WorldWideScience

Sample records for air quality ventilation

  1. Equivalence in Ventilation and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  2. Perceived Air Quality in a Displacement Ventilated Room

    DEFF Research Database (Denmark)

    Brohus, Henrik; Knudsen, Henrik Nellemose; Nielsen, Peter V.

    in a displacement ventilated room was determined directly by asking humans about how they perceived the air quality. A trained sensory panel comprising 12 subjects assessed the perceived air quality immediately after entering a climate chamber. The experiments showed that the perceived air quality...

  3. [Air quality control systems: heating, ventilating, and air conditioning (HVAC)].

    Science.gov (United States)

    Bellucci Sessa, R; Riccio, G

    2004-01-01

    After a brief illustration of the principal layout schemes of Heating, Ventilating, and Air Conditioning (HVAC), the first part of this paper summarizes the standards, both voluntary and compulsory, regulating HVAC facilities design and installation with regard to the question of Indoor Air Quality (IAQ). The paper then examines the problem of ventilation systems maintenance and the essential hygienistic requirements in whose absence HVAC facilities may become a risk factor for people working or living in the building. Lastly, the paper deals with HVAC design strategies and methods, which aim not only to satisfy comfort and air quality requirements, but also to ensure easy and effective maintenance procedures.

  4. Measurements and prediction of inhaled air quality with personalized ventilation

    DEFF Research Database (Denmark)

    Cermak, Radim; Majer, M.; Melikov, Arsen Krikor

    2002-01-01

    the room air) at flow rates ranging from less than 5 L/s up to 23 L/s. The air quality assessment was based on temperature measurements of the inhaled air and on the portion of the personalized air inhaled. The percentage of dissatisfied with the air quality was predicted. The results suggest......This paper examines the performance of five different air terminal devices for personalized ventilation in relation to the quality of air inhaled by a breathing thermal manikin in a climate chamber. The personalized air was supplied either isothermally or non-isothermally (6 deg.C cooler than...... that regardless of the temperature combinations, personalized ventilation may decrease significantly the number of occupants dissatisfied with the air quality. Under non-isothermal conditions the percentage of dissatisfied may decrease up to 4 times....

  5. Effect of using low-polluting building materials and increasing ventilation on perceived indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Zuczek, P. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-07-01

    The potential of improving perceived air quality indoors was quantified when low-polluting materials are used and when building ventilation is increased. This was done by studying the relationships between ventilation rate and the perceived indoor air quality. A sensory panel assessed the air quality in test rooms ventilated with realistic outdoor air supply rates, where combinations of high- and low-polluting wall, floor and ceiling materials were set up. These materials were ranked as high- and low-polluting using sensory assessments of air quality in small-scale glass chambers, where they were tested individually. Substituting materials ranked as high-polluting with materials ranked as lower-polluting improved the perceived air quality in the test rooms. This improvement was greater than what was achieved by a realistic increase of the ventilation rate in the test rooms. Thus reducing pollution emitted from building materials that affects the perceived air quality has a considerable potential of limiting the energy for ventilation without compromising indoor air quality. (au)

  6. Heating, Ventilation and Air-Conditioning Systems, Part of Indoor Air Quality Design Tools for Schools

    Science.gov (United States)

    The main purposes of a Heating, Ventilation, and Air-Conditioning system are to help maintain good indoor air quality through adequate ventilation with filtration and provide thermal comfort. HVAC systems are among the largest energy consumers in schools.

  7. The air quality in ventilation installations. Practical guidelines; Qualite de l'air dans les installations aerauliques. Guide pratique

    Energy Technology Data Exchange (ETDEWEB)

    Angeli, L. [France Air, 91 - Chilly Mazarin (France); Bianchina, M. [Unelvent, 93 - Le Bourget (France); Blazy, M. [Anjos, 01 - Torcieu (France); Boulanger, X. [Aldes, 21 - Chenove (France); Chiesa, M. [Atlantic (France); Duclos, M. [Groupe Titanair, 69 - Lyon (France); Hubert, D.; Kridorian, O. [Groupe Astato, Blanc Mesnil (France); Josserand, O. [Carrier (Belgium); Lancieux, C. [Camfil, 60 - Saint Martin Longueau (France); Lemaire, J.C. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France); Petit, Ph. [Compagnie Industrielle d' Applications Thermiques ( CIAT ), 75 - Paris (France); Ribot, B. [Electricite de France (EDF), 75 - Paris (France); Tokarek, S. [Gaz de France (GDF), 75 - Paris (France); Bernard, A.M.; Tissot, A. [Centre Technique des Industries Aerauliques et Thermiques (CETIAT), 69 - Villeurbanne (France)

    2004-07-01

    The present guide aims to provide design departments, maintenance companies and builders with practical guidelines and recommendations for the installation of ventilation and air-conditioning systems. The objective is to ensure good Indoor Air Quality (IAQ) and to safeguard the health and well-being of the occupants. The guide deals with aspects of design, dimensioning, installation and servicing, all of which play a major role in guaranteeing IAQ and duct-work hygiene. These steps are reviewed for the principal ventilation systems met in both residential and commercial premises. The first part presents the system and draws the attention of the user to specific points which require particular care in term of IAQ. The second part details recommended practice component by component, in respect of design, installation and servicing. Application of these simple guidelines during the various project stages is essential, in order to ensure a good IAQ in ventilation systems. Content: introduction; good ventilation; systems: exhaust ventilation, balanced ventilation, air handling unit, terminal ventilation units, impact of systems on indoor air quality, components: air inlet, air filter, heat recovery unit, heating or cooling coil, humidifier, mechanical fan unit, cowl and hybrid ventilation fan, mixing box, ventilation duct-work, air outlet and air terminal device; references.

  8. Ventilation, indoor air quality, and health in homes undergoing weatherization.

    Science.gov (United States)

    Francisco, P W; Jacobs, D E; Targos, L; Dixon, S L; Breysse, J; Rose, W; Cali, S

    2017-03-01

    Ventilation standards, health, and indoor air quality have not been adequately examined for residential weatherization. This randomized trial showed how ASHRAE 62-1989 (n=39 houses) and ASHRAE 62.2-2010 (n=42 houses) influenced ventilation rates, moisture balance, indoor air quality, and self-reported physical and mental health outcomes. Average total airflow was nearly twice as high for ASHRAE 62.2-2010 (79 vs. 39 cfm). Volatile organic compounds, formaldehyde and carbon dioxide were all significantly reduced for the newer standard and first-floor radon was marginally lower, but for the older standard, only formaldehyde significantly decreased. Humidity in the ASHRAE 62.2-2010 group was only about half that of the ASHRAE 62-1989 group using the moisture balance metric. Radon was higher in the basement but lower on the first floor for ASHRAE 62.2-2010. Children in each group had fewer headaches, eczema, and skin allergies after weatherization and adults had improvements in psychological distress. Indoor air quality and health improve when weatherization is accompanied by an ASHRAE residential ventilation standard, and the 2010 ASHRAE standard has greater improvements in certain outcomes compared to the 1989 standard. Weatherization, home repair, and energy conservation projects should use the newer ASHRAE standard to improve indoor air quality and health. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  9. Ventilation, indoor air quality, and human health and comfort in dwellings and day-care centers

    Energy Technology Data Exchange (ETDEWEB)

    Ruotsalainen, R.

    1995-12-31

    The objective of the study was to assess the actual ventilation and indoor air quality in the Finnish building stock (dwellings and day-care centers) with special reference to the existing guideline values. Furthermore, the objective was to evaluate the occurrence of symptoms and perceptions among occupants (adult residents, children, workers) in relation to ventilation system, ventilation rate and dampness. The measurements of ventilation and indoor air quality in the dwellings and day-care centers included ventilation rate, CO{sub 2} concentration, and temperature and humidity. Self- and parent-administered questionnaires were distributed to the occupants inquiring their personal characteristics, occurrence of symptoms of interest, perceived indoor air quality and details of their home and work environments. Airflows and air change rates varied remarkably both in the dwellings and day-care centers. In the majority of the dwellings and day-care centers, the Finnish guideline values of ventilation rates were not achieved. No consistent associations were observed between the magnitude of mechanical ventilation rates and the occurrence of eye, respiratory, skin and general symptoms, that is, symptoms of sick building syndrome (SBS) among the day-care workers. The results indicate that there is much room for improvement in the ventilation and indoor air quality of Finnish dwellings and day-care centers. The control of ventilation, temperature and humidity and the prevention of water damage are important issues on which to concentrate in the future. There is need to improve the quality in all phases of construction: design, installation, adjustment, operation, and maintenance

  10. Ventilation, indoor air quality, and human health and comfort in dwellings and day-care centers

    Energy Technology Data Exchange (ETDEWEB)

    Ruotsalainen, R

    1996-12-31

    The objective of the study was to assess the actual ventilation and indoor air quality in the Finnish building stock (dwellings and day-care centers) with special reference to the existing guideline values. Furthermore, the objective was to evaluate the occurrence of symptoms and perceptions among occupants (adult residents, children, workers) in relation to ventilation system, ventilation rate and dampness. The measurements of ventilation and indoor air quality in the dwellings and day-care centers included ventilation rate, CO{sub 2} concentration, and temperature and humidity. Self- and parent-administered questionnaires were distributed to the occupants inquiring their personal characteristics, occurrence of symptoms of interest, perceived indoor air quality and details of their home and work environments. Airflows and air change rates varied remarkably both in the dwellings and day-care centers. In the majority of the dwellings and day-care centers, the Finnish guideline values of ventilation rates were not achieved. No consistent associations were observed between the magnitude of mechanical ventilation rates and the occurrence of eye, respiratory, skin and general symptoms, that is, symptoms of sick building syndrome (SBS) among the day-care workers. The results indicate that there is much room for improvement in the ventilation and indoor air quality of Finnish dwellings and day-care centers. The control of ventilation, temperature and humidity and the prevention of water damage are important issues on which to concentrate in the future. There is need to improve the quality in all phases of construction: design, installation, adjustment, operation, and maintenance

  11. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Bergey, Daniel [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  12. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation, Somerville, MA (United States); Bergey, Daniel [Building Science Corporation, Somerville, MA (United States)

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  13. Performance of personalized ventilation combined with chilled ceiling in an office room: inhaled air quality and contaminant distribution

    DEFF Research Database (Denmark)

    Lipczynska, Aleksandra; Kaczmarczyk, Jan; Melikov, Arsen Krikor

    2014-01-01

    people (exhaled air, bioeffluents) and building materials (wall painting). Personalized ventilation combined with chilled ceiling ensured highest air quality at the workstation under all conditions. Pollutant concentration in the occupied zone away from the workstations did not differ substantially...... between the tested systems. Chilled ceiling combined with personalized ventilation working as the only air supplying system may be optimal solution in many buildings.......In a simulated two persons’ office room inhaled air quality and contaminant distribution provided with personalized ventilation combined with chilled ceiling, mixing ventilation only, chilled ceiling with mixing ventilation and chilled ceiling with mixing and personalized ventilation was studied...

  14. [Assessment of the air quality improment of cleaning and disinfection on central air-conditioning ventilation system].

    Science.gov (United States)

    Liu, Hongliang; Zhang, Lei; Feng, Lihong; Wang, Fei; Xue, Zhiming

    2009-09-01

    To assess the effect of air quality of cleaning and disinfection on central air-conditioning ventilation systems. 102 air-conditioning ventilation systems in 46 public facilities were sampled and investigated based on Hygienic assessment criterion of cleaning and disinfection of public central air-conditioning systems. Median dust volume decreased from 41.8 g/m2 to 0.4 g/m2, and the percentage of pipes meeting the national standard for dust decreased from 17.3% (13/60) to 100% (62/62). In the dust, median aerobic bacterial count decreased from 14 cfu/cm2 to 1 cfu/cm2. Median aerobic fungus count decreased from 10 cfu/cm2 to 0 cfu/cm2. The percentage of pipes with bacterial and fungus counts meeting the national standard increased from 92.4% (171/185) and 82.2% (152/185) to 99.4% (165/166) and 100% (166/166), respectively. In the ventilation air, median aerobic bacterial count decreased from 756 cfu/m3 to 229 cfu/m3. Median aerobic fungus count decreased from 382 cfu/m3 to 120 cfu/m3. The percentage of pipes meeting the national standard for ventilation air increased from 33.3% (81/243) and 62.1% (151/243) to 79.8% (292/366) and 87.7% (242/276), respectively. But PM10 rose from 0.060 mg/m3 to 0.068 mg/m3, and the percentage of pipes meeting the national standard for PM10 increased from 74.2% (13/60) to 90.2% (46/51). The cleaning and disinfection of central air-conditioning ventilation systems could have a beneficial effect of air quality.

  15. The effect of a personalized ventilation system on perceived air quality and SBS symptoms

    DEFF Research Database (Denmark)

    Kaczmarczyk, Jan; Zeng, Q.; Melikov, Arsen Krikor

    2002-01-01

    Perceived air quality, SBS symptoms and performance were studied with 30 human subjects. Experiments were performed in an office set-up with six workplaces, each equipped with a Personalized Ventilation System (PVS). Each PVS allowed the amount of supply air and its direction to be controlled...... condition in regard to perceived air quality, perception of freshness and intensity of SBS symptoms was when PVS supplied outdoor air at 20 deg.C. Perceived air quality in this case was significantly better (p....... Subjects participated in four experiments: (1) PVS supplying outdoor air at 20 deg.C; (2) PVS supplying outdoor air at 23 deg.C; (3) PVS supplying recirculated room air; and (4) mixing ventilation. Room temperature was kept constant at 23 deg.C and relative humidity at 30%. Results showed that the best...

  16. Business approach to mine air quality and ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Byrne, M.J. [Newmont Mining Corp., Greenwood Village, CO (United States)

    2009-07-01

    A business approach to air quality and ventilation in mines was discussed in this presentation. Issues that were addressed included leadership approaches in bridging the gap between the visible culture of policies and procedures with invisible cultures such as norms, assumptions and beliefs. An overview of occupational safety was also presented in terms of measuring diesel particulate matter (DPM) and key DPM activities such as ventilation modeling; remote control of ventilation circuits; real-time diagnostics of engine performance through electronic control modules; personnel and equipment tracking systems; remote carbon monoxide and carbon dioxide monitoring; and semi-quantitative real-time DPM monitoring. Resources such as ventilation engineers and other professionals also contribute to key DPM activities as do experience and good practice sharing between sites. The purpose of the presentation was to determine if 160 {mu}g/m{sup 3} is an achievable number for exposure to DPM and the standard by which mines should operate globally. figs.

  17. Using a Ventilation Controller to Optimize Residential Passive Ventilation For Energy and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    One way to reduce the energy impact of providing residential ventilation is to use passive and hybrid systems. However, these passive and hybrid (sometimes called mixed-mode) systems must still meet chronic and acute health standards for ventilation. This study uses a computer simulation approach to examine the energy and indoor air quality (IAQ) implications of passive and hybrid ventilation systems, in 16 California climate zones. Both uncontrolled and flow controlled passive stacks are assessed. A new hybrid ventilation system is outlined that uses an intelligent ventilation controller to minimise energy use, while ensuring chronic and acute IAQ standards are met. ASHRAE Standard 62.2-2010 – the United States standard for residential ventilation - is used as the chronic standard, and exposure limits for PM2.5, formaldehyde and NO2 are used as the acute standards.The results show that controlled passive ventilation and hybrid ventilation can be used in homes to provide equivalent IAQ to continuous mechanical ventilation, for less use of energy.

  18. Thermal environment and air quality in office with personalized ventilation combined with chilled ceiling

    DEFF Research Database (Denmark)

    Lipczynska, Aleksandra; Kaczmarczyk, Jan; Melikov, Arsen Krikor

    2015-01-01

    The thermal environment and air quality conditions provided with combined system of chilled ceiling and personalized ventilation (PV) were studied in a simulated office room for two occupants. The proposed system was compared with total volume HVAC solutions used today, namely mixing ventilation...... and chilled ceiling combined with mixing ventilation. The objective of the study was to evaluate whether PV can be the only ventilation system in the rooms equipped with chilled ceiling. The room air temperature was 26°C in cases with traditional systems and 28°C when PV was used. PV supplied air...... with the temperature of 25°C. PV improved thermal conditions and was up to nearly 10 times more efficient in delivering clean air at workstations than mixing ventilation systems, which resulted in strong protection of occupants from the cross-infection. In the room space outside workstations no substantial differences...

  19. Improving energy performance of school buildings while ensuring indoor air quality ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Rachel; Goldberger, Itamar [Technion - Israel Institute of Technology, Haifa (Israel). Faculty of Civil and Environmental Engineering, Department of Structural Engineering and Construction Management; Paciuk, Monica [National Building Research Institute, Technion, Haifa (Israel)

    2007-09-15

    Energy conscious design of school buildings, as well as deemed-to-satisfy provisions in a Performance Based Energy Code, should address the problem known as the energy efficiency - thermal comfort - indoor air quality dilemma (EE-TC-IAQ Dilemma). In warm and moderate climates, the large internal heat sources usually found in school buildings prevent achieving thermal comfort without active cooling in summer, but are not sufficient to eliminate the need for heating in winter. Commonly used air-conditioners do not improve air quality, while natural ventilation induces uncontrolled energy losses. In this study, a step by step process was used for the development of deemed-to-satisfy design solutions, which cope with the EE-TC-IAQ Dilemma, for a performance based code. A distinction is made between improving building design variables and improving ventilation schemes. Results indicate that implementation of improved ventilation schemes in an otherwise well designed energy-conscious building result in savings of 28-30% and 17-18% for northern and southern classroom orientations, respectively. (author)

  20. Using a New Modification on Wind Turbine Ventilator for Improving Indoor Air Quality

    Directory of Open Access Journals (Sweden)

    Louay Abdul salam Rasheed

    2018-02-01

    Full Text Available This paper describes a newly modified wind turbine ventilator that can achieve highly efficient ventilation. The new modification on the conventional wind turbine ventilator system may be achieved by adding a Savonius wind turbine above the conventional turbine to make it work more efficiently and help spinning faster. Three models of the Savonius wind turbine with 2, 3, and 4 blades' semicircular arcs are proposed to be placed above the conventional turbine of wind ventilator to build a hybrid ventilation turbine. A prototype of room model has been constructed and the hybrid turbine is placed on the head of the room roof. Performance's tests for the hybrid turbine with a different number of blades and different values of wind speeds have been conducted. The experimental test results show that the performance of the improved ventilation turbine with three blades is the best. It is found that the maximum rotation speed of the improved turbine is 107rpm, while the air flow rate is 0.0103m3/s and the air change rate per hour is 32.67hr-1, at a wind speed of 3m/s. The proposed design has been achieved an increase in the turbine rotational speed, increase of the extraction rate of the indoor air and the air-changes per hour, provided the requisite ventilation and improved the quality of the indoor air.

  1. Assessment of ventilation efficiency for the study of indoor air quality; Appreciation de l'efficacite de la ventilation pour l'etude de la qualite de l'air interieur

    Energy Technology Data Exchange (ETDEWEB)

    Akoua, A.A.

    2004-10-15

    An efficient ventilation system provides a good indoor air quality by eliminating air pollutants and ensuring a satisfactory air renewal. Unlike most research works that deal with test cells with controlled boundary conditions, our study focuses on ventilation efficiency in a real environment. In situ experiments are performed and provide the boundary conditions necessary for CFD (Computational Fluid Dynamics) computations. Using CFD for predicting indoor air quality in a real environment is thus analyzed. The influence of permeability on numerical predictions quality is shown. Unfortunately, it is difficult to quantify accurately the air leakages and their airflow rates. Our study proposes a simplified model that includes air infiltration rates in the CFD computations, and that yields satisfactory results. A critical analysis of ventilation efficiency indices is then performed. It is shown that it is currently impossible to evaluate the air change efficiency ( a e ) in an occupied zone. Concerning the air pollutants removal effectiveness, it is shown that the usual index C e is not suited to ventilation systems with variable airflow rates. For such cases, a new formulation of this index is given. The ratio between the airflow rate and the nominal airflow rate of the ventilation system is also taken into consideration. A coupled analysis of this new index and of this airflow rate ratio enables us to assess the air pollutants removal effectiveness while considering the energetic cost of ventilation. We finally show that there is no universal index. The choice of the index depends on the pollutant, on the pollutant concentration, and on the airflow rate. A tool of decision-making aid is thus proposed in order to evaluate the air pollutants removal effectiveness for various ventilation systems. This tool is flexible and rather simple to use. (author)

  2. A preliminary investigation of indoor air quality in a naturally ventilated house

    International Nuclear Information System (INIS)

    Shahrani, S.; Ahmed, A.Z.; Abdul Rahman, S.

    2006-01-01

    Continuous monitoring of indoor air quality was conducted in a naturally ventilated Malaysian house. CO 2 , CO, temperature and relative air humidity measurements were performed in the bathroom, bedroom, family room, kitchen and living room at 15-minute intervals over a 24-hour monitoring period. The measurement data were supplemented with time activity diaries detailing the occupants time of occupancy in each room, activities undertaken in each room and cooling and/or ventilation techniques used in each room. Indoor air quality was found to be generally satisfactory in all five rooms. However, levels of CO in the family room exceeded the USEPA, WHO and Singapore guidelines. Additionally, levels of relative humidity in the kitchen, living room and family room temperature in all five rooms exceeded the ASHRAE and Singapore guidelines, and suggest the like hood of condensation and mould growth

  3. Ductless personalized ventilation with local air cleaning

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Vesely, Michal; Melikov, Arsen Krikor

    2012-01-01

    An experiment with 28 human subjects was performed to examine effects of using a local air cleaning device combined with ductless personalized ventilation (DPV) on perceived air quality. Experiments were performed in a test room with displacement ventilation. The DPV at one of two desks was equip......An experiment with 28 human subjects was performed to examine effects of using a local air cleaning device combined with ductless personalized ventilation (DPV) on perceived air quality. Experiments were performed in a test room with displacement ventilation. The DPV at one of two desks...... was equipped with an activated carbon filter installed at the air intake, while the DPV at the second desk was without such a filter. The air temperature in the occupied zone (1.1 m above the floor) was 29 °C. The pollution load in the room was simulated by PVC floor covering. The subjects assessed...

  4. Effect of ventilation on perceived quality of air polluted by building materials. A summary of reported data

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Vondruskova, J. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-02-15

    This paper summarizes existing data on how varying ventilation rates affect the perceived quality of air polluted by building materials. This is done by reviewing literature dealing with exposure-response relationships, i.e. the log-linear relationships between the concentration of pollutants (exposure) and the perceived air quality (response). The reviewed data originate from studies with single building materials performed in small-scale ventilated chambers and from studies carried out in a full-scale setting resembling normal offices. Perceived air quality expressed in terms of acceptability as assessed by untrained panels was included. The results show that the exposure-response relationships vary for different building materials as regards the impact of changing ventilation rate on perceived air quality and the level of perceived air quality at a constant ventilation rate. This applies both for the data collected in small-scale and in full-scale experiments. The differences may be caused by the experimental conditions, psychological factors, physiological factors, and chemical/physical factors. A well controlled study taking these factors into account with several different building materials, is thus recommended to further study whether the observed results have practical significance. These experiments should be carried out under realistic fullscale conditions. (au)

  5. Symptoms and perceived indoor air quality among occupants of houses and apartments with different ventilation systems

    Energy Technology Data Exchange (ETDEWEB)

    Ruotsalainen, R.; Roennberg, R.; Majanen, A.; Seppaenen, O. (Laboratory of Heating, Ventilating and Air Conditioning, Helsinki University of Technology, Espoo (Finland)); Jaakkola, J.J.K. (Laboratory of Heating, Ventilating and Air Conditioning, Helsinki University of Technology, Espoo (Finland) Department of Public Health, University of Helsinki (Finland))

    1991-01-01

    The purpose of the study was to evaluate the occurrence of symptoms and the perception of poor indoor air quality among the occupants of houses and apartments with different ventilation systems. The study population consisted of the 473 occupants of 242 dwellings in the Helsinki metropolitan area who responded to a self-administered questionnaire (response rate 93.1%) after a two-week period of indoor air quality measurements. The symptoms of interest were those often related to poor indoor air quality including dryness or itching of the skin; dryness, irritation or itching of the eyes; nasal congestion (''blocked nose''); nasal dryness; nasal discharge (''runny nose''); sneezing; cough; breathlessness; headache or migraine; and lethargy, weakness or nausea. Perception of coldness; warmness; draught; dryness; stuffiness; and sufficiency of air exchange was also requested. The age-standardized period prevalences of the symptoms and complaints were systematically more common among the occupants of the apartments than those of the houses. The occupants of the houses with natural ventilation seemed to have more symptoms and complaints than those with balanced ventilation. However, in the apartments with blanced ventilation the occupants reported, in general, more symptoms and complaints than those with natural ventilation. (au) (9 refs.).

  6. Impact of airflow interaction on inhaled air quality and transport of contaminants in rooms with personalized and total volume ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Cermak, Radim; Kovar, O.

    2003-01-01

    The impact of airflow interaction on inhaled air quality and transport of contaminants between occupants was studied in regard to pollution from floor covering, human bioeffluents and exhaled air, with combinations of two personalized ventilation systems (PV) with mixing and displacement...... quality with personalized and mixing ventilation was higher or at least similar compared to mixing ventilation alone. In the case of PV combined with displacement ventilation, the interaction caused mixing of the room air, an increase in the transport of bioeffluents and exhaled air between occupants and...... ventilation. In total, 80 L/s of clean air supplied at 20°C was distributed between the ventilation systems at different combinations of personalized airflow rate. Two breathing thermal manikins were used to simulate occupants in a full-scale test room. Regardless of the airflow interaction, the inhaled air...

  7. Indoor Air Quality and Ventilation in Residential Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-06-01

    Because airtightening is a significant part of Deep Energy Retrofits (DERs), concerns about ventilation and Indoor Air Quality (IAQ) have emerged. To investigate this, ventilation and IAQ were assessed in 17 non-smoking California Deep Energy Retrofit homes. Inspections and surveys were used to assess household activities and ventilation systems. Pollutant sampling performed in 12 homes included six-day passive samples of nitrogen dioxide (NO2), formaldehyde and air exchange rate (AER); time-resolved data loggers were used to measure particle counts. Half of the homes provided continuous mechanical ventilation. Despite these homes being twice as airtight (3.0 and 7.6 ACH50, respectively), their median AER was indistinguishable from naturally vented homes (0.36 versus 0.37 hr-1). Numerous problems were found with ventilation systems; however, pollutant levels did not reach levels of concern in most homes. Ambient NO2 standards were exceeded in some gas cooking homes that used legacy ranges with standing pilots, and in Passive House-style homes without range hoods exhausted to outside. Cooking exhaust systems were installed and used inconsistently. The majority of homes reported using low-emitting materials, and formaldehyde levels were approximately half those in conventional new CA homes (19.7 versus 36 μg/m3), with emissions rates nearly 40percent less (12.3 versus 20.6 μg/m2/hr.). Presence of air filtration systems led to lower indoor particle number concentrations (PN>0.5: 8.80E+06 PN/m3 versus 2.99E+06; PN>2.5: 5.46E+0.5 PN/m3 versus 2.59E+05). The results indicate that DERs can provide adequate ventilation and IAQ, and that DERs should prioritize source control, particle filtration and well-designed local exhaust systems, while still providing adequate continuous ventilation.

  8. Human Response to Ductless Personalized Ventilation with Local Air Cleaning: Air Quality and Prevalence of SBS Symptoms

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Bivolarova, Maria; Fillon, Maelys

    2013-01-01

    The impact of local air cleaning and cooling of the head region by ductless personalized ventilation (DPV) on perceived air quality (PAQ) and Sick Building Syndrome (SBS) symptoms was studied. Thirty subjects participated in experiments performed in a test room with displacement ventilation (DV...... with air filter and 29 °C with DPV without filter. During the experiments the subjects simulated office work and answered on computerized questionnaires. At warm environment PAQ and air freshness significantly improved when DPV was used. Eye dryness increased significantly with time but was not influenced...... by air temperature and filtering. At 29 °C the facially applied air movement from DPV increased the eye dryness. The SBS symptoms increased with time and were higher (not significantly) at the warm conditions. Air movement did not have profound impact on the SBS symptoms, while filtering had only at 23...

  9. Short Term Airing by Natural Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Perino, M.

    2010-01-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies...... that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working...... airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective...

  10. Indoor air quality in mechanically ventilated residential dwellings/low-rise buildings: A review of existing information

    DEFF Research Database (Denmark)

    Aganovic, Amar; Hamon, Mathieu; Kolarik, Jakub

    Mechanical ventilation has become a mandatory requirement in multiple European standards addressing indoor air quality (IAQ) and ventilation in residential dwellings (single family houses and low-rise apartment buildings). This article presents the state of the art study through a review...... of the existing literature, to establish a link between ventilation rate and key indoor air pollutants. Design characteristics of a mechanical ventilation system such as supply/exhaustairflow, system and design of supply and exhaust outlets were considered. The performance of various ventilation solutionswas......-house ventilation rate was reported below 0.5h-1 or 14 l/s·person in bedrooms, the concentrations of the pollutants elevated above minimum threshold limits (CO2>1350 ppm; TVOC >3000 μg/m3) defined by the standard. Insufficient or non-existent supply of air was related to significantly higher pollutant...

  11. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  12. A novel complex air supply model for indoor air quality control via the occupant micro-environment demand ventilation

    International Nuclear Information System (INIS)

    Yang, Jie; Zhou, Bo; Jin, Maozhu; Wang, Jun; Xiong, Feng

    2016-01-01

    Protection of indoor air quality and human health can be achieved via ventilation, which has becomes one of the most important tasks for sustainable buildings. This approach also requires highly efficient and energy saving methods for modern building ventilations consisting of a set of parameters of the complex indoor system. Therefore, the advancement in understanding the characteristics of various ventilation methods is highly necessary. This study presents one novel air supply model for the complex occupant micro-environment demand control ventilations, to analyze the efficiency of various ventilation types. This model is established primarily according to the momentum and mass conservations, and goal of occupant micro-environment demand, which is a complex system with the characteristics of diversity and dynamic variation. As for different occupant densities, characteristics of outdoor air supply for controlling gaseous pollutant and three basic features of outdoor airflow supply reaching occupant micro-environment were obtained. This research shows that for various types of occupant density and storey height, the rising and descending rates of the demand outdoor airflow in mixing ventilation are higher than those under displacement ventilation conditions. In addition, since the structure is better designed and sewage flow is more efficient, the mixing ventilation also requires a much higher peak demand outdoor airflow than its counterpart. The increase of storey height will lead to a decline of pollutants in the breathing zone and the demand outdoor airflow. Fluctuations of air flow diffusion caused by the change of occupant density in architectural space, will lead to variations of outdoor airflow reaching occupant micro-environment. Accordingly, it would lead to the different peak values of demand outdoor airflow, and the difference becomes even significant if the occupant density increases. The variations of the air supply and fraction of air reaching the

  13. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    Science.gov (United States)

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (building, particle size, wind condition, and window size and location. A break-even point is observed at D'~2.1 (normalized distance from the roadway by the width of the road). The indoor particle concentration is greater than that at the highway where D'building planning, the distance from the roadway and the ambient wind condition need to be considered at the early design stage whereas the size and location of the window openings, the interior layout, and the placement of fresh air intakes are important to the indoor air quality of existing buildings adjacent to roadways. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Ventilation System Type and the Resulting Classroom Temperature and Air Quality During Heating Season

    DEFF Research Database (Denmark)

    Gao, Jie; Wargocki, Pawel; Wang, Yi

    2014-01-01

    The present study investigated how different ventilation system types influence classroom temperature and air quality. Five classrooms were selected in the same school. They were ventilated by manually operable windows, manually operable windows with exhaust fan, automatically operable windows...... with and without exhaust fan and by mechanical ventilation system. Temperature, relative humidity, carbon dioxide (CO2) concentration and opening of windows were continuously monitored for one month during heating season in 2012. Classroom with manually operable windows had the highest carbon dioxide concentration...... levels so that the estimated ventilation rate was the lowest compared with the classrooms ventilated with other systems. Temperatures were slightly lower in classroom ventilated by manually operable windows with exhaust fan. Windows were opened seldom even in the classroom ventilated by manually operable...

  15. Analysis of thermal comfort and indoor air quality in a mechanically ventilated theatre

    Energy Technology Data Exchange (ETDEWEB)

    Kavgic, M.; Mumovic, D.; Young, A. [The Bartlett School of Graduate Studies, University College London, Gower Street, London, WC1E 6BT, England (United Kingdom); Stevanovic, Z. [Institute of Nuclear Sciences - Vinca, P.O. Box 522, 11001 Belgrade (RS)

    2008-07-01

    Theatres are the most complex of all auditorium structures environmentally. They usually have high heat loads, which are of a transient nature as audiences come and go, and from lighting which changes from scene to scene, and they generally have full or nearly full occupancy. Theatres also need to perform well acoustically, both for the spoken word and for music, and as sound amplification is less used than in other auditoria, background noise control is critically important. All these factors place constraints on the ventilation design, and if this is poor, it can lead to the deterioration of indoor air quality and thermal comfort. To analyse the level of indoor air quality and thermal comfort in a typical medium-sized mechanically ventilated theatre, and to identify where improvements could typically be made, a comprehensive post-occupancy evaluation study was carried out on a theatre in Belgrade. The evaluation, based on the results of monitoring (temperature, relative humidity, CO{sub 2}, air speed and heat flux) and modelling (CFD), as well as the assessment of comfort and health as perceived by occupants, has shown that for most of the monitored period the environmental parameters were within the standard limits of thermal comfort and IAQ. However, two important issues were identified, which should be borne in mind by theatre designers in the future. First, the calculated ventilation rates showed that the theatre was over-ventilated, which will have serious consequences for its energy consumption, and secondly, the displacement ventilation arrangement employed led to higher than expected complaints of cold discomfort, probably due to cold draughts around the occupants' feet. (author)

  16. The role of the U.S. Department of Energy in indoor air quality and building ventilation policy development

    Energy Technology Data Exchange (ETDEWEB)

    Traynor, G.W. [Lawrence Berkeley Lab., Berkeley, CA (United States). Indoor Environment Program; Talbott, J.M. [U.S. Dept. of Energy, Washington, DC (United States). Office of Building Technologies; Moses, D.O. [U.S. Dept. of Energy, Washington, DC (United States). Office of Environmental Analysis

    1993-12-31

    Building ventilation consumes about 5.8 exajoules of energy each year in the U.S. The annual cost of this-energy, used for commercial building fans (1.6 exajoules/yr) and the heating and cooling of outside air (4.2 exajoules/yr), is about $US 33 billion per year. Energy conservation measures that reduce heating and cooling season ventilation rates 15 to 35 % in commercial and residential buildings can result in a national savings of about 0.6 to 15 exajoules (doll US 3-8 billion) per year assuming no reduction of commercial building fan energy use. The most significant adverse environmental impact of reduced ventilation and infiltration is the potential degradation of the building`s indoor air quality. Potential benefits to the U.S from the implementation of sound indoor air quality and building ventilation reduction policies include reduced building-sector energy consumption; reduced indoor, outdoor, and global pollution; reduced product costs; reduced worker absenteeism; reduced health care costs; reduced litigation; increased worker well-being and absenteeism; reduced health care costs; reduced litigation; increased productivity; and increased product quality and competitiveness. (author)

  17. Subway platform air quality: Assessing the influences of tunnel ventilation, train piston effect and station design

    Science.gov (United States)

    Moreno, T.; Pérez, N.; Reche, C.; Martins, V.; de Miguel, E.; Capdevila, M.; Centelles, S.; Minguillón, M. C.; Amato, F.; Alastuey, A.; Querol, X.; Gibbons, W.

    2014-08-01

    A high resolution air quality monitoring campaign (PM, CO2 and CO) was conducted on differently designed station platforms in the Barcelona subway system under: (a) normal forced tunnel ventilation, and (b) with daytime tunnel ventilation systems shut down. PM concentrations are highly variable (6-128 μgPM1 m-3, 16-314 μgPM3 m-3, and 33-332 μgPM10 m-3, 15-min averages) depending on ventilation conditions and station design. Narrow platforms served by single-track tunnels are heavily dependent on forced tunnel ventilation and cannot rely on the train piston effect alone to reduce platform PM concentrations. In contrast PM levels in stations with spacious double-track tunnels are not greatly affected when tunnel ventilation is switched off, offering the possibility of significant energy savings without damaging air quality. Sampling at different positions along the platform reveals considerable lateral variation, with the greatest accumulation of particulates occurring at one end of the platform. Passenger accesses can dilute PM concentrations by introducing cleaner outside air, although lateral down-platform accesses are less effective than those positioned at the train entry point. CO concentrations on the platform are very low (≤1 ppm) and probably controlled by ingress of traffic-contaminated street-level air. CO2 averages range from 371 to 569 ppm, changing during the build-up and exchange of passengers with each passing train.

  18. Optimization of Ventilation Energy Demands and Indoor Air Quality in the ZEBRAlliance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Hun, D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Shrestha, S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2013-09-01

    High-performance homes require that ventilation energy demands and indoor air quality (IAQ) be simultaneously optimized. In this project, Oak Ridge National Laboratory researchers attempted to bridge these two areas by conducting tests in research houses located in Oak Ridge, TN, that were less than 2 years old, energy-efficient (i.e., expected to consume 50% less energy than a house built per the 2006 IRC), tightly-built, unoccupied, and unfurnished. The team identified air pollutants of concern in the test homes that could generally serve as indicators of IAQ, and conduced field experiments and computer simulations to determine the effectiveness and energy required by various techniques that lessened the concentration of these contaminants. Formaldehyde was selected as the main pollutant of concern from initial air sampling surveys. Field data indicate that concentrations were higher during the summer primarily because emissions from sources rise with increases in temperature. Furthermore, supply ventilation and gas-phase filtration were effective means to reduce formaldehyde concentrations; however, exhaust ventilation had minimal influence on this pollutant. Results from simulations suggest that formaldehyde concentrations obtained while ventilating per ASHRAE 62.2-2010 could be decreased by about 20% from May through September through three strategies: 1) increasing ASHRAE supply ventilation by a factor of two, 2) reducing the thermostat setpoint from 76 to 74°F, or 3) running a gas-phase filtration system while decreasing supply ventilation per ASHRAE by half. In the mixed-humid climate of Oak Ridge, these strategies caused minimal to modest increases in electricity cost of ~$5 to ~$15/month depending on outdoor conditions.

  19. Air change. Ventilation requirements of closed rooms

    Energy Technology Data Exchange (ETDEWEB)

    Cords, W

    1988-04-01

    Closed rooms have to be ventilated in order to compensate influences changing the composition and quality of air. Details are given on the conditions and factors determining the required change of air as well as the design of ventilation systems. Reference is made to the respiratory consumption of oxygen, the increase of hazardous carbon dioxide contents causing headaches and indispositions, water vapor exhalations, body heat, odors, cold air coming in from outside, bodily heat losses, carbon dioxide limiting values, air speeds, and air pressures inside rooms. The humidity and temperatures of frequented rooms should keep within the maximum values. (HWJ).

  20. Experimental analysis of indoor air quality improvement achieved by using a Clean-Air Heat Pump (CAHP) air-cleaner in a ventilation system

    DEFF Research Database (Denmark)

    Sheng, Ying; Fang, Lei; Nie, Jinzhe

    2017-01-01

    This study investigated the air purification effect of a Clean-Air Heat Pump (CAHP) air-cleaner which combined a silica gel rotor with a heat pump to achieve air cleaning, heating and ventilation in buildings. The experiments were conducted in a field laboratory and compared a low outdoor air...... supply rate with CAHP air purification of recirculated air with three different outdoor air supply rates without recirculation or air cleaning. Sensory assessments of perceived air quality and chemical measurements of TVOC concentration were used to evaluate the air-cleaning performance of the CAHP....... The results of the experiment showed that the operation of the CAHP significantly improved the perceived air quality in a room polluted by both human bio-effluents and building materials. At the outdoor airflow rate of 2 L/s per person, the indoor air quality with CAHP was equivalent to what was achieved...

  1. Effectiveness of heating, ventilation and air conditioning system with HEPA filter unit on indoor air quality and asthmatic children's health

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying; Raja, Suresh; Ferro, Andrea R.; Jaques, Peter A.; Hopke, Philip K. [Clarkson University, 8 Clarkson Avenue, Center for Air Resources Engineering and Science, Potsdam, NY 13699 (United States); Gressani, Cheryl; Wetzel, Larry E. [Air Innovations, Inc, 7000 Performance Drive, North Syracuse, NY 13212 (United States)

    2010-02-15

    Poor indoor air quality has been linked to the exacerbation of asthma symptoms in children. Because people spend most of their time indoors, improving indoor air quality may provide some relief to asthma sufferers. A study was conducted to assess whether operating an air cleaning/ventilating unit (HEPAiRx {sup registered}) in a child's bedroom can improve his/her respiratory health. Thirty children diagnosed with asthma were randomly split into two groups. For the first six weeks, group A had the air cleaning/ventilating unit (HEPAiRx {sup registered}) running in the bedrooms of the participants and group B did not; for the second six weeks, both groups had the cleaners running in the bedrooms; and, for the final six weeks, group A turned the cleaners off and group B kept theirs running. Indoor air quality parameters, including temperature, relative humidity, particulate matter (PM 0.5-10 {mu}m), carbon monoxide, carbon dioxide and total volatile organic compound (TVOC) concentrations, were monitored in each bedroom using an AirAdvice indoor air quality multi-meter. As a measure of pulmonary inflammation, exhaled breath condensate (EBC) was collected every sixth day and analyzed for nitrate and pH. Peak expiratory flow (PEF) was also measured. PM and TVOC concentrations decreased with operation of the HEPAiRx an average of 72% and 59%, respectively. The EBC nitrate concentrations decreased significantly and the EBC pH and PEF values increased significantly with operation of the unit (p < 0.001 when comparing on/off sample means). These results indicate that air cleaning in combination with ventilation can effectively reduce symptoms for asthma sufferers. (author)

  2. Indoor Air Quality in Chemistry Laboratories.

    Science.gov (United States)

    Hays, Steve M.

    This paper presents air quality and ventilation data from an existing chemical laboratory facility and discusses the work practice changes implemented in response to deficiencies in ventilation. General methods for improving air quality in existing laboratories are presented and investigation techniques for characterizing air quality are…

  3. Air quality Performance of Ductless Personalized Ventilation in Conjunction with Displacement Ventilation: Impact of Walking Person

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Lu, Pengfei; Melikov, Arsen Krikor

    2015-01-01

    The present experiment evaluates the impact of air disturbances from a walking person on inhaled air by ductless personalized ventilation (DPV) with displacement ventilation (DV), when a seated occupant is the source of pollution: bio-effluents and exhaled air. The measurements took place in a full...... and the DV supply. Pollution from feet and exhaled air by one manikin was simulated with tracer gases. Room temperature of 26 °C and 90 L/s DV supply flow rate were kept constant. Measurements under numerous combinations of DPV operation modes and supply flow rates were performed. Tracer gas concentrations...

  4. Experimental study of air distribution and ventilation effectiveness in a room heated by warm air and/or floor heating

    DEFF Research Database (Denmark)

    Simone, Angela; Olesen, Bjarne W.; Krajčík, Michal

    2010-01-01

    The levels of required ventilation depend on the criteria for indoor air quality in existing standards and guidelines. On top of that, the resulting ventilation in air changes per hour is depending on the ventilation effectiveness. In the standard CR 1752 the recommended values for ventilation ef...

  5. Ventilating Air-Conditioner

    Science.gov (United States)

    Dinh, Khanh

    1994-01-01

    Air-conditioner provides ventilation designed to be used alone or incorporated into cooling or heating system operates efficiently only by recirculating stale air within building. Energy needed to operate overall ventilating cooling or heating system slightly greater than operating nonventilating cooling or heating system. Helps to preserve energy efficiency while satisfying need for increased forced ventilation to prevent accumulation of undesired gases like radon and formaldehyde. Provides fresh treated air to variety of confined spaces: hospital surgeries, laboratories, clean rooms, and printing shops and other places where solvents used. In mobile homes and portable classrooms, eliminates irritant chemicals exuded by carpets, panels, and other materials, ensuring healthy indoor environment for occupants.

  6. Thermal comfort and indoor air quality in rooms with integrated personalized ventilation and under-floor air distribution systems

    DEFF Research Database (Denmark)

    Li, Ruixin; Sekhar ., S. C.; Melikov, Arsen Krikor

    2011-01-01

    A comprehensive study comprising physical measurements and human subject experiments was conducted to explore the potential for improving occupants' thermal comfort and indoor air quality (IAQ) using a personalized ventilation (PV) system combined with an under-floor air distribution(UFAD) system....... The integrated PV-UFAD system, when operated at relatively high temperature of the air supplied from the UFAD system, provided comfortable cooling of the facial region, improved inhaled air quality, and decreased the risk of "cold feet," which is often reported in rooms with UFAD alone. This article explores...... and a secondary AHU for 100% recirculated air that is supplied through UFAD outlets. Velocity and temperature distribution in the chamber were measured. A breathing thermal manikin was used to measure the heat loss from 26 body segments and to determine the equivalent temperature. The responses of 30 human...

  7. Indoor Environmental Quality in Mechanically Ventilated, Energy-Efficient Buildings vs. Conventional Buildings.

    Science.gov (United States)

    Wallner, Peter; Munoz, Ute; Tappler, Peter; Wanka, Anna; Kundi, Michael; Shelton, Janie F; Hutter, Hans-Peter

    2015-11-06

    Energy-efficient buildings need mechanical ventilation. However, there are concerns that inadequate mechanical ventilation may lead to impaired indoor air quality. Using a semi-experimental field study, we investigated if exposure of occupants of two types of buildings (mechanical vs. natural ventilation) differs with regard to indoor air pollutants and climate factors. We investigated living and bedrooms in 123 buildings (62 highly energy-efficient and 61 conventional buildings) built in the years 2010 to 2012 in Austria (mainly Vienna and Lower Austria). Measurements of indoor parameters (climate, chemical pollutants and biological contaminants) were conducted twice. In total, more than 3000 measurements were performed. Almost all indoor air quality and room climate parameters showed significantly better results in mechanically ventilated homes compared to those relying on ventilation from open windows and/or doors. This study does not support the hypothesis that occupants in mechanically ventilated low energy houses are exposed to lower indoor air quality.

  8. Modeled effectiveness of ventilation with contaminant control devices on indoor air quality in a swine farrowing facility.

    Science.gov (United States)

    Anthony, T Renée; Altmaier, Ralph; Park, Jae Hong; Peters, Thomas M

    2014-01-01

    Because adverse health effects experienced by swine farm workers in concentrated animal feeding operations (CAFOs) have been associated with exposure to dust and gases, efforts to reduce exposures are warranted, particularly in winter seasons when exposures increase due to decreased ventilation. Simulation of air quality and operating costs for ventilating swine CAFO, including treating and recirculating air through a farrowing room, was performed using mass and energy balance equations over a 90-day winter season. System operation required controlling heater operation to achieve room temperatures optimal to ensure animal health (20 to 22.5 °C). Five air pollution control devices, four room ventilation rates, and five recirculation patterns were examined. Inhalable dust concentrations were easily reduced using standard industrial air pollution control devices, including a cyclone, filtration, and electrostatic precipitator. Operating ventilation systems at 0.94 m3 s(-1) (2000 cfm) with 75 to 100% recirculation of treated air from cyclone, electrostatic precipitator, and shaker dust filtration system achieves adequate particle control with operating costs under $1.00 per pig produced ($0.22 to 0.54), although carbon dioxide (CO2) concentrations approach 2000 ppm using in-room ventilated gas fired heaters. In no simulation were CO2 concentrations below industry recommended concentrations (1540 ppm), but alternative heating devices could reduce CO2 to acceptable concentrations. While this investigation does not represent all production swine farrowing barns, which differ in characteristics including room dimensions and swine occupancy, the simulation model and ventilation optimization methods can be applied to other production sites. This work shows that ventilation may be a cost-effective control option in the swine industry to reduce exposures.

  9. Integrated analysis of numerical weather prediction and computational fluid dynamics for estimating cross-ventilation effects on inhaled air quality inside a factory

    Science.gov (United States)

    Murga, Alicia; Sano, Yusuke; Kawamoto, Yoichi; Ito, Kazuhide

    2017-10-01

    Mechanical and passive ventilation strategies directly impact indoor air quality. Passive ventilation has recently become widespread owing to its ability to reduce energy demand in buildings, such as the case of natural or cross ventilation. To understand the effect of natural ventilation on indoor environmental quality, outdoor-indoor flow paths need to be analyzed as functions of urban atmospheric conditions, topology of the built environment, and indoor conditions. Wind-driven natural ventilation (e.g., cross ventilation) can be calculated through the wind pressure coefficient distributions of outdoor wall surfaces and openings of a building, allowing the study of indoor air parameters and airborne contaminant concentrations. Variations in outside parameters will directly impact indoor air quality and residents' health. Numerical modeling can contribute to comprehend these various parameters because it allows full control of boundary conditions and sampling points. In this study, numerical weather prediction modeling was used to calculate wind profiles/distributions at the atmospheric scale, and computational fluid dynamics was used to model detailed urban and indoor flows, which were then integrated into a dynamic downscaling analysis to predict specific urban wind parameters from the atmospheric to built-environment scale. Wind velocity and contaminant concentration distributions inside a factory building were analyzed to assess the quality of the human working environment by using a computer simulated person. The impact of cross ventilation flows and its variations on local average contaminant concentration around a factory worker, and inhaled contaminant dose, were then discussed.

  10. Radon mitigation in schools utilising heating, ventilating and air conditioning systems

    International Nuclear Information System (INIS)

    Fisher, G.; Ligman, B.; Brennan, T.; Shaughnessy, R.; Turk, B.H.; Snead, B.

    1994-01-01

    As part of a continuing radon in schools technology development effort, EPA's School Evaluation Team has performed radon mitigation in schools by the method of ventilation/pressurisation control technology. Ventilation rates were increased, at a minimum, to meet the American Society of Heating, Refrigeration and Air Conditioning Engineers (ASHRAE) standard, Ventilation for Acceptable Indoor Air Quality (ASHRAE 62-1989). This paper presents the results and the preliminary evaluations which led to the team's decision to implement this technology. Factors considered include energy penalties, comfort, indoor air quality (IAQ), building shell tightness, and equipment costs. Cost benefit of heat recovery ventilation was also considered. Earlier results of the SEP team's efforts have indicated a severe ventilation problem within the schools of the United States. Two case studies are presented where HVAC technology was implemented for controlling radon concentrations. One involved the installation of a heat recovery ventilator to depressurise a crawl space and provide ventilation to the classrooms which previously had no mechanical ventilation. The other involved the restoration of a variable air volume system in a two-storey building. The HVAC system's controls were restored and modified to provide a constant building pressure differential to control the entry of radon. Pre-mitigation and post-mitigation indoor air pollutant measurements were taken, including radon, carbon dioxide (CO 2 ), particulates, and bio-aerosols. Long-term monitoring of radon, CO 2 , building pressure differentials, and indoor/outdoor temperature and relative humidity is presented. (author)

  11. The correlation of Acanthamoeba from the ventilation system with other environmental parameters in commercial buildings as possible indicator for indoor air quality.

    Science.gov (United States)

    Ooi, Soo Shen; Mak, Joon Wah; Chen, Donald K F; Ambu, Stephen

    2017-02-07

    The free-living protozoan Acanthamoeba is an opportunistic pathogen that is ubiquitous in our environment. However, its role in affecting indoor air quality and ill-health of indoor occupants is relatively unknown. The present study investigated the presence of Acanthamoeba from the ventilation system and its correlation with other indoor air quality parameters, used in the industry code of practice and its potential as an indicator for indoor air quality. Indoor air quality assessments were carried out in nine commercial buildings with approval from the building management, and the parameters assessed were as recommended by the Department of Occupational Safety and Health. The presence of Acanthamoeba was determined through dust swabs from the ventilation system and indoor furniture. Logistic regression was performed to study the correlation between assessed parameters and occupants' complaints. A total of 107 sampling points were assessed and 40.2% of the supplying air diffuser and blowing fan and 15% of the furniture were positive for cysts. There was a significant correlation between Acanthamoeba detected from the ventilation system with ambient total fungus count (r=0.327; p=0.01) and respirable particulates (r=0.276; p=0.01). Occupants' sick building syndrome experience also correlated with the presence of Acanthamoeba in the ventilation system (r=0.361; p=0.01) and those detected on the furniture (r=0.290; p=0.01). Logistic regression showed that there was a five-fold probability of sick building syndrome among occupants when Acanthamoeba was detected in the ventilation system.

  12. Air quality in a simulated office environment as a result of reducing pollution sources and increasing ventilation

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Bako-Biro, Zsolt; Clausen, Geo

    2002-01-01

    Air quality was studied in an office space classified as low-polluting and ventilated with outdoor air at a rate of 1 h-1. The pollution load in the space was changed by introducing or removing common building-related indoor pollution sources (linoleum, sealant and wooden shelves with books and p...

  13. Seat headrest-incorporated personalized ventilation: Thermal comfort and inhaled air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Ivanova, T.; Stefanova, G.

    2012-01-01

    inhaled by the manikin was measured and used to assess the clean air supply efficiency of the SHPV. The response of 35 subjects was collected to examine thermal comfort with the SHPV. The subjects participated in 3 experiments at personalized air temperature and room air temperature of 22/20 °C, 23/23 °C......The performance of personalized ventilation with seat headrest-mounted air supply terminal devices (ATD), named seat headrest personalized ventilation (SHPV), was studied. Physical measurements using a breathing thermal manikin were taken to identify its ability to provide clean air to inhalation...... depending on design, shape, size and positioning of the ATD, flow rate and temperature of personalized air, room temperature, clothing thermal insulation of the manikin, etc. Tracer gas was mixed with the room air. The air supplied by the SHPV was free of tracer gas. Tracer gas concentration in the air...

  14. Assessment of Indoor Air Quality Benefits and Energy Costs of Mechanical Ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Logue, J.M.; Price, P.N.; Sherman, M.H.; Singer, B.C.

    2011-07-01

    Intake of chemical air pollutants in residences represents an important and substantial health hazard. Sealing homes to reduce air infiltration can save space conditioning energy, but can also increase indoor pollutant concentrations. Mechanical ventilation ensures a minimum amount of outdoor airflow that helps reduce concentrations of indoor emitted pollutants while requiring some energy for fan(s) and thermal conditioning of the added airflow. This work demonstrates a physics based, data driven modeling framework for comparing the costs and benefits of whole-house mechanical ventilation and applied the framework to new California homes. The results indicate that, on a population basis, the health benefits from reduced exposure to indoor pollutants in New California homes are worth the energy costs of adding mechanical ventilation as specified by ASHRAE Standard 62.2.This study determines the health burden for a subset of pollutants in indoor air and the costs and benefits of ASHRAE's mechanical ventilation standard (62.2) for new California homes. Results indicate that, on a population basis, the health benefits of new home mechanical ventilation justify the energy costs.

  15. The Maintenance of Heating, Ventilating and Air-Conditioning Systems and Indoor Air Quality in Schools: A Guide for School Facility Managers. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.

    To help maintain good indoor air quality (IAQ) in schools, guidance for the development and implementation of an effective program for maintenance and operation of heating, ventilating, and air-conditioning (HVAC) systems are discussed. Frequently, a building's occupants will complain about IAQ when the temperature or humidity are at uncomfortable…

  16. Ventilation and air heating systems. 5. rev. and enlarged ed. Lueftung und Luftheizung

    Energy Technology Data Exchange (ETDEWEB)

    Ihle, C. (Bundesfachschule fuer Sanitaer-, Heizungs- und Klimatechnik, Karlsruhe (Germany))

    1991-01-01

    Higher demands on the air quality of flats, offices and assembly rooms make ventilation and air heating the subjects of increasing interest. Taking into account the ever more urgent need for energy conservation the book deals with all aspects of ventilation on the basis of the recent DIN standards, VDI sheets and regulations. It may be used as an instruction manual, professional reference book or as a guide to practice-oriented subject selection with a minimum of theoretical fundamentals. The book deals with ventilation and air heating systems, free ventilation, design fundamentals, exercised for ventilation and air heating systems, central and decentralized ventilation systems, practical examples, ducts and calculation of ducts, air distribution, fans, noise formation, noise pollution abatement and heat recovery. (BWI) With 472 figs., 91 tabs., 1 separate map.

  17. Effect of ventilation rate on air cleanliness and energy consumption in operation rooms at rest.

    Science.gov (United States)

    Lee, Shih-Tseng; Liang, Ching-Chieh; Chien, Tsung-Yi; Wu, Feng-Jen; Fan, Kuang-Chung; Wan, Gwo-Hwa

    2018-02-27

    The interrelationships between ventilation rate, indoor air quality, and energy consumption in operation rooms at rest are yet to be understood. We investigate the effect of ventilation rate on indoor air quality indices and energy consumption in ORs at rest. The study investigates the air temperature, relative humidity, concentrations of carbon dioxide, particulate matter (PM), and airborne bacteria at different ventilation rates in operation rooms at rest of a medical center. The energy consumption and cost analysis of the heating, ventilating, and air conditioning (HVAC) system in the operation rooms at rest were also evaluated for all ventilation rates. No air-conditioned operation rooms had very highest PM and airborne bacterial concentrations in the operation areas. The bacterial concentration in the operation areas with 6-30 air changes per hour (ACH) was below the suggested level set by the United Kingdom (UK) for an empty operation room. A 70% of reduction in annual energy cost by reducing the ventilation rate from 30 to 6 ACH was found in the operation rooms at rest. Maintenance of operation rooms at ventilation rate of 6 ACH could save considerable amounts of energy and achieve the goal of air cleanliness.

  18. Indoor air quality, ventilation and respiratory health in elderly residents living in nursing homes in Europe

    DEFF Research Database (Denmark)

    Bentayeb, Malek; Norback, Dan; Bednarek, Micha

    2015-01-01

    cough. Elderly subjects aged ≥80 years were at higher risk. Pollutant effects were more pronounced in the case of poor ventilation. Even at low levels, indoor air quality affected respiratory health in elderly people permanently living in nursing homes, with frailty increasing with age. The effects were......Few data exist on respiratory effects of indoor air quality and comfort parameters in the elderly. In the context of the GERIE study, we investigated for the first time the relationships of these factors to respiratory morbidity among elderly people permanently living in nursing homes in seven...... European countries. 600 elderly people from 50 nursing homes underwent a medical examination and completed a standardised questionnaire. Air quality and comfort parameters were objectively assessed in situ in the nursing home. Mean concentrations of air pollutants did not exceed the existing standards...

  19. Air ventilation/controlling facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro

    1997-12-12

    When all electricity supply from the outside of a power plant are lost, a power generator directly connected to an emergency steam turbine which is driven by steams introduced from a nuclear reactor is driven to supply electricity required in the power plant. Cool water prepared by a refrigerator is used as cooling water in an air ventilation/controlling facility of a room equipped with the power generating facility. As the refrigerator, a refrigerator of an existent emergency air cooling water system for an auxiliary air ventilation/controlling equipment is used. This can extend the period of time till the temperature of the room where the power generator is disposed exceeds the temperature range capable of keeping the integrity of the power generator even when all the AC power supply are lost to inactivate the function of the air ventilation/controlling system. (I.S.)

  20. Numerical simulation of ventilation air movement in partitioned offices

    Energy Technology Data Exchange (ETDEWEB)

    Plett, E.G.; Soultogiannis, A.A.; Jouini, D.B. (Department of Mechanical and Aerospace Engineering, Carleton University, Ottawa, Ontario (Canada))

    1993-01-01

    Good air quality can only be assured throughout an office complex if each workspace receives an adequate supply of ventilation air. The likelihood of achieving this situation would be increased if the building engineer had a means of easily predicting the air movement in each office configuration. A simple computer-based solution to this need is proposed. To this end, the development and validation testing of a numerical solution technique to simulate the ventilation air movement in a room or office is described. The predictions of the two-dimensional, isothermal, inviscid formulation are seen to be in good agreement with experimentally measured airflows in configurations of interest. The computer code is then used to illustrate the airflow in offices served by a single row of supply air diffusers, when partitions are used to divide the space into smaller workspaces. It is observed that the partitions distort the airflow patterns to the extent that it would be difficult to provide desirable ventilation airflows to all the workspaces formed by the partitions. (au) (26 refs.)

  1. Evaluation of the indoor air quality minimum ventilation rate procedure for use in California retail buildings.

    Science.gov (United States)

    Dutton, S M; Mendell, M J; Chan, W R; Barrios, M; Sidheswaran, M A; Sullivan, D P; Eliseeva, E A; Fisk, W J

    2015-02-01

    This research assesses benefits of adding to California Title-24 ventilation rate (VR) standards a performance-based option, similar to the American Society of Heating, Refrigerating, and Air Conditioning Engineers 'Indoor Air Quality Procedure' (IAQP) for retail spaces. Ventilation rates and concentrations of contaminants of concern (CoC) were measured in 13 stores. Mass balance models were used to estimate 'IAQP-based' VRs that would maintain concentrations of all CoCs below health- or odor-based reference concentration limits. An intervention study in a 'big box' store assessed how the current VR, the Title 24-prescribed VR, and the IAQP-based VR (0.24, 0.69, and 1.51 air changes per hour) influenced measured IAQ and perceived of IAQ. Neither current VRs nor Title 24-prescribed VRs would maintain all CoCs below reference limits in 12 of 13 stores. In the big box store, the IAQP-based VR kept all CoCs below limits. More than 80% of subjects reported acceptable air quality at all three VRs. In 11 of 13 buildings, saving energy through lower VRs while maintaining acceptable IAQ would require source reduction or gas-phase air cleaning for CoCs. In only one of the 13 retail stores surveyed, application of the IAQP would have allowed reduced VRs without additional contaminant-reduction strategies. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  2. Characteristics of coal mine ventilation air flows.

