WorldWideScience

Sample records for air-conditioning direct-fired double-effect

  1. On-site real-time evaluation of an air-conditioning direct-fired double-effect absorption chiller

    International Nuclear Information System (INIS)

    Torrella, E.; Sanchez, D.; Cabello, R.; Larumbe, J.A.; Llopis, R.

    2009-01-01

    This work presents a procedure for calculating the COP and heat transfer rates, based on on-site experimental temperature measurements, of a lithium-bromide/water direct-fired double-effect absorption chiller in reverse parallel flow configuration, running on natural gas. The chiller was equipped with a set of thermocouples which allowed measuring its working temperature levels through all its operating stages. The chiller analysed in this work is the central cooling system of the air-conditioning installation of the Principe Felipe Science Museum, located at the Valencia's City of Arts and Sciences (Spain). This installation is capable of providing a cooling capacity of 4.5 millions of kcal/h (5.2 MW), by means of three direct-fired double-effect absorption chillers. From the experimental measurements a calculation procedure, based on energy and mass balances, has been developed, which allows estimating the specific powers by unit of mass flow rate through the evaporator. From these power values the instantaneous COP of the chiller could be obtained. Additionally, the paper analyzes different aspects that were not possible to be considered and details the actions taken in order to take them into account

  2. Direct fired heat exchanger

    Science.gov (United States)

    Reimann, Robert C.; Root, Richard A.

    1986-01-01

    A gas-to-liquid heat exchanger system which transfers heat from a gas, generally the combustion gas of a direct-fired generator of an absorption machine, to a liquid, generally an absorbent solution. The heat exchanger system is in a counterflow fluid arrangement which creates a more efficient heat transfer.

  3. SOLAR AIR CONDITIONING OF BUILDING

    Directory of Open Access Journals (Sweden)

    Debrayan Bravo Hidalgo

    2015-04-01

    Full Text Available Air Conditioning with renewable energy is a key issue in the region's energy policy. The high temperatures usually attributed to climate change and the increase of the standard of living in society continues increasing energy demand in order to establish the conditions for thermal comfort in buildings. Solar air conditioning, although it contains a mature technology, its level of market introduction and acceptance by designers of buildings is exhaustive. This paper discusses the feasibility of these projects, identifies non-technological type barriers that hinders such use and implementation of solar energy for air conditioning systems, and finally, it approaches some criteria and recommendations to overcome these obstacles.

  4. Aristotle and Double Effect

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2014-01-01

    cases from the literature on double effect such as, amongst others, strategic bombing, the trolley problem, and craniotomy. I find that, despite some common features such as the dilemmatic structure and the inevitability of a bad effect, Aristotle’s mixed actions do not count as cases justifiable...

  5. Aristotle and Double Effect

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    2014-01-01

    There are some interesting similarities between Aristotle’s ‘mixed actions’ in Book III of the Nicomachean Ethics and the actions often thought to be justifiable with the Doctrine of Double Effect. Here I analyse these similarities by comparing Aristotle’s examples of mixed actions with standard ...

  6. Concentrated Solar Air Conditioning for Buildings Project

    Science.gov (United States)

    McLaughlin, Rusty

    2010-01-01

    This slide presentation reviews project to implement the use of solar power to provide air conditioning for NASA buildings. Included is an overall conceptual schematic, and an diagram of the plumbing and instrumentation for the project. The use of solar power to power air conditioning in buildings, particularly in the Southwest, could save a significant amount of money. DOD studies have concluded that air conditioning accounts for 30-60% of total energy expenditures.

  7. Fungal colonization of air-conditioning systems

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2008-01-01

    Full Text Available Fungi have been implicated as quantitatively the most important bioaerosol component of indoor air associated with contaminated air-conditioning systems. rarely, indoor fungi may cause human infections, but more commonly allergenic responses ranging from pneumonitis to asthma-like symptoms. From all air conditioner filters analyzed, 16 fungal taxa were isolated and identified. Aspergillus fumigatus causes more lethal infections worldwide than any other mold. Air-conditioning filters that adsorb moisture and volatile organics appear to provide suitable substrates for fungal colonization. It is important to stress that fungal colonization of air-conditioning systems should not be ignored, especially in hospital environments.

  8. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    Science.gov (United States)

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  9. Air Conditioning and Refrigeration Book III.

    Science.gov (United States)

    Eckes, William; Fulkerson, Dan

    Designed to present theory as a functional aspect, this air conditioning and refrigeration curriculum guide is comprised of nine units of instruction. Unit titles include (1) Job Orientation, (2) Applying for a Job, (3) Customer Relations, (4) Business Management, (5) Psychometrics, (6) Residential Heat Loss and Heat Gain, (7) Duct Design and…

  10. Fundamentals of Air Conditioning and Refrigeration.

    Science.gov (United States)

    Clemons, Mark

    This set of instructional materials provides secondary and postsecondary students with a state-of-the-art curriculum for the air conditioning and refrigeration industry that includes the many changes brought by new Environmental Protection Agency (EPA) regulations. Introductory materials explain the use of this publication and provide the…

  11. Air Conditioning and Refrigeration. Book Two.

    Science.gov (United States)

    Wantiez, Gary W.

    This curriculum guide (book II), along with book I, is designed to provide students with the basic skills for an occupation in air conditioning and refrigeration. Six major areas are included, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Electricity (fundamentals of electricity,…

  12. Air Conditioning and Refrigeration Book IV.

    Science.gov (United States)

    Eckes, William; Fulkerson, Dan

    This publication is the concluding text in a four-part curriculum for air conditioning and refrigeration. Materials in Book 4 are designed to complement theoretical and functional elements in Books 1-3. Instructional materials in this publication are written in terms of student performance using measurable objectives. The course includes six…

  13. Air Conditioning and Refrigeration Supplementary Units.

    Science.gov (United States)

    Winston, Del; And Others

    This document contains supplemental materials for special needs high school students intended to facilitate their mainstreaming in regular air conditioning and refrigeration courses. Teacher's materials precede the materials for students and include general notes for the instructor, additional suggestions, two references, a questionnaire on the…

  14. Air Conditioning and Refrigeration. Book One.

    Science.gov (United States)

    Wantiez, Gary W.

    Designed to provide students with the basic skills for an occupation in air conditioning and refrigeration, this curriculum guide includes seven major areas, each consisting of one or more units of instruction. These areas and their respective units are titled as follows: Orientation (history and development, and job opportunities), Safety…

  15. Readings in Air Conditioning and Refrigeration.

    Science.gov (United States)

    Uberto, Jeffrey A.

    Designed to encourage vocational high school students to read by offering reading materials relevant to their vocational goals, this document contains thirty-seven articles related to air conditioning and refrigeration which have been selected from trade journals, magazines, and newspapers and adapted to the students' reading capabilities. A…

  16. Advanced materials for alternative fuel capable directly fired heat engines

    Energy Technology Data Exchange (ETDEWEB)

    Fairbanks, J.W.; Stringer, J. (eds.)

    1979-12-01

    The first conference on advanced materials for alternative fuel capable directly fired heat engines was held at the Maine Maritime Academy, Castine, Maine. It was sponsored by the US Department of Energy, (Assistant Secretary for Fossil Energy) and the Electric Power Research Institute, (Division of Fossil Fuel and Advanced Systems). Forty-four papers from the proceedings have been entered into EDB and ERA and one also into EAPA; three had been entered previously from other sources. The papers are concerned with US DOE research programs in this area, coal gasification, coal liquefaction, gas turbines, fluidized-bed combustion and the materials used in these processes or equipments. The materials papers involve alloys, ceramics, coatings, cladding, etc., and the fabrication and materials listing of such materials and studies involving corrosion, erosion, deposition, etc. (LTN)

  17. Air conditioning with small power gas appliances

    International Nuclear Information System (INIS)

    Canci, Franco

    1997-01-01

    This article describes research and test activities on small power air conditioning appliances for residential use carried out in the United States, Japan and Europe. The absorption technology aims at the following objectives: to develop appliances requiring reduced maintenance and having a size comparable with electric units of the same output; to reduce production costs and therefore the final prince by adopting special manufacturing technologies such as welded plate exchangers; to obtain appliances which operate both in summer and winter ( as heat pumps), allowing to minimize management and installation costs in southern European climates. The final aim is to offer the customer one appliance only for the following purposes: hot water production for sanitary use, water refrigeration for summer air conditioning, hot water production production for winter heating. This kind of appliance should have management and maintenance costs similar to current individual boilers

  18. Thermal analysis of car air conditioning

    Science.gov (United States)

    Trzebiński, Daniel; Szczygieł, Ireneusz

    2010-10-01

    Thermodynamic analysis of car air cooler is presented in this paper. Typical refrigerator cycles are studied. The first: with uncontrolled orifice and non controlled compressor and the second one with the thermostatic controlled expansion valve and externally controlled compressor. The influence of the refrigerant decrease and the change of the air temperature which gets to exchangers on the refrigeration efficiency of the system; was analysed. Also, its effectiveness and the power required to drive the compressor were investigated. The impact of improper refrigerant charge on the performance of air conditioning systems was also checked.

  19. Thermoelectric air conditioning with water heat rejection

    International Nuclear Information System (INIS)

    Buffet, J.P.

    1984-01-01

    A brief review of thermoelectric air conditioning with water heat rejection is given. Water vapour condensation can produce water droplet carry over which considerably reduces cooling performance. A model to calculate condensation is described, calculations are presented in graphic form that give water film thickness on heat exchange surfaces and influence on cooling performances. A new industrial design is presented that has two important features: a continuous water tube that is grounded and air heat exchangers that eliminate water as it condensates. Performances and specific volumes of subunits are given

  20. A novel direct-fired porous-medium boiler

    Science.gov (United States)

    Prasartkaew, Boonrit

    2018-01-01

    Nowadays, power and heat generation systems pay an important role in all economic sectors. These systems are mainly based on combustion reaction and operated under the second law of thermodynamics. A conventional boilers, a main component of heat and power generators, have thermal efficiency in the range of 70 to 85%, mainly owing to they have flue gas heat loss. This paper proposes a novel type of boiler, called a Direct-fired Porous-medium Boiler (DPB). Due to being operated without flue gas heat loss, its thermal efficiency cloud be approximately close to 100%. The steam produced from the proposed boiler; however, is not pure water steam. It is the composite gases of steam and combustion-product-gases. This paper aims at presenting the working concept and reporting the experimental results on the performance of the proposed boiler. The experiments of various operating parameters were performed and collected data were used for the performance analysis. The experimental results demonstrated that the proposed boiler can be operated as well as the conceptual design and then it is promising. It can be possibly further developed to be a high efficiency boiler by means of reducing or suppressing the surface heat loss with better insulator and/or refractory lined.

  1. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Science.gov (United States)

    Snegirjovs, A.; Shipkovs, P.; Lebedeva, K.; Kashkarova, G.; Migla, L.; Gantenbein, P.; Omlin, L.

    2016-12-01

    Information on the electrical-driven solar air conditioning (SAC) is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC) systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average) systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW). In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  2. Performance Evaluation of Photovoltaic Solar Air Conditioning

    Directory of Open Access Journals (Sweden)

    Snegirjovs A.

    2016-12-01

    Full Text Available Information on the electrical-driven solar air conditioning (SAC is rather scanty. A considerable body of technical data mostly concerns large-scale photo-voltaic solar air conditioning (PV-SAC systems. Reliable information about the energy output has arisen only in recent years; however, it is still not easily accessible, and sometimes its sources are closed. Despite these facts, solar energy researchers, observers and designers devote special attention to this type of SAC systems. In this study, performance evaluation is performed for the PV-SAC technology, in which low-power (up to 15 kWp of cooling power on average systems are used. Such a system contains a PV electric-driven compression chiller with cold and heat sensible thermal storage capacities, and a rejected energy unit used for preheating domestic hot water (DHW. In a non-cooling season, it is possible to partly employ the system in the reverse mode for DHW production. In this mode, the ambient air serves as a heat source. Besides, free cooling is integrated in the PV-SAC concept.

  3. The Future of Air Conditioning for Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Burlington, MA (United States); Guernsey, Matt [Navigant Consulting, Burlington, MA (United States); Young, Jim [Navigant Consulting, Burlington, MA (United States); Fujrman, Jay [Navigant Consulting, Burlington, MA (United States); Abdelaziz, Amar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    BTO works with researchers and industry to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. Air conditioning systems in buildings contribute to GHG emissions both directly through refrigerant emissions, as well as indirectly through fossil fuel combustion for power generation. BTO promotes pre-competitive research and development on next-generation HVAC technologies that support the phase down of hydrofluorocarbon (HFC) production and consumption, as well as cost-effective energy efficiency improvements. DOE provides, with this report, a fact-based vision for the future of A/C use around the world. DOE intends for this vision to reflect a broad and balanced aggregation of perspectives. DOE brings together this content in an effort to support dialogue within the international community and help keep key facts and objectives at the forefront among the many important discussions.

  4. Eight Arguments against Double Effect

    DEFF Research Database (Denmark)

    Di Nucci, Ezio

    I offer eight arguments against the Doctrine of Double Effect, a normative principle according to which in pursuing the good it is sometimes morally permissible to bring about some evil as a side-effect or merely foreseen consequence: the same evil would not be morally justified as an intended...

  5. Refrigeration, Heating & Air Conditioning. Post Secondary Curriculum Guide.

    Science.gov (United States)

    Garrison, Joe C.; And Others

    This curriculum guide was designed for use in postsecondary refrigeration, heating and air conditioning education programs in Georgia. Its purpose is to provide for the development of entry level skills in refrigeration, heating, and air conditioning in the areas of air conditioning knowledge, theoretical structure, tool usage, diagnostic ability,…

  6. Alternative non-CFC mobile air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Mei, V.C.; Chen, F.C.; Kyle, D.M.

    1992-09-01

    Concern about the destruction of the global environment by chlorofluorocarbon (CFC) fluids has become an impetus in the search for alternative, non-CFC refrigerants and cooling methods for mobile air conditioning (MAC). While some alternative refrigerants have been identified, they are not considered a lasting solution because of their high global warming potential, which could result in their eventual phaseout. In view of this dilemma, environmentally acceptable alternative cooling methods have become important. This report, therefore, is aimed mainly at the study of alternative automotive cooling methodologies, although it briefly discusses the current status of alternative refrigerants. The alternative MACs can be divided into work-actuated and heat-actuated systems. Work-actuated systems include conventional MAC, reversed Brayton air cycle, rotary vane compressor air cycle, Stirling cycle, thermoelectric (TE) cooling, etc. Heat-actuated MACs include metal hydride cooling, adsorption cooling, ejector cooling, absorption cycle, etc. While we are better experienced with some work-actuated cycle systems, heat-actuated cycle systems have a high potential for energy savings with possible waste heat applications. In this study, each altemative cooling method is discussed for its advantages and its limits.

  7. Refrigeration and air-conditioning technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, P. J.; Counce, D. M. [eds.

    1993-01-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the US Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFCs in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and, indirect CO{sub 2} emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before the year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFCs, HCFCs, and HFCs over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23--25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies. Individual papers are indexed separately.

  8. Refrigeration and Air-Conditioning Technology Workshop

    Science.gov (United States)

    Lewis, P. J.; Counce, D. M.

    1993-12-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the U.S. Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFC's in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and indirect CO2 emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before the year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFC's, HCFC's, and HFC's over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23-25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies.

  9. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    Science.gov (United States)

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  10. Application of solar energy to air-conditioning

    Science.gov (United States)

    Harstad, A. J.; Nash, J. M.

    1978-01-01

    Results of survey of application of solar energy to air-conditioning systems are summarized in report. Survey reviewed air-conditioning techniques that are most likely to find residential applications and that are compatible with solar-energy systems being developed.

  11. Air Conditioning and Refrigeration Program Articulation, 1981-1982.

    Science.gov (United States)

    Dallas County Community Coll. District, TX.

    Based on a survey of high school programs and courses in the Dallas County Community College District (DCCCD), this articulated program is designed to prepare students for entry-level employment in the air conditioning and refrigeration industry, including residential and commercial air conditioning and commercial refrigeration. The skills and…

  12. Solar air conditioning. Dresden colloquium; Solare Klimatisierung. Dresdner Kolloquium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    Subjects: R + D activities in solar air conditioning; dessicative and evaporative cooling (DEC) - systems and components; Chances of solar air conditioning in Europe; Practical experience with solar-assisted air conditioning; Performance of a solar system at Lissabon; DEC system in the Alsenblock building, Berlin; Does solar air conditioning require specially designed buildings; Performance of solar heated adsorption refrigerators; Low-capacity absacity absorption systems for solar air conditioning. [German] Die Kolloquiumsschrift beinhaltet Unterlagen ueber die abgehandelten Themen. Sie lauten: F and E-Aktivitaeten im Bereich Solare Klimatisierung; SGK(DEC-Technik) - ausgefuehrte Anlagen und deren Komponenten; Chancen der solaren Klimatisierung in Europa; Erfahrungen mit der solarunterstuetzten Klimatisierung; Energieverbrauch und Regelung von SGK-Anlagen; Betriebserfahrungen einer Solaranlage in Lissabon; Realisierung der SGK im Alsenblock Berlin; Erfordert die solare Klimatisierung besondere Gebaeude?; Betriebserfahrungen mit solar beheizten Adsorptionskaeltemaschinen; Absorptionsanlagen kleiner Leistung fuer solare Klimatisierung. (orig.)

  13. Utilization of Solar Energy for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Sutikno Juwari Purwo

    2018-01-01

    Full Text Available The purposes of this research are to do a system simulation of air conditioning utilizing solar energy with single effect absorption refrigeration method, analyze the coefficient of performance (COP for each absorbent-refrigerant variable and compare the effectivity of every absorbent-refrigerant variable used. COP is a constant that denotes the effeciency of a refrigeration system, that is ratio of work or useful output to the amount of work or energy input. The higher the number of COP, the more efficient the system is. Absorbent-refrigerant (working fluids variables used in this research depend on its chemical and thermodynamics properties. Steps in this research are including data collection and tabulation from literature and do a simulation of air conditioning system both commercial air conditioning system (using electrical energy and solar energy air conditioning system with Aspen Plus software. Next, run the simulation for each working fluid variables used and calculate the COP for each variable. Subsequently, analyze and compare the effectivity of all variables used from COP value and economical point of view with commercial air conditioning system. From the result of the simulation, can be concluded that solar air conditioning can achieve 98,85 % of energy savings than commercial air conditioning. Furthermore, from the calculation of COP, the highest COP value is achieved by solar conditioning system with LiNO3-NH3 as working fluid where 55% of the composition is the refrigerant and 45% of absorbent.

  14. DESIGN a solar hybrid air conditioning compressor system

    Directory of Open Access Journals (Sweden)

    Khalaji Assadi M.

    2016-01-01

    Full Text Available To develop and integrate solar hybrid system into conventional air conditioning system which provides the same cooling load with considerably less electricity demand. Solar evacuated tube and DC compressor are used for compressing the refrigerant in an air conditioning system, thus effectively reducing the air conditioning electricity consumption by up to 45%. For the flow through type selected geometry of the designed evacuated U-tube collector, a three dimensional simulation and analysis of the thermal performance was done, using the solar ray-tracing model provided by the ANSYS-FLUENT software.

  15. PROSPECTS FOR THE DEVELOPMENT OF TECHNOLOGY AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    O. V. Chernyshova

    2008-03-01

    Full Text Available In the article the evaporation cooling and spray (aqueous and air-to-water types of the air-conditioning systems are considered, their merits and demerits are analyzed; the new scheme of a conditioner is offered.

  16. Use of Seawater for Air Conditioning at Waikiki Convention Center

    Science.gov (United States)

    1994-01-01

    introduction B. History of Seawater Air Conditioning Project Background A. Description of Convention Center Project B. Description of Project Site...intended to present a site specific concep- tual design for Waikiki, Hawaii. B. HISTORY OF SEAWATER AIR CONDITIONING The idea of using natural sources of...used and its properties, with regard to resistir - deformation of failure in tension, buckling, external or internal pressure. Plastic pipelines can

  17. Application of solar energy to air conditioning systems

    Science.gov (United States)

    Nash, J. M.; Harstad, A. J.

    1976-01-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  18. Use of germicidal ultraviolet radiations in air conditionning systems

    Energy Technology Data Exchange (ETDEWEB)

    Hillebrecht, J.; Kohler, N.

    1989-02-01

    Hygienical risks appear in air conditionning plants in humid parts, at the interface between clean and unclean zones and in heat recovery systems. Ultraviolet radiations with a wavelength of 254 etam disactivate germs in a purely physical way. They can be successfully used in air conditionning systems: in air ducts, over doors and in transition spaces, in humidifiers and cooling towers and as direct irradiation in clean rooms. The efficiency can be proven by calculations or experimentally.

  19. 75 FR 221 - Airworthiness Directives; Fire Fighting Enterprises Limited Portable Halon 1211 Fire...

    Science.gov (United States)

    2010-01-05

    ...-01-03] RIN 2120-AA64 Airworthiness Directives; Fire Fighting Enterprises Limited Portable Halon 1211 Fire Extinguishers as Installed on Various Transport Airplanes, Small Airplanes, and Rotorcraft AGENCY... the required specification, have been supplied to the aviation industry for use in fire extinguishing...

  20. DISAIN SIMULATOR AUTOMOTIVE AIR CONDITIONING UNTUK MENINGKATKAN KOMPETENSI MAHASISWA

    Directory of Open Access Journals (Sweden)

    Kamin Sumardi

    2015-08-01

    Full Text Available Perkembangan teknologi automotive air conditioning dan aplikasinya sangat cepat, salah satunya dengan menerapkan green technology. Penerapan green technology pada teknologi air conditioning, karena masih menggunakan refrigeran yang mengandung unsur kimia yang merusak lapisan ozon dan pemanasan global. Alih teknologi bidang air conditioning yang ramah lingkungan, belum dibarengi dengan ketersediaan tenaga kerja pada tingkat SMK dan perguruan tinggi yang memadai, baik kuantitas maupun kompetensinya. Pada level SMK dan perguruan tinggi, kompetensi akademik dan vokasional bidang automotive air conditioning harus terus ditingkatkan dan diperbaharui sesuai dengan perkembangan teknologinya. Penelitian ini bertujuan untuk menghasilkan simulator automotive air conditioner dan model pembelajaran tata udara pada otomotif berwawasan teknologi ramah lingkungan. Penelitian menggunakan metode research and development dengan langkah-langkah: studi pendahuluan, perencanaan, pengembangan melalui uji coba simulator, validasi, dan produk akhir. Simulator dibuat sesuai dengan kondisi di dunia kerja agar tidak terjadi miskonsepsi dan mala-praktek automotive air conditioning. Simulator ini dibuat secara kompak dan mobile atau dapat dipindah dan dibawa. Model pembelajaran disesuaikan dengan kebutuhan kompetensi yang dipersyaratkan. Hasil penelitian menunjukkan bahwa dengan bantuan simulator automotive air conditioner dan model pembelajaran yang tepat mahasiswa mampu menyerap konsep dan praktek lebih cepat 85%. Hasil belajar pada ranah afektif, kognitif, psikomotor dan kompetensi meningkat secara signifikan.

  1. Sustainable air-conditioning for the tropical buildings

    Directory of Open Access Journals (Sweden)

    Asrul Mahjuddin Ressang Aminuddin

    2008-12-01

    Full Text Available Tropical climates are thermally uncomfortable and are mostly unhealthy to the occupants of the modern skyscrapers. The temperatures are usually on the hot side coupled with high relative humidity. The population living in the tropics, especially in Malaysia, is getting affluent and can afford air-conditioning their residences and offices. This leads to increased electricity consumption in the buildings. However, switching off the air-conditioning is not an option for the modern buildings as it would affect the health of the people and their productivity. This paper proposes innovative indoor units that will contribute to energy conservation by utilising principles of partial air-conditioning. The outdoor units could be utilised for clothes drying or for providing hot water to the occupants of the building. This will successfully address the issues on sustainable building technologies and techniques. It will lead to considerable savings in energy consumption in buildings in the tropical climate.

  2. Monitoring and analysis of an absorption air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Perez de Vinaspre, M.; Bourouis, M.; Coronas, A. [Centro de Innovacion Tecnologica en Revalorizacion Energetica y Refrigeracion, Tarragona (Spain); Garcia, A.; Soto, V.; Pinazo, J.M. [E.T.S. Ingenieros Industriales, Valencia (Spain)

    2004-09-01

    In the last few years, high-energy consumption due to air-conditioning has led to a growing interest in the efficient use of energy in buildings. Although simulation programs have always been the main tools for analyzing energy in buildings, the reliability of their results is often compromised by a lack of certainty to reflect real conditions. The aim of this work is to monitorize and analyze the thermal behavior of an absorption-based air-conditioning installation of a university building in Tarragona, Spain. The existing monitoring system of the installation has been improved by implementing additional sensors and flow meters. The data has been stored during summer 2002 and used to assess the energy balance of the air-conditioning installation and the operational regime of the absorption chiller. [Author].

  3. A RADIANT AIR-CONDITIONING SYSTEM USING SOLAR-DRIVEN

    Directory of Open Access Journals (Sweden)

    S. A. ABDALLA

    2006-12-01

    Full Text Available Every air-conditioning system needs some fresh air to provide adequate ventilation air required to remove moisture, gases like ammonia and hydrogen sulphide, disease organisms, and heat from occupied spaces. However, natural ventilation is difficult to control because urban areas outside air is often polluted and cannot be supplied to inner spaces before being filtered. Besides the high electrical demand of refrigerant compression units used by most air-conditioning systems, and fans used to transport the cool air through the thermal distribution system draw a significant amount of electrical energy in comparison with electrical energy used by the building thermal conditioning systems. Part of this electricity heats the cooled air; thereby add to the internal thermal cooling peak load. In addition, refrigerant compression has both direct and indirect negative effects on the environment on both local and global scales. In seeking for innovative air-conditioning systems that maintain and improve indoor air quality under potentially more demanding performance criteria without increasing environmental impact, this paper presents radiant air-conditioning system which uses a solar-driven liquid desiccant evaporative cooler. The paper describes the proposed solar-driven liquid desiccant evaporative cooling system and the method used for investigating its performance in providing cold water for a radiant air-conditioning system in Khartoum (Central Sudan. The results of the investigation show that the system can operate in humid as well as dry climates and that employing such a system reduces air-conditioning peak electrical demands as compared to vapour compression systems.

  4. Air Conditioning Systems from a 2nd Law Perspective

    Directory of Open Access Journals (Sweden)

    Luigi Marletta

    2010-04-01

    Full Text Available In this paper exergy analysis is used to assess the performance of the three most common air conditioning plant schemes: all-air, dual-duct and fan-coil systems. The results are presented in terms of flow diagrams to provide a clear picture of the exergy flow across the systems. The most relevant outcomes are that the air cooling and dehumidification is the process most responsible for the exergy loss and that the exergy efficiency of the overall systems is rather low; thus the quest for more appropriate technologies. Solar-assisted air-conditioning is also discussed, outlining the possibilities and the constraints.

  5. Solar-Driven Air-Conditioning Cycles: A Review

    Directory of Open Access Journals (Sweden)

    A. M. Abu-Zour

    2007-12-01

    Full Text Available Most conventional cooling/refrigeration systems are driven by fossil fuel combustion, and therefore give rise to emission of environmentally damaging pollutants. In addition, many cooling systems employ refrigerants, which are also harmful to the environment in terms of their Global Warming Potential (GWP and Ozone Depletion Potential (ODP. Development of a passive or hybrid solar-driven air-conditioning system is therefore of interest as exploitation of such systems would reduce the demand for grid electricity particularly at times of peak load. This paper presents a review of various cooling cycles and summarises work carried out on solar-driven air-conditioning systems.

  6. Developed adaptive neuro-fuzzy algorithm to control air conditioning ...

    African Journals Online (AJOL)

    user

    The paper developed artificial intelligence technique adaptive neuro-fuzzy controller for air conditioning systems at different pressures. The first order Sugeno fuzzy .... condenser heat rejection rate, refrigerant mass flow rate, compressor power, electric power input to the compressor motor and the coefficient of performance.

  7. Design of energy efficient ventilation and air-conditioning systems

    CERN Document Server

    Seppänen, Olli; Bertilsson, Thore; Maripuu, Mari-Liis; Lamy, Hervé; Vanden Borre, Alex

    2012-01-01

    This guidebook covers numerous system components of ventilation and air-conditioning systems and shows how they can be improved by applying the latest technology products. Special attention is paid to details, which are often overlooked in the daily design practice, resulting in poor performance of high quality products once they are installed in the building system.

  8. Developed adaptive neuro-fuzzy algorithm to control air conditioning ...

    African Journals Online (AJOL)

    user

    Our expectations of such systems have been raised to demand more than just temperature control, and it is increasingly desirable to apply these ... 2012) introduced a hybrid steady-state modeling approach for air-conditioning systems to keep the conservation of mass, energy ..... that shows the complexity and flexibility.

  9. [Relationships between air conditioning, airborne microorganisms and health].

    Science.gov (United States)

    Parat, S; Perdrix, A; Baconnier, P

    1999-01-01

    Concurrently with the increase of air-conditioning, potentially severe or frequent new diseases have emerged, giving rise to social and economical consequences. The first part of this work is a state of the art review of the relationships between air-conditioning, airborne microorganisms and health, through a technical, metrological and medical approach. The second part presents four studies performed in this field. Two of them deal with the relationship between airborne microorganisms and technical features of air-conditioning. Measurements performed on actual sites demonstrated the benefit of using high efficiency filters and low risk components in air-conditioning systems. The third study was aimed to look for a relationship between airborne microorganisms and sick building syndrome symptoms. Statistical analyses of individual data revealed significant associations between airborne bacteria or fungi and symptoms. These results may be the first step in determining a dose-response relationship, in order to define threshold limit values in this field. In the fourth study, the contribution of particle counting in assessing exposure to airborne microorganisms was explored by monitoring simultaneous variations of microbial and particle concentrations. The results showed that associating particle counting may allow to detect microbial variations instantaneously, and therefore improve the assessment of exposure to airborne microorganisms.

  10. Air Conditioning, Heating, and Refrigeration: Scope and Sequence.

    Science.gov (United States)

    Nashville - Davidson County Metropolitan Public Schools, TN.

    This scope and sequence guide, developed for an air conditioning, heating, and refrigeration vocational education program, represents an initial step in the development of a systemwide articulated curriculum sequence for all vocational programs within the Metropolitan Nashville Public School System. It was developed as a result of needs expressed…

  11. Heating, Air-Conditioning, and Refrigeration Technician. National Skill Standards.

    Science.gov (United States)

    Vocational Technical Education Consortium of States, Decatur, GA.

    This guide contains information on the knowledge and skills identified by industry as essential to the job performance of heating, air-conditioning, and refrigeration technicians. It is intended to assist training providers in public and private institutions, as well as in industry, to develop and implement training that will provide workers with…

  12. The characteristics of welded joints for air conditioning application

    Science.gov (United States)

    Weglowski, M. St.; Weglowska, A.; Miara, D.; Kwiecinski, K.; Błacha, S.; Dworak, J.; Rykala, J.; Pikula, J.; Ziobro, G.; Szafron, A.; Zimierska-Nowak, P.; Richert, M.; Noga, P.

    2017-10-01

    In the paper the results of metallographic examination of welded joints for air-conditioning elements are presented. The European directives 2006/40/EC on the greenhouse gasses elimination demand to stop using traditional refrigerant and to change it to R744 (CO2) medium in air conditioning installation. The R744 refrigerant is environmental friendly medium if compared with standard solution such as R12, R134a or R1234yf and safer for passengers than R1234yf. The non-standard thermodynamic parameters of the R744 which translate into high pressure and high temperature require specific materials to develop the shape and to specify the technology of manufacturing for the particular elements of the conduits and moreover the technologies of joining for the whole structure, which would meet the exploitation requirements of the new air-conditioning system. To produce the test welded joints of stainless steels four different joining technologies were applied: laser welding, plasma welding, electron beam welding as well as high speed rotation welding. This paper describes the influence of the selected welding process on the macrostructure and microstructure of welded joints of AISI 304 and AISI 316L steels. The results indicated that plasma welding laser welding and electron beam welding technologies guaranty the proper quality of welded joints and can be used for the air conditioning application in automotive industry. However, high speed rotation welding not guarantee the good quality of welded joints and cannot be used for above application.

  13. Developed adaptive neuro-fuzzy algorithm to control air conditioning ...

    African Journals Online (AJOL)

    The paper developed artificial intelligence technique adaptive neuro-fuzzy controller for air conditioning systems at different pressures. The first order Sugeno fuzzy inference system was implemented and utilized for modeling and controller design. In addition, the estimation of the heat transfer rate and water mass flow rate ...

  14. Development of nanolubricant automotive air conditioning (AAC test rig

    Directory of Open Access Journals (Sweden)

    Redhwan A.A.M.

    2017-01-01

    Full Text Available Nanolubricant been introduced in compressor might improve the performance of automotive air conditioning system. Prior testing of the nanolubricant enhancement performance, an automotive air conditioning (AAC system test rig base on compact car has to be developed; therefore this paper presented the development process of AAC test rig. There are 15 thermocouples, 2 pressure gauges and power analyzer were assembled on the system in order to analyse its performance. The experiment was conducted with four different charged of refrigerant. The charging was based on initial weight charged. At each quantity of refrigerant charge, performance of the AAC system was evaluated by determining three important parameters which is cooling capacity, compressor work and coefficient of performance (COP. The maximum average COP is achieved at 900 RPM is 7.07. The average and maximum COP enhancement of 7.07 % and 13.34 % were achieved by applying SiO2 nanolubricant inside the compressor.

  15. 40 CFR 86.1832-01 - Optional equipment and air conditioning for test vehicles.

    Science.gov (United States)

    2010-07-01

    ...) Except for air conditioning, where it is expected that 33 percent or less of a car line, within a test... air conditioning regardless of the rate of installation of air conditioning within the car line... Optional equipment and air conditioning for test vehicles. For test vehicles selected under §§ 86.1822-01...

  16. Subsurface Thermal Energy Storage for Improved Air Conditioning Efficiency

    Science.gov (United States)

    2016-11-01

    EW-201013) Subsurface Thermal Energy Storage for Improved Air Conditioning Efficiency November 2016 This document has been cleared for public...December 2016 4. TITLE AND SUBTITLE 5a. CONTRACT NUMBER 10-C-0027-A Cost and Performance Report. Subsurface Thermal Energy Storage for Improved...distribution is unlimited 13. SUPPLEMENTARY NOTES 14. ABSTRACT This project involved a field demonstration of subsurface thermal energy storage for

  17. Alternative air-conditioning with the use of solar energy

    International Nuclear Information System (INIS)

    Algarbi, N. M.

    2006-01-01

    The paper concerns the investigation of the alternative air condition systems on the basis of the open absorbtion cycle with the use of solar energy as a heat source. Schematic solution of systems has been carried. The design analysis of working characteristics was performed for a wide rang of initial parameters (teperature and humidity of ambient air, the type and concentration of liquid sorbents, etc.) and construction features of heat and mass transfer.(Author)

  18. Design of Air Conditioning Automation for Patisserie Shopwindow

    OpenAIRE

    Kemal Tutuncu; Recai Ozcan

    2013-01-01

    Having done in this study, air-conditioning automation for patisserie shopwindow was designed. In the cooling sector it is quite important to cooling up the air temperature in the shopwindow within short time interval. Otherwise the patisseries inside of the shopwindow will be spoilt in a few days. Additionally the humidity is other important parameter for the patisseries kept in shopwindow. It must be raised up to desired level in a quite short time. Traditional patisser...

  19. Small photovoltaic setup for the air conditioning system

    Directory of Open Access Journals (Sweden)

    Masiukiewicz Maciej

    2017-01-01

    Full Text Available The increasing interest in air conditioning systems for residential applications in Poland will certainly increase the demand for electricity during the summer period. Due to this fact a growing interest in solutions that help to lower the electricity consumption in this sector is observed. The problem of increased energy demand for air conditioning purposes can be solved by transfer the consumption of electricity from the grid system to renewable energy sources (RES. The greatest demand for cooling occurs during the biggest sunlight. This is the basis for the analysis of technical power system based on photovoltaic cells (PV to power the split type air conditioner. The object of the study was the commercial residential airconditioning inverter units with a capacity of 2.5kW. A network electricity production system for their own use with the possibility of buffering energy in batteries (OFF-GRID system. Currently, on the Polish market, there are no developed complete solutions dedicated to air conditioning systems based on PV. In Poland, solar energy is mainly used for heat production in solar collectors. The proposed solution will help to increase the popularity of PV systems in the Polish market as an alternative to other RES. The basic conclusion is that the amount of PV energy generated was sufficient to cover the daily energy requirement of the air conditioner.

  20. Development of Fuzzy Logic Control for Vehicle Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Henry Nasution

    2008-08-01

    Full Text Available A vehicle air conditioning system is experimentally investigated. Measurements were taken during the experimental period at a time interval of one minute for a set point temperature of 22, 23 and 24oC with internal heat loads of 0, 1 and 2 kW. The cabin temperature and the speed of the compressor were varied and the performance of the system, energy consumption and energy saving ware analyzed. The main objective of the experimental work is to evaluate the energy saving obtained when the fuzzy logic control (FLC algorithm, through an inverter, continuously regulates the compressor speed. It demonstrates better control of the compressor operation in terms of energy consumption as compared to the control by using a thermostat imposing On/Off cycles on the compressor at the nominal frequency of 50 Hz. The experimental set-up consists of original components from the air conditioning system of a compact passenger vehicle. The experimental results indicate that the proposed technique can save energy and improve indoor comfort significantly for vehicle air conditioning systems compared to the conventional (On/Off control technique.

  1. Small photovoltaic setup for the air conditioning system

    Science.gov (United States)

    Masiukiewicz, Maciej

    2017-10-01

    The increasing interest in air conditioning systems for residential applications in Poland will certainly increase the demand for electricity during the summer period. Due to this fact a growing interest in solutions that help to lower the electricity consumption in this sector is observed. The problem of increased energy demand for air conditioning purposes can be solved by transfer the consumption of electricity from the grid system to renewable energy sources (RES). The greatest demand for cooling occurs during the biggest sunlight. This is the basis for the analysis of technical power system based on photovoltaic cells (PV) to power the split type air conditioner. The object of the study was the commercial residential airconditioning inverter units with a capacity of 2.5kW. A network electricity production system for their own use with the possibility of buffering energy in batteries (OFF-GRID system). Currently, on the Polish market, there are no developed complete solutions dedicated to air conditioning systems based on PV. In Poland, solar energy is mainly used for heat production in solar collectors. The proposed solution will help to increase the popularity of PV systems in the Polish market as an alternative to other RES. The basic conclusion is that the amount of PV energy generated was sufficient to cover the daily energy requirement of the air conditioner.

  2. Indoor air quality investigation at air-conditioned and non-air-conditioned markets in Hong Kong

    International Nuclear Information System (INIS)

    Guo, H.; Lee, S.C.; Chan, L.Y.

    2004-01-01

    To characterize indoor air quality at the markets in Hong Kong, three non-air-conditioned and two air-conditioned markets were selected for this study. The indoor air pollutants measured included PM 10 (particulate matters with aerodynamic diameter less than 10 μm), total bacteria count (TBC), carbon monoxide (CO), nitric oxide (NO), nitrogen dioxide (NO 2 ) and sulfur dioxide (SO 2 ). The indoor and outdoor concentrations of these target air pollutants at these markets were measured and compared. The effects of air conditioning, temperature/relative humidity variation and different stalls on the indoor air quality were also investigated. The results indicated that all of the average indoor concentrations of PM 10 , TBC, CO and NO 2 at the markets were below the Hong Kong Indoor Air Quality Objectives (HKIAQO) standards with a few exceptions for PM 10 and TBC. The elevated PM 10 concentrations at Hung Hom, Ngau Tau Kok and Wan Chai markets were probably due to the air filtration of outdoor airborne particulates emitted from vehicular exhaust, whereas high concentrations of airborne bacteria at Sai Ying Pun and Tin Shing markets were linked to the use of air conditioning. Correlation analysis demonstrated that indoor bacteria concentrations were correlated with temperature and relative humidity. The operation of air conditioning did not significantly reduce the levels of air pollutants at the markets. However, the higher indoor/outdoor ratios demonstrated that the operation of air conditioning had influence on the levels of bacteria at the markets. It was found that average PM 10 concentration at poultry stalls was higher than the HKIAQO standard of 180 μg/m 3 , and was over two times that measured at vegetable, fish and meat stalls. Furthermore, the concentration of airborne bacteria at the poultry stalls was as high as 1031 CFU/m 3 , which was above the HKIAQO standard of 1000 CFU/m 3 . The bacteria levels at other three stalls were all below the HKIAQO standard

  3. Report of study 7.3: cooling and air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Russo, F.

    2000-07-01

    This report describes the results of the study carried out by the study group 7.3 in the triennium 1997-2000. The study was focused on industrial refrigeration and air conditioning for the large building utilising natural gas. The goal of this study, carried out in collaboration of the members of study group 7.3, was to analyse the markets of industrial refrigeration and air conditioning for large buildings to identify possibilities to increase the natural gas share in these sectors. The available technology in the two sectors of the market are described in a single section, i.e. the 'State of the art of the technology'. In this section, technical characteristics, applications, performances, new developments and others topics are discussed for absorbers, gas engines, gas turbines and fuel cells. In the 'Industrial Refrigeration' section an analysis of the present global market for the industrial sector is presented. Economics, advantages and barriers to gas units compared with the electrical units are discussed. Information on existing industrial plants, possible application options and new technology developments are described as well. The 'Air conditioning for the large building' section deals with offices, hotels, commercial buildings, hospitals and shopping centres with a cooling capacity of 350 kW or higher. It appears that the use of natural gas for cooling of large buildings has been increasing during the last decade, thanks to the greater availability of natural gas and the development of new technologies. A marketing survey of gas air-conditioning was carried out in cooperation with a group of Intergas Marketing. Based on the survey, the report describes the market position of natural gas relative to electricity. It provides the strategic prospects for further developing natural gas as a competitive option for air-conditioning of large buildings using a combination of state-of-the-art technologies. It is important to highlight

  4. Magnetic Refrigeration Technology for High Efficiency Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Boeder, A; Zimm, C

    2006-09-30

    Magnetic refrigeration was investigated as an efficient, environmentally friendly, flexible alternative to conventional residential vapor compression central air conditioning systems. Finite element analysis (FEA) models of advanced geometry active magnetic regenerator (AMR) beds were developed to minimize bed size and thus magnet mass by optimizing geometry for fluid flow and heat transfer and other losses. Conventional and magnetocaloric material (MCM) regenerator fabrication and assembly techniques were developed and advanced geometry passive regenerators were built and tested. A subscale engineering prototype (SEP) magnetic air conditioner was designed, constructed and tested. A model of the AMR cycle, combined with knowledge from passive regenerator experiments and FEA results, was used to design the regenerator beds. A 1.5 Tesla permanent magnet assembly was designed using FEA and the bed structure and plenum design was extensively optimized using FEA. The SEP is a flexible magnetic refrigeration platform, with individually instrumented beds and high flow rate and high frequency capability, although the current advanced regenerator geometry beds do not meet performance expectations, probably due to manufacturing and assembly tolerances. A model of the AMR cycle was used to optimize the design of a 3 ton capacity magnetic air conditioner, and the system design was iterated to minimize external parasitic losses such as heat exchanger pressure drop and fan power. The manufacturing cost for the entire air conditioning system was estimated, and while the estimated SEER efficiency is high, the magnetic air conditioning system is not cost competitive as currently configured. The 3 ton study results indicate that there are other applications where magnetic refrigeration is anticipated to have cost advantages over conventional systems, especially applications where magnetic refrigeration, through the use of its aqueous heat transfer fluid, could eliminate intermediate

  5. Liquid over-feeding air conditioning system and method

    Science.gov (United States)

    Mei, V.C.; Chen, F.C.

    1993-09-21

    A refrigeration air conditioning system utilizing a liquid over-feeding operation is described. A liquid refrigerant accumulator-heat exchanger is placed in the system to provide a heat exchange relationship between hot liquid refrigerant discharged from condenser and a relatively cool mixture of liquid and vaporous refrigerant discharged from the evaporator. This heat exchange relationship substantially sub-cools the hot liquid refrigerant which undergoes little or no evaporation across the expansion device and provides a liquid over-feeding operation through the evaporator for effectively using 100 percent of evaporator for cooling purposes and for providing the aforementioned mixture of liquid and vaporous refrigerant. 1 figure.

  6. Human requirements in future air-conditioned environments

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    1999-01-01

    Although air-conditioning has played a positive role for economic development in warm climates, its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from Sick Building Syndrome (SBS) symptoms......, even though existing standards and guidelines are met. A paradigm shift from rather mediocre to excellent indoor environments is foreseen in the 21st century. Based on existing information and on new research results, five principles are suggested as elements behind a new philosophy of excellence...... control of the thermal environment should be provided. These principles of excellence are compatible with energy efficiency and sustainability....

  7. Human requirements in future air-conditioned environments

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2001-01-01

    Although air-conditioning has played a positive role for economic development in warm climates, its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from Sick Building Syndrome (SBS) symptoms......, even though existing standards and guidelines are met. A paradigm shift from rather mediocre to excellent indoor environments is foreseen in the 21st century. Based on existing information and on new research results, five principles are suggested as elements behind a new philosophy of excellence...... individual; individual control of the thermal environment should be provided. These principles of excellence are compatible with energy efficiency and sustainability....

  8. Thermo economical evaluation of retrofitting strategies in air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Tribess, Arlindo; Fiorelli, Flavio Augusto Sanzogo; Hernandez Neto, Alberto [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: atribess@usp.br; fiorelli@usp.br; ahneto@usp.br

    2000-07-01

    In a building project, several subsystems are designed, among them the air conditioning system. Electrical energy consumption profiles show that this subsystem is responsible for 40 to 50% of total consumption in a commercial building. Besides the study of technical aspects that should be considered in order to assure the thermal comfort of the occupants as well the temperature and humidity conditions for an efficient equipment operation, an economical evaluation of this subsystem should be also made. In retrofit projects, the economical aspect is also critical for such projects in order to assure bigger efficiency in an economically attractive way. This paper analyses some strategies that might be adopted in retrofitting an air conditioning system installed in a commercial building with mixed occupation. By mixed we mean that some floors have a typical office occupation profile and other floors are mainly occupied by electronic equipment. This analysis includes both technical and economical evaluation. The proposed solutions performance are compared to the old system, which allows to verify the retrofitting impact in energy consumption reduction and its economical feasibility. (author)

  9. 2017 German refrigeration and air conditioning meeting. Proceedings

    International Nuclear Information System (INIS)

    2017-01-01

    This year's lecture programme includes 117 presentations in the five working departments of DKV and 10 lectures at the special event ''Energy-efficient air conditioning in data centres''. The main topics in the respective departments were: (1) Cryogenics: Space applications; Cryogenic plants; Cryomedicine and cryobiology; Components, developments; Processes and plants; Valves, design. (2) Basics: Evaporation, material values; evaporation, condensation; absorption; adsorption, latent storage; cycle simulation. (3) Components: CO 2 plant engineering and components; refrigerants; process control, adsorption, sublimation and storage technology; refrigerating machine oils, heat exchangers and corrosion; components 4.0, sensors and control technology; simulation of plant processes. (4) Cold application: Application; Application / Natural Refrigerants; Mobile Applications Car; Mobile Applications; Supermarket / Efficiency; Optimization / Efficiency. (5) Air conditioning and heat pump applications: load shifting, smart home, flexibility; heat sources and industrial heat pumps; modelling, simulations; energy concepts heat pumps and photovoltaics; monitoring, evaluation; technology trends / working materials. Six papers are separately analyzed for this database. [de

  10. Risk assessment for radon in an air-conditioned workplace

    Energy Technology Data Exchange (ETDEWEB)

    Solomon, S.B. [Australian Radiation Lab., Melbourne, VIC (Australia); Wang, Z. [Ministry of Public Health, Beijing (China). Lab. of Industrial Hygiene

    1994-12-31

    The International Commission on Radiological Protection (ICRP) has proposed a conversion of 5mSv/WLM for risk assessment from workplace exposure to radon progeny. Currently the new ICRP Respiratory Tract Model leads to dose conversion factors (DCF) that are higher by at least a factor of 2.5 and the ICRP Model has not been recommended for assessment of risk for inhalation of radon progeny. However the model can he used to investigate the dependency of the DCF values on the atmospheric conditions. This paper describes measurements made using wire screen diffusion batteries of the radon progeny activity size distributions in the air-conditioned basement of a scientific laboratory. The results show that during work hours with the air-conditioning operating the average radon equilibrium factor was 0.11 while the average unattached fraction was {approx}28%. The average radon progeny-based DCF values were found to be more than a factor of two greater than the conversion convention. Also it was found that a DCF value derived in terms of radon exposure (Bq m{sup -3} h) had a range of a factor of 6 over the two week period of the measurements, suggesting that radon levels are not an adequate indicator of inhalation risk in these circumstances. 10 refs., 1 tab., 4 figs.

  11. Measurement of Vehicle Air Conditioning Pull-Down Period

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, John F [ORNL; Huff, Shean P [ORNL; Moore, Larry G [ORNL; West, Brian H [ORNL

    2016-08-01

    Air conditioner usage was characterized for high heat-load summer conditions during short driving trips using a 2009 Ford Explorer and a 2009 Toyota Corolla. Vehicles were parked in the sun with windows closed to allow the cabin to become hot. Experiments were conducted by entering the instrumented vehicles in this heated condition and driving on-road with the windows up and the air conditioning set to maximum cooling, maximum fan speed and the air flow setting to recirculate cabin air rather than pull in outside humid air. The main purpose was to determine the length of time the air conditioner system would remain at or very near maximum cooling power under these severe-duty conditions. Because of the variable and somewhat uncontrolled nature of the experiments, they serve only to show that for short vehicle trips, air conditioning can remain near or at full cooling capacity for 10-minutes or significantly longer and the cabin may be uncomfortably warm during much of this time.

  12. Analysis on a hybrid desiccant air-conditioning system

    International Nuclear Information System (INIS)

    Jia, C.X.; Dai, Y.J.; Wu, J.Y.; Wang, R.Z.

    2006-01-01

    Hybrid desiccant-assisted preconditioner and split cooling coil system, which combines the merits of moisture removal by desiccant and cooling coil for sensible heat removal, is a potential alternative to conventional vapor compression cooling systems. In this paper, experiments on a hybrid desiccant air-conditioning system, which is actually an integration of a rotary solid desiccant dehumidification and a vapor compression air-conditioning unit, had been carried out. It is found that, compared with the conventional VC (vapor compression) system, the hybrid desiccant cooling system economizes 37.5% electricity powers when the process air temperature and relative humidity are maintained at 30 o C, and 55% respectively. The reason why the hybrid desiccant cooling system features better performance relative to the VC system lies in the improvement brought about in the performance of the evaporator in VC unit due to desiccant dehumidification. A thermodynamic model of the hybrid desiccant system with R-22 as the refrigerant has been developed and the impact of operating parameters on the sensible heat ratio of the evaporator and the electric power saving rate has been analyzed. It is found that a majority of evaporators can operate in the dry condition even if the regeneration temperature is lower (i.e. 80 o C)

  13. 8th International Symposium on Heating, Ventilation and Air Conditioning

    CERN Document Server

    Zhu, Yingxin; Li, Yuguo; Vol.1 Indoor and Outdoor Environment; Vol.2 HVAC&R Component and Energy System; Vol.3 Building Simulation and Information Management

    2014-01-01

    Proceedings of the 8th International Symposium on Heating, Ventilation and Air Conditioning is based on the 8th International Symposium of the same name (ISHVAC2013), which took place in Xi’an on October 19-21, 2013. The conference series was initiated at Tsinghua University in 1991 and has since become the premier international HVAC conference initiated in China, playing a significant part in the development of HVAC and indoor environmental research and industry around the world. This international conference provided an exclusive opportunity for policy-makers, designers, researchers, engineers and managers to share their experience. Considering the recent attention on building energy consumption and indoor environments, ISHVAC2013 provided a global platform for discussing recent research on and developments in different aspects of HVAC systems and components, with a focus on building energy consumption, energy efficiency and indoor environments. These categories span a broad range of topics, and the proce...

  14. Reduced bleed air extraction for DC-10 cabin air conditioning

    Science.gov (United States)

    Newman, W. H.; Viele, M. R.; Hrach, F. J.

    1980-01-01

    It is noted that a significant fuel savings can be achieved by reducing bleed air used for cabin air conditioning. Air in the cabin can be recirculated to maintain comfortable ventilation rates but the quality of the air tends to decrease due to entrainment of smoke and odors. Attention is given to a development system designed and fabricated under the NASA Engine Component Improvement Program to define the recirculation limit for the DC-10. It is shown that with the system, a wide range of bleed air reductions and recirculation rates is possible. A goal of 0.8% fuel savings has been achieved which results from a 50% reduction in bleed extraction from the engine.

  15. Human requirements in future air-conditioned environments

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2002-01-01

    Air-conditioning of buildings has played a very positive role for economic development in warm climates. Still its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from SBS symptoms, even...... though existing standards and guidelines are met. A paradigm shift from rather mediocre to excellent indoor environments is foreseen in buildings in the 21st century. Based on existing information and on new research results, five principles are suggested as elements behind a new philosophy of excellence...... in the built environment: better indoor air quality increases productivity and decreases SBS symptoms; unnecessary indoor pollution sources should be avoided; the air should be served cool and dry to the occupants; personalized ventilation, i.e. small amounts of clean air, should be provided gently, close...

  16. Energy performance of supermarket refrigeration and air conditioning integrated systems

    International Nuclear Information System (INIS)

    Cecchinato, Luca; Corradi, Marco; Minetto, Silvia

    2010-01-01

    The electricity consumption for air conditioning and refrigerated cases in large supermarkets represents a substantial share of the total electricity consumption. The energy efficiency of supermarkets can be improved by optimising components design, recovering thermal and refrigerating energy, adopting innovative technology solutions, integrating the HVAC system with medium temperature and low-temperature refrigeration plants and, finally, reducing thermal loads on refrigerated cases. This study is aimed at investigating the performance of different lay-out and technological solutions and at finding the potential for improving energy efficiency over the traditional systems in different climates. In the analysis chillers and heat pumps working with R410A, medium temperature systems working with R404A and low-temperature systems working both with R404A and R744 were considered. The investigated solutions enable an annual energy saving higher than 15% with respect to the baseline solution for the considered climates.

  17. Guidelines on Thermal Comfort of Air Conditioned Indoor Environment

    Science.gov (United States)

    Miura, Toyohiko

    The thermal comfort of air conditioned indoor environment for workers depended, of course, on metabolic rate of work, race, sex, age, clothing, climate of the district and state of acclimatization. The attention of the author was directed to the seasonal variation and the sexual difference of comfortable temperature and a survey through a year was conducted on the thermal comfort, and health conditions of workers engaged in light work in a precision machine factory, in some office workers. Besides, a series of experiments were conducted for purpose of determinning the optimum temperature of cooling in summer time in relation to the outdoor temperature. It seemed that many of workers at present would prefer somewhat higher temperature than those before the World War II. Forty years ago the average homes and offices were not so well heated as today, and clothing worn on the average was considerably heavier.

  18. Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency

    Science.gov (United States)

    2016-11-21

    FINAL REPORT Subsurface Thermal Energy Storage for Improved Heating and Air Conditioning Efficiency ESTCP Project EW-201013 NOVEMBER 2016 Ronald...TITLE AND SUBTITLE Final Report. Subsurface Thermal Energy Storage for Improved 5a. CONTRACT NUMBER 10-C-0027-A Air Conditioning...This project involved a field demonstration of subsurface thermal energy storage for improving the geothermal heat pump air conditioning efficiency

  19. Air Conditioner Charging. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    Science.gov (United States)

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with air conditioning charging. Covered in the module are checking the air conditioning system for leaks, checking and adding refrigerant oil as needed, evacuating the system,…

  20. Tainted with prejudices. Part 1. Directly fired hall heating systems; Mit Vorurteilen behaftet. T. 1. Direktbefeuerte Hallenheizsysteme

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, J. [Jochem Schulte Gruppe, Arnsberg (Germany)

    2008-03-15

    Despite the fact that modern directly fired hall heating systems have many advantages, this branch still faces many concerns from the past. In addition many small craftsmen companies wrongly estimate the installation expenses and are sparing with such installation orders. Nowadays the assembly is not more expensive than the assembly of a conventional heating plant and even the technical requirements are comparable. (orig.)

  1. Development of technology and systems for air-conditioned and cogenerations using natural gas; Desenvolvimento de tecnologia e sistemas para climatizaco e cogeracao usando gas natural

    Energy Technology Data Exchange (ETDEWEB)

    Santos, Carlos Antonio Cabral dos; Varani, Celina Maria Ribeiro [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil). Lab. de Energia Solar; Campos, Michel Fabianski [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    This preset work deal with a technological project that has as main objective the development of national technology in absorption refrigeration for application in the human thermal comfort with natural gas as energy source in direct fired or through energy recuperation of the combustion gases in cogeneration systems. This project makes part of the REDEGASENERGY and also receive financial support from CT-PETRO founds through FINEP, and also has as partner the local gas distributed company. The focus to be reached is the obtaining of a system of double effect using the solution pair Water-Lithium Bromide as work fluid to the capacity range of five to fifty tons of refrigeration. This range means a important branch on the market for minis-shopping, medical clinics, conveniences shopping, small hotels, motels, etc. The system is compound basically of heat exchangers: vapor generator, absorber, condenser, evaporator and intermediary exchanger. The design of the system is based on the thermodynamic, heat and mass analyses for each component. The concepts of exergy and irreversibility are used for through second thermodynamic law to realize the exegetic analysis and to identify the points of the most thermal lost. The correction on the identified components allows the improvements on the performance of each components and all system. As proposed steps to reach the final objective is established first the development of a single effect system operating in similar conditions of capacity and work fluid that the intended double effect system. (author)

  2. Thermoeconomic evaluation of air conditioning system with chilled water storage

    International Nuclear Information System (INIS)

    Lin, Hu; Li, Xin-hong; Cheng, Peng-sheng; Xu, Bu-gong

    2014-01-01

    Highlights: • A new thermoeconomic evaluation methodology has been presented. • The relationship between thermodynamic and economic performances has been revealed. • A key point for thermal storage technology further application is discovered. • A system has been analyzed via the new method and EUD method. - Abstract: As a good load shifting technology for power grid, chilled energy storage has been paid more and more attention, but it always consumes more energy than traditional air conditioning system, and the performance analysis is mostly from the viewpoint of peak-valley power price to get cost saving. The paper presents a thermoeconomic evaluation methodology for the system with chilled energy storage, by which thermodynamic performance influence on cost saving has been revealed. And a system with chilled storage has been analyzed, which can save more than 15% of power cost with no energy consumption increment, and just certain difference between peak and valley power prices can make the technology for good economic application. The results show that difference between peak and valley power prices is not the only factor on economic performance, thermodynamic performance of the storage system is the more important factor, and too big price difference is a barrier for its application, instead of for more cost saving. All of these give a new direction for thermal storage technology application

  3. Research on Heat Exchange Process in Aircraft Air Conditioning System

    Science.gov (United States)

    Chichindaev, A. V.

    2017-11-01

    Using of heat-exchanger-condenser in the air conditioning system of the airplane Tu-204 (Boeing, Airbus, Superjet 100, MS-21, etc.) for cooling the compressed air by the cold air with negative temperature exiting the turbine results in a number of operational problems. Mainly it’s frosting of the heat exchange surface, which is the cause of live-section channels frosting, resistance increasing and airflow in the system decreasing. The purpose of this work is to analyse the known freeze-up-fighting methods for heat-exchanger-condenser, description of the features of anti-icing protection and offering solutions to this problem. For the problem of optimizing the design of heat exchangers in this work used generalized criterion that describes the ratio of thermal resistances of cold and hot sections, which include: the ratio of the initial values of heat transfer agents flow state; heat exchange surface finning coefficients; factors which describes the ratio of operating parameters and finning area. By controlling the ratio of the thermal resistances can be obtained the desired temperature of the heat exchange surface, which would prevent freezing. The work presents the results of a numerical study of the effect of different combinations of regime and geometrical factors changes on reduction of the heat-exchanger-condenser freezing surface area, including using of variable ratio of thermal resistances.

  4. Bioaerosol deposition on an air-conditioning cooling coil

    Science.gov (United States)

    Wu, Yan; Chen, Ailu; Luhung, Irvan; Gall, Elliott T.; Cao, Qingliang; Chang, Victor Wei-Chung; Nazaroff, William W.

    2016-11-01

    This study is concerned with the role of a fin-and-tube heat exchanger in modifying microbial indoor air quality. Specifically, depositional losses of ambient bioaerosols and particles onto dry (not cooled) and wet (cool) coil surfaces were measured for different airspeeds passing through the test coil. Total, bacterial and fungal DNA concentrations in condensate water produced by a wet coil were also quantified by means of fluorescent dsDNA-binding dye and qPCR assays. Results revealed that the deposition of bioaerosols and total particles is substantial on coil surfaces, especially when wet and cool. The average deposition fraction was 0.14 for total DNA, 0.18 for bacterial DNA and 0.22 for fungal DNA on the dry coil, increasing to 0.51 for total DNA, 0.50 for bacterial DNA and 0.68 for fungal DNA on the wet coil. Overall, as expected, deposition fractions increased with increasing particle size and increasing airspeed. Deposited DNA was removed from the cooling coil surfaces through the flow of condensing water at a rate comparable to the rate of direct deposition from air. A downward trend of bacterial and fungal DNA measured in condensate water over time provides suggestive evidence of biological growth on heat exchangers during nonoperational times of a ventilation system. This investigation provides new information about bioaerosol deposition onto a conventional fin-and-tube cooling coil, a potentially important factor influencing indoor exposure to microbial aerosols in air-conditioned buildings.

  5. Energy Analysis for Air Conditioning System Using Fuzzy Logic Control

    Directory of Open Access Journals (Sweden)

    Henry Nasution

    2011-04-01

    Full Text Available Reducing energy consumption and to ensure thermal comfort are two important considerations for the designing an air conditioning system. An alternative approach to reduce energy consumption proposed in this study is to use a variable speed compressor. The control strategy will be proposed using the fuzzy logic controller (FLC. FLC was developed to imitate the performance of human expert operators by encoding their knowledge in the form of linguistic rules. The system is installed on a thermal environmental room with a data acquisition system to monitor the temperature of the room, coefficient of performance (COP, energy consumption and energy saving. The measurements taken during the two hour experimental periods at 5-minutes interval times for temperature setpoints of 20oC, 22oC and 24oC with internal heat loads 0, 500, 700 and 1000 W. The experimental results indicate that the proposed technique can save energy in comparison with On/Off and proportional-integral-derivative (PID control.

  6. Challenges of using air conditioning in an increasingly hot climate.

    Science.gov (United States)

    Lundgren-Kownacki, Karin; Hornyanszky, Elisabeth Dalholm; Chu, Tuan Anh; Olsson, Johanna Alkan; Becker, Per

    2017-12-30

    At present, air conditioning (AC) is the most effective means for the cooling of indoor space. However, its increased global use is problematic for various reasons. This paper explores the challenges linked to increased AC use and discusses more sustainable alternatives. A literature review was conducted applying a transdisciplinary approach. It was further complemented by examples from cities in hot climates. To analyse the findings, an analytical framework was developed which considers four societal levels-individual, community, city, and national. The main challenges identified from the literature review are as follows: environmental, organisational, socio-economical, biophysical and behavioural. The paper also identifies several measures that could be taken to reduce the fast growth of AC use. However, due to the complex nature of the problem, there is no single solution to provide sustainable cooling. Alternative solutions were categorised in three broad categories: climate-sensitive urban planning and building design, alternative cooling technologies, and climate-sensitive attitudes and behaviour. The main findings concern the problems arising from leaving the responsibility to come up with cooling solutions entirely to the individual, and how different societal levels can work towards more sustainable cooling options. It is concluded that there is a need for a more holistic view both when it comes to combining various solutions as well as involving various levels in society.

