WorldWideScience

Sample records for air quality impacts

  1. Generating scenarios to predict air quality impact in public health

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J.M.; Coelho, L.M.R.; Gouveia, C.; Cerdeira, R. [Escola Superior de Tecnologia de Setubal (EST-IPS), Setubal (Portugal); Ferreira, T.; Baptista, M.N. [Hospital Na. Sa. do Rosario, Servico de Pediatria, Barreiro (Portugal)

    2004-07-01

    This study intends to associate air quality with public health by generating air quality scenarios, under different future perspectives in Barreiro. This city is located in middle south of Portugal nearby Lisbon and it has a large resident population, an important industrial area and intense traffic. In this study ADMS-urban was used to simulate the possible scenarios of future air quality in this city, taking into consideration the probable city development and future activities. Special attention was given to the future evolutions of traffic, industrial activities, demographical and geographical expansion. The new EU directives about air quality and the CAFE program were also considered. To correlate the impact of the future air quality of the city and public health, a children population sample was used. This study team is also composed by paediatric doctors from Hospital N{sup a}. S{sup a}. do Rosario that contribute with public health information and helped to identify air quality related diseases. (orig.)

  2. Columbia River final environmental impact statement. Appendix B: Air quality

    International Nuclear Information System (INIS)

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. This appendix consists of eight chapters. Chapter 1 describes the air quality issues that were raised in the SOR scoping process and provides an overview of the study process used to evaluate air quality effects from various system operation alternatives. Chapter 2 describes the Federal, state, and local programs that regulate air quality and discusses the air quality standards that are relevant to the analysis. It also gives an overview of the limatology of the region and the existing air quality in the Columbia River Basin, including areas of non-attainment for relevant air quality standards. Chapter 3 presents the methods this study uses for the analysis of air quality and for the evaluation of human health effects from air pollutants. Chapter 4 provides the study results for the System Operating Strategy (SOS) alternatives and potential mitigation measures. Chapter 5 compares impacts on air quality and human health across alternatives, and discusses mitigation measures and cumulative effects. Chapters 6, 7, and 8 contain the list of preparers, glossary, and references, respectively. Technical exhibits supporting the analysis are also included

  3. Impact of air quality guidelines on COPD sufferers

    Science.gov (United States)

    Liu, Youcheng; Yan, Shuang; Poh, Karen; Liu, Suyang; Iyioriobhe, Emanehi; Sterling, David A

    2016-01-01

    Background COPD is one of the leading causes of morbidity and mortality in both high- and low-income countries and a major public health burden worldwide. While cigarette smoking remains the main cause of COPD, outdoor and indoor air pollution are important risk factors to its etiology. Although studies over the last 30 years helped reduce the values, it is not very clear if the current air quality guidelines are adequately protective for COPD sufferers. Objective This systematic review was to summarize the up-to-date literature on the impact of air pollution on the COPD sufferers. Methods PubMed and Google Scholar were utilized to search for articles related to our study’s focus. Search terms included “COPD exacerbation”, “air pollution”, “air quality guidelines”, “air quality standards”, “COPD morbidity and mortality”, “chronic bronchitis”, and “air pollution control” separately and in combination. We focused on articles from 1990 to 2015. We also used articles prior to 1990 if they contained relevant information. We focused on articles written in English or with an English abstract. We also used the articles in the reference lists of the identified articles. Results Both short-term and long-term exposures to outdoor air pollution around the world are associated with the mortality and morbidity of COPD sufferers even at levels below the current air quality guidelines. Biomass cooking in low-income countries was clearly associated with COPD morbidity in adult nonsmoking females. Conclusion There is a need to continue to improve the air quality guidelines. A range of intervention measures could be selected at different levels based on countries’ socioeconomic conditions to reduce the air pollution exposure and COPD burden. PMID:27143874

  4. Air Quality of Beijing and Impacts of the New Ambient Air Quality Standard

    OpenAIRE

    Wei Chen; Fusheng Wang; Guofeng Xiao; Kai Wu; Shixuan Zhang

    2015-01-01

    Beijing has been publishing daily reports on its air quality since 2000, and while the air pollution index (API) shows that the air quality has improved greatly since 2000, this is not the perception of Beijing’s residents. The new national ambient air quality standard (NAAQS-2012), which includes the monitoring of PM2.5, has posed stricter standards for evaluating air quality. With the new national standard, the air quality in Beijing is calculated using both NAAQS-2012 and the previous stan...

  5. IMPACT OF A PRIMARY SULFATE EMISSION SOURCE ON AIR QUALITY

    Science.gov (United States)

    A one-month study was carried out at an isolated oil-fired power plant in New York State to assess the impact of primary sulfate emissions on air quality. Emissions of total sulfate from the source varied from 22 kg/hr to 82 kg/hr per boiler with the sulfuric acid concentration a...

  6. Evaluation of air quality and noise impact assessments, Davis Canyon

    International Nuclear Information System (INIS)

    In this report, several issues are identified regarding the air quality and noise assessments presented in the final salt repository environmental assessment (EA) prepared by the US Department of Energy for the Davis Canyon, Utah, site. Necessary revisions to the data and methods used to develop the EA impact assessment are described. Then, a comparative evaluation is presented in which estimated impacts based upon the revised data and methods are compared with the impacts published in the EA. The evaluation indicates that the conclusions of the EA air quality and noise impact sections would be unchanged. Consequently, the guideline findings presented in Chapter 6 of the EA are also unchanged by the revised analysis. 50 refs., 16 tabs

  7. Impact of temperature and humidity on perceived indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Lei

    1997-11-01

    This thesis deals with the impact of temperature and humidity on the emission of pollutants from five building materials and on the perception of air polluted by the material emissions. The impact was studied in the temperature range 18-28 deg. C and the humidity range 30-70%RH, corresponding to conditions often pertaining in normal non-industrial indoor environments. The five building materials used in the study were: PVC flooring, waterborne acrylic floor varnish, loomed polyamide carpet with latex backing, waterborn acrylic wall paint and acrylic sealant; all these materials are commonly use din buildings. The effect of temperature and humidity on emission and perception of air pollutant emitted from the five building materials is described, using a specially developed exposure system. A computer-controlled exposure system was developed. The design of the system allowed the impact of temperature and humidity on the emission of pollutants from the materials to be judged separately from the impact on perception. The effect of temperature and humidity on emission and on perception was investigated at nine different combinations of three temperature levels 18 deg. C, 23 deg. C, 28 deg. C and three relative humidity levels 30%, 50%, 70%. A sensory panel assessed the acceptability of the air after facial exposure. Chemical measurements of the pollutants emitted were also made. The impact of temperature and humidity on perception of air quality during whole-body exposure is discussed. The influence of the pre-exposure temperature/humidity on perception of air quality and the time course of adaptation of air quality perception with different combinations of temperature and humidity were also investigated. It is recommended that future ventilation standards should include the effect of indoor air temperature and humidity in ventilation requirements. (EG) 86 refs.

  8. Episodic air quality impacts of plug-in electric vehicles

    Science.gov (United States)

    Razeghi, Ghazal; Carreras-Sospedra, Marc; Brown, Tim; Brouwer, Jack; Dabdub, Donald; Samuelsen, Scott

    2016-07-01

    In this paper, the Spatially and Temporally Resolved Energy and Environment Tool (STREET) is used in conjunction with University of California Irvine - California Institute of Technology (UCI-CIT) atmospheric chemistry and transport model to assess the impact of deploying plug-in electric vehicles and integrating wind energy into the electricity grid on urban air quality. STREET is used to generate emissions profiles associated with transportation and power generation sectors for different future cases. These profiles are then used as inputs to UCI-CIT to assess the impact of each case on urban air quality. The results show an overall improvement in 8-h averaged ozone and 24-h averaged particulate matter concentrations in the South Coast Air Basin (SoCAB) with localized increases in some cases. The most significant reductions occur northeast of the region where baseline concentrations are highest (up to 6 ppb decrease in 8-h-averaged ozone and 6 μg/m3 decrease in 24-h-averaged PM2.5). The results also indicate that, without integration of wind energy into the electricity grid, the temporal vehicle charging profile has very little to no effect on urban air quality. With the addition of wind energy to the grid mix, improvement in air quality is observed while charging at off-peak hours compared to the business as usual scenario.

  9. Air Quality of Beijing and Impacts of the New Ambient Air Quality Standard

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2015-08-01

    Full Text Available Beijing has been publishing daily reports on its air quality since 2000, and while the air pollution index (API shows that the air quality has improved greatly since 2000, this is not the perception of Beijing’s residents. The new national ambient air quality standard (NAAQS-2012, which includes the monitoring of PM2.5, has posed stricter standards for evaluating air quality. With the new national standard, the air quality in Beijing is calculated using both NAAQS-2012 and the previous standard. The annual attainment rate has dropped from 75.5% to 50.7%. The spatial analysis of air quality shows that only a background station could attain the national standard, while urban and suburban stations exceed the national standard. Among the six pollutants included in the NAAQS-2012, PM2.5 is the major contributor to the air quality index (AQI comparing with the five other pollutants. The results indicate that under previous NAAQS without PM2.5 monitoring, the air quality has improved greatly in the past decade.  By considering PM2.5, the air quality attainment has dropped greatly. Furthermore, a great effort is needed for local government to bring down the PM2.5 concentration.

  10. Comparing air quality impacts of hydrogen and gasoline

    OpenAIRE

    Sperling, Dan; Wang, Guihua; Ogden, Joan M.

    2008-01-01

    This paper uses a lifecycle approach to analyze potential air quality impacts of hydrogen and gasoline use in light duty vehicles. The analysis is conducted for scenarios in 2005 and 2025 in Sacramento, California for CO, NOx, VOC, and PM10. Three natural gas-based hydrogen supply pathways are analyzed: onsite hydrogen production via small-scale steam methane reforming (SMR), central large-scale hydrogen production via SMR with gaseous hydrogen pipeline delivery, and central hydrogen producti...

  11. Air Quality and Indoor Environmental Exposures: Clinical Impacts

    Science.gov (United States)

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more pol...

  12. The impact of periodic air pollution peaks in Beijing on air quality governance in China

    OpenAIRE

    Schwabe, Julian; Hassler, Markus

    2016-01-01

    During the month of January 2013, Beijing suffered air pollution of unprecedented intensity. This event, which was named “airpocalypse” in international media, was followed by vibrant media reporting and public discussion on the topic and prompted the central government to issue unusually ambitious measures to contain air pollution more effectively. This paper explores the impact of the airpocalypse on China’s air quality governance by conducting a qualitative analysis of pollution control po...

  13. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Walker, Iain I.

    2010-01-01

    Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing

  14. Air quality impacts of power plant emissions in Beijing

    International Nuclear Information System (INIS)

    The CALMET/CALPUFF modeling system was applied to estimate the air quality impacts of power plants in 2000 and 2008 in Beijing, and the intake fractions (IF) were calculated to see the public health risks posed. Results show that in 2000 the high emission contribution induced a relatively small contribution to average ambient concentration and a significant impact on the urban area (9.52 μg/m3 of SO2 and 5.29 μg/m3 of NOx). The IF of SO2, NOx and PM10 are 7.4 x 10-6, 7.4 x 10-6 and 8.7 x 10-5, respectively. Control measures such as fuel substitution, flue gas desulfurization, dust control improvement and flue gas denitration planned before 2008 will greatly mitigate the SO2 and PM10 pollution, especially alleviating the pressure on the urban area to reach the National Ambient Air Quality Standard (NAAQS). NOx pollution will be mitigated with 34% decrease in concentration but further controls are still needed. - CALMET/CALPUFF modeling estimates sizeable reductions in SO2, PM10 and NOx pollution from power plants by 2008 for Beijing

  15. Impact of biomass burning sources on seasonal aerosol air quality

    Science.gov (United States)

    Reisen, Fabienne; Meyer, C. P. (Mick); Keywood, Melita D.

    2013-03-01

    In the Huon Valley, Tasmania, current public perception is that smoke from regeneration burning is the principal cause of pollution events in autumn. These events lead to exceedences of national air quality standards and to significant health impacts on the rural population. To date there is little data on the significance of the impact. The aim of the study was to quantitatively assess the seasonal atmospheric particle loadings in the Huon Valley and determine the impact of smoke pollution. The study monitored fine (PM2.5) and coarse (PM10) particle concentrations and their chemical composition at two locations in the Huon Valley, Geeveston, an urban site and Grove, a rural site, between March 2009 and November 2010. The monitoring program clearly showed that biomass burning was a significant source of PM2.5 in the Huon Valley, leading to exceedences of the 24 h PM2.5 Ambient Air Quality National Environment Protection Measures advisory standard on a number of occasions. Significant increases of PM2.5 concentrations above background occurred during periods of prescribed burning as well as during the winter season. Although the intensity of emissions from prescribed burns (PB) and residential woodheaters (WH) was similar, emissions from WH were the largest source of PM2.5, with a contribution of 77% to the ambient PM2.5 load compared to an 11% contribution from PB. The results have also shown a greater impact on air quality at the urban site than at the rural site, indicating that PM2.5 concentrations are primarily influenced by localised sources rather than by regional pollution. The potential impact on local residents of the high PM concentrations during the PB and WH season was assessed. WH pollution is largely a persistent night-time issue in contrast to PB events which generally occur during the day and are of short duration. Due to the long persistence of high PM concentrations in winter, indoor PM concentrations are unlikely to be substantially lower than

  16. Impact of inherent meteorology uncertainty on air quality model predictions

    Science.gov (United States)

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...

  17. Road construction: Emissions Factors and Air Quality Impacts

    Science.gov (United States)

    Font Font, Anna M.; Baker, Timothy; Mudway, Ian; Fuller, Gary W.

    2014-05-01

    Very few studies have investigated the air pollution impacts of road construction. Over a 17 month period a congested main road in south east London was widened from two lanes to four. Emissions factors for road construction were determined and a notable deterioration in residential air quality was found with the final expanded road layout. Air quality monitoring sites measuring PM10, PM2.5, NOX, NO2 and meteorological variables were deployed on both sides of the road construction to quantify ambient air quality before, during and after the completion of the road works, with additional measurements from a nearby background site. PM10 samples were collected for oxidative potential measurements. PM10 was the only pollutant to increase during the construction; mean PM10 from the road increased by 15 µg m-3 during working hours; weekdays between 6 am and 5 pm; and on Saturdays between 6 am and 12 pm, compared to concentrations before the road works. During the construction the number of days with daily mean PM10 concentrations greater than 50 µg m-3 was more than 35 for both sides of the road, breaching the European Union Limit Value (LV). Downwind-upwind differences were used to calculate real-world PM10 emissions associated to the construction activity by means of box modelling. The quantity of PM10 emitted per area and month of construction was 0.0009 kg PM10 m-2 month-1 for the construction period. This emission factor was similar to the one used in the UK National Atmospheric Emissions Inventory (NAEI). Worst case construction emissions factors were 0.0105 kg PM10 m-2 month-1, compared to 0.0448 kg PM10 m-2 month-1 and 0.1038 kg PM10 m-2 month-1 used in current European and US inventories, respectively. After the completion of the road widening an increase in all pollutants was measured during rush hour peaks: 2-4 µg m-3 for PM10; 1 µg m-3 for PM2.5; 20 and 4 ppbv (40 and 8 µg m-3) for NOX and NO2, respectively, leading to a breach of the NO2 annual mean LV

  18. Air quality

    International Nuclear Information System (INIS)

    This chapter of the 'Assessment of the state of the environment in Lebanon' describes the air quality and identifies the most important air quality issues. Baseline information about the factors affecting dispersion and the climate of Lebanon presents as well and overall estimation of total emissions in Lebanon. Emissions from vehicles, electricity and power plants generation are described. Industrial emitters of air pollutants are described for each kind of industry i.e.cement plants, Selaata fertilizer factory, sugar-beet factory, refineries and for those derived from the use of leaded fuel . Impact of economic and human activities on air quality in Lebanon (especially in Beirut and Tripoli) are quantified by quantities of CO2, SO2, NOx, total suspended particulates(TSP), deposition and their environmental effects on health. In abscence of emissions monitoring, data available are expressed in terms of fuel use, output and appropriate empirical factors, national output and workfores sizes. Finally key issues and some potential mitigation /management approaches are presented

  19. Modeling Regional Air Quality Impacts from Indonesian Biomass Burning

    Science.gov (United States)

    Jumbam, L.; Raffuse, S. M.; Wiedinmyer, C.; Larkin, N.

    2012-12-01

    Smoke from thousands of forest-clearing burns in Indonesia cause widespread air quality impacts in cities across southeastern Asia. These fires, which can produce significant smoke due to peat burning, are readily detected by polar orbiting satellites. Widespread smoke can be seen in satellite imagery, and high concentrations of particulate matter are detected by ground based sensors. Here we present results of a pilot modeling study focusing on the September 2011 Indonesian smoke episode. In the study, fire location information was collected from the National Aeronautics and Space Administration's (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS). The BlueSky modeling framework, which links information about fire locations with smoke emissions and meteorological models, was used to pass the fire location information from MODIS through the Fire INventories from NCAR (FINN) methodology to estimate emissions of aerosol and gaseous pollutants from the fires. These emissions were further directed by BlueSky through the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, which predicted the dispersion and transport of PM2.5 from the fires. The resulting regional PM2.5 concentration maps from BlueSky were compared with satellite imagery and urban ground stations, where available. This work demonstrates the extension of a system developed for producing daily smoke predictions in the United States outside of North America for the first time. We discuss the implications of regional smoke impacts and possibilities for predictive smoke modeling to protect public health in southeastern Asia.

  20. Potential impact of a US climate policy and air quality regulations on future air quality and climate change

    OpenAIRE

    Lee, Y. H; D. T. Shindell; Faluvegi, G.; R. W. Pinder

    2015-01-01

    We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that reduces 2050 CO2 emissions to be 50 % below 2005 emissions. Using NASA GISS ModelE2, we look at the impacts in year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL for the Purpose of Scenario Exploration...

  1. Impact of inherent meteorology uncertainty on air quality model predictions

    Science.gov (United States)

    Gilliam, Robert C.; Hogrefe, Christian; Godowitch, James M.; Napelenok, Sergey; Mathur, Rohit; Rao, S. Trivikrama

    2015-12-01

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is important to understand how uncertainties in these inputs affect the simulated concentrations. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. Most studies explore this uncertainty by running different meteorological models or the same model with different physics options and in some cases combinations of different meteorological and air quality models. While these have been shown to be useful techniques in some cases, we present a technique that leverages the initial condition perturbations of a weather forecast ensemble, namely, the Short-Range Ensemble Forecast system to drive the four-dimensional data assimilation in the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model with a key focus being the response of ozone chemistry and transport. Results confirm that a sizable spread in WRF solutions, including common weather variables of temperature, wind, boundary layer depth, clouds, and radiation, can cause a relatively large range of ozone-mixing ratios. Pollutant transport can be altered by hundreds of kilometers over several days. Ozone-mixing ratios of the ensemble can vary as much as 10-20 ppb or 20-30% in areas that typically have higher pollution levels.

  2. Impacts Of Passive Removal Materials On Indoor Air Quality

    DEFF Research Database (Denmark)

    Darling, Erin; Cros, Clement; Wargocki, Pawel; Kolarik, Jakub; Targowski, Adam; Morrison, Glenn C.; Corsi, Richard L.

    2011-01-01

    continuous acceptability scale. Materials were either new carpet that was aired out for three weeks, clay plaster applied to gypsum wallboard that was aired out for up to one month, both materials, or neither. Perceived Air Quality (PAQ) assessed by the panel was most acceptable and concentrations of...... aldehydes were lowest when only clay plaster or both clay plaster and carpet were in the chambers without ozone. The least acceptable PAQ and the highest concentrations of aldehydes were observed when carpet and ozone were present together; addition of clay plaster for this condition improved PAQ and...

  3. Potential Air Quality Impacts of Global Bioenergy Crop Cultivation

    Science.gov (United States)

    Porter, W. C.; Rosenstiel, T. N.; Barsanti, K. C.

    2012-12-01

    The use of bioenergy crops as a replacement for traditional coal-powered electricity generation will require large-scale land-use change, and the resulting changes in emissions of biogenic volatile organic compounds (BVOCs) may have negative impacts on local to regional air quality. BVOCs contribute to the formation of both ozone (O3) and fine particulate matter (PM2.5), with magnitudes of specific compound emissions governed largely by plant speciation and land coverage. For this reason, large-scale land-use change has the potential to markedly alter regional O3 and PM2.5 levels, especially if there are large differences between the emission profiles of the replacement bioenergy crops (many of which are high BVOC emitters) and the previous crops or land cover. In this work, replacement areas suitable for the cultivation of the bioenergy crops switchgrass (Panicum virgatum) and giant reed (Arundo donax) were selected based on existing global inventories of under-utilized cropland and local climatological conditions. These two crops are among the most popular current candidates for bioenergy production, and provide contrasting examples of energy densities and emissions profiles. While giant reed has been selected in an ongoing large-scale coal-to-biocharcoal conversion in the Northwestern United States due to its high crop yields and energy density, it is also among the highest biogenic emitters of isoprene. On the other hand, switchgrass produces less biomass per acre, but also emits essentially no isoprene and low total BVOCs. The effects of large-scale conversion to these crops on O3 and PM2.5 were simulated using version 1.1 of the Community Earth System Model (CESM) coupled with version 2.1 of the Model of Emissions of Gases and Aerosols from Nature (MEGAN). By comparing crop replacement scenarios involving A. donax and P. virgatum, the sensitivities of O3 and PM2.5 levels to worldwide increases in bioenergy production were examined, providing an initial

  4. Impact of California air quality control policies on the use and demand for natural gas

    International Nuclear Information System (INIS)

    This paper discusses the impact of California's air quality control policies on the use of natural gas. In this paper the author would like to briefly review the regulatory structure for air pollution control in California, summarize the requirement of the California Clean Air Act of 1988, and discuss the impacts of our regulatory programs on the use and demand for natural gas

  5. The impact of information on perceived air quality

    DEFF Research Database (Denmark)

    Wilkins, K.; Wolkoff, Peder; Knudsen, Henrik Nellemose;

    2007-01-01

    As indoor air quality complaints cannot be explained satisfactorily and building materials can be a major source of indoor air pollution, we hypothesized that emissions from building materials perceived as unfamiliar or annoying odors may contribute to such complaints. To test this hypothesis......, emissions from indoor building materials containing linseed oil (organic) and comparable synthetic (synthetic) materials were evaluated by a naı¨ve sensory panel for evaluation of odor intensity (OI) and odor acceptability (OA). The building materials were concealed in ventilated climate chambers of the...

