WorldWideScience

Sample records for air systems metodologia

  1. Methodology for the energy analysis of compressed air systems; Metodologia para analisis energetico de sistemas de aire comprimido

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, T.; Ambriz, J. J.; Romero, H. [Universidad Autonoma Metropolitana-Iztapalapa, Mexico, D. F. (Mexico)

    1992-12-31

    In this paper a methodology for the diagnosis of compressed air systems, for the identification of the potential energy saving is presented. The methodology consists in detecting the largest number of possible ways of energy saving. For this purpose it is divided into three parts: 1. Compressed air generation. 2. Compressed air distribution. 3. Compressed air users. For each one of the parts, the type of information required to perform the diagnosis study, as well as the necessary measuring equipment needed, is indicated. Afterwards, the possible saving ways that can be found and the ones that can be feasible, are analyzed. [Espanol] En este trabajo se presenta una metodologia para diagnosticar sistemas de aire comprimido, para identificar los potenciales de ahorro de energia. La metodologia consiste en detectar el mayor numero de posibles medidas de ahorro, para lo cual se divide en tres partes: 1. Generacion de aire comprimido. 2. Distribucion del aire comprimido. 3 Usuarios de aire comprimido. Para cada una de las partes se indica el tipo de informacion requerida para realizar el estudio de diagnostico, asi como el uso de equipo necesario de medicion. Despues se analizan las posibles medidas de ahorro que se pueden encontrar y las que pueden ser viables.

  2. Metodologia Scrum

    OpenAIRE

    Notario Rubí, Xisco

    2014-01-01

    Aplicació realitzada sota la plataforma ASP.NET per gestionar projectes duts a terme sota la metodologia Scrum. Aplicación realizada bajo la plataforma ASP.NET para gestionar proyectos llevados a cabo bajo la metodología Scrum.

  3. APLICAÇÃO DA METODOLOGIA SOFT SYSTEMS PARA ESTRUTURAR PROBLEMAS EM UM CURSO DE GRADUAÇÃO

    Directory of Open Access Journals (Sweden)

    SANDRO GUSTAVO SOUSA SANTOS

    2016-12-01

    Full Text Available O objetivo deste trabalho é aplicar a metodologia Soft Systems para estruturar problemas reais do curso de graduação em Engenharia de Produção da Universidade Estadual do Maranhão no município de São Luís-MA. A metodologia embora ainda pouca utilizada no Brasil, mostra-se uma útil ferramenta para identificação de problemas com o intuito de gerar a aprendizagem através da reflexão sobre a situação em estudo. Assim, durante o desenvolvimento do trabalho buscou-se a participação dos atores do sistema em estudo (professores, alunos e gestão do curso para melhor compreender o próprio sistema através de suas percepções de mundo e experiências.. Dessa forma, o presente estudo apresentou aplicabilidade da metodologia e sua contribuição para a aprendizagem do sistema em estudo para discentes, docentes e gestão do curso através do enfoque sistêmico.

  4. Air Quality System (AQS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements...

  5. Methodology to determine the consumption and potential of saving of electrical energy in the systems of air-conditioning in the residential sector: case the Northwest of Mexico; Metodologia para determinar el consumo y potencial de ahorro de energia electrica en los sistemas de climatizacion en el sector residencial: caso Noroeste de Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Rosas Flores, J. A.; Morillon Galvez, D.

    2008-07-01

    In this work there are studied the characteristics of the consumption of electrical residential energy due to the systems of air conditioning and to cos mell, in the region Northwest of Mexico (Sonora, Sinaloa, Baja California Norte, Baja California Sur, and Nayarit) and the North region (Coahuila, Chihuahua, Durango, Nuevo Leon). Between the principal results one finds that the potential saving of electrical energy, with base in the use of passive systems as the isolation of the housings, decided in 3,356 GWh (similar to the electrical annual supply that there needs the state of Durango or Guerrero). (Author)

  6. Energy balance of the metropolitan zone of the valley of Mexico, methodology and the entailment energy-air quality; Balance de energia de la zona metropolitana del valle de Mexico metodologia y la vinculacion energia - calidad del aire

    Energy Technology Data Exchange (ETDEWEB)

    Bazan Navarrete, Gerardo [Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)

    2001-07-01

    The present document raises a methodology for the elaboration of the Energy Balance of the Metropolitan Zone of the Valley of Mexico (ZMVM), in order to unify criteria and to facilitate the work of entities and investigators, mainly of those that require the entailment of energy and environment. The applied methodology, the consolidated format and the caloric unity facilitates the insertion of the Energy Balance of the ZMVM within the National Balance of Energy. The regional balances of energy have the intention of knowing the energy consumption patterns in the ZMVM and the indexes of energy intensity by sector. They establish the relationship of the indexes of energy intensity with the local and global air quality of the region, performing studies of incidence with the main polluting agents and with the greenhouse effect gases. [Spanish] El presente documento plantea una metodologia para la elaboracion del Balance de Energia de la Zona Metropolitana del Valle de Mexico (ZMVM), con el proposito de unificar criterios y facilitar el trabajo de organismos e investigadores, sobre todo de aquellos que requieren vincular energia y medio ambiente. La metodologia aplicad, el formato consolidado y la unidad calorica facilitan la insercion del Balance de Energia de la ZMVM dentro del Balance Nacional de Energia. Los balances regionales de energia tienen el proposito de conocer los patrones de consumo de energia en la ZMVM y los indices de intensidad energetica por sector. Establecen la relacion de los indices de intensidad energetica con la calidad del aire local y global de la region, realizando estudios de incidencia con los principales contaminantes y con los gases de efecto invernadero.

  7. Air System Information Management

    Science.gov (United States)

    Filman, Robert E.

    2004-01-01

    I flew to Washington last week, a trip rich in distributed information management. Buying tickets, at the gate, in flight, landing and at the baggage claim, myriad messages about my reservation, the weather, our flight plans, gates, bags and so forth flew among a variety of travel agency, airline and Federal Aviation Administration (FAA) computers and personnel. By and large, each kind of information ran on a particular application, often specialized to own data formats and communications network. I went to Washington to attend an FAA meeting on System-Wide Information Management (SWIM) for the National Airspace System (NAS) (http://www.nasarchitecture.faa.gov/Tutorials/NAS101.cfm). NAS (and its information infrastructure, SWIM) is an attempt to bring greater regularity, efficiency and uniformity to the collection of stovepipe applications now used to manage air traffic. Current systems hold information about flight plans, flight trajectories, weather, air turbulence, current and forecast weather, radar summaries, hazardous condition warnings, airport and airspace capacity constraints, temporary flight restrictions, and so forth. Information moving among these stovepipe systems is usually mediated by people (for example, air traffic controllers) or single-purpose applications. People, whose intelligence is critical for difficult tasks and unusual circumstances, are not as efficient as computers for tasks that can be automated. Better information sharing can lead to higher system capacity, more efficient utilization and safer operations. Better information sharing through greater automation is possible though not necessarily easy.

  8. Methodology for evaluating the grounding system in electrical substations; Metodologia para la evaluacion del sistema de puesta a tierra en subestaciones electricas

    Energy Technology Data Exchange (ETDEWEB)

    Torrelles Rivas, L.F [Universidad Nacional Experimental Politecnica: Antonio Jose de Sucre (UNEXPO), Guayana, Bolivar (Venezuela)]. E-mail: torrellesluis@gmail.com; Alvarez, P. [Petroleos de Venezuela S.A (PDVSA), Maturin, Monagas (Venezuela)]. E-mail: alvarezph@pdvsa.com

    2013-03-15

    The present work proposes a methodology for evaluating grounding systems in electrical substations from medium and high voltage, in order to diagnose the state of the elements of the grounding system and the corresponding electrical variables. The assessment methodology developed includes a visual inspection phase to the elements of the substation. Then, by performing measurements and data analysis, the electrical continuity between the components of the substation and the mesh ground is verified, the soil resistivity and resistance of the mesh. Also included in the methodology the calculation of the step and touch voltage of the substation, based on the criteria of the International IEEE standards. We study the case of the 115 kV Pirital Substation belonging to PDVSA Oriente Transmission Network. [Spanish] En el presente trabajo se plantea una metodologia para la evaluacion de sistemas de puesta a tierra en subestaciones electricas de media y alta tension, con la finalidad de diagnosticar el estado de los elementos que conforman dicho sistema y las variables electricas correspondientes. La metodologia de evaluacion desarrollada incluye una fase de inspeccion visual de los elementos que conforman la subestacion. Luego, mediante la ejecucion de mediciones y analisis de datos, se verifica la continuidad electrica entre los componentes de la subestacion y la malla de puesta a tierra, la resistividad del suelo y resistencia de la malla. Se incluye tambien en la metodologia el calculo de las tensiones de paso y de toque de la subestacion, segun lo fundamentado en los criterios de los estandares Internacionales IEEE. Se estudia el caso de la Subestacion Pirital 115 kV perteneciente a la Red de Transmision de PDVSA Oriente.

  9. Manual for THOR-AirPAS - air pollution assessment system

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Ketzel, Matthias; Brandt, Jørgen

    The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS.......The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS....

  10. Methodology for the location diagnosis of electrical faults in electric power systems; Metodologia para el diagnostico de ubicacion de fallas en sistema electricos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Rosas Molina, Ricardo

    2008-08-15

    The constant growth of the Electric Power Systems derived from the increase in the world-wide demand of energy, has brought as a consequence a greater complexity in the operation and control of the power nets. One of the most affected tasks by this situation is the operation of electrical systems against the presence of faults, where the first task to realize is, on the part of the operational personnel of the network, the rapid fault site location within the system. In the present paper the problem of the diagnose location of electrical faults in power systems is approached, from the point of view of the operators of the energy control centers of an electric company. The objective of this thesis work is to describe a methodology of operational analysis of protections, as a bases for the development of a system of diagnosis systems for faults location, that allows to consider the possible fault sites within the system as well as a justification of the operation of protections in face of a disturbance as a support to the operators of the Energy Control centers. The methodology is designed to use different information types, discreet, continuous and controls. Nevertheless, in the development of the present stage of the proposed methodology use is made exclusively of the discreet information of the conditions of breakers and operation of relays, as well as of the connectivity of the network elements. The analysis methodology consists in determining the network elements where the fault could have occurred, using the protections coverage areas associated to the operated circuit breakers. Later, these fault alternatives become ordained in descendent form of possibility using classification indexes and analyses based on fuzzy logic. [Spanish] El constante crecimiento de los Sistemas Electricos de Potencia derivado del incremento en la demanda energetica mundial, ha traido como consecuencia una mayor complejidad en la operacion y control de las redes electricas. Una de las

  11. Analysis methodology for economic technical feasibility studies in offshore electrical generation systems; Metodologia de analisis para estudios de factibilidad tecnica economica en sistemas de generacion electrica costa fuera

    Energy Technology Data Exchange (ETDEWEB)

    Fiscal Escalante, Raul [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2007-07-01

    An analysis methodology followed in the development of technique-economic feasibility studies of systems of electrical generation in offshore electrical installations is presented, including the obtaining of the curves of the turbine and generator performance, the technical considerations for the formulation of the operation scenes and the calculations of the economic evaluation of a real scenario. [Spanish] Se muestra una metodologia de analisis seguida en el desarrollo de estudios de factibilidad tecnica-economica de sistemas de generacion electrica en instalaciones electricas costa fuera, incluyendo la obtencion de las curvas de comportamiento de la turbina y el generador, las consideraciones tecnicas para la formulacion de los escenarios de operacion y los calculos de la evaluacion economica de un escenario real.

  12. Solar air systems - built examples

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, S.R. [ed.] [Solararchitektur, ETH-Hoenggerberg, Zurich (Switzerland)

    1999-07-01

    Active solar systems for air heating are a straightforward yet efficient way of using solar energy to heat spaces, ventilation air and even domestic hot water. They offer important advantages over solar water systems, improved comfort and fuller use of solar gains compared with many passive solar systems and are a natural fit with mechanically ventilated buildings. Solar air systems become more economical when they serve multiple functions such as providing a sound barrier, a weatherskin, sunshading, inducing cooling and even electricity supply (hybrid PV/air). Thirty-five different buildings with successfully installed exemplary solar air systems in climates ranging from Canada and Norway to Italy are described and documented. The building types cover single family houses, apartment buildings, schools, sports halls, and industrial commercial buildings with six different configurations of solar air systems used. Each building is described over several pages, with plans, performance details and illustrations provided. An accompanying product catalogue identifies suppliers of the necessary equipment and offers advice on product selection. As well as giving architects and designers invaluable advice based on the experience from these projects, this book also illustrates clearly the wide range of applications and the many benefits of solar air systems. (author)

  13. A metodologia de Lamarck

    Directory of Open Access Journals (Sweden)

    Lilian Al-Chueyr Pereira Martins

    1996-12-01

    Full Text Available Neste artigo, o método científico de Jean-Baptiste Lamarck é estudado sob o ponto de vista de seu discurso metodológico, bem como sob o ponto de vista de sua prática científica. Essa metodologia é comparada à preconizada por Condillac, assim como à dos "ideólogos" (idéologues grupo no qual se costuma incluir o próprio Lamarck. Mostra-se que o discurso metodológico de Lamarck assemelha-se ao dos ideólogos; no entanto, sua prática científica não se coaduna com esse enfoque. Em vez de seguir uma abordagem empirista, a obra de Lamarck se fundamenta em princípios metafísicos gerais sobre a natureza. Sob o ponto de vista dos ideólogos, seu trabalho deveria ser rejeitado - o que de fato ocorreu - como um mero sistema (système metafísico - no sentido pejorativo utilizado pelos seguidores de Condillac. No entanto, o presente artigo argumenta que esse é justamente um importante e inovador aspecto da obra de Lamarck, que permitiu a eclosão do evolucionismo moderno.

  14. Air transport system

    CERN Document Server

    Schmitt, Dieter

    2016-01-01

    The book addresses all major aspects to be considered for the design and operation of aircrafts within the entire transportation chain. It provides the basic information about the legal environment, which defines the basic requirements for aircraft design and aircraft operation. The interactions between  airport, air traffic management and the airlines are described. The market forecast methods and the aircraft development process are explained to understand the very complex and risky business of an aircraft manufacturer. The principles of flight physics as basis for aircraft design are presented and linked to the operational and legal aspects of air transport including all environmental impacts. The book is written for graduate students as well as for engineers and experts, who are working in aerospace industry, at airports or in the domain of transport and logistics.

  15. Dental Compressed Air Systems.

    Science.gov (United States)

    1992-03-01

    compressor ex- cept that the piston rings are made of a low friction material (usually a Teflon- composite ) The piston walls are oil-less and all friction... descal - ing. The water-cooled models are smaller, more efficient, and cause less heating of room air. Water-cooled aftercoolers must have an...dry to a dew point of -400C (-400 F). It has high adsorption capacity. (b) Silica Gel , which must be protected from liquid (usually by a layer of

  16. Steerable percussion air drilling system

    Energy Technology Data Exchange (ETDEWEB)

    Bui, H.D.; Gray, M.A.; Oliver, M.S.

    1995-07-01

    In the Steerable Percussion Air Drilling System (SPADS), air percussion is used to drill directionally in hard formations. Compared to mud or air powered PDM motors, SPADS offers directional drilling at high penetration rate, reduced mud costs, negligible formation damage, and immediate indication of hole productivity. Field tests turned up problems ranging from tool design to operation procedures; remedies were developed. There is an optimum WOB (weight on bit) at which torque is reasonably low. The hammer was tested at three different line pressures (200, 300, 350 psig) at optimum WOB in granite, limestone, and sandstone.

  17. Comparison between Different Air Distribution Systems

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The aim of an air conditioning system is to remove excess heat in a room and replace room air with fresh air to obtain a high air quality. It is not sufficient to remove heat and contaminated air, it is also necessary to distribute and control the air movement in the room to create thermal comfort...

  18. Magnus air turbine system

    Science.gov (United States)

    Hanson, Thomas F.

    1982-01-01

    A Magnus effect windmill for generating electrical power is disclosed. A large nacelle-hub mounted pivotally (in Azimuth) atop a support tower carries, in the example disclosed, three elongated barrels arranged in a vertical plane and extending symmetrically radially outwardly from the nacelle. The system provides spin energy to the barrels by internal mechanical coupling in the proper sense to cause, in reaction to an incident wind, a rotational torque of a predetermined sense on the hub. The rotating hub carries a set of power take-off rollers which ride on a stationary circular track in the nacelle. Shafts carry the power, given to the rollers by the wind driven hub, to a central collector or accumulator gear assembly whose output is divided to drive the spin mechanism for the Magnus barrels and the main electric generator. A planetary gear assembly is interposed between the collector gears and the spin mechanism functioning as a differential which is also connected to an auxiliary electric motor whereby power to the spin mechanism may selectively be provided by the motor. Generally, the motor provides initial spin to the barrels for start-up after which the motor is braked and the spin mechanism is driven as though by a fixed ratio coupling from the rotor hub. During high wind or other unusual conditions, the auxiliary motor may be unbraked and excess spin power may be used to operate the motor as a generator of additional electrical output. Interposed between the collector gears of the rotating hub and the main electric generator is a novel variable speed drive-fly wheel system which is driven by the variable speed of the wind driven rotor and which, in turn, drives the main electric generator at constant angular speed. Reference is made to the complete specification for disclosure of other novel aspects of the system such as, for example, the aerodynamic and structural aspects of the novel Magnus barrels as well as novel gearing and other power coupling

  19. PETROBRAS Transportes (TRANSPETRO) contingency plan system; Metodologia SIE (Sistema Informatizado de Emergencia) aplicada no gerenciamento das contingencias

    Energy Technology Data Exchange (ETDEWEB)

    Berardinelli, Ricardo; Mendonca, Daniela [TRANSPETRO - PETROBRAS Transportes, Rio de Janeiro, RJ (Brazil). Coordenacao de Seguranca, Saude e Meio Ambiente de Dutos e Terminais; Morais, Lucia B.; Carvalho, Marcelo Tilio M. de [Pontificia Univ. Catolica do Rio de Janeiro, RJ (Brazil). Dept. de Informatica. Grupo de Tecnologia em Computacao Grafica (TECGRAF)

    2005-07-01

    This paper describes the PETROBRAS Transportes Emergency Response System, which was designed to improve the response to emergency situations. The plans are defined based on an evaluation of the organization of the emergency teams, the communication procedures, characterization of the installations, definition of accidental scenarios, environmental sensitivity maps; simulation of oil spill trajectories and dispersion behavior; geographical data of the area surrounding the installations; other conventional data related to the installations, including equipment available and the InfoPAE system. Plans include several scenarios as oil spills, gas, fire, explosion, hazardous materials which can be applied to terminals and pipelines. (author)

  20. Information systems planning in public administration; Definizione di una metodologia per la pianificazione dei sistemi informativi in un ente pubblico di ricerca con elevato livello di decentramento

    Energy Technology Data Exchange (ETDEWEB)

    Minelle, F. [Rome, Univ. `La Sapienza` (Italy). Fac. di Scienze Matematiche, Fisiche e Naturali; Di Marco, R.A. [ENEA, Rome (Italy). Funzione Centrale Informatica; Bottini, M.

    1997-02-01

    Since before the Ninety the common experience of the different of the divisions of the Public Administration, it was to proceed on the way of insertion and the utility of technology informer in shed order. It was evident how it could not operate in the best way, without wright descriptions of the general and sectors reference. In terminus of efficiency, efficacy and transparency of services offered and the investment made were inadequate. And so in this way the operation was not good enough to pay attention to a valuation of the cost, beneficial of the investment made, that was growing up. It is today getting important to entrust the planning of the information system, that was to be done every year when we talk about a plan with an average limit. So they can be oriented and checked, the choice of the single Administration. In the following work it has been started from the analysis of the italian situation, which expect the use of a specific methodology produced by the AIPA for the planning of informative system in the public administration. The new experimental part of the thesis aims to the adjustment of this methodology to a reality which is the ENEA, that differs for example from that of a Ministry (for that reality on the contrary the proposal of AIPA is optimal), as the institutional aims and the following modalities of administration change, as the corporation is characterised by a strong decentralisation and above all as it has lacked a cognitive research about the different work processes, introduction to the application of AIPA`s proposal. [Italiano] E` stata fino da prima degli anni `90 esperienza comune che nei vari comparti della Pubblica Amministrazione, si procedesse sulla strada dell`inserimento e dell`utilizzo delle tecnologie ifnormatiche in ordine sparso. E` stato evidente come non si potessero operare scelte ottimali nell`assenza di quadri di riferimento generali e settoriali; che i ritorni, in termini di efficenza, efficacia e trasparenza dei

  1. Methodology for carrying out energy diagnosis in auxiliaries systems in thermal electrical central stations; Metodologia para realizar un diagnostico energetico en sistemas auxiliares de centrales termoelectricas

    Energy Technology Data Exchange (ETDEWEB)

    Nebradt Garcia, Jesus [Comision Federal de Electricidad (CFE), Mexico, D. F. (Mexico); Rojas Hidalgo, Ismael; Huante Perez, Liborio [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    One of the potential areas for energy saving in Central Electric Power Plants are the auxiliaries system, so as to based in a preliminary energy diagnosis and considering that energy saving measures would be taken, going from the instrumentation, operational changes in equipment, as well as in using velocity variators in motors, it turns out to be that the energy consumption of auxiliaries at 75% load in a 150 MW thermal power plant varies from 3% to 4% and for the case of a 350 MW power plant the energy consumption of the auxiliaries represents 2 to 3.5%. Nowadays this consumption are above 6%. Considering that the country has 40 units with capacities varying from 150 to 350 MW, the economical and the fuel saving would be substantial. This paper will present a summary of the methodology to be used to carry out this type of projects. [Espanol] Una de las areas potenciales de ahorro de energia en centrales termoelectricas son los sistemas auxiliares, de tal manera que basados en un diagnostico energetico preliminar y considerando que se aplicarian las medidas de ahorro de energia que van desde la instrumentacion, cambios operativos en equipos, asi como el uso de variadores de velocidad en motores, se tienen que los consumos de auxiliares para un 75% de carga en una central termoelectrica de 150 MW varian desde un 3% hasta un 4% y para el caso de una central termoelectrica de 350 MW, el consumo de auxiliares representa del 2 al 3.5%. Hoy en dia dichos consumos estan por encima del 6%. Si consideramos que el pais cuenta con 40 unidades que varian desde 150 MW hasta 350 MW, entonces los ahorros economicos y de combustible serian impactantes. La presente ponencia mostrara un resumen de la metodologia a emplear para la realizacion de este tipo de proyectos.

  2. Steerable percussion air drilling system

    Energy Technology Data Exchange (ETDEWEB)

    Bui, H.D.; Meyers, J.A.; Yost, A.B. II

    1998-12-31

    By increasing penetration rates and bit life, especially in hard formations, the use of down-hole air hammers in the oil field has significantly reduced drilling costs in the Northeast US and West Texas. Unfortunately, drilling by this percussion method has been limited mostly to straight hole applications. This paper presents a new concept of a percussion drilling tool which performs both the function of a down-hole hammer as well as that of a down-hole motor. Such a drilling tool, being introduced here as Steerable Percussion Air Drilling System (SPADS), eliminates the necessity to rotate the drill string and, consequently, enables the use of down-hole air hammers to drill directional wells.

  3. Air filtration in HVAC systems

    CERN Document Server

    Ginestet, Alain; Tronville, Paolo; Hyttinen, Marko

    2010-01-01

    Air filtration Guidebook will help the designer and user to understand the background and criteria for air filtration, how to select air filters and avoid problems associated with hygienic and other conditions at operation of air filters. The selection of air filters is based on external conditions such as levels of existing pollutants, indoor air quality and energy efficiency requirements.

  4. Falando de Metodologia de Pesquisa

    Directory of Open Access Journals (Sweden)

    Elisabeth Maria Aragão

    2014-05-01

    Full Text Available Este trabalho busca trazer contribuições para as discussões sobre metodologia de pesquisa. Falar de metodologia é falar de escolhas políticas e éticas que pautam qualquer pretensão investigativa, e não de discursos que priorizam um árido formalismo técnico. Dentro dessa ótica, pesquisar é, ao invés de procurar verdades absolutas, conectar-se com a dispersão dos acontecimentos em suas múltiplas direções, cartografando os movimentos que se afirmam em uma determinada realidade. É abrir-se para o inusitado, desviar-se, surpreender e desconhecer. Exemplificando essa forma de compreensão dá visibilidade a uma pesquisa realizada a partir desse eixo metodológico.

  5. Steerable percussion air drilling system

    Energy Technology Data Exchange (ETDEWEB)

    Bui, H.D.; Oliver, M.S.; Gray, M.A.

    1993-12-31

    The cost-sharing contract between the US Department of Energy and Smith International provides the funding to further develop this concept into two complete steerable percussion air drilling system prototypes, each integrated with a navigation tool (wireline steering tool), a bend sub, stabilizing devices, and to conduct laboratory and field testing necessary to prepare the system for commercial realization. Such a system would make available for the first time the ability to penetrate earthen formations by the percussion method, using compressed air as the drilling fluid, and at the same time allow the directional control and steering of the drill bit. While the drill string is not rotating (slide mode), one can orient to build angle in the desired direction at a predictable rate. This build rate can be in the range of 1--20 degrees per one hundred feet and proceeds until the desired inclination or direction has been obtained. The drill pipe is then set in rotation, nullifying the effect of the bend angle, and causes the assembly to drill straight. The sliding procedure can be repeated as often as corrections for hole`s inclination or direction are needed.

  6. Strategy Guideline. Compact Air Distribution Systems

    Energy Technology Data Exchange (ETDEWEB)

    Burdick, Arlan [IBACOS, Inc., Pittsburgh, PA (United States)

    2013-06-01

    This guideline discusses the benefits and challenges of using a compact air distribution system to handle the reduced loads and reduced air volume needed to condition the space within an energy efficient home. The decision criteria for a compact air distribution system must be determined early in the whole-house design process, considering both supply and return air design. However, careful installation of a compact air distribution system can result in lower material costs from smaller equipment, shorter duct runs, and fewer outlets; increased installation efficiencies, including ease of fitting the system into conditioned space; lower loads on a better balanced HVAC system, and overall improved energy efficiency of the home.

  7. Solid State Air Purification System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The purpose of this proposed research is to develop a new air purification system based on a liquid membrane, capable of purifying carbon dioxide from air in a far...

  8. Industrial Compressed Air System Energy Efficiency Guidebook.

    Energy Technology Data Exchange (ETDEWEB)

    United States. Bonneville Power Administration.

    1993-12-01

    Energy efficient design, operation and maintenance of compressed air systems in industrial plants can provide substantial reductions in electric power and other operational costs. This guidebook will help identify cost effective, energy efficiency opportunities in compressed air system design, re-design, operation and maintenance. The guidebook provides: (1) a broad overview of industrial compressed air systems, (2) methods for estimating compressed air consumption and projected air savings, (3) a description of applicable, generic energy conservation measures, and, (4) a review of some compressed air system demonstration projects that have taken place over the last two years. The primary audience for this guidebook includes plant maintenance supervisors, plant engineers, plant managers and others interested in energy management of industrial compressed air systems.

  9. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    Science.gov (United States)

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  10. Fungal colonization of air-conditioning systems

    Directory of Open Access Journals (Sweden)

    Ljaljević-Grbić Milica

    2008-01-01

    Full Text Available Fungi have been implicated as quantitatively the most important bioaerosol component of indoor air associated with contaminated air-conditioning systems. rarely, indoor fungi may cause human infections, but more commonly allergenic responses ranging from pneumonitis to asthma-like symptoms. From all air conditioner filters analyzed, 16 fungal taxa were isolated and identified. Aspergillus fumigatus causes more lethal infections worldwide than any other mold. Air-conditioning filters that adsorb moisture and volatile organics appear to provide suitable substrates for fungal colonization. It is important to stress that fungal colonization of air-conditioning systems should not be ignored, especially in hospital environments.

  11. SpaceX Dragon Air Circulation System

    Science.gov (United States)

    Hernandez, Brenda; Piatrovich, Siarhei; Prina, Mauro

    2011-01-01

    The Dragon capsule is a reusable vehicle being developed by Space Exploration Technologies (SpaceX) that will provide commercial cargo transportation to the International Space Station (ISS). Dragon is designed to be a habitable module while it is berthed to ISS. As such, the Dragon Environmental Control System (ECS) consists of pressure control and pressure equalization, air sampling, fire detection, illumination, and an air circulation system. The air circulation system prevents pockets of stagnant air in Dragon that can be hazardous to the ISS crew. In addition, through the inter-module duct, the air circulation system provides fresh air from ISS into Dragon. To utilize the maximum volume of Dragon for cargo packaging, the Dragon ECS air circulation system is designed around cargo rack optimization. At the same time, the air circulation system is designed to meet the National Aeronautics Space Administration (NASA) inter-module and intra-module ventilation requirements and acoustic requirements. A flight like configuration of the Dragon capsule including the air circulation system was recently assembled for testing to assess the design for inter-module and intra-module ventilation and acoustics. The testing included the Dragon capsule, and flight configuration in the pressure section with cargo racks, lockers, all of the air circulation components, and acoustic treatment. The air circulation test was also used to verify the Computational Fluid Dynamics (CFD) model of the Dragon capsule. The CFD model included the same Dragon internal geometry that was assembled for the test. This paper will describe the Dragon air circulation system design which has been verified by testing the system and with CFD analysis.

  12. Rooftop Unitary Air Conditioner with Integral Dedicated Outdoor Air System

    Energy Technology Data Exchange (ETDEWEB)

    Tiax Llc

    2006-02-28

    Energy use of rooftop and other unitary air-conditioners in commercial applications accounts for about 1 quad (10{sup 15} Btu) of primary energy use annually in the U.S. [Reference 7]. The realization that this cooling equipment accounts for the majority of commercial building cooled floorspace and the majority also of commercial building energy use has spurred development of improved-efficiency equipment as well as development of stricter standards addressing efficiency levels. Another key market driver affecting design of rooftop air-conditioning equipment has been concern regarding comfort and the control of humidity. Trends for increases in outdoor air ventilation rates in certain applications, and the increasing concern about indoor air quality problems associated with humidity levels and moisture in buildings points to a need for improved dehumidification capability in air-conditioning equipment of all types. In many cases addressing this issue exacerbates energy efficiency, and vice versa. The integrated dedicated outdoor air system configuration developed in this project addresses both energy and comfort/humidity issues.

  13. Improve Compressed Air System Performance with AIRMaster+

    Energy Technology Data Exchange (ETDEWEB)

    None

    2005-05-01

    AIRMaster+ provides a systematic apporach for assessing the supply-side performance of compressed air systems. Using plant-specific data, the software effectively evaluates supply-side operational costs for various equipment configurations and system pro

  14. Air leakage in residential solar heating systems

    Science.gov (United States)

    Shingleton, J. G.; Cassel, D. E.; Overton, R. L.

    1981-02-01

    A series of computer simulations was performed to evaluate the effects of component air leakage on system thermal performance for a typical residential solar heating system, located in Madison, Wisconsin. Auxiliary energy required to supplement solar energy for space heating was determined using the TRNSYS computer program, for a range of air leakage rates at the solar collector and pebble bed storage unit. The effects of heat transfer and mass transfer between the solar equipment room and the heated building were investigated. The effect of reduced air infiltration into the building due to pressurized by the solar air heating system were determined. A simple method of estimating the effect of collector array air leakage on system thermal performance was evaluated, using the f CHART method.

  15. Air-water flow in subsurface systems

    Science.gov (United States)

    Hansen, A.; Mishra, P.

    2013-12-01

    Groundwater traces its roots to tackle challenges of safe and reliable drinking water and food production. When the groundwater level rises, air pressure in the unsaturated Vadose zone increases, forcing air to escape from the ground surface. Abnormally high and low subsurface air pressure can be generated when the groundwater system, rainfall, and sea level fluctuation are favorably combined [Jiao and Li, 2004]. Through this process, contamination in the form of volatile gases may diffuse from the ground surface into residential areas, or possibly move into groundwater from industrial waste sites. It is therefore crucial to understand the combined effects of air-water flow in groundwater system. Here we investigate theoretically and experimentally the effects of air and water flow in groundwater system.

  16. Air conditioning for data processing system areas

    Directory of Open Access Journals (Sweden)

    Hernando Camacho García

    2011-06-01

    Full Text Available The appropiate selection of air conditioners for data processing system areas requires the knowledge of the environmental desing conditions, the air conditioning systems succssfully used computer and the cooling loads to handle. This work contains information about a wide variety of systems designed for computer room applications. a complete example of calculation to determine the amount of heat to be removed for satisfactory operation, is also included.

  17. Air Combat Maneuvering Expert System Trainer

    Science.gov (United States)

    1992-01-01

    AL-TP-1 991-0058....... AD-A246 459 AIR COMBAT MANEUVERING EXPERT A SYSTEM TRAINER R M S Robert J. BechtelTI T Markt Technology, incorporated ’T R...would have to be established for each segment of pilot training. The success of the air intercept trainer (AT), which shares some features with ACMEST

  18. Solar-powered hot-air system

    Science.gov (United States)

    1979-01-01

    Solar-powered air heater supplies part or all of space heating requirements of residential or commercial buildings and is interfaced with air to water heat exchanger to heat domestic hot water. System has potential application in drying agricultural products such as cotton, lumber, corn, grains, and peanuts.

  19. Heating, ventilation and air conditioning system modelling

    Energy Technology Data Exchange (ETDEWEB)

    Whalley, R.; Abdul-Ameer, A. [British University in Dubai (United Arab Emirates)

    2011-03-15

    Heating, ventilation and air conditioning modelling methods, for large scale, spatially dispersed systems are considered. Existing techniques are discussed and proposals for the application of novel analysis approaches are outlined. The use of distributed-lumped parameter procedures enabling the incorporation of the relatively concentrated and significantly dispersed, system element characteristics, is advocated. A dynamic model for a heating, ventilation and air conditioning system comprising inlet and exhaust fans, with air recirculation, heating/cooling and filtration units is presented. Pressure, airflow and temperature predictions within the system are computed following input, disturbance changes and purging operations. The generalised modelling advancements adopted and the applicability of the model for heating, ventilation and air conditioning system simulation, re-configuration and diagnostics is emphasised. The employment of the model for automatic, multivariable controller design purposes is commented upon. (author)

  20. From 1962 the teaching of Methodology of Radioisotopes is continuous in the University of Buenos Aires of the Argentine Republic; Desde 1962 la ensenanza de Metodologia de Radioisotopos es continua en la Universidad de Buenos Aires de la Republica Argentina

    Energy Technology Data Exchange (ETDEWEB)

    Rivera, E.; Cremaschi, G.; Martin, G.; Zubillaga, M.; Cricco, G.; Davio, C.; Genaro, A.; Bianchin, A.; Mohamad, N.; Klecha, A.; Calmanovici, G.; Goldman, G.; Salgueiro, J.; Nunez, M.; Medina, V.; Gutierrez, A.; Leonardi, N.; Bergoc, R. [Laboratorio de Radioisotopos, Facultad de Farmacia y Bioquimica, Universidad de Buenos Aires, Junin 956, 1113- Buenos Aires (Argentina)]. e-mail: rmbergoc@arnet.com.ar

    2006-07-01

    In the Faculty of Pharmacy and Biochemistry of the University of Buenos Aires the teaching of the radioisotopes began in 1960 and uninterruptedly continuous. The application of the radioisotopes and the radiations in different professional activities it is acceptable only in a context of radiological safety and with personal appropriately trained. Conscious of it, the training in grade, postgraduate and technicature, has more of 40% of the thematic one guided to the formation in radiological protection. The courses dictated at the moment in the Laboratory of Radioisotopes they include: Grade formation: to) Subject grade 'Methodology of Radioisotopes' in the Career of Biochemistry: it began to be dictated in 1960 and until the present, more of 6500 students they have gone by our classrooms. b) Grade subject 'Radiopharmacy' in the Career of Pharmacy: guided to the formation of a modern pharmacist, with necessary knowledge to be developed as professional in the Radiopharmaceutical area. Postgraduate formation: c) Postgraduate course of Methodology of Radioisotopes specially directed to biochemical, biologists, veterinarians, chemical. It is dictated uninterruptedly from 1962. d) Postgraduate course in Methodology of Radioisotopes for medical professionals, specially directed to professionals of the medicine that want to specialize in different branches of the Nuclear Medicine. Both courses have 220 present hours and it stops their approval the assistants they should surrender a final exam at open book that consists on the resolution of a practical exercise adapted to their professional practices. Until the present they have surrendered their exams satisfactorily approximately 2000 professionals coming from different areas of the Argentina and of several countries of Hispanic speech. e) Starting from 1992 the Course of Upgrade in Methodology of Radioisotopes directed to professionals that want to upgrade its knowledge in new radioisotopic

  1. The effects of air leaks on solar air heating systems

    Science.gov (United States)

    Elkin, R.; Cash, M.

    1979-01-01

    This paper presents the results of an investigation to determine the effects of leakages in collector and duct work on the system performance of a typical single-family residence solar air heating system. Positive (leakage out) and negative (leakage in) pressure systems were examined. Collector and duct leakage rates were varied from 10 to 30 percent of the system flow rate. Within the range of leakage rates investigated, solar contribution to heated space and domestic hot water loads was found to be reduced up to 30 percent from the no-leak system contribution with duct leakage equally divided between supply and return duct; with supply duct leakage greater than return leakage a reduction of up to 35 percent was noted. The negative pressure system exhibited a reduction in solar contribution somewhat larger than the positive pressure system for the same leakage rates.

  2. Plasma Air Decontamination System (PADS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Plasma Air Decontamination System (PADS) is a trace contaminant control device based on non-thermal atmospheric-pressure plasma technology. Compared to...

  3. Plasma Air Decontamination System (PADS) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The proposed Plasma Air Decontamination System (PADS) is a trace contaminant control device based on non-thermal atmospheric pressure plasma technology that operates...

  4. What is a solar air system?

    Energy Technology Data Exchange (ETDEWEB)

    Hastings, S.R. [Solararchitektur, ETH-Hoenggerberg, Zurich (Switzerland)

    1999-07-01

    An introduction is given by the editor of the book ''Solar Air Systems - Built Examples'' describing all the examples of buildings in the volume. It outlines all the different types of collectors together with diagrams, and maps showing the location of some of buildings throughout Europe and North America. An explanation is given of the solar air system and its applications. (UK)

  5. Environmental management systems methodology for pipeline systems implementation; Metodologia para implantacao de sistemas de gestao ambiental na implementacao de empreendimentos dutoviarios

    Energy Technology Data Exchange (ETDEWEB)

    Paz, Claudio Marques [JPTE Engenharia Ltda., Barueri, SP (Brazil); Pinaud, Rodrigo Zambrotti [AJR Engenharia - Seguranca, Meio Ambiente e Saude Ltda. (Brazil)

    2004-07-01

    The implementation of oil and gas pipeline systems are commonly made in a own or shared with power transmission, rail and crossroads right-of-way. Pipelines are a 'linear' structure, such as power transmission lines, which are established on landscapes with several conformations (accent slopes, swamp and rocky soils), including sites with high environmental sensibility. The services involved on pipeline implementation are very dynamic, involving several number of employees, vehicles, heavy equipment of excavation and welding that results in a high potential to cause environmental and social impacts. This article, based on the Brazilian and foreign experience on pipeline construction, proposes a methodology to prevent and minimize social and environmental impacts during the construction stage of a pipeline system. (author)

  6. Air quality and future energy system planning

    Science.gov (United States)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  7. 49 CFR 570.57 - Air brake system and air-over-hydraulic brake subsystem.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 6 2010-10-01 2010-10-01 false Air brake system and air-over-hydraulic brake... STANDARDS Vehicles With GVWR of More Than 10,000 Pounds § 570.57 Air brake system and air-over-hydraulic brake subsystem. The following requirements apply to vehicles with air brake and...

  8. Evaporative Condensers in Comfortable Air Conditioning System

    Institute of Scientific and Technical Information of China (English)

    YIN Ying-de; ZHU Dong-sheng; DU Gui-mei; LI Yuan-xi; SUN He-jing; LIU Qing-ming

    2009-01-01

    The operating theory of an evaporative condenser was expatiated.The difference between an e-vaporative condensing refrigeration system and a general refrigeration system was analyzed.Compared with the air-cooled and the water-cooled,the virtues of energy-conservation and water-conservation of evaporative con-densers were analyzed.Some questions existing in the application of evaporative condensers were pointed out,the corresponding solving methods were analyzed accordingly,and the development trend of evaporative con-densing technique in mechanical refrigeration system field and the applied foreground of evaporative condensers in comfortable air conditioning were prospected.

  9. [Microbial air purity in hospitals. Operating theatres with air conditioning system].

    Science.gov (United States)

    Krogulski, Adam; Szczotko, Maciej

    2010-01-01

    The aim of this study was to show the influence of air conditioning control for microbial contamination of air inside the operating theatres equipped with correctly working air-conditioning system. This work was based on the results of bacteria and fungi concentration in hospital air obtained since 2001. Assays of microbial air purity conducted on atmospheric air in parallel with indoor air demonstrated that air filters applied in air-conditioning systems worked correctly in every case. To show the problem of fluctuation of bacteria concentration more precisely, every sequences of single results from successive measure series were examined independently.

  10. Aerometric Information Retrieval System/AIRS Facility Subsystem (AIRS/AFS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Aerometric Information Retrieval System/AIRS Facility Subsystem (AIRS/AFS) is a database that provides information on air releases from various stationary...

  11. The Integrated Air Transportation System Evaluation Tool

    Science.gov (United States)

    Wingrove, Earl R., III; Hees, Jing; Villani, James A.; Yackovetsky, Robert E. (Technical Monitor)

    2002-01-01

    Throughout U.S. history, our nation has generally enjoyed exceptional economic growth, driven in part by transportation advancements. Looking forward 25 years, when the national highway and skyway systems are saturated, the nation faces new challenges in creating transportation-driven economic growth and wealth. To meet the national requirement for an improved air traffic management system, NASA developed the goal of tripling throughput over the next 20 years, in all weather conditions while maintaining safety. Analysis of the throughput goal has primarily focused on major airline operations, primarily through the hub and spoke system.However, many suggested concepts to increase throughput may operate outside the hub and spoke system. Examples of such concepts include the Small Aircraft Transportation System, civil tiltrotor, and improved rotorcraft. Proper assessment of the potential contribution of these technologies to the domestic air transportation system requires a modeling capability that includes the country's numerous smaller airports, acting as a fundamental component of the National Air space System, and the demand for such concepts and technologies. Under this task for NASA, the Logistics Management Institute developed higher fidelity demand models that capture the interdependence of short-haul air travel with other transportation modes and explicitly consider the costs of commercial air and other transport modes. To accomplish this work, we generated forecasts of the distribution of general aviation based aircraft and GA itinerant operations at each of nearly 3.000 airport based on changes in economic conditions and demographic trends. We also built modules that estimate the demand for travel by different modes, particularly auto, commercial air, and GA. We examined GA demand from two perspectives: top-down and bottom-up, described in detail.

  12. Evidential Reasoning in Air Battle Systems

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Bayesian statistics assigns basic probabilities to singletons (single element sets). The Dempster-Shafer evidence theory generalizes Bayesian statistics by assigning basic probabilities to subsets to represent evidence and to develop evidential reasoning. This paper discusses what is the strength of evidence theory. As an application of evidence theory, evidential reasoning in air battle systems is discussed. In the air battle system, evidential reasoning is applied to fuse the multisensor information and identify the type of aircraft. The effectiveness of this fusion approach is evaluated by simulated data.

  13. Combined air and water pollution control system

    Science.gov (United States)

    Wolverton, Billy C. (Inventor); Jarrell, Lamont (Inventor)

    1990-01-01

    A bioaquatic air pollution control system for controlling both water and atmospheric pollution is disclosed. The pollution control system includes an exhaust for directing polluted gases out of a furnace and a fluid circulating system which circulates fluid, such as waste water, from a source, past the furnace where the fluid flow entrains the pollutants from the furnace. The combined fluid and pollutants are then directed through a rock/plant/microbial filtering system. A suction pump pumps the treated waste water from the filter system past the exhaust to again entrain more pollutants from the furnace where they are combined with the fluid (waste water) and directed to the filter system.

  14. A mixed air/air and air/water heat pump system ensures the air-conditioning of a cinema; Un systeme mixte PAC air/air et air/eau climatise un cinema

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2001-03-01

    This article presents the air conditioning system of a new cinema complex of Boulogne (92, France) which comprises a double-flux air processing plant and two heat pumps. Each heat pump has two independent refrigerating loops: one with a air condenser and the other with a water condenser. This system allows to limit the power of the loop and to reduce the size of the cooling tower and of the vertical ducts. This article describes the technical characteristics of the installation: thermodynamic units, smoke clearing, temperature control, air renewing. (J.S.)

  15. The "Family Tree" of Air Distribution Systems

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2011-01-01

    that all the known types of air distribution systems are interconnected in a “family tree”. The influence of supplied momentum flow versus buoyancy forces is discussed, and geometries for high ventilation effectiveness are indicated as well as geometries for fully mixed flow. The paper will also show...

  16. Methodology for the location of PMU for the monitoring of critical oscillations in power systems; Metodologia para la ubicacion de PMU para el monitoreo de oscilaciones criticas en sistemas electricos de potencia

    Energy Technology Data Exchange (ETDEWEB)

    Calderon Guizar, Jorge Guillermo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2009-07-01

    The deregulation and restructuring undergone by the electrical industry, as well as the tendency at world-wide level of reorganization in generation, transmission and distribution units has brought about, as a consequence, drastic changes in the operation of the electric power systems. The difficulties to construct new transmission power lines and the continuous increase in the electricity consumption are forcing more and more to operate the electric power systems every time nearer their safety limits. Nevertheless, to assure the system reliability without mattering what so plaintiff is the operating condition is a requirement that the electrical companies must satisfy. This panorama has motivated and impelled the use of new technologies for the critical indicators the monitoring that allow the electrical companies to guarantee the system safe operation. In this paper a methodology for the location of Fasorial Measurement Units, better known as FMU for the monitoring of the critical oscillation modes in the electric power systems is presented. [Spanish] La desregulacion y reestructuracion experimentada por la industria electrica, asi como la tendencia a nivel mundial de reorganizacion en unidades de generacion, transmision y distribucion ha traido como consecuencia cambios drasticos en la operacion de los sistemas electricos de potencia. Las dificultades para construir nuevas lineas de transmision y el incremento continuo en el consumo de electricidad estan forzando a operar el sistema electrico de potencia cada vez mas cerca de sus limites de seguridad. Sin embargo, asegurar la confiabilidad del sistema sin importar que tan demandante sea la condicion de operacion es un requisito que las companias electricas deben satisfacer. Este panorama ha motivado e impulsado el uso de nuevas tecnologias para el monitoreo de indicadores criticos que permitan a las companias electricas garantizar una operacion segura del sistema. En este trabajo se presenta una metodologia para

  17. Air Conditioning System using Rankine Cycle

    Science.gov (United States)

    Nagatomo, Shigemi; Yamaguchi, Hiroichi; Hattori, Hitoshi; Futamura, Motonori

    Natural gas is used as the energy source to cope with the recent situation of increasing demand for electricity especially in summer. In this paper, the performance of a Rankine cycle air conditioning system driven by natural gas was studied. The following results were obtained : (1) Basic equations of performance, refrigerant mass flow rate and expander volume were developed by using the values of heating efficiency, regeneration efficiency, expander efficiency and compressor efficiency. (2) R134a refrigerant has been considered to be suitable for the Rankine cycle air conditioning system, compared with other refrigerants. (3)A Rankine cycle cooling system using R134a refrigerant as a single working fluid was developed. System COP of 0.47 was attained at typical operating condition.

  18. Analysis of Unmmanned Air Vehicles Communication Systems

    Directory of Open Access Journals (Sweden)

    Darius Rudinskas

    2011-04-01

    Full Text Available The analyzed questions of information security transferable by the radio connection link are presented in this article. This safety it is especially important for design of unmanned air vehicles (UAV and for other remote control vehicles. Also questions about UAV communication systems structure, security treats of radio connection system, possible menaces for secure information transferring, security and integrity are discussed in our presentation. Article in Lithuanian

  19. Establishment of a quality control system of coals; Establecimiento de una Metodologia de Aseguramiento de Calidad en el Analisis de Carbones

    Energy Technology Data Exchange (ETDEWEB)

    1999-09-01

    The pain propose of this project is the establishment of a quality control system in order to assure the feasibility of analytic data used in commercial valorization coals. The programme of quality assurement takes into account the following concepts: - Normalization of analytic methods. - Maintenance and measurements of analysis equipment - Standardization of analysis process. - Quality control inside of laboratory - Standardization of measurement systems between laboratories - External audits of quality process. - Accreditation of alternative systems. - Personnel education necessities. In order to be an useful tool, the programme has been consider under this three aspects: reliableness, rapidness, and simpleness. The process is based in: validation of method, validation of origin, and validation by coherence. All that is integrated in an informatic system. (Author)

  20. Roots Air Management System with Integrated Expander

    Energy Technology Data Exchange (ETDEWEB)

    Stretch, Dale [Eaton Corporation, Menomonee Falls, WI (United States); Wright, Brad [Eaton Corporation, Menomonee Falls, WI (United States); Fortini, Matt [Eaton Corporation, Menomonee Falls, WI (United States); Fink, Neal [Ballard Power Systems, Burnaby, BC (Canada); Ramadan, Bassem [Kettering Univ., Flint, MI (United States); Eybergen, William [Eaton Corporation, Menomonee Falls, WI (United States)

    2016-07-06

    PEM fuel cells remain an emerging technology in the vehicle market with several cost and reliability challenges that must be overcome in order to increase market penetration and acceptance. The DOE has identified the lack of a cost effective, reliable, and efficient air supply system that meets the operational requirements of a pressurized PEM 80kW fuel cell as one of the major technological barriers that must be overcome. This project leveraged Roots positive displacement development advancements and demonstrated an efficient and low cost fuel cell air management system. Eaton built upon its P-Series Roots positive displacement design and shifted the peak efficiency making it ideal for use on an 80kW PEM stack. Advantages to this solution include: • Lower speed of the Roots device eliminates complex air bearings present on other systems. • Broad efficiency map of Roots based systems provides an overall higher drive cycle fuel economy. • Core Roots technology has been developed and validated for other transportation applications. Eaton modified their novel R340 Twin Vortices Series (TVS) Roots-type supercharger for this application. The TVS delivers more power and better fuel economy in a smaller package as compared to other supercharger technologies. By properly matching the helix angle with the rotor’s physical aspect ratio, the supercharger’s peak efficiency can be moved to the operating range where it is most beneficial for the application. The compressor was designed to meet the 90 g/s flow at a pressure ratio of 2.5, similar in design to the P-Series 340. A net shape plastic expander housing with integrated motor and compressor was developed to significantly reduce the cost of the system. This integrated design reduced part count by incorporating an overhung expander and motor rotors into the design such that only four bearings and two shafts were utilized.

  1. Methodology for the analysis of electric power systems at harmonic frequencies; Metodologia para el analisis de sistemas electricos a frecuencias armonicas

    Energy Technology Data Exchange (ETDEWEB)

    Silva Farias, Jose Luis

    1989-07-01

    The presence of harmonics is a problem that has existed for many years in the electric power systems. Nevertheless, at the present time the increase of the generating loads the harmonics have increased considerably as an answer to the industry development and the commodities that modern living demands. In order to carry out this research work the electrical network of an industrial plant, which has three electrical furnaces in arc dedicated to the steel production, is considered. The selection of this system is very important since the arc furnaces are one of the main harmonics source due to the power they handle and to the unpredictable magnitude of their harmonic content. This way, continuity to the research line, initiated in other thesis works, is given. As a result of these works one has, basically, the three following advances: the software and the necessary hardware to acquire signals, the required routines for its processing, and the signals of measured voltage and current in the filter. As one first stage of this investigation, the verification of the infrastructure good operation, whereupon is counted on, is included. The second stage deals with the modeling of the electrical arc, as well as its validation. This represents the fundamental objective of this work. The proposed model is a quasi lineal model and it is based on the approximation of the characteristic V versus I of the signals measured in the arc by means of a series of straight lines. The satisfactory conclusion of this work will allow to count on a methodology for the harmonics analysis in electric systems. This constitutes a basic tool for the adequate selection of the remedies in presence of the resonance problem and in the specification of the capacity of the equipment to be installed. On the other hand, it allows the verification of the elimination mechanisms of existing harmonics. The development of this work is divided into eight chapters which are next briefly described. The first

  2. Methodology to optimize the cost of deployment of a wind-solar hybrid system; Metodologia para otimizar o custo da implantacao de um sistema hibrido eolico-solar

    Energy Technology Data Exchange (ETDEWEB)

    Nogueira, Jose Wilson Lage [Universidade Federal do Rio Grande Norte (UERN), Natal, RN (Brazil). Dept. de Engenharia Mecanica], e-mail: wilson@ufrnet.br; Rocha, Brismark Goes da [Universidade do Estado do Rio Grande do Norte (UERN), Patu, RN (Brazil). Dept. de Matematica], e-mail: brismarkrocha@uern.br

    2008-07-01

    Purposes the application of a methodology to optimize the implantation cost of an wind-solar hybrid system, to potencies between 2.250 W and 3.750 W. The developed mathematical model was obtained through the Multiple Linear Regression technique, on the basis of the previous knowledge of variables: necessary capacity of storage, total daily energy demand, wind power, module power and module number. These variables are gotten by means of sizing. Parametric statistical: T-student tests had been used to detect the significant difference in the average of total cost to being considered the diameter of the wind. Parametric statistical T-student tests had been used to detect the significant difference in the average of total cost to being considered the diameter of the wind, F-Snedecor in the variance analysis to test if the coefficients of the considered model are significantly different of zero and test not-parametric statistical by Friedman, to verify if there is difference in the total cost, by being considered the photovoltaic module powers. In decision of hypothesis tests was considered a 5%-significant level. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 3 HP. The configurations module powers showed significant differences in total cost of investment by considering an electrical motor of 5 HP only to wind speed of 4 m/s and 6 m/s in wind of 3 m, 4 m and 5 m of diameter. There was not significant difference in costs to diameters of winds of 3 m and 4 m. A computational program was developed to assist the study of several configurations that optimizes the implantation cost of an wind-solar through considered mathematical model. (author)

  3. Critical review of kraft recovery boiler air systems

    Energy Technology Data Exchange (ETDEWEB)

    Mac Callum, C.; Blackwell, B.R.