    Science.gov (United States)

    Su, Shi; Chen, Hongwei; Teakle, Philip; Xue, Sheng

    2008-01-01

    Coal mine methane (CMM) is not only a greenhouse gas but also a wasted energy resource if not utilised. Underground coal mining is by far the most important source of fugitive methane emissions, and approximately 70% of all coal mining related methane is emitted to the atmosphere through mine ventilation air. Therefore, research and development on mine methane mitigation and utilisation now focuses on methane emitted from underground coal mines, in particular ventilation air methane (VAM) capture and utilisation. To date, most work has focused on the oxidation of very low concentration methane. These processes may be classified based on their combustion kinetic mechanisms into thermal oxidation and catalytic oxidation. VAM mitigation/utilisation technologies are generally divided into two basic categories: ancillary uses and principal uses. However, it is possible that the characteristics of ventilation air flows, for example the variations in methane concentration and the presence of certain compounds, which have not been reported so far, could make some potential VAM mitigation and utilisation technologies unfeasible if they cannot cope with the characteristics of mine site ventilation air flows. Therefore, it is important to understand the characteristics of mine ventilation air flows. Moreover, dust, hydrogen sulphide, sulphur dioxide, and other possible compounds emitted through mine ventilation air into the atmosphere are also pollutants. Therefore, this paper presents mine-site experimental results on the characteristics of mine ventilation air flows, including methane concentration and its variations, dust loadings, particle size, mineral matter of the dust, and other compounds in the ventilation air flows. The paper also discusses possible correlations between ventilation air characteristics and underground mining activities.

  3. Indoor Air Quality in Schools.

    Science.gov (United States)

    Torres, Vincent M.

    Asserting that the air quality inside schools is often worse than outdoor pollution, leading to various health complaints and loss of productivity, this paper details factors contributing to schools' indoor air quality. These include the design, operation, and maintenance of heating, ventilating, and air conditioning (HVAC) systems; building…

  4. Influence of a Cooled Ceiling on Indoor Air Quality in a Displacement Ventilated Room Examined by Means of Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Brohus, Henrik

    The influence of a cooled ceiling on the air quality in a displacement ventilated room is examined by means of CFD. The objective of the study is to examine how the flow field in a displacement ventilated room is influenced when a cooled ceiling removes a major part of the total heat I9ad, and in...

  5. Indoor air quality

    International Nuclear Information System (INIS)

    Hollowell, C.D.

    1981-06-01

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced ventilation in buildings may significantly increase exposure to indoor air pollution and perhaps have adverse effects on occupant health and comfort. Preliminary findings suggest that reduced ventilation may adversely affect indoor air quality unless appropriate control strategies are undertaken. The strategies used to control indoor air pollution depend on the specific pollutant or class of pollutants encountered, and differ somewhat depending on whether the application is to an existing building or a new building under design and construction. Whenever possible, the first course of action is prevention or reduction of pollutant emissions at the source. In most buildings, control measures involve a combination of prevention, removal, and suppression. Common sources of indoor air pollution in buildings, the specific pollutants emitted by each source, the potential health effects, and possible control techniques are discussed

  6. Short-term airing by natural ventilation - implication on IAQ and thermal comfort.

    Science.gov (United States)

    Heiselberg, P; Perino, M

    2010-04-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. Among the available ventilation strategies that are currently available, buoyancy driven, single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and Indoor Air Quality (IAQ) control. However, to promote a wider distribution of these systems an improvement in the knowledge of their working principles is necessary. The present study analyses and presents the results of an experimental evaluation of airing performance in terms of ventilation characteristics, IAQ and thermal comfort. It includes investigations of the consequences of opening time, opening frequency, opening area and expected airflow rate, ventilation efficiency, thermal comfort and dynamic temperature conditions. A suitable laboratory test rig was developed to perform extensive experimental analyses of the phenomenon under controlled and repeatable conditions. The results showed that short-term window airing is very effective and can provide both acceptable IAQ and thermal comfort conditions in buildings. Practical Implications This study gives the necessary background and in-depth knowledge of the performance of window airing by single-sided natural ventilation necessary for the development of control strategies for window airing (length of opening period and opening frequency) for optimum IAQ and thermal comfort in naturally ventilated buildings.

  7. Thermal comfort and indoor air quality in the lecture room with 4-way cassette air-conditioner and mixing ventilation system

    International Nuclear Information System (INIS)

    Noh, Kwang-Chul; Jang, Jae-Soo; Oh, Myung-Do

    2007-01-01

    We performed the experimental and the numerical studies on thermal comfort (TC) and indoor air quality (IAQ) in the lecture room with cooling loads when the operating conditions are changed. Predicted mean vote (PMV) value and CO 2 concentration of the lecture room were measured and compared to the numerical results. Both of them showed a reasonable agreement with each other and then we applied the numerical model to analyze TC and IAQ for a couple of different operating conditions. From the results we found that the increment of the discharge angle of 4-way cassette air-conditioner makes uniformity of TC worse, but rarely affects IAQ. It turned out that TC and IAQ are hardly affected by the variation of the discharge airflow. Finally TC was merely affected by the increment of the ventilation rate, but when the ventilation rate is more than 800m 3 /h, the average CO 2 concentration can be satisfied with the standard limits of Japanese in our case studies. (author)

  8. Energy Code Enforcement Training Manual : Covering the Washington State Energy Code and the Ventilation and Indoor Air Quality Code.

    Energy Technology Data Exchange (ETDEWEB)

    Washington State Energy Code Program

    1992-05-01

    This manual is designed to provide building department personnel with specific inspection and plan review skills and information on provisions of the 1991 edition of the Washington State Energy Code (WSEC). It also provides information on provisions of the new stand-alone Ventilation and Indoor Air Quality (VIAQ) Code.The intent of the WSEC is to reduce the amount of energy used by requiring energy-efficient construction. Such conservation reduces energy requirements, and, as a result, reduces the use of finite resources, such as gas or oil. Lowering energy demand helps everyone by keeping electricity costs down. (It is less expensive to use existing electrical capacity efficiently than it is to develop new and additional capacity needed to heat or cool inefficient buildings.) The new VIAQ Code (effective July, 1991) is a natural companion to the energy code. Whether energy-efficient or not, an homes have potential indoor air quality problems. Studies have shown that indoor air is often more polluted than outdoor air. The VIAQ Code provides a means of exchanging stale air for fresh, without compromising energy savings, by setting standards for a controlled ventilation system. It also offers requirements meant to prevent indoor air pollution from building products or radon.

  9. Air distribution and ventilation effectiveness in an occupied room heated by warm air

    DEFF Research Database (Denmark)

    Krajcik, Michal; Simone, Angela; Olesen, Bjarne W.

    2012-01-01

    and at different simulated outside conditions, internal heat gains and air change rates. Floor heating was also simulated and compared with the warm air heating system. Vertical air temperature profiles, air velocity profiles and equivalent temperatures were derived in order to describe the thermal environment...... floor heating system was simulated, the cooler ventilation air introduced to the room mixed well and created uniform conditions with a ventilation effectiveness of about 1.......Air distribution, ventilation effectiveness and thermal environment were experimentally studied in a simulated room in a low-energy building heated and ventilated by warm air supplied by a mixing ventilation system. Measurements were performed for various positions of the air terminal devices...

  10. Applied patent RFID systems for building reacting HEPA air ventilation system in hospital operation rooms.

    Science.gov (United States)

    Lin, Jesun; Pai, Jar-Yuan; Chen, Chih-Cheng

    2012-12-01

    RFID technology, an automatic identification and data capture technology to provide identification, tracing, security and so on, was widely applied to healthcare industry in these years. Employing HEPA ventilation system in hospital is a way to ensure healthful indoor air quality to protect patients and healthcare workers against hospital-acquired infections. However, the system consumes lots of electricity which cost a lot. This study aims to apply the RFID technology to offer a unique medical staff and patient identification, and reacting HEPA air ventilation system in order to reduce the cost, save energy and prevent the prevalence of hospital-acquired infection. The system, reacting HEPA air ventilation system, contains RFID tags (for medical staffs and patients), sensor, and reacting system which receives the information regarding the number of medical staff and the status of the surgery, and controls the air volume of the HEPA air ventilation system accordingly. A pilot program was carried out in a unit of operation rooms of a medical center with 1,500 beds located in central Taiwan from Jan to Aug 2010. The results found the air ventilation system was able to function much more efficiently with less energy consumed. Furthermore, the indoor air quality could still keep qualified and hospital-acquired infection or other occupational diseases could be prevented.

  11. 30 CFR 75.321 - Air quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air quality. 75.321 Section 75.321 Mineral... SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas where... air current in these areas shall be sufficient to dilute, render harmless, and carry away flammable...

  12. Thermal Plumes in Ventilated Rooms

    DEFF Research Database (Denmark)

    Kofoed, P.; Nielsen, Peter Vilhelm

    The main objective of ventilation is to provide good air quality for the occupants. For this purpose the necessary ventilating air change rate must be determined. Within displacement ventilation the estimation is closely related to the air flow rate in the thermal plumes when an air quality based...

  13. Air Distribution and Ventilation Effectiveness in a room with Floor/Ceiling Heating and Mixing/Displacement Ventilation

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Fang, Lei; Olesen, Bjarne W.

    2014-01-01

    vertical air temperature differences and air velocities for different hybrid systems are less than 3 C and 0.2 m/s when supply air temperature is 19 C, air change rate is 4.2 h-1, and heated surface temperature of floor/ceiling heating system is 25 C. Ventilation effectiveness of mixing ventilation system...... combined with floor/ceiling heating systems is approximately equal to 1.0, and ventilation effectiveness of displacement ventilation system combined with floor/ceiling heating systems ranges from 1.0 to 1.2. The floor/ceiling heating systems combined with mixing ventilation system have more uniform indoor...... air distribution but smaller ventilation effectiveness compared with the floor/ceiling heating systems combined with displacement ventilation system. With regard to the building heat loss increased by non-uniform indoor air distribution and small ventilation effectiveness, there should be an optimal...

  14. Energy saving potential of natural ventilation in China: The impact of ambient air pollution

    International Nuclear Information System (INIS)

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Liu, Zhu; Freeman, Richard B.

    2016-01-01

    Highlights: • Natural ventilation potential is affected largely by ambient air pollution in China. • NV hours of 76 Chinese cities based on weather and ambient air quality are estimated. • Cooling energy savings and carbon reductions of 35 major Chinese cities are estimated. • 8–78% of the cooling energy usage can be potentially reduced by NV. • Our findings provide guidelines to improve energy policies in China. - Abstract: Natural ventilation (NV) is a key sustainable solution for reducing the energy use in buildings, improving thermal comfort, and maintaining a healthy indoor environment. However, the energy savings and environmental benefits are affected greatly by ambient air pollution in China. Here we estimate the NV potential of all major Chinese cities based on weather, ambient air quality, building configuration, and newly constructed square footage of office buildings in the year of 2015. In general, little NV potential is observed in northern China during the winter and southern China during the summer. Kunming located in the Southwest China is the most weather-favorable city for natural ventilation, and reveals almost no loss due to air pollution. Building Energy Simulation (BES) is conducted to estimate the energy savings of natural ventilation in which ambient air pollution and total square footage at each city must be taken into account. Beijing, the capital city, displays limited per-square-meter saving potential due to the unfavorable weather and air quality for natural ventilation, but its largest total square footage of office buildings makes it become the city with the greatest energy saving opportunity in China. Our analysis shows that the aggregated energy savings potential of office buildings at 35 major Chinese cities is 112 GWh in 2015, even after allowing for a 43 GWh loss due to China’s serious air pollution issue especially in North China. 8–78% of the cooling energy consumption can be potentially reduced by natural

  15. Respiratory symptoms, perceived air quality and physiological signs in elementary school pupils in relation to displacement and mixing ventilation system: an intervention study.

    Science.gov (United States)

    Norbäck, D; Wieslander, G; Zhang, X; Zhao, Z

    2011-10-01

    Schools may be poorly ventilated and may contain furry pet allergens, particles and microorganisms. We studied health effects when changing from mixing ceiling ventilation to two types of displacement ventilation, front ventilation system (FVS) and floor master system (FMS). The study included pupils in three elementary school classes (N = 61), all with floor heating. One class received blinded interventions; the two others were unchanged (controls). Ventilation flow and supply air temperature was kept constant. The medical investigation included tear film stability (BUT), nasal patency and a questionnaire containing rating scales. When changing from mixing ventilation to FVS, the pupils (N = 26) perceived better air quality (P = 0.006) and less dyspnoea (P = 0.007) as compared to controls (N = 35), and BUT was improved (P = 0.03). At desk level, mean CO(2) was reduced from 867 to 655 ppm. Formaldehyde and viable bacteria were numerically lower, while total bacteria and molds were higher with displacement ventilation. There was no difference in symptoms or signs when changing from FVS to FMS. Cat (Der p1), dog (Can f1) and horse allergen (Equ cx) were common in air at all conditions. In conclusion, displacement ventilation may have certain positive health effects among pupils, as compared to conventional mixing ceiling systems. Displacement ventilation may be a suitable ventilation principle for achieving good indoor environment in classrooms. The type of supply air diffuser does not seem to be of major importance. The combination of floor heating and displacement ventilation can be a useful way of avoiding the previously described problem of thermal discomfort. © 2011 John Wiley & Sons A/S.

  16. Final Report Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores in California. Predicted indoor air quality and energy consumption using a matrix of ventilation scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sohn, Michael D. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dutton, Spencer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Berkeley, Pam M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spears, Michael [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2011-02-01

    Through mass-balance modeling of various ventilation scenarios that might satisfy the ASHRAE 62.1 Indoor Air Quality (IAQ) Procedure, we estimate indoor concentrations of contaminants of concern (COCs) in California “big box” stores, compare estimates to available thresholds, and for selected scenarios estimate differences in energy consumption. Findings are intended to inform decisions on adding performance-based approaches to ventilation rate (VR) standards for commercial buildings. Using multi-zone mass-balance models and available contaminant source rates, we estimated concentrations of 34 COCs for multiple ventilation scenarios: VRmin (0.04 cfm/ft2 ), VRmax (0.24 cfm/ft2 ), and VRmid (0.14 cfm/ft2 ). We compared COC concentrations with available health, olfactory, and irritant thresholds. We estimated building energy consumption at different VRs using a previously developed EnergyPlus model. VRmax did control all contaminants adequately, but VRmin did not, and VRmid did so only marginally. Air cleaning and local ventilation near strong sources both showed promise. Higher VRs increased indoor concentrations of outdoor air pollutants. Lowering VRs in big box stores in California from VRmax to VRmid would reduce total energy use by an estimated 6.6% and energy costs by 2.5%. Reducing the required VRs in California’s big box stores could reduce energy use and costs, but poses challenges for health and comfort of occupants. Source removal, air cleaning, and local ventilation may be needed at reduced VRs, and even at current recommended VRs. Also, alternative ventilation strategies taking climate and season into account in ventilation schedules may provide greater energy cost savings than constant ventilation rates, while improving IAQ.

  17. 21 CFR 211.46 - Ventilation, air filtration, air heating and cooling.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Ventilation, air filtration, air heating and cooling. 211.46 Section 211.46 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN... Buildings and Facilities § 211.46 Ventilation, air filtration, air heating and cooling. (a) Adequate...

  18. Increased office productivity through improved indoor air quality

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2002-01-01

    Control of indoor pollution sources and ventilation are both means of improving indoor air quality. Three independent experiments have recently documented that removing a pollution source or increasing the ventilation rate will improve perceived air quality, reduce the intensity of several Sick...... with the air quality was reduced by either measure. The quantitative relationsh8ip was 1.1% change in performance per 10% dissatisfied, in the range 25-70% dissatisifed, or 0.5% change in performance per 1 decipol (dp), in the range 2-13 dp. Significant improvements in performance occurred only when......, future developments in HVCAC technology may include "personalized air ", new ways of improving the quality of supply air (e.g., by filtration), more extensive use of heat recovery from exhaust air and systematic selection of low-polluting building and furnishing materials....

  19. Simulations of the impacts of building height layout on air quality in natural-ventilated rooms around street canyons.

    Science.gov (United States)

    Yang, Fang; Zhong, Ke; Chen, Yonghang; Kang, Yanming

    2017-10-01

    Numerical simulations were conducted to investigate the effects of building height ratio (i.e., HR, the height ratio of the upstream building to the downstream building) on the air quality in buildings beside street canyons, and both regular and staggered canyons were considered for the simulations. The results show that the building height ratio affects not only the ventilation fluxes of the rooms in the downstream building but also the pollutant concentrations around the building. The parameter, outdoor effective source intensity of a room, is then proposed to calculate the amount of vehicular pollutants that enters into building rooms. Smaller value of this parameter indicates less pollutant enters the room. The numerical results reveal that HRs from 2/7 to 7/2 are the favorable height ratios for the regular canyons, as they obtain smaller values than the other cases. While HR values of 5/7, 7/7, and 7/5 are appropriate for staggered canyons. In addition, in terms of improving indoor air quality by natural ventilation, the staggered canyons with favorable HR are better than those of the regular canyons.

  20. Experimental analysis of fuzzy controlled energy efficient demand controlled ventilation economizer cycle variable air volume air conditioning system

    Directory of Open Access Journals (Sweden)

    Rajagopalan Parameshwaran

    2008-01-01

    Full Text Available In the quest for energy conservative building design, there is now a great opportunity for a flexible and sophisticated air conditioning system capable of addressing better thermal comfort, indoor air quality, and energy efficiency, that are strongly desired. The variable refrigerant volume air conditioning system provides considerable energy savings, cost effectiveness and reduced space requirements. Applications of intelligent control like fuzzy logic controller, especially adapted to variable air volume air conditioning systems, have drawn more interest in recent years than classical control systems. An experimental analysis was performed to investigate the inherent operational characteristics of the combined variable refrigerant volume and variable air volume air conditioning systems under fixed ventilation, demand controlled ventilation, and combined demand controlled ventilation and economizer cycle techniques for two seasonal conditions. The test results of the variable refrigerant volume and variable air volume air conditioning system for each techniques are presented. The test results infer that the system controlled by fuzzy logic methodology and operated under the CO2 based mechanical ventilation scheme, effectively yields 37% and 56% per day of average energy-saving in summer and winter conditions, respectively. Based on the experimental results, the fuzzy based combined system can be considered to be an alternative energy efficient air conditioning scheme, having significant energy-saving potential compared to the conventional constant air volume air conditioning system.

  1. Assessment of ventilation and indoor air pollutants in nursery and elementary schools in France.

    Science.gov (United States)

    Canha, N; Mandin, C; Ramalho, O; Wyart, G; Ribéron, J; Dassonville, C; Hänninen, O; Almeida, S M; Derbez, M

    2016-06-01

    The aim of this study was to characterize the relationship between Indoor Air Quality (IAQ) and ventilation in French classrooms. Various parameters were measured over one school week, including volatile organic compounds, aldehydes, particulate matter (PM2.5 mass concentration and number concentration), carbon dioxide (CO2 ), air temperature, and relative humidity in 51 classrooms at 17 schools. The ventilation was characterized by several indicators, such as the air exchange rate, ventilation rate (VR), and air stuffiness index (ICONE), that are linked to indoor CO2 concentration. The influences of the season (heating or non-heating), type of school (nursery or elementary), and ventilation on the IAQ were studied. Based on the minimum value of 4.2 l/s per person required by the French legislation for mechanically ventilated classrooms, 91% of the classrooms had insufficient ventilation. The VR was significantly higher in mechanically ventilated classrooms compared with naturally ventilated rooms. The correlations between IAQ and ventilation vary according to the location of the primary source of each pollutant (outdoor vs. indoor), and for an indoor source, whether it is associated with occupant activity or continuous emission. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Mine ventilation engineering

    Energy Technology Data Exchange (ETDEWEB)

    Hall, C.J.

    1981-01-01

    This book on mine ventilation covers psychometrics, airflow through roadways and ducts, natural ventilation, fans, instruments, ventilation surveys, auxiliary ventilation, air quality, and planning and economics.

  3. Design an Indoor Air Quality Controller Based on LPC2478

    Directory of Open Access Journals (Sweden)

    Shi Shuheng

    2014-07-01

    Full Text Available Indoor air quality is very important to our lives, because we spend most of our time indoor. In order to improve the air quality of indoor, this paper designs an indoor environment quality monitoring and controlling system based on ARM microcontroller LPC2478. It will do a real-time monitoring work for detecting the indoor environmental factors and comprehensively evaluate its air quality level. While the indoor air quality status is "poor", this intelligent system will automatically start the heat exchange ventilator for indoor environmental quality improvement. The results compared to traditional natural ventilation method show the better performance of proposed system.

  4. Ventilation and air-conditioning system for PWR nuclear power plant

    International Nuclear Information System (INIS)

    Ohmoto, Kenji

    1987-01-01

    This report outlines the ventilation and air conditioning facilities for PWR nuclear power plant as well as design re-evaluation and optimization of ventilation and air-conditioning. The primary PWR installations are generally housed in the nuclear reactor building, auxiliary buildings and control building, which are equipped with their own ventilation and air-conditioning systems to serve for their specific purposes. A ventilation/air-conditioning system should be able to work effectively not only for maintaining the ordinary reactor operation but also for controlling the environmental temperature in the event of an accident. Designing of a ventilation/air-conditioning system relied on empirical data in the past, but currently it is performed based on information obtained from various analyses to optimize the system configuration and ventilation capacity. Design re-evaluation of ventilation/air-conditioning systems are conducted widely in various areas, aiming at the integration of safety systems, optimum combination of air-cooling and water-cooling systems, and optimization of the ventilation rate for controlling the concentrations of radioactive substances in the atmosphere in the facilities. It is pointed out that performance evaluation of ventilation/air-conditioning systems, which has been conducted rather macroscopically, should be carried out more in detal in the future to determine optimum air streams and temperature distribution. (Nogami, K.)

  5. Pilot study on indoor air quality: Managing indoor air-quality risks. Report on a meeting held in St. Michaels, Maryland on October 25-27, 1989

    International Nuclear Information System (INIS)

    1990-06-01

    Included in this study are the following: quantifying future trends of indoor air quality as a basis for government policy plans; assessing indoor air quality risks of pesticides; formaldehyde emission standards in the Federal Republic of Germany; orientations and actions of the European Community in the assessment and prevention of indoor air pollution; EPA and indoor air quality; the non-regulatory approach to reducing risks from radon exposure; U.S. consumer product safety commission; a builders guide to healthy homes; WHO air quality guidelines for Europe; the approach to control indoor air quality in Italy; guidelines - ventilation classes; energy consequences of upgrading indoor air quality; Canada's guidelines for residential indoor air quality: rationale and scope; Canadian ventilation and venting standards; indoor air quality building surveys case studies; design of indoor air quality studies; summary findings of inter-ministerial committee on indoor air quality (Ontario); the Quebec approach; employee survey EPA headquarters; pollution in closed spaces and its consequences in conservation of works of art; and how Norwegian health authorities will handle indoor air quality problems

  6. Building ventilation, state of the art, prospective

    International Nuclear Information System (INIS)

    1995-10-01

    This conference is composed of 21 communications and 21 posters in the domain of building ventilation and indoor air quality; the main themes are: indoor air quality assessment and optimization; performance enhancement and optimization of ventilation systems and equipment; ventilation systems for renovated and rehabilitated buildings; French and European regulations, standardizations and certifications; experimental and numerical simulation studies concerning ventilation systems, air flow, temperature distribution, air quality, radon decontamination, thermal comfort and acoustic levels in buildings

  7. Ventilation influence upon indoor air radon level

    International Nuclear Information System (INIS)

    Tian Deyuan

    1995-01-01

    Levels of indoor radon in air are studied by a continuous electrostatic radon monitor under normal living conditions to evaluate the influence of air conditioned ventilation on indoor air radon level. Results show that the indoor air radon concentrations are not much more than those without household conditioner living condition, although using household conditioner requires a sealed room which should lead to a higher radon level. Turning on air conditioner helps lower indoor radon level. Therefore, the total indoor air Rn levels are normal > ventilation > exhaust or in-draft > exhaust plus in-draft

  8. Can a photocatalytic air purifier be used to improve the perceived air quality indoors?

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Wargocki, Pawel

    2010-01-01

    The effect of a photocatalytic air purifier on perceived air quality(PAQ) was examined in rooms polluted by typical sources of indoor pollution.The rooms were ventilated at three different outdoor air supply rates. The air quality was assessed by a sensory panel when the purifier was in operation...... as well as when it was off. Operation of the purifier significantly improved PAQ in the rooms polluted by building materials (used carpet, old linoleum, and old chip-board), and a used ventilation filter as well as a mixture of building materials, used ventilation filter and cathode-ray tube computer...... monitors. The effect cor-responded to approximately doubling the outdoor air supply rate. Operation of the purifier significantly worsened the PAQ in rooms with human bioeffluents, probably due to incomplete oxidation of alcohols which are one of the main pollutants emitted by humans. Present results show...

  9. Human response to ductless personalized ventilation coupled with displacement ventilation

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Veselý, Michal; Melikov, Arsen K.

    2012-01-01

    A human subject experiment was carried out to investigate the extent to which ductless personalized ventilation (DPV) in conjunction with displacement ventilation can improve perceived air quality (PAQ) and thermal comfort at elevated room air temperature in comparison with displacement ventilation...... alone. The experimental conditions comprised displacement ventilation alone (room air temperature of 23 °C, 26 °C, 29 °C) and DPV with displacement ventilation (26 °C, 29 °C), both operating at supply air temperatures 3, 5 or 6K lower than room air temperature, as well as mixing ventilation (23 °C, 3 K......). During one hour exposure participants answered questionnaires regarding PAQ and thermal comfort. PAQ was significantly better with DPV than without DPV at the same background conditions. Thermal comfort improved when DPV was used. Combining DPV with displacement ventilation showed the potential...

  10. Ventilation-air conditioning system

    International Nuclear Information System (INIS)

    Kubokoya, Takashi.

    1991-01-01

    Heretofore, in ventilation-air conditioning systems in a nuclear power plant, exhaust gases from each of the ventilation-air conditioning systems of a reactor building, a turbine building, a waste processing building are joined and they are released into atmosphere from the top of a high main exhaustion stack. In order to build such a high main exhaustion stack, a considerable construction cost is required and, in addition, there is a worry of lacking balance with surrounding scenery. Then, in the present invention, exhaust gases are heated by waste heat in a turbine during their introduction from the ventilation-air conditioning facility in the building of a power plant to the main exhaust stack. With such a constitution, since the exhaust gases are heated and their temperature is elevated, they uprise by natural convection when they are released from the top of the main exhaustion stack to the atmosphere. Accordingly, they are released to a level higher than the conventional case in view of the volume of the blower which sends the exhaust gases under pressure, to diffuse them to the atmosphere more sufficiently compared with a conventional case. Further, the height of the main exhaustion stack can be reduced, enabling to minimize the cost for moving the blower. (T.M.)

  11. Ventilation Effectiveness

    DEFF Research Database (Denmark)

    Mundt, M.; Mathisen, H. M.; Moser, M.

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy-to-un...

  12. Air Distribution in a Furnished Room Ventilated by Mixing Ventilation

    DEFF Research Database (Denmark)

    Nielsen, June Richter; Nielsen, Peter V.; Svidt, Kjeld

    Using isothermal full-scale experiments and two-dimensional isothermal CFD simulations it is investigated how normal office furniture influences the air movements in a room with mixing ventilation. Three different set-ups are made in the experiments and different sizes and locations of the furnit......Using isothermal full-scale experiments and two-dimensional isothermal CFD simulations it is investigated how normal office furniture influences the air movements in a room with mixing ventilation. Three different set-ups are made in the experiments and different sizes and locations...

  13. Perceived air quality and sensory pollution loads in six Danish office buildings

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Krupicz, P.; Szczecinski, A.

    2002-01-01

    Perceived air quality and sensory pollution loads were measured in 6 office buildings with mechanical ventilation without recirculation, in each buildings in 6 representative non-smoking medium-sized and small offices with mixing ventilation. An untrained panel of 43 subjects assessed the air...... quality on a normal weekday when the building was occupied, and on a weekend without occupants in the building. On both occasions the ventilation system was in operation as on a normal working day. Outdoor air supply rate, air temperature, relative humidity, concentration of carbon dioxide and ultrafine...

  14. Human Response to Ductless Personalised Ventilation: Impact of Air Movement, Temperature and Cleanness on Eye Symptoms

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Fillon, Maelys; Bivolarova, Maria

    2013-01-01

    environment facially applied individually controlled air movement of room air, with or without local filtering, did not have significant impact on eye blink frequency and tear film quality. The local air movement and air cleaning resulted in increased eye blinking frequency and improvement of tear film......The performance of ductless personalized ventilation (DPV) in conjunction with displacement ventilation (DV) was studied in relation to peoples’ health, comfort and performance. This paper presents results on the impact of room air temperature, using of DPV and local air filtration on eye blink...

  15. Indoor Air Quality Test House

    Data.gov (United States)

    Federal Laboratory Consortium — Description:In order to enable studies of a range of indoor air quality and ventilation issues, EL maintains a highly instrumented three-bedroom test house. Previous...

  16. Position paper -- Tank ventilation system design air flow rates

    International Nuclear Information System (INIS)

    Goolsby, G.K.

    1995-01-01

    The purpose of this paper is to document a project position on required ventilation system design air flow rates for the waste storage tanks currently being designed by project W-236A, the Multi-Function Waste Tank Facility (MWTF). The Title 1 design primary tank heat removal system consists of two systems: a primary tank vapor space ventilation system; and an annulus ventilation system. At the conclusion of Title 1 design, air flow rates for the primary and annulus ventilation systems were 960 scfm and 4,400 scfm, respectively, per tank. These design flow rates were capable of removing 1,250,000 Btu/hr from each tank. However, recently completed and ongoing studies have resulted in a design change to reduce the extreme case heat load to 700,000 Btu/hr. This revision of the extreme case heat load, coupled with results of scale model evaporative testing performed by WHC Thermal Hydraulics, allow for a reduction of the design air flow rates for both primary and annulus ventilation systems. Based on the preceding discussion, ICF Kaiser Hanford Co. concludes that the design should incorporate the following design air flow rates: Primary ventilation system--500 scfm maximum and Annulus ventilation system--1,100 scfm maximum. In addition, the minimum air flow rates in the primary and annulus ventilation systems will be investigated during Title 2 design. The results of the Title 2 investigation will determine the range of available temperature control using variable air flows to both ventilation systems

  17. Ventilation effectiveness

    CERN Document Server

    Mathisen, Hans Martin; Nielsen, Peter V; Moser, Alfred

    2004-01-01

    Improving the ventilation effectiveness allows the indoor air quality to be significantly enhanced without the need for higher air changes in the building, thereby avoiding the higher costs and energy consumption associated with increasing the ventilation rates. This Guidebook provides easy-to-understand descriptions of the indices used to mesure the performance of a ventilation system and which indices to use in different cases.

  18. Design of energy efficient ventilation and air-conditioning systems

    CERN Document Server

    Seppänen, Olli; Bertilsson, Thore; Maripuu, Mari-Liis; Lamy, Hervé; Vanden Borre, Alex

    2012-01-01

    This guidebook covers numerous system components of ventilation and air-conditioning systems and shows how they can be improved by applying the latest technology products. Special attention is paid to details, which are often overlooked in the daily design practice, resulting in poor performance of high quality products once they are installed in the building system.

  19. Balancing energy conservation and occupant needs in ventilation rate standards for Big Box stores and other commercial buildings in California. Issues related to the ASHRAE 62.1 Indoor Air Quality Procedure

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Apte, Mike G. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2010-10-31

    This report considers the question of whether the California Energy Commission should incorporate the ASHRAE 62.1 ventilation standard into the Title 24 ventilation rate (VR) standards, thus allowing buildings to follow the Indoor Air Quality Procedure. This, in contrast to the current prescriptive standard, allows the option of using ventilation rate as one of several strategies, which might include source reduction and air cleaning, to meet specified targets of indoor air concentrations and occupant acceptability. The research findings reviewed in this report suggest that a revised approach to a ventilation standard for commercial buildings is necessary, because the current prescriptive ASHRAE 62.1 Ventilation Rate Procedure (VRP) apparently does not provide occupants with either sufficiently acceptable or sufficiently healthprotective air quality. One possible solution would be a dramatic increase in the minimum ventilation rates (VRs) prescribed by a VRP. This solution, however, is not feasible for at least three reasons: the current need to reduce energy use rather than increase it further, the problem of polluted outdoor air in many cities, and the apparent limited ability of increasing VRs to reduce all indoor airborne contaminants of concern (per Hodgson (2003)). Any feasible solution is thus likely to include methods of pollutant reduction other than increased outdoor air ventilation; e.g., source reduction or air cleaning. The alternative 62.1 Indoor Air Quality Procedure (IAQP) offers multiple possible benefits in this direction over the VRP, but seems too limited by insufficient specifications and inadequate available data to provide adequate protection for occupants. Ventilation system designers rarely choose to use it, finding it too arbitrary and requiring use of much non-engineering judgment and information that is not readily available. This report suggests strategies to revise the current ASHRAE IAQP to reduce its current limitations. These

  20. Ventilation in Commercial and Residential Buildings

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    A number of areas have to be considered in connection with indoor air quality and ventilation. The selection of ventilation principle and components in the ventilation system will have influence on the indoor air quality and this subject will be discussed on the following pages. The main object o...

  1. Good air quality in offices improves productivity

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2000-01-01

    Three recent independent studies have documented that the quality of indoor air has a significant and positive influence or? the productivity of office workers. A combined analysis of the results of the three studies shows a significant relationship between productivity and perceived indoor air...... quality. The impact on productivity justifies a much higher indoor air quality than the minimum levels prescribed in present standards and guidelines. One way of providing air of high quality for people to breathe, without involving excessive ventilation rates and energy use, is to provide "personalized...

  2. Good air quality in offices improves productivity

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2000-01-01

    Three recent independent studies have documented that the quality of indoor air has a significant and positive influence on the productivity of office workers. A combined analysis of the results of the three studies shows a significant relationship between productivity and perceived indoor air...... quality. The impact on productivity justifies a much higher indoor air quality than the minimum levels prescribed in present standards and guidelines. One way of providing air of high quality for people to breathe, without involving excessive ventilation rates and energy use, is to provide "personalized...

  3. Indoor air quality

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    Indoor Air Quality is rapidly becoming a major environmental concern because a significant amount of people spend a substantial amount of time in a variety of different indoor environments. Health effects from indoor pollutants fall into two categories: those that are experienced immediately after exposure and those that do not show up until years later. They are: radon, formaldehyde, asbestos, lead and household organic chemicals. The authors presented a source-by-source look at the most common indoor air pollutants, their potential health effects, and ways to reduce their levels in the home. There are three basic strategies to improve indoor air quality: one method is source control, another is through ventilation improvements, and the third is the utilization of some sort of mechanical device such as air cleaners

  4. Determining the ventilation and aerosol deposition rates from routine indoor-air measurements.

    Science.gov (United States)

    Halios, Christos H; Helmis, Costas G; Deligianni, Katerina; Vratolis, Sterios; Eleftheriadis, Konstantinos

    2014-01-01

    Measurement of air exchange rate provides critical information in energy and indoor-air quality studies. Continuous measurement of ventilation rates is a rather costly exercise and requires specific instrumentation. In this work, an alternative methodology is proposed and tested, where the air exchange rate is calculated by utilizing indoor and outdoor routine measurements of a common pollutant such as SO2, whereas the uncertainties induced in the calculations are analytically determined. The application of this methodology is demonstrated, for three residential microenvironments in Athens, Greece, and the results are also compared against ventilation rates calculated from differential pressure measurements. The calculated time resolved ventilation rates were applied to the mass balance equation to estimate the particle loss rate which was found to agree with literature values at an average of 0.50 h(-1). The proposed method was further evaluated by applying a mass balance numerical model for the calculation of the indoor aerosol number concentrations, using the previously calculated ventilation rate, the outdoor measured number concentrations and the particle loss rates as input values. The model results for the indoors' concentrations were found to be compared well with the experimentally measured values.

  5. Experimental evaluation of air distribution in mechanically ventilated residential rooms

    DEFF Research Database (Denmark)

    Tomasi, R.; Krajčík, M.; Simone, A.

    2013-01-01

    The effect of low ventilation rates (1 or 0.5 air change per hour) on thermal comfort and ventilation effectiveness was experimentally studied in a simulated residential room equipped with radiant floor heating/cooling and mixing ventilation systems. The tests were performed for various positions...... of supply and extract air terminals and different winter and summer boundary conditions. Vertical air temperature, operative temperature and air velocity profiles were measured in different positions in the room, and equivalent temperatures were derived, in order to characterize thermal comfort. Contaminant...... with unconditioned outdoor air supply, i.e. at the supply air temperatures higher than the room air temperature. Moreover, low floor temperatures were needed to maintain the desired reference temperature in the stratified thermal environment. Mainly in cooling conditions the ventilation effectiveness depended...

  6. Can we establish relationship between outdoor air ventilation and health based on the published epidemiological data?

    DEFF Research Database (Denmark)

    Carrer, Paolo; Wargocki, Pawel; Fanetti, Annaclara

    2015-01-01

    Appropriate exposure control is prerogative for reducing the burden of disease (BOD) due to inadequate air quality indoors (IAQ). Ventilation with outdoor air is one of the available exposure control methods and is widespread. It is often assumed that this method will bring tangible effects...... exposures at various levels of ventilation were no characterized. It was observed that available data have many limitations, such as insufficient statistical power, incomplete data on the strength of pollution sources, diversity and variability of ventilation rates, at which effects have been seen...... exposures affecting health. It is concluded, that currently available epidemiological data do not provide sound basis for outdoor air ventilation requirements that can be universally applicable in different public and residential buildings to protect against health risks. They show minimum rates at which...

  7. Impact of surface disinfection and sterile draping of furniture on room air quality in a cardiac procedure room with a ventilation and air-conditioning system (extrusion airflow, cleanroom class 1b (DIN 1946-4)).

    Science.gov (United States)

    Below, Harald; Ryll, Sylvia; Empen, Klaus; Dornquast, Tina; Felix, Stefan; Rosenau, Heike; Kramer, Sebastian; Kramer, Axel

    2010-09-21

    In a cardiac procedure room, ventilated by a ventilation and air-conditioning system with turbulent mixed airflow, a protection zone in the operating area could be defined through visualization of airflows. Within this protection zone, no turbulence was detectable in the room air.Under the given conditions, disinfection of all surfaces including all furniture and equipment after the last operation and subsequent draping of furniture and all equipment that could not be removed from the room with sterile surgical drapes improved the indoor room air quality from cleanroom class C to cleanroom class B. This also allows procedures with elevated requirements to be performed in room class 1b.

  8. Ventilation Positive Pressure Intervention Effect on Indoor Air Quality in a School Building with Moisture Problems

    Directory of Open Access Journals (Sweden)

    Camilla Vornanen-Winqvist

    2018-01-01

    Full Text Available This case study investigates the effects of ventilation intervention on measured and perceived indoor air quality (IAQ in a repaired school where occupants reported IAQ problems. Occupants’ symptoms were suspected to be related to the impurities leaked indoors through the building envelope. The study’s aim was to determine whether a positive pressure of 5–7 Pa prevents the infiltration of harmful chemical and microbiological agents from structures, thus decreasing symptoms and discomfort. Ventilation intervention was conducted in a building section comprising 12 classrooms and was completed with IAQ measurements and occupants’ questionnaires. After intervention, the concentration of total volatile organic compounds (TVOC and fine particulate matter (PM2.5 decreased, and occupants’ negative perceptions became more moderate compared to those for other parts of the building. The indoor mycobiota differed in species composition from the outdoor mycobiota, and changed remarkably with the intervention, indicating that some species may have emanated from an indoor source before the intervention.

  9. Ventilation Positive Pressure Intervention Effect on Indoor Air Quality in a School Building with Moisture Problems

    Science.gov (United States)

    Vornanen-Winqvist, Camilla; Järvi, Kati; Toomla, Sander; Ahmed, Kaiser; Andersson, Maria A.; Mikkola, Raimo; Marik, Tamás; Salonen, Heidi

    2018-01-01

    This case study investigates the effects of ventilation intervention on measured and perceived indoor air quality (IAQ) in a repaired school where occupants reported IAQ problems. Occupants’ symptoms were suspected to be related to the impurities leaked indoors through the building envelope. The study’s aim was to determine whether a positive pressure of 5–7 Pa prevents the infiltration of harmful chemical and microbiological agents from structures, thus decreasing symptoms and discomfort. Ventilation intervention was conducted in a building section comprising 12 classrooms and was completed with IAQ measurements and occupants’ questionnaires. After intervention, the concentration of total volatile organic compounds (TVOC) and fine particulate matter (PM2.5) decreased, and occupants’ negative perceptions became more moderate compared to those for other parts of the building. The indoor mycobiota differed in species composition from the outdoor mycobiota, and changed remarkably with the intervention, indicating that some species may have emanated from an indoor source before the intervention. PMID:29385772

  10. Ventilation Positive Pressure Intervention Effect on Indoor Air Quality in a School Building with Moisture Problems.

    Science.gov (United States)

    Vornanen-Winqvist, Camilla; Järvi, Kati; Toomla, Sander; Ahmed, Kaiser; Andersson, Maria A; Mikkola, Raimo; Marik, Tamás; Kredics, László; Salonen, Heidi; Kurnitski, Jarek

    2018-01-30

    This case study investigates the effects of ventilation intervention on measured and perceived indoor air quality (IAQ) in a repaired school where occupants reported IAQ problems. Occupants' symptoms were suspected to be related to the impurities leaked indoors through the building envelope. The study's aim was to determine whether a positive pressure of 5-7 Pa prevents the infiltration of harmful chemical and microbiological agents from structures, thus decreasing symptoms and discomfort. Ventilation intervention was conducted in a building section comprising 12 classrooms and was completed with IAQ measurements and occupants' questionnaires. After intervention, the concentration of total volatile organic compounds (TVOC) and fine particulate matter (PM 2.5 ) decreased, and occupants' negative perceptions became more moderate compared to those for other parts of the building. The indoor mycobiota differed in species composition from the outdoor mycobiota, and changed remarkably with the intervention, indicating that some species may have emanated from an indoor source before the intervention.

  11. Standards for securing adequate indoor air quality across Europe

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Carrer, P.; de Oliveira Fernandes, E.

    2013-01-01

    Background: Inadequate IAQ causes a loss of 2 million healthy life years annually in the EU. Europeans spend typically over 85–90% of their time indoors and the main factors that affect negatively the characteristics of the air they breathe are outdoor air used to ventilate indoor spaces and indoor...... effects of IAQ into different components: exposures to indoor and outdoor air pollutants, association with different morbidities and the way ventilation based approaches could minimise their impact. Disability adjusted life years (DALYs), a common metric to allow comparability of impacts on various types...... and is determined mainly considering the metabolic CO2 production. It is only applicable if all other pollutants meet WHO guidelines for ambient and indoor air quality. If they do not meet these guidelines after applying source control and when air used for ventilation is clean health-based ventilation rate should...

  12. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Sullivan, Douglas P.; Fisk, William J.

    2010-10-27

    Approximately ten percent of the energy consumed in U.S. commercial buildings is used by HVAC systems to condition outdoor ventilation air. Reducing ventilation rates would be a simple and broadly-applicable energy retrofit option, if practical counter measures were available that maintained acceptable concentrations of indoor-generated air pollutants. The two general categories of countermeasures are: 1) indoor pollutant source control, and 2) air cleaning. Although pollutant source control should be used to the degree possible, source control is complicated by the large number and changing nature of indoor pollutant sources. Particle air cleaning is already routinely applied in commercial buildings. Previous calculations indicate that particle filtration consumes only 10percent to 25percent of the energy that would otherwise be required to achieve an equivalent amount of particle removal with ventilation. If cost-effective air cleaning technologies for volatile organic compounds (VOCs) were also available, outdoor air ventilation rates could be reduced substantially and broadly in the commercial building stock to save energy. The research carried out in this project focuses on developing novel VOC air cleaning technologies needed to enable energy-saving reductions in ventilation rates. The minimum required VOC removal efficiency to counteract a 50percent reduction in ventilation rate for air cleaning systems installed in the HVAC supply airstream is modest (generally 20percent or less).

  13. Performance of personalized ventilation in a room with an underfloor air distribution system: transport of contaminants between occupants

    DEFF Research Database (Denmark)

    Cermak, Radim; Melikov, Arsen Krikor

    2003-01-01

    the workplaces has not been studied in detail. This paper presents a study on the performance of a personalized ventilation system installed in a full-scale test room with an underfloor air distribution system. Transport of human-produced airborne pollutants (in real life they can be infectious agents) between......Studies have documented that personalized ventilation, which provides clean air at each office workplace, is able to improve substantially the quality of air inhaled by occupants. However, the interaction between the airflow generated by personalized ventilation and the airflow pattern outside...... two occupants was examined using a tracer-gas. Two breathing thermal manikins were used to simulate occupants. The results show that the tested combination of personalized and underfloor ventilation was not able to decrease concentration of the human-produced airborne pollutants in air inhaled...

  14. Short-term airing by natural ventilation

    DEFF Research Database (Denmark)

    Perino, Marco; Heiselberg, Per

    2009-01-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates traditio......The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates...... traditional mechanical ventilation components with natural ventilation devices, such as motorized windows and louvers. Among the various ventilation strategies that are currently available, buoyancy driven single-sided natural ventilation has proved to be very effective and can provide high air change rates...... that was aimed at developing and validating numerical models for the analysis of buoyancy driven single-sided natural ventilation systems. Once validated, these models can be used to optimize control strategies in order to achieve satisfactory indoor comfort conditions and IAQ....

  15. Ventilation system design for educational facilities

    Energy Technology Data Exchange (ETDEWEB)

    Elsafty, A.F.; Abo Elazm, M.M. [Arab Academy for Science, Alexandria (Egypt). Technology and Maritime Transport; Safwan, M. [Arab Academy for Science, Cairo (Egypt). Technology and Maritime Transport

    2010-07-01

    In order to maintain acceptable indoor air quality levels in classrooms, high ventilation rates are needed to dilute the concentration of indoor contaminants, resulting in higher energy consumption for the operation of mechanical ventilation systems. Three factors are usually considered when determining the adequate ventilation rate for classrooms in educational facilities. These include the maximum population served in the classroom; carbon dioxide (CO{sub 2}) production rate by occupants; and outdoor air conditions. CO{sub 2} concentrations usually indicate the rate of ventilation required. This paper presented a newly developed computer software program for determining the ventilation rates needed to enhance indoor air quality and to maintain CO{sub 2} concentration within the recommended levels by ANSI/ASHRAE standards for best student performance. This paper also presented design curves for determining the ventilation rates and air changes per hour required for the ventilated educational zone. 15 refs., 2 tabs., 5 figs.

  16. Indoor air quality/air infiltration in selected low-energy houses

    International Nuclear Information System (INIS)

    Shohl Wagner, B.; Phillips, T.J.

    1984-01-01

    Indoor air quality and air infiltration were measured in 16 low-energy California houses. Eleven has gas stoves; all had average infiltration rates of 0.5 h -1 of less, recent construction dates, low natural ventilation, and no mechanical ventilation. HCHO levels in 12 houses and radon-222 and NO 2 levels in all houses were measured using passive monitors. Blower door measurements and local weather data were used to calculate average infiltration rates during the monitoring period. Correlation of pollutant concentrations with infiltration rates and building characteristics indicate that new houses with average heating season infiltration rates less than 0.5 h -1 do not necessarily experience poor indoor air quality, HCHO and radon-222 levels in new houses exceeded the lowest currently proposed standards or guidelines, and much higher levels probably exist elsewhere. Therefore, some strategy for identifying 'problem' houses is needed. We recommend an approach for future research in this area. (Author)

  17. Two studies on the effects of small exhaust fans on indoor air quality: Field study of exhaust fans for mitigating indoor air quality problems; Indoor air quality, exhaust fan mitigation

    International Nuclear Information System (INIS)

    1987-07-01

    Overall, the findings show that exhaust fans basically provide small amounts of ventilation compensation. By monitoring the common indoor air pollutants (radon, formaldehyde, carbon monoxide, nitrogen dioxide, and water vapor), it was found that the quality of the indoor air was not adversely affected by the use of exhaust fans. Nor did their use provide any measurable or significant benefits since no improvement in air quality was ascertained. While exhaust fans of this small size did not increase radon, which is the contaminant of most concern, the researchers caution that operation of a larger fan or installation in a very tight home could result in higher levels because depressurization is greater. The daily energy consumption for use of these appliances during the heating season was calculated to be 1.5 kilowatt hours or approximately 3% of the energy consumption in the study homes. The information collected in this collaborative field study indicates that the use of these particular ventilation systems has no significant effect on indoor air quality

  18. Heat Recovery Ventilation for Housing: Air-to-Air Heat Exchangers.

    Science.gov (United States)

    Corbett, Robert J.; Miller, Barbara

    The air-to-air heat exchanger (a fan powered ventilation device that recovers heat from stale outgoing air) is explained in this six-part publication. Topic areas addressed are: (1) the nature of air-to-air heat exchangers and how they work; (2) choosing and sizing the system; (3) installation, control, and maintenance of the system; (4) heat…

  19. Impact of Air Distribution on Heat Transfer during Night-Time Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per; Artmann, Nikolai; Jensen, Rasmus Lund

    2009-01-01

    Passive cooling by night-time ventilation is seen as a promising approach for energy efficient cooling of buildings. However, uncertainties in prediction of cooling potential and consequenses for thermal comfort restrain architects and engineers from applying this technique. Heat transfer...... at internal room surfaces determines the performance of night-time ventilation. In order to improve predictability, heat transfer mechanism in case of either mixing or displacement ventilation has been investigated in a full scale test room with an exposed ceiling as the dominating thermal mass. The influence...... of air distribution principle, air flow rate and inlet air temperature were investigated. Results show that for low air flow rates displacement ventilation is more efficient than mixing ventilation. For higher airflow rates the air jet flowing along the ceiling has a significant effect, and mixing...

  20. Control of the Free Convective Flow around the Human Body for Enhanced Inhaled Air Quality: Application to a Seat-Incorporated Personalized Ventilation Unit

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Krenek, M.

    2010-01-01

    This paper reports on methods for control of the free convective flow around the human body, with the aim of improving inhaled air quality. The methods were studied with sea-incorporated personalized ventilation (PV)-two PV nozzles placed sideways at the head level of a seated occupant supplied...

  1. Indoor air quality issues related to the acquisition of conservation in commercial buildings

    Energy Technology Data Exchange (ETDEWEB)

    Baechler, M.C.; Hadley, D.L.; Marseille, T.J.

    1990-09-01

    The quality of indoor air in commercial buildings is dependent on the complex interaction between sources of indoor pollutants, environmental factors within buildings such as temperature and humidity, the removal of air pollutants by air-cleaning devices, and the removal and dilution of pollutants from outside air. To the extent that energy conservation measures (ECMs) may affect a number of these factors, the relationship between ECMs and indoor air quality is difficult to predict. Energy conservation measures may affect pollutant levels in other ways. Conservation measures, such as caulking and insulation, may introduce sources of indoor pollutants. Measures that reduce mechanical ventilation may allow pollutants to build up inside structures. Finally, heating, ventilation, and air-conditioning (HVAC) systems may provide surface areas for the growth of biogenic agents, or may encourage the dissemination of pollutants throughout a building. Information about indoor air quality and ventilation in both new and existing commercial buildings is summarized in this report. Sick building syndrome and specific pollutants are discussed, as are broader issues such as ventilation, general mitigation techniques, and the interaction between energy conservation activities and indoor air quality. Pacific Northwest Laboratory (PNL) prepared this review to aid the Bonneville Power Administration (Bonneville) in its assessment of potential environmental effects resulting from conservation activities in commercial buildings. 76 refs., 2 figs., 19 tabs.

  2. Computer program for sizing residential energy recovery ventilator

    International Nuclear Information System (INIS)

    Koontz, M.D.; Lee, S.M.; Spears, J.W.; Kesselring, J.P.

    1991-01-01

    Energy recovery ventilators offer the prospect of tighter control over residential ventilation rates than manual methods, such as opening windows, with a lesser energy penalty. However, the appropriate size of such a ventilator is not readily apparent in most situations. Sizing of energy recovery ventilation software was developed to calculate the size of ventilator necessary to satisfy ASHRAE Standard 62-1989, Ventilation for Acceptable Air Quality, or a user-specified air exchange rate. Inputs to the software include house location, structural characteristics, house operations and energy costs, ventilation characteristics, and HVAC system COP/efficiency. Based on these inputs, the program estimates the existing air exchange rate for the house, the ventilation rate required to meet the ASHRAE standard or user-specified air exchange rate, the size of the ventilator needed to meet the requirement, and the expected changes in indoor air quality and energy consumption. In this paper an illustrative application of the software is provided

  3. 24 CFR 3280.710 - Venting, ventilation and combustion air.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Venting, ventilation and combustion... Fuel Burning Systems § 3280.710 Venting, ventilation and combustion air. (a) The venting as required by... appliance listing and the appliance manufacturer's instructions. (b) Venting and combustion air systems...

  4. Air quality in low-ventilated museum storage buildings

    DEFF Research Database (Denmark)

    Ryhl-Svendsen, Morten; Aasbjerg Jensen, Lars; Klenz Larsen, Poul

    2014-01-01

    Modern low-energy museum storage buildings are often designed for a low air exchange rate, on the order of less than 1 exchange per day. We investigated how this affected the indoor air quality in six Danish museum storage buildings. The infiltration of ambient pollutants, and the level to which...... internally-generated pollutants accumulate, were measured by passive sampling of ozone, nitrogen dioxide, and organic acids. The air exchange rates and the interchange of air between storage rooms were measured by the per-fluorocarbon tracer gas method. Ambient pollutants were reduced in concentration...

  5. Ventilation air conditioner for a reactor container

    International Nuclear Information System (INIS)

    Ikegame, Noboru; Nakagawa, Takeshi.

    1980-01-01

    Purpose: To suppress the variations in the internal pressure of a reactor container and smoothly ventilate the reactor container. Constitution: The air conditioner provides an air-flow-rate-control damper, a purge-air supply fan, and a filter device in the air-supply pipe of a reactor container. Furthermore, it provides a pressure difference detector at a part of the container. The air-flow-rate-control damper is connected electrically through a position-modulator-comparison amplifier to the pressure difference detector. When the filtration becomes insufficient by clogging of the filter device and the internal pressure increased abruptly in the container, the pressure-difference detector can detect it, and the damper is operated by a pressure regulator and the comparator so as to control the air flow to the container. Thus, the internal pressure variation is controlled so as to easily ventilate the container. (J.P.N.)

  6. Heating, ventilating, and air-conditioning applications

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This book covers: Comfort air conditioning and heating of residences: Space HVAC systems; Industrial and special air conditioning and ventilation for nuclear facilities, and for mines; Energy sources, such as Geothermal energy, solar utilization, and energy resources; Building operation and maintenance; energy management, and Thermal storage

  7. Summary of human responses to ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Seppanen, Olli A.; Fisk, William J.

    2004-06-01

    The effects of ventilation on indoor air quality and health is a complex issue. It is known that ventilation is necessary to remove indoor generated pollutants from indoor air or dilute their concentration to acceptable levels. But, as the limit values of all pollutants are not known, the exact determination of required ventilation rates based on pollutant concentrations and associated risks is seldom possible. The selection of ventilation rates has to be based also on epidemiological research (e.g. Seppanen et al., 1999), laboratory and field experiments (e.g. CEN 1996, Wargocki et al., 2002a) and experience (e.g. ECA 2003). Ventilation may also have harmful effects on indoor air quality and climate if not properly designed, installed, maintained and operated as summarized by Seppdnen (2003). Ventilation may bring indoors harmful substances that deteriorate the indoor environment. Ventilation also affects air and moisture flow through the building envelope and may lead to moisture problems that deteriorate the structures of the building. Ventilation changes the pressure differences over the structures of building and may cause or prevent the infiltration of pollutants from structures or adjacent spaces. Ventilation is also in many cases used to control the thermal environment or humidity in buildings. Ventilation can be implemented with various methods which may also affect health (e.g. Seppdnen and Fisk, 2002, Wargocki et al., 2002a). In non residential buildings and hot climates, ventilation is often integrated with air-conditioning which makes the operation of ventilation system more complex. As ventilation is used for many purposes its health effects are also various and complex. This paper summarizes the current knowledge on positive and negative effects of ventilation on health and other human responses. The focus of the paper is on office-type working environment and residential buildings. In the industrial premises the problems of air quality are usually

  8. Indoor air quality in Brazilian universities.

    Science.gov (United States)

    Jurado, Sonia R; Bankoff, Antônia D P; Sanchez, Andrea

    2014-07-11

    This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC) (n = 15) and naturally ventilated (NV) (n = 15) classrooms. The parameters of interest were indoor carbon dioxide (CO2), temperature, relative humidity (RH), wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively). The average indoor airborne dust concentration exceeded the Brazilian standards (indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  9. The IVAIRE project--a randomized controlled study of the impact of ventilation on indoor air quality and the respiratory symptoms of asthmatic children in single family homes.

    Science.gov (United States)

    Lajoie, P; Aubin, D; Gingras, V; Daigneault, P; Ducharme, F; Gauvin, D; Fugler, D; Leclerc, J-M; Won, D; Courteau, M; Gingras, S; Héroux, M-È; Yang, W; Schleibinger, H

    2015-12-01

    A randomized controlled trial was carried out to measure the impact of an intervention on ventilation, indoor air contaminants, and asthma symptoms of children. Eighty-three asthmatic children living in low-ventilated homes were followed over 2 years. Several environmental parameters were measured during the summer, fall, and winter. The children were randomized after Year 1 (43 Intervention; 40 Control). The intervention included the installation of either a Heat Recovery Ventilator (HRV) or Energy Recovery Ventilator (ERV). During the fall and winter seasons, there was a significant increase in the mean ventilation rate in the homes of the intervention group. A statistically significant reduction in mean formaldehyde, airborne mold spores, toluene, styrene, limonene, and α-pinene concentrations was observed in the intervention group. There was no significant group difference in change in the number of days with symptoms per 14 days. However, there was a significant decrease in the proportion of children who experienced any wheezing (≥1 episode) and those with ≥4 episodes in the 12-month period in the intervention group. This study indicates that improved ventilation reduces air contaminants and may prevent wheezing. Due to lack of power, a bigger study is needed. Positive findings from this study include the fact that, upon recruitment, most of the single family homes with asthmatic children were already equipped with a mechanical ventilation system and had relatively good indoor air quality. However, the 8-h indoor guideline for formaldehyde (50 μg/m3) was frequently exceeded and the ventilation rates were low in most of the homes, even those with a ventilation system. Both ERVs and HRVs were equally effective at increasing air exchange rates above 0.30 ACH and at preventing formaldehyde concentrations from exceeding the 50 μg/m3 guideline during the fall and winter seasons. Furthermore, the ERVs were effective at preventing excessively low relative

  10. Effect of fresh air ventilation on indoor radon concentration

    International Nuclear Information System (INIS)

    Sun Hao; Wu Jianhua; Fu Shi

    2012-01-01

    The radon concentration of laboratory for radon simulation (LRS) was measured by the RAD7 radon monitor, and the effect of the different fresh air ventilations on indoor radon concentration was studied and analyzed. The indoor radon concentration of LRS can be accumulated up to 2000 Bq/m 3 and the average radon exhalation rate of the LRS is 14.5 Bq · m -2 . h -1 . Furthermore, when the fresh air enters into the LRS continuously, the indoor radon concentration decreases exponentially with the increase of time. The equilibrium radon concentration and equilibrium time of LRS decrease exponentially with the increase of the rate of fresh air ventilation. In addition, the indoor radon concentration increases by accumulation with the decrease of the rate of fresh air ventilation. (authors)

  11. Indoor air quality and the law in Singapore.

    Science.gov (United States)

    Chan, P

    1999-12-01

    With the greater use of air-conditioned offices in Singapore, achieving good indoor air quality has become an important issue. The laws that impose duties upon designers and contractors with respect to the design and construction of air-conditioning and mechanical ventilation (ACMV) systems are set out in the Building Control Regulations and the Singapore Standard Code of Practice for Mechanical Ventilation and Air-conditioning in Buildings (hereinafter "SS CP 13:1980"). ACMV maintenance is governed by the Environmental Public Health Act, the Building and Common Property (Maintenance and Management) Act, and the Land Titles (Strata) Act, as well as by lease or tenancy agreements. Designers, contractors, developers, building owners and management corporations may also be liable to the workers, occupants and other premises users for indoor air quality (IAQ)-related injuries under the general principles of contract and tort. Recently, the Guidelines for Good Indoor Air Quality in Office Premises was issued by the Ministry of Environment to complement SS CP 13:1980 toward improving the indoor air quality of air-conditioned office premises. Although the Guidelines have no statutory effect, they may be adopted as contractual requirements in construction, lease and maintenance contracts. They may also be used to determine the relevant standard of duty of care required to discharge tortious liability. This paper looks at the existing laws and rules affecting the design, construction and maintenance of air-conditioned offices in light of Part III of the Ministry's Guidelines.

  12. Optimizing of Make Up Air Performance for Commercial Kitchen Ventilation Improvement

    Directory of Open Access Journals (Sweden)

    Manshoor B.

    2014-07-01

    Full Text Available A commercial kitchen is a complicated environment where multiple components of a ventilation system including kitchen hood, exhaust fan, air supply, and make up air systems work together but not always in unison. For the commercial kitchen environment, make up air systems used to control the kitchen space from unwanted odor and thermal confort. Make air systems for commercial kitchen already established. However, an optimization is important to determine the most suitable make air systems and at the same time can improve the thermal comfort in the working space. In this study, a simulation work was conducted to investigate a suitable supply air velocity to optimize the make up air for kitchen ventilation system. In order to achieve the objectives, ANSYS FLUENT software (CFD was used to carry out the simulation and analysis. 3D kitchen space with 10m x 8m x 3m with air supply velocity was set to 0 m/s, 0.14 m/s, 0.28 m/s and 0.42 m/s. From the simulation work, the velocity of air flow tested which is 0.28 m/s is enough to control the heat and give an enough comfort to the working space for the size of kitchen simulated. Well implementation of the make up air in the kitchen hood can improve an air quality in the commercial kitchen and also keep the kitchen space comfortable to the workers.