  6. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    DEFF Research Database (Denmark)

    Skwarczynski, Mariusz; Melikov, Arsen Krikor; Kaczmarczyk, J.;

    2010-01-01

    The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and...... local air velocity under a constant air temperature of 26 degrees C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front...... room air temperature of 26 degrees C and relative humidity of 70%....

  7. The impact of international shipping on European air quality and climate forcing

    Energy Technology Data Exchange (ETDEWEB)

    van Aardenne, J. [European Environment Agency (EEA), Copenhagen (Denmark); Colette, A. [INERIS (France); Degraeuwe, B.; de Vlieger, I. [VITO (Belgium); Hammingh, P. [PBL Netherlands Environmental Assessment Agency (Netherlands); Viana, M. [CSIC (Spain)

    2013-03-15

    This EEA Technical report provides an overview on the state of knowledge on the impact of international shipping in European waters to air quality and climate change. Based on literature review and model assessment studies information is provided on past and future emissions of air pollutants and greenhouse gases, monitoring of ship emissions, emission mitigation policies and impact on European air quality and radiative forcing. (Author)

  8. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    Energy Technology Data Exchange (ETDEWEB)

    Skwarczynski, M.A. [Faculty of Environmental Engineering, Institute of Environmental Protection Engineering, Department of Indoor Environment Engineering, Lublin University of Technology, Lublin (Poland); International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Melikov, A.K.; Lyubenova, V. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Kaczmarczyk, J. [Faculty of Energy and Environmental Engineering, Department of Heating, Ventilation and Dust Removal Technology, Silesian University of Technology, Gliwice (Poland)

    2010-10-15

    The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and local air velocity under a constant air temperature of 26 C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front toward the upper part of the body (upper chest, head). The subjects could control the flow rate (velocity) of the supplied air in the vicinity of their bodies. The results indicate an airflow with elevated velocity applied to the face significantly improves the acceptability of the air quality at the room air temperature of 26 C and relative humidity of 70%. (author)

  9. Potential Impact of a US Climate Policy and Air Quality Regulations on Future Air Quality and Climate Change

    Science.gov (United States)

    Lee, Y. H.; Faluvegi, Gregory S.

    2016-01-01

    We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that aims to reduce 2050 CO2 emissions to be 50% below 2005 emissions. Using the NASA GISS ModelE2 general circulation model, we look at the impacts for year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL (MARKet ALlocation) for the Purpose of Scenario Exploration), and other US emissions data sets and the rest of the world emissions data sets are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in year 2030 and 2055 but result in positive radiative forcing. Under this scenario, no more emission constraints are added after 2020, and the impacts on air quality and climate change are similar between year 2030 and 2055. Surface particulate matter with a diameter smaller than 2.5 micron PM(sub 2:5) is reduced by 2 approximately µg/m(sup -3) on average over the USA, and surface ozone by approximately 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the USA, mainly due to the PM(sub 2:5) reduction approximately (74 200 lives saved). The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading to a strong positive radiative forcing (RF) over the USA by both aerosols' direct and indirect forcing: the total RF is approximately 0.04 W m(sup -2) over the globe, and approximately 0.8 W m(sup -2) over the USA. Under the hypothetical climate policy, a future CO2 emissions cut is achieved in part by relying less on coal, and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it could lead to potential climate disbenefits over the USA. In 2055, the US

  10. Potential impact of a US climate policy and air quality regulations on future air quality and climate change

    Science.gov (United States)

    Lee, Yunha; Shindell, Drew T.; Faluvegi, Greg; Pinder, Rob W.

    2016-04-01

    We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that aims to reduce 2050 CO2 emissions to be 50 % below 2005 emissions. Using the NASA GISS ModelE2 general circulation model, we look at the impacts for year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL (MARKet ALlocation) for the Purpose of Scenario Exploration), and other US emissions data sets and the rest of the world emissions data sets are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in year 2030 and 2055 but result in positive radiative forcing. Under this scenario, no more emission constraints are added after 2020, and the impacts on air quality and climate change are similar between year 2030 and 2055. Surface particulate matter with a diameter smaller than 2.5 µm (PM2.5) is reduced by ˜ 2 µg m-3 on average over the USA, and surface ozone by ˜ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the USA, mainly due to the PM2.5 reduction (˜ 74 200 lives saved). The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading to a strong positive radiative forcing (RF) over the USA by both aerosols' direct and indirect forcing: the total RF is ˜ 0.04 W m-2 over the globe, and ˜ 0.8 W m-2 over the USA. Under the hypothetical climate policy, a future CO2 emissions cut is achieved in part by relying less on coal, and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it could lead to potential climate disbenefits over the USA. In 2055, the US mean total RF is +0.22 W m-2 due to positive aerosol direct and indirect forcing

  11. Air quality impact analysis in support of the new production reactor environmental impact statement

    International Nuclear Information System (INIS)

    The Pacific Northwest Laboratory (PNL) conducted this air quality impact analysis for the US Department of Energy (DOE). The purpose of this work was to provide Argonne National Laboratory (ANL) with the required estimates of ground-level concentrations of five criteria air pollutants at the Hanford Site boundary from each of the stationary sources associated with the new production reactor (NPR) and its supporting facilities. The DOE proposes to provide new production capacity for the primary production of tritium and secondary production of plutonium to support the US nuclear weapons program. Three alternative reactor technologies are being considered by DOE: the light-water reactor, the low-temperature, heavy-water reactor, and the modular high-temperature, gas-cooled reactor. In this study, PNL provided estimates of the impacts of the proposed action on the ground-level concentration of the criteria air pollutants for each of the alternative technologies. The criteria pollutants were sulfur dioxide, nitrogen dioxide, carbon monoxide, total suspended particulates, and particulates with a diameter of less than 10 microns. Ground-level concentrations were estimated for the peak construction phase activities expected to occur in 1997 and for the operational phase activities beginning in the year 2000. Ground-level concentrations of the primary air pollutants were estimated to be well below any of the applicable national or state ambient air quality standards. 12 refs., 19 tabs

  12. Impacts of contaminant storage on indoor air quality: Model development

    Science.gov (United States)

    Sherman, Max H.; Hult, Erin L.

    2013-06-01

    A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde in building materials and the concentration of the species in the indoor air. Storage buffering can decrease the effect of ventilation on the indoor concentration, compared to the inverse dependence of indoor concentration on the air exchange rate that is consistent with a constant emission rate source. If the exposure time of an occupant is long relative to the timescale of depletion of the compound from the storage medium, however, the total exposure will depend inversely on the air exchange rate. This lumped capacitance model is also applied to moisture buffering in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model provides a framework to interpret the impact of storage buffering on time-varying concentrations of chemical species and resulting occupant exposure. Pseudo-steady-state behavior is validated using field measurements. Model behavior over longer times is consistent with formaldehyde and moisture concentration measurements in previous studies.

  13. Impacts of contaminant storage on indoor air quality: Model development

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Hult, Erin L.

    2013-02-26

    A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde in building materials and the concentration of the species in the indoor air. Storage buffering can decrease the effect of ventilation on the indoor concentration, compared to the inverse dependence of indoor concentration on the air exchange rate that is consistent with a constant emission rate source. If the exposure time of an occupant is long relative to the time scale of depletion of the compound from the storage medium, however, the total exposure will depend inversely on the air exchange rate. This lumped capacitance model is also applied to moisture buffering in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model provides a framework to interpret the impact of storage buffering on time-varying concentrations of chemical species and resulting occupant exposure. Pseudo-steady state behavior is validated using field measurements. Model behavior over longer times is consistent with formaldehyde and moisture concentration measurements in previous studies.

  14. Air quality and radiative forcing impacts of anthropogenic volatile organic compound emissions from ten world regions

    OpenAIRE

    M. M. Fry; M. D. Schwarzkopf; Adelman, Z.; West, J. J.

    2013-01-01

    Non-methane volatile organic compounds (NMVOCs) influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF) impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions decreases glo...

  15. Air quality and radiative forcing impacts of anthropogenic volatile organic compound emissions from ten world regions

    OpenAIRE

    M. M. Fry; M. D. Schwarzkopf; Adelman, Z.; West, J. J.

    2014-01-01

    Non-methane volatile organic compounds (NMVOCs) influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF) impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions de...

  16. The impact of marine organics on the air quality of the western United States

    OpenAIRE

    Gantt, B.; N. Meskhidze; A. G. Carlton

    2010-01-01

    The impact of marine organic emissions to the air quality in coastal areas of the western United States is studied using the latest version of the US Environmental Protection Agency (EPA) regional-scale Community Multiscale Air Quality (CMAQv4.7) modeling system. Emissions of marine isoprene, monoterpenes, and primary organic matter (POM) from the ocean are implemented into the model to provide a comprehensive view of the connection between ocean biology and atmospheric chemistry and air poll...

  17. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    Science.gov (United States)

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (air intakes are important to the indoor air quality of existing buildings adjacent to roadways. PMID:26829764

  18. Electricity supply. Older plants' impact on reliability and air quality

    International Nuclear Information System (INIS)

    Life extension of fossil fuel plants is a relatively recent phenomenon; thus, utilities have little experience to demonstrate the longer-term operating reliability of plants with an extended service life. While utility industry officials and government and industry studies express optimism that these plants will continue to operate reliably, the officials and the studies also caution that it is too soon to determine how pursuing life extension will affect the reliability of the nation's electricity supply. According to DOE, the number of fossil fuel generating units' 30 years old or older is expected to increase from about 2,500 in 1989 to roughly 3,700 in 1998, increasing such plants' share of overall generating capacity from 13 percent in 1989 to 27 percent in 1998. EPA estimates that with existing air quality requirements, fossil fuel plant emissions will increase steadily during the coming decade. Proposed acid rain control legislation, which would affect many plants that may have their service life extended, would require utilities to significantly reduce emissions by the year 2000 but would allow utilities flexibility in deciding how and where to achieve the reductions. If such legislation is enacted, utilities generally are expected to find reducing emissions from existing plants more cost-effective than replacing them and to continue extending plants' service life. Officials of DOE and utility organizations expressed concern, however, that EPA could decide, as it did for one plant in 1988, that alterations made in extending the service life of plants exempted from the Clean Air Act would result in increased emissions and thus cause the altered plants to lose their exemption. According to the officials, the additional costs of achieving the Clean Air Act's standards could discourage some life extension projects. However, such decisions by EPA could also reduce the nation's total power plant emissions by eliminating an existing incentive to retain exempt

  19. Air quality impacts analysis for area G. Final report

    International Nuclear Information System (INIS)

    The impact of fugitive radioactive emissions from the disposal site, Area G, was evaluated in support of site characterization for the Performance Assessment and for the Radioactive Air Emissions Management (RAEM) program. Fugitive emissions of tritiated water and contaminated windblown dust were considered. Data from an extensive field measurement program were used to estimate annual emissions of tritiated water. Fugitive dust models were used to calculate estimates of the annual emissions of windblown dust. These estimates were combined with data on contamination levels in surface soils to develop annual emission rates for specific radionuclides: tritium, uranium-238, cesium-137, plutonium-238, plutonium-239,240, and strontium-90. The CAP-88 atmospheric transport model was used to predict areas potentially affected by long-term dust deposition and atmospheric concentrations. The annual emission rate of tritiated water was estimated from the field data to be 14.0 Ci/yr. The emission rate of soil-borne radionuclides from open areas and from soils handling operations totaled less than 1x10-4 Ci/yr. The CAP-88 results were used to develop effective dose equivalents (EDEs) for receptor locations downwind of Area G. All EDEs were several orders of magnitude below the national standard of 10 mrem/yr. Fugitive air emissions from Area G were found not to pose a health threat to persons living or working downwind of the facility

  20. The role of Health Impact Assessment in the setting of air quality standards: An Australian perspective

    International Nuclear Information System (INIS)

    The approaches used for setting or reviewing air quality standards vary from country to country. The purpose of this research was to consider the potential to improve decision-making through integration of HIA into the processes to review and set air quality standards used in Australia. To assess the value of HIA in this policy process, its strengths and weaknesses were evaluated aligned with review of international processes for setting air quality standards. Air quality standard setting programmes elsewhere have either used HIA or have amalgamated and incorporated factors normally found within HIA frameworks. They clearly demonstrate the value of a formalised HIA process for setting air quality standards in Australia. The following elements should be taken into consideration when using HIA in standard setting. (a) The adequacy of a mainly technical approach in current standard setting procedures to consider social determinants of health. (b) The importance of risk assessment criteria and information within the HIA process. The assessment of risk should consider equity, the distribution of variations in air quality in different locations and the potential impacts on health. (c) The uncertainties in extrapolating evidence from one population to another or to subpopulations, especially the more vulnerable, due to differing environmental factors and population variables. (d) The significance of communication with all potential stakeholders on issues associated with the management of air quality. In Australia there is also an opportunity for HIA to be used in conjunction with the NEPM to develop local air quality standard measures. The outcomes of this research indicated that the use of HIA for air quality standard setting at the national and local levels would prove advantageous. -- Highlights: • Health Impact Assessment framework has been applied to a policy development process. • HIA process was evaluated for application in air quality standard setting.

  1. The role of Health Impact Assessment in the setting of air quality standards: An Australian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Spickett, Jeffery, E-mail: J.Spickett@curtin.edu.au [WHO Collaborating Centre for Environmental Health Impact Assessment (Australia); Faculty of Health Sciences, School of Public Health, Curtin University, Perth, Western Australia (Australia); Katscherian, Dianne [WHO Collaborating Centre for Environmental Health Impact Assessment (Australia); Faculty of Health Sciences, School of Public Health, Curtin University, Perth, Western Australia (Australia); Harris, Patrick [CHETRE — UNSW Research Centre for Primary Health Care and Equity, University of New South Wales (Australia)

    2013-11-15

    The approaches used for setting or reviewing air quality standards vary from country to country. The purpose of this research was to consider the potential to improve decision-making through integration of HIA into the processes to review and set air quality standards used in Australia. To assess the value of HIA in this policy process, its strengths and weaknesses were evaluated aligned with review of international processes for setting air quality standards. Air quality standard setting programmes elsewhere have either used HIA or have amalgamated and incorporated factors normally found within HIA frameworks. They clearly demonstrate the value of a formalised HIA process for setting air quality standards in Australia. The following elements should be taken into consideration when using HIA in standard setting. (a) The adequacy of a mainly technical approach in current standard setting procedures to consider social determinants of health. (b) The importance of risk assessment criteria and information within the HIA process. The assessment of risk should consider equity, the distribution of variations in air quality in different locations and the potential impacts on health. (c) The uncertainties in extrapolating evidence from one population to another or to subpopulations, especially the more vulnerable, due to differing environmental factors and population variables. (d) The significance of communication with all potential stakeholders on issues associated with the management of air quality. In Australia there is also an opportunity for HIA to be used in conjunction with the NEPM to develop local air quality standard measures. The outcomes of this research indicated that the use of HIA for air quality standard setting at the national and local levels would prove advantageous. -- Highlights: • Health Impact Assessment framework has been applied to a policy development process. • HIA process was evaluated for application in air quality standard setting.

  2. Impact of operating wood-burning stoves on indoor air quality

    DEFF Research Database (Denmark)

    Afshari, Alireza; Jensen, Ole Michael; Bergsøe, Niels Christian; Carvalho, Ricardo Luis Teles de

    2011-01-01

    A field study on the impact of operating and reloading wood-burning stoves on the indoor air quality was carried out during two consecutive winters. In contrast to the majority of recent studies, which focussed on the ambient air quality and the penetration of particles to the indoor air, this...... study aims to understand to what extent the operation of a stove contributes to the generation of concentration of ultrafine particles in the indoor air. Therefore, different stoves were ignited in one session by the owner of the stove and in a subsequent session by an expert on wood-burning stoves. The...

  3. Projections of air pollutant emissions and its impacts on regional air quality in China in 2020

    Directory of Open Access Journals (Sweden)

    J. Xing

    2011-04-01

    Full Text Available Anthropogenic emissions of air pollutants in China influence not only local and regional environments but also the global atmospheric environment; therefore, it is important to understand how China's air pollutant emissions will change and how they will affect regional air quality in the future. Emission scenarios in 2020 were projected using forecasts of energy consumption and emission control strategies based on emissions in 2005, and on recent development plans for key industries in China. We developed four emission scenarios: REF[0] (current control legislations and implementation status, PC[0] (improvement of energy efficiencies and current environmental legislation, PC[1] (improvement of energy efficiencies and better implementation of environmental legislation, and PC[2] (improvement of energy efficiencies and strict environmental legislation. Under the REF[0] scenario, the emission of SO2, NOx, VOC and NH3 will increase by 17%, 50%, 49% and 18% in 2020, while PM10 emissions will be reduced by 10% over East China, compared to that in 2005. In PC[2], sustainable energy polices will reduce SO2, NOx and PM10 emissions by 4.1 Tg, 2.6 Tg and 1.8 Tg, respectively; better implementation of current control policies will reduce SO2, NOx and PM10 emission by 2.9 Tg, 1.8 Tg, and 1.4 Tg, respectively; strict emission standards will reduce SO2, NOx and PM10 emissions by 3.2 Tg, 3.9 Tg, and 1.7 Tg, respectively. Under the PC[2] scenario, SO2 and PM10 emissions will decrease by 18% and 38%, while NOx and VOC emissions will increase by 3% and 8%, compared to that in 2005. Future air quality in China was simulated using the Community Multi-scale Air Quality Model (CMAQ. Under REF[0] emissions, compared to 2005, the surface concentrations of SO2, NO2, hourly

  4. Projections of air pollutant emissions and its impacts on regional air quality in China in 2020

    Directory of Open Access Journals (Sweden)

    J. Xing

    2010-11-01

    Full Text Available Anthropogenic emissions of air pollutants in China influence not only local and regional environments but also the global atmospheric environment; therefore, it is important to understand how China's air pollutant emissions will change and how they will affect regional air quality in the future. Emission scenarios in 2020 were projected using forecasts of energy consumption and emission control strategies based on emissions in 2005, and on recent development plans for key industries in China. We developed four emission scenarios: REF[0] (current control legislations and implementation status, PC[0] (improvement of energy efficiencies and current environmental legislation, PC[1] (improvement of energy efficiencies and better implementation of environmental legislation, and PC[2] (improvement of energy efficiencies and strict environmental legislation. Under the REF[0] scenario, the emission of SO2, NOx, VOC and NH3 will increase by 17%, 50%, 49% and 18% in 2020, while PM will be reduced by 10% over East China, compared to that in 2005. In PC[2], sustainable energy polices will reduce SO2, NOx and PM10 emissions by 4.1 Tg, 2.6 Tg and 1.8 Tg, respectively; better implementation of current control policies will reduce SO2, NOx and PM10 emission by 2.9 Tg, 1.8 Tg, and 1.4 Tg, respectively; strict emission standards will reduce SO2, NOx and PM10 emissions by 3.2 Tg, 3.9 Tg, and 1.7 Tg, respectively. Under the PC[2] scenario, SO2 and PM10 emissions will decrease by 18% and 38%, while NOx and VOC emissions will increase by 3% and 8%, compared to that in 2005. Future air quality in China was simulated using the Community Multi-scale Air Quality Model (CMAQ with 2005 emissions and 2020 emission scenarios. Under REF[0] emissions, the concentrations of SO2, NO2, hourly

  5. Forest fire impact on air quality: the Lançon-De-Provence 2005 case

    OpenAIRE

    Strada, Susanna; Mari, Céline; Filippi, Jean Baptiste; Bosseur, Frédéric

    2010-01-01

    International audience Forest fires release significant amounts of gases and aerosols into the atmosphere. Depending on meteorological conditions, fire emissions can efficiently spoil air quality and visibility far away from the source. The aim of this study is to evaluate the fire impact on air quality downwind of the burning region in the Mediterranean zone. Wildfire behaviour is simulated using a semi-physical model, ForeFire, based on an analytical resolution of the rate of spread. For...

  6. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation, Somerville, MA (United States); Bergey, Daniel [Building Science Corporation, Somerville, MA (United States)

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  7. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  8. Health and air quality 2005 : phase 2 : valuation of health impacts from air quality in the Lower Fraser Valley airshed

    Energy Technology Data Exchange (ETDEWEB)

    Furberg, M.; Preston, K. [RWDI West Inc., Vancouver, BC (Canada); Sawyer, D. [Marbek Resource Consultants Ltd., Ottawa, ON (Canada); Brauer, M. [British Columbia Univ., Vancouver, BC (Canada). School of Occupational and Environmental Hygiene; Hanvelt, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Health Care and Epidemiology

    2005-07-15

    This study provided estimates the health benefits and costs associated with specified changes in ambient air concentrations of particulate matter (PM) and ozone in the Lower Fraser Valley (LFV). Estimates were developed on a regional level. The study focused on PM and ozone, as current air quality monitoring data and scientific findings have indicated that these are the air contaminants of greatest concern in the region. Known air quality health outcome relationships were applied in a spreadsheet model to predict changes in health outcomes associated with 6 ambient air quality scenarios for 3 sub-regions within the LFV airshed. Concentration response functions based on epidemiological studies were used to estimate the number of health events associated with changes in air quality. For each scenario, the model calculated the expected number of the following health outcomes: mortality; chronic bronchitis; respiratory hospital admissions; cardiac hospital admissions; emergency room visits; child acute bronchitis; restricted activity days; asthma symptom days; minor restricted activity days and acute respiratory symptom days. The model also produced the dollar value of the health outcomes. A dollar metric was used so that the health outcomes could be aggregated and compared with other air quality management actions such the costs of improving ambient air quality. Results indicated that improving ambient air quality in the LFV will produce valued and socially desirable benefits, including reduced mortality and morbidity. The measures contemplated by decision-makers to maintain and improve air quality in the LFV will trigger benefits that are likely to be significant. 101 refs., 7 tabs., 7 figs.