    1987-10-01

    Combustion air systems offered by major world suppliers of kraft recovery boilers are reviewed. A preliminary mathematical analysis of the air-jet trajectories in the furnace indicated that the conventional air systems leave room for improving the jet penetration into the furnace core. 9 refs., 2 figs., 1 tab.

  4. Air Quality System (AQS) Monitoring Network, EPA OAR OAQPS

    Data.gov (United States)

    U.S. Environmental Protection Agency — This GIS dataset contains points which depict air quality monitors within EPA's Air Quality System (AQS) monitoring network. This dataset is updated weekly to...

  5. Variable volume combustor with an air bypass system

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Thomas Edward; Ziminsky, Willy Steve; Ostebee, Heath Michael; Keener, Christopher Paul

    2017-02-07

    The present application provides a combustor for use with flow of fuel and a flow of air in a gas turbine engine. The combustor may include a number of micro-mixer fuel nozzles positioned within a liner and an air bypass system position about the liner. The air bypass system variably allows a bypass portion of the flow of air to bypass the micro-mixer fuel nozzles.

  6. Evaluation of AirGIS: a GIS-based air pollution and human exposure modelling system

    DEFF Research Database (Denmark)

    Ketzel, Matthias; Berkowicz, Ruwim; Hvidberg, Martin

    2011-01-01

    This study describes in brief the latest extensions of the Danish Geographic Information System (GIS)-based air pollution and human exposure modelling system (AirGIS), which has been developed in Denmark since 2001 and gives results of an evaluation with measured air pollution data. The system...... shows, in general, a good performance for both long-term averages (annual and monthly averages), short-term averages (hourly and daily) as well as when reproducing spatial variation in air pollution concentrations. Some shortcomings and future perspectives of the system are discussed too....

  7. Operation technology of air treatment system in nuclear facilities

    CERN Document Server

    Chun, Y B; Hwong, Y H; Lee, H K; Min, D K; Park, K J; Uom, S H; Yang, S Y

    2001-01-01

    Effective operation techniques were reviewed on the air treatment system to protect the personnel in nuclear facilities from the contamination of radio-active particles and to keep the environment clear. Nuclear air treatment system consisted of the ventilation and filtering system was characterized by some test. Measurement of air velocity of blowing/exhaust fan in the ventilation system, leak tests of HEPA filters in the filtering, and measurement of pressure difference between the areas defined by radiation level were conducted. The results acquired form the measurements were reflected directly for the operation of air treatment. In the abnormal state of virus parts of devices composted of the system, the repairing method, maintenance and performance test were also employed in operating effectively the air treatment system. These measuring results and techniques can be available to the operation of air treatment system of PIEF as well as the other nuclear facilities in KAERI.

  8. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  9. Mockup Small-Diameter Air Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    A. Poerschke and A. Rudd

    2016-05-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to be brought easily within conditioned space via interior partition walls. Centrally locating the air hander unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives an equal amount of airflow, regardless of the duct position on the box. Furthermore, within a reasonable set of length restrictions, each duct continues to receive similar airflow. The design method uses an additive approach to reach the total needed zonal airflow. Once the cubic feet per minute needed to satisfy the thermal load of a zone has been determined, the total number of duct runs to a zone can be calculated by dividing the required airflow by the standard airflow from each duct. The additive approach greatly simplifies the design effort and reduces the potential for duct design mistakes to be made. Measured results indicate that this plenum design can satisfy the heating load. However, the total airflow falls short of satisfying the cooling load in a hypothetical building. Static pressure inside the plenum box of 51.5 Pa limited the total airflow of the attached mini-split heat pump blower, thus limiting the total thermal capacity. Fan energy consumption is kept to 0.16 to 0.22 watt/CFM by using short duct runs and smooth duct material.

  10. Methodology for the electric energy distribution systems planning of small and rural zones of Comision Federal de Electricidad; Metodologia para la planeacion de sistemas de distribucion de energia electrica de zonas pequenas y rurales de Comision Federal de Electricidad

    Energy Technology Data Exchange (ETDEWEB)

    Ochoa Gomez, Miguel Armando

    2008-12-15

    The 13 Distribution Divisions in which Comision Federal de Electricidad (CFE) has administratively and technically structured the electric energy distribution in the attended territory it has to take care of, are also constituted by a total of 120 of Distribution Zones, classified according to the product of their number of clients, by their volume of annual sales, in medium and low tension, as zones type I, II and III. Examples of zones type III are the Guadalajara Zone and the Metropolitan Zone North Monterrey, East and West (metropolis), type II are predominantly urban zones such as Queretaro and Tepic, and type I is predominantly rural such as the Zapotlan Zones and Los Altos, in the state of Jalisco. Because of the cost and number of facilities that are authorized for their construction in the Distribution Rural Zones (Type I), one must be assured that these works are really the necessary ones to satisfy the demand of power within the quality commitments and with the best economy in the time. Otherwise, a great possibility exists of constructing expensive facilities and that little will help to solve the distribution system problems. Although annually reviews and updates are made of the Budget of Investments of Operation (PIO), and the Work Program of Investment of Electric Sector (POISE), the case that has occurred sometimes is that facilities are constructed where all the passages of the Planning Process were not applied or that the analysis was not sufficient, being very probable that some or several of the following types of errors have been committed: a) The allocation of the processes to facilities that are not necessary in the short term. b) Constructing a non-useful work or of little usefulness causes that facilities with greater yield are not constructed. c) The priority of works is not the most adequate. d) Not to have a long term vision so that the facilities that are constructed in the short term are useful in the long term plan. e) Some facilities

  11. Diffuse Ceiling Inlet Systems and the Room Air Distribution

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Rong, Li

    2010-01-01

    A diffuse ceiling inlet system is an air distribution system which is supplying the air through the whole ceiling. The system can remove a large heat load without creating draught in the room. The paper describes measurements in the case of both cooling and heating, and CFD predictions are given ...

  12. 14 CFR 25.1103 - Induction system ducts and air duct systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction system ducts and air duct systems....1103 Induction system ducts and air duct systems. (a) Each induction system duct upstream of the first... auxiliary power unit bleed air duct systems, no hazard may result if a duct failure occurs at any...

  13. An Air Jet Distortion Generation System

    Directory of Open Access Journals (Sweden)

    M. Sivapragasam

    2014-01-01

    Full Text Available An air jet distortion generation system is developed to simulate the distorted flow field ahead of gas turbine engines in ground test facility. The flow field of a system of four jets arranged circumferentially and issuing into a confined counterflow was studied experimentally and numerically. The total pressure distortion parameters were evaluated at the Aerodynamic Interface Plane (AIP for several values of mass flow ratios. Since the total pressure loss distribution at the AIP is characteristically “V” shaped, the number of jets was increased to obtain total pressure distributions as required for gas turbine engine testing. With this understanding, a methodology has been developed to generate a target total pressure distortion pattern at the AIP. Turbulent flow computations are used to iteratively progress towards the target distribution. This methodology was demonstrated for a distortion flow pattern typical of use in gas turbine engine testing using twenty jets, which is a smaller number than reported in the literature. The procedure converges with a root-mean-square error of 3.836% and is able to reproduce the target pattern and other distortion parameters.

  14. Air supply system for an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Eftink, A.

    1992-06-11

    The present invention describes a system for supplying the primary combustion air to a reciprocating piston internal combustion engine including a trochoidal chamber air pump having a pair of pumping chambers interposed between an air intake and each of the cylinders of the engine. Each pumping chamber has an air inlet connected to an air intake, and an air outlet that is connected to the cylinders. In a two-cycle mode of operation, each pumping chamber outlet is connected to one engine cylinder. In a four-cycle mode of operation, each pumping chamber outlet is connected to a pair of cylinders to supply air during the intake stroke. The input shaft of the trochoidal chamber air pump is driven by, and may be connected to, the crankshaft of the engine so as to rate on a 1:1 ratio. (author)

  15. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  16. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation, Somerville, MA (United States); Bergey, Daniel [Building Science Corporation, Somerville, MA (United States)

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  17. Air Conditioning Systems from a 2nd Law Perspective

    Directory of Open Access Journals (Sweden)

    Luigi Marletta

    2010-04-01

    Full Text Available In this paper exergy analysis is used to assess the performance of the three most common air conditioning plant schemes: all-air, dual-duct and fan-coil systems. The results are presented in terms of flow diagrams to provide a clear picture of the exergy flow across the systems. The most relevant outcomes are that the air cooling and dehumidification is the process most responsible for the exergy loss and that the exergy efficiency of the overall systems is rather low; thus the quest for more appropriate technologies. Solar-assisted air-conditioning is also discussed, outlining the possibilities and the constraints.

  18. The Adverse Effects of Air Pollution on the Nervous System

    OpenAIRE

    Sermin Genc; Zeynep Zadeoglulari; Fuss, Stefan H.; Kursad Genc

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer’s disease, Parkinson’s dise...

  19. Feasibility of a solar-assisted winter air-conditioning system using evaporative air-coolers

    Directory of Open Access Journals (Sweden)

    Mohamed M. El-Awad

    2011-03-01

    Full Text Available The paper presents a winter air-conditioning system which is suitable for regions with mildly cold but dry winters. The system modifies the evaporative air-cooler that is commonly used for summer air-conditioning in such regions by adding a heating process after the humidification process. The paper describes a theoretical model that is used to estimate the system's water and energy consumption. It is shown that a 150-LPD solar heater is adequate for air-conditioning a 500 ft3/min (14.4 m3/min air flow rate for four hours of operation. The maximum air-flow rate that can be heated by a single solar water-heater for four hours of operation is about 900-cfm, unless a solar water heater large than a 250-LPD heater is used. For the 500 ft3/min air flow rate the paper shows that the 150, 200, 250 and 300 LPD solar water-heaters can provide air-conditioning for 4, 6, 8 and 10 hours, respectively, while consuming less energy than the equivalent refrigerated-type air-conditioner.

  20. Feasibility of a solar-assisted winter air-conditioning system using evaporative air-coolers

    Energy Technology Data Exchange (ETDEWEB)

    El-Awad, Mohamed M. [Mechanical Engineering Department, the University of Khartoum, P.O. Box 321 Khartoum (Sudan)

    2011-07-01

    The paper presents a winter air-conditioning system which is suitable for regions with mildly cold but dry winters. The system modifies the evaporative air-cooler that is commonly used for summer air-conditioning in such regions by adding a heating process after the humidification process. The paper describes a theoretical model that is used to estimate the system's water and energy consumption. It is shown that a 150-LPD solar heater is adequate for air-conditioning a 500 ft3/min (14.4 m3/min) air flow rate for four hours of operation. The maximum air-flow rate that can be heated by a single solar water-heater for four hours of operation is about 900-cfm, unless a solar water heater large than a 250-LPD heater is used. For the 500 ft3/min air flow rate the paper shows that the 150, 200, 250 and 300 LPD solar water-heaters can provide air-conditioning for 4, 6, 8 and 10 hours, respectively, while consuming less energy than the equivalent refrigerated-type air-conditioner.

  1. GOSAT Air Pollution Watch - Rapid Response System for Local Air Pollution

    Science.gov (United States)

    Matsunaga, T.; Sawada, Y.; Kamei, A.; Uchiyama, A.

    2015-12-01

    GOSAT (Greenhouse Gases Observing Satellite) launched in 2009 and its successor, GOSAT-2, to be launched in FY 2017, have push-broom imaging systems with more than one UV band with higher spatial resolution than OMI, MODIS, and VIIRS. Such imaging systems are useful for mapping the spatial extent of the optically thick air mass with particulate matters. GOSAT Air Pollution Watch, a rapid response system mainly using GOSAT CAI (Cloud and Aerosol Imager) data for local air pollution issues is being developed in NIES (National Institute for Environmental Studies) GOSAT-2 Project. The current design of GOSAT Air Pollution Watch has three data processing steps as follows: Step 1) Making a cloud mask Step 2) Estimating AOT (Aerosol Optical Thickness) in the UV region (380 nm for CAI) Step 3) Converting AOT to atmospheric pollution parameters such as PM2.5 concentration Data processing algorithms in GOSAT Air Pollution Watch are based on GOSAT/GOSAT-2 algorithms for aerosol product generation with some modification for faster and timely data processing. Data from GOSAT Air Pollution Watch will be used to inform the general public the current distribution of the polluted air. In addition, they will contribute to short term prediction of the spatial extent of the polluted air using atmospheric transport models. In this presentation, the background, the current status, and the future prospect of GOSAT Air Pollution Watch will be reported together with the development status of GOSAT-2.

  2. Efficiency evaluating of air conditioning system with air dehumidification section

    Directory of Open Access Journals (Sweden)

    O.V. Averyanova

    2011-01-01

    Full Text Available The upward trend of energy resources cost, reducing OF resource reserves, yearly growing requirement of heat energy led to the need of careful selection of HVAC system and economic justification of this choice. In this article on the example of indoor pool the most economically efficient variant of climatic parameters for high humidity areas has been selected. The calculation of operating, capital and reduced costs has been done. The reliability estimation and efficiency evaluating of the systems also have been done.

  3. Methodology for bioclimatic design; Metodologia para el diseno bioclimatico

    Energy Technology Data Exchange (ETDEWEB)

    Morillon Galvez, David [Instituto de Ingenieria de la UNAM, Mexico, D.F. (Mexico)

    2000-07-01

    A methodology for natural air conditioning of buildings is presented; bioclimatic architecture, in order to contribute to the suitable use of components of the building (walls, ceilings, floors, orientations, etc.) that when interacting with the environment takes advantage of it, without deterioration of the same, obtaining energy efficient designs. As well as an analysis of the elements and factors that the architecture must have to be sustainable; an adequate design to the environment, saving and efficient use of energy, the use of alternating energies by means of ecotechnologies and the self-sufficiency. [Spanish] Se presenta una metodologia para la climatizacion natural de edificios; arquitectura bioclimatica, con el objetivo de aportar al uso adecuado de componentes del edificio (muros, techos, pisos, orientaciones, etc.) que al interactuar con el ambiente tome ventaja de el, sin deterioro del mismo, logrando disenos energeticamente eficientes. Asi como un analisis de los elementos y factores que debe tener la arquitectura para ser sustentable; un diseno adecuado al ambiente, ahorro y uso eficiente de la energia, el uso de energias alternas mediante ecotecnologias y la autosuficiencia.

  4. Thermal Environment for Classrooms. Central System Approach to Air Conditioning.

    Science.gov (United States)

    Triechler, Walter W.

    This speech compares the air conditioning requirements of high-rise office buildings with those of large centralized school complexes. A description of one particular air conditioning system provides information about the system's arrangement, functions, performance efficiency, and cost effectiveness. (MLF)

  5. Estimation of Lateral Distribution Function in Extensive Air Showers by Using AIRES Simulation System

    CERN Document Server

    Ahmed, Al-Rubaiee A

    2013-01-01

    In this work the estimation of the lateral distribution function in Extensive Air showers was performed by using a system for air shower simulations which is called AIRES version 2.6 for different hadronic models like (QGSJET99, SIBYLL and SIBYLL1.6). The simulation was fulfilled in the high energy range (10^15-10^19 eV) for different primary particles like (gamma, protons and iron nuclei) for vertical showers. This simulation can be used to reconstruct the type and energy of the particle that generated Extensive Air showers for charged particles that registered with different arrays.

  6. Optimal air-supply mode of hybrid system with radiant cooling and dedicated outdoor air

    Institute of Scientific and Technical Information of China (English)

    丁研; 田喆; 朱能

    2015-01-01

    The hybrid system with radiant cooling and dedicated outdoor air not only possesses high energy efficiency, but also creates a healthy and comfortable indoor environment. Indoor air quality will be improved by the dedicated outdoor air system (DOAS) and indoor thermal comfort can be enhanced by the radiant cooling system (RCS). The optimal air-supply mode of the hybrid system and the corresponding design approach were investigated. A full-scale experimental chamber with various air outlets and the ceiling radiant cooling panels (CRCP) was designed and established. The performances of different air-supply modes along with CRCPs were analyzed by multi-index evaluations. Preliminary investigations were also conducted on the humidity stratification and the control effect of different airflow modes to prevent condensation on CRCP. The overhead supply air is recommended as the best combination mode for the hybrid system after comprehensive comparison of the experiment results. The optimal proportion of CRCP accounting for the total cooling capacities in accord with specific cooling loads is found, which may provide valuable reference for the design and operation of the hybrid system.

  7. Thermal stratification level of low sidewall air supply with air-conditioning system in large space

    Institute of Scientific and Technical Information of China (English)

    黄晨; 蔡宁; 高雪垒

    2009-01-01

    The thermal stratification level of low sidewall air supply system in large space was defined. Depending on the experiment of low sidewall air supply in summer 2008,the thermal stratification level was studied by simulation. Based on the simulation of experiment condition,the air velocity and vertical temperature distribution in a large space were simulated at different air-outlet velocities,and then the thermal stratification level line was obtained. The simulation results well match with the experimental ones and the average relative error is 3.4%. The thermal stratification level is heightened by increasing the air-outlet velocity with low sidewall air supply mode. It is concluded that when air-outlet velocity is 0.29 m/s,which is the experimental case,a uniform thermal environment in the higher occupied zone and a stable stratification level are formed. When the air-outlet velocity is low,such as 0.05 m/s,the thermal stratification level is too low and the air velocity is too small to meet the human thermal comfort in the occupied zone. So,it would be reasonable that the air-outlet velocity may be designed as 0.31 m/s if the height of the occupied zone is 2 m.

  8. The DMU-ATMI THOR Air Pollution Forecast System

    DEFF Research Database (Denmark)

    Brandt, J.; Christensen, J. H.; Frohn, L. M.

    A new operational air pollution forecast system, THOR, has been developed at the National Environmental Research Institute, Den-mark. The integrated system consists of a series of different air pollu-tion models, which cover a wide range of scales (from European scale to street scale in cities......) and applications. The goal of the system is, on continuous basis, to produce 3 days air pollution forecasts of the most important air pollution species on different scales. Furthermore, the system will be an integrated part of the national urban and rural monitoring programmes and will be used for emission...... reduction scenarios supporting decision-makers. Currently, the THOR system consists of a numerical weather forecast model, ETA, a long-range air pollution chemistry-transport model, DEOM, an urban background model, BUM, and an operational street pollution model, OSPM. The ETA model is initialized...

  9. Air quality early-warning system for cities in China

    Science.gov (United States)

    Xu, Yunzhen; Yang, Wendong; Wang, Jianzhou

    2017-01-01

    Air pollution has become a serious issue in many developing countries, especially in China, and could generate adverse effects on human beings. Air quality early-warning systems play an increasingly significant role in regulatory plans that reduce and control emissions of air pollutants and inform the public in advance when harmful air pollution is foreseen. However, building a robust early-warning system that will improve the ability of early-warning is not only a challenge but also a critical issue for the entire society. Relevant research is still poor in China and cannot always satisfy the growing requirements of regulatory planning, despite the issue's significance. Therefore, in this paper, a hybrid air quality early-warning system was successfully developed, composed of forecasting and evaluation. First, a hybrid forecasting model was proposed as an important part of this system based on the theory of "decomposition and ensemble" and combined with the advanced data processing technique, support vector machine, the latest bio-inspired optimization algorithm and the leave-one-out strategy for deciding weights. Afterwards, to intensify the research, fuzzy evaluation was performed, which also plays an indispensable role in the early-warning system. The forecasting model and fuzzy evaluation approaches are complementary. Case studies using daily air pollution concentrations of six air pollutants from three cities in China (i.e., Taiyuan, Harbin and Chongqing) are used as examples to evaluate the efficiency and effectiveness of the developed air quality early-warning system. Experimental results demonstrate that both the accuracy and the effectiveness of the developed system are greatly superior for air quality early warning. Furthermore, the application of forecasting and evaluation enables the informative and effective quantification of future air quality, offering a significant advantage, and can be employed to develop rapid air quality early-warning systems.

  10. Novel MAV Air Data System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The development of Micro Air Vehicles (MAVs) has received considerable attention in recent years for both military and civilian uses. MAVs typically suffer from...

  11. Ensino de geometria descritiva: inovando na metodologia

    Directory of Open Access Journals (Sweden)

    Regina Coeli Moraes Kopke

    2001-03-01

    Full Text Available Com base na observação, durante anos de magistério superior, na área de desenho, dos alunos de Engenharia, Matemática, Arquitetura e Artes, quanto às dificuldades encontradas por eles no aprendizado de desenho, em especial da Geometria Descritiva, é que nos propusemos, em 1999, lecionar essa disciplina para os cursos de Arquitetura e Artes, adotando uma metodologia diferente da convencional, para despertar, no aluno, o gosto pela disciplina e o desenvolvimento de uma habilidade pouco trabalhada na escola: a visão espacial. Mostrar para os alunos que essa disciplina não é difícil, mas apenas diferente daquilo que estudaram até então, tornou-se nossa meta. A visão espacial é uma habilidade mental localizada no lado direito do cérebro e, assim, quanto mais lúdica for esta aprendizagem, será mais bem assimilada. A proposta é iniciada no sentido de se trabalhar primeiro com sólidos: neles estarão os pontos, retas e planos normalmente abordados na metodologia convencional, nessa ordem. Como conclusão, tem-se que o importante é ressaltar o grande avanço que a Geometria Descritiva traz para quem quer representar graficamente qualquer coisa. Onde há planejamento, projeto e representação gráfica, aí estará a Geometria Descritiva.During many years observing the teaching of design at the Engineering, Mathematics, Architeture and Arts courses, we can note the difficulties of the students to learn it, specially the descriptive geometry. Because of that, we decided to teach this discipline to the Architeture and Arts courses, using a new metodology to make the students motivated to study and to learn, and trying to develop their their spatial vision. We want to show to the students that this discipline is not so difficult as they think, but show them that is only different. The spatial vision is a mental skill found at the right side of the brain and the more soft the learning is, the more it is assimilated by the brain. The

  12. Diferentes Metodologias Aplicadas ao Ensino de Astronomia

    Science.gov (United States)

    Albrecht, E.; Voelzke, M. R.

    2007-08-01

    Espera-se que o educando ao final da educação básica, adquira uma compreensão atualizada das hipóteses, modelos e formas de investigação sobre a origem e evolução do Universo em que vive. O presente trabalho tem como principal objetivo compreender dentre três práticas pedagógicas adotadas no Ensino de Astronomia, na terceira série do Ensino Médio, da Escola Estadual Colônia dos Pescadores, qual melhor cumpre o papel de formação e aprendizagem para vida. A pesquisa preliminar foi através de um questionário onde o intuito foi diagnosticar o conhecimento já existente acerca do tema em questão. O questionário é composto de vinte questões dissertativas e objetivas, onde os educandos das três turmas envolvidas o responderam. Este trabalho utiliza as seguintes metodologias: a tradicional, onde o professor é um repassador de informações, fazendo uso exclusivo de lousa e giz; a segunda também de forma tradicional, porém com auxílio de multimídia para desenvolvimento das aulas e aterceira sob forma de seminários, elaborados e apresentados pelos educandos, no qual o educador faz apenas as intervenções necessárias. Ao final do trabalho os alunos responderão novamente o questionário inicial para diagnosticar dentre as três metodologias utilizadas qual apresentou melhor resultado. Os resultados preliminares obtidos, já podem ser observados e, dos 119 alunos entrevistados, as respostas obtidas são as mais diversas e evidenciam que a grande maioria nunca teve em sua vida escolar o tema Astronomia. Ao serem questionados se já haviam estudado Astronomia as respostas foram: turma A: sim 43%; turma B: sim: 21%; turma C: sim: 24%. Porém quando questionados a respeito do significado de Astronomia observou-se que: turma A: 100% de acertos; turma B: 64% acertos; turma C: 84% de acertos, demonstrando claramente a aprendizagem em diferentes esferas, não dependendo unicamente da escola. Até o presente momento, verificou-se que há interesse em

  13. The air pollution index system in Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Lee, F.Y.P.; Gervat, G.P. [Hong Kong Government, Wanchai (Hong Kong). Environmental Protection Dept.

    1995-12-31

    The Hong Kong Environmental Protection Department (EPD) is currently operating an air quality monitoring network in the territory. There are nine monitoring stations, each with air quality monitoring equipment, meteorological instruments and a data logger. Five minute averaged data are transmitted through telephone lines to the central computer at the EPD Air Laboratory and are also stored in the data logger on site, as backup. At present, the EPD releases its air quality measurements to the public via monthly and special press releases, and annual reports. However, as public awareness of air pollution problems has increased, there has been an urgent need for timely and simpler information about air pollution levels. The development and operation of an Air Pollution Index (API) system has addressed that need. This presentation discusses the API computation, the information and advice released to the general public and how they can access the API information. Some API results are also presented. (author)

  14. Residential Forced Air System Cabinet Leakage and Blower Performance

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain S.; Dickerhoff, Darryl J.; Delp, William W.

    2010-03-01

    This project evaluated the air leakage and electric power consumption of Residential HVAC components, with a particular focus on air leakage of furnace cabinets. Laboratory testing of HVAC components indicated that air leakage can be significant and highly variable from unit to unit ? indicating the need for a standard test method and specifying maximum allowable air leakage in California State energy codes. To further this effort, this project provided technical assistance for the development of a national standard for Residential HVAC equipment air leakage. This standard is being developed by ASHRAE and is called"ASHRAE Standard 193P - Method of test for Determining the Air Leakage Rate of HVAC Equipment". The final part of this project evaluated techniques for measurement of furnace blower power consumption. A draft test procedure for power consumption was developed in collaboration with the Canadian General Standards Board: CSA 823"Performance Standard for air handlers in residential space conditioning systems".

  15. Air pollution and the respiratory system.

    Science.gov (United States)

    Arbex, Marcos Abdo; Santos, Ubiratan de Paula; Martins, Lourdes Conceição; Saldiva, Paulo Hilário Nascimento; Pereira, Luiz Alberto Amador; Braga, Alfésio Luis Ferreira

    2012-01-01

    Over the past 250 years-since the Industrial Revolution accelerated the process of pollutant emission, which, until then, had been limited to the domestic use of fuels (mineral and vegetal) and intermittent volcanic emissions-air pollution has been present in various scenarios. Today, approximately 50% of the people in the world live in cities and urban areas and are exposed to progressively higher levels of air pollutants. This is a non-systematic review on the different types and sources of air pollutants, as well as on the respiratory effects attributed to exposure to such contaminants. Aggravation of the symptoms of disease, together with increases in the demand for emergency treatment, the number of hospitalizations, and the number of deaths, can be attributed to particulate and gaseous pollutants, emitted by various sources. Chronic exposure to air pollutants not only causes decompensation of pre-existing diseases but also increases the number of new cases of asthma, COPD, and lung cancer, even in rural areas. Air pollutants now rival tobacco smoke as the leading risk factor for these diseases. We hope that we can impress upon pulmonologists and clinicians the relevance of investigating exposure to air pollutants and of recognizing this as a risk factor that should be taken into account in the adoption of best practices for the control of the acute decompensation of respiratory diseases and for maintenance treatment between exacerbations.

  16. Air cycle machine for an aircraft environmental control system

    Science.gov (United States)

    Decrisantis, Angelo A. (Inventor); O'Coin, James R. (Inventor); Taddey, Edmund P. (Inventor)

    2010-01-01

    An ECS system includes an ACM mounted adjacent an air-liquid heat exchanger through a diffuser that contains a diffuser plate. The diffuser plate receives airflow from the ACM which strikes the diffuser plate and flows radially outward and around the diffuser plate and into the air-liquid heat exchanger to provide minimal pressure loss and proper flow distribution into the air-liquid heat exchanger with significantly less packaging space.

  17. Three-Dimensional Air Quality System (3D-AQS)

    Science.gov (United States)

    Engel-Cox, J.; Hoff, R.; Weber, S.; Zhang, H.; Prados, A.

    2007-12-01

    The 3-Dimensional Air Quality System (3DAQS) integrates remote sensing observations from a variety of platforms into air quality decision support systems at the U.S. Environmental Protection Agency (EPA), with a focus on particulate air pollution. The decision support systems are the Air Quality System (AQS) / AirQuest database at EPA, Infusing satellite Data into Environmental Applications (IDEA) system, the U.S. Air Quality weblog (Smog Blog) at UMBC, and the Regional East Atmospheric Lidar Mesonet (REALM). The project includes an end user advisory group with representatives from the air quality community providing ongoing feedback. The 3DAQS data sets are UMBC ground based LIDAR, and NASA and NOAA satellite data from MODIS, OMI, AIRS, CALIPSO, MISR, and GASP. Based on end user input, we are co-locating these measurements to the EPA's ground-based air pollution monitors as well as re-gridding to the Community Multiscale Air Quality (CMAQ) model grid. These data provide forecasters and the scientific community with a tool for assessment, analysis, and forecasting of U.S Air Quality. The third dimension and the ability to analyze the vertical transport of particulate pollution are provided by aerosol extinction profiles from the UMBC LIDAR and CALIPSO. We present examples of a 3D visualization tool we are developing to facilitate use of this data. We also present two specific applications of 3D-AQS data. The first is comparisons between PM2.5 monitor data and remote sensing aerosol optical depth (AOD) data, which show moderate agreement but variation with EPA region. The second is a case study for Baltimore, Maryland, as an example of 3D-analysis for a metropolitan area. In that case, some improvement is found in the PM2.5 /LIDAR correlations when using vertical aerosol information to calculate an AOD below the boundary layer.

  18. Acceptance test report for 241-AW process air system

    Energy Technology Data Exchange (ETDEWEB)

    Kostelnik, A.J.

    1994-10-06

    The acceptance test procedure (ATP) for the compressed air system at building 241-AW-273 was completed on March 11, 1993. The system was upgraded to provide a reliable source of compressed air to the tank farm. The upgrade included the demolition of the existing air compressor and associated piping, as well as the installation of a new air compressor with a closed loop cooling system. A compressed air cross-tie was added to allow the process air compressor to function as a back-up to the existing instrument air compressor. The purpose of the ATP was to achieve three primary objectives: verify system upgrade in accordance with the design media; provide functional test of system components and controls; and prepare the system for the Operational Test. The ATP was successfully completed with thirteen exceptions, which were resolved prior to completing the acceptance test. The repaired exceptions had no impact to safety or the environment and are briefly summarized. Testing ensured that the system was installed per design, that its components function as required and that it is ready for operational testing and subsequent turnover to operations.

  19. A Wireless Sensor Network Air Pollution Monitoring System

    CERN Document Server

    Khedo, Kavi K; Mungur, Avinash; Mauritius, University of; Mauritius,; 10.5121/ijwmn.2010.2203

    2010-01-01

    Sensor networks are currently an active research area mainly due to the potential of their applications. In this paper we investigate the use of Wireless Sensor Networks (WSN) for air pollution monitoring in Mauritius. With the fast growing industrial activities on the island, the problem of air pollution is becoming a major concern for the health of the population. We proposed an innovative system named Wireless Sensor Network Air Pollution Monitoring System (WAPMS) to monitor air pollution in Mauritius through the use of wireless sensors deployed in huge numbers around the island. The proposed system makes use of an Air Quality Index (AQI) which is presently not available in Mauritius. In order to improve the efficiency of WAPMS, we have designed and implemented a new data aggregation algorithm named Recursive Converging Quartiles (RCQ). The algorithm is used to merge data to eliminate duplicates, filter out invalid readings and summarise them into a simpler form which significantly reduce the amount of dat...

  20. Feedback linearization based control of a variable air volume air conditioning system for cooling applications.

    Science.gov (United States)

    Thosar, Archana; Patra, Amit; Bhattacharyya, Souvik

    2008-07-01

    Design of a nonlinear control system for a Variable Air Volume Air Conditioning (VAVAC) plant through feedback linearization is presented in this article. VAVAC systems attempt to reduce building energy consumption while maintaining the primary role of air conditioning. The temperature of the space is maintained at a constant level by establishing a balance between the cooling load generated in the space and the air supply delivered to meet the load. The dynamic model of a VAVAC plant is derived and formulated as a MIMO bilinear system. Feedback linearization is applied for decoupling and linearization of the nonlinear model. Simulation results for a laboratory scale plant are presented to demonstrate the potential of keeping comfort and maintaining energy optimal performance by this methodology. Results obtained with a conventional PI controller and a feedback linearizing controller are compared and the superiority of the proposed approach is clearly established.

  1. Control Systems for Platform Landings Cushioned by Air Bags

    Science.gov (United States)

    1987-07-01

    feedback control system (39) displayed behavior quite different from the other two controls. Many different pairs of values for Pi and P2 were found that...those of the paramameters. The control instructions, starting at line 23, are for the particular feedback control * " system studied in the report... feedback control system , see Equation (39) Pa Standard atmospheric pressure PC Critical (sonic) pressure in vent Q Dimensionless air-speed in vent q Air

  2. 14 CFR 33.66 - Bleed air system.

    Science.gov (United States)

    2010-01-01

    ... Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT AIRWORTHINESS STANDARDS: AIRCRAFT ENGINES Design and Construction; Turbine Aircraft Engines § 33.66 Bleed air system. The engine must supply bleed air without adverse effect on the engine, excluding reduced thrust or...

  3. Design of Piston Air Compressor Unit Control System based Converter

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    <正>Based on the running characteristics and high energy consumption of air compressors in coal mines,an air pressure PID closed loop control system has been designed in this paper.The system is composed of PLC, converter and sensors etc and adopts the control method of converter triple-evaporator which makes air supply"need-based".The designed system has been applied in multiple coal mines and the results show its energy saving is remarkable and potential application is widely.

  4. Compressed air systems. A guidebook on energy and cost savings

    Energy Technology Data Exchange (ETDEWEB)

    1984-03-30

    This guidebook shows how energy can be saved in compressed air systems. It discusses basic compressed air systems which are typical of those found in industry and describes them and the engineering practices behind them. Energy conservation recommendations follow. These recommendations cover equipment selection, design, maintenance, and operation. Included is information which will help the reader to make economic evaluations of various engineering and equipment alternatives as they affect operations and costs. The appendices include some modern computer based approaches to predicting pressure drop for designing compressed air distribution systems. Also included is a bibliography providing leads for further and more detailed technical information on these and related subjects.

  5. Experimental tests of a gas fired adsorption air conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Poyelle, F.; Guilleminot, J.J.; Meunier, F. [C.N.R.S.-L.I.M.S.I., Orsay Cedex (France); Canal, P.; Soide, I.; Klemsdal, E. [Gaz de Francer Saint Denis La Plaine (France)

    1997-10-01

    Over recent years, there has been growing interest for air conditioning systems, for commercial and offices buildings, transport and residential houses. Gaz de France promote natural gas powered air conditioning systems through the installation of commercial absorption machines, producing chilled and/or hot water. These machines cover loads from 70 kW to 5 MW. Gaz de France`s purpose is to develop a small scale natural gas fueled air conditioning system for residential applications and small commercials (5-20 kW). In order to study the feasibility of a small scale adsorption machine, a prototype has been studied, designed, constructed and tested. (au) 11 refs.

  6. Designing Forced-Air HVAC Systems

    Energy Technology Data Exchange (ETDEWEB)

    None

    2010-08-31

    This guide explains proper calculation of heating and cooling design loads for homes.used to calculated for the home using the protocols set forth in the latest edition of the Air Conditioning Contractors of America’s (ACCA) Manual J (currently the 8th edition), ASHRAE 2009 Handbook of Fundamentals, or an equivalent computation procedure.

  7. Investigation of a hybrid PVT air collector system

    Science.gov (United States)

    Haddad, S.; Touafek, K.; Mordjaoui, M.; Khelifa, A.; Tabet, I.

    2017-02-01

    The photovoltaic thermal hybrid (PVT) collectors, which simultaneously produce electricity and heat, are an alternative to photovoltaic modules and thermal collectors installed separately. Indeed, the heat extracted from the solar cell is used to heat water or air, thereby cooling the cell, and thus increasing its energy efficiency. This paper deals with a hybrid PVT air collector in which a new design has been proposed and tested. Its principle is based on the return of the preheating air to a second heating. The air thus passes twice under the solar cells before being evacuated to the outside of the collector (for space heating). The system is modular and expandable to cover large spaces to be heated. The experimental results of this novel design are presented and discussed under both normal and forced circulation. This technique of air return shows favorable results in terms of the quality of the heated air and electric power generation.

  8. The adverse effects of air pollution on the nervous system.

    Science.gov (United States)

    Genc, Sermin; Zadeoglulari, Zeynep; Fuss, Stefan H; Genc, Kursad

    2012-01-01

    Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS), including stroke, Alzheimer's disease, Parkinson's disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health.

  9. The Adverse Effects of Air Pollution on the Nervous System

    Directory of Open Access Journals (Sweden)

    Sermin Genc

    2012-01-01

    Full Text Available Exposure to ambient air pollution is a serious and common public health concern associated with growing morbidity and mortality worldwide. In the last decades, the adverse effects of air pollution on the pulmonary and cardiovascular systems have been well established in a series of major epidemiological and observational studies. In the recent past, air pollution has also been associated with diseases of the central nervous system (CNS, including stroke, Alzheimer’s disease, Parkinson’s disease, and neurodevelopmental disorders. It has been demonstrated that various components of air pollution, such as nanosized particles, can easily translocate to the CNS where they can activate innate immune responses. Furthermore, systemic inflammation arising from the pulmonary or cardiovascular system can affect CNS health. Despite intense studies on the health effects of ambient air pollution, the underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests that air pollution-induced neuroinflammation, oxidative stress, microglial activation, cerebrovascular dysfunction, and alterations in the blood-brain barrier contribute to CNS pathology. A better understanding of the mediators and mechanisms will enable the development of new strategies to protect individuals at risk and to reduce detrimental effects of air pollution on the nervous system and mental health.

  10. Performance and evaluation of desiccant based air conditioning system.

    Directory of Open Access Journals (Sweden)

    Gaurav S. Wani

    2014-12-01

    Full Text Available This Project work presents study and experimental analysis of Desiccant based air conditioning system.The main purpose of this project is to increase the efficency of air conditioning system.In the convenstional air conditioning system cooling coli has two load latent load and sensible load. Cooling has to cool the air and simultaneously to dehumidify it.It increases load on cooling coil and affects performance to the system. To increase the efficiency the air conditioning system desiccant materials are used at the inlet of the air conditioning test rig. Desiccant materials attract moisture based on differences in vapor pressure. Due to their enormous affinity to absorb water and considerable ability to hold water. Due to use of desiccant material load on the cooling coil reduces since moisture is absorbed by desiccant; cooling coil has to take only sensible load. Analysis is done using different desiccant materials and based on the observation, power consumption before and after desiccant is calculated. From this conclusion is made that desiccant material improves the efficiency of air conditioning test rig

  11. Prototype air cleaning system for a firing range

    Energy Technology Data Exchange (ETDEWEB)

    Glissmeyer, J.A.; Mishima, J.; Bamberger, J.A.

    1985-01-01

    This report recommends air cleaning system components for the US Army Ballistics Research Laboratory's new large-caliber firing range, which is used for testing depleted uranium (DU) penetrators. The new air cleaning system has lower operating costs during the life of the system compared to that anticipated for the existing air cleaning system. The existing system consists of three banks of filters in series; the first two banks are prefilters and the last are high-efficiency particulate air (HEPA) filters. The principal disadvantage of the existing filters is that they are not cleanable and reusable. Pacific Northwest Laboratory focused the search for alternate air cleaning equipment on devices that do not employ liquids as part of the particle collection mechanism. Collected dry particles were assumed preferable to a liquid waste stream. The dry particle collection devices identified included electrostatic precipitators; inertial separators using turning vanes or cyclones; and several devices employing a filter medium such as baghouses, cartridge houses, cleanable filters, and noncleanable filters similar to those in the existing system. The economics of practical air cleaning systems employing the dry particle collection devices were evaluated in 294 different combinations. 7 references, 21 figures, 78 tables.

  12. CDC STATE System Tobacco Legislation - Smokefree Indoor Air

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2016. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Smokefree Indoor Air....

  13. CDC STATE System Tobacco Legislation - Smokefree Indoor Air Summary

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2016. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. Legislation – Smokefree Indoor Air....

  14. An Air Quality Data Analysis System for Interrelating Effects, Standards and Needed Source Reductions

    Science.gov (United States)

    Larsen, Ralph I.

    1973-01-01

    Makes recommendations for a single air quality data system (using average time) for interrelating air pollution effects, air quality standards, air quality monitoring, diffusion calculations, source-reduction calculations, and emission standards. (JR)

  15. Transformations in Air Transportation Systems For the 21st Century

    Science.gov (United States)

    Holmes, Bruce J.

    2004-01-01

    Globally, our transportation systems face increasingly discomforting realities: certain of the legacy air and ground infrastructures of the 20th century will not satisfy our 21st century mobility needs. The consequence of inaction is diminished quality of life and economic opportunity for those nations unable to transform from the 20th to 21st century systems. Clearly, new thinking is required regarding business models that cater to consumers value of time, airspace architectures that enable those new business models, and technology strategies for innovating at the system-of-networks level. This lecture proposes a structured way of thinking about transformation from the legacy systems of the 20th century toward new systems for the 21st century. The comparison and contrast between the legacy systems of the 20th century and the transformed systems of the 21st century provides insights into the structure of transformation of air transportation. Where the legacy systems tend to be analog (versus digital), centralized (versus distributed), and scheduled (versus on-demand) for example, transformed 21st century systems become capable of scalability through technological, business, and policy innovations. Where air mobility in our legacy systems of the 20th century brought economic opportunity and quality of life to large service markets, transformed air mobility of the 21st century becomes more equitable available to ever-thinner and widely distributed populations. Several technological developments in the traditional aircraft disciplines as well as in communication, navigation, surveillance and information systems create new foundations for 21st thinking about air transportation. One of the technological developments of importance arises from complexity science and modern network theory. Scale-free (i.e., scalable) networks represent a promising concept space for modeling airspace system architectures, and for assessing network performance in terms of robustness

  16. Investigation on wind energy-compressed air power system

    Institute of Scientific and Technical Information of China (English)

    贾光政; 王宣银; 吴根茂

    2004-01-01

    Wind energy is a pollution free and renewable resource widely distributed over China. Aimed at protecting the environment and enlarging application of wind energy, a new approach to application of wind energy by using compressed air power to some extent instead of electricity put forward. This includes: explaining the working principles and characteristics of the wind energy-compressed air power system; discussing the compatibility of wind energy and compressor capacity; presenting the theoretical model and computational simulation of the system. The obtained compressor capacity vs wind power relationship in certain wind velocity range can be helpful in the designing of the wind power-compressed air system. Results of investigations on the application of high-pressure compressed air for pressure reduction led to conclusion that pressure reduction with expander is better than the throttle regulator in energy saving.

  17. 14 CFR 29.1103 - Induction systems ducts and air duct systems.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Induction systems ducts and air duct systems. 29.1103 Section 29.1103 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF....1103 Induction systems ducts and air duct systems. (a) Each induction system duct upstream of the...

  18. Air Travel and Health A Systems Perspective

    CERN Document Server

    Seabridge, Allan

    2010-01-01

    Providing a detailed examination of the issues that affect the long term health of aircrew, cabin crew and passengers, Air Travel and Health offers guidance to engineers designing aircraft in the difficult field of legislation and product liability. Examining the facts, anecdotes and myths associated with health and travel, Seabridge and Morgan draw balanced conclusions on which the aircraft operations and design communities can act to provide cost-effective solutions. The authors present a useful reference for aircrew, regulatory authorities, engineers and managers within the aerospace indust

  19. Prefeasibility study on compressed air energy storage systems

    Science.gov (United States)

    Elmahgary, Yehia; Peltola, Esa; Sipila, Kari; Vaatainen, Anne

    1991-08-01

    A prefeasibility study on Compressed Air Energy Storage (CAES) systems is presented. The costs of excavating rock caverns for compressed air storage and those for forming suitable storage caverns in existing mines were estimated, and this information was used to calculate the economics of CAES. An analysis of the different possible systems is given following a review of literature on CAES. This was followed by an economic analysis which comprised two separate systems. The first consisted of conventional oil fueled gas turbine plants provided with CAES system. In the second system wind turbines were used to run the compressors which are used in charging the compressed air storage cavern. The results of the current prefeasibility study confirmed the economic attractiveness of the CAES in the first system. Wind turbines still seem, however, to be too expensive to compete with coal power plants. More accurate and straightforward results could be obtained only in a more comprehensive study.

  20. Retrofitting Air Conditioning and Duct Systems in Hot, Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, C.; Aldrich, R.; Arena, L.

    2012-07-01

    This technical report describes CARB's work with Clark County Community Resources Division in Las Vegas, Nevada, to optimize procedures for upgrading cooling systems on existing homes in the area to implement health, safety, and energy improvements. Detailed monitoring of five AC systems showed that three of the five systems met or exceeded air flow rate goals.

  1. Design of energy efficient ventilation and air-conditioning systems

    CERN Document Server

    Seppänen, Olli; Bertilsson, Thore; Maripuu, Mari-Liis; Lamy, Hervé; Vanden Borre, Alex

    2012-01-01

    This guidebook covers numerous system components of ventilation and air-conditioning systems and shows how they can be improved by applying the latest technology products. Special attention is paid to details, which are often overlooked in the daily design practice, resulting in poor performance of high quality products once they are installed in the building system.

  2. Air quality in quarters and system of personal security

    Directory of Open Access Journals (Sweden)

    L.L. Goshka

    2010-10-01

    Full Text Available In the article climatic systems are considered as systems of personal security. Roles of State, building proprietors, inhabitants in the formation of climate favorable for health are analysed. Regulated heat and air conditioning systems are considered particularly, because they can give personal security in temperature.

  3. Assignment Procedures in the Air Force Procurement Management Information System.

    Science.gov (United States)

    Ward, Joe H., Jr.; And Others

    An overview is presented of the procedure for offering jobs in the Air Force Procurement Management Information System (PROMIS), an assignment system which makes possible the use of human resources research findings to improve individual personnel assignments. A general framework for viewing personnel assignment systems is presented; then job…

  4. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Ky Seok; Rhee, Young Joo; Kim, Duck Hyun; Yang, Ki Ho; Lee, Jong Min; Cha, Byung Heon; Lee, Kang Soo

    1999-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  5. Prediction of Perceived Air Quality for Personalized Ventilation Systems

    Institute of Scientific and Technical Information of China (English)

    ZENG Qingfan; ZHAO Rongyi

    2005-01-01

    The characteristics of the air jet from the outlet of a personalized ventilation system were related to the perceived air quality and ventilation rate. The perceived air quality was expressed as percentage of dissatisfied people for a system supplying isothermal fresh air. The relationship was verified using a thermal manikin with a breathing function in a climate chamber sitting by a desk equipped with a personalized ventilation system. A trace gas was introduced into the climate chamber and fully mixed. The personal exposure effectiveness (εp) is based on concentrations of trace gas in the chamber and in the manikin nose which is affected more by the distance between the movable outlet and the occupant's breathing zone than by the personalized air flowrate and does not change much for the personalized air flowrate higher than 10 L/s when the distance is fixed. Some predicted dissatisfied values for a personalized ventilation system compared with those acquired in human subject experiments have an absolute difference of less than 3%.

  6. Heating control strategy in fresh air processor matched with variable refrigerant flow air conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Tu Qiu, E-mail: tuqiuky@163.co [Guangzhou Institute of Energy Conversion, Chinese Academy of Science, Guangzhou 510640 (China) and Key Laboratory of Renewable Energy and Gas Hydrate, Chinese Academy of Science, Guangzhou 510640 (China); Mao Shoubo; Feng Yuhai; Guo Defang [Haier Air-Conditioning Electronic Co. Ltd., Qingdao 266510 (China)

    2011-07-15

    Highlights: {yields} A set of fresh air processor matched with VRF AC has been designed. {yields} The heating control model of variable condensation temperature target has been presented {yields} The control strategy can realize reliable running, high control accuracy and energy-saving. {yields} The control model is universal for fresh air processors with different capacities. -- Abstract: The fresh air processor (FAP), matched with the variable refrigerant flow air conditioning system (VRF AC), has been developed. Two control methods were adopted to control the system running and air outlet temperature, contrastively. The first method is that the running frequency in heating mode is adjusted in terms of the ordinary control method of VRF, i.e., constant condensation temperature. The experiment demonstrates the control method is not feasible. For nominal heating under different static pressure and defrosting under 200 Pa static pressure, the system fluctuates frequently. And for high temperature heating, the air outlet temperature far exceeds the target temperature. Furthermore, the control model of variable condensation temperature target has been presented, and the heat transfer correction factor is introduced into the control model. And the control parameters in the model are determined by experiment. The control model is universal for FAPs with different capacities by identifying and choosing the heat transfer correction factor in the control program. For low temperature heating, the method of switching rotation speed of the motor can be adopted to enhance air outlet temperature to 22 {sup o}C. The control strategy can provide guide for the design and application of FAP.

  7. Systemic arterial air embolism after percutaneous lung biopsy

    Energy Technology Data Exchange (ETDEWEB)

    Hare, S.S., E-mail: samanjit@btinternet.com [Ottawa Hospital, Ontario (Canada); Gupta, A.; Goncalves, A.T.C.; Souza, C.A.; Matzinger, F.; Seely, J.M. [Ottawa Hospital, Ontario (Canada)

    2011-07-15

    Systemic arterial air embolism is a rarely encountered but much feared complication of percutaneous lung biopsy. We present a comprehensive review of iatrogenic air embolism post-lung biopsy, a complication that is often suboptimally managed. This review was inspired by our own institutional experience and we use this to demonstrate that excellent outcomes from this complication can be seen with prompt treatment using hyperbaric oxygen chamber therapy, after initial patient stabilization has been achieved. Pathophysiology, clinical features, and risk factors are reviewed and misconceptions regards venous versus arterial air embolism are examined. An algorithm is provided for radiologists to ensure suspected patients are appropriately managed with more favourable outcomes.

  8. Measurement results obtained from air quality monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Turzanski, P.K.; Beres, R. [Provincial Inspection of Environmental Protection, Cracow (Poland)

    1995-12-31

    An automatic system of air pollution monitoring operates in Cracow since 1991. The organization, assembling and start-up of the network is a result of joint efforts of the US Environmental Protection Agency and the Cracow environmental protection service. At present the automatic monitoring network is operated by the Provincial Inspection of Environmental Protection. There are in total seven stationary stations situated in Cracow to measure air pollution. These stations are supported continuously by one semi-mobile (transportable) station. It allows to modify periodically the area under investigation and therefore the 3-dimensional picture of creation and distribution of air pollutants within Cracow area could be more intelligible.

  9. Application of Solar Energy to Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    M, Nash J; J, Harstad A

    1976-11-01

    The results of a survey of solar energy system applications of air conditioning are summarized. Techniques discussed are both solar powered (absorption cycle and the heat engine/ Rankine cycle) and solar related (heat pump). Brief descriptions of the physical implications of various air conditioning techniques, discussions of status, proposed technological improvements, methods of utilization and simulation models are presented, along with an extensive bibliography of related literature.

  10. Applicability of sewage heat pump air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    陈金华; 刘猛; 刘勇; 靳鸣; 陈洁

    2009-01-01

    A sewage heat pump system and its application based on a project in Chongqing,China,were discussed. Based on the sewage conditions,a feasibility analysis of the sewage heat pump air conditioning system was conducted. The theoretical and quantitative calculations indicate that sewage flux in the city sewage main pipe in the project can satisfy heat exchange requirements,and taking water from the pipes has relatively small influence on the pipe net in summer and winter. The sewage heat pump air-conditioning system can save 21.5% operating cost in one year,which is energy efficient and environmentally friendly.

  11. MAQU Metodologia d'Assegurament de la Qualitat

    OpenAIRE

    Gómez Monfort, Vanessa

    2011-01-01

    Estudi, anàlisi i disseny de "MAQU", la metodologia aplicada a l'etapa de proves d'un producte software basada en els models de qualitat. Per arribar a establir aquesta metodologia s'han estudiat els processos que intervenen en el cicle de vida del software, els models estàndards, models de qualitat i proves disponibles al mercat més apropiats i adequats a les necessitats. Estudio, análisis y diseño de "MAQU", metodología aplicada a la etapa de pruebas de un producto software basada en los...

  12. Step response and frequency response of an air conditioning system

    NARCIS (Netherlands)

    Crommelin, R.D.; Jackman, P.J.

    1978-01-01

    A system of induction units of an existing air conditioning system has been analyzed with respect to its dynamic properties. Time constants were calculated and measured by analogue models. Comparison with measurements at the installation itself showed a reasonable agreement. Frequency responses were

  13. Single Integrated Air Picture (SIAP) Block 1 Candidate Systems

    Science.gov (United States)

    2007-11-02

    to produce joint warfighting capability. Since there was no process for the Single Integrated Air Picture System Engineering Task Force ( SIAP SE TF...to inherit or leverage, the SIAP SE TF had to build a process to identify candidate systems that will be impacted by the SIAP Block I upgrade.

  14. Improving Compressed Air System Performance: A Sourcebook for Industry

    Energy Technology Data Exchange (ETDEWEB)

    None

    2003-11-01

    NREL will produce this sourcebook for DOE's Industrial Technologies Office as part of a series of documents on industrial energy equipment. The sourcebook is a reference for industrial compressed air system users, outlining opportunities to improve system efficiency.

  15. Experimental investigation of integrated air purifying technology for bioaerosol removal and inactivation in central air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    ZHENG Xiaohong; LIU Hongmin; YE Xiaojiang; LI Kejun; WANG Ruzhu; ZHAO Liping; Lisa. X. Xu; CHEN Yazhu; JIN Xinqiao; GU Bo; BAI Jingfeng

    2004-01-01

    In this research, high voltage static electricity and ultraviolet technologies were integrated to an air purifying device which can be used to trap and kill airborne bacteria and viruses in central air-conditioning systems. An experimental platform was built to mimic the central air system, in which the efficacy of the newly built device was examined. In addition to the standard physical and chemical tests, bacteriophages were used to simulate airborne viruses in the experimental system. The bacteriophage suspension was aerosolized into the air with ultrasonic wave atomization. The result showed that more than 86% removal efficiency of micro-particles (<10 micron in diameter) were removed after the device was in operation in a building and more than 95% of bacteriophages in the experimental system. It is concluded that the integrated air purifier is suitable for controlling air quality and preventing virus transmission through the central air system.