  13. Air-conditioning and ventilation systems and components of nuclear facilities

    International Nuclear Information System (INIS)

    2006-01-01

    The Guide defines the requirements for the design, implementation and operation of the air-conditioning and ventilation systems of nuclear facilities belonging to safety classes 3 and 4, and for the related documents to be submitted to STUK (Radiation and Nuclear Safety Authority, Finland). Furthermore, the Guide describes the inspections of air-conditioning and ventilation systems to be conducted by STUK during construction and operation of the facilities. As far as systems and components belonging to safety class 2 are concerned, STUK sets additional requirements case by case. In general, air-conditioning systems refer to systems designed to manage the indoor air cleanness, temperature, humidity and movement. In some rooms of a nuclear power plant, ventilation systems are also used to prevent radioactive materials from spreading outside the rooms. Guide YVL1.0 defines the safety principles concerning the air-conditioning and ventilation of nuclear power plants. Guide YVL2.0 gives the requirements for the design of nuclear power plant systems. In addition, YVLGuide groups 3, 4, 5 and 7 deal with the requirements for air-conditioning and ventilation systems with regard to the mechanical equipment, fire prevention, electrical systems, instrumentation and control technology, and the restriction of releases. The rules and regulations issued by the Ministry of the Environment and the Ministry of the Interior (RakMK, the Finnish building code) concerning the design and operation of air-conditioning and ventilation systems and the related fire protection design bases also apply to nuclear facilities. Exhaust gas treatment systems, condenser vacuum systems of boiling water reactor plants and leak collection systems are excluded from the scope of this Guide

  14. Auxiliary mine ventilation manual

    International Nuclear Information System (INIS)

    Workplace Safety North

    2010-01-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  15. Auxiliary mine ventilation manual

    Energy Technology Data Exchange (ETDEWEB)

    Workplace Safety North

    2010-07-01

    An adequate ventilation system is needed for air quality and handling in a mine and is comprised of many different pieces of equipment for removing contaminated air and supplying fresh air and thereby provide a satisfactory working environment. This manual highlights auxiliary ventilation systems made up of small fans, ducts, tubes, air movers, deflectors and additional air flow controls which distribute fresh air delivered by the primary system to all areas. A review of auxiliary ventilation is provided. Design, operation and management issues are discussed and guidelines are furnished. This manual is limited to underground hard rock operations and does not address directly other, specific auxiliary systems, either in underground coal mines or uranium mines.

  16. VENTILATION TECHNOLOGY SYSTEMS ANALYSIS

    Science.gov (United States)

    The report gives results of a project to develop a systems analysis of ventilation technology and provide a state-of-the-art assessment of ventilation and indoor air quality (IAQ) research needs. (NOTE: Ventilation technology is defined as the hardware necessary to bring outdoor ...

  17. The results of air treatment process modeling at the location of the air curtain in the air suppliers and ventilation shafts

    Directory of Open Access Journals (Sweden)

    Nikolaev Aleksandr

    2017-01-01

    Full Text Available In the existing shaft air heater installations (AHI, that heat the air for air suppliers in cold seasons, a heater channel is used. Some parts of the air from the heater go to the channel, other parts are sucked through a pithead by the general shaft pressure drawdown formed by the main ventilation installation (MVI. When this happens, a mix of two air flows leads to a shaft heat regime violation that can break pressurization of intertubular sealers. The problem of energy saving while airing underground mining enterprises is also very important. The proposed solution of both tasks due to the application of an air curtain is described in the article. In cold seasons the air treatment process should be used and it is offered to place an air curtain in the air suppliers shaft above the place of interface of the calorifer channel to a trunk in order to avoid an infiltration (suction of air through the pithead. It’s recommended to use an air curtain in a ventilation shaft because it reduces external air leaks thereby improving energy efficiency of the MVI work. During the mathematical modeling of ventilation and air preparation process (in SolidWorks Flowsimulation software package it was found out that the use of the air curtain in the air supply shaft can increase the efficiency of the AHI, and reduce the electricity consumption for ventilation in the ventilation shaft.

  18. RedVent. Turned off ventilation at night in schools - risks and opportunities; RedVent. Avstaengd ventilation paa natten i skolor - risker och moejligheter

    Energy Technology Data Exchange (ETDEWEB)

    Haegerhed Engman, Linda; Fyhr, Kristina; Langer, Sarka; Ruud, Svein; Ylmen, Peter

    2011-07-01

    Reduced ventilation rates or shutdown ventilation during nights is often being used in school buildings in order to save energy and can decrease the energy cost for heating and ventilation with at least 30 %. Swedish Building Regulations (BBR) allows reduced ventilation flow in non-residential buildings when no one is using the building but it must not give rise to adverse health effects or damage the building or its installations. Potential risks are mould- and moisture damages and indoor air quality problems. Another question is whether the shut down itself might lead to indoor air quality problems due to chemical reactions between outdoor air and indoor emissions built-up during the night. The study was divided into three steps; an interview with property managers and care-taker, calculations of energy saving potentials and a field study. Measurements were per-formed in one classroom for two weeks in April 2010. Different set-ups for ventilation flow during night time and air tightness of the building envelope were studied; ventilation shut down, intermittent ventilation (15 min every second hour) and continuous full speed ventilation during night. In the studied classroom, shutdown ventilation during nights did not significantly affect the indoor air quality in the classroom during the school day even though there were effects seen during the night. We found a somewhat higher moisture accumulation those nights when the ventilation was shut down and some fractions of particles during intermittent ventilation compared to continues full ventilation during night time. This specific school and classroom were well ventilated and there was no moisture supply from new building material or other types of moisture producing activities. Schools with lower day-time ventilation rates, moisture in building construction, IAQ- or dampness problems as well as buildings close to heavy traffic should analyse the conditions for the specific building before reducing ventilation to

  19. Building envelope design for renewal of air by natural ventilation in moderate climates. Proposition of a designing methodology; Conception des enveloppes de batiments pour le renouvellement d'air par ventilation naturelle en climats temperes. Proposition d'une methodologie de conception

    Energy Technology Data Exchange (ETDEWEB)

    Mansouri, Y.

    2003-12-01

    The subject of this research is to produce methods and methodological tools for the architects to support the integration of natural ventilation systems in the building envelope design. Our research is situated to the interface between the architectural practice and the physical research on natural ventilation. We are interested in phenomena that can influence or force the strategy of ventilation. A morphological analysis of naturally ventilated buildings concerning the integration modes of natural ventilation systems is done permitting US to propose a typology and a topology of ventilation systems. We define criteria in relation to the thermal comfort, to the quality of air and the economy of energy to assess air renewal techniques. In complement of the sizing tool, we elaborate a methodology of conception for the integration of passives ventilation systems. Design guidelines permit US to conclude on an effective natural ventilation system which is well adapted to collective habitat. (author)

  20. Ventilation-air conditioner system in nuclear power plant

    International Nuclear Information System (INIS)

    Kubota, Ryuji; Sugisaki, Toshihiko.

    1989-01-01

    This invention concerns a ventilation-air conditioner system which enables, upon occurrence of accidents in a nuclear power plant, continuous operation for other adjacent nuclear power plants with no effect of accidents. Air supply system and exhaust system are operated during usual operaiton. If loss of coolants accidents should occur in an adjacent nuclear power plants, operation is switched from ventilation operaiton to the operation of re-cycling system based on an AND logic of three signals, that is, a pressure HIGH signal for the reactor container, a water level LOW signal for the reactor and a radioactivity signal of the ventilation-air conditioner sytem on the side of air supply in the nuclear power plant. Thus, nuclear reactor buildings of the nuclear power plant are from the external atmosphere. Therefore, the radioactivity HIGH signal for switching to the emergency air conditioner system of the nuclear power plant is not actuated due to the loss of coolant accidents in the adjacent nuclear power plant. In addition, since the atmospheric temperature in the nuclear reactor building can be maintained by a cooling device disposed to the recycling system, reactor shutdown can be prevented. (I.S.)

  1. Improved inhaled air quality at reduced ventilation rate by control of airflow interaction at the breathing zone with lobed jets

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Spilak, Michal

    2014-01-01

    Inhaled air quality at a reduced supply of clean air was studied by controlling the airflow interaction at the breathing zone of a person using lobed jets as part of personalized ventilation (PV). Experiments were performed in a full-scale test room at 23°C (73.4°F) with a breathing thermal manikin...... seated at a workstation, with realistic free-convection flow around the body and a normal breathing cycle. The air in the room was mixed with tracer gas R134a. Clean air was supplied isothermally from three nozzles with circular, four-leafed clover, and six-edged star openings of 0.025 m (0.08 ft...... over the interaction between the inserted jets and the free convection flow was efficient. Over 80% clean PV air was measured in inhalation. The worst performing nozzle was the four-leafed clover: its best performance yielded 23% clean air inhalation, at the shortest distance and the highest velocity...

  2. Air quality assessment in Salim Slam Tunnel

    International Nuclear Information System (INIS)

    El-Fadel, M.; Hashisho, Z.; Saikaly, P.

    1999-01-01

    Full text.Vehicle emissions constitute a serious occupational environmental hazard particularly in confined spaces such as tunnels and underground parking garages. these emissions at elevated concentrations, can cause adverse health effects, which range from nausea and eye irritation to mutagenicity, carcinogenicity and even death. This paper presents an environmental air quality assessment in a tunnel located in a highly congested urban area. For this purpose, air samples were collected and analyzed for the presence of primary air pollutants, priority metals, and volatile organic carbons. Air quality modeling was conducted to simulate variations of pollutant concentrations in the tunnel under worst case scenarios including traffic congestion and no air ventilation. Field measurements and mathematical simulation results were used to develop a strategy for proper air quality management in tunnels

  3. 30 CFR 75.320 - Air quality detectors and measurement devices.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air quality detectors and measurement devices... COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.320 Air quality detectors and measurement devices. (a) Tests for methane shall be made by a qualified person with...

  4. A Chemical-Biological-Radio-Nuclear (CBRN) Filter can be Added to the Air-Outflow Port of a Ventilator to Protect a Home Ventilated Patient From Inhalation of Toxic Industrial Compounds.

    Science.gov (United States)

    Be'eri, Eliezer; Owen, Simon; Beeri, Maurit; Millis, Scott R; Eisenkraft, Arik

    2018-02-21

    Chemical-biological-radio-nuclear (CBRN) gas masks are the standard means for protecting the general population from inhalation of toxic industrial compounds (TICs), for example after industrial accidents or terrorist attacks. However, such gas masks would not protect patients on home mechanical ventilation, as ventilator airflow would bypass the CBRN filter. We therefore evaluated in vivo the safety of adding a standard-issue CBRN filter to the air-outflow port of a home ventilator, as a method for providing TIC protection to such patients. Eight adult patients were included in the study. All had been on stable, chronic ventilation via a tracheostomy for at least 3 months before the study. Each patient was ventilated for a period of 1 hour with a standard-issue CBRN filter canister attached to the air-outflow port of their ventilator. Physiological and airflow measurements were made before, during, and after using the filter, and the patients reported their subjective sensation of ventilation continuously during the trial. For all patients, and throughout the entire study, no deterioration in any of the measured physiological parameters and no changes in measured airflow parameters were detected. All patients felt no subjective difference in the sensation of ventilation with the CBRN filter canister in situ, as compared with ventilation without it. This was true even for those patients who were breathing spontaneously and thus activating the ventilator's trigger/sensitivity function. No technical malfunctions of the ventilators occurred after addition of the CBRN filter canister to the air-outflow ports of the ventilators. A CBRN filter canister can be added to the air-outflow port of chronically ventilated patients, without causing an objective or subjective deterioration in the quality of the patients' mechanical ventilation. (Disaster Med Public Health Preparedness. 2018;page 1 of 5).

  5. Operational experience of air washer based ventilation system for power conditioning system of Indus-2

    International Nuclear Information System (INIS)

    Pandey, R.M.; Baghel, S.L.; Parate, J.K.; Ahlawat, Sandeep; Rawlani, B.K.; Chouksey, Sanjay

    2015-01-01

    Indus-2 Synchrotron Accelerator requires high quality conditioned uninterrupted AC mains power for their smooth and reliable operation. Three units of 1670 kVA and one unit of 1100 kVA capacity rotary uninterruptible power conditioning systems (UPS) were installed and commissioned. These UPS units require dust free and cool ambient conditions for smooth operation. In order to meet the ventilation requirements, an evaporative cooling system of 80000 cubic meter/hour capacity with filtration units was designed, installed and commissioned in February 2011 and is operational on round-the-clock basis. Evaporative cooling scheme was chosen as has various advantages over a refrigerated system like lower initial capital costs, lower energy usage, lower running costs, less greenhouse gas and it does not contribute to ozone depletion. The ventilation system filters the environment air in stages up to 5 micron level and being conditioned with an automatic controlled soft water circulating system with cooling pads. An instrumentation and control scheme is included in the system to provide the automation requirements for operating 24 x 7 through the year. All the mechanical, hydraulic and electrical devices are maintained by providing preventive maintenance work without affecting the accelerator machine operation. Availability and reliability of the system was analysed based on the failure data. In Year 2014, the ventilation system was upgraded to accommodate standby blower unit, coupling unit and improved quality of supply air with new air conditioning devices. The control panel monitors the condition of air in the UPS hall and maintainsup to 28°C air temperature and 85% maximum relative humidity in round-the clock shift with more than 98% operational reliability. In this paper, we present design philosophy, installation, instrumentation, testing, operation experience and availability of the ventilation system for Power Conditioning System, Indus complex. (author)

  6. The effect of low ventilation rate with elevated bioeffluent concentration on work performance, perceived indoor air quality, and health symptoms.

    Science.gov (United States)

    Maula, H; Hongisto, V; Naatula, V; Haapakangas, A; Koskela, H

    2017-11-01

    The aim of this laboratory experiment was to study the effects of ventilation rate, and related changes in air quality, predominantly bioeffluents, on work performance, perceived indoor air quality, and health symptoms in a typical conditions of modern open-plan office with low material and equipment emissions. In Condition A, outdoor air flow rate of 28.2 l/s person (CO 2 level 540 ppm) was applied and in Condition B, outdoor air flow rate was 2.3 l/s person (CO 2 level 2260 ppm). CO 2 concentration level was used as an indicator of bioeffluents. Performance was measured with seven different tasks which measure different cognitive processes. Thirty-six subjects participated in the experiment. The exposure time was 4 hours. Condition B had a weak negative effect on performance only in the information retrieval tasks. Condition B increased slightly subjective workload and perceived fatigue. No effects on health symptoms were found. The intensity of symptoms was low in both conditions. The experimental condition had an effect on perceived air quality and observed odor intensity only in the beginning of the session. Although the room temperature was controlled in both conditions, the heat was perceived to impair the performance more in Condition B. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  7. Influence of ventilation structure on air flow distribution of large turbo-generator

    Science.gov (United States)

    Zhang, Liying; Ding, Shuye; Zhao, Zhijun; Yang, Jingmo

    2018-04-01

    For the 350 MW air - cooled turbo—generator, the rotor body is ventilated by sub -slots and 94 radial ventilation ducts and the end adopts arc segment and the straight section to acquire the wind. The stator is ventilated with five inlets and eight outlet air branches. In order to analyze the cooling effect of different ventilation schemes, a global physical model including the stator, rotor, casing and fan is established, and the assumptions and boundary conditions of the solution domain are given. the finite volume method is used to solve the problem, and the air flow distribution characteristics of each part of the motor under different ventilation schemes are obtained. The results show that the baffle at the end of the rotor can eliminate the eddy current at the end of the rotor, and make the flow distribution of cooling air more uniform and reasonable. The conclusions can provide reference for the design of motor ventilation structure.

  8. Provide good air quality for people and improve their productivity

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2000-01-01

    Three recent independent studies have documented that the quality of indoor air has a significant and positive influence on the productivity of office workers. A combined analysis of the results of the three studies shows a significant relationship between productivity and perceived indoor air...... quality. The impact on productivity justifies a much higher indoor air quality than the minimum levels prescribed in present standards and guidelines. One way of providing air of high quality for people to breathe, without involving excessive ventilation rates and energy use, is to provide "personalized...... air" to each individual. The application of this concept is discussed....

  9. Indoor air quality: a UK perspective

    International Nuclear Information System (INIS)

    Wadge, A.

    1995-01-01

    Outdoor air quality has generally improved in the UK over the last 2 decades but during this period changing conditions within the home have tended to reduce ventilation and increase the opportunity for accumulation of undesirable levels of indoor air pollutants. Information obtained from laboratory and epidemiological studies suggest that indoor air pollutants are an important cause of avoidable morbidity and mortality in the UK. This paper reviews the major indoor air pollutants of concern in the UK and considers some of the special issues relevant to indoor environment. (author) 3 figs., 37 refs

  10. Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate

    DEFF Research Database (Denmark)

    Li, Ruixin; Sekhar, S.C.; Melikov, Arsen Krikor

    2010-01-01

    The potential for improving occupants' thermal comfort with personalized ventilation (PV) system combined with under-floor air distribution (UFAD) system was explored through human response study. The hypothesis was that cold draught at feet can be reduced when relatively warm air is supplied...... of the results obtained reveal improved acceptability of perceived air quality and improved thermal sensation with PV-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with ceiling supply diffuser. The local thermal sensation at the feet was also improved when warmer UFAD supply air...

  11. An energy impact assessment of indoor air quality acceptance for air-conditioned offices

    International Nuclear Information System (INIS)

    Wong, L.T.; Mui, K.W.; Shi, K.L.; Hui, P.S.

    2008-01-01

    Treatment of fresh air in ventilation systems for the air-conditioning consumes a considerable amount of energy and affects the indoor air quality (IAQ). The ventilation demand is primarily related to the occupant load. In this study, the ventilation demands due to occupant load variations and occupant acceptability were examined against certain IAQ objectives using the mass balance of carbon dioxide (CO 2 ) concentrations in an air-conditioned office. In particular, this study proposed a ventilation model for the consideration of the occupant load variations and occupant acceptability based on the regional survey of typical offices (422 samples) in Hong Kong. The model was applied to evaluate the relative energy performance of different IAQ objectives in ventilation systems for typical office buildings in Hong Kong. The results showed that the energy consumption of a ventilation system would be correlated with the occupant load and acceptability in the air-conditioned office. Indicative CO 2 levels of 800 ppmv, 1000 ppmv and 1200 ppmv corresponding to 83%, 97% and 99.7% survey samples were shown, corresponding to the thermal energy consumptions of 1500 MJ m -2 yr -1 , 960 MJ m -2 yr -1 and 670 MJ m -2 yr -1 , respectively. In regards to the monetary issue, an annual value of HK$ 762 million per year in electrical consumption could be saved in all office buildings in Hong Kong when the indoor target CO 2 concentration is increased from 1000 ppmv to 1200 ppmv. To achieve an excellent IAQ following the existing design standard, i.e. to decrease the CO 2 level from 1000 ppmv to 800 ppmv, 56% additional energy would be consumed, corresponding to an annual value of HK$ 1,419 million, even though the occupant acceptability is only improved from 81% to 86%. The development of the models in this study would be useful for the energy performance evaluation of ventilation systems in air-conditioned offices

  12. Development of energy-efficient comfortable ventilation systems with air quality guided volume flow control and continuous monitoring of the window opening status. Part 1. Use of the LuQaS triple sensor for air quality guided volume flow control of mechanical ventilation systems in domestic buildings. Research project; Entwicklung energieeffizienter Komfortlueftungsanlagen mit luftqualitaetsgefuehrter Volumenstromregelung und kontinuierlicher Erfassung des Fensteroeffnungszustandes. Teilbericht 1. Einsatz des LuQaS-Triple-Sensors zur luftqualitaetsgefuehrten Volumenstromregelung von mechanischen Lueftungsanlagen in Wohngebaeuden. Forschungsprojekt

    Energy Technology Data Exchange (ETDEWEB)

    Grossklos, Marc; Ebel, Witta; Knissel, Jens

    2011-05-15

    The report presents the preparatory work on the research project of the above title. The first chapter presents a status report on air quality monitoring inside rooms and evaluates the projects so far in which the LuQaS air quality sensor was used. The second chapter is a documentation of preliminary measurements using the LuQaS sensor in two passive residential buildings and several individual measurements for sensor calibration. It was found that in apartments with mechanical ventilation, the sensor reflects the user activities; further, the measured values indicate signal changes also in the off-air of the building, so that control via central sensors in the ventilation and off-air systems appears feasible. The third chapter discusses control strategies for air quality control. Apart from a discussion of control unit types, operating regimes, methods to determine rated values, and additional control functions, the effects of threshold value control with different threshold limit values and volume flow changes on the air quality of a model building was simulated. The results prove the expectation that the air quality inside a building will be influenced positively by air quality control. Theoretical investigations of the DrD method will be presented in another part-report of the project.

  13. Field Measurements of Perceived Air Quality in the Test-Bed for Innovative Climate Conditioning Technologies

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Kabrhel, Michal

    the potential influence of aforementioned technologies on the perceived air quality. Additionally, the effect of Demand Controlled Ventilation (DCV) on the perceived air quality was tested. Measurements comprised of the assessments of perceived air quality and objective measurements of operative temperature...

  14. Ventilation and Air Quality in City Blocks Using Large-Eddy Simulation—Urban Planning Perspective

    Directory of Open Access Journals (Sweden)

    Mona Kurppa

    2018-02-01

    Full Text Available Buildings and vegetation alter the wind and pollutant transport in urban environments. This comparative study investigates the role of orientation and shape of perimeter blocks on the dispersion and ventilation of traffic-related air pollutants, and the street-level concentrations along a planned city boulevard. A large-eddy simulation (LES model PALM is employed over a highly detailed representation of the urban domain including street trees and forested areas. Air pollutants are represented by massless and passive particles (non-reactive gases, which are released with traffic-related emission rates. High-resolution simulations for four different city-block-structures are conducted over a 8.2 km 2 domain under two contrasting inflow conditions with neutral and stable atmospheric stratification corresponding the general and wintry meteorological conditions. Variation in building height together with multiple cross streets along the boulevard improves ventilation, resulting in 7–9% lower mean concentrations at pedestrian level. The impact of smaller scale variability in building shape was negligible. Street trees further complicate the flow and dispersion. Notwithstanding the surface roughness, atmospheric stability controls the concentration levels with higher values under stably stratified inflow. Little traffic emissions are transported to courtyards. The results provide urban planners direct information to reduce air pollution by proper structural layout of perimeter blocks.

  15. Boundary conditions for the use of personal ventilation over mixing ventilation in open plan offices

    DEFF Research Database (Denmark)

    Petersen, Steffen; Hviid, Christian Anker

    2013-01-01

    This paper investigates the boundary conditions for choosing a combined Personal Ventilation (PV) and Mixing Ventilation (MV) over conventional mixing ventilation in an office with multiple workers. A simplified procedure for annual performance assessment of PV/MV systems in terms of air quality...

  16. The effect of ventilation on the indoor air concentration of PCB

    DEFF Research Database (Denmark)

    Lyng, Nadja; Gunnarsen, Lars Bo; Andersen, Helle Vibeke

    2015-01-01

    The impact of increased ventilation on polychlorinated biphenyl (PCB) air concentration by installation of mechanical balanced ventilation units was studied. The intervention was carried out in three PCB-contaminated rooms; one classroom in an elementary school and two small bedrooms...... in an apartment in a residential building. In the classroom, the air exchange rate (ACH) was raised from 0.2 (without mechanical ventilation) to 5.5 /h during the intervention. In the two bedrooms, the highest ACH was 6.6 /h and 0.5 /h without mechanical ventilation. The corresponding concentration decrease...

  17. Investigating the air quality in aircraft cabins

    International Nuclear Information System (INIS)

    Nilsen, Steinar K.

    2002-01-01

    In recent years, there has been increasing concern about the air quality in aircraft cabins and its effects on health and safety for crew and passengers. Some of the major worries are risk of communication of infectious diseases, high incidence of respiratory diseases caused by low air moisture, and increased concentration of carbon dioxide from exhaled air due to the cabin air being recirculated. It also happens that fumes and gases enter the cabin by way of the ventilation system. This article describes the EU-funded research programme called CabinAir. The project aims to: (1) establish the current level of air quality in aircraft cabins, (2) establish the relationship between cabin air quality and the performance of environmental control and filtration systems, the air distribution, the energy consumption and the environmental impact of fuel burn. (3) develop new designs and technical solutions to improve the environmental control system and cabin air distribution/control systems, (4) optimise air quality in the cabin and minimise fuel consumption and environmental impacts, (5) develop performance specifications for the components, (6) draft European Pre-Normative Standards

  18. [Disinfectants and main sanitary and preventive measures for protection of ventilation and air-conditioning systems from Legionella contamination].

    Science.gov (United States)

    Gerasimov, V N; Golov, E A; Khramov, M V; Diatlov, I A

    2008-01-01

    The study was devoted to selection and assessment of disinfecting preparations for prevention of contamination by Legionella. Using system of criteria for quality assessment of disinfectants, seven newdomestic ones belonging to quaternary ammonium compounds class or to oxygen-containing preparations and designed for disinfecting of air-conditioning and ventilation systems were selected. Antibacterial and disinfecting activities of working solutions of disinfectants were tested in laboratory on the test-surfaces and test-objects of premises' air-conditioning and ventilation systems contaminated with Legionella. High antimicrobial and disinfecting activity of new preparations "Dezactiv-M", "ExtraDez", "Emital-Garant", "Aquasept Plus", "Samarovka", "Freesept", and "Ecobreeze Oxy" during their exposure on objects and materials contaminated with Legionella was shown. Main sanitary and preventive measures for defending of air-conditioning and ventilation systems from contamination by Legionella species were presented.

  19. CLEAN-AIR heat pump. Reduced energy consumption for ventilation in buildings by integrating air cleaning and heat pump. Final Report; CLEAN-AIR heat pump - Reduceret energiforbrug til ventilation af bygninger ved luftrensning integreret med luft varmepumpe. Slut rapport

    Energy Technology Data Exchange (ETDEWEB)

    Fang, L.; Olesen, Bjarne W.; Molinaro, G.; Simmonsen, P.; Skocajic, S. [Danmarks Tekniske Univ. Institut for Byggeri og Anlaeg, Lyngby (Denmark); Hummelshoej, R.M.; Carlassara, L. [COWI A/S, Lyngby, (Denmark); Groenbaek, H.; Hansen, Ole R. [Exhausto A/S, Langeskov (Denmark)

    2011-07-01

    This report summarizes task 1 of the Clean Air Heat Pump project - modelling and simulation on energy savings when using the clean air heat pump for ventilation, air cleaning and energy recovery. The total energy consumption of the proposed ventilation systems using clean air heat pump technology was calculated by a theoretical model and compared with the reference ventilation systems (conventional ventilation systems). The energy compared between the two systems includes energy used for heating, cooling and fan. The simulation and energy saving calculation was made for the application of the clean air heat pump in three typical climate conditions, i.e. mild-cold, mild-hot and hot and wet climates. Real climate data recorded from three cities in 2002 was used for the calculation. The three cities were Copenhagen (Denmark), Milan (Italy) and Colombo (Sir Lanka) which represent the above three typical climate zones. For the Danish climate (the mild cold climate), the calculations show that the ventilation system using clean air heat pump technology can save up to 42% of energy cost in winter compared to the conventional ventilation system. The energy saving in summer can be as high as 66% for the ventilation system with humidity control and 9% for the ventilation system without the requirement of humidity control. Since the Danish summer climate is very mild, over 80% of the yearly energy consumption for ventilation is used during winter season. It is, therefore, estimated that more than 35% annual energy saving for ventilation is expected in Denmark using the clean air heat pump ventilation technology. For the mild hot climate, e.g. the Italian climate, the calculations show that up to 63% of the energy saving can be achieved in summer season. For the winter mode, 17% reduction of the energy cost can be expected for the domestic use. For industrial use, the energy cost of the clean air heat pump may not be favourable due to the industrial price of gas in Italy is

  20. Evaluation of simplified ventilation system with direct air supply through the facade in a school in a cold climate

    Energy Technology Data Exchange (ETDEWEB)

    Mysen, M. [Norwegian Building Research Institute, Blindern, Oslo (Norway); Department of Energy and Process Technology, Norwegian University of Science and Technology (NTNU), Trondheim (Norway); Schild, P. G.; Hellstrand, V.; Thunshelle, K. [Norwegian Building Research Institute, Blindern, Oslo (Norway)

    2004-07-01

    Many educational buildings in industrialised countries have poor indoor climate, according to today's knowledge about the impact of indoor climate on well-being and productivity. Budget restrictions and practical limitations such as lack of space for central air handling units and ventilation ducts, have motivated the application of simplified ventilation systems in some schools, such as taking unconditioned supply air directly from the facade. One such school was recently evaluated in Norway. On cold days, thermal comfort in the classroom deteriorated due to cold down draught from the supply outlet. In addition, moist and fertile conditions for microbiological growth were observed in the air supply ductwork. On the other hand the same pupils are more satisfied with the school and have less sick building syndrome (SBS) symptoms during winter than summer. An improved control strategy with a temperature-compensated CO{sub 2} set-point for controlling the air flow is suggested. This could improve thermal comfort and reduce energy use without compromising perceived air quality (PAQ) during cold weather. Furthermore it could improve indoor air quality (IAQ) during warm weather with only a slight increase of energy use. Further evaluation of an improved solution is needed before such a ventilation concept can be recommended in cold climates. (author)

  1. Diagnosis and evaluation of fungi presence in the air of two different ventilation sytems for broiler houses

    Directory of Open Access Journals (Sweden)

    ACS Gigli

    2005-12-01

    Full Text Available Intensive broiler production in tropical climates requires adequate air circulation to control heat stress. Excess of air speed may lead to dust production and reduction of air quality and, consequently, production parameters. Brazilian regulations prohibit the presence of pathogens that may deteriorate air quality, and the presence of fungi in the air inside the poultry houses is limited to 750CFU/m³. The aim of this study was to evaluate the presence of fungi in two distinct types of broiler houses. The research compared two types of air ventilation: conventional (G1 and positive tunnel ventilation (G2. The fungi were collected using a dust sampling pump, with the air flow calibrated to 1.5 L/min. The filter impregnated with dust was submitted to growth for two days using five Petri dishes. Microbiology analysis showed that there were 1,239 CFU and 2,011 CFU in G1 and G2, respectively. The different genera of fungi found and their percentages were: Penicillium 29.16%, Aspergillus 37.5% and Fusarium 29.16% in G1 and Penicillium 33.34%, Aspergillus 26.64%, Fusarium 23.34% and Neurospora 3.34% in G2.

  2. Design of Air Ventilation System for Cargo Hold Vessels Using Solar Desiccant

    Directory of Open Access Journals (Sweden)

    Alam Baheramsyah

    2017-09-01

    Full Text Available One of the facilities and infrastructure of the vessel is the ventilation system in the cargo hold to maintain the quality. One attempt to avoid high moisture ratios is to provide a dry air supply by using desiccants. The purpose of this thesis is to design the system of air ventilation with solar desiccant by analysis the calculation with decrease air humidity ratio after passing desiccant rotor as well as fulfillment needs of heater and cooling system using heat of exhaust gas and seawater as well as fulfillment of electricity need using solar energy. From the result of analysis obtain to provide air supply in the cargo hold of 437.5 m3 / hour, the specification of rotor desiccant has a diameter of 550 mm with thickness 200 mm to decrease ratio of outside air humidity equal to 83.1% become 46.5%. Dehumidification air temperature of 47.7oC will be lowered to 35oC by using the sea water cooling media. As for the reactivation air heater requirement of 24.292 kW would be to fulfilled by utilizing the exhaust power of 498.12 kW. And for the electric power needs of the syetm is 34,488 wp will be supplied from the total solar module is 33 units with 345 wp per-capacity.

  3. Temperature ranges of the application of air-to-air heat recovery ventilator in supermarkets in winter, China

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Yanming; Wang, Youjun; Zhong, Ke [School of Environmental Science and Engineering, Donghua University, Shanghai 201620 (China); Liu, Jiaping [School of Architecture, Xi' an University of Architecture and Technology, Xi' an 710055 (China)

    2010-12-15

    Energy consumption is an important issue in China. In heating, ventilation and air conditioning (HVAC) systems, more and more commercial buildings use air-to-air heat recovery ventilators as energy saving units for recovering heat from the exhaust air in ventilation systems in current years. In the present paper, critical temperatures of air-to-air heat recovery systems for supermarkets in winter are recommended and discussed for the four cities in different climate zones of China. The analysis shows that the temperature of fresh air in winter can be categorized into three regions, i.e., recovery region, transition region and impermissible recovery region. The results also indicate that the latent heat recovery is not suitable for ventilation energy savings in supermarkets in winter. Meanwhile, the applicability of sensible heat recovery in supermarkets depends on outdoor climate and fresh air flow rate. If a variable rotational speed fan is used to introduce fresh air into the building, heat recovery does always function as planned in winter for all the selected cities except Guangzhou, and most values of the COP are much higher than 2.5. Otherwise, there is the risk of negative impact on building energy savings in all cities except Harbin. (author)

  4. Why We Ventilate

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M.; Sherman, Max H.; Price, Phil N.; Singer, Brett C.

    2011-09-01

    It is widely accepted that ventilation is critical for providing good indoor air quality (IAQ) in homes. However, the definition of"good" IAQ, and the most effective, energy efficient methods for delivering it are still matters of research and debate. This paper presents the results of work done at the Lawrence Berkeley National Lab to identify the air pollutants that drive the need for ventilation as part of a larger effort to develop a health-based ventilation standard. First, we present results of a hazard analysis that identified the pollutants that most commonly reach concentrations in homes that exceed health-based standards or guidelines for chronic or acute exposures. Second, we present results of an impact assessment that identified the air pollutants that cause the most harm to the U.S. population from chronic inhalation in residences. Lastly, we describe the implications of our findings for developing effective ventilation standards.

  5. Mixing ventilation guide on mixing air distribution design

    CERN Document Server

    Kandzia, Claudia; Kosonen, Risto; Krikor Melikov, Arsen; Nielsen, Peter Vilhelm

    2013-01-01

    In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection of air diffusers and exhaust openings.

  6. Personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2004-01-01

    microenvironment. Furthermore, HVAC systems should be designed to protect occupants from airborne transmission of infectious agents that may be present in exhaled air. Personalized ventilation is a new development in the field of HVAC and has the potential to fulfill the above requirements. This paper reviews...... existing knowledge on performance of personalized ventilation (PV) and on human response to it. The airflow interaction in the vicinity of the human body is analyzed and its impact on thermal comfort and inhaled air quality is discussed together with control strategies and the application of PV in practice...

  7. CFD model of air movement in ventilated facade: comparison between natural and forced air flow

    Energy Technology Data Exchange (ETDEWEB)

    Mora Perez, Miguel; Lopez Patino, Gonzalo; Lopez Jimenez, P. Amparo [Hydraulic and Environmental Engineering Department, Universitat Politècnica de Valencia (Spain)

    2013-07-01

    This study describes computational fluid dynamics (CFD) modeling of ventilated facade. Ventilated facades are normal facade but it has an extra channel between the concrete wall and the (double skin) facade. Several studies found in the literature are carried out with CFD simulations about the behavior of the thermodynamic phenomena of the double skin facades systems. These studies conclude that the presence of the air gap in the ventilated facade affects the temperature in the building skin, causing a cooling effect, at least in low-rise buildings. One of the most important factors affecting the thermal effects of ventilated facades is the wind velocity. In this contribution, a CFD analysis applied on two different velocity assumptions for air movement in the air gap of a ventilated facade is presented. A comparison is proposed considering natural wind induced velocity with forced fan induced velocity in the gap. Finally, comparing temperatures in the building skin, the differences between both solutions are described determining that, related to the considered boundary conditions, there is a maximum height in which the thermal effect of the induced flow is significantly observed.

  8. Reduced energy use for ventilation of buildings through selection of low-polluting building materials and furniture. Final Report; Reduceret energiforbrug til ventilation af bygninger hvori der systematisk er valgt lav-forurenende materialer og inventar. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    2007-11-15

    The main objective of the research project was to study the potential of reducing energy used for ventilating buildings by using low-polluting building materials and thereby ensuring that indoor air quality will not be compromised. To quantify this potential, the exposure-response relationships, i.e. the relationships between ventilation rate and the perceived indoor air quality (indoor air quality perceived by humans as opposed to indoor air quality evaluated by chemical measurements), were established for rooms furnished with different more or less polluting materials. Based on these results simulations of energy used for ventilation were carried out for selected building scenarios. The exposure-response relationships were established by summarizing existing data reported in the literature and by a series of new experiments. The data summarized by reviewing the literature included data for building materials and furnishing tested in a laboratory setting in small-scale ventilated glass chambers, and in full-scale in ventilated climate chambers, test rooms or normal offices. Relevant low-polluting building materials were selected based on the literature review and a series of new experiments performed in ventilated small-scale glass chambers. Then the final experiments in which the effects of using low-polluting materials on perceived air quality were carried out in ventilated small-scale glass chambers and in full-scale test rooms ventilated with different outdoor air supply rates. Simulations of energy used for ventilation were carried out using BSim software. During simulations the ventilation rate was varied to obtain different levels of air quality when low-polluting building materials had been used, and it was examined how these changes influence the energy use. The results show that the exposure-response relationships vary between different building materials and thus the ventilation requirement to achieve a certain level of perceived indoor air quality vary

  9. Why this crisis in residential ventilation

    NARCIS (Netherlands)

    Hasselaar, E.

    2008-01-01

    Ventilation is the cornerstone of good indoor air quality. Ventilation requirements have major attention in building regulations, but ventilation in practice is often poor, resulting in increased concentration of pollutants and hence exposure to health risk. Inspection of 500 houses with interviews

  10. The Contaminant Distribution in a Ventilated Room with Different Air Terminal Devices

    DEFF Research Database (Denmark)

    Heiselberg, Per; Nielsen, Peter V.

    The room ventilation is investigated for three different air terminal devices under isothermal conditions. Velocity distribution in the occupied zone is measured for each air terminal device at different air exchange rates. The maximum air exchange rate is determined on the base of both the throw...... of the jets and the comfort requirements applied to measured air velocities in the occupied zone. Normalized concentration distribution in the test room is determined along a vertical line through the middle of the room as a function of the air exchange rate and the density of the tracer gas. The relative...... ventilation efficiency, , based on the room average concentration is also determined as a function of the air exchange rate and the density of the tracer gas. The influence from the position of the return opening on the relative ventilation efficiency is found for one air terminal device....

  11. Experimental and Theoretical Investigation of Impinging Jet Ventilation at Different Cross Sectional Area of Supply Air Duct

    Directory of Open Access Journals (Sweden)

    Ala'a Abbas Mahdi

    2018-03-01

    Full Text Available  An experimental and computational analysis of temperature and velocity distribution in an office room have been studied. Office room of dimensions (3m x 1.75m x 3m with two cross sectional types of supply air duct in the experimental part and three different cross sectional types of supply air duct in the theoretical part is usual as a tested model. The RNG k-  turbulence model was employed to solve the governing equations numerically and validated by comparing the numerical results with experimental data. The impinging jet concept has been proposed as a new ventilation strategy for use in office and industrial buildings. The present work focuses on evaluating the performance of a new impinging jet ventilation. In a theoretical study three types of supply air duct are adopted which are square supply air duct (Type-I, semi-elliptic supply air duct (Type-II and rectangle supply air duct (Type-III for two cases of air outlet terminal height from room foot level, 0.14h (case-I & 0.1h (case-II. The third type (rectangle duct gives lowest effective and discomfort conditions when compared with the other two types. This study investigated a number of factors influencing draught discomfort and temperature stratification in an office environment equipped with impinging jet ventilation IJV. The factors considered to be: shape of the air supply device, supply airflow rate and supply air temperature. Acceptable Air Distribution Performance Index (ADPI, effective temperature, and ventilation efficiency obtained that the square cross sectional area of supply air duct at 0.1h (case-II height from foot level gives more acceptable indoor air quality and human thermal comfort when compared with the other types. Also, this type gives good air distribution system not only promotes a comfortable and healthy environment for occupants, but also contributes to energy conservation.

  12. Report. no. 20. Sensory evaluation of indoor air quality

    DEFF Research Database (Denmark)

    Berglund, Birgitta; Bluyssen, Philomena; Clausen, Geo

    Human subjects are indispensable in the measurement of perceived indoor air quality. Chemical and physical methods of characterisation often are insensitive to odorous and sensory irritating air pollutants, or do not take account of combinations of singular pollutants in a biologically meaningful...... way. Therefore, sensory methods many times are the only or the preferred tool for evaluation of perceived indoor air quality. This report presents background to and advice on methodologies for sensory evaluation of perceived indoor air quality. It proposes methods which apply to source assessments...... as well as field investigations. The methods will assist in labelling of building materials, characterising air quality in indoor spaces, controlling ventilation performance, and measuring occupant responses in questionnaire field studies of the sick building syndrome. The proposed methods will enable...

  13. Wearable Personal Exhaust Ventilation, WPEV: Improved Indoor Air Quality and Reduced Exposure to Air Exhaled from a Sick Doctor

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho D.; Barova, Maria; Melikov, Arsen K.

    2015-01-01

    pause) and a tidal flow rate of 6 L/min. A second thermal manikin and heated dummy were used to resemble lying patients. Exhaled air by the doctor was mixed with tracer gas to mimic pathogens. The wearable personal exhaust unit was positioned frontally by the mouth of the doctor at three distances: 0.......02, 0.04, and 0.06 m. It was operated at 0.25 or 0.50 L/s under mixing background ventilation at three air changes per hour. The effect of the wearable exhaust unit geometry by modifying the exhaust surface, as well as the posture of the doctor, standing or seated, was also studied. The use...... of the wearable personal exhaust resulted in cleaner air in the room compared to mixing alone at 12 air changes per hour, reducing the exposure of the two patients. The nozzle geometry and posture of the doctor affected the indoor exposure to exhaled air. The high potential to capture exhaled air makes the device...

  14. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Walker, Iain I.

    2010-01-01

    Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing

  15. Mixing Ventilation. Guide on mixing air distribution design

    DEFF Research Database (Denmark)

    Kandzia, Claudia; Kosonen, Risto; Melikov, Arsen Krikor

    In this guidebook most of the known and used in practice methods for achieving mixing air distribution are discussed. Mixing ventilation has been applied to many different spaces providing fresh air and thermal comfort to the occupants. Today, a design engineer can choose from large selection...

  16. Experimental investigation of reduced-mixing personal ventilation jets

    Energy Technology Data Exchange (ETDEWEB)

    Khalifa, H. Ezzat; Janos, Michael I.; Dannenhoffer, John F. III. [Syracuse University, Syracuse, NY (United States)

    2009-08-15

    This paper presents an investigation of the design and performance characteristics of personalized ventilation (PV) systems that, in combination with general ventilation, deliver high quality air to the breathing zone (BZ) with no more clean air supply than indicated by ANSI/ASHRAE 62.1-2004, while satisfying acceptable ergonomic and aesthetic considerations. Under these conditions, the energy used for conditioning the clean air will not exceed that of a conventional ventilation system. We introduce a novel PV nozzle that achieves high BZ air quality with a small fraction of the clean air indicated by the ANSI/ASHRAE Standard. Tracer gas experimental results presented in this paper demonstrate the advantages of the novel nozzle relative to conventional PV nozzles. The results show that, at a PV clean air supply of only 2.4 l/s, the new nozzle achieves a BZ ventilation effectiveness close to 7 versus less than 2 for a conventional nozzle delivering the same amount of clean air. A companion paper presents a computational analysis of the same concept, validated against the experimental results of the present paper. (author)

  17. Sensor-based demand controlled ventilation

    Energy Technology Data Exchange (ETDEWEB)

    De Almeida, A.T. [Universidade de Coimbra (Portugal). Dep. Eng. Electrotecnica; Fisk, W.J. [Lawrence Berkeley National Lab., CA (United States)

    1997-07-01

    In most buildings, occupancy and indoor pollutant emission rates vary with time. With sensor-based demand-controlled ventilation (SBDCV), the rate of ventilation (i.e., rate of outside air supply) also varies with time to compensate for the changes in pollutant generation. In other words, SBDCV involves the application of sensing, feedback and control to modulate ventilation. Compared to ventilation without feedback, SBDCV offers two potential advantages: (1) better control of indoor pollutant concentrations; and (2) lower energy use and peak energy demand. SBDCV has the potential to improve indoor air quality by increasing the rate of ventilation when indoor pollutant generation rates are high and occupants are present. SBDCV can also save energy by decreasing the rate of ventilation when indoor pollutant generation rates are low or occupants are absent. After providing background information on indoor air quality and ventilation, this report provides a relatively comprehensive discussion of SBDCV. Topics covered in the report include basic principles of SBDCV, sensor technologies, technologies for controlling air flow rates, case studies of SBDCV, application of SBDCV to laboratory buildings, and research needs. SBDCV appears to be an increasingly attractive technology option. Based on the review of literature and theoretical considerations, the application of SBDCV has the potential to be cost-effective in applications with the following characteristics: (a) a single or small number of dominant pollutants, so that ventilation sufficient to control the concentration of the dominant pollutants provides effective control of all other pollutants; (b) large buildings or rooms with unpredictable temporally variable occupancy or pollutant emission; and (c) climates with high heating or cooling loads or locations with expensive energy.

  18. Ventilation system type, classroom environmental quality and pupils' perceptions and symptoms

    DEFF Research Database (Denmark)

    Gao, Jie; Wargocki, Pawel; Wang, Yi

    2014-01-01

    The present study investigated indoor climate and window opening behaviour by pupils, as well as their perceptions and symptoms in classrooms with different types of ventilation systems. Four classrooms were selected in the same school in suburban Denmark. Classroom ventilation was achieved either......-heating and heating seasons; CO2 concentration was used to estimate average classroom ventilation rates. At the end of each measuring period, the pupils were asked to report their perceptions of the indoor environment and their acute health-related symptoms. The classroom in which ventilation was achieved by manually...... operable windows had the highest air temperatures and CO2 concentrations during both non-heating and heating season; the estimated average air-change rate was lowest in this classroom. The classroom with mechanical ventilation had the highest estimated average air-change rate. Windows were frequently...

  19. Indoor air quality environmental information handbook: Building system characteristics

    International Nuclear Information System (INIS)

    1987-01-01

    This manual, the third in a series, focuses on residential building system characteristics and their effects on indoor air quality. The manual addresses: residential indoor air pollutants by source, indoor concentrations, health effects, source control and mitigation techniques, standards and guidelines; building system characteristics of air exchange, pollutant source strength, residence volume, site characteristics, structural design, construction, and operation, infiltration and ventilation system, building occupancy; and monitoring methods

  20. Analysis of the dust particles distribution and ventilation as a way to improve indoor air quality

    Science.gov (United States)

    Kozlovtseva, E. Yu; Azarov, V. N.; Stefanenko, I. V.

    2017-10-01

    The indoor air pollution is analyzed in the article. The subject of the research is the presence and composition of the dust particles taken into “traps” in the working space of the public building (Volgograd State Technical University, Volgograd, the Russian Federation). The research has established the range of sizes of the particulate matter (fractional composition) for the dust in the air of the working space in the form of integral curves for the mass distribution of particles with to their diameters, it also provides the scheme of the air flows movement in the ventilation system of the room.

  1. Exploring the consequences of climate change for indoor air quality

    International Nuclear Information System (INIS)

    Nazaroff, William W

    2013-01-01

    Climate change will affect the concentrations of air pollutants in buildings. The resulting shifts in human exposure may influence public health. Changes can be anticipated because of altered outdoor pollution and also owing to changes in buildings effected in response to changing climate. Three classes of factors govern indoor pollutant levels in occupied spaces: (a) properties of pollutants; (b) building factors, such as the ventilation rate; and (c) occupant behavior. Diversity of indoor conditions influences the public health significance of climate change. Potentially vulnerable subpopulations include not only the young and the infirm but also those who lack resources to respond effectively to changing conditions. Indoor air pollutant levels reflect the sum of contributions from indoor sources and from outdoor pollutants that enter with ventilation air. Pollutant classes with important indoor sources include the byproducts of combustion, radon, and volatile and semivolatile organic compounds. Outdoor pollutants of special concern include particulate matter and ozone. To ensure good indoor air quality it is important first to avoid high indoor emission rates for all pollutants and second to ensure adequate ventilation. A third factor is the use of air filtration or air cleaning to achieve further improvements where warranted. (letter)

  2. Improving comfort and health with personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor

    2004-01-01

    The thermal environment and air quality in buildings affects occupants¿ health, comfort and performance. The heating, ventilating and air-conditioning (HVAC) of buildings today is designed to provide a uniform room environment. However, large individual differences exist between occupants in regard...... existing knowledge on performance of personalized ventilation (PV) and on human response to it. The airflow interaction in the vicinity of the human body is analysed and its impact on thermal comfort and inhaled air quality is discussed together with control strategies and the application of PV in practice...

  3. An air-conditioning, ventilation and automatic ventilation monitoring and recording system constructed in an unsealed radioisotope laboratory. Energy-saving measures in Nagasaki University Radioisotope Center

    International Nuclear Information System (INIS)

    Takatsuji, Toshihiro; Yoshida, Masahiro; Takao, Hideaki; Okumura, Yutaka; Ooura, Tosinobu; Kotoura, Kazuki; Yamanaka, Yasushi; Yanagita, Hiroyoshi.

    1998-01-01

    We constructed an automatic operation system of air-conditioners and ventilators in a radiation controlled area to minimize electric consumption. The system operates the air-conditioner and the ventilator of each ventilation unit when someone is staying in rooms belonging to the unit based on information from an access control system to the controlled area and lighting switches in front of individual room. For understanding of operation conditions and confirmation of radioactive concentration in air lower than the legal limit at the ventilation stack, we also constructed an automatic ventilation monitoring and recording system, which makes complete operation records of each ventilator automatically. These systems enabled to achieve sharp energy-saving compatible with radiation protection. (author)

  4. Indoor air pollutants, ventilation rate determinants and potential control strategies in Chinese dwellings: A literature review.

    Science.gov (United States)

    Ye, Wei; Zhang, Xu; Gao, Jun; Cao, Guangyu; Zhou, Xiang; Su, Xing

    2017-05-15

    After nearly twenty years of rapid modernization and urbanization in China, huge achievements have transformed the daily lives of the Chinese people. However, unprecedented environmental consequences in both indoor and outdoor environments have accompanied this progress and have triggered public awareness and demands for improved living standards, especially in residential environments. Indoor pollution data measured for >7000 dwellings (approximately 1/3 were newly decorated and were tested for volatile organic compound (VOC) measurements, while the rest were tested for particles, phthalates and other semi-volatile organic compounds (SVOCs), moisture/mold, inorganic gases and radon) in China within the last ten years were reviewed, summarized and compared with indoor concentration recommendations based on sensory or health end-points. Ubiquitous pollutants that exceed the concentration recommendations, including particulate matter, formaldehyde, benzene and other VOCs, moisture/mold, inorganic gases and radon, were found, indicating a common indoor air quality (IAQ) issue in Chinese dwellings. With very little prevention, oral, inhalation and dermal exposure to those pollutants at unhealthy concentration levels is almost inevitable. CO 2 , VOCs, humidity and radon can serve as ventilation determinants, each with different ventilation demands and strategies, at typical occupant densities in China; and particle reduction should be a prerequisite for determining ventilation requirements. Two directional ventilation modes would have profound impacts on improving IAQ for Chinese residences are: 1) natural (or window) ventilation with an air cleaner and 2) mechanical ventilation with an air filtration unit, these two modes were reviewed and compared for their applicability and advantages and disadvantages for reducing human exposure to indoor air pollutants. In general, mode 2 can more reliably ensure good IAQ for occupants; while mode 1 is more applicable due to its

  5. Simultaneousness of room heating and ventilation air heating

    International Nuclear Information System (INIS)

    Mathisen, Hans Martin

    2006-01-01

    The report is part of NTNU-SINTEF's Smart Buildings program, Smart Energy Efficient Buildings (2002-2006), subprogram 3.1 Heating, ventilation and cooling systems. An important part of this subprogram is the development and implementation of heating distribution systems with low return temperature. A comparison has been made of the simultaneousness of room heating and ventilation air heating in six buildings. Existing measuring data with hourly measurements of effect requirements for the different purposes have been employed. Based on the measuring data the relation between the requirements for room heating and ventilation is estimated. A 'fictitious' return temperature has also been estimated. The result shows a significant variation between the buildings. For all there are short periods where the efficiency need for room heating and ventilation is equal (ml)

  6. Building air quality: A guide for building owners and facility managers

    International Nuclear Information System (INIS)

    1991-12-01

    The guide was intended to help those individuals responsible for air quality control in buildings to prevent indoor air quality problems from developing and resolving such problems quickly should they develop. Background information and guidance on dealing with indoor air quality problems were provided. Specific topics included: factors which affect indoor air quality; sources of indoor air contaminants; heating, ventilation and air conditioning (HVAC) systems; the role of building occupants; effective communication between managers and others involved; developing an indoor air quality (IAQ) profile; managing a building for good IAQ; diagnosing IAQ problems; mitigating IAQ problems, hiring professional assistance to solve an IAQ problem; common IAQ measurements; HVAC systems and IAQ; moisture with resultant mold and mildew conditions; asbestos (1332214); radon (10043922); and resources through which additional information can be obtained. Indoor air quality forms were included which can be modified to meet individual needs

  7. The impact of temperature on mean local air age and thermal comfort in a stratum ventilated office

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Lin; Lin, Zhang; Yao, Ting [Building Energy and Environmental Technology Research Unit, School of Energy and Environment and Division of Building Science and Technology, City University of Hong Kong, Hong Kong SAR (China); Liu, Jing; Wang, Qiuwang [State Key Lab of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an, 710049 (China)

    2011-02-15

    The influence of the supply air temperature on the mean local air age and thermal comfort of a typical individual office under stratum ventilation is investigated by a numerical method, which is validated by an experiment carried out by the authors. The results show that for an office, when the supply air temperature is increased from 19 C to 21 C, the corresponding mean occupied zone temperature rises from 24.5 C to 26.5 C. The inhaled air quality for the occupant is improved when supply air temperature rises from 19 C to 21 C. Also, the thermal comfort indices (predicted mean vote or PMV, predicted percentage of dissatisfied or PPD and predicted dissatisfied or PD) fulfill the requirements of ISO 7730 and CR 175 1998. For summer cooling operation, stratum ventilation may offer a feasible solution to elevated indoor temperatures, which are recommended by several governments in East Asia. (author)

  8. Computer Prediction of Air Quality in Livestock Buildings

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Bjerg, Bjarne

    In modem livestock buildings the design of ventilation systems is important in order to obtain good air quality. The use of Computational Fluid Dynamics for predicting the air distribution makes it possible to include the effect of room geometry and heat sources in the design process. This paper...... presents numerical prediction of air flow in a livestock building compared with laboratory measurements. An example of the calculation of contaminant distribution is given, and the future possibilities of the method are discussed....

  9. HVAC SYSTEMS AS EMISSION SOURCES AFFECTING INDOOR AIR QUALITY: A CRITICAL REVIEW

    Science.gov (United States)

    The paper discusses results of an evaluation of literature on heating, ventilating, and air-conditioning (HVAC) systems as contaminant emission sources that affect indoor air quality (IAQ). The various literature sources and methods for characterizing HVAC emission sources are re...

  10. Indoor environmental quality and ventilation in U.S. office buildings: A view of current issues

    Energy Technology Data Exchange (ETDEWEB)

    Fisk, W.J.

    1994-11-01

    Much of the current focus on indoor environmental quality and ventilation in US office buildings is a response to sick building syndrome and occupant complaints about building-related health symptoms, poor indoor air quality, and thermal discomfort. The authors know that serious ``sick-building`` problems occur in a significant number of US office buildings and that a significant proportion of the occupants in many normal (non-sick) buildings report building-related health symptoms. Concerns about the health effects of environmental tobacco smoke have also focused attention on the indoor environment. The major responses of industry and governments, underway at the present time, are to restrict smoking in offices, to attempt to reduce the emissions of indoor pollutants, and to improve the operation of heating, ventilating and air conditioning (HVAC) systems. Better air filtration, improved HVAC commissioning and maintenance, and increased provisions for individual control of HVAC are some of the improvements in HVAC that are currently being, evaluated. In the future, the potential for improved productivity and reduced airborne transmission of infectious disease may become the major driving force for improved indoor environments.

  11. Energy and IAQ Implications of Residential Ventilation Cooling

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    This study evaluates the energy, humidity and indoor air quality (IAQ) implications of residential ventilation cooling in all U.S. IECC climate zones. A computer modeling approach was adopted, using an advanced residential building simulation tool with airflow, energy and humidity models. An economizer (large supply fan) was simulated to provide ventilation cooling while outdoor air temperatures were lower than indoor air temperatures (typically at night). The simulations were performed for a full year using one-minute time steps to allow for scheduling of ventilation systems and to account for interactions between ventilation and heating/cooling systems.

  12. Practical guidebook on the modulation of ventilation flow rates; Guide pratique sur la modulation des debits de ventilation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The modulation of ventilation flow rates aims at adapting the flow rate of ventilation systems to the real occupancy of rooms, at maintaining a good indoor air quality and at mastering the energy expenses due to air renewing in rooms. This technical guidebook presents the design of modulated ventilation systems (definition of occupancy areas in buildings, choice of presence sensors (CO{sub 2}, hygrometry, temperature, CO, VOC and other specific probes)), their principle and implementation. (J.S.)

  13. Field measurements of perceived air quality and concentration of volatile organic compounds in four offices of the university building

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn; Kabrhel, M.

    2015-01-01

    Field measurements of perceived air quality were conducted in four refurbished offices at the Czech Technical University in Prague. The offices were refurbished as part of the research project Clear-up to serve as a field test facility. The present paper describes measurements conducted...... according to CEN Report CR 1752. The acceptability of the air quality was worst in unoccupied offices ventilated with minimum air change rate (0.4 h-1). Application of DCV decreased the CO2 concentration, but did not result in statistically significant improvement of perceived air quality....... to investigate the perceived air quality, sensory pollution load and concentration of Volatile Organic Compounds (VOCs) in the offices. As the refurbishment comprised also installation of demand controlled ventilation (DCV), its influence on the perceived air quality was also tested. Measurements comprised...

  14. Assessment of indoor air quality in comparison using air conditioning and fan system in printing premise

    Directory of Open Access Journals (Sweden)

    Ramlan Nazirah

    2017-01-01

    Full Text Available Printers contribute to various emissions consist with chemical contaminants. High concentration of the particulate matter can cause serious health problems. This study focuses on the indoor air quality in printing premise unit in Universiti Tun Hussein Onn, Malaysia. Field testing involving air sampling methods were taken from 900 hours to 1600 hours, for every 30 minutes using physical measurement which is Multi-Channel Air Quality Monitor (YESAIR, E-Sampler and Ozone Meter. Air sampling was recorded based on one sampling point and most suitable point for production. A comparison based on different ventilation using fan and air-conditioning were also taken and results is being compared based on OSHA and NIOSH standards. Besides that, the statistical analysis is being conducted in order to predict the effect on number of printers. From the result, the O3 concentrations show, 10% reduced for printing premise using fan ventilation compared to air-conditioning but remain the same value for PM2.5. The concentration of O3 increased when the number of printers decreased, while the concentration of PM2.5 increased the increase of printers number. Overall, the use of fan in printing premise is more suggested since the level is slightly lower than the printing premise using air-conditioning.

  15. Improving local air quality in cities: To tree or not to tree?

    International Nuclear Information System (INIS)

    Vos, Peter E.J.; Maiheu, Bino; Vankerkom, Jean; Janssen, Stijn

    2013-01-01

    Vegetation is often quoted as an effective measure to mitigate urban air quality problems. In this work we demonstrate by the use of computer models that the air quality effect of urban vegetation is more complex than implied by such general assumptions. By modelling a variety of real-life examples we show that roadside urban vegetation rather leads to increased pollutant concentrations than it improves the air quality, at least locally. This can be explained by the fact that trees and other types of vegetation reduce the ventilation that is responsible for diluting the traffic emitted pollutants. This aerodynamic effect is shown to be much stronger than the pollutant removal capacity of vegetation. Although the modelling results may be subject to a certain level of uncertainty, our results strongly indicate that the use of urban vegetation for alleviating a local air pollution hotspot is not expected to be a viable solution. Highlights: ► We model the impact of roadside urban vegetation on the local air quality. ► Vegetation in general lowers the wind speed thereby reducing the ventilation. ► In general roadside urban vegetation does not appear to decrease concentrations. ► Roadside urban trees have a pronounced detrimental effect on the local air quality. ► City planners and policy makers need to be better informed about this topic. -- Rather than improving the local air quality, our results suggest that roadside urban vegetation increases the pollutant concentrations at the footpath

  16. Interaction of Air Flow in Complex Ventilation Systems

    Directory of Open Access Journals (Sweden)

    Zhorzh G. Levitskiy

    2013-01-01

    Full Text Available The article presents the results of study of interaction of air flow in complex ventilation systems. The study used Taylor and Maclaurin’s series and Lagrange formula to create the functional connections on estimation of the impact of changing aerodynamic parameters of one or several simultaneously working regulators on the air flow distribution in mines

  17. Ventilation patterns of the songbird lung/air sac system during different behaviors.

    Science.gov (United States)

    Mackelprang, Rebecca; Goller, Franz

    2013-10-01

    Unidirectional, continuous airflow through the avian lung is achieved through an elaborate air sac system with a sequential, posterior to anterior ventilation pattern. This classical model was established through various approaches spanning passively ventilated systems to mass spectrometry analysis of tracer gas flow into various air sacs during spontaneous breathing in restrained ducks. Information on flow patterns in other bird taxa is missing, and these techniques do not permit direct tests of whether the basic flow pattern can change during different behaviors. Here we use thermistors implanted into various locations of the respiratory system to detect small pulses of tracer gas (helium) to reconstruct airflow patterns in quietly breathing and behaving (calling, wing flapping) songbirds (zebra finch and yellow-headed blackbird). The results illustrate that the basic pattern of airflow in these two species is largely consistent with the model. However, two notable differences emerged. First, some tracer gas arrived in the anterior set of air sacs during the inspiration during which it was inhaled, suggesting a more rapid throughput through the lung than previously assumed. Second, differences in ventilation between the two anterior air sacs emerged during calling and wing flapping, indicating that adjustments in the flow pattern occur during dynamic behaviors. It is unclear whether this modulation in ventilation pattern is passive or active. This technique for studying ventilation patterns during dynamic behaviors proves useful for establishing detailed timing of airflow and modulation of ventilation in the avian respiratory system.

  18. Mine engineering and ventilation problems unique to the control of radon daughters

    International Nuclear Information System (INIS)

    Rock, R.L.