  9. Air quality impacts due to construction of LWR waste management facilities

    International Nuclear Information System (INIS)

    Air quality impacts of construction activities and induced housing growth as a result of construction activities were evaluated for four possible facilities in the LWR fuel cycle: a fuel reprocessing facility, fuel storage facility, fuel fabrication plant, and a nuclear power plant. Since the fuel reprocessing facility would require the largest labor force, the impacts of construction of that facility were evaluated in detail

  10. Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models

    Directory of Open Access Journals (Sweden)

    Chuanglin Fang

    2015-11-01

    Full Text Available Urban air pollution is one of the most visible environmental problems to have accompanied China’s rapid urbanization. Based on emission inventory data from 2014, gathered from 289 cities, we used Global and Local Moran’s I to measure the spatial autorrelation of Air Quality Index (AQI values at the city level, and employed Ordinary Least Squares (OLS, Spatial Lag Model (SAR, and Geographically Weighted Regression (GWR to quantitatively estimate the comprehensive impact and spatial variations of China’s urbanization process on air quality. The results show that a significant spatial dependence and heterogeneity existed in AQI values. Regression models revealed urbanization has played an important negative role in determining air quality in Chinese cities. The population, urbanization rate, automobile density, and the proportion of secondary industry were all found to have had a significant influence over air quality. Per capita Gross Domestic Product (GDP and the scale of urban land use, however, failed the significance test at 10% level. The GWR model performed better than global models and the results of GWR modeling show that the relationship between urbanization and air quality was not constant in space. Further, the local parameter estimates suggest significant spatial variation in the impacts of various urbanization factors on air quality.

  11. Impact of aerosol direct effect on East Asian air quality during the EAST-AIRE campaign

    Science.gov (United States)

    Wang, Jing; Allen, Dale J.; Pickering, Kenneth E.; Li, Zhanqing; He, Hao

    2016-06-01

    WRF-Chem simulations were performed for the March 2005 East Asian Studies of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) Intensive Observation Campaign (IOC) to investigate the direct effects of aerosols on surface radiation and air quality. Domain-wide, WRF-Chem showed a decrease of 20 W/m2 in surface shortwave (SW) radiation due to the aerosol direct effect (ADE), consistent with observational studies. The ADE caused 24 h surface PM2.5 (particulate matter with diameter Sichuan Basin (9.6%), due to different aerosol compositions in these four regions. Conversely, surface 1 h maximum ozone was reduced by 2.3% domain-wide and up to 12% in eastern China because less radiation reached the surface. We also investigated the impact of reducing SO2 and black carbon (BC) emissions by 80% on aerosol amounts via two sensitivity simulations. Reducing SO2 decreased surface PM2.5 concentrations in the Sichuan Basin and southern China by 5.4% and decreased ozone by up to 6 ppbv in the Sichuan Basin and Southern China. Reducing BC emissions decreased PM2.5 by 3% in eastern China and the Sichuan Basin but increased surface ozone by up to 3.6 ppbv in eastern China and the Sichuan Basin. This study indicates that the benefits of reducing PM2.5 associated with reducing absorbing aerosols may be partially offset by increases in ozone at least for a scenario when NOx and VOC emissions are unchanged.

  12. The impact of an air quality advisory program on voluntary mobile source air pollution reduction

    Science.gov (United States)

    Blanken, Peter D.; Dillon, Jennifer; Wismann, Genevieve

    Air pollution from mobile source emissions is a major cause of air quality degradation in the Denver, Colorado, metropolitan area. The projected increase in both population and vehicle miles driven, coupled with the high altitude, predominantly clear skies, and prevalent wintertime temperature inversions aid in the formation and retention of pollutants. The Colorado Department of Public Health issues an air quality advisory daily during the high pollution season (November 1-March 31) with the objective of improving air quality through voluntary driving restrictions and a mandatory wood burning ban. We hypothesized that the advisory had no effect on commuter behavior due to lack of awareness and understanding, lack of alternative means of travel, or lack of concern. We mailed an anonymous, self-administered survey to 1000 commuters living in the cities of Boulder and Westminster, Colorado. Despite the fact that the vast majority of the respondents were aware of the daily advisory (94%), understood what it meant (93%), and heard the posting at least once a day (71%) in time to choose alternative forms of transportation, the advisory did not alter commuter travel. Commuters traveled mainly as the sole occupant of a car and most (76%) never changed the way they commuted based on the daily advisory. Many claimed schedules or work locations did not allow them to use alternative transportation methods. We suggested a practical way to improve the advisory would be to reduce or eliminate public transit fares on poor air quality days.

  13. Wheat straw burning and its associated impacts on Beijing air quality

    Institute of Scientific and Technical Information of China (English)

    LI LingJun; WANG Ying; ZHANG Qiang; LI JinXiang; YANG XiaoGuang; JIN Jun

    2008-01-01

    Based on MODIS images, large-scale flow field charts and environmental monitoring data, we thoroughly analyzed the spatial distribution of wheat straw burning in North China, with focus on its environmental impacts on the air quality of Beijing and pollution transport paths. And we anatomized changes of air quality in Beijing under the impacts of pollution generated by wheat straw burning around. The results indicate that: (1) The North China Plain, a winter-wheat growing area, is the main source of pollutants induced by wheat straw burning in Beijing. The direction of south-west is the dominant heavy pollution transport path. (2) Impacts of wheat straw burning on air quality are mainly manifested by significantly increasing CO concentration. (3) Precursors of O3 generated by wheat straw burning, combining with favorable meteorological conditions, can induce increasing O3 concentration greatly. NO concentration will be greatly increased due to decreasing O3 concentration at night.(4) Atmospheric particles, especially the fine ones, from wheat straw burning exert considerable influence on Beijing air quality. (5) Different contributions of wheat straw burning to pollutants are identified.Ratios of PM10/SO2, CO/SO2, etc., can be applied to indicate pollution extent of wheat straw burning.High ratios of PM10/SO2 and CO/SO2 show that the air quality was heavily impacted by wheat straw burning and these ratios can be employed as indicators of contribution of wheat straw burning to the degradation of Beijing air quality. (6) Randomness of wheat straw burning activities renders random outbreak of air pollution of this type. Regional and extensive wheat straw burning activities can cause serious air pollution event.

  14. Wheat straw burning and its associated impacts on Beijing air quality

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on MODIS images, large-scale flow field charts and environmental monitoring data, we thor- oughly analyzed the spatial distribution of wheat straw burning in North China, with focus on its envi- ronmental impacts on the air quality of Beijing and pollution transport paths. And we anatomized changes of air quality in Beijing under the impacts of pollution generated by wheat straw burning around. The results indicate that: (1) The North China Plain, a winter-wheat growing area, is the main source of pollutants induced by wheat straw burning in Beijing. The direction of south-west is the dominant heavy pollution transport path. (2) Impacts of wheat straw burning on air quality are mainly manifested by significantly increasing CO concentration. (3) Precursors of O3 generated by wheat straw burning, combining with favorable meteorological conditions, can induce increasing O3 concentration greatly. NO concentration will be greatly increased due to decreasing O3 concentration at night. (4) Atmospheric particles, especially the fine ones, from wheat straw burning exert considerable influ- ence on Beijing air quality. (5) Different contributions of wheat straw burning to pollutants are identified. Ratios of PM10/SO2, CO/SO2, etc., can be applied to indicate pollution extent of wheat straw burning. High ratios of PM10/SO2 and CO/SO2 show that the air quality was heavily impacted by wheat straw burning and these ratios can be employed as indicators of contribution of wheat straw burning to the degradation of Beijing air quality. (6) Randomness of wheat straw burning activities renders random outbreak of air pollution of this type. Regional and extensive wheat straw burning activities can cause serious air pollution event.

  15. Assessment of the Impact of The East Asian Summer Monsoon on the Air Quality Over China

    Science.gov (United States)

    Hao, Nan; Ding, Aijun; Safieddine, Sarah; Valks, Pieter; Clerbaux, Cathy; Trautmann, Thomas

    2016-04-01

    Air pollution is one of the most important environmental problems in developing Asian countries like China. In this region, studies showed that the East Asian monsoon plays a significant role in characterizing the temporal variation and spatial patterns of air pollution, since monsoon is a major atmospheric system affecting air mass transport, convection, and precipitation. Knowledge gaps still exist in the understanding of Asian monsoon impact on the air quality in China under the background of global climate change. For the first time satellite observations of tropospheric ozone and its precursors will be integrated with the ground-based, aircraft measurements of air pollutants and model simulations to study the impact of the East Asian monsoon on air quality in China. We apply multi-platform satellite observations by the GOME-2, IASI, and MOPITT instruments to analyze tropospheric ozone and CO, precursors of ozone (NO2, HCHO and CHOCHO) and other related trace gases over China. Two years measurements of air pollutants including NO2, HONO, SO2, HCHO and CHOCHO at a regional back-ground site in the western part of the Yangtze River Delta (YRD) in eastern China will be presented. The potential of using the current generation of satellite instruments, ground-based instruments and aircraft to monitor air quality changes caused by the East Asian monsoon circulation will be presented. Preliminary comparison results between satellite measurement and limited but valuable ground-based and aircraft measurements will also be showed.

  16. ANTHROPIC IMPACT ON AIR QUALITY IN THE DANUBE REGION

    Directory of Open Access Journals (Sweden)

    VOINA A.

    2016-07-01

    Full Text Available There were monitored by data acquisition both in summer and winter period, the concentrations of pollutants - SO2, NO2 and particulate matter (PM10 – existing in air on the territory of 6 counties bordering the Danube. After processing and analysis of collected data have been found that: SO2 pollution may be due primarily burning fuel with high sulfur content and / or industrial activities for carbonic products (anodes for obtaining the electrolytic aluminum, graphite electrodes etc.; pollution with NO2 comes primarily from automobile exhaust gases; particulate matter pollution may be due both loess soil (high winds in dry periods characteristic of the area i

  17. Evaluation of air quality and noise impact assessments, Deaf Smith County

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    In this report, several issues are identified regarding the air quality and noise impact assessments presented in the final salt repository environmental assessment (EA) prepared by the US Department of Energy for the Deaf Smith County, Texas, site. Necessary revisions to the data and methods used to develop the EA impact assessment are described. Then, a comparative evaluation is presented in which estimated impacts based upon the revised data and methods are compared with the impacts published in the EA. The evaluation indicates that the conclusions of the EA air quality and noise impacts sections would be unchanged. Consequently, the guideline findings presented in Chapter 6 of the EA are also unchanged by the revised analysis. 13 tabs.

  18. Evaluation of air quality and noise impact assessments, Deaf Smith County

    International Nuclear Information System (INIS)

    In this report, several issues are identified regarding the air quality and noise impact assessments presented in the final salt repository environmental assessment (EA) prepared by the US Department of Energy for the Deaf Smith County, Texas, site. Necessary revisions to the data and methods used to develop the EA impact assessment are described. Then, a comparative evaluation is presented in which estimated impacts based upon the revised data and methods are compared with the impacts published in the EA. The evaluation indicates that the conclusions of the EA air quality and noise impacts sections would be unchanged. Consequently, the guideline findings presented in Chapter 6 of the EA are also unchanged by the revised analysis. 13 tabs

  19. Impact of trash burning on air quality in Mexico City.

    Science.gov (United States)

    Hodzic, A; Wiedinmyer, C; Salcedo, D; Jimenez, J L

    2012-05-01

    Air pollution experienced by expanding urban areas is responsible for serious health effects and death for millions of people every year. Trash burning is a common disposal method in poor areas, yet it is uncontrolled in many countries, and its contribution to air pollution is unclear due to uncertainties in its emissions. Here we develop a new trash burning emission inventory for Mexico City based on inverse socioeconomic levels and recently measured emission factors, and apply a chemistry-transport model to analyze the effects on pollutant concentrations. Trash burning is estimated to emit 25 tons of primary organic aerosols (POA) per day, which is comparable to fossil fuel POA emissions in Mexico City, and causes an increase in average organic aerosol concentrations of ∼0.3 μg m(-3) downtown and up to 2 μg m(-3) in highly populated suburbs near the sources of emission. An evaluation using submicrometer antimony suggests that our emission estimates are reasonable. Mitigation of trash burning could reduce the levels of organic aerosols by 2-40% and those of PM(2.5) by 1-15% over the metropolitan area. The trash burning contributions to carbon monoxide, nitrogen oxides, and volatile organic compounds were found to be very small (organic aerosols are also very small. PMID:22458823

  20. Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models

    OpenAIRE

    Chuanglin Fang; Haimeng Liu; Guangdong Li; Dongqi Sun; Zhuang Miao

    2015-01-01

    Urban air pollution is one of the most visible environmental problems to have accompanied China’s rapid urbanization. Based on emission inventory data from 2014, gathered from 289 cities, we used Global and Local Moran’s I to measure the spatial autorrelation of Air Quality Index (AQI) values at the city level, and employed Ordinary Least Squares (OLS), Spatial Lag Model (SAR), and Geographically Weighted Regression (GWR) to quantitatively estimate the comprehensive impact and spatial variati...

  1. Impact of operating wood-burning stoves on indoor air quality

    DEFF Research Database (Denmark)

    Afshari, Alireza; Jensen, Ole Michael; Bergsøe, Niels Christian; Luis Teles de Carvalho, Ricardo

    2011-01-01

    A field study on the impact of operating and reloading wood-burning stoves on the indoor air quality was carried out during two consecutive winters. In contrast to the majority of recent studies, which focussed on the ambient air quality and the penetration of particles to the indoor air, this...... study aims to understand to what extent the operation of a stove contributes to the generation of concentration of ultrafine particles in the indoor air. Therefore, different stoves were ignited in one session by the owner of the stove and in a subsequent session by an expert on wood-burning stoves. The...... study was conducted in seven typical Danish detached houses without other indoor activities taking place. In each house the average air change rate during one week was measured (using passive tracer gas technique) and the indoor and outdoor temperature and relative humidity were recorded continuously...

  2. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    Energy Technology Data Exchange (ETDEWEB)

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  3. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    NARCIS (Netherlands)

    Moreno, T.; Kojima, T.; Amato, F.; Lucarelli, F.; Rosa, J. de la; Calzolai, G.; Nava, S.; Chiari, M.; Alastuey, A.; Querol, X.; Gibbons, W.

    2013-01-01

    The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and M

  4. Impact of room fragrance products on indoor air quality

    Science.gov (United States)

    Uhde, Erik; Schulz, Nicole

    2015-04-01

    Everyday life can no longer be imagined without fragrances and scented products. For the consumer, countless products exists which are solely or partly intended to give off a certain scent in sufficient concentrations to odorize a complete room. Sprays, diffusers and evaporators, scented candles and automatic devices for the distribution of fragrance liquids are typical examples of such products. If the consumer uses such products, his consent to the release of certain chemicals in his home can be implied, however, he may not know what kind of fragrance substances and solvents will be present in which concentrations. In this study, we determined the volatile emissions of a number of fragrance products in detail. Measurements were carried out under controlled conditions in test chambers. The products were tested in a passive (unused) and an active state, wherever applicable. Following a defined test protocol, the release of volatile organic compounds, ultrafine particles and NOx was monitored for each product. The potential for forming secondary organic aerosols under the influence of ozone was studied, and for a selection of products the long-term emission behavior was assessed. A remarkable variety of fragrance substances was found and more than 100 relevant compounds were identified and quantified. While it is the intended function of such products to release fragrance substances, also considerable amounts of non-odorous solvents and by-products were found to be released from several air fresheners. Emissions rates exceeding 2 mg/(unit*h) were measured for the five most common solvents.

  5. Lifecycle impacts of natural gas to hydrogen pathways on urban air quality

    OpenAIRE

    Wang, Guihua; Ogden, Joan M; Nicholas, Michael A

    2007-01-01

    In this paper we examine the potential air quality impacts of hydrogen transportation fuel from a lifecycle analysis perspective, including impacts from fuel production, delivery, and vehicle use. We assume that hydrogen fuel cell vehicles are introduced in a specific region, Sacramento County, California. We consider two levels of market penetration where 9% or 20% of the light duty fleet are hydrogen fuel cell vehicles. The following three natural gas to hydrogen supply pathways are assesse...

  6. An energy impact assessment of indoor air quality acceptance for air-conditioned offices

    International Nuclear Information System (INIS)

    Treatment of fresh air in ventilation systems for the air-conditioning consumes a considerable amount of energy and affects the indoor air quality (IAQ). The ventilation demand is primarily related to the occupant load. In this study, the ventilation demands due to occupant load variations and occupant acceptability were examined against certain IAQ objectives using the mass balance of carbon dioxide (CO2) concentrations in an air-conditioned office. In particular, this study proposed a ventilation model for the consideration of the occupant load variations and occupant acceptability based on the regional survey of typical offices (422 samples) in Hong Kong. The model was applied to evaluate the relative energy performance of different IAQ objectives in ventilation systems for typical office buildings in Hong Kong. The results showed that the energy consumption of a ventilation system would be correlated with the occupant load and acceptability in the air-conditioned office. Indicative CO2 levels of 800 ppmv, 1000 ppmv and 1200 ppmv corresponding to 83%, 97% and 99.7% survey samples were shown, corresponding to the thermal energy consumptions of 1500 MJ m-2 yr-1, 960 MJ m-2 yr-1and 670 MJ m-2 yr-1, respectively. In regards to the monetary issue, an annual value of HK$ 762 million per year in electrical consumption could be saved in all office buildings in Hong Kong when the indoor target CO2 concentration is increased from 1000 ppmv to 1200 ppmv. To achieve an excellent IAQ following the existing design standard, i.e. to decrease the CO2 level from 1000 ppmv to 800 ppmv, 56% additional energy would be consumed, corresponding to an annual value of HK$ 1,419 million, even though the occupant acceptability is only improved from 81% to 86%. The development of the models in this study would be useful for the energy performance evaluation of ventilation systems in air-conditioned offices

  7. Climate change and pollutant emissions impacts on air quality in 2050 over Portugal

    Science.gov (United States)

    Sá, E.; Martins, H.; Ferreira, J.; Marta-Almeida, M.; Rocha, A.; Carvalho, A.; Freitas, S.; Borrego, C.

    2016-04-01

    Changes in climate and air pollutant emissions will affect future air quality from global to urban scale. In this study, regional air quality simulations for historical and future periods are conducted, with CAMx version 6.0, to investigate the impacts of future climate and anthropogenic emission projections on air quality over Portugal and the Porto metropolitan area in 2050. The climate and the emission projections were derived from the Representative Concentrations Pathways (RCP8.5) scenario. Modelling results show that climate change will impact NO2, PM10 and O3 concentrations over Portugal. The NO2 and PM10 annual means will increase in Portugal and in the Porto municipality, and the maximum 8-hr daily O3 value will increase in the Porto suburban areas (approximately 5%) and decrease in the urban area (approximately 2%). When considering climate change and projected anthropogenic emissions, the NO2 annual mean decreases (approximately 50%); PM10 annual mean will increase in Portugal and decrease in Porto municipality (approximately 13%); however PM10 and O3 levels increase and extremes occur more often, surpassing the currently legislated annual limits and displaying a higher frequency of daily exceedances. This air quality degradation is likely to be related with the trends found for the 2046-2065 climate, which implies warmer and dryer conditions, and with the increase of background concentrations of ozone and particulate matter. The results demonstrate the need for Portuguese authorities and policy-makers to design and implement air quality management strategies that take climate change impacts into account.

  8. MEGAPOLI: concept of multi-scale modelling of megacity impact on air quality and climate

    Science.gov (United States)

    Baklanov, A.; Lawrence, M.; Pandis, S.; Mahura, A.; Finardi, S.; Moussiopoulos, N.; Beekmann, M.; Laj, P.; Gomes, L.; Jaffrezo, J.-L.; Borbon, A.; Coll, I.; Gros, V.; Sciare, J.; Kukkonen, J.; Galmarini, S.; Giorgi, F.; Grimmond, S.; Esau, I.; Stohl, A.; Denby, B.; Wagner, T.; Butler, T.; Baltensperger, U.; Builtjes, P.; van den Hout, D.; van der Gon, H. D.; Collins, B.; Schluenzen, H.; Kulmala, M.; Zilitinkevich, S.; Sokhi, R.; Friedrich, R.; Theloke, J.; Kummer, U.; Jalkinen, L.; Halenka, T.; Wiedensholer, A.; Pyle, J.; Rossow, W. B.

    2010-11-01

    The EU FP7 Project MEGAPOLI: "Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation" (http://megapoli.info) brings together leading European research groups, state-of-the-art scientific tools and key players from non-European countries to investigate the interactions among megacities, air quality and climate. MEGAPOLI bridges the spatial and temporal scales that connect local emissions, air quality and weather with global atmospheric chemistry and climate. The suggested concept of multi-scale integrated modelling of megacity impact on air quality and climate and vice versa is discussed in the paper. It requires considering different spatial and temporal dimensions: time scales from seconds and hours (to understand the interaction mechanisms) up to years and decades (to consider the climate effects); spatial resolutions: with model down- and up-scaling from street- to global-scale; and two-way interactions between meteorological and chemical processes.

  9. Air Quality in Lithuania

    Energy Technology Data Exchange (ETDEWEB)

    Pietilae, P. [Tampere University of Technology / ECAT-Lithuania (Lithuania); Kliucininkas, L. [Department for Environmental Engineering, Kaunas University of Technology (Lithuania)

    2000-07-01

    Sustainable monitoring of the ambient air is the major preventive measure of ensuring its proper quality. Only with a monitoring procedure going-on a continuous basis it is possible to make an objective evaluation of air pollution trends, of the efficiency of air protection measures and, partially, to a certain extent of the impact the pollution exerts on a human health. The information stemming from the monitoring procedure must be reliable, sustainable and efficient. (orig.)

  10. Potential Impact of the National Plan for Future Electric Power Supply on Air Quality in Korea

    Science.gov (United States)

    Shim, C.; Hong, J.