  16. Hydrogen-air energy storage gas-turbine system

    Science.gov (United States)

    Schastlivtsev, A. I.; Nazarova, O. V.

    2016-02-01

    A hydrogen-air energy storage gas-turbine unit is considered that can be used in both nuclear and centralized power industries. However, it is the most promising when used for power-generating plants based on renewable energy sources (RES). The basic feature of the energy storage system in question is combination of storing the energy in compressed air and hydrogen and oxygen produced by the water electrolysis. Such a process makes the energy storage more flexible, in particular, when applied to RES-based power-generating plants whose generation of power may considerably vary during the course of a day, and also reduces the specific cost of the system by decreasing the required volume of the reservoir. This will allow construction of such systems in any areas independent of the local topography in contrast to the compressed-air energy storage gas-turbine plants, which require large-sized underground reservoirs. It should be noted that, during the energy recovery, the air that arrives from the reservoir is heated by combustion of hydrogen in oxygen, which results in the gas-turbine exhaust gases practically free of substances hazardous to the health and the environment. The results of analysis of a hydrogen-air energy storage gas-turbine system are presented. Its layout and the principle of its operation are described and the basic parameters are computed. The units of the system are analyzed and their costs are assessed; the recovery factor is estimated at more than 60%. According to the obtained results, almost all main components of the hydrogen-air energy storage gas-turbine system are well known at present; therefore, no considerable R&D costs are required. A new component of the system is the H2-O2 combustion chamber; a difficulty in manufacturing it is the necessity of ensuring the combustion of hydrogen in oxygen as complete as possible and preventing formation of nitric oxides.

  17. Air Cleaning Devices for HVAC Supply Systems in Schools. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.

    Guidelines for maintaining indoor air quality in schools with HVAC air cleaning systems are provided in this document. Information is offered on the importance of air cleaning, sources of air contaminants and indoor pollutants, types of air cleaners and particulate filters used in central HVAC systems, vapor and gas removal, and performance…

  18. Economics of water injected air screw compressor systems

    Science.gov (United States)

    Venu Madhav, K.; Kovačević, A.

    2015-08-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an investigation carried out to determine the current limitations of water injected screw compressor systems and how these could be overcome in the 15-315 kW power range and delivery pressures of 6-10 bar. Modern rotor profiles and approach to sealing and cooling allow reasonably inexpensive air end design. The prototype of the water injected screw compressor air system was built and tested for performance and reliability. The water injected compressor system was compared with the oil injected and oil free compressor systems of the equivalent size including the economic analysis based on the lifecycle costs. Based on the obtained results, it was concluded that water injected screw compressor systems could be designed to deliver clean air free of oil contamination with a better user value proposition than the oil injected or oil free screw compressor systems over the considered range of operations.

  19. Simulation of Variable Air Volume System with Different Duct Layout

    Institute of Scientific and Technical Information of China (English)

    CHEN Hua(陈华); TU Guang-bei(涂光备); FRANCIS W H Yik

    2004-01-01

    The duct static pressure reset (DSPR) control method is a popular modern control method widely applied to variable air volume (VAV) systems of commercial buildings. In this paper, a VAV system simulation program was used to predict the system performance and zone air temperature of two kinds of layouts that were applied to a typical floor of an existing building office in Hong Kong. The position where the static pressure sensor was placed should affect the zones temperature and energy consumption. The comparison of predictions of the two kinds of layouts indicates that with the same DSPR control method the layout of the air duct might influence the fan control result and energy savings.

  20. Compressed Air System Optimization: Case Study Food Industry in Indonesia

    Science.gov (United States)

    Widayati, Endang; Nuzahar, Hasril

    2016-01-01

    Compressors and compressed air systems was one of the most important utilities in industries or factories. Approximately 10% of the cost of electricity in the industry was used to produce compressed air. Therefore the potential for energy savings in the compressors and compressed air systems had a big challenge. This field was conducted especially in Indonesia food industry or factory. Compressed air system optimization was a technique approach to determine the optimal conditions for the operation of compressors and compressed air systems that included evaluation of the energy needs, supply adjustment, eliminating or reconfiguring the use and operation of inefficient, changing and complementing some equipment and improving operating efficiencies. This technique gave the significant impact for energy saving and costs. The potential savings based on this study through measurement and optimization e.g. system that lowers the pressure of 7.5 barg to 6.8 barg would reduce energy consumption and running costs approximately 4.2%, switch off the compressor GA110 and GA75 was obtained annual savings of USD 52,947 ≈ 455 714 kWh, running GA75 light load or unloaded then obtained annual savings of USD 31,841≈ 270,685 kWh, install new compressor 2x132 kW and 1x 132 kW VSD obtained annual savings of USD 108,325≈ 928,500 kWh. Furthermore it was needed to conduct study of technical aspect of energy saving potential (Investment Grade Audit) and performed Cost Benefit Analysis. This study was one of best practice solutions how to save energy and improve energy performance in compressors and compressed air system.

  1. Air and spaceborne radar systems an introduction

    CERN Document Server

    Lacomme, Philippe; Hardange, Jean-Philippe; Normant, Eric

    2001-01-01

    A practical tool on radar systems that will be of major help to technicians, student engineers and engineers working in industry and in radar research and development. The many users of radar as well as systems engineers and designers will also find it highly useful. Also of interest to pilots and flight engineers and military command personnel and military contractors. """"This introduction to the field of radar is intended for actual users of radar. It focuses on the history, main principles, functions, modes, properties and specific nature of modern airborne radar. The book examines radar's

  2. New challenges to air/gas cleaning systems

    Energy Technology Data Exchange (ETDEWEB)

    Kovach, J.L. [NUCON International, Inc., Columbus, OH (United States)

    1997-08-01

    This paper discusses the need for changes in the design and manufacturing of air and gas cleaning systems to meet waste management and site remediation requirements. Current design and manufacturing practices are primarily directed toward evaluating operational problems with existing systems in nuclear reactor facilities. However, nuclear waste management needs have developed which are much broader in scope and have different processing conditions. Numerous examples of air cleaning needs for waste management activities are provided; the major differences from operating facility needs are the requirement for continuous effluent treatment under widely different processing conditions. Related regulatory issues are also discussed briefly. 1 ref.

  3. Development of mobile air pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Kyu Seok; Kim, Dukh Yeon; Yang, Ki Ho; Lee, Jong Min; Yoon, S.; Rostov, A

    2001-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment and provide pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR(Light Detection And Ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The coal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  4. Formaldehyde removal from air by a biodegradation system.

    Science.gov (United States)

    Xu, Zhongjun; Hou, Haiping

    2010-07-01

    A biodegradation system was used for the treatment of formaldehyde-polluted air. Air pressure dropped 12 mm water in the trickling biofilter during the experiment of about 4 months. In the range 20-300 mg m(-3) influent formaldehyde, this biodegradation system obtained 4.0-40.0 mg h(-1) degradation capacity, with 100%-66.7% degradation efficiency. The amount of formaldehyde degraded by the trickling biofilter was more than that by the activated sludge bioreactor below 200 mg m(-3) influent gaseous formaldehyde while the amount by the trickling biofilter was less than that by the activated sludge bioreactor over 200 mg m(-3) influent gaseous formaldehyde.

  5. Design and Implementation of Air Conditioning System in Operating Room

    Directory of Open Access Journals (Sweden)

    Htet Htet Aung

    2014-10-01

    Full Text Available The system is air conditioning system in operating room. The main objective of the system was implemented to provide air balance and temperature necessary conditions and to control airflow system for ventilation units in operating room. The operation room can be controlled with fuzzy expert system and describes the desired outputs. Input parameters such as temperature, humidity, oxygen and particle are used and output parameters are chosen as air conditioning motor speed and exhaust motor speed. Input parameters of the system are taken into account optimal conditions based on oxygen as medium and other parameters are chosen minimum condition for operating room. The airflow control system is determined the two components: the airflow block and the thermal block for ventilation units in operating room. The mathematical modeling of each such system based on a computational procedure and to combine them together in an efficient manner. Whether it supports to the most suitable control for the system prototype was determined by simulating the operation with varying the number of personnel and duration of time. Finally, according to the combination of temperature and airflow regulations with PI controller, the results of simulation of the entire ventilation unit control system is obtained.

  6. An Air Quality Management System for Policy Support in Cyprus

    Directory of Open Access Journals (Sweden)

    Nicolas Moussiopoulos

    2012-01-01

    Full Text Available The recent air quality directive (2008/50/EC encourages the introduction of modelling as a necessary tool for air quality assessment and management. Towards this aim, an air quality management system (AQMS has been developed and installed in the Department of Labour Inspection (DLI of the Republic of Cyprus. The AQMS comprises of two operational modules, providing hourly nowcasting and daily forecasting of the air quality status, implemented as an integrated model system that performs nested grid meteorological and photochemical simulations. A third operational module provides the capability of an interactive configuration of custom emission scenarios and corresponding model runs covering user-defined domains of interest. Statistical indicators are calculated at the end of each day for the measurement locations of DLI's air quality monitoring network. Besides, the system provides an advanced user interface, which is realised as a web-based application providing access to model results from any computer with an internet connection and a web browser.

  7. Espiral construtivista: uma metodologia ativa de ensino-aprendizagem

    Directory of Open Access Journals (Sweden)

    Valéria Vernaschi Lima

    Full Text Available A partir da teoria sociointeracionista da educação e da trajetória das práticas pedagógicas nas sociedades ocidentais, o artigo apresenta a espiral construtivista como uma metodologia ativa de ensino-aprendizagem. Discute as origens e a utilização de metodologias ativas no ensino superior, focalizando: a aprendizagem baseada em problemas, a metodologia da problematização, o método científico e o uso de narrativas, simulações ou atuações em cenários reais de prática. A exploração da espiral construtivista, de acordo com os movimentos: “identificando problemas”; “formulando explicações”; “elaborando questões”; “construindo novos significados”; “avaliando processo e produtos”, destaca semelhanças e diferenças em relação às metodologias ativas focalizadas. Para além dos aspectos metodológicos envolvidos, a intencionalidade educacional na utilização da espiral construtivista é explicitada pela natureza dos disparadores de aprendizagem utilizados e pelo sentido transformador da realidade derivado da postura crítica e reflexiva na interação do “sujeito” e “objeto”.

  8. A Comparison of Air Force Data Systems

    Science.gov (United States)

    1993-08-01

    Reports. IDA Papers are reviewed to ensure that they meet the high standards expected of refereed papers in professional journals or formal Agency...Research Corporation ( DRC ). It incorporates a central data base architecture. TICARRS operates from two Bull DPS90 processors. Communications...has no plans to enhance TICARRS in any way, having chosen 3 CAMS/REMIS as its standard system. DRC , however, has analyzed the work that would be

  9. 60-WATT HYDRAZINE-AIR FUEL CELL SYSTEM.

    Science.gov (United States)

    fuel cell system as presented in our Design Plan. Prior to preparation of the Design Plan, a systems analysis of the basic electrochemical system was made. From the results of this analysis, the operating parameters of the support equipment were defined and an initial selection of components made. System components defined were: the cell stack, electrolyte tank, hydrazine feed system, cooling and chemical air blowers, voltage regulator, and thermal control system. A package design was then made for these components and the final detail design completed.

  10. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System.

    Science.gov (United States)

    Zhao, Baiwang; Peng, Na; Liang, Canzeng; Yong, Wai Fen; Chung, Tai-Shung

    2015-11-16

    In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18-22 g/m³ to a range of 13.5-18.3 g/m³. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  11. Hollow Fiber Membrane Dehumidification Device for Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Baiwang Zhao

    2015-11-01

    Full Text Available In order to provide a comfortable living and working environment indoors in tropical countries, the outdoor air often needs to be cooled and dehumidified before it enters the rooms. Membrane separation is an emerging technology for air dehumidification and it is based on the solution diffusion mechanism. Water molecules are preferentially permeating through the membranes due to its smaller kinetic diameter and higher condensability than the other gases. Compared to other dehumidification technologies such as direct cooling or desiccation, there is no phase transition involved in membrane dehumidification, neither the contact between the fresh air stream and the desiccants. Hence, membrane dehumidification would not only require less energy consumption but also avoid cross-contamination problems. A pilot scale air dehumidification system is built in this study which comprises nine pieces of one-inch PAN/PDMS hollow fiber membrane modules. A 150 h long-term test shows that the membrane modules has good water vapor transport properties by using a low vacuum force of only 0.78 bar absolute pressure at the lumen side. The water vapor concentration of the feed humid air decreases dramatically from a range of 18–22 g/m3 to a range of 13.5–18.3 g/m3. Most importantly, the total energy saving is up to 26.2% compared with the conventional air conditioning process.

  12. Intelligent Control System of Textile Mill's Air-conditioning

    Institute of Scientific and Technical Information of China (English)

    WU Fu-zhuan; ZHAO Fang

    2009-01-01

    This paper briefly analyzes the present situation of textile mill's air-conditioning system. Since it is difficult to establish detailed math model to control a textile mill's air-conditioning system because of the influence of various factors such as the differences in seasons, regions, etc., most air-conditioning equipment can not he controlled automatically. This paper suggests utilizing multi-function data acquisition card to collect the data about the temperature and humidity of a workshop, processing the data on a PC, comparing them with the expert database, and then using the 485 serial port expanding module to output the parameters, which are used to control the inverter, so that the purpose of adjusting the temperature and humidity of the workshop is achieved.

  13. Community Multi-scale Air Quality (CMAQ) Modeling System for Air Quality Management

    Science.gov (United States)

    CMAQ simultaneously models multiple air pollutants including ozone, particulate matter and a variety of air toxics to help air quality managers determine the best air quality management scenarios for their communities, regions and states.

  14. Comparative Analysis of Fuzzy Inference Systems for Air Conditioner

    Directory of Open Access Journals (Sweden)

    Swati R. Chaudhari

    2014-12-01

    Full Text Available In today’s world there is exponential increase in the use of air conditioning devices. The enhancement in utilization of such devices makes it essential for them to work with their full capability and efficiency. The fuzzy inference systems are best suited for the applications requiring easy interpretation, human reasoning, accurate decision making and control. The fuzzy inference systems resemble human decision making and generate precise solutions from approximate information. A comprehensive review of fuzzy inference systems with weighted average and defuzzification is covered in this paper. The objective of the paper is to provide the comparative analysis of fuzzy inference systems. This paper is a quick reference for the researchers in studying the characteristics of fuzzy inference system in air conditioner.

  15. Procedure for Balancing an Air Distribution System with Decentralised Fans

    DEFF Research Database (Denmark)

    Gunner, Amalie; Hultmark, Göran; Vorre, Anders;

    2015-01-01

    This paper presents results from an on-going project concerning new design procedures for mechanical ventilation systems with low energy use. Conventional constant air volume (CAV) systems are usually balanced using flat plate dampers. The purpose of using balancing dampers is to intentionally...... flawed. This paper presents a new procedure for balancing of CAV systems in combination with decentralised fans. The new system was based on replacing the balancing dampers with decentralised fans. By replacing the balancing dampers with decentralised fans, airflows can be balanced by adjusting the speed...... of the fans. In conventional air distribution systems the fan provides the necessary pressure to overcome the resistance in the branch with the highest pressure resistance. This gives an unnecessary overpressure in the remaining branches that does not provide any useful purpose. In order to decrease the fan...

  16. Errors Associated With Excess Air Multipoint Measurement Systems

    Directory of Open Access Journals (Sweden)

    Ramsunkar Charlene

    2015-12-01

    Full Text Available Boiler combustion air is generally controlled by the excess air content measured at the boiler economiser outlet using oxygen (O2 analysers. Due to duct geometry and dimensions, areas of high and low O2 concentrations in the flue gas duct occur, which poses a problem in obtaining a representative measurement of O2 in the flue gas stream. Multipoint systems as opposed to single point systems are more favourable to achieve representative readings. However, ash blockages and air leakages influence the accuracy of O2 measurement. The design of multipoint system varies across ESKOMs’ Power Stations. This research was aimed at evaluating the accuracy of the multipoint oxygen measurement system installed at Power Station A and to determine the systematic errors associated with different multipoint systems designs installed at Power Stations' A and B. Using flow simulation software, FloEFDTM and Flownex®, studies were conducted on two types of multipoint system designs This study established that significantly large errors, as high as 50%, were noted between the actual and measured flue gas O2. The design of the multipoint system extraction pipes also introduces significant errors, as high as 23%, in the O2 measured. The results indicated that the sampling errors introduced with Power Station A’s system can be significantly reduced by adopting the sampling pipe design installed at Power Station B.

  17. A Wireless Sensor Network Air Pollution Monitoring System

    Directory of Open Access Journals (Sweden)

    Kavi K. Khedo

    2010-05-01

    Full Text Available Sensor networks are currently an active research area mainly due to the potential of their applications. Inthis paper we investigate the use of Wireless Sensor Networks (WSN for air pollution monitoring inMauritius. With the fast growing industrial activities on the island, the problem of air pollution isbecoming a major concern for the health of the population. We proposed an innovative system namedWireless Sensor Network Air Pollution Monitoring System (WAPMS to monitor air pollution inMauritius through the use of wireless sensors deployed in huge numbers around the island. The proposedsystem makes use of an Air Quality Index (AQI which is presently not available in Mauritius. In order toimprove the efficiency of WAPMS, we have designed and implemented a new data aggregation algorithmnamed Recursive Converging Quartiles (RCQ. The algorithm is used to merge data to eliminateduplicates, filter out invalid readings and summarise them into a simpler form which significantly reducethe amount of data to be transmitted to the sink and thus saving energy. For better power management weused a hierarchical routing protocol in WAPMS and caused the motes to sleep during idle time.

  18. Prototype Systems for Measuring Outdoor Air Intake Rates in Rooftop Air Handlers

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Wanyu R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Hotchi, Toshifumi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-01

    The widespread absence of systems for real-time measurement and feedback control, of minimum outdoor air intake rates in HVAC systems contributes to the poor control of ventilation rates in commercial buildings. Ventilation rates affect building energy consumption and influence occupant health. The project designed fabricated and tested four prototypes of systems for measuring rates of outdoor air intake into roof top air handlers. All prototypes met the ±20% accuracy target at low wind speeds, with all prototypes accurate within approximately ±10% after application of calibration equations. One prototype met the accuracy target without a calibration. With two of four prototype measurement systems, there was no evidence that wind speed or direction affected accuracy; however, winds speeds were generally below usually 3.5 m s-1 (12.6 km h-1) and further testing is desirable. The airflow resistance of the prototypes was generally less than 35 Pa at maximum RTU air flow rates. A pressure drop of this magnitude will increase fan energy consumption by approximately 4%. The project did not have resources necessary to estimate costs of mass produced systems. The retail cost of components and materials used to construct prototypes ranged from approximately $1,200 to $1,700. The test data indicate that the basic designs developed in this project, particularly the designs of two of the prototypes, have considerable merit. Further design refinement, testing, and cost analysis would be necessary to fully assess commercial potential. The designs and test results will be communicated to the HVAC manufacturing community.

  19. 77 FR 15813 - Preoperational Testing of Instrument and Control Air Systems

    Science.gov (United States)

    2012-03-16

    ... COMMISSION Preoperational Testing of Instrument and Control Air Systems AGENCY: Nuclear Regulatory Commission..., ``Preoperational Testing of Instrument and Control Air Systems.'' This regulatory guide is being revised to address... instrument and control air systems (ICAS) to meet seismic requirement, ICAS air-dryer testing to meet...

  20. Computational fluid dynamics for turbomachinery internal air systems.

    Science.gov (United States)

    Chew, John W; Hills, Nicholas J

    2007-10-15

    Considerable progress in development and application of computational fluid dynamics (CFD) for aeroengine internal flow systems has been made in recent years. CFD is regularly used in industry for assessment of air systems, and the performance of CFD for basic axisymmetric rotor/rotor and stator/rotor disc cavities with radial throughflow is largely understood and documented. Incorporation of three-dimensional geometrical features and calculation of unsteady flows are becoming commonplace. Automation of CFD, coupling with thermal models of the solid components, and extension of CFD models to include both air system and main gas path flows are current areas of development. CFD is also being used as a research tool to investigate a number of flow phenomena that are not yet fully understood. These include buoyancy-affected flows in rotating cavities, rim seal flows and mixed air/oil flows. Large eddy simulation has shown considerable promise for the buoyancy-driven flows and its use for air system flows is expected to expand in the future.

  1. AQUIS: An air quality and permit information management system

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.E.; Huber, C.C.; Tschanz, J. (Argonne National Lab., IL (USA)); Ryckman, S.J. Jr. (Air Force Logistics Command, Wright-Patterson AFB, OH (USA))

    1991-01-01

    The Air Quality Utility Information System (AQUIS) is a data base management system that operates on a dedicated, IBM-compatible personal computer using dBASE IV. AQUIS is in operation at six of the seven US Air Force Logistics Command (AFLC) bases to assist with the management of the source inventory, permit tracking, and the estimating and tracking of emissions. The system also provides environmental management personnel with information on regulatory requirements and other compliance information. An AFLC base can have over 500 regulated or unregulated emission sources, and the task of tracking and correlating emissions, sources, and permits is substantial. AQUIS is a comprehensive management tool that provides a single system for storing and accessing information previously available only in multiple, uncorrelated files. This paper discusses the development of the system and provides an overview of the system structure and the relationship of that structure to sources in the field. Certain features such as the linking capability and compound-specific emissions are highlighted. The experience of environmental managers, the ultimate system users, is discussed, including specific ways in which AQUIS has proven useful in responding to managers' needs for air quality information. 10 refs., 3 figs., 1 tab.

  2. A new methodology for sizing hybrid photovoltaic-wind energy system using simulation and optimization tools = Uma nova metodologia para dimensionamento de sistemas híbridos de energia (solar-eólica utilizando ferramentas de simulação e otimização

    Directory of Open Access Journals (Sweden)

    Samuel Nelson Melegari de Souza

    2005-01-01

    Full Text Available This paper presents a new methodology for sizing an autonomousphotovoltaic-wind hybrid energy system with battery storage, using simulation and optimization tools. The developed model is useful for energizing remote rural areas and produces a system with minimum cost and high reliability, based on the concept of Loss of Power Supply Probability (LPSP applied for consecutive hours. Some scenarios arecalculated and compared, using different numbers of consecutive hours and different LPSP values. As a result, a complete sizing of the system and a long-term cost evaluation are presented.Este trabalho apresenta uma nova metodologia para dimensionamento de sistemas híbridos de energia (solar-eólica com armazenamento em banco de baterias, utilizando ferramentas de simulação e otimização. O modelo desenvolvido é útil para a energização de áreas ruraisisoladas e resulta num sistema com custo mínimo e alta confiabilidade, baseado no conceito de perda de fornecimento de energia à carga (LPSP aplicado para horas consecutivas. Alguns cenários são calculados e comparados, utilizando-se diferentes períodos de horas consecutivas e diferentes valores de LPSP. Os resultados apresentam um dimensionamento completo do sistema e uma avaliação de custos ao longo de vários anos.

  3. Air Quality Model System For The Vienna/bratislava Region

    Science.gov (United States)

    Krüger, B. C.; Schmittner, W.; Kromp-Kolb, H.

    A model system has been build up, consisting of the mesoscale meteorological fore- cast model MM5 and the chemical air-quality model CAMx. The coarse grid covers central Europe. By nesting, a spatial resolution of 3 km is reached for the core area, which includes the cities of Vienna (Austria) and Bratislava (Slovakia). In a first approach, the model system has been applied to a 6-day period in Febru- ary 1997, which was characterized by stagnant meteorological conditions. During this episode, primary pollutants like CO and NO2 have been compared with ambient mea- surements for the validation of the new model system. In the future it is foreseen to improve the spatial resolution, to apply the model system also for ozone and particulates, and to utilize it for a short-time forecast of air-quality parameters.

  4. Developments in skirt systems for air cushion vehicles

    Science.gov (United States)

    Inch, Peter; Prentice, Mark E.; Lewis, Carol Jean

    The present evaluation of the development status of air-cushion vehicle (ACV) skirts emphasizes the materials employed, with a view to the formulation of materials-performance requirements for next-generation AVCs and, in particular, an 'air-cushion catamaran' surface-effect ship (SES). Attention is given to novel skirt-design features which furnish substantial savings in maintenance costs. The employment of extant test rig data and the use of CAD methods are discussed, and the features of a novel system for the direct fixing of a bow finger onto an SES structure are noted.

  5. The Joint Air Land Battle System: An Alternative to the Air Ground Operations System

    Science.gov (United States)

    1976-06-11

    doctrine for modern war. "The Sovieat.kad Forces maintain over one hundred higher military * choo ’#t-With courses ranging from four to five years" (42:IV...Terms. Public Affairs Press, 1963. 21. E:-ae,o Eugene M. The Impact of Air Power. New York; D. Van Nostrand Company, Inc., 1959 22. Employment of

  6. Modelling internal air systems in gas turbine engines

    Institute of Scientific and Technical Information of China (English)

    J Michael Owen

    2007-01-01

    Rotating-disc systems can be used to model,experimentally and computationally,the flow and heat transfer that occur inside the internal cooling-air systems of gas turbine engines.These rotating-disc systems have been used successfully to simplify and understand some of the complex flows that occur in internal-air systems,and designers have used this insight to improve the cooling effectiveness,thereby increasing the engine efficiency and reducing the emissions.In this review paper,three important cases are considered:hot-gas ingress;the pre-swirl system;and buoyancy-induced flow.Ingress,or ingestion,occurs when hot gas from the mainstream gas path is ingested into the wheel-space between the turbine disc and its adjacent casing.Rim seals are fitted at the periphery of the system,and sealing flow is used to reduce or prevent ingress.However,too much sealing air reduces the engine efficiency,and too little can cause serious overheating,resulting in damage to the turbine rim and blade roots.Although the flow is three-dimensional and unsteady,there are encouraging signs that simple 'orifice models' could be used to estimate the amount of ingress into the wheel-space.In a pre-swirl system,the cooling air for the gas-turbine blades is swirled by stationary nozzles,and the air is delivered to the blades via receiver holes in the rotating turbine disc.Swirling the air reduces its temperature relative to the rotating blades,and the designer needs to calculate the air temperature and pressure drop in the system.The designer also needs to calculate the effect of this swirling flow on the heat transfer from the turbine disc to the air,as this has a significant effect on the temperature distribution and stresses in the disc.Recent experimental and computational studies have given a better understanding of the flow and heat transfer in these systems.Buoyancy-induced flow occurs in the cavity between two co-rotating compressor discs when the temperature of the discs is higher

  7. Air cargo: An Integrated Systems View. 1978 Summer Faculty Fellowship Program in Engineering Systems Design

    Science.gov (United States)

    Keaton, A. (Editor); Eastman, R. (Editor); Hargrove, A. (Editor); Rabiega, W. (Editor); Olsen, R. (Editor); Soberick, M. (Editor)

    1978-01-01

    The national air cargo system is analyzed and how it should be in 1990 is prescribed in order to operate successfully through 2015; that is through one equipment cycle. Elements of the system which are largely under control of the airlines and the aircraft manufacturers are discussed. The discussion deals with aircraft, networks, facilities, and procedures. The regulations which govern the movement of air freight are considered. The larger public policy interests which must be served by the kind of system proposed, the air cargo integrated system (ACIS), are addressed. The possible social, economical, political, and environment impacts of the system are considered. Recommendations are also given.

  8. Centrifugal Blower for Personal Air Ventilation System (PAVS) - Phase 1

    Science.gov (United States)

    2015-02-01

    functionality. 15. SUBJECT TERMS COOLING SBIR REPORTS AXIAL FLOW FANS OFF THE SHELF EQUIPMENT BLOWERS LIGHTWEIGHT CENTRIFUGAL FORCE...HEAT STRESS (PHYSIOLOGY) AIR FLOW VENTILATION PORTABLE EQUIPMENT PERSONAL COOLING SYSTEMS EFFICIENCY EVAPORATION INTEGRATED SYSTEMS PROTOTYPES...gH Vn ad s ad s 4 1 4 3     is angular speed (2rpm) V is volumetric flow rate Had is the fan pumping head (in meters) g is the

  9. Análise da sensibilidade da metodologia dos centros de custos mediante a introdução de tecnologias em um sistema de produção de cria Analysis of the methodology sensibility of cost centers facing the introduction of technologies in a cow-calf production system

    Directory of Open Access Journals (Sweden)

    Ricardo Pedroso Oaigen

    2009-06-01

    Full Text Available Um modelo de simulação bioeconômico foi desenvolvido em um sistema de produção tradicional em pecuária de cria (SPT para a aplicação da metodologia dos centros de custos com o objetivo de avaliar sua sensibilidade mediante a introdução de tecnologias de desmame precoce em vacas primíparas (SDP, campo melhorado para vacas primíparas e metade do lote das vacas secundíparas (SCM e suplementação protéica para novilhas de reposição (SSP destinadas a aumentar a taxa de prenhez neste sistema (SPT. As informações do desempenho biológico foram obtidas por meio de revisão bibliográfica sobre os indicadores de produção e os dados econômicos e de custos foram obtidos a partir de valores de mercado. As entradas do modelo foram: estrutura do rebanho; custos de produção; e tecnologias de produção. As saídas do modelo foram: custo operacional (CO; custo de desembolso (CD; custo de produção por centro (CPC; custo unitário por bezerro (CUB; custo por quilo desmamado (C/kg; custo anual por vaca (CAV; ponto de equilíbrio financeiro (PEF, margem operacional (MO, taxa de prenhez (TP, taxa de desmame (TD, produtividade/vaca (Pr, número de bezerros desmamados (NBD, ponto de equilíbrio em bezerros (PEB e produção total em quilos (PT. A utilização da metodologia dos centros de custos se mostrou sensível ao identificar variações nos indicadores técnicos e econômicos e nos custos de cada centro produtivo. A introdução do SDP, SCM e SSP melhorou os indicadores técnicos e a margem operacional e, ao mesmo tempo, apresentou relação direta com as variações nos centros de custo, comprovando a sensibilidade da metodologia de custeio em relação ao impacto no SPT.A bioeconomical simulation model was developed in a traditional cow-calf production system (TPS for the application of cost center methodology with the objective of evaluating its sensibility by the introduction of early weaning technologies in primiparous cows (EWS

  10. Urgent problems of improving background air pollution monitoring systems.

    Science.gov (United States)

    Berlyand, M E; Volberg, N S; Lavrinenko, R F; Rusina, E N

    1988-01-01

    For more than 12 years, systematic observations of background air pollution have been carried out in accordance with the WMO Programme using the network of USSR stations located in sparsely populated settlements and in a number of neighbouring cities. The parameters involved include spectral radiation measurements, determination of chemical composition of precipitation and the concentrations of a number of atmospheric pollutants. Analysis of the data obtained allows conclusions to be drawn on the capabilities of the current system and to evaluate methods of improving it.In order to further improve the monitoring system, it is recommended that the system should perform the same observations on air pollution and precipitation as carried out by other international and national programs, and also to create centralized laboratories to deal with the analysis of samples from these monitoring stations. Additionally, solid sorbents are emerging as an effective means of sampling certain air pollutants. They may be sent by post, they increase the accuracy of measurements and allow air sampling intervals of up to 7-10 days, thus synchronizing this period with the interval of precipitation sampling.

  11. Design and Implementation of Automatic Air Flow Rate Control System

    Science.gov (United States)

    Akbar, A.; Saputra, C.; Munir, M. M.; Khairurrijal

    2016-08-01

    Venturimeter is an apparatus that can be used to measure the air flow rate. In this experiment we designed a venturimeter which equipped with a valve that is used to control the air flow rate. The difference of pressure between the cross sections was measured with the differential pressure sensor GA 100-015WD which can calculate the difference of pressures from 0 to 3737.33 Pa. A 42M048C Z36 stepper motor was used to control the valve. The precision of this motor rotation is about 0.15 °. A Graphical User Interface (GUI) was developed to monitor and set the value of flow rate then an 8-bit microcontroller was used to process the control system In this experiment- the venturimeter has been examined to get the optimal parameter of controller. The results show that the controller can set the stable output air flow rate.

  12. Production and exploitation of thermoelectric air conditioning systems for vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Dudnik, Vladimir [Conditioner Ltd, Gagarin (Russian Federation); Skipidarov, Sergey [SCTB NORD, Moskau (Russian Federation); Rapp, Axel [Quick-Ohm Kupper und Co. GmbH, Wuppertal-Cronenberg (Germany)

    2011-07-01

    In the paper more than 10-year experience of thermoelectric devices batch manufacturing is described for the field of their obvious advantages. This field of application includes thermoelectric air conditioning systems which have shown their competitive advantage when used in vehicles of elevated vibration where compressor equipment application is difficult because of leakage of refrigerant. Energy characteristics of air conditioners for tractors, excavators, tanks, locomotive driver's cabins and cranes are described. Thermoelectric (TE) air conditioners mechanical test data as well as operation experience in vehicles are presented. It is shown that consumption of tellurium, which is a strategic component for thermoelectric materials manufacturing, may be lowered to 40 grams per 1 kW of cooling. (orig.)

  13. The system of thermoelectric air conditioning based on permeable thermoelements

    Directory of Open Access Journals (Sweden)

    Cherkez R. G.

    2009-04-01

    Full Text Available There is thermoelectric air conditioner unit on the basis of permeable cooling thermoelements presented. In thermoelectric air conditioner unit the thermoelectric effects and the Joule–Thomson effect have been used for the air stream cooling. There have been described the method of temperature distribution analysis, the determinations of energy conversion power characteristics and design style of permeable thermoelement with maximum coefficient of performance described. The results of computer analysis concerning the application of the thermoelement legs material on the basis of Bi2Te3 have shown the possibility of coefficient of performance increase by a factor of 1,6—1,7 as compared with conventional thermoelectric systems.

  14. Use of compressed-air storage systems; Einsatz von Druckluftspeichersystemen

    Energy Technology Data Exchange (ETDEWEB)

    Cyphely, I.; Rufer, A.; Brueckmann, Ph.; Menhardt, W.; Reller, A.

    2004-07-01

    This final report issued by the Swiss Federal Office of Energy (SFOE) looks at the use of compressed air as a means of storing energy. Historical aspects are listed and compressed-air storage as an alternative to current ideas that use electrolysis and hydrogen storage is discussed. The storage efficiency advantages of compressed-air storage is stressed and the possibilities it offers for compensating the stochastic nature of electricity production from renewable energy sources are discussed. The so-called BOP (Battery with Oil-hydraulics and Pneumatics) principle for the storage of electricity is discussed and its function is described. The advantages offered by such a system are listed and the development focus necessary is discussed.

  15. Air quality management system for an industrialized region

    Energy Technology Data Exchange (ETDEWEB)

    Mueller, K.H.

    1975-01-01

    The air pollution control strategy for an industrialized region can be based upon a set of air quality prediction tables, calculated by a correlation of historical meteorology and air quality data. They give a forecast of short-range pollution level which can be used as a warning system, transmission tables, established either by a mathematical or physical simulation of the dispersion process. When unfavourable pollution levels are predicted a reduction strategy has to be applied, which consists in (1) picking out all single emitters contributing to the pollution levels at the control points, (2) calculating reduction coefficients for the emitters which prevent the imminent pollution excess, and (3) selecting the most economic reduction from amongst the reducible source combinations. (auth)

  16. Aplicação da metodologia Lean Six Sigma para melhoria de um processo produtivo

    OpenAIRE

    Augusto Schaffer

    2016-01-01

    O Lean Six Sigma é a metodologia originada a partir da integração das metodologias Lean e Six Sigma. O Lean Six Sigma procura eliminar as perdas e reduzir os defeitos, agregando os benefícios de cada uma das duas metodologias que a dão origem. O objetivo deste trabalho é aplicar a metodologia Lean Six Sigma para melhoria de um processo produtivo. Neste trabalho é apresentada uma revisão bibliográfica sobre as metodologias Lean e Six Sigma, buscando a compreensão das origens do Lean Six Sigma,...

  17. Metodologias Ágeis Extreme Programming e Scrum para o Desenvolvimento de Software

    OpenAIRE

    Michel dos Santos Soares

    2004-01-01

    Este artigo apresenta algumas vantagens das metodologias ágeis para desenvolver software em relação às metodologias tradicionais. Em particular são apresentadas as principais características e as práticas das metodologias ágeis Extreme Programming e Scrum. Também são feitas comparações com as metodologias tradicionais, procurando enfatizar que as metodologias ágeis são baseadas em pessoas e não em processos e planejamentos. Finalmente são apresentadas as principais vantagens e desvantag...

  18. Fungal colonization of air filters for use in heating, ventilating, and air conditioning (HVAC) systems.

    Science.gov (United States)

    Simmons, R B; Crow, S A

    1995-01-01

    New and used cellulosic air filters for HVAC systems including those treated with antimicrobials were suspended in vessels with a range of relative humidities (55-99%) and containing non-sterile potting soil which stimulates fungal growth. Most filters yielded fungi prior to suspension in the chambers but only two of 14 nontreated filters demonstrated fungal colonization following use in HVAC systems. Filters treated with antimicrobials, particularly a phosphated amine complex, demonstrated markedly less fungal colonization than nontreated filters. In comparison with nontreated cellulosic filters, fungal colonization of antimicrobial-treated cellulosic filters was selective and delayed.

  19. Working fluid concentration measurement in solar air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Romero, R.J.; Basurto-Pensado, M.A. [Centro de Investigacion en Ingenieria y Ciencias Aplicadas, Universidad Autonoma del Estado de Morelos, Av. Universidad 1001. Col. Chamilpa, C.P. 62210, Cuernavaca, Morelos (Mexico); Jimenez-Heredia, A.H.; Sanchez-Mondragon, J.J. [Departamento de Optica, Instituto Nacional de Astrofisica Optica y Electronica, Luis Enrique Erro No. 1, Tonantzintla, Apartado Postal 51 y 216, C.P. 72000, Puebla (Mexico)

    2006-02-15

    In order to evaluate on-line corrosive electrolyte concentration in solar air conditioning systems, an optical technique to determine the concentration is being proposed. With this optical sensing method, it is possible to measure the percentage concentration of the aqueous corrosive lithium bromide solution at temperatures ranging from 25{sup o}C to 70{sup o}C and a maximum concentration of 60%. The measurement system is based on the refractive index of the solution and the data correlation, at several temperature and concentration values. The results of this work present a direct method for concentration measurement of corrosive liquids and also show the correlation among the three parameters: refractive index, temperature and weight concentration. This correlation can be used to develop the optical device for solar air conditioning systems to control and improve efficiency. (author)

  20. Numerical characterization of the hydrodynamics and thermal behavior of air flow in flexible air distribution system

    Science.gov (United States)

    Gharehdaghi, Samad; Moujaes, Samir

    2013-10-01

    Flexible duct air distribution systems are used in a large percentage of residential and small commercial buildings in the United States . Very few empirical or predictive data are available though to help provide the HVAC design engineer with reliable information . Moreover, because of the ducts flexibility, the shapes of these ducts offer a different set of operating fluid flow and thermal conditions from traditional smooth metal ducts. Hence, both the flow field and heat transfer through this kind of ducts are much more complex and merit to be analyzed from a numerical predictive approach. The aim of this research paper is to compute some of the hydrodynamic and heat transfer characteristics of the air flow inside these ducts over a range of Re numbers commonly used in the flow conditions of these air distribution systems. The information resulting from this CFD simulation, where a κ-ɛ turbulent model is used to predict the flow conditions, provide pressure drop and average convective heat transfer coefficients that exist in these ducts and was compared to previously found data. Circulation zones in the depressions of these ducts are found to exist which are suspected of influencing the pressured drop and heat transfer coefficients as compared to smooth ducts. The results show that fully developed conditions exist much earlier with regard to the inlet for both hydrodynamic and thermal entrance regions than what would be expected in smooth ducts under the same turbulent conditions.

  1. High Technology Centrifugal Compressor for Commercial Air Conditioning Systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruckes, John

    2006-04-15

    R&D Dynamics, Bloomfield, CT in partnership with the State of Connecticut has been developing a high technology, oil-free, energy-efficient centrifugal compressor called CENVA for commercial air conditioning systems under a program funded by the US Department of Energy. The CENVA compressor applies the foil bearing technology used in all modern aircraft, civil and military, air conditioning systems. The CENVA compressor will enhance the efficiency of water and air cooled chillers, packaged roof top units, and other air conditioning systems by providing an 18% reduction in energy consumption in the unit capacity range of 25 to 350 tons of refrigeration The technical approach for CENVA involved the design and development of a high-speed, oil-free foil gas bearing-supported two-stage centrifugal compressor, CENVA encompassed the following high technologies, which are not currently utilized in commercial air conditioning systems: Foil gas bearings operating in HFC-134a; Efficient centrifugal impellers and diffusers; High speed motors and drives; and System integration of above technologies. Extensive design, development and testing efforts were carried out. Significant accomplishments achieved under this program are: (1) A total of 26 builds and over 200 tests were successfully completed with successively improved designs; (2) Use of foil gas bearings in refrigerant R134a was successfully proven; (3) A high speed, high power permanent magnet motor was developed; (4) An encoder was used for signal feedback between motor and controller. Due to temperature limitations of the encoder, the compressor could not operate at higher speed and in turn at higher pressure. In order to alleviate this problem a unique sensorless controller was developed; (5) This controller has successfully been tested as stand alone; however, it has not yet been integrated and tested as a system; (6) The compressor successfully operated at water cooled condensing temperatures Due to temperature

  2. 21 CFR 874.3950 - Transcutaneous air conduction hearing aid system.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Transcutaneous air conduction hearing aid system... Transcutaneous air conduction hearing aid system. (a) Identification. A transcutaneous air conduction hearing aid... occluding the ear canal. The device consists of an air conduction hearing aid attached to a...

  3. Vein-style air pumping tube and tire system and method of assembly

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, Robert Leon; Gobinath, Thulasiram; Lin, Cheng-Hsiung; Lamgaday, Robin; Losey, Robert Allen; Griffoin, Jean-Claude Patrice Philippe

    2017-01-03

    An air pumping tube and tire system and method of assembling is provided in which a tire groove is formed to extend into a flexing region of a tire sidewall and a complementary air pumping tube inserts into the tire groove. In the green, uncured air pumping tube condition, one or more check valves are assembled into the air pumping tube through access shafts and align with an internal air passageway of the air pumping tube. Plug components of the system enclose the check valves in the air pumping tube and the check valve-containing green air pumping tube is then cured.

  4. New research on bioregenerative air/water purification systems

    Science.gov (United States)

    Johnson, Anne H.; Ellender, R. D.; Watkins, Paul J.

    1991-01-01

    For the past several years, air and water purification systems have been developed and used. This technology is based on the combined activities of plants and microorganisms as they function in a natural environment. More recently, researchers have begun to address the problems associated with indoor air pollution. Various common houseplants are currently being evaluated for their abilities to reduce concentrations of volatile organic compounds (VOCS) such as formaldehyde and benzene. With development of the Space Exploration Initiative, missions will increase in duration, and problems with resupply necessitates implementation of regenerative technology. Aspects of bioregenerative technology have been included in a habitat known as the BioHome. The ultimate goal is to use this technology in conjunction with physicochemical systems for air and water purification within closed systems. This study continued the risk assessment of bioregenerative technology with emphasis on biological hazards. In an effort to evaluate the risk for human infection, analyses were directed at enumeration of fecal streptococci and enteric viruses with the BioHome waste water treatment system.

  5. Aplicació web per implantar la metodologia Scrum

    OpenAIRE

    Serna Royo, Eduardo

    2014-01-01

    Projecte final de carrera de l'àrea de .NET. Es tracta d'una aplicació web que permet a l'equip de desenvolupament d'una empresa la implementació de la metodologia Scrum. Proyecto final de carrera del área de .NET. Se trata de una aplicación web que permite al equipo de desarrollo de una empresa la implementación de la metodología Scrum.

  6. The Predictive Control Method of VAV Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Jiejia LI

    2013-09-01

    Full Text Available Aiming at the characteristics which variable air volume air conditioning system is multi-variable, nonlinear and uncertain system, normal fuzzy neural network is hard to meet the requirements which dynamic control of multi-variable. In this paper, we put forward a recursive neural network predictive control strategy based on wavelet neural network model. Through recursive wavelet neural network predictor on line established controlled object’s mathematical model, and using Elman neural network controller on line corrected information we get, thus to improve control effect. The simulation results show that recursive wavelet neural network predictive control has stronger robustness and adaptive ability, high control precision, better and reliable control effect and other advantages.

  7. D-Zero Instrument Air System Humidity Transmitter Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Serges, T.J.; /Fermilab

    1988-07-15

    This report shows the findings that resulted in the purchase of the optimum dew point hygrometer for use in the D-Zero instrument air system (see diagram 2 on page 9). The hygrometer will monitor the air syste m to insure that the dew point level does not go above the normal operating output of the driers (this precise value will be determined during initial system start-up). The following criteria was used in the evaluation: (1) Long term durability; (2) Minimum calibration; (3) Indicate a dew point level down to -40 C accurately; (4) Designed to work in a low humidity region; (5) Minimum maintenance; (6) Fast response time; and (7) Lowest cost provided all other criteria is met.

  8. AirNow Information Management System - Global Earth Observation System of Systems Data Processor for Real-Time Air Quality Data Products

    Science.gov (United States)

    Haderman, M.; Dye, T. S.; White, J. E.; Dickerson, P.; Pasch, A. N.; Miller, D. S.; Chan, A. C.

    2012-12-01

    Built upon the success of the U.S. Environmental Protection Agency's (EPA) AirNow program (www.AirNow.gov), the AirNow-International (AirNow-I) system contains an enhanced suite of software programs that process and quality control real-time air quality and environmental data and distribute customized maps, files, and data feeds. The goals of the AirNow-I program are similar to those of the successful U.S. program and include fostering the exchange of environmental data; making advances in air quality knowledge and applications; and building a community of people, organizations, and decision makers in environmental management. In 2010, Shanghai became the first city in China to run this state-of-the-art air quality data management and notification system. AirNow-I consists of a suite of modules (software programs and schedulers) centered on a database. One such module is the Information Management System (IMS), which can automatically produce maps and other data products through the use of GIS software to provide the most current air quality information to the public. Developed with Global Earth Observation System of Systems (GEOSS) interoperability in mind, IMS is based on non-proprietary standards, with preference to formal international standards. The system depends on data and information providers accepting and implementing a set of interoperability arrangements, including technical specifications for collecting, processing, storing, and disseminating shared data, metadata, and products. In particular, the specifications include standards for service-oriented architecture and web-based interfaces, such as a web mapping service (WMS), web coverage service (WCS), web feature service (WFS), sensor web services, and Really Simple Syndication (RSS) feeds. IMS is flexible, open, redundant, and modular. It also allows the merging of data grids to create complex grids that show comprehensive air quality conditions. For example, the AirNow Satellite Data Processor

  9. Liquid Hydrogen Fuel System for Small Unmanned Air Vehicles

    Science.gov (United States)

    2013-01-07

    propulsion plant comprised a hydrogen fuel cell system, built by Protonex Technology Corporation, which weighed 2.5 lbs and produced a maximum of 550... NASA for flight on long-endurance UAVs. 9 Aluminum was selected for both the inner and outer walls of the LH2 dewar because of its low H2...impact of cooling from air flow would ordinarily be tested in a wind tunnel, LH2 safety complicates indoor testing in a wind tunnel, as

  10. Economics of water injected air screw compressor systems

    OpenAIRE

    Madhav, K. V.; Kovacevic, A.

    2015-01-01

    There is a growing need for compressed air free of entrained oil to be used in industry. In many cases it can be supplied by oil flooded screw compressors with multi stage filtration systems, or by oil free screw compressors. However, if water injected screw compressors can be made to operate reliably, they could be more efficient and therefore cheaper to operate. Unfortunately, to date, such machines have proved to be insufficiently reliable and not cost effective. This paper describes an in...

  11. Cooling System Design for PEM Fuel Cell Powered Air Vehicles

    Science.gov (United States)

    2010-06-18

    radiator #7. The fan blades and shroud were formed using stereo lithography; the fan motor was a brushless DC motor with motor controller. These...Naval Research Laboratory Washington, DC 20375-5320 NRL/MR/6110--10-9253 Cooling System Design for PEM Fuel Cell Powered Air Vehicles June 18, 2010...Stroman, Michael W. Schuette,* and Gregory S. Page† Naval Research Laboratory 4555 Overlook Avenue, SW Washington, DC 20375-5342 NRL/MR/6110--10-9253

  12. A Differential Thrust Controller for Air Cushion Landing System Aircraft

    Science.gov (United States)

    1974-12-01

    8217 control installed, for each of the five time-delay values. In all cases , the average mean square error was reduced approximately 70% by the addition...assistance with explanations of the ACLS. Credit should also be given to Lieutenant John Pinnel , a classmate at the Air Force Institute of Technology...the system with and without the control installed, for each of the five time-delay values. In all cases , the average mean square error was reduced

  13. Modeling urban air pollution with optimized hierarchical fuzzy inference system.

    Science.gov (United States)

    Tashayo, Behnam; Alimohammadi, Abbas

    2016-10-01

    Environmental exposure assessments (EEA) and epidemiological studies require urban air pollution models with appropriate spatial and temporal resolutions. Uncertain available data and inflexible models can limit air pollution modeling techniques, particularly in under developing countries. This paper develops a hierarchical fuzzy inference system (HFIS) to model air pollution under different land use, transportation, and meteorological conditions. To improve performance, the system treats the issue as a large-scale and high-dimensional problem and develops the proposed model using a three-step approach. In the first step, a geospatial information system (GIS) and probabilistic methods are used to preprocess the data. In the second step, a hierarchical structure is generated based on the problem. In the third step, the accuracy and complexity of the model are simultaneously optimized with a multiple objective particle swarm optimization (MOPSO) algorithm. We examine the capabilities of the proposed model for predicting daily and annual mean PM2.5 and NO2 and compare the accuracy of the results with representative models from existing literature. The benefits provided by the model features, including probabilistic preprocessing, multi-objective optimization, and hierarchical structure, are precisely evaluated by comparing five different consecutive models in terms of accuracy and complexity criteria. Fivefold cross validation is used to assess the performance of the generated models. The respective average RMSEs and coefficients of determination (R (2)) for the test datasets using proposed model are as follows: daily PM2.5 = (8.13, 0.78), annual mean PM2.5 = (4.96, 0.80), daily NO2 = (5.63, 0.79), and annual mean NO2 = (2.89, 0.83). The obtained results demonstrate that the developed hierarchical fuzzy inference system can be utilized for modeling air pollution in EEA and epidemiological studies.

  14. Air pollution control system research: An iterative approach to developing affordable systems

    Science.gov (United States)

    Watt, Lewis C.; Cannon, Fred S.; Heinsohn, Robert J.; Spaeder, Timothy A.

    1995-01-01

    This paper describes a Strategic Environmental Research and Development Program (SERDP) funded project led jointly by the Marine Corps Multi-Commodity Maintenance Centers, and the Air and Energy Engineering Research Laboratory (AEERL) of the USEPA. The research focuses on paint booth exhaust minimization using recirculation, and on volatile organic compound (VOC) oxidation by the modules of a hybrid air pollution control system. The research team is applying bench, pilot and full scale systems to accomplish the goals of reduced cost and improved effectiveness of air treatment systems for paint booth exhaust.

  15. Control of Future Air Traffic Systems via Complexity Bound Management

    Science.gov (United States)

    Alexandrov, Natalia

    2013-01-01

    The complexity of the present system for managing air traffic has led to "discreteness" in approaches to creating new concepts: new concepts are created as point designs, based on experience, expertise, and creativity of the proposer. Discrete point designs may be highly successful but they are difficult to substantiate in the face of equally strong substantiation of competing concepts, as well as the state of the art in concept evaluation via simulations. Hybrid concepts may present a compromise - the golden middle. Yet a hybrid of sometimes in principle incompatible concepts forms another point design that faces the challenge of substantiation and validation. We are faced with the need to re-design the air transportation system ab initio. This is a daunting task, especially considering the problem of transitioning from the present system to any fundamentally new system. However, design from scratch is also an opportunity to reconsider approaches to new concept development. In this position paper we propose an approach, Optimized Parametric Functional Design, for systematic development of concepts for management and control of airspace systems, based on optimization formulations in terms of required system functions and states. This reasoning framework, realizable in the context of ab initio system design, offers an approach to deriving substantiated airspace management and control concepts. With growing computational power, we hope that the approach will also yield a methodology for actual dynamic control of airspace

  16. Aviation System Analysis Capability Air Carrier Investment Model-Cargo

    Science.gov (United States)

    Johnson, Jesse; Santmire, Tara

    1999-01-01

    The purpose of the Aviation System Analysis Capability (ASAC) Air Cargo Investment Model-Cargo (ACIMC), is to examine the economic effects of technology investment on the air cargo market, particularly the market for new cargo aircraft. To do so, we have built an econometrically based model designed to operate like the ACIM. Two main drivers account for virtually all of the demand: the growth rate of the Gross Domestic Product (GDP) and changes in the fare yield (which is a proxy of the price charged or fare). These differences arise from a combination of the nature of air cargo demand and the peculiarities of the air cargo market. The net effect of these two factors are that sales of new cargo aircraft are much less sensitive to either increases in GDP or changes in the costs of labor, capital, fuel, materials, and energy associated with the production of new cargo aircraft than the sales of new passenger aircraft. This in conjunction with the relatively small size of the cargo aircraft market means technology improvements to the cargo aircraft will do relatively very little to spur increased sales of new cargo aircraft.

  17. An Air Bearing Rotating Coil Magnetic Measurement System

    CERN Document Server

    Gottschalk, Stephen C; Taylor, David J; Thayer, William

    2005-01-01

    This paper describes a rotating coil magnetic measurement system supported on air bearings. The design is optimized for measurements of 0.1micron magnetic centerline changes on long, small aperture quadrupoles. Graphite impregnated epoxy resin is used for the coil holder and coil winding forms. Coil holder diameter is 11 mm with a length between supports of 750mm. A pair of coils is used to permit quadrupole bucking during centerline measurements. Coil length is 616mm, inner radius 1.82mm, outer radius 4.74mm. The key features of the mechanical system are simplicity; air bearings for accurate, repeatable measurements without needing warm up time and a vibration isolated stand that uses a steel-topped Newport optical table with air suspension. Coil rotation is achieved by a low noise servo motor controlled by a standalone Ethernet servo board running custom servo software. Coil calibration procedures that correct wire placement errors, tests for mechanical resonances, and other system checks will also be discu...