    1975-01-01

    Quality and quantity of ventilation are the two interrelated but key factors in any radon-daughter control programme. The better the intake air quality (little or no contamination from radon and its daughters), the less are the total air requirements for ventilation of active mining areas. Engineering principles for quantity distribution of air through underground working areas are straightforward and the formulae and theories governing forced ventilation are not within the scope of this paper. Rather, this paper discusses the principal methods of utilizing mine planning to facilitate radon-daughter control and also treats the more subtle features of mine ventilation which are especially critical in the ventilation of mines where radon gas constitutes an environmental contamination problem. (author)

  19. Carbon Dioxide Detection and Indoor Air Quality Control.

    Science.gov (United States)

    Bonino, Steve

    2016-04-01

    When building ventilation is reduced, energy is saved because it is not necessary to heat or cool as much outside air. Reduced ventilation can result in higher levels of carbon dioxide, which may cause building occupants to experience symptoms. Heating or cooling for ventilation air can be enhanced by a DCV system, which can save energy while providing a comfortable environment. Carbon dioxide concentrations within a building are often used to indicate whether adequate fresh air is being supplied to the building. These DCV systems use carbon dioxide sensors in each space or in the return air and adjust the ventilation based on carbon dioxide concentration; the higher the concentration, the more people occupy the space relative to the ventilation rate. With a carbon dioxide sensor DCV system, the fresh air ventilation rate varies based on the number ofpeople in the space, saving energy while maintaining a safe and comfortable environment.

  20. Osobni Větráni (Personalized ventilation)

    DEFF Research Database (Denmark)

    Cermak, Radim; Melikov, Arsen Krikor

    2003-01-01

    Personalized ventilation provides clean air at each workplace. The aim is to improve substantially the quality of air inhaled by each occupant and to ensure thermal comfort. Each occupant is provided with the possibility to generate and control his/her microclimate. This article summarizes...... and discusses the principles involved and outlines recent results on the performance of personalized ventilation....

  1. Short-term airing by natural ventilation - modeling and control strategies.

    Science.gov (United States)

    Perino, M; Heiselberg, P

    2009-10-01

    The need to improve the energy efficiency of buildings requires new and more efficient ventilation systems. It has been demonstrated that innovative operating concepts that make use of natural ventilation seem to be more appreciated by occupants. This kind of system frequently integrates traditional mechanical ventilation components with natural ventilation devices, such as motorized windows and louvers. Among the various ventilation strategies that are currently available, buoyancy driven single-sided natural ventilation has proved to be very effective and can provide high air change rates for temperature and IAQ control. However, in order to promote a wider applications of these systems, an improvement in the knowledge of their working principles and the availability of new design and simulation tools is necessary. In this context, the paper analyses and presents the results of a research that was aimed at developing and validating numerical models for the analysis of buoyancy driven single-sided natural ventilation systems. Once validated, these models can be used to optimize control strategies in order to achieve satisfactory indoor comfort conditions and IAQ. Practical Implications Numerical and experimental analyses have proved that short-term airing by intermittent ventilation is an effective measure to satisfactorily control IAQ. Different control strategies have been investigated to optimize the capabilities of the systems. The proposed zonal model has provided good performances and could be adopted as a design tool, while CFD simulations can be profitably used for detailed studies of the pollutant concentration distribution in a room and to address local discomfort problems.

  2. Indoor Air Quality in Brazilian Universities

    Directory of Open Access Journals (Sweden)

    Sonia R. Jurado

    2014-07-01

    Full Text Available This study evaluated the indoor air quality in Brazilian universities by comparing thirty air-conditioned (AC (n = 15 and naturally ventilated (NV (n = 15 classrooms. The parameters of interest were indoor carbon dioxide (CO2, temperature, relative humidity (RH, wind speed, viable mold, and airborne dust levels. The NV rooms had larger concentration of mold than the AC rooms (1001.30 ± 125.16 and 367.00 ± 88.13 cfu/m3, respectively. The average indoor airborne dust concentration exceeded the Brazilian standards (<80 µg/m3 in both NV and AC classrooms. The levels of CO2 in the AC rooms were significantly different from the NV rooms (1433.62 ± 252.80 and 520.12 ± 37.25 ppm, respectively. The indoor air quality in Brazilian university classrooms affects the health of students. Therefore, indoor air pollution needs to be considered as an important public health problem.

  3. Natural ventilation without air breathing in the top openings of highway tunnels

    Science.gov (United States)

    Jin, Sike; Jin, Jiali; Gong, Yanfeng

    2017-05-01

    A number of urban shallow-buried highway tunnels have been built in China. Despite much better internal air quality compared to the traditional tunnels, there is no sufficient theoretical ground or experimental support for the construction of such tunnels. Most researchers hold that natural ventilation in such tunnels depends on air breathing in the top openings, but some others are skeptical about this conclusion. By flow visualization technology on a tunnel experiment platform, we tested the characteristics of airflow in the top openings of highway tunnels. The results showed that air always flowed from outside to inside in all top openings above a continuous traffic stream, and the openings did not breathe at all. In addition, intake air in the top openings reached its maximum velocity at the tunnel entrance, and then gradually slowed down with tunnel depth increasing.

  4. Multifamily Ventilation Retrofit Strategies

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation (BSC), Somerville, MA (United States); Lstiburek, J. [Building Science Corporation (BSC), Somerville, MA (United States); Bergey, D. [Building Science Corporation (BSC), Somerville, MA (United States)

    2012-12-01

    In multifamily buildings, central ventilation systems often have poor performance, overventilating some portions of the building (causing excess energy use), while simultaneously underventilating other portions (causing diminished indoor air quality). BSC and Innova Services Corporation performed a series of field tests at a mid-rise test building undergoing a major energy audit and retrofit, which included ventilation system upgrades.

  5. Hospital-acquired infections associated with poor air quality in air-conditioned environments

    Directory of Open Access Journals (Sweden)

    Daniela Pinheiro da Silva

    2013-10-01

    Full Text Available Backgound and Objectives: Individuals living in cities increasingly spend more time indoors in air-conditioned environments. Air conditioner contamination can be caused by the presence of aerosols from the external or internal environment, which may be associated with disease manifestations in patients present in this type of environment. Therefore, the aim of this review was to assess the air quality in air-conditioned hospital environments as a risk factor for hospital-acquired infections – HAI – as the air can be a potential source of infection, as well as assess the exposure of professionals and patients to different pollutants. Material and Methods: A literature review was performed in the LILACS, MEDLINE, SCIELO, SCIENCE DIRECT databases, CAPES thesis database and Ministry of Health – Brazil, including studies published between 1982 and 2008. The literature search was grouped according to the thematic focus, as follows: ventilation, maintenance and cleaning of systems that comprehend the environmental quality standard. Discussion and Conclusion: Outbreaks of hospital-acquired infections associated with Aspergillus, Acinetobacter, Legionella, and other genera such as Clostridium and Nocardia, which were found in air conditioners, were observed, thus indicating the need for air-conditioning quality control in these environments.

  6. Effect of Room Ventilation Rates in Rodent Rooms with Direct-Exhaust IVC Systems.

    Science.gov (United States)

    Geertsema, Roger S; Lindsell, Claire E

    2015-09-01

    When IVC are directly exhausted from a rodent housing room, the air quality of the room can become independent of the intracage air quality and may reduce the need for high room ventilation rates. This study assessed the effect of decreasing the ventilation rate in rodent rooms using direct-exhaust IVC systems. The study was conducted over 16 wk and compared conditions in 8 rodent rooms that had ventilation rates of 5 to 6 air changes per hour (ACH) with those in rooms at 10 to 12 ACH. At the low ventilation rate, rooms had higher CO₂ concentrations, higher dew point temperature, and lower particulate levels and spent a greater percentage of time above the temperature set point than did rooms at the high rate. The levels of allergens and endotoxins in room air were the same regardless of the ventilation rate. Differences seen in parameters within cages at the 2 ventilation rates were operationally irrelevant. We detected no total volatile organic compounds in the room that were attributable to ammonia, regardless of the ventilation rate. Clearing the air of ethanol after a spill took longer at the low compared with high rate. However, ethanol clearance was faster at the low rate when the demand-control system was activated than at the high ventilation rate alone. Air quality in the room and in the cages were acceptable with room ventilation rates of 5 to 6 ACH in rodent rooms that use direct-exhaust IVC systems.

  7. Research review: Indoor air quality control techniques

    International Nuclear Information System (INIS)

    Fisk, W.J.

    1986-10-01

    Techniques for controlling the concentration of radon, formaldehyde, and combustion products in the indoor air are reviewed. The most effective techniques, which are generally based on limiting or reducing indoor pollutant source strengths, can decrease indoor pollutant concentrations by a factor of 3 to 10. Unless the initial ventilation rate is unusually low, it is difficult to reduce indoor pollutant concentrations more than approximately 50% by increasing the ventilation rate of an entire building. However, the efficiency of indoor pollutant control by ventilation can be enhanced through the use of local exhaust ventilation near concentrated sources of pollutants, by minimizing short circuiting of air from supply to exhaust when pollutant sources are dispersed and, in some situations, by promoting a displacement flow of air and pollutants toward the exhaust. Active air cleaning is also examined briefly. Filtration and electrostatic air cleaning for removal of particles from the indoor air are the most practical and effective currently available techniques of air cleaning. 49 refs., 7 figs

  8. Hygiene guideline for the planning, installation, and operation of ventilation and air-conditioning systems in health-care settings - Guideline of the German Society for Hospital Hygiene (DGKH).

    Science.gov (United States)

    Külpmann, Rüdiger; Christiansen, Bärbel; Kramer, Axel; Lüderitz, Peter; Pitten, Frank-Albert; Wille, Frank; Zastrow, Klaus-Dieter; Lemm, Friederike; Sommer, Regina; Halabi, Milo

    2016-01-01

    Since the publication of the first "Hospital Hygiene Guideline for the implementation and operation of air conditioning systems (HVAC systems) in hospitals" (http://www.krankenhaushygiene.de/informationen/fachinformationen/leitlinien/12) in 2002, it was necessary due to the increase in knowledge, new regulations, improved air-conditioning systems and advanced test methods to revise the guideline. Based on the description of the basic features of ventilation concepts, its hygienic test and the usage-based requirements for ventilation, the DGKH section "Ventilation and air conditioning technology" attempts to provide answers for the major air quality issues in the planning, design and the hygienically safe operation of HVAC systems in rooms of health care.

  9. The effect of air quality on sleep

    DEFF Research Database (Denmark)

    Strøm-Tejsen, Peter; Wargocki, Pawel; Wyon, David Peter

    2014-01-01

    The effect of air quality on sleep was examined for occupants of 14 identical single-occupancy dormitory rooms. The subjects, half women, were exposed to two conditions (open/closed window), each for one week, resulting in night-time average CO2 levels of 660 and 2585 ppm, and air temperatures...... performance. Although no significant effects on the sleep quality scale or on next-day performance could be shown, there were significant and positive effects of a higher ventilation rate (open window) on the actigraph measured sleep latency and on the subjects’ assessment of the freshness of the air...... of 24.7 and 23.9°C, respectively. Sleep was assessed from movement data recorded on wristwatch-type actigraphs and from online morning questionnaires, including the Groningen Sleep Quality scale, questions about the sleep environment, next-day well-being, SBS symptoms, and two tests of mental...

  10. Indoor Air Quality in Schools (IAQ): The Importance of Monitoring Carbon Dioxide Levels.

    Science.gov (United States)

    Sundersingh, David; Bearg, David W.

    This article highlights indoor air quality and exposure to pollutants at school. Typical air pollutants within schools include environmental tobacco smoke, formaldehyde, volatile organic compounds, nitrogen oxides, carbon monoxide, carbon dioxide, allergens, pathogens, radon, pesticides, lead, and dust. Inadequate ventilation, inefficient…

  11. Air quality in barns for milk-fed calves

    International Nuclear Information System (INIS)

    Lavoie, J.

    2007-01-01

    Seventy per cent of the veal produced in Canada comes from Quebec. This paper reported on the air quality in barns used for milk-fed calves. It is known that air quality inside livestock buildings has an impact on both workers and animals, particularly in winter when air circulation is reduced. In this study, air quality inside barns was studied during the winter, spring and summer. Three types of barns with 3 different types of ventilation typically found in Quebec were evaluated. These included those with preheated corridors, lateral air entries, and central chimneys. Gases were measured in order to determine concentrations and emissions of: ammonia (NH 3 ) which is toxic, colourless and flammable; hydrogen sulfide (H 2 S) which is very toxic, flammable; carbon dioxide (CO 2 ) which is colourless and odourless; nitrous oxide (N 2 O) which is colourless and flammable, but harmless to health in the short-term; carbon monoxide (CO) which is colourless, odourless and flammable; and methane (CH 4 ) which is the principal constituent released by animals, and is also colourless, odourless and extremely flammable. When exposed to air, both methane and carbon monoxide can produce an explosive mix especially in an enclosed area. Bacteria, mold, endotoxins, and dust are also present in barns. Samples of gases were analyzed with the help of different portable apparatuses. Results revealed that there are no significant problems with air quality in barns used for milk-fed calves in Quebec. It was determined that the inside temperature was appropriate even during summer periods, and although the relative humidity was higher than the recommended values for the care and handling of farm animals, it was still acceptable. In winter, ammonia was the only gas present in concentrations that reached values of weighted average exposure. Also, concentrations of bacteria were higher during winter. It was suggested that better air ventilation during the winter period would lower ammonia

  12. Perceived indoor air quality and its relationship to air pollutants in French dwellings.

    Science.gov (United States)

    Langer, S; Ramalho, O; Le Ponner, E; Derbez, M; Kirchner, S; Mandin, C

    2017-11-01

    Perception of indoor air quality (PIAQ) was evaluated in a nationwide survey of 567 French dwellings, and this survey was combined with measurements of gaseous and particulate matter (PM 10 and PM 2.5 ) indoor air pollutants and indoor climate parameters. The perception was assessed on a nine-grade scale by both the occupants of the dwellings and the inspectors who performed the measurements. The occupants perceived the air quality in their homes as more pleasant than the inspectors. The inspectors perceived the air quality as more unpleasant in dwellings in which the residents smoked indoors. Significant associations between PIAQ and indoor air pollutant concentrations were observed for both the inspectors and, to a lesser extent, the occupants. Introducing confounding parameters, such as building and personal characteristics, into a multivariate model suppressed most of the observed bivariate correlations and identified the tenure status of the occupants and their occupation as the parameters that most influenced their PIAQ. For the inspectors, perceived air quality was affected by the presence of smokers, the season, the type of ventilation, retrofitting, and the concentrations of acetaldehyde and acrolein. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. Air Distribution Effectiveness for Residential Mechanical Ventilation: Simulation and Comparison of Normalized Exposures

    Energy Technology Data Exchange (ETDEWEB)

    Petithuguenin, T.D.P.; Sherman, M.H.

    2009-05-01

    The purpose of ventilation is to dilute indoor contaminants that an occupant is exposed to. Even when providing the same nominal rate of outdoor air, different ventilation systems may distribute air in different ways, affecting occupants' exposure to household contaminants. Exposure ultimately depends on the home being considered, on source disposition and strength, on occupants' behavior, on the ventilation strategy, and on operation of forced air heating and cooling systems. In any multi-zone environment dilution rates and source strengths may be different in every zone and change in time, resulting in exposure being tied to occupancy patterns.This paper will report on simulations that compare ventilation systems by assessing their impact on exposure by examining common house geometries, contaminant generation profiles, and occupancy scenarios. These simulations take into account the unsteady, occupancy-tied aspect of ventilation such as bathroom and kitchen exhaust fans. As most US homes have central HVAC systems, the simulation results will be used to make appropriate recommendations and adjustments for distribution and mixing to residential ventilation standards such as ASHRAE Standard 62.2.This paper will report on work being done to model multizone airflow systems that are unsteady and elaborate the concept of distribution matrix. It will examine several metrics for evaluating the effect of air distribution on exposure to pollutants, based on previous work by Sherman et al. (2006).

  14. Investigation of Indoor Air Quality and the Identification of Influential Factors at Primary Schools in the North of China

    Directory of Open Access Journals (Sweden)

    Zhen Peng

    2017-07-01

    Full Text Available Over 70% of a pupil’s school life is spent inside a classroom, and indoor air quality has a significant impact on students’ attendance and learning potential. Therefore, the indoor air quality in primary school buildings is highly important. This empirical study investigates the indoor air quality in four naturally ventilated schools in China, with a focus on four parameters: PM2.5, PM10, CO2, and temperature. The correlations between the indoor air quality and the ambient air pollution, building defects, and occupants’ activities have been identified and discussed. The results indicate that building defects and occupants’ activities have a significant impact on indoor air quality. Buildings with better air tightness have a relatively smaller ratio of indoor particulate matter (PM concentrations to outdoor PM concentrations when unoccupied. During occupied periods, the indoor/outdoor (I/O ratio could be larger than 1 due to internal students’ activities. The indoor air temperature in winter is mainly determined by occupants’ activities and the adiabatic ability of a building’s fabrics. CO2 can easily exceed 1000 ppm on average due to the closing of windows and doors to keep the inside air warmer in winter. It is concluded that improving air tightness might be a way of reducing outdoor air pollutants’ penetration in naturally ventilated school buildings. Mechanical ventilation with air purification could be also an option on severely polluted days.

  15. Assessing values of air quality and visibility at risk from wildland fires.

    Science.gov (United States)

    Sue A. Ferguson; Steven J. McKay; David E. Nagel; Trent Piepho; Miriam L. Rorig; Casey Anderson; Lara. Kellogg

    2003-01-01

    To assess values of air quality and visibility at risk from wildland fire in the United States, we generated a 40-year database that includes twice daily values of wind, mixing height, and a ventilation index that is the product of windspeed and mixing height. The database provides the first nationally consistent map of surface wind and ventilation index. In addition,...

  16. Why we ventilate our houses - An historical look

    Energy Technology Data Exchange (ETDEWEB)

    Matson, Nance E.; Sherman, Max H.

    2004-05-14

    The knowledge of how to ventilate buildings, and how much ventilation is necessary for human health and comfort, has evolved over centuries of trial and error. Humans and animals have developed successful solutions to the problems of regulating temperature and removing air pollutants through the use of ventilation. These solutions include ingenious construction methods, such as engineered passive ventilation (termite mounds and passive stacks), mechanical means (wing-powered, fans), and an evolving effort to identify problems and develop solutions. Ventilation can do more than help prevent building occupants from getting sick; it can provide an improved indoor environment. Codes and standards provide minimum legal requirements for ventilation, but the need for ventilation goes beyond code minima. In this paper we will look at indoor air pollutant sources over time, the evolution of ventilation strategies, current residential ventilation codes and standards (e.g., recently approved ASHRAE Standard 62.2), and briefly discuss ways in which we can go beyond the standards to optimize residential ventilation, reduce indoor air quality problems, and provide corresponding social and economic benefit.

  17. The effects of bedroom air quality on sleep and next-day performance.

    Science.gov (United States)

    Strøm-Tejsen, P; Zukowska, D; Wargocki, P; Wyon, D P

    2016-10-01

    The effects of bedroom air quality on sleep and next-day performance were examined in two field-intervention experiments in single-occupancy student dormitory rooms. The occupants, half of them women, could adjust an electric heater to maintain thermal comfort but they experienced two bedroom ventilation conditions, each maintained for 1 week, in balanced order. In the initial pilot experiment (N = 14), bedroom ventilation was changed by opening a window (the resulting average CO2 level was 2585 or 660 ppm). In the second experiment (N = 16), an inaudible fan in the air intake vent was either disabled or operated whenever CO2 levels exceeded 900 ppm (the resulting average CO2 level was 2395 or 835 ppm). Bedroom air temperatures varied over a wide range but did not differ between ventilation conditions. Sleep was assessed from movement data recorded on wristwatch-type actigraphs and subjects reported their perceptions and their well-being each morning using online questionnaires. Two tests of next-day mental performance were applied. Objectively measured sleep quality and the perceived freshness of bedroom air improved significantly when the CO2 level was lower, as did next-day reported sleepiness and ability to concentrate and the subjects' performance of a test of logical thinking. © 2015 The Authors. Indoor Air published by John Wiley & Sons Ltd.

  18. Hygiene guideline for the planning, installation, and operation of ventilation and air-conditioning systems in health-care settings – Guideline of the German Society for Hospital Hygiene (DGKH

    Directory of Open Access Journals (Sweden)

    Külpmann, Rüdiger

    2016-02-01

    Full Text Available Since the publication of the first “Hospital Hygiene Guideline for the implementation and operation of air conditioning systems (HVAC systems in hospitals” ( in 2002, it was necessary due to the increase in knowledge, new regulations, improved air-conditioning systems and advanced test methods to revise the guideline. Based on the description of the basic features of ventilation concepts, its hygienic test and the usage-based requirements for ventilation, the DGKH section “Ventilation and air conditioning technology” attempts to provide answers for the major air quality issues in the planning, design and the hygienically safe operation of HVAC systems in rooms of health care.

  19. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2009-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6 - 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  20. Experimental verification of air flow rate measurement for representative isokinetic air sampling in ventilation stacks

    International Nuclear Information System (INIS)

    Okruhlica, P.; Mrtvy, M.; Kopecky, Z.

    2008-01-01

    Nuclear facilities are obliged to monitor their discharge's influence on environment. Main monitored factions in NPP's ventilation stacks are usually noble gasses, particulates and iodine. These factions are monitored in air sampled from ventilation stack by means of sampling rosette and bypass followed with on-line measuring monitors and balance sampling devices with laboratory evaluations. Correct air flow rate measurement and representative iso-kinetic air sampling system is essential for physical correct and metrological accurate evaluation of discharge influence on environment. Pairs of measuring sensors (Anemometer, pressure gauge, thermometer and humidity meter) are symmetrically placed in horizontal projection of stack on positions based on measured air flow velocity distribution characteristic, Analogically diameter of sampling rosette nozzles and their placement in the middle of 6- 7 annuluses are calculated for assurance of representative iso-kinetic sampling. (authors)

  1. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    Energy Technology Data Exchange (ETDEWEB)

    Skwarczynski, M.A. [Faculty of Environmental Engineering, Institute of Environmental Protection Engineering, Department of Indoor Environment Engineering, Lublin University of Technology, Lublin (Poland); International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Melikov, A.K.; Lyubenova, V. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Kaczmarczyk, J. [Faculty of Energy and Environmental Engineering, Department of Heating, Ventilation and Dust Removal Technology, Silesian University of Technology, Gliwice (Poland)

    2010-10-15

    The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and local air velocity under a constant air temperature of 26 C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front toward the upper part of the body (upper chest, head). The subjects could control the flow rate (velocity) of the supplied air in the vicinity of their bodies. The results indicate an airflow with elevated velocity applied to the face significantly improves the acceptability of the air quality at the room air temperature of 26 C and relative humidity of 70%. (author)

  2. Design of Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    The effectiveness of natural ventilation, i.e. its ability to ensure indoor air quality and passive cooling in a building, depends greatly on the design process. Mechanical ventilation systems can be designed separately from the design of the building in which they are installed. They can also...... be installed in existing buildings after a few modifications. In contrast, ventilation systems using only natural forces such as wind and thermal buoyancy need to be designed together with the building, since the building itself and its components are the elements that can reduce or increase air movement...... as well as influence the air content (dust, pollution etc.). Architects and engineers need to acquire qualitative and quantitative information about the interactions between building characteristics and natural ventilation in order to design buildings and systems consistent with a passive low...

  3. Modelling of Natural and Hybrid Ventilation

    DEFF Research Database (Denmark)

    Heiselberg, Per

    The effectiveness of natural ventilation, i.e. its ability to ensure indoor air quality and passive cooling in a building, depends greatly on the design process. Mechanical ventilation systems can be designed separately from the design of the building in which they are installed. They can also...... be installed in existing buildings after a few modifications. In contrast, ventilation systems using only natural forces such as wind and thermal buoyancy need to be designed together with the building, since the building itself and its components are the elements that can reduce or increase air movement...... as well as influence the air content (dust, pollution etc.). Architects and engineers need to acquire qualitative and quantitative information about the interactions between building characteristics and natural ventilation in order to design buildings and systems consistent with a passive low...

  4. Indoor air-quality measurements in energy-efficient residential buildings

    Energy Technology Data Exchange (ETDEWEB)

    Berk, J.V.; Hollowell, C.D.; Pepper, J.H.; Young, R.

    1980-05-01

    The potential impact on indoor air quality of energy-conserving measures that reduce ventilation is being assessed in a field-monitoring program conducted by the Lawrence Berkeley Laboratory. Using a mobile laboratory, on-site monitoring of infiltration rate, carbon dioxide, carbon monoxide, nitrogen dioxide, nitric oxide, ozone, sulfur dioxide, formaldehyde, total aldehydes, and particulates was conducted in three houses designed to be energy-efficient. Preliminary results show that energy-conserving design features that reduce air-exchange rates compromise indoor air quality; specifically, indoor levels of several pollutants were found to exceed levels detected outdoors. Although the indoor levels of most pollutants are within limits established by present outdoor air-quality standards, considerable work remains to be accomplished before health-risk effects can be accurately assessed and broad-scale regulatory guidelines revised to comply with energy-conservation goals.

  5. A simulation Model of the Reactor Hall Ventilation and air Conditioning Systems of ETRR-2

    International Nuclear Information System (INIS)

    Abd El-Rahman, M.F.

    2004-01-01

    Although the conceptual design for any system differs from one designer to another. each of them aims to achieve the function of the system required. the ventilation and air conditioning system of reactors hall is one of those systems that really differs but always dose its function for which it is designed. thus, ventilation and air conditioning in some reactor hall constitute only one system whereas in some other ones, they are separate systems. the Egypt Research Reactor-2 (ETRR-2)represents the second type. most studies conducted on ventilation and air conditioning simulation models either in traditional building or for research rectors show that those models were not designed similarly to the model of the hall of ETRR-2 in which ventilation and air conditioning constitute two separate systems.besides, those studies experimented on ventilation and air conditioning simulation models of reactor building predict the temperature and humidity inside these buildings at certain outside condition and it is difficult to predict when the outside conditions are changed . also those studies do not discuss the influences of reactor power changes. therefore, the present work deals with a computational study backed by infield experimental measurements of the performance of the ventilation and air conditioning systems of reactor hall during normal operation at different outside conditions as well as at different levels of reactor power

  6. Measurement of the Air Chance Rate and Ventilation Characteristics During Short Term Transient Phenomena

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols; Perino, M.

    2004-01-01

    Different measurement procedures are available for the experimental assessment of air change rates inside ventilated enclosures. These mainly consist of tracer gas techniques and can usually be applied to steady-state or moderately transient conditions and when a continous mixing of the indoor air...... ventilation. The results are critically compared with the air flow rates assessed through anemometric measurements. The measurement features, limitations, shortcomings and uncertainties are also discussed....... is assured throughout the test. However, due to the relatively slow response of the gas analysers, none of these procedures can usually be applied to fast transient phenomena that last 15 minutes or less. Moreover in many cases of natural ventilation strategies, the continuous mixing of the indoor air would...

  7. The role of ventilation. 2 v. Proceedings

    International Nuclear Information System (INIS)

    1994-01-01

    The 78 papers which constitute the proceedings of the conference are presented in two volumes. The papers in the first volume cover sessions dealing with the following broad topics: ventilation strategies; indoor air quality; energy impact of ventilation; building design for optimum ventilation; ventilation and energy. Volume 2 also covers ventilation strategies and ventilation and energy, and in addition: calculation, measurement and design tools; measurement and modelling. Separate abstract have been prepared for 4 papers in Volume 1 which deal with the role of ventilation in mitigating the hazard of radon in buildings. (UK)

  8. Proceedings of the 13. U.S./North American mine ventilation symposium

    International Nuclear Information System (INIS)

    Hardcastle, S.; McKinnon, D.L.

    2010-01-01

    This biannual symposium has become a major international forum for presenting technical papers in the field of underground mine ventilation. Participants included members of industry, academia and government organizations. The presentations dealt with underground coal and metal mining issues, including fire prevention, air quality control, heat and refrigeration and innovations in fan technology. The papers reflected the issues that underground mine ventilation professionals are currently facing to ensure the health and safety of miners. The sessions 7 were entitled: air quality; metal mine ventilation; coal mine ventilation; heat issues; mine fires; ventilation modeling; and fan technology. All 72 presentations featured at this conference have been catalogued separately for inclusion in this database. refs., tabs., figs.

  9. HVAC SYSTEMS AS A TOOL IN CONTROLLING INDOOR AIR QUALITY: A LITERATURE REVIEW

    Science.gov (United States)

    The report gives results of a review of literature on the use of heating, ventilating, and air-conditioning (HVAC) systems to control indoor air quality (IAQ). Although significant progress has been made in reducing the energy consumption of HVAC systems, their effect on indoor a...

  10. Demand controlled ventilation in single-family homes; Behovstyret ventilation til enfamiliehuse

    Energy Technology Data Exchange (ETDEWEB)

    Rammer Nielsen, T.; Drivsholm, C.; Rudolph Hansen, M.P.; Kragh, J.

    2009-12-15

    This project investigated two different control strategies: A simple and cheap strategy and an advanced and expensive strategy: 1. Simple control: The ventilation rate is varied only on the whole building level giving an average ventilation rate of either 0.1 l/(s m{sup 2}) or 0.35 l/(s m{sup 2}). The air change rate is controlled by sensors in the air handling unit measuring relative humidity, temperature and CO{sub 2}. The control is based on the CO{sub 2}-concentration and absolute humidity in the supply air and exhaust air. A fixed set point for the difference in CO{sub 2}-concentration between the exhaust and supply is used to decide if the ventilation rate is low or high. As supplement to the CO{sub 2} control the difference in absolute humidity between exhaust and supply is used to assure that the ventilation remain at the high level if there is a high level of humidity in the house. 2. Advanced control: The air change rate is varied dynamically for all living rooms giving an average air change for the house between 0.1 l/(s m{sup 2}) and 0.35 l/(s m{sup 2}). The air change rate in the living rooms is controlled by CO{sub 2}-sensors in each room and dampers in the room supply duct. Relative humidity is measured in the rooms with high moisture production to ensure that the highest air exchange is activated if the relative humidity in one of these rooms is too high. Even though the two strategies have been implemented and tested for a long period of time, only the simple control can be recommended. The simple control ensures that the air quality is almost the same as if the house was ventilated constantly at the high ventilation rate. Also the simple control only requires two CO{sub 2} sensors, two relative humidity sensors and two temperature sensors in the air handling unit. These sensors should be checked from time to time e.g. when filters are exchanged. The simple control is today used in meeting rooms, office rooms and daycare facilities in a modified

  11. Experimental study of perforated suspended ceilings as diffuse ventilation air inlets

    DEFF Research Database (Denmark)

    Hviid, Christian Anker; Svendsen, Svend

    2013-01-01

    An experimental study is reported in this paper for a diffuse ceiling ventilation concept. The analyses were carried out with two different porous surfaces mounted in a suspended ceiling: perforated tiles of aluminium and of gypsum. Ventilation air was supplied above the suspended ceiling effecti...... surface which increases the potential and applicability of the concept. Risk of thermal discomfort was not disclosed but the study did show evidence of large fluctuating air movements which could stem from transient behaviour creating sensations of draught to the occupants....

  12. Optimization of Occupancy Based Demand Controlled Ventilation in Residences

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Walker, Iain; Sherman, Max

    2011-01-01

    Although it has been used for many years in commercial buildings, the application of demand controlled ventilation in residences is limited. In this study we used occupant exposure to pollutants integrated over time (referred to as "dose") as the metric to evaluate the effectiveness and air quality...... implications of demand controlled ventilation in residences. We looked at air quality for two situations. The first is that typically used in ventilation standards: the exposure over a long term. The second is to look at peak exposures that are associated with time variations in ventilation rates and pollutant...... when occupied. We used analytical solutions to the continuity equation to determine the ventilation effectiveness and the long-term chronic dose and peak acute exposure for a representative range of occupancy periods, pollutant generation rates and airflow rates. The results of the study showed that we...

  13. New Air Cleaning Strategies for Reduced Commercial Building Ventilation Energy ? FY11 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Sidheswaran, Meera; Destaillats, Hugo; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William J.

    2011-10-31

    The research carried out in this project focuses on developing novel volatile organic compounds (VOCs) air cleaning technologies needed to enable energy-saving reductions in ventilation rates. we targeted a VOC air cleaning system that could enable a 50% reduction in ventilation rates. In a typical commercial HVAC system that provides a mixture of recirculated and outdoor air, a VOC air cleaner in the supply airstream must have a 15% to 20% VOC removal efficiency to counteract a 50% reduction in outdoor air supply.

  14. Seat-integrated localized ventilation for exposure reduction to air pollutants in indoor environments

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Rezgals, Lauris; Melikov, Arsen Krikor

    2016-01-01

    A novel ventilation method for minimizing the spread of bioeffluent contaminants generated from sedentary people indoors was developed and studied. The concept of the method consists of a ventilated cushion which is able to suck the human bioeffluents at the area of the body where they are mainly...... generated before they disperse around a room. The polluted near the body air is exhausted into the cushion and it is removed from the room by a separate exhaust system. The performance of the method was studied in series of experiments. Full-scale room and a dressed thermal manikin sitting in front....... The experiments were conducted at 26°C room air temperature. The performance of the VC in conjunction with mixing total-volume background ventilation at 1 air change per hour (ACH) was compared with that of mixing background ventilation alone operating at 1, 1.5, 3 and 6 ACH. Experiments at exhaust airflow rate...

  15. Improving indoor air quality through the use of continual multipoint monitoring of carbon dioxide and dew point.

    Science.gov (United States)

    Bearg, D W

    1998-09-01

    This article summarizes an approach for improving the indoor air quality (IAQ) in a building by providing feedback on the performance of the ventilation system. The delivery of adequate quantities of ventilation to all building occupants is necessary for the achievement of good IAQ. Feedback on the performance includes information on the adequacy of ventilation provided, the effectiveness of the distribution of this air, the adequacy of the duration of operation of the ventilation system, and the identification of leakage into the return plenum, either of outdoor or supply air. Keeping track of ventilation system performance is important not only in terms of maintaining good IAQ, but also making sure that this system continues to perform as intended after changes in building use. Information on the performance of the ventilation system is achieved by means of an automated sampling system that draws air from multiple locations and delivers it to both a carbon dioxide monitor and dew point sensor. The use of single shared sensors facilitates calibration checks as well as helps to guarantee data integrity. This approach to monitoring a building's ventilation system offers the possibility of achieving sustainable performance of this important aspect of good IAQ.

  16. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    Eric Loros

    2001-07-25

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  17. Subsurface Ventilation System Description Document

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-10-12

    The Subsurface Ventilation System supports the construction and operation of the subsurface repository by providing air for personnel and equipment and temperature control for the underground areas. Although the system is located underground, some equipment and features may be housed or located above ground. The system ventilates the underground by providing ambient air from the surface throughout the subsurface development and emplacement areas. The system provides fresh air for a safe work environment and supports potential retrieval operations by ventilating and cooling emplacement drifts. The system maintains compliance within the limits established for approved air quality standards. The system maintains separate ventilation between the development and waste emplacement areas. The system shall remove a portion of the heat generated by the waste packages during preclosure to support thermal goals. The system provides temperature control by reducing drift temperature to support potential retrieval operations. The ventilation system has the capability to ventilate selected drifts during emplacement and retrieval operations. The Subsurface Facility System is the main interface with the Subsurface Ventilation System. The location of the ducting, seals, filters, fans, emplacement doors, regulators, and electronic controls are within the envelope created by the Ground Control System in the Subsurface Facility System. The Subsurface Ventilation System also interfaces with the Subsurface Electrical System for power, the Monitored Geologic Repository Operations Monitoring and Control System to ensure proper and safe operation, the Safeguards and Security System for access to the emplacement drifts, the Subsurface Fire Protection System for fire safety, the Emplacement Drift System for repository performance, and the Backfill Emplacement and Subsurface Excavation Systems to support ventilation needs.

  18. An Evaluation of a Proposed Ventilation System for Melbourne's CH2 Building

    Directory of Open Access Journals (Sweden)

    Lu Aye

    2012-11-01

    Full Text Available The understanding of ventilation requirements in commercial buildings has been significantly revised in the last 10-15 years. A link between health, productivity and increased fresh air use has been established by some research and this understanding underpins the ventilation philosophy adopted for the CH2 building. The ventilation system design for CH2 that has been evaluated in this paper envisages a mechanically driven system during the day, using the displacement technique to distribute filtered air. All introduced air will be drawn from outside and no recycling of air will occur. Natural ventilation will be employed at night using the stack effect, enhanced by turbine ventilators. This paper critiques the proposed ventilation system in the light of international experience and the particular conditions of the building's location. The evidence suggests that natural ventilation sometimes may be inadequate to achieve the desired objectives. Minimization of indoor pollutants, adequate filtration and high levels of ventilation should, however, ensure satisfactory air quality during occupied hours.

  19. The Histoty of Ventilation and Air Conditioning is CERN Up to Date with the latest Technological Developments?

    CERN Document Server

    Kühnl-Kinel, J

    2000-01-01

    The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its influence on everyday life. Some examples of previous air-conditioning plants are described and different approaches to the way of calculation of ventilation systems discussed. It gives an overview of the Heating, Ventilation and Air Conditioning (HVAC) installations at CERN and points out their particularities. It also compares them with the latest technological developments in the field as well as showing the new trends that are being applied at CERN.

  20. Improved air ventilation rate estimation based on a statistical model

    International Nuclear Information System (INIS)

    Brabec, M.; Jilek, K.

    2004-01-01

    A new approach to air ventilation rate estimation from CO measurement data is presented. The approach is based on a state-space dynamic statistical model, allowing for quick and efficient estimation. Underlying computations are based on Kalman filtering, whose practical software implementation is rather easy. The key property is the flexibility of the model, allowing various artificial regimens of CO level manipulation to be treated. The model is semi-parametric in nature and can efficiently handle time-varying ventilation rate. This is a major advantage, compared to some of the methods which are currently in practical use. After a formal introduction of the statistical model, its performance is demonstrated on real data from routine measurements. It is shown how the approach can be utilized in a more complex situation of major practical relevance, when time-varying air ventilation rate and radon entry rate are to be estimated simultaneously from concurrent radon and CO measurements

  1. Demand control on room level of the supply air temperature in an air heating and ventilation system

    DEFF Research Database (Denmark)

    Polak, Joanna; Afshari, Alireza; Bergsøe, Niels Christian

    2017-01-01

    air heating and ventilation system in a high performance single family house using BSim simulation software. The provision of the desired thermal conditions in different rooms was examined. Results show that the new control strategy can facilitate maintaining of desired temperatures in various rooms......The aim of this study was to investigate a new strategy for control of supply air temperature in an integrated air heating and ventilation system. The new strategy enables demand control of supply air temperature in individual rooms. The study is based on detailed dynamic simulations of a combined....... Moreover, this control strategy enables controlled temperature differentiation between rooms within the house and therefore provides flexibility and better balance in heat delivery. Consequently, the thermal conditions in the building can be improved....

  2. Indoor Air Quality Tools for Schools Action Kit. Second Edition.

    Science.gov (United States)

    Environmental Protection Agency, Washington, DC.

    This kit contains materials to assist a school indoor air quality (IAQ) coordinator in conducting a school IAQ program. The kit contains the following: IAQ coordinator's guide; IAQ coordinator forms; IAQ backgrounder; teacher's classroom checklist; administrative staff checklist; health officer/school nurse checklist; ventilation checklist and…

  3. The effect of a photocatalytic air purifier on indoor air quality quantified using different measuring methods

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Wargocki, Pawel; Skorek-Osikowska, A.

    2010-01-01

    The effect on indoor air quality of an air purifier based on photocatalytic oxidation (PCO) was determined by different measuring techniques: sensory assessments of air quality made by human subjects, Proton-Transfer-Reaction Mass Spectrometry (PTR-MS) and chromatographic methods (Gas......, additional measurements were made with no pollution sources present in the office. All conditions were tested with the photocatalytic air purifier turned on and off. The results show that operation of the air purifier in the presence of pollutants emitted by building materials and furniture improves indoor...... Chromatography/Mass Spectrometry and High-Pressure Liquid Chromatography with UV detection). The experiment was conducted in a simulated office, ventilated with 0.6 h(-1), 2.5 h(-1) and 6 h(-1), in the presence of additional pollution sources (carpet, chipboard and linoleum). At the lowest air change rate...

  4. Indoor air quality in public utility environments-a review.

    Science.gov (United States)

    Śmiełowska, Monika; Marć, Mariusz; Zabiegała, Bożena

    2017-04-01

    Indoor air quality has been the object of interest for scientists and specialists from the fields of science such as chemistry, medicine and ventilation system design. This results from a considerable number of potential factors, which may influence the quality of the broadly understood indoor air in a negative way. Poor quality of indoor air in various types of public utility buildings may significantly affect an increase in the incidence of various types of civilisation diseases. This paper presents information about a broad spectrum of chemical compounds that were identified and determined in the indoor environment of various types of public utility rooms such as churches, museums, libraries, temples and hospitals. An analysis of literature data allowed for identification of the most important transport paths of chemical compounds that significantly influence the quality of the indoor environment and thus the comfort of living and the health of persons staying in it.

  5. Ventilation effectiveness : health benefits of heat recovery ventilators

    Energy Technology Data Exchange (ETDEWEB)

    Anon.

    2010-08-15

    Studies have shown that the installation of a heat recovery ventilator (HRV) in homes in northern Canada could improve indoor air quality and the respiratory health of inhabitants. Low ventilation rates are common in many homes in the North because the climate is severe, homes are smaller and lack basements, and occupancies are higher, leading to unhealthy indoor air quality. Northern communities also have a high rate of respiratory infections. HRVs recover much of the energy used to ventilate, which is desirable in cold regions with high heating costs. For the study, the test sample was divided into two types of houses, notably houses with active HRVs and those with control HRVs that were installed and operated but that did not function. The study results showed that HRVs provided increased ventilation. Complaints by residents about HRV noise, discomfort, or low humidity were common but equally spread between those with active and placebo HRVs. The study showed that the system design needs to be improved to better suit the needs of Inuit families. The nature of northern housing presents installation and maintenance challenges. It is hard to retrofit HRV ducting inside small, existing houses, and building supplies arrive infrequently, so detailed planning and careful take-offs of all supplies and materials must be done well in advance of construction. In addition, contractors are hard to locate and have variable expertise, and there is little technical follow-up. Robust technical support by local contractors and housing authorities is therefore important. 2 refs.

  6. Measurement and Modelling of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Heiselberg, Per; Kalyanova, Olena; Jensen, Rasmus Lund

    2008-01-01

    Air flow rate in a naturally ventilated double skin façade (DSF) is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes the results of two different methods to measure the air flow in a full...... by the thermal simulation program, BSim, based on measured weather boundary conditions are compared to the measured air temperature, temperature gradient and mass flow rate in the DSF cavity. The results show that it is possible to predict the temperature distribution and airflow in the DSF although some......-scale outdoor test facility with a naturally ventilated double skin façade. Although both methods are difficult to use under such dynamic air flow conditions, they show reasonable agreement and can be used for experimental validation of numerical models of natural ventilation air flow in DSF. Simulations...

  7. Ventilation, good indoor air quality and rational use of energy

    DEFF Research Database (Denmark)

    Clausen, Geo; Fernandes, E. D. O.; DeGids, W.

    2003-01-01

    The aim of this report is to provide information and advice to policy and decission makers, researchers, architects, designers, and manufacturers on strategies for achieving a good balance between good indoor air quality (IAQ) and the rational use of Energy in buildings, available guidelines...

  8. CFD simulation research on residential indoor air quality.

    Science.gov (United States)

    Yang, Li; Ye, Miao; He, Bao-Jie

    2014-02-15

    Nowadays people are excessively depending on air conditioning to create a comfortable indoor environment, but it could cause some health problems in a long run. In this paper, wind velocity field, temperature field and air age field in a bedroom with wall-hanging air conditioning running in summer are analyzed by CFD numerical simulation technology. The results show that wall-hanging air conditioning system can undertake indoor heat load and conduct good indoor thermal comfort. In terms of wind velocity, air speed in activity area where people sit and stand is moderate, most of which cannot feel wind flow and meet the summer indoor wind comfort requirement. However, for air quality, there are local areas without ventilation and toxic gases not discharged in time. Therefore it is necessary to take effective measures to improve air quality. Compared with the traditional measurement method, CFD software has many advantages in simulating indoor environment, so it is hopeful for humans to create a more comfortable, healthy living environment by CFD in the future. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Predicting the Air Quality, Thermal Comfort and Draught Risk for a Virtual Classroom with Desk-Type Personalized Ventilation Systems

    Directory of Open Access Journals (Sweden)

    Eusébio Z. E. Conceição

    2018-02-01

    Full Text Available This paper concerns the prediction of indoor air quality (IAQ, thermal comfort (TC and draught risk (DR for a virtual classroom with desk-type personalized ventilation system (PVS. This numerical study considers a coupling of the computational fluid dynamics (CFD, human thermal comfort (HTC and building thermal behavior (BTB numerical models. The following indexes are used: the predicted percentage of dissatisfied people (PPD index is used for the evaluation of the TC level; the carbon dioxide (CO2 concentration in the breathing zone is used for the calculation of IAQ; and the DR level around the occupants is used for the evaluation of the discomfort due to draught. The air distribution index (ADI, based in the TC level, the IAQ level, the effectiveness for heat removal and the effectiveness for contaminant removal, is used for evaluating the performance of the personalized air distribution system. The numerical simulation is made for a virtual classroom with six desks. Each desk is equipped with one PVS with two air terminal devices located overhead and two air terminal devices located below the desktop. In one numerical simulation six occupants are used, while in another simulation twelve occupants are considered. For each numerical simulation an air supply temperature of 20 °C and 24 °C is applied. The results obtained show that the ADI value is higher for twelve persons than for six persons in the classroom and it is higher for an inlet air temperature of 20 °C than for an inlet air temperature of 24 °C. In future works, more combinations of upper and lower air terminal devices located around the body area and more combinations of occupants located in the desks will be analyzed.

  10. Inhaled air quality with desk incorporated personalized ventilation (PV): parametric study

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Nagano, Hideaki; Melikov, Arsen Krikor

    A workstation consisting of a desk with installed personalized ventilation (PV) and a dressed breathing thermal manikin simulating seated occupant was set in a full-scale test room. The room was conditioned by overhead ventilation at 26 oC. The PV consisted of two confluent jets incorporated along...

  11. Exposure to aerosol and gaseous pollutants in a room ventilated with mixing air distribution

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Ondráček, Jakub; Ždímal, Vladimír

    2016-01-01

    The present study investigates the aerosol and gas dispersal in a mechanically ventilated room and the personal exposure to these contaminants. The study was performed in a full-scale climate chamber. The room was air conditioned via mixing total volume ventilation system. The room occupancy was ...... of the thermal manikin were measured. The results showed higher exposure to the contaminants measured at the breathing zone than at the ambient air. The behaviour of the tracer gas and the aerosols was similar.......The present study investigates the aerosol and gas dispersal in a mechanically ventilated room and the personal exposure to these contaminants. The study was performed in a full-scale climate chamber. The room was air conditioned via mixing total volume ventilation system. The room occupancy...... was simulated by a sitting dressed thermal manikin with realistic body shape. During the experiments monodisperse aerosols of three sizes and nitrous oxide tracer gas were generated simultaneously from one location in the room. The aerosol and gas concentrations in the bulk room air and in the breathing zone...

  12. Ventilation Behavior and Household Characteristics in NewCalifornia Houses

    Energy Technology Data Exchange (ETDEWEB)

    Price, Phillip N.; Sherman, Max H.

    2006-02-01

    A survey was conducted to determine occupant use of windows and mechanical ventilation devices; barriers that inhibit their use; satisfaction with indoor air quality (IAQ); and the relationship between these factors. A questionnaire was mailed to a stratified random sample of 4,972 single-family detached homes built in 2003, and 1,448 responses were received. A convenience sample of 230 houses known to have mechanical ventilation systems resulted in another 67 completed interviews. Some results are: (1) Many houses are under-ventilated: depending on season, only 10-50% of houses meet the standard recommendation of 0.35 air changes per hour. (2) Local exhaust fans are under-utilized. For instance, about 30% of households rarely or never use their bathroom fan. (3) More than 95% of households report that indoor air quality is ''very'' or ''somewhat'' acceptable, although about 1/3 of households also report dustiness, dry air, or stagnant or humid air. (4) Except households where people cook several hours per week, there is no evidence that households with significant indoor pollutant sources get more ventilation. (5) Except households containing asthmatics, there is no evidence that health issues motivate ventilation behavior. (6) Security and energy saving are the two main reasons people close windows or keep them closed.

  13. Efficient stratified ventilation - air conditioning of skating rinks; Effiziente Schichtlueftung - Klimatisierung von Eissporthallen

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, E. [Fa. Caverion, Aachen (Germany)

    2007-07-01

    Air conditioning of ice rinks is not just a matter of user comfort. Excessive humidity will cause frosting and poor ice quality while mist formation may interfere with hockey games. Constant condensation in the roof area causes severe damage of the building and is assumed to be a maine cause of the breakdown of the Bad Reichenhall skating hall in January 2006. In the Wolfsburg ice arena, an innovative ventilation concept was implemented which meets complex user demands and is characterized by its high energy efficiency. (orig.)

  14. Sensory evaluation of the air in 14 office buildings

    DEFF Research Database (Denmark)

    Pejtersen, Jan; Schwab, R.; Mayer, E.

    1999-01-01

    The perceived air quality was assessed in eight mechanically and six naturally ventilated office buildings. On average, 44 offices were investigated in each building. A panel of 11 trained subjects assessed the perceived air quality in the spaces directly in the sensory unit decipol. The average...... perceived air quality in the 14 office buildings ranged from 3.4 to 7.8 decipol. The perceived air quality averaged 4.1 decipol in the mechanically ventilated buildings and 6.0 decipol in the naturally ventilated buildings. Within the buildings there was a large variation in perceived air quality between...... the offices. The results indicate that the occupants' behaviour is important for the pollution load and the air quality in offices....

  15. The fluid mechanics of natural ventilation

    Science.gov (United States)

    Linden, Paul

    1999-11-01

    Natural ventilation of buildings is the flow generated by temperature differences and by the wind. Modern buildings have extreme designs with large, tall open plan spaces and large cooling requirements. Natural ventilation offers a means of cooling these buildings and providing good indoor air quality. The essential feature of ventilation is an exchange between an interior space and the external ambient. Recent work shows that in many circumstances temperature variations play a controlling feature on the ventilation since the directional buoyancy force has a large influence on the flow patterns within the space and on the nature of the exchange with the outside. Two forms of buoyancy-driven ventilation are discussed: mixing ventilation in which the interior is at approximately uniform temperature and displacement ventilation where there is strong internal stratification. The dynamics of these flows are considered and the effects of wind on them are examined both experimentally and theoretically. The aim behind this work is to give designers rules and intuition on how air moves within a building and the research shows a fascinating branch of fluid mechanics.

  16. Use of perforated acoustic panels as supply air diffusers in diffuse ceiling ventilation systems

    DEFF Research Database (Denmark)

    Iqbal, Ahsan; Kazemi, Seyed Hossein; Ardkapan, Siamak Rahimi

    Ventilation is needed for diluting and removing the contaminants, odour and excess heat from the building interior. It is important that the inhabitants perceive the ventilated spaces as comfortable. Therefore, the supply air should reach all parts of the occupied zones. Troldtekt has been...... manufacturing perforated acoustic panels for the last 13 years. The panels can be used not only in applications related to acoustics but also as low pressure drop supply air diffusers, particularly in diffuse ceiling ventilation systems. The present study verifies on a theoretically level the performance...

  17. Air quality guidelines for arenas in Nova Scotia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-05-01

    A series of guidelines have been prepared to address the quality of air in skating arena facilities in Nova Scotia. They are limited to carbon monoxide and nitrogen dioxide emissions. Average nitrogen dioxide levels should not exceed 1 part per million (ppm). Average carbon monoxide levels should not exceed 25 ppm. These guidelines do not address other contaminants such as ammonia or chlorofluorocarbons (CFCs). The guidelines are considered to be the minimum standards required for safe arena operations. These standards can be met by reducing emissions of the ice resurfacer and edger which is one of the major sources of poor air quality in arenas. Other ways to meet the standards are to ensure proper equipment operation, ventilation and monitoring of indoor air quality levels. Symptoms of exposure and potential consequences were also described. It was noted that owners and operators may be found libel for injury if a proper environment is not maintained. 6 appendices.

  18. Status of air quality in arenas in the Abitibi-Temiscamingue 2004-2005

    International Nuclear Information System (INIS)

    Gagne, D.

    2005-01-01

    The air quality was checked in 24 of 26 arenas in Quebec's Abitibi-Temiscamingue region during the intensive tournament season from November 2004 to March 2005. Carbon monoxide (CO) levels were measured in 24 arenas, while nitrogen dioxide (NO 2 ) levels were measured in 22 arenas during and after intensive use of the ice surfacing machine. The air quality respected the public health criteria for CO and NO 2 in 87 and 95 per cent of the arenas, respectively. The main factors that influence the ambient air quality in the arenas included the maintenance of the ice surfacing machine, the system of radiant heating and ventilation of combustion gases. In more than half of the arenas, the ice surfacing machine had been tuned prior to the active season. In 28 per cent of the arenas, maintenance inspections were carried out only twice during the season. Two arenas were equipped with an electric ice surfacing machine. All arenas had a mechanical ventilation system. It was concluded that the proportion of arenas that do not respect public health criteria at the time of monitoring varied between 4 and 23 per cent. While the negligence of operators is often in question, the failures of ventilation systems or a contamination by external sources of CO are often unforeseeable. For these reasons, it was recommended that annual monitoring should be conducted by an external organization. 9 refs., 7 figs.

  19. Novel bed integrated ventilation method for hospital patient rooms

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Melikov, Arsen Krikor; Kokora, Monika

    2014-01-01

    This study presents a novel method for advanced ventilation of hospital wards leading to improved air quality at reduced ventilation rate. The idea is to evacuate the bio-effluents generated from patients’ body by local exhaustion before being spread in the room. This concept was realized by using...... a mattress having a suction opening from which bio-effluents generated from human body are exhausted. Experiments were conducted in a full-scale two-bed hospital room mock-up, 4.7 x 5.3 x 2.6 m3 (W x L x H). Only one of the patients’ beds was equipped with the ventilated mattress. The room was air...... conditioned via mixing total volume ventilation system supplying air through a ceiling mounted diffuser. All experiments were performed at room air temperature of 23ºC. A thermal manikin was used to simulate a polluting patient on the bed equipped with the ventilated mattress. Two heated dummies were used...

  20. Development of energy-efficient comfort ventilation plants with air quality controlled volume flow rate and continuous detection of the status of the windows aperture. Part 3. Final report with documentation of the field test; Entwicklung energieeffizienter Komfortlueftungsanlagen mit luftqualitaetsgefuehrter Volumenstromregelung und kontinuierlicher Erfassung des Fensteroeffnungszustandes. Teilbericht 3. Endbericht mit Dokumentation des Feldtests

    Energy Technology Data Exchange (ETDEWEB)

    Grossklos, Marc; Hacke, Ulrike [Institut Wohnen und Umwelt GmbH, Darmstadt (Germany)

    2012-10-25

    Residential ventilation systems with a heat recovery contribute to the improvement of the air quality and to the reduction of heat losses caused by ventilation. An additional opening of the windows in residential buildings results in a clearly increasing consumption of thermal heat because the thermal heat of the out coming air cannot be utilized furthermore. Continuous information on the energetic effects of the opening of windows is helpful. Under this aspect, the authors of the contribution under consideration report on the development of energy efficient comfort ventilation systems with an air quality controlled volume flow rate and continuous detection of the status of the windows aperture. The contribution under consideration is the third part of a project concerning to this theme. This part encompasses a field test with four single-family houses in which the air quality control as well as the detection of the status of the windows aperture is tested and optimized for a long period. This contribution also contains the results of the second part of the project. The second project investigate the technical implementation of a air quality regulation at prototypes and test facilities.

  1. Modulating ventilation - low cost VAV for office buildings. [Variable Air Volume]; Modulerende ventilation - low cost VAV til kontor-bygninger. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Hoej Christensen, A.; Olsen, Hans; Drivsholm, C.

    2012-02-15

    The report describes a concept for renovating older existing Constant Air Volume (CAV) ventilation systems to modulating low-cost Variable Air Volume (VAV) systems. The concept is based on the total ventilated area being divided into appropriate indoor climate zones, which can cover from one to several offices with similar climate needs. For this initial climate assessment two relatively ''simple'' tools were developed that can estimate the temperature level in one room from the ventilation airflow, heat loads, etc.: - BSimFast (24-hour mean temperature calculation according to SBI-196, 2000); - BSimLight (Temperature simulation based on Danvak Textbook of Heat and Climate Technology). The concept of 'one room' can also be extended to 'one zone' with appropriate assumptions. However, only one mean room temperature is calculated. The different climate zones were equipped with Halton HFB control unit at the air supply and exhaust side. The project the following feedback options were used: - HFB unit's damper opening degree (0 to 90 degrees); - HFB unit's current flow; - HFB unit's exhaust temperature; and feedback from: - Frequency transformer (fan speed); - The central static duct pressure at the ventilation unit. In the project a control algorithm is developed that ensures a robust control of the entire ventilation system without adverse cyclic variations, based among other things on the exhaust temperature for each climate zone, and with the requirement that at least one throttle valve is always at least 80% open. It turned out that information on the current partial air volumes was necessary in addition to the individual throttle settings. Otherwise, a cyclic variations could not be controlled..Thus, it was the exhaust temperature from individual climate zones that defined the respective volumes of air. The concept was implemented on a complete CAV system and on part of a large CAV system, respectively. (LN)

  2. Numerical Simulation of Air Temperature and Velocity in a Naturally Ventilated Office

    Directory of Open Access Journals (Sweden)

    S. Shodiya

    2017-04-01

    Full Text Available This paper presents a numerical simulation of air velocity and air temperature distribution in an office room of Computer Engineering Department of University of Maiduguri which is naturally ventilated. The office room under investigation with the dimension 5 m × 5 m × 4 m has a door in the East direction, and two windows, one in the East direction and the other in the South direction. For cost effectiveness, numerical solutions of steady-state airflow and heat transfer were done using a complete two-dimensional model. The results showed that the windows and the door could not undertake indoor heat load that can make the occupants to be thermally comfortable. In activity area where people sit and stand, the air velocity is moderate, this is about 0.98 m/s on the average. In addition, the temperature in this area is relatively high of about 302 K (29 °C on the average. Based on the American Society of Heating, Refrigeration and Air-Conditioning Engineers (ASHRAE standard for comfort environment in summer (air temperature: 293 – 299 K (20 – 26 °C; air velocity: 0.5 – 0.8 m/s, the natural ventilation for the office room cannot give a thermal comfort for the inhabitant of the room. However, a window, if installed opposite the door could improve the ventilation of the office.

  3. Modelling of Natural and Hybrid Ventilation

    OpenAIRE

    Heiselberg, Per

    2006-01-01

    The effectiveness of natural ventilation, i.e. its ability to ensure indoor air quality and passive cooling in a building, depends greatly on the design process. Mechanical ventilation systems can be designed separately from the design of the building in which they are installed. They can also be installed in existing buildings after a few modifications. In contrast, ventilation systems using only natural forces such as wind and thermal buoyancy need to be designed together with the building,...

  4. Diffuse ceiling ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen

    Diffuse ceiling ventilation is an innovative ventilation concept where the suspended ceiling serves as air diffuser to supply fresh air into the room. Compared with conventional ventilation systems, diffuse ceiling ventilation can significantly reduce or even eliminate draught risk due to the low...

  5. The effect of using low-polluting building materials on ventilation requirements and energy use in buildings

    Energy Technology Data Exchange (ETDEWEB)

    Wargocki, P.; Frontczak, M. (International Centre for Indoor Environment and Energy, Dept. of Mechanical Engineering, DTU, Kgs. Lyngby (DK)); Knudsen, Henrik N. (Danish Building Research Institute, Aalborg Univ., Hoersholm (DK))

    2007-07-01

    The main objective of the ongoing research project described in this paper was to study the potential for reducing energy used for ventilating buildings by using low-polluting building materials, without compromising the indoor air quality. To quantify this potential, the exposure-response relationships, i.e. the relationships between ventilation rate and perceived indoor air quality, were established for rooms furnished with different categories of polluting materials and the simulations of energy used for ventilation were carried out. The exposure-response relationships were based on a summary of data reported in the literature on exposure-response relationships for materials tested in laboratory settings in small-scale glass chambers, and in full-scale in climate chambers, test rooms or normal offices. New experiments were also considered in which the effect of using low-polluting materials on perceived air quality was examined in test rooms ventilated with different outdoor air supply rates, low-polluting materials being selected in small glass chambers. The results suggest that the exposure-response relationships vary between different building materials and that the perceived air quality can be improved considerably when polluting building materials are substituted with materials that pollute less. The preliminary energy simulations indicate that selecting low-polluting materials will result in considerable energy savings as a result of reducing the ventilation rates required to achieve acceptable indoor air quality. (au)

  6. The Effects of Ventilation in Homes on Health

    DEFF Research Database (Denmark)

    Wargocki, Pawel

    2013-01-01

    and many of them suffer from deficient experimental design, as well as a lack of proper characterization of actual exposures occurring indoors. Based on the available data, in the reviewed studies, it seems likely that health risks may occur when ventilation rates are below 0.4 air changes per hour...... with existing ventilation systems this positive effect was less evident, probably due to poor performance of the system (too low ventilation rates and/or poor maintenance). Studies are recommended in which exposures are much better characterized (by for example measuring the pollutants indicated by the WHO...... Guidelines for Indoor Air Quality and improving ventilation measurements). Exposures should also be controlled using different ventilation methods for comparison. Future studies should also advance the understanding of how ventilation systems should be operated to achieve optimal performance. These data...

  7. Potential of Natural Ventilation in Shopping Centres

    DEFF Research Database (Denmark)

    Diederichsen, Alice; Friis, Kristina; Brohus, Henrik

    2008-01-01

    The indoor environmental quality (IEQ) is a fundamental requirement for a well performing shopping centre. This paper contains a pilot study of the potential of using hybrid ventilation (a combination of automatically controlled natural and mechanical ventilation - respectively NV and MV) in shop......The indoor environmental quality (IEQ) is a fundamental requirement for a well performing shopping centre. This paper contains a pilot study of the potential of using hybrid ventilation (a combination of automatically controlled natural and mechanical ventilation - respectively NV and MV......) in shopping centres with focus on both the achieved IEQ and energy consumptions for air movement. By thermal building simulations it is found that there exists an interesting potential for hybrid ventilation of shopping centres, which can lead to great savings in the electrical energy consumptions...