  7. Challenges of using air conditioning in an increasingly hot climate

    Science.gov (United States)

    Lundgren-Kownacki, Karin; Hornyanszky, Elisabeth Dalholm; Chu, Tuan Anh; Olsson, Johanna Alkan; Becker, Per

    2017-12-01

    At present, air conditioning (AC) is the most effective means for the cooling of indoor space. However, its increased global use is problematic for various reasons. This paper explores the challenges linked to increased AC use and discusses more sustainable alternatives. A literature review was conducted applying a transdisciplinary approach. It was further complemented by examples from cities in hot climates. To analyse the findings, an analytical framework was developed which considers four societal levels—individual, community, city, and national. The main challenges identified from the literature review are as follows: environmental, organisational, socio-economical, biophysical and behavioural. The paper also identifies several measures that could be taken to reduce the fast growth of AC use. However, due to the complex nature of the problem, there is no single solution to provide sustainable cooling. Alternative solutions were categorised in three broad categories: climate-sensitive urban planning and building design, alternative cooling technologies, and climate-sensitive attitudes and behaviour. The main findings concern the problems arising from leaving the responsibility to come up with cooling solutions entirely to the individual, and how different societal levels can work towards more sustainable cooling options. It is concluded that there is a need for a more holistic view both when it comes to combining various solutions as well as involving various levels in society.

  8. Challenges of using air conditioning in an increasingly hot climate

    Science.gov (United States)

    Lundgren-Kownacki, Karin; Hornyanszky, Elisabeth Dalholm; Chu, Tuan Anh; Olsson, Johanna Alkan; Becker, Per

    2018-03-01

    At present, air conditioning (AC) is the most effective means for the cooling of indoor space. However, its increased global use is problematic for various reasons. This paper explores the challenges linked to increased AC use and discusses more sustainable alternatives. A literature review was conducted applying a transdisciplinary approach. It was further complemented by examples from cities in hot climates. To analyse the findings, an analytical framework was developed which considers four societal levels—individual, community, city, and national. The main challenges identified from the literature review are as follows: environmental, organisational, socio-economical, biophysical and behavioural. The paper also identifies several measures that could be taken to reduce the fast growth of AC use. However, due to the complex nature of the problem, there is no single solution to provide sustainable cooling. Alternative solutions were categorised in three broad categories: climate-sensitive urban planning and building design, alternative cooling technologies, and climate-sensitive attitudes and behaviour. The main findings concern the problems arising from leaving the responsibility to come up with cooling solutions entirely to the individual, and how different societal levels can work towards more sustainable cooling options. It is concluded that there is a need for a more holistic view both when it comes to combining various solutions as well as involving various levels in society.

  9. The Future of Air Conditioning for Buildings - Executive Summary

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting Inc., Burlington, MA (United States); Guernsey, Matt [Navigant Consulting Inc., Burlington, MA (United States); Young, J. [Navigant Consulting Inc., Burlington, MA (United States); Fuhrman, J. [Navigant Consulting Inc., Burlington, MA (United States); Abdelaziz, Omar [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-07-01

    The Building Technologies Office (BTO), within the U.S. Department of Energy’s (DOE) Office of Energy Efficiency and Renewable Energy, works with researchers and industry to develop and deploy technologies that can substantially reduce energy consumption and greenhouse gas (GHG) emissions in residential and commercial buildings. Air conditioning (A/C) systems in buildings contribute to GHG emissions both directly through refrigerant emissions, as well as indirectly through fossil fuel combustion for power generation. BTO promotes pre-competitive research and development (R&D) on next-generation HVAC technologies that support the phase down of hydrofluorocarbon (HFC) production and consumption, as well as cost-effective energy efficiency improvements. Over the past several decades, product costs and lifecycle cooling costs have declined substantially in many global markets due to improved, higher-volume manufacturing and higher energy efficiency driven by R&D investments and efficiency policies including minimum efficiency standards and labeling programs.1 This report characterizes the current landscape and trends in the global A/C market, including discussion of both direct and indirect climate impacts, and potential global warming impacts from growing global A/C usage. The report also documents solutions that can help achieve international goals for energy efficiency and GHG emissions reductions. The solutions include pathways related to low-global warming potential2 (GWP) refrigerants, energy efficiency innovations, long-term R&D initiatives, and regulatory actions. DOE provides, with this report, a fact-based vision for the future of A/C use around the world. DOE intends for this vision to reflect a broad and balanced aggregation of perspectives. DOE brings together this content in an effort to support dialogue within the international community and help keep key facts and objectives at the forefront among the many important discussions.

  10. Installation of a direct fired Lanham bread baking system. A demonstration at Family Loaf Bakery Ltd. (Bristol)

    Energy Technology Data Exchange (ETDEWEB)

    1985-10-01

    The first installation in the UK of a direct-fired continuous conveyor oven capable of producing 8,500 loaves/hour has reduced energy costs at Family Loaf Bakery's Avonmouth plant by pound 66,680/year and resulted in net cost savings to the company of pound 59,680/year. This saving was achieved by using a direct-fired oven which had a low thermal mass and small oven openings. When baking identical products, a 30% saving in oven fuel was obtained using the new system compared to conventional systems. For this bakery, it is expected to save over 12,000 GJ/year. The bread baking system was of USA development and initial teething problems adapting to the more dense UK bread have now been overcome. (U.K.).

  11. Impact of air conditioning system operation on increasing gases emissions from automobile

    Science.gov (United States)

    Burciu, S. M.; Coman, G.

    2016-08-01

    The paper presents a study concerning the influence of air conditioning system operation on the increase of gases emissions from cars. The study focuses on urban operating regimes of the automobile, regimes when the engines have low loads or are operating at idling. Are presented graphically the variations of pollution emissions (CO, CO2, HC) depending of engine speed and the load on air conditioning system. Additionally are presented, injection duration, throttle position, the mechanical power required by the compressor of air conditioning system and the refrigerant pressure variation on the discharge path, according to the stage of charging of the air conditioning system.

  12. Impact of Vehicle Air-Conditioning on Fuel Economy, Tailpipe Emissions, and Electric Vehicle Range: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Farrington, R.; Rugh, J.

    2000-09-22

    Vehicle air-conditioning can significantly impact fuel economy and tailpipe emissions of conventional and hybrid electric vehicles and reduce electric vehicle range. In addition, a new US emissions procedure, called the Supplemental Federal Test Procedure, has provided the motivation for reducing the size of vehicle air-conditioning systems in the US. The SFTP will measure tailpipe emissions with the air-conditioning system operating. Current air-conditioning systems can reduce the fuel economy of high fuel-economy vehicles by about 50% and reduce the fuel economy of today's mid-sized vehicles by more than 20% while increasing NOx by nearly 80% and CO by 70%.

  13. Performance characteristics of PM10 samplers under calm air conditions.

    Science.gov (United States)

    Lai, C Y; Chen, C C

    2000-04-01

    The size range of airborne particles that is closely related to specific deposition regions in the human respiratory tract and excess lung burden of these deposited particles is associated with disease. Size-selective sampling, therefore, needs to be performed to assess the related health risks. Performance criteria applied to these samplers must be well characterized in order to provide accurate and reliable results. The PM10 samplers that have been used in place of the total suspended particulate samplers for the collection of ambient air particles are more relevant to potential inhalation hazards. In order to be certified, a PM10 sampler must meet reliable performance specifications, primarily the aerosol penetration test with liquid and solid particles in a wind tunnel (wind speeds of 2, 8, and 24 km/hr). This testing is intended to assure reasonable accuracy in aerosol measurements. However, the sampler performance under calm air conditions has not been well studied. In the present study, the sampling heads of three devices--the Harvard impactor, the Personal Environmental Monitor (PEM), and the Sierra Andersen model 241 dichotomous sampler PM10 inlet head--were tested for aerosol separation efficiency. With the consideration of bias and imprecision of the measurements, five specimens of each type of sampler were chosen for performance testing, repeating the tests 5 times for each specimen. An ultrasonic atomizing nozzle was used to nebulize potassium sodium tartrate tetrahydrate and dioctyl phthalate particles as the solid and liquid challenge aerosols, respectively. The aerosol number concentrations and size distributions upstream and downstream of the samplers were measured by using an aerosizer calibrated against a settling velocity chamber. The results showed that among the samplers tested, the dichotomous sampler PM10 inlet head had the best fit to the PM10 convention, while the other two samplers not only appeared to have a steeper separation

  14. Novel compact sorption generators for car air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Tamainot-Telto, Z.; Metcalf, S.J.; Critoph, R.E. [School of Engineering, University of Warwick, Gibet Hill Road, Coventry CV4 7AL (United Kingdom)

    2009-06-15

    A prototype compact generator using the activated carbon-ammonia pair based on the plate heat exchanger concept has been designed and built at Warwick University. The novel generator has low thermal mass and good heat transfer. The heat exchanger uses nickel-brazed shims and spacers to create adsorbent layers only 4 mm thick between pairs of liquid flow channels of very low thermal mass. The prototype sorption generator manufactured was evaluated under EU car air conditioning test conditions. The prototype sorption generator is described and its experimental performance reported. While driven with waste heat from the engine coolant water (at 90 C), a pair of the current prototype generators (loaded with about 1 kg of activated carbon) operating out of phase has produced an average cooling power 1.6 kW with about 2 kW peaks. The typical average COP obtained is 0.22. (author) [French] Un prototype du generateur compact, base sur le concept des echangeurs de chaleur a plaques et utilisant la paire charbon actif-ammoniac, a ete concu et construit a l'Universite de Warwick. Le nouveau generateur a une faible inertie thermique et un excellent transfert de chaleur. L' echangeur utilise des plaques ayant des micro-canaux et des intercalaires brases au Nickel pour creer des couches d'adsorbant de 4 mm d'epaisseur entre les paires de plaques a l'interieur desquelles circule le fluide liquide. Le prototype du generateur a sorption ainsi fabrique a ete teste suivant des conditions prescrites par la Norme Europeenne de la Climatisation Automobile. Le prototype du generateur a sorption est decrit et ses performances experimentales presentees. Une paire dudit prototype (contenant chacun 1 kg the charbon actif), operant avec dephasage et ulisant des pertes thermiques en provenance de l'eau de refroidissement de moteur (a 90 C), a produit une puissance frigorifique moyenne de 1.6 kW avec une valeur maximum de 2 kW. La valeur typique du COP moyen est de

  15. Energy Analysis and Environmental Impacts of Hybrid Giant Napier (Pennisetum Hydridum) Direct-fired Power Generation in South China

    Science.gov (United States)

    Liao, Yanfen; Fang, Hailin; Zhang, Hengjin; Yu, Zhaosheng; Liu, Zhichao; Ma, Xiaoqian

    2017-05-01

    To meet with the demand of energy conservation and emission reduction policies, the method of life cycle assessment (LCA) was used to assess the feasibility of Hybrid Giant Napier (HGN) direct-fired power generation in this study. The entire life cycle is consisted of five stages (cultivation and harvesting, transportation, drying and comminuting, direct-fired power generation, constructing and decommissioning of biomass power plant). Analytical results revealed that to generate 10000kWh electricity, 10.925 t of customized HGN fuel (moisture content: 30 wt%) and 6659.430 MJ of energy were required. The total environmental impact potential was 0.927 PET2010 (person equivalents, targeted, in 2010) and the global warming (GW), acidification (AC), and nutrient (NE) emissions were 339.235 kg CO2-eq, 22.033 kg SO2-eq, and 25.486 kg NOx-eq respectively. The effect of AC was the most serious among all calculated category impacts. The energy requirements and environmental impacts were found to be sensitive to single yield, average transport distance, cutting frequency, and moisture content. The results indicated that HGN direct-fired power generation accorded well with Chinese energy planning; in addition, HGN proved to be a promising contribution to reducing non-renewable energy consumption and had encouraging prospects as a renewable energy plant.

  16. 40 CFR 86.166-12 - Method for calculating emissions due to air conditioning leakage.

    Science.gov (United States)

    2010-07-01

    ... rate for the compressors in the air conditioning system, in grams per year. OHS = The number of O-ring... PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW AND IN-USE HIGHWAY...). (a) Emission totals. Calculate an annual rate of refrigerant leakage from an air conditioning system...

  17. Refrigeration and Air-conditioning Technology Course: Sustainable Growth of Professional Competency

    OpenAIRE

    Ermac, Eugenio A; Malabago, Nolasco K

    2013-01-01

    This study was conducted to explore a practical discussion on helping the students' professional competency. More specifically, this study conducted two studies developing a competency analysis profile on refrigeration and air conditioning technology, and examining the essential core competencies for training undergraduate students in Bachelor of Science in Industrial Technology specializing Refrigeration and Air Conditioning Technology at Cebu Technological University. The qualitative and qu...

  18. 40 CFR 86.161-00 - Air conditioning environmental test facility ambient requirements.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Air conditioning environmental test... conditioning environmental test facility ambient requirements. The goal of an air conditioning test facility is... elements that are discussed are ambient air temperature and humidity, minimum test cell size, solar heating...

  19. Criterion-Referenced Test (CRT) Items for Air Conditioning, Heating and Refrigeration.

    Science.gov (United States)

    Davis, Diane, Ed.

    These criterion-referenced test (CRT) items for air conditioning, heating, and refrigeration are keyed to the Missouri Air Conditioning, Heating, and Refrigeration Competency Profile. The items are designed to work with both the Vocational Instructional Management System and Vocational Administrative Management System. For word processing and…

  20. Opportunities to Reduce Air-Conditioning Loads Through Lower Cabin Soak Temperatures

    International Nuclear Information System (INIS)

    Farrington, R.; Cuddy, M.; Keyser, M.; Rugh, J.

    1999-01-01

    Air-conditioning loads can significantly reduce electric vehicle (EV) range and hybrid electric vehicle (HEV) fuel economy. In addition, a new U. S. emissions procedure, called the Supplemental Federal Test Procedure (SFTP), has provided the motivation for reducing the size of vehicle air-conditioning systems in the United States. The SFTP will measure tailpipe emissions with the air-conditioning system operating. If the size of the air-conditioning system is reduced, the cabin soak temperature must also be reduced, with no penalty in terms of passenger thermal comfort. This paper presents the impact of air-conditioning on EV range and HEV fuel economy, and compares the effectiveness of advanced glazing and cabin ventilation. Experimental and modeled results are presented

  1. Ventilation and air-conditioning system for PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ohmoto, Kenji

    1987-01-01

    This report outlines the ventilation and air conditioning facilities for PWR nuclear power plant as well as design re-evaluation and optimization of ventilation and air-conditioning. The primary PWR installations are generally housed in the nuclear reactor building, auxiliary buildings and control building, which are equipped with their own ventilation and air-conditioning systems to serve for their specific purposes. A ventilation/air-conditioning system should be able to work effectively not only for maintaining the ordinary reactor operation but also for controlling the environmental temperature in the event of an accident. Designing of a ventilation/air-conditioning system relied on empirical data in the past, but currently it is performed based on information obtained from various analyses to optimize the system configuration and ventilation capacity. Design re-evaluation of ventilation/air-conditioning systems are conducted widely in various areas, aiming at the integration of safety systems, optimum combination of air-cooling and water-cooling systems, and optimization of the ventilation rate for controlling the concentrations of radioactive substances in the atmosphere in the facilities. It is pointed out that performance evaluation of ventilation/air-conditioning systems, which has been conducted rather macroscopically, should be carried out more in detal in the future to determine optimum air streams and temperature distribution. (Nogami, K.)

  2. Analysis and simulation of mobile air conditioning system coupled with engine cooling system

    International Nuclear Information System (INIS)

    Qi, Zhao-gang; Chen, Jiang-ping; Chen, Zhi-jiu

    2007-01-01

    Many components of the mobile air conditioning system and engine cooling system are closely interrelated and make up the vehicle climate control system. In the present paper, a vehicle climate control system model including air conditioning system and engine cooling system has been proposed under different operational conditions. All the components have been modeled on the basis of experimental data. Based on the commercial software, a computer simulation procedure of the vehicle climate control system has been developed. The performance of the vehicle climate control system is simulated, and the calculational data have good agreement with experimental data. Furthermore, the vehicle climate control simulation results have been compared with an individual air conditioning system and engine cooling system. The influences between the mobile air conditioning system and the engine cooling system are discussed

  3. Temperature and humidity independent control (THIC) of air-conditioning system

    CERN Document Server

    Liu, Xiaohua; Zhang, Tao

    2014-01-01

    This book presents the main components of the Temperature and Humidity Independent Control (THIC) of air-conditioning systems, including dehumidification devices, high-temperature cooling devices and indoor terminal devices.

  4. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    Science.gov (United States)

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  5. Lifespan extension and the doctrine of double effect.

    Science.gov (United States)

    Capitaine, Laura; Devolder, Katrien; Pennings, Guido

    2013-06-01

    Recent developments in biogerontology--the study of the biology of ageing--suggest that it may eventually be possible to intervene in the human ageing process. This, in turn, offers the prospect of significantly postponing the onset of age-related diseases. The biogerontological project, however, has met with strong resistance, especially by deontologists. They consider the act of intervening in the ageing process impermissible on the grounds that it would (most probably) bring about an extended maximum lifespan--a state of affairs that they deem intrinsically bad. In a bid to convince their deontological opponents of the permissibility of this act, proponents of biogerontology invoke an argument which is grounded in the doctrine of double effect. Surprisingly, their argument, which we refer to as the 'double effect argument', has gone unnoticed. This article exposes and critically evaluates this 'double effect argument'. To this end, we first review a series of excerpts from the ethical debate on biogerontology in order to substantiate the presence of double effect reasoning. Next, we attempt to determine the role that the 'double effect argument' is meant to fulfil within this debate. Finally, we assess whether the act of intervening in ageing actually can be justified using double effect reasoning.

  6. New Energy-Efficient Electromagnetic Clutch for Automotive Air Conditioning Compressors

    OpenAIRE

    Baumgart, Rico; van der Seylberg, Frank; Aurich, Joerg; von Unwerth, Thomas

    2012-01-01

    Even if the air conditioning is switched off, the internal combustion engine in today’s cars continues to drive the common compressor. To avoid resulting power losses, the automotive industry aspires to apply electromagnetic clutches. When the air conditioning is used, however, CO2-emission increases significantly because the electromag-netic coil consumes electricity. The CO2-reduction per year is consequently very low, which is why new compressor clutches were developed that do not require ...

  7. Adsorptive Waste Heat Based Air-Conditioning Control Strategy for Automotives

    OpenAIRE

    Indrasen Raghupatruni; Michael Glora; Ralf Diekmann; Thomas Demmer

    2015-01-01

    As the trend in automotive technology is fast moving towards hybridization and electrification to curb emissions as well as to improve the fuel efficiency, air-conditioning systems in passenger cars have not caught up with this trend and still remain as the major energy consumers amongst others. Adsorption based air-conditioning systems, e.g. with silica-gel water pair, which are already in use for residential and commercial applications, are now being considered as a tec...

  8. The microbiological quality of air improves when using air conditioning systems in cars

    OpenAIRE

    Vonberg, Ralf-Peter; Gastmeier, Petra; Kenneweg, Bj?rn; Holdack-Janssen, Hinrich; Sohr, Dorit; Chaberny, Iris F

    2010-01-01

    Abstract Background Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle - and by this its impact on the risk of an allergic reaction - is yet unknown. Methods Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system...

  9. Air conditioning. The Comfort all the year; La climatisation. Le confort en toute saison

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-06-01

    Less than ten years ago, the air-conditioning was considered in france, as a luxury product. Today the mentalities changed and more and more systems are installed at home. This document analyses the this evolution and the advantages offered by the air-conditioning for residential house. It then presents the on sale products to the public and proposes advices for the installation. (A.L.B.)

  10. Contribution of air conditioning adoption to future energy use under global warming

    Science.gov (United States)

    Davis, Lucas W.; Gertler, Paul J.

    2015-01-01

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change. PMID:25918391

  11. Contribution of air conditioning adoption to future energy use under global warming.

    Science.gov (United States)

    Davis, Lucas W; Gertler, Paul J

    2015-05-12

    As household incomes rise around the world and global temperatures go up, the use of air conditioning is poised to increase dramatically. Air conditioning growth is expected to be particularly strong in middle-income countries, but direct empirical evidence is scarce. In this paper we use high-quality microdata from Mexico to describe the relationship between temperature, income, and air conditioning. We describe both how electricity consumption increases with temperature given current levels of air conditioning, and how climate and income drive air conditioning adoption decisions. We then combine these estimates with predicted end-of-century temperature changes to forecast future energy consumption. Under conservative assumptions about household income, our model predicts near-universal saturation of air conditioning in all warm areas within just a few decades. Temperature increases contribute to this surge in adoption, but income growth by itself explains most of the increase. What this will mean for electricity consumption and carbon dioxide emissions depends on the pace of technological change. Continued advances in energy efficiency or the development of new cooling technologies could reduce the energy consumption impacts. Similarly, growth in low-carbon electricity generation could mitigate the increases in carbon dioxide emissions. However, the paper illustrates the enormous potential impacts in this sector, highlighting the importance of future research on adaptation and underscoring the urgent need for global action on climate change.

  12. A simulation Model of the Reactor Hall Ventilation and air Conditioning Systems of ETRR-2

    International Nuclear Information System (INIS)

    Abd El-Rahman, M.F.

    2004-01-01

    Although the conceptual design for any system differs from one designer to another. each of them aims to achieve the function of the system required. the ventilation and air conditioning system of reactors hall is one of those systems that really differs but always dose its function for which it is designed. thus, ventilation and air conditioning in some reactor hall constitute only one system whereas in some other ones, they are separate systems. the Egypt Research Reactor-2 (ETRR-2)represents the second type. most studies conducted on ventilation and air conditioning simulation models either in traditional building or for research rectors show that those models were not designed similarly to the model of the hall of ETRR-2 in which ventilation and air conditioning constitute two separate systems.besides, those studies experimented on ventilation and air conditioning simulation models of reactor building predict the temperature and humidity inside these buildings at certain outside condition and it is difficult to predict when the outside conditions are changed . also those studies do not discuss the influences of reactor power changes. therefore, the present work deals with a computational study backed by infield experimental measurements of the performance of the ventilation and air conditioning systems of reactor hall during normal operation at different outside conditions as well as at different levels of reactor power

  13. Sustainability Challenges from Climate Change and Air Conditioning Use in Urban Areas

    Directory of Open Access Journals (Sweden)

    Karin Lundgren

    2013-07-01

    Full Text Available Global climate change increases heat loads in urban areas causing health and productivity risks for millions of people. Inhabitants in tropical and subtropical urban areas are at especial risk due to high population density, already high temperatures, and temperature increases due to climate change. Air conditioning is growing rapidly, especially in South and South-East Asia due to income growth and the need to protect from high heat exposures. Studies have linked increased total hourly electricity use to outdoor temperatures and humidity; modeled future predictions when facing additional heat due to climate change, related air conditioning with increased street level heat and estimated future air conditioning use in major urban areas. However, global and localized studies linking climate variables with air conditioning alone are lacking. More research and detailed data is needed looking at the effects of increasing air conditioning use, electricity consumption, climate change and interactions with the urban heat island effect. Climate change mitigation, for example using renewable energy sources, particularly photovoltaic electricity generation, to power air conditioning, and other sustainable methods to reduce heat exposure are needed to make future urban areas more climate resilient.

  14. The application of gas ejector for road transport air conditioning system

    Science.gov (United States)

    Sumeru, Nasution, Henry; Ani, Farid Nasir

    2012-06-01

    The depletion of fossil fuel supply requires fuel and energy saving in energy utilization system. Therefore, these required the development of new and efficient technologies as to reduce fuel consumption especially in air conditioning of road vehicles. Currently, the air conditioning for road vehicles uses vapor compression system. Although the vapor compression system has high COP, the compressor is driven by vehicle engines, which take additional fuel consumption when the air conditioning system is in operation. In this study, the waste heat of radiator drives the ejector refrigeration for air conditioning. Although the ejector refrigeration system has low COP, the use of heat driven air conditioning will reduce the fuel consumption as compared with conventional system. This is because the systems do not use the mechanical engine load. The analysis of this study is based on the ejector refrigeration system using natural refrigerant (isobutene). The evaporation temperature is 10°C, condensation temperature is 35°C, generator temperature is 90°C with ejector isentropic efficiency of 0.7, and the COP system is 0.25. The heat released by the radiator of typical small road vehicles is between 60 to 100 kW and if the generator absorbs 20% of the heat, the heat contained in the generator is 12 to 20 kW. When the ejector air conditioning system has a COP 0.25, it will generate cooling capacity between 3 to 5 kW, compared with the conventional air conditioning of similar vehicles, which is approximately 2 to 4.4 kW.

  15. Intelligent energy management control of vehicle air conditioning system coupled with engine

    International Nuclear Information System (INIS)

    Khayyam, Hamid; Abawajy, Jemal; Jazar, Reza N.

    2012-01-01

    Vehicle Air Conditioning (AC) systems consist of an engine powered compressor activated by an electrical clutch. The AC system imposes an extra load to the vehicle's engine increasing the vehicle fuel consumption and emissions. Energy management control of the vehicle air conditioning is a nonlinear dynamic system, influenced by uncertain disturbances. In addition, the vehicle energy management control system interacts with different complex systems, such as engine, air conditioning system, environment, and driver, to deliver fuel consumption improvements. In this paper, we describe the energy management control of vehicle AC system coupled with vehicle engine through an intelligent control design. The Intelligent Energy Management Control (IEMC) system presented in this paper includes an intelligent algorithm which uses five exterior units and three integrated fuzzy controllers to produce desirable internal temperature and air quality, improved fuel consumption, low emission, and smooth driving. The three fuzzy controllers include: (i) a fuzzy cruise controller to adapt vehicle cruise speed via prediction of the road ahead using a Look-Ahead system, (ii) a fuzzy air conditioning controller to produce desirable temperature and air quality inside vehicle cabin room via a road information system, and (iii) a fuzzy engine controller to generate the required engine torque to move the vehicle smoothly on the road. We optimised the integrated operation of the air conditioning and the engine under various driving patterns and performed three simulations. Results show that the proposed IEMC system developed based on Fuzzy Air Conditioning Controller with Look-Ahead (FAC-LA) method is a more efficient controller for vehicle air conditioning system than the previously developed Coordinated Energy Management Systems (CEMS). - Highlights: ► AC interacts: vehicle, environment, driver components, and the interrelationships between them. ► Intelligent AC algorithm which uses

  16. Air Conditioning Compressor Air Leak Detection by Image Processing Techniques for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Pookongchai Kritsada

    2015-01-01

    Full Text Available This paper presents method to detect air leakage of an air conditioning compressor using image processing techniques. Quality of air conditioning compressor should not have air leakage. To test an air conditioning compressor leak, air is pumped into a compressor and then submerged into the water tank. If air bubble occurs at surface of the air conditioning compressor, that leakage compressor must be returned for maintenance. In this work a new method to detect leakage and search leakage point with high accuracy, fast, and precise processes was proposed. In a preprocessing procedure to detect the air bubbles, threshold and median filter techniques have been used. Connected component labeling technique is used to detect the air bubbles while blob analysis is searching technique to analyze group of the air bubbles in sequential images. The experiments are tested with proposed algorithm to determine the leakage point of an air conditioning compressor. The location of the leakage point was presented as coordinated point. The results demonstrated that leakage point during process could be accurately detected. The estimation point had error less than 5% compared to the real leakage point.

  17. Parametric Analysis of a Rotary Type Liquid Desiccant Air Conditioning System

    Directory of Open Access Journals (Sweden)

    M. Mujahid Rafique

    2016-04-01

    Full Text Available Now days, air conditioning systems are a must for almost every commercial and residential building to achieve comfortable indoor conditions. The increasing energy demand, and increasing oil prices and pollution levels raise the need for alternative air conditioning systems which can efficiently utilize renewable energy resources. The liquid desiccant-based air conditioning method is pollution free and thermal energy-based cooling techniques can use low grade thermal energy resources like solar energy, waste heat, etc. These systems have an additional advantage of cleaning bacteria and fungi from the air. In this paper, a newly proposed rotary liquid desiccant air conditioning system has been investigated theoretically. Most direct contact liquid desiccant cooling systems have the problem of desiccant carryover which can be eliminated using the proposed system. The effects of various key parameters and climatic conditions on the performance of the system have been evaluated. The results showed that if the key parameters of the system are controlled effectively, the proposed cooling system has the ability to achieve the desired supply air conditions. The system can achieve high coefficient of performance (COP under different conditions. The dehumidifier has a sensible heat ratio (SHR in the range of 0.3–0.6 for different design, climatic, and operating conditions. The system can remove latent load efficiently in applications which require good humidity control.

  18. Medical ethics and double effect: the case of terminal sedation.

    Science.gov (United States)

    Boyle, Joseph

    2004-01-01

    The use of terminal sedation to control the intense discomfort of dying patients appears both to be an established practice in palliative care and to run counter to the moral and legal norm that forbids health care professionals from intentionally killing patients. This raises the worry that the requirements of established palliative care are incompatible with moral and legal opposition to euthanasia. This paper explains how the doctrine of double effect can be relied on to distinguish terminal sedation from euthanasia. The doctrine of double effect is rooted in Catholic moral casuistry, but its application in law and morality need not depend on the particular framework in which it was developed. The paper further explains how the moral weight of the distinction between intended harms and merely foreseen harms in the doctrine of double effect can be justified by appeal to a limitation on the human capacity to pursue good.

  19. Performance analysis of a no-frost hybrid air conditioning system with integrated liquid desiccant dehumidification

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li; Dang, Chaobin; Hihara, Eiji [Department of Human and Engineered Environmental Studies, Graduate School of Frontier Sciences, University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa-Shi, Chiba 277-8563 (Japan)

    2010-01-15

    This paper reports a performance analysis for a hybrid air conditioning system. In this system, the sensible heat load is primarily treated by a vapor compression heat hump; the latent heat load is treated by a liquid dehumidification system that uses a lithium chloride solution as a desiccant. In addition, by decreasing the humidity ratio of air flowing through the outdoor heat exchanger of the vapor compression heat pump, frosting can be retarded. The overall system performance was evaluated by a cycle simulation conducted both in summer and winter modes. Compared to a traditional air conditioning system, the hybrid air conditioning system improves the coefficient of performance (COP) by approximately 20% and 100% in summer and winter, respectively. (author)

  20. Prediction of thermal sensation in non-air-conditioned buildings in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  1. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    Science.gov (United States)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  2. Extension of the PMV model to non-air-conditioned building in warm climates

    DEFF Research Database (Denmark)

    Fanger, Povl Ole; Toftum, Jørn

    2002-01-01

    predicts. The main reason is low expectations, but a metabolic rate that is estimated too high can also contribute to explaining the difference. An extension of the PMV model that includes an expectancy factor is introduced for use in non-air-conditioned buildings in warm climates. The extended PMV model......The PMV model agrees well with high-quality field studies in buildings with HVAC systems, situated in cold, temperate and warm climates, studied during both summer and winter. In non-air-conditioned buildings in warm climates, occupants may sense the warmth as being less severe than the PMV...... agrees well with quality field studies in non-air-conditioned buildings of three continents....

  3. Exergy analysis of heating, refrigerating and air conditioning methods and applications

    CERN Document Server

    Dincer, Ibrahim

    2015-01-01

    Improve and optimize efficiency of HVAC and related energy systems from an exergy perspective. From fundamentals to advanced applications, Exergy Analysis of Heating, Air Conditioning, and Refrigeration provides readers with a clear and concise description of exergy analysis and its many uses. Focusing on the application of exergy methods to the primary technologies for heating, refrigerating, and air conditioning, Ibrahim Dincer and Marc A. Rosen demonstrate exactly how exergy can help improve and optimize efficiency, environmental performance, and cost-effectiveness. The book also discusses the analysis tools available, and includes many comprehensive case studies on current and emerging systems and technologies for real-world examples. From introducing exergy and thermodynamic fundamentals to presenting the use of exergy methods for heating, refrigeration, and air conditioning systems, this book equips any researcher or practicing engineer with the tools needed to learn and master the application of exergy...

  4. Energy impact of indoor environmental policy for air-conditioned offices of Hong Kong

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.; Shi, K.L.

    2008-01-01

    Air-conditioned office buildings are one of the biggest energy consumers of electricity in developed cities in the subtropical climate regions. A good energy policy for the indoor environment should respond to both the needs of energy conservation and the needs for a desirable indoor healthy environment with a reduction in carbon dioxide (CO 2 ) generation. This study evaluates energy implications and the corresponding CO 2 generation of some indoor environmental policies for air-conditioned office buildings in the subtropical climate. In particular, the thermal energy consumption in an air-conditioned office building was evaluated by the heat gains through the building fabric, the transport of outdoor fresh air for ventilation, and the heat generated by the occupant and equipment in the space. With the Monte-Carlo sampling technique and the parameters from the existing office building stocks of Hong Kong, the energy consumption profiles of air-conditioned office buildings in Hong Kong were evaluated. Energy consumption profiles were simulated for certain indoor environmental quality (IEQ) policies on indoor air temperature and CO 2 concentration settings in the offices, with other building parameters remaining unchanged. The impact assessment and the regression models described in this study may be useful for evaluation of energy performances of IEQ policies. They will also be useful for the promotion of energy-saving measures in air-conditioned office buildings in Hong Kong. This study presented a useful source of references for policymakers, building professionals and end users to quantify the energy and environmental impacts due to an IEQ policy for air-conditioned office buildings

  5. Comparative Study on Implementing Home Air Conditioning for Passenger Carriages in the Indonesian Railway

    Directory of Open Access Journals (Sweden)

    Hardianto Eko Prasetio

    2017-09-01

    Full Text Available Passenger comfort is important in railway transport system. The train operator company in Indonesia would like to increase passenger comfort by installing home air conditioning into all existing carriages of the economy train. The air conditioning is expected to give better passenger convince. Therefore, the aims of this research are to know the cooling load and compare characteristic between home Air Conditioning (AC and train AC. The cooling load calculation is analyzed using Cooling Load Temperature Difference (CLTD/Solar Cooling Load (SCL/Cooling Load Factor (CLF method. Comparison between both home air conditioning and train air conditioning are discussed to identify the benefits and drawbacks of each type. The total heat that needs to be removed from a passenger carriage with home AC is 104,334 Btu/h, while the total cooling capacity of home AC is 75,000 Btu/h. The passenger carriages with train AC have cooling capacity 119,100 Btu/h to remove heat 11,5290 Btu/h. The Energy Efficiency Ratio (EER value of most home AC is higher than train AC, installation time of home AC is shorter than train AC, total cost for 20 years period of home AC is more than train AC. There is no guarantee for home AC, so everything that happens to it will become the full responsibility of train operator company. The train AC control system is more effective than the home AC. No fresh air is permitted to circulate within the home AC system hence, the same air is repeatedly processed in the system. Implementing home air conditioning in the existing passenger carriages is worthwhile for short time period in the goal to increase and improve the level of service provided by giving better comfortability to the passenger.

  6. Does the air condition system in busses spread allergic fungi into driver space?

    Science.gov (United States)

    Sowiak, Małgorzata; Kozajda, Anna; Jeżak, Karolina; Szadkowska-Stańczyk, Irena

    2018-02-01

    The aim of this study was to establish whether the air-conditioning system in buses constitutes an additional source of indoor air contamination with fungi, and whether or not the fungi concentration depends on the period from the last disinfection of the system, combined with replacement of the cabin dust particle filter. The air samples to fungi analysis using impact method were taken in 30 buses (20 with an air-conditioning system, ACS; 10 with a ventilation system, VS) in two series: 1 and 22 weeks after cabin filter replacement and disinfection of the air-conditioning system. During one test in each bus were taken two samples: before the air-conditioning or ventilation system switched on and 6 min after operating of these systems. The atmospheric air was the external background (EB). After 1 week of use of the system, the fungi concentrations before starting of the ACS and VS system were 527.8 and 1053.0 cfu/m 3 , respectively, and after 22 weeks the concentrations were 351.9 and 1069.6 cfu/m 3 , respectively. While in the sample after 6 min of ACS and VS system operating, the fungi concentration after 1 week of use was 127.6 and 233.7 cfu/m 3 , respectively, and after 22 weeks it was 113.3 and 324.9 cfu/m 3 , respectively. Results do not provide strong evidence that air-conditioning system is an additional source of indoor air contamination with fungi. A longer operation of the system promoted increase of fungi concentration in air-conditioned buses only.

  7. OPTIMIZATION OF A DOUBLE EFFECT LIBR-H20 ABSORPTION ...

    African Journals Online (AJOL)

    In the double-effect LiBr-H,0 absorption refrigeration cycle, weak solution leaving the. Absorber is pumped to the pressure of Generator 1,. Fig. l. External heat supplied to the weak solution in. Generator 1 releases water vapor from the solution. To reduce the quantity of external heat required by. Generator 1 and thus ...

  8. Thermodynamic analysis of a trigeneration system consisting of a micro gas turbine and a double effect absorption chiller

    International Nuclear Information System (INIS)

    Huicochea, Armando; Rivera, Wilfrido; Gutierrez-Urueta, Geydy; Bruno, Joan Carles; Coronas, Alberto

    2011-01-01

    Combining heating and power systems represent an option to improve the efficiency of energy usage and to reduce thermal pollution toward environment. Microturbines generate electrical power and usable residual heat which can be partially used to activate a thermally driven chiller. The purpose of this paper is to analyze theoretically the thermodynamic performance of a trigeneration system formed by a microturbine and a double-effect water/LiBr absorption chiller. The heat data supplied to the generator of the double effect air conditioning system was acquired from experimental data of a 28 kW E microturbine, obtained at CREVER facilities. A thermodynamic simulator was developed at Centro de Investigacion en Energia in the Universidad Nacional Autonoma de Mexico by using a MATLAB programming language. Mass and energy balances of the main components of the cooling system were obtained with water-lithium bromide solution as working fluid. The trigeneration system was evaluated at different operating conditions: ambient temperatures, generation temperatures and microturbine fuel mass flow rate. The results demonstrated that this system represents an attractive technological alternative to use the energy from the microturbine exhaust gases for electric power generation, cooling and heating produced simultaneously. - Highlights: → The thermodynamic performance of a trigeneration system is analyzed theoretically. → A microturbine and a double-effect H 2 O-LiBr absorption chiller integrate the system. → The heat data supplied to generator was obtained from experimental data. → The trigeneration system was evaluated at different operating conditions. → Results show that this system is an attractive option to use exhaust energy for electricity, cooling and heating generation.

  9. Sea Water Air Conditioning (SWAC) at Naval Base Guam: Cost-Benefit Analysis and Acquisition Strategy

    Science.gov (United States)

    2015-03-16

    Sinclair, 2013). In conventional air conditioning, a relatively large electrical load is used to cool air or refrigerant to facilitate the transfer of...human-induced degradation, especially ecologically important, or located in an environmentally stressed area (NMFS, 1996). Given this specification, an

  10. Principles of Refrigeration. Automotive Mechanics. Air Conditioning. Instructor's Guide [and] Student Guide.

    Science.gov (United States)

    Spignesi, B.

    This instructional package, one in a series of individualized instructional units on automobile air conditioning, consists of a student guide and an instructor guide dealing with the principles of refrigeration. Covered in the module are defining the term heat, defining the term British Thermal Unit (BTU), defining the term latent heat, listing…

  11. Anti-seismic air condition's cooling capability increase of the second control area

    International Nuclear Information System (INIS)

    Pan Qiang

    2008-01-01

    Secondary area (SCA) air-conditioning system is an important ventilation system in plant. It should achieve the indoor temperature controllable. To resolve the problem of cooling capacity insufficiency, on the basis of ventilation and refrigeration theory, the thesis analyzes the design modification plan. (author)

  12. HFC perspectives in air-conditioning and refrigeration; Perspectives HFC en A/C et refrigeration

    Energy Technology Data Exchange (ETDEWEB)

    Fauvarque, P. [ELF Atochem, Centre d`Application de Lavallois, 92 (France)

    1997-12-31

    This paper is a series of transparencies dealing with the development of substitutes for the replacement of the R-22 refrigerant in air-conditioning systems (R-134a, R-407C, R-410A), and in industrial refrigeration systems of agriculture and food industry (R-134a and R-404A). (J.S.)

  13. Energy managemant through PCM based thermal storage system for building air-conditioning: Tidel Park, Chennai

    International Nuclear Information System (INIS)

    Nallusamy, N.; Sampath, S.; Velraj, R.

    2006-01-01

    Many modern building are designed for air-conditioning and the amount of electrical energy required for providing air-conditioning can be very significant especially in the tropics. Conservation of energy is major concern to improve the overall efficiency of the system. Integration is energy storage with the conventional system gives a lot of potential for energy saving and long-term economics. Thermal energy storage systems can improve energy management and help in matching supply and demand patterns. In the present work, a detailed study has been done on the existing thermal energy storage system used in the air-conditioning system in Tidel Park, Chennai. The present study focuses on the cool energy storage system. The modes of operation and advantages of such a system for energy management are highlighted. The reason for the adoption of combined storage system and the size of the storage medium in the air-conditioning plant are analyzed. The possibility of using this concept in other cooling and heating applications, such as storage type solar water heating system, has been explored

  14. Thermal conditions and perceived air quality in an air-conditioned auditorium

    Science.gov (United States)

    Polednik, Bernard; Guz, Łukasz; Skwarczyński, Mariusz; Dudzińska, Marzenna R.

    2016-07-01

    The study reports measurements of indoor air temperature (T) and relative humidity (RH), perceived air quality (PAQ) and CO2, fine aerosol particle number (PN) and mass (PM1) concentrations in an air conditioned auditorium. The measurements of these air physical parameters have been carried out in the unoccupied auditorium with the air conditioning system switched off (AC off mode) and in the unoccupied and occupied auditorium with the air conditioning system switched off during the night and switched on during the day (AC on/off mode). The average indoor air thermal parameters, CO2 concentration and the PAQ value (in decipols) were elevated, while average PM1 concentration was lower in the AC on/off mode. A statistically significant (p PAQ values and CO2 concentrations (r = 0.66 and r = 0.59, respectively) in that AC mode. A significant negative correlation has been observed between T and PN and PM1 concentrations (r = -0.38 and r = -0.49, respectively). In the AC off mode the above relations between T and the particle concentrations were not that unequivocal. These findings may be of importance as they indicate that in certain AC operation modes the indoor air quality deteriorates along with the variation of the indoor air microclimate and room occupation. This, in turn, may adversely affect the comfort and productivity of the users of air conditioned premises.

  15. Heating, Air Conditioning and Refrigeration Curriculum Guide. Michigan Trade and Industrial Education.

    Science.gov (United States)

    Michigan State Univ., East Lansing. Coll. of Agriculture and Natural Resources Education Inst.

    This task-based curriculum guide for heating, air conditioning, and refrigeration is intended to help the teacher develop a classroom management system where students learn by doing. Introductory materials include a Dictionary of Occupational Titles job code and title sheet, a career ladder, a matrix relating duty/task numbers to job titles, and a…

  16. Instructional Guide for Air Conditioning and Refrigeration. V & TECC Curriculum Guide.

    Science.gov (United States)

    Duenk, Lester G.; And Others

    This trade and industrial curriculum guide is intended for use in vocational programs that prepare students to enter the air conditioning/refrigeration field. The introductory section provides a statement of philosophy, objectives, block time schedule, and recommended facilities and equipment. Following the introductory section, eighteen blocks of…

  17. Experimental Study on Intelligent Control Scheme for Fan Coil Air-Conditioning System

    Directory of Open Access Journals (Sweden)

    Yanfeng Li

    2013-01-01

    Full Text Available An intelligent control scheme for fan coil air-conditioning systems has been put forward in order to overcome the shortcomings of the traditional proportion-integral-derivative (PID control scheme. These shortcomings include the inability of anti-interference and large inertia. An intelligent control test rig of fan coil air-conditioning system has been built, and MATLAB/Simulink dynamics simulation software has been adopted to implement the intelligent control scheme. A software for data exchange has been developed to combine the intelligence control system and the building automation (BA system. Experimental tests have been conducted to investigate the effectiveness of different control schemes including the traditional PID control, fuzzy control, and fuzzy-PID control for fan coil air-conditioning system. The effects of control schemes have been compared and analyzed in robustness, static and dynamic character, and economy. The results have shown that the developed data exchange interface software can induce the intelligent control scheme of the BA system more effectively. Among the proposed control strategies, fuzzy-PID control scheme which has the advantages of both traditional PID and fuzzy schemes is the optimal control scheme for the fan coil air-conditioning system.

  18. Exploring policy strategies for mitigating HFC emissions from refrigeration and air conditioning

    NARCIS (Netherlands)

    Hekkenberg, M.; Uiterkamp, Anton J. M. Schoot

    The growing demand for cooling throughout the world, possibly increased by global climate change, requires the implementation of policies to mitigate the related greenhouse gas (GHG) emissions from energy and refrigerant use in the refrigeration and air conditioning (RAC) sector. This article aims

  19. A laser Doppler system for the remote sensing of boundary layer winds in clear air conditions

    Science.gov (United States)

    Lawrence, T. R.; Krause, M. C.; Craven, C. E.; Morrison, L. K.; Thomson, J. A. L.; Cliff, W. C.; Huffaker, R. M.

    1975-01-01

    The system discussed uses a laser Doppler radar in combination with a velocity azimuth display mode of scanning to determine the three-dimensional wind field in the atmospheric boundary layer. An attractive feature of this CW monostatic system is that the ambient aerosol provides a 'sufficient' scattering target to permit operation under clear air conditions. Spatial resolution is achieved by focusing.

  20. Development of residential solar air conditioning system for electricity power peak cut 3

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Gwon Jong [Korea Inst. of Energy and Resources, Daeduk (Korea, Republic of)

    1995-12-31

    In this research, the converter rectifier unit of the inverter air conditioner is substituted into the bidirectional PWM converter. The DC/DC power converter is established on the DC link between the photovoltaic array and the inverter air conditioner, and the photovoltaic air conditioning system which can be parallel driven which utility is developed. (author). 35 ref., 112 figs.

  1. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    Energy Technology Data Exchange (ETDEWEB)

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  2. Geothermal as a heat sink application for raising air conditioning efficency

    Science.gov (United States)

    Ibrahim, Hesham Safwat Osman Mohamed

    2016-04-01

    Objective: Geothermal applications in heating, ventilation, air-conditioning is a US technology for more than 30 years old ,which saves more than 30% average energy cost than the traditional air-conditioning systems systems. Applying this technology in Middle East and African countries would be very feasible specially in Egypt specially as it suffers Electric crisis --The temperature of the condensers and the heat rejecting equipment is much higher than the Egyptian land at different depth which is a great advantages, and must be measured, recorded, and studied accurately -The Far goal of the proposal is to construct from soil analysis a temperature gradient map for Egypt and , African countries on different depth till 100 m which is still unclear nowadays and must be measured and recorded in databases through researches - The main model of the research is to study the heat transfer gradient through the ground earth borehole,grout,high density polyethylene pipes , and water inlet temperature which affect the electric efficiency of the ground source heat pump air conditioning unit Impact on the Region: Such research result will contribute widely in Energy saving sector specially the air conditioning sector in Egypt and the African countries which consumes more than 30% of the electric consumption of the total consumption . and encouraging Green systems such Geothermal to be applied

  3. Human requirements in future air-conditioned environments: a search for excellence

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2000-01-01

    Although air-conditioning has played a positive role for economic development in warm climates, its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from SBS symptoms, even though existing st...

  4. Comparative economic assessment of the energy performance of air-conditioning within the Mexican residential sector

    Directory of Open Access Journals (Sweden)

    Ivan Oropeza-Perez

    2016-11-01

    Full Text Available This work shows a sensitivity analysis of the economic impact of different energy performances of air-conditioning within the Mexican housing sector. For this purpose, a cooling-load calculator program in function of the indoor temperature is developed. The program also calculates the electricity consumption along with the expenditure with the different residential rates of the Mexican Federal Commission of Electricity (CFE, initials in Spanish set according to the season of the year and zone of the country. After the results onto the national-scale scenario are validated with the literature, a sensitivity analysis is carried out by changing three parameters that are considered as influential on the consumption and which can be considered as energy saving strategies. With these strategies, it is found that the indoor temperature decrease due to the use of a passive cooling system is the most important characteristic to take into account followed by the coefficient of performance (COP of the air-conditioning and the increase of the comfort temperature set-point, respectively. Thereby, an economic analysis is carried out, finding an annual saving up to 770 USD within a single air-conditioned dwelling having a payback period of 3 years for using a combination of passive cooling techniques and increasing the comfort temperature set-point; or a 2 years payback period if the air-conditioning is changed by a high-efficient equipment.

  5. Refrigeration and Air Conditioning Mechanic: Apprenticeship Course Outline. Apprenticeship and Industry Training. 1411.2

    Science.gov (United States)

    Alberta Advanced Education and Technology, 2011

    2011-01-01

    The graduate of the Refrigeration and Air Conditioning Mechanic apprenticeship training is a journeyman who will: (1) supervise, train and coach apprentices; (2) use and maintain hand and power tools to the standards of competency and safety required in the trade; (3) have a thorough knowledge of the principle components of refrigeration systems,…

  6. Heating, Air Conditioning and Refrigeration. Vocational Education Curriculum Guide. Industrial and Technical Education.

    Science.gov (United States)

    West Virginia State Vocational Curriculum Lab., Cedar Lakes.

    This curriculum guide contains 17 units that provides the basic curriculum components required to develop lesson plans for the heating, air conditioning, and refrigeration curriculum. The guide is not intended to be a complete, self-contained curriculum, but instead provides the teacher with a number of informational items related to the learning…

  7. Refrigeration and Air Conditioning Equipment, 11-9. Military Curriculum Materials for Vocational and Technical Education.

    Science.gov (United States)

    Ohio State Univ., Columbus. National Center for Research in Vocational Education.

    This military-developed text consists of three blocks of instructional materials for use by those studying to become refrigeration and air conditioning specialists. Covered in the individual course blocks are the following topics: refrigeration and trouble analysis, thermodynamics, and principles of refrigeration; major components and domestic and…

  8. Non-Print Instructional Materials for the Air Conditioning and Refrigeration Maintenance Field.

    Science.gov (United States)

    Golitko, Raymond L., Ed.; And Others

    This catalog contains a listing of air conditioning/refrigeration maintenance audiovisual training materials from the Houston Community College System library media collection. The material is organized by subject heading. The media titles are listed in alphabetical order by title under each subject heading in the catalog. The citation for each…

  9. Thermal analysis of a direct evaporative cooling system enhancement with desiccant dehumidification for vehicular air conditioning

    International Nuclear Information System (INIS)

    Alahmer, Ali

    2016-01-01

    Highlights: • Thermal analysis was conducted to design a desiccant evaporative cooling system for vehicular air conditioning. • EC is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter. • Drawbacks of evaporative cooler of increased weight and reduced COP. • A rotary desiccant dehumidifier with generation was combined with evaporative cooling to be more efficient. - Abstract: This manuscript analyzes the sub-systems of evaporative cooler (EC) combined with desiccant dehumidification and regeneration for automotive air conditioning purpose. The thermodynamic and psychometric analysis was conducted to design all evaporative cooling system components in terms of desiccant selection, regeneration process, compact heat exchanger and evaporative cooler. Moreover, the effect of the desiccant, heat exchanger and evaporative performances on the mass flow rate and water sprayed required for evaporative cooling system was investigated. The results show that the theoretical evaporative cooling design will achieve two main objectives: lower fuel consumption and less environmental pollutants. However, it has the two drawbacks in terms of increased weight and reduces the coefficient of performance (COP). The main remark is that evaporating cooling system is more efficient than the conventional air conditioning when the gasoline price is more than 0.34 $/liter.

  10. The microbiological quality of air improves when using air conditioning systems in cars.

    Science.gov (United States)

    Vonberg, Ralf-Peter; Gastmeier, Petra; Kenneweg, Björn; Holdack-Janssen, Hinrich; Sohr, Dorit; Chaberny, Iris F

    2010-06-01

    Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle--and by this its impact on the risk of an allergic reaction--is yet unknown. Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 microm diameter were counted by a laser particle counter device. Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air). All parameters that were looked for in this study improved during utilization of the car's air conditioning system. We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals.

  11. The microbiological quality of air improves when using air conditioning systems in cars

    Directory of Open Access Journals (Sweden)

    Holdack-Janssen Hinrich

    2010-06-01

    Full Text Available Abstract Background Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle - and by this its impact on the risk of an allergic reaction - is yet unknown. Methods Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra that were all equipped with a automatic air conditioning system. Operation modes using fresh air from outside the car as well as circulating air from inside the car were examined. The total number of microorganisms and the number of mold spores were measured by impaction in a high flow air sampler. Particles of 0.5 to 5.0 μm diameter were counted by a laser particle counter device. Results Overall 32 occasions of sampling were performed. The concentration of microorganisms outside the cars was always higher than it was inside the cars. Few minutes after starting the air conditioning system the total number of microorganisms was reduced by 81.7%, the number of mold spores was reduced by 83.3%, and the number of particles was reduced by 87.8%. There were no significant differences neither between the types of cars nor between the types of operation mode of the air conditioning system (fresh air vs. circulating air. All parameters that were looked for in this study improved during utilization of the car's air conditioning system. Conclusions We believe that the risk of an allergic reaction will be reduced during use also. Nevertheless, we recommend regular maintenance of the system and replacement of older filters after defined changing intervals.

  12. Air-conditioning and antibiotics: Demand management insights from problematic health and household cooling practices

    International Nuclear Information System (INIS)

    Nicholls, Larissa; Strengers, Yolande

    2014-01-01

    Air-conditioners and antibiotics are two technologies that have both been traditionally framed around individual health and comfort needs, despite aspects of their use contributing to social health problems. The imprudent use of antibiotics is threatening the capacity of the healthcare system internationally. Similarly, in Australia the increasing reliance on air-conditioning to maintain thermal comfort is contributing to rising peak demand and electricity prices, and is placing an inequitable health and financial burden on vulnerable heat-stressed households. This paper analyses policy responses to these problems through the lens of social practice theory. In the health sector, campaigns are attempting to emphasise the social health implications of antibiotic use. In considering this approach in relation to the problem of air-conditioned cooling and how to change the ways in which people keep cool during peak times, our analysis draws on interviews with 80 Australian households. We find that the problem of peak electricity demand may be reduced through attention to the social health implications of air-conditioned cooling on very hot days. We conclude that social practice theory offers a fruitful analytical route for identifying new avenues for research and informing policy responses to emerging health and environmental problems. - Highlights: • Over-use of antibiotics and air-conditioning has social health implications. • Focusing on financial incentives limits the potential of demand management programs. • Explaining peak demand to households shifts the meanings of cooling practices. • Emphasising the social health implications of antibiotics and air-conditioning may resurrect alternative practices. • Analysing policy with social practice theory offers insights into policy approaches

  13. Analysis of crystallization risk in double effect absorption refrigeration systems

    International Nuclear Information System (INIS)

    Garousi Farshi, L.; Seyed Mahmoudi, S.M.; Rosen, M.A.

    2011-01-01

    Absorption refrigeration systems are an alternative to vapor compression ones in cooling and refrigeration applications. In comparison with single effect absorption units, double effect systems have improved performance. Also, they are more available commercially than the other multi effect absorption cycles. An important challenge in the operation of such systems is the possibility of crystallization within them. This is especially true in developing air-cooled absorption systems, which are attractive because cooling tower and associated installation and maintenance issues can be avoided. Therefore, distinguishing the working conditions that may cause crystallization can be useful in the design and control of these systems. In this paper a computational model has been developed to study and compare the effects of operating parameters on crystallization phenomena in three classes of double effect lithium bromide-water absorption refrigeration systems (series, parallel and reverse parallel) with identical refrigeration capacities. It is shown that the range of operating conditions without crystallization risks in the parallel and the reverse parallel configurations is wider than those of the series flow system. - Highlights: → We study crystallization of double effect absorption refrigeration systems. → We consider series, parallel and reverse parallel cycles. → We study the effect of operating conditions on crystallization. → We choose optimum distribution ratio for parallel and reverse parallel systems. → Crystallization possibility is low in parallel and reverse parallel cycles.

  14. Low-Flow Liquid Desiccant Air Conditioning: General Guidance and Site Considerations

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.

    2014-09-01

    Dehumidification or latent cooling in buildings is an area of growing interest that has been identified as needing more research and improved technologies for higher performance. Heating, ventilating, and air-conditioning (HVAC) systems typically expend excessive energy by using overcool-and-reheat strategies to dehumidify buildings. These systems first overcool ventilation air to remove moisture and then reheat the air to meet comfort requirements. Another common strategy incorporates solid desiccant rotors that remove moisture from the air more efficiently; however, these systems increase fan energy consumption because of the high airside pressure drop of solid desiccant rotors and can add heat of absorption to the ventilation air. Alternatively, liquid desiccant air-conditioning (LDAC) technology provides an innovative dehumidification solution that: (1) eliminates the need for overcooling and reheating from traditional cooling systems; and (2) avoids the increased fan energy and air heating from solid desiccant rotor systems.

  15. Conceptual Design of Automotive Compressor for Integrated Portable Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Ishak Muhammad Ikman

    2017-01-01

    Full Text Available This study introduces a new concept of portable air conditioner which integrated with some available components in automotive air conditioning system. This new idea intends to solve the storage problems as well as to reduce the price of current portable air conditioner since some devices could directly be used from the automotive air conditioning system. The primary emphasis of this study was on the modification of automotive compressor design so as the system may alternately be operated. The length of conventional compressor shaft is extended to place an additional clutch pulley, a drive plate and a clutch coil. The new concept particularly the shaft and pulley were analysed through slope deflection and computational finite element analyses. The result of engineering analyses exhibited that the new design of compressor shaft and clutch pulleys promote a low risk of failure as the data values recorded are lower than the critical value for each criterion investigated.

  16. Carbon dioxide as the replacement for synthetic refrigerants in mobile air conditioning

    Directory of Open Access Journals (Sweden)

    Antonijević Dragi Lj.

    2008-01-01

    Full Text Available Based on Kyoto Protocol and the decisions of European Commission R134a refrigerant, currently dominantly used in mobile air conditioning systems, needs to be phased-out. At present automotive industry looks at carbon dioxide (CO2; R744 as the refrigerant of the future. Apart from the environmental benefits discussed are the technical characteristics of carbon dioxide refrigeration cycle and mobile air-conditioning systems in comparison to R134a refrigerant. Analyzed are challenges emerged from the use of CO2 as refrigerant and improvement opportunities in regards to increase of the system performance and efficiency. Particular attention is dedicated to the advantages of CO2 utilization in prospective automotive heat pump systems.

  17. Calculation of the Chilling Requirement for Air Conditioning in the Excavation Roadway

    Directory of Open Access Journals (Sweden)

    Yueping Qin

    2015-10-01

    Full Text Available To effectively improve the climate conditions of the excavation roadway in coal mine, the calculation of the chilling requirement taking air conditioning measures is extremely necessary. The temperature field of the surrounding rock with moving boundary in the excavation roadway was numerically simulated by using finite volume method. The unstable heat transfer coefficient between the surrounding rock and air flow was obtained via the previous calculation. According to the coupling effects of the air flow inside and outside air duct, the differential calculation mathematical model of air flow temperature in the excavation roadway was established. The chilling requirement was calculated with the selfdeveloped computer program for forecasting the required cooling capacity of the excavation roadway. A good air conditioning effect had been observed after applying the calculated results to field trial, which indicated that the prediction method and calculation procedure were reliable.

  18. Investigating performance of microchannel evaporators for automobile air conditioning with different port structures

    Directory of Open Access Journals (Sweden)

    Guoliang Zhou

    2017-08-01

    Full Text Available Microchannel evaporator has been widely applied in automobile air conditioning, while it faces the problem of refrigerant maldistribution which deteriorates the thermal performance of evaporator. In this study, the performances of microchannel evaporators with different port structures are experimentally investigated for purpose of reducing evaporator pressure drop. Four evaporator samples with different port number and hydraulic diameter are made for this study. The performances of the evaporator samples are tested on a psychometric calorimeter test bench with the refrigerant R-134A at a real automobile air conditioning. The results on the variations of the evaporator pressure drop and evaporator surface temperature distribution are presented and analyzed. By studying the performance of an evaporator, seeking proper port structure is an approach to reduce refrigerant pressure drop as well as improve refrigerant distribution.

  19. Modeling of an Air Conditioning System with Geothermal Heat Pump for a Residential Building

    Directory of Open Access Journals (Sweden)

    Silvia Cocchi

    2013-01-01

    Full Text Available The need to address climate change caused by greenhouse gas emissions attaches great importance to research aimed at using renewable energy. Geothermal energy is an interesting alternative concerning the production of energy for air conditioning of buildings (heating and cooling, through the use of geothermal heat pumps. In this work a model has been developed in order to simulate an air conditioning system with geothermal heat pump. A ground source heat pump (GSHP uses the shallow ground as a source of heat, thus taking advantage of its seasonally moderate temperatures. GSHP must be coupled with geothermal exchangers. The model leads to design optimization of geothermal heat exchangers and to verify the operation of the geothermal plant.

  20. Potential electricity savings by variable speed control of compressor for air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Nasution, Henry [Bung Hatta University, Department of Mechanical Engineering, Faculty of Industrial Engineering, Padang, West Sumatera (Indonesia); Wan Hassan, Mat Nawi [Universiti Teknologi Malaysia, Faculty of Mechanical Engineering, Skudai, Johor Bahru-Darul Ta' zim (Malaysia)

    2006-05-15

    The potential of a variable-speed compressor running on a controller to provide enhanced load-matching capability, energy saving and thermal comfort for application in air-conditioning system is demonstrated. An air-conditioning system, originally operated on a constant speed mode, is retrofitted with an inverter and a PID controller. The system was installed to a thermal environmental room together with a data acquisition system to monitor energy consumption and temperature of the room. Measurements were taken 2 h daily at a time interval of 5 min for an on/off and an inverter variable-speed conditions. The results indicate that thermal comfort of the room together with energy saving can be obtained through a proper selection of K for the controller. At a temperature setting of 22 C, the energy saving for the system is estimated to reach 25.3% for PID controllers. (orig.)

  1. Silver zeolite antimicrobial activity in aluminium heating, ventilation and air conditioning system ducts.

    Science.gov (United States)

    Rizzetto, R; Mansi, A; Panatto, D; Rizzitelli, E; Tinteri, C; Sasso, T; Gasparini, R; Crovari, P

    2008-03-01

    Air pollution in confined environments is a serious health problem, in that most people spend long periods indoors (in homes, offices, classrooms etc.). Some people (children, the elderly, heart disease patients, asthmatic or allergic subjects) are at greater risk because of their conditions of frailty. The growing use of air-conditioning systems in many public and private buildings aggravates this health risk, especially when these systems are not correctly installed or regularly serviced. The aim of our study was to verify the capacity of Ag+ ions to stop the growth of bacteria and moulds inside the ducts of Heating, Ventilation and Air Conditioning system ducts (HVAC) systems when these ducts were lined with active Ag+ ions zeolite-coated panels. A Y-shaped HVAC model with two branches was used; one branch was made of traditional galvanized iron, as was the whole system, while the other was lined with active Ag+ zeolite-coated polyurethane panels. During the test, samples of dust present inside both ducts were collected and seeded in liquid and solid media to detect bacteria and moulds. The presence of bacteria was also sought in the air emerging from the outlets of both ducts. Tests made on samples of particulate collected from the two different ducts revealed a lower total bacterial load in the samples collected from the Ag+ zeolite-coated duct than in the samples from the traditional Zn galvanized duct. In addition, the values of bacterial load found in the air emerging from the Ag+ ions zeolite-lined duct were 5 times lower than those found in the air from the traditional galvanized iron duct. The utilization of Ag+ zeolite-coated panels in air-conditioning systems could improve the quality of the emerging air in comparison with traditional installations in galvanized iron. This innovation could prove particularly advantageous in the event of accidents during the installation of air-conditioning systems or of contaminated aerosols coming from outside.