  18. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    Science.gov (United States)

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry ( 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.

  19. Modular Air-Coupled Ultrasonic Multichannel System for Inline NDT

    Science.gov (United States)

    Bilcke, M.; Lust, P.; Naert, H.; Blomme, E.; Delrue, S.; Van Den Abeele, K.

    In many production processes it is important to detect in a very early stage basic errors in the fabricatedmaterial. If the errors are not visible from the exterior, ultrasonic inspection is a convenient technique,at least if the nature of the error influences the characteristics of sound passing through the material.Examples are local density variations in non-wovens, delaminations in composites, bad bondings inlaminates, inclusions, cracks or other artefacts in plastic or metal plates, etc. There are two major,difficult requirements imposed by industry to the used detection technique: the sensors shouldn't makephysical contact with the material and the speed of testing must be sufficiently high to enable testingin-line. The former requirement can be met by employing an air-coupled ultrasonic approach, the latterby using a multichannel system.We propose a modular air-coupled ultrasonic multichannel system. Each multichannel module contains12 air-coupled transducers and exists in a transmitter and a receiver version. The desired scan width isobtained by connecting several modules to each other. During the scanning all transducers are spatially fixed while the material is moving forward. This way, speeds up to 1m/s are possible, irrespective ofthe width of the material. To that purpose a FPGA based platform with parallel processing of largenumbers of data streams is implemented in the modules. This allows the implementation of all kind ofprocedures, going from point measurements to more sophisticated techniques. In spite of all measurements being performed in ambient air, the ultrasonic frequency is rather high(1 MHz), but lower frequencies are possible as well. The most obvious set-up of the modules is a through-transmission configuration. However the system can also be used in a pitch-catch configuration which isvery suitable for one-sided testing of thick materials. An examples established in the laboratory is shownto illustrate the performance.

  20. The Air Force Air Program and Information Management System (APIMS): A flexible tool for managing your Title V Operating Permits

    Energy Technology Data Exchange (ETDEWEB)

    Weston, A.A.; Gordon, S.R.

    1999-07-01

    The Air Force Command Core System (CCS) is an integrated, activity-based risk management system designed to support the information needs of Environment, Safety, and Occupational Health (ESOH) professionals. These professionals are responsible for managing a complex and often dynamic set of requirements, and therefore, have a need for an information system that can readily be customized to meet their specific needs. This dynamic environment also drives the need for flexibility in the system. The Air Program Information Management System (APIMS) is a module within CCS designed to not only manage permit compliance and emission inventories, but also support the monitoring, recordkeeping, and reporting requirements related to air quality issues. This paper will describe the underlying foundation of CCS, the information linkages within the database, and then summarize the functionality available within the APIMS module to support the Air Quality Managers' information needs, placing emphasis on the flexibility the system provides to manage Title V Operating Permits.

  1. SBIR Advanced Technologies in Aviation and Air Transportation System 2016

    Science.gov (United States)

    Nguyen, Hung D.; Steele, Gynelle C.; Kaszeta, Richard W.; Gold, Calman; Corke, Thomas C.; McGowan, Ryan; Matlis, Eric; Eichenlaub, Jesse; Davis, Joshua T.; Shah, Parthiv N.

    2017-01-01

    This report is intended to provide a broad knowledge of various topics associated with NASA's Aeronautics Research Mission Directorate (ARMD), with particular interest on the NASA SBIR contracts awarded from 2011-2012 executed by small companies. The content of this report focuses on the high-quality, cutting-edge research that will lead to revolutionary concepts, technologies, and capabilities that enable radical change to both the airspace system and the aircraft that fly within it, facilitating a safer, more environmentally friendly, and more efficient air transportation system.

  2. Integrated Evaluation of Closed Loop Air Revitalization System Components

    Science.gov (United States)

    Murdock, K.

    2010-01-01

    NASA s vision and mission statements include an emphasis on human exploration of space, which requires environmental control and life support technologies. This Contractor Report (CR) describes the development and evaluation of an Air Revitalization System, modeling and simulation of the components, and integrated hardware testing with the goal of better understanding the inherent capabilities and limitations of this closed loop system. Major components integrated and tested included a 4-Bed Modular Sieve, Mechanical Compressor Engineering Development Unit, Temperature Swing Adsorption Compressor, and a Sabatier Engineering and Development Unit. The requisite methodolgy and technical results are contained in this CR.

  3. Simulation of Artificial Intelligence for Automotive Air-conditioning System

    Institute of Scientific and Technical Information of China (English)

    YUAN Xiao-mei; CHEN You-hua; CHEN Zhi-jiu

    2002-01-01

    The artificial intelligence is applied to the simulation of the automotive air-conditioning system ( AACS )According to the system's characteristics a model of AACS, based on neural network, is developed. Different control methods of AACS are discussed through simulation based on this model. The result shows that the neural- fuzzy control is the best one compared with the on-off control and conventional fuzzy control method.It can make the compartment's temperature descend rapidly to the designed temperature and the fluctuation is small.

  4. Investigation of air cleaning system response to accident conditions

    Energy Technology Data Exchange (ETDEWEB)

    Andrae, R.W.; Bolstad, J.W.; Foster, R.D.; Gregory, W.S.; Horak, H.L.; Idar, E.S.; Martin, R.A.; Ricketts, C.I.; Smith, P.R.; Tang, P.K.

    1980-01-01

    Air cleaning system response to the stress of accident conditions are being investigated. A program overview and hghlight recent results of our investigation are presented. The program includes both analytical and experimental investigations. Computer codes for predicting effects of tornados, explosions, fires, and material transport are described. The test facilities used to obtain supportive experimental data to define structural integrity and confinement effectiveness of ventilation system components are described. Examples of experimental results for code verification, blower response to tornado transients, and filter response to tornado and explosion transients are reported.

  5. Engine-driven hybrid air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    Chaokui QIN; Hongmei LU; Xiong LIU; Gerhard SCHMITZ

    2009-01-01

    A hybrid air-conditioning system that com-bines an engine-driven chiller with desiccant dehumidifi-cation was configured and experimentally tested to provide reliable data for energy consumption and operation cost. The engine performance and the desiccant wheel perfor-mance were measured and a numeric model previously set up for dehumidification capacity prediction was validated. For a reference building, the results based upon measured data show that under present electricity/gas price ratio, more than 40% of operation cost can be saved by the hybrid system.

  6. Metodologia ABC: implantação numa microempresa ABC methodology: implementation on a micro firm

    Directory of Open Access Journals (Sweden)

    Orlando Duran

    2000-08-01

    Full Text Available Este trabalho relata a implantação da metodologia de custos baseados em atividades numa microempresa do ramo metalúrgico. A proposta pretende demonstrar a viabilidade de aplicar esta técnica em empresas sem importar seu tamanho, só realizando algumas adaptações que garantam baixo investimento e curto espaço de tempo para obter os resultados. Na parte final do trabalho se realiza uma análise dos resultados obtidos verificando-se o potencial da informação gerada pela metodologia e seu uso como ferramenta de gestão.This paper presents an implementation of the activity based costing (ABC methodology in a small firm. The approach presented is intended to demonstrate the feasibility of applying the ABC methodology at any sized firm, only through few adaptations for ensuring low investments fees and speed in obtaining results and information from the system. Discussion about the results obtained during the implementation case are presented and the potential of using the information generated from the system as a managing tool is commented.

  7. An augmented reality binocular system (ARBS) for air traffic controllers

    Science.gov (United States)

    Fulbrook, Jim E.; Ruffner, John W.; Labbe, Roger

    2008-04-01

    The primary means by which air traffic tower controllers obtain information is through direct out-thewindow viewing, although a considerable amount of time is spent looking at electronic displays and other information sources inside the tower cab. The Air Force Research Laboratory sponsored the development of a prototype Augmented Reality Binocular System (ARBS) that enhances tower controller performance, situation awareness, and safety. The ARBS is composed of a virtual binocular (VB) that displays real-time imagery from high resolution telephoto cameras and sensors mounted on pan/tilt units (PTUs). The selected PTU tracks to the movement of the VB, which has an inertial heading and elevation sensor. Relevant airfield situation text and graphic depictions that identify airfield features are overlaid on the imagery. In addition, the display is capable of labeling and tracking vehicles on which an Automatic Dependent Surveillance - Broadcast (ADS-B) system has been installed. The ARBS provides air traffic controllers and airfield security forces with the capability to orient toward, observe, and conduct continuous airfield operations and surveillance/security missions from any number of viewing aspects in limited visibility conditions. In this paper, we describe the ARBS in detail, discuss the results of a Usability Test of the prototype ARBS, and discuss ideas for follow-on efforts to develop the ARBS to a fieldable level.

  8. An algorithm for calculating fresh air age in central ventilation system

    Institute of Scientific and Technical Information of China (English)

    LI; Xianting; (李先庭); Li; Dongning; (李冬宁); DOU; Chunpeng; (窦春鹏)

    2003-01-01

    Fresh air age is an important index to evaluate indoor environment. The conventional method for measuring or calculating fresh air age is only suitable for simple ventilation systems and not for central ventilation systems. In this paper, an algorithm for calculating fresh air age in central ventilation system is presented, which is based on the analysis of air flow in duct and air mixing. An example is given to illustrate the algorithm. The fresh air age in every ventilated room and duct can be acquired after all rooms and duct are directly calculated in turn without iteration. The algorithm is suitable for different central ventilation systems.

  9. Challenges facing air management for fuel cell systems

    Energy Technology Data Exchange (ETDEWEB)

    Davis, P.B. [Department of Energy (United States); Sutton, R. [Argonne National Lab. (United States); Wagner, F.W. [Energetics Incorporated (United States)

    2000-07-01

    The U.S. Department of Energy (DOE) and the U.S. automotive industry are working cooperatively under the auspices of the Partnership for a New Generation of Vehicles (PNGV) to develop a six-passenger automobile that can achieve up to 80 mpg. while meeting customer needs and all safety and emission requirements. These partners are continuing to invest heavily in the research and development of polymer electrolyte membrane (PEM) fuel cells as a clean and efficient energy conversion system for the PNGV. A critical challenge facing fuel cell systems for the PNGV is the development of efficient, compact, cost-effective air management systems. The U.S. Department of Energy has been exploring several compressor/expander options for pressurized fuel cell systems, including scroll, toroidal intersecting vane, turbine, twin screw, and piston technologies. Each of these technologies has strengths and weaknesses regarding efficiency, pressure ratio over turndown, size and weight, and cost. This paper will present data from the U.S. Department of Energy's research and development efforts on air management systems and will discusses recent program developments resulting from an independent peer review evaluation. (author)

  10. Automation and Systems Issues in Air Traffic Control

    Directory of Open Access Journals (Sweden)

    Gabriela STROE

    2016-12-01

    Full Text Available This paper is dedicated to the study and analysis of a successfully designed control system in ATM. The aircraft's motion is affected by other factors, besides the pilot controls in the form of external disturbances, such as wind, and internal errors, due to unmodelled dynamics, tracking error and system noise. Navigation equipment tracks the exact real-time location of the aircraft in 4D space and provides feedback to both the pilot in the cockpit and ATC via ADS-B. ATM was expressed as a large, decentralized, dynamic, variable size, infinite horizon, multi-parameter, constrained, nonlinear, non-causal, non-convex, multi-objective, high-dimensionality, hybrid (continuous and combinatorial, optimal control problem. Rapidly increasing growth and demand in CNS/ATM, the advanced scheme for ATM, ADS-B system which is based on digital communication is being implemented in the field of surveillance. ADS-B is a radically new technology that is redefining the paradigm of CNS in ATM today. Automatic Dependent Surveillance-Broadcast (ADS-B is the next generation air surveillance system which supplants and complements the limitations of conventional radar, since conventional ATM radar systems will reach their limits soon due to the increases in air traffic.

  11. Development of an air pneumatic suspension system for transtibial prostheses.

    Science.gov (United States)

    Pirouzi, Gholamhossein; Abu Osman, Noor Azuan; Oshkour, Azim Ataollahi; Ali, Sadeeq; Gholizadeh, Hossein; Abas, Wan A B Wan

    2014-09-09

    The suspension system and socket fitting of artificial limbs have major roles and vital effects on the comfort, mobility, and satisfaction of amputees. This paper introduces a new pneumatic suspension system that overcomes the drawbacks of current suspension systems in donning and doffing, change in volume during daily activities, and pressure distribution in the socket-stump interface. An air pneumatic suspension system (APSS) for total-contact sockets was designed and developed. Pistoning and pressure distribution in the socket-stump interface were tested for the new APSS. More than 95% of the area between each prosthetic socket and liner was measured using a Tekscan F-Scan pressure measurement which has developed matrix-based pressure sensing systems. The variance in pressure around the stump was 8.76 kPa. APSS exhibits less pressure concentration around the stump, improved pressure distribution, easy donning and doffing, adjustability to remain fitted to the socket during daily activities, and more adaptability to the changes in stump volume. The volume changes were adjusted by utility of air pressure sensor. The vertical displacement point and reliability of suspension were assessed using a photographic method. The optimum pressure in every level of loading weight was 55 kPa, and the maximum displacement was 6 mm when 90 N of weight was loaded.

  12. Development of an Air Pneumatic Suspension System for Transtibial Prostheses

    Directory of Open Access Journals (Sweden)

    Gholamhossein Pirouzi

    2014-09-01

    Full Text Available The suspension system and socket fitting of artificial limbs have major roles and vital effects on the comfort, mobility, and satisfaction of amputees. This paper introduces a new pneumatic suspension system that overcomes the drawbacks of current suspension systems in donning and doffing, change in volume during daily activities, and pressure distribution in the socket-stump interface. An air pneumatic suspension system (APSS for total-contact sockets was designed and developed. Pistoning and pressure distribution in the socket-stump interface were tested for the new APSS. More than 95% of the area between each prosthetic socket and liner was measured using a Tekscan F-Scan pressure measurement which has developed matrix-based pressure sensing systems. The variance in pressure around the stump was 8.76 kPa. APSS exhibits less pressure concentration around the stump, improved pressure distribution, easy donning and doffing, adjustability to remain fitted to the socket during daily activities, and more adaptability to the changes in stump volume. The volume changes were adjusted by utility of air pressure sensor. The vertical displacement point and reliability of suspension were assessed using a photographic method. The optimum pressure in every level of loading weight was 55 kPa, and the maximum displacement was 6 mm when 90 N of weight was loaded.

  13. Proposal of methodology for calculating the degree of impact caused by perturbations recorded in a power transmission system; Proposicao de metodologia para calcular o grau de impacto causado pelas perturbacoes registradas em um sistema eletrico de transmissao

    Energy Technology Data Exchange (ETDEWEB)

    Vianna, E.A.L. [Centrais Eletricas do Norte (ELETRONORTE), Porto Velho, RO (Brazil)], E-mail: elainelimavianna@yahoo.com.br; Lambert-Torres, G.; Silva, L.E.B. da [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)], Emails: germanoltorres@gmail.com, leborges@unifei.edu.br; Rissino, S.; Silva, M.F. da [Universidade Federal de Rondonia (UFRO), Porto Velho, RO (Brazil)], Emails: srissino@gmail.com, felipe@unir.br

    2009-07-01

    Disturbances recorded in a electric power system compromise the quality and continuity energy supply and are measured by means of performance indicators. This article defines the attributes that contribute to increased the severity of disturbances recorded in an Electrical Power Transmission and proposes a methodology for calculating the degree of impact caused each of them. The proposed methodology allows quantification of the impact caused by a disturbance, and its comparison with other disturbance, in one system or distinct systems.

  14. Desiccant dehumidification in decentralized air conditioning systems; Einsatz der Sorptionstechnik in der dezentralen Klimatisierung von Gebaeuden

    Energy Technology Data Exchange (ETDEWEB)

    Busweiler, Ulrich [Fachhochschule Giessen-Friedberg (Germany)

    2009-01-15

    Dehumidification of supply air with adsorption wheels, which is known from desiccant cooling systems, is now applied to small air handling units which condition the air of one single room. There is an increase in comfort in winter by recovery of moisture. In summer, dehumidification and cooling of air are ensured by an absolutely dry process without any hygienic risk. (orig.)

  15. Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Seara, Jose; Diz, Ruben; Uhia, Francisco J.; Dopazo, Alberto; Ferro, Jose M. [Area de Maquinas y Motores Termicos, E.T.S. de Ingenieros Industriales, University of Vigo, Campus Lagoas-Marcosende No. 9, 36310 Vigo (Spain)

    2011-01-15

    This paper deals with the experimental analysis of an air-to-air heat recovery unit equipped with a sensible polymer plate heat exchanger (PHE) for balanced ventilation systems in residential buildings. The PHE is arranged in parallel triangular ducts. An experimental facility was designed to reproduce the typical outdoor and exhaust air conditions with regard to temperature and humidity. The unit was tested under balanced operation conditions, as commonly used in practice. A set of tests was conducted under the reference operating conditions to evaluate the PHE performance. Afterwards, an experimental parametric analysis was conducted to investigate the influence of changing the operating conditions on the PHE performance. Experiments were carried out varying the inlet fresh air temperature, the exhaust air relative humidity and the air flow rate. The experimental results are shown and discussed in this paper. (author)

  16. Methodology for evaluation of the stability of electric systems of offshore oil platforms in interconnected operations; Metodologia para a avaliacao dos sistemas eletricos das plataformas de petroleo offshore em operacao interligada

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Dalmo Junior; Mendes, Pedro Paulo de Carvalho [Universidade Federal de Itajuba (UNIFEI), MG (Brazil)

    2004-07-01

    The electric system of the platforms usually operates in an isolated way, requesting therefore a redundancy in the generating units so that a can have a reliable and uninterrupted system of their loads. A way to improve the quality in operation in terms of safety, reliability and economy can be the connection of the platforms of petroleum that are close, since it is viable. The objective of this work is to show the methodology for the stability study of the electric system in interlinked operation in way to detail the data of the equipment that are necessary, as: One line Diagram; Transmission lines; Transformers; Power system compensator; Generating; Speed regulators; Voltage regulators; Turbines and other. Another focus of the work is to show some control models and regulation of the electric system to maintain it stable and to show models for the interconnection of two or more platforms. (author)

  17. Metodologias Ágeis Extreme Programming e Scrum para o Desenvolvimento de Software

    Directory of Open Access Journals (Sweden)

    Michel dos Santos Soares

    2004-06-01

    Full Text Available Este artigo apresenta algumas vantagens das metodologias ágeis para desenvolver software em relação às metodologias tradicionais. Em particular são apresentadas as principais características e as práticas das metodologias ágeis Extreme Programming e Scrum. Também são feitas comparações com as metodologias tradicionais, procurando enfatizar que as metodologias ágeis são baseadas em pessoas e não em processos e planejamentos. Finalmente são apresentadas as principais vantagens e desvantagens da Extreme Programming e da Scrum. Também são apresentados alguns resultados empíricos do uso de metodologias ágeis.

  18. Methodology for assessment of characteristics of PV water pumping systems using a DC power supply; Metodologia de levantamento de caracteristicas de sistemas fotovoltaicos de bombeamento d'agua utilizando fonte de alimentacao CC

    Energy Technology Data Exchange (ETDEWEB)

    Vilela, Olga de Castro; Fraidenraich, Naum [Universidade Federal de Pernambuco (FAE/DEN/UFPE), Recife, PE (Brazil). Grupo de Fontes Alternativas de Energia. Dept. de Energia Nuclear], Emails: ocv@ufpe.br, nf@ufpe.br; Galdino, Marco Antonio [Centro de Pesquisas de Energia Eletrica (CEPEL), Rio de Janeiro, RJ (Brazil)], E-mail: marcoag@cepel.br

    2010-07-01

    This article describes a methodology which was used to reduce the time required to perform experimental assessment of characteristic curves (flowrate vs. solar irradiance) of PV water pumping systems showing different configurations. The characteristic curves are proposed to be obtained from two other types of curves: flowrate vs. DC power - measured using a DC power supply adjusted to simulate the operation of the PV panel in the system, and DC power vs. solar irradiance - obtained through outdoors measurements using PV panels. It is demonstrated how is possible to reduce the number of days of outdoor measurements necessary for obtaining these curves when the systems under test show configurations using the same pumping heights or the same PV panels. The flowrates, thus also the daily pumped volumes, calculated using the curves obtained through this methodology are considered the upper limits of system performance. (author)

  19. Optimization of air conditioning systems utilizing low temperature thermal storage; Optimizacion de sistemas de acondicionamiento de aire utilizando sistemas de almacenamiento termico de baja temperatura

    Energy Technology Data Exchange (ETDEWEB)

    Contreras Ramirez, J.; Dorantes Rodriguez, R. [Departamento de Energia, Universidad Autonoma Metropolitana - Unidad Azcapotzalco, Mexico, D. F. (Mexico)

    1997-12-31

    In the last few years the different projects on the saving and efficient use of energy in the tertiary sector have been demonstrating the existing great potential in the air conditioning systems and equipment, whose intensive use is due to the predominance of hot and dry and hot and humid climate prevailing in a large part of the Mexican territory. Without any doubts one of the most serious problems facing the complex management and optimization of these systems is related to the variability of the thermal load and the regulation possibilities of the thermal machines, so as to attain, along the day an appropriate use and optimization of the total installed load, with the best possible economic benefits. Among the strategies that allow the optimization of the installed capacity and the variability of the thermal load is the low temperature thermal storage, for instance, the storage of ice, which is produced and stored to be used when the cooling machines are in standby in order to use this stored energy during the peak hours and during the normal operation of the equipment, but diminishing in a significant amount the electrical demand of the system to satisfy the thermal load with a combination thermal storage-cooling machine. This paper presents some case histories and the type of thermal storage commonly used; a methodology is discussed that allows to determine technically as well as economically the size of a thermal storage room. Some problems in the control and operation of these thermal systems are also presented. [Espanol] En los ultimos anos los diversos proyectos sobre ahorro y uso eficiente de la energia en el sector terciario han venido mostrando el gran potencial existente en los sistemas y equipos de aire acondicionado, cuyo uso intensivo se debe al predominio de los climas calidos seco y calido humedo en buena parte del territorio nacional. Sin lugar a dudas uno de los problemas mas serios que enfrenta la compleja gestion y optimizacion de estos

  20. Airborne Asbestos Exposures from Warm Air Heating Systems in Schools.

    Science.gov (United States)

    Burdett, Garry J; Dewberry, Kirsty; Staff, James

    2016-01-01

    The aim of this study was to investigate the concentrations of airborne asbestos that can be released into classrooms of schools that have amosite-containing asbestos insulation board (AIB) in the ceiling plenum or other spaces, particularly where there is forced recirculation of air as part of a warm air heating system. Air samples were collected in three or more classrooms at each of three schools, two of which were of CLASP (Consortium of Local Authorities Special Programme) system-built design, during periods when the schools were unoccupied. Two conditions were sampled: (i) the start-up and running of the heating systems with no disturbance (the background) and (ii) running of the heating systems during simulated disturbance. The simulated disturbance was designed to exceed the level of disturbance to the AIB that would routinely take place in an occupied classroom. A total of 60 or more direct impacts that vibrated and/or flexed the encapsulated or enclosed AIB materials were applied over the sampling period. The impacts were carried out at the start of the sampling and repeated at hourly intervals but did not break or damage the AIB. The target air volume for background samples was ~3000 l of air using a static sampler sited either below or ~1 m from the heater outlet. This would allow an analytical sensitivity (AS) of 0.0001 fibres per millilitre (f ml(-1)) to be achieved, which is 1000 times lower than the EU and UK workplace control limit of 0.1 f ml(-1). Samples with lower volumes of air were also collected in case of overloading and for the shorter disturbance sampling times used at one site. The sampler filters were analysed by phase contrast microscopy (PCM) to give a rapid determination of the overall concentration of visible fibres (all types) released and/or by analytical transmission electron microscopy (TEM) to determine the concentration of asbestos fibres. Due to the low number of fibres, results were reported in terms of both the calculated

  1. Temperature and Humidity Independent Control Research on Ground Source Heat Pump Air Conditioning System

    Science.gov (United States)

    Chen, G.; Wang, L. L.

    Taking green demonstration center building air conditioning system as an example, this paper presents the temperature and humidity independent control system combined with ground source heat pump system, emphasis on the design of dry terminal device system, fresh air system and ground source heat pump system.

  2. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    A. Rudd and D. Bergey

    2015-08-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.

  3. Application of Computer Model to Estimate the Consistency of Air Conditioning Systems Engineering

    Directory of Open Access Journals (Sweden)

    Amal El-Berry

    2013-04-01

    Full Text Available Reliability engineering is utilized to predict the performance and optimization of the design and maintenance of air conditioning systems. There are a number of failures associated with the conditioning systems. The failures of an air conditioner such as turn on, loss of air conditioner cooling capacity, reduced air conditioning output temperatures, loss of cool air supply and loss of air flow entirely are mainly due to a variety of problems with one or more components of an air conditioner or air conditioning system. To maintain the system forecasting for system failure rates are very important. The focus of this paper is the reliability of the air conditioning systems. The most common applied statistical distributions in reliability settings are the standard (2 parameter Weibull and Gamma distributions. Reliability estimations and predictions are used to evaluate, when the estimation of distributionsparameters is done. To estimate good operating condition in a building, the reliability of the air conditioning system that supplies conditioned air to the several companies’ departments is checked. This air conditioning system is divided into two systems, namely the main chilled water system and the ten air handling systems that serves the ten departments. In a chilled-water system the air conditioner cools water down to 40 - 45oF (4 - 7oC. The chilled water is distributed throughout the building in a piping system and connected to air condition cooling units wherever needed. Data analysis has been done with support a computer aided reliability software, with the application of the Weibull and Gamma distributions it is indicated that the reliability for the systems equal to 86.012% and 77.7% respectively . A comparison between the two important families of distribution functions, namely, the Weibull and Gamma families is studied. It is found that Weibull method has performed well for decision making .

  4. The analysis of thermal calculation for air stove drying system

    Directory of Open Access Journals (Sweden)

    Li Xue

    2012-08-01

    Full Text Available This article discusses the existing calculation of heat for a coal-fired hot-blast furnace. By utilizing the standard method of heat calculation for boilers, considering the relation between the theoretical combustion temperature and the excess air coefficient of the boiler, combining some operational parameters of a coal-fired powder hot-blast furnace, the heat calculation of iron ore concentrating dry combustion on a coal-fired hot stove is discussed. It is used to prevent coke and optimize combustion. It also discusses the advantages and disadvantages of flue gas recirculation systems. The conclusion will show the practical applications of this.

  5. Time-based air traffic management using expert systems

    Science.gov (United States)

    Tobias, L.; Scoggins, J. L.

    1986-01-01

    A prototype expert system was developed for the time scheduling of aircraft into the terminal area. The three functions of the air traffic control schedule advisor are as follows: first, for each new arrival, it develops an admissible flight plan for that aircraft. Second, as the aircraft progresses through the terminal area, it monitors deviations from the flight plan and provides advisories to return the aircraft to its assigned schedule. Third, if major disruptions such as missed approaches occur, it develops a revised plan. The advisor is operational on a Symbolics 3600, and is programed in MRS (a logic programming language), Lisp, and FORTRAN.

  6. Effect of Burstiness on the Air Transportation System

    CERN Document Server

    Ito, Hidetaka

    2016-01-01

    The effect of burstiness in complex networks has received considerable attention. In particular, its effect on temporal distance and delays in the air transportation system is significant owing to their huge impact on our society. Therefore, in this paper, we propose two indexes of temporal distance based on passengers' behavior and analyze the effect. As a result, we find that burstiness shortens the temporal distance while delays are increased. Moreover, we discover that the positive effect of burstiness is lost when flight schedules get overcrowded.

  7. Thermo economical evaluation of retrofitting strategies in air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    Tribess, Arlindo; Fiorelli, Flavio Augusto Sanzogo; Hernandez Neto, Alberto [Sao Paulo Univ., SP (Brazil). Escola Politecnica. Dept. de Engenharia Mecanica]. E-mail: atribess@usp.br; fiorelli@usp.br; ahneto@usp.br

    2000-07-01

    In a building project, several subsystems are designed, among them the air conditioning system. Electrical energy consumption profiles show that this subsystem is responsible for 40 to 50% of total consumption in a commercial building. Besides the study of technical aspects that should be considered in order to assure the thermal comfort of the occupants as well the temperature and humidity conditions for an efficient equipment operation, an economical evaluation of this subsystem should be also made. In retrofit projects, the economical aspect is also critical for such projects in order to assure bigger efficiency in an economically attractive way. This paper analyses some strategies that might be adopted in retrofitting an air conditioning system installed in a commercial building with mixed occupation. By mixed we mean that some floors have a typical office occupation profile and other floors are mainly occupied by electronic equipment. This analysis includes both technical and economical evaluation. The proposed solutions performance are compared to the old system, which allows to verify the retrofitting impact in energy consumption reduction and its economical feasibility. (author)

  8. Universal bursty behavior in the air transportation system

    CERN Document Server

    Ito, Hidetaka

    2015-01-01

    Social activities display bursty behavior characterized by heavy-tailed inter-event time distributions. We examine the bursty behavior of airplanes' arrivals in hub airports. The analysis indicates that the air transportation system universally follows a power-law inter-arrival time distribution with an exponent $\\alpha=2.5$ and an exponential cutoff. Moreover, we investigate the mechanism of this bursty behavior by introducing a simple model to describe it. In addition, we compare the extent of the hub-and-spoke structure and the burstiness of various airline networks in the system. Remarkably, the results suggest that the hub-and-spoke network of the system and the carriers' strategy to facilitate transit are the origins of this universality.

  9. The effect of a personalized ventilation system on perceived air quality and SBS symptoms

    DEFF Research Database (Denmark)

    Kaczmarczyk, Jan; Zeng, Q.; Melikov, Arsen Krikor

    2002-01-01

    Perceived air quality, SBS symptoms and performance were studied with 30 human subjects. Experiments were performed in an office set-up with six workplaces, each equipped with a Personalized Ventilation System (PVS). Each PVS allowed the amount of supply air and its direction to be controlled...... condition in regard to perceived air quality, perception of freshness and intensity of SBS symptoms was when PVS supplied outdoor air at 20 deg.C. Perceived air quality in this case was significantly better (p...

  10. Alternative methodology for the margin determination of voltage stability in electrical power systems. Economical and technical impacts; Metodologia alternativa para a determinacao da margem de estabilidade de tensao em sistemas eletricos de potencia - impactos tecnicos e economicos

    Energy Technology Data Exchange (ETDEWEB)

    Cortez, Anderson Neves [Companhia Energetica de Minas Gerais (CEMIG), Belo Horizonte, MG (Brazil)]. E-mail: anderson@cemig.com.br

    2001-07-01

    This article presents an alternative methodology of voltage stability determination of Electrical Power System (EPS), focusing technical and economical aspects. In this direction, it presents relative aspects to mathematical modelling to analyse the phenomenon and also the influence from the most important dynamics to be taken into consideration. It is inquired the participation of generators in the rearrangement of the adopted active power in the current criteria of margin determination. A real system is analyzed, under this aspect, indicating significant variations in the calculated values for the margins, resulting in improper investments of significant values. The proposed methodology by this article seeks to contribute to minimize such mistakes, this is done by means of focusing the long duration dynamics of generators, what constitutes an important progress in relation to the researches about them.

  11. Methodology Einstein for energy audit and design of solar heat systems in industrial processes; Metodologia Einstein para auditoria energetica y diseno de sistemas de calor solar en procesos industriales

    Energy Technology Data Exchange (ETDEWEB)

    Schweiger, H.; Vannoni, C.; Danov, S.; Facci, E.

    2008-07-01

    Estimates show that 57% of the total industrial heat demand in EU countries is required at low (up to 100 degree centigrade) and medium temperature (up to 400 degree centigrade). An important part of this thermal energy demand can be covered by solar thermal energy. In the framework of the European project EINSTEIN (Expert-system for an Intelligent Supply of Thermal Energy in Industry), an expert system is being developed, where process optimisation, heat recovery, intelligent cold supply and renewable energy are integrated into a holistic energy audit methodology with the objective of reducing energy consumption in the industrial sector. EINSTEIN is being developed as a free and open source software project. (Author)

  12. The Performance of Diffuse Ceiling Inlet and other Room Air Distribution Systems

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jakubowska, Ewa

    2009-01-01

    The paper analyses different room air distribution systems, and describes a design chart which can be used for the evaluation of variables as air quality, air velocity and temperature gradient as a function of flow rate and temperature difference in the supply system. The design chart can also be...

  13. 77 FR 59023 - Preoperational Testing of Instrument and Control Air Systems

    Science.gov (United States)

    2012-09-25

    ... COMMISSION Preoperational Testing of Instrument and Control Air Systems AGENCY: Nuclear Regulatory Commission... Control Air Systems.'' This regulatory guide is being revised to address new issues that have been raised since RG 1.68.3 was first issued. These include vibration testing of instrument and control air...

  14. Optimization of a water resource system expansion using the Genetic Algorithm and Simulated Annealing methods; Optimizacion de la expansion de un sistema de recursos hidricos utilizados las metodologias del algoritmo genetico y el recocido simulado

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez Camacho, Enrique; Andreu Alvarez, Joaquin [Universidad Politecnica de Valencia (Spain)

    2001-06-01

    Two numerical procedures, based on the Genetic Algorithm (GA) and the Simulated Annealing (SA), are developed to solve the problem of the expansion of capacity of a water resource system. The problem was divided into two subproblems: capital availability and operation policy. Both are optimisation-simulation models, the first one is solved by means of the GA and SA, in each case, while the second one is solved using the Out-of-kilter algorithm (OKA), in both models. The objective function considers the usual benefits and costs in this kind of systems, such as irrigation and hydropower benefits, costs of dam construction and system maintenance. The strength and weakness of both models are evaluated by comparing their results with those obtained with the branch and bound technique, which was classically used to solve this kind of problems. [Spanish] Un par de metodos numericos fundamentados en dos tecnicas de busqueda globales. Algoritmos Genetico (AG) y Recocido Simulado (RS), son desarrollados para resolver el problema de expansion de capacidad de un sistema de recursos hidricos. La estrategia ha sido dividir al problema en dos subproblemas: el de disponibilidad de capital y el de la politica de operacion. Ambos modelos son de optimizacion-simulacion, el primero se realiza mediante los algoritmos del RS y el AG en cada caso, en tanto que el segundo lleva a cabo a traves del algoritmo del Out-of-kilter (AOK) en los dos modelos. La funcion objetivo con que se trabaja considera los beneficios y costos mas comunes en este tipo de sistema, tales como beneficios por riego, por hidroelectricidad y costos de construccion de los embalses y mantenimiento del sistema. La potencia y debilidades delos dos modelos se evaluan mediante la comparacion con los resultados obtenidos a traves de una de las tecnicas mas usadas en este tipo de problemas: la de ramificacion y acotacion.

  15. A methodology for obtaining the control rods patterns in a BWR using systems based on ants colonies; Una metodologia para obtener los patrones de barras de control en un BWR usando sistemas basados en colonias de hormigas

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz S, J.J. [Depto. de Sistemas Nucleares, ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico); Requena R, I. [Universidad de Granada, 18071 Granada (Spain)]. e-mail: jjortiz@nuclear.inin.mx

    2003-07-01

    In this work the AZCATL-PBC system based on a technique of ants colonies for the search of control rods patterns of those reactors of the Nuclear Power station of Laguna Verde (CNLV) is presented. The technique was applied to a transition cycle and one of balance. For both cycles they were compared the k{sub ef} values obtained with a Haling calculation and the control rods pattern proposed by AZCATL-PBC for a burnt one fixed. It was found that the methodology is able to extend the length of the cycle with respect to the Haling prediction, maintaining sure to the reactor. (Author)

  16. Bio-Electrochemical Carbon Dioxide Removal for Air Revitalization in Exploration Life Support Systems Project

    Data.gov (United States)

    National Aeronautics and Space Administration — An important aspect of the ISS air revitalization system for life support is the removal of carbon dioxide from cabin air and retrieves oxygen from CO2. The current...

  17. Air Quality System (AQS) ambient observations: 2007 PM2.5

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ambient PM2.5 (particulate matter less than 2.5 microns) concentrations from the national ambient air quality monitoring networks stored in the Air Quality System...

  18. Air Quality System (AQS) ambient observations: 2008 PM2.5

    Data.gov (United States)

    U.S. Environmental Protection Agency — Ambient PM2.5 (particulate matter less than 2.5 microns) concentrations from the national ambient air quality monitoring networks stored in the Air Quality System...

  19. Dynamic airspace configuration algorithms for next generation air transportation system

    Science.gov (United States)

    Wei, Jian

    The National Airspace System (NAS) is under great pressure to safely and efficiently handle the record-high air traffic volume nowadays, and will face even greater challenge to keep pace with the steady increase of future air travel demand, since the air travel demand is projected to increase to two to three times the current level by 2025. The inefficiency of traffic flow management initiatives causes severe airspace congestion and frequent flight delays, which cost billions of economic losses every year. To address the increasingly severe airspace congestion and delays, the Next Generation Air Transportation System (NextGen) is proposed to transform the current static and rigid radar based system to a dynamic and flexible satellite based system. New operational concepts such as Dynamic Airspace Configuration (DAC) have been under development to allow more flexibility required to mitigate the demand-capacity imbalances in order to increase the throughput of the entire NAS. In this dissertation, we address the DAC problem in the en route and terminal airspace under the framework of NextGen. We develop a series of algorithms to facilitate the implementation of innovative concepts relevant with DAC in both the en route and terminal airspace. We also develop a performance evaluation framework for comprehensive benefit analyses on different aspects of future sector design algorithms. First, we complete a graph based sectorization algorithm for DAC in the en route airspace, which models the underlying air route network with a weighted graph, converts the sectorization problem into the graph partition problem, partitions the weighted graph with an iterative spectral bipartition method, and constructs the sectors from the partitioned graph. The algorithm uses a graph model to accurately capture the complex traffic patterns of the real flights, and generates sectors with high efficiency while evenly distributing the workload among the generated sectors. We further improve

  20. Development and application of a dosimetric methodology of therapeutic X radiation beams using a tandem system; Desenvolvimento e aplicacao de metodologia dosimetrica de feixes terapeuticos de raios X com sistema tandem

    Energy Technology Data Exchange (ETDEWEB)

    Sartoris, Carla Eri

    2001-07-01

    In radiotherapy the use of orthovoltage X radiation beams is still recommended; to obtain satisfactory results, a periodic control is necessary to check the performance of the ionization chambers and the radiation beams characteristics. This control is performed by using standard dosimetric procedures, as for example the determination of half-value layers and the absorbed dose rates. A Tandem system was established in this work using a pair of ionization chambers (a thimble type and a superficial type) used for measures in a medical institution, in substitution to the routine conventional procedure of determination of half-value layers using absorbers. The results obtained show the application of this method in dosimetric procedures of orthovoltage beams (radiotherapy) as a complement for a quality control program. (author)

  1. New methodologies for the integrated analysis of groundwater management. Altiplano water system case study (Murcia, SE Spain); Nuevas metodologias para el analisis integrado de la gestion del agua subterranea. Aplicacion al caso de estudio del Altiplano (Murcia, SE Espana)

    Energy Technology Data Exchange (ETDEWEB)

    Molina, J. L.; Garcia Arostegui, J. L.

    2009-07-01

    Integrated analysis of water management incorporates a great range of dimensions and aspects involved in the management of a water system. Lately, these kind of studies have become numerous because they allow getting a holistic knowledge and they also help managers with the decision making process. Nevertheless, there is not yet a general methodology for tackling this type of studies and there is a big opened field concerning the tools and techniques application. This paper establishes a methodology, which can be extrapolated to other case studies, and a practical procedure for the integrated analysis of groundwater management. This analysis starts with the identification and conceptualization of the hydric problematic. Then, a second phase is focused on the development of sectorial and detailed studies. The third phase is the building of the Decision Support System (DSS) based on the results from the sectorial studies. This research develops and proposes the application of a stochastic DSS based on Object-Oriented Bayesian Networks (OOBNs) that allows incorporating a huge range of aspects such as hydrogeological, socioeconomic and environmental, among others. The last phase of the procedure is the simulation of water management scenarios through the DSS. This allows comparing and quantifying the impacts generated by three water management interventions which have been proposed previously. The first scenario establishes the continuation of the current situation, the second scenario is made up of for several water management interventions which are the incoming of external water resources, the purchase of water rights and a reduction of the water demand; finally, the third scenario implies to reach the equilibrium in the aquifer water budgets. (Author) 19 refs.

  2. Tactical Automated Security System Air Force expeditionary security

    Science.gov (United States)

    Butler, Ken

    2002-08-01

    The US Air Force's TASS (Tactical Automated Security System) program has been in existence since 1996. The TASS program meets the growing need to supplement security personnel with modern technology, when these forces are deployed around the world. TASS combines five equipment elements into an integrated security solution, providing both a detection and an assessment capability. TASS does this in a way which maximizes the mobility and user friendliness objectives of the system. In this paper, we will take a closer look at TASS. We will examine the concepts that drive the TASS development process. We will provide an overview of the TASS technical elements, and provide a roadmap for further development of those elements. Finally, we will provide recommendations to security providers who aim to have their products included in the TASS baseline of equipment.

  3. Control Techniques in Heating, Ventilating and Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    H. Mirinejad

    2008-01-01

    Full Text Available Problem statement: Heating, Ventilating and Air Conditioning (HVAC systems are among the main installations in residential, commercial and industrial buildings. The purpose of the HVAC systems is normally to provide a comfortable environment in terms of temperature, humidity and other environmental parameters for the occupants as well as to save energy. Achieving these objectives requires a suitable control system design. Approach: In this overview, thermal comfort level and ISO comfort field is introduced, followed by a review and comparison of the main existing control techniques used in HVAC systems to date. Results: The present overview shows that intelligent controllers which are based on the human sensation of thermal comfort have a better performance in providing thermal comfort as well as energy saving than the traditional controllers and those based on a model of the HVAC system. Conclusion: Such an overview provides an insight into current control methods in HVAC systems and can help scholars and HVAC learners to have the comprehensive information about a variety of control techniques in the field of HVAC and therefore to better design a proper controller for their work

  4. Laboratory testing of a displacement ventilation diffuser for underfloor air distribution systems

    OpenAIRE

    Raftery, Paul; Bauman, Fred; Schiavon, Stefano; Epp, Tom

    2015-01-01

    Underfloor air distribution (UFAD) systems use the underfloorplenum beneath a raised floor to provide conditioned air through floor-mounted diffusers, which typically discharge cool air with bothhorizontal and vertical momentum components. These systems usually createa vertical temperature stratification when in cooling mode and this hasan impact on energy, indoor air quality and thermal comfort. The purposeof this study was to characterize the stratification performance of apreviously unstud...

  5. An optimization model for the US Air-Traffic System

    Science.gov (United States)

    Mulvey, J. M.

    1986-01-01

    A systematic approach for monitoring U.S. air traffic was developed in the context of system-wide planning and control. Towards this end, a network optimization model with nonlinear objectives was chosen as the central element in the planning/control system. The network representation was selected because: (1) it provides a comprehensive structure for depicting essential aspects of the air traffic system, (2) it can be solved efficiently for large scale problems, and (3) the design can be easily communicated to non-technical users through computer graphics. Briefly, the network planning models consider the flow of traffic through a graph as the basic structure. Nodes depict locations and time periods for either individual planes or for aggregated groups of airplanes. Arcs define variables as actual airplanes flying through space or as delays across time periods. As such, a special case of the network can be used to model the so called flow control problem. Due to the large number of interacting variables and the difficulty in subdividing the problem into relatively independent subproblems, an integrated model was designed which will depict the entire high level (above 29000 feet) jet route system for the 48 contiguous states in the U.S. As a first step in demonstrating the concept's feasibility a nonlinear risk/cost model was developed for the Indianapolis Airspace. The nonlinear network program --NLPNETG-- was employed in solving the resulting test cases. This optimization program uses the Truncated-Newton method (quadratic approximation) for determining the search direction at each iteration in the nonlinear algorithm. It was shown that aircraft could be re-routed in an optimal fashion whenever traffic congestion increased beyond an acceptable level, as measured by the nonlinear risk function.

  6. Model Based Sensor System for Temperature Measurement in R744 Air Conditioning Systems

    CERN Document Server

    Reitz, Sven; Schneider, Peter

    2008-01-01

    The goal is the development of a novel principle for the temperature acquisition of refrigerants in CO2 air conditioning systems. The new approach is based on measuring the temperature inside a pressure sensor, which is also needed in the system. On the basis of simulative investigations of different mounting conditions functional relations between measured and medium temperature will be derived.

  7. Methodology for locating faults in the Eastern distribution system PDVSA, Punta de Mata and Furrial Divisions; Metodologia para la localizacion de fallas en el sistema de distribucion de PDVSA Oriente, Divisiones Punta de Mata y Furrial

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, F [Universidad Nacional Experimental Politecnica, Antonio Jose de Sucre, Guayana, Bolivar (Venezuela)]. E-mail: fco_martinez@outlook.com; Vasquez, C [Petroleos de Venezuela S.A., Maturin, Monagas (Venezuela)]. E-mail: vasquezcp@pdvsa.com

    2013-03-15

    Fault location in distribution systems has received a lot of attention in recent years in order to increase the availability of electricity supply. Due to the characteristics of distribution networks, fault location is a complicated task, so methods have been developed based on the variation of current and voltage values measured at the source substation, in normal operating condition and under the occurrence of short circuits. This article presents the implementation in MATLAB of a fault location algorithm applied to distribution systems, based on graphical analysis of the fault reactance which is determined by the minimum value of the reactance, using serial impedance matrix and fault/prefault voltage and current metering. Developed Tool Accuracy was verified by comparing the results obtained through it with actual recorded event data (Multilin SR 760) and distance to a known failure point. Additionally the method was applied to an experimental case that was compared with network fault simulation using ETAP Software. For both evaluated cases, the absolute error did not exceed 7%. [Spanish] La localizacion de fallas en sistemas de distribucion ha recibido atencion en los ultimos anos con el fin de aumentar la disponibilidad del suministro de energia electrica. Debido a las caracteristicas propias de las redes de distribucion, la ubicacion de fallas resulta una tarea complicada, por lo que se han desarrollado metodos basados en la variacion de los valores de corriente y voltaje medidos en la subestacion fuente, en condicion normal de operacion y ante la ocurrencia de cortocircuitos. Este articulo presenta la implementacion en MATLAB de un algoritmo de localizacion de fallas en sistemas de distribucion que se fundamenta en el analisis grafico de la reactancia de falla, mediante el cual se determina el minimo valor de la reactancia, utilizando la matriz de impedancia serie y la medicion de los voltajes y corrientes de prefalla y falla. Se verifico la precision de la

  8. Aplicação de metodologia dosimétrica de feixes terapêuticos de raios X com sistema Tandem Application of a dosimetric methodology of therapeutic X-ray beams with a Tandem system

    Directory of Open Access Journals (Sweden)

    Carla Eri Sartoris

    2001-12-01

    Full Text Available Um sistema Tandem, constituído por um par de câmaras de ionização comerciais (uma cilíndrica e uma de placas paralelas, foi estabelecido para aplicação em instituição hospitalar, em substituição ao procedimento convencional de determinação de camadas semi-redutoras utilizando-se absorvedores. Os resultados obtidos mostram a possibilidade de utilização deste sistema em procedimentos de dosimetria para os feixes de ortovoltagem utilizados em radioterapia, como complemento de um programa de controle de qualidade.We developed a Tandem system using a pair of ionization chambers (a cylindrical and a parallel-plate type to perform X-ray measurements in a medical Institution, in substitution of the routine conventional procedure of determination of half-values layers using absorbers. The results obtained indicate the possibility of application of this method in dosimetric procedures of orthovoltage beams (radiotherapy as a complementary procedure in a quality control program.

  9. Estimated losses of energy in a power system using a semi-statistical methodology; Estimacion de perdidas de energia en un sistema electrico de potencia mediante una metodologia semi-estadistica

    Energy Technology Data Exchange (ETDEWEB)

    Martinez Martinez, D [Centro Universitario UAEM, Valle de Teotihuacan (Mexico)]. E-mail: david_2mtz@hotmail.com; Martinez Lendech, J.F [Instituto Tecnologico de Estudios Superiores del Oriente del Estado de Hidalgo (Mexico)]. E-mail: mrtzlendech@hotmail.com; Garcia Herrera, C; Olvera Ricano, J.G. [Centro Universitario UAEM, Valle de Teotihuacan (Mexico)]. E-mails: cozobi_garcia@yahoo.com.mx; jgolverar@uaemex.mx

    2013-03-15

    Determination of electrical losses is one of the most important tasks for any enterprise dedicated to generation, transmission, transformation and/or distribution of electric energy. Any enterprise dedicated to these activities does continuously energy balances in order to estimate whole electrical losses of specific processes. However, it is necessary to classify the whole electrical losses into technical and non-technical losses. This paper presents a proposal for estimating technical and non-technical losses in an electrical power system. [Spanish] La determinacion de las perdidas de energia electrica es una de las labores mas importantes en cualquier empresa dedicada a la generacion, transmision, transformacion y/o distribucion de energia electrica. Es indudable que toda empresa dedicada a cualquiera de las actividades mencionadas anteriormente realiza periodicamente balances de energia que permiten estimar el valor de las perdidas totales de energia del proceso considerado. No obstante, para poder realizar un mejor analisis de la problematica de las perdidas de energia, es necesario separar el valor total de perdidas obtenido mediante un balance de energia, en perdidas tecnicas y perdidas no tecnicas. El presente trabajo presenta una propuesta para la estimacion de perdidas tecnicas y no tecnicas en un sistema electrico de potencia.

  10. Influence of Cooling to Heating Load Ratio on Optimal Supply Water and Air Temperatures in an Air Conditioning System

    Science.gov (United States)

    Karino, Naoki; Shiba, Takashi; Yokoyama, Ryohei; Ito, Koichi

    In planning an air conditioning system, supply water and air temperatures are important factors from the viewpoint of energy saving and cost reduction. For example, lower temperature supply water and air for space cooling reduce the coefficient of performance of a refrigeration machine, and increase the thickness of heat insulation material. However, they enable larger temperature differences, and reduce equipment sizes and power demand. It is also an important subject to evaluate the effect of the supply water and air temperatures on energy saving and cost reduction on the annual basis by considering not only cooling but also heating loads. The purposes of this paper are to propose an optimal planning method for an air conditioning system with large temperature difference, and to analyze the effect of supply water and air temperatures on the long-term economics through a numerical study for an office building. As a result, it is shown that the proposed method effectively determines supply water and air temperatures, and the influence of the cooling to heating load ratio on the long-term economics is clarified.

  11. Experimental Study of Air Vessel Behavior for Energy Storage or System Protection in Water Hammer Events

    Directory of Open Access Journals (Sweden)

    Mohsen Besharat

    2017-01-01

    Full Text Available An experimental assessment of an air pocket (AP, confined in a compressed air vessel (CAV, has been investigated under several different water hammer (WH events to better define the use of protection devices or compressed air energy storage (CAES systems. This research focuses on the size of an AP within an air vessel and tries to describe how it affects important parameters of the system, i.e., the pressure in the pipe, stored pressure, flow velocity, displaced volume of water and water level in the CAV. Results present a specific range of air pockets based on a dimensionless parameter extractable for other real systems.

  12. Cooling Performance Characteristics on Mobile Air-Conditioning System for Hybrid Electric Vehicles

    OpenAIRE

    Ho-Seong Lee; Moo-Yeon Lee

    2013-01-01

    This study investigates the cooling performance characteristics of the mobile air-conditioning system using R744 (CO2) for the hybrid electric vehicle as an alternative to both the R-134a and the conventional air-conditioning system. The developed air-conditioning system is operated with an electric driven compressor in the battery driving mode and a belt driven compressor in the engine driving mode. The cooling performance characteristics of the developed system have been analyzed by experim...

  13. Improving Compressed Air System Performance: A Sourcebook for Industry v3

    Energy Technology Data Exchange (ETDEWEB)

    Ron Marshall, William Scales, Gary Shafer, Paul Shaw, Paul Sheaffer, Rick Stasyshan, H.P.

    2016-03-01

    This sourcebook is designed to provide compressed air system users with a reference that outlines opportunities for system performance improvements. It is not intended to be a comprehensive technical text on improving compressed air systems, but rather a document that makes compressed air system users aware of the performance improvement potential, details some of the significant opportunities, and directs users to additional sources of assistance.

  14. Real-time expert system monitors complex air regs

    Energy Technology Data Exchange (ETDEWEB)

    Hasbach, A.

    1995-07-01

    The South Coast Air Quality Management District (SCAQMD) in southern California monitors NO{sub x} emissions in real time from a total of 60 boilers at the area`s five electric utilities. SCAQMD accomplishes this with an application developed using G2, an expert system from Gensym Corp., Cambridge, Mass., interfaced to monitoring equipment at each remote facility. In 1991, the SCAQMD board passed Rule 1135 requiring monitoring of nitrogen oxide (NO{sub x}) emissions from electric-power generating systems. The rule requires utilities to transmit boiler emissions data in near real-time to SCAQMD. Each utility had to install a continuous emission monitoring system (CEMS) to measure emissions from each boiler and a remote terminal unit (RTU) to telecommunicate emissions data to SCAQMD. The CEMS acquires data from sensing devices for each boiler. The RTU collects the data, performs calculations, and transmits formatted information to the Central Station Compliance Advisory Expert System at SCAQMD. This information includes NO{sub x} emissions, power generation, fuel usage, stack gas flow and equipment status.

  15. Computerized Simulation of Automotive Air-Conditioning System: Development of Mathematical Model and Its Validation

    Directory of Open Access Journals (Sweden)

    Haslinda Mohamed Kamar

    2012-03-01

    Full Text Available A semi-empirical model for simulating thermal and energy performance of an automotive air-conditioning (AAC system in passenger vehicles has been developed. The model consists of two sections, namely empirical evaporator correlations and dynamic load simulation. The correlations used consider sensible and latent heat transfer performance of the evaporator coil. The correlations were obtained from the experimental data of actual air conditioning system for a compact size passenger car. The sensible heat transfer correlation relates the evaporator air off dry-bulb temperature to inlet air dry-bulb temperature, humidity ratio, evaporator air velocity, condenser inlet air dry-bulb temperature, condenser air velocity and compressor speed. The latent heat transfer correlation relates the coil air-off humidity ratio to the same six independent variables. The dynamic load simulation model was developed based on the z-transfer function method with a one-minute time step. The cooling load calculations were performed using heat gain weighting factors. Heat extraction rate and cabin air dry-bulb temperature calculations were carried out using air temperature weighting factors. The empirical evaporator sensible and latent heat transfer correlations were embedded in the loads calculation program to enable the determination of evaporator inlet and outlet air conditions, the cabin air temperature and relative humidity. Comparisons with road test data indicated that the program was capable of predicting the performance of the automotive air-conditioning system with reasonable accuracy.