  8. Requirements of air conditioners for office buildings. Pt. 2

    Energy Technology Data Exchange (ETDEWEB)

    Radtke, W

    1988-02-01

    Presenting numerous explanatory diagrams part two of the report deals with auxiliary ventilation systems (mechanical systems); the influence of different ventilation circuits on the air quality (particle concentration, floor and ceiling air outlets); the requirements of heating systems (dimensioning of heating systems, effects of ventilation systems on the heat demand, reduced heat demand owing to auxiliary ventilation systems); the requirements of cooling (cooling loads in office buildings, room temperatures in the case of natural cooling, auxiliary ventilation systems, and cooling by means of refrigerators, floor/ceiling cooling systems); permissible ambient air velocities (complaints about draughts). Bottom-to-top ventilation circuits were found to provide for better air qualities and lower ambient air velocities without increasing the systems' energy demand. (HWJ).

  9. A survey and critical review of the literature on indoor air quality, ventilation and health symptoms in schools

    Energy Technology Data Exchange (ETDEWEB)

    Daisey, J.M. [Lawrence Berkeley National Lab., CA (United States). Energy and Environment Div.; Angell, W.J. [Univ. of Minnesota, St. Paul, MN (United States)

    1998-03-01

    A survey and critical review were undertaken of existing published literature and reports on indoor air quality (IAQ), ventilation, and IAQ- and building-related health problems in schools, including California schools. Over 450 relevant publications were obtained and reviewed, including papers published in the archival peer-reviewed scientific literature, proceedings of scientific meetings, government reports, 77 NIOSH Health Hazard Evaluation Reports (HHER) and 70 reports on investigations of problem schools in California. Most of the reviewed literature was for complaint or problem schools. The types of health symptoms reported in schools were very similar to those defined as sick building syndrome (SBS) symptoms, although this may be due, at least in part, to the type of health symptom questionnaires used. Some of the symptoms, e.g., wheezing, are indicative of asthma. In the studies in which complaint and noncomplaint buildings or areas were compared, complaint buildings generally had higher rates of health symptoms.

  10. Optimized mine ventilation on demand (OMVOD)

    International Nuclear Information System (INIS)

    Anderson, M.

    2009-01-01

    This paper provided an overview of the Optimized Mine Ventilation on Demand (OMVOD) system that is being installed at Xstrata Nickel Rim South Project and at Vale Inco's Totten Mine in Sudbury. The OMVOD system is designed to dynamically monitor and control air quality and quantity in real time and dilute and remove hazardous substances including diesel particulate matter (DPM), carbon monoxide (CO) and nitrous oxide (NO 2 ). It is also designed to control the thermal environment and provide ventilation for humans as well as mobile equipment engine combustion according to regulatory standards. The paper highlighted the OMVOD system optimization of energy, air quality measurement and control and production management of the mines through real time dynamic automation. Topics of discussion included real-time tracking and monitoring of diesel equipment; real-time tracking of underground miners; real-time evaluation of mine ventilation networks; and real-time control and optimization of ventilation equipment. ABB and Simsmart Technologies have joined forces to provide underground mining customers with a ventilation optimization solution. Simsmart's OMVOD provides proven real time/dynamic automation technology to significantly reduce energy costs, provide health and safety benefits as well as major capital cost savings while realizing an increase in production.

  11. The Histoty of Ventilation and Air Conditioning: is CERN Up to Date with the latest Technological Developments?

    OpenAIRE

    Kühnl-Kinel, J

    2000-01-01

    The invention of ventilation cannot be ascribed to a certain date. It started with simple aeration when man brought fire into his abode and continued through different stages including air cooling using ice to finally arrive at the time when ventilation and air conditioning has become an essential part of our life and plays an important role in human evolution. This paper presents the history of ventilation and air conditioning, explains the key constraints over the centuries, and shows its i...

  12. Ventilation: Exploitation and maintenance. Ten years of experience

    International Nuclear Information System (INIS)

    Letertre, J.

    1990-01-01

    The evolution and the maintenance operations performed during the last ten years on the ventilation-air-conditioning system at the Hague plant are presented. The modifications operated in the ventilation-air-conditioning system were carried out in order to answer the safety requirements evolution due to the increase of the plant productivity. The choice and the results of the maintenance policies, defined as a function of the safety, quality and cost requirements, are presented [fr

  13. Performance of ductless personalized ventilation in conjunction with displacement ventilation

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Melikov, Arsen Krikor; Vesely, Michal

    2014-01-01

    perception of the environment. The subjects could control the position of the DPV supply diffuser and the personalized air flow (air velocity). The use of DPV improved perceived air quality and thermal comfort compared to displacement ventilation alone. At 26 °C and 29 °C the percentage dissatisfied with air......, increased eye dryness sensation was reported by 30% of subjects. The personalized air flow selected by nearly 80% of the subjects at 26 °C was between 10 and 20 l/s corresponding to the target air velocity of 1.2–1.7 m/s. At 29 °C almost 90% of subjects chose a personalized air flow between 15 and 20 l/s (1...

  14. Thermal comfort and IAQ assessment of under-floor air distribution system integrated with personalized ventilation in hot and humid climate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Ruixin [Department of Building, National University of Singapore (Singapore); International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark (Denmark); Sekhar, S.C. [Department of Building, National University of Singapore (Singapore); Melikov, A.K. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark (Denmark)

    2010-09-15

    The potential for improving occupants' thermal comfort with personalized ventilation (PV) system combined with under-floor air distribution (UFAD) system was explored through human response study. The hypothesis was that cold draught at feet can be reduced when relatively warm air is supplied by UFAD system and uncomfortable sensation as ''warm head'' can be reduced by the PV system providing cool and fresh outdoor air at the facial level. A study with 30 human subjects was conducted in a Field Environmental Chamber. The chamber was served by two dedicated systems - a primary air handling unit (AHU) for 100% outdoor air that is supplied through the PV air terminal devices and a secondary AHU for 100% recirculated air that is supplied through UFAD outlets. Responses of the subjects to the PV-UFAD system were collected at various room air and PV air temperature combinations. The analyses of the results obtained reveal improved acceptability of perceived air quality and improved thermal sensation with PV-UFAD in comparison with the reference case of UFAD alone or mixing ventilation with ceiling supply diffuser. The local thermal sensation at the feet was also improved when warmer UFAD supply air temperature was adopted in the PV-UFAD system. (author)

  15. Measurement and Numerical Simulation of Air Velocity in a Tunnel-Ventilated Broiler House

    Directory of Open Access Journals (Sweden)

    Eliseo Bustamante

    2015-02-01

    Full Text Available A building needs to be designed for the whole period of its useful life according to its requirements. However, future climate predictions involve some uncertainty. Thus, several sustainable strategies of adaptation need to be incorporated after the initial design. In this sense, tunnel ventilation in broiler houses provides high air velocity values (2–3 m·s−1 at animal level to diminish their thermal stress and associated mortality. This ventilation system was experimentally incorporated into a Mediterranean climate. The aim was to resolve these thermal problems in hot seasons, as (traditional cross-mechanical ventilation does not provide enough air velocity values. Surprisingly, very little information on tunnel ventilation systems is available, especially in terms of air velocity. Using Computational Fluid Dynamics (CFD and a multi-sensor system, the average results are similar (at animal level: 1.59 ± 0.68 m·s−1 for CFD and 1.55 ± 0.66 m·s−1 for measurements. The ANOVA for validation concluded that the use of CFD or measurements is not significant (p-value = 0.1155. Nevertheless, some problems with air velocity distribution were found and need to be solved. To this end, CFD techniques can help by means of virtual designs and scenarios providing information for the whole indoor space.

  16. Investigation of Indoor Climate in a Naturally Ventilated Office Building

    DEFF Research Database (Denmark)

    Larsen, Tine Steen; Kalyanova, Olena; Jensen, Rasmus Lund

    2008-01-01

    A measuring program in a naturally ventilated office building in Copenhagen was carried out to document the indoor climate and ventilation system performance during a year. It included a questionnaire regarding the perceived indoor environmental quality and physical measurements of thermal comfort...... to a combination of poor control of solar shading and a very high local heat load that was above the Danish recommendations for naturally ventilated office buildings. Both measured and perceived indoor air quality in the building was in general very high. The measured air flow rates was relatively high due...... to the need for cooling in the office building, while the level of infiltration was quite low indicating an airtight construction....

  17. Reduced exposure to coughed air by a novel ventilation method for hospital patient rooms

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Brand, Marek

    2012-01-01

    A novel hospital bed integrated ventilation and cleaning unit (HBIVCU) for local airflow control and cleansing, limiting the airborne spread of contagious air coughed from a sick patient in a hospital room, was developed. The performance efficiency of the unit, to successfully reduce occupants......’ exposure to coughed air, was studied in a full-scale, two-bed hospital room mock-up, 4.65 m x 4.65 m x 2.60 m (W x L x H), with two patients and a doctor. Four units were placed along the two sides of both beds close to the head. The room was ventilated by overhead mixing air distribution at 22 °C room air...... of the novel unit, at background ventilation rates of 3 h-1and 6 h-1, was evaluated by measuring the excess CO2 concentration at the mouth of both the doctor and the exposed patient. When the novel method was not used, the CO2 concentration (exposure) measured in the air “inhaled” by the doctor exceeded 20...

  18. Personalized ventilation: evaluation of different air terminal devices

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Cermak, Radim; Majer, M.

    2002-01-01

    Personalized ventilation (PV) aims to provide clean air to the breathing zone of occupants. Its performance depends to a large extent on the supply air terminal device (ATD). Five different ATDs were developed, tested and compared. A typical office workplace consisting of a desk with mounted ATDs...... was simulated in a climate chamber. A breathing thermal manikin was used to simulate a human being. Experiments at room air temperatures of 26 and 20 deg.C and personalized air temperatures of 20 deg.C supplied from the ATDs were performed. The flow rate of personalized air was changed from less than 5 up to 23...... l/s. Tracer gas was used to identify the amount of personalized air inhaled by the manikin as well as the amount of exhaled air re-inhaled. The heat loss from the body segments of the thermal manikin was measured and used to calculate the equivalent temperature for the whole body as well as segments...

  19. Ventilation models

    Science.gov (United States)

    Skaaret, Eimund

    Calculation procedures, used in the design of ventilating systems, which are especially suited for displacement ventilation in addition to linking it to mixing ventilation, are addressed. The two zone flow model is considered and the steady state and transient solutions are addressed. Different methods of supplying air are discussed, and different types of air flow are considered: piston flow, plane flow and radial flow. An evaluation model for ventilation systems is presented.

  20. Air compressor battery duration with mechanical ventilation in a field anesthesia machine.

    Science.gov (United States)

    Szpisjak, Dale F; Giberman, Anthony A

    2015-05-01

    Compressed air to power field anesthesia machine ventilators may be supplied by air compressor with battery backup. This study determined the battery duration when the compPAC ventilator's air compressor was powered by NiCd battery to ventilate the Vent Aid Training Test Lung modeling high (HC = 0.100 L/cm H2O) and low (LC = 0.020 L/cm H2O) pulmonary compliance. Target tidal volumes (VT) were 500, 750, and 1,000 mL. Respiratory rate = 10 bpm, inspiratory-to-expiratory time ratio = 1:2, and fresh gas flow = 1 L/min air. N = 5 in each group. Control limits were determined from the first 150 minutes of battery power for each run and lower control limit = mean VT - 3SD. Battery depletion occurred when VT was below the lower control limit. Battery duration ranged from 185.8 (±3.2) minutes in the LC-1000 group to 233.3 (±3.6) minutes in the HC-750 group. Battery duration of the LC-1000 group was less than all others (p = 0.027). The differences among the non-LC-1000 groups were not clinically significant. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.

  1. What is IAQ? [Indoor Air Quality]; Wat is IAQ? [Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Fanger, P.O. [International Centre for Inoor Environment and Energy, Technical University of Denmark, Lyngby (Denmark)

    2007-07-15

    Indoor air quality (IAQ) is often defined as the extent to which human requirements are met. The air should be fresh and pleasant, not have a negative impact on health, that it not effects productivity. Present ventilation standards and guidelines do not include productivity and only require that the indoor air must be 'acceptable'. With such a modest aim it is not surprising that comprehensive field studies in many countries in buildings in which ventilation standards are met show high percentages of dissatisfied persons and of those suffering from Sick Building Syndrome. Recent studies show that improvement of IAQ by a factor of 2-7 compared with existing standards increases office productivity and school learning significantly, while decreasing the risk of allergic symptoms and asthma in homes. To make indoor air acceptable, even for the most sensitive persons, an improvement of 1-2 orders of magnitude may be required. The paper will discuss the development of new methods that can provide such substantial improvements of IAQ while maintaining or even decreasing ventilation end energy usage. [Dutch] In ruimtes die bestemd zijn voor menselijke bezetting wordt de binnenluchtkwaliteit (indoor Air Quality - IAQ) vaak gedefinieerd als de mate waarin aan menselijke behoeften wordt voldaan. Maar welke behoeften hebben mensen van de binnenlucht? Het is wenselijk dat de lucht wordt ervaren als zuiver en aangenaam. Dit betekent dat de lucht geen negatieve invloed mag hebben op de gezondheid en dat de lucht het werken moet stimuleren. De binnenlucht zou de productiviteit van werknemers en de schoolprestaties van kinderen moeten verhogen. In de huidige normen en richtlijnen voor ventilatie worden deze laatste twee aspecten niet meegenomen, er wordt uitgegaan van de bescheiden eis dat de binnenluchtkwaliteit 'acceptabel' dient te zijn. Dit houdt in dat de meest gevoelige groep personen (doorgaans 20%) de lucht als onacceptabel zal beoordelen en dat de

  2. Indoor air quality at nine shopping malls in Hong Kong.

    Science.gov (United States)

    Li, W M; Lee, S C; Chan, L Y

    2001-06-12

    Hong Kong is one of the most attractive shopping paradises in the world. Many local people and international tourists favor to spend their time in shopping malls in Hong Kong. Good indoor air quality is, therefore, very essential to shoppers. In order to characterize the indoor air quality in shopping malls, nine shopping malls in Hong Kong were selected for this study. The indoor air pollutants included carbon dioxide (CO2), carbon monoxide (CO), total hydrocarbons (THC), formaldehyde (HCHO), respirable particulate matter (PM10) and total bacteria count (TBC). More than 40% of the shopping malls had 1-h average CO2 levels above the 1000 ppm of the ASHRAE standard on both weekdays and weekends. Also, they had average weekday PM10 concentrations that exceeded the Hong Kong Indoor Air Quality Objective (HKIAQO). The highest indoor PM10 level at a mall was 380 microg/m3. Of the malls surveyed, 30% had indoor airborne bacteria levels above 1000 cfu/m3 set by the HKIAQO. The elevated indoor CO2 and bacteria levels could result from high occupancy combined with insufficient ventilation. The increased PM10 levels could be probably attributed to illegal smoking inside these establishments. In comparison, the shopping malls that contained internal public transport drop-off areas, where vehicles were parked with idling engines and had major entry doors close to heavy traffic roads had higher CO and PM10 indoor levels. In addition, the extensive use of cooking stoves without adequate ventilation inside food courts could increase indoor CO2, CO and PM10 levels.

  3. Experimental study on human exposure to occupant generated pollutants in rooms with ductless personalized ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Bolashikov, Zhecho Dimitrov; Lu, Pengfei

    2014-01-01

    The performance of “ductless” personalized ventilation in conjunction with displacement ventilation with regard to exposure to different body bioeffluents was studied. Experiments were performed in a full-scale room furnished as a double office. Room air temperature was kept at 26 oC. Two breathing...... modes for the ductless personalized and displacement ventilation were tested. The location of the bioeffluent source affected the spread of body bioeffluents in the space. The ductless personalized ventilation provided cleaner air to both occupants than displacement ventilation alone. Occupants using...... the ”ductless” system will perceive the supplied air quality as superior compared to displacement ventilation alone....

  4. An experimental study on effects of increased ventilation flow on students' perception of indoor environment in computer classrooms.

    Science.gov (United States)

    Norbäck, D; Nordström, K

    2008-08-01

    The effects of ventilation in computer classrooms were studied with university students (n = 355) in a blinded study, 31% were women and 3.8% had asthma. Two classrooms had a higher air exchange (4.1-5.2 ac/h); two others had a lower air exchange (2.3-2.6 ac/h). After 1 week, ventilation conditions were shifted. The students reported environmental perceptions during the last hour. Room temperature, RH, CO2, PM10 and ultra-fine particles were measured simultaneously. Mean CO2 was 1185 ppm at lower and 922 ppm at higher air exchange. Mean temperature was 23.2 degrees C at lower and 22.1 degrees C at higher air exchange. After mutual adjustment (temperature, RH, CO2, air exchange), measured temperature was associated with a perception of higher temperature (P thermal comfort and air quality. Computer classrooms are crowded indoor environments with a high thermal load from both students and computer equipment. It is important to control room temperature either by air conditioning, sun shields, or sufficiently high ventilation flow. A high ventilation flow is also crucial to achieving good perceived air quality. Personal ventilation flow should be at least 10 l/s. Possible loss of learning ability due to poor indoor air quality in university buildings deserves more attention.

  5. Co-occupant's exposure to exhaled pollutants with two types of personalized ventilation strategies under mixing and displacement ventilation systems.

    Science.gov (United States)

    Li, X; Niu, J; Gao, N

    2013-04-01

    Personalized ventilation (PV) system in conjunction with total ventilation system can provide cleaner inhaled air for the user. Concerns still exist about whether the normally protecting PV device, on the other hand, facilitates the dispersion of infectious agents generated by its user. In this article, two types of PV systems with upward supplied fresh air, namely a chair-based PV and one kind of desk-mounted PV systems, when combined with mixing ventilation (MV) and displacement ventilation (DV) systems, are investigated using simulation method with regard to their impacts on co-occupant's exposure to the exhaled droplet nuclei generated by the infected PV user. Simulation results of tracer gas and particles with aerodynamic diameter of 1, 5, and 10 μm from exhaled air show that, when only the infected person uses a PV, the different PV air supplying directions present very different impacts on the co-occupant's intake under DV, while no apparent differences can be observed under MV. The findings demonstrate that better inhaled air quality can always be achieved under DV when the adopted PV system can deliver conditioned fresh air in the same direction with the mainly upward airflow patterns of DV. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  6. Detection and Solution of Indoor Air Quality Problems in a Danish Town Hall

    DEFF Research Database (Denmark)

    Hyldgård, Carl-Erik; Brohus, Henrik

    In connection with the research programme "Healthy Buildings", a building with indoor air quality problems was selected for further investigations. A Danish town hall was chosen because of many complaints over several years. A full-scale mock-up of a typical town hall office was built...... in the climate laboratory. A new heating and ventilating system and a new control strategy were chosen and implemented into the town hall. It was found that air supply upwards along a window may make it nearly impossible to achieve comfort and a good air quality the year round without full-scale measurements....

  7. Combating the 'Sick Building Syndrome' by Improving Indoor Air Quality

    Directory of Open Access Journals (Sweden)

    Pongchai Nimcharoenwon

    2012-11-01

    Full Text Available Research indicates that many of symptoms attributed to the Sick Building Syndrome in air-conditioned office buildings are a result of considerably reduced negative ions in the internal atmosphere and that replacing the depleted negative ions can improve indoor air quality. This paper describes a method used to develop a formula (DOF-NIL formula for calculating the amount of negative ions to be added to air-conditioned buildings, to improve air quality. The formula enables estimates to be made based on how negative ions in the air are reduced by three main factors namely, Video Display Terminals (VDT; heating, ventilation and air conditioning (HVAC and Building Contents (BC. Calculations for a typical air-conditioned office, are compared with an Air Ion Counter instrument. The results show that the formula, when applied to a typical air-conditioned office, provides an accurate estimate for design purposes. The typical rate of additional negative-ions (ion-generating for a negative ion condition is found to be approximately 12.0 billion ions/hr for at least 4 hour ion-generating.

  8. Quantifying air distribution, ventilation effectiveness and airborne pollutant transport in an aircraft cabin mockup

    Science.gov (United States)

    Wang, Aijun

    The health, safety and comfort of passengers during flight inspired this research into cabin air quality, which is closely related to its airflow distribution, ventilation effectiveness and airborne pollutant transport. The experimental facility is a full-scale aircraft cabin mockup. A volumetric particle tracking velocimetry (VPTV) technique was enhanced by incorporating a self-developed streak recognition algorithm. Two stable recirculation regions, the reverse flows above the seats and the main air jets from the air supply inlets formed the complicated airflow patterns inside the cabin mockup. The primary air flow was parallel to the passenger rows. The small velocity component in the direction of the cabin depth caused less net air exchange between the passenger rows than that parallel to the passenger rows. Different total air supply rate changed the developing behaviors of the main air jets, leading to different local air distribution patterns. Two indices, Local mean age of air and ventilation effectiveness factor (VEF), were measured at five levels of air supply rate and two levels of heating load. Local mean age of air decreased linearly with an increase in the air supply rate, while the VEF remained consistent when the air supply rate varied. The thermal buoyancy force from the thermal plume generated the upside plume flow, opposite to the main jet flow above the boundary seats and thus lowered the local net air exchange. The airborne transport dynamics depends on the distance between the source and the receptors, the relative location of pollutant source, and air supply rate. Exposure risk was significantly reduced with increased distance between source and receptors. Another possible way to decrease the exposure risk was to position the release source close to the exhaust outlets. Increasing the air supply rate could be an effective solution under some emergency situations. The large volume of data regarding the three-dimensional air velocities was

  9. ASHRAE and residential ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.

    2003-10-01

    In the last quarter of a century, the western world has become increasingly aware of environmental threats to health and safety. During this period, people psychologically retreated away from outdoors hazards such as pesticides, smog, lead, oil spills, and dioxin to the seeming security of their homes. However, the indoor environment may not be healthier than the outdoor environment, as has become more apparent over the past few years with issues such as mold, formaldehyde, and sick-building syndrome. While the built human environment has changed substantially over the past 10,000 years, human biology has not; poor indoor air quality creates health risks and can be uncomfortable. The human race has found, over time, that it is essential to manage the indoor environments of their homes. ASHRAE has long been in the business of ventilation, but most of the focus of that effort has been in the area of commercial and institutional buildings. Residential ventilation was traditionally not a major concern because it was felt that, between operable windows and envelope leakage, people were getting enough outside air in their homes. In the quarter of a century since the first oil shock, houses have gotten much more energy efficient. At the same time, the kinds of materials and functions in houses changed in character in response to people's needs. People became more environmentally conscious and aware not only about the resources they were consuming but about the environment in which they lived. All of these factors contributed to an increasing level of public concern about residential indoor air quality and ventilation. Where once there was an easy feeling about the residential indoor environment, there is now a desire to define levels of acceptability and performance. Many institutions--both public and private--have interests in Indoor Air Quality (IAQ), but ASHRAE, as the professional society that has had ventilation as part of its mission for over 100 years, is the

  10. History of ventilation and of air conditioning in Dolni Rozinka uranium mines

    International Nuclear Information System (INIS)

    Voltr, S.

    1987-01-01

    At a time of the start of mining operations in the Dolni Rozinka uranium mine, ventilation had been provided using the underpressure technique with diagonal winding shafts. From 1967 the overpressure system had been used. The system is described in detail and its constraints are listed. In 1983, on the basis of an analysis and model tests, the ventilation system was replaced by a underpressure system which satisfied the current hygiene specifications, was costsaving and reliable. Since 1985, an air conditioning system has been in operation featuring mobile cooling units and a closed-circuit air conditioning water system that is separated from the mining water pumping system. In view of the favourable temperature factors of the deposit, the mobile air conditioning units are only installed in blind headings. When the through-flow wind stream is achieved, air conditioning is abandoned. (J.B.). 2 figs., 5 refs

  11. Indoor air quality investigation and health risk assessment at correctional institutions.

    Science.gov (United States)

    Ofungwu, Joseph

    2005-04-01

    A comprehensive indoor air-quality (IAQ) investigation was conducted at a state correctional facility in New Jersey, USA with a lengthy history of IAQ problems. The IAQ investigation comprised preliminary indoor air screening using direct readout instrumentation, indoor air/surface wipe sampling and laboratory analysis, as well as a heating, ventilation, and air-conditioning system evaluation, and a building envelope survey. In addition to air sampling, a human health risk assessment was performed to evaluate the potential for exposure to site-related air contaminants with respect to the inmate and worker populations. The risk assessment results for the prison facility indicated the potential for significant health risks for the inmate population, possibly reflecting the effects of their confinement and extended exposure to indoor air contaminants, as compared to the prison guard and worker population. Based on the results of the risk assessment, several mitigation measures are recommended to minimize prison population health risks and improve indoor air quality at prison facilities.

  12. Performance of mechanical ventilators at the patient's home: a multicentre quality control study.

    Science.gov (United States)

    Farré, R; Navajas, D; Prats, E; Marti, S; Guell, R; Montserrat, J M; Tebe, C; Escarrabill, J

    2006-05-01

    Quality control procedures vary considerably among the providers of equipment for home mechanical ventilation (HMV). A multicentre quality control survey of HMV was performed at the home of 300 patients included in the HMV programmes of four hospitals in Barcelona. It consisted of three steps: (1) the prescribed ventilation settings, the actual settings in the ventilator control panel, and the actual performance of the ventilator measured at home were compared; (2) the different ventilator alarms were tested; and (3) the effect of differences between the prescribed settings and the actual performance of the ventilator on non-programmed readmissions of the patient was determined. Considerable differences were found between actual, set, and prescribed values of ventilator variables; these differences were similar in volume and pressure preset ventilators. The percentage of patients with a discrepancy between the prescribed and actual measured main ventilator variable (minute ventilation or inspiratory pressure) of more than 20% and 30% was 13% and 4%, respectively. The number of ventilators with built in alarms for power off, disconnection, or obstruction was 225, 280 and 157, respectively. These alarms did not work in two (0.9%), 52 (18.6%) and eight (5.1%) ventilators, respectively. The number of non-programmed hospital readmissions in the year before the study did not correlate with the index of ventilator error. This study illustrates the current limitations of the quality control of HMV and suggests that improvements should be made to ensure adequate ventilator settings and correct ventilator performance and ventilator alarm operation.

  13. Concentration Distribution in a Mixing Ventilated Room

    DEFF Research Database (Denmark)

    Jensen, Rasmus Lund; Pedersen, D.N.; Nielsen, Peter V.

    2001-01-01

    Today there is an increasing focus on the importance of a proper ventilation system to obtain good working conditions in the term of air and thermal quality to ensure high productivity. Different ventilation principles are used, e.g., mixing ventilation and displacement ventilation. In order...... that the air is fully mixed. The objective of this work is to determine the influence of the location of a pollutant, temperature differences and whether the room is furnished or not. It is also investigated if it is sufficient to determine the mean concentration in the room to determine the personal exposure....... Full scale experiments along with a breathing thermal manikin (BTM) have been used. The results show that the location of the sources is of great importance, just as well as temperature differences. Furthermore, the concentration in the breathing zone showed large differences throughout the room....

  14. Efficiency and cost effectiveness of retrofitting ventilation in low-rise housing

    International Nuclear Information System (INIS)

    Bowser, D.; Fugler, D.

    2000-01-01

    Effective and inexpensive ventilation systems that can be retrofitted to existing low-rise housing to improve indoor air quality in existing housing stock is discussed. In a project by CMHC ten retrofit ventilation systems in single family residential buildings were tested in an effort to identify homes with specific indoor air quality concerns and to evaluate the performance of these retrofit systems by monitoring air quality before and after installation. Measurements were taken over a two-to-three day period with normal occupancy. In one case radon contamination was also measured directly before and after the retrofit. Cost estimates were based on capital, operating and maintenance expenses. This paper describes the results of three sample case studies. One of these involved a home with high concentration of radon gas. The recommended solution was fan-assisted removal of soil gases as the only way to ensure substantial reductions in concentration. Cost of the system was $2,450, plus $79 annual operating expenses. The second case involved a basement apartment with odour and moisture build-up. To solve the problem, an exhaust-only ventilation system with multiple pick-up points was installed at a cost of $750. Annual operating costs are estimated at $171. The third case study described a dwelling with windows and exhaust ducts showing condensation and mold on the bathroom ceiling. Balanced mechanical ventilation via an HRV was installed to exhaust the moist air from the house and to supply fresh dry air. In this case cost of the system was $1,345 installed, plus annual operating costs of $117. It was stressed that different houses have different requirements. Therefore it is important to be fully aware of the amount of natural ventilation a house has, prior to determining whether the solution demands additional ventilation requirements or simply redistribution. 1 ref., 3 figs

  15. Can commonly-used fan-driven air cleaning technologies improve indoor air quality? A literature review

    DEFF Research Database (Denmark)

    Zhang, Yinping; Mo, Jinhan; Li, Yuguo

    2011-01-01

    America, and Asia with expertise in air cleaning, aerosol science, medicine, chemistry and ventilation. The effects on health were not examined. Over 26,000 articles were identified in major literature databases; 400 were selected as being relevant based on their titles and abstracts by the first two......Air cleaning techniques have been applied worldwide with the goal of improving indoor air quality. The effectiveness of applying these techniques varies widely, and pollutant removal efficiency is usually determined in controlled laboratory environments which may not be realized in practice. Some...... air cleaners are largely ineffective, and some produce harmful by-products. To summarize what is known regarding the effectiveness of fan-driven air cleaning technologies, a state-of-the-art review of the scientific literature was undertaken by a multidisciplinary panel of experts from Europe, North...

  16. Air Distribution in a Room and Design Considerations of Mixing Ventilation by Flow Elements

    DEFF Research Database (Denmark)

    Nielsen, Peter V.; Jensen, Rasmus Lund; Pedersen, D. N.

    2001-01-01

    The paper shows detailed measurements of the air distribution in a room ventilated by mixing ventilation according to the specifications given by the International Energy Agency work. (Energy Conservation in Buildings and Community Systems Programme, Annex 20). It describes a number of flow...

  17. Impact of ventilation/pressurization on indoor air contaminants in schools

    International Nuclear Information System (INIS)

    Shaughnessy, R.J.; Levetin, E.; Fisher, E.J.; Ligman, B.K.

    1993-01-01

    As part of a continuing technology development effort to control radon in schools, The U.S. Environmental Protection Agency's (EPA) School Evaluation Program (SEP) team in cooperation with U.S. EPA's Region 6 office has performed radon mitigation in two Southwestern United States schools utilizing the method of ventilation/pressurization control technology. Schools were inspected and IAQ measurements made with respect to carbon dioxide, bioaerosols, volatile organic compounds, and respirable particles. Premitigation results indicated poor ventilation conditions existed throughout the school buildings. Elevated levels of respirable particles were measured, yet no conclusions with respect to health could be implied. Post-mitigation results support, but do not prove the hypothesis that improved ventilation to control radon will also reduce other indicator indoor air contaminants. (orig.). (9 refs., 4 tabs.)

  18. IEA Project on Indoor Air Quality Design and Control in Low Energy Residential Buildings

    DEFF Research Database (Denmark)

    Rode, Carsten; Abadie, Marc; Qin, Menghao

    2016-01-01

    with heat recovery systems, one of the next focal points to limiting energy consumption for thermally conditioning the indoor environment will be to possibly reducing the ventilation rate, or to make it in a new way demand controlled. However, this must be done such that it has no have adverse effects...... on Indoor Air Quality (IAQ). Annex 68, Indoor Air Quality Design and Control in Low Energy Residential Buildings, is a project under IEA’s Energy Conservation in Buildings and Communities Program (EBC), which will endeavor to investigate how future residential buildings are able to have very high energy...... performance whilst providing comfortable and healthy indoor environments. New paradigms for demand control of ventilation will be investigated, which consider the pollution loads and occupancy in buildings. The thermal and moisture conditions of such will be considered because of interactions between...

  19. A study on the evaluation of ventilation system suitable for outside air cooling applied in large data center for energy conservation

    International Nuclear Information System (INIS)

    Kwon, Yong Il

    2016-01-01

    In developed countries, expansion of communication technology has resulted in continual increase in the construction of data centers with high-density cooling loads. Throughout a year, IT equipment installed in a data center generates large and constant cooling load. As a result, data centers may be consuming an ever-growing amount of energy. The cooling system utilizing the energy of outside air is applied universally to reduce data center energy consumption. The application of the cooling system to the outdoor air cooling system of a data center considers that temperature efficiency and ventilation performance vary depending on the type of ventilation system. The displacement and mixed ventilation method can be applied generally to a data center. The efficiency of a ventilation system depends on inside temperature or contaminant concentrations in room and outlets. This study thus aims to evaluate the ventilation performance that varies according to type of ventilation system installed in the data center. Ventilation efficiency is assessed by applying the concept of total air age and considers the fresh air ratio and age of return air. Further, temperature efficiency gained by utilizing temperature difference is used to assess causes for changes in ventilation performance.

  20. A study on the evaluation of ventilation system suitable for outside air cooling applied in large data center for energy conservation

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Yong Il [Shinhan University, Euijungbu (Korea, Republic of)

    2016-05-15

    In developed countries, expansion of communication technology has resulted in continual increase in the construction of data centers with high-density cooling loads. Throughout a year, IT equipment installed in a data center generates large and constant cooling load. As a result, data centers may be consuming an ever-growing amount of energy. The cooling system utilizing the energy of outside air is applied universally to reduce data center energy consumption. The application of the cooling system to the outdoor air cooling system of a data center considers that temperature efficiency and ventilation performance vary depending on the type of ventilation system. The displacement and mixed ventilation method can be applied generally to a data center. The efficiency of a ventilation system depends on inside temperature or contaminant concentrations in room and outlets. This study thus aims to evaluate the ventilation performance that varies according to type of ventilation system installed in the data center. Ventilation efficiency is assessed by applying the concept of total air age and considers the fresh air ratio and age of return air. Further, temperature efficiency gained by utilizing temperature difference is used to assess causes for changes in ventilation performance.

  1. Measurement of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2007-01-01

    Air flow rate in a naturally ventilated space is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes three different methods to measure the air flow in a full-scale outdoor test facility...... with a naturally ventilated double skin façade. In the first method, the air flow in the cavity is estimated on the basis of six measured velocity profiles. The second method is represented by constant injection of tracer gas and in the third method a measured relation in the laboratory is used to estimate...... the flow rate on the basis of continues measurement of the pressure difference between the surface pressure at the opening and inside pressure of the double skin façade. Although all three measurement methods are difficult to use under such dynamic air flow conditions, two of them show reasonable agreement...

  2. Human Response to Personalized Ventilation Combined with Chilled Ceiling

    DEFF Research Database (Denmark)

    Lipczynska, Aleksandra; Kaczmarczyk, Jan; Marcol, Bartosz

    2014-01-01

    Personalized ventilation (PV) improves inhaled air quality, because it provides fresh air to each workstation and directly to occupant’s breathing zone. Previous research was focused on combining PV with additional total volume air distribution, i.e. mixing ventilation or displacement ventilation......, the use of radiant ceiling cooling will provide operative temperature lower than the air temperature and will improve further occupants’ thermal comfort at warm environment. Therefore combining PV with chilled ceiling may be an effective way to provide thermal comfort in rooms at temperature higher than...... temperature for chilled ceiling was 15,5/16,8°C at room air temperature of 26°C and 19,5/20,6°C at 28°C. During the experiment the subjects were performing typical office tasks at workstations with computers. Exposure included also increased activity level office work for a period of 25 min...

  3. Transition from in-hospital ventilation to home ventilation: process description and quality indicators

    Directory of Open Access Journals (Sweden)

    Kastrup, Marc

    2017-12-01

    Full Text Available The current demographic development of our society results in an increasing number of elderly patients with chronic diseases being treated in the intensive care unit. A possible long-term consequence of such a treatment is that patients remain dependent on certain invasive organ support systems, such as long-term ventilator dependency. The main goal of this project is to define the transition process between in-hospital and out of hospital (ambulatory ventilator support. A further goal is to identify evidence-based quality indicators to help define and describe this process.This project describes an ideal sequence of processes (process chain, based on the current evidence from the literature. Besides the process chain, key data and quality indicators were described in detail. Due to the limited project timeline, these indicators were not extensively tested in the clinical environment.The results of this project may serve as a solid basis for proof of feasibility and proof of concept investigations, optimize the transition process of ventilator-dependent patients from a clinical to an ambulatory setting, as well as reduce the rate of emergency re-admissions.

  4. Core public health functions for BC : evidence review : air quality-indoor

    Energy Technology Data Exchange (ETDEWEB)

    Copes, R.; Ouellette, V.; Lee, K.S.; Brauer, M. [British Columbia Ministry of Health, Victoria, BC (Canada)

    2006-04-15

    Indoor sources of pollutants can have a major impact on the health of Canadians, as pollutant concentrations are often higher indoors than outdoors. This paper assessed data compiled by public health indoor air interventions. The aim of the study was to identify the current state of evidence on the impacts of indoor pollution in order to develop performance improvement plans for public health programs in British Columbia (BC). The literature review used several databases to review interventions involving humidity control; ventilation; particulate matter; indoor allergens; and environmental tobacco smoke. Results of the review showed that improving inadequate ventilation can significantly decrease the prevalence of sick building syndrome as well as other self-reported symptoms attributed to indoor air pollution. A review of the literature also demonstrated that many building ventilation systems are not functioning to design specifications. The poor quality of studies on the health impacts of particulate matter or dust made it difficult to fully assess the benefits of particle filtration on human health. Studies investigating the impacts of controlling indoor allergens suggested that the avoidance of dust mites may benefit people with allergies. Evidence gained from studies on environmental tobacco smoke showed that banning or restricting smoking will reduce the burden of illness from pollutants in indoor air. 20 refs., 3 tabs.

  5. Core public health functions for BC : evidence review : air quality-indoor

    International Nuclear Information System (INIS)

    Copes, R.; Ouellette, V.; Lee, K.S.; Brauer, M.

    2006-04-01

    Indoor sources of pollutants can have a major impact on the health of Canadians, as pollutant concentrations are often higher indoors than outdoors. This paper assessed data compiled by public health indoor air interventions. The aim of the study was to identify the current state of evidence on the impacts of indoor pollution in order to develop performance improvement plans for public health programs in British Columbia (BC). The literature review used several databases to review interventions involving humidity control; ventilation; particulate matter; indoor allergens; and environmental tobacco smoke. Results of the review showed that improving inadequate ventilation can significantly decrease the prevalence of sick building syndrome as well as other self-reported symptoms attributed to indoor air pollution. A review of the literature also demonstrated that many building ventilation systems are not functioning to design specifications. The poor quality of studies on the health impacts of particulate matter or dust made it difficult to fully assess the benefits of particle filtration on human health. Studies investigating the impacts of controlling indoor allergens suggested that the avoidance of dust mites may benefit people with allergies. Evidence gained from studies on environmental tobacco smoke showed that banning or restricting smoking will reduce the burden of illness from pollutants in indoor air. 20 refs., 3 tabs

  6. Humidification and perceived indoor air quality in the office environment.

    Science.gov (United States)

    Reinikainen, L M; Aunela-Tapola, L; Jaakkola, J J

    1997-01-01

    OBJECTIVE: To evaluate the effect of humidification on the odour, acceptability, and stuffiness of indoor air. METHODS: In a six period cross over trial at the Pasila Office Center, Helsinki, the air of two wings of the building in turn were ventilated with air of 30%-40% humidity. A third wing served as a non-humidified control area. The quality of indoor air was assessed weekly by a panel containing 18 to 23 members. The intraindividual differences in the ratings for odour, stuffiness, and acceptability between humidified and non-humidified wings were used to assess the effect of humidification. The roles of sex, current smoking, and age as potential effect modifiers were assessed by comparing the mean intraindividual differences in ratings between the groups. RESULTS: Humidified air was found to be more odorous and stuffy (paired t test P = 0.0001) and less acceptable than the non-humidified air (McNemar's test P humidification decreases the perceived air quality. This effect is strongest in women and young subjects. PMID:9196454

  7. Operating theatre ventilation systems and microbial air contamination in total joint replacement surgery: results of the GISIO-ISChIA study.

    Science.gov (United States)

    Agodi, A; Auxilia, F; Barchitta, M; Cristina, M L; D'Alessandro, D; Mura, I; Nobile, M; Pasquarella, C

    2015-07-01

    Recent studies have shown a higher rate of surgical site infections in hip prosthesis implantation using unidirectional airflow ventilation compared with turbulent ventilation. However, these studies did not measure the air microbial quality of operating theatres (OTs), and assumed it to be compliant with the recommended standards for this ventilation technique. To evaluate airborne microbial contamination in OTs during hip and knee replacement surgery, and compare the findings with values recommended for joint replacement surgery. Air samplings were performed in 28 OTs supplied with unidirectional, turbulent and mixed airflow ventilation. Samples were collected using passive sampling to determine the index of microbial air contamination (IMA). Active sampling was also performed in some of the OTs. The average number of people in the OT and the number of door openings during the sampling period were recorded. In total, 1228 elective prosthesis procedures (60.1% hip and 39.9% knee) were included in this study. Of passive samplings performed during surgical activity in unidirectional airflow ventilation OTs (U-OTs) and mixed airflow OTs (M-OTs), 58.9% and 87.6% had IMA values >2, respectively. Of samplings performed during surgical activity in turbulent airflow OTs (T-OTs) and in turbulent airflow OTs with the surgical team wearing Steri-Shield Turbo Helmets (TH-OTs), 8.6% and 60% had IMA values ≤ 2, respectively. Positive correlation was found between IMA values and the number of people in the OT and the number of door openings (P systems always provide acceptable airborne bacterial counts. Copyright © 2015 The Healthcare Infection Society. Published by Elsevier Ltd. All rights reserved.

  8. Effectiveness of horizontal air flow fans supporting natural ventilation in a Mediterranean multi-span greenhouse

    Directory of Open Access Journals (Sweden)

    Alejandro López

    2013-08-01

    Full Text Available Natural ventilation is the most important method of climate control in Mediterranean greenhouses. In this study, the microclimate and air flow inside a Mediterranean greenhouse were evaluated by means of sonic anemometry. Experiments were carried out in conditions of moderate wind (≈ 4.0 m s-1, and at low wind speed (≈ 1.8 m s-1 the natural ventilation of the greenhouse was supplemented by two horizontal air flow fans. The greenhouse is equipped with a single roof vent opening to the windward side and two side vents, the windward one being blocked by another greenhouse close to it, while the leeward one is free of obstacles. When no fans are used, air enters through the roof vent and exits through both side vents, thus flowing contrary to the thermal effect which causes hot air to rise and impairing the natural ventilation of the greenhouse. Using fans inside the greenhouse helps the air to circulate and mix, giving rise to a more homogeneous inside temperature and increasing the average value of normalized air velocity by 365 %. These fans also increase the average values of kinetic turbulence energy inside the greenhouse by 550 % compared to conditions of natural ventilation. As the fans are placed 4 m away from the side vents, their effect on the entrance of outside air is insufficient and they do not help to reduce the inside temperature on hot days with little wind. It is therefore recommended to place the fans closer to the side vents to allow an additional increase of the air exchange rate of greenhouses.

  9. THE QUALITY OF AIR IN HOSPITAL ENVIRONMENTS CLIMATIZED AND ITS INFLUENCE IN THE OCCURRENCE OF INFECTIONS

    Directory of Open Access Journals (Sweden)

    Patrícia Staciarini Anders

    2004-08-01

    Full Text Available Climatized environment is defined as the environment where temperature and humidity are controlled.We have made a review of literature, from 1990 to 2001, through data base MEDLINE, LILACS and Ministry ofHealth – Brazil. The aim of this study was to analyze the air quality in climatized environment and the last as a riskfactor for hospital infection – HI. Twenty-three articles where analyzed and gathered by the focused theme;patterns and principles for maintaining the air quality; air quality and isolation of microorganism; air quality andoccurrence of infection. The standard of quality quotes: ventilation, maintenance and cleanness of climatizationsystems. Aspergillus, Legionella, Acinetobacter, Clostridium, Nocardia, among others where found in airconditioned devices and the first three ones being responsable for booms of HI.

  10. Solutions for Energy Efficient and Sustainable Heating of Ventilation Air: A Review

    Directory of Open Access Journals (Sweden)

    A. Žandeckis

    2015-10-01

    Full Text Available A high energy efficiency and sustainability standards defined by modern society and legislation requires solutions in the form of complex integrated systems. The scope of this work is to provide a review on technologies and methods for the heating of ventilation air as a key aspect for high energy and environmental performance of buildings located in a cold climate. The results of this work are more relevant in the buildings where space heating consumes a significant part of the energy balance of a building, and air exchange is arranged in an organized manner. A proper design and control strategy, heat recovery, the use of renewable energy sources, and waste heat are the main aspects which must be considered for efficient and sustainable ventilation. This work focuses on these aspects. Air conditioning is not in the scope of this study.

  11. INFLUENCE OF APPLYING ADDITIONAL FORCING FANS FOR THE AIR DISTRIBUTION IN VENTILATION NETWORK

    Directory of Open Access Journals (Sweden)

    Nikodem SZLĄZAK

    2016-07-01

    Full Text Available Mining progress in underground mines cause the ongoing movement of working areas. Consequently, it becomes neces-sary to adapt the ventilation network of a mine to direct airflow into newly-opened districts. For economic reasons, opening new fields is often achieved via underground workings. Length of primary intake and return routes increases and also increases the total resistance of a complex ventilation network. The development of a subsurface structure can make it necessary to change the air distribution in a ventilation network. Increasing airflow into newly-opened districts is necessary. In mines where extraction does not entail gas-related hazards, there is possibility of implementing a push-pull ventilation system in order to supplement airflows to newly developed mining fields. This is achieved by installing sub-surface fan stations with forcing fans at the bottom of downcast shaft. In push-pull systems with multiple main fans, it is vital to select forcing fans with characteristic curves matching those of the existing exhaust fans to prevent undesirable mutual interaction. In complex ventilation networks it is necessary to calculate distribution of airflow (especially in net-works with a large number of installed fans. In the article the influence of applying additional forcing fans for the air distribution in ventilation network for underground mine were considered. There are also analysed the extent of over-pressure caused by the additional forcing fan in branches of the ventilation network (the operating range of additional forcing fan. Possibilities of increasing airflow rate in working areas were conducted.

  12. Personal computers pollute indoor air: effects on perceived air quality, SBS symptoms and productivity in offices

    DEFF Research Database (Denmark)

    Bako-Biro, Zsolt; Wargocki, Pawel; Weschler, Charles J.

    2002-01-01

    was reduced and air freshness increased; all effects were significant. In the presence of PCs the performance of text typing significantly decreased. The sensory pollution load of the PCs was found to be 3 olf per PC, i.e. three times the load of the occupants. Present results indicate negative effects of PCs......Perceived air quality and Sick Building Syndrome (SBS) symptoms were studied in a low-polluting office space ventilated at an air change rate of 2 h-1 (10 L/s per person with 6 people present) with and without personal computers (PCs). Other environmental parameters were kept constant. Thirty...... female subjects were exposed for 4.8 h to each of the two conditions in the office and performed simulated office work. They remained thermally neutral by adjusting their clothing and were blind to the interventions. In the absence of PCs in the office the perceived air quality improved, odour intensity...

  13. Comparison of indoor air distribution and thermal environment for different combinations of radiant heating systems with mechanical ventilation systems

    DEFF Research Database (Denmark)

    Wu, Xiaozhou; Fang, Lei; Olesen, Bjarne W.

    2018-01-01

    A hybrid system with a radiant heating system and a mechanical ventilation system, which is regarded as an advanced heating, ventilation and air-conditioning (HVAC) system, has been applied in many modern buildings worldwide. To date, almost no studies focused on comparative analysis of the indoor...... air distribution and the thermal environment for all combinations of radiant heating systems with mechanical ventilation systems. Therefore, in this article, the indoor air distribution and the thermal environment were comparatively analyzed in a room with floor heating (FH) or ceiling heating (CH......) and mixing ventilation (MV) or displacement ventilation (DV) when the supply air temperature ranged from 15.0°C to 19.0°C. The results showed that the temperature effectiveness values were 1.05–1.16 and 0.95–1.02 for MV+ FH and MV+ CH, respectively, and they were 0.78–0.91 and 0.51–0.67 for DV + FH and DV...

  14. Survey of occupant behaviour, energy use and indoor air quality in Greenlandic dwellings

    DEFF Research Database (Denmark)

    Kotol, Martin

    , they provide their occupants with poor indoor air quality. A questionnaire survey was performed in the town of Sisimiut-Greenland, which with its location and population represents Greenlandic conditions quite well. The aim of the survey was to investigate the energy consumption and indoor air quality...... in arctic dwellings and to study the influence of occupant behaviour of people living in arctic climates on energy consumption and indoor air quality. The results have shown that the average electricity consumption is 20% higher than in DK, ventilation systems are insufficient and that the inhabitants often......In cold arctic regions people usually spend over 70% of their time indoors. The effect of poor indoor air quality on occupants’ health and comfort is therefore considerable. Dwellings in Greenland consume very large amounts of energy (in average over 370 kWh/year per m2) and in addition...

  15. Advanced Controls for Residential Whole-House Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Turner, William [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sherman, Max [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-08-01

    Whole-house ventilation systems are becoming commonplace in new construction, remodeling/renovation, and weatherization projects, driven by combinations of specific requirements for indoor air quality (IAQ), health and compliance with standards, such as ASHRAE 62.2. Ventilation systems incur an energy penalty on the home via fan power used to drive the airflow, and the additional space-conditioning load associated with heating or cooling the ventilation air. Finding a balance between IAQ and energy use is important if homes are to be adequately ventilated while not increasing the energy burden. This study used computer simulations to examine RIVEC the Residential Integrated Ventilation Controller - a prototype ventilation controller that aims to deliver whole-house ventilation rates that comply with ventilation standards, for the minimum use of energy. Four different whole-house ventilation systems were simulated, both with and without RIVEC, so that the energy and IAQ results could be compared. Simulations were conducted for 13 US climate zones, three house designs, and three envelope leakage values. The results showed that the RIVEC controller could typically return ventilation energy savings greater than 40percent without compromising long-term chronic or short-term acute exposures to relevant indoor contaminants. Critical and average peak power loads were also reduced as a consequence of using RIVEC.

  16. Capturing energy from ventilation air methane a preliminary design for a new approach

    International Nuclear Information System (INIS)

    Cluff, D.L.; Kennedy, G.A.; Bennett, J.G.; Foster, P.J.

    2015-01-01

    Methane is a potent greenhouse gas (GHG), discharged to the atmosphere by coalmining, the natural gas industry and natural biological processes, second only to carbon dioxide; thus, any reduction in atmospheric methane would be globally beneficial. The capture or use of ventilation air methane (VAM) is challenging because it is a high volume low concentration methane source. This results in the routine discharge of methane into the atmosphere. A review of VAM mitigation technologies is provided and the main disadvantages of the existing technologies are discussed. In the proposed VamTurBurner © system, the heat from the combustion chamber is transferred to the preheating zone either by a heat exchanger or by redirecting the combustion products to mix with the ventilation air stream from a coalmine. Gas turbines (GT) are used to produce electricity with the exhaust gases directed to mix with the incoming ventilation airflow. The turbulence introduced by the GT exhaust assists with mixing of the incoming ventilation airflow and the return flow of combustion products from the combustion chamber. The combustion products are a source of heat, which increases the temperature of the incoming ventilation air to a value high enough for the methane to undergo flameless combustion upon encountering the igniters. The high temperature combustion products enter a multi-generation system. The multi-generation system is based on mature engineering technology such as heat exchangers and steam turbines. The residual heat provides additional heat based products such as industrial scale drying, chilling by an absorption chiller or simply hot water. The VamTurBurner © uses the energy from the GT, igniters and VAM to provide clean efficient energy while mitigating the atmospheric emissions of methane. The opportunity to collect carbon credits may improve the economics. Since the VAM is a free energy source, the output of the system is greater than the purchased energy. - Highlights:

  17. The Bonneville Power Administration new energy-efficient homes programs: Final environmental impact statement: Volume 1, Assessing indoor air quality options

    International Nuclear Information System (INIS)

    1988-03-01

    BPA has underway marketing and incentive programs to encourage the construction of new energy-efficient homes that comply with Model Conservation Standards (MCS) developed by the Northwest Power Planning Council. These homes are designed to have lower infiltration rates than current building practices provide, which is likely to contribute to increased levels of indoor air pollutants, and may adversely affect the health of occupants. BPA's current and past new homes programs maintained ventilation rates comparable to those found in current practice homes by requiring balanced mechanical ventilation. BPA now proposes to give builders and consumers more flexibility by increasing the options for protecting indoor air quality in its new homes programs. This proposal is the impetus for this Environmental Impact Statement (EIS), which was prepared for BPA by Pacific Northwest Laboratory. BPS is preparing this EIS to assess whether other techniques maintain indoor air quality comparable to that found in homes built using current practices. Although many pollutants are potentially of great concern, our analysis concentrates on radon and formaldehyde. It is based on measured concentrations of these pollutants and measured ventilation rates in current practice. Ventilation was measured using fan pressurization tests, which measure only air leakage, and perfluorocarbon tracer gas (PFT) tests, which account for ventilation from mechanical devices and occupant behavior in addition to air leakage. These tests yielded two different estimates. We used these data to estimate pollutant concentrations and lifetime cancer rates under three alternative actions. Under all of the alternatives, radon had a much greater effect than formaldehyde. 102 refs

  18. Effect of air humidification on the sick building syndrome and perceived indoor air quality in hospitals: a four month longitudinal study.

    Science.gov (United States)

    Nordström, K; Norbäck, D; Akselsson, R

    1994-01-01

    The sensation of dryness and irritation is essential in the sick building syndrome (SBS), and such symptoms are common in both office and hospital employees. In Scandinavia, the indoor relative humidity in well ventilated buildings is usually in the range 10-35% in winter. The aim of this study was to evaluate the effect of steam air humidification on SBS and perceived air quality during the heating season. The study base consisted of a dynamic population of 104 hospital employees, working in four new and well ventilated geriatric hospital units in southern Sweden. Air humidification raised the relative air humidity to 40-45% in two units during a four months period, whereas the other two units served as controls with relative humidity from 25-35%. Symptoms and perceived indoor air quality were measured before and after the study period by a standardised self administered questionnaire. The technical measurements comprised room temperature, air humidity, static electricity, exhaust air flow, aerosols, microorganisms, and volatile organic compounds in the air. The most pronounced effect of the humidification was a significant decrease of the sensation of air dryness, static electricity, and airway symptoms. After four months of air humidification during the heating season, 24% reported a weekly sensation of dryness in humidified units, compared with 73% in controls. No significant changes in symptoms of SBS or perceived air quality over time were found in the control group. The room temperature in all units was between 21-23 degrees C, and no significant effect of air humidification on the air concentration of aerosols or volatile organic compounds was found. No growth of microorganisms was found in the supply air ducts, and no legionella bacteria were found in the supply water of the humidifier. Air humidification, however, significantly reduced the measured personal exposure to static electricity. It is concluded that air humidification during the heating season

  19. Indoor air quality and health in schools.

    Science.gov (United States)

    Ferreira, Ana Maria da Conceição; Cardoso, Massano

    2014-01-01

    To determine whether indoor air quality in schools is associated with the prevalence of allergic and respiratory diseases in children. We evaluated 1,019 students at 51 elementary schools in the city of Coimbra, Portugal. We applied a questionnaire that included questions regarding the demographic, social, and behavioral characteristics of students, as well as the presence of smoking in the family. We also evaluated the indoor air quality in the schools. In the indoor air of the schools evaluated, we identified mean concentrations of carbon dioxide (CO2) above the maximum reference value, especially during the fall and winter. The CO2 concentration was sometimes as high as 1,942 ppm, implying a considerable health risk for the children. The most prevalent symptoms and respiratory diseases identified in the children were sneezing, rales, wheezing, rhinitis, and asthma. Other signs and symptoms, such as poor concentration, cough, headache, and irritation of mucous membranes, were identified. Lack of concentration was associated with CO2 concentrations above the maximum recommended level in indoor air (p = 0.002). There were no other significant associations. Most of the schools evaluated presented with reasonable air quality and thermal comfort. However, the concentrations of various pollutants, especially CO2, suggest the need for corrective interventions, such as reducing air pollutant sources and improving ventilation. There was a statistically significant association between lack of concentration in the children and exposure to high levels of CO2. The overall low level of pollution in the city of Coimbra might explain the lack of other significant associations.

  20. Environmental Technology Verification: Supplement to Test/QA Plan for Biological and Aerosol Testing of General Ventilation Air Cleaners; Bioaerosol Inactivation Efficiency by HVAC In-Duct Ultraviolet Light Air Cleaners

    Science.gov (United States)

    The Air Pollution Control Technology Verification Center has selected general ventilation air cleaners as a technology area. The Generic Verification Protocol for Biological and Aerosol Testing of General Ventilation Air Cleaners is on the Environmental Technology Verification we...

  1. Supply Ventilation and Prevention of Carbon Monoxide (II) Ingress into Building Premises

    Science.gov (United States)

    Litvinova, N. A.

    2017-11-01

    The article contains the relationships of carbon monoxide (II) concentration versus height-above-ground near buildings derived based on results of studies. The results of studies are crucial in preventing external pollutants ingress into a ventilation system. Being generated by external emission sources, such as motor vehicles and city heating plants, carbon monoxide (II) enters the premises during operation of a supply ventilation system. Fresh air nomographic charts were drawn to select the height of a fresh air intake into the ventilation system. Nomographic charts take into account external sources. The selected emission sources are located at various levels above ground relative to the building. The recommendations allow designing supply ventilation taking into account the quality of ambient air through the whole building height.

  2. Comparison between Different Air Distribution Systems

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    The aim of an air conditioning system is to remove excess heat in a room and replace room air with fresh air to obtain a high air quality. It is not sufficient to remove heat and contaminated air, it is also necessary to distribute and control the air movement in the room to create thermal comfort...... in the occupied zone. Most air distribution systems are based on mixing ventilation with ceiling or wall-mounted diffusers or on displacement ventilation with wall-mounted low velocity diffusers. New principles for room air distribution were introduced during the last decades, as the textile terminals mounted...... in the ceiling and radial diffusers with swirling flow also mounted in the ceiling. This paper addresses five air distribution systems in all, namely mixing ventilation from a wallmounted terminal, mixing ventilation from a ceiling-mounted diffuser, mixing ventilation from a ceiling-mounted diffuser...

  3. Hybrid Ventilation Air Flow Process

    DEFF Research Database (Denmark)

    Heiselberg, Per Kvols

    The scope of this annex is therefore to obtain better knowledge of the use of hybrid ventilation technologies. The annex focus on development of control strategies for hybrid ventilation, on development of methods to predict hybrid ventilation performance in office buildings and on implementation...

  4. Liquid Ventilation

    Directory of Open Access Journals (Sweden)

    Qutaiba A. Tawfic

    2011-01-01

    Full Text Available Mammals have lungs to breathe air and they have no gills to breath liquids. When the surface tension at the air-liquid interface of the lung increases, as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen, as the inert carrier of oxygen and carbon dioxide offers a number of theoretical advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. The potential for multiple clinical applications for liquid-assisted ventilation will be clarified and optimized in future. Keywords: Liquid ventilation; perfluorochemicals; perfluorocarbon; respiratory distress; surfactant.

  5. Improved Performance of Personalized Ventilation by Control of the Convection Flow around Occupant Body

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Krenek, Miroslav

    2009-01-01

    This paper reports on methods of control of the free convection flow around human body aiming at improvement of inhaled air quality for occupants at workstations with personalized ventilation (PV). Two methods of control were developed and explored: passive - blocking the free convection developm......This paper reports on methods of control of the free convection flow around human body aiming at improvement of inhaled air quality for occupants at workstations with personalized ventilation (PV). Two methods of control were developed and explored: passive - blocking the free convection......-scale test room with background mixing ventilation. Thermal manikin with realistic free convection flow was used. The PV supplied air from front/above towards the face. All measurements were performed under isothermal conditions at 20 °C and 26 °C. The air in the test room was mixed with tracer gas, while...

  6. Aerosol distribution during open suctioning and long-term surveillance of air quality in a respiratory care center within a medical center.

    Science.gov (United States)

    Chung, Fen-Fang; Lin, Hui-Ling; Liu, Hsueh-Erh; Lien, Angela Shin-Yu; Hsiao, Hsiu-Feng; Chou, Lan-Ti; Wan, Gwo-Hwa

    2015-01-01

    The investigation of hospital air quality has been conducted in wards, ICUs, operating theaters, and public areas. Few studies have assessed air quality in respiratory care centers (RCCs), especially in mechanically ventilated patients with open suctioning. The RCC air quality indices (temperature, relative humidity, levels of CO2, total volatile organic compounds, particulate matter [PM], bacteria, and fungi) were monitored over 1 y. The air around the patient's head was sampled during open suctioning to examine the probability of bioaerosol exposure affecting health-care workers. This investigation found that the levels of indoor air pollutants (CO2, PM, bacteria, and fungi) were below the indoor air quality standard set by the Taiwan Environmental Protection Agency. Meanwhile, the levels of total volatile organic compounds sometimes exceeded the indoor air quality standard, particularly in August. The identified bacterial genera included Micrococcus species, Corynebacterium species, and Staphylococcus species, and the predominant fungal genera included yeast, Aspergillus species, Scopulariopsis species, and Trichoderma species. Additionally, airborne PM2.5, PM1, and bacteria were clearly raised during open suctioning in mechanically ventilated patients. This phenomenon demonstrated that open suctioning may increase the bacterial exposure risk of health-care workers. RCC air quality deserves long-term monitoring and evaluation. Health-care workers must implement self-protection strategies during open suctioning to ensure their occupational health and safety in health-care settings. Copyright © 2015 by Daedalus Enterprises.

  7. Computational fluid dynamics in ventilation: Practical approach

    Science.gov (United States)

    Fontaine, J. R.

    The potential of computation fluid dynamics (CFD) for conceiving ventilation systems is shown through the simulation of five practical cases. The following examples are considered: capture of pollutants on a surface treating tank equipped with a unilateral suction slot in the presence of a disturbing air draft opposed to suction; dispersion of solid aerosols inside fume cupboards; performances comparison of two general ventilation systems in a silkscreen printing workshop; ventilation of a large open painting area; and oil fog removal inside a mechanical engineering workshop. Whereas the two first problems are analyzed through two dimensional numerical simulations, the three other cases require three dimensional modeling. For the surface treating tank case, numerical results are compared to laboratory experiment data. All simulations are carried out using EOL, a CFD software specially devised to deal with air quality problems in industrial ventilated premises. It contains many analysis tools to interpret the results in terms familiar to the industrial hygienist. Much experimental work has been engaged to validate the predictions of EOL for ventilation flows.