  2. Negatively-charged air conditions and responses of the human psycho-neuro-endocrino-immune network.

    Science.gov (United States)

    Takahashi, Kazuaki; Otsuki, Takemi; Mase, Akinori; Kawado, Takashi; Kotani, Muneo; Ami, Kazuhisa; Matsushima, Hiroki; Nishimura, Yasumitsu; Miura, Yoshie; Murakami, Shuko; Maeda, Megumi; Hayashi, Hiroaki; Kumagai, Naoko; Shirahama, Takashi; Yoshimatsu, Michiharu; Morimoto, Kanehisa

    2008-08-01

    Against increasing environmental adverse effects on human health such as those associated with water and ground pollution, as well as out- and indoor air conditions, trials were conducted to support and promote human health by improving the indoor air atmosphere. This study was performed to estimate the effect of negatively-charged air conditions on human biological markers related to the psycho-neuro-endocrino-immune (PNEI) network. After construction of negatively-charged experimental rooms (NCRs), healthy volunteers were admitted to these rooms and control rooms (CTRs) and various biological responses were analyzed. NCRs were constructed using a fine charcoal coating and applying an electric voltage (72 V) between the backside of walls and the ground. Various biological markers were monitored that related to general conditions, autonomic nervous systems, stress markers, immunological parameters and blood flow. Regarding the indoor environment, only negatively-charged air resulted in the difference between the CTR and NCR groups. The well-controlled experimental model-room to examine the biological effects of negatively-charged air was therefore established. Among the various parameters, IL-2, IL-4, the mean RR interval of the heart rate, and blood viscosity differed significantly between the CTR and NCR groups. In addition, the following formula was used to detect NCR-biological responses: Biological Response Value (BRV)=0.498+0.0005 [salivary cortisol]+0.072 [IL-2]+0.003 [HRM-SD]-0.013 [blood viscosity]-0.009 [blood sugar]+0.017 [pulse rate]. Negatively-charged air conditions activated the immune system slightly, smoothened blood flow and stabilized the autonomic nervous system. Although this is the first report to analyze negatively-charged air conditions on human biological responses, the long-term effects should be analyzed for the general use of these artificial atmospheres.

  3. An energy impact assessment of indoor air quality acceptance for air-conditioned offices

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.; Shi, K.L.; Hui, P.S.

    2008-01-01

    Treatment of fresh air in ventilation systems for the air-conditioning consumes a considerable amount of energy and affects the indoor air quality (IAQ). The ventilation demand is primarily related to the occupant load. In this study, the ventilation demands due to occupant load variations and occupant acceptability were examined against certain IAQ objectives using the mass balance of carbon dioxide (CO 2 ) concentrations in an air-conditioned office. In particular, this study proposed a ventilation model for the consideration of the occupant load variations and occupant acceptability based on the regional survey of typical offices (422 samples) in Hong Kong. The model was applied to evaluate the relative energy performance of different IAQ objectives in ventilation systems for typical office buildings in Hong Kong. The results showed that the energy consumption of a ventilation system would be correlated with the occupant load and acceptability in the air-conditioned office. Indicative CO 2 levels of 800 ppmv, 1000 ppmv and 1200 ppmv corresponding to 83%, 97% and 99.7% survey samples were shown, corresponding to the thermal energy consumptions of 1500 MJ m -2 yr -1 , 960 MJ m -2 yr -1 and 670 MJ m -2 yr -1 , respectively. In regards to the monetary issue, an annual value of HK$ 762 million per year in electrical consumption could be saved in all office buildings in Hong Kong when the indoor target CO 2 concentration is increased from 1000 ppmv to 1200 ppmv. To achieve an excellent IAQ following the existing design standard, i.e. to decrease the CO 2 level from 1000 ppmv to 800 ppmv, 56% additional energy would be consumed, corresponding to an annual value of HK$ 1,419 million, even though the occupant acceptability is only improved from 81% to 86%. The development of the models in this study would be useful for the energy performance evaluation of ventilation systems in air-conditioned offices

  4. Impaired Air Conditioning within the Nasal Cavity in Flat-Faced Homo.

    Directory of Open Access Journals (Sweden)

    Takeshi Nishimura

    2016-03-01

    Full Text Available We are flat-faced hominins with an external nose that protrudes from the face. This feature was derived in the genus Homo, along with facial flattening and reorientation to form a high nasal cavity. The nasal passage conditions the inhaled air in terms of temperature and humidity to match the conditions required in the lung, and its anatomical variation is believed to be evolutionarily sensitive to the ambient atmospheric conditions of a given habitat. In this study, we used computational fluid dynamics (CFD with three-dimensional topology models of the nasal passage under the same simulation conditions, to investigate air-conditioning performance in humans, chimpanzees, and macaques. The CFD simulation showed a horizontal straight flow of inhaled air in chimpanzees and macaques, contrasting with the upward and curved flow in humans. The inhaled air is conditioned poorly in humans compared with nonhuman primates. Virtual modifications to the human external nose topology, in which the nasal vestibule and valve are modified to resemble those of chimpanzees, change the airflow to be horizontal, but have little influence on the air-conditioning performance in humans. These findings suggest that morphological variation of the nasal passage topology was only weakly sensitive to the ambient atmosphere conditions; rather, the high nasal cavity in humans was formed simply by evolutionary facial reorganization in the divergence of Homo from the other hominin lineages, impairing the air-conditioning performance. Even though the inhaled air is not adjusted well within the nasal cavity in humans, it can be fully conditioned subsequently in the pharyngeal cavity, which is lengthened in the flat-faced Homo. Thus, the air-conditioning faculty in the nasal passages was probably impaired in early Homo members, although they have survived successfully under the fluctuating climate of the Plio-Pleistocene, and then they moved "Out of Africa" to explore the more

  5. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    OpenAIRE

    Agus Dwi Hariyanto

    2005-01-01

    This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen ...

  6. HUMAN RESOURCE MANAGEMENT PRACTICES IN REFRIGERATION AND AIR CONDITIONING INDUSTRY IN INDIA

    OpenAIRE

    Dr.Nisar Ahamad Nalband

    2010-01-01

    Over the last 150 years or so, refrigeration’s great strides offered us ways to preserve and cool food, other substances and ourselves. Refrigeration brought distant production centers. It tore down the barriers of climates and seasons. And while it helped to rev up industrial process, it became an industry itself It is understood that the refrigeration and air conditioning industry has been a promising industry for the development of Indian economy and one of the old industry in India too. I...

  7. Research on fluids adapted to air conditioning by three-thermal ejector-compressor machine

    Energy Technology Data Exchange (ETDEWEB)

    Dorantes, R.; Lallemand, A. [Institut National des Sciences Appliquees (INSA), 69 - Villeurbanne (France)

    1993-12-31

    A model has been developed in order to optimize the ejector performances for air conditioning systems, which operate with refrigerants substitutes. Many refrigerants have been considered: R11, R114, R22, R133a, R142b, R134a, R318c, R152a, R123 and R141b. The interest of using non azeotropic mixtures, like the R141b-R318c, has been studied in such systems. (Authors). 5 refs., 10 figs.

  8. Amelioration of Heat-Stress Conditions of Egyptian Summer Season on Friesian Calves Using Air Condition

    International Nuclear Information System (INIS)

    Nessim, M.Z.; Kamal, T.H.; Khalil, W.K.B.

    2010-01-01

    Male Friesian calves were used to evaluate cool air condition (AC) in alleviating heat stress (HS) determined by Heat Shock Protein genes expression (HSP), hormonal, biochemical and physiological parameters. The animals were exposed to summer heat stress (HS) under shade for two weeks (control). The maximum temperature humidity index (THI) during summer HS was from 81 to 88. Afterward the animals were exposed to AC, inside a climatic chamber for 6 hours daily for two weeks, where, the THI was from 70 to 71. The results revealed that expression level of the Hsp genes (Hsp72, Hsp70.1, Hsp70 and Hsp47) was lower under air condition treatment than under summer heat stress. Rectal temperature and respiration rate were significantly lower (p< 0.01) under air condition treatment than those under heat stress. Total triiodothyronin (T3) level was significantly higher (P< 0.05) in AC cooling treatments than in HS, while cortisol level was significantly lower (P < 0.01) in AC cooling treatment than in HS calves. Creatinine and Urea -N levels were significantly lower (P < 0.01) in AC cooling treatment than in HS calves. Triglycerides, ALT and AST levels were significantly lower (p<0.01), (P< 0.01) and (p<0.05), respectively in AC cooling treatment than in HS calves. These results demonstrated that there is a relationship between the molecular weight of HSPs and the level of HSPs gene exprisson. The higher the molecular weight (HSP 72) the lower is the HSPs gene expression level (0.82 in HS and 0.39 in AC) and vise versa. This holds true in both heat stress and air condition. AC treatment is capable to ameliorate heat stress of Friesian calves under hot summer climate

  9. A Methodology to Modify Steady State Heating, Ventilating, Air Conditioning and Refrigeration Equipment Noise

    OpenAIRE

    Sung, Weonchan; Davies, Patricia; Bolton, J Stuart

    2016-01-01

    Many people are exposed to sounds made by heating, ventilating, air conditioning and refrigeration equipment. These sounds can have a rich harmonic structure attributable to various rotating components: e.g., fans, motors and compressors. There are also broadband components arising from air motion, turbulence and fluid pulsations. Both sound components are also usually modified by acoustical and structural resonances. The design or modification of equipment to optimize sound quality is challe...

  10. Retrofitting Inefficient Rooftop Air-Conditioning Units Reduces U.S. Navy Energy Use (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2014-04-01

    As part of the U.S. Navy's overall energy strategy, the National Renewable Energy Laboratory (NREL) partnered with the Naval Facilities Engineering Command (NAVFAC) to demonstrate market-ready energy efficiency measures, renewable energy generation, and energy systems integration. One such technology - retrofitting rooftop air-conditioning units with an advanced rooftop control system - was identified as a promising source for reducing energy use and costs, and can contribute to increasing energy security.

  11. Effective Ventilation Parameters and Thermal Comfort Study of Air-conditioned Offices

    OpenAIRE

    Roonak Daghigh; Kamaruzzaman Sopian

    2009-01-01

    The study presents objective and subjective studies of thermal comfort levels and ventilation characteristics of two air-conditioned postgraduate study offices. The observations were performed at the offices of Department of Electrical and Electronic Engineering, in University Putra Malaysia. Thermal comfort variables were measured while the students answered a survey on their sensation of the indoor climate. Concurrently, tracer gas analysis, based on concentration decay method, is employed ...

  12. Biomass direct-fired power generation system in China: An integrated energy, GHG emissions, and economic evaluation for Salix

    International Nuclear Information System (INIS)

    Wang, Changbo; Zhang, Lixiao; Chang, Yuan; Pang, Mingyue

    2015-01-01

    To gain a better understanding of the options of biomass power generation in China, this study presented an integrated energy, environmental, and economic evaluation for Salix in China, and a typical Salix direct-fired power generation system (SDPGS) in Inner Mongolia was selected for case study. A tiered hybrid life cycle assessment (LCA) model was developed to calculate the “planting-to-wire” (PTW) energy consumption, greenhouse gas (GHG) emissions, and economic cost and profit of the SDPGS, including feedstock cultivation, power plant construction and operation, and on-grid price with/without government subsidies. The results show that the PTW energy consumption and GHG emissions of Salix are 0.8 MJ/kWh and 114 g CO 2 -eq/kWh, respectively, indicating an energy payback time (EPBT) of 3.2 years. The SDPGS is not economically feasible without government subsidies. The PTW costs are dominated by feedstock cultivation. The energy saving and GHG mitigation benefits are still robust, even when the power plant runs at only 60% design capacity. For future development of biomass power in China, scientific planning is necessary to guarantee a sufficient feedstock supply. In addition, technology progress, mature industrial chains, and reasonable price setting policy are required to enable potential energy and environmental advantages of biomass power moving forward. -- Highlights: •A hybrid LCA model was used to evaluate overall performance of the SDPGS. •On-site processes dominate the “planting-to-wire” footprints. •The energy saving and GHG mitigation benefits of the SDPGS are robust. •The economic profit of the SDPGS is feeble without government subsidies. •Generating efficiency promotion has a comprehensive positive effect on the system

  13. Biopower from direct firing of crop and forestry residues in China: A review of developments and investment outlook

    International Nuclear Information System (INIS)

    Gosens, Jorrit

    2015-01-01

    This paper reviews developments in the direct-fired biomass power sector and provides an up to date investment outlook by calculating the Net Present Value of new investments, and the appropriate level of Feed-in-Tariff needed to stimulate future investment. An overview is provided of support policies, historical growth in installations, and main market players. A number of data sources is combined to build a database with detailed information of individual biopower projects. This data is used to describe technological and market trends, which are used in a cash flow model to calculate the NPV of a typical project. The NPV for new projects is estimated to be negative, and investment should be expected to stall without proper policy intervention. Increasing fuel prices, local competition over biomass fuel resources, lower than expected operational performance and a downturn in carbon markets have deteriorated the investment outlook. In order to ensure reasonable profitability, the Feed-In-Tariff should be increased, from the current level of 90.9 € MWh −1 , to between 97 and 105 € MWh −1 . Where possible, government organizations should help organize demand for the supply of heat. Local rural energy bureaus may help organize supply networks for biomass fuels throughout the country, in order to reduce seasonal and local fuel scarcity and price fluctuations. - Highlights: • A database with detailed information of Chinese biopower projects is analyzed. • The NPV of new biopower projects is calculated and found to be negative. • Fuel prices have risen, fuel supply is restricted, revenue is lower than expected. • The current Feed-In-tariff of 91 € MWh −1 needs to be increased to 97–105 € MWh −1

  14. Energy and Greenhouse Gas Emission Assessment of Conventional and Solar Assisted Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Xiaofeng Li

    2015-11-01

    Full Text Available Energy consumption in the buildings is responsible for 26% of Australia’s greenhouse gas emissions where cooling typically accounts for over 50% of the total building energy use. The aim of this study was to investigate the potential for reducing the cooling systems’ environmental footprint with applications of alternative renewable energy source. Three types of cooling systems, water cooled, air cooled and a hybrid solar-based air-conditioning system, with a total of six scenarios were designed in this work. The scenarios accounted for the types of power supply to the air-conditioning systems with electricity from the grid and with a solar power from highly integrated building photovoltaics (BIPV. Within and between these scenarios, systems’ energy performances were compared based on energy modelling while the harvesting potential of the renewable energy source was further predicted based on building’s detailed geometrical model. The results showed that renewable energy obtained via BIPV scenario could cover building’s annual electricity consumption for cooling and reduce 140 tonnes of greenhouse gas emissions each year. The hybrid solar air-conditioning system has higher energy efficiency than the air cooled chiller system but lower than the water cooled system.

  15. Efficiency assessment of indoor environmental policy for air-conditioned offices in Hong Kong

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.

    2009-01-01

    To reduce carbon dioxide (CO 2 ) emissions through thermal energy conservation, air-conditioned offices in the subtropics are recommended to operate within specified ranges of indoor temperature, relative humidity and air velocity. As thermal discomfort leads to productivity loss, some indoor environmental policies for air-conditioned offices in Hong Kong are investigated in this study with relation to thermal energy consumption, CO 2 emissions from electricity use, and productivity loss due to thermal discomfort. Occupant thermal response is specifically considered as an adaptive factor in evaluating the energy consumption and productivity loss. The energy efficiency of an office is determined by the productivity which corresponds to the CO 2 generated. The results found that a policy with little impact on occupant thermal comfort and worker productivity would improve the office efficiency while the one with excessive energy consumption reduction would result in a substantial productivity loss. This study is a useful reference source for evaluating an indoor thermal environmental policy regarding the energy consumption, CO 2 emissions reduction, thermal comfort and productivity loss in air-conditioned offices in subtropical areas.

  16. Hospital-acquired infections associated with poor air quality in air-conditioned environments

    Directory of Open Access Journals (Sweden)

    Daniela Pinheiro da Silva

    2013-10-01

    Full Text Available Backgound and Objectives: Individuals living in cities increasingly spend more time indoors in air-conditioned environments. Air conditioner contamination can be caused by the presence of aerosols from the external or internal environment, which may be associated with disease manifestations in patients present in this type of environment. Therefore, the aim of this review was to assess the air quality in air-conditioned hospital environments as a risk factor for hospital-acquired infections – HAI – as the air can be a potential source of infection, as well as assess the exposure of professionals and patients to different pollutants. Material and Methods: A literature review was performed in the LILACS, MEDLINE, SCIELO, SCIENCE DIRECT databases, CAPES thesis database and Ministry of Health – Brazil, including studies published between 1982 and 2008. The literature search was grouped according to the thematic focus, as follows: ventilation, maintenance and cleaning of systems that comprehend the environmental quality standard. Discussion and Conclusion: Outbreaks of hospital-acquired infections associated with Aspergillus, Acinetobacter, Legionella, and other genera such as Clostridium and Nocardia, which were found in air conditioners, were observed, thus indicating the need for air-conditioning quality control in these environments.

  17. Comparison of global warming impacts of automobile air-conditioning concepts

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-31

    The global warming impacts of conventional vapor compression automobile air conditioning using HFC-134a are compared with the potential impacts of four alternative concepts. Comparisons are made on the basis of total equivalent warming impact (TEWI) which accounts for the effects of refrigerant emissions, energy use to provide comfort cooling, and fuel consumed to transport the weight of the air conditioning system. Under the most favorable assumptions on efficiency and weight, transcritical compression using CO{sub 2} as the refrigerant and adsorption cooling with water and zeolite beds could reduce TEWI by up to 18%rlative to HFC-134a compression air conditioning. Other assumptions on weight and efficiency lead to significant increases in TEWI relative to HFC-134a, and it is impossible to determine which set of assumptios is valid from existing data, Neither Stirling cycle or thermoelectric cooling will reduce TEWI relative to EFC-134a. Brief comments are also made concerning technical barriers that must be overcome for succesful development of the new technologies.

  18. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    Science.gov (United States)

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  19. Tourists' attitudes towards ban on smoking in air-conditioned hotel lobbies in Thailand.

    Science.gov (United States)

    Viriyachaiyo, V; Lim, A

    2009-06-01

    Thailand is internationally renowned for its stringent tobacco control measures. In Thailand, a regulation banning smoking in air-conditioned hotel lobbies was issued in late 2006, causing substantial apprehension within the hospitality industry. A survey of tourists' attitudes toward the ban was conducted. A cross-sectional survey of 5550 travellers staying in various hotels in Bangkok, Surat Thani, Phuket, Krabi and Songkhla provinces, October 2005 to December 2006. Travellers aged 15 years or older with a check-in duration of at least one day and willing to complete the questionnaire were requested by hotel staff to fill in the 5-minute questionnaire at check-in or later at their convenience. Secondhand cigarette smoke was recognised as harmful to health by 89.7% of respondents. 47.8% of travellers were aware of the Thai regulation banning smoking in air-conditioned restaurants. 80.9% of the respondents agreed with the ban, particularly female non-smokers. 38.6% of survey respondents indicated that they would be more likely to visit Thailand again because of the regulation, 53.4% that the regulation would not affect their decision and 7.9% that they would be less likely to visit Thailand again. Banning smoking in air-conditioned hotel lobbies in Thailand is widely supported by tourists. Enforcement of the regulation is more likely to attract tourists than dissuade them from holidaying in Thailand.

  20. Possible schemes for solar-powered air-conditioning in 2-storey terrace houses

    International Nuclear Information System (INIS)

    Chu, C.M.; Bono, A.; Prabhakar, A.

    2006-01-01

    Space cooling is required all year round in the tropics, and probably accounts for a considerable proportion of the cost of electricity. Solar radiation can be channeled into cooling by photovoltaic powered systems and through the relatively new adsorption cycle technology. Two-storey terrace housing appear to have the greatest potential of introducing solar-powered cooling to residential homes. There are two schemes to cool a two-storey terrace housing: 1) By spraying water down the roof a tank, circulated by a pump powered by PV panels on the roof or 2) By replacing the roof with solar hot water collectors and use adsorption cooling chillers to produce air-conditioning for the entire block of terrace houses. In scheme number 1, a preliminary, rough technical evaluation showed that it is possible to pump water to the roof to flow down as a thin film and cool the roof by evaporation to about 40 degree C from about 70 degree C if without water evaporation at the highest insolation rate of the day. Scheme number 2, which uses adsorption chilling technology, requires communal sharing of the air-conditioning facility. The effect of collecting solar heat using the roof is two fold: to absorb solar energy for producing hot water and reducing excess heat input to the house. Preliminary costing demonstrates that solar-powered air-conditioning is within reach of commercialisation, bearing in mind that bulk purchases will dramatically lower the price of a product

  1. Experimental study of a novel capacity control algorithm for a multi-evaporator air conditioning system

    International Nuclear Information System (INIS)

    Xu Xiangguo; Pan Yan; Deng Shiming; Xia Liang; Chan Mingyin

    2013-01-01

    The use of a multi-evaporator air conditioning (MEAC) system is advantageous in terms of installation convenience, high design flexibility, being easy to maintain and commission, better indoor thermal comfort control and higher energy efficiency. While MEAC units worth billions of dollars are sold worldwide, the detailed accounts on compressor capacity control and refrigeration flow distribution amongst evaporators remain unavailable in public domain, mainly due to commercial confidentiality. Limited control algorithms for MEAC systems have been developed based on system simulation, and no experimental-based capacity controller developments and their controllability tests may be identified in open literature. In the study reported in this paper, a novel capacity control algorithm, which imitated On–Off control of a single evaporator air conditioning (A/C) system in each indoor unit of a MEAC system by using variable speed compressor and electronic expansion valves (EEVs), was developed. Controllability tests under various settings for experimentally validating the novel capacity control algorithm were carried out and the control algorithm was further improved based on the experimental results. - Highlights: ► A capacity control algorithm for a multi-evaporator air conditioning system was developed. ► Experimental controllability tests under various settings were carried out. ► The control algorithm was further improved based on the experimental results.

  2. Ice thermal storage air conditioning system for electric load leveling; Denryoku heijunka to hyochikunetsu system

    Energy Technology Data Exchange (ETDEWEB)

    Shigenaga, Y. [Daikin Industries Ltd., Osaka (Japan)

    1998-08-15

    Thermal storage air conditioning system is the one to use energy stored into thermal storing materials by using night electric power and to operate effective air conditioning. Therefore, as load can be treated by the stored energy, volume of the apparatus can be reduced. And, by reduction of the consumed power at day time, it can contribute to leveling of electric power demand. In general, there are two types in the thermal storage method: one is a method to store as thermal energy, and the other is that to store as chemical energy. For conditions required for the storing materials, important elements on their actual uses are not only physical properties such as large thermal storage per unit and easy thermal in- and out-puts, but also safety, long-term reliability, and easy receiving and economics containing future. The ice thermal storage air conditioning system is classified at the viewpoint of type of ice, kind of thermal storing medium, melting method on using cooling and heating, kinds of thermal medium on cooling and heating. 3 refs., 5 figs., 2 tabs.

  3. Complex dynamics and chaos control of duopoly Bertrand model in Chinese air-conditioning market

    International Nuclear Information System (INIS)

    Yi, Qi Guo; Zeng, Xiang Jin

    2015-01-01

    Highlights: •A dynamic duopoly Bertrand model with bounded rationality and quadratic cost function. •In Chinese air-conditioning market the boundary equilibrium point is locally stable. •The Lyapunov dimension of the chaos attractor is 1.9585. •The adjustment speeds may cause a market structure to behave chaotically. •The chaotic behavior can be controlled by decreasing the degree of substitutability. -- Abstract: A dynamic duopoly Bertrand model with quadratic cost function which is closer to reality and different from previous researches is discussed. The model is applied into air-conditioning market where the boundary equilibrium point is locally stable. Numerical simulations illustrate that the stability of Nash equilibrium strongly depends on the speed of adjustment of bounded rational player. The adjustment speeds and the degree of substitutability may undermine the stability of the equilibrium and cause a market structure to behave chaotically. The Lyapunov dimension of the chaos attractor is 1.9585 under some conditions. The stabilization of the chaotic behavior can be obtained by reducing the degree of substitutability. The results have an important theoretical and practical significance to Chinese air-conditioning market

  4. 'TEWI' concept for estimation of the global warming from the refrigerating and air conditioning systems

    International Nuclear Information System (INIS)

    Ciconkov, Risto

    2002-01-01

    The most applied CFC refrigerants and their HFC alternatives. values of ODP (Ozone Depletion Potential) and GWP (Global Warming Potential) of the most used refrigerants. natural working fluids and their properties. Montreal Protocol and Kyoto Protocol, illogical relations between them concerning to the HFC fluids. Confusion and polemics on the international level about the appliance of HFCs which, by the Kyoto Protocol, are liable to reduction. Introduction of the TEWI concept as a method for estimating the overall influence of refrigerating and air conditioning systems on the greenhouse effect: the direct emission (refrigerant leakage in the atmosphere) and indirect emission as a result of the electrical energy consumption. A demonstration of the TEWI concept on the concrete example in several variants. A discussion about the appliance of the TEWI concept. Meaning of the energy efficiency of the refrigerating systems (indirect CO 2 emission). One of the main measures: prevention of refrigerant leakage (direct CO 2 emission). A need of permanent education and training courses of the people who work on refrigerating and air conditioning systems. A necessity for constitution of an expert body in the country, preparation of a strategy to lay obligations on the new changes of the Kyoto Protocol and news on the world market. Introduction of country regulations, certification of the companies and people involved in refrigeration and air conditioning. (Author)

  5. Characteristics of radon and its progeny concentrations in air-conditioned office buildings in Tokyo

    International Nuclear Information System (INIS)

    Tokonami, S.; Furukawa, M.; Shicchi, Y.; Sanada, T.; Yamada, Y.

    2003-01-01

    A series of measurements were carried out to understand the characteristics of radon and its progeny in air-conditioned office buildings. Long-term measurements of radon were made with etched track detectors. Continuous measurements of radon and its progeny concentrations were also conducted in some buildings to study their temporal variations. The results show that radon and its progeny concentrations routinely varied along with working activities. They are generally low while people are working, due to air conditioning, whereas they rise steadily after the air conditioning stops. When considering action levels not only in homes but also workplaces, attention should be paid to annual doses from the viewpoint of radiation protection. The annual dose is generally estimated with a long-term measurement of radon concentration using a passive device such as an etched track detector. Since its reading corresponds to a long-term average concentration regardless of working hours, the annual dose will be overestimated. When comparing a real dose after considering the working hours, they differ by a factor of more than 2. (author)

  6. Assessment of indoor air quality in comparison using air conditioning and fan system in printing premise

    Directory of Open Access Journals (Sweden)

    Ramlan Nazirah

    2017-01-01

    Full Text Available Printers contribute to various emissions consist with chemical contaminants. High concentration of the particulate matter can cause serious health problems. This study focuses on the indoor air quality in printing premise unit in Universiti Tun Hussein Onn, Malaysia. Field testing involving air sampling methods were taken from 900 hours to 1600 hours, for every 30 minutes using physical measurement which is Multi-Channel Air Quality Monitor (YESAIR, E-Sampler and Ozone Meter. Air sampling was recorded based on one sampling point and most suitable point for production. A comparison based on different ventilation using fan and air-conditioning were also taken and results is being compared based on OSHA and NIOSH standards. Besides that, the statistical analysis is being conducted in order to predict the effect on number of printers. From the result, the O3 concentrations show, 10% reduced for printing premise using fan ventilation compared to air-conditioning but remain the same value for PM2.5. The concentration of O3 increased when the number of printers decreased, while the concentration of PM2.5 increased the increase of printers number. Overall, the use of fan in printing premise is more suggested since the level is slightly lower than the printing premise using air-conditioning.

  7. Tourists’ attitudes towards ban on smoking in air-conditioned hotel lobbies in Thailand

    Science.gov (United States)

    Viriyachaiyo, V; Lim, A

    2009-01-01

    Background: Thailand is internationally renowned for its stringent tobacco control measures. In Thailand, a regulation banning smoking in air-conditioned hotel lobbies was issued in late 2006, causing substantial apprehension within the hospitality industry. A survey of tourists’ attitudes toward the ban was conducted. Methods: A cross-sectional survey of 5550 travellers staying in various hotels in Bangkok, Surat Thani, Phuket, Krabi and Songkhla provinces, October 2005 to December 2006. Travellers aged 15 years or older with a check-in duration of at least one day and willing to complete the questionnaire were requested by hotel staff to fill in the 5-minute questionnaire at check-in or later at their convenience. Results: Secondhand cigarette smoke was recognised as harmful to health by 89.7% of respondents. 47.8% of travellers were aware of the Thai regulation banning smoking in air-conditioned restaurants. 80.9% of the respondents agreed with the ban, particularly female non-smokers. 38.6% of survey respondents indicated that they would be more likely to visit Thailand again because of the regulation, 53.4% that the regulation would not affect their decision and 7.9% that they would be less likely to visit Thailand again. Conclusion: Banning smoking in air-conditioned hotel lobbies in Thailand is widely supported by tourists. Enforcement of the regulation is more likely to attract tourists than dissuade them from holidaying in Thailand. PMID:19364754

  8. Moral absolutism and the double-effect exception: reflections on Joseph Boyle's Who is entitled to double effect?

    Science.gov (United States)

    Donagan, A

    1991-10-01

    Joseph Boyle raises important questions about the place of the double-effect exception in absolutist moral theories. His own absolutist theory (held by many, but not all, Catholic moralists), which derives from the principles that fundamental human goods may not be intentionally violated, cannot dispense with such exceptions, although he rightly rejects some widely held views about what they are. By contrast, Kantian absolutist theory, which derives from the principle that lawful freedom must not be violated, has a corollary--that it is a duty, where possible, to coerce those who try to violate lawful freedom--which makes superfluous many of the double-effect exceptions Boyle allows. Other implications of the two theories are contrasted. Inter alia, it is argued that, in Boyle's theory, that a violation of a fundamental human good can be viewed as a cost proportionate to a benefit obtained, cannot yield a double-effect exception to the prohibition of intentionally violating that good, because paying a cost cannot be unintentional.

  9. Performance assessment and transient optimization of multi-stage solid desiccant air conditioning systems with building PV/T integration

    Science.gov (United States)

    Gadalla, Mohamed; Saghafifar, Mohammad

    2016-09-01

    One of the popular solar air conditioning technologies is desiccant air conditioning. Nonetheless, single stage desiccant air conditioning systems' coefficient of performance (COP) are relatively low. Therefore, multi-stage solid desiccant air conditioning systems are recommended. In this paper, an integrated double-stage desiccant air conditioning systems and PV/T collector is suggested for hot and humid climates such as the UAE. The results for the PV/T implementation in the double-stage desiccant cooling system are assessed against the PV/T results for a single-stage desiccant air conditioning system. In order to provide a valid comparative evaluation between the single and double stage desiccant air conditioning systems, an identical PV/T module, in terms of dimensions, is incorporated into these systems. The overall required auxiliary air heating is abated by 46.0% from 386.8 MWh to 209.0 MWh by replacing the single stage desiccant air conditioning system with the proposed double stage configuration during June to October. Moreover, the overall averaged solar share during the investigated months for the single and double stage systems are 36.5% and 43.3%.

  10. The natural gas air-conditioning; La climatisation au gaz naturel. Un avenir prometteur, une technique confirmee

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The natural gas air-conditioning market is in growth (it will cover 10% of the market in 2002).To illustrate the possibilities of this energy source, this paper presents three examples of the natural gas air-conditioning in France. The technical aspects, the cost and the advantages of such systems are discussed. (A.L.B.)

  11. Achieving better energy-efficient air conditioning – A review of technologies and strategies

    International Nuclear Information System (INIS)

    Chua, K.J.; Chou, S.K.; Yang, W.M.; Yan, J.

    2013-01-01

    Air conditioning is essential for maintaining thermal comfort in indoor environments, particularly for hot and humid climates. Today, air conditioning, comprising cooling and dehumidification, has become a necessity in commercial and residential buildings and industrial processes. It accounts for a major share of the energy consumption of a building or facility. In tropical climates, the energy consumed by heating, ventilation and air-conditioning (HVAC) can exceed 50% of the total energy consumption of a building. This significant figure is primarily due to the heavy duty placed on cooling technologies to remove both sensible and latent heat loads. Therefore, there is tremendous potential to improve the overall efficiency of the air-conditioning systems in buildings. Based on today’s practical technology for cooling, the major components of a chiller plant are (1) compressors, (2) cooling towers, (3) pumps (chilled and cooling water) and (4) fans in air handling units. They all consume mainly electricity to operate. When specifying the kW/R ton of a plant, there are two levels of monitoring cooling efficiency: (1) at the efficiency of the chiller machines or the compressors which consume a major amount of electricity; and (2) at the overall efficiency of cooling plants which include the cooling towers, pumps for moving coolant (chilled and cooling water) to all air-handling units. Pragmatically, a holistic approach is necessary towards achieving a low energy input per cooling achieved such as 0.6 kW/R ton cooling or lower by considering all aspects of the cooling plant. In this paper, we present a review of recent innovative cooling technology and strategies that could potentially lower the kW/R ton of cooling systems – from the existing mean of 0.9 kW/R ton towards 0.6 kW/R ton or lower. The paper, broadly divided into three key sections (see Fig. 2), begins with a review of the recent novel devices that enhances the energy efficiency of cooling systems at

  12. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area; Phadke, Amol [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Energy Technologies Area

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere, mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel. We find that implementing HFC refrigerant transition and energy efficiency improvement policies in parallel for room air conditioning, roughly doubles the benefit of either policy implemented separately. We estimate that shifting the 2030 world stock of room air conditioners from the low efficiency technology using high-GWP refrigerants to higher efficiency technology and low-GWP refrigerants in parallel would save between 340-790 gigawatts (GW) of peak load globally, which is roughly equivalent to avoiding 680-1550 peak power plants of 500MW each. This would save 0.85 GT/year annually in China equivalent to over 8 Three Gorges dams and over 0.32 GT/year annually in India equivalent to roughly twice India’s 100GW solar mission target. While there is some uncertainty associated with

  13. Commentary: Air-conditioning as a risk for increased use of healthservices

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, Mark J.

    2004-06-01

    In this issue of the journal, Preziosi et al. [2004] report the first study to assess differences in the utilization of health care related to the presence of air-conditioning in office workplaces. Although the study was simple and cross-sectional, the data variables from questionnaires, and the findings subject to a variety of questions, the findings are striking enough to deserve clarification. The study used a large random national sample of French women assembled for another purpose (to study antioxidant nutrients and prevention of cancer and cardiovascular disease). Participants reported health services and health events in monthly questionnaires over 1 year, and in one questionnaire in the middle of that period also reported whether air-conditioning was in use at their workplace. Fifteen percent of participants reported air-conditioning at work. Analyses adjusting for age and smoking status of participants found increases in most outcomes assessed: use of specific kinds of physicians, sickness absence, and hospital stays. While the increases in odds ratios (OR) and 95% confidence intervals (CI) were statistically significant for only otorhinolaryngology [OR (95% CI) = 2.33 (1.35-4.04)] and sickness absence [1.70 (1.13-2.58)], other increases were notable--dermatology [1.6 (0.98-2.65)]; hospital stay [1.51 (0.92-2.45)], and pneumonology [2.10 (0.65-6.82)]. The least elevated outcomes were for general practice medicine [0.99 (0.65-1.48)] and global medical visits [1.18 (0.67-2.07)]. [Preziosi et al., 2004 ,(Table 2)] Odds ratios for relatively common health outcomes often lie farther from the null than the risk ratios most useful for quantifying the increase in risk. Risk ratios, or prevalence ratios (PRs, the equivalent measure of effect for cross-sectional data), have seldom been used because of the convenience and availability of logistic regression models that estimate odds ratios. With baseline prevalences ranging up to 85.7% in the data from Preziosi et

  14. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  15. Modeling and Simulation of Thermal Performance of Solar-Assisted Air Conditioning System under Iraq Climate

    Directory of Open Access Journals (Sweden)

    Najim Abid Jassim

    2016-08-01

    Full Text Available In Iraq most of the small buildings deployed a conventional air conditioning technology which typically uses electrically driven compressor systems which exhibits several clear disadvantages such as high energy consumption, high electricity at peak loads. In this work a thermal performance of air conditioning system combined with a solar collector is investigated theoretically. The hybrid air conditioner consists of a semi hermetic compressor, water cooled shell and tube condenser, thermal expansion valve and coil with tank evaporator. The theoretical analysis included a simulation for the solar assisted air-conditioning system using EES software to analyze the effect of different parameters on the power consumption of compressor and the performance of system. The results show that refrigeration capacity is increased from 2.7 kW to 4.4kW, as the evaporating temperature increased from 3 to 18 ºC. Also the power consumption is increased from 0.89 kW to 1.08 kW. So the COP of the system is increased from 3.068 to 4.117. The power consumption is increased from 0.897 kW to 1.031 kW as the condensing temperature increased from 35 ºC to 45 ºC. While the COP is decreased from 3.89 to 3.1. The power consumption is decreased from 1.05 kW to 0.7kW as the solar radiation intensity increased from 300 W/m2 to 1000 W/m2, while the COP is increased from 3.15 to 4.8. A comparison between the simulation and available experimental data showed acceptable agreement.

  16. Automobile air-conditioning its energy and environmental impact; La climatisation automobile impact energetique et environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Barbusse, St.; Gagnepain, L.

    2003-05-01

    Over the last three decades, automobile manufacturers have made a lot of progress in specific fuel consumption and engine emissions of pollutants. Yet the impact of these improvements on vehicle consumption has been limited by increased dynamic performances (maxi-mum speed, torque), increased safety (power steering and power brakes) and increased comfort (noise and vibration reduction, electric windows and thermal comfort). Because of this, the real CO{sub 2}-emission levels in vehicles is still high in a context where road transport is a major factor in the balance sheet of greenhouse gas emissions, thus in complying with the inter-national climate convention. Although European, Japanese and Korean manufacturers signed an important agreement with the European Commission for voluntarily reducing CO{sub 2} emissions from their vehicles, with a weighted average emission goal by sales of 140 grams per km on the MVEG approval cycle by 2008, it has to be noted that the European procedures for measuring fuel consumption and CO{sub 2} emissions do not take accessories into account, especially air-condition ng (A/C). The big dissemination of this equipment recognized as a big energy consumer and as using a refrigerant with a high global warming potential ed ADEME to implement a set of assessments of A/C's energy and environmental impact. In particular these assessments include studies of vehicle equipment rates, analyses of impact on fuel consumption as well as regulated pollutant emissions in the exhaust, a characterization of the refrigerant leakage levels and an estimate of greenhouse gas emissions for all air-conditioned vehicles. This leaflet summarizes the results of these actions. All of these studies and additional data are presented in greater detail in the document,-'Automobile Air-conditioning' (ADEME reference no. 4985). (author)

  17. Solar desiccant air-conditioning. Practical experience regarding operation and performance

    Energy Technology Data Exchange (ETDEWEB)

    Haller, A.; Trinkl, C.; Wittmann, R.; Zoerner, W. [Ingolstadt Univ. of Applied Sciences (Germany). Kompetenzzentrum Solartechnik; Hanby, V. [De Montfort Univ., Leicester (GB). Inst. of Energy and Sustainable Development (IESD)

    2007-07-01

    The Kompetenzzentrum Solartechnik of Ingolstadt University of Applied Sciences (Centre of Excellence for Solar Engineering) investigates the renewable-only based HVAC system of a multipurpose building. The 10.000 m{sup 2} gross floor area building is part of the biggest logistic-centre in the region serving the AUDI automobile production facilities. On the one hand, the investigation is supposed to demonstrate the potential of solar-assisted cooling, on the other hand, the monitoring, financed by the Bavarian Ministry of Environmental Affairs, focuses on the total energy balance of the building and the various innovative building technologies. Next to a ground source heat pump plant for base-load heating and cooling, the building is equipped with two arrays of solar-thermal flat-plate collectors (100 m{sup 2} of Conergy, Germany, and 180 m{sup 2} of Solahart, Australia) and a desiccant air-conditioning system (DEC, WOLF Anlagen-Technik, Germany). This consists of two plants with an air flow of 8.000 m{sup 3}/h and a nominal cooling capacity of 42 kW each. One of the two plants is monitored. The plant itself is considered a black box in a first approach, i.e. all incoming and outgoing energy flows and the air condition are measured. Apart from the investigation of the performance of the solar-assisted air-conditioning system, the feasibility of DEC-operation using flat-plate collectors available on the market is investigated. (orig.)

  18. Building air conditioning system using fuel cell: Case study for Kuwait

    Energy Technology Data Exchange (ETDEWEB)

    Darwish, Mohamed A. [Department of Mechanical Engineering, Kuwait University, Street 2, Gada 4, Section 1, P.O. Box 5969, Safat 13060, NA Kuwait, Kuwait City (Kuwait)

    2007-12-15

    Air conditioning machines in Kuwait consume more than 75% of electric energy generated at peak load time. It is in the national interest of Kuwait to decelerate the continuous increase of peak electric power demand. One way to do this is to install for new complexes or high-rise apartments buildings distributed utilities (isolated small power plants), mainly for air conditioning A/C systems. Fuel cells are among the alternatives considered for distributed utilities. This paper discusses the use of commercially available phosphoric acid fuel cell PAFC, known as ONSI P25 to operate air conditioning systems for big buildings in Kuwait. The proposed fuel cell, which is usually delivered with built-in heat exchanger for hot water, is operated by natural gas and uses a propylene glycol-water loop to recover thermal energy. The PAFC has 200 kW nominal electric power capacity, and produces thermal energy of 105 kW thermal energy at 120 C, and 100 kW at 60 C. The performance characteristics for the proposed fuel cell are very well documented. In the present study, it is suggested that the fuel cell operates combined mechanical vapor compression and absorption water chillers to utilize the fuel cell full output of electric power and waste heat. Also, to meet the required A/C cooling capacity system by the limited fuel cell power output, it is proposed to use cold storage technique. This allows fuel cell power output to supply the needed energy for average as well as peak A/C system capacity. (author)

  19. An Analysis of Price Determination and Markups in the Air-Conditioning and Heating Equipment Industry

    Energy Technology Data Exchange (ETDEWEB)

    Dale, Larry; Millstein, Dev; Coughlin, Katie; Van Buskirk, Robert; Rosenquist, Gregory; Lekov, Alex; Bhuyan, Sanjib

    2004-01-30

    In this report we calculate the change in final consumer prices due to minimum efficiency standards, focusing on a standard economic model of the air-conditioning and heating equipment (ACHE) wholesale industry. The model examines the relationship between the marginal cost to distribute and sell equipment and the final consumer price in this industry. The model predicts that the impact of a standard on the final consumer price is conditioned by its impact on marginal distribution costs. For example, if a standard raises the marginal cost to distribute and sell equipment a small amount, the model predicts that the standard will raise the final consumer price a small amount as well. Statistical analysis suggest that standards do not increase the amount of labor needed to distribute equipment the same employees needed to sell lower efficiency equipment can sell high efficiency equipment. Labor is a large component of the total marginal cost to distribute and sell air-conditioning and heating equipment. We infer from this that standards have a relatively small impact on ACHE marginal distribution and sale costs. Thus, our model predicts that a standard will have a relatively small impact on final ACHE consumer prices. Our statistical analysis of U.S. Census Bureau wholesale revenue tends to confirm this model prediction. Generalizing, we find that the ratio of manufacturer price to final consumer price prior to a standard tends to exceed the ratio of the change in manufacturer price to the change in final consumer price resulting from a standard. The appendix expands our analysis through a typical distribution chain for commercial and residential air-conditioning and heating equipment.

  20. Performance study of desiccant coated heat exchanger air conditioning system in winter

    International Nuclear Information System (INIS)

    Ge, T.S.; Dai, Y.J.; Wang, R.Z.

    2016-01-01

    Highlights: • Performance of desiccant coated heat exchanger AC system is predicted. • Effects of main operation parameters and climatic conditions are discussed. • Regeneration temperature of 30 °C is recommended under simulation condition. • Higher ambient humidity ratio results in increased humidity ratio of supply air. • Temperature of ambient air has neglectable effect on supply air. - Abstract: Conventional air source heat pump system faces several challenges when adopted in winter season. Solid desiccant air conditioning system can provide humidification and heating power simultaneously and can be driven by low grade thermal energy; it provides a good alternative for air source heat pump systems. However, conventional solid desiccant air conditioning system adopts desiccant wheel with high cost as core component, which hinders the development of such system. Recently, desiccant coated heat exchanger (DCHE) with low initial cost and high efficiency was developed and this paper aims to investigate performance of DCHE air conditioning system adopted in Shanghai winter season. Performance of the system is predicted by a developed mathematical model where supply air states, mass of humidification and coefficient of performance (COP) are adopted as performance indices to evaluate the feasibility and energy utilization ratio of the system. Effects of regeneration water temperature on system performance are analyzed. It is found that under the simulation condition, relatively low regeneration temperature (such as 20 °C) cannot meet the designed standard and relatively high regeneration temperature (such as 40 °C) provides too much extra heating power, thus moderate regeneration temperature around 30 °C is recommended. Meanwhile, switch time is a crucial operation parameter for the system to obtain satisfied supply air, switch time from 40 s to 80 s and from 70 s to 240 s are recommended for transient and average supply air states, respectively. Both

  1. Duct corrosion in the ventilating air conditioning system for Main Control Room

    International Nuclear Information System (INIS)

    Yamada, Kohei; Kobayashi, Takashi; Minami, Akiko; Fukuba, Kazushi

    2014-01-01

    Higashidori Nuclear Power Station, start-of-operation in December 2005, is a relatively new plant. We decided to get original data of air duct condition to determine maintenance policy of air duct, because planned maintenance of air duct has never been done and the corrosion of air duct has occurred in other plant. In January 2014, we found a corrosion-hole at the downstream of the inlet damper in the ventilating air conditioning system for Main Control Room (MCR). We supposed that the cause of rapid corrosion is related to the characteristic environment of this site. (author)

  2. Modeling and experimental validation of the desiccant wheel in a hybrid desiccant air conditioning system

    International Nuclear Information System (INIS)

    Wrobel, Jan; Morgenstern, Paula; Schmitz, Gerhard

    2013-01-01

    Modeling can be strong asset to the operation of air conditioning plants taking into account e.g. the strong dependency of local climate conditions for the operation of HVAC systems. This paper presents a validated physical model and a simplified model based on the results of the physical model for a desiccant wheel, which is the central part of a hybrid air conditioning system. The two models offer different advantages: While the physical model is complex and can be adapted flexibly to different wheel dimensions, desiccant materials or climatic conditions; the simplified model requires no knowledge of underlying equations and modeling language utilized and can be used for a first assessment of the potential of a desiccant cooling system in a certain location or for the use within online control systems. The coexistence of both models ensures that information tailored to the users' needs are made available. The validity of the physical model, and therewith the simplified model, is ensured through comparison with measurement obtained from a hybrid air conditioning system situated in northern Europe. The demonstration plant combines the advantages of a dedicated outdoor air system (DOAS) with the advantages of the common hybrid desiccant system to allow for energy efficient air conditioning in one installation. The availability of primary measurement data is extremely valuable to the process of model validation because knowledge about uncertainties and bias in measurement data unlikely to be known for secondary data can be used to understand and validate model results. A comparison of simulation results from the physical model to measurement data from the demonstration plant shows good compliance for a typical day of wheel operation after adjusting relevant model parameters. -- Highlights: ► The desiccant wheel as core component of a highly efficient HVAC pilot installation based on renewable energies. ► Modeling and experimental validation of a desiccant wheel

  3. Performance of residential air-conditioning systems with flow maldistribution in fin-and-tube evaporators

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Brix, Wiebke; Elmegaard, Brian

    2011-01-01

    Refrigerant and airflow maldistribution in fin-and-tube evaporators for residential air-conditioning was investigated with numerical modeling. Fin-and-tube heat exchangers usually have a pre-defined circuitry. However, the objective in this study was to perform a generic investigation of each...... in this paper. The maldistribution sources of interest were: inlet liquid/vapor phase distribution, feeder tube bending and airflow distribution. The results show that maldistribution reduced the cooling capacity and the coefficient of performance of the system. In particular, different phase distribution...

  4. System monitoring feedback in cinemas and harvesting energy of the air conditioning condenser

    Science.gov (United States)

    Pop, P. P.; Pop-Vadean, A.; Barz, C.; Latinovic, T.; Chiver, O.

    2017-05-01

    Our article monitors the degree of emotional involvement of the audience in the action film in theaters by measuring the concentration of CO2. The software performs data processing obtained dispersion sensors and displays data during the film. The software will also trigger the start of the air conditioning condenser where we can get harvesting energy by installing a piezoelectric device. Useful energy can be recovered from various waste produced in cinema. The time lag between actions and changes in environmental systems determines that decisions made now will affect subsequent generations and the future of our environment.

  5. Regulation of variable speed pumps in air conditioning; Regulation des pompes a vitesse variable en climatisation

    Energy Technology Data Exchange (ETDEWEB)

    Crassard, J.J. [Pompes Grundfos Distribution, 38 - Saint Quentin Fallavier (France)

    1998-03-01

    The reduction of the costs of variable speed pumps used in air-conditioning systems and the energy savings generated by such systems have made this technique attractive and adaptable to any size of installations. This paper presents the different regulation modes (constant differential pressure regulation, differential pressure regulation proportional to the flow rate, temperature regulation), the technology of cold water loops (primary and secondary circuits), and the regulation of the condenser loop (cooling tower, air flow and water flow regulation). (J.S.)

  6. Keeping Cool: Use of Air Conditioning by Australians with Multiple Sclerosis

    Directory of Open Access Journals (Sweden)

    Michael P. Summers

    2012-01-01

    Full Text Available Despite the known difficulties many people with MS have with high ambient temperatures, there are no reported studies of air conditioning use and MS. This study systematically examined air conditioner use by Australians with MS. A short survey was sent to all participants in the Australian MS Longitudinal Study cohort with a response rate of 76% (n=2,385. Questions included hours of air-conditioner use, areas cooled, type and age of equipment, and the personal effects of overheating. Air conditioners were used by 81.9% of respondents, with an additional 9.6% who could not afford an air conditioner. Regional and seasonal variation in air conditioning use was reported, with a national annual mean of 1,557 hours running time. 90.7% reported negative effects from overheating including increased fatigue, an increase in other MS symptoms, reduced household and social activities, and reduced work capacity. Households that include people with MS spend between 4 and 12 times more on keeping cool than average Australian households.

  7. Enhancement of the coefficient of performance in air conditioning systems by utilizing free cooling

    Energy Technology Data Exchange (ETDEWEB)

    Al-Salaymeh, A.; Abdelkader, M. [Jordan Univ., Amman (Jordan). Dept. of Mechanical Engineering; Al-Salaymeh, M. [Jordan Telecommunication Co., Zarka (Jordan); Rabah, M. [Al-Balqa Applied Univ., Amman (Jordan). Dept. of Mechanical Engineering

    2006-07-01

    A case study was conducted for a 4-tonne cooling load air conditioning system in buildings owned by the Jordan Telecommunications Company. The air conditioning system used a free cooling technique comprised of a motorized damper that conducted the flows of internal and external air. The damper opened to take air needed for cooling directly from the exterior, without the need for a compressor. An evaporative humidifier was used to treat air between the exhaust connection of the heat recovery unit. The free cooling system was used when the external ambient temperature exceeded the temperature in the exhaust duct after the evaporative humidifier. The system used thermostats to determine when the outside temperature was lower than the room temperature. The thermostats controlled the opening to the outdoor air damper so that the proportion of the opening could be controlled. In this case study, the system was applied in a small equipment room containing telecommunication equipment. The study considered installation costs, operating costs, and maintenance costs. Total costs were calculated by multiplying the number of operating hours with the electricity cost. Maximum electricity costs occurred during the summer months. Results showed that use of the system resulted in savings of 42.6 per cent of the total cost of electricity typically used to treat the room. 7 refs., 9 figs.

  8. An optimization strategy for the control of small capacity heat pump integrated air-conditioning system

    International Nuclear Information System (INIS)

    Gao, Jiajia; Huang, Gongsheng; Xu, Xinhua

    2016-01-01

    Highlights: • An optimization strategy for a small-scale air-conditioning system is developed. • The optimization strategy aims at optimizing the overall system energy consumption. • The strategy may guarantee the robust control of the space air temperature. • The performance of the optimization strategy was tested on a simulation platform. - Abstract: This paper studies the optimization of a small-scale central air-conditioning system, in which the cooling is provided by a ground source heat pump (GSHP) equipped with an on/off capacity control. The optimization strategy aims to optimize the overall system energy consumption and simultaneously guarantee the robustness of the space air temperature control without violating the allowed GSHP maximum start-ups number per hour specified by customers. The set-point of the chilled water return temperature and the width of the water temperature control band are used as the decision variables for the optimization. The performance of the proposed strategy was tested on a simulation platform. Results show that the optimization strategy can save the energy consumption by 9.59% in a typical spring day and 2.97% in a typical summer day. Meanwhile it is able to enhance the space air temperature control robustness when compared with a basic control strategy without optimization.

  9. Performance analysis of four-partition desiccant wheel and hybrid dehumidification air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jongsoo; Yamaguchi, Seiichi; Saito, Kiyoshi; Kawai, Sunao [Department of Applied Mechanics and Aerospace Engineering, School of Fundamental Science and Engineering, Waseda University, 3-4-1-58-210 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2010-05-15

    A desiccant dehumidification system with air can decrease energy consumption because it can be driven by low-grade waste heat below 80 C. If this system can be driven by low-temperature heat sources whose temperature is below 50 C, exhausted heat from fuel cells or air conditioners that exist everywhere can be used as heat sources. This could lead to considerable energy saving. This study provides a detailed evaluation of the performance of a four-partition desiccant wheel to make a low-temperature driving heat source possible and achieve considerable energy saving by the simulation and experiment. Further, the study investigates the in-depth performance of a hybrid air-conditioning system with a four-partition desiccant wheel by simulation. As a result, it was clear that there exists an optimum rotational speed to maximize the dehumidification performance and that the hybrid air-conditioning system improves COP by approximately 94% as compared to the conventional vapour compression-type refrigerator. (author)

  10. Neutron imaging of diabatic two-phase flows relevant to air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Geoghegan, Patrick J [ORNL; Sharma, Vishaldeep [ORNL

    2017-01-01

    The design of the evaporator of an air conditioning system relies heavily on heat transfer coefficients and pressure drop correlations that predominantly involve an estimate of the changing void fraction and the underlying two-phase flow regime. These correlations dictate whether the resulting heat exchanger is oversized or not and the amount of refrigerant charge necessary to operate. The latter is particularly important when dealing with flammable or high GWP refrigerants. Traditional techniques to measure the void fraction and visualize the flow are either invasive to the flow or occur downstream of the evaporator, where some of the flow distribution will have changed. Neutron imaging has the potential to visualize two-phase flow in-situ where an aluminium heat exchanger structure becomes essentially transparent to the penetrating neutrons. The subatomic particles are attenuated by the passing refrigerant flow. The resulting image may be directly related to the void fraction and the overall picture provides a clear insight into the flow regime present. This work presents neutron images of the refrigerant Isopentane as it passes through the flow channels of an aluminium evaporator at flowrates relevant to air conditioning. The flow in a 4mm square macro channel is compared to that in a 250 m by 750 m rectangular microchannel in terms of void fraction and regime. All neutron imaging experiments were conducted at the High Flux Isotope Reactor, an Oak Ridge National Laboratory facility

  11. Air quality and passenger comfort in an air-conditioned bus micro-environment.

    Science.gov (United States)

    Zhu, Xiaoxuan; Lei, Li; Wang, Xingshen; Zhang, Yinghui

    2018-04-12

    In this study, passenger comfort and the air pollution status of the micro-environmental conditions in an air-conditioned bus were investigated through questionnaires, field measurements, and a numerical simulation. As a subjective analysis, passengers' perceptions of indoor environmental quality and comfort levels were determined from questionnaires. As an objective analysis, a numerical simulation was conducted using a discrete phase model to determine the diffusion and distribution of pollutants, including particulate matter with a diameter bus system. To solve these problems, three scenarios (schemes A, B, C) were designed to alter the ventilation parameters. According to the results of an improved simulation of these scenarios, reducing or adding air outputs would shorten the time taken to reach steady-state conditions and weaken the airflow or lower the temperature in the cabin. The airflow pathway was closely related to the layout of the air conditioning. Scheme B lowered the temperature by 0.4 K and reduced the airflow by 0.01 m/s, while scheme C reduced the volume concentration of PM 10 to 150 μg/m 3 . Changing the air supply angle could further improve the airflow and reduce the concentration of PM 10 . With regard to the perception of airflow and thermal comfort, the scheme with an airflow provided by a 60° nozzle was considered better, and the concentration of PM 10 was reduced to 130 μg/m 3 .

  12. Proposal for energy saving in air conditioning equipment; Propuesta para ahorro energetico en acondicionadores de aire

    Energy Technology Data Exchange (ETDEWEB)

    Solis Recendez, Daniel H [Division de Ingenieria Electrica, Universidad Nacional Autonoma de Mexico (Mexico)

    2008-10-15

    In the last decades, the air conditioning systems have become a crucial part in the search from comfort in extreme climates. Nevertheless, they have also become one of the greatest energy consumers. In this article it is proposed that the final conditions that the air conditioning equipment looks for not to be fixed, but variable in respect to a certain comfort zone. This zone is a variation of the used one in the bio-climatic chart of Olgyay that considers the rapidity whereupon the reached conditions tend to leave the comfort zone. It is analyzed how to choose the point on the zone that costs less energy in arriving to it. [Spanish] En las ultimas decadas, los sistemas de aire acondicionado se han vuelto una parte crucial en la busqueda de confort en climas extremosos. Sin embargo, tambien se han vuelto de los mayores consumidores de energia. En este articulo se propone que las condiciones finales que busquen lograr los acondicionadores no sean fijas, si no variables respecto a una determinada zona de confort. Dicha zona es una variacion de la utilizada en la carta bioclimatica de Olgyay, que considera la rapidez con que las condiciones alcanzadas tienden a abandonar la zona de confort. Se discute como elegir el punto sobre la zona que cueste menos energia en llegara el.

  13. Modeling of a hybrid ejector air conditioning system using artificial neural networks

    International Nuclear Information System (INIS)

    Wang, Hao; Cai, Wenjian; Wang, Youyi

    2016-01-01

    Highlights: • We apply three different types of neural network for a hybrid system components modeling. • We vary the activation function, network structure and training testing ratio to find the most optimal combination. • We apply data-mining algorithm for parameter selection. • We choose the neural network with best performance to model the whole system. • The result shows a good agreement between predicted and measured value within ±10% error. - Abstract: In order to predict the performance of a hybrid ejector air conditioning system, neural network is chosen to model the proposed platform. First, three different types of neural networks, namely multi-layer perceptron (MLP), radial basis function (RBF) and support vector machine (SVM) are applied to model the component of a hybrid ejector air conditioning system. The MLP outperforms other two networks in this research and therefore it is selected to model the whole system. Since there is no formal criterion about input selection so far, a date-mining algorithm, boosting tree, is employed before system modeling to search the most significant parameters among the 19 input variables and the five most influential parameters of them are selected to be the final input of the system model. And the result shows a good agreement between predicted and measured value which indicates the excellent ability of MLP.

  14. Benefits of Leapfrogging to Superefficiency and Low Global Warming Potential Refrigerants in Room Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Nihar K. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Wei, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Letschert, Virginie [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phadke, Amol A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-10-01

    Hydrofluorocarbons (HFCs) emitted from uses such as refrigerants and thermal insulating foam, are now the fastest growing greenhouse gases (GHGs), with global warming potentials (GWP) thousands of times higher than carbon dioxide (CO2). Because of the short lifetime of these molecules in the atmosphere,1 mitigating the amount of these short-lived climate pollutants (SLCPs) provides a faster path to climate change mitigation than control of CO2 alone. This has led to proposals from Africa, Europe, India, Island States, and North America to amend the Montreal Protocol on Substances that Deplete the Ozone Layer (Montreal Protocol) to phase-down high-GWP HFCs. Simultaneously, energy efficiency market transformation programs such as standards, labeling and incentive programs are endeavoring to improve the energy efficiency for refrigeration and air conditioning equipment to provide life cycle cost, energy, GHG, and peak load savings. In this paper we provide an estimate of the magnitude of such GHG and peak electric load savings potential, for room air conditioning, if the refrigerant transition and energy efficiency improvement policies are implemented either separately or in parallel.

  15. Fault diagnosis of air conditioning systems based on qualitative bond graph

    International Nuclear Information System (INIS)

    Ghiaus, C.

    1999-01-01

    The bond graph method represents a unified approach for modeling engineering systems. The main idea is that power transfer bonds the components of a system. The bond graph model is the same for both quantitative representation, in which parameters have numerical values, and qualitative approach, in which they are classified qualitatively. To infer the cause of faults using a qualitative method, a system of qualitative equations must be solved. However, the characteristics of qualitative operators require specific methods for solving systems of equations having qualitative variables. This paper proposes both a method for recursively solving the qualitative system of equations derived from bond graph, and a bond graph model of a direct-expansion, mechanical vapor-compression air conditioning system. Results from diagnosing two faults in a real air conditioning system are presented and discussed. Occasionally, more than one fault candidate is inferred for the same set of qualitative values derived from measurements. In these cases, additional information is required to localize the fault. Fault diagnosis is initiated by a fault detection mechanism which also classifies the quantitative measurements into qualitative values; the fault detection is not presented here. (author)

  16. Performance Analysis of Window Type Air Conditioning with Addition of Heat Exchanger Equipment

    Directory of Open Access Journals (Sweden)

    I Ketut Gede Wirawan

    2012-11-01

    Full Text Available One manner to be used to increase refregration effect is by flowing hot refrigerant out from condensor, it is then touched with the refrigerant out from evaporator on a heat exchanger of counterflow type. Experiment was done by taking samples of pressure at suction (p1 and discharge (p2 of compressor and box temperature (Tr1, Tr2, Tr3, Tr4. By knowing of pressure at suction (p1, the enthalpy into compressor is known. By assuming the process is isentropic (compressor, isobar (condenser and evaporator, and isenthalpy (expansion valve, the enthalpy into condensor, expansion valve and evaporator were known. In 60 minutes, compression work of air conditioning with heat exchanger is 31,588 kJ/kg, and without heat exchanger is 33,796 kJ/kg. Effect refrigeration average with modification is 155,55 kJ/kg and without modification was 153,40 kJ/kg so that coefficient of performance with modification more than without modification. Air conditioning with modification had initial refrigration rate was 67,193 J/s and 0,043 J/s at the end minute, meanwhile, refrigeration without modification had cooling rate at start 66,538 J/s and 0,935 J/s at the end.

  17. New Solutions for Solar Absorption Refrigeration Systems and Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2017-04-01

    Full Text Available The mission of the research includes the following objectives: the development of new circuit decisions for the alternate refrigerating systems based on the use of an open absorptive circuit and on the use of solar energy for absorbent solution regeneration; an assessment of the energy and environmental characteristics of the developed systems; obtaining of the experimental data for an assessment of the principal capabilities of the proposed new solar air-conditioning systems. The multistage principle of the creation of drying and cooling contours with the increase of concentration of absorbent on cooler steps is offered. The absorber with internal steam cooling allowing the improvement of the scheme of the alternate refrigerating system is developed. On the basis of the obtained experimental data the analysis of the main opportunities of the developed solar air-conditioning systems was made which showed that the created systems: provide the required comfortable parameters indoors without engaging of traditional refrigerating technics; allow to use only one - or two-stage option of refrigerating system for application in the conditions of Ukraine and of Europe. In comparison with traditional vapor-compression systems, the developed solar systems provide the considerable decrease in energy consumption (to 30%, their use leads to the decrease of exhaustion of natural resources, influences less global climate change.

  18. Comparison of desiccant air conditioning systems with different indirect evaporative air coolers

    International Nuclear Information System (INIS)

    Pandelidis, Demis; Anisimov, Sergey; Worek, William M.; Drąg, Paweł

    2016-01-01

    Highlights: • A numerical study of desiccant air conditioning systems is presented. • The ε-NTU model is used for the analysis. • Different arrangements of the desiccant systems were compared. • The systems were compared under different operating conditions. - Abstract: This paper presents a numerical analysis of three desiccant air-conditioning systems equipped with different indirect evaporative air coolers: (1) the cross-flow Maisotsenko cycle heat and mass exchanger (HMX), (2) the regenerative counter-flow Maisotsenko cycle heat and mass exchanger and (3) the standard cross-flow evaporative air cooler. To analyze the desiccant wheel and the indirect evaporative air coolers, the modified ε-NTU-model was used. The simulations were performed under assumption that the desiccant wheel is regenerated with air heated to relatively low temperature values (50–60 °C), which can be produced with solar panels in typical moderate climatic conditions. It was established that the main advantage of the presented solutions is that they can provide comfort conditions even with less effective dehumidification. The different systems were compared under variable selected operational factors (i.e. inlet air temperature, humidity and regeneration air temperature). The analysis allowed establishing the advantages and disadvantages of presented solutions and allowed estimating their application potential.