    2014-12-01

    Korean Ministry of Trade, Industry and Energy (MOTIE) announced the national plan for Korea's future electric power supply (2013 - 2027) in 2013. According to the plan, the national demand for electricity will be increased by 60% compared to that of 2010 and primary energy sources for electric generation will still lean on the fossil fuels such as petroleum, LNG, and coal, which would be a potential threat to air quality of Korea. This study focused on two subjects: (1) How the spatial distribution of the primary air pollutant's emissions (i.e., NOx, SOx, CO, PM) will be changed and (2) How the primary emission changes will influence on the national ambient air quality including ozone in 2027. We used GEOS-Chem model simulation with modification of Korean emissions inventory (Clean Air Policy Support System (CAPSS)) to simulate the current and future air quality in Korea. The national total emissions of CO, NOx, SOx, PM in year 2027 will be increased by 3%, 8%, 13%, 2%, respectively compared to 2010 and there are additional concern that the future location of the power plants will be closer to the Seoul Metropolitan Area (SMA), where there are approximately 20 million population vulnerable to the potentially worsened air quality. While there are slight increase of concentration of CO, NOx, SOx, and PM in 2027, the O3 concentration is expected to be similar to the level of 2010. Those results may imply the characteristics of air pollution in East Asia such as potentially severe O3 titration and poorer O3/CO or O3/NOx ratio. Furthermore, we will discuss on the impact of transboundary pollution transport from China in the future, which is one of the large factors to control the air quality of Korea.

  11. Air quality and climate impacts due to CNG conversion of motor vehicles in Dhaka, Bangladesh.

    Science.gov (United States)

    Wadud, Zia; Khan, Tanzila

    2013-12-17

    Dhaka had recently experienced rapid conversion of its motor vehicle fleet to run on compressed natural gas (CNG). This paper quantifies ex-post the air quality and climate benefits of the CNG conversion policy, including monetary valuations, through an impact pathway approach. Around 2045 (1665) avoided premature deaths in greater Dhaka (City Corporation) can be attributed to air quality improvements from the CNG conversion policy in 2010, resulting in a saving of around USD 400 million. Majority of these health benefits resulted from the conversion of high-emitting diesel vehicles. CNG conversion was clearly detrimental from climate change perspective using the changes in CO2 and CH4 only (CH4 emissions increased); however, after considering other global pollutants (especially black carbon), the climate impact was ambiguous. Uncertainty assessment using input distributions and Monte Carlo simulation along with a sensitivity analysis show that large uncertainties remain for climate impacts. For our most likely estimate, there were some climate costs, valued at USD 17.7 million, which is an order of magnitude smaller than the air quality benefits. This indicates that such policies can and should be undertaken on the grounds of improving local air pollution alone and that precautions should be taken to reduce the potentially unintended increases in GHG emissions or other unintended effects. PMID:24195736

  12. Lifecycle impacts of natural gas to hydrogen pathways on urban air quality

    International Nuclear Information System (INIS)

    In this paper we examine the potential air quality impacts of hydrogen transportation fuel from a lifecycle analysis perspective, including impacts from fuel production, delivery, and vehicle use. We assume that hydrogen fuel cell vehicles are introduced in a specific region, Sacramento County, California. We consider two levels of market penetration where 9% or 20% of the light duty fleet are hydrogen fuel cell vehicles. The following three natural gas to hydrogen supply pathways are assessed in detail and compared in terms of emissions and the resulting changes in ambient air quality: (1) onsite hydrogen production; (2) centralized hydrogen production with gaseous hydrogen pipeline delivery systems; and (3) centralized hydrogen production with liquid hydrogen truck delivery systems. All the pathways examined use steam methane reforming (SMR) of natural gas to produce hydrogen. The source contributions to incremental air pollution are estimated and compared among hydrogen pathways. All of the hydrogen pathways result in extremely low contributions to ambient air concentrations of NOx, CO, particulates, and SOx, typically less than 0.1% of the current ambient pollution for both levels of market penetration. Among the hydrogen supply options, it is found that the central SMR with pipeline delivery systems is the lowest pollution option available provided the plant is located to avoid transport of pollutants into the city via prevailing winds. The onsite hydrogen pathway is comparable to the central hydrogen pathway with pipeline systems in terms of the resulting air pollution. The pathway with liquid hydrogen trucks has a greater impact on air quality relative to the other pathways due to emissions associated with diesel trucks and electricity consumption to liquefy hydrogen. However, all three hydrogen pathways result in negligible air pollution in the region. (author)

  13. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    2006-01-01

    Demands for better indoor air quality are increasing, since we spend most of our time indoors and we are more and more aware of indoor air pollution. Field studies in different parts of the world have documented that high percentage of occupants in many offices and buildings find the indoor air...... decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... cleaning techniques. Supply air filter is one of the key components in the ventilation system. Studies have shown that used ventilation filters themselves can be a significant source of indoor air pollution with consequent impact on perceived air quality, sick building syndrome symptoms and performance...

  14. Impact of global climate change on regional air quality: Introduction to the thematic issue

    International Nuclear Information System (INIS)

    Despite the major international efforts devoted to the understanding and to the future estimate of global climate change and its impact on regional scale processes, the evolution of the atmospheric composition in a changing climate is far to be understood. In particular, the future evolution of the concentration of near-surface pollutants determining air quality at a scale affecting human health and ecosystems is a subject of intense scientific research. This thematic issue reviews the current scientific knowledge of the consequences of global climate change on regional air quality and its related impact on the biosphere and on human mortality. This article provides a presentation of the key issues, summarizes the current knowledge, and introduces the thematic issue. (authors)

  15. Energy and air quality

    International Nuclear Information System (INIS)

    This is one of a series of handbooks designed to provide nontechnical readers with a general understanding of the interaction between energy development and environmental media and to provide a rudimentary data base from which estimates of potential future impacts can be made. This handbook describes the air quality impacts of energy development and summarizes the major federal legislation which regulates the potential air quality impacts of energy facilities and can thus influence the locations and timing of energy development. In addition, this report describes and presents the data which can be used as the basis for measurement, and in some cases, prediction of the potential conflicts between energy development and achieving and maintaining clean air. Energy utilization is the largest emission source of man-made air pollutants. Choices in energy resource development and utilization generate varying emissions or discharges into the atmosphere, the emissions are affected by the assimilative character of the atmosphere, and the resultant air pollutant concentrations have biological and aesthetic effects. This handbook describes the interrelationships of energy-related air emissions under various methods of pollution control, the assimilative character of the air medium, and the effects of air pollution. The media book is divided into three major sections: topics of concern relating to the media and energy development, descriptions of how to use available data to quantify and examine energy/environmental impacts, and the data

  16. On the long term impact of emissions from central European cities on regional air-quality

    OpenAIRE

    P. Huszar; M. Belda; T. Halenka

    2015-01-01

    For the purpose of qualifying and quantifying the impact of urban emission from Central European cities on the present-day regional air-quality, the regional climate model RegCM4.2 was coupled with the chemistry transport model CAMx, including two-way interactions. A series of simulations was carried out for the 2001–2010 period either with all urban emissions included (base case) or without considering urban emissions. Further, the sensitivity of ozone production to urban e...

  17. Understanding Anthropogenic Impacts on Air Quality at Rural Locations Using High Time Resolution Particle Composition Measurements

    Science.gov (United States)

    Collett, J. L.; Lee, T.; Yu, X.; Sullivan, A.; Kreidenweis, S. M.; Malm, W.

    2006-12-01

    Many of our nation's National Parks, wilderness areas and other visually protected environments are located in regions where urban, agricultural, and other anthropogenic emissions periodically exert strong impacts on local air quality. In this presentation we will use high time resolution (15 min) measurements of particle composition to examine the frequency and magnitude of these impacts and to elucidate changes in aerosol chemistry occurring during transitions between periods of strong anthropogenic impact and periods when atmospheric composition is more strongly influenced by natural emissions and/or regional air quality. Highlights will be drawn from a series of field campaigns at locations around the U.S., including Yosemite National Park (downwind of the Central Valley of California), San Gorgonio Wilderness Area (downwind of the Los Angeles basin), Bondville, Illinois (a rural Midwestern site), Great Smoky Mountains National Park (a rural, mountain location in the polluted southeast U.S.), Brigantine National Wildlife Refuge, New Jersey (a coastal site on the U.S. eastern seaboard), and Rocky Mountain National Park, Colorado (located in the mountains west of the Colorado Front Range urban corridor). Particle composition measurements were made using a Particle Into Liquid Sampler (PILS) coupled to two on-line ion chromatographs. We will demonstrate how air quality at these locations is strongly influenced by local and regional transport phenomena and illustrate the influence of anthropogenic emissions on both fine and coarse particle concentrations and speciation.

  18. The Impact of Residential Combustion Emissions on Air Quality and Human Health in China

    Science.gov (United States)

    Archer-Nicholls, S.; Wiedinmyer, C.; Baumgartner, J.; Brauer, M.; Cohen, A.; Carter, E.; Frostad, J.; Forouzanfar, M.; Xiao, Q.; Liu, Y.; Yang, X.; Hongjiang, N.; Kun, N.

    2015-12-01

    Solid fuel cookstoves are used heavily in rural China for both residential cooking and heating purposes. Their use contributes significantly to regional emissions of several key pollutants, including carbon monoxide, volatile organic compounds, oxides of nitrogen, and aerosol particles. The residential sector was responsible for approximately 36%, 46% and 81% of China's total primary PM2.5, BC and OC emissions respectively in 2005 (Lei et al., 2011). These emissions have serious consequences for household air pollution, ambient air quality, tropospheric ozone formation, and the resulting population health and climate impacts. This paper presents initial findings from the modeling component of a multi-disciplinary energy intervention study currently being conducted in Sichuan, China. The purpose of this effort is to quantify the impact of residential cooking and heating emissions on regional air quality and human health. Simulations with varying levels of residential emissions have been carried out for the whole of 2014 using the Weather Research and Forecasting model with Chemistry (WRF-Chem), a fully-coupled, "online" regional chemical transport model. Model output is evaluated against surface air quality measurements across China and compared with seasonal (winter and summer) ambient air pollution measurements conducted at the Sichuan study site in 2014. The model output is applied to available exposure—response relationships between PM2.5 and cardiopulmonary health outcomes. The sensitivity in different regions across China to the different cookstove emission scenarios and seasonality of impacts are presented. By estimating the mortality and disease burden risk attributable to residential emissions we demonstrate the potential benefits from large-scale energy interventions. Lei Y, Zhang Q, He KB, Streets DG. 2011. Primary anthropogenic aerosol emission trends for China, 1990-2005. Atmos. Chem. Phys. 11:931-954.

  19. Wintertime Air Quality Impacts from Oil and Natural Gas Drilling Operations in the Bakken Formation Region

    Science.gov (United States)

    Evanoski-Cole, Ashley; Sive, Barkley; Zhou, Yong; Prenni, Anthony; Schurman, Misha; Day, Derek; Sullivan, Amy; Li, Yi; Hand, Jenny; Gebhart, Kristi; Schichtel, Bret; Collett, Jeffrey

    2016-04-01

    Oil and natural gas extraction has dramatically increased in the last decade in the United States due to the increased use of unconventional drilling techniques which include horizontal drilling and hydraulic fracturing. The impact of these drilling activities on local and regional air quality in oil and gas basins across the country are still relatively unknown, especially in recently developed basins such as the Bakken shale formation. This study is the first to conduct a comprehensive characterization of the regional air quality in the Bakken region. The Bakken shale formation, part of the Williston basin, is located in North Dakota and Montana in the United States and Saskatchewan and Manitoba in Canada. Oil and gas drilling operations can impact air quality in a variety of ways, including the generation of atmospheric particulate matter (PM), hazardous air pollutants, ozone, and greenhouse gas emissions. During the winter especially, PM formation can be enhanced and meteorological conditions can favor increased concentrations of PM and other pollutants. In this study, ground-based measurements throughout the Bakken region in North Dakota and Montana were collected over two consecutive winters to gain regional trends of air quality impacts from the oil and gas drilling activities. Additionally, one field site had a comprehensive suite of instrumentation operating at high time resolution to gain detailed characterization of the atmospheric composition. Measurements included organic carbon and black carbon concentrations in PM, the characterization of inorganic PM, inorganic gases, volatile organic compounds (VOCs), precipitation and meteorology. These elevated PM episodes were further investigated using the local meteorological conditions and regional transport patterns. Episodes of elevated concentrations of nitrogen oxides and sulfur dioxide were also detected. The VOC concentrations were analyzed and specific VOCs that are known oil and gas tracers were used

  20. Impacts of South East Biomass Burning on local air quality in South China Sea

    Science.gov (United States)

    Wai-man Yeung, Irene; Fat Lam, Yun; Eniolu Morakinyo, Tobi

    2016-04-01

    Biomass burning is a significant source of carbon monoxide and particulate matter, which is not only contribute to the local air pollution, but also regional air pollution. This study investigated the impacts of biomass burning emissions from Southeast Asia (SEA) as well as its contribution to the local air pollution in East and South China Sea, including Hong Kong and Taiwan. Three years (2012 - 2014) of the Hybrid Single Particle Lagrangian-Integrated Trajectory (HYSPLIT) with particles dispersion analyses using NCEP (Final) Operational Global Analysis data (FNL) data (2012 - 2014) were analyzed to track down all possible long-range transport from SEA with a sinking motion that worsened the surface air quality (tropospheric downwash from the free troposphere). The major sources of SEA biomass burning emissions were first identified using high fire emissions from the Global Fire Emission Database (GFED), followed by the HYSPLIT backward trajectory dispersion modeling analysis. The analyses were compared with the local observation data from Tai Mo Shan (1,000 msl) and Tap Mun (60 msl) in Hong Kong, as well as the data from Lulin mountain (2,600 msl) in Taiwan, to assess the possible impacts of SEA biomass burning on local air quality. The correlation between long-range transport events from the particles dispersion results and locally observed air quality data indicated that the background concentrations of ozone, PM2.5 and PM10 at the surface stations were enhanced by 12 μg/m3, 4 μg/m3 and 7 μg/m3, respectively, while the long-range transport contributed to enhancements of 4 μg/m3, 4 μg/m3 and 8 μg/m3 for O3, PM2.5 and PM10, respectively at the lower free atmosphere.

  1. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    Science.gov (United States)

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario

  2. The usefulness of air quality monitoring and air quality impact studies before the introduction of reformulated gasolines in developing countries. Mexico City, a real case study

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, H.A.; Torres, R.J. [Universidad Nacional Autonoma de Mexico (Mexico). Section de Contaminacion Ambiental

    2000-07-01

    Urban air pollution is a major environmental problem in several developing countries in the world. This phenomenon seems to be related to the growth of both the urban population in large cities and the number of old and poorly maintained car fleets. The expected rise of population in the next century in countries which suffer from lack of capital for air pollution control, means that there is a great potential for the worsening of the air quality. The worldwide promote policy to phase out lead in gasolines has not proved to be an adequate option in improving the environmental quality. Mexico City Metropolitan Area (MCMA) represents a case in which the introduction of reformulated gasolines in an old car fleet has resulted in the reduction of the airborne lead levels but has worsened the ozone concentration of its urban atmosphere. This paper critically analyzes the chronological evolution of the ozone air pollution problem in MCMA after the successive occurrence of several changes in the formulation of low leaded and unleaded gasolines. It also presents evidences of the usefulness potential of air quality monitoring activities and air quality impact studies on the definition of realistic fuel reformulation policies of developing countries. (author)

  3. Impact of current policies on future air quality and health outcomes in Delhi, India

    Science.gov (United States)

    Dholakia, Hem H.; Purohit, Pallav; Rao, Shilpa; Garg, Amit

    2013-08-01

    A key policy challenge in Indian megacities is to curb high concentrations of PM2.5 and mitigate associated adverse health impacts. Using the Greenhouse Gases and Air Pollution Interactions and Synergies (GAINS) model we carry out an integrated analysis of the air quality regulations across different sectors for the city of Delhi. Our findings show that PM2.5 concentrations for Delhi will not reach the recommended national ambient air quality standards (NAAQS) even by 2030 under the current policies scenario. Adopting advanced control technologies reduces PM2.5 concentrations by about 60% and all-cause mortality by half in 2030. Climate change mitigation policies significantly reduce greenhouse gases, but have a modest impact on reducing PM2.5 concentrations. Stringent policies to control the net flow of air pollution from trans-boundary sources will play a crucial role in reducing pollution levels in Delhi city. Achieving NAAQS requires a stringent policy portfolio that combines advanced control technologies with a switch to cleaner fuels and the control of trans-boundary pollution.

  4. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    International Nuclear Information System (INIS)

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010–2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations

  5. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    Science.gov (United States)

    Marlier, Miriam E.; DeFries, Ruth S.; Kim, Patrick S.; Gaveau, David L. A.; Koplitz, Shannon N.; Jacob, Daniel J.; Mickley, Loretta J.; Margono, Belinda A.; Myers, Samuel S.

    2015-05-01

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010-2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations and

  6. Impacts of flare emissions from an ethylene plant shutdown to regional air quality

    Science.gov (United States)

    Wang, Ziyuan; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2016-08-01

    Critical operations of chemical process industry (CPI) plants such as ethylene plant shutdowns could emit a huge amount of VOCs and NOx, which may result in localized and transient ozone pollution events. In this paper, a general methodology for studying dynamic ozone impacts associated with flare emissions from ethylene plant shutdowns has been developed. This multi-scale simulation study integrates process knowledge of plant shutdown emissions in terms of flow rate and speciation together with regional air-quality modeling to quantitatively investigate the sensitivity of ground-level ozone change due to an ethylene plant shutdown. The study shows the maximum hourly ozone increments can vary significantly by different plant locations and temporal factors including background ozone data and solar radiation intensity. It helps provide a cost-effective air-quality control strategy for industries by choosing the optimal starting time of plant shutdown operations in terms of minimizing the induced ozone impact (reduced from 34.1 ppb to 1.2 ppb in the performed case studies). This study provides valuable technical supports for both CPI and environmental policy makers on cost-effective air-quality controls in the future.

  7. Air Quality Impacts of Increased Use of Ethanol under the United States' Energy Independence and Security Act

    Science.gov (United States)

    Increased use of ethanol in the United States fuel supply will impact emissions and ambient concentrations of greenhouse gases, “criteria” pollutants for which the U. S. EPA sets ambient air quality standards, and a variety of air toxic compounds. This paper focuses on impacts of...

  8. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

    Science.gov (United States)

    Turnock, S. T.; Butt, E. W.; Richardson, T. B.; Mann, G. W.; Reddington, C. L.; Forster, P. M.; Haywood, J.; Crippa, M.; Janssens-Maenhout, G.; Johnson, C. E.; Bellouin, N.; Carslaw, K. S.; Spracklen, D. V.

    2016-02-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000-116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr-1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human

  9. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

    International Nuclear Information System (INIS)

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000–116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US$232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr−1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and

  10. Evaluating the CLimate and Air Quality ImPacts of Short-livEd Pollutants (ECLIPSE)

    Science.gov (United States)

    Stohl, Andreas

    2015-04-01

    The ECLIPSE (Evaluating the CLimate and Air Quality ImPacts of Short-livEd Pollutants) EU project studied the influence of short-lived climate forcers (SLCFs, e.g., aerosols, methane, ozone) on past, current and future climate and has finished in March 2015. ECLIPSE has created a consistent emission data set for short- and long-lived climate forcers for the recent past and future scenarios. This inventory also includes new source categories (e.g., gas flaring emissions) and is already in use by many groups worldwide. A small ensemble of models was used to quantify radiative forcing of SLCFs by region and sector. Existing and new metrics for quantifying climate impacts were studied and Global Temperature Change Potential on a 20-year time horizon (GTP20) was selected to rank potential emission mitigation measures. The 20 most effective measures with a non-negative impact on air quality were then used to define a mitigation scenario. For the first time, a small ensemble of coupled climate models performed transient model simulations of the control and the mitigation scenario, to quantify the impact of the SLCF mitigation measures on global and regional temperature and precipitation. This presentation will summarize the main findings of ECLIPSE and extract the policy-relevant recommendations from the project. Findings will also be discussed in the light of a detailed evaluation of the models against measurements in Europe, the Arctic and Asia.

  11. Assessing indoor air quality options: Final environmental impact statement on new energy-efficient home programs: Volume 2

    International Nuclear Information System (INIS)

    This report discusses the impact of energy conservation measures on indoor air quality in various size residential buildings. This volume includes appendices on ventilation rates, indoor pollutant levels, health effects, human risk assessment, radon, fiberglass hazards, tobacco smoke, mitigation

  12. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires.

    Science.gov (United States)

    Zauscher, Melanie D; Wang, Ying; Moore, Meagan J K; Gaston, Cassandra J; Prather, Kimberly A

    2013-07-16

    Intense wildfires burning >360000 acres in San Diego during October, 2007 provided a unique opportunity to study the impact of wildfires on local air quality and biomass burning aerosol (BBA) aging. The size-resolved mixing state of individual particles was measured in real-time with an aerosol time-of-flight mass spectrometer (ATOFMS) for 10 days after the fires commenced. Particle concentrations were high county-wide due to the wildfires; 84% of 120-400 nm particles by number were identified as BBA, with particles potassium salts heterogeneously reacting with inorganic acids was observed with continuous high temporal resolution for the first time. Ten distinct chemical types shown as BBA factors were identified through positive matrix factorization coupled to single particle analysis, including particles comprised of potassium chloride and organic nitrogen during the beginning of the wildfires, ammonium nitrate and amines after an increase of relative humidity, and sulfate dominated when the air mass back trajectories passed through the Los Angeles port region. Understanding BBA aging processes and quantifying the size-resolved mass and number concentrations are important in determining the overall impact of wildfires on air quality, health, and climate. PMID:23750590

  13. [Impact of heavy-duty diesel vehicles on air quality and control of their emissions].