  8. Evaluation of indoor air quality in a department of radiation oncology located underground

    International Nuclear Information System (INIS)

    Kim, Won Taek; Kwon, Byung Hyun; Kang, Dong Mug; Ki, Yong Kan; Kim, Dong Won; Shin, Yong Chul

    2005-01-01

    Indoor air quality (IAQ) in the radiation treatment center which is generally located underground is important to the health of hospital workers and patients treated over a long period of time. This study was conducted to measure and analyze the factors related to IAQ and subjective symptoms of sick building syndrome, and to establish the causes influencing IAQ and find a solution to the problems. Self administrated questionnaire was conducted to check the workers' symptoms and understanding of the work environment. Based on a preliminary investigation, the factors related to IAQ such as temperature, humidity, fine particulate, carbon dioxide, carbon monoxide, formaldehyde, total volatile organic compounds (TVOC), and radon gas were selected and measured for a certain period of time in specific sites where hospital workers stay long in a day. And we also evaluated the surrounding environment and the efficiency of the ventilating system simultaneously, and measured the same factors at the first floor (outdoor) to compare with outdoor air quality. All collected data were assessed by the recommended standard for IAQ of the domestic and international environmental organizations. Hospital workers were discontented with foul odors, humidity and particulate. They complained symptoms related to musculo-skeletal system, neurologic system, and mucosal-irritation. Most of the factors were not greater than the recommended standard, but the level of TVOC was third or fourth times as much as the measuring level of some offices in the United States. The frequency and the amount of the ventilating system were adequate, however, the problem arising in the position of outdoor-air inlets and indoor-air outlets involved a risk of the indraft of contaminated air. A careful attention was a requirement in handling and keeping chemical substances including a developing solution which has a risk of TVOC emissions, and repositioning the ventilating system was needed to solve the

  9. Design and simulation of a hybrid ventilation system with earth-air heat exchanger

    Energy Technology Data Exchange (ETDEWEB)

    Athienitis, A.K.; Zhao, M. [Concordia Univ., Centre for Building Studies, Montreal, PQ (Canada). Dept. of Building, Civil and Environmental Engineering; Roy, M. [Martin Roy and Associes Group Conseil Inc., Montreal, PQ (Canada)

    2005-07-01

    A simulation study was conducted during the design phase of a new circus building in Montreal which includes a hybrid ventilation system through which fresh air is supplied from an earth-air heat exchanger (EAHE). The EAHE has the potential to satisfy the cooling needs of the building and can also be used to preheat fresh air, thereby satisfying one-third or more of the building's heating needs. Another feature of the building is that it uses displacement ventilation by which the air is supplied at low velocities through large diffusers behind the top level seats or under the seats. In this study, computational fluid dynamics (CFD) simulations were carried out to help size the supply and return units of the heating, ventilating and air conditioning (HVAC) system, as well as the exhaust chimney. The primary objective of the CFD simulation was to determine the maximum velocity and temperature in the seated area to ensure thermal comfort. CFD simulation predictions were found to be in good agreement with preliminary measurements taken in the building. In order to monitor the operation of the system over the next year, the underground ducts were equipped with temperature sensors at several depths into the soil. The energy efficiency of the hybrid HVAC system will be assessed and the velocity and temperature distribution in the theatre will be examined under various operating and energy load conditions. 8 refs., 6 figs.

  10. Rational use of supply air in residential buildings

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Nielsen, Toke Rammer; Svendsen, Svend

    2009-01-01

    The ventilation rate influences the air quality by determining the intensity of pollution sources. This paper compared the intensity of the sensory pollution during occupied hours in an apartment ventilated by a constant air volume system and demand controlled ventilation systems controlled by oc...... by occupancy. The systems supplied the same total volume of air daily. It was found that the supply air could be used more rationally by redistributing it according to occupancy compared to maintaining a constant ventilation rate during all hours....

  11. Experimental research on the indoor temperature and humidity fields in radiant ceiling air-conditioning system under natural ventilation

    Science.gov (United States)

    Huang, Tao; Xiang, Yutong; Wang, Yonghong

    2017-05-01

    In this paper, the indoor temperature and humidity fields of the air in a metal ceiling radiant panel air conditioning system with fresh air under natural ventilation were researched. The temperature and humidity distributions at different height and different position were compared. Through the computation analysis of partial pressure of water vapor, the self-recovery characteristics of humidity after the natural ventilation was discussed.

  12. Experimental Investigation of Ventilation Efficiency in a Dentistry Surgical Room

    Directory of Open Access Journals (Sweden)

    Oladokun Majeed Olaide

    2016-01-01

    Full Text Available As a response to the need to provide an acceptable thermal comfort and air quality in indoor environments, various ventilation performance indicators were developed over the years. These metrics are mainly geared towards air distribution, heat and pollutant removals. Evidence exists of influencing factors on these indicators as centered on ventilation design and operations. Unlike other indoor environments, health care environment requires better performance of ventilation system to prevent an incidence of nosocomial and other hospital acquired illnesses. This study investigates, using in-situ experiments, the ventilation efficiency in a dentistry surgical room. Thermal and hygric parameters were monitored on the air terminal devices and occupied zone over a period of one week covering both occupied and unoccupied hours. The resulting time-series parameters were used to evaluate the room’s ventilation effectiveness. Also, the obtained parameters were benchmarked against ASHRAE 170 (2013 and MS1525 (2014 requirements for ventilation in health care environment and building energy efficiency respectively. The results show that the mean daily operative conditions failed to satisfy the provisions of both standards. Regarding effectiveness, the findings reveal that the surgical room ventilation is ineffective with ventilation efficiency values ranging between 0 and 0.5 indicating air distribution short-circuiting. These results suggest further investigations, through numerical simulation, on the effect of this short-circuiting on thermal comfort, infection risk assessments and possible design improvements, an endeavour that forms our next line of research inquiries.

  13. British Thoracic Society Quality Standards for acute non-invasive ventilation in adults

    Science.gov (United States)

    Davies, Michael; Allen, Martin; Bentley, Andrew; Bourke, Stephen C; Creagh-Brown, Ben; D’Oliveiro, Rachel; Glossop, Alastair; Gray, Alasdair; Jacobs, Phillip; Mahadeva, Ravi; Moses, Rachael; Setchfield, Ian

    2018-01-01

    Introduction The purpose of the quality standards document is to provide healthcare professionals, commissioners, service providers and patients with a guide to standards of care that should be met for the provision of acute non-invasive ventilation in adults together with measurable markers of good practice. Methods Development of British Thoracic Society (BTS) Quality Standards follows the BTS process of quality standard production based on the National Institute for Health and Care Excellence process manual for the development of quality standards. Results 6 quality statements have been developed, each describing a standard of care for the provision of acute non-invasive ventilation in the UK, together with measurable markers of good practice. Conclusion BTS Quality Standards for acute non-invasive ventilation in adults form a key part of the range of supporting materials that the Society produces to assist in the dissemination and implementation of guideline’s recommendations. PMID:29636979

  14. Impact of personalized ventilation combined with chilled ceiling on eye irritation symptoms

    DEFF Research Database (Denmark)

    Lipczynska, Aleksandra; Marcol, Bartosz; Kaczmarczyk, Jan

    2014-01-01

    Personalized ventilation (PV) improves inhaled air quality, because it provides fresh air to each workstation and directly to occupant’s breathing zone. The PV alone can be used for room ventilation when applied in conjunction with ceiling radiant cooling system, which removes sensible heat loads...... from the space. Combining PV with chilled ceiling may be an effective way to provide thermal comfort in rooms at air temperature higher than the recommended in the standards upper limit of 26°C (category II), because the operative temperature will be lower. However, combination of high air temperature...

  15. Effectiveness of horizontal air flow fans supporting natural ventilation in a Mediterranean multi-span greenhouse

    OpenAIRE

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco Domingo; Peña, Araceli

    2013-01-01

    Natural ventilation is the most important method of climate control in Mediterranean greenhouses. In this study, the microclimate and air flow inside a Mediterranean greenhouse were evaluated by means of sonic anemometry. Experiments were carried out in conditions of moderate wind (≈ 4.0 m s-1), and at low wind speed (≈ 1.8 m s-1) the natural ventilation of the greenhouse was supplemented by two horizontal air flow fans. The greenhouse is equipped with a single roof vent opening t...

  16. Air quality inside subway metro indoor environment worldwide: A review.

    Science.gov (United States)

    Xu, Bin; Hao, Jinliang

    2017-10-01

    The air quality in the subway metro indoor microenvironment has been of particular public concern. With specific reference to the growing demand of green transportation and sustainable development, subway metro systems have been rapidly developed worldwide in last decades. The number of metro commuters has continuously increased over recent years in metropolitan cities. In some cities, metro system has become the primary public transportation mode. Although commuters typically spend only 30-40min in metros, the air pollutants emitted from various interior components of metro system as well as air pollutants carried by ventilation supply air are significant sources of harmful air pollutants that could lead to unhealthy human exposure. Commuters' exposure to various air pollutants in metro carriages may cause perceivable health risk as reported by many environmental health studies. This review summarizes significant findings in the literature on air quality inside metro indoor environment, including pollutant concentration levels, chemical species, related sources and health risk assessment. More than 160 relevant studies performed across over 20 countries were carefully reviewed. These comprised more than 2000 individual measurement trips. Particulate matters, aromatic hydrocarbons, carbonyls and airborne bacteria have been identified as the primary air pollutants inside metro system. On this basis, future work could focus on investigating the chronic health risks of exposure to various air pollutants other than PM, and/or further developing advanced air purification unit to improve metro in-station air quality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Construction and application of an intelligent air quality monitoring system for healthcare environment.

    Science.gov (United States)

    Yang, Chao-Tung; Liao, Chi-Jui; Liu, Jung-Chun; Den, Walter; Chou, Ying-Chyi; Tsai, Jaw-Ji

    2014-02-01

    Indoor air quality monitoring in healthcare environment has become a critical part of hospital management and policy. Manual air sampling and analysis are cost-inhibitive and do not provide real-time air quality data and response measures. In this month-long study over 14 sampling locations in a public hospital in Taiwan, we observed a positive correlation between CO(2) concentration and population, total bacteria, and particulate matter concentrations, thus monitoring CO(2) concentration as a general indicator for air quality could be a viable option. Consequently, an intelligent environmental monitoring system consisting of a CO(2)/temperature/humidity sensor, a digital plug, and a ZigBee Router and Coordinator was developed and tested. The system also included a backend server that received and analyzed data, as well as activating ventilation and air purifiers when CO(2) concentration exceeded a pre-set value. Alert messages can also be delivered to offsite users through mobile devices.

  18. A hybrid energy efficient building ventilation system

    International Nuclear Information System (INIS)

    Calay, Rajnish Kaur; Wang, Wen Chung

    2013-01-01

    The present paper presents a high performance cooling/heating ventilation system using a rotary heat exchanger (RHE), together with a reverse-cycle heat pump (RCHP) that can be integrated with various heat sources. Energy consumption in the building sector is largely dominated by the energy consumed in maintaining comfortable conditions indoors. For example in many developed countries the building heating, ventilation and air conditioning (HVAC) systems consume up to 50% of the total energy consumed in buildings. Therefore energy efficient HVAC solutions in buildings are critical for realising CO 2 targets at local and global level. There are many heating/cooling concepts that rely upon renewable energy sources and/or use natural low temperature heat sources in the winter and heat sinks in the summer. In the proposed system, waste energy from the exhaust air stream is used to precondition the outdoor air before it is supplied into the building. The hybrid system provides heating in the winter and cooling in the summer without any need for additional heating or cooling devices as required in conventional systems. Its performance is better than a typical reheat or air conditioning system in providing the same indoor air quality (IAQ) levels. It is shown that an energy saving up to 60% (heat energy) is achieved by using the proposed hybrid system in building ventilation applications. -- Highlights: • Hybrid ventilation system: the hybrid ventilation system uses a rotating regenerator and a reversible heat pump. • Heat recovery: heat recovery from exhaust air stream by rotary wheel type heat exchanger. • Reversible cycle heat pump (RCHP): additional heating or cooling of the supply air is provided by the RCHP. • Energy efficiency: energy savings of up to 60% using the proposed system are achievable

  19. Cooling energy efficiency and classroom air environment of a school building operated by the heat recovery air conditioning unit

    International Nuclear Information System (INIS)

    Wang, Yang; Zhao, Fu-Yun; Kuckelkorn, Jens; Liu, Di; Liu, Li-Qun; Pan, Xiao-Chuan

    2014-01-01

    The recently-built school buildings have adopted novel heat recovery ventilator and air conditioning system. Heat recovery efficiency of the heat recovery facility and energy conservation ratio of the air conditioning unit were analytically modeled, taking the ventilation networks into account. Following that, school classroom displacement ventilation and its thermal stratification and indoor air quality indicated by the CO 2 concentration have been numerically modeled concerning the effects of delivering ventilation flow rate and supplying air temperature. Numerical results indicate that the promotion of mechanical ventilation rate can simultaneously boost the dilution of indoor air pollutants and the non-uniformity of indoor thermal and pollutant distributions. Subsequent energy performance analysis demonstrates that classroom energy demands for ventilation and cooling could be reduced with the promotion of heat recovery efficiency of the ventilation facility, and the energy conservation ratio of the air conditioning unit decreases with the increasing temperatures of supplying air. Fitting correlations of heat recovery ventilation and cooling energy conservation have been presented. - Highlights: • Low energy school buildings and classroom environment. • Heat recovery facility operating with an air conditioning unit. • Displacement ventilation influenced by the heat recovery efficiency. • Energy conservation of cooling and ventilation through heat recovery. • Enhancement of classroom environment with reduction of school building energy

  20. Nunavut housing ventilation research 2003-2005

    Energy Technology Data Exchange (ETDEWEB)

    Fugler, D.

    2005-11-15

    Inuit children in Alaska and Nunavut have high rates of severe lower respiratory tract infections, with hospitalization rates of 300 per year for each 1000 infants. The aim of this research report was to summarize the findings of a pilot project measuring the indoor air quality (IAQ) in 20 Cape Dorset houses as well as a study measuring the ventilation rates of 100 house from 4 communities in Nunavut. The 20 house pilot study included a respiratory questionnaire; a detailed home inspection and data collection; a blower door airtightness test; 7 day measurements of nitrogen dioxide (NO{sub 2}), nicotine, carbon dioxide (CO{sub 2}), relative humidity and temperature; a natural air change rate testing using Brookhaven tracer gas technology; and settled floor dust and bed dust collection followed by biological analysis. The 100 house study recorded 3 to 5 days of house temperatures, relative humidity and CO{sub 2}. The Brookhaven tracer gas technique was used to establish house air change rate. A questionnaire was used to assess ventilation devices. A medical questionnaire was administered and an evaluation of hospitalization data was carried out. Results indicated that a large number of Nunavut houses were not adequately ventilated. In the 20 house study, a third of the houses showed air change rates that would be considered low by any ventilation standards, and that were very low when considering the high occupancy of the houses. In the hundred house study, almost all houses indicated a mean CO{sub 2} level over 1000 ppm, and peaks exceeded 2000 ppm in approximately half the houses. The concentrations were far higher than those seen in southern Canadian homes. It was concluded that the development and promotion of energy-efficient ventilation devices could help to resolve ventilation deficiencies in Nunavut. 2 figs.

  1. Evaluation of the Indoor Air Quality Procedure for Use in Retail Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Dutton, Spencer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Wanyu R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Mendell, Mark J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Barrios, Marcella [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Parthasarathy, Srinandini [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sidheswaran, Meera [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sullivan, Douglas P. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Eliseeva, Katerina [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fisk, William J. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-02-01

    California's building efficiency standards (Title 24) mandate minimum prescribed ventilation rates (VRs) for commercial buildings. Title 24 standards currently include a prescriptive procedure similar to ASHRAE’s prescriptive “ventilation rate procedure”, but does not include an alternative procedure, akin to ASHRAE’s non-prescriptive “indoor air quality procedure” (IAQP). The IAQP determines minimum VRs based on objectively and subjectively evaluated indoor air quality (IAQ). The first primary goal of this study was to determine, in a set of California retail stores, the adequacy of Title 24 VRs and observed current measured VRs in providing the level of IAQ specified through an IAQP process, The second primary goal was to evaluate whether several VRs implemented experimentally in a big box store would achieve adequate IAQ, assessed objectively and subjectively. For the first goal, a list of contaminants of concern (CoCs) and reference exposure levels (RELs) were selected for evaluating IAQ. Ventilation rates and indoor and outdoor CoC concentrations were measured in 13 stores, including one “big box” store. Mass balance models were employed to calculate indoor contaminant source strengths for CoCs in each store. Using these source strengths and typical outdoor air contaminant concentrations, mass balance models were again used to calculate for each store the “IAQP” VR that would maintain indoor CoC concentrations below selected RELs. These IAQP VRs were compared to the observed VRs and to the Title 24- prescribed VRs. For the second goal, a VR intervention study was performed in the big box store to determine how objectively assessed indoor contaminant levels and subjectively assessed IAQ varied with VR. The three intervention study VRs included an approximation of the store’s current VR [0.24 air changes per hour (ACH)], the Title 24-prescribed VR [0.69 ACH], and the calculated IAQPbased VR [1.51 ACH]). Calculations of IAQP-based VRs

  2. Effect of central ventilation and air conditioner system on the concentration and health risk from airborne polycyclic aromatic hydrocarbons.

    Science.gov (United States)

    Lv, Jinze; Zhu, Lizhong

    2013-03-01

    Central ventilation and air conditioner systems are widely utilized nowadays in public places for air exchange and temperature control, which significantly influences the transfer of pollutants between indoors and outdoors. To study the effect of central ventilation and air conditioner systems on the concentration and health risk from airborne pollutants, a spatial and temporal survey was carried out using polycyclic aromatic hydrocarbons (PAHs) as agent pollutants. During the period when the central ventilation system operated without air conditioning (AC-off period), concentrations of 2-4 ring PAHs in the model supermarket were dominated by outdoor levels, due to the good linearity between indoor air and outdoor air (r(p) > 0.769, p air conditioner systems were working simultaneously (AC-on period), although the total levels of PAHs were increased, the concentrations and percentage of the particulate PAHs indoors declined significantly. The BaP equivalency (BaPeq) concentration indicated that utilization of air conditioning reduced the health risks from PAHs in the model supermarket.

  3. The impact of human perception of simultaneous exposure to thermal load, low-frequency ventilation noise and indoor air pollution

    DEFF Research Database (Denmark)

    Alm, Ole; Witterseh, Thomas; Clausen, Geo

    1999-01-01

    Human perception of simultaneous exposure to combinations of three different levels of operative temperature, low-frequency ventilation noise and indoor air pollution (27 combinations) was studied in climate chambers. The operative temperatures studied were: 26.0 deg.C, 27.6 deg.C and 29.6 deg.......C, and the sound pressure levels were: 45 dB(A), 48 dB(A) and 51 dB(A). The air pollution corresponding to these three levels of perceived air quality (at 26 deg.C) was: 1.1 decipol (dp), 2.4 dp and 4.5 dp. A 1 deg.C change in operative temperature had the same impact on the human perception of the overall...... conditions as a change of 3.8 dB(A) in sound pressure level or a change of 7 dp in air pollution (at 26 deg.C). The percentage of dissatisfied with the perceived air quality increased with increasing temperature. An elevated temperature had a dominant impact on the human perception of the indoor environment...

  4. Ventilation and air conditioning system in waste treatment and storage facilities

    International Nuclear Information System (INIS)

    Kinoshita, Hirotsugu; Sugawara, Kazushige.

    1987-01-01

    So far, the measures concerning the facilities for treating and storing radioactive wastes in nuclear fuel cycle in Japan were in the state which cannot be said to be sufficient. In order to cope with this situation, electric power companies constructed and operated radioactive waste concentration and volume reduction facilities, solid waste storing facilities for drums, high level solid waste storing facilities, spent fuel cask preserving facilities and so on successively in the premises of nuclear power stations, and for the wastes expected in future, the research and the construction plan of the facilities for treating and storing low, medium and high level wastes have been advanced. The ventilation and air conditioning system for these facilities is the important auxiliary system which has the mission of maintaining safe and pleasant environment in the facilities and lowering as far as possible the release of radioactive substances to outside. The outline of waste treatment and storage facilities is explained. The design condition, ventilation and air conditioning method, the features of respective waste treatment and storage facilities, and the problems for the future are described. Hereafter, mechanical ventilation system continues to be the main system, and filters become waste, while the exchange of filters is accompanied by the radiation exposure of workers. (Kako, I.)

  5. Laboratory study on the cooling effect of flash water evaporative cooling technology for ventilation and air-conditioning of buildings

    DEFF Research Database (Denmark)

    Fang, Lei; Yuan, Shu; Yang, Jianrong

    environments and the other simulated an air-conditioned indoor environment. The flash water evaporation cooling device was installed in the chamber that simulated indoor environment. The air from the chamber simulating outdoor environment was introduced into the cooling device and cooled by the flash water......, is effective for ventilation and air-conditioning in warm/hot and dry climate zones. The technology can provide fresh outdoor air with a temperature of 4 to 7 °C lower than room air temperature.......This paper presents a simple cooling technology using flash water evaporation. The technology combines a water atomizer with a plate heat exchanger used for heat recovery of a ventilation system. It is mainly used to cool the ventilation airflow from outdoors and is particularly suitable to be used...

  6. Air quality and passenger comfort in an air-conditioned bus micro-environment.

    Science.gov (United States)

    Zhu, Xiaoxuan; Lei, Li; Wang, Xingshen; Zhang, Yinghui

    2018-04-12

    In this study, passenger comfort and the air pollution status of the micro-environmental conditions in an air-conditioned bus were investigated through questionnaires, field measurements, and a numerical simulation. As a subjective analysis, passengers' perceptions of indoor environmental quality and comfort levels were determined from questionnaires. As an objective analysis, a numerical simulation was conducted using a discrete phase model to determine the diffusion and distribution of pollutants, including particulate matter with a diameter air quality and dissatisfactory thermal comfort conditions in Jinan's air-conditioned bus system. To solve these problems, three scenarios (schemes A, B, C) were designed to alter the ventilation parameters. According to the results of an improved simulation of these scenarios, reducing or adding air outputs would shorten the time taken to reach steady-state conditions and weaken the airflow or lower the temperature in the cabin. The airflow pathway was closely related to the layout of the air conditioning. Scheme B lowered the temperature by 0.4 K and reduced the airflow by 0.01 m/s, while scheme C reduced the volume concentration of PM 10 to 150 μg/m 3 . Changing the air supply angle could further improve the airflow and reduce the concentration of PM 10 . With regard to the perception of airflow and thermal comfort, the scheme with an airflow provided by a 60° nozzle was considered better, and the concentration of PM 10 was reduced to 130 μg/m 3 .

  7. Contaminants in ventilated filling boxes

    Science.gov (United States)

    Bolster, D. T.; Linden, P. F.

    While energy efficiency is important, the adoption of energy-efficient ventilation systems still requires the provision of acceptable indoor air quality. Many low-energy systems, such as displacement or natural ventilation, rely on temperature stratification within the interior environment, always extracting the warmest air from the top of the room. Understanding buoyancy-driven convection in a confined ventilated space is key to understanding the flow that develops with many of these modern low-energy ventilation schemes. In this work we study the transport of an initially uniformly distributed passive contaminant in a displacement-ventilated space. Representing a heat source as an ideal sourced of buoyancy, analytical and numerical models are developed that allow us to compare the average efficiency of contaminant removal between traditional mixing and modern low-energy systems. A set of small-scale analogue laboratory experiments was also conducted to further validate our analytical and numerical solutions.We find that on average traditional and low-energy ventilation methods are similar with regard to pollutant flushing efficiency. This is because the concentration being extracted from the system at any given time is approximately the same for both systems. However, very different vertical concentration gradients exist. For the low-energy system, a peak in contaminant concentration occurs at the temperature interface that is established within the space. This interface is typically designed to sit at some intermediate height in the space. Since this peak does not coincide with the extraction point, displacement ventilation does not offer the same benefits for pollutant flushing as it does for buoyancy removal.

  8. Duct corrosion in the ventilating air conditioning system for Main Control Room

    International Nuclear Information System (INIS)

    Yamada, Kohei; Kobayashi, Takashi; Minami, Akiko; Fukuba, Kazushi

    2014-01-01

    Higashidori Nuclear Power Station, start-of-operation in December 2005, is a relatively new plant. We decided to get original data of air duct condition to determine maintenance policy of air duct, because planned maintenance of air duct has never been done and the corrosion of air duct has occurred in other plant. In January 2014, we found a corrosion-hole at the downstream of the inlet damper in the ventilating air conditioning system for Main Control Room (MCR). We supposed that the cause of rapid corrosion is related to the characteristic environment of this site. (author)

  9. Uranium mine ventilation

    International Nuclear Information System (INIS)

    Katam, K.; Sudarsono

    1982-01-01

    Uranium mine ventilation system aimed basically to control and decreasing the air radioactivity in mine caused by the radon emanating from uranium ore. The control and decreasing the air ''age'' in mine, with adding the air consumption volume, increasing the air rate consumption, closing the mine-out area; using closed drainage system. Air consumption should be 60m 3 /minute for each 9m 2 uranium ore surfaces with ventilation rate of 15m/minute. (author)

  10. Mechanisms of natural ventilation in livestock buildings

    DEFF Research Database (Denmark)

    Rong, Li; Bjerg, Bjarne; Batzanas, Thomas

    2016-01-01

    Studies on the mechanisms of natural ventilation in livestock buildings are reviewed and influences on discharge and pressure coefficients are discussed. Compared to studies conducted on buildings for human occupation and industrial buildings which focus on thermal comfort, ventilation systems......, indoor air quality, building physics and energy etc., our understanding of the mechanisms involved in natural ventilation of livestock buildings are still limited to the application of the orifice equation. It has been observed that the assumptions made for application of the orifice equation...... are not valid for wind-induced cross ventilation through large openings. This review identifies that the power balance model, the concept of stream tube and the local dynamic similarity model has helped in the fundamental understanding of wind-induced natural ventilation in buildings for human occupation...

  11. Indoor air quality : Tools for schools action kits for Canadian schools

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-03-01

    Few people realize that indoor air pollution can contribute to health effects like asthma. Several agencies, notably the United States Environmental Protection Agency (EPA), have indicated that levels of indoor pollutants can be significantly higher than those found outside. As such, poor indoor air quality (IAQ) could impact the health of students and staff, as well as the educational process and costs. Many factors can influence IAQ, including building materials, furnishings, cleaning agents, pesticides, printing and copying devices, and more. Reduction in IAQ can also result from tighter buildings and reduced ventilation. This kit was developed by Health Canada in collaboration with the Indoor Air Quality Working Group of the Federal-Provincial-Territorial Committee on Environmental and Occupational Health (CEOH) to provide school officials with the tools to prevent, identify, assess, and address most indoor air problems while minimizing cost and involvement. It was suggested that trained professionals should perform the limited and well-defined set of operations and maintenance activities described in the kit.

  12. Test Protocol for Room-to-Room Distribution of Outside Air by Residential Ventilation Systems

    Energy Technology Data Exchange (ETDEWEB)

    Barley, C. D.; Anderson, R.; Hendron, B.; Hancock, E.

    2007-12-01

    This test and analysis protocol has been developed as a practical approach for measuring outside air distribution in homes. It has been used successfully in field tests and has led to significant insights on ventilation design issues. Performance advantages of more sophisticated ventilation systems over simpler, less-costly designs have been verified, and specific problems, such as airflow short-circuiting, have been identified.

  13. ASME N511-19XX, Standard for periodic in-service testing of nuclear air treatment, heating, ventilating and air conditioning systems

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-08-01

    A draft version of the Standard is presented in this document. The Standard covers the requirements for periodic in-service testing of nuclear safety-related air treatment, heating, ventilating, and air conditioning systems in nuclear facilities. The Standard provides a basis for the development of test programs and does not include acceptance criteria, except in cases where the results of one test influence the performance of other tests. The Standard covers general inspection and test requirements, reference values, inspection and test requirements, generic tests, acceptance criteria, in-service test requirements, testing following an abnormal incident, corrective action requirements, and quality assurance. Mandatory appendices provide a visual inspection checklist and four test procedures. Non-mandatory appendices provide additional information and guidance on mounting frame pressure leak test procedure, corrective action, challenge gas substitute selection criteria, and test program development. 8 refs., 10 tabs.

  14. ASME N511-19XX, Standard for periodic in-service testing of nuclear air treatment, heating, ventilating and air conditioning systems

    International Nuclear Information System (INIS)

    1997-01-01

    A draft version of the Standard is presented in this document. The Standard covers the requirements for periodic in-service testing of nuclear safety-related air treatment, heating, ventilating, and air conditioning systems in nuclear facilities. The Standard provides a basis for the development of test programs and does not include acceptance criteria, except in cases where the results of one test influence the performance of other tests. The Standard covers general inspection and test requirements, reference values, inspection and test requirements, generic tests, acceptance criteria, in-service test requirements, testing following an abnormal incident, corrective action requirements, and quality assurance. Mandatory appendices provide a visual inspection checklist and four test procedures. Non-mandatory appendices provide additional information and guidance on mounting frame pressure leak test procedure, corrective action, challenge gas substitute selection criteria, and test program development. 8 refs., 10 tabs

  15. Effectiveness of air vapor barriers combined with ventilated crawlspaces in decreasing residential exposure to radon daughters to radon daughters: preliminary report

    International Nuclear Information System (INIS)

    Sterling, T.D.; Arundel, A.; McIntyre, D.; Sterling, E.; Sterling, T.D.

    1986-01-01

    Radon gas is present in many homes. Concentrations may be increased in airtight, energy-efficient structures. This is especially true in cold climates where energy conservation is an important factor leading to the widespread application of sealing and tightening techniques both in older renovated homes and new construction. To reduce radon concentrations, it may be effective to ventilate crawlspaces and prevent infiltration of radon gas into the house by means of an air/vapor barrier. The authors report first results of comparing radon levels in homes with and without ventilated crawlspaces and air/vapor barriers. Radon emissions were measured in a tightly sealed home with ventilated crawlspaces and an air/vapor barrier and in two homes without such vapor barriers and ventilated crawlspaces, but differing in ventilation. Preliminary results suggest that use of ventilated crawlspaces and bottomside vapor barriers may reduce indoor radon levels by approximately 60%. 15 references, 1 table

  16. : ventilators for noninvasive ventilation

    OpenAIRE

    Fauroux , Brigitte; Leroux , Karl; Desmarais , Gilbert; Isabey , Daniel; Clément , Annick; Lofaso , Frédéric; Louis , Bruno

    2008-01-01

    International audience; The aim of the present study was to evaluate the performance characteristics of all the ventilators proposed for home noninvasive positive-pressure ventilation in children in France. The ventilators (one volume-targeted, 12 pressure-targeted and four dual) were evaluated on a bench which simulated six different paediatric ventilatory patterns. For each ventilator, the quality of the inspiratory and expiratory trigger and the ability to reach and maintain the preset pre...

  17. Effect of efficient supply of pure O2 concentrated by PSA-type O2 separator on improvement of indoor air quality

    International Nuclear Information System (INIS)

    Han, Gi Bo; Jang, Jung Hee; Choi, Changsik; Lee, Tae Jin

    2016-01-01

    To minimize the cost and loss rate of energy artificial room ventilation system, the O 2 separator was suggested for the flow of the excessive ventilation amount between indoor and outdoor because the pure O 2 separated and concentrated by the O 2 separator can be supplied with the ventilation amount minimized. How the O 2 separator applies to ventilation and its operation characteristics were investigated by controlling under various conditions as well as the operation conditions optimized required for indoor air quality such as the concentration of CO 2 and O 2 . Consequently, it was known that the O 2 concentration was increased; however, the increase of the CO 2 concentration was suppressed by the sufficient supply of O 2 concentrated from the storage tank into the room despite the two persons’ breathing in the room having an inner volume of about 56m 3 . Consequently, it was concluded that the supply system of the concentrated O 2 which was stored into the tank after the production with the O 2 separator can be applied to the room ventilation system for the improvement of the indoor air quality.

  18. CFD Simulation of Air Velocity Distribution in Occupied Livestock Buildings

    DEFF Research Database (Denmark)

    Svidt, Kjeld; Zhang, G.; Bjerg, B.

    In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants in the de......In modem livestock buildings the design of the ventilation systems is important in order to obtain good air distribution. The use of Computational Fluid Dynamics for predicting the air flow and air quality makes it possible to include the effect of room geometry, equipment and occupants....... In this study laboratory measurements in a ventilated test room with "pig simulators" are compared with CFD-simulations....

  19. Evaluation of the Ventilation and Air Cleaning System Design Concepts for Safety Requirements during Fire Conditions in Nuclear Applications

    International Nuclear Information System (INIS)

    Rashad, S.; El-Fawal, M.; Kandil, M.

    2013-01-01

    The ventilation and air cleaning system in the nuclear or radiological installations is one of the essential nuclear safety concerns. It is responsible for confining the radioactive materials involved behind suitable barriers during normal and abnormal conditions. It must be designed to prevent the release of harmful products (radioactive gases, or airborne radioactive materials) from the system or facility, impacting the public or workers, and doing environmental damage. There are two important safety functions common to all ventilation and air cleaning system in nuclear facilities. They are: a) the requirements to maintain the pressure of the ventilated volume below that of surrounding, relatively non-active areas, in order to inhibit the spread of contamination during normal and abnormal conditions, and b) the need to treat the ventilated gas so as to minimize the release of any radioactive or toxic materials. Keeping the two important safety functions is achieved by applying the fire protection for the ventilation system to achieve safety and adequate protection in nuclear applications facilities during fire and accidental criticality conditions.The main purpose of this research is to assist ventilation engineers and experts in nuclear installations for safe operation and maintaining ventilation and air cleaning system during fire accident in nuclear facilities. The research focuses on fire prevention and protection of the ventilation systems in nuclear facilities. High-Efficiency particulate air (HEPA) filters are extremely susceptible to damage when exposed to the effects of fire, smoke, and water; it is the intent of this research to provide the designer with the experience gained over the years from hard lessons learned in protecting HEPA filters from fire. It describes briefly and evaluates the design safety features, constituents and working conditions of ventilation and air cleaning system in nuclear and radioactive industry.This paper provides and

  20. Diffuse Ceiling Ventilation

    DEFF Research Database (Denmark)

    Zhang, Chen; Heiselberg, Per; Nielsen, Peter V.

    2014-01-01

    As a novel air distribution system, diffuse ceiling ventilation combines the suspended acoustic ceiling with ventilation supply. Due to the low-impulse supply from the large ceiling area, the system does not generate draught when supplying cold air. However, heat sources play an important role...

  1. IMPACT UPON ENVIRONMENT PROTECTION DUE TO DEFECTIVELY PRODUCED AND OPERATED VENTILATION SYSTEMS IN FOOD INDUSTRY

    Directory of Open Access Journals (Sweden)

    Izabela Małecka

    2014-10-01

    Full Text Available Mechanical (air-conditioning ventilation systems and equipment in the food industry may transfer various pathogenic bacteria causing, for instance, pneumonia (Legionellosis. Microclimate parameters in manufacturing shops felt by people are affected by: human factors (health, individual temperature perception etc, and non-human factors (air physical parameters, air freshness and cleanliness etc.. Microbiological contamination of process equipment, machines and systems such as ventilation and air-conditioning equipment causes growth of pathogenic bacteria. The amount of air supplied and removed from a room depends on its use and load of odours and hazardous material. As a result of dew point formation in ventilation systems may appear the so-called air-borne condensation nuclei on which steam settles when the air gets oversaturated. The air flow rate has a material influence upon comfortable conditions in human inhabited zones. In manufacturing shops where the highest air quality is a priority, radial disinfection by means of catalytic ionization is applied. In food industry manufacturing shops of higher microbiological standard, ventilation systems based on air re-circulation should not be used.

  2. Meeting Residential Ventilation Standards Through Dynamic Control of Ventilation Systems

    OpenAIRE

    Sherman, Max H.

    2011-01-01

    Existing ventilation standards, including American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE) Standard 62.2, specify continuous operation of a defined mechanical ventilation system to provide minimum ventilation, with time-based intermittent operation as an option. This requirement ignores several factors and concerns including: other equipment such as household exhaust fans that might incidentally provide ventilation, negative impacts of ventilation when outd...

  3. Ventilation of uranium mines

    International Nuclear Information System (INIS)

    Francois, Y.; Pradel, J.; Zettwoog, P.; Dumas, M.

    1975-01-01

    In the first part of the paper the authors describe the ventilation of French mines in terms of the primary ventilation system, which brings the outside air close to the working places using the overall structure of the mine to form the airways, and the secondary ventilation system, which is for the distribution of the primary air or for the ventilation of the development drifts and blind tunnels. Brief mention is made of the French regulations on the ventilation of mines in general and uranium mines in particular. The authors describe the equipment used and discuss the installed capacities and air flow per man and per working place. The difficulties encountered in properly ventilating various types of working places are mentioned, such as sublevel development drifts, reinforced stopes, and storage chambers with an artificial crown. The second part of the paper is devoted to computer calculations of the primary ventilation system. It is explained why the Commissariat a l'energie atomique has found it necessary to make these calculations. Without restating the mathematical theories underlying the methods employed, the authors demonstrate how simple measuring instruments and a small-size computer can be used to solve the ventilation problems arising in French mines. Emphasis is given to the layout of the ventilation system and to air flow and negative pressure measurements at the base of the mine. The authors show how calculations can be applied to new heading operations, a change in resistance, the replacement or addition of a ventilator, and a new air inlet or outlet. The authors come to the conclusion that since ventilation is at present the most reliable way of avoiding the pollution of mines, a thorough knowledge of the capabilities in this respect can often help improve working conditions. Despite the progress made, however, constant surveillance of the ventilation systems in uranium mines by a separate team with no responsibility for production problems is

  4. Ventilation of uranium mines

    International Nuclear Information System (INIS)

    Francois, Y.; Pradel, J.; Zettwoog, P.; Dumas, M.

    1975-01-01

    In the first part of the paper the authors describe the ventilation of French mines in terms of the primary ventilation system, which brings the outside air close to the working places using the overall structure of the mine to form the airways, and the secondary ventilation system, which is for the distribution of the primary air or for the ventilation of the development drifts and blind tunnels. Brief mention is made of the French regulations on the ventilation of mines in general and uranium mines in particular. The authors describe the equipment used and discuss the installed capacities and air flow per man and per working place. The difficulties encountered in properly ventilating various types of working places are mentioned, such as sub-level development drifts, reinforced stopes, and storage chambers with an artificial crown. The second part of the paper is devoted to computer calculations of the primary ventilation system. It is explained why the Commissariat a l'energie atomique has found it necessary to make these calculations. Without restating the mathematical theories underlying the methods employed, the authors demonstrate how simple measuring instruments and a small-size computer can be used to solve the ventilation problems arising in French mines. Emphasis is given to the layout of the ventilation system and to air flow and negative pressure measurements at the base of the mine. The authors show how calculations can be applied to new heading operations, a change in resistance, the replacement or addition of a ventilator, and a new air inlet or outlet. The authors come to the conclusion that since ventilation is at present the most reliable way of avoiding the pollution of mines, a thorough knowledge of the capabilities in this respect can often help improve working conditions. Despite the progress made, however, constant surveillance of the ventilation systems in uranium mines by a separate team with no responsibility for production problems is

  5. Indoor air quality in a multifamily apartment building before and after energy renovation

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Földváry, Veronika; Langer, Sarka

    2016-01-01

    Buildings are responsible for a substantial portion of global energy consumption. Most of the multifamily residential buildings in central Europe built in the 20th century do not satisfy the current requirements on energy efficiency. Nationwide remedial measures are taken to improve the energy ef...... exchange rates and acceptable and healthy IAQ. Without these considerations, energy reconstruction can adversely affect the quality of the indoor environment....... efficiency of these buildings and reduce their energy consumption. Since the impact of these measures on the indoor air quality is rarely considered, they often compromise indoor air quality due to decreased ventilation and infiltration rate. We compared the indoor air quality in a multifamily apartment...... building in Slovakia before and after energy renovation, during two subsequent winters. Measurements of temperature, relative humidity, concentrations of CO2, formaldehyde, NO2, and volatile organic compounds were performed during one week in January 2015 in 20 apartments in one multifamily building...

  6. Selecting HVAC Systems for Schools To Balance the Needs for Indoor Air Quality, Energy Conservation and Maintenance. Technical Bulletin.

    Science.gov (United States)

    Wheeler, Arthur E.; Kunz, Walter S., Jr.

    Although poor air quality in a school can have multiple causes, the heating, ventilating, and air-conditioning (HVAC) system plays a major role. Suggestions that architects, facilities managers, school board members, and administrators can use in selecting HVAC systems are discussed. Focus is on the performance criteria for classroom systems, and…

  7. Assessing indoor air quality options: Final environmental impact statement on new energy-efficient home programs: Volume 2

    International Nuclear Information System (INIS)

    1988-03-01

    This report discusses the impact of energy conservation measures on indoor air quality in various size residential buildings. This volume includes appendices on ventilation rates, indoor pollutant levels, health effects, human risk assessment, radon, fiberglass hazards, tobacco smoke, mitigation

  8. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    DEFF Research Database (Denmark)

    Skwarczynski, Mariusz; Melikov, Arsen Krikor; Kaczmarczyk, J.

    2010-01-01

    and local air velocity under a constant air temperature of 26 degrees C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front...

  9. Indoor climate and the performance of ventilation in Finnish residences

    International Nuclear Information System (INIS)

    Ruotsalainen, R.; Roennberg, R.; Saeteri, J.; Majanen, A.; Seppaenen, O.; Jaakkola, J.J.K.

    1992-01-01

    The purpose of the study was to gather information about the actual ventilation and indoor air quality and to evaluate the differences between houses and apartments with different ventilation systems. A sample of 242 dwellings in the Helsinki metropolitan area was studied over periods of two weeks during the 1988-1989 heating season. The mean air-exchange rates had a high variation (average 0.52 l/h, range 0.07-1.55 l/h). The ASHRAE minimum value of 0.35 l/h was not achieved in 28% of the dwellings. The air-exchange rates were significantly lower in the houses than in the apartments (averages 0.45/0.64 l/h, p 3 (range 5-866 Bq/m 3 ); the Finnish target value of 200 Bq/m 3 was exceeded in 17% of the houses but in none of the apartments. The measurements indicate that the indoor air quality in Finnish dwellings is not always satisfactory with reference to human health and comfort. (au)

  10. Simulations of the potential revenue from investment in improved indoor air quality in an office building

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Djukanovic, Rade

    2005-01-01

    of improved worker performance; benefits from reduced health costs and sickness absence were not included. The building was simulated in a cold, a moderate and a hot climate. It was ventilated by a constant air volume (CAV) system with heat recovery and by a variable air volume (VAV) system with an economizer....... The air quality was improved by increasing the outdoor air supply rate and by reducing the pollution loads. These upgrades involved increased energy and HVAC maintenance costs, first costs of a HVAC system and building construction costs. But the additional investments were highly cost......-effective. The annual benefit due to improved air quality was up to 115 times higher than the increase in annual energy and maintenance costs. LCC analysis showed that productivity benefits resulting from a better indoor air quality were up to 60 times higher than the increased costs; the simple and discounted pay...

  11. Lecture Notes on Mixing Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    The main task of the ventilation system or the air-conditioning system is to supply· and remove air and airborne materials and to supply or remove heat from a room. The necessary level of fresh air will be supplied to· a room by a ventilation system, and heat from equipment or solar radiation can...... be removed by an air-conditioning system. An industrial ventilation system may both take care of the occupants' comfort and the industrial processes in the area....

  12. Particulate pollution in ventilated space: Analysis of influencing factors

    International Nuclear Information System (INIS)

    Zhao Bin; Wu Jun

    2009-01-01

    Particle pollution has been identified to be a major indoor air pollution problem as many epidemiologic evidences have indicated that the particle exposure affects the occupant health. In common practice, mechanical ventilation is introduced to maintain a satisfactory indoor air quality for the occupant, which includes the area of particle control within the space. In order to have an effective control to the indoor particle pollution, it is important to understand the major factors influencing the indoor particle concentration in the breathing zone. This study employs a previously proposed approach to study the particle pollution in a typical ventilation system. The model simultaneously takes into account the interactions between particle transport in ventilation ducts and rooms and particle spatial distribution. It has been proven that an entire ventilation system, including filters, ducts and rooms, can be regarded as a serial of filters in steady-state cases, hence the name 'particle filter group model'. The particle concentration in the breathing zone is calculated under different conditions, and the result is then validated by experimental data. Based on the results, four main factors that affect the particle concentration in the breathing zone are identified, they are fresh air rate, particle filter efficiency, the type of the ventilation duct (roughness) and ventilation modes. Their degrees of influence are analyzed and then the possible measures to improve/control the indoor particle pollution are suggested

  13. Measure Guideline: Selecting Ventilation Systems for Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, R. [Consortium for Advanced Residential Buildings (CARB), Norwalk, CT (United States)

    2014-02-01

    This report, developed by Building America research team CARB, addresses adding or improving mechanical ventilation systems to existing homes. The goal of this report is to assist decision makers and contractors in making informed decisions when selecting ventilation systems for homes. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including examination of relevant codes and standards. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors.

  14. [Anesthesia ventilators].

    Science.gov (United States)

    Otteni, J C; Beydon, L; Cazalaà, J B; Feiss, P; Nivoche, Y

    1997-01-01

    To review anaesthesia ventilators in current use in France by categories of ventilators. References were obtained from computerized bibliographic search. (Medline), recent review articles, the library of the service and personal files. Anaesthesia ventilators can be allocated into three groups, depending on whether they readminister expired gases or not or allow both modalities. Contemporary ventilators provide either constant volume ventilation, or constant pressure ventilation, with or without a pressure plateau. Ventilators readministering expired gases after CO2 absorption, or closed circuit ventilators, are either of a double- or a single-circuit design. Double-circuit ventilators, or pneumatical bag or bellows squeezers, or bag-in-bottle or bellows-in-bottle (or box) ventilators, consist of a primary, or driving circuit (bottle or box) and a secondary or patient circuit (including a bag or a bellows or membrane chambers). Bellows-in-bottle ventilators have either standing bellows ascending at expiration, or hanging bellows, descending at expiration. Ascending bellows require a positive pressure of about 2 cmH2O throughout exhalation to allow the bellows to refill. The expired gas volume is a valuable indicator for leak and disconnection. Descending bellows generate a slight negative pressure during exhalation. In case of leak or disconnection they aspirate ambient air and cannot act therefore as an indicator for integrity of the circuit and the patient connection. Closed circuit ventilators with a single-circuit (patient circuit) include a insufflating device consisting either in a bellows or a cylinder with a piston, operated by a electric or pneumatic motor. As the hanging bellows of the double circuit ventilators, they generate a slight negative pressure during exhalation and aspirate ambient air in case of leak or disconnection. Ventilators not designed for the readministration of expired gases, or open circuit ventilators, are generally stand

  15. Measuring Air Temperature in Glazed Ventilated Facades in the Presence of Direct Solar Radiation

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Zanghirella, Fabio; Heiselberg, Per

    2007-01-01

    A distinctive element of buildings with a double glazed façade is naturally or mechanically driven flow in a ventilated cavity. Accurate air temperature measurements in the cavity are crucial to evaluate the dynamic performance of the façade, to predict and control its behavior as a significant...... part of the complete ventilation system. Assessment of necessary cooling/heating loads and of the whole building energy performance will then depend on the accuracy of measured air temperature. The presence of direct solar radiation is an essential element for the façade operation, but it can heavily...... affect measurements of air temperature and may lead to errors of high magnitude using bare thermocouples and even adopting shielding devices. Two different research groups, from Aalborg University and Politecnico di Torino, tested separately various techniques to shield thermocouples from direct...

  16. Review of low-energy construction, air tightness, ventilation strategies and indoor radon: results from Finnish houses and apartments

    International Nuclear Information System (INIS)

    Arvela, H.; Holmgren, O.; Reisbacka, H.; Vinha, J.

    2014-01-01

    Low-energy and passive house construction practices are characterised by increased insulation, high air tightness of the building shell and controlled mechanical ventilation with heat recovery. As a result of the interaction of mechanical ventilation and high air tightness, the pressure difference in a building can be markedly enhanced. This may lead to elevated indoor radon levels. Minor leakages in the foundation can affect the radon concentration, even in the case where such leaks do not markedly reduce the total air tightness. The potential for high pressures to affect indoor radon concentrations markedly increases when the air tightness ACH 50 , i.e. the air change per hour induced by a pressure difference of 50 Pa, is -1 . Pressure differences in Finnish low-rise residential houses having mechanical supply and exhaust ventilation with heat recovery (MSEV) are typically 2-3 Pa, clearly lower than the values of 5-9 Pa in houses with only mechanical exhaust ventilation (MEV). In MSEV houses, radon concentrations are typically 30 % lower than in MEV houses. In new MSEV houses with an ACH50 of 0.6 h -1 , the limit for passive construction, the analytical estimates predict an increase of 100 % in the radon concentration compared with older houses with an ACH50 of 4.0 h -1 . This poses a challenge for efficient radon prevention in new construction. Radon concentrations are typically 30 % lower in houses with two storeys compared with only one storey. The introduction of an MSEV ventilation strategy in typically very airtight apartments has markedly reduced pressure differences and radon concentrations. (authors)

  17. Constructing a generalized network design model to study air distribution in ventilation networks in subway with a single-track tunnel

    Science.gov (United States)

    Lugin, IV

    2018-03-01

    In focus are the features of construction of the generalized design model for the network method to study air distribution in ventilation system in subway with the single-track tunnel. The generalizations, assumptions and simplifications included in the model are specified. The air distribution is calculated with regard to the influence of topology and air resistances of the ventilation network sections. The author studies two variants of the subway line: half-open and closed with dead end on the both sides. It is found that the total air exchange at a subway station depends on the station location within the line. The operating mode of fans remains unaltered in this case. The article shows that elimination of air leakage in the station ventilation room allows an increase in the air flow rate by 7–8% at the same energy consumption by fans. The influence of the stop of a train in the tunnel on the air distribution is illustrated.

  18. A comprehensive air quality investigation at an aquatic centre: Indoor/outdoor comparisons.

    Science.gov (United States)

    Tolis, Evangelos I; Panaras, Giorgos; Bartzis, John G

    2018-06-01

    Air quality and comfort parameters in a naturally ventilated aquatic centre were studied in relation to the outdoor pollution levels. Simultaneous measurements of PM 2.5, as well as of volatile organic compounds, were carried out for the indoor and outdoor environment of the aquatic centre. The chemical analysis of ionic species and trace elements associated with particulate matter was also performed. In addition, automated analyzer for NO 2 and O 3 was used in order to record the indoor and outdoor levels of these pollutants. Analysis of diurnal variation of the pollutants' concentration was applied to the collected data, allowing the identification of potential variation on the sources affecting the indoor air quality. PM 2.5 concentration was almost two times higher indoors than outdoors with average values of 13.96 and 6.78 μg/m 3 , respectively. Concerning the ion fraction of PM 2.5, SO 4 2- and Ca 2+ were the ions with higher concentration indoors with values of 1.06 and 0.93 μg/m 3 , respectively, while the percentage of Cl - to the PM 2.5 fraction of the indoor atmosphere (9%) was too high than outdoor ones (1%). These results showed that indoor air of swimming pool concerning PM 2.5 and ionic species is mainly affected by the chlorination process along with the comfort conditions (high relative humidity) created during the operation of the facility. The common volatile organic compound concentrations at indoor air are generally in higher levels, compared to the outdoor air with p,m-xylene and toluene to be the substances with the higher concentration for indoor and outdoor area, respectively (7.80 and 1.57 μg/m 3 ); nevertheless, values were rather low compared with the findings of other studies. Also, they clearly demonstrate a diurnal variation as a result of poor ventilation during night. As it was expected, chloroform showed the highest concentration compared to the other volatile organic compounds with values ranging from 3.35 to 135.89 μg/m 3

  19. Energy efficient biological air cleaning for farm stable ventilation; Energieffektiv biologisk luftrensning til staldventilation

    Energy Technology Data Exchange (ETDEWEB)

    Groenborg Nicolaisen, C.; Hansen, Mads P.R. [Teknologisk Institut, Aarhus (Denmark); Stroem, J.; Soerensen, Keld [DXT. Danish Exergy Technology A/S, Skoerping (Denmark); Goetke, C. [Lokalenergi Aarhus, Viby J. (Denmark); Morsing, S.; Soerensen, Lars C. [SKOV A/S, Roslev (Denmark); Ladegaerd Jensen, T.; Pedersen, Poul [Videncenter for svineproduktion, Copenhagen (Denmark)

    2013-05-01

    The project has been designed to reduce energy consumption for air purification by 30% while having a payback period of maximum 3 years. The project has achieved very significant results which are far above the target. Particularly satisfying is the wide range of new components that are launched in late 2012. By implementing the newly developed system at 100% cleaning (LPC 13 ventilators and Dynamic multistep control) in relation to Best Practice (SKOV's original system with DA600 fans) in a concrete pigsty, a saving of 61% and a simple payback of 1.7 years is achieved. Similarly, it is found that the energy used for pump operation can be reduced by 37% with the new Dynamic sprinkling control. At 20% cleaning a potential saving of 15% per year and a payback period of between 0 and 5 years was found, which is dependent on the desired performance as the capacities in the bio-filter's upper capacity range between 26 thousand to 30 thousand m3 / h entails costs for an additional extraction unit in the new solution. Furthermore, the newly developed components proved highly suitable for standard installations without air cleaning where a savings potential is 53% and the payback period 1.5 years. Product-wise, the project formed the basis for the development of: 1. New energy-efficient ventilation units (LPC11, 12,13) that are suitable for air purification; 2. A new energy-saving control principle (Dynamic Multi-Step) which is particularly suitable for low-energy ventilators; 3. A new energy-saving flow measurement system for ventilating ducts (Dynamic air to the central exhaust); 4. An energy-saving pressure control in common ducts (pressure control as a function of outside temperature); 5. Proposal for a new energy-saving pump operation for sprinkling of biological filters (Dynamic sprinkling). (LN)

  20. Design and Development of a Nearable Wireless System to Control Indoor Air Quality and Indoor Lighting Quality

    Directory of Open Access Journals (Sweden)

    Francesco Salamone

    2017-05-01

    Full Text Available The article describes the results of the project “open source smart lamp” aimed at designing and developing a smart object able to manage and control the indoor environmental quality (IEQ of the built environment. A first version of this smart object, built following a do-it-yourself (DIY approach using a microcontroller, an integrated temperature and relative humidity sensor, and techniques of additive manufacturing, allows the adjustment of the indoor thermal comfort quality (ICQ, by interacting directly with the air conditioner. As is well known, the IEQ is a holistic concept including indoor air quality (IAQ, indoor lighting quality (ILQ and acoustic comfort, besides thermal comfort. The upgrade of the smart lamp bridges the gap of the first version of the device providing the possibility of interaction with the air exchange unit and lighting system in order to get an overview of the potential of a nearable device in the management of the IEQ. The upgraded version was tested in a real office equipped with mechanical ventilation and an air conditioning system. This office was occupied by four workers. The experiment is compared with a baseline scenario and the results show how the application of the nearable device effectively optimizes both IAQ and ILQ.

  1. Evidence of inadequate ventilation in portable classrooms: results of a pilot study in Los Angeles County.

    Science.gov (United States)

    Shendell, D G; Winer, A M; Weker, R; Colome, S D

    2004-06-01

    The prevalence of prefabricated, portable classrooms (portables) for United States public schools has increased; in California, approximately one of three students learn inside portables. Limited research has been conducted on indoor air and environmental quality in American schools, and almost none in portables. Available reports and conference proceedings suggest problems from insufficient ventilation due to poor design, operation, and/or maintenance of heating, ventilation and air conditioning (HVAC) systems; most portables have one mechanical, wall-mounted HVAC system. A pilot assessment was conducted in Los Angeles County, including measurements of integrated ventilation rates based on a perfluorocarbon tracer gas technique and continuous monitoring of temperature (T) and relative humidity (RH). Measured ventilation rates were low [mean school day integrated average 0.8 per hour (range: 0.1-2.9 per hour)]. Compared with relevant standards, results suggested adequate ventilation and associated conditioning of indoor air for occupant comfort were not always provided to these classrooms. Future school studies should include integrated and continuous measurements of T, RH, and ventilation with appropriate tracer gas methods, and other airflow measures. Adequate ventilation has the potential to mitigate concentrations of chemical pollutants, particles, carbon dioxide, and odors in portable and traditional classrooms, which should lead to a reduction in reported health outcomes, e.g., symptoms of 'sick building syndrome', allergies, asthma. Investigations of school indoor air and environmental quality should include continuous temperature and relative humidity data with inexpensive instrumentation as indicators of thermal comfort, and techniques to measure ventilation rates.

  2. The lasting effect of limonene-induced particle formation on air quality in a genuine indoor environment.

    Science.gov (United States)

    Rösch, Carolin; Wissenbach, Dirk K; von Bergen, Martin; Franck, Ulrich; Wendisch, Manfred; Schlink, Uwe

    2015-09-01

    Atmospheric ozone-terpene reactions, which form secondary organic aerosol (SOA) particles, can affect indoor air quality when outdoor air mixes with indoor air during ventilation. This study, conducted in Leipzig, Germany, focused on limonene-induced particle formation in a genuine indoor environment (24 m(3)). Particle number, limonene and ozone concentrations were monitored during the whole experimental period. After manual ventilation for 30 min, during which indoor ozone levels reached up to 22.7 ppb, limonene was introduced into the room at concentrations of approximately 180 to 250 μg m(-3). We observed strong particle formation and growth within a diameter range of 9 to 50 nm under real-room conditions. Larger particles with diameters above 100 nm were less affected by limonene introduction. The total particle number concentrations (TPNCs) after limonene introduction clearly exceed outdoor values by a factor of 4.5 to 41 reaching maximum concentrations of up to 267,000 particles cm(-3). The formation strength was influenced by background particles, which attenuated the formation of new SOA with increasing concentration, and by ozone levels, an increase of which by 10 ppb will result in a six times higher TPNC. This study emphasizes indoor environments to be preferred locations for particle formation and growth after ventilation events. As a consequence, SOA formation can produce significantly higher amounts of particles than transported by ventilation into the indoor air.

  3. Air quality in the Carlsbad cavern

    International Nuclear Information System (INIS)

    Cheng, Yung-Seng; Chen, Tou-Rong; Wasiolek, P.T.

    1994-01-01

    The air quality in the Carlsbad Cavern has been investigated, but there are no reports on radon progeny and aerosols. The purpose of this experiment was to determine the activity size distribution of radon progeny and the air exchange rate inside the Cavern. Teams from ITRI and New Mexico Institute of Mining and Technology (NMT) conducted the field study in July 1994. The ITRI graded diffusion battery (GDB) was used to determine the activity size distribution, progeny concentration, equilibrium factor, and unattached fraction of the radon progeny. The design, calibration, and performance of the GDB have been described. For this study, each stage of the GDB contained one stainless steel screen, with the mesh sizes arranged in a series of 30, 50, 145, 200, and 635 mesh from the air inlet to the outlet. A 47-nm type A/E glass fiber filter was used to collect all particles that penetrated the screens. The flow rate was 5 L/min. The average ventilation rate in the cavern is 0.0026 V/hr. Our results showed that the cavern atmosphere may be quite different from other underground environments. The atmosphere in the summer is stable and relatively free of airborne particles, partly due to the extremely slow air exchange rate

  4. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using 68Ga-labeled nanoparticles

    International Nuclear Information System (INIS)

    Kipritidis, John; Keall, Paul J.; Siva, Shankar; Hofman, Michael S.; Callahan, Jason; Hicks, Rodney J.

    2014-01-01

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with 68 Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metrics model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V HU ) or Jacobian determinant of deformation (V Jac ). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV HU and ρV Jac ) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ m = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d 20 for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV HU ) with σ m = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d 20 ⩽ 0.68, with r ¯ =0.42±0.16 and d ¯ 20 =0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant improvements in r ¯ and d ¯ 20 (p ¯ than for unscaled

  5. Improving indoor air quality and thermal comfort in office building by using combination filters

    Science.gov (United States)

    Kabrein, H.; Yusof, M. Z. M.; Hariri, A.; Leman, A. M.; Afandi, A.

    2017-09-01

    Poor indoor air quality and thermal comfort condition in the workspace affected the occupants’ health and work productivity, especially when adapting the recirculation of air in heating ventilation and air-conditioning (HVAC) system. The recirculation of air was implemented in this study by mixing the circulated returned indoor air with the outdoor fresh air. The aims of this study are to assess the indoor thermal comfort and indoor air quality (IAQ) in the office buildings, equipped with combination filters. The air filtration technique consisting minimum efficiency reporting value (MERV) filter and activated carbon fiber (ACF) filter, located before the fan coil units. The findings of the study show that the technique of mixing recirculation air with the fresh air through the combination filters met the recommended thermal comfort condition in the workspace. Furthermore, the result of the post-occupancy evaluation (POE) and the environmental measurements comply with the ASHRAE 55 standard. In addition, the level of CO2 concentration continued to decrease during the period of the measurement.

  6. Ventilation filters as sources of air pollution – Processes occurring on surfaces of used filters

    DEFF Research Database (Denmark)

    Bekö, Gabriel; Halás, Oto; Clausen, Geo

    2004-01-01

    Ozone concentrations were monitored upstream and downstream of used filter samples following 24hours of ventilation with ozone- filtered air. The ozone concentration in the air upstream of the filters was maintained at ~75 ppb while the concentration downstream of the filters was initially betwee...

  7. Optimization of air-curtain sealing efficiency with respect to heat transfer in naturally ventilated buildings

    NARCIS (Netherlands)

    Khayrullina, A.; Hooff, van T.A.J.; Blocken, B.J.E.; van Heijst, G.J.F.; Sun, Y.; Pei, J.; Zhao, X

    This study presents results of coupled 3D steady Reynolds-averaged Navier-Stokes (RANS) Computational Fluid Dynamics (CFD) simulations of an isolated naturally-ventilated building with the application of an air curtain to prevent heat transfer across a doorway. The considered parameters include air

  8. Indoor Air Quality in Urban and Rural Preschools in Upper Silesia, Poland: Particulate Matter and Carbon Dioxide.

    Science.gov (United States)

    Mainka, Anna; Zajusz-Zubek, Elwira

    2015-07-08

    Indoor air quality (IAQ) in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM) is of the greatest interest mainly due to its acute and chronic effects on children's health. In addition, carbon dioxide (CO2) levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total-TSP) and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children) and of localization (urban or rural). To evaluate the children's exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children.