  19. FY1999 Meeting of The Society of Heating, Air-Conditioning and Sanitary Engineering of Japan. Air conditioning systems for various facilities; 1999 nendo gakujutsu koenkai gaiyo. Kakushu shisetsu kucho system

    Energy Technology Data Exchange (ETDEWEB)

    Iwamoto, K. [Takenaka Corp., Osaka (Japan)

    1999-12-05

    B-49 reported the outline of an artificial weather room composed of one inner room and two outer rooms, and its temperature change and temperature profiles during air conditioning. The room is scheduled to be used for evaluation of air conditioning systems, thermal performance evaluation of building materials and study on ventilation efficiency. B-50 reported the seasonal measurement results on thermal environment, and cooling and heating use patterns of living rooms and common spaces of 4 welfare homes for aged persons, and showed that room temperature difference in winter should be considered. Measurement data on facilities with floor heating were required. B-51 reported the experiment and numerical analysis results on thermal environment, draft sensation, condensation and radiation effect of patient bedrooms by using a full-scale 4-bed room model with a specific outlet developed for patient bedroom air conditioning. B-52 reported the outline of an air conditioning system for vegetable factories, and its performance evaluation result during cooling. The effect of blackout curtains and local air conditioning was reported. B-53 reported the comparison study result on air conditioning for animal breeding rooms by full-scale model experiment and numerical analysis. The line outlet + hanging wall + rack back exhaust system was most favorable from the viewpoint of temperature profile and prevention of pollutants from diffusion. (translated by NEDO)

  20. The Histoty of Ventilation and Air Conditioning is CERN Up to Date with the latest Technological Developments?

    CERN Document Server

    Kühnl-Kinel, J

    2000-01-01

    The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its influence on everyday life. Some examples of previous air-conditioning plants are described and different approaches to the way of calculation of ventilation systems discussed. It gives an overview of the Heating, Ventilation and Air Conditioning (HVAC) installations at CERN and points out their particularities. It also compares them with the latest technological developments in the field as well as showing the new trends that are being applied at CERN.

  1. Air conditioning by sorption-supported refrigerating machinery. Low-cost alternative; Klimatisierung mit sorptionsgestuetzten Kaelteanlagen. Kostenguenstige Alternative

    Energy Technology Data Exchange (ETDEWEB)

    Schellhorn, Martin [SHK-Presseagentur Kommunikations-Management Schelhorn GmbH (Germany)

    2009-01-15

    Every year, about 3.5 GWh of electricity are consumed in Germany for air conditioning of office buildings. Now, Menerga GmbH of Muelheim/Ruhr introduced a sorption-assisted air conditioning system which is to enhance the conomic efficiency of air conditioners based on district heating. The results of the research led to several pilot projects that proved the applicability of the systems in daily practice. (orig.)

  2. Decoupling dehumidification and cooling for energy saving and desirable space air conditions in hot and humid Hong Kong

    International Nuclear Information System (INIS)

    Lee, W.L.; Chen Hua; Leung, Y.C.; Zhang, Y.

    2012-01-01

    Highlights: ► The combined use of dedicated ventilation and dry cooling (DCDV) system was investigated. ► Investigations were based actual equipment performance data and realistic building and system characteristics. ► DCDV system could save 54% of the annual energy use for air-conditioning. ► DCDV system could better achieve the desired space air conditions. ► DCDV system could decouple dehumidification and cooling. - Abstract: The combined use of dedicated outdoor air ventilation (DV) and dry cooling (DC) air-conditioning system to decouple sensible and latent cooling for desirable space air conditions, better indoor air quality, and energy efficiency is proposed for hot and humid climates like Hong Kong. In this study, the performance and energy saving potential of DCDV system in comparison to conventional systems (constant air volume (CAV) system with and without reheat) for air conditioning of a typical office building in Hong Kong are evaluated. Through hour-by-hour simulations, using actual equipment performance data and realistic building and system characteristics, the cooling load profile, resultant indoor air conditions, condensation at the DC coil, and energy consumptions are calculated and analyzed. The results indicate that with the use of DCDV system, the desirable indoor conditions could be achieved and the annual energy use could be reduced by 54% over CAV system with reheat. The condensate-free characteristic at the DC coil to reduce risk of catching disease could also be realized.

  3. Analysis of flow maldistribution in fin-and-tube evaporators for residential air-conditioning systems

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl

    validated and showed that a slip flow model need be used. A test case 8.8 kW residential air-conditioning system with R410A as refrigerant is chosen as baseline for the numerical investigations, and the simulations are performed at standard rating conditions from ANSI/AHRI Standard 210/240 (2008...... cases are standard tube circuitry designs and these results are thus tube circuitry specific. In addition, a novel method of compensating flow maldistribution is analyzed, i.e. the discontinuous liquid injection principle. The method is based upon the recently developed EcoFlowTM valve by Danfoss A...... profile across the A-coil evaporator was predicted by means of CFD simulation software STAR-CD 3.26 (2005) and applied in the numerical model. The main reason for the better face split evaporator performance at uniform conditions or when compensating, is that the superheated "weak" zones with low UA...

  4. Optimization and Performance Study of Select Heating Ventilation and Air Conditioning Technologies for Commercial Buildings

    Science.gov (United States)

    Kamal, Rajeev

    Buildings contribute a significant part to the electricity demand profile and peak demand for the electrical utilities. The addition of renewable energy generation adds additional variability and uncertainty to the power system. Demand side management in the buildings can help improve the demand profile for the utilities by shifting some of the demand from peak to off-peak times. Heating, ventilation and air-conditioning contribute around 45% to the overall demand of a building. This research studies two strategies for reducing the peak as well as shifting some demand from peak to off-peak periods in commercial buildings: 1. Use of gas heat pumps in place of electric heat pumps, and 2. Shifting demand for air conditioning from peak to off-peak by thermal energy storage in chilled water and ice. The first part of this study evaluates the field performance of gas engine-driven heat pumps (GEHP) tested in a commercial building in Florida. Four GEHP units of 8 Tons of Refrigeration (TR) capacity each providing air-conditioning to seven thermal zones in a commercial building, were instrumented for measuring their performance. The operation of these GEHPs was recorded for ten months, analyzed and compared with prior results reported in the literature. The instantaneous COPunit of these systems varied from 0.1 to 1.4 during typical summer week operation. The COP was low because the gas engines for the heat pumps were being used for loads that were much lower than design capacity which resulted in much lower efficiencies than expected. The performance of equivalent electric heat pump was simulated from a building energy model developed to mimic the measured building loads. An economic comparison of GEHPs and conventional electrical heat pumps was done based on the measured and simulated results. The average performance of the GEHP units was estimated to lie between those of EER-9.2 and EER-11.8 systems. The performance of GEHP systems suffers due to lower efficiency at

  5. Vortex shedding induced energy harvesting from piezoelectric materials in heating, ventilation and air conditioning flows

    International Nuclear Information System (INIS)

    Weinstein, L A; Cacan, M R; So, P M; Wright, P K

    2012-01-01

    A cantilevered piezoelectric beam is excited in a heating, ventilation and air conditioning (HVAC) flow. This excitation is amplified by the interactions between (a) an aerodynamic fin attached at the end of the piezoelectric cantilever and (b) the vortex shedding downstream from a bluff body placed in the air flow ahead of the fin/cantilever assembly. The positioning of small weights along the fin enables tuning of the energy harvester to operate at resonance for flow velocities from 2 to 5 m s −1 , which are characteristic of HVAC ducts. In a 15 cm diameter air duct, power generation of 200 μW for a flow speed of 2.5 m s −1 and power generation of 3 mW for a flow speed of 5 m s −1 was achieved. These power outputs are sufficient to power a wireless sensor node for HVAC monitoring systems or other sensors for smart building technology. (paper)

  6. METHODS FOR REPRESENTING THE TUBING OF VENTILATION/AIR-CONDITIONING PLANTS

    Directory of Open Access Journals (Sweden)

    MÂRZA Carmen

    2015-06-01

    Full Text Available The representation of ventilation or air conditioning plants, particularly of the tubing, specifically require the ability to "see into space" or, more completely expressed, to make the connection between the plane and the space. For this reason, in the study program of the "Building Services Engineering" these types of installations have a privileged role. Thus, the students learn the representation in 2D of these plants during the study of the discipline Technical Drawing and further they learn the representation methods in 2D and 3D using the AutoCAD software – respectively the subroutine CAD VENT. Finally, the undergraduates study - as an alternative - the axonometric representation of these plants, by using the Allplan software. The last one offers also elements of the tubes (pipes dimensioning. The paper presents teaching methods using concrete examples.

  7. Comparative study of air conditioning systems with vapor compression chillers using the concept of green buildings

    Directory of Open Access Journals (Sweden)

    Gutenberg da Silva Pereira

    2015-10-01

    Full Text Available This paper sets out to compare two different cooling systems that use vapor compression chillers for air conditioning environments. It was proposed to compare different operations in isolated and combined action operations. These operations are evaluated in the concepts of green buildings. A mathematical model was developed based on the principles of mass and energy conservation and complemented by various functions so as to determine the thermophysical properties and efficiencies of the compressors. The equations of the model were solved by the EES (Engineering Equation Solver program. The model evaluates the influence of the main HVAC operating parameters of the chilled water system when operating under three different configurations. The results showed that the system with a differentiated compression presents a COP equal to that of the system with screw chillers in the range  0-300 RTs, and a COP hat is on average 9% higher in the range 400-800 RTs.

  8. Influence of Urban Microclimate on Air-Conditioning Energy Needs and Indoor Thermal Comfort in Houses

    Directory of Open Access Journals (Sweden)

    Feng-Chi Liao

    2015-01-01

    Full Text Available A long-term climate measurement was implemented in the third largest city of Taiwan, for the check of accuracy of morphing approach on generating the hourly data of urban local climate. Based on observed and morphed meteorological data, building energy simulation software EnergyPlus was used to simulate the cooling energy consumption of an air-conditioned typical flat and the thermal comfort level of a naturally ventilated typical flat. The simulated results were used to quantitatively discuss the effect of urban microclimate on the energy consumption as well as thermal comfort of residential buildings. The findings of this study can serve as a reference for city planning and energy management divisions to study urban sustainability strategies in the future.

  9. Compensation of flow maldistribution in fin-and-tube evaporators for residential air-conditioning

    DEFF Research Database (Denmark)

    Kærn, Martin Ryhl; Brix, Wiebke; Elmegaard, Brian

    2011-01-01

    Compensation of flow maldistribution in multi-channel fin-and-tube evaporators for residential air-conditioning is investigated by numerical modeling. The considered sources of maldistribution are distribution of the liquid and vapor phases in the distributor and non-uniform airflow distribution....... Fin-and-tube heat exchangers usually have a predefined circuitry, however, the evaporator model is simplified to have straight tubes, in order to perform a generic investigation. The compensation of flow maldistribution is performed by control of the superheat in the individual channels. Furthermore......, the effect of combinations of individual maldistribution sources is investigated for different evaporator sizes and outdoor temperatures. It is shown that a decrease in cooling capacity and coefficient of performance by flow maldistribution can be compensated by the control of individual channel superheat...

  10. Exergy characteristics of a ceiling-type residential air conditioning system operating under different climatic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ozbek, Arif [Dept. of Mechanical Engineering, Ceyhan Engineering Faculty, Cukurova University, Adana (Turkmenistan)

    2016-11-15

    In this study an energy and exergy analysis of a Ceiling-type residential air conditioning (CTRAC) system operating under different climatic conditions have been investigated for provinces within the different geographic regions of Turkey. Primarily, the hourly cooling load capacities of a sample building (Q{sub evap}) during the months of April, May, June, July, August and September were determined. The hourly total heat gain of the sample building was determined using the Hourly analysis program (HAP). The Coefficient of performance (COP), exergy efficiency (η) and exergy destruction (Ex{sub dest}) values for the whole system and for each component were obtained. The results showed that lower atmospheric temperature (T{sub atm}) influenced the performance of the system and each of its components.

  11. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures, the...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems.......Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures......, the cycles using carbon dioxide as refrigerant will have to operate in the transcritical area. In a transcritical carbon dioxide system, there is an optimal heat rejection pressure that gives a maximum COP. In this paper, it is shown that the value of this optimal heat rejection pressure mainly depends...

  12. THERMAL COMFORT STUDY OF AN AIR-CONDITIONED DESIGN STUDIO IN TROPICAL SURABAYA

    Directory of Open Access Journals (Sweden)

    Agus Dwi Hariyanto

    2005-01-01

    Full Text Available This paper evaluates the current thermal comfort condition in an air-conditioned design studio using objective measurement and subjective assessment. Objective measurement is mainly to quantify the air temperature, MRT, relative humidity, and air velocity. Subjective assessment is conducted using a questionnaire to determine the occupants thermal comfort sensations and investigate their perception of the thermal comfort level. A design studio in an academic institution in Surabaya was chosen for the study. Results show that more than 80% of the occupants accepted the indoor thermal conditions even though both the environmental and comfort indices exceeded the limit of the standard (ASHRAE Standard 55 and ISO 7730. In addition, non-uniformity of spatial temperature was present in this studio. Some practical recommendations were made to improve the thermal comfort in the design studio.

  13. Evaluation Framework and Analyses for Thermal Energy Storage Integrated with Packaged Air Conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Kung, F.; Deru, M.; Bonnema, E.

    2013-10-01

    Few third-party guidance documents or tools are available for evaluating thermal energy storage (TES) integrated with packaged air conditioning (AC), as this type of TES is relatively new compared to TES integrated with chillers or hot water systems. To address this gap, researchers at the National Renewable Energy Laboratory conducted a project to improve the ability of potential technology adopters to evaluate TES technologies. Major project outcomes included: development of an evaluation framework to describe key metrics, methodologies, and issues to consider when assessing the performance of TES systems integrated with packaged AC; application of multiple concepts from the evaluation framework to analyze performance data from four demonstration sites; and production of a new simulation capability that enables modeling of TES integrated with packaged AC in EnergyPlus. This report includes the evaluation framework and analysis results from the project.

  14. Voltage controller design for air conditioning; Diseno de controlador de voltaje para aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Andrade, R; Lopez Villalobos, J.J; Valderrama Chairez, J; Ramirez, R.L. [Instituto Tecnologico de Nuevo Leon, Guadalupe, Nuevo Leon (Mexico)]. E-mails: roxana_garciaandrade@yahoo.com; xe2n@yahoo.com.mx; jose.valderrama@ieee.org

    2013-03-15

    This paper discusses the design of a voltage controller for an air conditioning system in order to generate additional power in activation or startup of the system, for which as a first stage is presented the modeling power generation of electric current through alternative means, such as solar energy. The results of this study will be the basis for development of the physical prototype of this system controller. [Spanish] El presente trabajo trata sobre el diseno de un controlador de voltaje para un sistema de aire acondicionado con el fin de generar energia adicional en la activacion o arranque de dicho sistema, para lo cual como primer fase se presenta el modelado de la generacion de corriente electrica mediante medios alternos, como lo es la energia solar. Los resultados de este trabajo seran la base para desarrollo del prototipo fisico de este sistema controlador.

  15. HVAC (heating, ventilation, air conditioning) literature in Japan: A critical review

    Energy Technology Data Exchange (ETDEWEB)

    Hane, G.J.

    1988-02-01

    Japanese businessmen in the heating, ventilation, air conditioning, and refrigeration (HVACandR) industry consider the monitoring of technical and market developments in the United States to be a normal part of their business. In contrast, efforts by US businessmen to monitor Japanese HVAC and R developments are poorly developed. To begin to redress this imbalance, this report establishes the groundwork for a more effective system for use in monitoring Japanese HVAC and R literature. Discussions of a review of the principal HVAC and R publications in Japan and descriptions of the type of information contained in each of those publications are included in this report. Since the Japanese HVAC and R literature is abundant, this report also provides practical suggestions on how a researcher or research manager can limit the monitoring effort to the publications and type of information that would most likely be of greatest value.

  16. Thermal design of a modern, air-conditioned, single-floor, solar-powered desert house

    KAUST Repository

    Serag-Eldin, M. A.

    2011-12-01

    The paper presents a thermal analysis of a single-floor, solar-powered desert house. The house is air-conditioned and provides all modern comforts and facilities. Electrical power, which drives the entire energy system, is generated by roof-mounted photovoltaic modules. The modules are fixed on special cradles which fold at night to expose the roof to the night sky, thereby enhancing night-time cooling, which is substantial in the desert environment. A detailed dynamic heat transfer analysis is conducted for the building envelope, coupled with a solar radiation model. Application to a typical Middle-Eastern desert site reveals that indeed such a design is feasible with present-day technology; and should be even more attractive with future advances in technology. © 2011 Copyright Taylor and Francis Group, LLC.

  17. Successive dehumidification/regeneration cycles by LiCL desiccant for air-conditioning system

    Science.gov (United States)

    Bouzenada, S.; Kaabi, A. N.; Fraikin, L.; Léonard, A.

    2017-02-01

    Dehumidification by desiccant is a new application in air-conditioning system. This technology is providing important advantages in solving many problems and brings environmentally friendly products. Desiccants are natural substances that are capable of showing a strong attraction for water vapour and can be regenerated. They can undergo continuous cycles. An experimental study is carried out on successive phases of absorption/regeneration, during 7 days by using LiCl desiccant and on separate phases. The effect of climatic parameters on moisture removal rate and salt concentration on absorption and regeneration processes is discussed. The results show that higher air humidity gives a higher mass transfer potential then a higher moisture rate absorbed dm/dt. The decrease of salt concentration affects the dm/dt and vapour pressure. Also, these results show that at regeneration temperature, the amount of water desorbed is nearly equal to the amount of water absorbed (equilibrium condition) for a complete cycle. The amount of 7.87 mg of water vapor can be absorbed in the first hour of absorption cycle for 12.6144 mg at 50% of relative humidity, and 7.004mg for 36.31 mg of initial mass subjected at 70% RH. The LiCl desiccant is able to return to almost its original concentration 31.39% during regeneration phase. Also, LiCl desiccant is able to be regenerated at low temperature 40°C which can be easily obtained by using solar energy. Then, the LiCl is a good hygroscopic material for using in liquid desiccant air-conditioning system.

  18. Research on frequency conversion technology of metro station's ventilation and air-conditioning system

    International Nuclear Information System (INIS)

    Yang, Zhao; Yu, Zhuangzhuang; Yu, Longqing; Ma, Feng

    2014-01-01

    Ventilation and air-conditioning system (VAC) is the most energy-saving potential system in the metro. This paper analyzes the passenger traffic, air-conditioning load and station air supply on the initial, recent and long-term phase of metro station. And it proposes that it is necessary to run chilled-water pumps, air handing unit (AHU) fans and back/exhaust fans with frequency conversion technology (FCT). Then it uses the thermodynamic method to analyze the impact of running chilled-water pumps with FCT. The results show that running chilled-water pumps with FCT can reduce the total power consumption of system, although increases chiller energy consumption. Then the temperature and velocity fields of the platform and station hall are simulated by CFD software according to the variable air volume. And the results show that under the condition of running the VAC system with FCT, temperature and velocity fields distribution are both in the comfortable range. Finally, by taking a typical summer day for example, this paper analyzes the energy savings of chilled-water pumps, AHU fans and back/exhaust fans on the initial, recent and long-term phase, and the calculation results show that the respective total energy savings are 1103.4 kWh, 1064.3 kWh and 926.2 kWh, and the respective total power saving ratio is 73.4%, 71.2% and 59.5%. - Highlights: •Use the FCT to reduce energy consumption of metro VAC is necessary and possible. •Analyze the influence of running the chilled-water pumps with FCT. •Results show that variable air volume of station public area is feasible. •Calculations indicate that energy-saving effect of using the FCT is considerable

  19. Performance evaluation of solar-assisted air-conditioning system with chilled water storage (CIESOL building)

    International Nuclear Information System (INIS)

    Rosiek, Sabina; Batlles Garrido, Francisco Javier

    2012-01-01

    Highlights: ► We present a new solar-assisted air-conditioning system’s operation sequence. ► This mode considers the chilled water tanks action with variable-speed pump. ► It permits to save about 20% and 30% of energy and water consumption, respectively. ► It allows storing the excess cooling capacity of the absorption chiller. ► It prevents the sudden start/stop (on/off cycles) of the absorption chiller. - Abstract: This study presents the performance of solar-assisted air-conditioning system with two chilled water storage tanks installed in the Solar Energy Research Center building. The system consists mainly of solar collectors’ array, a hot-water driven absorption chiller, a cooling tower, two hot storage tanks, an auxiliary heater as well as two chilled storage tanks. The chilled water storage tank circuit was further investigated in order to find the optimum solar system’s operation sequence while providing the best energy performance. Firstly, we carried out a study about the dynamics of building’s cooling load and the necessity of the integration of chilled water storage tanks to solar system. Subsequently, the new system’s operation mode was proposed to reduce the energy consumption. The results demonstrate that we can save about 20% of the total energy consumption and about 30% of water consumption applying the new operation sequence, which takes into account the chilled water tanks action. Moreover, it was demonstrated that the integration of chilled water storage tanks allows to reduce the sudden absorption chiller on/off cycles, thereby improving the efficiency of the solar-assisted system.

  20. Dust deposition in ventilation and air-conditioning duct bend flows

    International Nuclear Information System (INIS)

    Gao Ran; Li Angui

    2012-01-01

    Highlights: ► We study particle deposition on the four inner surface of the duct bend. ► We analyse the effect of five ways of placements of the bend on particle deposition. ► Gravity and inertia force enhance the deposition as relaxation time rises. ► Deposition coefficient increases as air velocity or particle diameter increases. - Abstract: Particles carried by airflows in ventilation and air-conditioning systems have adverse effects on the quality of air in buildings and hence the health of building occupants. Gaining insight on particle deposition onto ventilation and air-conditioning duct bends is important for controlling pollutant dispersion. Based on the Reynolds stress transport model (RSM), this paper has taken into account the effects of drag, lift force, gravity, inertia force, turbulent diffusions, particle size and air velocity on the dimensionless deposition velocity of particles in smooth duct bends using fully developed velocity profiles. At two different air velocities of 3.0 m/s and 7.0 m/s, the aforementioned effects were predicted by Reynolds-averaged Navier–Stokes (RANS)-Lagrangian simulation on square shaped duct bends with different ways of placement. Preliminary results suggest that gravity and inertia force enhance the dimensionless deposition as dimensionless relaxation time rises. Change tendency of the dimensionless particle deposition velocity on different surfaces of bend duct agrees well with previous studies. As air velocity and particle diameter increase, a significant increase of particle deposition coefficient in the duct bends is observed. Particle deposition to intrados can be intensified by the combined action of gravity and inertia force in different direction.

  1. Microbial communities related to volatile organic compound emission in automobile air conditioning units.

    Science.gov (United States)

    Diekmann, Nina; Burghartz, Melanie; Remus, Lars; Kaufholz, Anna-Lena; Nawrath, Thorben; Rohde, Manfred; Schulz, Stefan; Roselius, Louisa; Schaper, Jörg; Mamber, Oliver; Jahn, Dieter; Jahn, Martina

    2013-10-01

    During operation of mobile air conditioning (MAC) systems in automobiles, malodours can occur. We studied the microbial communities found on contaminated heat exchanger fins of 45 evaporators from car MAC systems which were operated in seven different regions of the world and identified corresponding volatile organic compounds. Collected biofilms were examined by scanning electron microscopy and fluorescent in situ hybridization. The detected bacteria were loosely attached to the metal surface. Further analyses of the bacteria using PCR-based single-strand conformation polymorphism and sequencing of isolated 16S rRNA gene fragments identified highly divergent microbial communities with multiple members of the Alphaproteobacteriales, Methylobacteria were the prevalent bacteria. In addition, Sphingomonadales, Burkholderiales, Bacillales, Alcanivorax spp. and Stenotrophomonas spp. were found among many others depending on the location the evaporators were operated. Interestingly, typical pathogenic bacteria related to air conditioning systems including Legionella spp. were not found. In order to determine the nature of the chemical compounds produced by the bacteria, the volatile organic compounds were examined by closed loop stripping analysis and identified by combined gas chromatography/mass spectrometry. Sulphur compounds, i.e. di-, tri- and multiple sulphides, acetylthiazole, aromatic compounds and diverse substituted pyrazines were detected. Mathematical clustering of the determined microbial community structures against their origin identified a European/American/Arabic cluster versus two mainly tropical Asian clusters. Interestingly, clustering of the determined volatiles against the origin of the corresponding MAC revealed a highly similar pattern. A close relationship of microbial community structure and resulting malodours to the climate and air quality at the location of MAC operation was concluded.

  2. Designing the lithium bromide air conditioning absorption system for a bus

    International Nuclear Information System (INIS)

    Yusoff Ali; Kamaruzzaman Sopian; Hariadi

    2006-01-01

    A system of air-conditioning using Lithium Bromide absorption system is used as an alternative refrigerant that will not pollute the atmosphere. Lithium Bromide is a chemical salt soluble in water. There is a big difference between vapour compression system and LiBr 2 absorption system. The absorption air conditioning system is made of a generator, a condenser, an evaporator and an absorber with necessary pumps and piping. When LiBr 2 solution is heated under low pressure, water will evaporate first, while LiBr 2 will remain in the solution and will become more concentrated. The water is the refrigerant in this system. The generator, where the water is vapourised, is heated using an electric heater or solar energy. The LiBr 2 weak solution under low pressure in the generator is heated and the water evaporate into vapour. The vapour produced is then cooled in the condenser and then expanded into the evaporator. The refrigerant (water) in evaporator change phase from liquid to vapour by absorbing heat from cooling water, which flow in the coil in the evaporator. The chilled water obtained is then pumped into the fan coil, which will be used in conditioning the passenger area of the bus. The water vapour from the evaporator is absorbed into LiBr 2 solution in the absorber, forming a weak solution of LiBr 2 . the weak solution from the absorber is then pumped back to the generator to regenerate. The absorption system does not use compressor, but requires pumps that need lower input power compared to that of a compressor. The system is considered as a new application for the bus. This will have great potential and will be environmentally friendly. The model in this study will be used for calculation of the cooling load for the bus

  3. Emissions of halocarbons from mobile vehicle air conditioning system in Hong Kong

    International Nuclear Information System (INIS)

    Yan, H.H.; Guo, H.; Ou, J.M.

    2014-01-01

    Highlights: • Halocarbon emissions from MVACS were characterized using bottom up approach. • Quantification of emission inventory was revealed using AUV Tools. • Potential emission reduction was estimated under 3 possible mitigation scenarios. • The results are useful for the policy makers to formulate and implement future phase-out schedule. - Abstract: During the implementation of Montreal Protocol, emission inventories of halocarbons in different sectors at regional scale are fundamental to the formulation of relevant management strategy and inspection of the implementation efficiency. This study investigated the emission profile of halocarbons used in the mobile vehicle air conditioning system, the leading sector of refrigeration industry in terms of the refrigerant bank, market and emission, in the Hong Kong Special Administrative Region, using a bottom-up approach developed by 2006 IPCC Good Practice Guidance. The results showed that emissions of CFC-12 peaked at 53 tons ODP (Ozone Depletion Potential) in 1992 and then gradually diminished, whereas HFC-134a presented an increasing emission trend since 1990s and the emissions of HFC-134a reached 65,000 tons CO 2 -equivelant (CO 2 -eq) by the end of 2011. Uncertainty analysis revealed relatively high levels of uncertainties for special-purpose vehicles and government vehicles. Moreover, greenhouse gas (GHG) abatements under different scenarios indicated that potential emission reduction of HFC-134a ranged from 4.1 to 8.4 × 10 5 tons CO 2 -eq. The findings in this study advance our knowledge of halocarbon emissions from mobile vehicle air conditioning system in Hong Kong

  4. A study of alternative refrigerants for the refrigeration and air conditioning sector in Mauritius

    Science.gov (United States)

    Dreepaul, R. K.

    2017-11-01

    The most frequently used refrigerants in the refrigeration and air conditioning (RAC) sector in Mauritius are currently hydrochlorofluorocarbons (HCFC) and hydrofluorocarbons (HFC). However, because of their strong influence on global warming and the impact of HCFCs on the ozone layer, refrigerants such as ammonia (NH3), carbon dioxide (CO2) and Hydrocarbons (HC), having minimal impact on the environment, are being considered. So far, HCs have only been safely used in domestic refrigeration. Ammonia has been used mainly for industrial refrigeration whereas CO2 is still under study. In this paper, a comparative study of the various feasible alternatives is presented in a survey that was undertaken with major stake holders in the field. The retrofitting possibility of existing equipment was assessed and safety issues associated with each refrigerant were analysed. The major setback of hydrocarbons as a widely accepted refrigerant is its flammability which was considered as a major safety hazard by the majority of respondents in the survey and the main advantages are the improved equipment coefficient of performance (COP) and better TEWI factor. This resulted in a 12 % drop in energy consumption. Despite the excellent thermodynamic properties of ammonia, its use has mainly been confined to industrial refrigeration due to its toxicity. In Mauritius, the performance of ammonia in air conditioning is being evaluated on a pilot basis. The major setback of carbon dioxide as a refrigerant is the high operating pressure which is considered a safety hazard. The high initial investment cost and the lack of qualified maintenance technician is also an issue. The use of CO2 is mainly being considered in the commercial refrigeration sector.

  5. Open absorption system for cooling and air conditioning using membrane contactors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R.; Dorer, V. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2008-07-01

    Air conditioning systems based upon the open absorption principle, essentially an absorption device operating at atmospheric pressure, have been proposed and investigated at many instances in the past eighty years. Their potential for improving energy efficiency is clearly recognized in the earliest research reports. By the mid 1950ies, solar thermal energy was being applied to drive open absorption-based air conditioning systems. For several reasons, however, the open absorption technology was not mature enough to take place in the mainstream. In the past two decades, vigorous efforts have been undertaken to reverse this situation, but success continued to elude, despite the fact that the main problems, such as corrosion, aerosols in the supply air, etc., have been identified. This report details the work and the main results from the MemProDEC Project. In this project innovative solutions were proposed, and successfully investigated, for the corrosion problem and the improvement of efficiency of the absorption process, in particular a new method to cool a very compact absorber. The practically uniform flow distribution for all three streams in the absorber (air, water and desiccant) warrants the contact of the air to be dehumidified with the desiccant over the whole surface of exchange (across a porous membrane). This, together with the cooling with water in counter flow to the air, are the key factors for the excellent effectiveness of the absorber. As the results show, the dehydration effectiveness of the prototype absorber is up to 150 % higher than that previously obtained by others. The solutions developed for compactness and modularity represent an important step in the way to flexible manufacturing, i.e. using a single element size to assemble autonomous air handling units of various nominal capacities. And although the manufacturing methods of the individual elements require improvement, namely by avoiding adhesive bonding, the choice of materials and the

  6. Energy performance and optimal control of air-conditioned buildings with envelopes enhanced by phase change materials

    International Nuclear Information System (INIS)

    Zhu Na; Wang Shengwei; Ma Zhenjun; Sun Yongjun

    2011-01-01

    Highlights: → Impact of PCM on the energy consumption and peak load demand as well as electricity cost of air-conditioned buildings. → Impact of load shifting control on energy consumption, peak load and electricity cost of air-conditioned PCM buildings. → Impact of demand limiting control on energy consumption, peak load and electricity cost of air-conditioned PCM buildings. → Energy/cost effects of different control strategies and use of PCM in energy-plus-demand-based pricing policy. → Energy/cost effects of different control strategies and use of PCM in time-based pricing policy. - Abstract: Studies are conducted to investigate the impacts of shape-stabilized phase change material (SSPCM) and different control strategies on the energy consumption and peak load demand as well as electricity cost of building air-conditioning systems at typical summer conditions in two climates (subtropical and dry continental climates). An office building using a typical variable air volume (VAV) air-conditioning system was selected and simulated as the reference building in this study. Its envelopes were enhanced by integrating the SSPCM layers into its walls while the air-conditioning system and other configurations of the building remained unchanged. The building system was tested under two typical weather conditions and two typical electricity pricing policies (i.e. time-based pricing and energy-plus-demand-based pricing). Test results show that the use of SSPCM in the building could reduce the building electricity cost significantly (over 11% in electricity cost reduction and over 20% in peak load reduction), under two pricing policies by using load shifting control and demand limiting control respectively. This paper presents the test results and the evaluation on the energy performance and the optimal control strategies of air-conditioned commercial buildings with envelopes enhanced by SSPCM.

  7. The application of condensate water as an additional cooling media intermittently in condenser of a split air conditioning

    Science.gov (United States)

    Ardita, I. N.; Subagia, I. W. A.

    2018-01-01

    The condensate water produced by indoor a split air conditioning is usually not utilized and thrown away into the environment. The result of measurement shows that the temperature of condensate water produced by split air conditioning is quite low, that is 19-22 °C at the rate of 16-20 mL / min and it has PH balance. Under such conditions, Air Condensate produced by split air conditioning should still be recovered as an additional cooling medium on the condenser. This research will re-investigate the use of condensate water as an intermittent additional cooling of the condenser to increase the cooling capacity and performance of the air conditioning system. This research is done by experimental method whose implementation includes; designing and manufacturing of experimental equipment, mounting measuring tools, experimental data retrieval, data processing and yield analysis. The experimental results show that the use of condensate water as an intermittent additional cooling medium on split air conditioning condenser can increase the refrigeration effect about 2%, cooling capacity about 4% and 7% of COP system. Experimental results also show a decrease in power consumption in the system compressor about 3%

  8. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    Energy Technology Data Exchange (ETDEWEB)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-12-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion.

  9. Multivariate analysis comparing microbial air content of an air-conditioned building and a naturally ventilated building over one year

    Science.gov (United States)

    Parat, Sylvie; Perdrix, Alain; Fricker-Hidalgo, Hélène; Saude, Isabelle; Grillot, Renee; Baconnier, Pierre

    Heating, ventilation and air-conditioning (HVAC) may be responsible for the production and spread of airborne microorganisms in office buildings. In order to compare airborne microbiological flora in an air-conditioned building with that in a naturally ventilated building, eight sets of measurements were made over a 1-year period. Concurrently with other environmental measurements, air samples were collected in each building, from three offices and from the outdoor air, using the Andersen single-stage sampler. Three different media were used to culture fungi, staphylococci and mesophilic bacteria. Multivariate analysis revealed a group of offices more contaminated than others, and a marked seasonal variation in fungal concentrations. A comparison of mean levels of microorganisms measured in the two buildings showed that the air microbial content was significantly higher and more variable in the naturally ventilated building than in the air-conditioned building. Moreover, in the naturally ventilated building, the interior fungal content was strongly dependent on the outdoor content, while in the air-conditioned building fungal concentrations remained constant despite significant variations measured outside. This was confirmed by a statistical comparison of the correlation coefficients between indoor and outdoor concentrations. No difference was observed regarding gaseous pollutants and temperature, but relative humidity was significantly higher in the air-conditioned building. The effect of HVAC was to prevent the intake of outdoor particles and to dilute the indoor concentrations. These results are consistent with the presence of high-efficiency filters and a steam humidifier in the HVAC system under study.

  10. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    International Nuclear Information System (INIS)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-01-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion

  11. Double-effect reasoning and the conception of human embryos.

    Science.gov (United States)

    Murphy, Timothy F

    2013-08-01

    Some commentators argue that conception signals the onset of human personhood and that moral responsibilities toward zygotic or embryonic persons begin at this point, not the least of which is to protect them from exposure to death. Critics of the conception threshold of personhood ask how it can be morally consistent to object to the embryo loss that occurs in fertility medicine and research but not object to the significant embryo loss that occurs through conception in vivo. Using that apparent inconsistency as a starting point, they argue that if that embryo loss is tolerable as a way of conceiving children, it should be tolerable in fertility medicine and human embryonic research. Double-effect reasoning shows, by contrast, that conception in vivo is justified even if it involves the death of persons because the motives for wanting children are not inherently objectionable, because the embryo loss that occurs in unassisted conception is not the means by which successful conception occurs, and because the effect of having children is proportionate to the loss involved. A similar outcome holds true for in vitro fertilisation in fertility medicine but not for in vitro fertilisation for research involving human embryos.

  12. Double meanings will not save the principle of double effect.

    Science.gov (United States)

    Douglas, Charles D; Kerridge, Ian H; Ankeny, Rachel A

    2014-06-01

    In an article somewhat ironically entitled "Disambiguating Clinical Intentions," Lynn Jansen promotes an idea that should be bewildering to anyone familiar with the literature on the intention/foresight distinction. According to Jansen, "intention" has two commonsense meanings, one of which is equivalent to "foresight." Consequently, questions about intention are "infected" with ambiguity-people cannot tell what they mean and do not know how to answer them. This hypothesis is unsupported by evidence, but Jansen states it as if it were accepted fact. In this reply, we make explicit the multiple misrepresentations she has employed to make her hypothesis seem plausible. We also point out the ways in which it defies common sense. In particular, Jansen applies her thesis only to recent empirical research on the intentions of doctors, totally ignoring the widespread confusion that her assertion would imply in everyday life, in law, and indeed in religious and philosophical writings concerning the intention/foresight distinction and the Principle of Double Effect. © The Author 2014. Published by Oxford University Press, on behalf of the Journal of Medicine and Philosophy Inc. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  13. EFFECT OF AIR CONDITION ON AP-1000 CONTAINMENT COOLING PERFORMANCE IN STATION BLACK OUT ACCIDENT

    Directory of Open Access Journals (Sweden)

    Hendro Tjahjono

    2015-10-01

    Full Text Available ABSTRACT EFFECT OF AIR CONDITION ON AP-1000 CONTAINMENT COOLING PERFORMANCE IN STATION BLACK OUT ACCIDENT. AP1000 reactor is a nuclear power plant generation III+ 1000 MWe which apply passive cooling concept to anticipate accidents triggered by the extinction of the entire supply of electrical power or Station Black Out (SBO. In the AP1000 reactor, decay heat disposal mechanism conducted passively through the PRHR-IRWST and subsequently forwarded to the reactor containment. Containment externally cooled through natural convection in the air gap and through evaporation cooling water poured on the outer surface of the containment wall. The mechanism of evaporation of water into the air outside is strongly influenced by the conditions of humidity and air temperature. The purpose of this study was to determine the extent of the influence of the air condition on cooling capabilities of the AP1000 containment. The method used is to perform simulations using Matlab-based analytical calculation model capable of estimating the power of heat transfered. The simulation results showed a decrease in power up to  5% for relative humidity rose from 10% to 95%, while the variation of air temperature of 10 °C to 40°C, the power will decrease up to 15%. It can be concluded that the effect of air temperature increase is much more significant in lowering the containment cooling ability compared with the increase of humidity. Keywords: containment cooling, AP1000, air condition, SBO   ABSTRAK PENGARUH KONDISI UDARA TERHADAP KINERJA PENDINGINAN SUNGKUP AP-1000 DALAM KECELAKAAN STATION BLACK OUT. Reaktor AP-1000 merupakan PLTN generasi III+ berdaya 1000 MWe yang menerapkan konsep pendinginan pasif untuk mengantisipasi terjadinya kecelakaan yang dipicu oleh padamnya seluruh suplai daya listrik atau dikenal dengan Station Black Out (SBO. Pada reaktor AP-1000, mekanisme pembuangan kalor peluruhan dilakukan secara pasif melalui PRHR yang diteruskan ke IRWST dan

  14. IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Danish participation 2007-2010. Appendix; IEA SHC Task 38 'Solar air-conditioning and refrigeration'. Dansk deltagelse 2007-2010. Bilag

    Energy Technology Data Exchange (ETDEWEB)

    Ellehauge, K. (Ellehauge og Kildemoes, Aarhus (Denmark)); Muenster, E. (PlanEnergi, Skoerping (Denmark)); Reinholdt, L. (Teknologisk Institut, Aarhus (Denmark)); Munds, S. (AC-Sun Aps, Horsens (Denmark))

    2011-03-15

    IEA SHC Task 38 'Solar Air-Conditioning and Refrigeration' ran from October 2006 to December 2010. Denmark was represented in the task from January 2007 to December 2010. The aim of the task was to encourage use of solar powered refrigeration and air conditioning systems in particular at residential, commercial and industrial sectors. Furthermore, the aim was to contribute to new research and development activities on new systems and concepts. The appendix contains the publications prepared by the Danish project group.(LN)

  15. Ant-nest corrosion of copper tubing in air-conditioning units

    Directory of Open Access Journals (Sweden)

    Bastidas, D. M.

    2006-10-01

    Full Text Available Ant-nest corrosion is a specific type of premature failure (2-3 months of copper tubes used in air-conditioning units causing the loss of refrigerant liquid and the consequent environment pollution. It is known that attack requires the simultaneous presence of moisture, oxygen and a corrodent, usually an organic acid, such as formic, acetic, propionic or butyric acid or other volatile organic substances like methanol, ethanol, formaldehyde or acetoaldehyde. Approximately 10% of all premature failures of copper tubes used in the heating, ventilation and air-conditioning (HVAC industry are the result of ant-nest corrosion. This type of corrosion usually occurs in thin-wall copper pipes, especially when copper is de-sulphurised, and is known by several names: formicary corrosion, unusual corrosion, branched pits, pinhole corrosion, etc.

    Corrosión por “nido de hormigas” es un tipo específico de fallo prematuro (2-3 meses que tiene lugar en tubos de cobre utilizados en sistemas de aire acondicionado originando la pérdida de líquido refrigerante y la consecuente contaminación ambiental. Es conocido que este tipo de ataque requiere la presencia simultánea de humedad, oxígeno y un medio agresivo, habitualmente un ácido orgánico, como fórmico, acético  propiónico o butírico u otras sustancias orgánicas volátiles tales como metanol, etanol, formaldehido o acetoaldehido. Aproximadamente el 10% de los fallos prematuros en tubos de cobre utilizados en calefacción, ventilación y en la industria de aire acondicionado son el resultado de corrosión por nido de hormigas. Frecuentemente, este tipo de corrosión tiene lugar en tubos de cobre de pared delgada, especialmente cuando el cobre es del tipo desulfurizado, y se conoce con varios nombres: corrosión por ácido fórmico, corrosión no habitual, picaduras ramificadas, corrosión con forma de alfiler, etc.

  16. A study of energy use for ventilation and air-conditioning systems in Hong Kong

    Science.gov (United States)

    Yu, Chung Hoi Philip

    Most of the local modern buildings are high-rise with enclosed structure. Mechanical ventilation and air conditioning (MVAC) systems are installed for thermal comfort. Various types of MVAC systems found in Hong Kong were critically reviewed with comments on their characteristics in energy efficiency as well as application. The major design considerations were also discussed. Besides MVAC, other energy-consuming components in commercial buildings were also identified, such as lighting, lifts and escalators, office equipment, information technology facilities, etc. A practical approach has been adopted throughout this study in order that the end results will have pragmatic value to the heating, ventilating and air-conditioning (HVAC) industry in Hong Kong. Indoor Air Quality (IAQ) has become a major issue in commercial buildings worldwide including Hong Kong. Ventilation rate is no doubt a critical element in the design of HVAC systems, which can be realized more obviously in railway train compartments where the carbon dioxide level will be built up quickly when the compartments are crowded during rush hours. A study was carried out based on a simplified model using a train compartment that is equipped with an MVAC system. Overall Thermal Transfer Value (OTTV) is a single-value parameter for controlling building energy use and is relatively simple to implement legislatively. The local government has taken a first step in reacting to the worldwide concern of energy conservation and environmental protection since 1995. Different methods of OTTV calculation were studied and the computation results were compared. It gives a clear picture of the advantages and limitations for each method to the building designers. However, due to the limitations of using OTTV as the only parameter for building energy control, some new approaches to a total control of building energy use were discussed and they might be considered for future revision of the building energy codes in Hong

  17. Indoor Air quality related to occupancy at an air-conditioned public building

    Directory of Open Access Journals (Sweden)

    Karina Ponsoni

    2010-02-01

    Full Text Available To characterize the influence of occupancy on the indoor air quality, a public office building with air-conditioning system was selected for this study. The indoor parameters included total bacteria count, total fungal count, temperature, relative humidity, and carbon dioxide concentration. The number of occupants, which varied throughout the day, was recorded in each sample. The samples were taken before the beginning of the working day and during 3 h, at an interval of 30 min between each sampling, and continued for five working days during a week. Correlation analysis demonstrated that occupancy rates were positively correlated with airborne bacteria, CO2, and temperature. No significant association between the number of occupants and fungus was observed. The results of this study provided information on the variability of indoor air parameters during the time-varying occupancy over the course of the day in at air-conditioned buildings where occupancy was quite dynamic.Com o objetivo de caracterizar a influência da ocupação na qualidade do ar interior, um edifício público com sistema de ar condicionado foi selecionado. As variáveis ambientais consideradas incluíram contagem total de bactérias e fungos, temperatura, umidade relativa e concentração de dióxido de carbono. O número de ocupantes, que variou durante todo o dia, foi estimado em cada amostragem. As amostras foram coletadas antes do início do expediente de trabalho e durante 3 horas, em intervalos de 30 minutos, por 5 dias úteis consecutivos. A análise de correlação demonstrou que a taxa de ocupação foi correlacionada positivamente com a concentração de bactérias, dióxido de carbono e temperatura. Nenhuma associação significativa foi observada entre o número de ocupantes e concentração de fungos. Os resultados deste estudo fornecem informações quanto à variabilidade nos parâmetros do ar interior no decorrer do dia em um edifício onde a ocupação

  18. Health risk air-conditioning system; Insufficient maintenance increases the risk of illness. Gesundheitsrisiko Klimaanlagen; Unzureichende Wartung erhoeht das Erkrankungsrisiko

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1994-01-01

    In Germany every fifth employee who works in air-conditioned rooms complains about headache, an increased proneness to colds and influenza infections as well as allergic reactions. These troubles are often caused by the insufficient maintenance of air-conditioning systems. At present only 15% of the estimated annual demand for maintenance of space hvac-systems is actually carried out. Problematic in case of air-conditioning systems are the so-called air washers used for air humidification which can become an ideal cultur medium for microorganisms. A second problematic area are the often very dirty filters. But health risks can be avoided with regular expert maintenance alone. As first step an analysis of the causes of faults is proposed. (BWI)

  19. Comparative performance analysis of experimental frigorific air conditioning system using R-134a and HFO-1234yf as a refrigerant

    Directory of Open Access Journals (Sweden)

    Direk Mehmet

    2016-01-01

    Full Text Available In this study, to evaluate the comparative experimental performances, a frigorific air conditioning system using HFO1234yf and R134a was developed and refrigerated air was introduced into a conditioned room. The experiment was carried out at different condenser inlet temperatures and using the refrigerants at different charges, 1250 g, 1500g, and 1750g. Experiments were conducted for a standard frigorific air conditioning system using the HFO1234yf and R-134a system. Air flow was introduced to the conditioned room for 60 minutes for each performance test. The results revealed that the temperature gradient in time was comparable for both refrigerants. The results of this investigation propose utilising HFO1234yf as a replacement for the currently favoured R134a in a frigorific air conditioning system.

  20. A review on the recent development of solar absorption and vapour compression based hybrid air conditioning with low temperature storage

    Directory of Open Access Journals (Sweden)

    Noor D. N.

    2016-01-01

    Full Text Available Conventional air conditioners or vapour compression systems are main contributors to energy consumption in modern buildings. There are common environmental issues emanating from vapour compression system such as greenhouse gas emission and heat wastage. These problems can be reduced by adaptation of solar energy components to vapour compression system. However, intermittence input of daily solar radiation was the main issue of solar energy system. This paper presents the recent studies on hybrid air conditioning system. In addition, the basic vapour compression system and components involved in the solar air conditioning system are discussed. Introduction of low temperature storage can be an interactive solution and improved economically which portray different modes of operating strategies. Yet, very few studies have examined on optimal operating strategies of the hybrid system. Finally, the findings of this review will help suggest optimization of solar absorption and vapour compression based hybrid air conditioning system for future work while considering both economic and environmental factors.

  1. Thermo economic life cycle energy recovery system optimization for central air-conditioning system using evolutionary technique

    International Nuclear Information System (INIS)

    Khan, L.A.; Khalil, M.S.; Mahfouz, F.

    2012-01-01

    Energy efficient systems are the most desirable systems. Due to huge rise in energy prices and lack of availability of energy, the effective use of energy has become the need of time. Energy recovery both in heating systems as well as in air-conditioning systems saves a lot of energy. In this paper energy recovery system has been designed and optimized for central air-conditioning systems for various ranges. Cost function includes capital cost along with pumping and exergy destruction cost. This shows that installation of energy recovery system with a central air-conditioning has a significant amount of saved energy and payback period is within a year. PFHE (Plate Fin Heat Exchanger) is designed and optimized using evolutionary optimization. In order to verify the capabilities of the proposed method, a case study is also presented showing that significant amount of energy is recovered at a reasonable payback period. Sensitivity analysis is also done with the energy prices. (author)

  2. Determination of the ejector dimensions of a bus air-conditioning system using analytical and numerical methods

    International Nuclear Information System (INIS)

    Ünal, Şaban

    2015-01-01

    Comfortable journey with commercial buses is an essential goal of transportation companies. An air-conditioning system can play an important role for this comfortable journey but it can put extra load on the engine and extra cost in the fuel consumption. The purpose of this work is to increase the performance of air-conditioning system of the buses by reducing the load on the engine and fuel consumption. Using a two-phase ejector as an expansion valve can increase the coefficient of performance (COP) of the air-conditioning system. An improvement in the COP can reduce the empty vehicle weight and fuel consumption of buses. Two-phase ejector dimensions can be determined using the empirical methods available in the literature. In this paper, the two-phase ejector dimensions of air conditioning system for a bus are calculated using the analytical and numerical methods. First of all, the thermodynamic analysis of the vapor-compression refrigeration cycle with a two-phase ejector is performed, and then the ejector dimensions are subsequently determined. The cooling loads of the midibus and bus with R134a as a refrigerant are assumed to be 14 kW and 32 kW, respectively. The total length of the two-phase ejector for the midibuses and buses due to these cooling loads, are computed to be 480.8 mm and 793.1 mm, respectively. Also, an experimental setup is installed on a midibus air conditioner to turn it into the ejector air conditioning system to validate theoretical results with the experimental study. - Highlights: • Determination of two-phase ejector dimensions of a bus air-conditioning system. • Thermodynamic analysis of the two-phase ejector cooling system. • Experimental study on a midibus air conditioner using two-phase ejector.

  3. Business is not just war. Transferring the principle of double effect ...

    African Journals Online (AJOL)

    In this article the validity of transferring the Principle of Double Effect from the just war tradition to the domain of business is critically reviewed. If a case can be built for sufficient analogies between war and business, the principle of double effect can legitimately be transferred from war to business. If, on the other hand it can ...

  4. Energy Savings and Economics of Advanced Control Strategies for Packaged Air-Conditioning Units with Gas Heat

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Katipamula, Srinivas; Huang, Yunzhi; Brambley, Michael R.

    2011-12-31

    Pacific Northwest National Laboratory (PNNL) with funding from the U.S. Department of Energy's Building Technologies Program (BTP) evaluated a number of control strategies that can be implemented in a controller, to improve the operational efficiency of the packaged air conditioning units. The two primary objectives of this research project are: (1) determine the magnitude of energy savings achievable by retrofitting existing packaged air conditioning units with advanced control strategies not ordinarily used for packaged units and (2) estimating what the installed cost of a replacement control with the desired features should be in various regions of the U.S. This document reports results of the study.

  5. Design of automatic control system of temperature in radon chamber controlled by air-condition based on 485 BUS

    International Nuclear Information System (INIS)

    Man Zaigang; Wang Renbo; Zhang Xiongjie; Zhu Zhifu; Tang Bin

    2009-01-01

    Radon chamber can be widely used in various radon measurement instruments for calibration, testing and radon environment experiment. According to requisition, radon chamber temperature should be controllable from +10 degree C to +30 degree C, and the temperature control accuracy of the system reaches ±1 degree C. The design of automatic temperature controlled by air-condition based on 485 BUS is introduced. The software and hardware techniques of how the ATMEL89S52 micro controller controls air-condition and communicates with computer are elaborated on. (authors)

  6. Power, heat and chilliness with natural gas - fuel cells and air conditioning

    International Nuclear Information System (INIS)

    Krein, Stephan; Ruehling, Karin

    1999-01-01

    A new and innovative concept of the supply with power, heat and chilliness will realise in the new Malteser-hospital in Kamenz. The core of this demonstration-plant are a fuel cell, an adsorption cooling machine as well as multi-solar collectors. The fuel cell has two goals. Primary it produces power for the own demand. The selected dimension guarantees, that the power will consume nearly continuously. Secondly the produced heat of the fuel cell (and the solar-heat too) will use for heating and preparation of warm water. In the summer, the heat will use for the adsorption cooling machine, which produces chilliness for air-conditioning. The advantage in the face of common concepts of combining power and heat is the high-efficiently use of the fuel-energy for electric power generation on the one hand. Fuel cells work with high efficiency also at partial load. On the other hand, with the adsorption cooling machine the produced heat of fuel cell and multi-solar collectors can be used also in the summer. First experiences with this concept show, that an optimised co-operation of the components with an adaptive, self-learning control system based on the weather forecast as well as various storages for heat and chilliness can be achieve. A continuously operation, high fuel utilisation and reduced environmental pollution can be demonstrated. (author)

  7. Air conditioning cool contribution to global warming?; Airconditioning koele bijdrage aan global warming?

    Energy Technology Data Exchange (ETDEWEB)

    Oudshoff, B.

    2010-06-15

    Similar to the Netherlands, the percentage of buildings with air-conditioning is growing steadily in the United Stated (US). This makes it an interesting area for energy saving. New technological developments offer opportunities to drastically reduce energy use for cooling. The best option is obviously to no longer deploy mechanical cooling but this is not a realistic option for warmer areas. This article addresses new technologies and several newly established companies in California and Colorado that target this market. [Dutch] In de Verenigde Staten (VS) groeit het percentage van gebouwen met airconditioning, net als in Nederland, de laatste jaren gestaag door. Hiermee is het een interessant gebied voor mogelijke energiebesparing. Nieuwe technologische ontwikkelingen bieden kansen om het energiegebruik voor koeling drastisch te verminderen. De beste oplossing is uiteraard geen mechanische koeling meer toe te passen maar voor warmere gebieden is die optie niet reeel. In dit artikel wordt ingegaan op nieuwe technologie en enkele startende bedrijven in Californie en Colorado die zich op deze markt richten.

  8. Energy-Saving Benefits of Adiabatic Humidification in the Air Conditioning Systems of Semiconductor Cleanrooms

    Directory of Open Access Journals (Sweden)

    Min-Suk Jo

    2017-11-01

    Full Text Available This paper aimed to evaluate the applicability of adiabatic humidification in the heating, ventilation, and air conditioning (HVAC systems of semiconductor cleanrooms. Accurate temperature and humidity control are essential in semiconductor cleanrooms and high energy consumption steam humidification is commonly used. Therefore, we propose an adiabatic humidification system employing a pressurized water atomizer to reduce the energy consumption. The annual energy consumption of three different HVAC systems were analyzed to evaluate the applicability of adiabatic humidification. The studied cases were as follows: (1 CASE 1: a make-up air unit (MAU with a steam humidifier, a dry cooling coil (DCC, and a fan filter unit (FFU; (2 CASE 2: a MAU with the pressurized water atomizer, a DCC, and a FFU; and (3 CASE 3: a MAU, a DCC, and a FFU, and the pressurized water atomizer installed in the return duct. The energy saving potential of adiabatic humidification over steam humidification has been proved, with savings of 8% and 23% in CASE 2 and CASE 3 compared to CASE 1, respectively. Furthermore, the pressurized water atomizer installed in the return duct exhibits greater energy saving effect than when installed in the MAU.

  9. A Soft Curtailment of Wide-Area Central Air Conditioning Load

    Directory of Open Access Journals (Sweden)

    Leehter Yao

    2018-02-01

    Full Text Available An innovative solution to provide a demand response for power system is proposed in this paper by considering the feasibility of two-way direct load control (TWDLC of central air conditioning chiller system for wide-area in real-time manner. Particularly, the proposed TWDLC scheme is designed to tackle the load shedding ratio optimization problem for all under-controlled customers, aiming to satisfy the target load curtailment defined in each scheduling step. Another notable contribution of this work is the utilization of constraint loosening concept on actual load, curtailed to overcome the uncertainties of load reduction during TWDLC. Given the presence of fuzzy constraints, the proposed load shedding ratio optimization problem can be tackled using fuzzy linear programming. A delicate strategy is then formulated to transform the proposed fuzzy linear programming problem into a regular linear programming problem. A selection scheme used to obtain the feasible candidates set for load shedding at every sampling interval of TWDLC is also designed along with the fuzzy linear programming.

  10. [Volatile organic compounds concentrations and sources inside new air-conditioned bus].

    Science.gov (United States)

    You, Ke-Wei; Ge, Yun-Shan; Qian, Yi-Xin; Liu, Wei; Feng, Bo; Zhang, Yan-Ni; Ning, Zhan-Wu; Hu, Bin; Zhao, Shou-Tang

    2008-05-01

    The distributing profile and concentration level inside new air-conditioned buses with 53 seats have been determined using the method of thermal desorption-capillary GC/MS under vehicle static conditions. Compounds were identified from their mass spectral data by using US National Institute of Standards and Technology (NIST02). The total numbers of identified components were 33 inside buses, including alkenes (15,45.4%), aromatic compounds (9,27.3%), alcohols (4,12.1%), ketones (3,9.1%) and esters (2,6.1%), especially in the range of C6-C10. The top 5 compounds measured inside buses were decane (8.01 mg/m3), 3-methylhexane (7.10 mg/m3), heptane (5.10 mg/m3), isoheptane (4.20 mg/m3) and 1-Methyl-3-ethylbenzene (3.56 mg/m3), and total volatile organic compounds (TVOC) > 52.5 mg/m3. The main sources of in-vehicle hydrocarbons and aromatic compounds comes from cabin components and interior trim materials (e.g., sealants, carpets, adhesives, paints, leather, plastics, PU foam and PE foam) that may retain certain VOCs during manufacturing, and/or emit these compounds over an extended period of time from off-gassing, aging-related breakdown products, heating/cooling and so on.

  11. Risk Assessment of Heating, Ventilating, and Air-Conditioning Strategies in Low-Load Homes

    Energy Technology Data Exchange (ETDEWEB)

    Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States)

    2016-02-17

    "Modern, energy efficient homes conforming to the Zero Energy Ready Home standard face the challenge of meeting high customer expectations for comfort. Traditional heating, ventilation, and air conditioning (HVAC) sizing and control strategies may be insufficient to adequately condition each zone due to unique load patterns in each room caused by a number of factors. These factors include solar heat gains, occupant-related gains, and gains associated with appliances and electronics. Because of shrinking shell loads, these intermittent factors are having an increasingly significant impact on the thermal load in each zone. Consequently, occupant comfort can be compromised. To evaluate the impact of climate and house geometry, as well as HVAC system and control strategies on comfort conditions, IBACOS analyzed the results of 99 TRNSYS multiple-zone simulations. The results of this analysis indicate that for simple-geometry and single-story plans, a single zone and thermostat can adequately condition the entire house. Demanding house geometry and houses with multiple stories require the consideration of multiple thermostats and multiple zones.

  12. A Closed-Loop Control Strategy for Air Conditioning Loads to Participate in Demand Response

    Directory of Open Access Journals (Sweden)

    Xiaoqing Hu

    2015-08-01

    Full Text Available Thermostatically controlled loads (TCLs, such as air conditioners (ACs, are important demand response resources—they have a certain heat storage capacity. A change in the operating status of an air conditioner in a small range will not noticeably affect the users’ comfort level. Load control of TCLs is considered to be equivalent to a power plant of the same capacity in effect, and it can significantly reduce the system pressure to peak load shift. The thermodynamic model of air conditioning can be used to study the aggregate power of a number of ACs that respond to the step signal of a temperature set point. This paper analyzes the influence of the parameters of each AC in the group to the indoor temperature and the total load, and derives a simplified control model based on the two order linear time invariant transfer function. Then, the stability of the model and designs its Proportional-Integral-Differential (PID controller based on the particle swarm optimization (PSO algorithm is also studied. The case study presented in this paper simulates both scenarios of constant ambient temperature and changing ambient temperature to verify the proposed transfer function model and control strategy can closely track the reference peak load shifting curves. The study also demonstrates minimal changes in the indoor temperature and the users’ comfort level.

  13. Experimental studies on improvement of coefficient of performance of window air conditioning unit

    Directory of Open Access Journals (Sweden)

    Tharves Mohideen Sheik Ismail

    2017-01-01

    Full Text Available This paper presents the performance analysis of a window air conditioner unit incorporated with wick less loop heat pipes (WLHP. The WLHP are located on the evaporator side of the air conditioning unit. The working medium for the WLHP is R134a refrigerant gas, an alternate refrigerant. The supply and return humidity of room air, the heat removal rat, and the coefficient of performance of the unit are analyzed for various ambient and room temperatures before and after incorporation of WLHP. The performance curves are drawn by comparing the power consumption and humidity collection rates for various room and ambient temperatures. The results show that coefficient of performance of the unit is improved by 18% to 20% after incorporation of WLHP due to pre-cooling of return air by WLHP, which reduces the thermal load on compressor. Similarly, the energy consumption is reduced by 20% to 25% due to higher thermostat setting and the humidity collection is improved by 35% due to pre-cooling effect of WLHP. The results are tabulated and conclusion drawn is presented based on the performance.

  14. Parametric analysis of a combined dew point evaporative-vapour compression based air conditioning system

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Chauhan

    2016-09-01

    Full Text Available A dew point evaporative-vapour compression based combined air conditioning system for providing good human comfort conditions at a low cost has been proposed in this paper. The proposed system has been parametrically analysed for a wide range of ambient temperatures and specific humidity under some reasonable assumptions. The proposed system has also been compared from the conventional vapour compression air conditioner on the basis of cooling load on the cooling coil working on 100% fresh air assumption. The saving of cooling load on the coil was found to be maximum with a value of 60.93% at 46 °C and 6 g/kg specific humidity, while it was negative for very high humidity of ambient air, which indicates that proposed system is applicable for dry and moderate humid conditions but not for very humid conditions. The system is working well with an average net monthly power saving of 192.31 kW h for hot and dry conditions and 124.38 kW h for hot and moderate humid conditions. Therefore it could be a better alternative for dry and moderate humid climate with a payback period of 7.2 years.

  15. Experimental investigation of hydrocarbon mixtures to replace HFC-134a in an automotive air conditioning system

    International Nuclear Information System (INIS)

    Wongwises, Somchai; Kamboon, Amnouy; Orachon, Banchob

    2006-01-01

    This paper presents an experimental study on the application of hydrocarbon mixtures to replace HFC-134a in automotive air conditioners. The hydrocarbons investigated are propane (R290), butane (R600) and isobutane (R600a). The measured data are obtained from an automotive air conditioning test facility utilizing HFC-134a as the refrigerant. The air conditioner, with a capacity of 3.5 kW driven by a Diesel engine, is charged and tested with four different ratios of hydrocarbon mixtures. The experiments are conducted at the same surrounding conditions. The temperature and pressure of the refrigerant at every major position in the refrigerant loop, the temperature, flow rate and humidity of air, torque and engine speed are recorded and analyzed. The parameters investigated are the refrigeration capacity, the compressor power and the coefficient of performance (COP). The results show that propane/butane/isobutane: 50%/40%/10% is the most appropriate alternative refrigerant to replace HFC-134a, having the best performance of all the hydrocarbon mixtures investigated

  16. Instability of automotive air conditioning system with a variable displacement compressor. Part 1. Experimental investigation

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Changqing; Dou, Chunpeng; Yang, Xinjiang; Li, Xianting [Department of Building Science, School of Architecture, Tsinghua University, Beijing 100084 (People' s Republic of China)

    2005-11-01

    A test system is built first in order to investigate the instability of the automotive air conditioning (AAC) system with a variable displacement compressor (VDC), and hunting phenomena caused by the large external disturbance in the AAC system with a VDC and a thermal expansion valve, and in the AAC system with a VDC and a fixed-area throttling device are investigated experimentally in part 1 of this paper. The experimental results indicate that there also exist the hunting phenomena in the AAC system with a fixed-area throttling device. The system stability is found to be dependent on the direction of the external disturbance, and the system is apt to cause hunting when the condensing pressure decreases excessively since it may cause two-phase state at the throttling device inlet and make a large disturbance to the system. The piston stroke length will oscillate only when the oscillation amplitudes of forces acting on the wobble plate are great enough, otherwise the piston stroke length will be kept invariable, and then the system instability rule is also suitable for the AAC system with a fixed displacement compressor. From the experimental results, it is concluded that the two-phase flow at the throttling device inlet or at the evaporator outlet is the necessary condition but not sufficient condition for system hunting. Finally, a new concept, conservative stable region, is proposed based on the experimental results and theoretical analysis. (author)

  17. Exergy analysis of an HCFC-22 and HC-290 operated air conditioning system

    Science.gov (United States)

    Ahamed, Jamal Uddin; Raiyan, Muhammad Ferdous; Salam, Md. Abdus

    2017-06-01

    The present work discusses exergy analysis of a split type air conditioning system. Typical domestic air conditioners use R22 which is a Hydrochloroflurocarbon (HCFC) refrigerant. Due to its destructive impact on ozone layer, search for alternative refrigerants is going on. Propane (R290), a pure Hydrocarbon (HC) is considered here along with R22 to make different blends of refrigerants. Two HCFC-22 and HC-290 mixtures (P1 and P2) were prepared with mass ratios of (R22:R290) 90:10 and 85:15 respectively. Using experimentally obtained data of pressure and temperature, other properties in the vapor compression system were found by REFPROP 7 software. Finally, exergy analysis was done for all the refrigerants (R22, P1 and P2). Exergy destruction in each component was also inspected. Total exergy loss of mixture P2 was found to be greater than the exergy loss of R22 and P1. Variations in exergy losses were observed with respect to evaporator temperature at two different ambient conditions. In all cases, exergy destruction in condenser was found to be the highest among the four main components of the cycle.

