. Therefore, the dry coconut coir is more suitable than the dry durian peel. Comparison between the dry coconut coir and silica gel showed that the average adsorption rate of coconut coir is less than that of silica gel by about 5 g/h-100 g dry product at an airflow rate of 84 m{sup 3}/h and 60 min operating time. However, it is still an interesting option to replace silica gel in open cycle air conditioning system, as the decrease of average adsorption rate is rather small. The other extremely interesting advantage of coconut coir is that during moisture absorption the heat generated during the process is less important. That means the air leaves the coconut coir bed at a lower temperature compared to that with a silica gel. Therefore, the saving of cooling energy is much more important. (Author)

  8. Simplified model-based optimal control of VAV air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Nassif, N.; Kajl, S.; Sabourin, R. [Ecole de Technologie Superieure, Montreal, PQ (Canada). Dept. of Construction Engineering

    2005-07-01

    The improvement of Variable Air Volume (VAV) system performance is one of several attempts being made to minimize the high energy use associated with the operation of heating, ventilation and air conditioning (HVAC) systems. A Simplified Optimization Process (SOP) comprised of controller set point strategies and a simplified VAV model was presented in this paper. The aim of the SOP was to determine supply set points. The advantage of the SOP over previous methods was that it did not require a detailed VAV model and optimization program. In addition, the monitored data for representative local-loop control can be checked on-line, after which controller set points can be updated in order to ensure proper operation by opting for real situations with minimum energy use. The SOP was validated using existing monitoring data and a model of an existing VAV system. Energy use simulations were compared to that of the existing VAV system. At each simulation step, 3 controller set point values were proposed and studied using the VAV model in order to select a value for each point which corresponded to the best performance of the VAV system. Simplified VAV component models were presented. Strategies for controller set points were described, including zone air temperature, duct static pressure set points; chilled water supply set points and supply air temperature set points. Simplified optimization process calculations were presented. Results indicated that the SOP provided significant energy savings when applied to specific AHU systems. In a comparison with a Detailed Optimization Process (DOP), the SOP was capable of determining set points close to those obtained by the DOP. However, it was noted that the controller set points determined by the SOP need a certain amount of time to reach optimal values when outdoor conditions or thermal loads are significantly changed. It was suggested that this disadvantage could be overcome by the use of a dynamic incremental value, which

  9. IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Danish participation 2007-2010. Appendix; IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Dansk deltagelse 2007-2010. Bilag

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, Aarhus (Denmark)); Muenster, E. (PlanEnergi, Skoerping (Denmark)); Reinholdt, L. (Teknologisk Institut, Aarhus (Denmark)); Munds, S. (AC-Sun Aps, Horsens (Denmark))

    2011-03-15

    IEA SHC Task 38 'Solar Air-Conditioning and Refrigeration' ran from October 2006 to December 2010. Denmark was represented in the task from January 2007 to December 2010. The aim of the task was to encourage use of solar powered refrigeration and air conditioning systems in particular at residential, commercial and industrial sectors. Furthermore, the aim was to contribute to new research and development activities on new systems and concepts. The appendix contains the publications prepared by the Danish project group.(LN)

  10. Air sampling in the workplace to meet the new part 20 requirements

    International Nuclear Information System (INIS)

    McGuire, S.; Hickey, E.E.; Knox, W.

    1991-01-01

    The US Nuclear Regulatory Commission is developing a Regulatory Guide on air sampling in the workplace to meet the requirements of the revised Part 20. The guide will be accompanied by a technical manual describing and giving examples of how to meet the recommendations in the guide. Draft versions of the guide and manual are scheduled to be published for public comment this year. A final guide and manual, revised to consider the public comments, are scheduled to be published in 1992. This talk will summarize some of the more important features of the guide and manual. In particular, the talk will discuss how to demonstrate that samples taken to estimate worker intakes are representative of the air inhaled by workers and what measurements are necessary if a licensee wants to adjust derived air concentrations to account for particle size

  11. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    Energy Technology Data Exchange (ETDEWEB)

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  12. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    Science.gov (United States)

    Ushimaru, Kenji

    1990-08-01

    Since 1983, technological advances and market growth of inverter-driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries, microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices, were able to direct the development and market success of inverter-driven heat pumps. As a result, leading U.S. variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales.