  9. Indoor Air Quality in Urban and Rural Preschools in Upper Silesia, Poland: Particulate Matter and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Anna Mainka

    2015-07-01

    Full Text Available Indoor air quality (IAQ in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM is of the greatest interest mainly due to its acute and chronic effects on children’s health. In addition, carbon dioxide (CO2 levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total—TSP and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children and of localization (urban or rural. To evaluate the children’s exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children.

  10. Measure Guideline: Ventilation Guidance for Residential High-Performance New Construction - Multifamily

    Energy Technology Data Exchange (ETDEWEB)

    Lstiburek, Joseph [Building Science Corporation, Westford, MA (United States)

    2017-01-01

    The measure guideline provides ventilation guidance for residential high performance multifamily construction that incorporates the requirements of the ASHRAE 62.2 ventilation and indoor air quality standard. The measure guideline focus is on the decision criteria for weighing cost and performance of various ventilation systems. The measure guideline is intended for contractors, builders, developers, designers and building code officials. The guide may also be helpful to building owners wishing to learn more about ventilation strategies available for their buildings. The measure guideline includes specific design and installation instructions for the most cost effective and performance effective solutions for ventilation in multifamily units that satisfies the requirements of ASHRAE 62.2-2016.

  11. Indoor air quality in hairdressing salons in Taipei.

    Science.gov (United States)

    Chang, C-J; Cheng, S-F; Chang, P-T; Tsai, S-W

    2018-01-01

    To improve indoor air quality and to protect public health, Taiwan has enacted the "Indoor Air Quality Act (IAQ Act)" in 2012. For the general public, the indoor air quality in hair salons is important because it is a popular location that people will often visit for hair treatments. However, only a few exposure assessments regarding air pollutants have previously been performed in hair salons. To assess the air quality of hairdressing environments in Taipei, ten hairdressing salons were included for a walk-through survey in this study. In addition, the airborne concentrations of formaldehyde, volatile organic compounds (VOCs), CO 2 , and phthalate esters were also determined in 5 salons. Charcoal, XAD-2, and OVS-Tenax tubes were used for the air sampling, while the samples were analyzed with gas chromatography/mass spectrometer. It was found that the products used in hair salons contained various chemicals. In fact, from the walk-through survey, a total of 387 different ingredients were found on 129 hair product labels. The hair salons were not well ventilated, with CO 2 levels of 600 to 3576 ppm. The formaldehyde concentrations determined in this study ranged from 12.40 to 1.04 × 10 3  μg m -3 , and the maximum level was above the permissible exposure limit (PEL) of US Occupational Safety and Health Administration (US OSHA). Additionally, 83% of the samples were with levels higher than the standard regulated by Taiwan's IAQ Act. The concentrations of VOCs and phthalate esters were below the occupational exposure limits (OELs), but higher than what was found in general residential environments. The hair products were considered as the major source of air pollutants because significantly higher concentrations were found around the working areas. The number of perming treatments, the number of workers, and the frequency of using formaldehyde releasing products, were found to be associated with the levels of formaldehyde. This study indicates that efforts are

  12. Assessment of indoor air quality at an electronic cigarette (Vaping) convention.

    Science.gov (United States)

    Chen, Rui; Aherrera, Angela; Isichei, Chineye; Olmedo, Pablo; Jarmul, Stephanie; Cohen, Joanna E; Navas-Acien, Ana; Rule, Ana M

    2017-12-29

    E-cigarette (vaping) conventions are public events promoting electronic cigarettes, in which indoor use of e-cigarettes is allowed. The large concentration of people using e-cigarettes and poor air ventilation can result in indoor air pollution. In order to estimate this worst-case exposure to e-cigarettes, we evaluated indoor air quality in a vaping convention in Maryland (MD), USA. Real-time concentrations of particulate matter (PM 10 ) and real-time total volatile organic compounds (TVOCs), CO 2 and NO 2 concentrations were measured. Integrated samples of air nicotine and PM 10 concentrations were also collected. The number of attendees was estimated to range from 75 to 600 at any single observation time. The estimated 24-h time-weighted average (TWA) PM 10 was 1800 μg/m 3 , 12-fold higher than the EPA 24-h regulation (150 μg/m 3 ). Median (range) indoor TVOCs concentration was 0.13 (0.04-0.3) ppm. PM 10 and TVOC concentrations were highly correlated with CO 2 concentrations, indicating the high number of people using e-cigarettes and poor indoor air quality. Air nicotine concentration was 125 μg/m 3 , equivalent to concentrations measured in bars and nightclubs. E-cigarette aerosol in a vaping convention that congregates many e-cigarette users is a major source of PM 10 , air nicotine and VOCs, impairing indoor air quality. These findings also raise occupational concerns for e-cigarette vendors and other venue staff workers.

  13. Ionization detector for aerosol air pollution detection and ventilation control in the metal processing industry

    International Nuclear Information System (INIS)

    Kovacs, Istvan

    1989-01-01

    An indicator and measuring instrument was developed for the continuous monitoring, recording and indicating aerosol mass concentrations in mechanical workshops, like in metal cutting, welding or forming industries, for air pollution control and ventilation of the atmosphere in the workshops. An ionization chamber containing alpha radiation source was modified for this purpose, and a suitable electronic circuit was built for the measurement of ionization current. The calibration of the ionization aerosol detectors was performed for welding smoke and oil mist. They were suitable for continuous monitoring of workshop atmospheres and controlling ventilation equipment, or as portable instruments, for the rapid inspection of air pollution. (R.P.) 4 refs.; 3 figs

  14. Potential energy savings with personalized ventilation coupled with passive chilled beams

    DEFF Research Database (Denmark)

    Lyubenova, Velina S.; Holsøe, Jan W.; Melikov, Arsen Krikor

    2011-01-01

    Personalized ventilation (PV) is an individually controlled air distribution system aimed at improving inhaled air quality and thermal comfort of each occupant. Numerous studies have shown that PV may improve occupants’ health, comfort and performance in comparison with traditional total volume air...... saving especially in spaces where occupants spend most of the time at their workplace....

  15. The impact of particle filtration on indoor air quality in a classroom near a highway

    NARCIS (Netherlands)

    van der Zee, Saskia C; Strak, Maciej; Dijkema, Marieke B A; Brunekreef, Bert|info:eu-repo/dai/nl/067548180; Janssen, Nicole A H

    2017-01-01

    A pilot study was performed to investigate whether the application of a new mechanical ventilation system with a fine F8 (MERV14) filter could improve indoor air quality in a high school near the Amsterdam ring road. PM10, PM2.5 and black carbon (BC) concentrations were measured continuously inside

  16. Dispersal of Exhaled Air and Personal Exposure in Displacement Ventilated Rooms

    DEFF Research Database (Denmark)

    Bjørn, Erik; Nielsen, Peter Vilhelm

    2002-01-01

    The influence of the human exhalation on flow fields, contaminant distributions, and personal exposures in displacement ventilated rooms is studied together with the effects of physical movement. Experiments are conducted in full-scale test rooms with life-sized breathing thermal manikins....... Numerical simulations support the experiments. Air exhaled through the mouth can lock in a thermally stratified layer, if the vertical temperature gradient in breathing zone height is sufficiently large. With exhalation through the nose, exhaled air flows to the upper part of the room. The exhalation flow...

  17. Energy recovery ventilation as a radon mitigation method for Navy family housing in Guam

    International Nuclear Information System (INIS)

    1993-12-01

    Energy recovery ventilation involves the exchange of contaminated indoor air with fresh, uncontaminated outdoor air with recovery of energy. During radon mitigation diagnostics, air change measurements were performed within three typical Navy family houses, and some were found to be well below recommended minimum standards. The only practical way to solve the indoor air quality problem was to increase the ventilation rate. Options were evaluated, and it was decided to install energy recovery ventilation (ERV) systems. An ERV system is a packaged unit complete with blower fans, controls, and air-to-air heat exchanger. However, because of economical limits on the quantity of conditioned air that can be exchanged, ERV has a finite range of application in radon abatement. In Guam, ERV has potential applications in up to 370 units and in an additional 154 units if the mechanical systems are moved indoors. The performance of ERV systems were evaluated during a demonstration program to determine the removal efficiency of radon

  18. Analysis of the systems of ventilation of residential houses of Ukraine and Estonia

    Science.gov (United States)

    Savchenko, Olena; Zhelykh, Vasyl; Voll, Hendrik

    2017-12-01

    The most common ventilation system in residential buildings in Ukraine is natural ventilation. In recent years, due to increased tightness of structures, an increase in the content of synthetic finishing materials in them, the quality of microclimate parameters deteriorated. One of the measures to improve the parameters of indoor air in residential buildings is the use of mechanical inflow and exhaust ventilation system. In this article the regulatory documents concerning the design of ventilation systems in Ukraine and Estonia and the requirements for air exchange in residential buildings are considered. It is established that the existing normative documents in Ukraine are analogous to European norms, which allow design the system of ventilation of residential buildings according to European standards. However, the basis for the design of ventilation systems in Ukraine is the national standards, in which mechanical ventilation, unfortunately, is provided only for the design of high-rise buildings. To maintain acceptable microclimate parameters in residential buildings, it is advisable for designers to apply the requirements for designing ventilation systems in accordance with European standards.

  19. Analysis of the systems of ventilation of residential houses of Ukraine and Estonia

    Directory of Open Access Journals (Sweden)

    Savchenko Olena

    2017-12-01

    Full Text Available The most common ventilation system in residential buildings in Ukraine is natural ventilation. In recent years, due to increased tightness of structures, an increase in the content of synthetic finishing materials in them, the quality of microclimate parameters deteriorated. One of the measures to improve the parameters of indoor air in residential buildings is the use of mechanical inflow and exhaust ventilation system. In this article the regulatory documents concerning the design of ventilation systems in Ukraine and Estonia and the requirements for air exchange in residential buildings are considered. It is established that the existing normative documents in Ukraine are analogous to European norms, which allow design the system of ventilation of residential buildings according to European standards. However, the basis for the design of ventilation systems in Ukraine is the national standards, in which mechanical ventilation, unfortunately, is provided only for the design of high-rise buildings. To maintain acceptable microclimate parameters in residential buildings, it is advisable for designers to apply the requirements for designing ventilation systems in accordance with European standards.

  20. Numerical Simulation of Inter-Flat Air Cross-Contamination under the Condition of Single-Sided Natural Ventilation

    DEFF Research Database (Denmark)

    Liu, Xiaoping; Niu, Jianlei; Perino, Marco

    2008-01-01

    ventilated room, the renormalization group based k-ε model, together with carbon dioxide used as a tracer, is chosen to reveal this air cross-contamination. The simulation results are in agreement with our prior on-site tracer-gas measurements, revealing that the windows flush with a flat fa ade can...... be a major route of the air cross-contamination in high-rise residential buildings. Finally, an assessment index is proposed to evaluate the potential infection risks associated with this inter-flat air flow occurring in high-rise residential buildings....... the two sides, each of which has a flat fa ade with openable windows. When the wind speed is extremely low, with doors closed and windows opened, the flats become single-sided naturally ventilated driven by buoyancy effects. The air pollutants can travel from a lower flat to a vertically adjacent upper...

  1. Instrumentation strategies for energy conservation in broiler barns with ventilation air solar pre-heaters

    Energy Technology Data Exchange (ETDEWEB)

    Cordeau, Sebastien; Barrington, Suzelle [Department of Bioresource Engineering, Macdonald Campus of McGill University, 21 111 Lakeshore, Ste Anne de Bellevue, Quebec H9X 3V9 (Canada)

    2010-08-15

    At the present consumption rate, world fossil-fuel reserves are expected to be depleted by 2050 unless their consumption is optimized and supplemented with renewable energy sources. The objective of this project was to evaluate the performance of a simple data acquisition system installed to conduct an energy balance and identify energy saving strategies in two commercial broilers barns with ventilation air solar pre-heaters. Located near Montreal, Canada, the two identical barns were instrumented for inside and outside air conditions, ventilation rate and energy recovery by the solar air pre-heaters. Whereas the temperature, relative humidity and radiation sensors were reliable, inside air temperature stratification complicated energy balance analyses and broiler heat production rate calculations. Lack of room air mixing resulted in the loss of 25 and 15% of the generated heater load and recovered solar energy. The proper monitoring of all environmental conditions required their measurement every 5 rather than 20 min. Instead of using a data transmission service found to be unreliable in rural areas, all data loggers were downloaded onto a portable computer every 45 days during regular instrument maintenance. Accordingly, room air mixing is recommended to facilitate energy balance studies and improve the efficient use of heating energies. (author)

  2. Increasing ventilation as an intervention in homes of asthmatic children

    DEFF Research Database (Denmark)

    Hogaard, Nina Viskum; Rubak, Sune Leisgaard Mørck; Halken, Susanne

    2016-01-01

    in children. We conducted a double-blind, placebo-controlled intervention study with 46 asthmatic, house dust mite allergic children. The aim was to investigate the association between indoor air quality in homes and severity of asthma, in particular the effect of increased ventilation rate and expected lower...... exposure to HDM on medication intake among these children. As a result of the intervention, the ventilation rate increased and the CO2 concentration fell significantly compared to baseline in the intervention group. The analyses of the effect of ventilation on health outcomes are being processed...

  3. An innovation wall model based on interlayer ventilation

    International Nuclear Information System (INIS)

    Feng Jinmei; Lian Zhiwei; Hou Zhijian

    2008-01-01

    The thermal characteristics of the external wall are important to the energy consumption of the air conditioning system. Great attention should also be paid to the energy loss of the air exhaust. An innovation wall model based on interlayer ventilation is presented in this paper. The interlayer ventilation wall combines the wall and air exhaust of heating, ventilating and air conditioning (HVAC). The results of the experiment show that the energy loss of the exhaust air can be fully recovered by the interlayer ventilation wall. The cooling load can be reduced greatly because the temperature difference between the internal surface of the interlayer ventilation wall and the indoor air is very small. Clearly, the small temperature difference can enhance thermal comfort. In order to popularize the interlayer ventilation wall, technical and economical analysis is presented in this paper. Based on the buildings in the Shanghai area and a standard air conditioning system, a 4 years payback period for interlayer ventilation wall implementation was found according to the analysis

  4. Status of air quality in arenas in the Abitibi-Temiscamingue 2004-2005; Portrait de la qualite de l'air dans les arenas de l'Abitibi-Temiscamingue 2004-2005

    Energy Technology Data Exchange (ETDEWEB)

    Gagne, D. (ed.)

    2005-09-13

    The air quality was checked in 24 of 26 arenas in Quebec's Abitibi-Temiscamingue region during the intensive tournament season from November 2004 to March 2005. Carbon monoxide (CO) levels were measured in 24 arenas, while nitrogen dioxide (NO{sub 2}) levels were measured in 22 arenas during and after intensive use of the ice surfacing machine. The air quality respected the public health criteria for CO and NO{sub 2} in 87 and 95 per cent of the arenas, respectively. The main factors that influence the ambient air quality in the arenas included the maintenance of the ice surfacing machine, the system of radiant heating and ventilation of combustion gases. In more than half of the arenas, the ice surfacing machine had been tuned prior to the active season. In 28 per cent of the arenas, maintenance inspections were carried out only twice during the season. Two arenas were equipped with an electric ice surfacing machine. All arenas had a mechanical ventilation system. It was concluded that the proportion of arenas that do not respect public health criteria at the time of monitoring varied between 4 and 23 per cent. While the negligence of operators is often in question, the failures of ventilation systems or a contamination by external sources of CO are often unforeseeable. For these reasons, it was recommended that annual monitoring should be conducted by an external organization. 9 refs., 7 figs.

  5. The application and implementation of optimized mine ventilation on demand (OMVOD) at the Xstrata Nickel Rim South Mine, Sudbury, Ontario

    International Nuclear Information System (INIS)

    Bartsch, E.; Laine, M.; Andersen, M.

    2010-01-01

    An Optimized Mine Ventilation on Demand (OMVOD) system has been installed at the Xstrata Nickel Rim South Mine in Sudbury. Developed by Simsmart Technologies, the OMVOD system monitors and controls air quality and quantity through real time dynamic automation. A ventilation on demand (VOD) system was needed to remove diesel particulate matter (DPM), carbon monoxide (CO) and nitrogen dioxide (NO 2 ). This paper described the real-time tracking and monitoring of the OMVOD system and optimization of ventilation equipment. Simsmart's OMVOD system was shown to reduce energy costs while improve air quality in the underground mine. 7 refs., 3 tabs., 8 figs.

  6. Experimental analysis of an air-to-air heat recovery unit for balanced ventilation systems in residential buildings

    International Nuclear Information System (INIS)

    Fernandez-Seara, Jose; Diz, Ruben; Uhia, Francisco J.; Dopazo, Alberto; Ferro, Jose M.

    2011-01-01

    This paper deals with the experimental analysis of an air-to-air heat recovery unit equipped with a sensible polymer plate heat exchanger (PHE) for balanced ventilation systems in residential buildings. The PHE is arranged in parallel triangular ducts. An experimental facility was designed to reproduce the typical outdoor and exhaust air conditions with regard to temperature and humidity. The unit was tested under balanced operation conditions, as commonly used in practice. A set of tests was conducted under the reference operating conditions to evaluate the PHE performance. Afterwards, an experimental parametric analysis was conducted to investigate the influence of changing the operating conditions on the PHE performance. Experiments were carried out varying the inlet fresh air temperature, the exhaust air relative humidity and the air flow rate. The experimental results are shown and discussed in this paper.

  7. Experimental study of airflow characteristics of stratum ventilation in a multi-occupant room with comparison to mixing ventilation and displacement ventilation.

    Science.gov (United States)

    Cheng, Y; Lin, Z

    2015-12-01

    The motivation of this study is stimulated by a lack of knowledge about the difference of airflow characteristics between a novel air distribution method [i.e., stratum ventilation (SV)] and conventional air distribution methods [i.e., mixing ventilation (MV) and displacement ventilation (DV)]. Detailed air velocity and temperature measurements were conducted in the occupied zone of a classroom with dimensions of 8.8 m (L) × 6.1 m (W) × 2.4 m (H). Turbulence intensity and power spectrum of velocity fluctuation were calculated using the measured data. Thermal comfort and cooling efficiency were also compared. The results show that in the occupied zone, the airflow characteristics among MV, DV, and SV are different. The turbulent airflow fluctuation is enhanced in this classroom with multiple thermal manikins due to thermal buoyancy and airflow mixing effect. Thermal comfort evaluations indicate that in comparison with MV and DV, a higher supply air temperature should be adopted for SV to achieve general thermal comfort with low draft risk. Comparison of the mean air temperatures in the occupied zone reveals that SV is of highest cooling efficiency, followed by DV and then MV. This study reports the unique profiles of flow, temperature, turbulence intensity, and power spectrum of stratum ventilation, which can have a number of implications for both knowledge and understanding of the flow characteristics in a stratum-ventilated room. With respect to the former, it expounds the fundamental characteristics of this air distribution method; and with respect to the latter, it reveals the mechanism of thermal comfort and energy saving under stratum ventilation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Exposure Reduction to Human Bio-effluents Using Seat-integrated Localized Ventilation in Quiescent Indoor Environment

    DEFF Research Database (Denmark)

    Bivolarova, Mariya Petrova; Rezgals, Lauris; Melikov, Arsen Krikor

    2016-01-01

    Local airflows generated from people such as the natural convection flow may determine the distribution of pollutants indoors. New seat-integrated ventilated method was developed to improve the inhaled air quality of occupants while sitting The method named “Ventilated Cushion” was designed to suck...

  9. Modelling dynamics of atmosphere ventilation and industrial city’s air pollution analysis: New approach

    Science.gov (United States)

    Glushkov, A. V.; Khetselius, O. Yu; Agayar, E. V.; Buyadzhi, V. V.; Romanova, A. V.; Mansarliysky, V. F.

    2017-10-01

    We present a new effective approach to analysis and modelling the natural air ventilation in an atmosphere of the industrial city, which is based on the Arakawa-Schubert and Glushkov models, modified to calculate the current involvement of the ensemble of clouds, and advanced mathematical methods of modelling an unsteady turbulence in the urban area. For the first time the methods of a plane complex field and spectral expansion algorithms are applied to calculate the air circulation for the cloud layer arrays, penetrating into the territory of the industrial city. We have also taken into account for the mechanisms of transformation of the cloud system advection over the territory of the urban area. The results of test computing the air ventilation characteristics are presented for the Odessa city. All above cited methods and models together with the standard monitoring and management systems can be considered as a basis for comprehensive “Green City” construction technology.

  10. Ventilation of nuclear power plants

    International Nuclear Information System (INIS)

    Madoyan, A.A.; Vlasik, V.F.

    1984-01-01

    Foundations and calculation methods of ventilation of rooms with different degree of heat and gas release with the change of operation mode of NPP main equipment, as well as problems of NPP site and adjoining area aerodynamics, have been presented. Systems of air ventilation and conditioning, cooling equipment, are considered. The main points of designing are described and determination of economic efficiency of the ventilation systems are made. Technical characteristics of the ventilators, conditioners, filters and air heaters used, are presented. Organization of adjustment, tests, operation and maintenance of the ventilation systems of NPP with RBMK and WWER-type reactors, is described

  11. Thermal comfort and ventilation effectiveness in an office room with radiant floor cooling and displacement ventilation

    DEFF Research Database (Denmark)

    Krajcik, Michal; Tomasi, Roberta; Simone, Angela

    2016-01-01

    conditions, varying the nominal air change rate from 4.5h-1 down to 1.5h-1. Contaminant removal and mean-age-of-air measurements were performed to characterize the ventilation effectiveness and air velocity; air and operative temperature profiles were measured, together with thermal manikin equivalent...... temperatures, to evaluate the thermal environment. The combined system was able to achieve good ventilation effectiveness close to a heat source, so that in the occupant's breathing zone the ventilation effectiveness was significantly better than for ideal mixing, even at a nominal air change rate as low as 1......% at the highest nominal air change rate of 4.5h-1, even for an occupant sitting 1 meter in front of the supply diffuser, the local thermal discomfort occasioned by the excessive vertical temperature differences gives chilled ceilings the advantage over chilled floors for use with displacement ventilation....

  12. Control of Airborne Infectious Diseases in Ventilated Spaces

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    2009-01-01

    We protect ourselves from airborne cross-infection in the indoor environment by supplying fresh air to a room by natural or mechanical ventilation. The air is distributed in the room according to different principles: mixing ventilation, displacement ventilation, etc. A large amount of air...... to have high ventilation effectiveness. Furthermore, personalized ventilation may reduce the risk of cross-infection, and in some cases, it can also reduce the source of infection. Personalized ventilation can especially be used in hospital wards, aircraft cabins and, in general, where people are in fixed...

  13. Evaluation of air quality in arenas on the Island of Montreal : winter 2006-2007

    International Nuclear Information System (INIS)

    Price, K.; Beausoleil, M.; Lefebvre, L.

    2007-03-01

    For the past twenty years, cases of nitrogen dioxide (NO 2 ) and carbon monoxide (CO) poisoning have been reported in arenas in Quebec. A 1997 evaluation of air quality in 332 arenas in 9 different countries revealed that 40 per cent of arenas worldwide have high concentration of NO 2 . In Quebec, an air quality review at arenas in Montreal drew similar conclusions, that 69 per cent of the arenas have high concentrations of CO and/or NO 2 . In 1997, Quebec's environmental health committee established criteria of 20 ppm for CO, and 0.5 ppm for NO 2 in arenas, in order to ensure that athletes and the public at large do not suffer negative effects related to the presence of combustible gases. This information was distributed to the administrative personnel in arenas in Quebec by means of an awareness and information campaign. Since then, the number of arenas that have met these criteria for air quality in arenas in Montreal has climbed from 31 per cent in 1997 to 83 per cent in 2004. The practices put into action by arena administrators include: 1) regular maintenance of ice surface cleaning machines and other equipment that use fuel, 2) judicious use of ventilation so that gases can be evacuated from the premises, and, 3) periodic measurements of CO and NO 2 during peak usage times such as tournaments. Other means of lowering gas emissions have also shown to be helpful, such as replacement of ice surface cleaning machines with electrical ones, installation of CO and NO 2 detectors close to the rink surface so that ventilation machines could be activated, and the measurement and constant registration of these gases. It was concluded that these measures could help maintain good air quality in arenas. 15 refs., 1 tabs., 1 fig

  14. Evaluation of comfort level in desks equipped with two personalized ventilation systems in slightly warm environments

    Energy Technology Data Exchange (ETDEWEB)

    Conceicao, Eusebio Z.E. [Faculdade de Ciencias e Tecnologia - Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal); Lucio, Manuela J.R. [Agrupamento Vertical Professor Paula Nogueira, R. Comunidade Lusiada, 8700-000 Olhao (Portugal); Rosa, Silvia P.; Custodio, Ana L.V.; Andrade, Renata L.; Meira, Maria J.P.A. [Faculdade de Ciencias do Mar e do Ambiente - Universidade do Algarve, Campus de Gambelas, 8005-139 Faro (Portugal)

    2010-03-15

    In this work the comfort level, namely the thermal comfort, local thermal discomfort and air quality levels, in a classroom with desks equipped with two personalized ventilation systems, in slightly warm environments, is evaluated. A manikin, a ventilated classroom desk, two indoor climate analyzers, a multi-nodal human thermal comfort numerical model and a computational fluid dynamic numerical model, are used. The classroom desk, with double occupation capacity, is used by a student, located in the right side seat. Each personalized ventilation system is equipped with one air terminal device located above the desk writing area, in front to the trunk area, and an other located below the desk writing area, in front to the legs area. The thermal comfort level is evaluated by the developed multi-nodal human thermal comfort numerical model, using a PMV value, the local thermal discomfort level, namely the draught risk and the air velocity fluctuation equivalent frequencies, is evaluated by empirical models, while the air quality level and the detailed airflow around the manikin are evaluated by the computational fluid dynamic numerical model. In the experimental tests the mean air velocity and the turbulence intensity in the upper air terminal device are 3.5 m/s and 9.7%, while in the lower air terminal device are 2.6 m/s and 15.2%. The mean air temperature in the air terminal devices is around 28 C, while the mean radiant temperature in the occupation area, the mean air temperature far from the occupation area and the internal mean air relative humidity were, respectively, 28 C, 28 C and 50%. The air velocity and temperature around the occupant are measured around 15 human body sections. The actual personalized ventilation system, which promotes an ascendant airflow around the occupant with highest air renovation rate in the respiration area, promotes acceptable thermal comfort conditions and air quality in the respiration area in accord to the present standards. The

  15. An investigation on the effect of street morphology to ambient air quality using six real-world cases

    Science.gov (United States)

    Shen, Jialei; Gao, Zhi; Ding, Wowo; Yu, Ying

    2017-09-01

    Street canyons are vulnerable to air pollution mainly caused by vehicle emissions, which are therefore closely related to pedestrians' health. Previous studies have showed that air quality in street canyons is associated with street morphology, though the majority of them have focused on idealized street models. This paper attempts to investigate the relationship of street morphology to air quality for 6 irregular real-world cases selected from America, Europe, and China, i.e. Manhattan, Paris, Barcelona, Berlin, London and Nanjing. Each street is analyzed as a set of slices to propose a couple of morphology indices for quantitatively assessing the actual street morphology. Pollutant transport rate of mean flows and turbulent diffusion, net escape velocity and age of air are obtained from computational fluid dynamics (CFD) simulations to assess the ventilations and pollutant dispersion within street canyons with a parallel approaching wind. The results show that the street morphology characteristics, including the street width, lateral openings and intersections, are closely related to the air flows in street canyons. The air quality improves with a decreasing aspect ratio of central street owing to a larger vertical exchange through the street roof, which suggests an open central street is of better air quality. The lateral openings and intersections of streets have important effects on the air flows in street canyons, and the effects are particularly pronounced when the street widths are similar. The street continuity ratio indicates street continuity. It relates to the openings and the symmetry of a street and impacts on the air flows and pollutant dispersion through the lateral openings of the central street. The street spatial closure ratio is determined by the street continuity ratio and the aspect ratio of the central street. When the aspect ratio of central street is not excessively high, higher values of street continuity ratio and spatial closure ratio

  16. Pretest Predictions for Phase II Ventilation Tests

    International Nuclear Information System (INIS)

    Yiming Sun

    2001-01-01

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, and concrete pipe walls that will be developed during the Phase II ventilation tests involving various test conditions. The results will be used as inputs to validating numerical approach for modeling continuous ventilation, and be used to support the repository subsurface design. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the Phase II ventilation tests, and describe numerical methods that are used to calculate the effects of continuous ventilation. The calculation is limited to thermal effect only. This engineering work activity is conducted in accordance with the ''Technical Work Plan for: Subsurface Performance Testing for License Application (LA) for Fiscal Year 2001'' (CRWMS M and O 2000d). This technical work plan (TWP) includes an AP-2.21Q, ''Quality Determinations and Planning for Scientific, Engineering, and Regulatory Compliance Activities'', activity evaluation (CRWMS M and O 2000d, Addendum A) that has determined this activity is subject to the YMP quality assurance (QA) program. The calculation is developed in accordance with the AP-3.12Q procedure, ''Calculations''. Additional background information regarding this activity is contained in the ''Development Plan for Ventilation Pretest Predictive Calculation'' (DP) (CRWMS M and O 2000a)

  17. Free Convection Personalized Ventilation (FCPV)

    DEFF Research Database (Denmark)

    Nielsen, Peter V.

    Normally we supply fresh air to a room with a diffuser, and this air is distributed in the room according to different principles as: mixing ventilation, displacement ventilation etc. That means we have to supply a very large amount of air to the whole room, although a person in the room totally ...

  18. REVERSIBLE VENTILATION SYSTEM FOR ADMINISTRATIVE BUILDINGS

    Directory of Open Access Journals (Sweden)

    Valery Yu. Kravchuk

    2017-01-01

    Full Text Available Abstract. Objectives To consider the possibility of applying the principle of reversing air flows for a centralised ventilation system; to develop a specific scheme for air exchange reversible ventilation, which will take into account the peculiarities of the microclimate of administrative buildings; to select the type of filling of the air-permeable element and justify this choice; to determine the conditions for changing the direction of air movement in the ventilation system and the area of its application; to form a list of equipment necessary for the operation of such a system; to consider the influence of supply and exhaust devices on the heat and humidity regime of claddings. Methods  To achieve this goal, the published thematic material was reviewed and a patent search carried out using Russian and European databases. Data on mathematical modelling of filtration in porous media and experimental results were used. A method for ventilating rooms in administrative building using the reversal of movement of supply and exhaust air streams along the same channels was applied. Results  Schemas for reversible ventilation systems are presented and their modes of operation considered. It is established that the idea of reversing ventilation flows has not yet been applied in the development of centralised ventilation systems. Based on these published materials, it was concluded that the proposed design of supply and exhaust devices can be used in practice. An original air exchange scheme for the ventilation of administrative buildings and design of supply and exhaust devices for this system are proposed. The conditions for changing the operating modes of the system and the scope of its application are determined. Conclusion The use of the proposed ventilation system allows normative air exchange to be provided without using a supply unit during the cold season. This application of airflow reversal allows the potential of natural forces to be used

  19. Evaluation of Heating, Ventilation, and Air conditioning (HVAC System Performance in an Administrative Building in Tehran (Iran

    Directory of Open Access Journals (Sweden)

    H. Mari Oriyad

    2014-09-01

    Full Text Available Introduction: One of the factors influencing on indoor air quality of the buildings is performance of HVAC (heating, ventilation, and air conditioning systems. These systems supply clean and odorless air, with temperature, humidity, and air velocity within comfort ranges for the residents. The aim of this study was to evaluate performance HVAC system in an administrative building in Tehran. .Material and Method: A questionnaire, developed in their research was used to assess the building occupants’ perception about the performance of HVAC system. To evaluate the performance of HVAC systems, air velocities were measured in the diffusers using a thermal anemometer. Moreover, CO2 concentration, air temperature and relative humidity were measured in the whole floors of the building. Air distribution inside the building was evaluated using smoke test. .Results: Most of the studied people complained about the direction of airflow, thermal conditions and cigarette odor. The highest level of carbon dioxide was measured at 930 ppm inside the restaurant. The maximum and minimum air temperatures and relative humidity were measured 28.3-13.8° C and 28.4-23% respectively. Smoke test showed that the air distribution/direction wasn’t suitable in one third of air diffusers. .Conclusion: Improper air distribution / direction was the main problem with the studied HVAC system which could be corrected by adjusting and balancing of the system.

  20. Demand controlled ventilation in a bathroom

    DEFF Research Database (Denmark)

    Mortensen, Dorthe Kragsig; Nielsen, Toke Rammer; Topp, Claus

    2008-01-01

    consumption during periods where the demand for ventilation is low and poor indoor climate during periods where the demand for ventilation is high. Controlling the ventilation rate by demand can improve the energy performance of the ventilation system and the indoor climate. This paper compares the indoor...... climate and energy consumption of a Constant Air Volume (CAV) system and a Demand Controlled Ventilation (DCV) system for two different bathroom designs. The air change rate of the CAV system corresponded to 0.5h-1. The ventilation rate of the DCV system was controlled by occupancy and by the relative...

  1. Ventilation rates and health

    DEFF Research Database (Denmark)

    Sundell, Jan; Levin, H; Nazaroff, W W

    2011-01-01

    and health effects to inform the relationship. Consistency was found across multiple investigations and different epidemiologic designs for different populations. Multiple health endpoints show similar relationships with ventilation rate. There is biological plausibility for an association of health outcomes...... studies of the relationship between ventilation rates and health, especially in diverse climates, in locations with polluted outdoor air and in buildings other than offices. PRACTICAL IMPLICATIONS: Ventilation with outdoor air plays an important role influencing human exposures to indoor pollutants...

  2. Technical Note: A proposal of air ventilation system design criteria for a clinical room in a heavy-ion medical facility.

    Science.gov (United States)

    Kum, Oyeon

    2018-04-16

    An optimized air ventilation system design for a treatment room in Heavy-ion Medical Facility is an important issue in the aspects of nuclear safety because the activated air produced in a treatment room can directly affect the medical staff and the general public in the radiation-free area. Optimized design criteria of air ventilation system for a clinical room in 430 MeV/u carbon ion beam medical accelerator facility was performed by using a combination of MCNPX2.7.0 and CINDER'90 codes. Effective dose rate and its accumulated effective dose by inhalation and residual gamma were calculated for a normal treatment scenario (2 min irradiation for one fraction) as a function of decay time. Natural doses around the site were measured before construction and used as reference data. With no air ventilation system, the maximum effective dose rate was about 3 μSv/h (total dose of 90 mSv/y) and minimum 0.2 μSv/h (total dose of 6 mSv/y), which are over the legal limits for medical staff and for the general public. Although inhalation dose contribution was relatively small, it was considered seriously because of its long-lasting effects in the body. The integrated dose per year was 1.8 mSv/y in the radiation-free area with the 20-min rate of air ventilation system. An optimal air ventilation rate of 20 min is proposed for a clinical room, which also agrees with the best mechanical design value. © 2018 American Association of Physicists in Medicine.

  3. Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm

    Displacement ventilation is an interesting new type of air distribution principle which should be considered in connection with design of comfort ventilation in both smal1 and large spaces. Research activities on displacement ventilation are large all over the world and new knowledge of design...... methods appears continuously. This book gives an easy introduction to the basis of displacement ventilation and the chapters are written in the order which is used in a design procedure. The main text is extended by five appendices which show some of the new research activities taking place at Aalborg...

  4. Indoor air quality in energy efficient buildings. A literature review

    Energy Technology Data Exchange (ETDEWEB)

    Thomsen, Judith; Berge, Magnar

    2012-07-01

    There is currently a major focus on measures to reduce global warming. Several international studies show that the energy efficiency of buildings is the easiest and most cost-effective climate action. Passive houses are characterized of that the buildings are more airtight, have more insulation and has balanced mechanical ventilation with heat recovery. This report discusses about this one-sided focus on energy conservation, and if {sup c}hange{sup }in building methods can have a negative impact on indoor air quality and people's health. (Author)

  5. Ceiling personalized ventilation combined with desk fans for reduced direct and indirect cross-contamination and efficient use of office space

    International Nuclear Information System (INIS)

    Habchi, Carine; Ghali, Kamel; Ghaddar, Nesreen; Chakroun, Walid; Alotaibi, Sorour

    2016-01-01

    Highlights: • Cross-infection occurs by direct inhalation and contact of contaminated surfaces. • Mixing ventilation performance is degraded at reduced distance between occupants. • Ceiling personalized ventilation reduces significantly cross-contamination. • The optimized system induces large energy savings compared to mixing ventilation. • The optimized system improves the occupation density from 12 to 8 m 2 per occupant. - Abstract: Crowded offices with short distances separating workers’ stations increase the probability of respiratory cross-infection via two different paths. One path is the contaminant transmission through air by direct inhalation and the other is through the body contact of contaminated surfaces and walls. Mixed ventilation principles used today reduces the probability of cross contamination by increasing the distance between the stations challenging the efficient use of the space or by supplying more fresh air in the space which is energy inefficient. In this work, new cooling and ventilation configuration is studied by modeling using computational fluid dynamics with consideration of space occupancy density while providing good indoor air quality. The configuration considers a ceiling personalized ventilation system equipped with desk fans. The ability of the computational fluid dynamics model in computing the thermal, velocity and concentration fields was validated by experiments and published data. The main objective of the performed experiments was to ensure that the developed computational fluid dynamics model can capture the effect of the desk fan flow rate on particle behavior. The studied system is found to provide acceptable indoor air quality at shorter distance between the occupants compared to the mixing system at considerable energy savings. By optimizing the design of the proposed personalized ventilation system, the occupancy density in an office is enhanced to 8 m 2 per occupant compared to 12 m 2 per occupant for

  6. Effect of efficient supply of pure O{sub 2} concentrated by PSA-type O{sub 2} separator on improvement of indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Han, Gi Bo; Jang, Jung Hee; Choi, Changsik [Institute for Advanced Engineering, Yongin (Korea, Republic of); Lee, Tae Jin [School of Chemical Engineering Yeungnam University, Gyeongsan (Korea, Republic of)

    2016-04-15

    To minimize the cost and loss rate of energy artificial room ventilation system, the O{sub 2} separator was suggested for the flow of the excessive ventilation amount between indoor and outdoor because the pure O{sub 2} separated and concentrated by the O{sub 2} separator can be supplied with the ventilation amount minimized. How the O{sub 2} separator applies to ventilation and its operation characteristics were investigated by controlling under various conditions as well as the operation conditions optimized required for indoor air quality such as the concentration of CO{sub 2} and O{sub 2}. Consequently, it was known that the O{sub 2} concentration was increased; however, the increase of the CO{sub 2} concentration was suppressed by the sufficient supply of O{sub 2} concentrated from the storage tank into the room despite the two persons’ breathing in the room having an inner volume of about 56m{sup 3}. Consequently, it was concluded that the supply system of the concentrated O{sub 2} which was stored into the tank after the production with the O{sub 2} separator can be applied to the room ventilation system for the improvement of the indoor air quality.

  7. Indoor air quality vs. energy use in a beer brewery : assessment of ventilation methods and systems using CFD

    NARCIS (Netherlands)

    van Hooff, T.A.J.; Blocken, B.J.E.

    2015-01-01

    The production in industrial buildings can have a large impact on the indoor air quality. For example, in beer breweries several processes influence the indoor air quality to a large extent, such as the fermentation process, which is accompanied by a strong emission of CO2 gas. Employees working

  8. Moisture condensation on building envelopes in differential ventilated spaces in the tropics: quantitative assessment of influencing factors

    Directory of Open Access Journals (Sweden)

    Ali Maisarah

    2016-01-01

    Full Text Available Ventilation systems play a significant role in maintaining the indoor thermal and hygric balance. Nevertheless, the systems had been implicated to result in many problems. In the tropical climate, especially for energy efficiency purposes, building spaces are operated with differential ventilation. Such spaces operate on 24-hrs basis, some on 8-hrs while others are either naturally ventilated or served with mechanical supply-exhaust fan systems with non-conditioned outdoor air. This practice had been found to result in condensation problems. This study involves a quantitative appraisal of the effect of operative conditions and hygrothermal quality of building envelopes on condensation risk. The in-situ experiment is combined with an analytical approach to assessing the hygrothermal quality of building envelopes in a tropical climate building under differential ventilation between adjacent spaces. The case-studied building is with a known history of condensation and associated damages including mould growth. The microclimate measurement and hygrothermal performance of the wall and floor against condensation and mould growth risks had been previously reported elsewhere. As a step further, the present study evaluates the effects of various envelope insulation types and configurations together with the HVAC cooling set-points on envelope hygrothermal performance. The results revealed that overcooling the air-conditioned side increases condensation risk on the non-air-conditioned side of the envelopes. The envelopes failed criteria for surface condensation at existing operative conditions irrespective of envelope hygrothermal quality improvements. However, the envelope performed well at improved cooling operative conditions even at existing envelope hygrothermal quality. It is, therefore, important to ascertain the envelope hygrothermal quality as well the cooling operative conditions while embarking on energy efficiency operations in mechanical

  9. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Turner, William J. N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trinity College Dublin, Dublin (Ireland); Walker, Iain S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-19

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector's energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level. The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  10. The Microbiologic Quality of the Air in Broiler Houses

    Directory of Open Access Journals (Sweden)

    Silvana Popescu

    2010-10-01

    Full Text Available The aim of this paper was to assess the microbiologic quality of air in broiler houses. The number of bacteria (mesophile, staphylococci, streptococci and gram-negatives and fungi was determined in 6 broiler houses with chicken of different ages (1-6 weeks old through specific methods. The results were statistically processed by using the SPSS software, version 17. The number of bacteria and fungi varied in the 6 broiler houses, ranging from 2.25 x 105 to 2.17 x 106 for the total number of mesophilic bacteria, between 3.5 x 104 – 1.27 x 106 for staphylococci, 7.4 x 104 – 5.01 x 105 for streptococci, 3.5 x 103 – 1.53 x 104 for gram-negatives and from 1.67 x 104 to 8.13 x 104 for fungi, respectively. The number of bacteria and fungi were significantly lower for the younger chicken (p < 0.05. The proportions of groups with hygienic significance within the total mesophilic bacteria number were: 15.7% - 68.6% staphylococci, 6.7% - 45.6% streptococci and 0.2% - 4.5% gram-negatives. The comparative appraisal of the microbiologic quality in the broiler houses showed better air quality in the youngest chicken’s house (one week of age. The obtained results indicate the necessity for increased ventilation and for air disinfection during the chicken’s fattening period.

  11. Use of local convective and radiant cooling at warm environment: effect on thermal comfort and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Duszyk, Marcin; Krejcirikova, Barbora

    2012-01-01

    The effect of four local cooling devices (convective, radiant and combined) on thermal comfort and perceived air quality reported by 24 subjects at 28 ˚C and 50% RH was studied. The devices studied were: (1) desk cooling fan, (2) personalized ventilation providing clean air, (3) two radiant panels...... and (4) two radiant panels with one panel equipped with small fans. A reference condition without cooling was tested as well. The response of the subjects to the exposed conditions was collected by computerized questionnaires. The cooling devices significantly (pthermal comfort...... compared to without cooling. The acceptability of the thermal environment was similar for all cooling devices. The acceptability of air movement and PAQ increased when the local cooling methods were used. The best results were achieved with personalized ventilation and cooling fan. The improvement in PAQ...

  12. Indoor air quality in Portuguese schools: levels and sources of pollutants.

    Science.gov (United States)

    Madureira, J; Paciência, I; Pereira, C; Teixeira, J P; Fernandes, E de O

    2016-08-01

    Indoor air quality (IAQ) parameters in 73 primary classrooms in Porto were examined for the purpose of assessing levels of volatile organic compounds (VOCs), aldehydes, particulate matter, ventilation rates and bioaerosols within and between schools, and potential sources. Levels of VOCs, aldehydes, PM2.5 , PM10 , bacteria and fungi, carbon dioxide (CO2 ), carbon monoxide, temperature and relative humidity were measured indoors and outdoors and a walkthrough survey was performed concurrently. Ventilation rates were derived from CO2 and occupancy data. Concentrations of CO2 exceeding 1000 ppm were often encountered, indicating poor ventilation. Most VOCs had low concentrations (median of individual species <5 μg/m(3) ) and were below the respective WHO guidelines. Concentrations of particulate matter and culturable bacteria were frequently higher than guidelines/reference values. The variability of VOCs, aldehydes, bioaerosol concentrations, and CO2 levels between schools exceeded the variability within schools. These findings indicate that IAQ problems may persist in classrooms where pollutant sources exist and classrooms are poorly ventilated; source control strategies (related to building location, occupant behavior, maintenance/cleaning activities) are deemed to be the most reliable for the prevention of adverse health consequences in children in schools. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  13. The Importance of Individual Ventilation Cottage (IVC) System

    International Nuclear Information System (INIS)

    Anee Suryani Sued; Fazliana Mohd Saaya; Mohd Ramli Ibrahim; Shafii Khamis

    2015-01-01

    Experimental animals such as rats and mice are used in scientific research, especially in research related to drugs, must be able to give the right decisions and authentic. The results are not accurate and authentic will harm humans, especially in pre-clinical studies of drugs (drug) trial. Therefore, the system of individual ventilated cages (IVC) has been developed in the Malaysian Nuclear Agency to ensure that animal experiments are always at the level of quality, healthy and disease free. IVC system was developed to replace conventional animal cage systems that have been used previously. The use of IVC systems in breed and maintain rats and mice to obtain disease-free animal, the animal known as SPF (Specific pathogen free animals). For this purpose, the IVC system using 'bedding' typical food and animal pests that have been purified to ensure that it meets the intended use of the system perfectly. In addition, system privileges are through the ventilation system that can isolate the one-way air enters and exits for each cage, and equipped with a HEPA filter (High -Efficiency-Particulate Air) filter which can prevent contamination of microorganisms for ventilation in the cage and the air in the vicinity , Through the use of IVC system, the quality and health of experimental animals that are bred and used in the Medical Technology Division can be improved and so can guarantee the accuracy and validity of the results of research conducted. (author)

  14. Validating and improving CT ventilation imaging by correlating with ventilation 4D-PET/CT using {sup 68}Ga-labeled nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Kipritidis, John, E-mail: john.kipritidis@sydney.edu.au; Keall, Paul J. [Radiation Physics Laboratory, Sydney Medical School, University of Sydney, Sydney NSW 2006 (Australia); Siva, Shankar [Department of Radiation Oncology, Peter MacCallum Cancer Centre, and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville VIC 3052 (Australia); Hofman, Michael S.; Callahan, Jason; Hicks, Rodney J. [Centre for Cancer Imaging, Peter MacCallum Cancer Centre and Department of Medicine, University of Melbourne, Melbourne VIC 3002 (Australia)

    2014-01-15

    Purpose: CT ventilation imaging is a novel functional lung imaging modality based on deformable image registration. The authors present the first validation study of CT ventilation using positron emission tomography with{sup 68}Ga-labeled nanoparticles (PET-Galligas). The authors quantify this agreement for different CT ventilation metrics and PET reconstruction parameters. Methods: PET-Galligas ventilation scans were acquired for 12 lung cancer patients using a four-dimensional (4D) PET/CT scanner. CT ventilation images were then produced by applying B-spline deformable image registration between the respiratory correlated phases of the 4D-CT. The authors test four ventilation metrics, two existing and two modified. The two existing metrics model mechanical ventilation (alveolar air-flow) based on Hounsfield unit (HU) change (V{sub HU}) or Jacobian determinant of deformation (V{sub Jac}). The two modified metrics incorporate a voxel-wise tissue-density scaling (ρV{sub HU} and ρV{sub Jac}) and were hypothesized to better model the physiological ventilation. In order to assess the impact of PET image quality, comparisons were performed using both standard and respiratory-gated PET images with the former exhibiting better signal. Different median filtering kernels (σ{sub m} = 0 or 3 mm) were also applied to all images. As in previous studies, similarity metrics included the Spearman correlation coefficient r within the segmented lung volumes, and Dice coefficient d{sub 20} for the (0 − 20)th functional percentile volumes. Results: The best agreement between CT and PET ventilation was obtained comparing standard PET images to the density-scaled HU metric (ρV{sub HU}) with σ{sub m} = 3 mm. This leads to correlation values in the ranges 0.22 ⩽ r ⩽ 0.76 and 0.38 ⩽ d{sub 20} ⩽ 0.68, with r{sup ¯}=0.42±0.16 and d{sup ¯}{sub 20}=0.52±0.09 averaged over the 12 patients. Compared to Jacobian-based metrics, HU-based metrics lead to statistically significant

  15. Liquid ventilation.

    Science.gov (United States)

    Sarkar, Suman; Paswan, Anil; Prakas, S

    2014-01-01

    Human have lungs to breathe air and they have no gills to breath liquids like fish. When the surface tension at the air-liquid interface of the lung increases as in acute lung injury, scientists started to think about filling the lung with fluid instead of air to reduce the surface tension and facilitate ventilation. Liquid ventilation (LV) is a technique of mechanical ventilation in which the lungs are insufflated with an oxygenated perfluorochemical liquid rather than an oxygen-containing gas mixture. The use of perfluorochemicals, rather than nitrogen as the inert carrier of oxygen and carbon dioxide offers a number of advantages for the treatment of acute lung injury. In addition, there are non-respiratory applications with expanding potential including pulmonary drug delivery and radiographic imaging. It is well-known that respiratory diseases are one of the most common causes of morbidity and mortality in intensive care unit. During the past few years several new modalities of treatment have been introduced. One of them and probably the most fascinating, is of LV. Partial LV, on which much of the existing research has concentrated, requires partial filling of lungs with perfluorocarbons (PFC's) and ventilation with gas tidal volumes using conventional mechanical ventilators. Various physico-chemical properties of PFC's make them the ideal media. It results in a dramatic improvement in lung compliance and oxygenation and decline in mean airway pressure and oxygen requirements. No long-term side-effect reported.

  16. Energy performance and indoor air quality in modern buildings in Greenland

    DEFF Research Database (Denmark)

    Kotol, Martin; Rode, Carsten; Vahala, Jan

    2015-01-01

    A new dormitory for engineering students "Apisseq" was built in Sisimiut, Greenland in 2010. Its purpose is not only to provide accommodation for students, but thanks to its complex monitoring system, it enables researchers to evaluate the building's energy performance and indoor air quality. Some......, which have negative effects on the energy performance and indoor air quality. The heat demand in 2011 was 26.5% higher than expected. One of the main causes of the extra heat demand is the fact that the ventilation system was over-dimensioned, and although it is running on the lowest fan power...... of the installed technologies are not commonly used in the current Greenlandic building stock. Therefore, evaluation of their performance under local conditions is essential for further use and development. The first year of operation has disclosed some errors made during the design process and construction phase...

  17. Characteristics of rain penetration through a gravity ventilator used for natural ventilation.

    Science.gov (United States)

    Kim, Taehyeung; Lee, Dong Ho; Ahn, Kwangseog; Ha, Hyunchul; Park, Heechang; Piao, Cheng Xu; Li, Xiaoyu; Seo, Jeoungyoon

    2008-01-01

    Gravity ventilators rely simply on air buoyancy to extract air and are widely used to exhaust air contaminants and heat from workplaces using minimal energy. They are designed to maximize the exhaust flow rate, but the rain penetration sometimes causes malfunctioning. In this study, the characteristics of rain penetration through a ventilator were examined as a preliminary study to develop a ventilator with the maximum exhaust capacity while minimizing rain penetration. A model ventilator was built and exposed to artificial rain and wind. The paths, intensities and amounts of penetration through the ventilator were observed and measured in qualitative and quantitative fashions. In the first phase, the pathways and intensities of rain penetration were visually observed. In the second phase, the amounts of rain penetration were quantitatively measured under the different configurations of ventilator components that were installed based on the information obtained in the first-phase experiment. The effects of wind speed, grill direction, rain drainage width, outer wall height, neck height and leaning angle of the outer wall from the vertical position were analyzed. Wind speed significantly affected rain penetration. Under the low crosswind conditions, the rain penetration intensities were under the limit of detection. Under the high crosswind conditions, grill direction and neck height were the most significant factors in reducing rain penetration. The installation of rain drainage was also important in reducing rain penetration. The experimental results suggest that, with proper configurations of its components, a gravity ventilator can be used for natural ventilation without significant rain penetration problems.

  18. Recommended Ventilation Strategies for Energy-Efficient Production Homes

    Energy Technology Data Exchange (ETDEWEB)

    Roberson, J.; Brown, R.; Koomey, J.; Warner, J.; Greenberg, S.

    1998-12-01

    This report evaluates residential ventilation systems for the U.S. Environmental Protection Agency's (EPA's) ENERGY STAR{reg_sign} Homes program and recommends mechanical ventilation strategies for new, low-infiltration, energy-efficient, single-family, ENERGY STAR production (site-built tract) homes in four climates: cold, mixed (cold and hot), hot humid, and hot arid. Our group in the Energy Analysis Department at Lawrence Berkeley National Lab compared residential ventilation strategies in four climates according to three criteria: total annualized costs (the sum of annualized capital cost and annual operating cost), predominant indoor pressure induced by the ventilation system, and distribution of ventilation air within the home. The mechanical ventilation systems modeled deliver 0.35 air changes per hour continuously, regardless of actual infiltration or occupant window-opening behavior. Based on the assumptions and analysis described in this report, we recommend independently ducted multi-port supply ventilation in all climates except cold because this strategy provides the safety and health benefits of positive indoor pressure as well as the ability to dehumidify and filter ventilation air. In cold climates, we recommend that multi-port supply ventilation be balanced by a single-port exhaust ventilation fan, and that builders offer balanced heat-recovery ventilation to buyers as an optional upgrade. For builders who continue to install forced-air integrated supply ventilation, we recommend ensuring ducts are airtight or in conditioned space, installing a control that automatically operates the forced-air fan 15-20 minutes during each hour that the fan does not operate for heating or cooling, and offering ICM forced-air fans to home buyers as an upgrade.

  19. High Resolution Time Series Cave Ventilation Processes and the Effects on Cave Air Chemistry and Drip Waters: Speleoclimatology and Proxy Calibration

    Science.gov (United States)

    Kowalczk, A. J.; Froelich, P. N.; Gaffka, C.; Tremaine, D.

    2008-12-01

    Continuous high resolution (sub-hourly), long-term (Nov 2007-present) monitoring of cave air chemistry (Temperature, Relative Humidity, Barometric Pressure, Radon-222, CO2, Air flow, Wind speed and direction) in a shallow subtropical cave (Hollow Ridge) in N Florida reveals two major ventilation mechanisms: 1) ventilation driven by winds across the cave entrances, and 2) ventilation driven by density differences between atmospheric and cave air. The degree and type of ventilation strongly influence the 222Rn and CO2 of cave air, which in turn affects the timing and extent of calcite deposition in speleothems. The degree of ventilation is estimated using a cave air CO2-δ13CO2 Keeling Plot, or a simple radon deficiency model. Results show cave air has an atmospheric component ranging from 10-90%. During fall and winter, average CO2 (700 ppmv) and 222Rn (50-100 dpm/L) are lower than in spring and summer (CO2 = 1200 ppmv; 222Rn = 1000 dpm/L) due to increased winter ventilation. Decreased ventilation during the summer allows CO2 and 222Rn levels to rise. Winter daily ventilation is primarily a function of density gradients between cave air and atmospheric air, while summer daily ventilation is primarily a function of late morning NW-NE winds above the cave. Stable isotope analyses of drip water (fracture drip and pore flow drip) and aquifer water from Hollow Ridge agree with previous isotope studies of drip water at Florida Caverns State Park, 2 km to the NE. During summer, isotopic composition of pore flow drip water (δ18O -3.8 to -4.0 per mil; δD -17.3 to -20.2 per mil VSMOW) and aquifer water (δ18O -4.0 per mil; δD -18.0 to -21.1 per mil) are similar to average annual weighted isotopic composition of precipitation (δ18O -3.6 per mil) while fracture drip waters (δ18O -3 to -3.4 per mil; δD -11.9 to -14.3 per mil) likely reflect the isotopic composition of individual precipitation events. Pore flow drip waters δ18O are weakly correlated with drip rates

  20. Actual performance of mechanical ventilators in ICU: a multicentric quality control study

    Directory of Open Access Journals (Sweden)

    Govoni L

    2012-12-01

    tidal volume = 607 ± 36 (530–723 mL, expired tidal volume = 608 ± 36 (530–728 mL, peak pressure = 20.8 ± 2.3 (17.2–25.9 cmH2O, respiratory rate = 20.09 ± 0.35 (19.5–21.6 breaths/minute, PEEP = 8.43 ± 0.57 (7.26–10.8 cmH2O, oxygen fraction = 0.49 ± 0.014 (0.41–0.53. The more error-prone parameters were the ones related to the measure of flow. In several cases, the actual delivered mechanical ventilation was considerably different from the set one, suggesting the need for improving quality control procedures for these machines.Keywords: equipment and supplies, medical devices, intravenous, quality assurance, health care quality assessment, ventilator accuracy, ventilation error

  1. Survey of Indoor Air Quality in the University of Alaska

    DEFF Research Database (Denmark)

    Kotol, Martin; Craven, Colin; Rode, Carsten

    2014-01-01

    problem which is poor indoor air quality (IAQ). During summer 2012 four student homes were built in Fairbanks, Alaska as a part of Sustainable Village project. The aim of this project is to promote sustainable ways of living in the Arctic and to study new technologies and their applicability in the cold......In cold climates living inside the heated space requires considerable amounts of heat. With the intention to decrease the heating demand, people are insulating their homes and make them more air tight. With the natural infiltration being brought close to zero there has been an increase of a new...... north. This paper presents the results of an IAQ survey performed in the homes during two weeks in December 2012. During this survey the air temperature, relative humidity (RH) and CO2 concentration were measured in all occupied bedrooms along with monitoring of the ventilation units. The results have...

  2. Low resource ventilation unit; Ressourcebesparende ventilationsenhed

    Energy Technology Data Exchange (ETDEWEB)

    Drivsholm, C.

    2012-03-15

    In the project a resource-saving ventilation device was developed which is based on the use of a regenerator and a reversible air flow. The regenerator is placed in the building envelope, and the concept works in the way that the heat in the air during ventilation is stored in the regenerator and brought back into the building by a reversible air change. The heated air is blown from inside the building out through the regenerator. In this way the regenerator accumulates the heat in the air. Over a period of 30-120 seconds, the regenerator capacity is utilized. When the regenerator cannot be further heated, the air flow is reversed and there is now blown cold air through the regenerator. Thereby the heat from the regenerator is released to the cold fresh air. Thus, the fresh air brings heat back into the building, whereby the air is replaced with a limited heat loss. Ventilation with a regenerator is described as micro-ventilation. The developed micro-ventilation unit was tested by the Danish Technological Institute. The test results shows that the unit performs according to expectations: 1) The heat recovery is 85%; 2) The flow through the unit is 80m3 per hour in a 5 section unit; 3) The noise level is 30 db(A) in a representative room; 4) The energy consumption is <300 J/m3. The unit is introduced into the market, and the first plants have been sold. (LN)

  3. Indoor air quality in 24 California residences designed as high-performance homes

    Energy Technology Data Exchange (ETDEWEB)

    Less, Brennan [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Mullen, Nasim [Gap, Inc., San Francisco, CA (United States); Singer, Brett [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Walker, Iain [Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)

    2015-01-01

    Today’s high performance green homes are reaching previously unheard of levels of airtightness and are using new materials, technologies and strategies, whose impacts on Indoor Air Quality (IAQ) cannot be fully anticipated from prior studies. This research study used pollutant measurements, home inspections, diagnostic testing and occupant surveys to assess IAQ in 24 new or deeply retrofitted homes designed to be high performance green buildings in California. Although the mechanically vented homes were six times as airtight as non-mechanically ventilated homes (medians of 1.1 and 6.1 ACH50, n=11 and n=8, respectively), their use of mechanical ventilation systems and possibly window operation meant their median air exchange rates were almost the same (0.30 versus 0.32 hr-1, n=8 and n=8, respectively). Pollutant levels were also similar in vented and unvented homes. In addition, these similarities were achieved despite numerous observed faults in complex mechanical ventilation systems. More rigorous commissioning is still recommended. Cooking exhaust systems were used inconsistently and several suffered from design flaws. Failure to follow best practices led to IAQ problems in some cases. Ambient nitrogen dioxide standards were exceeded or nearly so in four homes that either used gas ranges with standing pilots, or in Passive House-style homes that used gas cooking burners without venting range hoods. Homes without active particle filtration had particle count concentrations approximately double those in homes with enhanced filtration. The majority of homes reported using low-emitting materials; consistent with this, formaldehyde levels were approximately half those in conventional, new CA homes built before 2008. Emissions of ultrafine particles (with diameters <100 nm) were dramatically lower on induction electric cooktops, compared with either gas or resistance electric models. These results indicate that high performance homes can achieve

  4. Ventilated air cavities for the control of rising damp in historical buildings. Functional analysis

    Directory of Open Access Journals (Sweden)

    Mª T. Gil Muñoz

    2018-01-01

    Full Text Available This study analyzes the behavior of ventilated air cavities and their level of efficiency when used for the control of rising damp and the associated pathological damage in walls and foundations of historical buildings. The methodology is based on experiments on-site and monitoring. Knowledge of local climate conditions, the surroundings of the building, its construction features and the type of foundation constitute the preliminary conditions for the monitoring. In order to reach the goal we have measured several parameters according to a plan, developed graphical tools for the study, and prepared statistical data. The building of this system has not always been accompanied by a thorough assessment that would justify the intervention. The results show how this situation has affected the design strategies and sizing of the ventilated air cavities, limiting in many cases their efficiency.

  5. Application of schlieren techniques for improved understanding of underground mine ventilation

    Energy Technology Data Exchange (ETDEWEB)

    Jong, E.C.; Luxbacher, K.D. [Virginia Tech, Blacksburg, VA (United States)

    2010-07-01

    Mine ventilation systems must be maintained in optimal running order in order to suppress dusts and provide fresh air to mine workers. However, it is difficult to gather representative ventilation data because of the dynamic nature of mines, including geologic conditions, equipment operations, personnel movements, advance of mine openings and atmospheric changes. Errors and imprecision in computer codes can be detrimental to mine forecasting. The best way to improve the validity of ventilation models is to increase the quality of survey data. This study examined the feasibility of using the background-oriented schlieren (BOS) flow visualization method to reach this objective. Schlieren techniques involve the use of refractive properties of different air densities to enhance the distortions of light, thereby allowing airflow to be visualized. In this study, the BOS technique was used to image flow with 2 fans, an axivane fan and a custom built axial flow fan. The results showed that the BOS technique can clearly display air flow under the correct conditions. Producing an accurate picture of air flow can improve the industry's overall understanding of air flow and resistance, thus improving mine safety and productivity. 8 refs., 7 figs.