  18. Incorporating fan control into air-conditioning systems to improve energy efficiency and transient response

    International Nuclear Information System (INIS)

    Yeh, T.-J.; Chen, Yun-Jih; Hwang, Wei-Yang; Lin, Jin-Long

    2009-01-01

    Modern air-conditioners frequently incorporate variable-speed compressors and variable-opening expansion valves with feedback control to improve performance and power efficiency. Because making the fan speeds adjustable adds flexibility to the control design and thus can lead to further improvements in performance and efficiency, this paper proposes two control algorithms, respectively, incorporating the outdoor fan and the indoor fan as the additional control inputs for air-conditioning systems. Both of the control algorithms are designed based on a low-order, linear model obtained from system identification. The first algorithm, which modulates the outdoor fan speed, can reduce the steady state power consumption if the temperature difference between the condenser and the outdoor environment is controlled properly. The second algorithm, which adds one more degree of freedom to control by modulating the indoor fan speed, can improve the transient response because actuator saturations become less likely to occur. The two control algorithms are implemented on a split-type residential air-conditioner and their respective performance is validated experimentally.

  19. Radon mitigation in schools utilising heating, ventilating and air conditioning systems

    International Nuclear Information System (INIS)

    Fisher, G.; Ligman, B.; Brennan, T.; Shaughnessy, R.; Turk, B.H.; Snead, B.

    1994-01-01

    As part of a continuing radon in schools technology development effort, EPA's School Evaluation Team has performed radon mitigation in schools by the method of ventilation/pressurisation control technology. Ventilation rates were increased, at a minimum, to meet the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) standard, Ventilation for Acceptable Indoor Air Quality (ASHRAE 62-1989). This paper presents the results and the preliminary evaluations which led to the team's decision to implement this technology. Factors considered include energy penalties, comfort, indoor air quality (IAQ), building shell tightness, and equipment costs. Cost benefit of heat recovery ventilation was also considered. Earlier results of the SEP team's efforts have indicated a severe ventilation problem within the schools of the United States. Two case studies are presented where HVAC technology was implemented for controlling radon concentrations. One involved the installation of a heat recovery ventilator to depressurise a crawl space and provide ventilation to the classrooms which previously had no mechanical ventilation. The other involved the restoration of a variable air volume system in a two-storey building. The HVAC system's controls were restored and modified to provide a constant building pressure differential to control the entry of radon. Pre-mitigation and post-mitigation indoor air pollutant measurements were taken, including radon, carbon dioxide (CO 2 ), particulates, and bio-aerosols. Long-term monitoring of radon, CO 2 , building pressure differentials, and indoor/outdoor temperature and relative humidity is presented. (author)

  20. Influence of indoor air conditions on radon concentration in a detached house.

    Science.gov (United States)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-02-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50-60%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. The impact of climate change on air conditioning requirements in Andalusia at a detailed scale

    Science.gov (United States)

    Limones-Rodríguez, Natalia; Marzo-Artigas, Javier; Pita-López, María Fernanda; Díaz-Cuevas, María Pilar

    2017-11-01

    This work calculates the current heating and cooling degree days and also examines heating and cooling degree days in relation to three subdivisions of the twenty-first century. On the basis of these data, we were able to calculate the heating and cooling degree months and degree years. After examining both sets of data, we studied the total needs of air conditioning—also referred to in the current paper as climatization needs——for Andalusia as a whole. The results indicate an increase in air conditioning needs, and we also noted that the areas adversely affected by this increase were more numerous than those which benefited, at the end of the century. It should be noted that climate change will also necessitate the gradual replacement of heating with cooling, which will require profound changes in the energy, land planning, and housing policies of the region. The true magnitude of the challenge becomes clear when the climatization degree days are related to the population which they affect; the majority of the population is located in areas where the climatization needs will increase over the course of the century. Undoubtedly, this issue is a major protagonist in the climate change adaptation process in Andalusia.

  2. Mode switching control of dual-evaporator air-conditioning systems

    International Nuclear Information System (INIS)

    Lin, J.-L.; Yeh, T.-J.

    2009-01-01

    Modern air-conditioners incorporate variable-speed compressors and variable-opening expansion valves as the actuators for improving cooling performance and energy efficiency. These actuators have to be properly feedback-controlled; otherwise the systems may exhibit even poorer performance than the conventional machines which use fixed-speed compressors and mechanical expansion valves. Particularly for an air-conditioner with multiple evaporators, there are occasions that the machine is operated in a mode that only selected evaporator(s) is(are) turned on, and switching(s) between modes occurs(occur) during the control process. In this case, one needs to have more carefully designed control and switching strategies to ensure the system performance. In this paper, a framework for mode switching control of the dual-evaporator air-conditioning (DEAC) system is proposed. The framework is basically an integration of a controller and a dynamic compensator. The controller, which possesses the flow-distribution capability and assumes both evaporators are on throughout the control process, is intended to provide nominal performance. While mode switching is achieved by varying the reference settings in the controller, the dynamic compensator is used to improve the transient responses immediately after the switching. Experiments indicate that the proposed framework can achieve satisfactory indoor temperature regulation and provide bumpless switching between different modes of operation.

  3. Experimental evaluation of automotive air-conditioning using HFC-134a and HC-134a

    Science.gov (United States)

    Nasution, Henry; Zainudin, Muhammad Amir; Aziz, Azhar Abdul; Latiff, Zulkarnain Abdul; Perang, Mohd Rozi Mohd; Rahman, Abd Halim Abdul

    2012-06-01

    An experimental study to evaluate the energy consumption of an automotive air conditioning is presented. In this study, these refrigerants will be tested using the experimental rig which simulated the actual cars as a cabin complete with a cooling system component of the actual car that is as the blower, evaporator, condenser, radiators, electric motor, which acts as a vehicle engine, and then the electric motor will operate the compressor using a belt and pulley system, as well as to the alternator will recharge the battery. The compressor working with the fluids HFC-134a and HC-134a and has been tested varying the speed in the range 1000, 1500, 2000 and 2500 rpm. The measurements taken during the one hour experimental periods at 2-minutes interval times for temperature setpoint of 20°C with internal heat loads 0, 500, 700 and 1000 W. The final results of this study show an overall better energy consumption of the HFC-134a compared with the HC-134a.

  4. Deinococcus multiflagellatus sp. nov., isolated from a car air-conditioning system.

    Science.gov (United States)

    Kim, Dong-Uk; Lee, Hyosun; Lee, Suyeon; Park, Sooyeon; Yoon, Jung-Hoon; Zhao, Lei; Kim, Min-Kyu; Ahn, Jae-Hyung; Ka, Jong-Ok

    2018-04-01

    A gamma radiation-resistant and pink-to-red pigmented bacterial strain, designated ID1504 T , was isolated from a car air-conditioning system sampled in Korea. The cells were observed to be Gram-stain negative, aerobic, motile with peritrichous flagella and short rod-shaped. Phylogenetically, the strain groups with the members of the genus Deinococcus and exhibits high 16S rRNA gene sequence similarities with Deinococcus arenae SA1 T (94.0%), Deinococcus actinosclerus BM2 T (93.9%) and Deinococcus soli N5 T (93.5%). The predominant fatty acids were identified as C 17:0 , C 16:0 , summed feature 3 (C 16:1 ω7c and/or C 16:1 ω6c) and iso-C 17:0 . The major respiratory quinone was identified as MK-8. The polar lipids were found to be comprised of unidentified phospholipids, unidentified glycolipids, an unidentified aminophospholipid and an unidentified lipid. The DNA G+C content of the strain was determined to be 68.3 mol%. On the basis of the phenotypic, genotypic and chemotaxonomic characteristics, strain ID1504 T should be classified in a novel species in the genus Deinococcus, for which the name Deinococcus multiflagellatus sp. nov. (= KACC 19287 T  = NBRC 112888 T ) is proposed.

  5. New Automotive Air Conditioning System Simulation Tool Developed in MATLAB/Simulink

    Energy Technology Data Exchange (ETDEWEB)

    Kiss, T.; Chaney, L.; Meyer, J.

    2013-07-01

    Further improvements in vehicle fuel efficiency require accurate evaluation of the vehicle's transient total power requirement. When operated, the air conditioning (A/C) system is the largest auxiliary load on a vehicle; therefore, accurate evaluation of the load it places on the vehicle's engine and/or energy storage system is especially important. Vehicle simulation software, such as 'Autonomie,' has been used by OEMs to evaluate vehicles' energy performance. A transient A/C simulation tool incorporated into vehicle simulation models would also provide a tool for developing more efficient A/C systems through a thorough consideration of the transient A/C system performance. The dynamic system simulation software Matlab/Simulink was used to develop new and more efficient vehicle energy system controls. The various modeling methods used for the new simulation tool are described in detail. Comparison with measured data is provided to demonstrate the validity of the model.

  6. Energy-Efficient Supermarket Heating, Ventilation, and Air Conditioning in Humid Climates in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Clark, J. [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2015-03-01

    Supermarkets are energy-intensive buildings that consume the greatest amount of electricity per square foot of building of any building type in the United States and represent 5% of total U.S. commercial building primary energy use (EIA 2005). Refrigeration and heating, ventilation, and air-conditioning (HVAC) systems are responsible for a large proportion of supermarkets’ total energy use. These two systems sometimes work together and sometimes compete, but the performance of one system always affects the performance of the other. To better understand these challenges and opportunities, the Commercial Buildings team at the National Renewable Energy Laboratory investigated several of the most promising strategies for providing energy-efficient HVAC for supermarkets and quantified the resulting energy use and costs using detailed simulations. This research effort was conducted on behalf of the U.S. Department of Energy (DOE) Commercial Building Partnerships (CBP) (Baechler et al. 2012; Parrish et al. 2013; Antonopoulos et al. 2014; Hirsch et al. 2014). The goal of CBP was to reduce energy use in the commercial building sector by creating, testing, and validating design concepts on the pathway to net zero energy commercial buildings. Several CBP partners owned or operated buildings containing supermarkets and were interested in optimizing the energy efficiency of supermarket HVAC systems in hot-humid climates. These partners included Walmart, Target, Whole Foods Market, SUPERVALU, and the Defense Commissary Agency.

  7. Remote Supervision and Control of Air Conditioning Systems in Different Modes

    Science.gov (United States)

    Rafeeq, Mohammed; Afzal, Asif; Rajendra, Sree

    2018-01-01

    In the era of automation, most of the application of engineering and science are interrelated with system for optimal operation. To get the efficient result of an operation and desired response, interconnected systems should be controlled by directing, regulating and commanding. Here, air conditioning (AC) system is considered for experimentation, to supervise and control its functioning in both, automated and manual mode. This paper reports the work intended to design and develop an automated and manual AC system working in remote and local mode, to increase the level of comfort, easy operation, reducing human intervention and faults occurring in the system. The Programmable Logical Controller (PLC) and Supervisory Control and Data Acquisition (SCADA) system were used for remote supervision and monitoring of AC systems using series ninety protocol and remote terminal unit modbus protocol as communication module to operate in remote mode. PLC was used as remote terminal for continuous supervision and control of AC system. SCADA software was used as a tool for designing user friendly graphical user interface. The proposed SCADA AC system successfully monitors and controls in accordance within the parameter limits like temperature, pressure, humidity and voltage. With all the features, this designed system is capable of efficient handling of the resources like the compressor, humidifier etc., with all the levels of safety and durability. This system also maintains the temperature and controls the humidity of the remote location and also looks after the health of the compressor.

  8. Online Air-Conditioning Energy Management under Coalitional Game Framework in Smart Community

    Directory of Open Access Journals (Sweden)

    Wei Fan

    2016-08-01

    Full Text Available Motivated by the potential ability of air conditioning (A/C units in demand response, this paper explores how to utilize A/C units to increase the profit of a smart community. A coalitional game between the households and the load serving entity (LSE in a smart community is studied, where the LSE joins by selling renewable energy to householders and providing an energy saving service to them through an A/C controller. The A/C controller is designed to reduce the amount of electricity purchased from the main grid by controlling A/C units. An online A/C energy management algorithm is developed, based on Lyapunov optimization, that considers both the A/C energy consumption and the thermal comfort level of consumers. In order to quantify the contribution of A/C units, the Shapley value is adopted for distribution of the reward among the participating householders and the LSE, based on their contribution. The simulation result verifies the effectiveness of the proposed coalitional game for a smart community and the algorithm for A/C.

  9. Modelica Library for Building Heating, Ventilation and Air-Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Wetter, Michael

    2009-06-17

    This paper presents a freely available Modelica library for building heating, ventilation and air conditioning systems. The library is based on the Modelica.Fluid library. It has been developed to support research and development of integrated building energy and control systems. The primary applications are controls design, energy analysis and model-based operation. The library contains dynamic and steady-state component models that are applicable for analyzing fast transients when designing control algorithms and for conducting annual simulations when assessing energy performance. For most models, dimensional analysis is used to compute the performance for operating points that differ from nominal conditions. This allows parameterizing models in the absence of detailed geometrical information which is often impractical to obtain during the conceptual design phase of building systems. In the first part of this paper, the library architecture and the main classes are described. In the second part, an example is presented in which we implemented a model of a hydronic heating system with thermostatic radiator valves and thermal energy storage.

  10. Low-Flow Liquid Desiccant Air-Conditioning: Demonstrated Performance and Cost Implications

    Energy Technology Data Exchange (ETDEWEB)

    Kozubal, E.; Herrmann, L.; Deru, M.; Clark, J.; Lowenstein, A.

    2014-09-01

    Cooling loads must be dramatically reduced when designing net-zero energy buildings or other highly efficient facilities. Advances in this area have focused primarily on reducing a building's sensible cooling loads by improving the envelope, integrating properly sized daylighting systems, adding exterior solar shading devices, and reducing internal heat gains. As sensible loads decrease, however, latent loads remain relatively constant, and thus become a greater fraction of the overall cooling requirement in highly efficient building designs, particularly in humid climates. This shift toward latent cooling is a challenge for heating, ventilation, and air-conditioning (HVAC) systems. Traditional systems typically dehumidify by first overcooling air below the dew-point temperature and then reheating it to an appropriate supply temperature, which requires an excessive amount of energy. Another dehumidification strategy incorporates solid desiccant rotors that remove water from air more efficiently; however, these systems are large and increase fan energy consumption due to the increased airside pressure drop of solid desiccant rotors. A third dehumidification strategy involves high flow liquid desiccant systems. These systems require a high maintenance separator to protect the air distribution system from corrosive desiccant droplet carryover and so are more commonly used in industrial applications and rarely in commercial buildings. Both solid desiccant systems and most high-flow liquid desiccant systems (if not internally cooled) add sensible energy which must later be removed to the air stream during dehumidification, through the release of sensible heat during the sorption process.

  11. Analysis of the Impact of Urban Microclimate on Air Conditioning Load Control

    Directory of Open Access Journals (Sweden)

    Hu Xiaoqing

    2016-01-01

    Full Text Available Due to the presence of urban heat island effect (UHIE, high humidity and other urban microclimate, temperature of city central area rises. This causes that the actual air-conditioning energy consumption (ACEC in the urban central area is much higher than that in the suburbs. Load control of air-conditioners (ACs is considered to be equivalent to a power plant of the same capacity, and it can greatly reduce the system pressure to peak load shift. In this paper, a simplified second order transfer function control model of ACs is presented, and its parameters will be influenced by the ambient temperature and urban microclimate. The temperature is obtained by using the temperature inversion algorithm of the heat island effect. Then, the heat index is calculated by combining temperature and humidity. The ambient temperature index of urban central area is modified based on the above microclimate, and the second order linear time invariant model of aggregated ACs is upgraded to the linear time varying model. Furthermore, the consequent parameter changes of the second order transfer function model are studied and the influence of urban microclimate on AC load control is analyzed. The proposed method is verified on numerical examples

  12. The study of operating an air conditioning system using Maisotsenko-Cycle

    Science.gov (United States)

    Khan, Mohammad S.; Tahan, Sami; Toufic El-Achkar, Mohamad; Abou Jamus, Saleh

    2018-03-01

    The project aims to design and build an air conditioning system that runs on the Maisotsenko cycle. The system is required to condition and cool down ambient air for a small residential space with the reduction in the use of electricity and eliminating the use of commercial refrigerants. This project can operate at its optimum performance in remote areas like oil diggers and other projects that run in the desert or any site that would not have a very high relative humidity level. The Maisotsenko cycle is known as the thermodynamic concept that captures energy from the air by using the psychometric renewable energy available in the latent heat in water evaporating in air. The heat and mass exchanger design was based on choosing a material that would-be water resistant and breathable, which was found to be layers of cardboard placed on top of each other and thus creating channels for air to pass through. Aiming for this design eliminates any high power electrical equipment such as compressors, condensers and evaporators that would be used in an AC system with the exception of a 600 W blower and a 10 W fan, thus making it a more environmentally friendly project. Moreover, the project is limited by the ambient temperature and humidity, as the model operates at an optimum when the relative humidity is lower.

  13. Characterization of biological aerosol exposure risks from automobile air conditioning system.

    Science.gov (United States)

    Li, Jing; Li, Mingzhen; Shen, Fangxia; Zou, Zhuanglei; Yao, Maosheng; Wu, Chang-yu

    2013-09-17

    Although use of automobile air conditioning (AC) was shown to reduce in-vehicle particle levels, the characterization of its microbial aerosol exposure risks is lacking. Here, both AC and engine filter dust samples were collected from 30 automobiles in four different geographical locations in China. Biological contents (bacteria, fungi, and endotoxin) were studied using culturing, high-throughput gene sequence, and Limulus amebocyte lysate (LAL) methods. In-vehicle viable bioaerosol concentrations were directly monitored using an ultraviolet aerodynamic particle sizer (UVAPS) before and after use of AC for 5, 10, and 15 min. Regardless of locations, the vehicle AC filter dusts were found to be laden with high levels of bacteria (up to 26,150 CFU/mg), fungi (up to 1287 CFU/mg), and endotoxin (up to 5527 EU/mg). More than 400 unique bacterial species, including human opportunistic pathogens, were detected in the filter dusts. In addition, allergenic fungal species were also found abundant. Surprisingly, unexpected fluorescent peaks around 2.5 μm were observed during the first 5 min use of AC, which was attributed to the reaerosolization of those filter-borne microbial agents. The information obtained here can assist in minimizing or preventing the respiratory allergy or infection risk from the use of automobile AC system.

  14. Carbon-ammonia pairs for adsorption refrigeration applications: ice making, air conditioning and heat pumping

    Energy Technology Data Exchange (ETDEWEB)

    Tamainot-Telto, Z.; Metcalf, S.J.; Critoph, R.E.; Zhong, Y.; Thorpe, R. [School of Engineering, University of Warwick, Gibbet Hall Road, Coventry CV4 7AL (United Kingdom)

    2009-09-15

    A thermodynamic cycle model is used to select an optimum adsorbent-refrigerant pair in respect of a chosen figure of merit that could be the cooling production (MJ m{sup -3}), the heating production (MJ m{sup -3}) or the coefficient of performance (COP). This model is based mainly on the adsorption equilibrium equations of the adsorbent-refrigerant pair and heat flows. The simulation results of 26 various activated carbon-ammonia pairs for three cycles (single bed, two-bed and infinite number of beds) are presented at typical conditions for ice making, air conditioning and heat pumping applications. The driving temperature varies from 80 C to 200 C. The carbon absorbents investigated are mainly coconut shell and coal based types in multiple forms: monolithic, granular, compacted granular, fibre, compacted fibre, cloth, compacted cloth and powder. Considering a two-bed cycle, the best thermal performances based on power density are obtained with the monolithic carbon KOH-AC, with a driving temperature of 100 C; the cooling production is about 66 MJ m{sup -3} (COP = 0.45) and 151 MJ m{sup -3} (COP = 0.61) for ice making and air conditioning respectively; the heating production is about 236 MJ m{sup -3} (COP = 1.50). (author) [French] Un modele du cycle thermodynamique est utilise pour selectionner le meilleur couple adsorbant-ammoniac sur la base de la production frigorifique (MJ m{sup -3}), la production de chaleur (MJ m{sup -3}) ou bien le coefficient de performance (COP). Ce modele est essentiellement base sur les equations d'etat de l'adsorption (adsorbant-ammoniac). Les resultats de simulation de 26 differents couples charbon actif-ammoniac sont presentes pour des conditions typiques de fabrication de la glace, de climatisation et de pompe a chaleur. La temperature de generation varie de 80 C a 200 C. Les simulations sont effectuees pour trois types de cycle: lit unique, deux-lits et un nombre infini de lits. Les charbons actifs etudies sont

  15. Low consumption air conditioning. Direct and indirect water evaporation; Climatisation basse consommation. Evaporation d'eau directe et indirecte

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-09-01

    This technical note recalls the principle of air cooling by water evaporation and of its application to the air conditioning of rooms. It gives some cost and performance indications about this technique. An example of realization is presented. (J.S.)

  16. Air conditioning design temperature - a new proposal; Temperatura de projeto para condicionamento de ar - uma nova proposta

    Energy Technology Data Exchange (ETDEWEB)

    Camargo, Jose R.; Cardoso, Sebastiao [Universidade de Taubate, SP (Brazil). Dept. de Engenharia Mecanica]. E-mails: rui@engenh.mec.unitau.br; cardoso@prppg.unitau.br; Travelho, Jeronimo S. [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil)]. E-mail: jeff@lac.inpe.br

    2000-07-01

    ABNT - Associacao Brasileira de Normas Tecnicas (Brazilian Association for Technical Standards) - establishes, in NBR-6401, Table 1 (Interior Design Conditions), the dry-bulb summer temperature and the relative humidity to be used in air conditioning design. In thermal comfort plant for residences, hotels, offices and schools these values are, respectively, 23 deg C to 25 deg C and 40% to 60% rh. These data are in accordance with what is recommended by ASHRAE, which was established as a model for North America. This paper presents a new proposal to air conditioning design temperature that takes into consideration Brazilian climatological conditions. The method, named 'effective temperature distribution', compares the maximum recommended effective temperature for each region with dry-bulb temperatures and effective temperatures plotted in a single diagram. This diagram may be used in energetic planning to minimize the use of electric energy for air conditioning. It concludes that the method allows an accuracy analysis about both the temperature levels and the periods of utilization of the air conditioning systems. (author)

  17. Reduction of energy consumption in air conditioning; Reducao do consumo de energia em aparelhos de ar condicionado

    Energy Technology Data Exchange (ETDEWEB)

    Vasconcellos, Arnulfo Barroso; Silva, Luciana Oliveira da; Sao Jose, Bernardo Dias [Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT (Brazil); Malheiro, Teresa Irene Ribeiro de Carvalho [Instituto Federal de Educacao, Ciencia e Tecnologia de Mato Grosso, MT (Brazil); Barros, Regiane Silva de [Universidade Estadual de Campinas (UNICAMP), SP (Brazil); Ochiuto, Milton de Souza [Rede Cemat, Cuiaba, MT (Brazil)

    2010-09-15

    An energy efficiency project implemented in public buildings, with the replacement and automation of the air conditioning system, is reported in this article. After measurements of the electrical quantities and consumption, the window conditioners was changed with more efficient models and set up motion detectors to control devices like split. The results confirmed the technical feasibility and economic measures.

  18. Energy problems of the central systems of air conditioning; Problemas energeticos de los sistemas centrales de climatizacion

    Energy Technology Data Exchange (ETDEWEB)

    Cardero Corria, Gaspar [Cubanacan, S.A., Varadero (Cuba)

    2003-07-01

    The central systems of air conditioning are widely used in air conditioning production for several reasons among which excel: 1) Better aesthetic of the building, 2) Less noise in the air conditioning premises and 3) Greater yield of the consumed energy. This is indeed the third reason in which this paper will try to contribute with elements that will allow reveal the problem and to identify some possible causes that originate it. The centralized systems of air conditioning must produce conditioned air with lesser power cost than the individual systems, it is that saving which allows to recover an investment that normally surpasses them in 3 to 5 times. Nevertheless, the real numbers do not demonstrate that. [Spanish] Los sistemas centrales de climatizacion son ampliamente usados en la produccion de aire acondicionado por varias razones entre las que sobresalen: 1) Mejor estetica del edificio, 2) Menor ruido en los locales climatizados y 3) Mayor rendimiento de la energia consumida. Es precisamente la tercera razon en la cual este trabajo intentara aportar elementos que permitan develar el problema e identificar algunas posibles causas que lo originan. Los sistemas centralizados de climatizacion deben producir aire acondicionado con un menor gasto energetico que los sistemas individuales, es precisamente ese ahorro lo que permite recuperar una inversion que normalmente los supera en 3 a 5 veces. Sin embargo, los numeros reales no demuestran eso.

  19. Improving Geothermal Heat Pump Air Conditioning Efficiency with Wintertime Cooling using Seasonal Thermal Energy Storage (STES). Application Manual

    Science.gov (United States)

    2016-11-01

    APPLICATION MANUAL Improving Geothermal Heat Pump Air Conditioning Efficiency with Wintertime Cooling using Seasonal Thermal Energy Storage...manual is to describe the use of the Seasonal Thermal Energy Storage (STES) technology, particularly through the employment of wintertime cooling...application projects to increase energy efficiency and occupant comfort. Seasonal Thermal Energy Storage (STES) technology, energy efficiency, geothermal heat

  20. Vocal Ergonomics in the Workplace: Heating, Ventilation, and Air-Conditioning Method Influences on Vocal Comfort and Function

    Science.gov (United States)

    Sandage, Mary J.; Rahn, Keith A.; Smith, Audrey G.

    2017-01-01

    Purpose: The purpose of this study was to examine the influence of the heating, ventilation, and air-conditioning method on voice function following a voicing task using ecologically valid offices, one with radiant HVAC and one with forced air. Method: A total of 12 consented participants (6 women, 6 men) narrated a video in each of 4…

  1. Modeling global residential sector energy demand for heating and air conditioning in the context of climate change

    International Nuclear Information System (INIS)

    Isaac, Morna; Vuuren, Detlef P. van

    2009-01-01

    In this article, we assess the potential development of energy use for future residential heating and air conditioning in the context of climate change. In a reference scenario, global energy demand for heating is projected to increase until 2030 and then stabilize. In contrast, energy demand for air conditioning is projected to increase rapidly over the whole 2000-2100 period, mostly driven by income growth. The associated CO 2 emissions for both heating and cooling increase from 0.8 Gt C in 2000 to 2.2 Gt C in 2100, i.e. about 12% of total CO 2 emissions from energy use (the strongest increase occurs in Asia). The net effect of climate change on global energy use and emissions is relatively small as decreases in heating are compensated for by increases in cooling. However, impacts on heating and cooling individually are considerable in this scenario, with heating energy demand decreased by 34% worldwide by 2100 as a result of climate change, and air-conditioning energy demand increased by 72%. At the regional scale considerable impacts can be seen, particularly in South Asia, where energy demand for residential air conditioning could increase by around 50% due to climate change, compared with the situation without climate change

  2. Ontology for Life-Cycle Modeling of Heating, Ventilating, and Air Conditioning (HVAC) Systems: Experimental Applications Using Revit

    Science.gov (United States)

    2012-03-01

    Center, Construction Engineering Research Laboratory (ERDC-CERL) has developed a core life- cycle building information model ( BIM ) based on three...was to promote consistency and quality of content created for Building Information Models ( BIMs ) across various disciplines. The HVAC MVD was...MVD. 15. SUBJECT TERMS building information modeling ( BIM ), ontology, Army facilities, heating, ventilating, and air-conditioning (HVAC) systems

  3. Competency Index for Air Conditioning and Refrigeration Programs in Missouri. A Crosswalk of Selected Instructional Materials against Missouri's Competency Profile.

    Science.gov (United States)

    Missouri Univ., Columbia. Instructional Materials Lab.

    This index was developed to help air conditioning and refrigeration instructors in Missouri use existing instructional materials and keep track of student progress on the VAMS system. The list was compiled by a committee of instructors who selected appropriate references and identified areas that pertained to Missouri competencies. The index lists…

  4. FAULT TREE ANALYSIS FOR EXPOSURE TO REFRIGERANTS USED FOR AUTOMOTIVE AIR CONDITIONING IN THE U.S.

    Science.gov (United States)

    A fault tree analysis was used to estimate the number of refrigerant exposures of automotive service technicians and vehicle occupants in the United States. Exposures of service technicians can occur when service equipment or automotive air-conditioning systems leak during servic...

  5. Novel activity classification and occupancy estimation methods for intelligent HVAC (heating, ventilation and air conditioning) systems

    International Nuclear Information System (INIS)

    Rana, Rajib; Kusy, Brano; Wall, Josh; Hu, Wen

    2015-01-01

    Reductions in HVAC (heating, ventilation and air conditioning) energy consumption can be achieved by limiting heating in the winter or cooling in the summer. However, the resulting low thermal comfort of building occupants may lead to an override of the HVAC control, which revokes its original purpose. This has led to an increased interest in modeling and real-time tracking of location, activity, and thermal comfort of building occupants for HVAC energy management. While thermal comfort is well understood, it is difficult to measure in real-time environments where user context changes dynamically. Encouragingly, plethora of sensors available on smartphone unleashes the opportunity to measure user contexts in real-time. An important contextual information for measuring thermal comfort is Metabolism rate, which changes based on current physical activities. To measure physical activity, we develop an activity classifier, which achieves 10% higher accuracy compared to Support Vector Machine and k-Nearest Neighbor. Office occupancy is another contextual information for energy-efficient HVAC control. Most of the phone based occupancy estimation techniques will fail to determine occupancy when phones are left at desk while sitting or attending meetings. We propose a novel sensor fusion method to detect if a user is near the phone, which achieves more than 90% accuracy. Determining activity and occupancy our proposed algorithms can help maintaining thermal comfort while reducing HVAC energy consumptions. - Highlights: • We propose activity and occupancy detection for efficient HVAC control. • Activity classifier achieves 10% higher accuracy than SVM and kNN. • For occupancy detection we propose a novel sensor fusion method. • Using Weighted Majority Voting we fuse microphone and accelerometer data on phone. • We achieve more than 90% accuracy in detecting occupancy.

  6. Influence of indoor air conditions on radon concentration in a detached house

    International Nuclear Information System (INIS)

    Akbari, Keramatollah; Mahmoudi, Jafar; Ghanbari, Mahdi

    2013-01-01

    Radon is released from soil and building materials and can accumulate in residential buildings. Breathing radon and radon progeny for extended periods hazardous to health and can lead to lung cancer. Indoor air conditions and ventilation systems strongly influence indoor radon concentrations. This paper focuses on effects of air change rate, indoor temperature and relative humidity on indoor radon concentrations in a one family detached house in Stockholm, Sweden. In this study a heat recovery ventilation system unit was used to control the ventilation rate and a continuous radon monitor (CRM) was used to measure radon levels. FLUENT, a computational fluid dynamics (CFD) software package was used to simulate radon entry into the building and air change rate, indoor temperature and relative humidity effects using a numerical approach. The results from analytical solution, measurements and numerical simulations showed that air change rate, indoor temperature and moisture had significant effects on indoor radon concentration. Increasing air change rate reduces radon level and for a specific air change rate (in this work Ach = 0.5) there was a range of temperature and relative humidity that minimized radon levels. In this case study minimum radon levels were obtained at temperatures between 20 and 22 °C and a relative humidity of 50–60%. - Highlights: ► We use CFD to simulate indoor radon concentration and distribution. ► The effects of ventilation rate, temperature and moisture are investigated. ► Model validation is performed through analytical solution and measurement results. ► Results show that ventilation rate is inversely proportional to radon level. ► There is a range of temperature and relative humidity that minimize radon level.

  7. A Novel Distributed Economic Model Predictive Control Approach for Building Air-Conditioning Systems in Microgrids

    Directory of Open Access Journals (Sweden)

    Xinan Zhang

    2018-04-01

    Full Text Available With the penetration of grid-connected renewable energy generation, microgrids are facing stability and power quality problems caused by renewable intermittency. To alleviate such problems, demand side management (DSM of responsive loads, such as building air-conditioning system (BACS, has been proposed and studied. In recent years, numerous control approaches have been published for proper management of single BACS. The majority of these approaches focus on either the control of BACS for attenuating power fluctuations in the grid or the operating cost minimization on behalf of the residents. These two control objectives are paramount for BACS control in microgrids and can be conflicting. As such, they should be considered together in control design. As individual buildings may have different owners/residents, it is natural to control different BACSs in an autonomous and self-interested manner to minimize the operational costs for the owners/residents. Unfortunately, such “selfish” operation can result in abrupt and large power fluctuations at the point of common coupling (PCC of the microgrid due to lack of coordination. Consequently, the original objective of mitigating power fluctuations generated by renewable intermittency cannot be achieved. To minimize the operating costs of individual BACSs and simultaneously ensure desirable overall power flow at PCC, this paper proposes a novel distributed control framework based on the dissipativity theory. The proposed method achieves the objective of renewable intermittency mitigation through proper coordination of distributed BACS controllers and is scalable and computationally efficient. Simulation studies are carried out to illustrate the efficacy of the proposed control framework.

  8. Sterilization efficacy of ultraviolet irradiation on microbial aerosols under dynamic airflow by experimental air conditioning systems

    International Nuclear Information System (INIS)

    Nakamura, Hiroshi

    1987-01-01

    In order to know the sterilization efficacy of ultraviolet irradiation on microbial aerosols, the size and the weight of the aerosol particles were evaluated, and these were irradiated under dynamic air flow created by an experimental air conditioning system. The experimental apparatus consisted of a high efficiency particulate air (HEPA) filter, an aerosol generator, spiral UV lamps placed around a quart glass tube, an Andersen air sampler and a vacuum pump. They were connected serially by stainless steel ducts (85 mm in diameter, 8 m in length). Six types of microbial aerosols generated from an ultrasonic nebulizer were irradiated by UV rays (wavelength 254 nm, mean density 9400 μW/cm 2 ). Their irradiation time ranged from 1.0 to 0.0625 seconds. The microbial aerosols were collected onto the trypticase soy agar (TSA) medium in the Andersen air sampler. After incubation, the number of colony forming units (CFU) were counted, and converted to particle counts. The diameter of microbial aerosol particles calculated by their log normal distribution were found to match the diameter of a single bacteria cell measured by a microscope. The sterilization efficacy of UV in standard airflow conditions (0.5 sec. irradiation) were found to be over 99.5 % in Staphylococcus aureus, Staphylococcus epidermidis, Serratia marcescens, Bacillus subtilis (vegetative cell) and Bacillus subtilis (spore) and 67 % in Aspergillus niger (conidium). In A. niger, which was the most resistant microbe to UV irradiation, the efficacy rose up to 79 % when irradiated for 1.0 sec., and it was observed that the growth speed of the colonies was slower than that of the controls. It was thought that UV rays caused some damage to the proliferation of A. niger cells. (author)

  9. In-car particles and cardiovascular health: an air conditioning-based intervention study.

    Science.gov (United States)

    Chuang, Hsiao-Chi; Lin, Lian-Yu; Hsu, Ya-Wen; Ma, Chih-Ming; Chuang, Kai-Jen

    2013-05-01

    Exposure to traffic-related particulate matter (PM) is considered a potential risk for cardiovascular events. Little is known about whether improving air quality in car can modify cardiovascular effects among human subjects during commuting. We recruited a panel of 60 healthy subjects to commute for 2 h by a car equipped with an air conditioning (AC) system during the morning rush hour in Taipei. Operation modes of AC system using outside air (OA-mode), circulating inside air (IA-mode) and turning off (Off-mode) were examined. Repeated measurements of heart rate variability (HRV) indices, PM≤2.5 μm in aerodynamic diameter (PM2.5) and noise level were conducted for each participant in different modes during the commute. We used linear mixed-effects models to associate HRV indices with in-car PM2.5. We found that decreases in HRV indices were associated with increased levels of in-car PM2.5. For Off-mode, an interquartile range (IQR) increase in in-car PM2.5 with 15-min moving average was associated with 2.7% and 4.1% decreases in standard deviation of NN intervals (SDNN) and the square root of the mean of the sum of the squares of differences between adjacent NN intervals (r-MSSD), respectively. During OA and IA modes, participants showed slight decreases in SDNN (OA mode: 0.1%; IA mode: 1.3%) and r-MSSD (OA mode: 1.1%; IA mode: 1.8%) by an IQR increase in in-car PM2.5 with 15-min moving average. We concluded that in-car PM2.5 is associated with autonomic alteration. Utilization of the car's AC system can improve air quality and modify the effects of in-car PM2.5 on HRV indices among human subjects during the commute. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. THE USE OF AIR LAYERS IN BUILDING ENVELOPES FOR ENERGY SAVING DURING AIR CONDITIONING

    Directory of Open Access Journals (Sweden)

    S. N. Osipov

    2017-01-01

    Full Text Available Since there are no large natural energy resources in Belarus, energy savings ought to be a point of the special attention. With this regard it is important to develop modern ways of savings during the process of air conditioning inside new buildings with an air layer in the enclosure, especially in translucent ones. The system of ventilation of air layers in the enclosure of a building has been introduced in which air movement is caused by the gravitational and aerodynamic forces. It makes it possible to arrange further ventilation – a natural, forced or a hybrid one. With the purpose of increasing and streamlining natural draught the partitions are used separating the different parts of air layers. For natural ventilation with the use of gravitational forces the holes in the upper and lower parts of the partitions between adjacent air layers are applied. Natural ventilation in the holes of the partitions is regulated by movable shutters, blinds or other adjusting devices. For combined or forced air exchange between adjacent zones of air layers fans are used pumping air from the air layer zones with a higher temperature to zones of air layers with lower temperature and vice versa. When air exchange is forced, in order to intensify the infiltration of air into zones of air layers jets are laid on a hard surface. In order to cool a multi-layered enclosure of a building, where the movement of air between the air layers (that have been formed by internal partitions is being fulfilled by a natural, forced or combined mode, a part of the air or the total air processed inside the building (i.e. conditioned or non-conditioned air cooler as compared with the outside one is being sent to these strata. Combined or forced flow of the air processed inside the building into the air layers is done through the ducts associated with the output channels of the air conditioners. The internal partitions are equipped with the air valve hole.

  11. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    International Nuclear Information System (INIS)

    Fleming, Evan; Wen, Shaoyi; Shi, Li; Silva, Alexandre K. da

    2013-01-01

    Highlights: • We developed an automotive thermal storage air conditioning system model. • The thermal storage unit utilizes phase change materials. • We use semi-analytic solution to the coupled phase change and forced convection. • We model the airside heat exchange using the NTU method. • The system model can incorporate dynamic inputs, e.g. variable inlet airflow. - Abstract: A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system’s dynamic behavior, such as a dynamic air flow rate into the vehicle’s cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle’s cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid–air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semi-analytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid–air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system

  12. Solar-assisted absorption air-conditioning systems in buildings: Control strategies and operational modes

    International Nuclear Information System (INIS)

    Shirazi, Ali; Pintaldi, Sergio; White, Stephen D.; Morrison, Graham L.; Rosengarten, Gary; Taylor, Robert A.

    2016-01-01

    Highlights: • A simulation model of a solar driven absorption chiller is developed in detail. • Three control strategies were proposed in the solar loop of the plant. • Series and parallel auxiliary heater arrangements were investigated. • The results showed the auxiliary-heater in parallel outperformed the series one. • Solar fraction can be increased by 20% by implementing the proposed configuration. - Abstract: Solar-assisted cooling technology has enormous potential for air-conditioning applications since both solar energy supply and cooling energy demand are well correlated. Unfortunately, market uptake of solar cooling technologies has been slow due to the high capital cost and limited design/operational experience. In the present work, different designs and operational modes for solar heating and cooling (SHC) absorption chiller systems are investigated and compared in order to identify the preferred design strategies for these systems. Three control scenarios are proposed for the solar collector loop. The first uses a constant flow pump, while the second and third control schemes employ a variable speed pump, where the solar collector (SC) set-point temperature could be either fixed or adjusted to the required demand. Series and parallel arrangements, between the auxiliary heater and the storage tank, have been examined in detail from an energy efficiency perspective. A simulation model for different system layouts is developed in the transient system simulation environment (TRNSYS, Version 17). Simulation results revealed that the total solar fraction of the plant is increased by up to 11% when a variable speed solar loop pump is used to achieve a collector set-point temperature adjusted according to the building load demand. Another significant finding of this study is that a parallel configuration for the auxiliary heater out-performs a conventional series configuration. The yearly performance of an auxiliary heater in parallel with the storage

  13. Potential Alternative Lower Global Warming Refrigerants for Air Conditioning in Hot Climates

    Energy Technology Data Exchange (ETDEWEB)

    Abdelaziz, Omar [ORNL; Shrestha, Som S [ORNL; Shen, Bo [ORNL

    2017-01-01

    . It was noticed that higher glide refrigerants benefited the most from operating in the larger packaged unit with an evaporator in a multi-row counter-cross configuration. This study suggests that there is a strong potential for using lower GWP refrigerants to design and operate more efficient air conditioning systems in hot climates.

  14. Air conditioning or museum buildings. How much air conditioning does a museum need?; Zur Klimatisierung von Museen. Sinn und Unsinn der Museumsklimatisierung, oder wie viel Klima braucht ein Museum?

    Energy Technology Data Exchange (ETDEWEB)

    Ottitsch, R. [Ingenieurbuero Ottitsch, Muenchen (Germany)

    2004-07-01

    It is undisputed that air conditioning of museum buildings is necessary, but opinions disagree as to the capacity of the air conditioning system. While some opt for a simple and low-cost ventilation system, others make demands that are hardly feasible. (orig.) [German] Die Klimatisierung eines Museums ist in den meisten Faellen, sieht man von kleineren Haeusern ab, unstrittig. Wenn jedoch darueber diskutiert wird, welche Ansprueche an die Klimatechnik gestellt werden sollen, scheiden sich die Geister sehr schnell. Je nach Standpunkt soll die Klimatechnik wegen der Kosten und der Integration in das Bauwerk maximal eine einfache Be- und Entlueftung sein, oder es werden Ansprueche aufgrund von konservatorischen Aspekten an die Klimatechnik gestellt, die technisch kaum umsetzbar sind. (orig.)

  15. Air conditioning of Olaf Gulbransson museum. Economically efficient full-scale air conditioning system for the existing building and its annex; Klimatechnik im Olaf Gulbransson Museum. Wirtschaftliches Vollklimasystem fuer Erweiterungs- und Altbau

    Energy Technology Data Exchange (ETDEWEB)

    Griessl, Jens [Daikin Regionalbuero Muenchen (Germany)

    2009-07-01

    When the museum building at Tegernsee was to be annexed, it was clear that the night storage heating system would have to be replaced by a new, comfortable and economically efficient system. Further, the owners were aware that many museums will lend their exhibits only on the condition that exhibition rooms with ideal climate conditions will be ensured. In the solution that was selected, both the existing building and the annex are cooled, heated, and air conditioned by a single, integrated system. (orig.)

  16. Double-double effect and its contribution to the lanthanide chemistry

    International Nuclear Information System (INIS)

    Fidelis, I.

    1973-01-01

    Different aspects of the double-double effect and its theoretical explanation have been discussed. Some new conclusions pertaining to the thermodynamics of complexation of lanthanides based on own experimental results and existing literature data have been presented. (author)

  17. Temperature and Humidity Control in Air-Conditioned Buildings with lower Energy Demand and increased Indoor Air Quality

    DEFF Research Database (Denmark)

    Paul, Joachim; Martos, E. T.

    2003-01-01

    of ambient air can be supplied, thus improving the indoor air quality still further. Reheating of air is not necessary when using Binary Ice. The introduction of chilled air into a room requires a different type of air outlet, however. When using Binary Ice, energy savings are high for climates with low...... ambient air enthalpies and lower for high ambient air enthalpies. The cooling demand can be reduced up to 50% and the energy demand of the refrigeration plant is also affected positively. When using Binary Ice the annual operating costs, including depreciation of the investment, are ultimately lower....... Binary Ice as secondary refrigerant for air-conditioning purposes is an economical and technically feasible solution in any climate. Whatever chilled water can do in an air-conditioning installation ? Binary Ice can do it better....

  18. Transient analysis and improvement of indoor thermal comfort for an air-conditioned room with thermal insulations

    Directory of Open Access Journals (Sweden)

    D. Prakash

    2015-09-01

    Full Text Available Thermal insulations over the building envelop reduce the heat gain due to solar radiation and may enhance good and uniform indoor thermal comfort for the occupants. In this paper, the insulation layer-wood wool is laid over the roof and exposed wall of an air-conditioned room and its performance on indoor thermal comfort is studied by computational fluid dynamics (CFD technique. From this study, 3% of indoor thermal comfort index-predicted mean vote (PMV is improved by providing wood wool layer. In addition, the optimum supply air temperature of air-conditioning unit for good thermal comfort is predicted as in the range of 299–300 K (26–27 °C.

  19. Propositions of improvement of the cross-flow M-Cycle heat exchangers in different air-conditioning applications

    Science.gov (United States)

    Pandelidis, Demis; Anisimov, Sergey; Rajski, Krzysztof; Brychcy, Ewa

    2017-11-01

    This paper presents results of mathematical simulation of the heat and mass transfer in the two different Maisotsenko Cycle (M-Cycle) heat and mass exchangers used for the indirect evaporative cooling in different air-conditioning systems. A two-dimensional heat and mass transfer model is developed to perform the thermal calculations of the indirect evaporative cooling process, thus quantifying the overall heat exchangers' performance. The mathematical model was validated against the experimental data. Numerical simulations reveal many unique features of the considered units, enabling an accurate prediction of their performance. Results of the model allow for comparison of the two types of heat exchangers in different applications for air conditioning systems in order to obtain optimal efficiency.

  20. Propositions of improvement of the cross-flow M-Cycle heat exchangers in different air-conditioning applications

    Directory of Open Access Journals (Sweden)

    Pandelidis Demis

    2017-01-01

    Full Text Available This paper presents results of mathematical simulation of the heat and mass transfer in the two different Maisotsenko Cycle (M-Cycle heat and mass exchangers used for the indirect evaporative cooling in different air-conditioning systems. A two-dimensional heat and mass transfer model is developed to perform the thermal calculations of the indirect evaporative cooling process, thus quantifying the overall heat exchangers’ performance. The mathematical model was validated against the experimental data. Numerical simulations reveal many unique features of the considered units, enabling an accurate prediction of their performance. Results of the model allow for comparison of the two types of heat exchangers in different applications for air conditioning systems in order to obtain optimal efficiency.

  1. Relationship between the merit factor of thermoelectric materials and the air conditioning unit of urban electric cars

    International Nuclear Information System (INIS)

    Buffet, J.

    1994-01-01

    The main benefit of electric cars is to reduce air pollution in cities that is thus desirable to equip them with non polluting air conditioning units and this rules out frigorific compressors operating with CFC. The planned replacement of CFC by HFC is at best an interim solution. The best solution is certainly to use thermoelectric air conditioning units, which are inherently pollution-free. However, these have a fairly low COPF when compared to traditional compressor units. We study the relationship between the cooling of the interior of urban electric cars and the merit factor of the thermoelectric material in their Peltier unit. This should help provide concrete target properties of future T E materials. copyright 1995 American Institute of Physics

  2. A novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor humidity control

    International Nuclear Information System (INIS)

    Yan, Huaxia; Deng, Shiming; Chan, Ming-yin

    2016-01-01

    Highlights: • A novel capacity controller for TEAC systems for improved indoor humidity control is developed. • The novel controller was developed by integrating two previous control algorithms. • Experimental controllability tests were carried out. • Improved control over indoor humidity levels and higher energy efficiency can be achieved. - Abstract: Using a multi-evaporator air conditioning (MEAC) system to correctly control indoor air temperatures only in a multi-room application is already a challenging and difficult task, let alone the control of both indoor air temperature and humidity. This is because in an MEAC system, a number of indoor units are connected to a common condensing unit. Hence, the interferences among operation parameters of different indoor units would make the desired control of an MEAC system hard to realize. Limited capacity control algorithms for MEAC systems have been developed, with most of them focusing only on the control of indoor air temperature, and no previous studies involving control of indoor air humidity using MEAC systems can be identified. In this paper, the development of a novel capacity controller for a three-evaporator air conditioning (TEAC) system for improved indoor air humidity control is reported. The novel controller was developed by integrating two previous control algorithms for a dual-evaporator air conditioning system for temperature control and for a single-evaporator air conditioning system for improved indoor humidity control. Experimental controllability tests were carried out and the controllability test results showed that, with the novel controller, improved control over indoor humidity levels and better energy efficiency for a TEAC system could be obtained as compared to the traditional On–Off controllers extensively used by MEAC systems.

  3. Legionella species colonization of water distribution systems, pools and air conditioning systems in cruise ships and ferries

    Directory of Open Access Journals (Sweden)

    Gourgoulianis Kostantinos

    2008-11-01

    Full Text Available Abstract Background Legionnaires' disease continues to be a public health concern in passenger ships. This study was scheduled in order to investigate Legionella spp. colonization of water distribution systems (WDS, recreational pools, and air-conditioning systems on board ferries and cruise ships in an attempt to identify risk factors for Legionella spp. colonization associated with ship water systems and water characteristics. Methods Water systems of 21 ferries and 10 cruise ships including WDS, air conditioning systems and pools were investigated for the presence of Legionella spp. Results The 133 samples collected from the 10 cruise ships WDS, air conditioning systems and pools were negative for Legionella spp. Of the 21 ferries WDS examined, 14 (66.7% were legionellae-positive. A total of 276 samples were collected from WDS and air conditioning systems. Legionella spp. was isolated from 37.8% of the hot water samples and 17.5% of the cold water samples. Of the total 96 positive isolates, 87 (90.6% were L. pneumophila. Legionella spp. colonization was positively associated with ship age. The temperature of the hot water samples was negatively associated with colonization of L. pneumophila serogroup (sg 1 and that of L. pneumophila sg 2 to 14. Increases in pH ≥7.8 and total plate count ≥400 CFU/L, correlated positively with the counts of L. pneumophila sg 2 to 14 and Legionella spp. respectively. Free chlorine of ≥0.2 mg/L inhibited colonization of Legionella spp. Conclusion WDS of ferries can be heavily colonized by Legionella spp. and may present a risk of Legionnaires' disease for passengers and crew members. Guidelines and advising of Legionnaires' disease prevention regarding ferries are needed, in particular for operators and crew members.

  4. The 1998 bible. Cold production, air conditioning, big cooking installations; La bible 1998. Froid, climatisation, grandes cuisines

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    This manual is devoted to French professionals of thermal engineering. It contains all useful addresses of companies involved in the manufacturing, distribution and maintenance of air conditioning and refrigerating systems, a list of companies classified by products and activities, a departmental list of distribution companies, an alphabetical list of professional organizations, a catalog of the new products of the year, and the recent regulatory texts concerning the confinement of refrigerating installations. (J.S.)

  5. Optimization Parameters of Air-conditioning and Heat Insulation Systems of a Pressurized Cabins of Long-distance Airplanes

    Science.gov (United States)

    Gusev, Sergey A.; Nikolaev, Vladimir N.

    2018-01-01

    The method for determination of an aircraft compartment thermal condition, based on a mathematical model of a compartment thermal condition was developed. Development of solution techniques for solving heat exchange direct and inverse problems and for determining confidence intervals of parametric identification estimations was carried out. The required performance of air-conditioning, ventilation systems and heat insulation depth of crew and passenger cabins were received.

  6. A comparison of the thermal adaptability of people accustomed to air-conditioned environments and naturally ventilated environments.

    Science.gov (United States)

    Yu, J; Ouyang, Q; Zhu, Y; Shen, H; Cao, G; Cui, W

    2012-04-01

    It has been reported previously that people who are acclimated to naturally ventilated (NV) environments respond to hot and warm environments differently than people who are acclimated to air-conditioned (AC) environments. However, it is not clear whether physiological acclimatization contributes to this discrepancy. To study whether living and working in NV or AC environments for long periods of time can lead to different types of physiological acclimatization, and whether physiological acclimatization has an important influence on people's responses of thermal comfort, measurements of physiological reactions (including skin temperature, sweat rate, heart rate variability, and heat stress protein 70) and thermal comfort responses were conducted in a 'heat shock' environment (climate chamber) with 20 people (10 in the NV group and 10 in the AC group). The results showed that the NV group had a significantly stronger capacity for physiological regulation to the heat shock than the AC group. In other words, the NV group did not feel as hot and uncomfortable as the AC group did. These results strongly indicate that living and working in indoor thermal environments for long periods of time affects people's physiological acclimatization. Also, it appears that long-term exposure to stable AC environments may weaken people's thermal adaptability. This study examined the psychological and physiological differences of thermal adaptability of people used to air-conditioned environments and naturally ventilated environments. The results suggested that long-term exposure to stable air-conditioned environments may weaken people's thermal adaptability. Therefore, it might be advantageous for people to spend less time in static air-conditioned environments; this is not only because of its possible deleterious impact on people's physiological adaptability, but also because the air-conditioners' high-energy consumption will contribute to the effects of global warming. © 2011 John

  7. Using heat-pump for simultaneous air conditioning and fresh water production by membrane distillation: performance prediction

    OpenAIRE

    Diaby , Ahmadou ,; Byrne , Paul; Loulergue , Patrick; Balannec , Béatrice; Szymczyk , Anthony; Mare , Thierry; Sow , Ousmane

    2017-01-01

    International audience; The building sector accounts for 40% of the world’s energy consumption especially for air-conditioning and refrigeration. Furthermore, cold production is associated with hot air flowing out of the condensers responsible for the urban heat island effect. The proximity of buildings and their cooling equipment creates hot outdoor environment provoking higher cooling needs and lower performance of the air-conditioners.This waste heat might be used for fresh-water productio...

  8. Propositions of improvement of the cross-flow M-Cycle heat exchangers in different air-conditioning applications

    OpenAIRE

    Pandelidis Demis; Anisimov Sergey; Rajski Krzysztof; Brychcy Ewa

    2017-01-01

    This paper presents results of mathematical simulation of the heat and mass transfer in the two different Maisotsenko Cycle (M-Cycle) heat and mass exchangers used for the indirect evaporative cooling in different air-conditioning systems. A two-dimensional heat and mass transfer model is developed to perform the thermal calculations of the indirect evaporative cooling process, thus quantifying the overall heat exchangers’ performance. The mathematical model was validated against the experime...

  9. Field Study on Humidification Performance of a Desiccant Air-Conditioning System Combined with a Heat Pump

    Directory of Open Access Journals (Sweden)

    Koichi Kawamoto

    2016-01-01

    Full Text Available A desiccant air-conditioning system was developed as a latent-load-processing air conditioner in a dedicated outdoor air system during the summer. This study investigated the application of this air-conditioning system to humidification during the winter without using make-up water, thereby eliminating the cause of microbial contamination in air-conditioning systems. The experiments were conducted with a system used for summer applications to determine the feasibility of adsorbing vapor from outdoor air and supplying it to an indoor space. The humidification performance, energy efficiency, and operating conditions were examined. Although the conditions were subpar because the experiments were performed with an actual dedicated outdoor air system, the results showed that it is possible to supply air with a minimum humidity ratio of 5.8 g/kg dry air (DA when the humidity ratio of outdoor air ranges from 1.8 to 2.3 g/kg DA. The minimum humidification performance required for a dedicated outdoor air system was achieved by increasing the airflow rate of the moisture-adsorption side to 2–3 times that of the humidification side. In addition, air leaking from the moisture-adsorption side to the humidification side, improving the mechanical structure, such as by the insulation of the moisture-adsorption side, and an efficient operating method were examined for humidification during the winter.

  10. Ventilation and air conditioning systems in maritime productions units; Panorama dos sistemas de VAC em unidades maritimas de producao

    Energy Technology Data Exchange (ETDEWEB)

    Guedes, Fernando Pedrosa; Sztajnbok, Ernani Luis [PETROBRAS, Rio de Janeiro, RJ (Brazil); Padua, Carlos Eduardo Dantas de; Passos, Alfredo Silveira [DUOVAC Engenharia Ltda. (Brazil)

    2004-07-01

    In an Offshore Stationary Production Unit (SPU), the adequate project of the Ventilation and Air Conditioning (VAC) System is not only a thermal comfort requirement but part of the essential safety services of the installation and complement for area classification requirements associated with electrical equipment. The VAC installations are sometimes the object of complaints by onboard team. Problems such as unsatisfactory system performance, high noise levels in the accommodation quarters, offices and other areas and the discomfort caused by unbalanced ventilation and air conditioning systems, are some of the most frequent complaints. Air Conditioning systems are classified as Direct and Indirect Expansion. Decentralized systems with Indirect Expansion has been adopted in PETROBRAS projects. This conception is not used in VAC Systems for platforms installed in North Sea, where the use of Centralized Systems with Direct Expansion are more common. The objective of this work is to compare the VAC conception projects, analyzing their advantages and disadvantages . The evaluation of VAC System in PETROBRAS project, and their steps in SPU development, is also scope of this paper. (author)

  11. Characteristic Evaluation on the Cooling Performance of an Electrical Air Conditioning System Using R744 for a Fuel Cell Electric Vehicle

    Directory of Open Access Journals (Sweden)

    Moo-Yeon Lee

    2012-05-01

    Full Text Available The objective of this study was to investigate the cooling performance characteristics of an electrical air conditioning system using R744 as an alternative of R-134a for a fuel cell electric vehicle. In order to analyze the cooling performance characteristics of the air conditioning system using R744 for a fuel cell electric vehicle, an electrical air conditioning system using R744 was developed and tested under various operating conditions according to both inlet air conditions of the gas cooler and evaporator and compressor speed. The cooling capacity and coefficient of performance (COP forcooling of the tested air conditioning system were up to 6.4 kW and 2.5, respectively. In addition, the electrical air conditioning system with R744 using an inverter driven compressor showed better performance than the conventional air conditioning system with R-134a under the same operating conditions. The observed cooling performance of the developed electrical air conditioning system was found to be sufficient for cooling loads under various real driving conditions for a fuel cell electric vehicle.

  12. Effects of anthropogenic heat due to air-conditioning systems on an extreme high temperature event in Hong Kong

    Science.gov (United States)

    Wang, Y.; Li, Y.; Di Sabatino, S.; Martilli, A.; Chan, P. W.

    2018-03-01

    Anthropogenic heat flux is the heat generated by human activities in the urban canopy layer, which is considered the main contributor to the urban heat island (UHI). The UHI can in turn increase the use and energy consumption of air-conditioning systems. In this study, two effective methods for water-cooling air-conditioning systems in non-domestic areas, including the direct cooling system and central piped cooling towers (CPCTs), are physically based, parameterized, and implemented in a weather research and forecasting model at the city scale of Hong Kong. An extreme high temperature event (June 23-28, 2016) in the urban areas was examined, and we assessed the effects on the surface thermal environment, the interaction of sea-land breeze circulation and urban heat island circulation, boundary layer dynamics, and a possible reduction of energy consumption. The results showed that both water-cooled air-conditioning systems could reduce the 2 m air temperature by around 0.5 °C-0.8 °C during the daytime, and around 1.5 °C around 7:00-8:00 pm when the planetary boundary layer (PBL) height was confined to a few hundred meters. The CPCT contributed around 80%-90% latent heat flux and significantly increased the water vapor mixing ratio in the atmosphere by around 0.29 g kg-1 on average. The implementation of the two alternative air-conditioning systems could modify the heat and momentum of turbulence, which inhibited the evolution of the PBL height (a reduction of 100-150 m), reduced the vertical mixing, presented lower horizontal wind speed and buoyant production of turbulent kinetic energy, and reduced the strength of sea breeze and UHI circulation, which in turn affected the removal of air pollutants. Moreover, the two alternative air-conditioning systems could significantly reduce the energy consumption by around 30% during extreme high temperature events. The results of this study suggest potential UHI mitigation strategies and can be extended to

  13. Thermodynamic modelling and performance study of an engine waste heat driven adsorption cooling for automotive air-conditioning

    International Nuclear Information System (INIS)

    Ali, Syed Muztuza; Chakraborty, Anutosh

    2015-01-01

    Waste heat from engine can be utilized to drive an adsorption cooling system for air conditioning purposes in the vehicle cabin, which not only improves the fuel economy but also reduces the carbon footprint. It is also important to reduce the size of the adsorption bed to adopt the adsorption technology for air-conditioning applications in passenger cars, buses and trucks or even trains. In this article, we present a two stage indirect exhaust heat recovery system of automotive engine employing an effective lumped parameter model to simulate the dynamic behaviors of an adsorption chiller that ranges from the transient to the cyclic steady states. The thermodynamic framework of adsorption chiller is developed from the rigor of mass and energy balances of each component of the system and experimentally confirmed isotherms and kinetics data of various adsorbent–adsorbate pairs. The performance factors are calculated in terms of COP (Coefficient of Performance) and SCP (Specific Cooling Power) for different operating parameters such as cycle time, exhaust gas temperatures, cooling water temperatures and flow rates. From the simulation results, it is found that the exhaust energy of a six cylinder 3000 cc private car is able to produce nearly 3 kW of cooling power for the car cabin. It is also observed that the driving heat source temperature does not remain constant throughout the cycle time unlike the conventional adsorption chiller, and the hot water temperatures as driving source vary from 65 to 95 °C. CaCl 2 -in-silica gel–water system is found better in terms of COP and SCP as compared with other adsorbents – water systems. - Highlights: • Adsorption cooling for car air conditioning. • Thermodynamic frameworks with adsorption isotherms and kinetics. • Various adsorbents such as silica gel, zeolites (AQSOA-Z01, Z-02), CaCl 2 -in-silica gel are tested. • Cooling power for car cabin employing waste heat recovery.

  14. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Commercial Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This report covers an assessment of 182 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. commercial buildings to identify and provide analysis on 17 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, description of technical maturity, description of non-energy benefits, description of current barriers for market adoption, and description of the technology’s applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  15. Comparison of adsorption systems using natural gas fired fuel cell as heat source, for residential air conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Clausse, M.; Meunier, F. [LGP2ES, Cnam-IFFI (EA21), case 331, 292 rue Saint-Martin, 75141 Paris Cedex 03 (France); Coulie, J.; Herail, E. [N-GHY, Site Industriel Saint Antoine, ZI Montplaisir, 51 rue Isaac Newton, 81000 Albi (France)

    2009-06-15

    This article aims to evaluate the performances of an adsorption system driven thanks to the heat rejected by the post-combustion exhaust gases of a reformer/fuel cell system for residential air-conditioning application. Three adsorption pairs were compared: activated carbon/methanol, silica gel/water and zeolite/water. Taking into account both cooling power and sensitivity to performances of the heat rejection and recovery exchangers, it appears that zeolite 13X/water is the adsorption pair giving the best performance for this application. Nevertheless, a more detailed model would be of interest to better quantify the heat transfer impact on performance. (author)

  16. Energy Savings Potential and Research, Development, & Demonstration Opportunities for Residential Building Heating, Ventilation, and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Goetzler, William [Navigant Consulting, Inc., Burlington, MA (United States); Zogg, Robert [Navigant Consulting, Inc., Burlington, MA (United States); Young, Jim [Navigant Consulting, Inc., Burlington, MA (United States); Schmidt, Justin [Navigant Consulting, Inc., Burlington, MA (United States)

    2012-10-01

    This report is an assessment of 135 different heating, ventilation, and air-conditioning (HVAC) technologies for U.S. residential buildings to identify and provide analysis on 19 priority technology options in various stages of development. The analyses include an estimation of technical energy-savings potential, descriptions of technical maturity, descriptions of non-energy benefits, descriptions of current barriers for market adoption, and descriptions of the technology's applicability to different building or HVAC equipment types. From these technology descriptions, are suggestions for potential research, development and demonstration (RD&D) initiatives that would support further development of the priority technology options.