  16. Microwave Disinfection in a Ventilation and Air-Conditioning System

    Institute of Scientific and Technical Information of China (English)

    LU Zhen; ZHANG Ji-li; MA Liang-dong; HE Juan

    2009-01-01

    Because of its broad spectrum and high efficiency,the microwave disinfection was used to control the airborne microbial contaminates in VAC system.Some microwave disinfection devices were developed com-bined with air filter,the design and calculation method was presented,and the disinfection effects on White staphylococcus,Staphylococcus aureus,Bacillus Subtilis,Escherichi coli were measured.The results show that the major influence factors on disinfection effect are microwave power,water-content of filter material,dis-infecting duration.After 15 min,the kill ratio is>90%,and the log value is>1.The microwave field is uni-form and the kill effect of bacteria on each surface of filter is the same,without statistically significant differ-ence.

  17. Displacement and air distribution ventilation systems; Verdringingsventilatie- en luchtverdeelsystemen

    Energy Technology Data Exchange (ETDEWEB)

    Van Holten, P. [Solid Air, Amsterdam (Netherlands)

    2009-06-15

    Since an evaporative cooling system uses 100% clean outdoor air; it is ideal for positive displacement ventilation. By using the overpressure inside the building or room, windows and doors can be opened without affecting the controlled room temperature. The combination of positive displacement ventilation/balance ventilation with heat recovery is a very attractive solution. In this article you will find a brief explanation of the operation, application and basic principles of positive displacement ventilation. [Dutch] Verdampingskoeling leent zich in het bijzonder voor verdringingsventilatie dankzij het gebruik van 100% buitenlucht. Gebruikmakend van overdruk kunnen daarbij ramen en deuren worden geopend zonder dat de temperatuur hierdoor sterk wordt beinvloed. De combinatie verdringingsventilatie/balansventilatie met WTW, zoals in De Vijfhoek, is daarbij een voor de hand liggende optie. In dit artikel worden de basisprincipes van verdringingsventilatie, alsmede de werking en toepassing hiervan, toegelicht.

  18. Absorption and adsorption chillers applied to air conditioning systems

    Science.gov (United States)

    Kuczyńska, Agnieszka; Szaflik, Władysław

    2010-07-01

    This work presents an application possibility of sorption refrigerators driven by low temperature fluid for air conditioning of buildings. Thermodynamic models were formulated and absorption LiBr-water chiller with 10 kW cooling power as well as adsorption chiller with silica gel bed were investigated. Both of them are using water for desorption process with temperature Tdes = 80 °C. Coefficient of performance (COP) for both cooling cycles was analyzed in the same conditions of the driving heat source, cooling water Tc = 25 °C and temperature in evaporator Tevap = 5 °C. In this study, the computer software EES was used to investigate the performance of absorption heat pump system and its behaviour in configuration with geothermal heat source.

  19. Floor-supply displacement air-conditioning system; Zenmen yuka fukidashi kucho system ni kansuru gijutsu kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Takebayashi, Y.; Nobe, T. [Shimizu Corp., Tokyo (Japan); Hatanaka, H. [Nitto Boseki Co. Ltd., Tokyo (Japan); Tanabe, S. [Waseda University, Tokyo (Japan)

    1999-11-05

    This development is proposing an alternative air-conditioning method, 'floor-supply displacement air-conditioning system'. The idea comes from the principle of displacement ventilation originally, using breathable carpet tiles laid over a perforated raised floor system. In this system, fresh cool or heated air are supplied at very low velocity throughout the carpet tiles. This system has been applied to 25 buildings and total floor area reached 10,000m{sup 2}. (author)

  20. Pedagogia de Projetos como metodologia no trabalho com a educação infantil

    Directory of Open Access Journals (Sweden)

    Patricia Frageri

    2016-12-01

    Full Text Available Este artigo teve como tema a Pedagogia de Projetos como metodologia no trabalho com a Educação Infantil e a pesquisa foi realizada na escola Gente Feliz de Sinop. A investigação teve como objetivo conhecer em que consiste a metodologia de trabalho pautada na pedagogia de projetos, e suas interfaces, no contexto da educação infantil. Os instrumentos de pesquisa foram entrevista e questionário com duas professoras. Os resultados mostram que a instituição prioriza a metodologia de trabalho por projetos e que as professoras estão familiarizadas com essa metodologia buscando construir junto com as crianças as práticas pedagógicas diárias. Palavra-chave: educação infantil; Pedagogia de Projetos; metodologia de trabalho.

  1. Genetic Algorithms, Neural Networks, and Time Effectiveness Algorithm Based Air Combat Intelligence Simulation System

    Institute of Scientific and Technical Information of China (English)

    曾宪钊; 成冀; 安欣; 方礼明

    2002-01-01

    This paper introduces a new Air Combat Intelligence Simulation System (ACISS) in a 32 versus 32 air combat, describes three methods: Genetic Algorithms (GA) in the multi-targeting decision and Evading Missile Rule Base learning, Neural Networks (NN) in the maneuvering decision, and Time Effectiveness Algorithm (TEA) in the adjudicating an air combat and the evaluating evading missile effectiveness.

  2. Development of residential solar air conditioning system for electricity power peak cut 3

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Gwon Jong [Korea Inst. of Energy and Resources, Daeduk (Korea, Republic of)

    1995-12-31

    In this research, the converter rectifier unit of the inverter air conditioner is substituted into the bidirectional PWM converter. The DC/DC power converter is established on the DC link between the photovoltaic array and the inverter air conditioner, and the photovoltaic air conditioning system which can be parallel driven which utility is developed. (author). 35 ref., 112 figs.

  3. Experimental investigation of static ice refrigeration air conditioning system driven by distributed photovoltaic energy system

    Science.gov (United States)

    Xu, Y. F.; Li, M.; Luo, X.; Wang, Y. F.; Yu, Q. F.; Hassanien, R. H. E.

    2016-08-01

    The static ice refrigeration air conditioning system (SIRACS) driven by distributed photovoltaic energy system (DPES) was proposed and the test experiment have been investigated in this paper. Results revealed that system energy utilization efficiency is low because energy losses were high in ice making process of ice slide maker. So the immersed evaporator and co-integrated exchanger were suggested in system structure optimization analysis and the system COP was improved nearly 40%. At the same time, we have researched that ice thickness and ice super-cooled temperature changed along with time and the relationship between system COP and ice thickness was obtained.

  4. Measurements and predictions of the air distribution systems in high compute density (Internet) data centers

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Jinkyun [HIMEC (Hanil Mechanical Electrical Consultants) Ltd., Seoul 150-103 (Korea); Department of Architectural Engineering, Yonsei University, Seoul 120-749 (Korea); Lim, Taesub; Kim, Byungseon Sean [Department of Architectural Engineering, Yonsei University, Seoul 120-749 (Korea)

    2009-10-15

    When equipment power density increases, a critical goal of a data center cooling system is to separate the equipment exhaust air from the equipment intake air in order to prevent the IT server from overheating. Cooling systems for data centers are primarily differentiated according to the way they distribute air. The six combinations of flooded and locally ducted air distribution make up the vast majority of all installations, except fully ducted air distribution methods. Once the air distribution system (ADS) is selected, there are other elements that must be integrated into the system design. In this research, the design parameters and IT environmental aspects of the cooling system were studied with a high heat density data center. CFD simulation analysis was carried out in order to compare the heat removal efficiencies of various air distribution systems. The IT environment of an actual operating data center is measured to validate a model for predicting the effect of different air distribution systems. A method for planning and design of the appropriate air distribution system is described. IT professionals versed in precision air distribution mechanisms, components, and configurations can work more effectively with mechanical engineers to ensure the specification and design of optimized cooling solutions. (author)

  5. Collection methodology evaluation and solvents analysis/mixtures solvents in the air in work ambient: methanol in MEG mixture (methanol 33%, ethanol 60% and gasoline 7%); Avaliacao de metodologia de coleta e analise de solventes/misturas de solventes no ar em ambiente de trabalho: metanol em mistura MEG (metanol 33%, etanol 60% e gasolina 7%)

    Energy Technology Data Exchange (ETDEWEB)

    Cardoso, Luiza Maria Nunes

    1995-07-01

    This thesis presents a proposal for evaluation of collection and solvent/solvent mixtures analysis methodology for the air in the work environment by studying the following issues of present solvents: historical aspects; methanol - properties and toxicity; collection methodology evaluation, and gases and vapors analysis in the air; experimental data. The denominated mixture MEG - methanol, ethanol and gasoline is analyzed in terms of its chemical characteristics. The author concludes the work detaching that the methodology presented can only be used for short duration measurements in concentrations peaks studies.

  6. System IDentification Programs for AirCraft (SIDPAC)

    Science.gov (United States)

    Morelli, Eugene A.

    2002-01-01

    A collection of computer programs for aircraft system identification is described and demonstrated. The programs, collectively called System IDentification Programs for AirCraft, or SIDPAC, were developed in MATLAB as m-file functions. SIDPAC has been used successfully at NASA Langley Research Center with data from many different flight test programs and wind tunnel experiments. SIDPAC includes routines for experiment design, data conditioning, data compatibility analysis, model structure determination, equation-error and output-error parameter estimation in both the time and frequency domains, real-time and recursive parameter estimation, low order equivalent system identification, estimated parameter error calculation, linear and nonlinear simulation, plotting, and 3-D visualization. An overview of SIDPAC capabilities is provided, along with a demonstration of the use of SIDPAC with real flight test data from the NASA Glenn Twin Otter aircraft. The SIDPAC software is available without charge to U.S. citizens by request to the author, contingent on the requestor completing a NASA software usage agreement.

  7. A dispersion modelling system for urban air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Karppinen, A.; Kukkonen, J.; Nordlund, G.; Rantakrans, E.; Valkama, I.

    1998-10-01

    An Urban Dispersion Modelling system UDM-FMI, developed at the Finnish Meteorological Institute is described in the report. The modelling system includes a multiple source Gaussian plume model and a meteorological pre-processing model. The dispersion model is an integrated urban scale model, taking into account of all source categories (point, line, area and volume sources). It includes a treatment of chemical transformation (for NO{sub 2}) wet and dry deposition (for SO{sub 2}) plume rise, downwash phenomena and dispersion of inert particles. The model allows also for the influence of a finite mixing height. The model structure is mainly based on the state-of-the-art methodology. The system also computes statistical parameters from the time series, which can be compared to air quality guidelines. The relevant meteorological parameters for the dispersion model are evaluated using data produced by a meteorological pre-processor. The model is based mainly on the energy budget method. Results of national investigations have been used for evaluating climate-dependent parameters. The model utilises the synoptic meteorological observations, radiation records and aerological sounding observations. The model results include the hourly time series of the relevant atmospheric turbulence 51 refs.

  8. Assessment of indoor air quality in comparison using air conditioning and fan system in printing premise

    Directory of Open Access Journals (Sweden)

    Ramlan Nazirah

    2017-01-01

    Full Text Available Printers contribute to various emissions consist with chemical contaminants. High concentration of the particulate matter can cause serious health problems. This study focuses on the indoor air quality in printing premise unit in Universiti Tun Hussein Onn, Malaysia. Field testing involving air sampling methods were taken from 900 hours to 1600 hours, for every 30 minutes using physical measurement which is Multi-Channel Air Quality Monitor (YESAIR, E-Sampler and Ozone Meter. Air sampling was recorded based on one sampling point and most suitable point for production. A comparison based on different ventilation using fan and air-conditioning were also taken and results is being compared based on OSHA and NIOSH standards. Besides that, the statistical analysis is being conducted in order to predict the effect on number of printers. From the result, the O3 concentrations show, 10% reduced for printing premise using fan ventilation compared to air-conditioning but remain the same value for PM2.5. The concentration of O3 increased when the number of printers decreased, while the concentration of PM2.5 increased the increase of printers number. Overall, the use of fan in printing premise is more suggested since the level is slightly lower than the printing premise using air-conditioning.

  9. 4D Trajectory Estimation for Air Traffic Control Automation System Based on Hybrid System Theory

    Directory of Open Access Journals (Sweden)

    Xin-Min Tang

    2012-03-01

    Full Text Available To resolve the problem of future airspace management under great traffic flow and high density condition, 4D trajectory estimation has become one of the core technologies of the next new generation air traffic control automation system. According to the flight profile and the dynamics models of different aircraft types under different flight conditions, a hybrid system model that switches the aircraft from one flight stage to another with aircraft state changing continuously in one state is constructed. Additionally, air temperature and wind speed are used to modify aircraft true airspeed as well as ground speed, and the hybrid system evolution simulation is used to estimate aircraft 4D trajectory. The case study proves that 4D trajectory estimated through hybrid system model can image the flight dynamic states of aircraft and satisfy the needs of the planned flight altitude profile.KEY WORDSair traffic management, 4D trajectory estimation, hybrid system model, aircraft dynamic model

  10. Urban Air Pollution in Taiwan before and after the Installation of a Mass Rapid Transit System.

    Science.gov (United States)

    Ding, Pei-Hsiou; Wang, Gen-Shuh; Chen, Bing-Yu; Wan, Gwo-Hwa

    2016-09-01

    Urbanization causes air pollution in metropolitan areas, coupled with meteorological factors that affect air quality. Although previous studies focused on the relationships of urbanization, air pollution, and climate change in Western countries, this study evaluated long-term variations of air quality and meteorological factors in Taiwanese metropolitan areas (Taipei area, Taichung City, and Kaohsiung City) and a rural area (Hualien County) between 1993 and 2012. The influence of a mass rapid transit (MRT) system on air quality was also evaluated. Air pollutant concentrations and meteorology data were collected from Taiwan Environmental Protection Administration (TEPA) air monitoring stations and Central Weather Bureau stations in the surveyed areas, respectively. Analyses indicate that levels of air pollution in metropolitan areas were greater than in the rural area. Kaohsiung City had the highest levels of O, SO, and particulate matter 2.5 or 10 µm in diameter (PM and PM). Clear downward trends for CO, NO, PM, PM, and especially SO concentrations were found in the surveyed areas, whereas O showed no decrease. Both O and PM concentrations showed similar bimodal seasonal distributions. Taiwan's air quality has improved significantly since 1993, indicating the effectiveness of promoting air pollution strategies and policies by the TEPA. Air pollution had an obvious improvement in Taipei area after the MRT system began operations in 1996. Because global climate may potentially affect urban air pollution in Taiwan, further study to clarify the mechanisms by which air pollution may affect human health and other biological effects is warranted.

  11. Impact of air conditioning system operation on increasing gases emissions from automobile

    Science.gov (United States)

    Burciu, S. M.; Coman, G.

    2016-08-01

    The paper presents a study concerning the influence of air conditioning system operation on the increase of gases emissions from cars. The study focuses on urban operating regimes of the automobile, regimes when the engines have low loads or are operating at idling. Are presented graphically the variations of pollution emissions (CO, CO2, HC) depending of engine speed and the load on air conditioning system. Additionally are presented, injection duration, throttle position, the mechanical power required by the compressor of air conditioning system and the refrigerant pressure variation on the discharge path, according to the stage of charging of the air conditioning system.

  12. A Simulation Testbed for Dynamic Air Corridors within the Next Generation Air Transportation System Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The key innovation in this effort is the development of a simulation testbed for identifying dynamic air corridors that can increase aircraft throughput in and...

  13. Thermoeconomic Lifecycle Energy Recovery System Optimization for Central Air-Conditioning System Using Evolutionary Technique

    Directory of Open Access Journals (Sweden)

    Liaquat Ali Khan

    2012-01-01

    Full Text Available Energy efficient systems are the most desirable systems. Due to huge rise in energy prices and lack of availability of energy, the effective use of energy has become the need of time. Energy recovery both in heating systems as well as in air-conditioning systems saves a lot of energy. In this paper energy recovery system has been designed and optimized for central air-conditioning systems for various ranges. Cost function includes capital cost along with pumping and exergy destruction cost. This shows that installation of energy recovery system with a central air-conditioning has a significant amount of saved energy and payback period is within a year. PFHE (Plate Fin Heat Exchanger is designed and optimized using evolutionary optimization. In order to verify the capabilities of the proposed method, a case study is also presented showing that significant amount of energy is recovered at a reasonable payback period. Sensitivity analysis is also done with the energy prices.

  14. [Sick building syndrome and HVAC system: MVOC from air filters].

    Science.gov (United States)

    Schleibinger, H W; Wurm, D; Möritz, M; Böck, R; Rüden, H

    1997-08-01

    Growth and emissions of volatile metabolites of microorganisms on air filters are suspected to contribute to health complaints in ventilated rooms. To prove the microbiological production of volatile organic compounds (MVOC), concentrations of aldehydes and ketones were determined in two large HVAC systems. The in situ derivated aldehydes and ketones (as 2,4-dinitrophenyl-hydrazones) were analysed by HPLC and UV detection. The detection limit of each compound was 1 ppb (margin of error HVAC systems. First results show that the compounds formaldehyde, acetaldehyde and acetone could be detected before and after the filters. The concentrations of these VOC after the filters were significantly increased--as a mean over twenty measurements--, especially as far as filters made of glass fibre are concerned. However the found concentrations were low and mostly comparable to outdoor findings. In simultaneous laboratory experiments pieces of used filter material of one HVAC system and unused filter pieces (for blank values) were examined in small incubation chambers to investigate the possible production of MVOC. For the incubation a temperature of 20 degrees C and a relative humidity of 95% was chosen. In these experiments an almost identical spectrum of compounds (formaldehyde and acetone) was found as in the field measurements. The concentrations of these compounds were higher in the chambers with the used filter pieces. The concentration of acetone ranged up to almost 12 mg/m3.--As our field experiments correspond with our laboratory experiments, we assume that the microbial production of volatile organic compounds in HVAC systems under operating conditions is possible.

  15. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    Energy Technology Data Exchange (ETDEWEB)

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  16. System safety and the Coast Guard Lighter-Than-Air system project

    OpenAIRE

    1983-01-01

    Approved for public release; distribution is unlimited The Coast Guard is evaluating the potential of Lighter-Than-Air (LTA) vehicles for possible future Coast Guard utilization. Progress of the project is explored. Safety science is an emerging field particularly of value in the historically hazardous realm of aviation. The System Safety Concept as applicable to major project development is examined. One of the fundamental tasks of system safety management is to identify possible haza...

  17. Computerized Simulation of Automotive Air-Conditioning System: A Parametric Study

    Directory of Open Access Journals (Sweden)

    Haslinda Mohamed Kamar

    2013-01-01

    Full Text Available This paper presents results of a parametric study performed on an automotive air-conditioning (AAC system of a passenger car. The goals are to assess the effects of varying the volumetric flow rate of supply air, number of occupants, vehicle speed, and the fractional ventilation air intake (XOA, on the dry-bulb temperature and specific humidity of the air inside the passengers cabin, and on the evaporator coil cooling load of the AAC system. Results of the parametric study show that increasing the supply air flow rate reduces the dry-bulb temperature of the cabin air, increases both the specific humidity of the air and the evaporator coil load. Increasing the number of occupants in the passenger cabin causes the cabin air temperature, specific humidity and the evaporator coil load to increase. Increasing the vehicle speed causes the specific humidity of the cabin air and the evaporator coil cooling load to increase but the dry-bulb temperature of the air is not significantly affected. Increasing the fractional fresh air intake (XOA also increases the cabin air specific humidity and the evaporator coil cooling load.

  18. Influence of Ventilation Ratio on Desiccant Air Conditioning System's Efficiency Performance

    Science.gov (United States)

    Tran, Thien Nha; Akisawa, Atsushi; Kashiwagi, Takao; Hamamoto, Yoshinori

    Ventilation air is a concern for engineers since ventilated air controls indoor air contamination; additional ventilation, however, increases the energy consumption of buildings. The study investigates the energy efficiency performance of the desiccant dehumidification air conditioning system in the context of ventilation for a hot-humid climate such as summer in Japan. The investigation focuses on the variable ratio of ventilation air as required by the application of air conditioning system. The COP of the desiccant air conditioning system is determined. The evaluation is subsequently performed by comparing the desiccant based system with the conventional absorption cooling system and the vapor compression cooling system. Based on 12 desiccant rotor simulations, it is found that the desiccant regeneration temperature required varies between 47°C to 85°C as ventilation ratio increases from 0. 0 to 100%, and up to 52. 5°C as the ventilation ratio achieves 14%. The heat required for regenerating desiccant accounts for 55% and higher of the system's total heat consumption; the system is expected to be energy efficient by using wasted heat from the absorption chiller for desiccant regeneration; and its energy efficiency expands as the ratio of ventilation air rises above 15% compared with the conventional absorption cooling system. The energy efficiency also benefits as the ratio rises beyond 70% against the conventional vapor compression cooling system.

  19. Impact of blower performance on residential forced-air heating system performance

    Energy Technology Data Exchange (ETDEWEB)

    Phillips, B.G. [UNIES Ltd., Winnipeg, Manitoba (Canada)

    1998-10-01

    A Canadian association of electric utilities commissioned a study on Blower Efficiency in Domestic Heating Systems because furnace blowers have undesirable load characteristics for electrical utilities; their loads often peak coincident with utility system winter (heating) and summer (air-conditioning) peaks. The study examined air-handling technologies used in domestic furnaces, surveyed residential heating and cooling system installer practices, and measured air-handling performance of 71 existing forced-air heating systems installed between 1960 and 1994. This paper summarizes study findings, including changes in furnace airflows, static pressures, air-handling efficiencies, power requirements, and noise levels. It relates air-handling power requirements and airflows of new furnaces to furnace thermal efficiency.

  20. Performance Analysis of a Solar Dryer Equipped with a Recycling Air System and Desiccant Chamber

    Directory of Open Access Journals (Sweden)

    M.H Aghkhani

    2013-09-01

    Full Text Available Drying is a high energy consuming process. Solar drying is one of the most popular methods for dehydration of agricultural products. In the present study, the performance of a forced convection solar dryer equipped with recycling air system and desiccant chamber was investigated. The solar dryer is comprised of solar collector, drying chamber, silica jell desiccant chamber, air ducts, fan and measuring and controlling system. Drying rate and energy consumption in three levels of air temperature (40, 45 and 50 oC and two modes of drying (with recycling air and no-recycling with open duct system were measured and compared. The results showed that increasing the drying air temperature decreased the drying time and increased the energy consumption in the mode of non-recycling air system. The dryer efficiency and drying rate were better in the mode of recycling air system than open duct system. The highest dryer efficiency was obtained from drying air temperature of 50 oC and the mode of recycling air system. In general, the efficiency of solar collector and the highest efficiency of the dryer were 0.34 and 0.41, respectively.

  1. On-line air quality management system for urban-areas in Norway

    Energy Technology Data Exchange (ETDEWEB)

    Sivertsen, B.; Trond, Bohler [Norwegian Institute for Air Research, Kjeller (Norway)

    2000-07-01

    The main feature of the modem environmental management system is the integrated approach that enables the user directly accesses to data for assessment and planning of actions. The demand of the integrated system to enable monitoring, forecasting and warning of pollution situations has been and will be increasing in the future. An important basis for the projects carried out in urban areas in Norway has been the modem Environmental Surveillance and Information System (ENSIS), developed in a close co-operation between institutions dealing with air and water pollution in Norway. The air pollution part of this system, AirQUIS, has been developed at the Norwegian Institute for Air Research and is being based on geographical information systems (GIS) platform. The NILU developed AirQUIS system is a map oriented user friendly air quality management system to be used in urban and industrial areas. It contains all modules necessary to perform air quality assessment, such as databases for measurement and emissions, dispersion models and exposure module for health and materials. The AirQUIS system operates through menus and maps on the modem Windows NT platform in network with several PC clients. The process of attaining acceptable urban air quality is definitely long term, and it is dynamic. The urban area develops, and population, sources and technology change. Throughout this process, it is very important to have an operating Information System of Air Quality (AQIS), in order to: Keep the authorities and the public well informed about the short-term and long-term air quality development. Control the results of abatement measures, and thereby. Provide feedback information to the abatement strategy process. The basic concept for an Air Quality Management Strategy contains the following main components: Air Quality Assessment; Environmental Damage Assessment; Abatement Options Assessment; Cost Benefit Analysis or Cost Effectiveness Analysis; Abatement Measures; Optimum

  2. System and method for conditioning intake air to an internal combustion engine

    Energy Technology Data Exchange (ETDEWEB)

    Sellnau, Mark C.

    2015-08-04

    A system for conditioning the intake air to an internal combustion engine includes a means to boost the pressure of the intake air to the engine and a liquid cooled charge air cooler disposed between the output of the boost means and the charge air intake of the engine. Valves in the coolant system can be actuated so as to define a first configuration in which engine cooling is performed by coolant circulating in a first coolant loop at one temperature, and charge air cooling is performed by coolant flowing in a second coolant loop at a lower temperature. The valves can be actuated so as to define a second configuration in which coolant that has flowed through the engine can be routed through the charge air cooler. The temperature of intake air to the engine can be controlled over a wide range of engine operation.

  3. Evaluation of an improved air distribution system for aircraft cabin

    DEFF Research Database (Denmark)

    Pang, Liping; Xu, Jie; Fang, Lei

    2013-01-01

    of contaminated air above the head of the passengers. The improved pattern may overcome the above challenges quite well while also delivering good ventilation performance. The modified Personal Exposure Effectiveness (PEE) was measured to compare their performances with regard to inhaled air quality. The measured...

  4. System and method for air temperature control in an oxygen transport membrane based reactor

    Science.gov (United States)

    Kelly, Sean M

    2016-09-27

    A system and method for air temperature control in an oxygen transport membrane based reactor is provided. The system and method involves introducing a specific quantity of cooling air or trim air in between stages in a multistage oxygen transport membrane based reactor or furnace to maintain generally consistent surface temperatures of the oxygen transport membrane elements and associated reactors. The associated reactors may include reforming reactors, boilers or process gas heaters.

  5. Dynamic analysis and design of air spring mounting system for marine propulsion system

    Science.gov (United States)

    He, Lin; Xu, Wei; Bu, Wenjun; Shi, Liang

    2014-09-01

    Marine propulsion unit (MPU) is one of the dominant vibration and noise sources onboard ship. Its vibration can be attenuated effectively by isolating MPU with low-frequency mounting system. But this is difficult to implement due to the stringent requirement of MPU alignment with the propulsion shafting. In this paper a novel air spring mounting system (ASMS) for propulsion system is proposed consisting of air spring subsystem, alignment control subsystem and safety protection subsystem. The load distribution optimization method and dynamic model of ASMS are presented. The factors that affect system stability and natural frequencies are analyzed, as well as the design measures to enhance system performance. A theoretical model is presented to estimate the isolation effect of ASMS. The monitoring model of alignment between MPU and propulsion shafting is established, followed by the alignment control algorithm and converge rule which assures the fast and uniform convergence of both air springs load distribution and alignment control process. Safety protection mechanism is designed to ensure that the MPU can operate safely in case of ASMS failure or other extreme circumstances. A scaled ASMS prototype is manufactured and tested on a special experimental setup. Experimental results validate the effectiveness of theoretical models and show that the performance of ASMS satisfies the operation requirements of MPU.

  6. Metodologia de ensino : as ciencias como formas de pensar o mundo

    OpenAIRE

    1992-01-01

    Resumo: A proposta principal do estudo é explicitar os fundamentos para uma conceitualização das metodologias de ensino que considera seus multiplos elementos estruturantes. Dentre eles a concepçao de ciência como processo de conhecimento socialmente construído, a especificidade das metodologias científicas e das suas respectivas metodologias de ensino. Essa especificidade se realiza no método filosófico que direciona o conjunto dos métodos especiais, como mediatização do conhecimento do m...

  7. Using Unmanned Air Systems to Monitor Methane in the Atmosphere

    Science.gov (United States)

    Clow, Jacqueline; Smith, Jeremy Christopher

    2016-01-01

    Methane is likely to be an important contributor to global warming, and our current knowledge of its sources, distributions, and transport is insufficient. It is estimated that there could be from 7.5 to 400 billion tons carbon-equivalent of methane in the arctic region, a broad range that is indicative of the uncertainty within the Earth Science community. Unmanned Air Systems (UASs) are often used for combat or surveillance by the military, but they also have been used for Earth Science field missions. In this study, we will analyze the utility of the NASA Global Hawk and the Aurora Flight Sciences Orion UASs compared to the manned DC-8 aircraft for conducting a methane monitoring mission. The mission will focus on the measurement of methane along the boundaries of Arctic permafrost thaw and melting glaciers. The use of Long Endurance UAS brings a new range of possibilities including the ability to obtain long- term and persistent observations and to significantly augment methane measurements/retrievals collected by satellite. Furthermore, we discuss the future of long endurance UAS and their potential for science applications in the next twenty to twenty-five years.

  8. Air management system for automotive fuel cells; Luftversorgungssystem fuer Fahrzeugbrennstoffzellen

    Energy Technology Data Exchange (ETDEWEB)

    Kauder, K.; Temming, J. [Dortmund Univ. (Germany). Fachgebiet Fluidenergiemaschinen

    2001-07-01

    Fuel cells have attained a predominant position in the development of alternative automotive drives during the last few years. The Polymer Electrolyte Membrane Fuel Cell (PEMFC), preferred for automotive applications, requires compressed air for maximum efficiency. In most prototypes this is provided by twin-screw compressors. The article introduces the different types of fuel cells, and the system and requirements of mobile applications of fuel cells. The advantages and development potential of screw compressors are described. Furthermore concepts of a compressor-expander module based on screw machines are presented and discussed. (orig.) [German] Bei der Entwicklung alternativer Fahrzeugantriebe hat die Brennstoffzelle in den letzten Jahren eine vorherrschende Stellung eingenommen. Die Polymer-Elektrolyt-Membran Brennstoffzelle, PEMFC, die fuer automotive Anwendungen bevorzugt verwendet wird, benoetigt fuer einen optimalen Wirkungsgrad eine Druckluftversorgung. Als Compressor kommt derzeit insbesondere der Schraubenlader bzw. -compressor in verschiedenen Prototypenfahrzeugen zum Einsatz. Der Beitrag behandelt zunaechst die unterschiedlichen Brennstoffzellentypen, den Systemaufbau und die Anforderungen an die mobile Anwendung der Brennstoffzelle. Fuer diesen speziellen Anwendungsfall werden Vorteile und Entwicklungsmoeglichkeiten der Schraubenmaschine dargelegt. Davon ausgehend finden sich Konzepte zum Aufbau eines Compressor-Expander-Moduls (CEM) auf Basis der Schraubenmaschinen. (orig.)

  9. Air Liquide's pulse tube cryocooler systems for space applications

    Science.gov (United States)

    Trollier, T.; Tanchon, J.; Rey, J. C.; Ravex, A.; Buquet, J.

    2009-05-01

    Thanks to important development efforts completed internally and with the European Space Agency (ESA) funding, Air Liquide Advanced Technology Division (AL/DTA) is now in position to propose two Pulse Tube cooler systems in the 40-80K temperature range for coming Earth Observation missions such as Meteosat Third Generation (MTG), SIFTI, etc... The Miniature Pulse Tube Cooler (MPTC) is lifting up to 2.47W@80K with 50W maximal compressor input power and 10°C rejection temperature. The weight is 2.8 kg. The Large Pulse Tube Cooler (LPTC) is providing 2.3W@50K for 160W input power and 10°C rejection temperature. This product is weighing 5.1 kg. The two pulse tube coolers thermo-mechanical units are qualified against environmental constraints as per ESA ECSS-E-30. They are both using dual opposed pistons flexure bearing compressor with moving magnet linear motors in order to ensure very high lifetime. The associated Cooler Drive Electronics is also an important aspect specifically regarding the active control of the cooler thermo-mechanical unit during the launch phase and the active reduction of the vibrations induced by the compressor (partly supported by the French Agency CNES). This paper details the presentation of the two Pulse Tube Coolers together with the Cooler Drive Electronics aspects.

  10. Evaluation of turbine systems for compressed air energy storage plants. Final report for FY 1976

    Energy Technology Data Exchange (ETDEWEB)

    Kartsounes, G.T.

    1976-10-01

    Compressed air energy storage plants for electric utility peak-shaving applications comprise four subsystems: a turbine system, compressor system, an underground air storage reservoir, and a motor/generator. Proposed plant designs use turbines that are derived from available gas and steam turbines with proven reliability. The study examines proposed turbine systems and presents an evaluation of possible systems that may reduce capital cost and/or improve performance. Six new turbine systems are identified for further economic evaluation.

  11. INTEGRATED AIR POLLUTION CONTROL SYSTEM, VERSION 4.0 - VOLUME 2: TECHNICAL DOCUMENTATION MANUAL

    Science.gov (United States)

    The Integrated Air Pollution Control System (IAPCS) was developed for the U.S. EPA's Air and Energy Engineering Research Laboratory to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, and ...

  12. Energy saving system of terminal regulated air volume in intelligent building

    Institute of Scientific and Technical Information of China (English)

    LIJiangtao; WANGPu

    2003-01-01

    This paper describes the application and the prominent energy saving of the new tecnnique Terminai Reguiation Air Volume(TRAV) air conditioning systems in intelligent building. Furthermore, it studies the problem taking full advantage of the Building Automation System(BAS) to save energy and to meet with demands of the intelligent building individuation.

  13. 75 FR 15620 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2010-03-30

    ... National Highway Traffic Safety Administration 49 CFR Part 571 RIN 2127-AK62 Federal Motor Vehicle Safety... that amended the Federal motor vehicle safety standard for air brake systems by requiring substantial... 37122) amending Federal Motor Vehicle Safety Standard (FMVSS) No. 121, Air Brake Systems, to...

  14. 76 FR 44829 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2011-07-27

    ... Administration 49 CFR Part 571 [Docket No. NHTSA-2009-0175] RIN 2127-AK84 Federal Motor Vehicle Safety Standards... published a final rule that amended the Federal motor vehicle safety standard for air brake systems by... Federal Motor Vehicle Safety Standard (FMVSS) No. 121, Air Brake Systems, to require improved...

  15. Hot-wire air flow meter for gasoline fuel-injection system. Calculation of air mass in cylinder during transient condition; Gasoline funsha system yo no netsusenshiki kuki ryuryokei. Kato untenji no cylinder juten kukiryo no keisan

    Energy Technology Data Exchange (ETDEWEB)

    Oyama, Y. [Hitachi Car Engineering, Ltd., Tokyo (Japan); Nishimura, Y.; Osuga, M.; Yamauchi, T. [Hitachi, Ltd., Tokyo (Japan)

    1997-10-01

    Air flow characteristics of hot-wire air flow meters for gasoline fuel-injection systems with supercharging and exhaust gas recycle during transient conditions were investigated to analyze a simple method for calculating air mass in cylinder. It was clarified that the air mass in cylinder could be calculated by compensating for the change of air mass in intake system by using aerodynamic models of intake system. 3 refs., 6 figs., 1 tab.

  16. Iatrogenic systemic air embolism treated with hyperbaric oxygen therapy

    DEFF Research Database (Denmark)

    Jørgensen, Thomas Bech; Sørensen, Allan Martini Ibsen; Jansen, Erik C.

    2008-01-01

    Air embolism is a rare and potentially severe complication of surgical and invasive procedures. Emboli large enough to produce symptoms require immediate treatment because of the risk of 'gas lock' in the right side of the heart and subsequent circulatory failure. If air is transmitted to the art...... to the arterial circulation through a shunt, it may cause cerebral emboli with neurological symptoms. We present two cases with venous air emboli and concurrent cerebral arterial emboli. Both patients were successfully treated with hyperbaric oxygen therapy Udgivelsesdato: 2008/4...

  17. Thermodynamic study of air-cycle and mercury-vapor-cycle systems for refrigerating cooling air for turbines or other components

    Science.gov (United States)

    Nachtigall, Alfred J; Freche, John C; Esgar, Jack B

    1956-01-01

    An analysis of air refrigeration systems indicated that air cycles are generally less satisfactory than simple heat exchangers unless high component efficiencies and high values of heat-exchanger effectiveness can be obtained. A system employing a mercury-vapor cycle appears to be feasible for refrigerating air that must enter the system at temperature levels of approximately 1500 degrees R, and this cycle is more efficient than the air cycle. Weight of the systems was not considered. The analysis of the systems is presented in a generalized dimensionless form.

  18. Cooling Performance Characteristics on Mobile Air-Conditioning System for Hybrid Electric Vehicles

    Directory of Open Access Journals (Sweden)

    Ho-Seong Lee

    2013-01-01

    Full Text Available This study investigates the cooling performance characteristics of the mobile air-conditioning system using R744 (CO2 for the hybrid electric vehicle as an alternative to both the R-134a and the conventional air-conditioning system. The developed air-conditioning system is operated with an electric driven compressor in the battery driving mode and a belt driven compressor in the engine driving mode. The cooling performance characteristics of the developed system have been analyzed by experiments under various operating conditions of inlet air temperature, air flow rates for the gas cooler side and evaporator side, and electric compressor revolution respectively. As a result, cooling performances of the tested air-conditioning system for the EDC driving mode (electricity driven compressor were better than those for the BDC driving mode (belt driven compressor. The cooling capacity and cooling COP of the tested air-conditioning system for both driving modes were over 5.0 kW and 2.0, respectively. The observed cooling performance of the tested air-conditioning system may be sufficient for the cabin cooling of hybrid electric vehicles.

  19. Air cooled turbine component having an internal filtration system

    Science.gov (United States)

    Beeck, Alexander R [Orlando, FL

    2012-05-15

    A centrifugal particle separator is provided for removing particles such as microscopic dirt or dust particles from the compressed cooling air prior to reaching and cooling the turbine blades or turbine vanes of a turbine engine. The centrifugal particle separator structure has a substantially cylindrical body with an inlet arranged on a periphery of the substantially cylindrical body. Cooling air enters centrifugal particle separator through the separator inlet port having a linear velocity. When the cooling air impinges the substantially cylindrical body, the linear velocity is transformed into a rotational velocity, separating microscopic particles from the cooling air. Microscopic dust particles exit the centrifugal particle separator through a conical outlet and returned to a working medium.

  20. Experimental investigation of the influence of the air jet trajectory on convective heat transfer in buildings equipped with air-based and radiant cooling systems

    DEFF Research Database (Denmark)

    Le Dreau, Jerome; Heiselberg, Per; Jensen, Rasmus Lund

    2015-01-01

    -state and dynamic conditions. With the air-based cooling system, a dependency of the convective heat transfer on the air jet trajectory has been observed. New correlations have been developed, introducing a modified Archimedes number to account for the air flow pattern. The accuracy of the new correlations has been...

  1. Operations Research in a New Spanish Air Force Planning System

    Science.gov (United States)

    1991-06-01

    8. Gomez-Coll, Gen. Carlos. " Politica Area a corto y medio plazo," Revista de Aeronautica y Astronautica 569, pages 553-558 (May 1988). 9. Howard...Department of the Air Force. Basic Aerospace Doctrine of the United States Air Force. AFM 1-1. Washington: HQ USAF, March 1984. 5. Editorial. " Politica de...Defensa y Planeamiento Militar," Revista de Aeronautica y Astronautica 565 (January 1988). 6. Ferguson, Lt. Gen. Thomas R. "Requirements Planning

  2. Uma metodologia para a psicanálise

    Directory of Open Access Journals (Sweden)

    Oswaldo França Neto

    2015-07-01

    Full Text Available Alain Badiou lamentou a hegemonia contemporânea da álgebra (que lida com números em detrimento da geometria (que lida com formas e figuras. Seguindo o ideal do cogito cartesiano de recobrimento do ser pelo saber, a ciência tem buscado tudo apreender em termos quantitativos, passível de mensuração. Sabemos também que, classicamente, a universalidade é concebível apenas no apagamento das singularidades. Como pensar, nesse contexto, um sujeito? É possível uma fórmula contemplar conjuntamente o universal (matema e o singular (a que se refere um sujeito? Torna-se interessante a progressiva escolha de Lacan em trabalhar com a teoria matemática das categorias que se interessam por setas, ou funções, e as deformações que aí se operacionalizam. Poderíamos aventar que Lacan propõe uma metodologia da transformação, ao forçar a ex-sistência do real como terceiro elemento indissociável da consolidada associação científica do saber com a verdade, forçando a subversão do que seriam esses dois últimos termos.

  3. Similaridades entre semiologias na metodologia da aprendizagem baseada em problemas

    Directory of Open Access Journals (Sweden)

    Valdecir Bertoncello

    Full Text Available O Programa de Aprendizagem de Ginecologia e Obstetrícia da PUC-PR adota a aprendizagem baseada em problemas como metodologia de aprendizagem. Neste programa, são executados diversos casos clínicos que compõem seu conteúdo. Para cada caso clínico, os professores definem uma semiologia principal e as respectivas semiologias secundárias, a fim de definir o conjunto de ações ou procedimentos que os alunos devem executar. Visando à inserção das tecnologias da informação e comunicação no aprendizado dos alunos, foi desenvolvido um sistema que permite obter, passo a passo, as ações e procedimentos executados pelos alunos. O objetivo geral deste trabalho é conceber um modelo matemático e computacional que permita obter índices de similaridade entre as semiologias definidas pelos professores e as executadas pelos alunos.

  4. Complex Adaptive Systems: The Theater Air Control System in Desert Storm

    Science.gov (United States)

    2014-05-22

    needs through effective leadership that encourages innovation and diversity of ideas. iii ACKNOWLEDGEMENTS I would like to thank my beautiful ...Implications of Complex Adaptive Systems Theory for C2, 2006, 3, http://oai.dtic.mil/oai/oai? verb =getRecord&metadataPrefix=html&identifier=ADA463382...Genesis of the Air Campaign Against Iraq (DTIC Document, 1995), 49, http://oai.dtic.mil/oai/oai? verb =getRecord&metadataPrefix=html&identifier

  5. Oceanic Area System Improvement Study (OASIS). Volume IV. Caribbean Region Air Traffic Services System Description.

    Science.gov (United States)

    1981-09-01

    Departamento de Transito Aereo) of the National Airways Division (Division de Aerovias Nacionales) as the authority responsible for the general...Directorate of Air Transport and Traffic (Direccion General Sectorial de Transporte y Transito Aereo - DGTTA), which in turn falls under the authority of...Northern Coastal Region of 4 the Directorate of Engineering and Systems (Direccion de Ingenieria y Sistemas), which is responsible for maintenance of the

  6. Assessment of microbiological indoor air quality in an Italian office building equipped with an HVAC system.

    Science.gov (United States)

    Bonetta, Sa; Bonetta, Si; Mosso, S; Sampò, S; Carraro, E

    2010-02-01

    The purpose of this study was to evaluate the level and composition of bacteria and fungi in the indoor air of an Italian office building equipped with a heating, ventilation and air conditioning (HVAC) system. Airborne bacteria and fungi were collected in three open-space offices during different seasons. The microbial levels in the outdoor air, supply air diffusers, fan coil air flow and air treatment unit humidification water tank were used to evaluate the influence of the HVAC system on indoor air quality (IAQ). A medium-low level of bacterial contamination (50-500 CFU/m(3)) was found in indoor air. Staphylococcus and Micrococcus were the most commonly found genera, probably due to human presence. A high fungal concentration was measured due to a flood that occurred during the winter. The indoor seasonal distribution of fungal genera was related to the fungal outdoor distribution. Significant seasonal and daily variation in airborne microorganisms was found, underlining a relationship with the frequency of HVAC system switching on/off. The results of this monitoring highlight the role of the HVAC system on IAQ and could be useful to better characterise bacterial and fungal population in the indoor air of office buildings.

  7. Implementasi Adaptive Neuro-Fuzzy Inference System (Anfis untuk Peramalan Pemakaian Air di Perusahaan Daerah Air Minum Tirta Moedal Semarang

    Directory of Open Access Journals (Sweden)

    Ulfatun Hani'ah

    2016-06-01

    Full Text Available Peramalan pemakaian air pada bulan januari 2015 sampai April 2015 dapat dilakukan menggunakan perhitungan matematika dengan bantuan ilmu komputer. Metode yang digunakan adalah Adaptive Neuro Fuzzy Inference System (ANFIS dengan bantuan software MATLAB. Untuk pengujian program, dilakukan percobaan dengan memasukkan variabel klas = 2, maksimum epoh = 100, error = 10-6, rentang nilai learning rate = 0.6 sampai 0.9, dan rentang nilai momentum = 0.6 sampai 0.9. Simpulan yang diperoleh adalah bahwa implementasi metode Adaptive Neuro-Fuzzy Inference System dalam peramalan pemakaian air yang pertama adalah membuat rancangan flowchart, melakukan clustering data menggunakan fuzzy C-Mean, menentukan neuron tiap-tiap lapisan, mencari nilai parameter dengan menggunakan LSE rekursif, lalu penentuan perhitungan error menggunakan sum square error (SSE dan membuat sistem peramalan pemakaian air dengan software MATLAB. Setelah dilakukan percobaan hasil yang menunjukkan SSE paling kecil adalah nilai learning rate 0.9 dan momentum 0.6 dengan SSE 0.0080107. Hasil peramalan pemakaian air pada bulan Januari adalah 3.836.138m3, bulan Februari adalah 3.595.188m3, bulan Maret adalah 3.596.416 m3, dan bulan April adalah 3.776.833 m3. 

  8. Electronically Controlling the System of Preheating Intake Air by Flame for Diesel Engine Cold-Start

    Institute of Scientific and Technical Information of China (English)

    杜巍; 赵福堂

    2003-01-01

    In order to improve the cold-start performance of heavy duty diesel engine, electronically controlling the preheating of intake air by flame was researched. According to simulation and thermodynamic analysis about the partial working processes of the diesel engine, the amount of heat energy, enough to make the fuel self-ignite at the end of compression process at different temperatures of coolant and intake-air, was calculated. Several HY20 preheating plugs were used to heat up the intake air. Meanwhile, an electronic control system based on 8 bit micro-controller unit (MCS-8031) was designed to automatically control the process of heating intake air. According to the various temperatures of coolant and ambient air, one plug or two plugs can automatically be selected to heat intake air. The demo experiment validated that the total system could operate successfully and achieve the scheduled function.

  9. The Apheis project: Air Pollution and Health—A European Information System

    OpenAIRE

    Medina, Sylvia; Le Tertre, Alain; Saklad, Michael; ,

    2009-01-01

    At a time when the Health Effects Institute, Centers for Disease Control, and Environmental Protection Agency are creating an Environmental Public Health Tracking Program on Air Pollution Effects in the USA, it seemed useful to share the experience acquired since 1999 by the Apheis project (Air Pollution and Health—A European Information System), which has tracked the effects of air pollution on health in 26 European cities and continues to do so as the new Aphekom project. In particular, thi...

  10. Francisella guangzhouensis sp. nov., isolated from air-conditioning systems.

    Science.gov (United States)

    Qu, Ping-Hua; Chen, Shou-Yi; Scholz, Holger C; Busse, Hans-Jürgen; Gu, Quan; Kämpfer, Peter; Foster, Jeffrey T; Glaeser, Stefanie P; Chen, Cha; Yang, Zhi-Chong

    2013-10-01

    Four strains (08HL01032(T), 09HG994, 10HP82-6 and 10HL1960) were isolated from water of air-conditioning systems of various cooling towers in Guangzhou city, China. Cells were Gram-stain-negative coccobacilli without flagella, catalase-positive and oxidase-negative, showing no reduction of nitrate, no hydrolysis of urea and no production of H2S. Growth was characteristically enhanced in the presence of l-cysteine, which was consistent with the properties of members of the genus Francisella. The quinone system was composed of ubiquinone Q-8 with minor amounts of Q-9. The polar lipid profile consisted of the predominant lipids phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine, two unidentified phospholipids (PL2, PL3), an unidentified aminophospholipid and an unidentified glycolipid (GL2). The polyamine pattern consisted of the major compounds spermidine, cadaverine and spermine. The major cellular fatty acids were C10 : 0, C14 : 0, C16 : 0, C18 : 1ω9c and C18 : 1 3-OH. A draft whole-genome sequence of the proposed type strain 08HL01032(T) was generated. Comparative sequence analysis of the complete 16S and 23S rRNA genes confirmed affiliation to the genus Francisella, with 95 % sequence identity to the closest relatives in the database, the type strains of Francisella philomiragia and Francisella noatunensis subsp. orientalis. Full-length deduced amino acid sequences of various housekeeping genes, recA, gyrB, groEL, dnaK, rpoA, rpoB, rpoD, rpoH, fopA and sdhA, exhibited similarities of 67-92 % to strains of other species of the genus Francisella. Strains 08HL01032(T), 09HG994, 10HP82-6 and 10HL1960 exhibited highly similar pan-genome PCR profiles. Both the phenotypic and molecular data support the conclusion that the four strains belong to the genus Francisella but exhibit considerable divergence from all recognized Francisella species. Therefore, we propose the name Francisella guangzhouensis sp

  11. Parametric Analysis of a Rotary Type Liquid Desiccant Air Conditioning System

    Directory of Open Access Journals (Sweden)

    M. Mujahid Rafique

    2016-04-01

    Full Text Available Now days, air conditioning systems are a must for almost every commercial and residential building to achieve comfortable indoor conditions. The increasing energy demand, and increasing oil prices and pollution levels raise the need for alternative air conditioning systems which can efficiently utilize renewable energy resources. The liquid desiccant-based air conditioning method is pollution free and thermal energy-based cooling techniques can use low grade thermal energy resources like solar energy, waste heat, etc. These systems have an additional advantage of cleaning bacteria and fungi from the air. In this paper, a newly proposed rotary liquid desiccant air conditioning system has been investigated theoretically. Most direct contact liquid desiccant cooling systems have the problem of desiccant carryover which can be eliminated using the proposed system. The effects of various key parameters and climatic conditions on the performance of the system have been evaluated. The results showed that if the key parameters of the system are controlled effectively, the proposed cooling system has the ability to achieve the desired supply air conditions. The system can achieve high coefficient of performance (COP under different conditions. The dehumidifier has a sensible heat ratio (SHR in the range of 0.3–0.6 for different design, climatic, and operating conditions. The system can remove latent load efficiently in applications which require good humidity control.

  12. An Interoperable Architecture for Air Pollution Early Warning System Based on Sensor Web

    Science.gov (United States)

    Samadzadegan, F.; Zahmatkesh, H.; Saber, M.; Ghazi khanlou, H. J.

    2013-09-01

    Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE) framework of the Open Geospatial Consortium (OGC), which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research proposed an

  13. AN INTEROPERABLE ARCHITECTURE FOR AIR POLLUTION EARLY WARNING SYSTEM BASED ON SENSOR WEB

    Directory of Open Access Journals (Sweden)

    F. Samadzadegan

    2013-09-01

    Full Text Available Environmental monitoring systems deal with time-sensitive issues which require quick responses in emergency situations. Handling the sensor observations in near real-time and obtaining valuable information is challenging issues in these systems from a technical and scientific point of view. The ever-increasing population growth in urban areas has caused certain problems in developing countries, which has direct or indirect impact on human life. One of applicable solution for controlling and managing air quality by considering real time and update air quality information gathered by spatially distributed sensors in mega cities, using sensor web technology for developing monitoring and early warning systems. Urban air quality monitoring systems using functionalities of geospatial information system as a platform for analysing, processing, and visualization of data in combination with Sensor Web for supporting decision support systems in disaster management and emergency situations. This system uses Sensor Web Enablement (SWE framework of the Open Geospatial Consortium (OGC, which offers a standard framework that allows the integration of sensors and sensor data into spatial data infrastructures. SWE framework introduces standards for services to access sensor data and discover events from sensor data streams as well as definition set of standards for the description of sensors and the encoding of measurements. The presented system provides capabilities to collect, transfer, share, process air quality sensor data and disseminate air quality status in real-time. It is possible to overcome interoperability challenges by using standard framework. In a routine scenario, air quality data measured by in-situ sensors are communicated to central station where data is analysed and processed. The extracted air quality status is processed for discovering emergency situations, and if necessary air quality reports are sent to the authorities. This research

  14. The measured performance of an air thermosyphon system

    Science.gov (United States)

    Marshall, L. S.; Burns, P. J.; Winn, C. B.

    Results of performance tests of a solar thermosyphon test cell are reported. The test cell comprised a structure on a concrete slab with fiberglass insulated walls. The north wall consisted of a styrofoam-insulated gravel-filled box, while the south wall featured double glazing over metal solar collectors. The ceiling was ducted to provide air flow from the south collector to the rock storage, and an air channel was built into the floor. A numerical model was developed of the expected performance of the cell, using an Euler technique to solve the transient energy and momentum equations. The temperature was monitored at various points of the structure and flow visualization studies were made with titanium tetrachloride. Heat was found to be stored in the upper portion of the rock box, which because of its size also inhibited circulation. Thermal comfort was determined to be available due to warm surfaces, rather than warm air.

  15. Water management in capillary gas chromatographic air monitoring systems

    Energy Technology Data Exchange (ETDEWEB)

    Tipler, A. [Perkin Elmer Corp., Norwalk, CT (United States). Fresh Aire Lab.

    1994-12-31

    Capillary gas chromatography is an excellent technique for the speciated quantitation of low-level volatile organic compounds (VOCs) in ambient air. Although GC detectors have excellent sensitivity, some sample pre-concentration will be necessary to enable detection of VOCs at sub-ppb levels. This process normally employs a cooled and/or adsorbent trap to retain the analytes from a large volume of sample air. For very volatile VOCs, a very retentive trap is used and this may also retain water present as vapor in the sample. This trapped water causes significant problems with the chromatography and detector operation and methods must be sought to remove it or eliminate its effects. This paper investigates the magnitude of the problem and examines the various alternatives for managing the trapped water. The application of some of these techniques is demonstrated in a method for the determination of volatile polar and non-polar toxic organic compounds in ambient air.