  6. Application of schlieren techniques for improved understanding of underground mine ventilation

    International Nuclear Information System (INIS)

    Jong, E.C.; Luxbacher, K.D.

    2010-01-01

    Mine ventilation systems must be maintained in optimal running order in order to suppress dusts and provide fresh air to mine workers. However, it is difficult to gather representative ventilation data because of the dynamic nature of mines, including geologic conditions, equipment operations, personnel movements, advance of mine openings and atmospheric changes. Errors and imprecision in computer codes can be detrimental to mine forecasting. The best way to improve the validity of ventilation models is to increase the quality of survey data. This study examined the feasibility of using the background-oriented schlieren (BOS) flow visualization method to reach this objective. Schlieren techniques involve the use of refractive properties of different air densities to enhance the distortions of light, thereby allowing airflow to be visualized. In this study, the BOS technique was used to image flow with 2 fans, an axivane fan and a custom built axial flow fan. The results showed that the BOS technique can clearly display air flow under the correct conditions. Producing an accurate picture of air flow can improve the industry's overall understanding of air flow and resistance, thus improving mine safety and productivity. 8 refs., 7 figs.

  7. Some indoor air quality parameters at a government office at Putrajaya, Malaysia

    International Nuclear Information System (INIS)

    Roslenda Hassan; Nor Mariah Adam; Eris Elionddy Supeni

    2009-01-01

    Full text: The Code of Practice on Indoor Air Quality (IAQ) under the Occupational Safety and Health Act (OSHA) 1994 has been drawn up to ensure that employees and other occupants are protected from poor indoor air quality that could adversely affect their health. This paper presents the results of the measurements of indoor air quality and air exchange rate at an office complex in Putrajaya. The experiment was carried out on 28th to 29th April 2008. There are several pertinent of IAQ parameters measured are temperature, relative humidity (RH), particle (d 2 ). Measurement also includes determination of air exchange rate of selected rooms using the carbon dioxide concentration decay technique and use of accu-balance for measurement of airflow rate. The results of the audit were then compared to The Department Of Occupational Safety And Health (DOSH) Code of Practice Standard (2005) and ASHRAE Standard. All the areas in the building has building has experienced very high level of CO 2 with low value of air velocity and air exchange rate. Storeroom shows the highest risk for people to stay long (2550 ppm of CO 2 , 5 ppm of CO, 2.8 ppm of VOCs, 0.316 mg/m 3 of PM10, 81.6 % of RH and 1.8 h -1 of ventilation rates). This consequently will give health affect to the occupants in short term and long term. (author)

  8. Novel approach for evaluation of air change rate in naturally ventilated occupied spaces based on metabolic CO2 time variation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Markov, Detelin G.

    2014-01-01

    IAQ in many residential buildings relies on non-organized natural ventilation. Accurate evaluation of air change rate (ACR) in this situation is difficult due to the nature of the phenomenon - intermittent infiltration-exfiltration periods of mass exchange between the room air and the outdoor air...... at low rate. This paper describes a new approach for ACR evaluation in naturally ventilated occupied spaces. Actual metabolic CO2 time variation record in an interval of time is compared with the computed variation of metabolic CO2 for the same time interval under reference conditions: sleeping occupants...

  9. Improving Ventilation and Saving Energy: Final Report on Indoor Environmental Quality and Energy Monitoring in Sixteen Relocatable Classrooms

    Energy Technology Data Exchange (ETDEWEB)

    Apte, Michael G.; Norman, Bourassa; Faulkner, David; Hodgson, Alfred T.; Hotchi, Toshfumi; Spears, Michael; Sullivan, Douglas P.; Wang, Duo

    2008-04-04

    effective removal of volatile organic compounds and aldehydes, on average lowering the concentrations by 57 percent relative to the levels in the 10 SEER classrooms. The average IHPAC to 10 SEER formaldehyde ratio was about 67 percent, indicating only a 33 percent reduction of this compound in indoor air. The IHPAC thermal control system provided less variability in occupied classroom temperature than the 10 SEER thermostats. The average room temperatures in all seasons tended to be slightly lower in the IHPAC classrooms, often below the lower limit of the ASHRAE 55 thermal comfort band. State-wide and national energy modeling provided conservative estimates of potential energy savings by use of the IHPAC system that would provide payback a the range of time far lower than the lifetime of the equipment. Assuming electricity costs of $0.15/kWh, the perclassroom range of savings is from about $85 to $195 per year in California, and about $89 to $250 per year in the U.S., depending upon the city. These modelsdid not include the non-energy benefits to the classrooms including better air quality and acoustic conditions that could lead to improved health and learning in school. Market connection efforts that were part of the study give all indication that this has been a very successful project. The successes include the specification of the IHPAC equipment in the CHPS portable classroom standards, the release of a commercial product based on the standards that is now being installed in schools around the U.S., and the fact that a public utility company is currently considering the addition of the technology to its customer incentive program. These successes indicate that the IHPAC may reach its potential to improve ventilation and save energy in classrooms.

  10. Personal Exposure in Displacement Ventilated Rooms

    DEFF Research Database (Denmark)

    Brohus, Henrik; Nielsen, Peter Vilhelm

    1996-01-01

    in the lower part of the room close to the occupant. A personal exposure model for displacement ventilated rooms is proposed. The model takes the influence of gradients and the human thermal boundary layer into account. Two new quantities describing the interaction between a person and the ventilation......Personal exposure in a displacement ventilated room is examined. The stratified flow and the considerable concentration gradients necessitate an improvement of the widely used fully mixing compartmental approach. The exposure of a seated and a standing person in proportion to the stratification...... contaminant sources, this entrainment improves the indoor air quality. Measurements of exposure due to a passive contaminant source show a significant dependence on the flow field as well as on the contaminant source location. Poor system performance is found in the case of a passive contaminant released...

  11. Natural gas combustion and indoor air quality in domestic premises; Combustion du gaz naturel et qualite de l'air a l'interieur des habitations

    Energy Technology Data Exchange (ETDEWEB)

    Occhio, L.; Riva, A. [Snam, (Italy); Canci, F.; Scevarolli, V. [Italgas, Torino (Italy)

    2000-07-01

    Indoor air quality depends on many factors; combustion appliances are one of the sources of emissions inside dwellings. Their installation is regulated by UNI-CIG standards which also establish the ventilation and aeration requirements needed to guarantee the safety and healthiness of the environment. In order to critically evaluate the effect on indoor air quality of using gas appliances under different operational regimes and in different types of building, Snam and Italgas have developed a research project in co-operation with Enitecnologie and Turin Polytechnic, even to provide theoretical and experimental support for standardisation activities. The results of the presented research include experimental measurements made in real buildings, mathematical modelling and analysis of Italian and international literature. The results show that use of combustion appliances has little influence on indoor air quality and does not affect people's health. (authors)

  12. Study on the relationship between uranium mine cage hoisting system and quality of inlet air

    International Nuclear Information System (INIS)

    Hu Penghua; Li Xianjie; Hong Changshou; Li Xiangyang

    2014-01-01

    Those skip hoisting shafts and cage hoisting shafts with over 100000-ton hoisting capacity per year can not be designed as air inlet shafts is particularly emphasized in nuclear industrial standard Technical Regulations for Radon Exhaustion and Ventilation in Underground Uranium Mine (EJ/T 359-2006) referring to previous production experiences of the former Soviet Union's uranium mines. Cage hoisting shafts are generally served as the main air inlet shafts for the widely adopted of exhaust ventilation in terms of uranium mines in China. Nevertheless, the above-mentioned standard has been considered as a constraint on designing and producing of China's prospective large uranium mines. Through theoretical analysis and field experiments on the main influencing factors over the quality of inlet air of selected experimental uranium mines hoisting system such as piston wind pressure, ore heap's radon emanation of shaft station, radon contamination of loaded mine cars etc, we finally established the calculation model of inlet air contamination deriving from ore heap and loaded mine cars' radon emanation in vertical shaft station. The acquired research achievements would lav a theoretical foundation for further works on revising relevant standards. (authors)

  13. VENTILATION MODEL

    International Nuclear Information System (INIS)

    V. Chipman

    2002-01-01

    The purpose of the Ventilation Model is to simulate the heat transfer processes in and around waste emplacement drifts during periods of forced ventilation. The model evaluates the effects of emplacement drift ventilation on the thermal conditions in the emplacement drifts and surrounding rock mass, and calculates the heat removal by ventilation as a measure of the viability of ventilation to delay the onset of peak repository temperature and reduce its magnitude. The heat removal by ventilation is temporally and spatially dependent, and is expressed as the fraction of heat carried away by the ventilation air compared to the fraction of heat produced by radionuclide decay. One minus the heat removal is called the wall heat fraction, or the remaining amount of heat that is transferred via conduction to the surrounding rock mass. Downstream models, such as the ''Multiscale Thermohydrologic Model'' (BSC 2001), use the wall heat fractions as outputted from the Ventilation Model to initialize their postclosure analyses

  14. Measure Guideline: Selecting Ventilation Systems for Existing Homes

    Energy Technology Data Exchange (ETDEWEB)

    Aldrich, Robb [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-02-01

    This document addresses adding -or improving - mechanical ventilation systems to existing homes. The purpose of ventilation is to remove contaminants from homes, and this report discusses where, when, and how much ventilation is appropriate in a home, including some discussion of relevant codes and standards. Advantages, disadvantages, and approximate costs of various system types are presented along with general guidelines for implementing the systems in homes. CARB intends for this document to be useful to decision makers and contractors implementing ventilation systems in homes. Choosing the "best" system is not always straightforward; selecting a system involves balancing performance, efficiency, cost, required maintenance, and several other factors. It is the intent of this document to assist contractors in making more informed decisions when selecting systems. Ventilation is an integral part of a high-performance home. With more air-sealed envelopes, a mechanical means of removing contaminants is critical for indoor environmental quality and building durability.

  15. Indoor Air Quality

    Science.gov (United States)

    ... protect yourself and your family. Learn more Air Quality at Work Workers should breathe easy while on the job, but worksites with poor air quality put employees at risk. Healthy air is essential ...

  16. Observations on the release of air from the rear end of ventilated cavities

    International Nuclear Information System (INIS)

    Verron, J.; Michel, J.M.

    1976-01-01

    In ventilated cavity flows, produced by air injection at the base of bi or tri-dimensional foils, the relation between the air flow rate and the relative cavity underpressure depends particularly on the way in which the air is released from the rear end of the cavity. The experiments show flow configurations of various kinds, revealing the influence of many parameters which interact to determine the closure region of the cavity. Examples are given in the cases of pulsating and non-pulsating cavities. The hydrodynamical tunnel is also briefly described with emphasis on the special units which allow to inject a large amount of air into the water and to produce large cavities without modifying the other characteristics: velocity, ambient pressure and air content in water [fr

  17. Air quality management: challenges and solutions in delivering air quality action plans

    Energy Technology Data Exchange (ETDEWEB)

    Beattie, C.I.; Longhurst, J.W.S.; Woodfield, N.K.

    2000-07-01

    The Air Quality Strategy for England, Scotland, Wales and Northern Ireland (DETR, 2001) has the aim of showing how improved local air quality in the UK may be delivered. Through a process of reviewing and assessing local air quality in both urban and rural localities, a clear picture is emerging of areas of the UK where air quality objectives are not likely to be met. The next challenge will be the identification of the required actions and new ways of working to achieve specific air quality objectives. The declaration of air quality management areas, where objectives are not predicted to be met by their target years, involves co-ordinated local action and collaborative working, which can only be effective with support across local authority departments and external stake holders. This paper provides a background to the relevant legislation underpinning, local air quality management and summarises the review and assessment process. It then comments on future directions in relation to the designation of Air Quality Management Areas and considers the requirements of action plans to deliver the goal of cleaner air in the UK. It is concluded that the UK has developed a highly sophisticated system of air quality management over a relatively short period of time, and with it has brought a new way of local authority working. The challenge of the next stage of the process is likely to be in implementing cost effective and proportional solutions to identified problems at the local level. (Author)

  18. An air quality assessment onboard an Oberon class submarine : HMCS Okanagan

    International Nuclear Information System (INIS)

    Severs, Y.D.; Sabiston, B.H.

    2000-09-01

    The Defence and Civil Institute of Environmental Medicine (DCIEM) re-examined the air quality on an Oberon class submarine, the HMCS Okanagan, to determine if the atmosphere complied with Air Purification Standard BR 1326. The main objective of the assessment was to help in the development of future submarine air quality management. The information obtained from the Oberon class submarine could be readily applied to the Victoria class submarines. The assessment involved a trial aboard an Oberon under patrol conditions. The functional and detection capabilities of analytical air monitoring instruments were assessed for a 24-hour period to obtain data regarding the contaminants onboard the submarine. A profile of carbon dioxide accumulation and oxygen consumption was determined. This was followed by an assessment of the effectiveness of air purification such as carbon dioxide scrubbing, oxygen generation and snorting. Carbon monoxide was also monitored and carboxyhemoglobin was measured in both smokers and non-smokers. In order to determine if the sanitary or electrical systems, or engine exhaust posed any danger, ammonia, ozone and nitrous compounds were also measured. In addition, hydrogen, arsine and stibene were monitored to determine any possible danger from charging batteries. The health risks associated with aerosolized particles from cooking, smoking and exhaust gases were also measured. Results showed that all contaminants were within allowable limits. However, the study also confirmed that air purification measures on diesel submarines are minimal and poorly placed and that there is a lack of exhaust ventilation. Poor air exchange was worsened by compartmentalization and blackout curtains. Several recommendations were proposed to improve the management of air quality in Victoria class submarines. 18 refs., 2 tabs., 5 figs

  19. An air quality assessment onboard an Oberon class submarine : HMCS Okanagan

    Energy Technology Data Exchange (ETDEWEB)

    Severs, Y.D.; Sabiston, B.H.

    2000-09-01

    The Defence and Civil Institute of Environmental Medicine (DCIEM) re-examined the air quality on an Oberon class submarine, the HMCS Okanagan, to determine if the atmosphere complied with Air Purification Standard BR 1326. The main objective of the assessment was to help in the development of future submarine air quality management. The information obtained from the Oberon class submarine could be readily applied to the Victoria class submarines. The assessment involved a trial aboard an Oberon under patrol conditions. The functional and detection capabilities of analytical air monitoring instruments were assessed for a 24-hour period to obtain data regarding the contaminants onboard the submarine. A profile of carbon dioxide accumulation and oxygen consumption was determined. This was followed by an assessment of the effectiveness of air purification such as carbon dioxide scrubbing, oxygen generation and snorting. Carbon monoxide was also monitored and carboxyhemoglobin was measured in both smokers and non-smokers. In order to determine if the sanitary or electrical systems, or engine exhaust posed any danger, ammonia, ozone and nitrous compounds were also measured. In addition, hydrogen, arsine and stibene were monitored to determine any possible danger from charging batteries. The health risks associated with aerosolized particles from cooking, smoking and exhaust gases were also measured. Results showed that all contaminants were within allowable limits. However, the study also confirmed that air purification measures on diesel submarines are minimal and poorly placed and that there is a lack of exhaust ventilation. Poor air exchange was worsened by compartmentalization and blackout curtains. Several recommendations were proposed to improve the management of air quality in Victoria class submarines. 18 refs., 2 tabs., 5 figs.

  20. Dynamic model of counter flow air to air heat exchanger for comfort ventilation with condensation and frost formation

    DEFF Research Database (Denmark)

    Nielsen, Toke Rammer; Rose, Jørgen; Kragh, Jesper

    2009-01-01

    must be calculated under conditions with condensation and freezing. This article presents a dynamic model of a counter flow air to air heat exchanger taking into account condensation and freezing and melting of ice. The model is implemented in Simulink and results are compared to measurements......In cold climates heat recovery in the ventilation system is essential to reduce heating energy demand. Condensation and freezing occur often in efficient heat exchangers used in cold climates. To develop efficient heat exchangers and defrosting strategies for cold climates, heat and mass transfer...

  1. Air quality III - experiments on emission and sensory perception of olfactory substances from ventilation systems. Final report; Luftqualitaet III - Experimentelle Untersuchungen zur Emission und Wahrnehmung von Geruchsstoffen aus Lueftungsgeraeten. Abschlussbericht

    Energy Technology Data Exchange (ETDEWEB)

    Fitzner, K.; Boettcher, O.

    2001-08-01

    Room air quality is highly important in Germany as people living here will spend 90 percent of their lives inside rooms. Air quality is defined to a large extent via the nose. This research project, in continuation of AiF 10525, involved investigations of materials and components of space HVAC systems with varying air temperatures, humidities and air flow rates for a subjective assessment of the air quality. The main goals were the definition of laws for identification of odorants and the derivation of laws for calculating pollutant-level-dependent ambient air rates for mechanically ventilated rooms. The experiments showed that both adsorption and desorption had a significant part in the addition of odorangs, causing deviations between theoretical and experimental values of felt air quality. The temperature and the relative humidity had an effect as well. Most measurements were made near the olfactory threshold, so that a number of participants were unable to complete the test. Later investigations will rely on analytical methods in addition to test persons. (orig.) [German] Das Thema der Luftqualitaet in Innenraeumen hat in Deutschland grosse Bedeutung, da sich die Bevoelkerung zu 90 Prozent ihres Lebens in Innenraeumen aufhaelt. Die Behaglichkeit der Atemluft wird in grossem Masse durch die mit der Nase wahrgenommenen Bestandteile der Luft beeinflusst. In Fortsetzung zum Forschungsvorhaben AiF 10525 wurden in diesem Forschungsvorhaben Untersuchungen mit Materialien und Komponenten aus RLT-Anlagen unter Veraenderung von Lufttemperatur, Luftfeuchte und Luftgeschwindigkeit zur subjektiven Beurteilung der Luftqualitaet durchgefuehrt. Die Hauptziele dieser Untersuchungen waren das Auffinden der Gesetzmaessigkeiten zur Wahrnehmung von Geruchsstoffen und das Ableiten von Rechenregeln zur Bestimmung verunreinigungslastabhaengiger Aussenluftraten fuer maschinell belueftete Raeume. Die Versuche zeigten, dass Adsorption und Desorption bei der Addition von Geruchsstoffen

  2. Emission of formaldehyde by particleboard : effect of ventilation rate and loading on air-contamination levels

    Science.gov (United States)

    George E. Myers; Muneo Nagaoka

    1981-01-01

    Dynamic tests for determining the formaldehyde emission behavior of UF-bonded boards involve the measurement of formaldehyde concentration in the air within a vessel which contains a specified board loading L (m2 of board area per m3 of vessel free volume) and is being ventilated at a specified air exchange rate N (hr.-1). Such tests constitute a primary...

  3. The use of mechanical ventilation with heat recovery for controlling radon and radon-daughter concentrations

    International Nuclear Information System (INIS)

    Nazaroff, W.W.; Boegel, M.L.; Hollowell, C.D.; Roseme, G.D.

    1980-01-01

    An energy research house in Maryland was found to have radon concentrations far in excess of recommended guidelines. A mechanical ventilation system with heat recovery was installed in this house to test its effectiveness as an energy-efficient control technique for indoor radon. Radon concentration was monitored continuously for two weeks under varying ventilation conditions (0.07 to 0.8 air changes per hour (ach)) and radon daughter concentrations were measured by grab-sample techniques about nine times daily during this period. At ventilation rates of 0.6 ach and higher radon and radon daughter levels dropped below guidelines for indoor concentrations. Comparison with other studies indicates that indoor radon buildup may be a problem in a considerable portion of houses characterized by their low infiltration rates. The use of mechanical ventilation systems with air-to-air heat exchangers may offer a practical, cost-effective, and energy-efficient means of alleviating not only the radon problem specifically but also the general deterioration of indoor air quality in houses designed or retrofitted to achieve low infiltration

  4. Pretest Predictions for Ventilation Tests

    International Nuclear Information System (INIS)

    Y. Sun; H. Yang; H.N. Kalia

    2007-01-01

    The objective of this calculation is to predict the temperatures of the ventilating air, waste package surface, concrete pipe walls, and insulation that will be developed during the ventilation tests involving various test conditions. The results will be used as input to the following three areas: (1) Decisions regarding testing set-up and performance. (2) Assessing how best to scale the test phenomena measured. (3) Validating numerical approach for modeling continuous ventilation. The scope of the calculation is to identify the physical mechanisms and parameters related to thermal response in the ventilation tests, and develop and describe numerical methods that can be used to calculate the effects of continuous ventilation. Sensitivity studies to assess the impact of variation of linear power densities (linear heat loads) and ventilation air flow rates are included. The calculation is limited to thermal effect only

  5. Indoor air quality in low-energy houses in the Netherlands: Does mechanical ventilation provide a healthy indoor environment?

    NARCIS (Netherlands)

    Balvers, J.R.; Boxem, G.; Wit, de M.H.; Strøm-Tejsen, P; Olesen, B.W.; Wargocki, P; Zukowska, D; Toftum, J

    2008-01-01

    Increasing environmental awareness has led to new, energy-efficient building standards such as the German Passivhaus-standard. This study was designed to investigate the indoor air quality (IAQ) of four different Dutch low-energy houses built according to this standard. Air flow, indoor air

  6. Ventilation potential during the emissions survey in Toluca Valley, Mexico

    Science.gov (United States)

    Ruiz Angulo, A.; Peralta, O.; Jurado, O. E.; Ortinez, A.; Grutter de la Mora, M.; Rivera, C.; Gutierrez, W.; Gonzalez, E.

    2017-12-01

    During the late-spring early-summer measurements of emissions and pollutants were carried out during a survey campaign at four different locations within the Toluca Valley. The current emissions inventory typically estimates the generation of pollutants based on pre-estimated values representing an entire sector function of their activities. However, those factors are not always based direct measurements. The emissions from the Toluca Valley are rather large and they could affect the air quality of Mexico City Valley. The air masses interchange between those two valleys is not very well understood; however, based on the measurements obtained during the 3 months campaign we looked carefully at the daily variability of the wind finding a clear signal for mountain-valley breeze. The ventilation coefficient is estimated and the correlations with the concentrations at the 4 locations and in a far away station in Mexico City are addressed in this work. Finally, we discuss the implication of the ventilation capacity in air quality for the system of Valleys that include Mexico City.

  7. Air Quality of Beijing and Impacts of the New Ambient Air Quality Standard

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2015-08-01

    Full Text Available Beijing has been publishing daily reports on its air quality since 2000, and while the air pollution index (API shows that the air quality has improved greatly since 2000, this is not the perception of Beijing’s residents. The new national ambient air quality standard (NAAQS-2012, which includes the monitoring of PM2.5, has posed stricter standards for evaluating air quality. With the new national standard, the air quality in Beijing is calculated using both NAAQS-2012 and the previous standard. The annual attainment rate has dropped from 75.5% to 50.7%. The spatial analysis of air quality shows that only a background station could attain the national standard, while urban and suburban stations exceed the national standard. Among the six pollutants included in the NAAQS-2012, PM2.5 is the major contributor to the air quality index (AQI comparing with the five other pollutants. The results indicate that under previous NAAQS without PM2.5 monitoring, the air quality has improved greatly in the past decade.  By considering PM2.5, the air quality attainment has dropped greatly. Furthermore, a great effort is needed for local government to bring down the PM2.5 concentration.

  8. A novel, fuzzy-based air quality index (FAQI) for air quality assessment

    Science.gov (United States)

    Sowlat, Mohammad Hossein; Gharibi, Hamed; Yunesian, Masud; Tayefeh Mahmoudi, Maryam; Lotfi, Saeedeh

    2011-04-01

    The ever increasing level of air pollution in most areas of the world has led to development of a variety of air quality indices for estimation of health effects of air pollution, though the indices have their own limitations such as high levels of subjectivity. Present study, therefore, aimed at developing a novel, fuzzy-based air quality index (FAQI ) to handle such limitations. The index developed by present study is based on fuzzy logic that is considered as one of the most common computational methods of artificial intelligence. In addition to criteria air pollutants (i.e. CO, SO 2, PM 10, O 3, NO 2), benzene, toluene, ethylbenzene, xylene, and 1,3-butadiene were also taken into account in the index proposed, because of their considerable health effects. Different weighting factors were then assigned to each pollutant according to its priority. Trapezoidal membership functions were employed for classifications and the final index consisted of 72 inference rules. To assess the performance of the index, a case study was carried out employing air quality data at five different sampling stations in Tehran, Iran, from January 2008 to December 2009, results of which were then compared to the results obtained from USEPA air quality index (AQI). According to the results from present study, fuzzy-based air quality index is a comprehensive tool for classification of air quality and tends to produce accurate results. Therefore, it can be considered useful, reliable, and suitable for consideration by local authorities in air quality assessment and management schemes. Fuzzy-based air quality index (FAQI).

  9. European indoor air quality survey in 56 office buildings; Europees binnenluchtkwaliteitsonderzoek in 56 kantoorgebouwen

    Energy Technology Data Exchange (ETDEWEB)

    Bluyssen, P.M. [Afdeling Binnenmilieu, Bouwfysica en Installaties, TNO Bouw, Delft (Netherlands)

    1996-12-01

    The title survey started at the end of 1992. Trained sensory panels were used to investigate office buildings all over Europe. Measurements were performed at five selected locations in each building. The buildings were studied while normally occupied and ventilated to identify the pollution sources in the spaces and to quantify the total pollution load caused by the occupants and their activities and the ventilation systems. The investigation included physical and chemical measurements, assessment of the perceived air quality in the spaces by a trained sensory panel, and measurement of the outdoor air supply to the spaces. A questionnaire for evaluating retrospective and immediate symptoms and perceptions was given to the occupants of the buildings. The building characteristics were described by use of a check-list. The annual energy consumption of the buildings and the weather conditions were registered. Results and conclusions of the audit in 56 buildings in Europe are presented. The analysis and discussion of the results are a summary of the work done and show that ventilation is not the solution for the removal of pollutants, but that source control is the first method to be applied. Furthermore, the analysis and discussions are focused mainly on the comparison between sensory assessments and the other measurements performed. 13 figs., 7 tabs., 25 refs.

  10. Experimental Investigation of Heat Transfer during Night-Time Ventilation

    DEFF Research Database (Denmark)

    Artmann, Nikolai; Jensen, Rasmus Lund; Manz, H.

    2010-01-01

    is the heat transfer at the internal room surfaces. Increased convection is expected due to high air flow rates and the possibility of a cold air jet flowing along the ceiling, but the magnitude of these effects is hard to predict. In order to improve the predictability, heat transfer during night......-time ventilation in case of mixing and displacement ventilation has been investigated in a full scale test room. The results show that for low air flow rates displacement ventilation is more efficient than mixing ventilation. For higher air flow rates the air jet flowing along the ceiling has a significant effect...

  11. Air trapping on chest CT is associated with worse ventilation distribution in infants with cystic fibrosis diagnosed following newborn screening.

    Directory of Open Access Journals (Sweden)

    Graham L Hall

    Full Text Available BACKGROUND: In school-aged children with cystic fibrosis (CF structural lung damage assessed using chest CT is associated with abnormal ventilation distribution. The primary objective of this analysis was to determine the relationships between ventilation distribution outcomes and the presence and extent of structural damage as assessed by chest CT in infants and young children with CF. METHODS: Data of infants and young children with CF diagnosed following newborn screening consecutively reviewed between August 2005 and December 2009 were analysed. Ventilation distribution (lung clearance index and the first and second moment ratios [LCI, M(1/M(0 and M(2/M(0, respectively], chest CT and airway pathology from bronchoalveolar lavage were determined at diagnosis and then annually. The chest CT scans were evaluated for the presence or absence of bronchiectasis and air trapping. RESULTS: Matched lung function, chest CT and pathology outcomes were available in 49 infants (31 male with bronchiectasis and air trapping present in 13 (27% and 24 (49% infants, respectively. The presence of bronchiectasis or air trapping was associated with increased M(2/M(0 but not LCI or M(1/M(0. There was a weak, but statistically significant association between the extent of air trapping and all ventilation distribution outcomes. CONCLUSION: These findings suggest that in early CF lung disease there are weak associations between ventilation distribution and lung damage from chest CT. These finding are in contrast to those reported in older children. These findings suggest that assessments of LCI could not be used to replace a chest CT scan for the assessment of structural lung disease in the first two years of life. Further research in which both MBW and chest CT outcomes are obtained is required to assess the role of ventilation distribution in tracking the progression of lung damage in infants with CF.

  12. Exposure to Exhaled Air from a Sick Occupant in a Two-Bed Hospital Room with Mixing Ventilation: Effect of Posture of Doctor and Air Change Rate

    DEFF Research Database (Denmark)

    Bolashikov, Zhecho Dimitrov; Melikov, Arsen Krikor; Barova, Mariya

    2013-01-01

    Full-scale measurements were performed in a climate chamber set as a two-bed hospital room, ventilated at 3, 6 and 12 ACH with overhead mixing ventilation. Air temperature was kept constant at 22 °C. Two breathing thermal manikins were used to mimic a sick patient lying on one side in one of the ...

  13. A law of removing radon by ventilation and air requirement calculation for eliminating radon daughters in uranium mines

    International Nuclear Information System (INIS)

    Wu Gang

    1988-06-01

    In accordance with testing data of removing radon and its daughters by ventilation from shrinkage and filling stopes of uranium mines, a law of removing radon by ventilation from the stopes is analyzed and summed. According to the decay law of radon and its daughters, an accumulation equation of potential alpha energy from radon daughters is presented with hyperbolic regression equation. the calculating formulae of ventilation flow are derived from the accumulation equation for eliminating radon daughters in inlet flow with or without contamination. It has been proved that the amount of ventilation air calcuated could meet the requirements of radiation safety rationally and economically

  14. Plane Stratified Flow in a Room Ventilated by Displacement Ventilation

    DEFF Research Database (Denmark)

    Nielsen, Peter Vilhelm; Nickel, J.; Baron, D. J. G.

    2004-01-01

    The air movement in the occupied zone of a room ventilated by displacement ventilation exists as a stratified flow along the floor. This flow can be radial or plane according to the number of wall-mounted diffusers and the room geometry. The paper addresses the situations where plane flow...

  15. New airborne pathogen transport model for upper-room UVGI spaces conditioned by chilled ceiling and mixed displacement ventilation: Enhancing air quality and energy performance

    International Nuclear Information System (INIS)

    Kanaan, Mohamad; Ghaddar, Nesreen; Ghali, Kamel; Araj, Georges

    2014-01-01

    Highlights: • A model of bacteria transport is developed in CC/DV conditioned spaces with UVGI. • The model identifies buoyant, partially mixed, and fully mixed transport zones. • The predicted bacteria concentration agreed well with CFD results. • The higher the supply flow rate, the more restrictive is return air mixing ratio. • Upper-room UVGI results in higher return mixing and 33% in energy savings. - Abstract: The maximum allowable return air ratio in chilled ceiling (CC) and mixed displacement ventilation (DV) system for good air quality is regulated by acceptable levels of CO 2 concentration not to exceed 700 ppm and airborne bacterial count to satisfy World Health Organization (WHO) requirement for bacterial count not to exceed 500 CFU/m 3 . Since the CC/DV system relies on buoyancy effects for driving the contaminated air upwards, infectious particles will recirculate in the upper zone allowing effective utilization of upper-room ultraviolet germicidal irradiation (UVGI) to clean return air. The aim of this work is to develop a new airborne bacteria transport plume-multi-layer zonal model at low computational cost to predict bacteria concentration distribution in mixed CC/DV conditioned room without and with upper-room UVGI installed. The results of the simplified model were compared with layer-averaged concentration predictions of a detailed and experimentally-validated 3-D computational fluid dynamics (CFD) model. The comparison showed good agreement between bacteria transport model results and CFD predictions of room air bacteria concentration with maximum error of ±10.4 CFU/m 3 in exhaust air. The simplified model captured the vertical bacteria concentration distribution in room air as well as the locking effect of highest concentration happening at the stratification level. The developed bacteria transport model was used in a case study to determine the return air mixing ratio that minimizes energy consumption and maintains acceptable IAQ

  16. Ceiling-mounted personalized ventilation system integrated with a secondary air distribution system--a human response study in hot and humid climate.

    Science.gov (United States)

    Yang, B; Sekhar, S C; Melikov, A K

    2010-08-01

    The benefits of thermal comfort and indoor air quality with personalized ventilation (PV) systems have been demonstrated in recent studies. One of the barriers for wide spread acceptance by architects and HVAC designers has been attributed to challenges and constraints faced in the integration of PV systems with the work station. A newly developed ceiling-mounted PV system addresses these challenges and provides a practical solution while retaining much of the apparent benefits of PV systems. Assessments of thermal environment, air movement, and air quality for ceiling-mounted PV system were performed with tropically acclimatized subjects in a Field Environmental Chamber. Thirty-two subjects performed normal office work and could choose to be exposed to four different PV airflow rates (4, 8, 12, and 16 L/s), thus offering themselves a reasonable degree of individual control. Ambient temperatures of 26 and 23.5 degrees C and PV air temperatures of 26, 23.5, and 21 degrees C were employed. The local and whole body thermal sensations were reduced when PV airflow rates were increased. Inhaled air temperature was perceived cooler and perceived air quality and air freshness improved when PV airflow rate was increased or temperature was reduced. The newly developed ceiling-mounted PV system offers a practical solution to the integration of PV air terminal devices (ATDs) in the vicinity of the workstation. By remotely locating the PV ATDs on the ceiling directly above the occupants and under their control, the conditioned outdoor air is now provided to the occupants through the downward momentum of the air. A secondary air-conditioning and air distribution system offers additional cooling in the room and maintains a higher ambient temperature, thus offering significant benefits in conserving energy. The results of this study provide designers and consultants with needed knowledge for design of PV systems.

  17. Healthy Zero Energy Buildings (HZEB) Program - Cross-Sectional Study of Contaminant Levels, Source, Strengths, and Ventilation Rates in Retail Stores

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Wanyu R.; Sidheswaran, Meera; Cohn, Sebastian; Sullivan, Douglas P.; Fisk, William

    2014-02-01

    This field study measured ventilation rates and indoor air quality parameters in 21 visits to retail stores in California. The data was collected to guide the development of new, science-based commercial building ventilation rate standards that balance the dual objectives of increasing energy efficiency and maintaining acceptable indoor air quality. Data collection occurred between September 2011 and March 2013. Three types of stores participated in this study: grocery stores, furniture/hardware stores, and apparel stores. Ventilation rates and indoor air contaminant concentrations were measured on a weekday, typically between 9 am and 6 pm. Ventilation rates measured using a tracer gas decay method exceeded the minimum requirement of California’s Title 24 Standard in all but one store. Even though there was adequate ventilation according to Title 24, concentrations of formaldehyde, acetaldehyde, and acrolein exceeded the most stringent chronic health guidelines. Other indoor air contaminants measured included carbon dioxide (CO{sub 2}), carbon monoxide (CO), ozone (O{sub 3}), and particulate matter (PM). Concentrations of CO{sub 2} were kept low by adequate ventilation, and were assumed low also because the sampling occurred on a weekday when retail stores were less busy. CO concentrations were also low. The indoor-outdoor ratios of O{sub 3} showed that the first-order loss rate may vary by store trade types and also by ventilation mode (mechanical versus natural). Analysis of fine and ultrafine PM measurements showed that a substantial portion of the particle mass in grocery stores with cooking-related emissions was in particles less than 0.3 μm. Stores without cooking as an indoor source had PM size distributions that were more similar indoors and outdoors. The whole-building emission rates of volatile organic compounds (VOCs) and PM were estimated from the measured ventilation rates and indoor and outdoor contaminant concentrations. Mass balance models were

  18. Development of a Residential Integrated Ventilation Controller

    Energy Technology Data Exchange (ETDEWEB)

    Staff Scientist; Walker, Iain; Sherman, Max; Dickerhoff, Darryl

    2011-12-01

    The goal of this study was to develop a Residential Integrated Ventilation Controller (RIVEC) to reduce the energy impact of required mechanical ventilation by 20percent, maintain or improve indoor air quality and provide demand response benefits. This represents potential energy savings of about 140 GWh of electricity and 83 million therms of natural gas as well as proportional peak savings in California. The RIVEC controller is intended to meet the 2008 Title 24 requirements for residential ventilation as well as taking into account the issues of outdoor conditions, other ventilation devices (including economizers), peak demand concerns and occupant preferences. The controller is designed to manage all the residential ventilation systems that are currently available. A key innovation in this controller is the ability to implement the concept of efficacy and intermittent ventilation which allows time shifting of ventilation. Using this approach ventilation can be shifted away from times of high cost or high outdoor pollution towards times when it is cheaper and more effective. Simulations, based on the ones used to develop the new residential ventilation requirements for the California Buildings Energy code, were used to further define the specific criteria and strategies needed for the controller. These simulations provide estimates of the energy, peak power and contaminant improvement possible for different California climates for the various ventilation systems. Results from a field test of the prototype controller corroborate the predicted performance.

  19. Silver zeolite antimicrobial activity in aluminium heating, ventilation and air conditioning system ducts.

    Science.gov (United States)

    Rizzetto, R; Mansi, A; Panatto, D; Rizzitelli, E; Tinteri, C; Sasso, T; Gasparini, R; Crovari, P

    2008-03-01

    Air pollution in confined environments is a serious health problem, in that most people spend long periods indoors (in homes, offices, classrooms etc.). Some people (children, the elderly, heart disease patients, asthmatic or allergic subjects) are at greater risk because of their conditions of frailty. The growing use of air-conditioning systems in many public and private buildings aggravates this health risk, especially when these systems are not correctly installed or regularly serviced. The aim of our study was to verify the capacity of Ag+ ions to stop the growth of bacteria and moulds inside the ducts of Heating, Ventilation and Air Conditioning system ducts (HVAC) systems when these ducts were lined with active Ag+ ions zeolite-coated panels. A Y-shaped HVAC model with two branches was used; one branch was made of traditional galvanized iron, as was the whole system, while the other was lined with active Ag+ zeolite-coated polyurethane panels. During the test, samples of dust present inside both ducts were collected and seeded in liquid and solid media to detect bacteria and moulds. The presence of bacteria was also sought in the air emerging from the outlets of both ducts. Tests made on samples of particulate collected from the two different ducts revealed a lower total bacterial load in the samples collected from the Ag+ zeolite-coated duct than in the samples from the traditional Zn galvanized duct. In addition, the values of bacterial load found in the air emerging from the Ag+ ions zeolite-lined duct were 5 times lower than those found in the air from the traditional galvanized iron duct. The utilization of Ag+ zeolite-coated panels in air-conditioning systems could improve the quality of the emerging air in comparison with traditional installations in galvanized iron. This innovation could prove particularly advantageous in the event of accidents during the installation of air-conditioning systems or of contaminated aerosols coming from outside.

  20. AsthmaVent – Effect of Ventilation on Asthma Control

    DEFF Research Database (Denmark)

    Hogaard, Nina Viskum; Rubak, Sune Leisgaard Mørck; Halken, Susanne

    sensitive towards. Reducing this exposure may improve the asthma control in these children. Previous studies give conflicting information on the effect of mechanical ventilation on asthma control in children. Objectives We aim at investigating whether mechanical ventilation is capable of improving indoor...... air quality in the home and health outcomes in the outpatient clinic every three months. Fig. 1 and 2. Primary outcome is reduction in minimal effective dose of inhalation steroid. Secondary endpoints….. Perspectives Asthma patients and their families rely on good evidence-based advice on behavior...

  1. Impact of ventilation rates on SBS symptoms and productivity in offices

    DEFF Research Database (Denmark)

    Wargocki, Pawel; Fanger, Povl Ole

    1999-01-01

    Perceived air quality, Sick Building Syndrome (SBS) symptoms and productivity were studied in a normally furnished office space ventilated with an outdoor air flow of 3, 10 and 30 L/s per person (corresponding to aiur changes of 0.6, 2.0 and 6 h-1, respectively), while all other environmental...... subjects occupied the office for 4.6 hours in the afternoon, six subjects at a time; they remained thermally neutral by adjusting their clothing. Subjects assessed perceived air quality and SBS symptoms, and performed simulated office work so that their productivity could be assessed. Increasing the supply...

  2. 77 FR 30087 - Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards

    Science.gov (United States)

    2012-05-21

    ... and 81 Air Quality Designations for the 2008 Ozone National Ambient Air Quality Standards; Implementation of the 2008 National Ambient Air Quality Standards for Ozone: Nonattainment Area Classifications...-9668-2] RIN 2060-AP37 Air Quality Designations for the 2008 Ozone National Ambient Air Quality...

  3. Indoor air quality for poor families: new evidence from Bangladesh.

    Science.gov (United States)

    Dasgupta, S; Huq, M; Khaliquzzaman, M; Pandey, K; Wheeler, D

    2006-12-01

    Poor households in Bangladesh depend heavily on wood, dung and other biomass fuels for cooking. This paper provides a detailed analysis of the implications for indoor air pollution (IAP), drawing on new 24-h monitoring data for respirable airborne particulates (PM10). A stratified sample of 236 households was selected in Dhaka and Narayanganj, with a particular focus on fuel use, cooking locations, structural materials, ventilation practices, and other potential determinants of exposure to IAP. At each household, PM10 concentrations in the kitchen and living room were monitored for a 24-h period during December, 2003-February, 2004. Concentrations of 300 microg/m3 or greater are common in our sample, implying widespread exposure to a serious health hazard. A regression analysis for these 236 households was then conducted to explore the relationships between PM10 concentrations, fuel choices and a large set of variables that describe household cooking and ventilation practices, structure characteristics and building materials. As expected, our econometric results indicate that fuel choice significantly affects indoor pollution levels: natural gas and kerosene are significantly cleaner than biomass fuels. However, household-specific factors apparently matter more than fuel choice in determining PM10 concentrations. In some biomass-burning households, concentrations are scarcely higher than in households that use natural gas. Our results suggest that cross-household variation is strongly affected by structural arrangements: cooking locations, construction materials, and ventilation practices. A large variation in PM10 was also found during the 24-h cycle within households. For example, within the 'dirtiest' firewood-using household in our sample, readings over the 24-h cycle vary from 68 to 4864 microg/m3. Such variation occurs because houses can recycle air very quickly in Bangladesh. After the midday meal, when ventilation is common, air quality in many houses goes

  4. Temperature-controlled airflow ventilation in operating rooms compared with laminar airflow and turbulent mixed airflow.

    Science.gov (United States)

    Alsved, M; Civilis, A; Ekolind, P; Tammelin, A; Andersson, A Erichsen; Jakobsson, J; Svensson, T; Ramstorp, M; Sadrizadeh, S; Larsson, P-A; Bohgard, M; Šantl-Temkiv, T; Löndahl, J

    2018-02-01

    To evaluate three types of ventilation systems for operating rooms with respect to air cleanliness [in colony-forming units (cfu/m 3 )], energy consumption and comfort of working environment (noise and draught) as reported by surgical team members. Two commonly used ventilation systems, vertical laminar airflow (LAF) and turbulent mixed airflow (TMA), were compared with a newly developed ventilation technique, temperature-controlled airflow (T c AF). The cfu concentrations were measured at three locations in an operating room during 45 orthopaedic procedures: close to the wound (draught. T c AF and LAF remove bacteria more efficiently from the air than TMA, especially close to the wound and at the instrument table. Like LAF, the new T c AF ventilation system maintained very low levels of cfu in the air, but T c AF used substantially less energy and provided a more comfortable working environment than LAF. This enables energy savings with preserved air quality. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  5. Solar Air Collectors for Space Heating and Ventilation Applications—Performance and Case Studies under Romanian Climatic Conditions

    Directory of Open Access Journals (Sweden)

    Sanda Budea

    2014-06-01

    Full Text Available Solar air collectors have various applications: on the one hand, they can be used for air heating in cold seasons; on the other hand they can be used in summer to evacuate the warm and polluted air from residential, offices, industrial, and commercial buildings. The paper presents experimental results of a solar collector air, under the climatic conditions of the Southeastern Europe. The relationships between the direct solar irradiation, the resulting heat flow, the air velocity at the outlet, the air flow rate, the nominal regime of the collector and the efficiency of conversion of solar energy into thermal energy are all highlighted. Thus, it was shown that after a maximum 50 min, solar air collectors, with baffles and double air passage can reach over 50% efficiency for solar irradiation of 900–1000 W/m2. The article also presents a mathematical model and the results of a computational program that allows sizing solar collectors for the transfer of air, with the purpose of improving the natural ventilation of buildings. The article is completed with case studies, sizing the area to be covered with solar collectors, to ensure ventilation of a house with two floors or for an office building. In addition, the ACH (air change per hour coefficient was calculated and compared.

  6. BSim models for 2 case-studies of naturally and mechanically ventilated daycare institutions

    Energy Technology Data Exchange (ETDEWEB)

    Kalyanova, O.; Heiselberg, P.

    2009-06-15

    The report intends to provide complete information necessary for evaluation of assumptions made in the models and conclusions derived from the results of simulation of two different institutions in various operational modes. Thermal models are prepared for two day-care buildings, one which is mechanically ventilated and one which is naturally ventilated. All simulations were preformed in BSim, and all the models are simulated in the current version og BSim which is version 6,8,9,8. The results of the simulations showed that it is possible to reduce energy use for ventilation, both in mechanically and naturally ventilated child care center without compromising indoor air quality. (ln)

  7. Comparison of indoor air pollutants concentration in two Romanian classrooms

    Science.gov (United States)

    Vasile, Vasilica; Dima, Alina; Zorila, Elena; Istrate, Andrei; Catalina, Tiberiu

    2018-02-01

    This paper investigates the air pollutions in space ventilated in two High School classrooms. The analysis consists of comparison of one classroom with hybrid ventilation system and another one stander-by classroom with natural ventilation. Several studies regarding indoor air quality during the experimental campaign have been done for VOC, CO2, CO, other pollutants, keeping monitored for humidity and temperature. The experimental demonstrated that the highest value for CO2 in stander-by classroom is 2691 ppm and in classroom with hybrid ventilation is 1897 ppm, while values for CO are 1.1 / 1.1 ppm and VOC 0.14 / 0.06 ppm, better use hybrid ventilation.

  8. Experiments on Evaporative Emissions in Ventilated Rooms

    DEFF Research Database (Denmark)

    Topp, Claus; Nielsen, Peter V.; Heiselberg, Per

    In many new buildings the indoor air quality is affected by emissions of volatile organic compounds (VOCs) from building materials. The emission process may be controlled either by diffusion inside the material or evaporation from the surface but it always involves mass transfer across the boundary...... layer at the surface-air-interface. Experiments at different velocity levels were performed in a full-scale ventilated chamber to investigate the influence of local airflow on the evaporative emission from a surface. The experiments included velocity measurements in the flow over the surface...

  9. A study of energy use for ventilation and air-conditioning systems in Hong Kong

    Science.gov (United States)

    Yu, Chung Hoi Philip

    Most of the local modern buildings are high-rise with enclosed structure. Mechanical ventilation and air conditioning (MVAC) systems are installed for thermal comfort. Various types of MVAC systems found in Hong Kong were critically reviewed with comments on their characteristics in energy efficiency as well as application. The major design considerations were also discussed. Besides MVAC, other energy-consuming components in commercial buildings were also identified, such as lighting, lifts and escalators, office equipment, information technology facilities, etc. A practical approach has been adopted throughout this study in order that the end results will have pragmatic value to the heating, ventilating and air-conditioning (HVAC) industry in Hong Kong. Indoor Air Quality (IAQ) has become a major issue in commercial buildings worldwide including Hong Kong. Ventilation rate is no doubt a critical element in the design of HVAC systems, which can be realized more obviously in railway train compartments where the carbon dioxide level will be built up quickly when the compartments are crowded during rush hours. A study was carried out based on a simplified model using a train compartment that is equipped with an MVAC system. Overall Thermal Transfer Value (OTTV) is a single-value parameter for controlling building energy use and is relatively simple to implement legislatively. The local government has taken a first step in reacting to the worldwide concern of energy conservation and environmental protection since 1995. Different methods of OTTV calculation were studied and the computation results were compared. It gives a clear picture of the advantages and limitations for each method to the building designers. However, due to the limitations of using OTTV as the only parameter for building energy control, some new approaches to a total control of building energy use were discussed and they might be considered for future revision of the building energy codes in Hong

  10. Heating, Ventilation, Air Conditioning, and Refrigeration (HVAC/R), AFSC 3E1X1. OSSN 2368

    National Research Council Canada - National Science Library

    1999-01-01

    Survey Coverage: The Heating, Ventilation, Air Conditioning, and Refrigeration (HVAC/R) career ladder, AFSC 3E1X1, was surveyed to gather data needed to guide the development and evaluation of training...

  11. Occupant Interactions and Effectiveness of Natural Ventilation Strategies in Contemporary New Housing in Scotland, UK

    Directory of Open Access Journals (Sweden)

    Tim Sharpe

    2015-07-01

    Full Text Available The need to reduce carbon emissions and fuel poverty has led to increased building envelope air tightness, intended to reduce uncontrolled ventilation heat losses. Ventilation strategies in dwellings still allow the use of trickle ventilators in window frames for background ventilation. The extent to which this results in “healthy” Indoor Air Quality (IAQ in recently constructed dwellings was a concern of regulators in Scotland. This paper describes research to explore this. First a review of literature was conducted, then data on occupant interactions with ventilation provisions (windows, doors, trickle vents gathered through an interview-based survey of 200 recently constructed dwellings, and measurements made on a sample of 40 of these. The main measured parameter discussed here is CO2 concentration. It was concluded after the literature review that 1000 ppm absolute was a reasonable threshold to use for “adequate” ventilation. The occupant survey found that there was very little occupant interaction with the trickle ventilators e.g., in bedrooms 63% were always closed, 28% always open, and in only 9% of cases occupants intervened to make occasional adjustments. In the measured dwellings average bedroom CO2 levels of 1520 ppm during occupied (night time hours were observed. Where windows were open the average bedroom CO2 levels were 972 ppm. With windows closed, the combination of “trickle ventilators open plus doors open” gave an average of 1021 ppm. “Trickle ventilators open” gave an average of 1571 ppm. All other combinations gave averages of 1550 to 2000 ppm. Ventilation rates and air change rates were estimated from measured CO2 levels, for all dwellings calculated ventilation rate was less than 8 L/s/p, in 42% of cases calculated air change rate was less than 0.5 ach. It was concluded that trickle ventilation as installed and used is ineffective in meeting desired ventilation rates, evidenced by high CO2 levels reported

  12. Occupant Interactions and Effectiveness of Natural Ventilation Strategies in Contemporary New Housing in Scotland, UK.

    Science.gov (United States)

    Sharpe, Tim; Farren, Paul; Howieson, Stirling; Tuohy, Paul; McQuillan, Jonathan

    2015-07-21

    The need to reduce carbon emissions and fuel poverty has led to increased building envelope air tightness, intended to reduce uncontrolled ventilation heat losses. Ventilation strategies in dwellings still allow the use of trickle ventilators in window frames for background ventilation. The extent to which this results in "healthy" Indoor Air Quality (IAQ) in recently constructed dwellings was a concern of regulators in Scotland. This paper describes research to explore this. First a review of literature was conducted, then data on occupant interactions with ventilation provisions (windows, doors, trickle vents) gathered through an interview-based survey of 200 recently constructed dwellings, and measurements made on a sample of 40 of these. The main measured parameter discussed here is CO2 concentration. It was concluded after the literature review that 1000 ppm absolute was a reasonable threshold to use for "adequate" ventilation. The occupant survey found that there was very little occupant interaction with the trickle ventilators e.g., in bedrooms 63% were always closed, 28% always open, and in only 9% of cases occupants intervened to make occasional adjustments. In the measured dwellings average bedroom CO2 levels of 1520 ppm during occupied (night time) hours were observed. Where windows were open the average bedroom CO2 levels were 972 ppm. With windows closed, the combination of "trickle ventilators open plus doors open" gave an average of 1021 ppm. "Trickle ventilators open" gave an average of 1571 ppm. All other combinations gave averages of 1550 to 2000 ppm. Ventilation rates and air change rates were estimated from measured CO2 levels, for all dwellings calculated ventilation rate was less than 8 L/s/p, in 42% of cases calculated air change rate was less than 0.5 ach. It was concluded that trickle ventilation as installed and used is ineffective in meeting desired ventilation rates, evidenced by high CO2 levels reported across the sampled dwellings

  13. Thermal comfort of seated occupants in rooms with personalized ventilation combined with mixing or displacement ventilation

    DEFF Research Database (Denmark)

    Forejt, L.; Melikov, Arsen Krikor; Cermak, Radim

    2004-01-01

    The performance of two personalized ventilation systems combined with mixing or displacement ventilation was studied under different conditions in regard to thermal comfort of seated occupants. The cooling performance of personalized ventilation was found to be independent of room air distribution...

  14. Household ventilation may reduce effects of indoor air pollutants for prevention of lung cancer: a case-control study in a Chinese population.

    Directory of Open Access Journals (Sweden)

    Zi-Yi Jin

    Full Text Available Although the International Agency for Research on Cancer (IARC has classified various indoor air pollutants as carcinogenic to humans, few studies evaluated the role of household ventilation in reducing the impact of indoor air pollutants on lung cancer risk.To explore the association between household ventilation and lung cancer.A population-based case-control study was conducted in a Chinese population from 2003 to 2010. Epidemiologic and household ventilation data were collected using a standardized questionnaire. Unconditional logistic regression was employed to estimate adjusted odds ratios (ORadj and their 95% confidence intervals (CI.Among 1,424 lung cancer cases and 4,543 healthy controls, inverse associations were observed for good ventilation in the kitchen (ORadj = 0.86, 95% CI: 0.75, 0.98, bedroom (ORadj = 0.90, 95% CI: 0.79, 1.03, and both kitchen and bedroom (ORadj = 0.87, 95% CI: 0.75, 1.00. Stratified analyses showed lung cancer inversely associated with good ventilation among active smokers (ORadj = 0.85, 95% CI: 0.72, 1.00, secondhand smokers at home (ORadj = 0.77, 95% CI: 0.63, 0.94, and those exposed to high-temperature cooking oil fumes (ORadj = 0.82, 95% CI: 0.68, 0.99. Additive interactions were found between household ventilation and secondhand smoke at home as well as number of household pollutant sources.A protective association was observed between good ventilation of households and lung cancer, most likely through the reduction of exposure to indoor air pollutants, indicating ventilation may serve as one of the preventive measures for lung cancer, in addition to tobacco cessation.

  15. Household ventilation may reduce effects of indoor air pollutants for prevention of lung cancer: a case-control study in a Chinese population.

    Science.gov (United States)

    Jin, Zi-Yi; Wu, Ming; Han, Ren-Qiang; Zhang, Xiao-Feng; Wang, Xu-Shan; Liu, Ai-Ming; Zhou, Jin-Yi; Lu, Qing-Yi; Kim, Claire H; Mu, Lina; Zhang, Zuo-Feng; Zhao, Jin-Kou

    2014-01-01

    Although the International Agency for Research on Cancer (IARC) has classified various indoor air pollutants as carcinogenic to humans, few studies evaluated the role of household ventilation in reducing the impact of indoor air pollutants on lung cancer risk. To explore the association between household ventilation and lung cancer. A population-based case-control study was conducted in a Chinese population from 2003 to 2010. Epidemiologic and household ventilation data were collected using a standardized questionnaire. Unconditional logistic regression was employed to estimate adjusted odds ratios (ORadj) and their 95% confidence intervals (CI). Among 1,424 lung cancer cases and 4,543 healthy controls, inverse associations were observed for good ventilation in the kitchen (ORadj = 0.86, 95% CI: 0.75, 0.98), bedroom (ORadj = 0.90, 95% CI: 0.79, 1.03), and both kitchen and bedroom (ORadj = 0.87, 95% CI: 0.75, 1.00). Stratified analyses showed lung cancer inversely associated with good ventilation among active smokers (ORadj = 0.85, 95% CI: 0.72, 1.00), secondhand smokers at home (ORadj = 0.77, 95% CI: 0.63, 0.94), and those exposed to high-temperature cooking oil fumes (ORadj = 0.82, 95% CI: 0.68, 0.99). Additive interactions were found between household ventilation and secondhand smoke at home as well as number of household pollutant sources. A protective association was observed between good ventilation of households and lung cancer, most likely through the reduction of exposure to indoor air pollutants, indicating ventilation may serve as one of the preventive measures for lung cancer, in addition to tobacco cessation.

  16. Household Ventilation May Reduce Effects of Indoor Air Pollutants for Prevention of Lung Cancer: A Case-Control Study in a Chinese Population

    Science.gov (United States)

    Han, Ren-Qiang; Zhang, Xiao-Feng; Wang, Xu-Shan; Liu, Ai-Ming; Zhou, Jin-Yi; Lu, Qing-Yi; Kim, Claire H.; Mu, Lina; Zhang, Zuo-Feng; Zhao, Jin-Kou

    2014-01-01

    Background Although the International Agency for Research on Cancer (IARC) has classified various indoor air pollutants as carcinogenic to humans, few studies evaluated the role of household ventilation in reducing the impact of indoor air pollutants on lung cancer risk. Objectives To explore the association between household ventilation and lung cancer. Methods A population-based case-control study was conducted in a Chinese population from 2003 to 2010. Epidemiologic and household ventilation data were collected using a standardized questionnaire. Unconditional logistic regression was employed to estimate adjusted odds ratios (ORadj) and their 95% confidence intervals (CI). Results Among 1,424 lung cancer cases and 4,543 healthy controls, inverse associations were observed for good ventilation in the kitchen (ORadj = 0.86, 95% CI: 0.75, 0.98), bedroom (ORadj = 0.90, 95% CI: 0.79, 1.03), and both kitchen and bedroom (ORadj = 0.87, 95% CI: 0.75, 1.00). Stratified analyses showed lung cancer inversely associated with good ventilation among active smokers (ORadj = 0.85, 95% CI: 0.72, 1.00), secondhand smokers at home (ORadj = 0.77, 95% CI: 0.63, 0.94), and those exposed to high-temperature cooking oil fumes (ORadj = 0.82, 95% CI: 0.68, 0.99). Additive interactions were found between household ventilation and secondhand smoke at home as well as number of household pollutant sources. Conclusions A protective association was observed between good ventilation of households and lung cancer, most likely through the reduction of exposure to indoor air pollutants, indicating ventilation may serve as one of the preventive measures for lung cancer, in addition to tobacco cessation. PMID:25019554

  17. Ceiling-mounted personalized ventilation system integrated with a secondary air distribution system - a human response study in hot and humid climate

    DEFF Research Database (Denmark)

    Bin, Yang; Sekhar, S.C.; Melikov, Arsen Krikor

    2010-01-01

    The benefits of thermal comfort and indoor air quality with personalized ventilation (PV) systems have been demonstrated in recent studies. One of the barriers for wide spread acceptance by architects and HVAC designers has been attributed to challenges and constraints faced in the integration...... performed with tropically acclimatized subjects in a Field Environmental Chamber. Thirty-two subjects performed normal office work and could choose to be exposed to four different PV airflow rates (4, 8, 12, and 16 L/s), thus offering themselves a reasonable degree of individual control. Ambient...

  18. Air Quality at Your Street

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Becker, Thomas; Ketzel, Matthias

    Citizens are frequently concerned about the air quality where they live, where they go to work, where their children go to kindergarten or where they want to move to. Municipalities may also have an interest in location based air quality information e.g. in relation to screening of complaints from...... concerned citizents, or in the context of localization of institutions, etc. The purpose of the project ‘Air Quality at Your Street’ is to create interactive air quality maps on the internet using webGIS to illustrate the geographical variation of air quality in Denmark for selected health related air...... pollutants. The maps show annual means of NO2, PM2.5 or PM10 for 2012. The user interface presents modelled air quality data on a map where the user can select map view, pan, zoom in and out, etc. It is also possible to get the air quality for a particular address by entering a specific address. Air quality...

  19. Influence of ventilation strategies on indoor radon concentrations based on a semiempirical model for Florida-style houses

    International Nuclear Information System (INIS)

    Hintenlang, D.E.; Al-Ahmady, K.K.

    1994-01-01

    Measurements in a full-scale experimental facility are used to benchmark a semiempirical model for predicting indoor radon concentrations for Florida-style houses built using slab-on-grade construction. The model is developed to provide time-averaged indoor radon concentrations from quantitative relationships between the time-dependent radon entry and elimination mechanisms that have been demonstrated to be important for this style of residential construction. The model successfully predicts indoor radon concentrations in the research structure for several pressure and ventilation conditions. Parametric studies using the model illustrate how different ventilation strategies affect indoor radon concentrations. It is demonstrated that increasing house ventilation rates by increasing the effective leakage area of the house shell does not reduce indoor radon concentrations as effectively as increasing house ventilation rates by controlled duct ventilation associated with the heating, ventilating, and air conditioning system. The latter strategy provides the potential to minimize indoor radon concentrations while providing positive control over the quality of infiltration air. 9 refs., 5 figs

  20. Capability of air filters to retain airborne bacteria and molds in heating, ventilating and air-conditioning (HVAC) systems.

    Science.gov (United States)

    Möritz, M; Peters, H; Nipko, B; Rüden, H

    2001-07-01

    The capability of air filters (filterclass: F6, F7) to retain airborne outdoor microorganisms was examined in field experiments in two heating, ventilating and air conditioning (HVAC) systems. At the beginning of the 15-month investigation period, the first filter stages of both HVAC systems were equipped with new unused air filters. The number of airborne bacteria and molds before and behind the filters were determined simultaneously in 14 days-intervals using 6-stage Andersen cascade impactors. Under relatively dry ( 12 degrees C) outdoor air conditions air filters led to a marked reduction of airborne microorganism concentrations (bacteria by approximately 70% and molds by > 80%). However, during long periods of high relative humidity (> 80% R. H.) a proliferation of bacteria on air filters with subsequent release into the filtered air occurred. These microorganisms were mainly smaller than 1.1 microns therefore being part of the respirable fraction. The results showed furthermore that one possibility to avoid microbial proliferation is to limit the relative humidity in the area of the air filters to 80% R. H. (mean of 3 days), e.g. by using preheaters in front of air filters in HVAC-systems.