  17. Next Generation Refrigeration Lubricants for Low Global Warming Potential/Low Ozone Depleting Refrigeration and Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Hessell, Edward Thomas [Chemtura Corporation, Middlebury, CT (United States)

    2013-12-31

    The goal of this project is to develop and test new synthetic lubricants that possess high compatibility with new low ozone depleting (LOD) and low global warming potential (LGWP) refrigerants and offer improved lubricity and wear protection over current lubricant technologies. The improved compatibility of the lubricants with the refrigerants, along with improved lubricating properties, will resulted in lower energy consumption and longer service life of the refrigeration systems used in residential, commercial and industrial heating, ventilating and air-conditioning (HVAC) and refrigeration equipment.

  18. Solar thermal plant of air tube for solar air conditioning; Planta Solar Termica de tubos de vacio para aire acondicionado solar

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, J. C.; Lopez, J.; Coronas, A.

    2004-07-01

    The present implementation of refrigeration and air conditioning technologies driven by thermal solar energy is very limited although there is a great market demand for them for environmental reasons and security of energy supply. In this paper it is presented a detailed technical description of the solar plant installed at the technological Innovation Centre CREVER, and an example of a complete energy analysis of this plant working under the required conditions to be used for solar air conditioning applications. Also it is included a review of solar air conditioning systems state of the art. (Author)

  19. The principle of double effect applied to ethical dilemmas of social robots

    DEFF Research Database (Denmark)

    Bentzen, Martin Mose

    2016-01-01

    The introduction of social robots into society will require that they follow ethical principles which go beyond consequentialism. In this paper, I show how to apply the principle of double effect to solve an ethical dilemma involving robots studied by Alan Winfield and colleagues. The principle...... of double effect states conditions for ethically acceptable behavior when there are both positive and negative consequences of an action. I propose a formal semantics with actions, causes, intentions, and utilities based upon the work of Judea Pearl, John Horty, and others. With this formal semantics...

  20. Development and analysis of an economizer control strategy algorithm to promote an opportunity for energy savings in air conditioning installations

    Energy Technology Data Exchange (ETDEWEB)

    Neto, Jose H.M.; Azevedo, Walter L. [Centro Federal de Educacao Tecnologica de Minas Gerais (CEFET), Belo Horizonte, MG (Brazil). Dept. de Engenharia Mecanica]. E-mail: henrique@daem.des.cefetmg.br

    2000-07-01

    This work presents an algorithm control strategy denominated enthalpy economizer. The objective of this algorithm strategy is to determine the adequate fractions of outside and return air flowrates entering a cooling coil based on the analysis of the outside, return and supply air enthalpies, rather than on the analysis of the dry bulb temperatures. The proposed algorithm predicts the actual opening position of the outside and return air dampers in order to provide the lower mixing air enthalpy. First, the psychometrics properties of the outside and return air are calculated from actual measurements of the dry and wet bulb temperatures. Then, three distinct cases are analyzed: the enthalpy of the outside air is lower than the enthalpy of the supply air (free cooling); the enthalpy of the outside air is higher than the enthalpy of the return air; the enthalpy of the outside air is lower than the enthalpy of the return air and higher than the temperature of the supply air. Different outside air conditions were selected in order to represent typical weather data of Brazilians cities, as well as typical return air conditions. It was found that the enthalpy control strategy could promote an opportunity for energy savings mainly during mild nights and wintertime periods as well as during warm afternoons and summertime periods, depending on the outside air relative humidity. The proposed algorithm works well and can be integrated in some commercial automation software to reduce energy consumption and electricity demand. (author)

  1. Effect of fee-for-service air-conditioning management in balancing thermal comfort and energy usage.

    Science.gov (United States)

    Chen, Chen-Peng; Hwang, Ruey-Lung; Shih, Wen-Mei

    2014-11-01

    Balancing thermal comfort with the requirement of energy conservation presents a challenge in hot and humid areas where air-conditioning (AC) is frequently used in cooling indoor air. A field survey was conducted in Taiwan to demonstrate the adaptive behaviors of occupants in relation to the use of fans and AC in a school building employing mixed-mode ventilation where AC use was managed under a fee-for-service mechanism. The patterns of using windows, fans, and AC as well as the perceptions of students toward the thermal environment were examined. The results of thermal perception evaluation in relation to the indoor thermal conditions were compared to the levels of thermal comfort predicted by the adaptive models described in the American Society of Heating, Refrigerating, and Air-Conditioning Engineers Standard 55 and EN 15251 and to that of a local model for evaluating thermal adaption in naturally ventilated buildings. A thermal comfort-driven adaptive behavior model was established to illustrate the probability of fans/AC use at specific temperature and compared to the temperature threshold approach to illustrate the potential energy saving the fee-for-service mechanism provided. The findings of this study may be applied as a reference for regulating the operation of AC in school buildings of subtropical regions.

  2. Experimental study of the behavior of a hybrid ejector-based air-conditioning system with R134a

    International Nuclear Information System (INIS)

    Wang, Hao; Cai, Wenjian; Wang, Youyi; Yan, Jia; Wang, Lei

    2016-01-01

    Highlights: • We conduct experiment on two working mode of system and compare their performance. • We examine the influence of different pressure on system performance. • We examine the area ratio effect on ejector performance. • The system is sensitive to evaporating and generating pressure. • The COP improvement is around 34% under hybrid mode. - Abstract: A hybrid ejector-based air-conditioning system which combines a vapor compression cycle and a ejector refrigeration cycle was developed. The waste heat energy from automobile is applied as driven source towards ejector refrigeration cycle. Two ejectors with different mixing chamber diameters are applied separately for performance test and the system is operated under different working modes. The effect of generating, condensing and evaporating pressure on system performance are studied experimentally. The effect of ejector geometry parameters on ejector performance is also investigated. The performance comparison between two working modes is made and the results indicate that (1) the performance of proposed system is sensitive to the three pressures; (2) the coefficient of performance (COP) of hybrid ejector-based air-conditioning system is around 34% higher than that of conventional compressor based system which implies a potential energy saving ability of proposed hybrid system.

  3. Japanese and American competition in the development of scroll compressors and its impact on the American air conditioning industry

    Energy Technology Data Exchange (ETDEWEB)

    Ushimaru, Kenji (Energy International, Inc., Bellevue, WA (USA))

    1990-02-01

    This report examines the technological development of scroll compressors and its impact on the air conditioning equipment industry. Scroll compressors, although considered to be the compressors of the future for energy-efficient residential heat pumps and possibly for many other applications, are difficult to manufacture on a volume-production base. The manufacturing process requires computer-aided, numerically controlled tools for high-precision fabrication of major parts. Japan implemented a global strategy for dominating the technological world market in the 1970s, and scroll compressor technology benefited from the advent of new-generation machine tools. As a result, if American manufacturers of scroll compressors purchase or are essentially forced to purchase numerically controlled tools from Japan in the future, they will then become dependent on their own competitors because the same Japanese conglomerates that make numerically controlled tools also make scroll compressors. This study illustrates the importance of the basic machine tool industry to the health of the US economy. Without a strong machine tool industry, it is difficult for American manufacturers to put innovations, whether patented or not, into production. As we experience transformation in the air conditioning and refrigeration market, it will be critical to establish a consistent national policy to provide healthy competition among producers, to promote innovation within the industry, to enhance assimilation of new technology, and to eliminate practices that are incompatible with these goals. 72 refs., 8 figs., 1 tab.

  4. Energy Conversion and Transmission Characteristics Analysis of Ice Storage Air Conditioning System Driven by Distributed Photovoltaic Energy System

    Directory of Open Access Journals (Sweden)

    Yongfeng Xu

    2016-01-01

    Full Text Available In order to reduce the investment and operation cost of distributed PV energy system, ice storage technology was introduced to substitute batteries for solar energy storage. Firstly, the ice storage air conditioning system (ISACS driven by distributed photovoltaic energy system (DPES was proposed and the feasibility studies have been investigated in this paper. And then, the theoretical model has been established and experimental work has been done to analyze the energy coupling and transferring characteristics in light-electricity-cold conversion process. In addition, the structure optimization analysis was investigated. Results revealed that energy losses were high in ice making process of ice slide maker with only 17.38% energy utilization efficiency and the energy efficiency and exergy efficiency of ISACS driven by DPES were 5.44% and 67.30%, respectively. So the immersed evaporator and cointegrated exchanger were adopted for higher energy utilization efficiency and better financial rewards in structure optimization. The COP and exergy efficiency of ice maker can be increased to 1.48 and 81.24%, respectively, after optimization and the energy utilization efficiency of ISACS driven by DPES could be improved 2.88 times. Moreover, ISACS has the out-of-the-box function of ordinary air conditioning system. In conclusion, ISACS driven by DPES will have good application prospects in tropical regions without power grid.

  5. Machine Learning-Based Short-Term Prediction of Air-Conditioning Load through Smart Meter Analytics

    Directory of Open Access Journals (Sweden)

    Manoj Manivannan

    2017-11-01

    Full Text Available The present paper is focused on short-term prediction of air-conditioning (AC load of residential buildings using the data obtained from a conventional smart meter. The AC load, at each time step, is separated from smart meter’s aggregate consumption through energy disaggregation methodology. The obtained air-conditioning load and the corresponding historical weather data are then employed as input features for the prediction procedure. In the prediction step, different machine learning algorithms, including Artificial Neural Networks, Support Vector Machines, and Random Forests, are used in order to conduct hour-ahead and day-ahead predictions. The predictions obtained using Random Forests have been demonstrated to be the most accurate ones leading to hour-ahead and day-ahead prediction with R2 scores of 87.3% and 83.2%, respectively. The main advantage of the present methodology is separating the AC consumption from the consumptions of other residential appliances, which can then be predicted employing short-term weather forecasts. The other devices’ consumptions are largely dependent upon the occupant’s behaviour and are thus more difficult to predict. Therefore, the harsh alterations in the consumption of AC equipment, due to variations in the weather conditions, can be predicted with a higher accuracy; which in turn enhances the overall load prediction accuracy.

  6. Exergy and energy analyses of two different types of PCM based thermal management systems for space air conditioning applications

    International Nuclear Information System (INIS)

    Tyagi, V.V.; Pandey, A.K.; Buddhi, D.; Tyagi, S.K.

    2013-01-01

    Highlights: ► Calcium chloride hexahydrate (CaCl 2 ⋅6H 2 O) as a PCM was used in this study. ► Two different capsulated system (HDPE based panel and balls) were designed. ► The results of CaCl 2 ⋅6H 2 O are very attractive for space air conditioning. ► Energy and exergy analyses for space cooling applications. - Abstract: This communication presents the experimental study of PCM based thermal management systems for space heating and cooling applications using energy and exergy analysis. Two different types of based thermal management system (TMS-I and TMS-II) using calcium chloride hexahydrate as the heat carrier has been designed, fabricated and studied for space heating and cooling applications at a typical climatic zone in India. In the first experimental arrangement the charging of PCM has been carried out with air conditioning system while discharging has been carried out using electric heater for both the thermal management systems. While in the second arrangement the charging of PCM has been carried out by solar energy and the discharging has been carried out by circulating the cooler ambient air during the night time. In the first experiment, TMS-I is found to be more effective than that of TMS-II while it was found to be reverse in the case of second experiment for both the charging and discharging processes not only for energetic but also for the exergetic performances

  7. Thermal comfort in air-conditioned buildings in hot and humid climates--why are we not getting it right?

    Science.gov (United States)

    Sekhar, S C

    2016-02-01

    While there are plenty of anecdotal experiences of overcooled buildings in summer, evidence from field studies suggests that there is indeed an issue of overcooling in tropical buildings. The findings suggest that overcooled buildings are not a consequence of occupant preference but more like an outcome of the HVAC system design and operation. Occupants' adaptation in overcooled indoor environments through additional clothing cannot be regarded as an effective mitigating strategy for cold thermal discomfort. In the last two decades or so, several field studies and field environmental chamber studies in the tropics provided evidence for occupants' preference for a warmer temperature with adaptation methods such as elevated air speeds. It is important to bear in mind that indoor humidity levels are not compromised as they could have an impact on the inhaled air condition that could eventually affect perceived air quality. This review article has attempted to track significant developments in our understanding of the thermal comfort issues in air-conditioned office and educational buildings in hot and humid climates in the last 25 years, primarily on occupant preference for thermal comfort in such climates. The issue of overcooled buildings, by design intent or otherwise, is discussed in some detail. Finally, the article has explored some viable adaptive thermal comfort options that show considerable promise for not only improving thermal comfort in tropical buildings but are also energy efficient and could be seen as sustainable solutions. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Assessment for Desiccant Cooling Air-Conditioning at Antilles High School, Fort Buchanan, Puerto Rico: Moisture Load Analysis of the Gymnasium Building

    National Research Council Canada - National Science Library

    Barreto-Acobe, Jaynary

    2000-01-01

    .... Due to the high temperature and high relative humidity common to Puerto Rico, it is desirable to implement an air-conditioning system that can maintain a controlled temperature of 75 deg F and a 50...

  9. Greenhouse effect: an issue for the refrigeration and air conditioning sector; Effet de serre: quelle problematique pour le froid et le conditionnement de l`air?

    Energy Technology Data Exchange (ETDEWEB)

    Billiard, F. [Institut International du Froid, 75 - Paris (France)

    1997-12-31

    The principles of greenhouse effect and the greenhouse gas main direct and indirect emission sources due to refrigeration and air conditioning systems are first reviewed. Evolution scenarios from 1992 to 2020 and 2100 for the emissions of CFC, HCFC and HFC are presented and related to the Kyoto protocol project limitations; technical improvements in refrigerating and air conditioning systems (lower refrigerant utilization, fluid confinement, alternative technologies, natural refrigerant utilization, etc.) could lead to substantial diminutions of these greenhouse gases

  10. Study on Relative COP Changes with Increasing Heat Input Temperatures of Double Effect Steam Absorption Chillers

    Directory of Open Access Journals (Sweden)

    Abd Majid Mohd Amin

    2016-01-01

    Full Text Available Absorption chillers at cogeneration plants generate chilled water using steam supplied by heat recovery steam generators. The chillers are mainly of double effect type. The COP of double effect varies from 0.7 to 1.2 depending on operation and maintenance practices of the chillers. Heat input to the chillers during operations could have impact on the COP of the chillers. This study is on relative COP changes with increasing the heat input temperatures for a steam absorption chiller at a gas fueled cogeneration plant. Reversible COP analysis and zero order model were used for evaluating COP of the chiller for 118 days operation period. Results indicate increasing COP trends for both the reversible COP and zero model COP. Although the zero model COP are within the range of double effect absorption chiller, it is not so for the actual COP. The actual COP is below the range of normal double effect COP. It is recommended that economic replacement analysis to be undertaken to assess the feasibility either to repair or replace the existing absorption chiller.

  11. An Investigation about using Nanorefrigerants in Air Conditioning Systems According to the Theoretical, CFD and Experimental Review of the Recent Literature

    Directory of Open Access Journals (Sweden)

    Farshad Panahizadeh

    2016-10-01

    Full Text Available Greenhouse gases (GHG causing global warming and climate change. In the year 2014, 32.3 billion tones CO2 emitted to the atmosphere as the most important greenhouse gas. According to the statistics, a significant portion of this amount is related to electricity demand of air conditioning systems, for producing a one ton of refrigeration in HVAC air cooled or water cooled systems respectively 1026 and 764 grams GHG emitted in the atmosphere. Therefore, air conditioning systems have an important role in the global warming and climate change. By increasing the COP of air conditioning systems the electricity demand of them reduced. One strategy for increasing the COP of air conditioning systems is using nanorefrigerants. In the present study, a comprehensive information is given regarding to use nanorefrigerants in air conditioning systems according to the theoretical, CFD and experimental review of the recent literature. This paper gives assistance to designers of air conditioning systems in their future efforts for selecting refrigerant for their systems

  12. Evaluation of Refrigerating and Air Conditioning Devices in Energy Cascade Systems under the Restriction of Carbon Dioxide Emissions

    Science.gov (United States)

    Shimazaki, Yoichi; Akisawa, Atsushi; Kashiwagi, Takao

    It is necessary to introduce energy cascade systems into the industrial sector in Japan to reduce carbon dioxide emissions. The aim of this study is to evaluate the refrigerating and air conditioning devices in cases of introducing both energy cascade systems and thermal recycling systems in industries located around urban areas. The authors have developed an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Limitation of carbon dioxide emissions results in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature one is shifted to refrigeration. It was found that increasing the amount of garbage combustor waste heat can reduce electric power for the turbo refrigerator by promoting waste heat driven ammonia absorption refrigerator.

  13. An inverse method for calculation of thermal inertia and heat gain in air conditioning and refrigeration systems

    International Nuclear Information System (INIS)

    Fayazbakhsh, M.A.; Bagheri, F.; Bahrami, M.

    2015-01-01

    Highlights: • An inverse method is proposed to calculate thermal inertia in HVAC-R systems. • Real-time thermal loads are estimated using the proposed intelligent algorithm. • Calculation algorithm is validated with on-site measurements. • Freezer duty cycle data are extracted only based on temperature measurements. - Abstract: A new inverse method is proposed for estimation of thermal inertia and heat gain in air conditioning and refrigeration systems using on-site temperature measurements. The method is applied on a walk-in freezer room of a restaurant in Surrey, British Columbia, Canada during one week of its regular operation. The thermal inertia and instantaneous heat gain are calculated and the results are validated using actual information of the materials inside the freezer room. The proposed method can be implemented in intelligent control systems designed for new and existing HVAC-R systems to improve their overall energy efficiency and reduce their environmental impacts

  14. Solar energy contribution to the energy demand for air conditioning system in an office building under Tripoli climate conditions

    Directory of Open Access Journals (Sweden)

    Musbah Mohamed H.

    2014-01-01

    Full Text Available The feasibility of solar assisted air conditioning in an office building under Tripoli weather conditions is investigated in this paper. A single-effect lithium bromide absorption cycle powered by means of flat-plate solar collectors was modeled in order to predict the potential of the solar energy share. The cooling load profile was generated by using an detailed hourly based program and Typical meteorological year for Tripoli. System performance and solar energy fraction were calculated by varying two major parameters (collector’s slope angle and collector area. The maximum solar fraction of 48% was obtained by means of 1400 m2 of collector surface area. Analysis of results showed that, besides the collector surface area, the main factors affecting the solar fraction were the local weather conditions (intensity of incident solar radiation and the time of day when the plant was operated.

  15. Service oriented product innovation for improved environmental performance. An an exploratory case study of the air conditioning and cooling sector

    Energy Technology Data Exchange (ETDEWEB)

    Cook, M.; Maggs, H.; Neame, C.; Lemon, M. [The School of Applied Sciences, Cranfield University, Cranfield, Bedfordshire (United Kingdom)

    2006-09-15

    The need to improve the environmental performance of production and consumption practices within advanced industrialised nations is widely accepted. Finding ways to satisfy demand using far fewer resources is central to research in this field. For many, the trajectories of service orientated products are thought to provide an opportunity to address this need and anticipate futures in which economic growth is de-coupled from resource use. This paper presents the findings of exploratory research in the air-conditioning and cooling sector, which sought to understand how these benefits might be realised. It suggests that these benefits will not arise as a result of economic restructuring but rather that a deeper understanding of the process of service innovation, which underpins trajectories of service orientated products, is required to develop effective policy.

  16. Research on Using the Naturally Cold Air and the Snow for Data Center Air-conditioning, and Humidity Control

    Science.gov (United States)

    Tsuda, Kunikazu; Tano, Shunichi; Ichino, Junko

    To lower power consumption has becomes a worldwide concern. It is also becoming a bigger area in Computer Systems, such as reflected by the growing use of software-as-a-service and cloud computing whose market has increased since 2000, at the same time, the number of data centers that accumulates and manages the computer has increased rapidly. Power consumption at data centers is accounts for a big share of the entire IT power usage, and is still rapidly increasing. This research focuses on the air-conditioning that occupies accounts for the biggest portion of electric power consumption by data centers, and proposes to develop a technique to lower the power consumption by applying the natural cool air and the snow for control temperature and humidity. We verify those effectiveness of this approach by the experiment. Furthermore, we also examine the extent to which energy reduction is possible when a data center is located in Hokkaido.

  17. Refrigeration engineering and air conditioning: answers to climatic changes; Froid et conditionnement d'air: reponses aux changements climatiques

    Energy Technology Data Exchange (ETDEWEB)

    Heap, R.D.

    2002-07-01

    This paper examines the nature of climatic changes and their possible environmental consequences, and gives a summary of the policy approach adopted to tackle this question. Greenhouse gases include the traditional refrigerants and the recent ones. The impact of the Montreal protocol on the abatement of the climatic change is examined and the consequences of the Kyoto protocol on the refrigeration and air conditioning engineering are presented. The actions the industry should carry out in order to reduce the climatic changes are listed and the article stresses on the progresses made so far. Many actions remain to be implemented, in particular in the domain of good practices promotion and training. The international institute of refrigeration engineering (IIF) has un important role to play in this task. (J.S.)

  18. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    2016-01-01

    This paper presents a simple cooling technology using flash water evaporation. The technology combines a water atomizer with a plate heat exchanger used for heat recovery of a ventilation system. It is mainly used to cool the ventilation airflow from outdoors and is particularly suitable to be used...... in warm/hot and dry environment where dehumidification of outdoor air is not needed. A laboratory experiment was designed and conducted to evaluate the cooling effectiveness of this technology. The experiment was conducted in a twin-climate chamber. One chamber simulated warm/hot and dry outdoor...... environments and the other simulated an air-conditioned indoor environment. The flash water evaporation cooling device was installed in the chamber that simulated indoor environment. The air from the chamber simulating outdoor environment was introduced into the cooling device and cooled by the flash water...

  19. Saving 50% of energy in air conditioning and refrigeration; 50% de ahorro de energia en aire acondicionado y refrigeracion

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez De la Fuente, Rodolfo Javier [Instituto para la Proteccion Ambiental de Nuevo Leon-CAINTRA, Nuevo Leon (Mexico); Bolado Tamez, Jaime Antonio [Industrias AlEn S. A. de C. V., Monterrey (Mexico)

    1998-12-31

    Due to the fact that the air conditioning systems represent up to 70% of the energy consumption in our buildings, to the constant raise of the electric tariffs and to the increment of temperatures in Nuevo Leon State, as well as the restrictions on the use of some refrigerant fluids because of its potential damage to the ozone layer (Montreal Protocol) and the preferential use of refrigerants with low global heating potential (Kioto Protocol). The Camara de la Industria de la Transformacion de Nuevo Leon (Nuevo Leon`s Transformation Industry Chamber) through the Instituto para la Proteccion Ambiental de Nuevo Leon (Nuevo Leon`s Institute for Environmental Protection), create the program ECO-REFRIGERATION whose three missions are: Increase the efficiency of air conditioning and refrigeration equipment, promote the substitution of refrigerants and extend the benefits of these projects to the community in general. [Espanol] Debido a que los sistemas de climatizacion representan hasta el 70% de consumo energetico en nuestros inmuebles, al constante incremento de las tarifas electricas, el incremento de las temperaturas en Nuevo Leon, asi como la restriccion del uso de algunos refrigerantes por su potencial de dano de la capa de ozono (Protocolo de Montreal) y el uso preferente de refrigerantes con bajo potencial de calentamiento global (Protocolo de Kioto), la Camara de la Industria de la Transformacion de Nuevo Leon a traves del Instituto para la Proteccion Ambiental de Nuevo Leon crean el Programa ECO-REFRIGERACION cuyas tres misiones son: Incrementar la eficiencia de los equipos de aire acondicionado y refrigeracion, promover la sustitucion de refrigerantes y extender los beneficios de este proyecto a la comunidad en general.

  20. Impact of Isotonic Beverage on the Hydration Status of Healthy Chinese Adults in Air-Conditioned Environment

    Directory of Open Access Journals (Sweden)

    Phei Ching Siow

    2017-03-01

    Full Text Available People living in tropical climates spend much of their time in confined air-conditioned spaces, performing normal daily activities. This study investigated the effect of distilled water (W or isotonic beverage (IB on the hydration status in subjects living under these conditions. In a randomized crossover design, forty-nine healthy male subjects either consumed beverage or IB over a period of 8 h (8 h in a controlled air-conditioned environment. Blood, urine, and saliva samples were collected at baseline and after 8 h. Hydration status was assessed by body mass, urine output, blood and plasma volume, fluid retention, osmolality, electrolyte concentration and salivary flow rate. In the IB group, urine output (1862 ± 86 mL vs. 2104 ± 98 mL was significantly lower and more fluids were retained (17% ± 3% vs. 7% ± 3% as compared to W (p < 0.05 after 8 h. IB also resulted in body mass gain (0.14 ± 0.06 kg, while W led to body mass loss (−0.04 ± 0.05 kg (p = 0.01. A significantly smaller drop in blood volume and lower free water clearance was observed in IB (−1.18% ± 0.43%; 0.55 ± 0.26 mL/min compared to W (−2.11% ± 0.41%; 1.35 ± 0.24 mL/min (p < 0.05. IB increased salivary flow rate (0.54 ± 0.05 g/min 0.62 ± 0.04 g/min. In indoor environments, performing routine activities and even without excessive sweating, isotonic beverages may be more effective at retaining fluids and maintaining hydration status by up to 10% compared to distilled water.

  1. A systematic parametric study and feasibility assessment of solar-assisted single-effect, double-effect, and triple-effect absorption chillers for heating and cooling applications

    International Nuclear Information System (INIS)

    Shirazi, Ali; Taylor, Robert A.; White, Stephen D.; Morrison, Graham L.

    2016-01-01

    Highlights: • TRNSYS simulations of SHC single/multi-effect absorption chillers were conducted. • A detailed parametric study was conducted to find the optimal size of the tank. • The effect of tank heat loss on the performance of the configurations was analyzed. • The effect of beam and diffuse radiation on the solar field size was investigated. • Energy performance and economics of each plant were analyzed in various climates. - Abstract: The present work investigates the feasibility of solar heating and cooling (SHC) absorption systems based on combining three types of LiBr–H 2 O absorption chillers (single-, double-, and triple-effect) with common solar thermal collectors available on the market. A single-effect chiller is coupled with evacuated tube collectors (ETCs) – SHC1. A double-effect chiller is integrated with parabolic trough collectors (PTCs), linear Fresnel micro-concentrating collectors (MCTs) and evacuated flat plate collectors (EFPCs) respectively – SHC2, SHC3, and SHC4. PTCs are employed to provide high-temperature heat to a triple-effect absorption chiller (SHC5). Although triple-effect chillers have been around for a while, this paper represents the first system-level analysis of these chillers coupled with high-temperature solar concentrating collectors for air-conditioning applications. A simulation model for each configuration is developed in a transient system simulation environment (TRNSYS 17). Furthermore, a unique, comprehensive perspective is given by investigating the impact of characteristic solar beam radiation to global radiation ratios on the techno-economic performance of the proposed SHC plants for a wide variety of climatic regions worldwide. The results of parametric study suggest that a storage volume of around 70 L/m 2 is a good choice for SHC1, while 40–50 L/m 2 storage capacity is sufficient for the other configurations (SHC2 to SHC5). The simulation results reveal that when the fraction of direct normal

  2. Development of PFAS-heat storage type air conditioning system with individual heat pump. Chikunetsushiki kobetsu hito ponpu kucho system 'PFAS' no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okubo, S. (Tokyo Electric Power Co., Inc. (Japan)); Seki, Y. (Takasago Thermal Engineering Co. Ltd., Tokyo (Japan)); Igarashi, M. (Nippon P-MAC Co. Ltd., Tokyo (Japan))

    1993-12-05

    With various uses of building, a good air conditioning system with individual control is needed. Meanwhile, the maximum electric power during summer days is increasing year by year, equalization of electricity load consumed by air conditioning system becomes an important subject in the aspect of stable supply of energy. For meeting these requirements, authors developed a system of the PMAC fancoil air conditioning and heat storage system (PFAS) which provides with a distributed individual type hydrothermal source air conditioner and a heat storage system. This paper introduced a summary of the PFAS system and some operating examples. This system was constructed by the air conditioning unit of combining a hydrothermal source unitary heat pump with a fancoil, a machine of a heat source such as an air cooling heat pump, a heat storage tank and a control system, and it realized equalization of electricity load consumed and saving the running cost of the air conditioning system owing to the night electric use. 8 refs.

  3. Development of air conditioning system and labor saving technology for efficient hydroponic cultivation; Konoritsuna suiko saibai no tame no kucho to shoryokuka gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Okano, T.; Terazoe, H.; Shoji, K. [Central Research Institute of Electric Power Industry, Tokyo (Japan); Yonezawa, K.; Otani, F. [Chugoku Electric Power Co. Inc., Hiroshima (Japan); Sekiyama, T.; Kosakai, K.; Sato, H.

    1997-06-01

    Equipment which made experiments on air conditioning and hydroponic cultivation possible was set up at the technical research center of the Chugoku Electric Power Co., to study an air conditioning system using night power and energy saving technology for the cultivation. Vegetables suitable to the cultivation were selected. For air conditioning, adopted was a water heat storage air conditioning system using night power. The space between the shade curtain and the greenhouse roof was ventilated to prevent increase in cooling load caused by rise in curtain temperature. Moreover, the cultivation equipment was covered with transparent vinyl film to cool the inside of the equipment. The hydroponic cultivation equipment was trially manufactured which makes the continued production by one worker possible. The cultivation of spinach, leaf lettuce and chingensai throughout the year became possible. The yield of chingensai reached the target, but those of spinach and leaf lettuce were approximately 70% of the targets. Vegetables to be produced in the air-conditioned greenhouse by hydroponic cultivation are thought to be those that can have added values such non-pesticides and ingredients, young plants which were increased by cutting or tissue culturing, etc. 5 refs., 19 figs., 8 tabs.

  4. Effect of Thermal Bridges in Insulated Walls on Air-Conditioning Loads Using Whole Building Energy Analysis

    Directory of Open Access Journals (Sweden)

    Mohamed F. Zedan

    2016-06-01

    Full Text Available Thermal bridges in building walls are usually caused by mortar joints between insulated building blocks and by the presence of concrete columns and beams within the building envelope. These bridges create an easy path for heat transmission and therefore increase air-conditioning loads. In this study, the effects of mortar joints only on cooling and heating loads in a typical two-story villa in Riyadh are investigated using whole building energy analysis. All loads found in the villa, which broadly include ventilation, transmission, solar and internal loads, are considered with schedules based on local lifestyles. The thermal bridging effect of mortar joints is simulated by reducing wall thermal resistance by a percentage that depends on the bridges to wall area ratio (TB area ratio or Amj/Atot and the nominal thermal insulation thickness (Lins. These percentage reductions are obtained from a correlation developed by using a rigorous 2D dynamic model of heat transmission through walls with mortar joints. The reduction in thermal resistance is achieved through minor reductions in insulation thickness, thereby keeping the thermal mass of the wall essentially unchanged. Results indicate that yearly and monthly cooling loads increase almost linearly with the thermal bridge to wall area ratio. The increase in the villa’s yearly loads varies from about 3% for Amj/Atot = 0.02 to about 11% for Amj/Atot = 0.08. The monthly increase is not uniform over the year and reaches a maximum in August, where it ranges from 5% for Amj/Atot = 0.02 to 15% for Amj/Atot = 0.08. In winter, results show that yearly heating loads are generally very small compared to cooling loads and that heating is only needed in December, January and February, starting from late night to late morning. Monthly heating loads increase with the thermal bridge area ratio; however, the variation is not as linear as observed in cooling loads. The present results highlight the importance of

  5. Performance improvement of a hybrid air conditioning system using the indirect evaporative cooler with internal baffles as a pre-cooling unit

    Directory of Open Access Journals (Sweden)

    A.E. Kabeel

    2017-12-01

    Full Text Available In the present paper, the effects of the indirect evaporative cooler with internal baffle on the performance of the hybrid air conditioning system are numerically investigated. The hybrid air conditioning system contains two indirect evaporative coolers with internal baffle, one is utilized to pre-cool the air inlet to the desiccant wheel and the other is utilized to pre-cool the supply air inlet to the room. The effects of the inlet conditions of the process and reactivation air and working air ratio on the thermal performance of the hybrid air conditioning system have been analyzed. The results of this study show that in the hybrid air conditioning system for using the indirect evaporative cooler with internal baffle as a pre-cooling unit, the supply air temperature reduced by 21% and the coefficient of performance improved by 71% as compared to previous designs of the hybrid air conditioning system at the same inlet conditions. For increasing process air inlet temperature from 25 °C to 45 °C, supply air temperature increases from 12.7 °C to 14.2 °C, thermal COP increases from 1.87 to 2.84, and supply air relative humidity increases from 76.7% to 77.4%. Also, for increasing the reactivation air inlet temperature from 70 °C to 110 °C, supply air temperature dropped from 15.9 °C to 10.9 °C, supply air relative humidity dropped from 82.7% to 71.8%, and thermal COP dropped from 4.5 to 1.7. The recommended optimal air working ratio in the indirect evaporative cooler with internal baffle should be 0.15. Keywords: Desiccant material, Solar air collector, Evaporative cooler, Internal baffles, Air conditioning

  6. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV systems.

    Directory of Open Access Journals (Sweden)

    Bing Feng Ng

    Full Text Available The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  7. Match properties of heat transfer and coupled heat and mass transfer processes in air-conditioning system

    International Nuclear Information System (INIS)

    Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi

    2012-01-01

    Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.

  8. Experimental Investigation of an Automobile Air-Conditioning System using Integrated Brushless Direct Current Motor Rotary Compressor

    Directory of Open Access Journals (Sweden)

    Sukri M.F.

    2016-01-01

    Full Text Available The present study presents an experimental investigation on the effect of condenser air inlet temperature and dimensionless parameter of X on the performance of automobile air-conditioning (AAC system using integrated brushless direct current motor-rotary compressor and electronic expansion valve. The other components of AAC system are from original component of AAC system used for medium size passenger car. The experimental results showed that the increment of the condenser air inlet temperature and X caused an increase in condensing temperature, cooling capacity and compressor work, while decreasing the coefficient of performance (COP. Meanwhile, the evaporating temperature increase with the increment of condenser air inlet temperature, but decrease with decrement of X. In general, AAC system have to work at higher value of X in order to produce more cooling capacity, thereby increment in compressor work also occurs due to energy balance. However, at higher value of X, the COP of the system dropped due to dominant increase in compressor power, as opposed to a rise in cooling capacity. Due to this reason, the best operation of this compressor occurs at X = 4.96 for constant T5 (35ºC, or at T5 = 30ºC for constant X (4.96.

  9. Development of novel control strategy for multiple circuit, roof top bus air conditioning system in hot humid countries

    Energy Technology Data Exchange (ETDEWEB)

    Khamis Mansour, M.; Musa, Md Nor; Wan Hassan, Mat Nawi; Saqr, Khalid M. [Thermo-Fluid Department, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, 81310 Johor Bahru (Malaysia)

    2008-06-15

    A novel control strategy to improve energy efficiency and to enhance passengers' thermal comfort of a new roof top bus multiple circuit air conditioning (AC) system operating on partial load conditions is presented. A novel strategy for automatic control of the AC system was developed based on numerous experimental test runs at various operating conditions, taking into account energy saving and thermal comfort without sacrificing the proper cycling rate of the system compressor. For this task, more than 50 test runs were conducted at different set point temperatures of 21, 22 and 23 C. Fanger's method was used to evaluate passenger thermal comfort, and the system energy consumption was also calculated. A performance comparison between that of the conventional AC system and that of the newly developed one has been conducted. The comparison revealed that the adopted control strategy introduces significant improvements in terms of thermal comfort and energy saving on various partial load conditions. Potential energy saving of up to 31.6% could be achieved. This results in a short payback period of 17 months. It was found from the economic analysis that the new system is able to save approximately 20.0% of the life cycle cost. (author)

  10. Development and Ecological-Energy Comparative Analysis оf Vapor Compression and Solar Absorption Schemes of Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2017-12-01

    Full Text Available The mission of the research included the following objectives: the development of new circuit decisions for the alternate refrigerating systems based on the use of an open absorptive circuit and on the use of solar energy for absorbent solution regeneration; an assessment of the energy and envi-ronmental characteristics of the developed systems; obtaining of the experimental data for an assess-ment of the principal capabilities of the proposed new solar air-conditioning systems. New principles for design of heat and mass transfer equipment in the version with a movable packing of heat exchange elements (fluidized bed packing "gas - liquid - solid body" placed in the packed bed were developed, which allows self-cleaning of the working surfaces and walls of the heat and mass transfer equipment HMT. This new solution, when working with outdoor air and solutions of absorbents, seems to be a fundamentally important condition for maintaining the working capacity of solar absorption systems. The new schemes of absorber with internal steam cooling allowing the improve-ment of the new scheme of the alternate refrigerating system were developed. Comparative analysis based on the methodology of the "Life Cycle Assessment" (LCA showed that new, developed solar systems provide the considerable decrease in energy consumption, their use leads to the decrease of exhaustion of natural resources, influences less global climate change.

  11. Investigation on output capacity control strategy of variable refrigerant flow air conditioning system with multi-compressor

    International Nuclear Information System (INIS)

    Tu, Qiu; Zou, Deqiu; Deng, Chenmian; Zhang, Jie; Hou, Lifeng; Yang, Min; Nong, Guicai; Feng, Yuhai

    2016-01-01

    Highlights: • The control model of compressor output capacity has been built. • The control strategy of compressor switching has been presented. • The switching process of standard compressor has been described. • The characteristics of EER and noise have been presented. • The control strategy and model have been proved by experiments. - Abstract: A set of 14 HP variable refrigerant flow air conditioning system (VRF AC) with multi-compressor has been designed, and the output capacity control strategy of compressor(s) including the switching control model of standard compressor has been built. In the output capacity control model, a certain suction pressure is used as the pressure control target to adjust the output capacity of compressors, and a little pressure fluctuation is taken into account to amend the target pressure. Furthermore, in the compressor switching control model, the most favorable operation frequency region is determined on base of the energy efficiency characteristic and noise characteristic of the compressor. And, in order to solve the large fluctuation problem of the system running and frequent ON-OFF action of the standard compressor, the equal output capacity switching principle can be used to determine the thermo-on and thermo-off switched frequency points, and control the switching process of the compressor. Experiments demonstrate the feasibility of this control strategy to ensure the stability and reliability, improve the energy efficiency and reduce the compressor noise.

  12. Development of novel control strategy for multiple circuit, roof top bus air conditioning system in hot humid countries

    International Nuclear Information System (INIS)

    Khamis Mansour, M.; Musa, Md Nor; Mat Nawi Wan Hassan; Saqr, Khalid M.

    2008-01-01

    A novel control strategy to improve energy efficiency and to enhance passengers' thermal comfort of a new roof top bus multiple circuit air conditioning (AC) system operating on partial load conditions is presented. A novel strategy for automatic control of the AC system was developed based on numerous experimental test runs at various operating conditions, taking into account energy saving and thermal comfort without sacrificing the proper cycling rate of the system compressor. For this task, more than 50 test runs were conducted at different set point temperatures of 21, 22 and 23 deg. C. Fanger's method was used to evaluate passenger thermal comfort, and the system energy consumption was also calculated. A performance comparison between that of the conventional AC system and that of the newly developed one has been conducted. The comparison revealed that the adopted control strategy introduces significant improvements in terms of thermal comfort and energy saving on various partial load conditions. Potential energy saving of up to 31.6% could be achieved. This results in a short payback period of 17 months. It was found from the economic analysis that the new system is able to save approximately 20.0% of the life cycle cost

  13. Stochastic Unit Commitment of Wind-Integrated Power System Considering Air-Conditioning Loads for Demand Response

    Directory of Open Access Journals (Sweden)

    Xiao Han

    2017-11-01

    Full Text Available As a result of extensive penetration of wind farms into electricity grids, power systems face enormous challenges in daily operation because of the intermittent characteristics of wind energy. In particular, the load peak-valley gap has been dramatically widened in wind energy-integrated power systems. How to quickly and efficiently meet the peak-load demand has become an issue to practitioners. Previous literature has illustrated that the demand response (DR is an important mechanism to direct customer usage behaviors and reduce the peak load at critical times. This paper introduces air-conditioning loads (ACLs as a load shedding measure in the DR project. On the basis of the equivalent thermal parameter model for ACLs and the state-queue control method, a compensation cost calculation method for the ACL to shift peak load is proposed. As a result of the fluctuation and uncertainty of wind energy, a two-stage stochastic unit commitment (UC model is developed to analyze the ACL users’ response in the wind-integrated power system. A simulation study on residential and commercial ACLs has been performed on a 10-generator test system. The results illustrate the feasibility of the proposed stochastic programming strategy and that the system peak load can be effectively reduced through the participation of ACL users in DR projects.

  14. Operative temperature and thermal sensation assessments in non-air-conditioned multi-storey hostels in Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Dahlan, N.D. [Department of Architecture, Faculty of Design and Architecture, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor (Malaysia); Jones, P.J.; Alexander, D.K. [Welsh School of Architecture, Cardiff University, Bute Building, King Edward VII Avenue, CF10 3NB (United Kingdom)

    2011-02-15

    This study assessed the influences of operative temperature on occupants' perceptions of indoor thermal condition in three non-air-conditioned multi-storey hostels in Klang Valley, Malaysia. The thermal conditions of 24 measured rooms were recorded with and without an operating ceiling fan from May until July 2007. Measurements were made simultaneously at three different floor levels, namely, at the first, fifth and top floor of each of the case study hostels. A questionnaire survey was completed by 298 female student occupants of the same case study hostels. The results suggested that even though a significance above p < 0.01 was recorded between the operative temperatures with and without fan operation, the temperature difference remained small, i.e., from 0.5 K to 1 K. The findings of the questionnaire survey showed that the occupants perceived the thermal conditions in rooms that were shaded with a projected balcony (shading ratio of 0.9), a long roof overhang (shading ratio of 1.6) and an operable window-to-wall ratio of 0.3 to be thermally comfortable. (author)

  15. Molecular typing of Legionella pneumophila from air-conditioning cooling waters using mip gene, SBT, and FAFLP methods.

    Science.gov (United States)

    Gong, Xiangli; Li, Juntao; Zhang, Ying; Hou, Shuiping; Qu, Pinghua; Yang, Zhicong; Chen, Shouyi

    2017-08-01

    Legionella spp. are important waterborne pathogens. Molecular typing has become an important method for outbreaks investigations and source tracking of Legionnaires. In a survey program conducted by the Guangzhou Center for Disease Control and Prevention, multiple serotypes Legionella pneumophila (L. pneumophila) were isolated from waters in air-conditioning cooling towers in urban Guangzhou region, China between 2008 and 2011. Three genotyping methods, mip (macrophage infectivity potentiator) genotyping, SBT (sequence-based typing), and FAFLP (fluorescent amplified fragment length polymorphism analysis) were used to type these waterborne L. pneumophila isolates. The three methods were capable of typing all the 134 isolates and a reference strain of L. pneumophila (ATCC33153), with discriminatory indices of 0.7034, 0.9218, and 0.9376, for the mip, SBT, and FAFLP methods respectively. Among the 9 serotypes of the 134 isolates, 10, 50, and 34 molecular types were detected by the mip, SBT, and FAFLP methods respectively. The mip genotyping and SBT typing are more feasible for inter-laboratory results sharing and comparison of different types of L. pneumophila. The SBT and FAFLP typing methods were rapid with higher discriminatory abilities. Combinations of two or more of the typing methods enables more accurate typing of Legionella isolates for outbreak investigations and source tracking of Legionnaires. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Experimental performance and parametric analysis of heat pipe heat exchanger for air conditioning application integrated with evaporative cooling

    Science.gov (United States)

    Jadhav, Tushar S.; Lele, Mandar M.

    2017-11-01

    The experimental performance of different heat pipe heat exchanger (HPHX) configurations using distilled water as the working fluid is reported in the present study. The three HPHX configurations in the present investigation include HPHX with single wick structure (HPHX 1), HPHX with composite wick structure (HPHX 2) and hybrid HPHX (HPHX 3) which is the combination of HPHX 1 and HPHX 2. The parameters considered for the parametric analysis of HPHX in all the three configurations are outdoor air dry bulb temperature entering the evaporator section of HPHX (OADBT), return air dry bulb temperature entering the condenser section of HPHX (RADBT), outdoor air velocity (Ve) and return air velocity (Vc). The OADBT is varied between 40 and 24 °C and the outdoor & return air velocities between 0.6 and 2.4 m/s. The parametric analysis of HPHX without evaporative cooling is studied for RADBT = 24 °C whereas RADBT is maintained at 20 °C for the parametric analysis of HPHX integrated with evaporative cooling. In comparison with HPHX without evaporative cooling, the performance of HPHX with evaporative cooling is enhanced by 17% for single wick structure (HPHX 1), 47% for composite wick structure (HPHX 2) and 59% for hybrid HPHX (HPHX 3) for OADBT = 40 °C and at Ve = Vc of 0.6 m/s. The results of the experimental analysis highlights the benefits of HPHX integrated with evaporative cooling for achieving significant energy savings in air conditioning application.

  17. Application of acoustic agglomeration to enhance air filtration efficiency in air-conditioning and mechanical ventilation (ACMV) systems.

    Science.gov (United States)

    Ng, Bing Feng; Xiong, Jin Wen; Wan, Man Pun

    2017-01-01

    The recent episodes of haze in Southeast Asia have caused some of the worst regional atmospheric pollution ever recorded in history. In order to control the levels of airborne fine particulate matters (PM) indoors, filtration systems providing high PM capturing efficiency are often sought, which inadvertently also results in high airflow resistance (or pressure drop) that increases the energy consumption for air distribution. A pre-conditioning mechanism promoting the formation of particle clusters to enhance PM capturing efficiency without adding flow resistance in the air distribution ductwork could provide an energy-efficient solution. This pre-conditioning mechanism can be fulfilled by acoustic agglomeration, which is a phenomenon that promotes the coagulation of suspended particles by acoustic waves propagating in the fluid medium. This paper discusses the basic mechanisms of acoustic agglomeration along with influencing factors that could affect the agglomeration efficiency. The feasibility to apply acoustic agglomeration to improve filtration in air-conditioning and mechanical ventilation (ACMV) systems is investigated experimentally in a small-scale wind tunnel. Experimental results indicate that this novel application of acoustic pre-conditioning improves the PM2.5 filtration efficiency of the test filters by up to 10% without introducing additional pressure drop. The fan energy savings from not having to switch to a high capturing efficiency filter largely outstrip the additional energy consumed by the acoustics system. This, as a whole, demonstrates potential energy savings from the combined acoustic-enhanced filtration system without compromising on PM capturing efficiency.

  18. The optimum intermediate pressure of two-stages vapor compression refrigeration cycle for Air-Conditioning unit

    Science.gov (United States)

    Ambarita, H.; Sihombing, H. V.

    2018-03-01

    Vapor compression cycle is mainly employed as a refrigeration cycle in the Air-Conditioning (AC) unit. In order to save energy, the Coefficient of Performance (COP) of the need to be improved. One of the potential solutions is to modify the system into multi-stages vapor compression cycle. The suitable intermediate pressure between the high and low pressures is one of the design issues. The present work deals with the investigation of an optimum intermediate pressure of two-stages vapor compression refrigeration cycle. Typical vapor compression cycle that is used in AC unit is taken into consideration. The used refrigerants are R134a. The governing equations have been developed for the systems. An inhouse program has been developed to solve the problem. COP, mass flow rate of the refrigerant and compressor power as a function of intermediate pressure are plotted. It was shown that there exists an optimum intermediate pressure for maximum COP. For refrigerant R134a, the proposed correlations need to be revised.

  19. In-Cabin Air Quality during Driving and Engine Idling in Air-Conditioned Private Vehicles in Hong Kong

    Directory of Open Access Journals (Sweden)

    Natasha Maria Barnes

    2018-03-01

    Full Text Available Many people spend lengthy periods each day in enclosed vehicles in Hong Kong. However, comparably limited data is available about in-cabin air quality in air-conditioned private vehicles, and the car usage that may affect the air quality. Fifty-one vehicles were tested for particulate matter (PM0.3 and PM2.5, total volatile organic compounds (TVOCs, carbon monoxide (CO, carbon dioxide (CO2, airborne bacteria, and fungi levels during their routine travel journey. Ten of these vehicles were further examined for PM0.3, PM2.5, TVOCs, CO, and CO2 during engine idling. In general, during driving PM2.5 levels in-cabin reduced overtime, but not PM0.3. For TVOCs, 24% vehicles exceeded the recommended Indoor Air Quality (IAQ level in offices and public places set by the Hong Kong Environmental Protection Department. The total volatile organic compounds (TVOC concentration positively correlated with the age of the vehicle. Carbon monoxide (CO levels in all of the vehicles were lower than the IAQ recommendation, while 96% vehicles exceeded the recommended CO2 level of 1000 ppmv; 16% vehicles >5000 ppmv. Microbial counts were relatively low. TVOCs levels at idle engine were higher than that during driving. Although the time we spend in vehicles is short, the potential exposure to high levels of pollutants should not be overlooked.

  20. Evaluation of Heating, Ventilation, and Air conditioning (HVAC System Performance in an Administrative Building in Tehran (Iran

    Directory of Open Access Journals (Sweden)

    H. Mari Oriyad

    2014-09-01

    Full Text Available Introduction: One of the factors influencing on indoor air quality of the buildings is performance of HVAC (heating, ventilation, and air conditioning systems. These systems supply clean and odorless air, with temperature, humidity, and air velocity within comfort ranges for the residents. The aim of this study was to evaluate performance HVAC system in an administrative building in Tehran. .Material and Method: A questionnaire, developed in their research was used to assess the building occupants’ perception about the performance of HVAC system. To evaluate the performance of HVAC systems, air velocities were measured in the diffusers using a thermal anemometer. Moreover, CO2 concentration, air temperature and relative humidity were measured in the whole floors of the building. Air distribution inside the building was evaluated using smoke test. .Results: Most of the studied people complained about the direction of airflow, thermal conditions and cigarette odor. The highest level of carbon dioxide was measured at 930 ppm inside the restaurant. The maximum and minimum air temperatures and relative humidity were measured 28.3-13.8° C and 28.4-23% respectively. Smoke test showed that the air distribution/direction wasn’t suitable in one third of air diffusers. .Conclusion: Improper air distribution / direction was the main problem with the studied HVAC system which could be corrected by adjusting and balancing of the system.

  1. Further optimization of a parallel double-effect organosilicon distillation scheme through exergy analysis

    International Nuclear Information System (INIS)

    Sun, Jinsheng; Dai, Leilei; Shi, Ming; Gao, Hong; Cao, Xijia; Liu, Guangxin

    2014-01-01

    In our previous work, a significant improvement in organosilicon monomer distillation using parallel double-effect heat integration between a heavies removal column and six other columns, as well as heat integration between methyltrichlorosilane and dimethylchlorosilane columns, reduced the total exergy loss of the currently running counterpart by 40.41%. Further research regarding this optimized scheme demonstrated that it was necessary to reduce the higher operating pressure of the methyltrichlorosilane column, which is required for heat integration between the methyltrichlorosilane and dimethylchlorosilane columns. Therefore, in this contribution, a challenger scheme is presented with heat pumps introduced separately from the originally heat-coupled methyltrichlorosilane and dimethylchlorosilane columns in the above-mentioned optimized scheme, which is the prototype for this work. Both schemes are simulated using the same purity requirements used in running industrial units. The thermodynamic properties from the simulation are used to calculate the energy consumption and exergy loss of the two schemes. The results show that the heat pump option further reduces the flowsheet energy consumption and exergy loss by 27.35% and 10.98% relative to the prototype scheme. These results indicate that the heat pumps are superior to heat integration in the context of energy-savings during organosilicon monomer distillation. - Highlights: • Combine the paralleled double-effect and heat pump distillation to organosilicon distillation. • Compare the double-effect with the heat pump in saving energy. • Further cut down the flowsheet energy consumption and exergy loss by 27.35% and 10.98% respectively

  2. New steps for energy saving air conditioning of historical buildings. Prussian Museum at Minden; Neue Ansaetze zur energiesparenden Klimatisierung historischer Gebaeude. Preussen-Museum in Minden

    Energy Technology Data Exchange (ETDEWEB)

    Glane, M. [pbr Planungsbuero Rohling AG Architekten und Ingenieure, Osnabrueck (Germany)

    2005-08-01

    By a total consideration taking into account all museum-specified aspects, civil engineering and process control, it is possible to garantee energy saving technology with high efficient air conditioning also in the sector of sophisticated preservation of historic buildings and monuments. (GL)

  3. The reversible air-conditioning: economical and ecological asset recognized by the public authorities; La climatisation reversible electrique: des atouts economiques et ecologiques reconnus par les pouvoirs publics

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    The reversible air-conditioning allows at once the heating and the cooling of the building. This system is very powerful from an energetic and an environmental point of view. Moreover the government proposes financial assistance to the system implementation with a fiscal amortization. (A.L.B.)

  4. Estimated 2017 Refrigerant Emissions of 2,3,3,3-Tetrafluoropropene (HFC-1234yf) in the United States Resulting from Automobile Air Conditioning

    Science.gov (United States)

    In response to recent regulations and concern over climate change, the global automotive community is evaluating alternatives to the current refrigerant used in automobile air conditioning units, 1,1,1,2-tetrafluoroethane, HFC-134a. One potential alternative is 2,3,3,3-tetrafluor...

  5. Greenhouse effect: effects on refrigerating and air conditioning industries; Effet de serre: impacts sur les professions du froid et de la climatisation

    Energy Technology Data Exchange (ETDEWEB)

    Le Boru, B. [Association Francaise de Froid, Alliance Froid Climatisation Environnement, 75 - Paris (France)

    1997-12-31

    The various factors (refrigerant characteristics, design and operating performance, insulation type, etc.) involved in greenhouse gas emission from refrigerating and air conditioning equipment are listed with the potential actions that may be taken at the different stages of equipment design, engineering, installation, operation, maintenance and dismantling, in order to reduce pollutant emissions

  6. Regulation. Space heating, air-conditioning, sanitary hot water, ventilation, air processing, centralized technical management; Regulation. Chauffage, climatisation, ECS, ventilation, conditionnement d`air, gestion technique centralisee

    Energy Technology Data Exchange (ETDEWEB)

    Davy de Virville, Ph.

    1999-10-01

    This book deals with regulations techniques encountered in air conditioning engineering in general: space heating, sanitary hot water production, ventilation systems, air processing systems, centralized technical management systems. Its aim is to propose regulation schemes applied to the main devices involved in these applications. (J.S.)

  7. IMPACT OF HEATING AND AIR CONDITIONING SYSTEM OPERATION AND LEAKAGE ON VENTILATION AND INTERCOMPARTMENT TRANSPORT: STUDIES IN UNOCCUPIED AND OCCUPIED TENNESSEE VALLEY HOMES

    Science.gov (United States)

    Forced-air heating and air conditioning (HAC) systems caused an average and maximum increase in air infiltration rates of 1.8- and 4.3-fold, respectively, during brief whole-house studies of tracer gas decay In 39 occupied houses. An average Increase in air infiltration rate of 0...

  8. 40 CFR 86.162-00 - Approval of alternative air conditioning test simulations and descriptions of AC1 and AC2.

    Science.gov (United States)

    2010-07-01

    ... conditioning system compressor, converted to an equivalent roadload component, to the normal dynamometer... Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR PROGRAMS (CONTINUED) CONTROL OF EMISSIONS FROM NEW... conditions and with the air conditioning controls in the heat position, the exhaust emission results of air...

  9. Fact Sheet: Protection of the Stratospheric Ozone: New Substitute in the Motor Vehicle Air Conditioning Sector under the Significant New Alternatives Policy (SNAP) Program

    Science.gov (United States)

    Under the Significant New Alternatives Policy (SNAP) program, EPA is listing HFO-1234yf as an acceptable substitute for ozone depleting substances (ODS) in motor vehicle air conditioning (MVAC) systems in new cars and other light duty-vehicles and is speci

  10. Natural gas air-conditioning and the little tertiary: a successful partnership; Climatisation au gaz naturel et petit tertiaire: une alliance reussie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    This paper presents the market of the natural gas air-conditioning in France: 7% in 2000 for an an objective of 10% in 2002. Many example of installations in France are provided and discussed to present the technology, its cost and the maintenance. (A.L.B.)

  11. Air Conditioning and Refrigeration. Volume XXVI. 1975 Edition of Course of Study Outlines. Middlesex County Vocational and Technical High Schools and Middlesex County Adult Technical Schools.

    Science.gov (United States)

    Capizzi, James

    The two courses of study described and outlined here are offered at Burr D. Coe Vocational and Technical High School in East Brunswick, New Jersey, for students wishing to prepare for a career in air conditioning and refrigeration. Section 1 deals with a 4-year high school course, Section 2 with a 1-year course for those who have completed high…

  12. Experimental Assessment of residential split type air-conditioning systems using alternative refrigerants to R-22 at high ambient temperatures

    International Nuclear Information System (INIS)

    Joudi, Khalid A.; Al-Amir, Qusay R.

    2014-01-01

    Highlights: • R290, R407C and R410A in residential split A/C units at high ambient. • 1 and 2 TR residential air conditioners with R22 alternatives at high ambient. • Residential split unit performance at ambients up to 55 °C with R22 alternatives. - Abstract: Steady state performance of residential air conditioning systems using R22 and alternatives R290, R407C, R410A, at high ambient temperatures, have been investigated experimentally. System performance parameters such as optimum refrigerant charge, coefficient of performance, cooling capacity, power consumption, pressure ratio, power per ton of refrigeration and TEWI environmental factor have been determined. All refrigerants were tested in the cooling mode operation under high ambient air temperatures, up to 55 °C, to determine their suitability. Two split type air conditioner of 1 and 2 TR capacities were used. A psychrometric test facility was constructed consisting of a conditioned cool compartment and an environmental duct serving the condenser. Air inside the conditioned compartment was maintained at 25 °C dry bulb and 19 °C wet bulb for all tests. In the environmental duct, the ambient air temperature was varied from 35 °C to 55 °C in 5 °C increments. The study showed that R290 is the better candidate to replace R22 under high ambient air temperatures. It has lower TEWI values and a better coefficient of performance than the other refrigerants tested. It is suitable as a drop-in refrigerant. R407C has the closest performance to R22, followed by R410A

  13. An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems

    International Nuclear Information System (INIS)

    Huang, Yanjun; Khajepour, Amir; Ding, Haitao; Bagheri, Farshid; Bahrami, Majid

    2017-01-01

    Highlights: • A novel two-layer energy-saving controller for automotive A/C-R system is developed. • A set-point optimizer at the outer loop is designed based on the steady state model. • A sliding mode controller in the inner loop is built. • Extensively experiments studies show that about 9% energy can be saving by this controller. - Abstract: This paper presents an energy-saving controller for automotive air-conditioning/refrigeration (A/C-R) systems. With their extensive application in homes, industry, and vehicles, A/C-R systems are consuming considerable amounts of energy. The proposed controller consists of two different time-scale layers. The outer or the slow time-scale layer called a set-point optimizer is used to find the set points related to energy efficiency by using the steady state model; whereas, the inner or the fast time-scale layer is used to track the obtained set points. In the inner loop, thanks to its robustness, a sliding mode controller (SMC) is utilized to track the set point of the cargo temperature. The currently used on/off controller is presented and employed as a basis for comparison to the proposed controller. More importantly, the real experimental results under several disturbed scenarios are analysed to demonstrate how the proposed controller can improve performance while reducing the energy consumption by 9% comparing with the on/off controller. The controller is suitable for any type of A/C-R system even though it is applied to an automotive A/C-R system in this paper.

  14. Development and application of an indoor air quality audit to an air-conditioned building in Singapore

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, K.W.; Chong, K.Y. [National Univ. of Singapore, School of Building and Real Estate, Singapore (Singapore)

    2001-02-01

    Good indoor air quality (IAQ) enhances occupant health, comfort and workplace productivity. This issue has become more critical in a country like Singapore that has no other natural resources except manpower. In addition, Singapore is located in the tropical region with a hot and humid climate ad a large number of the buildings are served by air-conditioning and mechanical ventilation (ACMV) systems to maintain a thermally comfortable indoor environment. The provision of a thermally comfortable indoor environment of the occupants is only one aspect in achieving better indoor air quality. Chemical pollutants, dust particles and microbials are other factors that have impact on the quality of indoor air. Pollutant emissions from people, building materials, air handling units, etc. in the form of both living and dead material take place continuously in any type of buildings, i.e., residential, commercial, industrial, institutional, etc. An IAQ audit methodology developed is adopted to establish the IAQ profile of the building. In this paper, a case-study is used to demonstrate the application of the IAQ audit and evaluate its comprehensiveness and usefulness to the building owners or facility mangers. This audit was conducted in the administration offices of a hospital building. The audit consists of examination of the air exchange rate, ventilation effectiveness and age of air. Thermal comfort parameters, microbial counts, dust particles and the concentrations of carbon dioxide (CO{sub 2}), carbon monoxide (CO), formaldehyde (HCHO) and total volatile organic compounds (TVOC) were also monitored. In addition, a questionnaire was completed by the staff in order to avoid a subjective assessment of indoor air quality. (Author)

  15. Deinococcus metallilatus sp. nov. and Deinococcus carri sp. nov., isolated from a car air-conditioning system.

    Science.gov (United States)

    Kim, Dong-Uk; Lee, Hyosun; Lee, Ji-Hyeong; Ahn, Jae-Hyung; Lim, Sangyong; Jeong, Sunwook; Park, So Yoon; Seong, Chi Nam; Ka, Jong-Ok

    2015-09-01

    Two bacterial strains, designated MA1002(T) and MA1003(T), were isolated from the air-conditioning system of a car. Cells of both strains were Gram-reaction-positive, non-motile, non-spore-forming coccoids, catalase- and oxidase-positive and UV-radiation resistant. The major fatty acids of strain MA1002(T) were iso-C17 : 0 and iso-C15 : 0 and those of strain MA1003(T) were iso-C16 : 0 and iso-C16 : 1 H. The polar lipid profile of MA1002(T) contained phosphatidylethanolamine, two unidentified phosphoglycolipids, an unidentified phospholipid, an unidentified aminophospholipid, an unidentified aminolipid and an unidentified lipid. MA1003(T) had three unidentified phosphoglycolipids, six unidentified phospholipids, two unidentified glycolipids and two unidentified polar lipids as the polar lipids. The G+C contents of the genomic DNA of MA1002(T) and MA1003(T) were 70.5 and 76.0 mol%, respectively. MK-8 was the predominant respiratory quinone for both strains. 16S rRNA gene sequence analysis showed that strain MA1002(T) was phylogenetically related to Deinococcus apachensis DSM 19763(T), D. geothermalis DSM 11300(T), D. aerius TR0125(T) and D. aetherius ST0316(T) (92.9, 92.6, 92.0 and 91.9% sequence similarity, respectively), and MA1003(T) showed the highest sequence similarity to Deinococcus hopiensis KR-140(T) (92.9%) and D. xinjiangensis X-82(T) (91.4%). The results of genotypic and phenotypic characterizations showed that both strains could be distinguished from phylogenetically related species, and that the strains represented novel species within the genus Deinococcus, for which we propose the names Deinococcus metallilatus sp. nov. (type strain MA1002(T) = KACC 17964(T) = NBRC 110141(T)) and Deinococcus carri sp. nov. (type strain is MA1003(T) = KACC 17965(T) = NBRC 110142(T)).

  16. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  17. Physicochemical risk factors for building-related symptoms in air-conditioned office buildings: Ambient particles and combined exposure to indoor air pollutants.