  16. Modeling Validation and Control Analysis for Controlled Temperature and Humidity of Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Jing-Nang Lee

    2014-01-01

    Full Text Available This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14°C, 0006 kgw/kgda in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  17. Modeling validation and control analysis for controlled temperature and humidity of air conditioning system.

    Science.gov (United States)

    Lee, Jing-Nang; Lin, Tsung-Min; Chen, Chien-Chih

    2014-01-01

    This study constructs an energy based model of thermal system for controlled temperature and humidity air conditioning system, and introduces the influence of the mass flow rate, heater and humidifier for proposed control criteria to achieve the controlled temperature and humidity of air conditioning system. Then, the reliability of proposed thermal system model is established by both MATLAB dynamic simulation and the literature validation. Finally, the PID control strategy is applied for controlling the air mass flow rate, humidifying capacity, and heating, capacity. The simulation results show that the temperature and humidity are stable at 541 sec, the disturbance of temperature is only 0.14 °C, 0006 kg(w)/kg(da) in steady-state error of humidity ratio, and the error rate is only 7.5%. The results prove that the proposed system is an effective controlled temperature and humidity of an air conditioning system.

  18. Indoor air pollution by different heating systems: coal burning, open fireplace and central heating.

    Science.gov (United States)

    Moriske, H J; Drews, M; Ebert, G; Menk, G; Scheller, C; Schöndube, M; Konieczny, L

    1996-11-01

    Investigations of indoor air pollution by different heating systems in private homes are described. Sixteen homes, 7 with coal burning, 1 with open fireplace (wood burning) and 8 with central heating have been investigated. We measured the concentrations of carbon monoxide, carbon dioxide and sedimented dust in indoor air, of total suspended particulates, heavy metals and of polycyclic aromatic hydrocarbons in indoor and outdoor air. Measurements were taken during winter (heating period) and during summer (non-heating period). Generally, we found higher indoor air pollution in homes with coal burning and open fireplace than in homes with central heating. Especially, the concentrations of carbon monoxide, sedimented dust and of some heavy metals were higher. In one case, we found also high indoor air pollution in a home with central heating. This apartment is on the ground floor of a block of flats, and the central heating system in the basement showed a malfunctioning of the exhaust system.

  19. An innovative air data system for the Space Shuttle Orbiter - Data analysis techniques

    Science.gov (United States)

    Pruett, C. D.; Wolf, H.; Heck, M. L.; Siemers, P. M., III

    1981-01-01

    The Shuttle Entry Air Data System (SEADS) is an experimental system designed to supply research quality air data and to meet Orbiter operational air data requirements throughout entry. SEADS incorporates no mechanical devices but is based on the concept that the fuselage proper, whether symmetrical or not, can be instrumented so as to function both as a pitot-static probe and as a differential pressure flow direction sensor. Specifically SEADS consists of 20 flush orifices, each routed to a pair of absolute pressure transducers. A computational technique has been developed capable of extracting air data parameters solely from surface pressure measurements. The digital filtering algorithm implemented in SEADS is the natural adaptation to air data sensing of a technology widely used in navigation, guidance, and control systems.

  20. TATR (Tactical Air Target Recommender): A Prototype Expert System for Tactical Air Targeting

    Science.gov (United States)

    1984-08-01

    1 2 F-l6X/2 3 F-16X/2 0.85 0.95 0. 77 0. 12 0.16 0.18 REFERENCES 1. Callero, M., D. Gorlin , F. Hayes-Roth, and L. Jamison, Toward an Expert...for Tactical Air Targeting, The Rand Corporation, N -1796-ARPA, January 1982. 3. Fain, J., D. Gorlin , F. Hayes-Roth, S. Rosenschein, H. Sowizral... Gorlin , S. Rosenschein, H. Sowizral, and D. Waterman, Rationale and Motivation for ROSIE, The Rand Corporation, N-1648-ARPA, November 1981. 6. Hayes

  1. A Novel Pumped Hydro Combined with Compressed Air Energy Storage System

    OpenAIRE

    Erren Yao; Xinbing Wang; Liqin Wang; Huanran Wang

    2013-01-01

    A novel pumped hydro combined with compressed air energy storage (PHCA) system is proposed in this paper to resolve the problems of bulk energy storage in the wind power generation industry over an area in China, which is characterised by drought and water shortages. Thermodynamic analysis of the energy storage system, which focuses on the pre-set pressure, storage volume capacity, water air volume ratio, pump performance, and water turbine performance of the storage system, is also presented...

  2. Method and system for estimating and predicting airflow around air vehicles

    KAUST Repository

    Claudel, Christian G.

    2015-12-31

    A method, system, and sensor for air flow sensing. The system can include a cantilever, a transducer, and a processing module. The method can include measuring beam deflections of one or more cantilevers, extracting information about air flow, and determining one or more of an airspeed, an angle of attack, and a sideslip, based on extracted information. The system and method can exploit nonlinearities in the behavior of the cantilever in fluid flow.

  3. Colonization by Cladosporium spp. of painted metal surfaces associated with heating and air conditioning systems

    Science.gov (United States)

    Ahearn, D. G.; Simmons, R. B.; Switzer, K. F.; Ajello, L.; Pierson, D. L.

    1991-01-01

    Cladosporium cladosporioides and C. hebarum colonized painted metal surfaces of covering panels and register vents of heating, air conditioning and ventilation systems. Hyphae penetrated the paint film and developed characteristic conidiophores and conidia. The colonies were tightly appressed to the metal surface and conidia were not readily detectable via standard air sampling procedures.

  4. The Imperative to Integrate Air Force Command and Control Systems into Maritime Plans

    Science.gov (United States)

    2014-08-01

    accurate surface picture and an institutionally joint culture , the E-8C is ideally suited and al- ready vetted to complement the sea services’ own... ZULU .” July–August 2014 Air & Space Power Journal | 116 Dalman, Kopp, & Redman Air Force Command and Control Systems in Maritime Plans Feature 18

  5. 3D-AQS: a three-dimensional air quality system

    Science.gov (United States)

    Hoff, Raymond M.; Engel-Cox, Jill A.; Dimmick, Fred; Szykman, James J.; Johns, Brad; Kondragunta, Shobha; Rogers, Raymond; McCann, Kevin; Chu, D. Allen; Torres, Omar; Prados, Ana; Al-Saadi, Jassim; Kittaka, Chieko; Boothe, Vickie; Ackerman, Steve; Wimmers, Anthony

    2006-08-01

    In 2006, we began a three-year project funded by the NASA Integrated Decisions Support program to develop a three-dimensional air quality system (3D-AQS). The focus of 3D-AQS is on the integration of aerosol-related NASA Earth Science Data into key air quality decision support systems used for air quality management, forecasting, and public health tracking. These will include the U.S. Environmental Protection Agency (EPA)'s Air Quality System/AirQuest and AIRNow, Infusing satellite Data into Environmental Applications (IDEA) product, U.S. Air Quality weblog (Smog Blog) and the Regional East Atmospheric Lidar Mesonet (REALM). The project will result in greater accessibility of satellite and lidar datasets that, when used in conjunction with the ground-based particulate matter monitors, will enable monitoring across horizontal and vertical dimensions. Monitoring in multiple dimensions will enhance the air quality community's ability to monitor and forecast the geospatial extent and transboundary transport of air pollutants, particularly fine particulate matter. This paper describes the concept of this multisensor system and gives current examples of the types of products that will result from it.

  6. Jogos e brincadeiras como metodologia de ensino na aprendizagem

    Directory of Open Access Journals (Sweden)

    Lenir Guedes

    2012-06-01

    Full Text Available Este artigo tem como objetivo principal discutir o papel do brincar no desenvolvimento infantil. A abordagem metodológica é de cunho qualitativo, tipificada na modalidade Estudo de Caso. Esta pesquisa foi desenvolvida no Centro de Educação Infantil Cecília Meireles, no município de Sinop/MT, em uma turma de vinte e cinco alunos com idade entre cinco a seis anos, a coordenadora pedagógica, professora regente da sala e cinco pais. Os principais embasamentos teóricos utilizados foram Gilles Brougère, Tizuko Morchida Kishimoto e Paulo Reglus Neves Freire. Este estudo não se trata de uma descoberta, pois a temática vem ao encontro de uma visão pedagógica de muitos pesquisadores e educadores, porém, pode-se tornar inovadora, ou seja, o brincar é próprio da criança, o que muda são as abordagens didáticas e metodológicas utilizadas pelo professor. Através desta pesquisa pode-se concluir que jogos e brincadeiras propiciam diversão e prazer enquanto adquire a função educativa, assim instigando a criança em seus conhecimentos e melhor compreensão do contexto que esta inserida. Independente de época, classe cultural ou social, o jogo e a brincadeira sempre se fazem presentes e isso define a criança.Palavras-chave: educação; educação infantil; docente; metodologia de ensino; jogos e brincadeiras.

  7. Performance analysis of a liquid desiccant and membrane contactor hybrid air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Bergero, Stefano; Chiari, Anna [DIPARC, Faculty of Architecture, University of Genoa, Stradone S. Agostino 37, 16123 Genova (Italy)

    2010-11-15

    The present study examines the performances of a hybrid air-conditioning system in which a vapour-compression inverse cycle is integrated with an air dehumidification system working with hygroscopic solution and hydrophobic membrane. This model may be a valid alternative to traditional summertime air-conditioning system, in which the air is cooled to below its dew-point temperature and subsequently reheated. The proposed hybrid system involves simultaneously cooling and dehumidifying the air conveyed to the conditioned ambient in an air-solution membrane contactor. An LiCl solution is cooled by means of a vapour-compression inverse cycle using the refrigerant KLEA 407C. The solution is regenerated in another membrane contactor by exploiting the heat rejected by the condenser. A SIMULINK calculation programme was designed in order to simulate the system under examination in steady-state conditions. The performances of the system were analysed on varying a few significant operating parameters, and were compared with those of a traditional direct-expansion air-conditioning plant in typical summertime conditions. The results of the simulations revealed significant energy savings, which, in particular operating conditions, may exceed 50%. (author)

  8. Systems for eliminating pathogens from exhaust air of animal houses

    NARCIS (Netherlands)

    Aarnink, A.J.A.; Landman, W.J.M.; Melse, R.W.; Huynh Thi Thanh Thuy,

    2005-01-01

    Recent outbreaks of highly infectious viral diseases like swine fever and avian influenza in The Netherlands have shown that despite extensive bio-security measures aiming at minimizing physical contacts between farms, disease spread could not be halted. Dust in exhaust air from swine and chicken ho

  9. Air Damper Sizing for the Decay Heat Removal System of the PGSFR

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dehee; Lee, Tae-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-10-15

    Decay heat removal system (DHRS) of the PGSFR begins to work when the air dampers installed at the air intakes and outlets of the sodium-to-air heat exchangers are open. Reliability of the DHRS strongly depends on the damper opening because the air flow passing through the shell side of a sodium-to-air heat exchanger removes the heat transferred from the reactor core and primary coolant to the final heat sink, the atmosphere. Therefore, damper sizing as well as its arrangement is significant for the DHRS operation. In this work, a systematic sizing approach is introduced and air damper sizing of the DHRS has been carried out following the addressed sizing procedure. A systematic damper sizing procedure has been addressed and the DHRS damper sizing has been carried out following the sizing procedure and an arrangement strategy has been decided to promote the DHRS operational reliability.

  10. 47 CFR 22.857 - Channel plan for commercial aviation air-ground systems.

    Science.gov (United States)

    2010-10-01

    ... Systems § 22.857 Channel plan for commercial aviation air-ground systems. The 849-851 MHz and 894-896 MHz... systems providing radio telecommunications service, including voice and/or data service, to persons on... “commercial aviation” systems....

  11. The role of Environmental Health System air quality monitors in Space Station Contingency Operations

    Science.gov (United States)

    Limero, Thomas F.; Wilson, Steve; Perlot, Susan; James, John

    1992-01-01

    This paper describes the Space Station Freedom (SSF) Environmental Health System's air-quality monitoring strategy and instrumentation. A two-tier system has been developed, consisting of first-alert instruments that warn the crew of airborne contamination and a volatile organic analyzer that can identify volatile organic contaminants in near-real time. The strategy for air quality monitoring on SSF is designed to provide early detection so that the contamination can be confined to one module and so that crew health and safety can be protected throughout the contingency event. The use of air-quality monitors in fixed and portable modes will be presented as a means of following the progress of decontamination efforts and ensuring acceptable air quality in a module after an incident. The technology of each instrument will be reviewed briefly; the main focus of this paper, however, will be the use of air-quality monitors before, during, and after contingency incidents.

  12. Construction and application of an intelligent air quality monitoring system for healthcare environment.

    Science.gov (United States)

    Yang, Chao-Tung; Liao, Chi-Jui; Liu, Jung-Chun; Den, Walter; Chou, Ying-Chyi; Tsai, Jaw-Ji

    2014-02-01

    Indoor air quality monitoring in healthcare environment has become a critical part of hospital management and policy. Manual air sampling and analysis are cost-inhibitive and do not provide real-time air quality data and response measures. In this month-long study over 14 sampling locations in a public hospital in Taiwan, we observed a positive correlation between CO(2) concentration and population, total bacteria, and particulate matter concentrations, thus monitoring CO(2) concentration as a general indicator for air quality could be a viable option. Consequently, an intelligent environmental monitoring system consisting of a CO(2)/temperature/humidity sensor, a digital plug, and a ZigBee Router and Coordinator was developed and tested. The system also included a backend server that received and analyzed data, as well as activating ventilation and air purifiers when CO(2) concentration exceeded a pre-set value. Alert messages can also be delivered to offsite users through mobile devices.

  13. Development of dual-source hybrid heat pump system using groundwater and air

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Yujin; Ooka, Ryozo [Cw403 Institute of Industry Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Shiba, Yoshiro [Zeneral Heatpump Industry Co., Ltd., Nagoya 459-8001 (Japan)

    2010-06-15

    To achieve high heat pump efficiency, groundwater heat pump (GWHP) system uses groundwater, which is relatively stable AT temperature compared with outdoor air, as a heat source. However, it is difficult to meet annual heating and cooling loads using only groundwater as a heat source. In order to optimize the operation method of GWHP systems, it is necessary to develop a system utilizing both groundwater and air sources according to the building load conditions. Furthermore, during intermediate seasons (such as spring and autumn) with reduced heating and cooling loads, GWHP system is less efficient than air source heat pump (ASHP) system according to temperature conditions. In order to more efficiently use GWHP systems, it is necessary to develop a system which utilizes both groundwater and air sources according to temperature conditions and building loads. This research has developed a GWHP system that employs a hybrid heat pump system with groundwater wells using dual groundwater and air heat sources. In this paper, the annual performance of the developed system has been calculated, and several case studies have been conducted on the effect of introduction location, refrigerant and pumping rate. Furthermore, the coefficient of system performance and the effects on underground environments have been evaluated by real-scale experiment using two wells. (author)

  14. Potential Evaluation of Solar Heat Assisted Desiccant Hybrid Air Conditioning System

    Science.gov (United States)

    Tran, Thien Nha; Hamamoto, Yoshinori; Akisawa, Atsushi; Kashiwagi, Takao

    The solar thermal driven desiccant dehumidification-absorption cooling hybrid system has superior advantage in hot-humid climate regions. The reasonable air processing of desiccant hybrid air conditioning system and the utility of clean and free energy make the system environment friendly and energy efficient. The study investigates the performance of the desiccant dehumidification air conditioning systems with solar thermal assistant. The investigation is performed for three cases which are combinations of solar thermal and absorption cooling systems with different heat supply temperature levels. Two solar thermal systems are used in the study: the flat plate collector (FPC) and the vacuum tube with compound parabolic concentrator (CPC). The single-effect and high energy efficient double-, triple-effect LiBr-water absorption cooling cycles are considered for cooling systems. COP of desiccant hybrid air conditioning systems are determined. The evaluation of these systems is subsequently performed. The single effect absorption cooling cycle combined with the flat plate collector solar system is found to be the most energy efficient air conditioning system.

  15. Method for acquiring part load distribution coefficient of air conditioning system

    Institute of Scientific and Technical Information of China (English)

    丁勇; 李百战; 谭颖

    2009-01-01

    This paper presents a method to acquire runtime distribution ratio of building air conditioning system under part load condition (part load coefficient of system) through practical energy consumption data. By utilizing monthly energy consumption data of the entire year as the analysis object,this paper identifies data distribution,verifies distribution characteristics and analyzes distribution probability density for the issue of running time distribution ratio of air conditioning system in part load zones in the whole operation period,thus providing a basic calculation basis for an overall analysis of energy efficiency of air conditioning system. In view of the general survey of public building energy consumption carried by the government of Chongqing,this paper takes the governmental office building as an example,the part load ratio coefficient corresponding to practical running of air conditioning system of governmental office building in Chongqing is obtained by utilizing the above probability analysis and the solving method of probability density function. By utilizing the ratio coefficient obtained using this method,the part load coefficient with any running ratio of air conditioning system can be obtained according to the requirement of analysis,which can be used in any load ratio for analyzing running energy efficiency of air conditioning system.

  16. Validation of the Air Force Weather Agency Ensemble Prediction Systems

    Science.gov (United States)

    2014-03-27

    to deterministic models. Results from ensemble weather input into operational risk management ( ORM ) destruction of enemy air defense simulations...growth during the analysis period (Toth and Kalnay, 1993; Toth and Kalnay, 1997). From this framework the ensemble transform bred vector, ensemble...features. Each of its 10 members is run independently using different configurations in the framework of the Weather Research and Forecasting (WRF

  17. RHELP (Regenerative High Efficiency Low Pressure) Air Purification System

    Science.gov (United States)

    2009-06-18

    4 (3), 269. 10. Allen, M. D. and Raabe, O. G., "Re-evaluation of millikan’s oil drop data for the motion of small particles in air," Journal of...rigorous physical filtration testing for collection efficiency, pressure drop , most penetrating particle size, and microwave sensitivity, among other...increased quality factor. More importantly, the synthesized filters were found to exceed military standards for HEPA filter with lower pressure drop . This

  18. Temperature and humidity independent control (THIC) of air-conditioning system

    CERN Document Server

    Liu, Xiaohua; Zhang, Tao

    2014-01-01

    This book presents the main components of the Temperature and Humidity Independent Control (THIC) of air-conditioning systems, including dehumidification devices, high-temperature cooling devices and indoor terminal devices.

  19. Improving air traffic control: Proving new tools or approving the joint human-machine system?

    Science.gov (United States)

    Gaillard, Irene; Leroux, Marcel

    1994-01-01

    From the description of a field problem (i.e., designing decision aids for air traffic controllers), this paper points out how a cognitive engineering approach provides the milestones for the evaluation of future joint human-machine systems.

  20. Air conditioning systems of Porsche Panamera; Das Klimatisierungssystem des Porsche Panamera

    Energy Technology Data Exchange (ETDEWEB)

    Mall, Gernot; Deyhle, Hagen [Porsche AG, Stuttgart (Germany); Engelhardt, Martin [Behr GmbH und Co. KG, Stuttgart (Germany); Gremme, Johannes [BehrHella Thermocontrol GmbH, Lippstadt (Germany)

    2010-07-01

    The Porsche Panama, an innovative Gran Turismo is the newest edition to the Porsche sportscar family. The Panamera climate control system is a major contributor in achieving the goal of premium driver comfort. In addition to excellent performance and comfort requirements on the system and package and an uncompromising lightweight design, premium comfort for the rear seat passengers was of special emphasis. These targets were achieved through a newly developed 2- respective 4-zone climate control system. The climatic comfort from the passenger's point of view is enhanced due to the ability to individually set temperature, air distribution and air volume for every passenger. The system incorporates a model based ''air volume control'' and uses a distinguishing feature, a dashboard integrated air distribution field. (orig.)

  1. Novel photocatalysis oxidation system UV/Fe2+/air to degrade 4-CP wastewater

    Institute of Scientific and Technical Information of China (English)

    DU Yingxun; ZHOU Minghua; LEI Lecheng

    2005-01-01

    This paper reported the degradation of 4-CP wastewater by a novel photocatalysis oxidation system--UV/Fe2+/air system, in which air was used as a cheap oxidant that reacted with the excitation state of organics to form H2O2 under the UV light. The formed H2O2 reacted with the added ferrous ion to form Fenton reaction and led to the quick degradation of organic pollutants. It was found that 4-CP could be completely removed within 40 min. The degradation of 4-CP in the UV/Fe2+/air system was superior to the conventional UV/Fenton system (the initial concentration of H2O2 was 22 mg-L-1). UV/Fe2+/air is an effective and cheap method for treatment of the organics that can be excited by UV light.

  2. Advanced Air Evaporation System with Reusable Wicks for Water Recovery Project

    Data.gov (United States)

    National Aeronautics and Space Administration — A microgravity-compatible Advanced Air Evaporation System (AAES) is proposed for recovering nearly 100% of water from highly contaminated wastewater without concern...

  3. Multi-Agent Management System (MAMS) for Air-Launched, Unmanned Vehicles Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The main goal of this work is to design, implement, and demonstrate a guidance and mission planning toolbox for air-launched, unmanned systems, such as guided...

  4. Experimental and numerical analysis of air and radiant cooling systems in offices

    DEFF Research Database (Denmark)

    Corgnati, S. P.; Perino, M.; Fracastoro, G. V.;

    2009-01-01

    then extended to the coupled mixing ventilation and cold radiant ceiling panels. In particular, attention was drawn on the evaluation of the main supply jet properties (throw and penetration length) and on the draft risk caused by the cold air drop into the occupied zone. The study shows that such a problem can......This paper analyses office cooling systems based on all air mixing ventilation systems alone or coupled with radiant ceiling panels. This last solution may be effectively applied to retrofit all air systems that are no longer able to maintain a suitable thermal comfort in the indoor environment......, for example in offices with high thermal loads. This study was performed by means of CFD simulations previously validated through an experimental campaign performed in a full scale test room, simulating a typical two-desk office equipped with an all air mixing ventilation system. The numerical studies were...

  5. Study on Catastrophic Air Current Early-warning and Control System of Coalmines

    Directory of Open Access Journals (Sweden)

    L.F. Fang

    2016-02-01

    Full Text Available Catastrophic air current significantly influences the stability of ventilation system, and existing studies have not considered the flow characteristics of catastrophic air current when designing the control systems. To analyze the effects of different kinds of coalmine accidents on safety production, grey relation entropy theory was used to analyze the hazard assessment of coalmine accidents. Fluent software was employed to study the flow characteristics of catastrophic air current, and the catastrophic air current early-warning and control system of coalmine was researched according to the theoretical analysis and numerical simulation. The threat of fire accidents and roof accidents were larger than other accidents. The influence of temperature and CO volume fraction distribution of fire accidents to the tailwind side was larger than that of the weather side, and gradient decreased on the weather side. This system can effectively control the spread of fire and poisonous gas,

  6. The Role of Unmanned Aerial Systems-Sensors in Air Quality Research

    Science.gov (United States)

    The use of unmanned aerial systems (UASs) and miniaturized sensors for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fix...

  7. Promising future energy storage systems: Nanomaterial based systems, Zn-air, and electromechanical batteries

    Science.gov (United States)

    Koopman, R.; Richardson, J.

    1993-10-01

    Future energy storage systems will require longer shelf life, higher duty cycles, higher efficiency, higher energy and power densities, and be fabricated in an environmentally conscious process. This paper describes several possible future systems which have the potential of providing stored energy for future electric and hybrid vehicles. Three of the systems have their origin in the control of material structure at the molecular level and the subsequent nanoengineering into useful device and components: aerocapacitors, nanostructure multilayer capacitors, and the lithium ion battery. The zinc-air battery is a high energy density battery which can provide vehicles with long range (400 km in autos) and be rapidly refueled with a slurry of zinc particles and electrolyte. The electromechanical battery is a battery-sized module containing a high-speed rotor integrated with an iron-less generator mounted on magnetic bearings and housed in an evacuated chamber.

  8. Utilização de metodologias para desenvolvimento de agentes: um estudo de caso na microeconomia

    OpenAIRE

    Berny, Vanessa Maia; Adamatti, Diana Francisca; Gomes, Daniela Ferreira; Costa, Antonio Carlos da Rocha

    2005-01-01

    Este artigo apresenta algumas metodologias para engenharia de software orientada para agentes e um estudo de caso aplicado a microeconomia, especificamente em abastecedoras de combustível. Estas metodologias modelam todos os aspectos ligados a agentes, diferentemente de uma metodologia de modelagem orientada a objetos. This paper presents some methodologies to agent-oriented software engineering and a case study in Microeconomics, specifically in supplies fuel. These methodologies model al...

  9. Mechanical Design and Research on Process of Air Suction Drawing System of Spunbonded Nonwoven

    Institute of Scientific and Technical Information of China (English)

    WANG Hong; JIN Xiang-yu; WU Hai-bo; YIN Bao-pu; TANG Shou-xin

    2008-01-01

    The design guideline for the air suction drawing system with auxiliary air was analyzed, a spunbonding nonwoven system named PADHL1-3200 was designed and polypropylene (PP) spunbonded nonwoven fabrics with excellent properties were achieved after many trial runs. On the other hand, the suction air velocity (VA) was calculated and the influence of VA on the bonding strengh of PP nonwoven fabrics was studied as well. It was found that VA is 1.5-2.5 times of the spinning velocity. With the increase of VA, PP fibers become finer and the bonding strength of PP nonwoven fabrics increases as well.

  10. Assessment of internal contamination problems associated with bioregenerative air/water purification systems

    Science.gov (United States)

    Johnson, Anne H.; Bounds, B. Keith; Gardner, Warren

    1990-01-01

    The emphasis is to characterize the mechanisms of bioregenerative revitalization of air and water as well as to assess the possible risks associated with such a system in a closed environment. Marsh and aquatic plants are utilized for purposes of wastewater treatment as well as possible desalinization and demineralization. Foliage plants are also being screened for their ability to remove toxic organics from ambient air. Preliminary test results indicate that treated wastewater is typically of potable quality with numbers of pathogens such as Salmonella and Shigella significantly reduced by the artificial marsh system. Microbiological analyses of ambient air indicate the presence of bacilli as well as thermophilic actinomycetes.

  11. Effectiveness evaluation of sources of supply and systems filter in production process of breathing air

    Directory of Open Access Journals (Sweden)

    Woźniak Arkadiusz

    2015-12-01

    Full Text Available The determination of how efficiently filtration systems used for the production of breathing air used in hyperbaric environments are operating is significant both from theoretical and practical points of view. The quality of breathing air and the breathing mixes based on air is crucial with regard to divers' safety. Paradoxically, a change in regulations regarding quality requirements for breathing mixes has imposed the necessity to verify both the technical equipment and laboratory procedures used in their production and verification. The following material, which is a continuation of previous publications, presents results of the conducted research along with the evaluation of effectiveness of the filtration systems used by the Polish Navy.

  12. Investigation on regeneration and energy storage characteristics of a solar liquid desiccant air-conditioning system

    Institute of Scientific and Technical Information of China (English)

    SHI Mingheng; DU Bin; ZHAO Yun

    2007-01-01

    Solar liquid desiccant air-conditioner is a new air-conditioning system in which liquid desiccant can be regenerated by solar energy and energy can be stored in the form of chemical energy in the liquid desiccant.In this paper regeneration and energy storage characteristics were studied theoretically and experimentally.Two criterion equations for heat and mass transfer in the regeneration process were obtained.The main factors that influence the regeneration process were analyzed.A principal solar liquid desiccant air-conditioning system under energy storage operating mode is proposed.

  13. Ice Storage Air-Conditioning System Simulation with Dynamic Electricity Pricing: A Demand Response Study

    Directory of Open Access Journals (Sweden)

    Chi-Chun Lo

    2016-02-01

    Full Text Available This paper presents an optimal dispatch model of an ice storage air-conditioning system for participants to quickly and accurately perform energy saving and demand response, and to avoid the over contact with electricity price peak. The schedule planning for an ice storage air-conditioning system of demand response is mainly to transfer energy consumption from the peak load to the partial-peak or off-peak load. Least Squares Regression (LSR is used to obtain the polynomial function for the cooling capacity and the cost of power consumption with a real ice storage air-conditioning system. Based on the dynamic electricity pricing, the requirements of cooling loads, and all technical constraints, the dispatch model of the ice-storage air-conditioning system is formulated to minimize the operation cost. The Improved Ripple Bee Swarm Optimization (IRBSO algorithm is proposed to solve the dispatch model of the ice storage air-conditioning system in a daily schedule on summer. Simulation results indicate that reasonable solutions provide a practical and flexible framework allowing the demand response of ice storage air-conditioning systems to demonstrate the optimization of its energy savings and operational efficiency and offering greater energy efficiency.

  14. Air and Space Operations Center-Weapon System Increment 10.2 (AOC-WS Inc 10.2)

    Science.gov (United States)

    2016-03-01

    2016 Major Automated Information System Annual Report Air and Space Operations Center-Weapon System Increment 10.2 (AOC-WS Inc 10.2) Defense...DSN Phone: 845-9142 DSN Fax: Date Assigned: March 2, 2015 Program Information Program Name Air and Space Operations Center-Weapon System Increment...assessing theater-wide air and space operations. The C/JFACC provides air , space and cyber support to the Combined/Joint Forces Commander (C/JFC) by

  15. Optimal heat rejection pressure in transcritical carbon dioxide air conditioning and heat pump systems

    DEFF Research Database (Denmark)

    Liao, Shengming; Jakobsen, Arne

    1998-01-01

    Due to the urgent need for environmentally benign refrigerants, the use of the natural substance carbon dioxide in refrigeration systems has gained more and more attention. In systems such as automobile air-conditioners and heat pumps, owing to the relatively high heat rejection temperatures...... dioxide air conditioning or heat pump systems and for intelligent controlling such systems......., the cycles using carbon dioxide as refrigerant will have to operate in the transcritical area. In a transcritical carbon dioxide system, there is an optimal heat rejection pressure that gives a maximum COP. In this paper, it is shown that the value of this optimal heat rejection pressure mainly depends...

  16. Design and performance of a solar-powered air-conditioning system in a green building

    Energy Technology Data Exchange (ETDEWEB)

    Zhai, X.Q.; Wang, R.Z.; Wu, J.Y.; Dai, Y.J.; Ma, Q. [Institute of Refrigeration and Cryogenics, Shanghai Jiao Tong University, Shanghai 200030 (China)

    2008-05-15

    A solar-powered adsorption air-conditioning system was designed and installed in the green building of Shanghai Research Institute of Building Science. The system contained 150 m{sup 2} solar collectors and two adsorption chillers with nominal refrigeration capacity of 8.5 kW. Based on performance characteristics of the adsorption chiller, the operation mode of the solar-powered air-conditioning system was optimized by maintaining a phase shift of 540 s between the two adsorption chillers. Thereafter, the whole system realized stable operation by the balance of heat consumption and refrigeration output. From June to August of 2005, the solar-powered air-conditioning system continuously ran between 9:00 and 17:00. The operation performance of the system under representative working condition showed that the average refrigeration output of the solar-powered air-conditioning system was 15.3 kW during an 8 h operation and the maximum value exceeded 20 kW. Solar fraction for the system in summer was 71.7%, which corresponded to the designed cooling load (15 kW). Compared with the ambient temperature, it was deduced that solar radiant intensity had a more distinct influence on the performance of solar-powered air-conditioning system. (author)

  17. Portable RF-Sensor System for the Monitoring of Air Pollution and Water Contamination

    Directory of Open Access Journals (Sweden)

    Joonhee Kang

    2012-01-01

    Full Text Available Monitoring air pollution including the contents of VOC, O3, NO2, and dusts has attracted a lot of interest in addition to the monitoring of water contamination because it affects directly to the quality of living conditions. Most of the current air pollution monitoring stations use the expensive and bulky instruments and are only installed in the very limited area. To bring the information of the air and water quality to the public in real time, it is important to construct portable monitoring systems and distribute them close to our everyday living places. In this work, we have constructed a low-cost portable RF sensor system by using 400 MHz transceiver to achieve this goal. Accuracy of the measurement was comparable to the ones used in the expensive and bulky commercial air pollution forecast systems.

  18. Air conditioning system of indoor ski dome. Okunai ski jo no kuki chowa

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, S. (Mitsui Fudosan Co. Ltd., Tokyo (Japan)); Kayo, M. (Kajima Corp., Tokyo (Japan)); Suzuki, T. (NKK Corp., Tokyo (Japan)); Tsutsumi, M. (Sanki Engineering Co. Ltd., Tokyo (Japan))

    1994-04-05

    A indoor ski dome was opened near Tokyo on July 15, 1993. The facilities named Lalaport Ski Dome 'SSAWS' are located at Minami-Funabashi Tokyo-Bay front area, about 20km east of metropolitan Tokyo. This ski dome is characterized by indoor artificial snow making and round-year operation among other indoor ski domes already in operation worldwide. The snow making method applied to this ski dome is world new, and the slope size with 100m width and 490m length is world largest. In order to realize the present facilities, various considerations were employed for energy and resources conservation. The facilities have a refrigerating system, an air conditioning system, and a snow making system. Especially, a co-generation system is introduced for the air conditioning system. The air conditioning system is operated under the fully automatic conditions using a computer. 5 refs., 15 figs., 2 tabs.

  19. Effect of air supplement on the performance of continuous ethanol fermentation system.

    Science.gov (United States)

    Ryu, D D; Kim, Y J; Kim, J H

    1984-01-01

    For the purpose of improving ethanol productivity, the effect of air supplement on the performance of continuous ethanol fermentation system was studied. The effect of oxygen supplement on yeast concentration, cell yield, cell viability, extracellular ethanol concentration, ethanol yield, maintenance coefficient, specific rates of glucose assimilation, ethanol production, and ethanol productivity have been evaluated, using a high alcohol tolerant Saccharomyces cerevisiae STV89 strain and employing a continuous fermentor equipped with an accurate air metering system in the flow rate range 0-11 mL air/L/h. It was found that, when a small amount of oxygen up to about 80mu mol oxygen/L/h was supplied, the ethanol productivity was significantly enhanced as compared to the productivity of the culture without any air supplement. It was also found that the oxygen supplement improved cell viability considerably as well as the ethanol tolerance level of yeast. As the air supply rate was increased, from 0 to 11 mL air/L/h while maintaining a constant dilution rate at about 0.06 h(-1), the cell concentration increased from 2.3 to 8.2 g/L and the ethanol productivity increased from 1.7 to 4.1 g ethanol/L/h, although the specific ethanol production rate decreased slightly from 0.75 to 0.5 g ethanol/g cell/h. The ethanol yield was slightly improved also with an increase in air supply rate, from about 0.37 to 0.45 ethanol/g glucose. The maintenance coefficient increased by only a small amount with the air supplement. This kind of air supplement technique may very well prove to be of practical importance to a development of a highly productive ethanol fermentation process system especially as a combined system with a high density cell culture technique.

  20. Vehicle height and posture control of the electronic air suspension system using the hybrid system approach

    Science.gov (United States)

    Sun, Xiaoqiang; Cai, Yingfeng; Chen, Long; Liu, Yanling; Wang, Shaohua

    2016-03-01

    The electronic air suspension (EAS) system can improve ride comfort, fuel economy and handling safety of vehicles by adjusting vehicle height. This paper describes the development of a novel controller using the hybrid system approach to adjust the vehicle height (height control) and to regulate the roll and pitch angles of the vehicle body during the height adjustment process (posture control). The vehicle height adjustment system of EAS poses challenging hybrid control problems, since it features different discrete modes of operation, where each mode has an associated linear continuous-time dynamic. In this paper, we propose a novel approach to the modelling and controller design problem for the vehicle height adjustment system of EAS. The system model is described firstly in the hybrid system description language (HYSDEL) to obtain a mixed logical dynamical (MLD) hybrid model. For the resulting model, a hybrid model predictive controller is tuned to improve the vehicle height and posture tracking accuracy and to achieve the on-off statuses direct control of solenoid valves. The effectiveness and performance of the proposed approach are demonstrated by simulations and actual vehicle tests.

  1. HVAC System Automatic Controls and Indoor Air Quality in Schools. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.

    Fans, motors, coils, and other control components enable a heating, ventilating, and air-conditioning (HVAC) system to function smoothly. An explanation of these control components and how they make school HVAC systems work is provided. Different systems may be compared by counting the number of controlled devices that are required. Control…

  2. Planetary Probe Entry Atmosphere Estimation Using Synthetic Air Data System

    Science.gov (United States)

    Karlgaard, Chris; Schoenenberger, Mark

    2017-01-01

    This paper develops an atmospheric state estimator based on inertial acceleration and angular rate measurements combined with an assumed vehicle aerodynamic model. The approach utilizes the full navigation state of the vehicle (position, velocity, and attitude) to recast the vehicle aerodynamic model to be a function solely of the atmospheric state (density, pressure, and winds). Force and moment measurements are based on vehicle sensed accelerations and angular rates. These measurements are combined with an aerodynamic model and a Kalman-Schmidt filter to estimate the atmospheric conditions. The new method is applied to data from the Mars Science Laboratory mission, which landed the Curiosity rover on the surface of Mars in August 2012. The results of the new estimation algorithm are compared with results from a Flush Air Data Sensing algorithm based on onboard pressure measurements on the vehicle forebody. The comparison indicates that the new proposed estimation method provides estimates consistent with the air data measurements, without the use of pressure measurements. Implications for future missions such as the Mars 2020 entry capsule are described.

  3. Changes in airborne fungi from the outdoors to indoor air; large HVAC systems in nonproblem buildings in two different climates.

    Science.gov (United States)

    Kemp, P C; Neumeister-Kemp, H G; Esposito, B; Lysek, G; Murray, F

    2003-01-01

    Little is known about the changes in occurrence and distribution of airborne fungi as they are transported in the airstream from the outdoor air through the heating, ventilation, and air conditioning (HVAC) system to the indoor air. To better understand this, airborne fungi were analyzed in the HVAC systems of two large office buildings in different climate zones. Fungal samples were taken in each of the walk-in chambers of the HVAC systems using a six-stage Andersen Sampler with malt extract agar. Results showed that fungal species changed with different locations in the HVAC systems. The outdoor air intake produced the greatest filtration effect for both the counts and species of outdoor air fungi. The colony forming unit (CFU) counts and species diversity was further reduced in the air directly after the filters. The cooling coils also had a substantial filtration effect. However, in room air the CFU counts were double and the mixture of fungal species was different from the air leaving the HVAC system at the supply air outlet in most locations. Diffusion of outdoor air fungi to the indoors did not explain the changes in the mixture of airborne fungi from the outdoor air to the indoor air, and some of the fungi present in the indoor air did not appear to be transported indoors by the HVAC systems.

  4. Bubble Content in Air/Hydro System--Part 2:Factors Influencing Bubble Content

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    A new method for measuring bubble content of two-phase fluids in complex systems such as air/hydro systems has been designed and verified. Some new results of the study on the factors influencing bubble content using this new method are given in this paper, including the results of the experiments in the SKIP-valve system and long-tube system. Results indicate that the operating time, opening of the control-valve, air supply pressure, mass of the load, speed ratio, and the length of the tube all affect bubble content.

  5. Metodologia de avaliação e desenvolvimento de grupos de alto desempenho

    Directory of Open Access Journals (Sweden)

    Ana Cristina Carneiro

    2008-11-01

    Full Text Available Este artigo discute a fundamentação teórica do Projeto de Avaliação e Desenvolvimento de Grupos de Alto Desempenho, concebido com base na metodologia da Meta-aprendizagem, e no Modelo Evolutivo, estendido à luz da Teoria da Complexidade. Visa ao desenvolvimento e aplicação de uma metodologia de avaliação/constituição de grupos de alto desempenho no ambiente de pesquisa e pós-graduação. A metodologia proposta validada empiricamente teve base no aproveitamento das virtudes e potencialidades das teorias que lhe deram origem. É destinado aos docentes e pesquisadores de vários campos do conhecimento, bem como aos dirigentes de instituições de educação superior e de pesquisa.

  6. Aprimorando a Gerência e o Desenvolvimento de Software com Metodologias Ágeis

    Directory of Open Access Journals (Sweden)

    Mauricio Andreazza Sganderla

    2016-07-01

    Full Text Available Este artigo aborda a melhoria da gerência e construção de software utilizando as metodologias ágeis eXtreme Programming e Scrum. São aplicadas as melhores práticas de ambas as metodologias em uma equipe de desenvolvimento de software, em um ambiente em que não havia nenhum processo bem definido de desenvolvimento de software. A escolha pelo uso das metodologias ágeis foi definida, pois atende ao dinamismo do cenário atual, requisitos voláteis, ambiente mais colaborativo e menos burocrático, tendo como objetivo principal o software em funcionamento e que realmente traga retorno ao cliente.

  7. Characteristics of nitrogen balance in open-air and greenhouse vegetable cropping systems of China.

    Science.gov (United States)

    Ti, Chaopu; Luo, Yongxia; Yan, Xiaoyuan

    2015-12-01

    Nitrogen (N) loss from vegetable cropping systems has become a significant environmental issue in China. In this study, estimation of N balances in both open-air and greenhouse vegetable cropping systems in China was established. Results showed that the total N input in open-air and greenhouse vegetable cropping systems in 2010 was 5.44 and 2.60 Tg, respectively. Chemical fertilizer N input in the two cropping systems was 201 kg N ha(-1) per season (open-air) and 478 kg N ha(-1) per season (greenhouse). The N use efficiency (NUE) was 25.9 ± 13.3 and 19.7 ± 9.4% for open-air and greenhouse vegetable cropping systems, respectively, significantly lower than that of maize, wheat, and rice. Approximately 30.6% of total N input was accumulated in soils and 0.8% was lost by ammonia volatilization in greenhouse vegetable system, while N accumulation and ammonia volatilization accounted for 19.1 and 11.1%, respectively, of total N input in open-air vegetable systems.

  8. Thermal energy recovery of air conditioning system--heat recovery system calculation and phase change materials development

    Energy Technology Data Exchange (ETDEWEB)

    Gu Zhaolin; Liu Hongjuan; Li Yun

    2004-12-01

    Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion.

  9. An Expert Fault Diagnosis System for Vehicle Air Conditioning Product Development

    Science.gov (United States)

    Tan, C. F.; Tee, B. T.; Khalil, S. N.; Chen, W.; Rauterberg, G. W. M.

    2015-09-01

    The paper describes the development of the vehicle air-conditioning fault diagnosis system in automotive industries with expert system shell. The main aim of the research is to diagnose the problem of new vehicle air-conditioning system development process and select the most suitable solution to the problems. In the vehicle air-conditioning manufacturing industry, process can be very costly where an expert and experience personnel needed in certain circumstances. The expert of in the industry will retire or resign from time to time. When the expert is absent, their experience and knowledge is difficult to retrieve or lost forever. Expert system is a convenient method to replace expert. By replacing the expert with expert system, the accuracy of the processes will be increased compared to the conventional way. Therefore, the quality of product services that are produced will be finer and better. The inputs for the fault diagnosis are based on design data and experience of the engineer.

  10. Investigation of solar energy utilization in a novel desiccant based air conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Hurdodan, Ertac; Buyukalaca, Orhan [Department of Energy Systems Engineering, Faculty of Engineering, Osmaniye Korkut Ata University (Turkey)], email: ehurdogan@osmaniye.edu.tr, email: obuyukalaca@osmaniye.edu.tr; Yilmaz, Tuncay; Uckan, Irfan [Department of Mechanical Engineering, Faculty of Engineering and Architecture, Cukurova University (Turkey)], email: tunyil@cu.edu.tr, email: iuckan@cu.edu.tr; Hepbasli, Arif [Department of Mechanical Engineering, College of Engineering, King Saud University (Saudi Arabia)], email: ahepbasli.c@ksu.edu.sa

    2011-07-01

    Desiccant-based air-conditioning systems are an alternative to traditional air conditioning units. They have superior humidity control and are usually used in health care facilities to reduce the airborne transmission of disease. In the present study, an innovative, desiccant-based air-conditioning system was designed and tested in Cukurova University, Adana, Turkey. A model for investigating the use of solar energy in the system was developed. Experimental temperatures throughout the cooling season of 2008 and solar radiation data, measured by the State Meteorological Affairs (DMI) over the period 1986-2006, were utilized in the model. A comparison was made between the results obtained from the model and those from the experiments and it was concluded that solar energy could be utilized in the system. Solar energy also increased the coefficient of performance (COP) of the system by between 50% and 120% and was shown to be a cost-effective way of regenerating the desiccant.

  11. Sensitivity of forced air distribution system efficiency to climate, duct location, air leakage and insulation

    Energy Technology Data Exchange (ETDEWEB)

    Walker, Iain

    2001-09-01

    This study was performed in order to find suitable efficiency and leakage specifications for Energy Star duct systems and provide recommendations on duct insulation specifications. This analysis looks at a typical house, with a selection of duct locations, climates, duct insulation (R-value), and duct leakage. A set of calculations were performed with reduced capacity and airflow to look at the effect of variable capacity systems. This was done to address concerns regarding the increased efficiency of multi-capacity equipment due to good part load performance and how these efficiency gains may be offset by increased duct losses. The duct system efficiencies were calculated using the procedures in proposed ASHRAE Standard 152P ''Method of Test for Determining the Design and Seasonal Efficiencies of Residential Thermal Distribution Systems'' (ASHRAE 1999). This proposed ASHRAE Standard can be used to calculate duct efficiency for both design and seasonal weather conditions. In this report, the seasonal efficiencies are used for most of the analysis because they are the most appropriate for estimating energy consumption in buildings. The effects at peak conditions are examined for changing duct insulation in order to provide preliminary estimates of the potential responses to time of use pricing. The study was performed in two parts. The first part focused on duct leakage and the second part on duct insulation. The HVAC systems in the two parts share many attributes, however, they differ in detail and so are treated separately here. All the calculation results are summarized in tables in the Appendix, and specific results are given in the text.

  12. Air Pollution Monitoring and Control System for Subway Stations Using Environmental Sensors

    Directory of Open Access Journals (Sweden)

    Gyu-Sik Kim

    2016-01-01

    Full Text Available The metropolitan city of Seoul uses more energy than any other area in South Korea due to its high population density. It also has high emissions of air pollutants. Since an individual usually spends most of his/her working hours indoors, the ambient air quality refers to indoor air quality. In particular, PM10 concentration in the underground areas should be monitored to preserve the health of commuters in the subway system. Seoul Metro and Seoul Metropolitan Rapid Transit Corporation measure several air pollutants regularly. In this study, the accuracy of an instrument for PM measurement using the light scattering method was improved with the help of a linear regression analysis technique to continuously measure the PM10 concentrations in subway stations. In addition, an air quality monitoring system based on environmental sensors was implemented to display and record the data of PM10, CO2, temperature, and humidity. Through experimental studies, we found that ventilation fans could improve air quality and decrease PM10 concentrations in the tunnels effectively by increasing the air flow rate.

  13. Analysis of routine communication in the air traffic control system

    Science.gov (United States)

    Clark, Herbert H.; Morrow, Daniel; Rodvoid, Michelle

    1990-01-01

    The present project has three related goals. The first is to describe the organization of routine controller-pilot communication. This includes identifying the basic units of communication and how they are organized into discourse, how controllers and pilots use language to achieve their goals, and what topics they discuss. The second goal is to identify the type and frequency of problems that interrupt routine information transfer and prompt pilots and controllers to focus on the communication itself. The authors analyze the costs of these problems in terms of communication efficiency, and the techniques used to resolve these problems. Third, the authors hope to identify factors associated with communication problems, such as deviations from conventional air traffic control procedures.

  14. STUDY AND NUMERICAL SIMULATION OF SOLAR SYSTEM FOR AIR HEATING

    Directory of Open Access Journals (Sweden)

    M. Ghodbane

    2016-01-01

    Full Text Available The use of solar energy in sunny countries, is an effective outil for compensate the lack in the energy, their benefits are not related only to its economic benefits but especially for the environmental protection, so we must find solutions to the problems of pollution. This work is a theoretical study of a solar flat plate collector ; air is used as the heat transfer fluid. In this study, we established in first step the calculation of solar radiation in various sites in Algeria (Adrar, El Oued, Bechar, Biskra and Tamanrasset. The second step is the parameters influence study of the sites and climate on the performance of our collector. The results obtained are encouraging for the use of this type in the heating in the winter, also it can be used in different kinds of drying.

  15. Facilities and the Air Force Systems Acquisition Process.

    Science.gov (United States)

    1985-05-01

    to provide es- senti-l fLcilitio-s by, system Initial Cperatlcnal Capability (’-0C) . And secondly, vince the systems ;acjui. tior proceso is event...funds exclusively for systems acquisition. This change will remove the current military construction calendar constraint and allow facilities to be

  16. Air-borne noise of thermal module and system for notebook personal computers:experimental study

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Thermal performance is the most important issue to be considered when a thermal module is designed for a notebook personal computer (PC).Because the fan causes air-borne noise and affects the user's comfort,the acoustic characteristics of the module attract more attention.Experiments were conducted to study the noise sources,the noise characteristic and the main factors influencing the noise level.The difference between the air-borne noise of the thermal module and the whole computer system was analyzed and its propagating characteristics were derived.The influence of I/O ports on the air-borne noise was also studied experimentally.

  17. MEASURING THE EFFICIENCY OF AIR NAVIGATION SERVICES SYSTEM BY USING DEA METHOD

    Directory of Open Access Journals (Sweden)

    Mara Ćujić

    2015-03-01

    Full Text Available This paper examines the possibilities for measuring performance of current Air Navigation Services Providers (ANSPs in Europe. ANSPs are in the process of operational integration into functional air blocks (FABs tracking direction towards Single European Sky goals, but there are a lot of obstacles and air traffic management is still organized in a fragmented way. This is a reason for comparing national ANSPs. A Data Envelopment Analysis (DEA is applied as a tool for performance measurement. Effectiveness of 36 units of ANS system is measured and the limitations and benefits of this kind of performance model are presented.

  18. Modernizing the Mobility Air Force for Tomorrow’s Air Traffic Management System

    Science.gov (United States)

    2012-01-01

    Global Navigation Satellite System Panel meeting, Rio de Janeiro , Brazil, October 22–November 1, 2001. As of March 29, 2012: http://www.faa.gov/about...operations. Methodology for Cost-effectiveness Analysis 17 Strategic airlifters deploy personnel, supplies , and equipment from an aerial port of...area of operation, fighter aircraft and tankers could rendezvous over coastal waters , eliminating or minimiz- ing the amount of time spent in airspace

  19. METODOLOGIAS DE PESQUISA PARA O ESTUDO GEOGRÁFICO DA SOCIABILIDADE JUVENIL

    OpenAIRE

    2011-01-01

    Nossa intenção é apresentar as metodologias de pesquisa acionadas na concretização dos objetivos da tese, sobre os diversos tempos e espaços da sociabilidade juvenil. Tratam-se de metodologias de cunho qualitativo, não de todo desconhecidas dos estudos geográficos, mas, apesar disso, pouco refletidas. São elas: observação participante, História Oral e entrevistas e “grupos de debate”. Com esta reflexão, espero contribuir com geógrafas e geógrafos iniciantes, que procuram referências metodológ...

  20. Combustion Air Pre-heating from Ash Sensible Heat in Municipal Waste Incineration Systems

    Directory of Open Access Journals (Sweden)

    Zakariya Kaneesamkandi

    2014-01-01

    Full Text Available Heat recovery from bottom ash is more important in municipal waste combustion systems than in any other solid fuel combustion since almost 50% of it comprises of non-combustibles. In this study, an ash cooling system using air as the cooling medium has been modeled for pre-heating the combustion air. Air cooling has several advantages over water cooling methods. The study involves modeling using Gambit tool and is solved with the fluent solver. Municipal solid waste incineration systems have the advantage of being located near the waste collection area apart from the high volume reduction ratio. Improvements in the emission control systems and combustion technology can make incineration a highly feasible disposal method. Low furnace temperature due to heat losses through fuel moisture loss and ash sensible heat loss has been a disadvantage with these systems. In this study, a small percentage of the combustion air is pre-heated in a non-contact type heat exchanger and its effect on the available energy of combustion gases at the evaporator outlet is studied. The study is performed for two different waste samples. Results indicate significant increase in available energy at the evaporator outlet and better relative performance for the lower grade fuel. A comparison is made with similar methods reported in the literature along with a brief discussion on the methodologies adopted. The results confirm the importance of installing ash sensible heat recovery mechanism for waste incineration systems as well as the feasibility of the air based method.

  1. Energy and Greenhouse Gas Emission Assessment of Conventional and Solar Assisted Air Conditioning Systems

    Directory of Open Access Journals (Sweden)

    Xiaofeng Li

    2015-11-01

    Full Text Available Energy consumption in the buildings is responsible for 26% of Australia’s greenhouse gas emissions where cooling typically accounts for over 50% of the total building energy use. The aim of this study was to investigate the potential for reducing the cooling systems’ environmental footprint with applications of alternative renewable energy source. Three types of cooling systems, water cooled, air cooled and a hybrid solar-based air-conditioning system, with a total of six scenarios were designed in this work. The scenarios accounted for the types of power supply to the air-conditioning systems with electricity from the grid and with a solar power from highly integrated building photovoltaics (BIPV. Within and between these scenarios, systems’ energy performances were compared based on energy modelling while the harvesting potential of the renewable energy source was further predicted based on building’s detailed geometrical model. The results showed that renewable energy obtained via BIPV scenario could cover building’s annual electricity consumption for cooling and reduce 140 tonnes of greenhouse gas emissions each year. The hybrid solar air-conditioning system has higher energy efficiency than the air cooled chiller system but lower than the water cooled system.

  2. A Survey of Wireless Sensor Network Based Air Pollution Monitoring Systems.

    Science.gov (United States)

    Yi, Wei Ying; Lo, Kin Ming; Mak, Terrence; Leung, Kwong Sak; Leung, Yee; Meng, Mei Ling

    2015-12-12

    The air quality in urban areas is a major concern in modern cities due to significant impacts of air pollution on public health, global environment, and worldwide economy. Recent studies reveal the importance of micro-level pollution information, including human personal exposure and acute exposure to air pollutants. A real-time system with high spatio-temporal resolution is essential because of the limited data availability and non-scalability of conventional air pollution monitoring systems. Currently, researchers focus on the concept of The Next Generation Air Pollution Monitoring System (TNGAPMS) and have achieved significant breakthroughs by utilizing the advance sensing technologies, MicroElectroMechanical Systems (MEMS) and Wireless Sensor Network (WSN). However, there exist potential problems of these newly proposed systems, namely the lack of 3D data acquisition ability and the flexibility of the sensor network. In this paper, we classify the existing works into three categories as Static Sensor Network (SSN), Community Sensor Network (CSN) and Vehicle Sensor Network (VSN) based on the carriers of the sensors. Comprehensive reviews and comparisons among these three types of sensor networks were also performed. Last but not least, we discuss the limitations of the existing works and conclude the objectives that we want to achieve in future systems.