    Science.gov (United States)

    Zhou, Lei; Wang, Bo-Guang; Tang, Da-Gang

    2011-08-01

    Through an analysis of the characteristics of diesel vehicle emissions and motor vehicle emissions inventories, this paper examines the impact of heavy-duty diesel vehicles on air quality in China as well as issues related to the control of their emissions. Heavy-duty diesel vehicles emit large amounts of nitrogen oxides and particulate matter. Nitrogen oxides is one of the important precursors for the formation of secondary particles and ozone in the atmosphere, causing regional haze. Diesel particulate matter is a major toxic air pollutant with adverse effect on human health, and in particular, the ultrafine particles in 30-100 nm size range can pose great health risks because of its extremely small sizes. Motor vehicles have become a major source of air pollution in many metropolitan areas and city cluster in China, and among them the heavy-duty diesel vehicles are a dominant contributor of nitrogen oxides and particulate matter emissions. Hence, controlling heavy-duty diesel vehicle emissions should be a key component of an effective air quality management plan, and a number of issues related to heavy-duty diesel vehicle emissions need to be addressed. PMID:22619934

  14. Impacts of potential CO2-reduction policies on air quality in the United States.

    Science.gov (United States)

    Trail, Marcus A; Tsimpidi, Alexandra P; Liu, Peng; Tsigaridis, Kostas; Hu, Yongtao; Rudokas, Jason R; Miller, Paul J; Nenes, Athanasios; Russell, Armistead G

    2015-04-21

    Impacts of emissions changes from four potential U.S. CO2 emission reduction policies on 2050 air quality are analyzed using the community multiscale air quality model (CMAQ). Future meteorology was downscaled from the Goddard Institute for Space Studies (GISS) ModelE General Circulation Model (GCM) to the regional scale using the Weather Research Forecasting (WRF) model. We use emissions growth factors from the EPAUS9r MARKAL model to project emissions inventories for two climate tax scenarios, a combined transportation and energy scenario, a biomass energy scenario and a reference case. Implementation of a relatively aggressive carbon tax leads to improved PM2.5 air quality compared to the reference case as incentives increase for facilities to install flue-gas desulfurization (FGD) and carbon capture and sequestration (CCS) technologies. However, less capital is available to install NOX reduction technologies, resulting in an O3 increase. A policy aimed at reducing CO2 from the transportation sector and electricity production sectors leads to reduced emissions of mobile source NOX, thus reducing O3. Over most of the U.S., this scenario leads to reduced PM2.5 concentrations. However, increased primary PM2.5 emissions associated with fuel switching in the residential and industrial sectors leads to increased organic matter (OM) and PM2.5 in some cities. PMID:25811418

  15. Indoor Air Quality

    Science.gov (United States)

    ... protect yourself and your family. Learn more Air Quality at Work Workers should breathe easy while on the job, but worksites with poor air quality put employees at risk. Healthy air is essential ...

  16. Impact of urban parameterization on high resolution air quality forecast with the GEM – AQ model

    Directory of Open Access Journals (Sweden)

    J. W. Kaminski

    2012-04-01

    Full Text Available The aim of this study is to assess the impact of urban cover on high-resolution air quality forecast simulations with the GEM-AQ model. The impact of urban area on the ambient atmosphere is non-stationary and short-term variability of meteorological conditions may result in significant changes of the observed intensity of urban heat island and pollutant concentrations. In this study we used the Town Energy Balance (TEB parameterization to represent urban effects on modelled meteorological and air quality parameters at the final nesting level with horizontal resolution of ~5 km over Southern Poland. Three one-day cases representing different meteorological conditions were selected and the model was run with and without the TEB parameterization. Three urban cover categories were used in the TEB parameterization: mid-high buildings, sparse buildings and a mix of buildings and nature. Urban cover layers were constructed based on an area fraction of towns in a grid cell. To analyze the impact of urban parameterization on modelled meteorological and air quality parameters, anomalies in the lowest model layer for the temperature, wind speed and pollutant concentrations were calculated. Anomalies of the specific humidity fields indicate that the use of the TEB parameterization leads to a systematic reduction of moisture content in the air. Comparison with temperature and wind speed measurements taken at urban background monitoring stations shows that application of urban parameterization improves model results. For primary pollutants the impact of urban areas is most significant in regions characterized with high emissions. In most cases the anomalies of NO2 and CO concentrations are negative. This reduction is most likely caused by an enhanced vertical mixing due to elevated surface temperature and modified vertical stability. Although the outcome from this study is promising, it does not give an answer concerning the benefits of using TEB in the GEM

  17. Air movement and perceived air quality

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Kaczmarczyk, J.

    2012-01-01

    The impact of air movement on perceived air quality (PAQ) and sick building syndrome (SBS) symptoms was studied. In total, 124 human subjects participated in four series of experiments performed in climate chambers at different combinations of room air temperature (20, 23, 26 and 28 °C), relative...... humidity (30, 40 and 70%) and pollution level (low and high). Most of the experiments were performed with and without facially applied airflow at elevated velocity. The importance of the use of recirculated room air and clean, cool and dry outdoor air was studied. The exposures ranged from 60. min to 235....... min. Acceptability of PAQ and freshness of the air improved when air movement was applied. The elevated air movement diminished the negative impact of increased air temperature, relative humidity and pollution level on PAQ. The degree of improvement depended on the pollution level, the temperature and...

  18. Oil and gas impacts on air quality in federal lands in the Bakken region: an overview of the Bakken Air Quality Study and first results

    Science.gov (United States)

    Prenni, A. J.; Day, D. E.; Evanoski-Cole, A. R.; Sive, B. C.; Hecobian, A.; Zhou, Y.; Gebhart, K. A.; Hand, J. L.; Sullivan, A. P.; Li, Y.; Schurman, M. I.; Desyaterik, Y.; Malm, W. C.; Collett, J. L., Jr.; Schichtel, B. A.

    2016-02-01

    The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region over the past decade. Along with this development has come an increase in associated emissions to the atmosphere. Concern about potential impacts of these emissions on federal lands in the region prompted the National Park Service to sponsor the Bakken Air Quality Study over two winters in 2013-2014. Here we provide an overview of the study and present some initial results aimed at better understanding the impact of local oil and gas emissions on regional air quality. Data from the study, along with long-term monitoring data, suggest that while power plants are still an important emissions source in the region, emissions from oil and gas activities are impacting ambient concentrations of nitrogen oxides and black carbon and may dominate recent observed trends in pollutant concentrations at some of the study sites. Measurements of volatile organic compounds also definitively show that oil and gas emissions were present in almost every air mass sampled over a period of more than 4 months.

  19. Oil and gas impacts on air quality in federal lands in the Bakken region: an overview of the Bakken Air Quality Study and first results

    Directory of Open Access Journals (Sweden)

    A. J. Prenni

    2015-10-01

    Full Text Available The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region over the past decade. Along with this development has come an increase in associated emissions to the atmosphere. Concern about potential impacts of these emissions on federal lands in the region prompted the National Park Service to sponsor the Bakken Air Quality Study over two winters in 2013–2014. Here we provide an overview of the study and present some initial results aimed at better understanding the impact of local oil and gas emissions on regional air quality. Data from the study, along with long term monitoring data, suggest that while power plants are still an important emissions source in the region, emissions from oil and gas activities are impacting ambient concentrations of nitrogen oxides and black carbon and may dominate recent observed trends in pollutant concentrations at some of the study sites. Measurements of volatile organic compounds also definitively show that oil and gas emissions were present in almost every air mass sampled over a period of more than four months.

  20. Comparisons of air quality impacts of fleet electrification and increased use of biofuels

    International Nuclear Information System (INIS)

    The air quality impacts of the partial electrification of the transportation fleet and the use of biofuels (E85) were modeled for the Austin Metropolitan Statistical Area, based on a 2030 vision of regional development. Changes in ozone precursor emissions and predicted ozone, carbon monoxide and aldehyde concentrations were estimated for multiple electrification and biofuel scenarios. Maximum changes in hourly ozone concentration from the use of plug-in hybrid electric vehicles (PHEVs) for 17% of the vehicle miles traveled ranged from - 8.5 to 2.2 ppb, relative to a base case with no electrification and minimal biofuel use, depending on time of day and location. Differences in daily maximum 1 h ozone concentration ranged from - 2.3 to 0.004 ppb. Replacement of all gasoline fuels with E85 had a smaller effect than PHEVs on maximum daily ozone concentrations. Maximum ozone changes for this scenario ranged from - 2.1 to 2.8 ppb and the difference in daily maximum 1 h ozone concentrations ranged from - 1.53 to 0 ppb relative to the base case. The smaller improvements in maximum ozone concentrations associated with extensive (100%) use of biofuels, compared to a smaller (17%) penetration of PHEVs, suggests that higher levels of PHEV penetration may lead to even greater improvements; however, the higher penetration would require expansion of the electrical grid capacity. The air quality impacts of the PHEVs would then depend on the emissions associated with the added generation.

  1. Asian Dust particles impacts on air quality and radiative forcing over Korea

    International Nuclear Information System (INIS)

    Asian Dust particles originated from the deserts and loess areas of the Asian continent are often transported over Korea, Japan, and the North Pacific Ocean during spring season. Major air mass pathway of Asian dust storm to Korea is from either north-western Chinese desert regions or north-eastern Chinese sandy areas. The local atmospheric environment condition in Korea is greatly impacted by Asian dust particles transported by prevailing westerly wind. Since these Asian dust particles pass through heavily populated urban and industrial areas in China before it reach Korean peninsular, their physical, chemical and optical properties vary depending on the atmospheric conditions and air mass pathway characteristics. An integrated system approach has been adopted at the Advanced Environment Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosols utilizing various in-situ and optical remote sensing methods, which include a multi-channel Raman LIDAR system, sunphotometer, satellite, and in-situ instruments. Results from recent studies on impacts of Asian dust particles on local air quality and radiative forcing over Korea are summarized here.

  2. Impact air quality by wildfire and agricultural fire in Mexico city 2015

    Science.gov (United States)

    Mendoza Campos, Alejandra; Agustín García Reynoso, José; Castro Romero, Telma Gloria; Carbajal Pérez, José Noel; Mar Morales, Bertha Eugenia; Gerardo Ruiz Suárez, Luis

    2016-04-01

    A forest fire is a large-scale process natural combustion where different types of flora and fauna of different sizes and ages are consumed. Consequently, forest fires are a potential source of large amounts of air pollutants that must be considered when trying to relate emissions to the air quality in neighboring cities of forest areas as in the Valley of Mexico. The size, intensity and occurrence of a forest fire directly dependent variables such as weather conditions, topography, vegetation type and its moisture content and the mass of fuel per hectare. An agricultural fire is a controlled combustion, which occurred a negligence can get out of control and increase the burned area or the possibly become a wildfire. Once a fire starts, the dry combustible material is consumed first. If the energy release is large and of sufficient duration, drying green material occurs live, with subsequent burning it. Under proper fuel and environmental conditions, this process can start a chain reaction. These events occur mainly in the dry season. Forest fires and agriculture fires contribute directly in the increase of carbon dioxide (CO2) into the atmosphere; The main pollutants emitted to the atmosphere by a wildfire are the PM10, PM2.5, NOx and VOC's, the consequences have by fire are deforestation, soil erosion or change of structure and composition of forests (Villers, 2006), also it affects ecosystems and the health of the population. In this study the impact of air quality for the emissions of particulate matter less than ten microns PM10, by wildfire and agricultural fire occurred on the same day and same place, the study was evaluated in Mexico City the Delegation Milpa Alta in the community of San Lorenzo Tlacoyucan, the fire occurred on 3rd March, 2015, the wildfire duration 12 hours consuming 32 hectares of oak forest and the agricultural fire duration 6 hours consumed 16 hectares of corn. To evaluate the impact of air quality the WRF-Chem, WRF-Fire and METv3

  3. Situation of regional plans for air quality. Acknowledgement of sanitary aspects. Situation of realised impact studies of urban air pollution

    International Nuclear Information System (INIS)

    The law on air and use of energy recommended in 1996 the implementation of regional plans for air quality (P.Q.R.A.) that have to rely on an evaluation of air pollution effects on health. 21 P.Q.R.A. have been published and the report gives the situation, their sanitary orientations and their applications. An inquiry lead in the 21 regions, near the different regional actors in the air and health field completes the report. (N.C.)

  4. Forty years of improvements in European air quality: regional policy-industry interactions with global impacts

    Science.gov (United States)

    Crippa, Monica; Janssens-Maenhout, Greet; Dentener, Frank; Guizzardi, Diego; Sindelarova, Katerina; Muntean, Marilena; Van Dingenen, Rita; Granier, Claire

    2016-03-01

    The EDGARv4.3.1 (Emissions Database for Global Atmospheric Research) global anthropogenic emissions inventory of gaseous (SO2, NOx, CO, non-methane volatile organic compounds and NH3) and particulate (PM10, PM2.5, black and organic carbon) air pollutants for the period 1970-2010 is used to develop retrospective air pollution emissions scenarios to quantify the roles and contributions of changes in energy consumption and efficiency, technology progress and end-of-pipe emission reduction measures and their resulting impact on health and crop yields at European and global scale. The reference EDGARv4.3.1 emissions include observed and reported changes in activity data, fuel consumption and air pollution abatement technologies over the past 4 decades, combined with Tier 1 and region-specific Tier 2 emission factors. Two further retrospective scenarios assess the interplay of policy and industry. The highest emission STAG_TECH scenario assesses the impact of the technology and end-of-pipe reduction measures in the European Union, by considering historical fuel consumption, along with a stagnation of technology with constant emission factors since 1970, and assuming no further abatement measures and improvement imposed by European emission standards. The lowest emission STAG_ENERGY scenario evaluates the impact of increased fuel consumption by considering unchanged energy consumption since the year 1970, but assuming the technological development, end-of-pipe reductions, fuel mix and energy efficiency of 2010. Our scenario analysis focuses on the three most important and most regulated sectors (power generation, manufacturing industry and road transport), which are subject to multi-pollutant European Union Air Quality regulations. Stagnation of technology and air pollution reduction measures at 1970 levels would have led to 129 % (or factor 2.3) higher SO2, 71 % higher NOx and 69 % higher PM2.5 emissions in Europe (EU27), demonstrating the large role that technology has

  5. The air quality impacts of road closures associated with the 2004 Democratic National Convention in Boston

    Directory of Open Access Journals (Sweden)

    Clougherty Jane E

    2006-05-01

    Full Text Available Abstract Background The Democratic National Convention (DNC in Boston, Massachusetts in 2004 provided an opportunity to evaluate the impacts of a localized and short-term but potentially significant change in traffic patterns on air quality, and to determine the optimal monitoring approach to address events of this nature. It was anticipated that the road closures associated with the DNC would both influence the overall air pollution level and the distribution of concentrations across the city, through shifts in traffic patterns. Methods To capture these effects, we placed passive nitrogen dioxide badges at 40 sites around metropolitan Boston before, during, and after the DNC, with the goal of capturing the array of hypothesized impacts. In addition, we continuously measured elemental carbon at three sites, and gathered continuous air pollution data from US EPA fixed-site monitors and traffic count data from the Massachusetts Highway Department. Results There were significant reductions in traffic volume on the highway with closures north of Boston, with relatively little change along other highways, indicating a more isolated traffic reduction rather than an across-the-board decrease. For our nitrogen dioxide samples, while there was a relatively small change in mean concentrations, there was significant heterogeneity across sites, which corresponded with our a priori classifications of road segments. The median ratio of nitrogen dioxide concentrations during the DNC relative to non-DNC sampling periods was 0.58 at sites with hypothesized traffic reductions, versus 0.88 for sites with no changes hypothesized and 1.15 for sites with hypothesized traffic increases. Continuous monitors measured slightly lower concentrations of elemental carbon and nitrogen dioxide during road closure periods at monitors proximate to closed highway segments, but not for PM2.5 or further from major highways. Conclusion We conclude that there was a small but

  6. Air quality impacts of increased use of ethanol under the United States’ Energy Independence and Security Act

    Science.gov (United States)

    Cook, Rich; Phillips, Sharon; Houyoux, Marc; Dolwick, Pat; Mason, Rich; Yanca, Catherine; Zawacki, Margaret; Davidson, Ken; Michaels, Harvey; Harvey, Craig; Somers, Joseph; Luecken, Deborah

    2011-12-01

    Increased use of ethanol in the United States fuel supply will impact emissions and ambient concentrations of greenhouse gases, "criteria" pollutants for which the U. S. EPA sets ambient air quality standards, and a variety of air toxic compounds. This paper focuses on impacts of increased ethanol use on ozone and air toxics under a potential implementation scenario resulting from mandates in the U. S. Energy Independence and Security Act (EISA) of 2007. The assessment of impacts was done for calendar year 2022, when 36 billion gallons of renewable fuels must be used. Impacts were assessed relative to a baseline which assumed ethanol volumes mandated by the first renewable fuels standard promulgated by U. S. EPA in early 2007. This assessment addresses both impacts of increased ethanol use on vehicle and other engine emissions, referred to as "downstream" emissions, and "upstream" impacts, i.e., those connected with fuel production and distribution. Air quality modeling was performed for the continental United States using the Community Multi-scale Air Quality Model (CMAQ), version 4.7. Pollutants included in the assessment were ozone, acetaldehyde, ethanol, formaldehyde, acrolein, benzene, and 1,3-butadiene. Results suggest that increased ethanol use due to EISA in 2022 will adversely increase ozone concentrations over much of the U.S., by as much as 1 ppb. However, EISA is projected to improve ozone air quality in a few highly-populated areas that currently have poor air quality. Most of the ozone improvements are due to our assumption of increases in nitrogen oxides (NO x) in volatile organic compound (VOC)-limited areas. While there are some localized impacts, the EISA renewable fuel standards have relatively little impact on national average ambient concentrations of most air toxics, although ethanol concentrations increase substantially. Significant uncertainties are associated with all results, due to limitations in available data. These uncertainties are

  7. Influence of air quality model resolution on uncertainty associated with health impacts

    Directory of Open Access Journals (Sweden)

    T. M. Thompson

    2012-10-01

    Full Text Available We use regional air quality modeling to evaluate the impact of model resolution on uncertainty associated with the human health benefits resulting from proposed air quality regulations. Using a regional photochemical model (CAMx, we ran a modeling episode with meteorological inputs simulating conditions as they occurred during August through September 2006 (a period representative of conditions leading to high ozone, and two emissions inventories (a 2006 base case and a 2018 proposed control scenario, both for Houston, Texas at 36, 12, 4 and 2 km resolution. The base case model performance was evaluated for each resolution against daily maximum 8-h averaged ozone measured at monitoring stations. Results from each resolution were more similar to each other than they were to measured values. Population-weighted ozone concentrations were calculated for each resolution and applied to concentration response functions (with 95% confidence intervals to estimate the health impacts of modeled ozone reduction from the base case to the control scenario. We found that estimated avoided mortalities were not significantly different between the 2, 4 and 12 km resolution runs, but the 36 km resolution may over-predict some potential health impacts. Given the cost/benefit analysis requirements motivated by Executive Order 12866 as it applies to the Clean Air Act, the uncertainty associated with human health impacts and therefore the results reported in this study, we conclude that health impacts calculated from population weighted ozone concentrations obtained using regional photochemical models at 36 km resolution fall within the range of values obtained using fine (12 km or finer resolution modeling. However, in some cases, 36 km resolution may not be fine enough to statistically replicate the results achieved using 2, 4 or 12 km resolution. On average, when modeling at 36 km resolution, an estimated 5 deaths per week during the May through September ozone

  8. On the long term impact of emissions from central European cities on regional air-quality

    Science.gov (United States)

    Huszar, P.; Belda, M.; Halenka, T.

    2015-11-01

    For the purpose of qualifying and quantifying the impact of urban emission from Central European cities on the present-day regional air-quality, the regional climate model RegCM4.2 was coupled with the chemistry transport model CAMx, including two-way interactions. A series of simulations was carried out for the 2001-2010 period either with all urban emissions included (base case) or without considering urban emissions. Further, the sensitivity of ozone production to urban emissions was examined by performing reduction experiments with -20 % emission perturbation of NOx and/or NMVOC. The validation of the modeling system's air-quality related outputs using AirBase and EMEP surface measurements showed satisfactory reproduction of the monthly variation for ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2). In terms of hourly correlations, reasonable values are achieved for ozone (r around 0.5-0.8) and for NO2 (0.4-0.6), but SO2 is poorly or not correlated at all with measurements (r around 0.2-0.5). The modeled fine particulates (PM2.5) are usually underestimated, especially in winter, mainly due to underestimation of nitrates and carbonaceous aerosols. EC air-quality measures were chosen as metrics describing the cities emission impact on regional air pollution. Due to urban emissions, significant ozone titration occurs over cities while over rural areas remote from cities, ozone production is modeled, mainly in terms of number of exceedances and accumulated exceedances over the threshold of 40 ppbv. Urban NOx, SO2 and PM2.5 emissions also significantly contribute to concentrations in the cities themselves (up to 50-70 % for NOx and SO2, and up to 60 % for PM2.5), but the contribution is large over rural areas as well (10-20 %). Although air pollution over cities is largely determined by the local urban emissions, considerable (often a few tens of %) fraction of the concentration is attributable to other sources from rural areas and minor cities. Further

  9. On the long-term impact of emissions from central European cities on regional air quality

    Science.gov (United States)

    Huszar, P.; Belda, M.; Halenka, T.

    2016-02-01

    For the purpose of qualifying and quantifying the impact of urban emission from Central European cities on the present-day regional air quality, the regional climate model RegCM4.2 was coupled with the chemistry transport model CAMx, including two-way interactions. A series of simulations was carried out for the 2001-2010 period either with all urban emissions included (base case) or without considering urban emissions. Further, the sensitivity of ozone production to urban emissions was examined by performing reduction experiments with -20 % emission perturbation of NOx and/or non-methane volatile organic compounds (NMVOC). The modeling system's air quality related outputs were evaluated using AirBase, and EMEP surface measurements showed reasonable reproduction of the monthly variation for ozone (O3), but the annual cycle of nitrogen dioxide (NO2) and sulfur dioxide (SO2) is more biased. In terms of hourly correlations, values achieved for ozone and NO2 are 0.5-0.8 and 0.4-0.6, but SO2 is poorly or not correlated at all with measurements (r around 0.2-0.5). The modeled fine particulates (PM2.5) are usually underestimated, especially in winter, mainly due to underestimation of nitrates and carbonaceous aerosols. European air quality measures were chosen as metrics describing the cities emission impact on regional air pollution. Due to urban emissions, significant ozone titration occurs over cities while over rural areas remote from cities, ozone production is modeled, mainly in terms of number of exceedances and accumulated exceedances over the threshold of 40 ppbv. Urban NOx, SO2 and PM2.5 emissions also significantly contribute to concentrations in the cities themselves (up to 50-70 % for NOx and SO2, and up to 60 % for PM2.5), but the contribution is large over rural areas as well (10-20 %). Although air pollution over cities is largely determined by the local urban emissions, considerable (often a few tens of %) fraction of the concentration is attributable to

  10. Air quality and radiative forcing impacts of anthropogenic volatile organic compound emissions from ten world regions

    Science.gov (United States)

    Fry, M. M.; Schwarzkopf, M. D.; Adelman, Z.; West, J. J.