    Science.gov (United States)

    Azuma, Kenichi; Ikeda, Koichi; Kagi, Naoki; Yanagi, U; Osawa, Haruki

    2018-03-01

    We conducted a cross-sectional epidemiological study to examine the correlation between indoor air quality (IAQ) and building-related symptoms (BRSs) of office workers in air-conditioned office buildings. We investigated 11 offices during winter and 13 offices during summer in 17 buildings with air-conditioning systems in Tokyo, Osaka, and Fukuoka, and we included 107 office workers during winter and 207 office workers during summer. We conducted environmental sampling for evaluating IAQ and concurrently administered self-reported questionnaires to collect information regarding work-related symptoms. Multivariate analyses revealed that upper respiratory symptoms showed a significant correlation with increased indoor temperature [odds ratio (OR), 1.55; 95% confidence interval (CI), 1.11-2.18] and increased indoor concentration of suspended particles released from the ambient air pollution via air-conditioning systems (OR, 1.31; 95% CI, 1.08-1.59) during winter. In particular, smaller particles (particle size>0.3μm), which possibly penetrated through the filter media in air-conditioning systems from ambient air, were correlated with upper respiratory symptoms. The use of high-efficiency particulate air filters in air-conditioning systems and their adequate maintenance may be an urgent solution for reducing the indoor air concentration of submicron particles. Several irritating volatile organic compounds (VOCs) (e.g., formaldehyde, acetaldehyde, ethylbenzene, toluene, and xylenes) that were positively correlated with the indoor air concentration among their VOCs, were associated with upper respiratory symptoms, although their indoor air concentrations were lower than those specified by the indoor air quality guideline. A new approach and strategy for decreasing the potential combined health risks (i.e., additive effect of risks) associated with multiple low-level indoor pollutants that have similar hazardous properties are required. Copyright © 2017 Elsevier B

  18. A comprehensive, multi-objective optimization of solar-powered absorption chiller systems for air-conditioning applications

    International Nuclear Information System (INIS)

    Shirazi, Ali; Taylor, Robert A.; Morrison, Graham L.; White, Stephen D.

    2017-01-01

    Highlights: • Multi-objective optimization of solar single/multi-effect absorption chillers was conducted. • Primary energy consumption and total annual cost were considered as the objectives. • Optimized designs of the alternative configurations were compared. • A detailed sensitivity analysis of the Pareto optimal solutions was investigated. - Abstract: Solar heating and cooling (SHC) systems are currently under rapid development and deployment due to their potential to reduce the use of fossil fuel resources and to alleviate greenhouse gas emissions in the building sector – a sector which is responsible for ∼40% of the world energy use. Absorption chiller technology (traditionally powered by natural gas in large buildings), can easily be retrofitted to run on solar energy. However, numerous non-intuitive design choices must be analyzed to achieve the best techno-economic performance of these systems. To date, there has been little research into the optimal configurations among the long list of potential solar-driven absorption chiller systems. To address this lack of knowledge, this paper presents a systematic simulation-based, multi-objective optimization of three common, commercially available lithium bromide-water absorption chillers – single-effect, double-effect and triple-effect – powered by evacuated tube collectors (ETCs), evacuated flat plate collectors (EFPCs), and concentrating parabolic trough collectors (PTCs), respectively. To the best of authors’ knowledge, this is the first study of its kind that compares the optimized designs of the most promising configurations of solar-assisted absorption chillers against a common set of energy, economic, and environmental metrics from a holistic perspective. A simulation model of these three configurations is developed using TRNSYS 17. A combined energy, economic, and environmental analysis of the modeled systems is conducted to calculate the primary energy use as well as the levelized total

  19. [Euthanasia, assisted suicide, and the principle of double effect: a reply to Rodolfo Figueroa].

    Science.gov (United States)

    Miranda, Alejandro M

    2012-02-01

    The purpose of this paper is to defend the traditional application of the principle of double effect as a criterion for assessing the permissibility of actions that have as their common aim to end the suffering of seriously ill patients. According to this principle, euthanasia and physician-assisted suicide are always illicit acts, while the same is not said for other actions that bring about patient's death as a foreseen effect, namely, palliative treatments that hasten death or failure or interruption of life support. The reason for this difference is that, in the first two cases, the patient's death is intended as a means of pain relief; whereas, in the latter two, death is only a side effect of a medical act, an act justifiable if it is necessary to achieve a proportionate good. In a recent issue of this Journal, Professor Rodolfo Figueroa denied the soundness of the principle of double effect and maintained that all actions described above should be considered equivalent in law enforcement. Here, the author presents a reply to that argument, and also offers a justification of the afore said principle's core, that is, the moral and legal relevance of the distinction between intended effects and foreseen side effects.

  20. Energy performance of solar-assisted liquid desiccant air-conditioning system for commercial building in main climate zones

    International Nuclear Information System (INIS)

    Qi, Ronghui; Lu, Lin; Huang, Yu

    2014-01-01

    Highlights: • Simulation of solar liquid desiccant AC system in four climate regions was conducted. • System performance was determined by relationship of sensible and latent cooling load. • For humid area, saving amount is large by handling latent load with solar energy. • For dry area, electricity saving rate is considerable due to the high COP of chillers. • For buildings with mild SHR, the system performance was not as good as others. - Abstract: Liquid desiccant air-conditioning (LDAC) system, which consists of a liquid desiccant ventilation system for dehumidification and an air-handling unit for cooling, has become a promising alternative for conventional technology. To evaluate its feasibility and applicability, the simulation of solar-assisted LDAC (SLDAC) in commercial buildings in five cities of four main climate regions were conducted, including Singapore in Tropical, Houston and Beijing in Temperate, Boulder in Arid and Los Angeles in Mediterranean. Results showed that the system’s performance was seriously affected by the ratios of building’s sensible and latent cooling load. For buildings located in humid areas with low sensible-total heat ratio (SHR), the electricity energy reduction of SLDAC was high, about 450 MW h in Houston and Singapore, which accounted for 40% of the total energy consumption in cooling seasons. The cost payback period was as short as approximately 7 years. The main reason is that the energy required for handling the moisture could be saved by liquid desiccant dehumidification, and the regeneration heat could be covered by solar collectors. For buildings in dry climate with high SHR, the total cooling load was low, but up to 45% electricity of AC system could be saved in Boulder because the chiller COP could be significantly improved during more than 70% operation time. The cost payback period was around 22 years, which was acceptable. However, for the buildings with mild SHR, such as those in Beijing and Los

  1. Effects of lighting and air-conditioning systems on growth weight and functional composition of frill-lettuce produced in plant factory

    Science.gov (United States)

    Yoshida, Atsumasa; Okamura, Nobuya; Furukawa, Hajime; Myojin, Chiho; Moriuchi, Koji; Kinoshita, Shinichi

    2017-06-01

    The aim of the present study was to develop optimal air-conditioning systems for plant factories. To verify the effect of particular air-conditioning and lighting systems, cultivation experiments were performed with frill-lettuce for two weeks. In the present study, the relationship between the cultivation condition, the yield (i.e., increase in edible portion weight), and the functional components were discussed. Based on the measured data, increased photosynthetic photon flux density increased antioxidative activity and edible portion weight, possibly because high light intensities are stressful for frill lettuce. Antioxidative activity also increased under conditions of low CO2 concentration, weak and strong winds, and high air temperature because these conditions became stresses for the plants. However, a decrease in edible portion weight was observed under these conditions, implying there is a negative correlation between antioxidative activity and edible portion weight.

  2. Impact of the Air-Conditioning System on the Power Consumption of an Electric Vehicle Powered by Lithium-Ion Battery

    Directory of Open Access Journals (Sweden)

    Brahim Mebarki

    2013-01-01

    Full Text Available The car occupies the daily universe of our society; however, noise pollution, global warming gas emissions, and increased fuel consumption are constantly increasing. The electric vehicle is one of the recommended solutions by the raison of its zero emission. Heating and air-conditioning (HVAC system is a part of the power system of the vehicle when the purpose is to provide complete thermal comfort for its occupants, however it requires far more energy than any other car accessory. Electric vehicles have a low-energy storage capacity, and HVAC may consume a substantial amount of the total energy stored, considerably reducing the vehicle range, which is one of the most important parameters for EV acceptability. The basic goal of this paper is to simulate the air-conditioning system impact on the power energy source of an electric vehicle powered by a lithium-ion battery.

  3. Guidebook of natural gas air conditioning in the buildings of territorial organizations; Guide de la climatisation gaz naturel dans les batiments des collectives territotiales

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-06-01

    In the framework of the 'common energy' approach, a partnership between Gaz de France (GdF) and the territorial associations (association of French territorial engineers (AITF) and association of French territorial graduate technicians (ATTF)), the publication since 15 years of this book of good practices makes a status of the implementation of natural gas air-conditioning in the buildings of the territorial organizations. Its aim is to supply information about the absorption principle, the existing products, the design of a natural gas air-conditioning system, its implementation, exploitation and maintenance. It presents also some experience feedbacks (town halls, swimming pools..) and three reference files in appendix. (J.S.)

  4. Leveling off the energy demand. Air conditioning by town gas NEXT STAGE. Energy juyo no heijunka wo motomete. Gas reibo NEXT STAGE

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, K. (Keio Univ., Tokyo (Japan). Faculty of Science and Technology)

    1994-07-01

    Utilizing various types of energy with combining them rationally is now drawing attention. One of these types of energy is the town gas. The air conditioning by town gas draws a special attention. The town gas is characterized by environmental conservation, energy saving, and comfortability. The town gas does not contain sulfur compounds which cause the acid rain. The town gas produces the least amount of carbon dioxide among all the fossil fuel. The air conditioning by the town gas is getting popular. Examples are Tokyo Dome in Tokyo, Pavilion Plaza, a new shopping spot in Fukuoka, Umeda Sky Building in Osaka, Dai-ich Apparel Center in Tokyo, Ohno Memorial Hospital in Osaka, Nagoya Municipal Integrated Stadium in Nagoya, Meguro-Gajoen in Tokyo, and New Yomiuri-Shimbun Building in Sapporo. 41 figs.

  5. Simulation of an air conditioning absorption refrigeration system in a co-generation process combining a proton exchange membrane fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Pilatowsky, I.; Gamboa, S.A.; Rivera, W. [Centro de Investigacion en Energia - UNAM, Temixco, Morelos (Mexico); Romero, R.J. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas - UAEM, Cuernavaca, Morelos (Mexico); Isaza, C.A. [Universidad Pontificia Bolivariana, Medellin (Colombia). Instituto de Energia y Termodinamica; Sebastian, P.J. [Centro de Investigacion en Energia - UNAM, Temixco, Morelos (Mexico); Cuerpo Academico de Energia y Sustentabilidad-UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico); Moreira, J. [Cuerpo Academico de Energia y Sustentabilidad-UP Chiapas, Tuxtla Gutierrez, Chiapas (Mexico)

    2007-10-15

    In this work, a computer simulation program was developed to determine the optimum operating conditions of an air conditioning system during the co-generation process. A 1 kW PEMFC was considered in this study with a chemical/electrical theoretical efficiency of 40% and a thermal efficiency of 30% applying an electrical load of 100%. A refrigeration-absorption cycle (RAC) operating with monomethylamine-water solutions (MMA-WS), with low vapor generation temperatures (up to 80 C) is proposed in this work. The computer simulation was based on the refrigeration production capacity at the maximum power capacity of the PEMFC. Heat losses between the fuel cell and the absorption air conditioning system at standard operating conditions were considered to be negligible. The results showed the feasibility of using PEMFC for cooling, increasing the total efficiency of the fuel cell system. (author)

  6. A thermodynamic evaluation on high pressure condenser of double effect absorption refrigeration system

    International Nuclear Information System (INIS)

    Yılmaz, İbrahim Halil; Saka, Kenan; Kaynakli, Omer

    2016-01-01

    One of the parameters affecting the COP of the absorption system can be considered as the thermal balance between the high pressure condenser (HPC) and the low pressure generator (LPG) since heat rejected from the HPC is utilized as an energy source by the LPG. Condensation of the water vapor in the HPC depends on the heat removal via the LPG. This circumstance is significant for making an appropriate design and a controllable system with high performance in practical applications. For this reason, a thermodynamic analysis for the HPC of a double effect series flow water/lithium bromide absorption refrigeration system was emphasized in this study. A simulation was developed to investigate the energy transfer between the HPC and LPG. The results show that the proper designation of the HPC temperature improves the COP and ECOP due its significant impact, and its value necessarily has to be higher than the outlet temperature of the LPG based on the operating scheme. Furthermore, the COP and ECOP of the absorption system can be raised in the range of 9.72–35.09% in case of 2 °C-temperature increment in the HPC under the described conditions to be applied. - Highlights: • Thermal balance in HPC/LPG unit of a double effect absorption system was studied. • A simulation program was developed and its outputs were validated. • A parametric study was conducted for a wide range of component temperatures. • Proper designation of the HPC temperature improves the COP and ECOP. • The system performance raised 9.72–35.09% by controlling the HPC temperature.

  7. Comprehensive exergy analysis of a commercial tomato paste plant with a double-effect evaporator

    International Nuclear Information System (INIS)

    Mojarab Soufiyan, Mohamad; Dadak, Ali; Hosseini, Seyed Sina; Nasiri, Farshid; Dowlati, Majid; Tahmasebi, Maryam; Aghbashlo, Mortaza

    2016-01-01

    In this study, a detailed exergy evaluation of a commercial tomato paste plant with a double-effect evaporator was conducted in order to provide information on the system thermodynamic inefficiencies. Using energy and exergy balance equations, all components of the plant were analyzed individually and their exergetic parameters were calculated on the basis of actual operational data. The required data were obtained from Nazchin tomato paste factory located in Tehran, Iran. In addition, it was attempted to quantify the exergy utilized for processing a given amount of the tomato paste. The results showed that over 82% of the total destroyed exergy in the plant occurred in the boiler combination as the main component wasting exergy. Furthermore, exergy analysis introduced this combination as the main equipment rejecting exergy to the ambient where 4.79% of its total exergy input was lost. The rational exergy efficiency of the first- and second-effect evaporative units was found to be 65.33% and 56.60%, respectively. The specific exergy consumption of the tomato paste production was also determined as 16.83 MJ/kg. Generally, exergy concept and its extensions could be served as a powerful assessment technique to optimize the design and performance of multiple-effect evaporation systems employed in food industry. - Highlights: • Exergy analysis of a tomato paste plant with a double-effect evaporator was done. • 82% of the total exergy destruction rate occurred in the boiler combination. • 16.83 MJ exergy was utilized for production of 1 kg tomato paste. • Optimal number of effects could be potentially found using exergy-based approaches.

  8. Double Effect and Black Revenge in Lessing’s The Grass Is Singing

    Directory of Open Access Journals (Sweden)

    Pedram Lalbakhsh

    2015-12-01

    Full Text Available A white woman’s murder by a black man, as depicted in Doris Lessing’s The Grass IS Singing, incorporates the revengeful act of an abandonment-neurotic black servant against a white female master with tactile delirium in the course of a paradoxical relationship of love and hate. The final homicide and the consequent act of surrender by Moses, the murderer, convey his paradoxical attitude toward his white master-beloved. This attitude begins with hatred, intensifies with mutual affection, and ends in murder. Focusing on the interracial revenge that takes place in the novel under study, the authors of this paper argue that Moses’ motivation in killing Mary originates from the ambivalence of his state of living under colonization and his learnings in Christianity, struggling with the Double-Effect Reasoning inaugurated by and in defense of black honor or negritude. As such, Moses’ sense of guilt and his subsequent surrender are the consequences of traditional and colonial internalization of sin, already present in him as a native of his revenge or honor-based society, influenced by Lobengula’s rule in which the criminal submits to punishment willingly, as well as missionary teachings. Through an interdisciplinary link between the Double-Effect Reasoning and the psychoanalytical perspective to the black problem promoted by Frantz Fanon, The Grass Is Singing thus seems to exempt Moses in his crime against the white race, represented by Mary, as well as to justify Moses self-surrender in defense of negritude and black honor.

  9. Impact of the Air-Conditioning System on the Power Consumption of an Electric Vehicle Powered by Lithium-Ion Battery

    OpenAIRE

    Brahim Mebarki; Belkacem Draoui; Boumediène Allaou; Lakhdar Rahmani; Elhadj Benachour

    2013-01-01

    The car occupies the daily universe of our society; however, noise pollution, global warming gas emissions, and increased fuel consumption are constantly increasing. The electric vehicle is one of the recommended solutions by the raison of its zero emission. Heating and air-conditioning (HVAC) system is a part of the power system of the vehicle when the purpose is to provide complete thermal comfort for its occupants, however it requires far more energy than any other car accessory. Electric ...

  10. The new research centre of the Brazilian Petroleum Company in Rio de Janeiro, Brazil: The achievements in the thermal performance of air-conditioned buildings in the tropics

    Energy Technology Data Exchange (ETDEWEB)

    Brandao, Rafael; Marcondes, Monica Pereira; De Benedetto, Gisele S.; Goncalves, Joana Carla Soares; Duarte, Denise Helena Silva; Ramos, Jose Ovidio [Laboratorio de Conforto Ambiental e Eficiencia Energetica (LABAUT), Departamento de Tecnologia da Arquitetura (AUT), Faculdade de Arquitetura e Urbanismo, Universidade de Sao Paulo (FAUUSP), Sao Paulo, Brasil, Rua do Lago, 876, Cidade Universitaria, 05508-900 Sao Paulo, SP (Brazil)

    2008-07-01

    The study on the thermal performance of the air-conditioned buildings of the new research centre of the Brazilian Petroleum Company, in the tropical climate of Rio de Janeiro, was part of a bigger research and consultancy project involving environmental issues. The architectural design was the subject of a national competition in 2004, encompassing over 100,000 m{sup 2}. According to the design brief, out of the 10 buildings of the new research centre, 7 have to be either completely or partially air-conditioned, due to specific occupation requirements. The challenge for better thermal performance was related to systems' energy efficiency, to the introduction of natural ventilation and to the notion of adaptive comfort, which were verified with the support of thermal dynamic simulations. At the early stages of the assessments, the potential for natural ventilation in the working spaces considering the mixed-mode strategy achieved 30% of occupation hours. However, the development of the design project led to fully air-conditioned working spaces, due to users' references regarding the conventional culture of the office environment. Nevertheless, the overall architectural approach in accordance to the climatic conditions still showed a contribution to the buildings' energy efficiency. (author)

  11. FY 1977 Annual report on Sunshine Project results. Research and development of solar energy systems for air conditioning and hot water supply (Research and development of systems for large buildings); 1977 nendo taiyo reidanbo oyobi kyuto system no kenkyu kaihatsu seika hokokusho. Ogata kenchikubutsuyo system no kenkyu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1978-03-31

    This project is aimed at development of (1) devices for solar energy systems for air conditioning and hot water supply, and (2) low-cost, safe systems incorporating the above devices, which are easily inspected and maintained, in which optimum buildings for effective utilization of solar energy are also investigated. Precision of the system analysis is improved by feeding back the results obtained by the basic studies conducted so far into the simulation. The technical supports for commercialization of heat collectors, refrigerators, heat-storage tanks and radiation type ceilings are also obtained. These results are combined for the designs of a real-size test building. In this year, works to install the facilities in the Oita University's test building are completed. These facilities include 40 units of large-size heat collectors (each approximately 2 m by 7.5 m in size); an absorption refrigerator of 30 uSRT in which single- and double-effect systems are combined; 2 piston-flow type heat-storage tanks, each 45 m{sup 3} in capacity; and others including analyzer, associated piping, duct, instrumentation and electrical systems. The test runs are conducted for the control systems, and long- and short-term instrumentation systems to draw the test schedules for optimizing the full-scale runs to be conducted in the next year. The operating and instrumentation manuals, and operating schedules are also drawn. (NEDO)

  12. Performance evaluation of single effect and double effect absorption heat transformer systems used for seawater desalination

    Energy Technology Data Exchange (ETDEWEB)

    Gomri, R. [Constantine Univ., Constantine (Algeria). Dept. of Genie Climatique

    2009-07-01

    Desalination of sea or brackish water can be used to produce potable water. The distillation process is the most developed and widely used technique for seawater desalination. The distillation of sea or brackish water can be achieved by using a thermal energy source. Among the many options to improve the energy efficiency of desalination plants is the absorption heat transformer, which is a device that can deliver heat at a higher temperature than the temperature of the fluid by which it is fed. Absorption heat transformer systems are attractive for using waste heat from industrial processes and renewable energy such as solar energy and geothermal energy. This paper presented a comparative study between single effect and double effect absorption heat transformer systems used for seawater desalination. In order to simulate the performance of these combination systems, mathematical models were developed for a single absorption heat transformer and a double absorption heat transformer operating with the water/lithium bromide solution. A model was also developed for the overall desalination system. For the two systems, an identical heat source temperature was used to simulate the heat input to an absorption heat transformer. Energy and exergy analysis of the two systems were performed. Simulation results were used to examine and to compare the influence of the absorber temperature on the energy efficiency, exergy efficiency, and water production of the two systems. 19 refs., 1 tab., 7 figs.

  13. Central air-conditioning in the 'Pniowek' coal-mine: Jastrzebie Coal Corporation plc - the first such project in Poland

    Energy Technology Data Exchange (ETDEWEB)

    Szlazak, N.; Jakubw, A.; Nawrat, S. [University of Mining and Metallurgy, Cracow (Poland)

    2001-07-01

    The 'Pniowek' coal-mine has been engaged in mining deep coal beds which are characterised by a very high methane risk and high natural primary temperature of the rock mass. The need to improve underground working conditions and the prospects of mining beds on the level of 1000 m resulted in a decision to install a centralised air-conditioning system in the KWK (coal-mine) 'Pniowek' - the first such installation in Poland. The prognostic calculations for the climatic conditions in KWK 'Pniowek' have revealed that the maintenance of air temperature at the face within the permissible 28{sup o} maximum requires air cooling, and the power of air coolers should be about 5 MW. The analyses of central air-conditioning systems, enabled a decision to be made to install an interconnected powered cooling system, based on gas-powered engines and electric energy generating units integrated with absorptive and compression coolers. The gas engines are fed with methane recovered from methane drainage. The heat generated is used by the energy conversion in absorptive coolers. Some of the generated electric energy is used to power the screw compressor. The remainder of the electric energy and heat is utilised in the mine's operation. On 15th June 2000 the first stage of a 2,5 MW central air-conditioning system was started. In December 2000 the second part of the cooling installation was put into operation, which resulted in the target cooling power of 5 MW. 5 refs., 7 figs.

  14. Performance analysis of proposed hybrid air conditioning and humidification–dehumidification systems for energy saving and water production in hot and dry climatic regions

    International Nuclear Information System (INIS)

    Nada, S.A.; Elattar, H.F.; Fouda, A.

    2015-01-01

    Highlights: • Integrative air-conditioning (A/C) and humidification–dehumidification desalination systems are proposed. • Effects of operating parameters on the proposed systems are investigated. • System configurations that have the highest fresh water production rate, power saving and total cost saving are identified. - Abstract: Performance of integrative air-conditioning (A/C) and humidification–dehumidification desalination systems proposed for hot and dry climatic regions is theoretically investigated. The proposed systems aim to energy saving and systems utilization in fresh water production. Four systems with evaporative cooler and heat recovery units located at different locations are proposed, analyzed and evaluated at different operating parameters (fresh air ratio, supply air temperature and outside air wet bulb temperature). Other two basic systems are used as reference systems in proposed systems assessment. Fresh water production rate, A/C cooling capacity, A/C electrical power consumption, saving in power consumptions and total cost saving (TCS) parameters are used for systems evaluations and comparisons. The results show that (i) the fresh water production rates of the proposed systems increase with increasing fresh air ratio, supply air temperature and outdoor wet bulb temperature, (ii) powers saving of the proposed systems increase with increasing fresh air ratio and supply air temperature and decreasing of the outdoor air wet bulb temperature, (iii) locating the evaporative cooling after the fresh air mixing remarkably increases water production rate, and (vi) incorporating heat recovery in the air conditioning systems with evaporative cooling may adversely affect both of the water production rate and the total cost saving of the system. Comparison study has been presented to identify systems configurations that have the highest fresh water production rate, highest power saving and highest total cost saving. Numerical correlations for

  15. Air conditioning in a CINEMAXX cinema. Innovative solution involving a screw compressor and direct evaporation; Klimatisierung in einem CINEMAXX-Kino. Innovative Loesung mit Schraubenverdichter und Direktverdampfung

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-03-01

    The new CINEMAXX cinema building in the Trier city centre has fully glazed walls and a modern air conditioning system. The system was installed by local organisations. Its key components are two Comer-Dorin screw compressors. [German] Im Trierer Stadtzentrum befindet sich ein neues CINEMAXX-Kino, hinter dessen glaeserner Fassade die Klimaanlage diskret verborgen bleibt. Oertliche Firmen der Branche konnten die Ausschreibung der Klimaanlage zu ihren Gunsten entscheiden und mit Erfahrung und handwerklichem Koennen unter Verwendung zweier Comer-Dorin-Schraubenverdichter eine nachahmenswerte Loesung planen und installieren. (orig.)

  16. International Energy Agency Building Energy Simulation Test and Diagnostic Method for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST); Volume 1: Cases E100-E200

    Energy Technology Data Exchange (ETDEWEB)

    Neymark, J.; Judkoff, R.

    2002-01-01

    This report describes the Building Energy Simulation Test for Heating, Ventilating, and Air-Conditioning Equipment Models (HVAC BESTEST) project conducted by the Tool Evaluation and Improvement International Energy Agency (IEA) Experts Group. The group was composed of experts from the Solar Heating and Cooling (SHC) Programme, Task 22, Subtask A. The current test cases, E100-E200, represent the beginning of work on mechanical equipment test cases; additional cases that would expand the current test suite have been proposed for future development.

  17. Controlled environment laboratory for the energy certification of refrigeration and air conditioning systems; Laboratorio de ambiente controlado para la certificacion energetica de sistemas de refrigeracion y aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Ambriz, Juan Jose; Romero Paredes, Hernando; Dorantes, Ruben [Universidad Autonoma Metropolitana, Mexico, D.F. (Mexico)

    1999-07-01

    In this paper the general characteristics of the Controlled Environment Laboratory (CELAB) are described and some of the possible tests that could be performed in this device to evaluate the energy efficiency in air conditioning systems, domestic refrigeration and industrial refrigeration, as well as tests to evaluate the hydrothermal comfort in national populations, are presented. [Spanish] En este trabajo se describen las caracteristicas generales del Laboratorio de Ambiente Controlado (LAB), y se presentan algunas de las posibles pruebas que podran ser desarrolladas en este dispositivo para evaluar la eficiencia energetica en sistemas de aire acondicionado, refrigeracion domestica y refrigeracion industrial, asi como para pruebas para evaluar el confort hidrotermico en poblaciones nacionales.

  18. Impact of a 12-volt Lead Acid Battery State-of-Charge on the Performance of an Automotive Air Conditioning System

    OpenAIRE

    Datta, Santanu Prasad; Das, Prasanta Kumar; Mukhopadhyay, Siddhartha

    2016-01-01

    In most of the Automotive Air Conditioning Systems (AACSs) though the compressor is powered by the car engine, the evaporator blower and the condenser fan are run by an alternator. Further, this alternator is powered from engine shaft. If there is any fault in the alternator that must drop the output voltage. This variation in output voltage can be achieved from a car battery by regulating its charging current. Owing to this, a stationary test rig for an AACS is developed with all actual auto...

  19. Hygiene guideline for the planning, installation, and operation of ventilation and air-conditioning systems in health-care settings – Guideline of the German Society for Hospital Hygiene (DGKH

    Directory of Open Access Journals (Sweden)

    Külpmann, Rüdiger

    2016-02-01

    Full Text Available Since the publication of the first “Hospital Hygiene Guideline for the implementation and operation of air conditioning systems (HVAC systems in hospitals” ( in 2002, it was necessary due to the increase in knowledge, new regulations, improved air-conditioning systems and advanced test methods to revise the guideline. Based on the description of the basic features of ventilation concepts, its hygienic test and the usage-based requirements for ventilation, the DGKH section “Ventilation and air conditioning technology” attempts to provide answers for the major air quality issues in the planning, design and the hygienically safe operation of HVAC systems in rooms of health care.

  20. The Design of The Monitoring Tools Of Clean Air Condition And Dangerous Gas CO, CO2 CH4 In Chemical Laboratory By Using Fuzzy Logic Based On Microcontroller

    Science.gov (United States)

    Widodo, Slamet; Miftakul, Amin M.; Sutrisman, Adi

    2018-02-01

    There are many phenomena that human are exposed to toxins from certain types such as of CO2, CO2 and CH4 gases. The device used to detect large amounts of CO, CO2, and CH4 gas in air in enclosed spaces using MQ 135 gas sensors of different types based on the three sensitivity of the Gas. The results of testing the use of sensors MQ 135 on the gas content of CO, CO2 and CH4 received by the sensor is still in the form of ppm based on the maximum ppm detection range of each sensor. Active sensor detects CO 120 ppm gas, CO2 1600 ppm and CH4 1ppm "standby 1" air condition with intermediate rotary fan. Active sensor detects CO 30 ppm gas, CO2 490 ppm and CH4 7 ppm "Standby 2" with low rotating fan output. Fuzzy rulebase logic for motor speed when gas detection sensor CO, CO2, and CH4 output controls the motion speed of the fan blower. Active sensors detect CO 15 ppm, CO2 320 ppm and CH4 45 ppm "Danger" air condition with high fan spin fan. At the gas level of CO 15 ppm, CO2 390 ppm and CH4 3 ppm detect "normal" AC sensor with fan output stop spinning.

  1. Barriers to community-directed fire restoration

    Science.gov (United States)

    R. Bruce Hull; Bruce E. Goldstein

    2006-01-01

    Wild fire disasters create novel situations and challenges for natural resource managers, including working with emergent community groups that have a great deal of motivation for change, little familiarity with agency protocol, and strong preferences for the goals and methods of forest fire restoration, some of which may run counter to agency norms. After a fire,...

  2. Support for and reported compliance among smokers with smoke-free policies in air-conditioned hospitality venues in Malaysia and Thailand: Findings from the International Tobacco Control Southeast Asia Survey

    OpenAIRE

    Yong, HH; Foong, K; Borland, R; Omar, M; Hamann, S; Sirirassamee, B; Fong, GT; Fotuhi, O; Hyland, A

    2010-01-01

    This study examined support for and reported compliance with smoke-free policy in air-conditioned restaurants and other similar places among adult smokers in Malaysia and Thailand. Baseline data (early 2005) from the International Tobacco Control Southeast Asia Survey (ITC-SEA) conducted face-to-face in Malaysia and Thailand (n=4005) were used. Among those attending venues, reported total smoking bans in indoor air-conditioned places such as restaurants, coffee shops and karaoke lounges were ...

  3. Performance analysis of an absorption double-effect cycle for power and cold generation using ammonia/lithium nitrate

    International Nuclear Information System (INIS)

    Ventas, R.; Lecuona, A.; Vereda, C.; Rodriguez-Hidalgo, M.C.

    2017-01-01

    Highlights: • Two-stage double-effect cycle for combined power and cooling with flexibility. • Ammonia/lithium nitrate as solution for the absorption cycle. • Efficiency, when only producing power, of 19.5% for a generation temperature of 173 °C. • When combined cooling and power COP = 0.53 and electric efficiency of 5% for a generation temperature of 140 °C. • Better efficiencies than conventional double-effect cycles. - Abstract: The performance of a two-stage double-effect absorption machine for combined power and cold generation is proposed and studied theoretically, generating innovative schemes. The ammonia/lithium nitrate solution allows this cycle, consuming either solar thermal or residual heat. The machine is represented by means of a thermodynamic steady-state cycle. First, only power generation and only cold production are separately studied as function of the main internal temperatures, introducing the concepts of mixed and unmixed vapour and of virtual temperatures for allowing comparison. The results indicate that for producing power the efficiency of the cycle increases when rising the maximum pressure while for producing cold is the contrary. The maximum efficiency obtained for only power production with no superheating is 19.5% at a high generation temperature of 173 °C and at a moderate 20.3 bars of maximum pressure. The solution crystallization avoids a higher efficiency. The combined power and cooling cycle allows adapting the energy production to cold demand or to power demand by splitting the vapour generated. At a generation temperature of 132 °C, when splitting the vapour generated into half for power and half for cooling, the cycle obtains an electric efficiency of 6.5% and a COP of 0.52. This cycle is compared to a conventional double-effect cycle configured in parallel flow, obtaining the same electric efficiency but with a 32% higher COP.

  4. AN IMPACT OF THE EFFICIENT FUNCTIONING OF THE VENTILATION AND AIR-CONDITIONING SYSTEM ON THERMAL COMFORT OF THE MEDICAL STAFF IN THE OPERATING ROOM

    Directory of Open Access Journals (Sweden)

    Tomasz Jankowski

    2016-11-01

    Full Text Available Ventilation and air conditioning systems are necessary for developing proper parameters of indoor envi-ronment in operating rooms. The main task of ventilation and air conditioning in those specific areas consists in creating desirable temperature, reducing the number of microorganisms and the concen-trations of hazardous gases and substances in the air, as well as ensuring the proper direction of airflow. In Poland, indoor environment in operating rooms has to comply with the requirements set out in three regulations (Journal of Laws of 2002 No. 75, item 690, as amended, Journal of Laws of 2002 No. 217, item 1833, Journal of Laws of 2011 No. 31, item 158, as amended and the document entitled "Guidelines for the design of general hospitals". Given insufficient accuracy of the abovementioned national documents, it is a common practice to use foreign standards, i.e. ASHRAE Standard 170-2013, DIN 1946-4: 2008 and FprCEN TR 16244: 2011. When considering the conditions for thermal comfort, it is important to bear in mind a close link between air flow velocity and air temperature. Air in the zone occupied by patients and medical staff must not cause the sensation of draft. Furthermore, air velocity should be sufficient to eliminate interference caused by the presence of people and other sources of heat. It should also reduce the turbulence level in the air in the operating room. Efficient functioning of ventilation and air conditioning was tested during treatments and operations carried out on three wards of a Warsaw hospital. Tests were performed with the participation of medical staff from various surgical units. They were asked to perform minor manual tasks to simulate work on the op-erating table, and to complete a questionnaire on subjective thermal sensation. The applied methodology is widely used during testing of general and local ventilation in public buildings. Air temperature, relative humidity, air flow supply and exhaust air from the

  5. [Glass fibre HEPA filters. II. Communication: Microbiological and physico-chemical researchs on used and unusued, hydrophilic and hydrophobic filter materials in an air conditioning plant (author's transl)].

    Science.gov (United States)

    Rüden, H; Mihm, U; Schoemann, D; Botzenhart, K; Thofern, E

    1975-07-01

    Hydrophobic and hydrophilic, used and unused HEPA filters from various manufacturers, inoculated with vegetative bacteria, bacterial and fungal spores, were exposed to clean outside air for up to 17 weeks in an air conditioning plant. With relative humidities up to 60%, an increase in germ count could not be found. The rate of killing the micro-organisms inoculated were different and were generally higher on used filters. The low water content of the filter material was apparently not sufficient for microbial growth. In addition, the increase in electric conductivity and reduction of pH value resulting from deposition of substances from the outside air with an acid reaction ascertained in the aqueous filter extracts had a negative effect on the living conditions of the microorganisms.

  6. Evaluation of saving measurements and energetic efficiency in air-conditioning systems; Evaluacion de medidas de ahorro y eficiencia energetica en sistemas de climatizacion

    Energy Technology Data Exchange (ETDEWEB)

    Perez Lombard, L [Asociacion de Investigacion y Cooperacion de Andalucia (Spain); Ortiz, J [Building Research Establishment (United Kingdom); Riviere, P [Armines-ecole des mines de Paris (France)

    2006-04-15

    Buildings require an adequate air conditioning to offer workers a labor environment where there is thermal comfort. A study was performed in three different European places which count on several climates. The conclusion was the following: in order to analyze the energy efficiency in edifications it is fundamental the simulation tools use with the purpose of calculating the consumption and evaluating the saving measurements. [Spanish] Los edificios requieren de una climatizacion adecuada para que los que ahi operan puedan hacerlo dentro de un ambiente laboral donde exista el confort termico. Se llevo a cabo un estudio en tres lugares de Europa poseedores de diferentes climas y se concluyo que para poder analizar la eficiencia energetica de climatizacion en las edificaciones es imprescindible el uso de herramientas de simulacion con el proposito de calcular el consumo y evaluar las medidas de ahorro.

  7. An acute gastroenteritis outbreak caused by GII.P16-GII.2 norovirus associated with airborne transmission via the air conditioning unit in a kindergarten in Lianyungang, China.

    Science.gov (United States)

    Zhang, Ting-Lu; Lu, Jing; Ying, Liang; Zhu, Xiao-Lu; Zhao, Lian-Hao; Zhou, Meng-Ying; Wang, Jia-Long; Chen, Guo-Cai; Xu, Lei

    2017-12-01

    Noroviruses are a common cause of acute gastroenteritis outbreaks in institutions including schools and kindergartens around the world. An outbreak caused by GII.P16-GII.2 norovirus in a kindergarten in Lianyungang, Jiangsu Province, China is reported here. An epidemiological investigation was conducted, and pathogen detection was performed. The descriptive analysis indicated that this outbreak in middle class 1 had a point source. Twenty cases of acute gastroenteritis occurred in this class within a period of 8.5h; the attack rate was 52.6% (20/38). Airborne transmission via the air conditioning unit in a confined restroom could have played a critical role in this outbreak. Sequence analysis of GII-positive samples confirmed that the norovirus GII.P16-GII.2 variant was the etiological agent of this outbreak. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  8. Development of a Novel Home Cogeneration System using a Polymer Electrolyte Fuel Cell which Enabled Air Conditioning by Its Low-TemperatureWaste Heat

    Science.gov (United States)

    Nishimura, Nobuya; Honda, Kuniaki; Kawakami, Ryuichiro; Nishikawa, Toshimichi; Iyota, Hiroyuki; Nomura, Tomohiro

    Micro-scale distributed power generation system, which means a micro-cogeneration system in almost cases, has been paid a great attention from a standpoint of saving fossil fuels' consumption and preventing global warming. Especially, polymer electrolyte fuel cell (PEFC) is considered the most promising power generation system for small scale commercial use and residential use. In the PEFC cogeneration system, small amount of waste heat at low temperature from a cell stack is almost used to produce hot water. Therefore, in the paper, we proposed a new heat utilization method of the waste heat for air conditioning. In the proposed home cogeneration system, absorption refrigerator is introduced in order to produce chilled water. Thermal performances of the proposed system have been analyzed by a computer simulation which was developed for the prediction both of power generation characteristics of PEFC and absorption refrigerator's behavior.

  9. Performance and evaluation of gas-engine-driven rooftop air conditioning equipment at the Willow Grove Naval Air Station. Final report (revised October 21, 1996)

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, P.R.; Katipamula, S.

    1996-10-01

    The performance was evaluated of a new US cooling technology that has been installed for the first time at a federal facility. The technology is a 15-ton natural gas-engine-driven rooftop air conditioning unit made by Thermo King. Two units were installed to serve the Navy Exchange at Willow Grove. The savings potential at Willow Grove is described and that in the federal sector estimated. Conditions for implementation are discussed. In summary, the new technology is generally cost-effective at sites where marginal electricity cost (per MBtu at the meter) is more than 4 times the marginal gas cost (per MBtu at the meter) and annual full-load-equivalent cooling hours exceed 2,000.

  10. Evolution of microbial aerosol behaviour in heating, ventilating and air-conditioning systems--quantification of Staphylococcus epidermidis and Penicillium oxalicum viability.

    Science.gov (United States)

    Forthomme, A; Andrès, Y; Joubert, A; Simon, X; Duquenne, P; Bemer, D; Le Coq, L

    2013-01-01

    The aim of this study was to develop an experimental set-up and a methodology to uniformly contaminate several filter samples with high concentrations of cultivable bacteria and fungi. An experimental set-up allows contaminating simultaneously up to four filters for range of velocities representative of heating, ventilating and air-conditioning systems. The test aerosol was composed of a microbial consortium of one bacterium (Staphylococcus epidermidis) and one fungus (Penicillium oxalicum) and aerosol generation was performed in wet conditions. Firstly, the experimental set-up was validated in regards to homogeneity of the air flows. The bioaerosol was also characterized in terms of number and particle size distribution using two particle counters: optical particle counter Grimm 1.109 (optical diameters) and TSI APS 3321 (aerodynamic diameters). Moreover, stabilities of the number of particles generated were measured. Finally, concentrations of cultivable microorganisms were measured with BioSamplers (SKC) downstream of the four filters.

  11. General collaboration offer of Johnson Controls regarding the performance of air conditioning automatic control systems and other buildings` automatic control systems

    Energy Technology Data Exchange (ETDEWEB)

    Gniazdowski, J.

    1995-12-31

    JOHNSON CONTROLS manufactures measuring and control equipment (800 types) and is as well a {open_quotes}turn-key{close_quotes} supplier of complete automatic controls systems for heating, air conditioning, ventilation and refrigerating engineering branches. The Company also supplies Buildings` Computer-Based Supervision and Monitoring Systems that may be applied in both small and large structures. Since 1990 the company has been performing full-range trade and contracting activities on the Polish market. We have our own well-trained technical staff and we collaborate with a series of designing and contracting enterprises that enable us to have our projects carried out all over Poland. The prices of our supplies and services correspond with the level of the Polish market.

  12. DISAIN SISTEM KENDALI MESIN AIR LEAK TEST MENGGUNAKAN SISTEM KENDALI PLC OMRON CJ2M DI HVAC (HEATING, VENTILATING, AND AIR CONDITIONING LINE 6

    Directory of Open Access Journals (Sweden)

    Syahril Ardi

    2015-03-01

    Full Text Available Pada proses produksi pembuatan komponen HVAC (Heating, Ventilating, and Air Conditioning dari perusahaan manufaktur di Indonesia, memerlukan proses pengecekan kebocoran pada bagian HVAC. Proses pengecekan ini dilakukan untuk memastikan tidak ada komponen HVAC yang bocor sebelum dikirim ke pihak pelanggan. Penelitian ini dilakukan untuk membuat system dan alat air leak test. Mesin air leak test ini menggunakan prinsip kerja differential pressure air leak test, yaitu metode yang membandingkan antara tekanan udara yang diberikan ke produk dan master produk. Pada penelitian ini, kami membuat disain mesin air leak test menggunakan sistem kendali berupa air leak tester, PLC, dan HMI. Berdasarkan kondisi dengan kapasitas produksi yang meningkat karena bertambahnya permintaan dari customer, dapat ditanggulangi dengan adanya share loading produksi dari HVAC line 4 ke line baru, yaitu HVAC line 6. Hasil yang didapat dari pengujian deteksi kebocoran produk,didapat nilai parameter kebocoran produk sebesar 2.23 ml/min.

  13. ASME N511-19XX, Standard for periodic in-service testing of nuclear air treatment, heating, ventilating and air conditioning systems

    International Nuclear Information System (INIS)

    1997-01-01

    A draft version of the Standard is presented in this document. The Standard covers the requirements for periodic in-service testing of nuclear safety-related air treatment, heating, ventilating, and air conditioning systems in nuclear facilities. The Standard provides a basis for the development of test programs and does not include acceptance criteria, except in cases where the results of one test influence the performance of other tests. The Standard covers general inspection and test requirements, reference values, inspection and test requirements, generic tests, acceptance criteria, in-service test requirements, testing following an abnormal incident, corrective action requirements, and quality assurance. Mandatory appendices provide a visual inspection checklist and four test procedures. Non-mandatory appendices provide additional information and guidance on mounting frame pressure leak test procedure, corrective action, challenge gas substitute selection criteria, and test program development. 8 refs., 10 tabs

  14. Environmental impact of the programs of substitution of room type air conditioning equipment; Impacto ambiental de los programas de sustitucion de equipos de aire tipo cuarto

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon Aleman, Jose Mauricio [OLADE, Quito (Ecuador)

    2002-09-01

    The present article approaches in a general way the relation that exists between the environment and the saving of electrical energy, especially in the Programs of Demand Side Management (DSM). In particular form the potential environmental impacts are described, derived of the use and the discard of the room type air conditioning equipment, goes deep into the characteristics of their cooling fluids, as well as in the relation that these keep with the protocols of Montreal and Kyoto. Finally, this article comments the incidence which have, the manufacturers as the institutions that implement DSM programs, on the environmental part of the programs of substitution of room type air conditioning equipment. In addition it is briefly described, the pilot program developed by Fideicomiso para el Ahorro de Energia Electrica (FIDE) as a successful case. [Spanish] En forma general, el presente articulo aborda la relacion que existe entre el medio ambiente y el ahorro de energia electrica, especialmente en los Programas de Administracion por el Lado de la Demanda (ALD). En forma particular se describen los impactos ambientales potenciales, derivados del uso y desecho de los equipos de aire acondicionado tipo cuarto, se ahonda en las caracteristicas de sus refrigerantes, asi como en la relacion que estos guardan con los protocolos de Montreal y Kioto. Finalmente, se comenta la incidencia que tienen, tanto los fabricantes como las instituciones que implementan programas de ALD, sobre la parte ambiental de los programas de sustitucion de equipos de aire acondicionado tipo cuarto. Ademas se describe brevemente, el programa piloto desarrollado por el Fideicomiso para el Ahorro de Energia Electrica (FIDE) como un caso exitoso.

  15. SESSA: Expert system for the selection of air conditioning equipment; SESEAA: Sistema experto para la seleccion de equipos de aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Kemper Valverde, Nicolas; Cardenas Perez, Edgar [Laboratorio de Sistemas Inteligentes, Centro de Instrumentos de la Universidad Nacional Autonoma de Mexico (UNAM), Mexico, D. F. (Mexico)

    1998-12-31

    The problem of selecting air conditioning and refrigeration equipment is quite wide and complex, since it encompasses from the application of the basic principles of physics and of thermodynamics up to the classic engineering design problems; these in turn can be numberless since they vary from place to place depending on multiple factors such as the region geographic and economic conditions. On the other hand, account most be taken of several elements such as windows, walls, and its specific geographical orientation, roofs, floors, partitions, equipment, lighting, etc., all this exerts influence in the complexity that represents the selection process. This paper describes a useful informatics tool to make it easy the selection process in air conditioning installations, taking into account multiple saving and efficient use of energy criteria, reflected in the operation process of these installations. [Espanol] El problema de seleccion de sistemas de aire acondicionado y de refrigeracion es bastante amplio y complejo, ya que abarca desde la aplicacion de los principios basicos de la fisica y la termodinamica hasta los problemas clasicos de diseno de ingenieria; estos a la vez pueden ser innumerables ya que varian de un lugar a otro y de un proyecto a otro, dependiendo de multiples factores tales como las condiciones geograficas y economicas de la region. Por otra parte se deben tomar en cuenta diversos elementos como son: ventanas, muros y sus orientaciones especificas, techos, pisos, particiones, equipos, iluminacion, etc., todo esto influye en la complejidad que representa el proceso de seleccion. En el presente trabajo se describe una herramienta informatica para facilitar el proceso de seleccion de instalaciones de aire acondicionado, tomando en cuenta multiples criterios de ahorro y uso eficiente de energia que se reflejan durante el proceso de operacion de estas instalaciones.

  16. Development of ZL400 Mine Cooling Unit Using Semi-Hermetic Screw Compressor and Its Application on Local Air Conditioning in Underground Long-Wall Face

    Science.gov (United States)

    Chu, Zhaoxiang; Ji, Jianhu; Zhang, Xijun; Yan, Hongyuan; Dong, Haomin; Liu, Junjie

    2016-12-01

    Aiming at heat injuries occurring in the process of deep coal mining in China, a ZL400 mine-cooling unit employing semi-hermetic screw compressor with a cooling capacity of 400 kW is developed. This paper introduced its operating principle, structural characteristics and technical indexes. By using the self-built testing platform, some parameters for indication of its operation conditions were tested on the ground. The results show that the aforementioned cooling unit is stable in operation: cooling capacity of the unit was 420 kW underground-test conditions, while its COP (coefficient of performance) reached 3.4. To address the issue of heat injuries existing in No. 16305 U-shaped long-wall ventilation face of Jining No. 3 coal mine, a local air conditioning system was developed with ZL400 cooling unit as the system's core. The paper presented an analysis of characteristics of the air current flowing in the air-mixing and cooling mode of ZL400 cooling unit used in air intake way. Through i-d patterns we described the process of the airflow treatment, such as cooling, mixing and heating, etc. The cooling system decreased dry bulb temperature on working face by 3°C on average and 3.8°C at most, while lowered the web bulb temperature by 3.6°C on average and 4.8°C at most. At the same time, it reduced relative humidity by 5% on average and 8.6% at most. The field application of the ZL400 cooling unit had gain certain effects in air conditioning and provided support for the solution of mine heat injuries in China in terms of technology and equipment.

  17. Refrigeration and air-conditioning

    CERN Document Server

    Hundy, G H; Welch, T C

    2008-01-01

    Now in its fourth edition, this respected text delivers a comprehensive introduction to the principles and practice of refrigeration. Clear and straightforward, it is designed for students (NVQ/vocational level) and professional HVAC engineers, including those on short or CPD courses. Inexperienced readers are provided with a comprehensive introduction to the fundamentals of the technology. With its concise style yet broad sweep the book covers most of the applications professionals will encounter, enabling them to understand, specify, commission, use and maintain these systems. Many readers w

  18. Hypoxia and development : Air conditional

    NARCIS (Netherlands)

    Voesenek, L.A.C.J.; Bailey-Serres, Julia

    Hypoxia has long been studied in relation to anaerobic metabolism. It has now been shown to control development, acting as a cue to maintain the seedling’s protective apical hook and a trigger of developmental decisions both before and after the plantlet emerges from the soil into the light.

  19. Configuration optimization of series flow double-effect water-lithium bromide absorption refrigeration systems by cost minimization

    DEFF Research Database (Denmark)

    Mussati, Sergio F.; Cignitti, Stefano; Mansouri, Seyed Soheil

    2018-01-01

    An optimal process configuration for double-effect water-lithium bromide absorption refrigeration systems with series flow – where the solution is first passed through the high-temperature generator – is obtained by minimization of the total annual cost for a required cooling capacity. To this end......W) and the temperature of the cooling water (15–35 °C). The results of this work motivate to apply the simultaneous optimization approach to seek for new multi-effect absorption refrigeration system configurations with parallel and reverse flow as well as other series flow arrangements that minimize the total annual...

  20. Analysis and parameter identification for characteristic equations of single- and double-effect absorption chillers by means of multivariable regression

    DEFF Research Database (Denmark)

    Puig Arnavat, Maria; López-Villada, Jesús; Bruno, Joan Carles

    2010-01-01

    of the characteristic equation method developed by Kühn and Ziegler (2005) is the simplest and that it provides similar or better accuracy than the other approach. This selected approach has been used to fit catalogue and experimental data of single-effect chillers and has been extended to double-effect commercial......Two approaches to the characteristic equation method have been compared in order to find a simple model that best describes the performance of thermal chillers. After comparing the results obtained using experimental data from a single-effect absorption chiller, we concluded that the adaptation...

  1. Hygiene guideline for the planning, installation, and operation of ventilation and air-conditioning systems in health-care settings - Guideline of the German Society for Hospital Hygiene (DGKH).

    Science.gov (United States)

    Külpmann, Rüdiger; Christiansen, Bärbel; Kramer, Axel; Lüderitz, Peter; Pitten, Frank-Albert; Wille, Frank; Zastrow, Klaus-Dieter; Lemm, Friederike; Sommer, Regina; Halabi, Milo

    2016-01-01

    Since the publication of the first "Hospital Hygiene Guideline for the implementation and operation of air conditioning systems (HVAC systems) in hospitals" (http://www.krankenhaushygiene.de/informationen/fachinformationen/leitlinien/12) in 2002, it was necessary due to the increase in knowledge, new regulations, improved air-conditioning systems and advanced test methods to revise the guideline. Based on the description of the basic features of ventilation concepts, its hygienic test and the usage-based requirements for ventilation, the DGKH section "Ventilation and air conditioning technology" attempts to provide answers for the major air quality issues in the planning, design and the hygienically safe operation of HVAC systems in rooms of health care.

  2. Reducing a solar-assisted air-conditioning system’s energy consumption by applying real-time occupancy sensors and chilled water storage tanks throughout the summer: A case study

    International Nuclear Information System (INIS)

    Rosiek, S.; Batlles, F.J.

    2013-01-01

    Highlights: • We present an innovative occupancy and chilled water storage-based operation mode. • This mode was implemented to the solar-assisted air-conditioning system. • It permits to save 42% of total electrical energy during one cooling period. • It allows storing the excess cooling capacity of the absorption chiller. • It prevents the sudden start/stop (on/off cycles) of the absorption chiller. - Abstract: This study describes an innovative occupancy and chilled-water storage-based operation sequence implemented in a solar-assisted air-conditioning system. The core purpose of this solar-assisted air-conditioning system is to handle the cooling and heating load of the Solar Energy Research Centre (CIESOL), thus minimising its environmental impact. In this study, the cooling mode was investigated with special attention focused on the chilled-water storage circuit. The critical concern is that the solar-assisted air-conditioning system should always operate considering the actual load conditions, not using an abstract maximum load that is predetermined during the system’s design process, which can lead to energy waste during periods of low occupancy. Thus, the fundamental problem is to identify the optimum operation sequence for the solar-assisted air-conditioning system that provides the best energy performance. The significance of this work lies in the demonstration of a new operation strategy that utilises real-time occupancy monitoring and chilled-water storage tanks to improve the efficiency of solar-assisted air-conditioning systems, thereby reducing their electricity consumption. Adopting this strategy resulted in a large energy-saving potential. The results demonstrate that during one cooling period, it is possible to conserve approximately 42% of the total electrical energy consumed by the system prior to the adoption of this operation strategy

  3. Investigation of facade- and air-conditioning systems. Better climate at low cost - a concept for the future. Untersuchung von Fassaden- und Klimasystemen. Besseres Klima bei niedrigen Kosten - ein Zukunftskonzept

    Energy Technology Data Exchange (ETDEWEB)

    Blum, H.J. (Lahmeyer International GmbH, Frankfurt am Main (Germany). Technische Gebaeudeausruestung)

    1994-06-13

    Lately, discontent with air quality in air-conditioned buildings has increased considerably. According to investigations, some 50 to 60 per cent of persons working in offices suffer from physical and psychosomatic disorders. The causes of such impaired well-being and discomfort - known as sick building syndrome - lie, inter alia, in the fact that windows cannot be opened or building materials emit intense odours, in poor design of air-conditioning systems (for instance, an insufficient proportion of fresh air and draught) and inadequate maintenance. (orig.)

  4. Air-conditioning. Examples of equipment / emitters with high regime water temperature; Les cahiers techniques climespace. Exemples d`installations emetteurs a regime eleve de temperature d`eau

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-05-01

    The main principles of air conditioning systems based on heat transfers from hot or cold emitters (water, air, cold shallow beam) are reviewed. The air conditioning systems with a single circuit and with return water and emitters in series, with high regime water temperature, are described. These circuits are well adapted to the Climespace network: the temperature increase on the return circuit allows for a minimization of the water volume that is transferred in the Climespace supply station, thus reducing the volume related costs

  5. Impacts of city-block-scale countermeasures against urban heat-island phenomena upon a building's energy-consumption for air-conditioning

    Energy Technology Data Exchange (ETDEWEB)

    Kikegawa, Yukihiro [Department of Environmental Systems, Meisei University, 2-1-1 Hodokubo, Hino-shi, Tokyo 191-8506 (Japan); Genchi, Yutaka [Research Center for Life Cycle Assessment, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Kondo, Hiroaki [Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology, 16-1 Onogawa, Tsukuba, Ibaraki 305-8569 (Japan); Hanaki, Keisuke [Department of Urban Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656 (Japan)

    2006-06-15

    This study quantifies the possible impacts of urban heat-island countermeasures upon buildings' energy use during summer in Tokyo metropolis. Considering the dependency of the buildings air temperature upon the local urban canopy structure, Tokyo urban canopies were classified in the city-block-scale using the sky-view factor (svf). Then, a multi-scale model system describing the interaction between buildings' energy use and urban meteorological conditions was applied to each classified canopy. In terms of urban warming alleviation and cooling energy saving, simulations suggested that the reduction in the air-conditioning anthropogenic heat could be the most effective measure in office buildings' canopies, and that vegetative fraction increase on the side walls of buildings in residential canopies. Both measures indicated daily and spatially averaged decreases in near-ground summer air temperature of 0.2-1.2{sup o}C. The simulations also suggested these temperature decreases could result in the buildings' cooling energy-savings of 4-40%, indicating remarkable savings in residential canopies. These temperature drops and energy savings tended to increase with the decrease of the svf of urban canopies. (author)

  6. Evaluation of refrigerating and air-conditioning technologies in heat cascading systems under the carbon dioxide emissions constraint: the proposal of the energy cascade balance table

    International Nuclear Information System (INIS)

    Shimazaki, Yoichi

    2003-01-01

    The aim of this study was to evaluate the refrigerating and air-conditioning technologies in cases of introducing both heat cascading systems and thermal recycling systems in industries located around urban areas. It is necessary to introduce heat cascading systems in the industrial sector in Japan to reduce carbon dioxide emissions. The concept of heat cascading is the multi-stage use of thermal energy by temperature level. This paper introduces three energy policies for introducing the heat cascading systems. The author develops an energy cascade model based on linear programming so as to minimize the total system costs with carbon taxes. Five cases are investigated. Carbon dioxide emission constraints result in the enhancement of heat cascading, where high temperature heat is supplied for process heating while low temperature heat is shifted to refrigeration. It was found that increasing the amount of garbage combustion waste heat could reduce electric power for the turbo compression refrigerator by promoting waste heat driven ammonia absorption refrigerator. In addition, this study proposes an energy cascade balance table with respect to the temperature level

  7. Airborne infection in a fully air-conditioned hospital. IV. Airborne dispersal of Staphylococcus aureus and its nasal acquisition by patients.

    Science.gov (United States)

    Lidwell, O M; Brock, B; Shooter, R A; Cooke, E M; Thomas, G E

    1975-12-01

    Studies in a newly built hospital furnished with complete air conditioning where most of the patients are nursed in 6-bed rooms showed that the transfer of air from one patient room to another was very small, especially when there was substantial flow of air in a consistent direction between the patient rooms and the corridor, and that the direct transfer of airborne particles was even less. There was, however, no evidence of any reduction in the rates of nasal acquisition of Staphylococcus aureus compared with those to be found in naturally ventilated hospitals. The numbers of Staph. aureus found in the air of a given room that appeared to have originated from patient carriers in other rooms were many times greater than could be accounted for by direct airborne transfer. Although there was evidence that many carriers were not detected, detailed study showed that this excess transfer to the air of other rooms was genuine. It seems probable on the basis of investigations in this hospital and elsewhere that this excess transfer occurs indirectly, through dispersal from the clothing of the nursing and medical staff into the air of another room of strains with which their outer clothes have become contaminated while dealing with patients. Reduction in direct airborne transfer of micro-organisms from one room to another, whether by ventilation or other means, can only be of clinical advantage if transfer by other routes is, or can be made, less than that by the direct airborne route.

  8. Estimated 2017 refrigerant emissions of 2,3,3,3-tetrafluoropropene (HFC-1234yf) in the United States resulting from automobile air conditioning.

    Science.gov (United States)

    Papasavva, Stella; Luecken, Deborah J; Waterland, Robert L; Taddonio, Kristen N; Andersen, Stephen O

    2009-12-15

    In response to recent regulations and concern over climate change, the global automotive community is evaluating alternatives to the current refrigerant used in automobile air conditioning units, 1,1,1,2-tetrafluoroethane, HFC-134a. One potential alternative is 2,3,3,3-tetrafluoropropene (HFC-1234yf, also known as HFO-1234yf). We have developed a spatially and temporally resolved inventory of likely future HFC refrigerant emissions from the U.S. vehicle fleet in 2017, considering regular, irregular, servicing, and end-of-life leakages. We estimate the annual leak rate emissions for each leakage category for a projected 2017 U.S. vehicle fleet by state, and spatially apportion these leaks to a 36 km square grid over the continental United States. This projected inventory is a necessary first step in analyzing for potential atmospheric and ecosystem effects, such as ozone and trifluoroacetic acid production, that might result from widespread replacement of HFC-134a with HFC-1234yf.

  9. Energy saving: optimal use of air conditioning equipment by means of the solar control; Ahorro de energia: uso optimo de los acondicionadores de aire mediante el control solar

    Energy Technology Data Exchange (ETDEWEB)

    Mejia D, David; Morillon G, David; Rodriguez V, Luis [Universidad Nacional Autonoma de Mexico (Mexico)

    2001-09-01

    In this article the evaluation of the solar heat gains through the transparent parts of a building (houses of social interest) is presented; with the purpose of determining the heat gains through windows during summer time and under the following conditions: without solar protection, with the use of eaves, solar breakers and, finally, with the use of both elements. With the determined percentage of the diminution of heat gains, the considered potential of energy saving in air conditioning was obtained that would be available if the houses were constructed with solar control. [Spanish] En este articulo se presenta la evaluacion de las ganancias de calor solar a traves de las partes transparentes de un edificio (viviendas de interes social); con el objeto de determinar las ganancias de calor a traves de ventanas para la epoca de verano y bajo las siguientes condiciones: sin proteccion solar, con el empleo de aleros, con quiebrasoles y, finalmente, con el empleo de ambos elementos. Con el porcentaje determinado de la disminucion de ganancias de calor, se obtuvo el potencial estimado de ahorro de energia en aire acondicionado que se tendria si las viviendas se construyen con control solar.

  10. Application of FMEA-DEA (Failure Modes and Effect Analysis - Data Envelopment Analysis) to the air conditioning system of the control room a nuclear power plant

    International Nuclear Information System (INIS)

    Barbosa Junior, Gilberto Varanda

    2007-03-01

    This dissertation presents the FMEA-DEA analysis application to the air conditioning system of the control room of a nuclear power plant. After obtaining the failure modes, the index associated to the occurrence probability, the severity of the effects and the potential of detention, a priority order is established for the failure modes or deviations. This number is obtained by multiplying the three mentioned index that vary in a natural scale from 1 to 10, where the higher the index, the more critical the situation will be. In this work, it is intended to use a model based on the data envelopment analysis, DEA jointly with the FMEA, to identify the current efficiency of the system and which failure modes or deviations are considered more critical, and by means of the weights attributed for the mathematical modeling to identify which index are contributing more for these deviations. From this identification, improvements can be set, which may consider administrative changes, operator training and so on, thus adding value to the final product. (author)

  11. RESULTS OF A PILOT FIELD STUDY TO EVALUATE THE EFFECTIVENESS OF CLEANING RESIDENTIAL HEATING AND AIR-CONDITIONING SYSTEMS AND THE IMPACT ON INDOOR AIR QUALITY AND SYSTEM PERFORMANCE

    Science.gov (United States)

    The report discusses and gives results of a pilot field study to evaluate the effectiveness of air duct cleaning (ADC) as a source removal technique in residential heating and air-conditioning (HAC) systems and its impact on airborne particle, fiber, and bioaerosol concentrations...

  12. Support for and reported compliance among smokers with smoke-free policies in air-conditioned hospitality venues in Malaysia and Thailand: findings from the International Tobacco Control Southeast Asia Survey.

    Science.gov (United States)

    Yong, Hua-Hie; Foong, Kin; Borland, Ron; Omar, Maizurah; Hamann, Stephen; Sirirassamee, Buppha; Fong, Geoffrey T; Fotuhi, Omid; Hyland, Andrew

    2010-01-01

    This study examined support for and reported compliance with smoke-free policy in air-conditioned restaurants and other similar places among adult smokers in Malaysia and Thailand. Baseline data (early 2005) from the International Tobacco Control Southeast Asia Survey (ITC-SEA), conducted face-to-face in Malaysia and Thailand (n = 4005), were used. Among those attending venues, reported total smoking bans in indoor air-conditioned places such as restaurants, coffee shops, and karaoke lounges were 40% and 57% in Malaysia and Thailand, respectively. Support for a total ban in air-conditioned venues was high and similar for both countries (82% Malaysian and 90% Thai smokers who believed there was a total ban), but self-reported compliance with bans in such venues was significantly higher in Thailand than in Malaysia (95% vs 51%, P < .001). As expected, reporting a ban in air-conditioned venues was associated with a greater support for a ban in such venues in both countries.