  3. Vanadium Inhalation in a Mouse Model for the Understanding of Air-Suspended Particle Systemic Repercussion

    Directory of Open Access Journals (Sweden)

    T. I. Fortoul

    2011-01-01

    Full Text Available There is an increased concern about the health effects that air-suspended particles have on human health which have been dissected in animal models. Using CD-1 mouse, we explore the effects that vanadium inhalation produce in different tissues and organs. Our findings support the systemic effects of air pollution. In this paper, we describe our findings in different organs in our conditions and contrast our results with the literature.

  4. Purwarupa Air Data, Attitude, dan Heading Reference System untuk Unmanned Aerial Vehicle

    OpenAIRE

    Manggala, Adrianus Prima; Sumiharto, Raden; Wibowo, Setyawan Bekti

    2012-01-01

    AbstrakADAHRS  (air data, attitude, and heading reference system )merupakan gabungan dari sensor air data (AD) dan sistem referensi attitude and heading (AHRS). Sistem ini memiliki peran penting dalam memberikan data parameter-parameter penerbangan yang akan digunakan oleh modul lain dalam UAV. Parameter penerbangan yssang dibaca oleh ADAHRS adalah sudut yaw, sudut pitch, sudut roll, serta data ketinggian, kecepatan, suhu, tekanan, dan koordinat GPS yang akan digunakan sebagai referensi dalam...

  5. Simulation and Optimization of a Solar Driven Air Conditioning System for Indian Cities

    OpenAIRE

    Sharma, Dev

    2013-01-01

    Simulation and Optimization of a Solar Driven Air Conditioning System for Indian Cities Conventional air-conditioners need high grade energy i.e. electricity, which in India, is primarily produced from fossil fuels. In spite of several emission restraints exercised by many countries under Kyoto protocol, energy consumption and pollution levels are higher than ever. Therefore, an assessment from the ecological point of view needs to be implemented as the greenhouse gases effect remains a threa...

  6. Class B Fire-Extinguishing Performance Evaluation of a Compressed Air Foam System at Different Air-to-Aqueous Foam Solution Mixing Ratios

    Directory of Open Access Journals (Sweden)

    Dong-Ho Rie

    2016-06-01

    Full Text Available The purpose of this research is to evaluate the fire-extinguishing performance of a compressed air foam system at different mixing ratios of pressurized air. In this system, compressed air is injected into an aqueous solution of foam and then discharged. The experimental device uses an exclusive fire-extinguishing technology with compressed air foam that is produced based on the Canada National Laboratory and UL (Underwriters Laboratories 162 standards, with a 20-unit oil fire model (Class B applied as the fire extinguisher. Compressed air is injected through the air mixture, and results with different air-to-aqueous solution foam ratios of 1:4, 1:7, and 1:10 are studied. In addition, comparison experiments between synthetic surfactant foam and a foam type which forms an aqueous film are carried out at an air-to-aqueous solution foam ratio of 1:4. From the experimental results, at identical discharging flows, it was found that the fire-extinguishing effect of the aqueous film-forming foam is greatest at an air-to-aqueous solution foam ratio of 1:7 and weakest at 1:10. Moreover, the fire-extinguishing effect of the aqueous film-forming foam in the comparison experiments between the aqueous film-forming foam and the synthetic surfactant foam is greatest.

  7. Anukalpana 2.0: A Performance Evaluation Software Package for Akash Surface to Air Missile System

    Directory of Open Access Journals (Sweden)

    G.S. Raju

    1997-07-01

    Full Text Available Abstract : "An air defence system is a complex dynamic system comprising sensors, control centres, launchers and missiles. Practical evaluation of such a complex system is almost impossible and very expensive. Further, during development of the system, there is a necessity to evaluate certain design characteristics before it is implemented. Consequently, need arises for a comprehensive simulation package which will simulate various subsystems of the air defence weapon system, so that performance of the system can be evaluated. With the above objectives in mind, a software package, called Anukalpana 2.0, has been developed. The first version of the package was developed at the Indian Institute of Science, Bangalore. This program has been subsequently updated. The main objectives of this package are: (i evaluation of the performance of Akash air defence system and other similar air defence systems against any specified aerial threat, (ii investigation of effectiveness of the deployment tactics and operational logic employed at the firing batteries and refining them, (iii provision of aid for refining standard operating procedures (SOPs for the multitarget defence, and (iv exploring the possibility of using it as a user training tool at the level of Air Defence Commanders. The design specification and the simulation/modelling philosophy adopted for the development of this package are discussed at length. Since Akash air defence system has many probabilistic events, Monte Carlo method of simulation is used for both threat and defence. Implementation details of the package are discussed in brief. These include: data flow diagrams and interface details. Analysis of results for certain input cases is also covered."

  8. Automatic control system of brain temperature by air-surface cooling for therapeutic hypothermia.

    Science.gov (United States)

    Utsuki, T

    2013-01-01

    An automatic control system of brain temperature by air-surface cooling was developed for therapeutic hypothermia, which is increasingly recommended for hypoxic-ischemic encephalopathy after cardiac arrest and neonatal asphyxia in several guidelines pertinent to resuscitation. Currently, water-surface cooling is the most widespread cooling method in therapeutic hypothermia. However, it requires large electric power for precise control and also needs water-cooling blankets which have potential for compression of patients by its own weight and for water leakage in ICU. Air-surface cooling does not have such problems and is more suitable for clinical use than water-surface cooling, because air has lower specific heat and density as well as the impossibility of the contamination in ICU by its leakage. In the present system, brain temperature of patients is automatically controlled by suitable adjustment of the temperature of the air blowing into the cooling blankets. This adjustment is carried out by the regulation of mixing cool and warm air using proportional control valves. The computer in the developed control apparatus suitably calculates the air temperature and rotation angle of the valves every sampling time on the basis of the optimal-adaptive control algorithm. Thus, the proposed system actualizes automatic control of brain temperature by the inputting only the clinically desired temperature of brain. The control performance of the suggested system was verified by the examination using the mannequin in substitution for an adult patient. In the result, the control error of the head temperature of the mannequin was 0.12 °C on average in spite of the lack of the production capacity of warm air after the re-warming period. Thus, this system serves as a model for the clinically applied system.

  9. Application of Dual Throttling Air-Conditioning System to Explosion-Proof Frequency Converter

    Institute of Scientific and Technical Information of China (English)

    张于峰; 高岩; 盛颖

    2015-01-01

    An explosion-proof dual throttling air-conditioning system was put forward to solve the heat dissipation and internal dewing problems of explosion-proof frequency converter in the underground coal mine. This study inves-tigated the feasibility and benefits of explosion-proof dual throttling cooling and dehumidification air-conditioning system applied to the explosion-proof frequency converter. The physical model of dual throttling air-conditioning sys-tem was established and its performance parameter was described by mathematical method. The design calculation of the system has also been done. The experimental result showed that the system reached the steady state at the refrig-eration mode after running 45 min, and the maximum internal temperature of the flame-proof cavity was 31.0℃. The system reached the steady state at the dehumidification mode after running 37 min. The maximum internal relative humidity and temperature of the flame-proof cavity were 33.4% and 36.3 ℃, respectively. Therefore, the proposed system had excellent ability of heat dissipation and avoided internal dewing. Compared with water cooling system, it was more energy-saving and economical. The airflow field of dual throttling air-conditioning system was also studied by CFD simulation. It was found that the result of CFD numerical simulation was highly consistent with the experi-mental data.

  10. The Research on Programmable Control System of Lithium-Bromide Absorption Refrigerating Air Conditioner Based on the Network

    Directory of Open Access Journals (Sweden)

    Sun Lunan

    2016-01-01

    Full Text Available This article regard the solar lithium-bromide absorption refrigerating air conditioning system as the research object, and it was conducting adequate research of the working principle of lithium bromide absorption refrigerating machine, also it was analyzing the requirements of control system about solar energy air conditioning. Then the solar energy air conditioning control system was designed based on PLC, this system was given priority to field bus control system, and the remote monitoring is complementary, which was combining the network remote monitoring technology. So that it realized the automatic control and intelligent control of new lithium bromide absorption refrigerating air conditioning system with solar energy, also, it ensured the control system can automatically detect and adjust when the external conditions was random changing, to make air conditioning work effectively and steadily, ultimately ,it has great research significance to research the air conditioning control system with solar energy.

  11. Air and liquid solar heating system with heatpump, VP-SOL

    DEFF Research Database (Denmark)

    Kristiansen, Finn Harken; Jensen, Søren Østergaard

    1998-01-01

    For more than a year, measurements have been made on an air/fluid solar heating system with heat pump. The annual thermal performance of the system has been found and compared with simulations carried out by means of the simulation program KVIKSOL.The heat loss of the hot water tank is calculated.......The sensor of the differential control of the fluid pump is placed inappropriately. Hereby the fluid part performs about 5% less.The air through the solar collectors is controlled by the difference between the room temperature and the solar collector temperature. The air differential control should...... is changed in such a way that it only heats the tank to max. 55ºC the net utilized solar energy of the system can be increased by approximately 30%.All things considered, it is estimated that the net utilized solar energy of the system can be increased by about 40% on condition that the proposed changes...

  12. Preliminary design package for residential heating/cooling system--Rankine air conditioner redesign

    Energy Technology Data Exchange (ETDEWEB)

    1978-12-01

    This report contains a summary of the preliminary redesign and development of a marketable single-family heating and cooling system. The objectives discussed are the interim design and schedule status of the Residential (3-ton) redesign, problem areas and solutions, and the definition of plans for future design and development activities. The proposed system for a single-family residential heating and cooling system is a single-loop, solar-assisted, hydronic-to-warm-air heating subsystem with solar-assisted domestic water heating and a Rankine-driven expansion air-conditioning subsystem.

  13. Ventilation System Type and the Resulting Classroom Temperature and Air Quality During Heating Season

    DEFF Research Database (Denmark)

    Gao, Jie; Wargocki, Pawel; Wang, Yi

    2014-01-01

    The present study investigated how different ventilation system types influence classroom temperature and air quality. Five classrooms were selected in the same school. They were ventilated by manually operable windows, manually operable windows with exhaust fan, automatically operable windows...... windows. Classrooms with automatically operable windows and exhaust fan and with mechanical ventilation systems achieved the best thermal environment and air quality during heating season among all classrooms examined....... with and without exhaust fan and by mechanical ventilation system. Temperature, relative humidity, carbon dioxide (CO2) concentration and opening of windows were continuously monitored for one month during heating season in 2012. Classroom with manually operable windows had the highest carbon dioxide concentration...

  14. Genetic Optimization Algorithm of PID Decoupling Control for VAV Air-Conditioning System

    Institute of Scientific and Technical Information of China (English)

    WANG Jiangjiang; AN Dawei; ZHANG Chunfa; JING Youyin

    2009-01-01

    Variable-air-volume (VAV) air-conditioning system is a multi-variable system and has multi coupling control loops. While all of the control loops are working together, they interfere and influence each other. A multi-variable decoupling PID controller is designed for VAV air-conditioning system. Diagonal matrix decoupling method is employed to eliminate the coupling between the loop of supply air temperature and that of thermal-space air temperature. The PID controller parameters are optimized by means of an improved genetic algorithm in floating point representations to obtain better performance. The population in the improved genetic algorithm mutates before crossover, which is helpful for the convergence. Additionally the micro mutation algorithm is proposed and applied to improve the convergence during the later evolution. To search the best parameters, the optimized parameters ranges should be amplified l0 times the initial ideal parameters. The simulation and experiment results show that the decoupling control system is effective and feasible. The method can overcome the strong coupling feature of the system and has shorter governing time and less over-shoot than non-optimization PID control.

  15. Energy Performance Comparison of Heating and Air Conditioning Systems for Multi-Family Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Weimin; Zhang, Jian; Jiang, Wei; Liu, Bing

    2011-07-31

    The type of heating, ventilation and air conditioning (HVAC) system has a large impact on the heating and cooling energy consumption in multifamily residential buildings. This paper compares the energy performance of three HVAC systems: a direct expansion (DX) split system, a split air source heat pump (ASHP) system, and a closed-loop water source heat pump (WSHP) system with a boiler and an evaporative fluid cooler as the central heating and cooling source. All three systems use gas furnace for heating or heating backup. The comparison is made in a number of scenarios including different climate conditions, system operation schemes and applicable building codes. It is found that with the minimum code-compliant equipment efficiency, ASHP performs the best among all scenarios except in extremely code climates. WSHP tends to perform better than the split DX system in cold climates but worse in hot climates.

  16. A portable air jet actuator device for mechanical system identification.

    Science.gov (United States)

    Belden, Jesse; Staats, Wayne L; Mazumdar, Anirban; Hunter, Ian W

    2011-03-01

    System identification of limb mechanics can help diagnose ailments and can aid in the optimization of robotic limb control parameters and designs. An interesting fluid phenomenon--the Coandă effect--is utilized in a portable actuator to provide a stochastic binary force disturbance to a limb system. The design of the actuator is approached with the goal of creating a portable device which could be deployed on human or robotic limbs for in situ mechanical system identification. The viability of the device is demonstrated by identifying the parameters of an underdamped elastic beam system with fixed inertia and stiffness and variable damping. The nonparametric compliance impulse response yielded from the system identification is modeled as a second-order system and the resultant parameters are found to be in excellent agreement with those found using more traditional system identification techniques. The current design could be further miniaturized and developed as a portable, wireless, unrestrained mechanical system identification instrument for less intrusive and more widespread use.

  17. A Framework for the Automation of Air Defence Systems

    NARCIS (Netherlands)

    Choenni, R.S.; Leijnse, C.

    1999-01-01

    The need for more efficiency in military organizations is growing. It is expected that a significant increase in efficiency can be obtained by an integration of communication and information technology. This integration may result in (sub)systems that are fully automated, i.e., systems that are unma

  18. INTEGRATED AIR POLLUTION CONTROL SYSTEM VERSION 5.0 - VOLUME 2: TECHNICAL DOCUMENTATION

    Science.gov (United States)

    The three volume report and two diskettes document the Integrated Air Pollution Control System (IAPCS), developed for the U.S. EPA to estimate costs and performance for emission control systems applied to coal-fired utility boilers. The model can project a material balance, an eq...

  19. Bubble Content in Air/Hydro System--Part 1:Measurement of Bubble Content

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The mechanism of bubble formation in air/hydro systems is investigated. Results presented in this paper include further insight into the mechanism of bubble formation and the measurement of bubble content. The regularity of bubble transport in the system is found, with an idea for a new method for separating gas from oil. The method has been verified experimentally with favorable results.

  20. Hadoop-Based Distributed System for Online Prediction of Air Pollution Based on Support Vector Machine

    Science.gov (United States)

    Ghaemi, Z.; Farnaghi, M.; Alimohammadi, A.

    2015-12-01

    The critical impact of air pollution on human health and environment in one hand and the complexity of pollutant concentration behavior in the other hand lead the scientists to look for advance techniques for monitoring and predicting the urban air quality. Additionally, recent developments in data measurement techniques have led to collection of various types of data about air quality. Such data is extremely voluminous and to be useful it must be processed at high velocity. Due to the complexity of big data analysis especially for dynamic applications, online forecasting of pollutant concentration trends within a reasonable processing time is still an open problem. The purpose of this paper is to present an online forecasting approach based on Support Vector Machine (SVM) to predict the air quality one day in advance. In order to overcome the computational requirements for large-scale data analysis, distributed computing based on the Hadoop platform has been employed to leverage the processing power of multiple processing units. The MapReduce programming model is adopted for massive parallel processing in this study. Based on the online algorithm and Hadoop framework, an online forecasting system is designed to predict the air pollution of Tehran for the next 24 hours. The results have been assessed on the basis of Processing Time and Efficiency. Quite accurate predictions of air pollutant indicator levels within an acceptable processing time prove that the presented approach is very suitable to tackle large scale air pollution prediction problems.

  1. Computational Fluid Dynamic Modeling of Horizontal Air-Ground Heat Exchangers (HAGHE for HVAC Systems

    Directory of Open Access Journals (Sweden)

    Paolo Maria Congedo

    2014-12-01

    Full Text Available In order to satisfy the requirements of Directive 2010/31/EU for Zero Energy Buildings (ZEB, innovative solutions were investigated for building HVAC systems. Horizontal air-ground heat exchangers (HAGHE offer a significant contribution in reducing energy consumption for ventilation, using the thermal energy stored underground, in order to pre-heat or pre-cool the ventilation air, in winter and summer, respectively. This is particularly interesting in applications for industrial, commercial and education buildings where keeping the indoor air quality under control is extremely important. Experimental measurements show that, throughout the year, the outside air temperature fluctuations are mitigated at sufficient ground depth (about 3 m because of the high thermal inertia of the soil, the ground temperature is relatively constant and instead higher than that of the outside air in winter and lower in summer. The study aims to numerically investigate the behavior of HAGHE by varying the air flow rate and soil conductivity in unsteady conditions by using annual weather data of South-East Italy. The analysis shows that, in warm climates, the HAGHE brings a real advantage for only a few hours daily in winter, while it shows significant benefits in the summer for the cooling of ventilation air up to several temperature degrees, already by a short pipe.

  2. Evaluation of Heating, Ventilation, and Air conditioning (HVAC System Performance in an Administrative Building in Tehran (Iran

    Directory of Open Access Journals (Sweden)

    H. Mari Oriyad

    2014-09-01

    Full Text Available Introduction: One of the factors influencing on indoor air quality of the buildings is performance of HVAC (heating, ventilation, and air conditioning systems. These systems supply clean and odorless air, with temperature, humidity, and air velocity within comfort ranges for the residents. The aim of this study was to evaluate performance HVAC system in an administrative building in Tehran. .Material and Method: A questionnaire, developed in their research was used to assess the building occupants’ perception about the performance of HVAC system. To evaluate the performance of HVAC systems, air velocities were measured in the diffusers using a thermal anemometer. Moreover, CO2 concentration, air temperature and relative humidity were measured in the whole floors of the building. Air distribution inside the building was evaluated using smoke test. .Results: Most of the studied people complained about the direction of airflow, thermal conditions and cigarette odor. The highest level of carbon dioxide was measured at 930 ppm inside the restaurant. The maximum and minimum air temperatures and relative humidity were measured 28.3-13.8° C and 28.4-23% respectively. Smoke test showed that the air distribution/direction wasn’t suitable in one third of air diffusers. .Conclusion: Improper air distribution / direction was the main problem with the studied HVAC system which could be corrected by adjusting and balancing of the system.

  3. Experimental investigation on a turbine compressor for air supply system of a fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Matsuda, Masayasu [Sumitomo Heavy Industries, Ltd., Yokosuka (Japan); Tsuchiyama, Syozo [Shipbuilding Research Association, Minato-ku, Tokyo (Japan)

    1996-12-31

    This report covers part of a joint study on a PEFC propulsion system for surface ships, summarized in a presentation to this Seminar, entitled {open_quotes}Study on a Polymer Electrolyte Fuel Cell (PEFC) Propulsion System for Surface Ships{close_quotes}, and which envisages application to a 1,500 DWT cargo vessel. The aspect treated here concerns a study on the air supply system for the PEFC, with particular reference to system components.

  4. GSPEL - Air Filtration Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Evaluation capabilities for air filtration devices The Air Filtration Lab provides testing of air filtration devices to demonstrate and validate new or legacy system...

  5. CDC STATE System E-Cigarette Legislation - Smokefree Indoor Air

    Data.gov (United States)

    U.S. Department of Health & Human Services — 1995-2016. Centers for Disease Control and Prevention (CDC). State Tobacco Activities Tracking and Evaluation (STATE) System. E-Cigarette Legislation—Smokefree...

  6. MODELLING OF AIR CONDITIONING SYSTEM BY FUZZY LOGIC APPROACH

    Directory of Open Access Journals (Sweden)

    Ahmet ÖZEK

    2004-03-01

    Full Text Available One of the main problems in control systems is the difficulty to form the mathematical model associated with the control mechanism. Even though this model can be formed, to realize the application with conventional logic may cause very complex problems. The fuzzy logic without using mathematical model of control system can create control mechanism only with the help of linguistic variables. In this article the modeling has been realized by fuzzy logic.

  7. Department of Defense Air Traffic Control and Airspace Management Systems

    Science.gov (United States)

    1989-08-08

    Electronic Tabular Display System ( ETABS ) under development by the FAA. The FACTS-3200, an advanced 32 bit digital processor, is being added to the system... software compatible with FDIO. 2.1.1.4.2 Radar Facility Communications In general, military radar facilities employ or share the twenty-series family of...program is providing incremental changes to the existing radios by adding more frequencies, computer memory and software improvements, and equipment

  8. Air Force Integrated Personnel and Pay System (AFIPPS)

    Science.gov (United States)

    2016-03-01

    3 Program Information 4 Responsible Office 4 References 4 Program Description 5 Business Case 5 Program Status 6 Schedule...service system. The system represents the AF commitment to modernize business practices and provide enhanced support for today’s service members and...their families . AFIPPS will align with DoD data standards for personnel, pay, and accounting, including the Common Human Resource Information

  9. Doing Business with the Naval Air Systems Command

    Science.gov (United States)

    2014-08-13

    GPWS/CATEGORY III (HELOS) • MILITARY FLIGHT OPS QA (MFOQA) • ELECTRONIC CASS (eCASS) • HYDRAULIC POWER SUPPLY ADDITIONAL • 61...FMU-164/B • MULTI-PURPOSE BOMB RACK PROGRAM (MPBR) • ELGTR ADDITIONAL • 3 ABBREVIATED ACQ PROGRAMS (5 POTENTIAL) • UCLASS ADPO • UNMANNED...EQUIPMENT CONSOLIDATED AUTOMATED SUPPORT SYSTEM ELECTRONIC CASS (eCASS) HYDRAULIC POWER SUPPLY SYSTEM PMW/A170

  10. The vapor diffusion resistance and air permeance of masonry and roofing systems

    Energy Technology Data Exchange (ETDEWEB)

    Hens, Hugo S.L.C. [Laboratory of Building Physics, Department of Civil Engineering, University of Leuven, Kasteelpark Arenberg, 51, 3001 Leuven (Belgium)

    2006-06-15

    Several building parts contain layers composed of separate elements that are mortared together or simply interlock or overlap. Typical examples are masonry walls, brick veneers, tiled roofing systems and slated roofing systems. The mortar joints, the interlocks and overlaps should affect the water vapor diffusion resistance and the air permeance of the composite layer, at least in comparison with the vapor and air flow properties of the pure elements. However, little information is found in literature that allows a quantification of the differences. The article describes a purpose designed test method for measuring the water vapor diffusion resistance of composite layers. It comments on the results and also gives data for the air permeances, measured with a pressure box. From the results and data, it is clear that mortared joints, interlocks and overlaps decrease the water vapor diffusion resistance and increase the air permeance of a composite layer compared to the pure material. In fact, mortared joints, interlocks and overlaps act as preferential paths for water vapor and air mitigation. As a consequence, using composite layers as outside finish in thermally insulated building parts, as done in pitched roofs and cavity walls, diminishes the interstitial condensation risk, accelerates drying of the cladding when wetted by wind-driven rain and affects the effectiveness of outside air cross ventilation below or behind the finish. (author)

  11. Experimental and Numerical Analysis of Air Flow, Heat Transfer and Thermal Comfort in Buildings with Different Heating Systems

    Science.gov (United States)

    Sabanskis, A.; Virbulis, J.

    2016-04-01

    Monitoring of temperature, humidity and air flow velocity is performed in 5 experimental buildings with the inner size of 3×3×3 m3 located in Riga, Latvia. The buildings are equipped with different heating systems, such as an air-air heat pump, air-water heat pump, capillary heating mat on the ceiling and electric heater. Numerical simulation of air flow and heat transfer by convection, conduction and radiation is carried out using OpenFOAM software and compared with experimental data. Results are analysed regarding the temperature and air flow distribution as well as thermal comfort.

  12. Numerical model of sprayed air cooled condenser coupled to refrigerating system

    Energy Technology Data Exchange (ETDEWEB)

    Youbi-Idrissi, M.; Macchi-Tejeda, H.; Fournaison, L.; Guilpart, J. [Refrigerating Processes Research Unit, CEMAGEF, Parc de Tourvoie, BP 44, 92163 Antony Cedex (France)

    2007-07-15

    Because of technological, economic and environmental constraints, many refrigeration and air conditioning units are equipped with a simple air cooled condenser. Spraying the condenser seems to be an original solution to improve the energetic performances of such systems. To characterise this energetic benefit, a semi-local mathematical model was developed and applied to a refrigerating machine with and without spraying its air cooled condenser. It is found that, compared to a dry air cooled condenser, both the calorific capacity and machine COP increase by 13% and 55%, respectively. Furthermore, the model shows that a spray flow rate threshold occurs. It should not be exceeded to assure an effective and rational spray use. (author)

  13. Experimental Study on Intelligent Control Scheme for Fan Coil Air-Conditioning System

    Directory of Open Access Journals (Sweden)

    Yanfeng Li

    2013-01-01

    Full Text Available An intelligent control scheme for fan coil air-conditioning systems has been put forward in order to overcome the shortcomings of the traditional proportion-integral-derivative (PID control scheme. These shortcomings include the inability of anti-interference and large inertia. An intelligent control test rig of fan coil air-conditioning system has been built, and MATLAB/Simulink dynamics simulation software has been adopted to implement the intelligent control scheme. A software for data exchange has been developed to combine the intelligence control system and the building automation (BA system. Experimental tests have been conducted to investigate the effectiveness of different control schemes including the traditional PID control, fuzzy control, and fuzzy-PID control for fan coil air-conditioning system. The effects of control schemes have been compared and analyzed in robustness, static and dynamic character, and economy. The results have shown that the developed data exchange interface software can induce the intelligent control scheme of the BA system more effectively. Among the proposed control strategies, fuzzy-PID control scheme which has the advantages of both traditional PID and fuzzy schemes is the optimal control scheme for the fan coil air-conditioning system.

  14. Waster water treatment with Cavitation Air Flotation (CAF) system; Tratamiento de las aguas residuales utilizando el sistema de flotacion por aire inducido (CAF)

    Energy Technology Data Exchange (ETDEWEB)

    Escofet Lugstenmann, I.

    1998-12-01

    In wastewater treatment from industries, the flotation process as physical-chemical treatment or primary treatment, based on the difference of densities of the solid-liquid suspension, is an important step for the elimination of the contaminant material, both as suspended solids and oils and greases. The Cavitation Air Flotation (CAF) system is an unique, innovative and very easy method which introduces air into the flotation system. It was created to come over the problems and limitations of more conventional techniques of Dissolved Air Flotation (DAF). (Author) 9 refs.

  15. Development and Validation of a UAV Based System for Air Pollution Measurements

    Directory of Open Access Journals (Sweden)

    Tommaso Francesco Villa

    2016-12-01

    Full Text Available Air quality data collection near pollution sources is difficult, particularly when sites are complex, have physical barriers, or are themselves moving. Small Unmanned Aerial Vehicles (UAVs offer new approaches to air pollution and atmospheric studies. However, there are a number of critical design decisions which need to be made to enable representative data collection, in particular the location of the air sampler or air sensor intake. The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions. The research included two different tests: (1 evaluate the air flow behavior of a hexacopter, its downwash and upwash effect, by measuring air speed along three axes to determine the location where the sensors should be mounted; (2 evaluate the use of gas sensors for CO2, CO, NO2 and NO, and the PNC monitor (DISCmini to assess the efficiency and performance of the UAV based system by measuring emissions from a diesel engine. The air speed behavior map produced by test 1 shows the best mounting point for the sensors to be alongside the UAV. This position is less affected by the propeller downwash effect. Test 2 results demonstrated that the UAV propellers cause a dispersion effect shown by the decrease of gas and PN concentration measured in real time. A Linear Regression model was used to estimate how the sensor position, relative to the UAV center, affects pollutant concentration measurements when the propellers are turned on. This research establishes guidelines on how to develop a UAV system to measure point source emissions. Such research should be undertaken before any UAV system is developed for real world data collection.

  16. Development and Validation of a UAV Based System for Air Pollution Measurements.

    Science.gov (United States)

    Villa, Tommaso Francesco; Salimi, Farhad; Morton, Kye; Morawska, Lidia; Gonzalez, Felipe

    2016-12-21

    Air quality data collection near pollution sources is difficult, particularly when sites are complex, have physical barriers, or are themselves moving. Small Unmanned Aerial Vehicles (UAVs) offer new approaches to air pollution and atmospheric studies. However, there are a number of critical design decisions which need to be made to enable representative data collection, in particular the location of the air sampler or air sensor intake. The aim of this research was to establish the best mounting point for four gas sensors and a Particle Number Concentration (PNC) monitor, onboard a hexacopter, so to develop a UAV system capable of measuring point source emissions. The research included two different tests: (1) evaluate the air flow behavior of a hexacopter, its downwash and upwash effect, by measuring air speed along three axes to determine the location where the sensors should be mounted; (2) evaluate the use of gas sensors for CO₂, CO, NO₂ and NO, and the PNC monitor (DISCmini) to assess the efficiency and performance of the UAV based system by measuring emissions from a diesel engine. The air speed behavior map produced by test 1 shows the best mounting point for the sensors to be alongside the UAV. This position is less affected by the propeller downwash effect. Test 2 results demonstrated that the UAV propellers cause a dispersion effect shown by the decrease of gas and PN concentration measured in real time. A Linear Regression model was used to estimate how the sensor position, relative to the UAV center, affects pollutant concentration measurements when the propellers are turned on. This research establishes guidelines on how to develop a UAV system to measure point source emissions. Such research should be undertaken before any UAV system is developed for real world data collection.

  17. Full-scale validation of an air scour control system for energy savings in membrane bioreactors.

    Science.gov (United States)

    Monclús, Hèctor; Dalmau, Montserrat; Gabarrón, Sara; Ferrero, Giuliana; Rodríguez-Roda, Ignasi; Comas, Joaquim

    2015-08-01

    Membrane aeration represents between 35 and 50% of the operational cost of membrane bioreactors (MBR). New automatic control systems and/or module configurations have been developed for aeration optimization. In this paper, we briefly describe an innovative MBR air scour control system based on permeability evolution and present the results of a full-scale validation that lasted over a 1-year period. An average reduction in the air scour flow rate of 13% was achieved, limiting the maximum reduction to 20%. This averaged reduction corresponded to a decrease in energy consumption for membrane aeration of 14% (0.025 kWh m(-3)) with maximum saving rates of 22% (0.04 kWh m(-3)). Permeability and fouling rate evolution were not affected by the air scour control system, as very similar behavior was observed for these variables for both filtration lines throughout the entire experimental evaluation period of 1 year.

  18. A Probabilistic Assessment of Failure for Air Force Building Systems

    Science.gov (United States)

    2015-03-26

    0.119 0.085 0.424 0.800 0.968 0.998 D409001 Carbon Dioxide Systems 0.470 0.119 0.085 0.424 0.800 0.968 0.998 3.940 Comp System Comp System Comp...0.424 0.630 5.303 D203002 Vent Pipe & Fittings 1.000 0.205 0.085 0.424 0.800 0.968 0.998 D203003 Floor Drains 1.000 0.205 0.085 0.424 0.800 0.968 0.998...D203004 Sanitary & Vent Equipment 1.000 0.205 0.085 0.424 0.800 0.968 0.998 D203005 Insulation & Identification 1.000 0.205 0.085 0.424 0.800 0.968

  19. Compressor-fan unitary structure for air conditioning system

    Science.gov (United States)

    Dreiman, N.

    2015-08-01

    An extremely compact, therefore space saving unitary structure of short axial length is produced by radial integration of a revolving piston rotary compressor and an impeller of a centrifugal fan. The unitary structure employs single motor to run as the compressor so the airflow fan and eliminates duality of motors, related power supply and control elements. Novel revolving piston rotary compressor which provides possibility for such integration comprises the following: a suction gas delivery system which provides cooling of the motor and supplies refrigerant into the suction chamber under higher pressure (supercharged); a modified discharge system and lubricating oil supply system. Axial passages formed in the stationary crankshaft are used to supply discharge gas to a condenser, to return vaporized cooling agent from the evaporator to the suction cavity of the compressor, to pass a lubricant and to accommodate wiring supplying power to the unitary structure driver -external rotor electric motor.

  20. Consumer Evaluation of Cash Food Systems: Shaw Air Force Base

    Science.gov (United States)

    1974-12-01

    X Clean/Dirty Silverware • X Clean/Dirty Trays » • Clean/Dirty Dishes and Glasses # * X Clean/Dirty Floors • » X Clean/Dirty Tables and Chairs...Dirty dishes and glasses i. Dirty floors a CD CD CD CD Clean floors 1- Dirty tables and chairs CD CD CD CD a Clean tables and chairs k. Brightly...to have an IN EXPENSIVE NOON or EVENING MEAL. Would you prefer a cafeteria, selfservice system or a waitress -service system? > > > li > 1i :i5 iV 15

  1. Parameter Estimation and Verification of Unmanned Air Cushion Vehicle (UACV System

    Directory of Open Access Journals (Sweden)

    Ab Rashid Mohd Zamzuri

    2017-01-01

    Full Text Available This project is mainly about the dynamic modelling and parameter estimation of Unmanned Air Cushion Vehicle (UACV. The purpose of developing mathematical model of the Unmanned Air Cushion Vehicle (UACV is due to its under actuated nonlinearities where it has less input compared to the output required. This system able to maneuver over land, water and other surfaces either at certain speed or maintain at a stationary position. In order to model the UACV, the system is set to have two propellers which are responsible to lift the vehicle by forcing high pressure air under the system. The air inflates the “skirt” under the vehicle, causing it to rise above the surface while another two propellers are used to steer the UACV forward. UACV system can be considered as under actuated since it possess fewer controller inputs that its degree of freedom. The system’s motions are defined by the six degrees of freedom which are; heaved, sway and surge. Another three components are rotational motions which can be elaborated as roll, pitch and yaw. The problem related to UACV is normally related to obtaining accurate parameters of the system to be included into the mathematical model of the system. This is due to the body inertia of the system during the static and moving condition. Besides, the air that flows into the UACV skirt to create the cushion causes imbalance and will affect the system stability and controllability. In this research, UACV need to be mathematically modelled using Euler-Lagrange method. Then, parameters of the system can be obtained through direct calculation and Solidworks software. The parameters acquired are compared and verified using simulation and experimental studies.

  2. Performance Analysis of a Modular Small-Diameter Air Distribution System

    Energy Technology Data Exchange (ETDEWEB)

    Poerschke, Andrew [IBACOS, Inc., Pittsburgh, PA (United States); Rudd, Armin [ABT Systems, LLC, Annville, PA (United States)

    2016-03-01

    This report investigates the feasibility of using a home-run manifold small-diameter duct system to provide space-conditioning air to individual thermal zones in a low-load home. This compact layout allows duct systems to easily be brought within conditioned space via interior partition walls. Centrally locating the air handling unit in the house significantly reduces duct lengths. The plenum box is designed so that each connected duct receives a similar amount of airflow—regardless of its position on the box. Furthermore, within a reasonable set of length restrictions each duct continues to receive similar airflow.

  3. CFD Analysis of Manipulator Cabin by Selecting Proper Air Conditioning System

    Directory of Open Access Journals (Sweden)

    Umesh S. Ghorpade

    2017-01-01

    Full Text Available Manipulator is a machine which is used to transfer heavy objects, to reduce human efforts in many industrial applications. Some of them are fully automated while some are manually operated. It is difficult to work in cabin of manipulator for the operator under hot conditions. So it is essential to provide comfort to operator using air-conditioning system. For such applications standard air conditioners are not compatible, so we have to develop assembled system. In this paper we will be dealing with design, selection and fabrication of components like compressor, condenser, expansion device and evaporator. In order to do so, we have calculated heat load.

  4. Risk Assessment on the Transition Program for Air Traffic Control Automation System Upgrade

    Directory of Open Access Journals (Sweden)

    Li Dong Bin

    2016-01-01

    Full Text Available We analyzed the safety risks of the transition program for Air Traffic Control (ATC automation system upgrade by using the event tree analysis method in this paper. We decomposed the occurrence progress of the three transition phase and built the event trees corresponding to the three stages, and then we determined the probability of success of each factor and calculated probability of success of the air traffic control automation system upgrade transition. In the conclusion, we illustrate the transition program safety risk according to the results.

  5. How Can Air Force Civil Engineers Use Expert Systems?

    Science.gov (United States)

    1988-09-01

    knowledge base is a database or static data plus relational information. The inference engine actually manipulates the knowledge base using analyses...soil permeability, soil stratification, groundwater flow, and gradient. The system produces a HRS score for site permeability and groundwater flow...solutions?have tedded befor? bein lot __ _ _ _ AND) __ __ OR ) _ __ __ AND] 2. Isthetaskina 5. Istoexperise [9. Are xperts better volatile knowledge

  6. Evaluation of two ozone air quality modelling systems

    Directory of Open Access Journals (Sweden)

    S. Ortega

    2004-01-01

    Full Text Available The aim of this paper is to compare two different modelling systems and to evaluate their ability to simulate high values of ozone concentration in typical summer episodes which take place in the north of Spain near the metropolitan area of Barcelona. As the focus of the paper is the comparison of the two systems, we do not attempt to improve the agreement by adjusting the emission inventory or model parameters. The first model, or forecasting system, is made up of three modules. The first module is a mesoscale model (MASS. This provides the initial condition for the second module, which is a nonlocal boundary layer model based on the transilient turbulence scheme. The third module is a photochemical box model (OZIPR, which is applied in Eulerian and Lagrangian modes and receives suitable information from the two previous modules. The model forecast is evaluated against ground base stations during summer 2001. The second model is the MM5/UAM-V. This is a grid model designed to predict the hourly three-dimensional ozone concentration fields. The model is applied during an ozone episode that occurred between 21 and 23 June 2001. Our results reflect the good performance of the two modelling systems when they are used in a specific episode.

  7. An Air Force Guide to the System Specification.

    Science.gov (United States)

    1981-01-01

    technical process, and because it also :Dermits meeting the requirements of many established standards which aplv during conceptual and validation...functional analysis/design approach continue to aplv at each successively-lower level of design as it occurs during a system pro uram. Although labeled

  8. An Improved Design for Air Removal from Aerospace Fluid Loop Coolant Systems

    Science.gov (United States)

    Ritchie, Stephen M. C.; Holladay, Jon B.; Holt, J. Mike; Clark, Dallas W.

    2003-01-01

    Aerospace applications with requirements for large capacity heat removal (launch vehicles, platforms, payloads, etc.) typically utilize a liquid coolant fluid as a transport media to increase efficiency and flexibility in the vehicle design. An issue with these systems however, is susceptibility to the presence of noncondensable gas (NCG) or air. The presence of air in a coolant loop can have numerous negative consequences, including loss of centrifugal pump prime, interference with sensor readings, inhibition of heat transfer, and coolant blockage to remote systems. Hardware ground processing to remove this air is also cumbersome and time consuming which continuously drives recurring costs. Current systems for maintaining the system free of air are tailored and have demonstrated only moderate success. An obvious solution to these problems is the development and advancement of a passive gas removal device, or gas trap, that would be installed in the flight cooling system simplifying the initial coolant fill procedure and also maintaining the system during operations. The proposed device would utilize commercially available membranes thus increasing reliability and reducing cost while also addressing both current and anticipated applications. In addition, it maintains current pressure drop, water loss, and size restrictions while increasing tolerance for pressure increases due to gas build-up in the trap.

  9. Solar Absorption Refrigeration System for Air-Conditioning of a Classroom Building in Northern India

    Science.gov (United States)

    Agrawal, Tanmay; Varun; Kumar, Anoop

    2015-10-01

    Air-conditioning is a basic tool to provide human thermal comfort in a building space. The primary aim of the present work is to design an air-conditioning system based on vapour absorption cycle that utilizes a renewable energy source for its operation. The building under consideration is a classroom of dimensions 18.5 m × 13 m × 4.5 m located in Hamirpur district of Himachal Pradesh in India. For this purpose, cooling load of the building was calculated first by using cooling load temperature difference method to estimate cooling capacity of the air-conditioning system. Coefficient of performance of the refrigeration system was computed for various values of strong and weak solution concentration. In this work, a solar collector is also designed to provide required amount of heat energy by the absorption system. This heat energy is taken from solar energy which makes this system eco-friendly and sustainable. A computer program was written in MATLAB to calculate the design parameters. Results were obtained for various values of solution concentrations throughout the year. Cost analysis has also been carried out to compare absorption refrigeration system with conventional vapour compression cycle based air-conditioners.

  10. A Novel Pumped Hydro Combined with Compressed Air Energy Storage System

    Directory of Open Access Journals (Sweden)

    Erren Yao

    2013-03-01

    Full Text Available A novel pumped hydro combined with compressed air energy storage (PHCA system is proposed in this paper to resolve the problems of bulk energy storage in the wind power generation industry over an area in China, which is characterised by drought and water shortages. Thermodynamic analysis of the energy storage system, which focuses on the pre-set pressure, storage volume capacity, water air volume ratio, pump performance, and water turbine performance of the storage system, is also presented. This paper discovers how such parameters affect the performance of the whole system. The ideal performance of this novel system has the following advantages: a simple, highly effective and low cost structure, which is comparable to the efficiency of a traditional pumped hydro storage system. Research results show a great solution to the current storage constraints encountered in the development of the wind power industry in China, which have been widely recognised as a bottleneck in the wind energy storage industry.

  11. Verification of Spin Magnetic Attitude Control System using air-bearing-based attitude control simulator

    Science.gov (United States)

    Ousaloo, H. S.; Nodeh, M. T.; Mehrabian, R.

    2016-09-01

    This paper accomplishes one goal and it was to verify and to validate a Spin Magnetic Attitude Control System (SMACS) program and to perform Hardware-In-the-Loop (HIL) air-bearing experiments. A study of a closed-loop magnetic spin controller is presented using only magnetic rods as actuators. The magnetic spin rate control approach is able to perform spin rate control and it is verified with an Attitude Control System (ACS) air-bearing MATLAB® SIMULINK® model and a hardware-embedded LABVIEW® algorithm that controls the spin rate of the test platform on a spherical air bearing table. The SIMULINK® model includes dynamic model of air-bearing, its disturbances, actuator emulation and the time delays caused by on-board calculations. The air-bearing simulator is employed to develop, improve, and carry out objective tests of magnetic torque rods and spin rate control algorithm in the experimental framework and to provide a more realistic demonstration of expected performance of attitude control as compared with software-based architectures. Six sets of two torque rods are used as actuators for the SMACS. It is implemented and simulated to fulfill mission requirement including spin the satellite up to 12 degs-1 around the z-axis. These techniques are documented for the full nonlinear equations of motion of the system and the performances of these techniques are compared in several simulations.

  12. Refrigerant Control Strategies for Residential Air-Conditioning and Heat-Pump System

    Institute of Scientific and Technical Information of China (English)

    SU Shun-yu; ZHANG Chun-zhi; CHEN Jian

    2009-01-01

    This paper simulated the optimal refrigerant charge inventory of a refrigeration system in air-con-ditioning operation and heat-pump operation respectively,and studied the refrigerant control strategies in this system.The void fraction in two-phase fluid region was calculated by Harms model.And based on distributed parameter model and Harms model,the refrigerant charge inventory in condenser and evaporator were calculated and analyzed in air-conditioning conditions and heat-pump conditions,respectively.The calculating results of dif-ferent refrigerant mass between refrigeration and heating conditions indicate that the optimal refrigerant charge inventory in heat-pump conditions is lower than that in air-eonditioning conditions.To avoid the decrease of COP due to the surplus refrigerant in heating conditions,we introduced the liquid reservoir control method and associate capillary control method.Both of them could increase the heating capacity of the air-source heat pump-The difference of optimal refrigerant charge inventory in air-conditioning and heat-pump system can be controlled by the liquid reservoir or the associate capillary.

  13. Flux Vector Splitting Schemes for Water Hammer Flows in Pumping Supply Systems with Air Vessels

    Institute of Scientific and Technical Information of China (English)

    Qiang Sun; Yuebin Wu; Ying Xu; Tae Uk Jang

    2015-01-01

    To solve water hammer problems in pipeline systems, many numerical simulation approaches have been developed. This paper improves a flux vector splitting ( FVS) scheme whose grid is the same as the fixed⁃grid MOC scheme. The proposed FVS scheme is used to analyze water hammer problems caused by a pump abrupt shutdown in a pumping system with an air vessel. This paper also proposes a pump⁃valve⁃vessel model combining a pump⁃valve model with an air vessel model. The results show that the data obtained by the FVS scheme are similar to the ones obtained by the fixed⁃grid method of characteristics ( MOC ) . And the results using the pump⁃valve⁃vessel model are almost the same as the ones using both the pump⁃valve model and the air vessel model. Therefore, it is effective that the proposed FVS scheme is used to solve water hammer problems and the pump⁃valve⁃vessel model replaces both the pump⁃valve model and the air vessel model to simulate water hammer flows in the pumping system with the air vessel.

  14. Experimental investigation on a solid desiccant system integrated with a R407C compression air conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Fatouh, M.; Mostafa, A. [Dept. of Mechanical Power Engineering, Faculty of Engineering, El-Mattaria (Helwan Univ.), Masaken El-Helmia P.O., Cairo 11718 (Egypt); Ibrahim, Talaat A. [Dept. of Mechanical Power Engineering, Faculty of Engineering, El-Mattaria (Helwan Univ.), Masaken El-Helmia P.O., Cairo 11718 (Egypt); King Saud Univ., P.O. 70908, 11577 Riyadh (Saudi Arabia)

    2009-10-15

    In the present work, experimental performance data of a solid desiccant based hybrid air conditioning system are presented. The system consists of a packed bed solid desiccant integrated with a R407C conventional vapor compression refrigeration system. Experiments are carried out during dehumidification operation mode for various operating parameters such as; desiccant mass on shelves (5, 10 and 15 kg), air mass flow rate (7.4 and 10.2 kg/min), shelves number (1, 2 and 3) and three values of shelves span (7, 14 and 28 cm) at evaporator air inlet conditions of 28 C DBT and 66% RH, condenser air inlet volume flow rate of 850 m{sup 3}/h and temperature of 35 C. The reactivation of the desiccant at different regeneration temperatures and air flow rates as well as desiccant masses is also investigated. During the dehumidification mode, the average system coefficient of performance increases by 6.2% and 1.61% when the mass of desiccant increases from 5 to 10 kg and from 10 to 15 kg, respectively. The enhancement in the coefficient of performance is 6.2% due to increasing the air mass flow rate from 7.4 to 10.2 kg/min. Increasing both shelves number and span yields to a reduction in the adsorption rate that can be extracted by the desiccant material in the ranges of considered operating conditions. The regeneration temperature and the air flow rate of regeneration have significant effects on the reactivation process. It was found that, with increasing the mass flow rate of regenerated air from 7.4 to 10.2 kg/min produces a reduction in regeneration time by 87.5% and an augmentation in the desorption rate by 16% after 10 min of regeneration. In addition, with escalating the regeneration temperature from 45 to 55 C, the reactivation time reduces by 25%. Reported results revealed that solid desiccant based hybrid air conditioning system reduces the compressor electric power and the number of electric unit (kW h) by 10.2%. (author)

  15. Thermodynamic model of a thermal storage air conditioning system with dynamic behavior

    Energy Technology Data Exchange (ETDEWEB)

    Fleming, E; Wen, SY; Shi, L; da Silva, AK

    2013-12-01

    A thermodynamic model was developed to predict transient behavior of a thermal storage system, using phase change materials (PCMs), for a novel electric vehicle climate conditioning application. The main objectives of the paper are to consider the system's dynamic behavior, such as a dynamic air flow rate into the vehicle's cabin, and to characterize the transient heat transfer process between the thermal storage unit and the vehicle's cabin, while still maintaining accurate solution to the complex phase change heat transfer. The system studied consists of a heat transfer fluid circulating between either of the on-board hot and cold thermal storage units, which we refer to as thermal batteries, and a liquid-air heat exchanger that provides heat exchange with the incoming air to the vehicle cabin. Each thermal battery is a shell-and-tube configuration where a heat transfer fluid flows through parallel tubes, which are surrounded by PCM within a larger shell. The system model incorporates computationally inexpensive semianalytic solution to the conjugated laminar forced convection and phase change problem within the battery and accounts for airside heat exchange using the Number of Transfer Units (NTUs) method for the liquid-air heat exchanger. Using this approach, we are able to obtain an accurate solution to the complex heat transfer problem within the battery while also incorporating the impact of the airside heat transfer on the overall system performance. The implemented model was benchmarked against a numerical study for a melting process and against full system experimental data for solidification using paraffin wax as the PCM. Through modeling, we demonstrate the importance of capturing the airside heat exchange impact on system performance, and we investigate system response to dynamic operating conditions, e.g., air recirculation. (C) 2013 Elsevier Ltd. All rights reserved.

  16. Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System

    Energy Technology Data Exchange (ETDEWEB)

    Stenner, Robert D.; Hadley, Donald L.; Armstrong, Peter R.; Buck, John W.; Hoopes, Bonnie L.; Janus, Michael C.

    2001-03-01

    Indoor air quality effects on human health are of increasing concern to public health agencies and building owners. The prevention and treatment of 'sick building' syndrome and the spread of air-borne diseases in hospitals, for example, are well known priorities. However, increasing attention is being directed to the vulnerability of our public buildings/places, public security and national defense facilities to terrorist attack or the accidental release of air-borne biological pathogens, harmful chemicals, or radioactive contaminants. The Indoor Air Nuclear, Biological, and Chemical Health Modeling and Assessment System (IA-NBC-HMAS) was developed to serve as a health impact analysis tool for use in addressing these concerns. The overall goal was to develop a user-friendly fully functional prototype Health Modeling and Assessment system, which will operate under the PNNL FRAMES system for ease of use and to maximize its integration with other modeling and assessment capabilities accessible within the FRAMES system (e.g., ambient air fate and transport models, water borne fate and transport models, Physiologically Based Pharmacokinetic models, etc.). The prototype IA-NBC-HMAS is designed to serve as a functional Health Modeling and Assessment system that can be easily tailored to meet specific building analysis needs of a customer. The prototype system was developed and tested using an actual building (i.e., the Churchville Building located at the Aberdeen Proving Ground) and release scenario (i.e., the release and measurement of tracer materials within the building) to ensure realism and practicality in the design and development of the prototype system. A user-friendly "demo" accompanies this report to allow the reader the opportunity for a "hands on" review of the prototype system's capability.

  17. Technico-economical analysis of a hybrid wave power-air compression storage system

    OpenAIRE

    Hernandez-Torres, David; Bridier, Laurent; David, Mathieu; Lauret, Philippe; Ardiale, Thomas

    2015-01-01

    International audience; This paper presents a technico-economical analysis of a Pelamis wave power generator coupled with a proposed air compression storage system. Ocean wave measurements and forecasts are used from a site near the city of Saint-Pierre in Réunion island, France. The insular context requires both smoothing and forecast of the output power from the wave power system. The storage system is a solution to meet this requirement. Several power network services are defined by the ut...

  18. Room air stratification in combined chilled ceiling and displacement ventilation systems.

    OpenAIRE

    Schiavon, Stefano; Bauman, Fred; Tully, Brad; Rimmer, Julian

    2012-01-01

    Radiant chilled ceilings (CC) with displacement ventilation (DV) represent a promising integrated system design that combines the energy efficiency of both sub-systems with the opportunity for improved ventilation performance resulting from the thermally stratified environment of DV systems. The purpose of this study was to conduct laboratory experiments for a typical U.S. interior zone office to investigate how room air stratification is affected by the ratio of cooling load removed by a chi...

  19. Air Traffic Management: Civil/Military Systems and Technologies.

    Science.gov (United States)

    1980-02-01

    develops the- following functions: - data generation, row by row, of the ILP tableau ; - memorization of the coefficient matrix in a compact form...many people on bord or on the ground can be killed if a wide-bodied civil aircraft or an equivalent small military aircraft with large fuel capacity...ver a helicopter at nap-of-the-earth (NOE) altitudes to a distant destination. The source of this perceptual information (i.e., a pilotage system

  20. Charting the Course for a New Air Force Inspection System

    Science.gov (United States)

    2013-01-01

    Assessment Program LOSA Line-Oriented Safety Auditing M-ASAP Military Aviation Safety Action Program M-FOQA Military Flight Operations Quality Assurance...implement voluntary programs as part of their own internal evaluation systems. The Line-Oriented Safety Auditing ( LOSA ) program is an example of...such a program. Under LOSA , an airline hires a third-party observer to monitor various aspects of its operations. For example, the third party might

  1. Performance assessment and transient optimization of multi-stage solid desiccant air conditioning systems with building PV/T integration

    Science.gov (United States)

    Gadalla, Mohamed; Saghafifar, Mohammad

    2016-09-01

    One of the popular solar air conditioning technologies is desiccant air conditioning. Nonetheless, single stage desiccant air conditioning systems' coefficient of performance (COP) are relatively low. Therefore, multi-stage solid desiccant air conditioning systems are recommended. In this paper, an integrated double-stage desiccant air conditioning systems and PV/T collector is suggested for hot and humid climates such as the UAE. The results for the PV/T implementation in the double-stage desiccant cooling system are assessed against the PV/T results for a single-stage desiccant air conditioning system. In order to provide a valid comparative evaluation between the single and double stage desiccant air conditioning systems, an identical PV/T module, in terms of dimensions, is incorporated into these systems. The overall required auxiliary air heating is abated by 46.0% from 386.8 MWh to 209.0 MWh by replacing the single stage desiccant air conditioning system with the proposed double stage configuration during June to October. Moreover, the overall averaged solar share during the investigated months for the single and double stage systems are 36.5% and 43.3%.

  2. Selecting HVAC Systems for Schools To Balance the Needs for Indoor Air Quality, Energy Conservation and Maintenance. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.; Kunz, Walter S., Jr.