    2014-01-01

    Non-methane volatile organic compounds (NMVOCs) influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF) impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions decreases global annual average tropospheric methane and ozone by 36.6 ppbv and 3.3 Tg, respectively, and surface ozone by 0.67 ppbv. All regional reductions slow the production of peroxyacetyl nitrate (PAN), resulting in regional to intercontinental PAN decreases and regional NOx increases. These NOx increases drive tropospheric ozone increases nearby or downwind of source regions in the Southern Hemisphere (South America, Southeast Asia, Africa, and Australia). Some regions' NMVOC emissions contribute importantly to air pollution in other regions, such as East Asia, the Middle East, and Europe, whose impact on US surface ozone is 43%, 34%, and 34% of North America's impact. Global and regional NMVOC reductions produce widespread negative net RFs (cooling) across both hemispheres from tropospheric ozone and methane decreases, and regional warming and cooling from changes in tropospheric ozone and sulfate (via several oxidation pathways). The 100 yr and 20 yr global warming potentials (GWP100, GWP20) are 2.36 and 5.83 for the global reduction, and 0.079 to 6.05 and -1.13 to 18.9 among the 10 regions. The NMVOC RF and GWP estimates are generally lower than previously modeled estimates, due to the greater NMVOC/NOx emissions ratios simulated, which result in less sensitivity to NMVOC emissions changes and smaller global O3 burden responses, in addition to differences in the representation of NMVOCs and oxidation chemistry among models. Accounting for a fuller set of RF contributions may change the

  11. Air quality and radiative forcing impacts of anthropogenic volatile organic compound emissions from ten world regions

    Directory of Open Access Journals (Sweden)

    M. M. Fry

    2013-08-01

    Full Text Available Non-methane volatile organic compounds (NMVOCs influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions decreases global annual average tropospheric methane and ozone by 36.6 ppbv and 3.3 Tg, respectively, and surface ozone by 0.67 ppbv. All regional reductions slow the production of PAN, resulting in regional to intercontinental PAN decreases and regional NOx increases. These NOx increases drive tropospheric ozone increases nearby or downwind of source regions in the Southern Hemisphere (South America, Southeast Asia, Africa, and Australia. Some regions' NMVOC emissions contribute importantly to air pollution in other regions, such as East Asia, Middle East, and Europe, whose impact on US surface ozone is 43%, 34%, and 34% of North America's impact. Global and regional NMVOC reductions produce widespread negative net RFs (cooling across both hemispheres from tropospheric ozone and methane decreases, and regional warming and cooling from changes in tropospheric ozone and sulfate (via several oxidation pathways. The total global net RF for NMVOCs is estimated as 0.0277 W m−2 (~1.8% of CO2 RF since the preindustrial. The 100 yr and 20 yr global warming potentials (GWP100, GWP20 are 2.36 and 5.83 for the global reduction, and 0.079 to 6.05 and −1.13 to 18.9 among the 10 regions. The NMVOC RF and GWP estimates are generally lower than previously modeled estimates, due to differences among models in ozone, methane, and sulfate sensitivities, and the climate forcings included in each estimate. Accounting for a~fuller set of RF contributions may change the relative magnitude of each

  12. Impact of Climate Change on Air Quality and Public Health in Urban Areas.

    Science.gov (United States)

    Hassan, Noor Artika; Hashim, Zailina; Hashim, Jamal Hisham

    2016-03-01

    This review discusses how climate undergo changes and the effect of climate change on air quality as well as public health. It also covers the inter relationship between climate and air quality. The air quality discussed here are in relation to the 5 criteria pollutants; ozone (O3), carbon dioxide (CO2), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM). Urban air pollution is the main concern due to higher anthropogenic activities in urban areas. The implications on health are also discussed. Mitigating measures are presented with the final conclusion. PMID:26141092

  13. Impacts of a clay plaster on indoor air quality assessed using chemical and sensory measurements

    DEFF Research Database (Denmark)

    Darling, Erin K.; Cros, Clement J.; Wargocki, Pawel; Kolarik, Jakub; Morrison, Glenn C.; Corsi, Richard L.

    2012-01-01

    plaster as a PRM for improving air quality by controlling ozone, perceived air quality (PAQ) was determined in the presence of eight combinations of an emitting and reactive pollutant source (new carpet), clay plaster applied to gypsum wallboard, and chamber air with and without ozone. A panel of 24 human....... Perceived air quality was most acceptable and concentrations of aldehydes were lowest when only clay plaster or both clay plaster and carpet were present in the chambers without ozone. The least acceptable PAQ and the highest concentrations of aldehydes were observed when carpet and ozone were present...... together; addition of clay plaster for this condition improved PAQ and considerably decreased aldehyde concentrations....

  14. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    Directory of Open Access Journals (Sweden)

    T. Moreno

    2012-09-01

    Full Text Available The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a~pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples (ICP-AES and ICP-MS and hourly Streaker (PIXE samples of particulate matter collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa" and metalliferous sulphatic pollutants arriving in Western Japan during spring 2011. The main aerosol sources recognised by PMF analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5–10, As-bearing sulphatic aerosol (PM0.1–2.5, metalliferous sodic PM interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the more undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.

  15. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    Directory of Open Access Journals (Sweden)

    T. Moreno

    2013-02-01

    Full Text Available The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES and Mass Spectrometry (ICP-MS, and hourly Streaker with Particle Induced X-ray Emission (PIXE samples collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa" and metalliferous sulphatic pollutants arriving in western Japan during spring 2011. The main aerosol sources recognised by Positive Matrix Factorization (PMF analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5–10, As-bearing sulphatic aerosol (PM0.1–2.5, metalliferous sodic particulate matter (PM interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.

  16. Influence of air quality model resolution on uncertainty associated with health impacts

    Directory of Open Access Journals (Sweden)

    T. M. Thompson

    2012-06-01

    Full Text Available We use regional air quality modeling to evaluate the impact of model resolution on uncertainty associated with the human health benefits resulting from proposed air quality regulations. Using a regional photochemical model (CAMx, we ran a modeling episode with meteorological inputs representing conditions as they occurred during August through September 2006, and two emissions inventories (a 2006 base case and a 2018 proposed control scenario, both for Houston, Texas at 36, 12, 4 and 2 km resolution. The base case model performance was evaluated for each resolution against daily maximum 8-h averaged ozone measured at monitoring stations. Results from each resolution were more similar to each other than they were to measured values. Population-weighted ozone concentrations were calculated for each resolution and applied to concentration response functions (with 95% confidence intervals to estimate the health impacts of modeled ozone reduction from the base case to the control scenario. We found that estimated avoided mortalities were not significantly different between 2, 4 and 12 km resolution runs, but 36 km resolution may over-predict some potential health impacts. Given the cost/benefit analysis requirements of the Clean Air Act, the uncertainty associated with human health impacts and therefore the results reported in this study, we conclude that health impacts calculated from population weighted ozone concentrations obtained using regional photochemical models at 36 km resolution fall within the range of values obtained using fine (12 km or finer resolution modeling. However, in some cases, 36 km resolution may not be fine enough to statistically replicate the results achieved using 2 and 4 km resolution. On average, when modeling at 36 km resolution, 7 deaths per ozone month were avoided because of ozone reductions resulting from the proposed emissions reductions (95% confidence interval was 2–9. When modeling at 2, 4 or 12 km finer

  17. Simulation of air quality impacts from prescribed fires on an urban area.

    Science.gov (United States)

    Hu, Yongtao; Odman, M Talat; Chang, Michael E; Jackson, William; Lee, Sangil; Edgerton, Eric S; Baumann, Karsten; Russell, Armistead G

    2008-05-15

    On February 28, 2007, a severe smoke event caused by prescribed forest fires occurred in Atlanta, GA. Later smoke events in the southeastern metropolitan areas of the United States caused by the Georgia-Florida wild forest fires further magnified the significance of forest fire emissions and the benefits of being able to accurately predict such occurrences. By using preburning information, we utilize an operational forecasting system to simulate the potential air quality impacts from two large February 28th fires. Our "forecast" predicts that the scheduled prescribed fires would have resulted in over 1 million Atlanta residents being potentially exposed to fine particle matter (PM2.5) levels of 35 microg m(-3) or higher from 4 p.m. to midnight. The simulated peak 1 h PM2.5 concentration is about 121 microg m(-3). Our study suggests that the current air quality forecasting technology can be a useful tool for helping the management of fire activities to protect public health. With postburning information, our "hindcast" predictions improved significantly on timing and location and slightly on peak values. "Hindcast" simulations also indicated that additional isoprenoid emissions from pine species temporarily triggered by the fire could induce rapid ozone and secondary organic aerosol formation during late winter. Results from this study suggest that fire induced biogenic volatile organic compounds emissions missing from current fire emissions estimate should be included in the future. PMID:18546707

  18. Allegheny County Air Quality

    Data.gov (United States)

    Allegheny County / City of Pittsburgh / Western PA Regional Data Center — Air quality data from Allegheny County Health Department monitors throughout the county. Air quality monitored data must be verified by qualified individuals...

  19. Source apportionment and air quality impact assessment studies in Beijing/China

    Science.gov (United States)

    Suppan, P.; Schrader, S.; Shen, R.; Ling, H.; Schäfer, K.; Norra, S.; Vogel, B.; Wang, Y.

    2012-04-01

    More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: Examples of long term measurements of PM2.5 filter sampling in 2005 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. Further experimental studies include the operation of remote sensing systems to determine continuously the MLH (by a ceilometer) and gaseous air pollutants near the ground (by DOAS systems) as well as at the 320 m measurement tower (adhesive plates at different heights for passive particle collection) in cooperation with the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences (CAS). The influence of the MLH on

  20. Impact of a new condensed toluene mechanism on air quality model predictions in the US

    Directory of Open Access Journals (Sweden)

    G. Sarwar

    2011-03-01

    Full Text Available A new condensed toluene mechanism is incorporated into the Community Multiscale Air Quality Modeling system. Model simulations are performed using the CB05 chemical mechanism containing the existing (base and the new toluene mechanism for the western and eastern US for a summer month. With current estimates of tropospheric emission burden, the new toluene mechanism increases monthly mean daily maximum 8-h ozone by 1.0–3.0 ppbv in Los Angeles, Portland, Seattle, Chicago, Cleveland, northeastern US, and Detroit compared to that with the base toluene chemistry. It reduces model mean bias for ozone at elevated observed ozone concentrations. While the new mechanism increases predicted ozone, it does not enhance ozone production efficiency. A sensitivity study suggests that it can further enhance ozone if elevated toluene emissions are present. While it increases in-cloud secondary organic aerosol substantially, its impact on total fine particle mass concentration is small.

  1. Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.

    Science.gov (United States)

    Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.

    2007-12-01

    Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.

  2. Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia.

    Science.gov (United States)

    He, Congrong; Miljevic, Branka; Crilley, Leigh R; Surawski, Nicholas C; Bartsch, Jennifer; Salimi, Farhad; Uhde, Erik; Schnelle-Kreis, Jürgen; Orasche, Jürgen; Ristovski, Zoran; Ayoko, Godwin A; Zimmermann, Ralf; Morawska, Lidia

    2016-05-01

    Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10 to 30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning

  3. Indoor Air Quality

    OpenAIRE

    Korlakunta Divya #1, M.Anil Kumar

    2013-01-01

    The main aim of our project is to maintain the indoor air quality.The analysis is done on different parameters like temperature,relativehumidity,CO2,lights,sens ors and air conditioners to maintain the indoor environment.This report provides overview on importance of indoor air quality in an office or any other closed structure. It also discusses about the effects of poor indoor air quality, the various factors that affect the indoor air quality and various methods to assess indoor air qualit...

  4. Impact of airflow interaction on inhaled air quality and transport of contaminants in rooms with personalized and total volume ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Cermak, Radim; Kovar, O.;

    2003-01-01

    ventilation. In total, 80 L/s of clean air supplied at 20°C was distributed between the ventilation systems at different combinations of personalized airflow rate. Two breathing thermal manikins were used to simulate occupants in a full-scale test room. Regardless of the airflow interaction, the inhaled air......The impact of airflow interaction on inhaled air quality and transport of contaminants between occupants was studied in regard to pollution from floor covering, human bioeffluents and exhaled air, with combinations of two personalized ventilation systems (PV) with mixing and displacement...... quality with personalized and mixing ventilation was higher or at least similar compared to mixing ventilation alone. In the case of PV combined with displacement ventilation, the interaction caused mixing of the room air, an increase in the transport of bioeffluents and exhaled air between occupants and...

  5. Modeling the impact of solid noise barriers on near road air quality

    Science.gov (United States)

    Venkatram, Akula; Isakov, Vlad; Deshmukh, Parikshit; Baldauf, Richard

    2016-09-01

    Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutant concentrations as much as 80% next to the barrier relative to an open area under unstable meteorological conditions, which corresponds to typical daytime conditions when residents living or children going to school near roadways are most likely to be exposed to traffic emissions. The data from this tracer gas study and a wind tunnel simulation were used to develop a model to describe dispersion of traffic emissions near a highway in the presence of a solid noise barrier. The model is used to interpret real-world data collected during a field study conducted in a complex urban environment next to a large highway in Phoenix, Arizona, USA. We show that the analysis of the data with the model yields useful information on the emission factors and the mitigation impact of the barrier on near-road air quality. The estimated emission factors for the four species, ultrafine particles, CO, NO2, and black carbon, are consistent with data cited in the literature. The results suggest that the model accounted for reductions in pollutant concentrations from a 4.5 m high noise barrier, ranging from 40% next to the barrier to 10% at 300 m from the barrier.

  6. Development and application of procedures to evaluate air quality and visibility impacts of low-altitude flying operations

    Energy Technology Data Exchange (ETDEWEB)

    Liebsch, E.J.

    1990-08-01

    This report describes the development and application of procedures to evaluate the effects of low-altitude aircraft flights on air quality and visibility. The work summarized in this report was undertaken as part of the larger task of assessing the various potential environmental impacts associated with low-altitude military airspaces. Accomplishing the air quality/visibility analysis for the GEIS included (1) development and application of an integrated air quality model and aircraft emissions database specifically for Military Training Route (MTR) or similar flight operations, (2) selection and application of an existing air quality model to analyze the more widespread and less concentrated aircraft emissions from military Operations Areas (MOAs) and Restricted Areas (RAs), and (3) development and application of procedures to assess impacts of aircraft emissions on visibility. Existing air quality models were considered to be inadequate for predicting ground-level concentrations of pollutants emitted by aircraft along MTRs; therefore, the Single-Aircraft Instantaneous Line Source (SAILS) and Multiple-Aircraft Instantaneous Line Source (MAILS) models were developed to estimate potential impacts along MTRs. Furthermore, a protocol was developed and then applied in the field to determine the degree of visibility impairment caused by aircraft engine exhaust plumes. 19 refs., 2 figs., 3 tabs.

  7. Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area

    Directory of Open Access Journals (Sweden)

    Y.-H. Ryu

    2013-02-01

    Full Text Available Modified local meteorology owing to heterogeneities in the urban–rural surface can affect urban air quality. In this study, the impacts of urban land-surface forcing on ozone air quality during a high ozone (O3 episode in the Seoul metropolitan area, South Korea, are investigated using a high-resolution chemical transport model (CMAQ. Under fair weather conditions, the temperature excess (urban heat island significantly modifies boundary layer characteristics/structures and local circulations. The modified boundary layer and local circulations result in an increase in O3 levels in the urban area of 16 ppb in the nighttime and 13 ppb in the daytime. Enhanced turbulence in the deep urban boundary layer dilutes pollutants such as NOx, and this contributes to the elevated O3 levels through the reduced O3 destruction by NO in the NOx-rich environment. The advection of O3 precursors over the mountains near Seoul by the prevailing valley-breeze circulation in the mid- to late morning results in the build-up of O3 over the mountains in conjunction with biogenic volatile organic compound (BVOC emissions there. As the prevailing local circulation in the afternoon changes to urban-breeze circulation, the O3-rich air masses over the mountains are advected over the urban area. The urban-breeze circulation exerts significant influences on not only the advection of O3 but also the chemical production of O3 under the circumstances in which both anthropogenic and biogenic (natural emissions play important roles in O3 formation. As the air masses that are characterized by low NOx and high BVOC levels and long OH chain length are advected over the urban area from the surroundings, the ozone production efficiency increases in the urban area. The relatively strong vertical mixing in the urban boundary layer embedded in the

  8. Traffic Impacts on PM2.5 Air Quality in Nairobi, Kenya

    OpenAIRE

    Kinney, Patrick L.; Gichuru, Michael Gatari; Volavka-Close, Nicole; Ngo, Nicole; Ndiba, Peter K.; Law, Anna; Gachanja, Anthony; Gaita, Samuel Mwaniki; Chillrud, Steven N.; Sclar, Elliott

    2011-01-01

    Motor vehicle traffic is an important source of particulate pollution in cities of the developing world, where rapid growth, coupled with a lack of effective transport and land use planning, may result in harmful levels of fine particles (PM2.5) in the air. However, a lack of air monitoring data hinders health impact assessments and the development of transportation and land use policies that could reduce health burdens due to outdoor air pollution. To address this important need, a study of ...

  9. Impact of external industrial sources on the regional and local air quality of Mexico Megacity

    Science.gov (United States)

    Almanza, V. H.; Molina, L. T.; Li, G.; Fast, J.; Sosa, G.

    2013-10-01

    The air quality of megacities can be influenced by external emissions sources on both global and regional scale, and at the same time their outflow emissions can exert an important impact to the surrounding environment. The present study evaluates an SO2 peak observed on 24 March 2006 at the suburban supersite T1 and ambient air quality monitoring stations located in the north region of the Mexico City Metropolitan Area (MCMA) during MILAGRO campaign. We found that this peak could be related to an important episodic emission event from Tizayuca region, northeast of the MCMA. Back trajectories analyses suggest that the emission event started in the early morning at 04:00 LST and lasted for about 9 h. The estimated emission rate is noticeably high, about 2 kg s-1. This finding suggests the possibility of "overlooked" emission sources in this region that could influence the air quality of the MCMA. This further motivated us to study the cement plants, including those in the State of Hidalgo and in the State of Mexico, and we found that they can contribute in the NE region of the basin (about 41.7%), at the suburban supersite T1 (41.23%) and at some monitoring stations their contribution can be even higher than from the Tula Industrial Complex. The contribution of Tula Industrial Complex to regional ozone levels is estimated. The model suggests low contribution to the MCMA (1 ppb to 4 ppb) and slightly higher at the suburban T1 (6 ppb) and rural T2 (5 ppb) supersites. However, the contribution could be as high as 10 ppb in the upper northwest region of the basin and in the southwest and south-southeast regions of State of Hidalgo. In addition, a first estimate of the potential contribution from flaring activities to regional ozone levels is presented. Emission rates are estimated with a CFD combustion model. Results suggest that up to 30% of the total regional ozone from TIC could be related to flaring activities. Finally, the influence in SO2 levels from technological

  10. Examining the impact of heterogeneous nitryl chloride production on air quality across the United States

    Directory of Open Access Journals (Sweden)

    G. Sarwar

    2012-02-01

    Full Text Available The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5 has typically been modeled as only producing nitric acid. However, recent field studies have confirmed that the presence of particulate chloride alters the reaction product to produce nitryl chloride (ClNO2 which undergoes photolysis to generate chlorine atoms and nitrogen dioxide (NO2. Both chlorine and NO2 affect atmospheric chemistry and air quality. We present an updated gas-phase chlorine mechanism that can be combined with the Carbon Bond 05 mechanism and incorporate the combined mechanism into the Community Multiscale Air Quality modeling system. We then update the current model treatment of heterogeneous hydrolysis of N2O5 to include ClNO2 as a product. The model, in combination with a comprehensive inventory of chlorine compounds, reactive nitrogen, particulate matter, and organic compounds, is used to evaluate the impact of the heterogeneous ClNO2 production on air quality across the United States for the months of February and September in 2006. The heterogeneous production increases ClNO2 in coastal as well as many in-land areas in the United States. Particulate chloride derived from sea-salts, anthropogenic sources, and forest fires activates the heterogeneous production of ClNO2. With current estimates of tropospheric emissions burden, it modestly enhances monthly mean 8-h ozone (up to 1–2 ppbv or 3–4% but causes large increases (up to 13 ppbv in isolated episodes. It also substantially reduce the mean total nitrate by up to 0.8–2.0 μg m−3 or 11–21%. Modeled ClNO2 accounts for up to 3–4% of the monthly mean total reactive nitrogen. Sensitivity results of the model suggest that ClNO2 formation is limited more by the presence of particulate chloride than by the abundance of N2O5.