  13. Load leveling air conditioning technology development by unused energy high-level utilization. Summary of lectures given at the achievement report meeting; Miriyo energy kodo katsuyo fuka heijunka reidanbo gijutsu kaihatsu. Seika hokokukai koen yoshishu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    This paper summarizes lectures given at the research and development achievement report meeting on load leveling air conditioning technologies utilizing unutilized energies at high levels. The lecture titled 'the current status and future problems in heat supply industries' given by the manager of the Heat Supply Industry Department at the Agency of Natural Resources and Energy explained the heat supply businesses in relation with global environment issues, electric power load leveling, and cogeneration. The lecture titled 'improvement of cities to energy saving type cities and district air conditioning systems' given by a construction official at the Ministry of Construction explained the guideline (draft) for introduction of district air conditioning systems as to their purpose, positioning, procedure for discussing the introduction, and procedure for its implementation as a business. The lecture titled 'the recent trend inside and outside the country around unutilized energies' given by Professor Tanazawa at the Tokyo University of Agriculture and Technology described the intensification of energy problems, environment problems, and the near future measures to be taken against these problems. The lecture titled 'summarization of the achievements in development of load leveling air conditioning technologies utilizing unutilized energies at high levels' given by Professor Nakahara at the Kanagawa University explained the summary of the achievements in research and development by themes. (NEDO)

  14. Applied Horizontal and Vertical Geothermal Heat Exchanger with Heat Pump System to Provide Air Conditioning for an Academic Facility in Mexico

    Directory of Open Access Journals (Sweden)

    Daniel Alcantar Martínez

    2017-07-01

    Full Text Available At present in Mexico, the renewable energy has become more important due to the great dependence of the country for fossil fuels. Within the several applications of renewable energy, there are the geothermal applications for the air conditioning of spaces. This technology employs heat pumps that interexchange heat with the ground. This technology is relatively young in Mexico, leaving a large field for study and application throughout the country. In this way, to calculate the correct sizing of geothermal heat exchangers, it is necessary to calculate the thermal loads of the complex in which this technology of geothermal heat pumps using vertical heat exchangers type U will be installed, to perform the calculation of thermal loads Autodesk Revit® software was used, with which was possible to make a virtual model in detail of the botanical center that is located in Morelia, Michoacán, Mexico and belongs to the Universidad Michoacana de San Nicolás de Hidalgo (UMNSH. This study shows the results of the analysis of the installations and determination of the thermal loads of the complex due to this type of infrastructure. By obtaining the values of the thermal loads, the dimensioning of the heat exchanger was archived, which will have to be installed to cover the thermal requirement of this system and his installation, in addition to the selection of the heat pump. This complex of 2 levels, where, on the first floor there are cubicles and laboratories and on the second floor, several common areas. The design was developed in detail in Autodesk Revit 2015. After obtaining the thermal loads, the GLHEPro software was used for dimensioning the Vertical heat exchangers with the number and depth of the exchangers was obtained. the GLD 2014 software was used for dimensioning the Horizontal heat exchangers with the number and depth of the exchangers was obtained.

  15. Smart Control System to Optimize Time of Use in a Solar-Assisted Air-Conditioning by Ejector for Residential Sector

    Directory of Open Access Journals (Sweden)

    Giovanna Avedian-González

    2018-02-01

    Full Text Available The present work provides a series of theoretical improvements of a control strategy in order to optimize the time of use of solar air-conditioning by an ejector distributed in multiple solar collectors of vacuum tubes for the residential sector, which will allow us to reduce carbon-dioxide emissions, costs and electrical energy consumption. In a solar ejector cooling system, the instability of the solar source of energy causes an operational conflict between the solar thermal system and ejector cooling cycle. A fuzzy control structure for the supervisory ejector cycle and multi-collector control system is developed: the first control is applied to control the mass flow of the generator and the evaporator for different cooling capacities (3, 3.5, 4, 4.5 and 5 kW and set a temperature reference according to the operating conditions; the second is applied to keep a constant temperature power source that feeds the low-grade ejector cooling cycle using R134aas refrigerant. For the present work, the temperature of the generator oscillates between 65 °C and 90 °C, a condenser temperature of 30 °C and an evaporator temperature of 10 °C. For the purpose of optimization, there are different levels of performance for time of use: the Mode 0 (economic gives a performance of 17.55 h, Mode 5 (maximum cooling power 14.86 h and variable mode (variable mode of capacities 16.25 h, on average. Simulations are done in MATLAB-Simulink applying fuzzy logic for a mathematical model of the thermal balance. They are compared with two different types of solar radiation: real radiation and disturbed radiation.

  16. Estudio sobre el almacenamiento de agua helada en los sistemas de climatización centralizados; Study about cooling water storage in centralized air conditioning system

    Directory of Open Access Journals (Sweden)

    Mario Espín Pérez

    2015-04-01

    Full Text Available El desarrollo de este artículo se basa en el estudio del almacenamiento de agua helada en los sistemas de climatización. Para desplazar el consumo eléctrico fuera del horario pico, como herramienta para pretender  incrementar  la eficiencia energética y disminuir el costo de la energía eléctrica en los hoteles con clima tropical. Para ello se procede a la estimación del perfil de carga térmica del hotel Jagua mediante el software TRNSYS, diseño y comprobación del sistema de almacenamiento de agua helada incorporado a las condiciones actuales de la instalación mediante modelos matemáticos que describen su funcionamiento. El objetivo es, evaluar e ilustrar los posibles efectos cuantitativos y cualitativos del almacenamiento de agua helada en el sistema de clima centralizado de la edificación. El trabajo que se presenta se enmarca en los esfuerzos para desarrollar el uso de tecnologías sustentables y la evaluación de sistemas industriales asistidos por computadora en Cuba. The development of this paper is based on the study of cold water storage in air conditioning systems. To offset power consumption off-peak, as a tool to increase energy efficiency claim and reduce the cost of electricity in tropical hotels. To do this we proceed to estimate the thermal load profile Jagua by TRNSYS software, system design and testing of chilled water storage built into the current conditions of the system using mathematical models to describe their operation. The objective is to evaluate and illustrate the quantitative and qualitative effects of cold water storage in the building centralized climate system. The work presented is part of the efforts to develop the use of sustainable technologies and evaluation of computer-aided industrial systems in Cuba.

  17. Focus adjustment method for CBERS 3 and 4 satellites Mux camera to be performed in air condition and its experimental verification for best performance in orbital vacuum condition

    Science.gov (United States)

    Scaduto, Lucimara C. N.; Malavolta, Alexandre T.; Modugno, Rodrigo G.; Vales, Luiz F.; Carvalho, Erica G.; Evangelista, Sérgio; Stefani, Mario A.; de Castro Neto, Jarbas C.

    2017-11-01

    The first Brazilian remote sensing multispectral camera (MUX) is currently under development at Opto Eletronica S.A. It consists of a four-spectral-band sensor covering a 450nm to 890nm wavelength range. This camera will provide images within a 20m ground resolution at nadir. The MUX camera is part of the payload of the upcoming Sino-Brazilian satellites CBERS 3&4 (China-Brazil Earth Resource Satellite). The preliminary alignment between the optical system and the CCD sensor, which is located at the focal plane assembly, was obtained in air condition, clean room environment. A collimator was used for the performance evaluation of the camera. The preliminary performance evaluation of the optical channel was registered by compensating the collimator focus position due to changes in the test environment, as an air-to-vacuum environment transition leads to a defocus process in this camera. Therefore, it is necessary to confirm that the alignment of the camera must always be attained ensuring that its best performance is reached for an orbital vacuum condition. For this reason and as a further step on the development process, the MUX camera Qualification Model was tested and evaluated inside a thermo-vacuum chamber and submitted to an as-orbit vacuum environment. In this study, the influence of temperature fields was neglected. This paper reports on the performance evaluation and discusses the results for this camera when operating within those mentioned test conditions. The overall optical tests and results show that the "in air" adjustment method was suitable to be performed, as a critical activity, to guarantee the equipment according to its design requirements.

  18. Performance and evaluation of gas engine driven rooftop air conditioning equipment at the Willow Grove (PA) Naval Air Station. Interim report, 1992 cooling season

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, P.R.; Conover, D.R.

    1993-05-01

    In a field evaluation conducted for the US Department of Energy (DOE) Office of Federal Energy Management Program (FEMP), the Pacific Northwest Laboratory (PNL) examined the performance of a new US energy-related technology under the FEMP Test Bed Demonstration Program. The technology was a 15-ton natural gas engine driven roof top air conditioning unit. Two such units were installed on a naval retail building to provide space conditioning to the building. Under the Test Bed Demonstration Program, private and public sector interests are focused to support the installation and evaluation of new US technologies in the federal sector. Participating in this effort under a Cooperative Research and Development Agreement (CRADA) with DOE were the American Gas Cooling Center, Philadelphia Electric Company, Thermo King Corporation, and the US Naval Air Station at Willow Grove, Pennsylvania. Equipment operating and service data as well as building interior and exterior conditions were secured for the 1992 cooling season. Based on a computer assessment of the building using standard weather data, a comparison was made with the energy and operating costs associated with the previous space conditioning system. Based on performance during the 1992 cooling season and adjusted to a normal weather year, the technology will save the site $6,000/yr in purchased energy costs. An additional $9,000 in savings due to electricity demand ratchet charge reductions will also be realized. Detailed information on the technology, the installation, and the results of the technology test are provided to illustrate the advantages to the federal sector of using this technology. A history of the CRADA development process is also reported.

  19. A comparative study of different methods for the generation of tetra-n-butyl ammonium bromide clathrate hydrate slurry in a cold storage air-conditioning system

    International Nuclear Information System (INIS)

    Shi, X.J.; Zhang, P.

    2013-01-01

    Highlights: ► Four kinds of TBAB CHS generation methods are experimentally investigated. ► Accession of CHS into supercooled solution can be helpful to the generation. ► Higher flow rate results in higher energy efficiency of CHS generation. - Abstract: A cold storage air-conditioning system using tetra-n-butyl ammonium bromide (TBAB) clathrate hydrate slurry (CHS) as cold storage medium was built to investigate the high-efficiency method of TBAB CHS generation. In the present study, four kinds of different TBAB CHS generation methods were experimentally investigated and compared, and these methods included continuously cooling, turning off refrigerator while crystals appearing, supercooling release and accession of TBAB CHS into supercooled TBAB aqueous solution. The results showed that continuously cooling would lead to severe adhesion of crystal to the heat exchanger wall, and supercooling release took place with a big stochastic characteristic, hence the first and third method were concluded not reliable. Both the second and fourth methods could maintain the temperature of heat exchanger wall at a relatively higher level, therefore the crystal adhesion to the heat exchanger wall would be reduced significantly, which led to higher coefficient of performance (COP). In addition, accession of TBAB CHS into TBAB supercooled solution could shorten the time of supercooling release, resulting in about 21.8–35.4% shorter generation time than other methods. Moreover, the influence of flow rate on the CHS generation process was investigated, and the results showed that higher flow rate generally resulted in higher system COP

  20. U.S. Light-duty Vehicle Air Conditioning Fuel Use and the Impact of Four Solar/Thermal Control Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Rugh, John P [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kekelia, Bidzina [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Kreutzer, Cory J [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Titov, Eugene V [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-11-28

    The U.S. uses 7.6 billion gallons of fuel per year for vehicle air conditioning (A/C), equivalent to 5.7 percent of the total national light-duty vehicle (LDV) fuel use. This equates to 30 gallons/year per vehicle, or 23.5 grams (g) of carbon dioxide (CO2) per mile, for an average U.S. vehicle. A/C is a significant contribution to national fuel use; therefore, technologies that reduce A/C loads may reduce operational costs, A/C fuel use, and CO2 emissions. Since A/C is not operated during standard EPA fuel economy testing protocols, EPA provides off-cycle credits to encourage OEMs to implement advanced A/C technologies that reduce fuel use in the real world. NREL researchers assessed thermal/solar off-cycle credits available in the U.S. Environmental Protection Agency's (EPA's) Final Rule for Model Year 2017 and Later Light-Duty Vehicle Greenhouse Gas Emissions and Corporate Average Fuel Economy. Credits include glazings, solar reflective paint, and passive and active cabin ventilation. Implementing solar control glass reduced CO2 emissions by 2.0 g/mi, and solar reflective paint resulted in a reduction of 0.8 g/mi. Active and passive ventilation strategies only reduced emissions by 0.1 and 0.2 g/mi, respectively. The national-level analysis process is powerful and general; it can be used to determine the impact of a wide range of new vehicle thermal technologies on fuel use, EV range, and CO2 emissions.

  1. Craft-joule project: air-cooled water LiBr absorption cooling machine of low capacity for air conditioning (ACABMA)

    Energy Technology Data Exchange (ETDEWEB)

    Oliva, A; Castro, J; Perez Segarra, C.D [Universitat Politecnica de Catalunya, Barcelona (Spain); Lucena, M.A [Instituto Nacional de Tecnica Aeroespecial (Spain)] (and others)

    2000-07-01

    The ACABMA (Air-Cooled water-LiBr Absorption cooling Machine of low capacity for Air- conditioning) project is a Craft-Joule Project within the framework of the Non Nuclear Energy Programme Joule III coordinated by the Centre Technologic de Transferencia de Calor (CTTC). The basic objective of this project is the development of a new air-cooled absorption cooling machine for air-conditioning, in the low power sector market. Making use of water-LiBr technology together with the air-cooling feature, it is possible to reach a better relationship between quality (in terms of performance, ecology, etc.) and price of such absorption machines, than the ones existing on the market. Air-cooling instead of water cooling saves installation costs specially in small systems and removes the demand for cooling water (an important aspect in Southern-European countries), thus increasing the possible application range. The main interest for the SME proposers is to take advantage of the increasing cooling demand in Europe, specially in southern countries. Another point of interest for the SME proposers is the development of a cheaper cooling and heating system in terms of energy and installation costs. In this moment the solar cooling systems are approx. 30% more expensive than the conventional ones. A cheaper absorption machine due to the air-cooling feature together with the possibility of energy savings due to low generator temperatures, that allow the absorption machine for solar applications or waste heat, will lead to solar cooling and heating systems more competitive to the conventional ones. In order to achieve the above mentioned goal, the following step are necessary and will be carried out in this project: i)solution of the air-cooling of the water-LiBr machine, the main problem that up to now has not allowed commercialization, ii)reduction of the size of the air-cooled elements of the machine in order to reduce the machine costs, iii)development of an efficient control

  2. Appropriate heat load ratio of generator for different types of air cooled lithium bromide–water double effect absorption chiller

    International Nuclear Information System (INIS)

    Li, Zeyu; Liu, Jinping

    2015-01-01

    Highlights: • Effect of heat load ratio of generator on the performance was analyzed. • The performance is sensitive to heat load ratio of generator. • The appropriate heat load ratio of generator for four systems was obtained. • The change of appropriate heat load ratio of generator for four systems was studied. - Abstract: The lower coefficient of performance and higher risk of crystallization in the higher surrounding temperature is the primary disadvantage of air cooled lithium bromide–water double effect absorption chiller. Since the coefficient of performance and risk of crystallization strongly depend on the heat load ratio of generator, the appropriate heat load ratio of generator can improve the performance as the surrounding temperature is higher. The paper mainly deals with the appropriate heat load ratio of generator of air cooled lithium bromide–water double effect absorption chiller. Four type systems named series, pre-parallel, rear parallel and reverse parallel flow configuration were considered. The corresponding parametric model was developed to analyze the comprehensive effect of heat load ratio of generator on the coefficient of performance and risk of crystallization. It was found that the coefficient of performance goes up linearly with the decrease of heat load ratio of generator. Simultaneously, the risk of crystallization also rises slowly at first but increases fast finally. Consequently, the appropriate heat load ratio of generator for the series and pre-parallel flow type systems is suggested to be 0.02 greater than the minimum heat load ratio of generator and that for the rear parallel and reverse parallel flow chillers should be 0.01 higher than the minimum heat load ratio of generator. Besides, the changes of minimum heat load ratio of generator for different type systems with the working condition were analyzed and compared. It was found that the minimum heat load ratio of generator goes up with the increase of

  3. Study of thermodynamic properties of HFC refrigerant mixtures for Loretz-cycled niew generation air-conditioning equipment; Lorentz cycle ka shinsedai kucho kikiyo HFC kei kongo reibai no netsu rikigaku seishitsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, K.; Sato, H. [Keio University, Tokyo (Japan). Faculty of Science and Technology

    1997-02-01

    This paper describes thermodynamic properties of HFC refrigerant mixtures for Lorentz-cycled new generation air-conditioning equipment. Equipment has been completed for simultaneous measurement of density and vapor-liquid equilibrium property, accurate measurement of latent heat of vaporization, and accurate measurement of specific heat at constant pressure in liquid phase. Final adjustment and preliminary measurements are currently conducted. Through analytical investigation using actually measured data of thermodynamic properties of HFC refrigerant mixtures, five state equations were obtained, i.e., modified Peng-Robinson state equation which can reproduce the vapor-liquid equilibrium property of refrigerant mixtures, modified Patel-Teja state equation, Helmholtz function type state equation which is applicable in the whole fluid region of refrigerant mixtures, and so on. An evaluation test equipment has been fabricated as a trial for Lorentz-cycled air-conditioning equipments using HFC refrigerant mixtures, and demonstration test is conducted to confirm the validity. 9 refs., 5 figs.

  4. Solar-powered single-and double-effect directly air-cooled LiBr–H2O absorption prototype built as a single unit

    International Nuclear Information System (INIS)

    Izquierdo, M.; González-Gil, A.; Palacios, E.

    2014-01-01

    Highlights: • This work presents a novel solar cooling air-cooled absorption prototype for buildings. • The solution (LiB r –H 2 O) and the refrigerant (H 2 O) are cooled directly by air. • The cooling is produced from solar energy when operates in single-effect mode. • If the demand is not met the prototype is able to operate in double-effect mode. - Abstract: This work describes an installation in Madrid, Spain, designed to test a new solar-powered air-cooled absorption refrigeration system. This installation essentially consists of a-48 m 2 field of flat-plate solar collectors, a 1500-L hot water storage tank and a single and-double effect air-cooled lithium bromide absorption prototype. Designed and built by our research group, this prototype is able to operate either as a single-effect unit (4.5 kW) or as a double-effect unit (7 kW). In operation as single-effect mode, the prototype is driven by solar energy, whereas in operation as a double effect mode, an external energy source may be used. The prototype’s evaporator is connected to a fan-coil placed inside an 80-m 2 laboratory that represent the average size of a Spanish housing unit. In August 2009, the cooling system was tested in the single-effect operation mode. The results show that the system is able to meet approximately 65% of the laboratory’s seasonal cooling demand, although 100% may be reached for a few days. The prototype can also operate in double-effect mode to meet the cooling demand. In that case, the prototype is fed by thermal oil, which is warmed until it reaches the process temperature in the high-temperature generator. The prototype can operate in either single-effect mode or in double-effect mode or can also operate simultaneously both modes using the components common to both modes, namely, the absorber, evaporator, condenser, solution pumps and control equipment. This paper reports the experimental results from the prototype operating separately in single-effect and

  5. Optimization of air conditioning systems utilizing low temperature thermal storage; Optimizacion de sistemas de acondicionamiento de aire utilizando sistemas de almacenamiento termico de baja temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Contreras Ramirez, J.; Dorantes Rodriguez, R. [Departamento de Energia, Universidad Autonoma Metropolitana - Unidad Azcapotzalco, Mexico, D. F. (Mexico)

    1997-12-31

    In the last few years the different projects on the saving and efficient use of energy in the tertiary sector have been demonstrating the existing great potential in the air conditioning systems and equipment, whose intensive use is due to the predominance of hot and dry and hot and humid climate prevailing in a large part of the Mexican territory. Without any doubts one of the most serious problems facing the complex management and optimization of these systems is related to the variability of the thermal load and the regulation possibilities of the thermal machines, so as to attain, along the day an appropriate use and optimization of the total installed load, with the best possible economic benefits. Among the strategies that allow the optimization of the installed capacity and the variability of the thermal load is the low temperature thermal storage, for instance, the storage of ice, which is produced and stored to be used when the cooling machines are in standby in order to use this stored energy during the peak hours and during the normal operation of the equipment, but diminishing in a significant amount the electrical demand of the system to satisfy the thermal load with a combination thermal storage-cooling machine. This paper presents some case histories and the type of thermal storage commonly used; a methodology is discussed that allows to determine technically as well as economically the size of a thermal storage room. Some problems in the control and operation of these thermal systems are also presented. [Espanol] En los ultimos anos los diversos proyectos sobre ahorro y uso eficiente de la energia en el sector terciario han venido mostrando el gran potencial existente en los sistemas y equipos de aire acondicionado, cuyo uso intensivo se debe al predominio de los climas calidos seco y calido humedo en buena parte del territorio nacional. Sin lugar a dudas uno de los problemas mas serios que enfrenta la compleja gestion y optimizacion de estos

  6. Risk Factors in Heating, Ventilating, and Air-Conditioning Systemsfor Occupant Symptoms in U.S. Office Buildings: the EPA BASE Study

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, M.J.; Lei-Gomez, Q.; Mirer, A.; Seppanen, O.; Brunner, G.

    2006-10-01

    Nonspecific building-related symptoms among occupants of modern office buildings worldwide are common and may be associated with important reductions in work performance, but their etiology remains uncertain. Characteristics of heating, ventilating, and air-conditioning (HVAC) systems in office buildings that increase risk of indoor contaminants or reduce effectiveness of ventilation may cause adverse exposures and subsequent increase in these symptoms among occupants. We analyzed data collected by the U.S. EPA from a representative sample of 100 large U.S. office buildings--the Building Assessment and Survey Evaluation (BASE) study--using multivariate logistic regression models with generalized estimating equations adjusted for potential personal and building confounders. We estimated odds ratios (ORs) and 95% confidence intervals (CIs) for associations between seven building-related symptom outcomes and selected HVAC system characteristics. Among factors of HVAC design or configuration: Outdoor air intakes less than 60 m above the ground were associated with approximately doubled odds of most symptoms assessed. Sealed (non-operable) windows were associated with increases in skin and eye symptoms (ORs= 1.9, 1.3, respectively). Outdoor air intake without an intake fan was associated with an increase in eye symptoms (OR=1.7). Local cooling coils were associated with increased headache (OR=1.5). Among factors of HVAC condition, maintenance, or operation: the presence of humidification systems in good condition was associated with an increase in headache (OR=1.4), whereas the presence of humidification systems in poor condition was associated with increases in fatigue/difficulty concentrating, as well as upper respiratory symptoms (ORs=1.8, 1.5). No regularly scheduled inspections for HVAC components was associated with increased eye symptoms, cough and upper respiratory symptoms (ORs=2.2, 1.6, 1.5). Less frequent cleaning of cooling coils or drip pans was associated

  7. Studies on the possibility of seawater intrusion in and around central air conditioning plant site at Bhabha Atomic Research Centre, Trombay

    International Nuclear Information System (INIS)

    Sriraman, A.K.; Tirumalesh, K.; Shivanna, K.; Tyagi, A.K.; War, S.B.; Shetty, P.S.

    2008-01-01

    The central air conditioning plant (CAP) of Bhabha Atomic Research Centre (BARC) uses raw water from Mumbai Mahanagar Palika (MMP) for its condenser cooling purposes. The same raw water is also used for drinking purposes. In an effort to minimize the dependency of raw water from MMP the CAP authorities felt a need for locating an alternate source of usable raw water. In this context it was decided to use water from the nearby bore wells located within CAP premises near the coast. The CAP site is located [19 deg 30' N, 72 deg 6' E] on the slope between the lush green Trombay hills and Mumbai Harbor Bay (MHB), resulting in the outflow of the most of the rainwater into MHB. However, part of the rainfall seeps into the subsurface resulting in the availability of groundwater through the bore wells located on the coast. The location of the bore wells close to the sea coast (∼ 200 metres away from high tide line of the highly polluted MHB), in the middle of the lush green zone, raised a question on the possible intrusion of seawater into the groundwater and its adverse impact on the operational practices of CAP. In this connection there was a need to evaluate the water from three bore wells for their use as coolant water at CAP. This report reveals the detailed study carried out on the physico-chemical nature of the water from the bore wells, for two years and the implications of these findings on operational practices of CAP. In addition environmental isotope ( 2 H, 8 O and 3 H) study was also carried out to substantiate the findings of physico-chemical study. These studies revealed interesting features. Groundwater quality in this site is mainly influenced by precipitation and rock- water interaction. The minerals present in the Basalt rocks are the source materials for the dominant ions (Ca 2+ , Mg 2+ and HCO 3 - ) observed in the waters of bore well no 1 and 3, whereas high sodium in ground water from bore well no 2 may be due to ion exchange process. Characteristic

  8. Simulation of dynamics and control of a double-effect LiBr-H2O absorption chiller

    International Nuclear Information System (INIS)

    Shin, Younggy; Seo, Jung Ah; Cho, Hyun Wook; Nam, Sang Chul; Jeong, Jin Hee

    2009-01-01

    A dynamic model has been developed to simulate dynamic operation of a real double-effect absorption chiller. Dynamic behavior of working fluids in main components was modeled in first-order nonlinear differential equations based on heat and mass balances. Mass transport mechanisms among the main components were modeled by valve throttling, 'U' tube overflow and solution sub-cooling. The nonlinear dynamic equations coupled with the subroutines to calculate thermodynamic properties of working fluids were solved by a numerical method. The dynamic performance of the model was compared with the test data of a commercial medium chiller. The model showed a good agreement with the test data except for the first 83 min during which different flow rates of the weak solution caused some discrepancy. It was found that the chiller dynamics is governed by the inlet temperatures of the cooling water and the chilled water when the heat input to the chiller is relatively constant. For a step change of load at constant inlet temperatures of the cooling water and the chilled water, the response time of the chilled water exit temperature was about 15 min and it was due to the thermal capacities of the chiller. The dilution cycle was found to be an essential means for improvement of control performance as well as anti-crystallization.

  9. Incident Pneumonia and Mortality in Patients with Chronic Obstructive Pulmonary Disease. A Double Effect of Inhaled Corticosteroids?

    Science.gov (United States)

    Scanlon, Paul D.

    2015-01-01

    Inhaled corticosteroids are commonly prescribed for patients with severe chronic obstructive pulmonary disease. Although their use improves quality of life and reduces exacerbations, it is associated with increased risk of pneumonia. Curiously, their use has not been associated with increased risk of pneumonia-related or overall mortality. We review pertinent literature to further explore the effects of inhaled corticosteroids on incident pneumonia and mortality in patients with chronic obstructive pulmonary disease. The association of use of inhaled corticosteroids and incident pneumonia is substantial and has been present in the majority of the studies on the topic. This includes both randomized controlled trials and observational studies. However, all of the studies have substantial risk of bias. Most randomized trials are limited by lack of systematic ascertainment of pneumonia; they depended on adverse event reporting. Many observational studies included proper radiographic assessment of pneumonia, but they are limited by their retrospective, observational design. The unadjusted higher risk of pneumonia is associated with longer duration of use, more potent ICS compounds, and higher doses. That implies a dose–effect relationship. Unlike pneumonia, mortality is a precise outcome. Despite the robust association of inhaled corticosteroid use with increased risk of pneumonia, all studies find either no difference or a reduction in pulmonary-related and overall mortality associated with the use of inhaled corticosteroids. These observations suggest a double effect of inhaled corticosteroids (i.e., an adverse effect plus an unexplained mitigating effect). PMID:25409118

  10. Exergy and Exergoenvironmental Analysis of a CCHP System Based on a Parallel Flow Double-Effect Absorption Chiller

    Directory of Open Access Journals (Sweden)

    Ali Mousafarash

    2016-01-01

    Full Text Available A combined cooling, heating, and power (CCHP system which produces electricity, heating, and cooling is modeled and analyzed. This system is comprised of a gas turbine, a heat recovery steam generator, and a double-effect absorption chiller. Exergy analysis is conducted to address the magnitude and the location of irreversibilities. In order to enhance understanding, a comprehensive parametric study is performed to see the effect of some major design parameters on the system performance. These design parameters are compressor pressure ratio, gas turbine inlet temperature, gas turbine isentropic efficiency, compressor isentropic efficiency, and temperature of absorption chiller generator inlet. The results show that exergy efficiency of the CCHP system is higher than the power generation system and the cogeneration system. In addition, the results indicate that when waste heat is utilized in the heat recovery steam generator, the greenhouse gasses are reduced when the fixed power output is generated. According to the parametric study results, an increase in compressor pressure ratio shows that the network output first increases and then decreases. Furthermore, an increase in gas turbine inlet temperature increases the system exergy efficiency, decreasing the total exergy destruction rate consequently.

  11. How competitive gas air-conditioning is being offered to domestic users by means of attractive energy selling services?; Une climatisation au gaz concurrentielle pour le marche residentiel via des services de vente d'energie attractifs

    Energy Technology Data Exchange (ETDEWEB)

    Jane, R.; Raventos, M. [Gas Natural, SDG, S.A. (Spain); Naval, J.; Martinez, J.A. [Gas Serviconfort S.A. (Spain)

    2000-07-01

    With the object of responding to the progressive increase in the demand for air-conditioning in the domestic sector with the presentation of gas as a competitive alternative to the electric systems currently available, and in order to avoid not only the loss of this specific market but also of the heating and hot water markets in the new-build residential sector, a new individualized energy selling service has been developed. This new option incorporates the advantages of the individualized and centralized systems of air-conditioning thanks to the utilisation of the medium-size gas air-conditioning systems currently available and to the geNie system as an instrument for totally individualizing the service and offering truly innovative features that will be attractive to the consumer. This new line of activity, implemented by the Serviconfort, a subsidiary company off the Gas Natural Group, has proven its viability both in technological and in service-definition terms in a series of demonstrations with more than 800 clients, which have served to indicate the considerable interest of the new-build residential sector in Spain and the expectations for the potential market over the next few years. (authors)

  12. Does the doctrine of double effect apply to the prescription of barbiturates?Syme vs the Medical Board of Australia.

    Science.gov (United States)

    Symons, Xavier

    2018-04-01

    The doctrine of double effect (DDE) is a principle of crucial importance in law and medicine. In medicine, the principle is generally accepted to apply in cases where the treatment necessary to relieve pain and physical suffering runs the risk of hastening the patient's death. More controversially, it has also been used as a justification for withdrawal of treatment from living individuals and physician-assisted suicide. In this paper, I will critique the findings of the controversial Victorian Civil and Administrative Tribunal (VCAT) hearing Syme vs the Medical Board of Australia In that hearing, Dr Rodney Syme, a urologist and euthanasia advocate, was defending his practice of prescribing barbiturates to terminally ill patients. Syme claimed that he prescribed the drugs with the intention of relieving their existential suffering and not to assist in suicide; he argued that the DDE could be applied. Pace VCAT, I argue that this is an illegitimate application of DDE. I argue that a close scrutiny of Syme's actions reveals that, at the very least, he intended to give patients the option of suicide. He furthermore used what on a traditional definition of DDE would be considered a 'bad' means-the prescription of Nembutal-to achieve a 'good' end-the relief of suffering. The case demonstrates the crucial importance of analysing an agent's 'intention' and the 'effects' of their actions when applying DDE. Ethicists and, indeed, the judiciary need to attend to the ethical complexities of DDE when they assess the applicability of DDE to end of life care. If they fail to do this, the doctrine risks losing its legitimacy as an ethical principle. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  13. Energy saving by means of air conditioning equipment replacement and the household application of thermal insulation; Ahorro de energia electrica por reemplazo de equipos de aire acondicionado y aplicacion de aislamiento termico en viviendas

    Energy Technology Data Exchange (ETDEWEB)

    Peralta Solorio, Jose Luis [Fideicomiso para el Ahorro de la Energia (Mexico)

    2005-07-15

    An extension study of the Financing Program for Energy Saving looked for the evaluation of the electric energy saving potential obtained by the replacement of air conditioning equipment and the application of thermal insulation in 30 houses of two Mexican cities with warmth climate. In a joint effort with Comision Federal de Electricidad the consumption files of the users were analyzed and field measurements of electric demand and of refrigeration were made. As a following step the change of the refrigeration necessities derived from the application of thermal insulation were evaluated as well as the energy efficiency improvement obtained by the substitution of the air conditioning equipment and the favorable results obtained by the implementation of both measures - thermal insulation and change of air conditioning equipment in a joint form. This way, as a conclusion, the optimum sequence of application of these measures is revealed. [Spanish] Un estudio extension del Programa de Financiamiento para el Ahorro de Energia Electrica busco evaluar el potencial de ahorro de energia electrica alcanzado por el reemplazo de equipos de aire acondicionado y la aplicacion de aislamiento termico en 30 viviendas de dos ciudades mexicanas con clima calido. En un esfuerzo conjunto con la Comision Federal de Electricidad se analizaron los historiales de consumo de los usuarios y se efectuaron las mediciones de campo de demanda electrica y de refrigeracion. Como paso siguiente se valoro el cambio en las necesidades de refrigeracion derivado de la aplicacion de aislamiento termico al igual que la mejora en eficiencia energetica obtenida por la sustitucion de aire acondicionado y se identificaron los resultados favorecedores arrojados por la implementacion de ambas medidas -aislamiento termico y cambio de equipo de aire acondicionado- en forma conjunta. De esta manera, como conclusion, se devela la mas optima secuencia de aplicacion de estas medidas.

  14. A mixed air/air and air/water heat pump system ensures the air-conditioning of a cinema; Un systeme mixte PAC air/air et air/eau climatise un cinema

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-03-01

    This article presents the air conditioning system of a new cinema complex of Boulogne (92, France) which comprises a double-flux air processing plant and two heat pumps. Each heat pump has two independent refrigerating loops: one with a air condenser and the other with a water condenser. This system allows to limit the power of the loop and to reduce the size of the cooling tower and of the vertical ducts. This article describes the technical characteristics of the installation: thermodynamic units, smoke clearing, temperature control, air renewing. (J.S.)

  15. Evaluation of energy saving in pilot projects of window type air conditioning equipment in the domestic sector; Evaluacion del ahorro de energia en proyectos pilotos en equipos de aire acondicionado tipo ventana en el sector domestico

    Energy Technology Data Exchange (ETDEWEB)

    Duran Ramirez, Ricardo [Comision Nacional para el Ahorro de Energia, Mexico, D.F. (Mexico)

    2001-07-01

    The present work shows the energy saving when replacing low efficiency window type air conditioning equipment, for higher efficiency equipment, as well as the necessary parameters to identify the results obtained by the pilot projects of substitution of conventional equipment for other more efficient in the domestic sector. [Spanish] El presente trabajo muestra los ahorros de energia al sustituir equipos de aire acondicionado tipo ventana de baja eficiencia, por equipos de mayor eficiencia, asi como los parametros necesarios para identificar los resultados obtenidos, por los proyectos pilotos de sustitucion de equipos convencionales por otros mas eficientes en el sector domestico.

  16. Development of air conditioning system using ecological shading window. Part 1. Characteristics of temperature transpiration rate on liana; Ecological shading window system no kaihatsu. 1. Tsuru shokubutsu no josan sokudo no ondo tokusei

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, T.; Tanaka, H.; Tokunaga, M. [Kajima Corp., Tokyo (Japan)

    1994-10-31

    This paper summarizes an air conditioning system using an ecological shading window. The system uses plants in a double window in place of a blind to cut off sunlight, and operates the room air conditioning equipment combined with the plant utilization. Its features may be summarized as follows: perimeter cooling load in summer and perimeter heating load in winter can be reduced; and the plants purify the air in rooms, making clean humidification possible. Four kinds of liana were used to experiment the temperature characteristics of their transpiration. The transpiration rate, photosynthesizing rate and leaf temperature were measured, and the following findings were obtained: such plants that are adapted to weak light as philodendron and potos cannot control the leaf temperature under such a high illuminance and temperature as in the experimental condition, hence are not suitable for this system; and plants that have high transpiration rate under high temperatures such as ivy and cucumber can control the leaf temperature, performing photosynthesis stably, hence are suitable for the system. Insolation reducing effect was trially calculated. In the case of using ivy, the insolation can be cut down by 41% because of the transpiration cooling effect. 5 refs., 5 figs., 1 tab.

  17. FY1995 study of thermodynamic properties of HFC refrigerant mixtures for Lorentz-cycled new generation air-conditioning equipments; 1995 nendo Lorentz cycle ka shinsedai kucho kikiyo HFC kei kongo reibai no netsurikigaku seishitsu ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    A hydrochlorofluorocarbon (HCFC) refrigerant, R-22, is currently being used almost exclusively as a refrigerant for conventional air-conditioning equipments. Since HCFCs are expected to be banned shortly, it is considered a crucial issue to support R and D of the air-conditioning system Lorentz-cycled with hydrofluorocarbon (HFC) refrigerants mixtures. In the present research project, therefore, it is aimed to reveal some of the essential thermodynamic properties of HFC refrigerant mixtures systematically. On the basis of a series of achievements for the last several years by the present research coordinator and his group regarding thermodynamic properties of single-component and blended HFC refrigerants, we have conducted following three major research programs rather systematically on which no challenges have ever been reported worldwide. Throughout a series of experimental as well as analytical researches performed so as to meet the objectives mentioned above, some novel knowledge and valuable outcomes could be obtained in the present study. (1) Precise measurements of vapor-liquid equilibrium properties with simultaneous determination of densities, latent heats of vaporization, and isobaric specific heat capacities in liquid phase. (2) Analytical studies to establish thermodynamic property modeling. (3) Feasibility study of evaluating the Lorentz-cycled performance. (NEDO)

  18. Análisis energético de un sistema híbrido de producción de frío; Energy analysis of a hybrid air conditioning system

    Directory of Open Access Journals (Sweden)

    Yamile Díaz Torres

    2015-04-01

    Full Text Available El artículo presenta los resultados del análisis energético de un sistema híbrido de climatización en los hoteles cubanos. Se efectuó el cálculo de una instalación de climatización por absorción asistido con energía solar, interconectada en serie con un sistema de compresión de vapor existente. El procedimiento de cálculo se desarrolló bajo los principios termodinámicos que rigen esta tecnología y con la ayuda de herramientas matemáticas. Se emplearon metodologías de cálculo como el método de las curvas f-chart para la contribución solar. Se utilizó información estadística de datos meteorológicos y energéticos de un caso de estudio en el Hotel Gran Caribe Jagua de la provincia de Cienfuegos, Cuba. Los resultados demuestran que la utilización de estos sistemas, complementando el sistema centralizado de climatización por agua helada (chiller, constituye una alternativa para reducir el consumo de energía eléctrica y el posible impacto ambiental directo e indirecto. The article presents the results of the energy analysis of a hybrid air conditioning system in Cuban hotels. Calculating an air conditioning system for solar assisted interconnected in series with a compression system under existing steam thermodynamic principles’ governing this technology and the help of mathematical tools absorption was made. Calculation methodologies as the method of curves f -chart for solar contribution were employed, using statistical weather data and energy data of the case study Gran Caribe Jagua of Cienfuegos, Cuba. The results demonstrate that the use of these systems, complementing the central chilled water for air conditioning (chiller system is an alternative to reduce energy consumption and the potential direct and indirect environmental impact.

  19. A new air-conditioning terminal combines variable air flow rate and induction; Un nouveau terminal de ''clim'' combine debit d'air variable et induction

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-04-01

    The air conditioning of an administrative building of Clermont-Ferrand (France) is ensured by a centralized system which uses an innovative air flow rate regulation system made of a nozzle and a moving cone. The nozzle/cone system allows to adjust the flow rate of the primary cold air before its mixing with the recycled air taken from the room. This system works at a constant pressure and the temperature is regulated by simply adjusting the cold-air/recycled air ratio. The use of 'very' cold air (around 10 deg. C) allows to reduce the size of the distribution ducts. The hot and cold batteries of the air treatment systems are supplied by a air/water reversible heat pump. (J.S.)

  20. Employment of Direct Fire Systems during Offensive Operations

    Science.gov (United States)

    1990-06-01

    rehearsal follows the CRAWL- WALK -RUN methodology. More than one rehearsal should be conducted if possible with a "dress" rehearsal reflecting all the...sandtable or terrain model. 4). Walk -thru: This is similar to the sandtable/terrain model technique. It requires designated participants to walk -thru...which Criteria: i(a) the activities of the took force iro pleased, irected coordisated s&d cuatrollod to accoupish the sissies lIMo WuIN III: Q tore lot

  1. Air condition sensor on KNX network

    Science.gov (United States)

    Gecova, Katerina; Vala, David; Slanina, Zdenek; Walendziuk, Wojciech

    2017-08-01

    One of the main goals of modern buildings in addition to the management environment is also attempt to save energy. For this reason, increased demands on the prevention of energy loss, which can be expressed for example as an inefficient use of the available functions as a building or heat leakage. Reducing heat loss as a perfect tightness of doors and windows in the building, however, restricts the natural ventilation, which leads to a gradual deterioration of the quality of the internal environment. This state then has a very significant impact on human health. In the closed, poorly ventilated area, the person staying at increasing the carbon dioxide concentration, temperature and humidity, which impacts the human thermoregulation system, increases fatigue and causes restlessness. It is therefore necessary to monitor these parameters and then control so as to ensure stable and optimal human values. The aim is to design and implementation Module sensors that will be able to measure different parameters, allowing the subsequent regulation of indoor environmental quality.

  2. Heating, Ventilating, Air Conditioning and Dehumidifying Systems.

    Science.gov (United States)

    1980-08-01

    Availability and cost material of civilian labor and materiala . Accessibility The available transport and access facilities. Standards, The applicable...toilet facilities, washrooms, shower rooms, janitor’s closets and garbage rooms. Food handling areas include kitchens, dining rooms, dishwashing facilities...Officers Quarters, or individual quarters the exhaust air rate shall be 2 cfm per square foot of net floor area. I (4) For shower rooms with gang showers

  3. Solar-powered air-conditioning

    Science.gov (United States)

    Clark, D. C.; Rousseau, J.

    1977-01-01

    Report focuses on recent study on development of solar-powered residential air conditioners and is based on selected literature through 1975. Its purposes are to characterize thermal and mechanical systems that might be useful in development of Rankine-cycle approach to solar cooling and assessment of a Lithium Bromide/Water absorption cycle system.

  4. FY1999 Meeting of The Society of Heating, Air-Conditioning and Sanitary Engineering of Japan. Reduction measures against indoor air pollution due to chemical substances; 1999 nendo gakujutsu koenkai gaiyo. Kagaku busshitsu ni yoru shitsunai kuki osen teigen taisaku

    Energy Technology Data Exchange (ETDEWEB)

    Iwata, T. [Tokai University, Tokyo (Japan)

    1999-12-05

    Serial A-10 and A-11 reported the experimental result on a bake-out effect by using composite materials, and reduction of formaldehyde and VOC generation after bake-out of building elements such as floor and baseboard. Specific combination of composite materials and ignored rebound were pointed out. A-12 reported the study on the effects of specific building materials, draft and ventilation, bake-out, and an air conditioning system using formaldehyde-removed materials for residences in cold areas. Bake-out time too short was pointed out. A-13 reported the formaldehyde reduction effect of low-formaldehyde building materials, ventilation and scavenger based on measurement in a new residence before dwelling. Discussion was held on the use method of formaldehyde scavenger. A-14 reported the considerable removal effect of a portable formaldehyde remover using a diffusion scrubber method based on the experimental research result at high and low formaldehyde concentrations. On a question about its applicability to a space there is continuous generation of formaldehyde and a humidity problem, the speaker answered that those remain unsolved for future studies. (translated by NEDO)

  5. Rational use of energy in air conditioning equipment, through an appropriate selection of the main equipment; Uso racional de la energia en equipos de aire acondicionado, mediante la eleccion apropiada del equipo principal

    Energy Technology Data Exchange (ETDEWEB)

    Reyes Zuniga, Jose de Jesus; Herrera Ramos, Manuel [Instituto Mexicano del Petroleo (Mexico)

    1996-07-01

    This paper presents an analysis to diminish the consumption of energy in central air conditioning equipment through an appropriate selection of the equipment. The analysis shows the levels of security and toxicity of the refrigerant, the operational, constructive and economic advantages of the equipment, taking as reference the cooling demand and expenses of energy consumption, as well as the ecological impact derived from the use of the refrigerant. Finally, an economic analysis is presented, involving the expenses of the equipment, operation, maintenance, costs of the consumption of used fluids, et cetera. [Spanish] Uso racional de la energia en equipos de aire acondicionado, mediante la eleccion apropiada del equipo principal. Este trabajo presenta un analisis para disminuir el consumo de energia en los equipos centrales de aire acondicionado mediante la seleccion apropiada del equipo. El analisis muestra los niveles de seguridad y toxicidad del refrigerante, las ventajas operativas, constructivas y economicas del equipo, tomando como referencia la demanda de enfriamiento y gastos de consumo de energia, asi como el impacto ecologico derivado de su empleo del refrigerante. Finalmente, se presenta un analisis economico, involucrando los gastos del equipo, operacion, mantenimiento, costos de consumos de fluidos utilizados, etcetera.

  6. Proposal for the award of a contract for the design, supply, installation and commissioning of a ventilation and air conditioning system for the ECN3 experimental area and the TCC8 and GHN300 service tunnels and for the dismantling of the existing system

    CERN Document Server

    2014-01-01

    Proposal for the award of a contract for the design, supply, installation and commissioning of a ventilation and air conditioning system for the ECN3 experimental area and the TCC8 and GHN300 service tunnels and for the dismantling of the existing system

  7. EVALUACIÓN DE ALTERNATIVAS PARA CLIMATIZACIÓN DE ESTANQUES CON ENERGÍA SOLAR PARA CULTIVO DE TILAPIA ROJA (Oreochromis sp, LOCALIZADOS EN LA ZONA FRÍA DEL VALLE DEL CAUCA, COLOMBIA EVALUATION OF ALTERNATIVES FOR AIR CONDITIONING OF PONDS WITH SOLAR ENERGY FOR CULTIVATION OF RED TILAPIA (Oreochromis sp, LOCATED IN THE COLD AREA OF THE CAUCA VALLEY, COLOMBIA

    Directory of Open Access Journals (Sweden)

    Francisco Javier Borja Gallardo

    2006-06-01

    Full Text Available La investigación fue desarrollada para que la tilapia roja (Oreochromis sp, especie de pez mÁs producida en Colombia, pueda ser explotada en lugares donde las condiciones óptimas para su normal desarrollo no son las adecuadas, como son las regiones altas con temperaturas por debajo de los 24 °C, aplicando metodologías relacionadas con el aprovechamiento de la energía solar. Las técnicas evaluadas fueron: climatización por medio de colectores solares, climatización por medio de manta térmica, climatización por medio de mangueras térmicas y climatización por medio de resistencias eléctricas. Se analizaron factores como funcionalidad, mantenimiento, limitaciones organizativas, espaciales, y costos.The research was developed so that the red tilapia (Oreochromis sp, fish species that more taken place in Colombia can be exploited in regions where the good conditions for its normal development are not the appropriate ones as in the high regions with temperatures below the 24 °C, applying methodologies related with the use of the solar energy. The evaluated methodologies were: air conditioning by means of solar collectors, air conditioning by means of thermal blanket, air conditioning by means of thermal hoses and air conditioning by means of electric resistances. Factors like functionality, maintenance, organizational and space limitations, and costs were analized.

  8. Global food insecurity. treatment of major food crops with elevated carbon dioxide or ozone under large-scale fully open-air conditions suggests recent models may have overestimated future yields.

    Science.gov (United States)

    Long, Stephen P; Ainsworth, Elizabeth A; Leakey, Andrew D B; Morgan, Patrick B

    2005-11-29

    Predictions of yield for the globe's major grain and legume arable crops suggest that, with a moderate temperature increase, production may increase in the temperate zone, but decline in the tropics. In total, global food supply may show little change. This security comes from inclusion of the direct effect of rising carbon dioxide (CO2) concentration, [CO2], which significantly stimulates yield by decreasing photorespiration in C3 crops and transpiration in all crops. Evidence for a large response to [CO2] is largely based on studies made within chambers at small scales, which would be considered unacceptable for standard agronomic trials of new cultivars or agrochemicals. Yet, predictions of the globe's future food security are based on such inadequate information. Free-Air Concentration Enrichment (FACE) technology now allows investigation of the effects of rising [CO2] and ozone on field crops under fully open-air conditions at an agronomic scale. Experiments with rice, wheat, maize and soybean show smaller increases in yield than anticipated from studies in chambers. Experiments with increased ozone show large yield losses (20%), which are not accounted for in projections of global food security. These findings suggest that current projections of global food security are overoptimistic. The fertilization effect of CO2 is less than that used in many models, while rising ozone will cause large yield losses in the Northern Hemisphere. Unfortunately, FACE studies have been limited in geographical extent and interactive effects of CO2, ozone and temperature have yet to be studied. Without more extensive study of the effects of these changes at an agronomic scale in the open air, our ever-more sophisticated models will continue to have feet of clay.

  9. FRIGOKLIMA `97. 2nd international trade fair for cryogenics and air conditioning, Prague, April 24-26, 1996; FRIGOKLIMA `96. 2. Internationale Fachmesse fuer Kaelte- und Klimatechnik 24.-26.4.1996 in Prag

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1996-08-01

    The conference demonstrated that the political tensions between Germany and Czechia, fortunately, have not born adversely on relations in the refrigeration engineering sector. The latter are characterized by growing agreement in matters of precautionary environmental protection, notwithstanding the still different speeds in the phasing-out of CFCs. But this time factor has limited importance for a transitory period only and will change as the new central and estern European democracies increasingly embrace free-economy principles. In the political and economic life of the Czech Republic, substantial progress has been made in this regard especially recently, to which the published economic figures and the consolidation of the international balance of payments testify. The course of a technical exhibition is a fair indicator of whether this positive impression holds true also of the sector of refrigeration and air conditioning engineering. (orig.) [Deutsch] Innerhalb der grossen internationalen Kaeltefamilie ist es vor allem fuer uns Deutsche im Verhaeltnis zu unserem europaeischen Nachbarn in Tschechien angenehm und dies auch erfahren zu duerfen, dass die `politische` Atmosphaere keinerlei Einfluss auf die `kaeltetechnisch` gepraegte Atmosphaere besitzt. Denn diese wird durch eine zunehmende Uebereinstimmung im Handeln bei der Umweltschutzvorsorge bestimmt, wenn auch die zeitlichen `Geschwindigkeiten` in der Effizienz des FCKW-Ausstiegs vorlaeufig noch differieren. Dieser Zeitfaktor hat jedoch nur noch voruebergehend eine begrenzte Bedeutung und wird von der Verankerung marktwirtschaftlicher Fundamente in den neuen zentral- und osteuropaeischen Demokratien beeinflusst. In der Tschechischen Republik ist man (Politik und Wirtschaft) gerade in juengerer Zeit hier weit vorangekommen, die veroeffentlichten Wirtschaftszahlen und die Festigung der internationalen Zahlungsbilanz legen hiervon Zeugnis ab. Ob dieser positive Eindruck auch fuer den Bereich der Kaelte

  10. On-road performance analysis of R134a/R600a/R290 refrigerant mixture in an automobile air-conditioning system with mineral oil as lubricant

    International Nuclear Information System (INIS)

    Ravikumar, T.S.; Mohan Lal, D.

    2009-01-01

    R134a has been accepted as the single major refrigerant in the automobile industry and it has been used worldwide. But, the problem associated with it is the use of the PAG oil as the lubricant. Unlike the conventional mineral oil, the synthetic PAG oil used with R134a is highly hygroscopic in nature. The PAG lubricants come with different additives unique for different compressors. This leads to serious service issues. Therefore, a refrigerant, which will be readily available to replace R12, and also compatible with mineral oil, is needed. In the present study the readily available R134a is used in place of R12. However, to avoid PAG oil and to use the conventional mineral oil as lubricant, R134a is mixed with the commercially available hydrocarbon blend, (45.2% R290 and 56.8% R600a) in the proportion of 91% and 9%, respectively by mass. The quantity of hydrocarbons used is well below the lower flammable limit. This new mixture R134a/R600a/R290 is tested in the air-conditioning system of a passenger car 'on road' in the true running conditions and compared with the results that has been obtained with R12. The cool down performance under varying speed and varying ambient conditions, system performance under severe accelerating conditions and bumper-to-bumper traffic conditions is studied. The test results show that the new blend can be a promising substitute for the existing R12 systems and it can eliminate the use of hygroscopic PAG oil.

  11. The role of the principle of double effect in ethics education at US medical schools and its potential impact on pain management at the end of life.

    Science.gov (United States)

    Macauley, Robert

    2012-03-01

    Because opioids can suppress respiratory drive, the principle of double effect (PDE) has been used to justify their use for terminally ill patients. Recent studies, however, suggest that the risk of respiratory depression in typical end-of-life (EOL) situations may be overstated and that heightened concern for this rare occurrence can lead to inadequate treatment of pain. The purpose of this study is to examine the role of the PDE in medical school ethics education, with specific reference to its potential impact on pain management at EOL. After obtaining institutional review board approval, an electronic survey was sent to ethics educators at every allopathic medical school in the USA. One-third of ethics educators felt that opioids were 'likely' to cause significant respiratory depression that could hasten death. Educators' opinions of opioid effects did not influence their view of the relevance of the PDE, with approximately 70% deeming it relevant to EOL care. Only 15% of ethics educators believed that associating the PDE with opioid use might discourage clinicians from optimally treating pain, out of concern for respiratory depression. This study demonstrates that a significant minority of ethics educators believe, contrary to current evidence, that opioids are 'likely' to cause significant respiratory depression that could hasten death in terminally ill patients. Yet, many of those who do not feel this is likely still rely on the PDE to justify this possibility, potentially (and unknowingly) contributing to clinical misperceptions and underutilisation of opioids at EOL.

  12. Seminar series on `Technical building installations`. The example of refrigeration technology for air conditioning plants. Practice-oriented advanced training at Technische Akademie Esslingen training centre. Seminar series on `Technical building installations`; Lehrgangsreihe ``Technische Gebaeudeausruestung``. Beispiel: Kaeltetechnik in Klimaanlagen. Praxisnahe Fortbildung am Weiterbildungszentrum Technische Akademie Esslingen. Lehrgangsreihe ``Technische Gebaeudeausruestung``

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    1995-04-01

    The advanced training on ``Technical Building Installations`` at the Technische Akademie Esslingen has been held regularly over a period of 18 years now. The training lasts several days and comprises a total of 12 courses on the subjects: ventilation and air-conditioning, stages A-D; refrigeration, stage A; refrigeration in air conditioning glants; energy concepts for buildings and industry, stages A and B; heating in old and new buildings; sanitation, stages A and B; and, sanitation in old and new buildings. In the present article the structure of the training is illustrated for the example of refrigeration in air conditioning plants. The article also discusses questions concerning the assessment of the training and its benefit to the participants. (BWI) [Deutsch] Seit nunmehr 18 Jahren wird an der Technischen Akademie Esslingen TAE die mehrtaegige Fortbildungsveranstaltung ``Technische Gebaeudeausruestung`` durchgefuehrt. Insgesamt werden in diesem gesamten Themenkomplex 12 Lehrgaenge angeboten: Raumlufttechnik, Teil A-D; Kaeltetechnik Teil A - Kaeltetechnik in Klimaanlagen, Energiekonzepte fuer Gebaeude und Industrie, Teil A und B, Heiztechnik in Neu- und Altbauten, Sanitaertechnik Teil A und B. Am Beispiel des Themenbereiches Kaeltetechnik in Klimaanlagen wird die Lehrgangsausrichtung dargestellt. Ferner werden Fragen der Lehrgangsbewertung und der Nutzen fuer die Teilnehmer diskutiert. (BWI)

  13. Development of a electrothermal model to scale to determine the energy behavior in buildings with air conditioning; Desarrollo de un modelo electrotermico a escala para determinar el comportamiento energetico en edificaciones con aire acondicionado

    Energy Technology Data Exchange (ETDEWEB)

    Acoltzi, Higinio [Instituto de Investigaciones Electricas, Temixco, Morelos (Mexico)

    2001-07-01

    This work presents the development of an electrothermal model and its experimental verification to determine the energetic behavior of test modules at scale of buildings. The model determines the history of the consumption of electrical energy to maintain the comfort conditions in the interior of the modules, with respect to the variation of the materials of the ceilings and windows; all this with the intention of establishing criteria for the application of these materials in the construction industry. The electrical energy consumption for the modules with ceilings of monolithic slab, joist and small vault and windows with reflectasol, filtrasol and clear glasses is presented. Finally, the preliminary results of the application of the proposed model for a building of normal scale are presented. The field measurements and the developed theoretical electrothermal model, present average differences of 16%. The electrical energy savings observed with the application of the theoretical electrothermal model are: 1) if clear glass is changed for filtrasol, energy savings of up to 14,5% are obtained for the slab of joist and small vault and of 12.4% for the monolithic slab; or 2) if clear glass is changed for reflectasol energy savings can be obtained of up to 28.1% for the case of joist and small vault slab and 16.8% for the monolithic slab. The best option is to replace the monolithic slab and clear glass for the joist and small vault slab and reflectasol glass to obtain up to a 37% of savings. The adjustment of experimental device with the 3 connected modules to the air conditioning, and one graphical comparison between the consumption of theoretical and experimental accumulated energy of the module with joist and small vault for the reflectasol, filtrasol and clear glasses are presented. A summary of the total consumption of electrical energy is given. [Spanish] En este trabajo se presenta el desarrollo de un modelo electrotermico y su verificacion experimental para

  14. Methodology to determine the consumption and potential of saving of electrical energy in the systems of air-conditioning in the residential sector: case the Northwest of Mexico; Metodologia para determinar el consumo y potencial de ahorro de energia electrica en los sistemas de climatizacion en el sector residencial: caso Noroeste de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rosas Flores, J. A.; Morillon Galvez, D.

    2008-07-01

    In this work there are studied the characteristics of the consumption of electrical residential energy due to the systems of air conditioning and to cos mell, in the region Northwest of Mexico (Sonora, Sinaloa, Baja California Norte, Baja California Sur, and Nayarit) and the North region (Coahuila, Chihuahua, Durango, Nuevo Leon). Between the principal results one finds that the potential saving of electrical energy, with base in the use of passive systems as the isolation of the housings, decided in 3,356 GWh (similar to the electrical annual supply that there needs the state of Durango or Guerrero). (Author)

  15. 'O{sub 2} World' in Berlin. A multifunctional arena of the fifth generation. Air conditioning for all types of events; 'O{sub 2} World' in Berlin. Eine Multifunktionsarena der 5. Generation. Die Klimaanlage wird zum Stimmungsmacher

    Energy Technology Data Exchange (ETDEWEB)

    Krischausky, Lutz [Wolf GmbH, Mainburg (Germany)

    2009-07-01

    The Anschutz Entertainment Group invested about 165 million Euros in their new multifunctional arena 'O{sub 2} World' in Berlin. The arena has 17,000 seats and is Germany's most state-of-the-art arena building. It can be converted over night into an ice arena, a basketball stadium, a concert hall, or an opera house as desired. The technical facilities are equipped with so-called set-ups that ensure that air conditioning systems follow a specific scenario for each type of event. (orig.)

  16. Development in fiscal 1999 of technologies to put photovoltaic power generation systems into practical use. International cooperation projects (Collection of information on IEA photovoltaic air conditioning and hot water supply program); 1999 nendo taiyoko hatsuden system jitsuyoka gijutsu kaihatsu seika hokokusho. Kokusai kyoryoku jigyo (IEA taiyo reidanbo kyuto program ni kansuru joho shushu)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    This paper reports activities of collecting items of information by dispatching experts mainly composed of members of the IEA photovoltaic air conditioning, and solar heating and cooling program (SHCP) committee to the SHCP Executive Committee and the Task expert conferences. This treaty is intended to assist creating the environmentally sustainable future by utilizing solar designs and technologies. It also aims at developing solar technologies including cost reduction as a result of the joint researches with business entities, structuring international markets, providing items of information, quantifying the effectiveness to the environment, performing the international standardization, and promoting utilization of solar technologies in developing countries. The tasks now in action include architectural lighting, methods for analyzing solar architectural energies, optimization of solar energy utilization in large buildings, procurement of active solar systems, air conditioning systems in buildings using the solar energy, solar heat composite systems, expansion of exterior component materials for solar buildings, sustainable buildings, agricultural solar drying, solar cities, a hybrid heat/PV solar system. (NEDO)

  17. Project of air conditioning system by absorption of water-lithium bromide using solar energy and simulation of its operation under several conditions; Projeto de sistema para condicionamento de ar por absorcao de agua-brometo de litio utilizando energia solar e simulacao de sua operacao sob condicoes diversas

    Energy Technology Data Exchange (ETDEWEB)

    Sbravati, Alan; Figueiredo, Jose Ricardo [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica. Dept. de Energia]. E-mails: alan@fem.unicamp.br; jrfigue@fem.unicamp.br

    2000-07-01

    This article presents computational models for water - lithium bromide absorption air conditioning systems, verifying the use of solar energy as source of heat for the cycle. Four different models were elaborated for the cycle, changing the configurations and hypotheses. In each model two algorithms were elaborated: the first one accomplished the calculations of the heat and mass flows and a estimative of the areas heat transfer, a project of a system, and another which, based on the answers of the first, simulate the behavior of this system when the conditions of initial project are changed, keeping constant the constructive parameters. As in the project a numeric procedure has been used for solution of non lineal systems based on the algorithm of Newton-Raphson. The main alteration among the models went to substitution of the expansion device and evaporator, and, in the fourth model, was increased a procedure for calculation of the solar collector performance. (author)

  18. Corrosion control by limestone immersion into the hot water heat-storage tank. Case history of air-conditioning systems of Sapporo city subway stations; Sekkaiseki shinsekiho ni yoru chikunetsu onsui keito no boshoku koka. Sapporoshi chikatetsu kakueki no kucho setsubi no jirei

    Energy Technology Data Exchange (ETDEWEB)

    Kishi, M. [Sapporo City Transportation Bureau, Sapporo (Japan); Okumura, J. [Hokkaido Nikken Sekkei Ltd., Sapporo (Japan); Sakai, Y.; Shiiya, O. [Takasago Thermal Engineering Co. Ltd., Tokyo (Japan)

    1995-06-05

    Limestone immersion into heat-storage water tanks is a method for improving the water quality so as to encrust inner surface of piping by corrosion-preventive calcium carbonate film. For air-conditioning of Support city subway stations, heat-storing heat-pump systems with heat recovery from exhaust air have been introduced and developed for energy saving along with expansion of the subway routes. Inner surfaces of the heat-storage water tanks of all stations are coated with FRP-lining, therefore, some corrosion-preventive chemicals had been dosed from the starting up. However, the storage waters of all stations turned to red because of continuity of the piping corrosion. Instead of dosing chemicals, the limestone immersion method station. Thanks to His method, excellent results were obtained in a short period contributing control of the piping corrosion together with the red water fading. 14 figs., 1 tab.

  19. Costic's technical day: thermodynamical heating and air conditioning in accommodations (heat pumps and heating/cooling floors). Air systems and their application in collective installations; Journee technique Costic: chauffage thermodynamique et climatisation dans l'habitat (les pompes a chaleur, les planchers chauffants-rafraichissants). Les systemes a air les applications en collectif

    Energy Technology Data Exchange (ETDEWEB)

    Lenotte, J.J.

    2002-07-01

    Direct expansion air systems are now currently used in individual residential houses. Some of these systems are used also in collective residential buildings where they allow to take into account the individualization of consumptions, as wished by some property developers. Some other centralized air-conditioning systems can be used. They require a distribution water loop for the supply of terminal units of ventilation-convection type. This document presents successively: the direct expansion air systems (direct emission air/air heat pumps, aeraulic distribution air/air heat pumps, production dimensioning, implementation, regulation, systems with variable flow rate of refrigerant); the centralized air/water systems with ventilation-convection systems (production dimensioning, implementation, regulation); the air distribution and diffusion. (J.S.)

  20. Costic's technical day: thermodynamical heating and air conditioning in accommodations (heat pumps, heating-cooling floors). Development of reversible heat pumps in France and in Europe; Journee technique Costic: chauffage thermodynamique et climatisation dans l'habitat (les pompes a chaleur, les planchers chauffants-rafraichissants). Developpement des pompes a chaleur reversibles en France et en Europe

    Energy Technology Data Exchange (ETDEWEB)

    Ecolivet, K.

    2002-07-01

    Space heating installations involving reversible heat pumps are more and more developing, in particular in individual residential accommodations. Todays, the notion of individual comfort includes also the cooling or the air-conditioning. This document gives a general overview of the different types of thermodynamical systems in use in residential buildings and presents the situation of this market in Europe: air/water systems with heating floor or heating/cooling floor, water/water systems with horizontal buried collectors and heating floor or heating/cooling floor, ground/water systems with horizontal buried collectors and heating floor, ground/ground systems with horizontal buried collectors and heating floor, air/water systems with two-pipe water terminal units (ventilation-convection units), air/air monobloc, split or multi-split systems with or without aeraulic duct. (J.S.)