  13. Performance evaluation of an open-cathode PEM fuel cell stack under ambient conditions: Case study of United Arab Emirates

    International Nuclear Information System (INIS)

    Al-Zeyoudi, Hend; Sasmito, Agus P.; Shamim, Tariq

    2015-01-01

    Highlights: • Performance evaluation of open-cathode PEM fuel cell stacks with forced air-convection. • Stack performance can vary up to 40% from winter to summer. • Hot and arid condition leads to membrane drying and performance deterioration. • Anode humidification improves the stack performance up to 40% during summer. - Abstract: The open-cathode polymer electrolyte membrane (PEM) fuel cell stack has been a promising candidate as a sustainable energy conversion system for replacing fossil fuel-based energy conversion devices in portable and automotive applications. As the ambient air is directly used to provide both oxidant and cooling, the complex cooling loop can be avoided which reduces the complexity and cost. However, the stack performance is highly affected by ambient conditions, i.e., ambient temperature and humidity. In this study, the effect of monthly ambient air conditions (temperature and humidity) is evaluated with respect to the stack’s power production performance as well as thermal, water and gas management by employing a validated three-dimensional open-cathode PEM fuel cell stack model. The annual climate data from the hot and arid environment of Abu Dhabi, United Arab Emirates (UAE) are used as a case study. The objective is to develop a better fundamental understanding of the interactions of physical phenomena in a fuel cell stack, which can assist in improving the performance and operation of an open-cathode PEM fuel cell-powered vehicle. The results indicate that the stack performance can vary significantly (up to 40%) from winter to summer, especially at high operating currents, with significant changes in the stack temperature and the water content at the membrane. Moreover, the anode humidification results in a significant improvement in the stack performance (up to 40%) in hot and dry conditions. However, a careful balance has to be struck between the humidifier parasitic load and the stack power.

  14. Heavy metal contamination in an urban stream fed by contaminated air-conditioning and stormwater discharges.

    Science.gov (United States)

    O'Sullivan, Aisling; Wicke, Daniel; Cochrane, Tom

    2012-03-01

    Urban waterways are impacted by diffuse stormwater runoff, yet other discharges can unintentionally contaminate them. The Okeover stream in Christchurch, New Zealand, receives air-conditioning discharge, while its ephemeral reach relies on untreated stormwater flow. Despite rehabilitation efforts, the ecosystem is still highly disturbed. It was assumed that stormwater was the sole contamination source to the stream although water quality data were sparse. We therefore investigated its water and sediment quality and compared the data with appropriate ecotoxicological thresholds from all water sources. Concentrations of metals (Zn, Cu and Pb) in stream baseflow, stormwater runoff, air-conditioning discharge and stream-bed sediments were quantified along with flow regimes to ascertain annual contaminant loads. Metals were analysed by ICP-MS following accredited techniques. Zn, Cu and Pb concentrations from stormflow exceeded relevant guidelines for the protection of 90% of aquatic species by 18-, 9- and 5-fold, respectively, suggesting substantial ecotoxicity potential. Sporadic copper (Cu) inputs from roof runoff exceeded these levels up to 3,200-fold at >4,000 μg L⁻¹ while Cu in baseflow from air-conditioning inputs exceeded them 5.4-fold. There was an 11-fold greater annual Cu load to the stream from air-conditioning discharge compared to stormwater runoff. Most Zn and Cu were dissolved species possibly enhancing metal bioavailability. Elevated metal concentrations were also found throughout the stream sediments. Environmental investigations revealed unsuspected contamination from air-conditioning discharge that contributed greater Cu annual loads to an urban stream compared to stormwater inputs. This discovery helped reassess treatment strategies for regaining ecological integrity in the ecosystem.

  15. AN IMPACT OF THE EFFICIENT FUNCTIONING OF THE VENTILATION AND AIR-CONDITIONING SYSTEM ON THERMAL COMFORT OF THE MEDICAL STAFF IN THE OPERATING ROOM

    Directory of Open Access Journals (Sweden)

    Tomasz Jankowski

    2016-11-01

    Full Text Available Ventilation and air conditioning systems are necessary for developing proper parameters of indoor envi-ronment in operating rooms. The main task of ventilation and air conditioning in those specific areas consists in creating desirable temperature, reducing the number of microorganisms and the concen-trations of hazardous gases and substances in the air, as well as ensuring the proper direction of airflow. In Poland, indoor environment in operating rooms has to comply with the requirements set out in three regulations (Journal of Laws of 2002 No. 75, item 690, as amended, Journal of Laws of 2002 No. 217, item 1833, Journal of Laws of 2011 No. 31, item 158, as amended and the document entitled "Guidelines for the design of general hospitals". Given insufficient accuracy of the abovementioned national documents, it is a common practice to use foreign standards, i.e. ASHRAE Standard 170-2013, DIN 1946-4: 2008 and FprCEN TR 16244: 2011. When considering the conditions for thermal comfort, it is important to bear in mind a close link between air flow velocity and air temperature. Air in the zone occupied by patients and medical staff must not cause the sensation of draft. Furthermore, air velocity should be sufficient to eliminate interference caused by the presence of people and other sources of heat. It should also reduce the turbulence level in the air in the operating room. Efficient functioning of ventilation and air conditioning was tested during treatments and operations carried out on three wards of a Warsaw hospital. Tests were performed with the participation of medical staff from various surgical units. They were asked to perform minor manual tasks to simulate work on the op-erating table, and to complete a questionnaire on subjective thermal sensation. The applied methodology is widely used during testing of general and local ventilation in public buildings. Air temperature, relative humidity, air flow supply and exhaust air from the