  11. Impact of external industrial sources on the regional and local air quality of Mexico Megacity

    Directory of Open Access Journals (Sweden)

    V. H. Almanza

    2013-10-01

    Full Text Available The air quality of megacities can be influenced by external emissions sources on both global and regional scale, and at the same time their outflow emissions can exert an important impact to the surrounding environment. The present study evaluates an SO2 peak observed on 24 March 2006 at the suburban supersite T1 and ambient air quality monitoring stations located in the north region of the Mexico City Metropolitan Area (MCMA during MILAGRO campaign. We found that this peak could be related to an important episodic emission event from Tizayuca region, northeast of the MCMA. Back trajectories analyses suggest that the emission event started in the early morning at 04:00 LST and lasted for about 9 h. The estimated emission rate is noticeably high, about 2 kg s−1. This finding suggests the possibility of "overlooked" emission sources in this region that could influence the air quality of the MCMA. This further motivated us to study the cement plants, including those in the State of Hidalgo and in the State of Mexico, and we found that they can contribute in the NE region of the basin (about 41.7%, at the suburban supersite T1 (41.23% and at some monitoring stations their contribution can be even higher than from the Tula Industrial Complex. The contribution of Tula Industrial Complex to regional ozone levels is estimated. The model suggests low contribution to the MCMA (1 ppb to 4 ppb and slightly higher at the suburban T1 (6 ppb and rural T2 (5 ppb supersites. However, the contribution could be as high as 10 ppb in the upper northwest region of the basin and in the southwest and south-southeast regions of State of Hidalgo. In addition, a first estimate of the potential contribution from flaring activities to regional ozone levels is presented. Emission rates are estimated with a CFD combustion model. Results suggest that up to 30% of the total regional ozone from TIC could be related to flaring activities. Finally, the influence in SO2 levels

  12. Air quality and particles: impact on the environment and health. What to prescribe for tomorrow?

    International Nuclear Information System (INIS)

    After having recalled that particles in the air are present under the form of liquid or solid matters and are characterized by their size, and that the term aerosol is generally used for a mix of air and particles in suspension, this publication proposes an overview of tools used to characterize particle pollutions, of the different impacts of particles on health, on the way ecosystems react with particle pollutions, on impacts of particles on building environment (outside and inside)

  13. CO2-capture and air quality. Synergy or conflict? A study of possible impacts

    International Nuclear Information System (INIS)

    Does CO2 capture and storage conflict with the objectives for air quality in the Netherlands? Or are win-win situations conceivable? These are important questions for policy makers today. It is expected that both conflicts and synergies will occur in the large scale implementation of CO2 capture in the Dutch electricity sector. This article provides a brief summary of part of the research program that was set up to unravel synergies and conflicts in policy for climate and air quality: the Dutch Policy Research Program on Air and Climate (BOLK) of the ministry of Housing, Spatial Planning and the Environment. [mk

  14. The Promise of Beijing: Evaluating the Impact of the 2008 Olympic Games on Air Quality

    OpenAIRE

    Yuyu Chen; Ginger Zhe Jin; Naresh Kumar; Guang Shi

    2011-01-01

    To prepare for the 2008 Olympic Games, China adopted a number of radical measures to improve air quality. Using officially reported air pollution index (API) from 2000 to 2009, we show that these measures improved the API of Beijing during and after the Games, but 60% of the effect faded away by the end of October 2009. Since the credibility of API data has been questioned, an objective and indirect measure of air quality at a high spatial resolution - aerosol optimal depth (AOD), derived usi...

  15. Impact of HONO sources on the performance of mesoscale air quality models

    Science.gov (United States)

    Gonçalves, M.; Dabdub, D.; Chang, W. L.; Jorba, O.; Baldasano, J. M.

    2012-07-01

    Nitrous acid (HONO) photolysis constitutes a primary source of OH in the early morning, which leads to changes in model gas-phase and particulate matter concentrations. However, state-of-the-art models of chemical mechanisms share a common representation of gas-phase chemistry leading to HONO that fails in reproducing the observed profiles. Hence, there is a growing interest in improving the definition of additional HONO sources within air quality models, i.e. direct emissions or heterogeneous reactions. In order to test their feasibility under atmospheric conditions, the WRF-ARW/HERMES/CMAQ modeling system is applied with high horizontal resolution (4 × 4 km2) to Spain for November 24-27, 2008. HONO modeled sources include: (1) direct emissions from on-road transport; NO2 hydrolysis on aerosol and ground surfaces, the latter with (2) kinetics depending exclusively on available surfaces for reaction and (3) refined kinetics considering also relative humidity dependence; and (4) photoenhanced NO2 reduction on ground surfaces. The DOMINO measurement campaign performed in El Arenosillo (Southern Spain) provides valuable HONO observations. Modeled HONO results are consistently below observations, even when the most effective scenario is assessed, corresponding to contributions of direct emissions and NO2 hydrolysis with the simplest kinetics parameterization. With the additional sources of HONO, PM2.5 predictions can be up to 14% larger in urban areas. Quantified impacts on secondary pollutants have to be taken as a low threshold, due to the proven underestimation of HONO levels. It is fundamental to improve HONO sources definition within air quality models, both for the scientific community and decision makers.

  16. Modeling the impacts of biomass burning on air quality in and around Mexico City

    Directory of Open Access Journals (Sweden)

    W. Lei

    2012-09-01

    Full Text Available The local and regional impacts of open fires and trash burning on ground-level ozone (O3 and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA, and the simulated impacts of open fires on organic aerosol (OA were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC, contributing about 60, 22, 33, and 22% to primary OA (POA, secondary OA (SOA, total OA (TOA, and EC, respectively, on both the local and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. SOA formation due to the open fires and trash burning enhanced the OA concentration by about 10 and 5% in the MCMA, respectively. On the annual basis and taking the biofuel use emissions into consideration, we estimated that biomass burning contributed about 60, 30, and 25%, respectively, to the loadings of POA, SOA and EC in both the MCMA and its surrounding region, with about 35, 18, and 15% from open fires and trash burning. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess the impacts of biomass burning on tropospheric chemistry, regional and global air quality, and climate change.

  17. Indoor Air Quality Manual.

    Science.gov (United States)

    Baldwin Union Free School District, NY.

    This manual identifies ways to improve a school's indoor air quality (IAQ) and discusses practical actions that can be carried out by school staff in managing air quality. The manual includes discussions of the many sources contributing to school indoor air pollution and the preventive planning for each including renovation and repair work,…

  18. Air quality analysis for the Western Area Power Administration's 2004 Power Marketing Plan Environmental Impact Statement

    International Nuclear Information System (INIS)

    The Western Area Power Administration (Western) markets and transmits electric power throughout 15 western states. Western's Sierra Nevada Customer Service Region (Sierra Nevada Region) markets approximately 1,480 megawatts (MW) of firm power (plus 100 MW of seasonal peaking capacity) from the Central Valley Project (CVP) and other resources. Western's mission is to sell and deliver electricity generated from these resources. Western's capacity and energy sales must be in conformance with the laws that govern its sale of electrical power. Further, Western's hydropower operations at each facility must comply with minimum and maximum flows and other constraints set by other regulatory agencies. The Sierra Nevada Region proposes to develop a marketing plan that defines the products and services it would offer beyond the year 2004 and the eligibility and allocation criteria for its electric power resources. Because determining levels of long-term firm power resources to be marketed and subsequently entering into contracts for the delivery of related products and services could be a major Federal action with potentially significant impacts to the human environment, the 2004 Power Marketing Plan Environmental Impact Statement (2004 EIS) is being prepared. Decisions made by the Sierra Nevada Region on how and when to supply power to its customers would influence the operation of power plants within the Western Systems Coordinating Council (WSCC). If the resources affected are thermal resources, this could in turn affect the amount, timing, and location of pollutant emissions to the air at locations throughout the western United States. This report has been produced in conjunction with the 2004 EIS to provide a more detailed discussion of the air quality implications of the 2004 power marketing plan

  19. Preliminary examination of the impacts of repository site characterization activities and facility construction and operation activities on Hanford air quality

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C.S.; Ramsdell, J.V.

    1986-04-01

    Air quality impacts that would result from site characterization activities and from the construction and operation of a high-level nuclear wste repository at Hanford are estimated using two simple atmospheric dispersion models, HANCHI and CHISHORT. Model results indicate that pollutant concentrations would not exceed ambient air quality standards at any point outside the Hanford fenceline or at any publicly accessible location within the Hanford Site. The increase in pollutant concentrations in nearby communities due to site activities would be minimal. HANCHI and CHISHORT are documented in the appendices of this document. Further study of the repository's impact on air quality will be conducted when more detailed project plans and work schedules are available.

  20. Preliminary examination of the impacts of repository site characterization activities and facility construction and operation activities on Hanford air quality

    International Nuclear Information System (INIS)

    Air quality impacts that would result from site characterization activities and from the construction and operation of a high-level nuclear wste repository at Hanford are estimated using two simple atmospheric dispersion models, HANCHI and CHISHORT. Model results indicate that pollutant concentrations would not exceed ambient air quality standards at any point outside the Hanford fenceline or at any publicly accessible location within the Hanford Site. The increase in pollutant concentrations in nearby communities due to site activities would be minimal. HANCHI and CHISHORT are documented in the appendices of this document. Further study of the repository's impact on air quality will be conducted when more detailed project plans and work schedules are available

  1. Atmospheric emissions and air quality impacts from natural gas production and use.

    Science.gov (United States)

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability. PMID:24498952

  2. Evaluating the climate and air quality impacts of short-lived pollutants

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2015-06-01

    Full Text Available This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants. ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs: methane, aerosols and ozone, and their precursor species and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs and six chemistry transport models (CTMs. The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for Northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20 was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20 year climate impact. These measures

  3. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings

    OpenAIRE

    Zhang, J.P.; T. Zhu; Zhang, Q H; C. C. Li; H. L. Shu; Y Ying; Dai, Z. P.; Wang, X.; Liu, X. Y.; A. M. Liang; H. X. Shen; B. Q. Yi

    2012-01-01

    This study investigated the air pollution characteristics of synoptic-scale circulation in the Beijing megacity, and provided quantitative evaluation of the impacts of circulation patterns on air quality during the 2008 Beijing Summer Olympics. Nine weather circulation types (CTs) were objectively identified over the North China region during 2000–2009, using obliquely rotated T-mode principal component analysis (PCA). The resulting CTs were examined in relation to the local meteorology, regi...

  4. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings

    OpenAIRE

    Zhang, J.P.; T. Zhu; Zhang, Q H; C. C. Li; H. L. Shu; Y Ying; Dai, Z. P.; Liu, X. Y.; A. M. Liang; H. X. Shen

    2011-01-01

    This study investigated the air pollution characteristics of synoptic-scale circulation in the Beijing megacity, and provided holistic evaluation of the impacts of circulation patterns on air quality during the 2008 Beijing Summer Olympics. Nine weather circulation types (CTs) were objectively identified over the North China region during 2000–2009, using obliquely rotated T-mode principal component analysis (PCA). The resulting CTs were examined in relation to the local meteorology, ...

  5. High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air Quality.

    Science.gov (United States)

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Henderson, Barron H; Carlton, Annmarie G

    2016-08-01

    On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world. PMID:27385064

  6. Air Quality System (AQS)

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Air Quality System (AQS) database contains measurements of air pollutant concentrations from throughout the United States and its territories. The measurements...

  7. Impact of Hong Kong's Voluntary Catalytic Converter Replacement Programme on Roadside Air Quality

    Science.gov (United States)

    Simpson, I. J.; Guo, H.; Louie, P. K. K.; Luk, C.; Lyu, X.; Meinardi, S.; Yam, Y. S.; Blake, D. R.

    2015-12-01

    As part of its ongoing policies to improve roadside air quality, in 2013 the Hong Kong government launched an incentive programme to replace catalytic converters and oxygen sensors in taxis and light buses mainly fueled by liquefied petroleum gas (LPG). The majority of replacements occurred from October 2013 to April 2014, with 75% of eligible vehicles participating in the programme, or 16,472 vehicles. Based on taxi exhaust measurements at a Hong Kong vehicle testing facility, the concentrations of n-butane, propane and i-butane (the primary components of LPG) decreased by 97% following the replacements. To determine the impact of the programme on roadside air quality, long-term measurements of volatile organic compounds (VOCs) were analyzed before, during and after the replacement programme, mainly at a busy roadside location in Mong Kok, Hong Kong. A clear decrease in the levels of major pollutants associated with LPG vehicle exhaust was observed at the roadside. For example, average (± 1 standard deviation) n-butane levels from October to April decreased from 13.0 ± 3.6 and 13.9 ± 2.6 ppbv in the two years preceding the programme, to 9.2 ± 2.9 ppbv during the programme, to 6.2 ± 1.7 ppbv the year after the programme. By contrast, compounds such as i-pentane that are not strongly associated with LPG or with LPG exhaust remained steady, averaging 0.90 ± 0.34, 1.01 ± 0.31, 0.93 ± 0.37, and 0.91 ± 0.42 ppbv from October to April of 2011/12, 2012/13, 2013/14 and 2014/15, respectively. Impacts of the programme on roadside levels of nitrogen oxides (NOx) and ozone (O3) will also be discussed. Because many taxis are high mileage vehicles that travel several hundred kilometers daily, their catalytic converters need to be replaced approximately every 18 months. Therefore ongoing vehicle maintenance will be required in order to preserve the gains made from this initial subsidy programme.

  8. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    Directory of Open Access Journals (Sweden)

    Y. Xie

    2013-08-01

    Full Text Available The CMAQ (Community Multiscale Air Quality us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NOx recycling rates. We incorporate recent advances in isoprene oxidation chemistry into the SAPRC-07 chemical mechanism within the US EPA (United States Environmental Protection Agency CMAQ model. The results show improved model performance for a range of species compared against aircraft observations from the INTEX-NA/ICARTT 2004 field campaign. We further investigate the key processes in isoprene nitrate chemistry and evaluate the impact of uncertainties in the isoprene nitrate yield, NOx (NOx = NO + NO2 recycling efficiency, dry deposition velocity, and RO2 + HO2 reaction rates. We focus our examination on the southeastern United States, which is impacted by both abundant isoprene emissions and high levels of anthropogenic pollutants. We find that NOx concentrations increase by 4–9% as a result of reduced removal by isoprene nitrate chemistry. O3 increases by 2 ppbv as a result of changes in NOx. OH concentrations increase by 30%, which can be primarily attributed to greater HOx production. We find that the model can capture observed total alkyl and multifunctional nitrates (∑ANs and their relationship with O3 by assuming either an isoprene nitrate yield of 6% and daytime lifetime of 6 hours or a yield of 12% and lifetime of 4 h. Uncertainties in the isoprene nitrates can impact ozone production by 10% and OH concentrations by 6%. The uncertainties in NOx recycling efficiency appear to have larger effects than uncertainties in isoprene nitrate yield and dry deposition velocity. Further progress depends on improved understanding of

  9. Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact

    OpenAIRE

    Wang, T.; Nie, W.; Gao, J.; L. K. Xue; Gao, X M; Wang, X.F.; Qiu, J.; C. N. Poon; Meinardi, S.; Blake, D.; Wang, S. L.; Ding, A. J.; F. H. Chai; Zhang, Q. Z; Wang, W.X.

    2010-01-01

    This paper presents the first results of the measurements of trace gases and aerosols at three surface sites in and outside Beijing before and during the 2008 Olympics. The official air pollution index near the Olympic Stadium and the data from our nearby site revealed an obvious association between air quality and meteorology and different responses of secondary and primary pollutants to the control measures. Ambient concentrations of vehicle-related nitrogen oxides (NOx

  10. Assessing air quality and climate impacts of future ground freight choice in United States

    Science.gov (United States)

    Liu, L.; Bond, T. C.; Smith, S.; Lee, B.; Ouyang, Y.; Hwang, T.; Barkan, C.; Lee, S.; Daenzer, K.

    2013-12-01

    The demand for freight transportation has continued to increase due to the growth of domestic and international trade. Emissions from ground freight (truck and railways) account for around 7% of the greenhouse gas emissions, 4% of the primary particulate matter emission and 25% of the NOx emissions in the U.S. Freight railways are generally more fuel efficient than trucks and cause less congestion. Freight demand and emissions are affected by many factors, including economic activity, the spatial distribution of demand, freight modal choice and routing decision, and the technology used in each modal type. This work links these four critical aspects of freight emission system to project the spatial distribution of emissions and pollutant concentration from ground freight transport in the U.S. between 2010 and 2050. Macroeconomic scenarios are used to forecast economic activities. Future spatial structure of employment and commodity demand in major metropolitan areas are estimated using spatial models and a shift-share model, respectively. Freight flow concentration and congestion patterns in inter-regional transportation networks are predicted from a four-step freight demand forecasting model. An asymptotic vehicle routing model is also developed to estimate delivery ton-miles for intra-regional freight shipment in metropolitan areas. Projected freight activities are then converted into impacts on air quality and climate. CO2 emissions are determined using a simple model of freight activity and fuel efficiency, and compared with the projected CO2 emissions from the Second Generation Model. Emissions of air pollutants including PM, NOx and CO are calculated with a vehicle fleet model SPEW-Trend, which incorporates the dynamic change of technologies. Emissions are projected under three economic scenarios to represent different plausible futures. Pollutant concentrations are then estimated using tagged chemical tracers in an atmospheric model with the emissions serving

  11. Transport sector strategies and their impact on the air quality and on greenhouse gasses

    International Nuclear Information System (INIS)

    The transport sector plays on essential role in our society, but generates non desired effects on the air quality as well on climate change. This is the reason why the transport and the environment governmental actions are crucial to mitigate them. In this article we introduced the most important resources and regulations to control and to evaluate the air quality and emissions, and also the most relevant objectives in transport actions to reduce them, not only in Spain but also in the European Union. We discuss herein their compliance degree and their effectiveness in relation with the transport emissions evolution during 1990-2006 in spain. (Author) 11 refs

  12. Evaluating the climate and air quality impacts of short-lived pollutants

    Science.gov (United States)

    Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.

    2015-09-01

    This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together

  13. The impact of municipal solid waste landfills in Suceava County on air quality

    OpenAIRE

    Dumitru MIHĂILĂ; Valeria DIȚOIU; Petruț-Ionel BISTRICEAN

    2014-01-01

    The location of municipal solid waste (MSW) landfills in inappropriate places is a serious risk to the quality of all environmental factors. These waste disposal sites can become major sources of air quality deterioration through emissions of toxic gas resulted from anaerobic decomposition of organic waste. The paper discusses in detail the qualitative and quantitative effects of municipal waste landfills of the main urban settlements in Suceava County (Suceava City municipal landfill and Gur...

  14. Evaluating the Impacts of Transboundary Air pollution from China on Air Quality in the U.S. Using a Regression Framework

    Science.gov (United States)

    Ngo, N. S.; Bao, X.; Zhong, N.

    2014-12-01

    China is the largest emitter of anthropogenic air pollution in the world and previous work has shown the environmental impacts of the long-range transport (LRT) of air pollution from China to the U.S. via chemical transport models, in situ observations, isentropic back trajectories, and to a lesser extent statistical models. However, these studies generally focus on a narrow time period due to data constraints. In this study, we build upon the literature using econometric techniques to isolate the impacts on U.S. air quality from the LRT of air pollution from China. We use a unique daily data set of China's air pollution index (API) and PM10 concentrations at the city level and merge these information with daily monitor data in California (CA) between 2000 and 2013. We first employ a distributed lag model to examine daily patterns, and then exploit a "natural experiment." In the latter methodology, since air pollution is rarely randomly assigned, we examine the impacts of specific events that affect air quality in China, but are plausibly uncorrelated to factors affecting air pollution in CA. For example, Chinese New Year (CNY) is a major week-long holiday and we show pollution levels in China decrease during this time period, likely from reductions in industrial production. CNY varies each calendar year since it is based off the lunar new year, so the timing of this pollution reduction could be considered "as good as random" or exogenous to factors affecting air quality in CA. Using a regression framework including weather, seasonal and geographic controls, we can potentially isolate the impact of the LRT of air pollution to CA. First, results from the distributed lag model suggest that in the Spring, when LRT peaks, a 1 μg/m3 increase in daily PM10 from China between 10 and 14 days ago is associated with an increase in today's PM2.5 in CA of 0.022 μg/m3 (mean daily PM2.5 in CA is 12 μg/m3). Second, we find that if CNY occurred 5 to 9 days ago, today's PM2.5 in

  15. Impact of sulfur content regulations of shipping fuel on coastal air quality

    Science.gov (United States)

    Seyler, André; Wittrock, Folkard; Kattner, Lisa; Mathieu-Üffing, Barbara; Weigelt, Andreas; Peters, Enno; Richter, Andreas; Schmolke, Stefan; Burrows, John P.

    2016-04-01

    plumes. Long term time evolutions have been evaluated to show the impact of recent sulfur emission regulations on the measured SO2 pollution levels. In 2015, a significant decrease of SO2 emissions has been found compared to the years before. This shows that the new, more restrictive fuel sulfur content limits lead to a clear improvement in coastal air quality.

  16. Modeling the impacts of biomass burning on air quality in and around Mexico City

    Directory of Open Access Journals (Sweden)

    W. Lei

    2013-03-01

    the impacts of biomass burning on tropospheric chemistry, regional and global air quality, and climate change.

  17. Modeling the impacts of biomass burning on air quality in and around Mexico City

    Science.gov (United States)

    Lei, W.; Li, G.; Molina, L. T.

    2013-03-01

    impacts of biomass burning on tropospheric chemistry, regional and global air quality, and climate change.

  18. Statistical Analysis of the Impacts of Regional Transportation on the Air Quality in Beijing

    Science.gov (United States)

    Huang, Zhongwen; Zhang, Huiling; Tong, Lei; Xiao, Hang

    2016-04-01

    From October to December 2015, Beijing-Tianjin-Hebei (BTH) region had experienced several severe haze events. In order to assess the effects of the regional transportation on the air quality in Beijing, the air monitoring data (PM2.5, SO2, NO2 and CO) from that period published by Chinese National Environmental Monitoring Center (CNEMC) was collected and analyzed with various statistical models. The cities within BTH area were clustered into three groups according to the geographical conditions, while the air pollutant concentrations of cities within a group sharing similar variation trends. The Granger causality test results indicate that significant causal relationships exist between the air pollutant data of Beijing and its surrounding cities (Baoding, Chengde, Tianjin and Zhangjiakou) for the reference period. Then, linear regression models were constructed to capture the interdependency among the multiple time series. It shows that the observed air pollutant concentrations in Beijing were well consistent with the model-fitted results. More importantly, further analysis suggests that the air pollutants in Beijing were strongly affected by regional transportation, as the local sources only contributed 17.88%, 27.12%, 14.63% and 31.36% of PM2.5, SO2, NO2 and CO concentrations, respectively. And the major foreign source for Beijing was from Southwest (Baoding) direction, account for more than 42% of all these air pollutants. Thus, by combining various statistical models, it may not only be able to quickly predict the air qualities of any cities on a regional scale, but also to evaluate the local and regional source contributions for a particular city. Key words: regional transportation, air pollution, Granger causality test, statistical models

  19. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    Science.gov (United States)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; Diskin, Glenn S.; Dickerson, Russell R.

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  20. Indoor air quality

    DEFF Research Database (Denmark)

    Jensen, Trine Susanne; Recevska, Ieva

     The objective of the 35th specific agreement is to provide support to the EEA activities in Environment and Health (E&H) on the topic of indoor air quality. The specific objectives have been to provide an overview of indoor air related projects in EU and indoor air related policies as well...

  1. Predicting Air Quality Impacts Associated with Oil and Gas Development in the Uinta Basin Using EPA’s Photochemical Air Quality Model

    Science.gov (United States)

    Rural areas with close proximity to oil and natural gas operations in Utah have experienced winter ozone levels that exceed EPA’s National Ambient Air Quality Standards (NAAQS). Through a collaborative effort, EPA Region 8 – Air Program, ORD, and OAQPS used the Commun...