    Although poor air quality in a school can have multiple causes, the heating, ventilating, and air-conditioning (HVAC) system plays a major role. Suggestions that architects, facilities managers, school board members, and administrators can use in selecting HVAC systems are discussed. Focus is on the performance criteria for classroom systems, and…

  3. Air-conditioned university laboratories: Comparing CO2 measurement for centralized and split-unit systems

    Directory of Open Access Journals (Sweden)

    M. Hussin

    2017-04-01

    Full Text Available Universities are designed for higher education learning, and improving university indoor air quality (IAQ is essential to the enhanced performances of students and staff members alike. The majority of IAQ problems are due to inadequate ventilation in university buildings. Carbon Dioxide (CO2 measurements have become a commonly used screening test of IAQ because measurement levels can be used to evaluate the amount of ventilation and general comfort. This paper examines CO2 field measurement for undergraduate practical classes. Ten air conditioned laboratories with ventilation were chosen for CO2 field measurement. CO2 was monitored under indoor and outdoor conditions. Indoor CO2 concentration for Laboratories 1 and 10 is observed to be higher than 1000 ppm which indicated inadequate ventilation, while other laboratories showed CO2 concentrations less than 1000 ppm. Air capacity and outdoor air were calculated based on the design documentation. A comparison between design and actual outdoor air/person values indicates that the air conditioning systems of the laboratories had adequate ventilation.

  4. AIR POLLUTION INVESTIGATION AND PROVIDING SYSTEM OF CONTROL IN KHORASAN STEEL COMPLEX

    Directory of Open Access Journals (Sweden)

    J. Nouri

    1999-12-01

    Full Text Available The most important environmental pollutant in steel industry is air pollution due to the process of its products. Optimise sitting for this industry, in a great extend will prevent pollutants and emissions. Khorasan Steel Company is located near some populous villages and three rivers. It is necessary to perform an investigation for providing abatement and control of air pollution, in time of planning and manufacturing of control instruments. The manufacturing company has determined air pollution reduction instruments in this site, according to the emission suspended particulate and its climatic conditions. The air pollution reducer's instruments were used back-fither. But, this offer was not agreed by the Department of the Environment of Iran. Perhaps, this disagreement was announced just for another original problem, which was the site selection of plants. This research was on the filtration which has been offered by the manufacturing company, if this selection can improve the future regional air pollution. These figures, of course, were obtained from the present data and plume rise particulate, considering Gausian distribution mode for all the rural population and rivers rounding to the site, up to 5 km. The results showed that the produced particulates were less than permissible limit and the proposed methods will improve the complex air pollution difficulties So, the proposed methods were provided for increasing the control and operating the system for conducting of cyclone before input of particulate to the back-filter.

  5. Air quality monitoring system using lichens as bioindicators in Central Argentina.

    Science.gov (United States)

    Estrabou, Cecilia; Filippini, Edith; Soria, Juan Pablo; Schelotto, Gabriel; Rodriguez, Juan Manuel

    2011-11-01

    Air quality studies with bioindicators have not been well developed in South America. In the city of Córdoba, there are not permanent air pollutant measurements by equipment. In order to develop an air quality biomonitoring system using lichens, we applied a systematic sampling in the city of Córdoba, Argentina. A total of 341 plots were sampled in the area of the city which is a square of 24 × 24 km. In each sample plot we selected three phorophytes and estimated the frequency and cover of lichen species growing at 1.5 m on trunks. We also calculated the Index of Atmospheric Purity (IAP) using lichen frequencies. Maps with number of lichen species, cover values, and IAP were performed. The lichen community was described with nine species where Physcia undulata and Physcia endochryscea were the most frequent. Moreover, these two species were dominant in the community with the highest cover index. The central area of the city is considered a lichen desert with poor air quality. The southeast and northwest areas of the city showed the highest IAP values and number of species. In general, the city shows fair air quality and few areas with good and very good air quality.

  6. Availability analysis of thermal power plant boiler air circulation system using Markov approach

    Directory of Open Access Journals (Sweden)

    Ravinder Kumar

    2014-01-01

    Full Text Available The long term operation and planning of power plant depend upon an effective availability analysis and assessment of various systems in the plant concerned. The plant is expected to remain operational in a continual manner to achieve the desired production targets. Hence, the availability analysis of the boiler air circulation system plays an important role in this direction. For this purpose, the concerned system mathematical model based on Markov Birth-Death process has been developed. The system consists of four subsystems. The transition diagram represents reduced capacity, full working and failed state of the system. The differential equations associated with the transition diagram based on probabilistic approach have been solved recursively in order to develop the system steady state availability. Availability matrices represented measures the performance of the system concerned. In addition, different combinations of failures and repair rates provide various availability levels of the system. Maintenance decisions are taken based upon these values for improving availability of the power plant as well as the power supply. The result shows that the failure of the primary air fan affects the system availability at most, while failure of air heater affect it at least for different failures and repair rate combination of subsystems under study.

  7. Self-sustained Oscillation Pulsed Air Blowing System for Energy Saving

    Institute of Scientific and Technical Information of China (English)

    CAI Maolin; XU Weiqing

    2010-01-01

    Currently, many studies have been made for years on dimensions of pneumatic nozzle, which influence the flow characteristic of blowing system. For the purpose of outputting the same blowing force, the supply pressure could be reduced by decreasing the ratio of length to diameter of nozzle. The friction between high speed air and pipe wall would be reduced if the nozzle is designed to be converging shape comparing with straight shape. But the volume flow and pressure, discussed in these studies, do not describe energy loss of the blowing system directly. Pneumatic power is an innovative principle to estimate pneumatic system's energy consumption directly. Based on the above principle, a pulse blowing method is put forward for saving energy. A flow experiment is carried out, in which the high speed air flows from the pulse blowing system and continuous blowing system respectively to a plate with grease on top. Supply pressure and the volume of air used for removing the grease are measured to calculate energy consumption. From the experiment result, the pulse blowing system performs to conserve energy comparing with the continuous blowing system. The frequency and duty ratio of pulse flow influence the blowing characteristic. The pulse blowing system performs to be the most efficient at the specified frequency and duty ratio. Then a pneumatic self-oscillated method based on air operated valve is put forward to generate pulse flow. A simulation is made about dynamic modeling the air operated valve and calculating the motion of the valve core and output pressure. The simulation result verifies the system to be able to generate pulse flow, and predicts the key parameters of the frequency and duty ratio measured by experiment well. Finally, on the basis of simplifying and solution of the pulse blowing system's mathematic model, the relationship between system's frequency duty ratio and the dimensions of components is simply described with four algebraic equations. The

  8. Parametric analysis of a combined dew point evaporative-vapour compression based air conditioning system

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Chauhan

    2016-09-01

    Full Text Available A dew point evaporative-vapour compression based combined air conditioning system for providing good human comfort conditions at a low cost has been proposed in this paper. The proposed system has been parametrically analysed for a wide range of ambient temperatures and specific humidity under some reasonable assumptions. The proposed system has also been compared from the conventional vapour compression air conditioner on the basis of cooling load on the cooling coil working on 100% fresh air assumption. The saving of cooling load on the coil was found to be maximum with a value of 60.93% at 46 °C and 6 g/kg specific humidity, while it was negative for very high humidity of ambient air, which indicates that proposed system is applicable for dry and moderate humid conditions but not for very humid conditions. The system is working well with an average net monthly power saving of 192.31 kW h for hot and dry conditions and 124.38 kW h for hot and moderate humid conditions. Therefore it could be a better alternative for dry and moderate humid climate with a payback period of 7.2 years.

  9. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    Science.gov (United States)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  10. New developments in the Electric Fuel Ltd. zinc/air system

    Science.gov (United States)

    Goldstein, Jonathan; Brown, Ian; Koretz, Binyamin

    Electric Fuel Ltd. is engaged in the design, development and commercialization of its proprietary zinc/air battery technology for electric vehicles, consumer electronic products and defence applications. To meet the challenging requirements for propelling an all-electric bus, the Vehicle Division sought a unique solution: an all electric battery-battery hybrid propulsion system. The high energy zinc/air battery is coupled with a high-power auxiliary battery. The combined system offers zero emission, high power and long range in an economically viable package. The consumer battery group has developed a high power primary zinc/air cell aimed at cellular phone users, offering extended use, convenience and low cost.

  11. Client Server Model Based DAQ System for Real-Time Air Pollution Monitoring

    Directory of Open Access Journals (Sweden)

    Vetrivel. P

    2014-01-01

    Full Text Available The proposed system consists of client server model based Data-Acquisition Unit. The Embedded Web Server integrates Pollution Server and DAQ that collects air Pollutants levels (CO, NO2, and SO2. The Pollution Server is designed by considering modern resource constrained embedded systems. In contrast, an application server is designed to the efficient execution of programs and scripts for supporting the construction of various applications. While a pollution server mainly deals with sending HTML for display in a web browser on the client terminal, an application server provides access to server side logic for pollutants levels to be use by client application programs. The Embedded Web Server is an arm mcb2300 board with internet connectivity and acts as air pollution server as this standalone device gathers air pollutants levels and as a Server. Embedded Web server is accessed by various clients.

  12. Reconfigurable Mobile System - Ground, sea and air applications

    Science.gov (United States)

    Lamonica, Gary L.; Sturges, James W.

    1990-11-01

    The Reconfigurable Mobile System (RMS) is a highly mobile data-processing unit for military users requiring real-time access to data gathered by airborne (and other) reconnaissance data. RMS combines high-performance computation and image processing workstations with resources for command/control/communications in a single, lightweight shelter. RMS is composed of off-the-shelf components, and is easily reconfigurable to land-vehicle or shipboard versions. Mission planning, which involves an airborne sensor platform's sensor coverage, considered aircraft/sensor capabilities in conjunction with weather, terrain, and threat scenarios. RMS's man-machine interface concept facilitates user familiarization and features iron-based function selection and windowing.

  13. Removal of mercury vapor from ambient air of dental clinics using an air cleaning system based on silver nanoparticles

    Directory of Open Access Journals (Sweden)

    Chiman Saeidi

    2015-06-01

    Full Text Available Background & objective: Mercury is a toxic and bio-accumulative pollutant that has adverse effects on environmental and human health. There have been a number of attempts to regulate mercury emissions tothe atmosphere. Silver nanoparticles are a number of materials that have highly potential to absorb mercury and formation of mercury amalgam.The aim of this study is removal of mercury vapors in the dental clinic using a n a ir cleaning system based on silver nanoparticles. Methods: In this study, silver nanoparticles coated on the bed of foam and chemical and structural properties were determined using a number of methods such as UV-VIS-NIR spectroscopy and Scanning Electron Microscope (SEM connected the X-ray Emission Spectroscopy Energy (EDS. The a ir cleaning system efficiency to remove of the mercury vapor in simulated conditions in the laboratory and real conditions in the dental clinicwere measured by Cold Vapor Atomic Absorption Spectroscopy (CVAAS. Results: The images of SEM, showed that average sizeof silver nanoparticles in colloidal solution was ∼ 30nm and distribution of silver nanoparticles coated on foam was good. EDS spectrum confirmed associated the presence of silver nanoparticles coated on foam. The significantly difference observed between the concentration of mercury vapor in the off state (9.43 ± 0.342 μg.m-3 and on state (0.51 ± 0.031μg.m-3 of the a ir cleaning system. The mercury vapor removal efficiencyof the a ir cleaning system was calculated 95%. Conclusion : The air cleaning system based on foam coated by silver nanoparticles, undertaken to provide the advantages such as use facilitating, highly efficient operational capacity and cost effective, have highly sufficiency to remove mercury vapor from dental clinics.

  14. ALTERNATE HIGH EFFICIENCY PARTICULATE AIR (HEPA) FILTRATION SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Bruce Bishop; Robert Goldsmith; Karsten Nielsen; Phillip Paquette

    2002-08-16

    In Phase IIA of this project, CeraMem has further developed and scaled up ceramic HEPA filters that are appropriate for use on filtration of vent gas from HLW tanks at DOE sites around the country. This work included procuring recrystallized SiC monoliths, developing membrane and cement materials, and defining a manufacturing process for the production of prototype full sizes HEPA filters. CeraMem has demonstrated that prototype full size filters can be manufactured by producing 9 full size filters that passed DOP aerosol testing at the Oak Ridge Filter Test Facility. One of these filters was supplied to the Savannah River Technical Center (SRTC) for process tests using simulated HLW tank waste. SRTC has reported that the filter was regenerable (with some increase in pressure drop) and that the filter retained its HEPA retention capability. CeraMem has also developed a Regenerable HEPA Filter System (RHFS) design and acceptance test plan that was reviewed by DOE personnel. The design and acceptance test plan form the basis of the system proposal for follow-on work in Phase IIB of this project.

  15. Comparison of immersed liquid and air cooling of NASA's Airborne Information Management System

    Science.gov (United States)

    Hoadley, A. W.; Porter, A. J.

    1992-01-01

    The Airborne Information Management System (AIMS) is currently under development at NASA Dryden Flight Research Facility. The AIMS is designed as a modular system utilizing surface mounted integrated circuits in a high-density configuration. To maintain the temperature of the integrated circuits within manufacturer's specifications, the modules are to be filled with Fluorinert FC-72. Unlike ground based liquid cooled computers, the extreme range of the ambient pressures experienced by the AIMS requires the FC-72 be contained in a closed system. This forces the latent heat absorbed during the boiling to be released during the condensation that must take within the closed module system. Natural convection and/or pumping carries the heat to the outer surface of the AIMS module where the heat transfers to the ambient air. This paper will present an evaluation of the relative effectiveness of immersed liquid cooling and air cooling of the Airborne Information Management System.

  16. Ceiling-mounted personalized ventilation system integrated with a secondary air distribution system - a human response study in hot and humid climate

    DEFF Research Database (Denmark)

    Bin, Yang; Sekhar, S.C.; Melikov, Arsen Krikor

    2010-01-01

    of PV systems with the work station. A newly developed ceiling-mounted PV system addresses these challenges and provides a practical solution while retaining much of the apparent benefits of PV systems. Assessments of thermal environment, air movement, and air quality for ceiling-mounted PV system were...

  17. Open absorption system for cooling and air conditioning using membrane contactors - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Conde-Petit, M. [M. Conde Engineering, Zuerich (Switzerland); Weber, R.; Dorer, V. [Swiss Federal Laboratories for Materials Testing and Research (EMPA), Duebendorf (Switzerland)

    2008-07-01

    Air conditioning systems based upon the open absorption principle, essentially an absorption device operating at atmospheric pressure, have been proposed and investigated at many instances in the past eighty years. Their potential for improving energy efficiency is clearly recognized in the earliest research reports. By the mid 1950ies, solar thermal energy was being applied to drive open absorption-based air conditioning systems. For several reasons, however, the open absorption technology was not mature enough to take place in the mainstream. In the past two decades, vigorous efforts have been undertaken to reverse this situation, but success continued to elude, despite the fact that the main problems, such as corrosion, aerosols in the supply air, etc., have been identified. This report details the work and the main results from the MemProDEC Project. In this project innovative solutions were proposed, and successfully investigated, for the corrosion problem and the improvement of efficiency of the absorption process, in particular a new method to cool a very compact absorber. The practically uniform flow distribution for all three streams in the absorber (air, water and desiccant) warrants the contact of the air to be dehumidified with the desiccant over the whole surface of exchange (across a porous membrane). This, together with the cooling with water in counter flow to the air, are the key factors for the excellent effectiveness of the absorber. As the results show, the dehydration effectiveness of the prototype absorber is up to 150 % higher than that previously obtained by others. The solutions developed for compactness and modularity represent an important step in the way to flexible manufacturing, i.e. using a single element size to assemble autonomous air handling units of various nominal capacities. And although the manufacturing methods of the individual elements require improvement, namely by avoiding adhesive bonding, the choice of materials and the

  18. Performance of introducing outdoor cold air for cooling a plant production system with artificial light

    Directory of Open Access Journals (Sweden)

    Jun eWang

    2016-03-01

    Full Text Available The commercial use of a plant production system with artificial light (PPAL is limited by its high initial construction and operation costs. The electric-energy consumed by heat pumps, applied mainly for cooling, accounts for 15-35% of the total electric-energy used in a PPAL. To reduce the electric-energy consumption, an air exchanger with low capacity (180 W was used for cooling by introducing outdoor cold air. In this experiment, the indoor air temperature in two PPALs (floor area: 6.2 m2 each was maintained at 25ºC and 20ºC during light and dark periods, respectively, for lettuce production. In one PPAL (PPALe, an air exchanger (air flow rate: 250 m3 h-1 was used along with a heat pump (cooling capacity: 3.2 kW to maintain the indoor air temperature at the set-point. The other PPAL (PPALc with only a heat pump (cooling capacity: 3.2 kW was used for reference. Effects of introducing outdoor cold air on energy use efficiency, coefficient of performance (COP, electric-energy consumption for cooling and growth of lettuce were investigated. The results show that: when the air temperature difference between indoor and outdoor ranged from 20.2°C to 30.0°C: 1 the average energy use efficiency of the air exchanger was 2.8 and 3.4 times greater than the COP of the heat pumps in the PPALe and PPALc, respectively; 2 hourly electric-energy consumption in the PPALe reduced by 15.8-73.7% compared with that in the PPALc; 3 daily supply of CO2 in the PPALe reduced from 0.15 kg to 0.04 kg compared with that in the PPALc; 4 no significant difference in lettuce growth was observed in both PPALs. The results indicate that using air exchanger to introduce outdoor cold air should be considered as an effective way to reduce electric-energy consumption for cooling with little effects on plant growth in a PPAL.

  19. Proposal of bypass in heat recovery system with sucking air

    Science.gov (United States)

    Siažik, Ján; Malcho, Milan; Rezničák, Štefan

    2016-06-01

    Waste heat is utilized in a wide variety of technologies for a number of reasons. But the significant one such reason is use of the energy contained for example in waste water or waste heat that would otherwise left unused. Other considerable reason it is also reduces primary costs to operate the technology. The article deals with the arrangement section of the unit in heat recovery systems where the entry of waste gases into defluorinastion device. The technologies re-use heat often use the bypass. Bypass fulfill their duty in equipment failures, for example heat exchanger where it is not possible to stop the operationimmediately and the hot combustion gases can flow bypass without interrupting operation.

  20. Experimental performance study of a proposed desiccant based air conditioning system.

    Science.gov (United States)

    Bassuoni, M M

    2014-01-01

    An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS). The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2) solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa), specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.

  1. Experimental performance study of a proposed desiccant based air conditioning system

    Directory of Open Access Journals (Sweden)

    M.M. Bassuoni

    2014-01-01

    Full Text Available An experimental investigation on the performance of a proposed hybrid desiccant based air conditioning system referred as HDBAC is introduced in this paper. HDBAC is mainly consisted of a liquid desiccant dehumidification unit integrated with a vapor compression system (VCS. The VCS unit has a cooling capacity of 5.27 kW and uses 134a as refrigerant. Calcium chloride (CaCl2 solution is used as the working desiccant material. HDBAC system is used to serve low sensible heat factor applications. The effect of different parameters such as, process air flow rate, desiccant solution flow rate, evaporator box and condenser box solution temperatures, strong solution concentration and regeneration temperature on the performance of the system is studied. The performance of the system is evaluated using some parameters such as: the coefficient of performance (COPa, specific moisture removal and energy saving percentage. A remarkable increase of about 54% in the coefficient of performance of the proposed system over VCS with reheat is achieved. A maximum overall energy saving of about 46% is observed which emphasizes the use of the proposed system as an energy efficient air conditioning system.

  2. High energy efficiency desiccant assisted automobile air-conditioner and its temperature and humidity control system

    Energy Technology Data Exchange (ETDEWEB)

    Nagaya, K. [Department of Mechanical Engineering, Gunma University Kiryu, Gunma 376-8515 (Japan)]. E-mail: nagaya@me.gunma-u.ac.jp; Senbongi, T. [Department of Mechanical Engineering, Gunma University Kiryu, Gunma 376-8515 (Japan); Li, Y. [Department of Mechanical Engineering, Gunma University Kiryu, Gunma 376-8515 (Japan); Zheng, J. [Department of Mechanical Engineering, Gunma University Kiryu, Gunma 376-8515 (Japan); Murakami, I. [Department of Mechanical Engineering, Gunma University Kiryu, Gunma 376-8515 (Japan)

    2006-10-15

    The energy efficiency is of importance in air conditioning systems for automobiles. The present article provides a new type air conditioning system for automobiles in which energy loss is small in comparison with the previous system. In the system, a desiccant is installed in the air conditioning system for controlling both temperature and humidity. The control is performed by an electromagnetic control valve, which controls an inclination of the rotating plate of a compressor. It is difficult to control both temperature and humidity precisely, because there are some delays in the control due to the time of heat exchange and that of coolant flow from the actuator (electromagnetic valve) to the evaporator. In order to have precise control, this article also presents a method of control with consideration of control delays. The energy of our system is compared with that in the previous conventional system in the same condition. It is shown that our controlled results and energy efficiency are better than those in the previous system.

  3. Performance analysis on a hybrid air-conditioning system of a green building

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Q.; Wang, R.Z.; Dai, Y.J.; Zhai, X.Q. [Shanghai Jiao Tong University (China). School of Mechanical Engineering

    2006-05-15

    This paper presents the performance analysis on a hybrid air-conditioning system according to the hybrid building energy system of the green building demonstration project in Shanghai, in which a 150 m{sup 2} solar collector is used to power two 10 kW adsorption chillers, a vapor compression heat pump is used to cool air in the evaporating end while the condensing heating at about 80{sup o}C is fully used to regenerate a liquid desiccant dehumidification system. In the hybrid system, the sensible cooling to the air is treated mainly by solar adsorption cooling and vapor compression cooling, whereas the latent heat is treated by the liquid desiccant dehumidification system with regeneration from the condensing heat of the heat pump. The results show that the performance of this system is 44.5% higher than conventional vapor compression system at a latent load of 30% and this improving can be achieved by 73.8% at a 42% latent load. The optimal ratio of adsorption refrigerating power to total cooling load for this kind of hybrid systems is also studied in this paper. (author)

  4. Extremely Low Frequency Electromagnetic Field from Convective Air Warming System on Temperature Selection and Distance.

    Directory of Open Access Journals (Sweden)

    Kwang Rae Cho

    2014-12-01

    Full Text Available Hypothermia generates potentially severe complications in operating or recovery room. Forced air warmer is effective to maintain body temperature. Extremely low frequency electromagnetic field (ELF-EMF is harmful to human body and mainly produced by electronic equipment including convective air warming system. We investigated ELF-EMF from convective air warming device on various temperature selection and distance for guideline to protect medical personnel and patients.The intensity of ELF-EMF was measured as two-second interval for five minutes on various distance (0.1, 0.2, 0.3, 0.5 and 1meter and temperature selection (high, medium, low and ambient. All of electrical devices were off including lamp, computer and air conditioner. Groups were compared using one-way ANOVA. P<0.05 was considered significant.Mean values of ELF-EMF on the distance of 30 cm were 18.63, 18.44, 18.23 and 17.92 milligauss (mG respectively (high, medium, low and ambient temperature set. ELF-EMF of high temperature set was higher than data of medium, low and ambient set in all the distances.ELF-EMF from convective air warming system is higher in condition of more close location and higher temperature. ELF-EMF within thirty centimeters exceeds 2mG recommended by Swedish TCO guideline.

  5. Comparative analysis of kill probability one of the main features of Air Defense Integrated Systems

    Directory of Open Access Journals (Sweden)

    Vasile SANDRU

    2014-09-01

    Full Text Available The combat features of the Ground Based Air Defence Systems represent the potential of search, discovery, indicate, combat and destruction of the enemy's air assets and the ability to manoeuvre of forces and combat means, for the purpose of capturing the enemy's airspace and avoid actions and attack to defend objectives (of troops assigned in the area of responsibility tacking into account the conditions established by the mission. The paper is focused on a comparative study on the possibilities of target destruction of the Air Air Defence Systems (antiaircraft artillery and Surface-To-Air Missiles. Two situations were chosen: for the first case, related to S1, S2 and S3, we’ve assumed the presence of a flying target describing a uniform rectilinear trajectory both in the presence and in the absence of the enemy’s electronic jamming. For the second case concerning S4 we’ve assumed that the target changed its angle of flight.

  6. Effects of indoor air purification by an air cleaning system (Koala technology) on semen parameters in male factor infertility: results of a pilot study.

    Science.gov (United States)

    Paradisi, R; Vanella, S; Barzanti, R; Cani, C; Battaglia, C; Seracchioli, R; Venturoli, S

    2009-06-01

    A number of studies indicated a clear decline in semen quality in the past 30-50 years and there is accumulating evidence that this decline might result from exposure to high levels of air pollution. To examine the impact of environment on male reproductive ability, we undertook for the first time a pilot study on semen quality of infertile men exposed to purification of indoor air. Ten subjects with a history of unexplained male infertility and poor semen quality were exposed for at least 1 year to a cleaning indoor air system (Koala technology). The key feature of this air purifier is the unique innovative multiple filtering system. The treatment of total purification of indoor air showed neither improvements in semen parameters nor variation in reproductive hormones (P = N.S.), but induced an evident increase (P indoor air does not seem enough to improve semen quality, although the increase in leucocytic concentrations could indicate an activation of the role of immunosurveillance in a purified indoor air environment.

  7. Application of Residual-Based EWMA Control Charts for Detecting Faults in Variable-Air-Volume Air Handling Unit System

    OpenAIRE

    Haitao Wang

    2016-01-01

    An online robust fault detection method is presented in this paper for VAV air handling unit and its implementation. Residual-based EWMA control chart is used to monitor the control processes of air handling unit and detect faults of air handling unit. In order to provide a level of robustness with respect to modeling errors, control limits are determined by incorporating time series model uncertainty in EWMA control chart. The fault detection method proposed was tested and validated using re...

  8. Design of heat recovery system for a split air-conditioner

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, R.; Pundoor, M. [Curtin Univ. of Technology, Miri, Sarawak (Malaysia)

    2007-07-01

    The growth in demand for electrical energy is far exceeding the growth of the power supply. There is a significant demand to reduce energy consumption by all means. There is also a greater demand for energy efficient equipment. Although most houses have separate cooling and water heating systems, this paper demonstrated that air conditioning units and a water heaters can be combined. For example, the heat recovered from the condenser of an air-conditioner can be effectively used to heat water which can offer significant savings in electricity consumption. With the design of a heat recovery system, a percentage of heat rejected from an air conditioning unit can be reclaimed for heating. The paper presented the working principles including a system diagram of a combined air conditioner and hot water generation system. It also discussed the conceptual designs of a heat reclaim module. The six different design concepts were then presented. Design selection and criteria for design selection were also identified along with the advantages and limitations of each concept. Based on a comprehensive analysis and research with the help of a Pugh chart of convergence matrix, the final concept was chosen. 9 refs., 1 tab., 8 figs.

  9. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Prahl, D.

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are (1) the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and (2) the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  10. Duct System Flammability and Air Sealing Fire Separation Assemblies in the International Residential Code

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A. [ABT Systems, LLC, Annville, PA (United States); Prahl, D. [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-12-01

    IBACOS identified two barriers that limit the ability of builders to cost-effectively achieve higher energy efficiency levels in housing. These are the use of duct system materials that inherently achieve airtightness and are appropriately sized for low-load houses and the ability to air seal fire separation assemblies. The issues identified fall into a gray area of the codes.

  11. Performance analysis of four-partition desiccant wheel and hybrid dehumidification air-conditioning system

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Jongsoo; Yamaguchi, Seiichi; Saito, Kiyoshi; Kawai, Sunao [Department of Applied Mechanics and Aerospace Engineering, School of Fundamental Science and Engineering, Waseda University, 3-4-1-58-210 Okubo, Shinjuku-ku, Tokyo 169-8555 (Japan)

    2010-05-15

    A desiccant dehumidification system with air can decrease energy consumption because it can be driven by low-grade waste heat below 80 C. If this system can be driven by low-temperature heat sources whose temperature is below 50 C, exhausted heat from fuel cells or air conditioners that exist everywhere can be used as heat sources. This could lead to considerable energy saving. This study provides a detailed evaluation of the performance of a four-partition desiccant wheel to make a low-temperature driving heat source possible and achieve considerable energy saving by the simulation and experiment. Further, the study investigates the in-depth performance of a hybrid air-conditioning system with a four-partition desiccant wheel by simulation. As a result, it was clear that there exists an optimum rotational speed to maximize the dehumidification performance and that the hybrid air-conditioning system improves COP by approximately 94% as compared to the conventional vapour compression-type refrigerator. (author)

  12. A safety assessment methodology applied to CNS/ATM-based air traffic control system

    Energy Technology Data Exchange (ETDEWEB)

    Vismari, Lucio Flavio, E-mail: lucio.vismari@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil); Batista Camargo Junior, Joao, E-mail: joaocamargo@usp.b [Safety Analysis Group (GAS), School of Engineering at University of Sao Paulo (Poli-USP), Av. Prof. Luciano Gualberto, Trav.3, n.158, Predio da Engenharia de Eletricidade, Sala C2-32, CEP 05508-900, Sao Paulo (Brazil)

    2011-07-15

    In the last decades, the air traffic system has been changing to adapt itself to new social demands, mainly the safe growth of worldwide traffic capacity. Those changes are ruled by the Communication, Navigation, Surveillance/Air Traffic Management (CNS/ATM) paradigm , based on digital communication technologies (mainly satellites) as a way of improving communication, surveillance, navigation and air traffic management services. However, CNS/ATM poses new challenges and needs, mainly related to the safety assessment process. In face of these new challenges, and considering the main characteristics of the CNS/ATM, a methodology is proposed at this work by combining 'absolute' and 'relative' safety assessment methods adopted by the International Civil Aviation Organization (ICAO) in ICAO Doc.9689 , using Fluid Stochastic Petri Nets (FSPN) as the modeling formalism, and compares the safety metrics estimated from the simulation of both the proposed (in analysis) and the legacy system models. To demonstrate its usefulness, the proposed methodology was applied to the 'Automatic Dependent Surveillance-Broadcasting' (ADS-B) based air traffic control system. As conclusions, the proposed methodology assured to assess CNS/ATM system safety properties, in which FSPN formalism provides important modeling capabilities, and discrete event simulation allowing the estimation of the desired safety metric.

  13. Evaluation of air-liquid interface exposure systems for in vitro assessment of airborne pollutants

    Science.gov (United States)

    Exposure of cells to airborne pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of submerged cells. The published literature, however, describes irreproducible and/or unrealistic experimental conditions using ALI systems. We have compared fi...

  14. 78 FR 9623 - Federal Motor Vehicle Safety Standards; Air Brake Systems

    Science.gov (United States)

    2013-02-11

    ... National Highway Traffic Safety Administration 49 CFR Part 571 RIN 2127-AL11 Federal Motor Vehicle Safety... published a final rule that amended the Federal motor vehicle safety standard for air brake systems by... published a final rule in the Federal Register amending Federal Motor Vehicle Safety Standard (FMVSS)...

  15. Ventilation patterns of the songbird lung/air sac system during different behaviors.

    Science.gov (United States)

    Mackelprang, Rebecca; Goller, Franz

    2013-10-01

    Unidirectional, continuous airflow through the avian lung is achieved through an elaborate air sac system with a sequential, posterior to anterior ventilation pattern. This classical model was established through various approaches spanning passively ventilated systems to mass spectrometry analysis of tracer gas flow into various air sacs during spontaneous breathing in restrained ducks. Information on flow patterns in other bird taxa is missing, and these techniques do not permit direct tests of whether the basic flow pattern can change during different behaviors. Here we use thermistors implanted into various locations of the respiratory system to detect small pulses of tracer gas (helium) to reconstruct airflow patterns in quietly breathing and behaving (calling, wing flapping) songbirds (zebra finch and yellow-headed blackbird). The results illustrate that the basic pattern of airflow in these two species is largely consistent with the model. However, two notable differences emerged. First, some tracer gas arrived in the anterior set of air sacs during the inspiration during which it was inhaled, suggesting a more rapid throughput through the lung than previously assumed. Second, differences in ventilation between the two anterior air sacs emerged during calling and wing flapping, indicating that adjustments in the flow pattern occur during dynamic behaviors. It is unclear whether this modulation in ventilation pattern is passive or active. This technique for studying ventilation patterns during dynamic behaviors proves useful for establishing detailed timing of airflow and modulation of ventilation in the avian respiratory system.

  16. Use of the Award Fee in Air Force System and Subsystem Acquisition

    Science.gov (United States)

    1980-03-01

    as and 19Contrary to the " mythology ," Sapolsky (1972) has shown in the Polaris development case how little formal management systems (PERT. etc...Whereas higher Air Force levels stress the general utility of award ffee as a management tool, at lower levels it is more often vi.ý, wed simply as a

  17. 49 CFR 571.121 - Standard No. 121; Air brake systems.

    Science.gov (United States)

    2010-10-01

    ... compressed air or vacuum only to assist the driver in applying muscular force to hydraulic or mechanical... transmission of response or control signals in the vehicle's antilock brake system. The indicator lamp shall...) S5.1.6.3Antilock power circuit for towed vehicles. Each truck tractor manufactured on or after...

  18. The Role of Unmanned Aerial Systems/Sensors in Air Quality Research

    Science.gov (United States)

    The use of unmanned aerial systems (UASs) for a variety of scientific and security purposes has rapidly increased. UASs include aerostats (tethered balloons) and remotely controlled, unmanned aerial vehicles (UAVs) including lighter-than-air vessels, fixed wing airplanes, and he...

  19. Humidifying system design of PEMFC test platform based on the mixture of dry and wet air

    Directory of Open Access Journals (Sweden)

    Tiancai Ma

    2015-01-01

    Full Text Available Based on the present humidifying system of PEMFC test platform, a novel design based on dry and wet air mixture is proposed. Key parameters are calculated, and test platform is built. Three experiments are implemented to test the performance of proposed design. Results show that the new design can meet the requirements, and realize the quick response and accurate control.

  20. Demonstration Results of the Triband, Multi-Beam Airborne Telemetry Phased Array (AirPA) System

    Science.gov (United States)

    2015-03-01

    Phased Array, antenna , digital beam-forming, beamforming, DBF, L-band, S-band, C-band, CTEIP, NAVAIR 16. SECURITY CLASSIFICATION OF...Outback BER After the flight test completed, the AirPA system was reconfigured to support the L-band flight test, Flight 171. At the request of the

  1. Analysis of a Residential Heating System Utilizing a Solar Assisted Water-to-Air Heat Pump.

    Science.gov (United States)

    1979-07-01

    heat pump heating system were analyzed. A realistic residence and solar assisted water-to-air heat pump system were modeled for this northern climate using the transient simulation computer code TRNSYS developed by the University of Wisconsin. The system was studied over a one month winter period, December, using actual hourly weather data. The system was analyzed for both the cloudiest and clearest December weather recorded in the last 30 years. The collector area and storage tank capacity were varied and the effects on system performance were

  2. Air-touch interaction system for integral imaging 3D display

    Science.gov (United States)

    Dong, Han Yuan; Xiang, Lee Ming; Lee, Byung Gook

    2016-07-01

    In this paper, we propose an air-touch interaction system for the tabletop type integral imaging 3D display. This system consists of the real 3D image generation system based on integral imaging technique and the interaction device using a real-time finger detection interface. In this system, we used multi-layer B-spline surface approximation to detect the fingertip and gesture easily in less than 10cm height from the screen via input the hand image. The proposed system can be used in effective human computer interaction method for the tabletop type 3D display.

  3. Human factors in the Naval Air Systems Command: Computer based training

    Energy Technology Data Exchange (ETDEWEB)

    Seamster, T.L.; Snyder, C.E.; Terranova, M.; Walker W.J.; Jones, D.T.

    1988-01-01

    Military standards applied to the private sector contracts have a substantial effect on the quality of Computer Based Training (CBT) systems procured for the Naval Air Systems Command. This study evaluated standards regulating the following areas in CBT development and procurement: interactive training systems, cognitive task analysis, and CBT hardware. The objective was to develop some high-level recommendations for evolving standards that will govern the next generation of CBT systems. One of the key recommendations is that there be an integration of the instructional systems development, the human factors engineering, and the software development standards. Recommendations were also made for task analysis and CBT hardware standards. (9 refs., 3 figs.)

  4. Technical and economic assessment of fluidized-bed-augmented compressed-air energy-storage system. Volume 1: Executive summary

    Science.gov (United States)

    Giramonti, A. J.; Lessard, R. D.; Merrick, D.; Hobson, M. J.

    1981-09-01

    An energy storage system for electric utility peak load applications is a modified gas turbine power system utilizing underground storage of very high pressure air. The compressed air energy storage (CAES) concept involves using off peak electricity generated from indigenous coal or nuclear sources to compress air, storing the air in large underground facilities, and withdrawing the air during peak load periods when it would be heated by combustion and expanded through gas turbines to generate power. The attractiveness of the CAES concept is based upon its potential to supply competitively priced peaking energy, to reduce peak load power plant dependence on petroleum based fuels, and to provide a means for leveling the utility system load demand. Therefore, a technical and economic assessment of coal fired fluidized bed combustor/compressed air energy storage systems was performed and is described.

  5. Air quality. How to give it back its original purity? The proliferation of air cleansers. Filters must be changed regularly. Measurement of the filtering efficiency of air treatment systems. The air treatment plants on the way of certification. Essential oils in a high building; Qualite de l'air. Comment lui rendre sa purete originelle? La proliferation des purificateurs d'air. Il faut changer les filtres regulierement. Mesure de l'efficacite de filtration des systemes de traitement d'air. Les centrales de traitement d'air sur la voie de la certification. Des huiles essentielles dans un immeuble de grande hauteur

    Energy Technology Data Exchange (ETDEWEB)

    Grumel, N.

    2000-07-01

    Outside air is polluted while the ambient indoor air is saturated with microorganisms. Inside buildings, the aeraulic networks are the link between both environments and the privileged place to clean the air using filtering systems. However, the notion of air quality is still badly perceived by owners, in particular in tertiary buildings. In France, efforts have to be made on the maintenance of aeraulic networks by hygiene specialists. Air quality inside buildings must be taken into consideration using communication and regulations. This dossier takes stock of the problem of air quality and of the available means to ensure a good air quality inside residential and tertiary buildings. The maintenance of air filters in one of the key points. It should be integrated in the general maintenance concept of buildings. The dossier includes a study of the in-situ measurement of the filtering efficiency of air treatment systems. This method is described in the Eurovent recommendation 4/10 of 1996. It has been experimented by the French technical centre of aeraulic and thermal industries (Cetiat) and the results are reported in the study. The performances of air treatment plants are now certified by Eurovent. This European organization has defined a program of tests which is conformable with the European EN 1886 and EN 13053 European standards. Finally, a new protocol of air decontamination based on the micronizing of essential oils in the aeraulic network of a 29 floors building is presented. (J.S.)

  6. A New Control and Design of PEM Fuel Cell System Powered Diffused Air Aeration System

    Directory of Open Access Journals (Sweden)

    Ninet M. Ahmed

    2012-06-01

    Full Text Available The goal of aquaculture ponds is to maximize production and profits while holding labor and management efforts to the minimum. Poor water quality in most ponds causes risk of fish kills, disease outbreaks which lead to minimization of pond production. Dissolved Oxygen (DO is considered to be among the most important water quality parameters in fish culture. Fish ponds in aquaculture farms are usually located in remote areas where grid lines are at far distance. Aeration of ponds is required to prevent mortality and to intensify production, especially when feeding is practical, and in warm regions. To increase pond production it is necessary to control dissolved oxygen. Aeration offers the most immediate and practical solution to water quality problems encountered at higher stocking and feeding rates. Many units of aeration system are electrical units so using a continuous, high reliability, affordable, and environmentally friendly power sources is necessary. Fuel cells have become one of the major areas of research in the academia and the industry. Aeration of water by using PEM fuel cell power is not only a new application of the renewable energy, but also, it provides an affordable method to promote biodiversity in stagnant ponds and lakes. This paper presents a new design and control of PEM fuel cell powered a diffused air aeration system for a shrimp farm in Mersa Matruh in Egypt. Also Artificial intelligence (AI control techniques are used to control the fuel cell output power by controlling its input gases flow rate. Moreover the mathematical modeling and simulation of PEM fuel cell is introduced. A comparative study is applied between the performance of fuzzy logic controller (FLC and neural network controller (NNC. The results show the effectiveness of NNC over FLC.

  7. Development of a model for activated sludge aeration systems: linking air supply, distribution, and demand.

    Science.gov (United States)

    Schraa, Oliver; Rieger, Leiv; Alex, Jens

    2017-02-01

    During the design of a water resource recovery facility, it is becoming industry practice to use simulation software to assist with process design. Aeration is one of the key components of the activated sludge process, and is one of the most important aspects of modelling wastewater treatment systems. However, aeration systems are typically not modelled in detail in most wastewater treatment process modelling studies. A comprehensive dynamic aeration system model has been developed that captures both air supply and demand. The model includes sub-models for blowers, pipes, fittings, and valves. An extended diffuser model predicts both oxygen transfer efficiency within an aeration basin and pressure drop across the diffusers. The aeration system model allows engineers to analyse aeration systems as a whole to determine biological air requirements, blower performance, air distribution, control valve impacts, controller design and tuning, and energy costs. This enables engineers to trouble-shoot the entire aeration system including process, equipment and controls. It also allows much more realistic design of these highly complex systems.

  8. Management of air-conditioning systems in residential buildings by using fuzzy logic

    Directory of Open Access Journals (Sweden)

    Sohair F. Rezeka

    2015-06-01

    Full Text Available There has been a rising concern in reducing the energy consumption in buildings. Heating, ventilation and air-conditioning system is the biggest consumer of energy in buildings. In this study, management of the air-conditioning system of a building for efficient energy operation and comfortable environment is investigated. The strategy used in this work depends on classifying the rooms to three different groups: very important rooms, important rooms and normal rooms. The total mass flow rate is divided between all rooms by certain percentage using a fuzzy-logic system to get the optimum performance for each room. The suggested Building Management System (BMS was found capable of keeping errors in both temperature and humidity within the acceptable limits at different operating conditions. The BMS can save the chilled/hot water flow rate and the cooling/heating capacity of rooms.

  9. Adaptive inverse control of air supply flow for proton exchange membrane fuel cell systems

    Institute of Scientific and Technical Information of China (English)

    LI Chun-hua; ZHU Xin-jian; SUI Sheng; HU Wan-qi; HU Ming-ruo

    2009-01-01

    To prevent the oxygen starvation and improve the system output performance, an adaptive inverse control (AIC) strategy is developed to regulate the air supply flow of a proton exchange membrane fuel cell (PEMFC) system in this paper.The PEMFC stack and the air supply system including a compressor and a supply manifold are modeled for the purpose of performance analysis and controller design. A recurrent fuzzy neural network (RFNN) is utilized to identify the inverse model of the controlled system and generates a suitable control input during the abrupt step change of external disturbances.Compared with the PI controller, numerical simulations are performed to validate the effectiveness and advantages of the proposed AIC strategy.

  10. Talaromyces rubrifaciens, a new species discovered from heating, ventilation and air conditioning systems in China.

    Science.gov (United States)

    Luo, Yi; Lu, Xiaohong; Bi, Wu; Liu, Fan; Gao, Weiwei

    2016-01-01

    A new Talaromyces species, T. rubrifaciens, was isolated from supply air outlets of heating, ventilation and air conditioning (HVAC) systems in three kinds of public building in Beijing and Nanjing, China. Morphologically it exhibits many characters of section Trachyspermi but is distinguished from other species of this section by restricted growth and broad and strictly biverticillate conidiophores. Phylogenetic analyses based on the internal transcribed spacer rDNA (ITS), β-tubulin (BenA), calmodulin (CaM) and RNA polymerase second largest subunit (RPB2) genes reveal that T. rubrifaciens is a distinct species in section Trachyspermi.

  11. Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Kazemi, Seyed Hossein; Ardkapan, Siamak Rahimi

    Ventilation is needed for diluting and removing the contaminants, odour and excess heat from the building interior. It is important that the inhabitants perceive the ventilated spaces as comfortable. Therefore, the supply air should reach all parts of the occupied zones. Troldtekt has been...... manufacturing perforated acoustic panels for the last 13 years. The panels can be used not only in applications related to acoustics but also as low pressure drop supply air diffusers, particularly in diffuse ceiling ventilation systems. The present study verifies on a theoretically level the performance...

  12. Air quality management and planning system for Guangzhou. Report from workshop 1, 1998

    Energy Technology Data Exchange (ETDEWEB)

    Larssen, Steinar

    1999-02-01

    The report is proceedings from Workshop no. 1, 1998 of the Sino-Norwegian co-operation project ''Guangzhou Air Quality Management and Planning System''. The project studies pollution emissions generally and from coal, vehicle and energy activities, dispersion modelling, monitoring, exposure, health damage assessment, material damage assessment, vegetation, control options, baseline scenario development, cost benefit analysis, pollution control management and policy instruments and air pollution forecasting. A forth workshop is planned. There are several reports from the various project activities.

  13. Innovative open air brayton combined cycle systems for the next generation nuclear power plants

    Science.gov (United States)

    Zohuri, Bahman

    The purpose of this research was to model and analyze a nuclear heated multi-turbine power conversion system operating with atmospheric air as the working fluid. The air is heated by a molten salt, or liquid metal, to gas heat exchanger reaching a peak temperature of 660 0C. The effects of adding a recuperator or a bottoming steam cycle have been addressed. The calculated results are intended to identify paths for future work on the next generation nuclear power plant (GEN-IV). This document describes the proposed system in sufficient detail to communicate a good understanding of the overall system, its components, and intended uses. The architecture is described at the conceptual level, and does not replace a detailed design document. The main part of the study focused on a Brayton --- Rankine Combined Cycle system and a Recuperated Brayton Cycle since they offer the highest overall efficiencies. Open Air Brayton power cycles also require low cooling water flows relative to other power cycles. Although the Recuperated Brayton Cycle achieves an overall efficiency slightly less that the Brayton --- Rankine Combined Cycle, it is completely free of a circulating water system and can be used in a desert climate. Detailed results of modeling a combined cycle Brayton-Rankine power conversion system are presented. The Rankine bottoming cycle appears to offer a slight efficiency advantage over the recuperated Brayton cycle. Both offer very significant advantages over current generation Light Water Reactor steam cycles. The combined cycle was optimized as a unit and lower pressure Rankine systems seem to be more efficient. The combined cycle requires a lot less circulating water than current power plants. The open-air Brayton systems appear to be worth investigating, if the higher temperatures predicted for the Next Generation Nuclear Plant do materialize.

  14. Simplified Atmospheric Dispersion Model andModel Based Real Field Estimation System ofAir Pollution

    Institute of Scientific and Technical Information of China (English)

    2015-01-01

    The atmospheric dispersion model has been well developed and applied in pollution emergency and prediction. Based on thesophisticated air diffusion model, this paper proposes a simplified model and some optimization about meteorological andgeological conditions. The model is suitable for what is proposed as Real Field Monitor and Estimation system. The principle ofsimplified diffusion model and its optimization is studied. The design of Real Field Monitor system based on this model and itsfundamental implementations are introduced.

  15. Research of Air-Magnet Active Vibration Isolation System Based on H∞ Control

    Directory of Open Access Journals (Sweden)

    Wen Xianglong

    2015-01-01

    Full Text Available Considering the uncertainty of air-magnet active vibration isolation system (AMAVIS, passive vibration isolation was combined with active vibration isolation, which adopted H∞ control strategies. System identification method was used to get the channel model. By adopting mixed sensitivity design strategy, weighting functions were chosen and H∞ controller was designed. Both simulation results and experimental results show AMAVIS based on H∞ control had satisfying effect of vibration reduction in assigned frequency band.

  16. External impacts of an intraurban air transportation system in the San Francisco Bay area

    Science.gov (United States)

    Lu, J. Y.; Gebman, J. R.; Kirkwood, T. F.; Mcclure, P. T.; Stucker, J. P.

    1972-01-01

    The effects are studied of an intraurban V/STOL commuter system on the economic, social, and physical environment of the San Francisco Bay Area. The Bay Area was chosen mainly for a case study; the real intent of the analysis is to develop methods by which the effects of such a system could be evaluated for any community. Aspects of the community life affected include: income and employment, benefits and costs, noise, air pollution, and road congestion.

  17. Environmental assessment of three egg production systems--Part I: Monitoring system and indoor air quality.

    Science.gov (United States)

    Zhao, Y; Shepherd, T A; Li, H; Xin, H

    2015-03-01

    To comprehensively assess conventional vs. some alternative laying-hen housing systems under U.S. production conditions, a multi-institute and multi-disciplinary project, known as the Coalition for Sustainable Egg Supply (CSES) study, was carried out at a commercial egg production farm in the Midwestern United States over two single-cycle production flocks. The housing systems studied include a conventional cage house (200,000 hen capacity), an aviary house (50,000 hen capacity), and an enriched colony house (50,000 hen capacity). As an integral part of the CSES project, continual environmental monitoring over a 27-month period described in this paper quantifies indoor gaseous and particulate matter concentrations, thermal environment, and building ventilation rate of each house. Results showed that similar indoor thermal environments in all three houses were maintained through ventilation management and environmental control. Gaseous and particulate matter concentrations of the enriched colony house were comparable with those of the conventional cage house. In comparison, the aviary house had poorer indoor air quality, especially in wintertime, resulting from the presence of floor litter (higher ammonia levels) and hens' activities (higher particulate matter levels) in it. Specifically, daily mean indoor ammonia concentrations had the 95% confidence interval values of 3.8 to 4.2 (overall mean of 4.0) ppm for the conventional cage house; 6.2 to 7.2 (overall mean of 6.7) ppm for the aviary house; and 2.7 to 3.0 (overall mean of 2.8) ppm for the enriched colony house. The 95% confidence interval (overall mean) values of daily mean indoor carbon dioxide concentrations were 1997 to 2170 (2083) ppm for the conventional cage house, 2367 to 2582 (2475) ppm for the aviary house, and 2124 to 2309 (2216) ppm for the enriched colony house. Daily mean indoor methane concentrations were similar for all three houses, with 95% confidence interval values of 11.1 to 11.9 (overall

  18. The use of Functional Resonance Analysis Method (FRAM) in a mid-air collision to understand some characteristics of the air traffic management system resilience

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues de Carvalho, Paulo Victor, E-mail: paulov@ien.gov.br [National Nuclear Energy Commission/Nuclear Engineering Institute, Cidade Universitaria-Ilha do Fundao, Rio de Janeiro, RJ 21945-970 (Brazil)

    2011-11-15

    The Functional Resonance Analysis Model (FRAM) defines a systemic framework to model complex systems for accident analysis purposes. We use FRAM in the mid-air collision between flight GLO1907, a commercial aircraft Boeing 737-800, and flight N600XL, an executive jet EMBRAER E-145, to investigate key resilience characteristics of the Air Traffic Management System (ATM). This ATM system related accident occurred at 16:56 Brazilian time on September 29, 2006 in the Amazonian sky. FRAM analysis of flight monitoring functions showed system constraints (equipment, training, time, and supervision) that produce variability in system behavior, creating demand resources mismatches in an attempt to perceive and control the developing situation. This variability also included control and coordination breakdowns and automation surprises (TCAS functioning). The analysis showed that under normal variability conditions (without catastrophic failures) the ATM system (pilots, controllers, supervisors, and equipment) was not able to close the control loops of the flight monitoring functions using feedback or feedforward strategies to achieve an adequate control of an aircraft flying in the controlled air space. Our findings shed some light on the resilience of Brazilian ATM system operation and indicated that there is a need of a deeper understanding on how the system is actually functioning. - Highlights: > The Functional Resonance Analysis Model (FRAM) was used in a mid-air collision over Amazon. > The aim was to understand key resilience characteristics of the Air Traffic Management System (ATM). > The analysis showed how, under normal conditions, the system was not able to control flight functions. > The findings shed some light about the resilience of Brazilian ATM system operation.

  19. Qualitative evaluation of a flush air data system at transonic speeds and high angles of attack

    Science.gov (United States)

    Larson, Terry J.; Whitmore, Stephen A.; Ehernberger, L. J.; Johnson, J. Blair; Siemers, Paul M., III

    1987-01-01

    Flight tests were performed on an F-14 aircraft to evaluate the use of flush pressure orifices on the nose section for obtaining air data at transonic speeds over a large range of flow angles. This program was part of a flight test and wind tunnel program to assess the accuracies of such systems for general use on aircraft. It also provided data to validate algorithms developed for the shuttle entry air data system designed at NASA Langley. Data were obtained for Mach numbers between 0.60 and 1.60, for angles of attack up to 26.0 deg, and for sideslip angles up to 11.0 deg. With careful calibration, a flush air data system with all flush orifices can provide accurate air data information over a large range of flow angles. Several orificies on the nose cap were found to be suitable for determination of stagnation pressure. Other orifices on the nose section aft of the nose cap were shown to be suitable for determination of static pressure. Pairs of orifices on the nose cap provided the most sensitive measurements for determining angles of attack and sideslip, although orifices located farther aft on the nose section could also be used.

  20. Field measurements of efficiency and duct retrofit effectiveness in residential forced air distributions systems

    Energy Technology Data Exchange (ETDEWEB)

    Jump, D.A.; Walker, I.S.; Modera, M.P.

    1996-08-01

    Forced air distribution systems can have a significant impact on the energy consumed in residences. It is common practice in U.S. residential buildings to place such duct systems outside the conditioned space. This results in the loss of energy by leakage and conduction to the surroundings. In order to estimate the magnitudes of these losses, 24 houses in the Sacramento, California, area were tested before and after duct retrofitting. The systems in these houses included conventional air conditioning, gas furnaces, electric furnaces and heat pumps. The retrofits consisted of sealing and insulating the duct systems. The field testing consisted of the following measurements: leakage of the house envelopes and their ductwork, flow through individual registers, duct air temperatures, ambient temperatures, surface areas of ducts, and HVAC equipment energy consumption. These data were used to calculate distribution system delivery efficiency as well as the overall efficiency of the distribution system including all interactions with building load and HVAC equipment. Analysis of the test results indicate an average increase in delivery efficiency from 64% to 76% and a corresponding average decrease in HVAC energy use of 18%. This paper summarizes the pre- and post-retrofit efficiency measurements to evaluate the retrofit effectiveness, and includes cost estimates for the duct retrofits. The impacts of leak sealing and insulating will be examined separately. 8 refs., 1 fig., 4 tabs.