  16. Air conditioning design temperature - a new proposal; Temperatura de projeto para condicionamento de ar - uma nova proposta

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Jose R.; Cardoso, Sebastiao [Universidade de Taubate, SP (Brazil). Dept. de Engenharia Mecanica]. E-mails: rui@engenh.mec.unitau.br; cardoso@prppg.unitau.br; Travelho, Jeronimo S. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)]. E-mail: jeff@lac.inpe.br

    2000-07-01

    ABNT - Associacao Brasileira de Normas Tecnicas (Brazilian Association for Technical Standards) - establishes, in NBR-6401, Table 1 (Interior Design Conditions), the dry-bulb summer temperature and the relative humidity to be used in air conditioning design. In thermal comfort plant for residences, hotels, offices and schools these values are, respectively, 23 deg C to 25 deg C and 40% to 60% rh. These data are in accordance with what is recommended by ASHRAE, which was established as a model for North America. This paper presents a new proposal to air conditioning design temperature that takes into consideration Brazilian climatological conditions. The method, named 'effective temperature distribution', compares the maximum recommended effective temperature for each region with dry-bulb temperatures and effective temperatures plotted in a single diagram. This diagram may be used in energetic planning to minimize the use of electric energy for air conditioning. It concludes that the method allows an accuracy analysis about both the temperature levels and the periods of utilization of the air conditioning systems. (author)

  17. Conditioning of tritiated wastes. Part II

    International Nuclear Information System (INIS)

    Hawthorne, S.H.

    1984-01-01

    Work is continuing on the development of conditioning systems for low and intermediate level tritiated liquid and solid wastes which will prevent loss of tritium for at least 150 years. This portion of the program has concentrated on solidification and encapsulation of tritiated aqueous wastes, development of techniques, for the measurement of tritium loss in air and water, and identification and evaluation of encapsulation materials. Solidification of tritiated aqueous wastes by water extendible polyester or cements resulted in average tritium releases of approximately 1-4x10 -1 α/day with that from water extendible polyester being the lowest. The daily release rate is independent of initial tritium concentration in the waste form and can be reduced by a factor of 1000 by encapsultation of the waste within a 10 mm layer of water extendible polyester. Water extendible polyester is the preferred material for solidification and encapsulation of aqueous tritiated wastes and encapsulation of tritiated solids permitting release of only 3x10 -3 % of the original activity over 150 years. It is expected that this program which was originally scheduled for three years can now be completed in two years with complete definition of the conditioning system including the outer package

  18. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    OpenAIRE

    Xueping Du; Dongtai Han; Qiangmin Zhu

    2018-01-01

    To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to e...

  19. The effects of air stoichiometry and air excess ratio on the transient response of a PEMFC under load change conditions

    International Nuclear Information System (INIS)

    Kim, Bosung; Cha, Dowon; Kim, Yongchan

    2015-01-01

    Highlights: • Effects of controlling parameters on the transient response of a PEMFC are studied. • The transient response is measured by varying air stoichiometry and air excess ratio. • Voltage drop, undershoot, and voltage fluctuation are analyzed under the load change. • Optimal air stoichiometry and air excess ratio are suggested for stable operation. - Abstract: The transient response of a proton exchange membrane fuel cell (PEMFC) is an important issue for transportation applications. The objective of this study is to investigate the effects of operating and controlling parameters on the transient response of a PEMFC for achieving more stable cell performance under load change conditions. The transient response of a PEMFC was measured and analyzed by varying air stoichiometry, air humidity, and air excess ratio (AER). The optimal air stoichiometry and AER were determined to minimize the voltage drop, undershoot, and voltage fluctuation under the load change, while maintaining high cell performance. Based on the present data, the optimal air stoichiometry was determined to be between 2.0 and 2.5, and the optimal AER was suggested to be between 1.65 and 2.0

  20. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    Directory of Open Access Journals (Sweden)

    Xueping Du

    2018-04-01

    Full Text Available To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to evaluate cooling performance. Rotating wind deflectors are adopted to reduce the influence of crosswind on the cooling tower performance. The effects of the rotating wind deflectors on the thermal-hydraulic characteristics of the air-cooling tower under different environmental crosswind speeds are studied. Results indicate that the wind direction in the tower reverses as the rotating speed of the wind deflectors increases. The thermal performance of an air-cooling tower under crosswind conditions can be improved by using rotating wind deflectors. The heat transfer rate of a cooling tower with eight wind deflectors begins to increase when the rotating speed exceeds 2 r/min.