  2. Weatherization and Indoor Air Quality: Measured Impacts in Single Family Homes Under the Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Pigg, Scott [Energy Center of Wisconsin, Madison, WI (United States); Cautley, Dan [Energy Center of Wisconsin, Madison, WI (United States); Francisco, Paul [Univ. of Illinois, Urbana-Champaign, IL (United States); Hawkins, Beth A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brennan, Terry M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    This report summarizes findings from a national field study of indoor air quality parameters in homes treated under the Weatherization Assistance Program (WAP). The study involved testing and monitoring in 514 single-family homes (including mobile homes) located in 35 states and served by 88 local weatherization agencies.

  3. The impact of municipal solid waste landfills in Suceava County on air quality

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2014-08-01

    Full Text Available The location of municipal solid waste (MSW landfills in inappropriate places is a serious risk to the quality of all environmental factors. These waste disposal sites can become major sources of air quality deterioration through emissions of toxic gas resulted from anaerobic decomposition of organic waste. The paper discusses in detail the qualitative and quantitative effects of municipal waste landfills of the main urban settlements in Suceava County (Suceava City municipal landfill and Gura Humorului, Rădăuţi, Siret, Câmpulung Moldovenesc, Fălticeni and Vatra Dornei urban waste landfills on air quality. The dispersion of methane emitted from the largest MSW landfill in the county, the Suceava municipal landfill respectively, is also presented, taking into account seasonal, daytime and nighttime meteorological parameters

  4. Impact on local air quality of the planned fixed link across Oresund

    DEFF Research Database (Denmark)

    Fenger, Jes; Vignati, Elisabetta; Berkowicz, Ruwim;

    1996-01-01

    The planned combined bridge and tunnel link between Sweden and Denmark (the Oresund Link) is expected to be in operation around the turn of the century. So far the impacts of the Oresund Link on air pollution have been discussed mainly in terms of changes in emissions, taking into account...

  5. Aerosol Health Impact Source Attribution Studies with the CMAQ Adjoint Air Quality Model

    Science.gov (United States)

    Turner, M. D.

    , reductions in emissions from large industrial combustion sources that are not classified as EGUs (i.e., non-EGU) are estimated to have up to triple the benefits per unit emission of reductions to onroad diesel sectors, and provide similar benefits per unit of reduced emission to that of onroad gasoline emissions in the region. While a majority of vehicle emission controls that regulate PM focus on diesel emissions, our analysis shows the most efficient target for stricter controls is actually onroad gasoline emissions. From an analysis of the health impacts of BC emissions on specific demographic populations, we find that emissions in the southern half of the US tend to disproportionally affect persons with a below high school education and persons below 50% of the poverty level. Analysis of national risk (independent of population and mortality rates) shows that the largest risks are associated with drier climates, due to the increased atmospheric lifetime resulting from less wet removal of aerosols. Lastly, analysis of the impacts of BC emissions on maximum individual risk shows that contributions to maximum individual risk are weakly to strongly correlated with emissions (R2 ranging from 0.23 in the San Joaquin Valley to 0.93 in the Dallas region). Overall, this thesis shows the value of high-resolution, adjoint-based source attribution studies for determining the locations, seasons, and sectors that have the greatest estimated impact on human health in air quality models.

  6. Volatile organic compound emissions from unconventional natural gas production: Source signatures and air quality impacts

    Science.gov (United States)

    Swarthout, Robert F.

    Advances in horizontal drilling and hydraulic fracturing over the past two decades have allowed access to previously unrecoverable reservoirs of natural gas and led to an increase in natural gas production. Intensive unconventional natural gas extraction has led to concerns about impacts on air quality. Unconventional natural gas production has the potential to emit vast quantities of volatile organic compounds (VOCs) into the atmosphere. Many VOCs can be toxic, can produce ground-level ozone or secondary organic aerosols, and can impact climate. This dissertation presents the results of experiments designed to validate VOC measurement techniques, to quantify VOC emission rates from natural gas sources, to identify source signatures specific to natural gas emissions, and to quantify the impacts of these emissions on potential ozone formation and human health. Measurement campaigns were conducted in two natural gas production regions: the Denver-Julesburg Basin in northeast Colorado and the Marcellus Shale region surrounding Pittsburgh, Pennsylvania. An informal measurement intercomparison validated the canister sampling methodology used throughout this dissertation for the measurement of oxygenated VOCs. Mixing ratios of many VOCs measured during both campaigns were similar to or higher than those observed in polluted cities. Fluxes of natural gas-associated VOCs in Colorado ranged from 1.5-3 times industry estimates. Similar emission ratios relative to propane were observed for C2-C6 alkanes in both regions, and an isopentane:n-pentane ratio ≈1 was identified as a unique tracer for natural gas emissions. Source apportionment estimates indicated that natural gas emissions were responsible for the majority of C2-C8 alkanes observed in each region, but accounted for a small proportion of alkenes and aromatic compounds. Natural gas emissions in both regions accounted for approximately 20% of hydroxyl radical reactivity, which could hinder federal ozone standard

  7. Impacts of Photovoltaic Power Plant Sitings and Distributed Solar Panels on Meteorology and Air Quality in Central California

    Science.gov (United States)

    Bastien, L. A.; Jin, L.; Brown, N. J.

    2012-12-01

    California's electric utility companies are required to use renewable energy to produce 20% of their power by 2010 and 33% by 2020. A main source of the power will be solar energy because photovoltaic technologies have advanced so much that large scale installations are being built and will be built in the future with even greater capacity. Rather than being a large emission source, these plants affect the ambient environment through albedo changes and by emission reductions associated with not burning fossil fuels to generate the same amount of electricity. Like conventional power plants, their impact on local meteorology and air quality depends on the specific technology, ambient atmospheric conditions, and the spatial location of the plant. Also, as solar panels on commercial and residential rooftops become even more common, the effect of distributed photovoltaic panels on meteorology and air quality is likely to become significant. In this study, we use the Weather Research and Forecasting (WRF) model and the Community Multiscale Air Quality (CMAQ) model at high resolution of 4 km x 4 km over several 5-day high-ozone episodes of the summer 2000 to assess the impact of photovoltaic panels on meteorology and air quality in Central California. We investigate the effect of locating a 1.0 Giga watt solar plant in different locations and the effect of distributed rooftop photovoltaic panels in major Californian cities, with a focus on peak and 8-hour average ozone and 24-hour average PM2.5.

  8. Impact of various emission control schemes on air quality using WRF-Chem during APEC China 2014

    Science.gov (United States)

    Guo, Jianping; He, Jing; Liu, Hongli; Miao, Yucong; Liu, Huan; Zhai, Panmao

    2016-09-01

    Emission control measures have been implemented to make air quality good enough for Asia-Pacific Economic Cooperation (APEC) China 2014, which provides us with an ideal test-bed to determine how these measures affect air quality in Beijing and surrounding areas. Based on hourly observations at eight monitoring sites of Beijing, the concentrations of other primary atmospheric pollutants during APEC were found to have significantly lower magnitudes than those before APEC, with the exception of a higher O3 concentration. Overall, WRF/Chem reproduced the observed time series of PM2.5, PM10, NO2, CO, and O3 notably well. To investigate the impact of emission control measures on air quality on both local and regional scales, four emission control schemes were developed according to the locations where emission reduction had taken place; the corresponding simulations were subsequently run separately. Scheme S2 (emission control implemented in Beijing) resulted in reductions of 22%, 24%, 10% and 22% for the concentrations of PM2.5, PM10, NO2 and CO, respectively, compared with 14%, 14%, 8%, and 13% for scheme S3 (emission controls implemented from outside of Beijing). This finding indicates that the local emission reduction in Beijing contributes more to the improved air quality in Beijing during APEC China 2014 than does the emission reduction from outside of Beijing. In terms of the impact on the regional scale, the real emission control scheme led to significant reduction of PM2.5 throughout the whole domain. Although the regional impact cannot be completely ignored, both emission reduction measures implemented in Beijing and those implemented outside of Beijing favor greater reduction in PM2.5 in the domains where measurements are presumably taken, as compared with other domains. Therefore, to improve the air quality in Beijing, more coordinated efforts should be made, particularly in the aspect of more stringent reduction and control strategies on pollutant emission

  9. Impact of operating wood-burning fireplace ovens on indoor air quality.

    Science.gov (United States)

    Salthammer, Tunga; Schripp, Tobias; Wientzek, Sebastian; Wensing, Michael

    2014-05-01

    The use of combustion heat sources like wood-burning fireplaces has regained popularity in the past years due to increasing energy costs. While the outdoor emissions from wood ovens are strictly regulated in Germany, the indoor release of combustion products is rarely considered. Seven wood burning fireplaces were tested in private homes between November 2012 and March 2013. The indoor air quality was monitored before, during and after operation. The following parameters were measured: ultra-fine particles (5.6-560 nm), fine particles (0.3-20 μm), PM2.5, NOx, CO, CO2, formaldehyde, acetaldehyde, volatile organic compounds (VOCs) and benzo[a]pyrene (BaP). Most ovens were significant sources of particulate matter. In some cases, an increase of benzene and BaP concentrations was observed in the indoor air. The results illustrate that wood-burning fireplaces are potential sources of indoor air contaminants, especially ultra-fine particles. Under the aspect of lowering indoor air exchange rates and increasing the use of fuels with a net zero-carbon footprint, indoor combustion sources are an important topic for the future. With regards to consumer safety, product development and inspection should consider indoor air quality in addition to the present fire protection requirements. PMID:24364889

  10. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    International Nuclear Information System (INIS)

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K+ as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM2.5 concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM2.5 in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.02013;16.8% and 4.02013;19.0% of PM2.5 concentrations in Xinken and Guangzhou downtown, respectively. (Author)

  11. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    Science.gov (United States)

    Wang, Qiaoqiao; Shao, Min; Liu, Ying; William, Kuster; Paul, Goldan; Li, Xiaohua; Liu, Yuan; Lu, Sihua

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K + as a tracer could result in bias because of the existence of other K + sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM2.5 concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM2.5 in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.0-16.8% and 4.0-19.0% of PM2.5 concentrations in Xinken and Guangzhou downtown, respectively.

  12. Spatial Air Quality Impacts of Increased Natural Gas Development and Use in Texas

    Science.gov (United States)

    Allen, D.; Pacsi, A. P.

    2013-12-01

    Compared to coal-fired power plants on a per MWh basis, natural-gas electricity generators in the grid of the Electricity Reliability Council of Texas (ERCOT) emit substantially less nitrogen oxides (NOx) and sulfur dioxide (SO2), which are precursors for the formation of ozone (O3) and fine particulate matter (PM2.5). In addition, several life-cycle assessments have concluded that the development and use of shale gas resources will likely lead to air quality benefits, despite emissions associated with natural gas production, due to changes in fuel utilization in the electricity generation sector. The formation of ozone and PM2.5 is non-linear, however, and depends on spatial and temporal patterns associated with the precursor emissions. This study used Texas as a case-study for the changes in regional ozone and PM2.5 concentrations associated with natural gas production and use in electricity generation in the state. Texas makes a compelling case study since it was among the first states with large-scale shale gas production with horizontal drilling and hydraulic fracturing technologies, since it has a self-contained electric grid (ERCOT), and since it includes several regions which do not currently meet Federal standards for ozone. This study utilized an optimal power flow model for electricity generation in ERCOT, coupled with a regional photochemical model to estimate the ozone and PM2.5 impacts of changes to natural gas production and use in the state. The utilization of natural gas is highly dependent on the relative price of natural gas compared to coal. Thus, the amount of natural gas consumed in power generation in ERCOT was estimated for a range of prices from 1.89-7.74, which have occurred in Texas since 2006. Sensitivity scenarios in which natural gas production emissions in the Barnett Shale were raised or lowered depending on demand for the fuel in the electricity generation sector were also examined. Overall results indicate that regional ozone and

  13. Transportation and air quality

    International Nuclear Information System (INIS)

    In the greater Vancouver regional district (GVRD), some 80% of the annual production of 600,000 tonnes of air pollutants come from motor vehicles. Three critical air quality issues in the GVRD are discussed: local air pollution, ozone layer depletion, and greenhouse gas emissions, all of which are fundamentally linked to transportation. Overall air quality in the GVRD has been judged acceptable by current federal standards, but ground-level ozone has exceeded maximum tolerable levels at some locations and concentrations of suspended particulates are above maximum acceptable levels. Serious deterioration in air quality has been predicted unless a concerted effort is made to manage air quality on an airshed-wide basis. The GVRD is developing Canada's first Air Management Plan with the goal of halving atmospheric emissions by 2000. GVRD transportation priorities stress public transit, walking, cycling, car pooling, and reducing of travel demand; however, the viability of such strategies depends on decisions made outside the transportation sector. Restricted authority and jurisdiction also hinder GVRD goals; the regional level of government has no authority over highways or transit and only has authority for pollution control in some parts of the Fraser Valley. Airshed quality management, using the Los Angeles example, is seen as a possible direction for future GVRD policymaking in the transportation sector. A single regional planning agency with responsibility for transportation, land use, and air quality management appears as the best option for an integrated approach to solve multiple problems. 19 refs

  14. Impact of an improved Cuban emissions inventory on air quality simulations

    Science.gov (United States)

    Sanchez Gacita, M.; Alonso, M. F.; Longo, K. M.; de Freitas, S. R.

    2010-12-01

    The energy sector in the Central America and Caribbean regions is primarily fossil fuel based and one of the major sources of air pollution in the region. In Cuba, energy production is responsible for 99% of SO2 emissions, 98% of NOX and 94% of CO, with emissions in 2000 of 588.59 Gg, 149.57 Gg and 536.42 Gg, respectively, according to the Cuban National Inventory - CNI. Electric power generation plants, the most important sub-sector, are highlighted as point sources of high emissions, in particular, SO2. Global inventories are shown to be inaccurate for Cuba. RETRO has non-zero data for just one cell, over the city of Havana. EDGAR has deficiencies in its geographical distribution, with no emissions over the city of Havana, and the distribution of emissions by sectors is unrealistic according to the CNI: for instance, in the case of SO2, it distributes emissions nearly equally between electricity generation and the remaining sectors, which is inaccurate. More importantly, emissions are overestimated, with the notable exception of SO2 and NMVOC. The most important reasons are the particularities of Cuba, including the extensive employ of fossil fuels with little refining and high sulfur content in energy production and industrial processes such as asphalt production, and the use of low efficiency technologies. This work presents an improved emissions inventory with CNI data and detailed emissions for all major power generation plants. The impact of this improvement was assessed through numerical air quality simulations of the transport and transformation of these emissions from a regional perspective, conducted with the CCATT-BRAMS 3D atmospheric chemical transport model, developed and maintained by INPE, Brazil. Boundary conditions were supplied by global model MOCAGE with chemistry scheme RELACS. Simulations with the new inventory were conducted with CATT-BRAMS using chemical mechanism RELACS, incorporated as part of this work, for two months (January and August

  15. Impact on the air quality in Córdoba México by sugar cane burning

    Science.gov (United States)

    de Jesús Figueroa, José; Mugica, Violeta; Millán, Fernando; Santiago, Naxieli; Torres, Miguel; Hernández, Francisco

    2016-04-01

    Mexico is the sixth larger producer of sugarcane in the world, and the City of Córdoba located in Veracruz, Mexico is surrounded by 13 sugar mills and hundreds of hectares of sugarcane fields. Nevertheless, large plumes of smoke are observed due to the burning of sugarcane fields with the purpose to make easy the manual harvest, protecting the workers from leaves, insects and snakes. In addition, after harvest, straw and other wastes are burned to prepare the land. The air pollution has an important impact to the health of inhabitants due to the presence of toxics such as polycyclic aromatic hydrocarbons, but also has an impact to global warming since has been published that black carbon emitted due to incomplete combustion has a high warming potency and that is the second climatic forcer after CO2. In order to determine the impact of these agriculture practices, a monitoring campaign of PM2.5 was carried out every six days from April to August 2015 in the City of Córdoba and a rural place close to the fields. Particle concentrations were determined and organic and black carbon were analyzed with thermo-optic equipment (TOT-Niosh, Sunset Lab) and an ethalometer (Sootscaner). In addition the concentration levels of 17 polycyclic aromatic hydrocarbons (PAHs) were measured using GC-MS. PM2.5 average concentrations during harvesting in the urban and the rural zone were 138.3±43.6 μg/m3 and 147.4±27.3 μg/m3 respectively, whereas the concentrations during the no-harvesting period were 63.7±7.6 μg/m3 and 44.9±7.0 μg/m3 for the same places, showing that during harvesting the PM2.5 concentrations increase up to 3 times presenting most of the days bad air quality. The sum of PAHs in the urban and the rural locations were 3.36±0.72 ng/m3 and 1.58±0.49 ng/m3 during harvesting; these values are 43% and 54% greater than during the no-harvesting period. The most abundant PAHs were in all cases indene[1,2,3-c,d]pyrene, benzo[b]fluoranthene, benzo[a]pyrene, and benzo

  16. Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    The air quality in Danish cities has been monitored continuously since 1982 within the Danish Air Quality (LMP) network. The aim has been to follow the concentration levels of toxic pollutants in the urban atmosphere and to provide the necessary knowledge to assess the trends, to perform source...... apportionment, and to evaluate the chemical reactions and the dispersion of the pollutants in the atmosphere. In 2002 the air quality was measured in four Danish cities and at two background sites. NO2 and PM10 were at several stations found in concentrations above the new EU limit values, which the Member...

  17. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    OpenAIRE

    Xie, Y.; F. Paulot; W. P. L. Carter; C. G. Nolte; Luecken, D. J.; W. T. Hutzell; Wennberg, P. O.; Cohen, R. C.; Pinder, R. W.

    2013-01-01

    The CMAQ (Community Multiscale Air Quality) us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation) 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NOx recycling rates. We incorporate recent advances in isoprene oxidation chemistry into...

  18. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    OpenAIRE

    Xie, Y.; W. P. L. Carter; C. G. Nolte; Luecken, D. J.; W. T. Hutzell; Wennberg, P. O.; Cohen, R. C.; Pinder, R. W.

    2013-01-01

    The CMAQ (Community Multiscale Air Quality) us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation) 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NO_x recycling rates. We incorporate recent advances in isoprene oxidation chemistry int...

  19. Impact of HONO sources on the performance of mesoscale air quality models

    OpenAIRE

    Gonçalves Ageitos, María; Dabdubd, D.; Chang, W L; Jorba Casellas, Oriol; Baldasano Recio, José María

    2012-01-01

    Nitrous acid (HONO) photolysis constitutes a primary source of OH in the early morning, which leads to changes in model gas-phase and particulate matter concentrations. However, state-of-the-art models of chemical mechanisms share a common representation of gas-phase chemistry leading to HONO that fails in reproducing the observed profiles. Hence, there is a growing interest in improving the definition of additional HONO sources within air quality models, i.e. direct emissions or ...

  20. Impacts of aircraft emissions on the air quality near the ground

    OpenAIRE

    Lee, H; S. C. Olsen; Wuebbles, D. J.; D. Youn

    2013-01-01

    The continuing increase in demand for commercial aviation transport raises questions about the effects of resulting emissions on the environment. The purpose of this study is to investigate, using a global chemistry transport model, to what extent aviation emissions outside the boundary layer influence air quality in the boundary layer. The effects of current levels of aircraft emissions were studied through comparison of multiple simulations allowing for the separated effects of aviation emi...

  1. Impacts of aircraft emissions on the air quality near the ground

    OpenAIRE

    Lee, H; S. C. Olsen; Wuebbles, D. J.; D. Youn

    2013-01-01

    The continuing increase in demand for commercial aviation transport raises questions about the effects of resulting emissions on the environment. The purpose of this study is to investigate, using a global chemistry transport model, to what extent aviation emissions outside the boundary layer influence air quality in the boundary layer. The large-scale effects of current levels of aircraft emissions were studied through comparison of multiple simulations allowing for the separated effects of ...

  2. Impacts of aircraft emissions on the air quality near the ground

    OpenAIRE

    Lee, H; S. C. Olsen; Wuebbles, D. J.; D. Youn

    2013-01-01

    The continuing increase in demand for commercial aviation transport raises questions about the effects of resulting emissions on the environment. The purpose of this study is to investigate, using a global chemistry transport model, to what extent aviation emissions outside the boundary layer influence air quality in the boundary layer. The large-scale effects of current levels of aircraft emissions were studied through comparison of multiple simulations allowing for the sep...

  3. Impact of a new condensed toluene mechanism on air quality model predictions in the US

    OpenAIRE

    G. Sarwar; K. W. Appel; A. G. Carlton; Mathur, R.; K. Schere; Zhang, R; MAJEED, M.A.

    2011-01-01

    A new condensed toluene mechanism is incorporated into the Community Multiscale Air Quality Modeling system. Model simulations are performed using the CB05 chemical mechanism containing the existing (base) and the new toluene mechanism for the western and eastern US for a summer month. With current estimates of tropospheric emission burden, the new toluene mechanism increases monthly mean daily maximum 8-h ozone by 1.0–3.0 ppbv in Los Angeles, Portland, Seattle, Chicago, Cle...

  4. Impact of a new condensed toluene mechanism on air quality model predictions in the US

    OpenAIRE

    Sarwar, G.; K. W. Appel; A. G. Carlton; Mathur, R.; K. Schere; Zhang, R.; MAJEED, M.A.

    2011-01-01

    A new condensed toluene mechanism is incorporated into the Community Multiscale Air Quality Modeling system. Model simulations are performed using the CB05 chemical mechanism containing the existing (base) and the new toluene mechanism for the western and eastern US for a summer month. With current estimates of tropospheric emission burden, the new toluene mechanism increases monthly mean daily maximum 8-h ozone by 1.0–3.0 ppbv in Los Angeles, Portland, Seattle, Chicago, Cleveland, northeaste...

  5. Examining the impact of heterogeneous nitryl chloride production on air quality across the United States

    OpenAIRE

    Sarwar, G.; H. Simon; P. Bhave; Yarwood, G

    2012-01-01

    The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5) has typically been modeled as only producing nitric acid. However, recent field studies have confirmed that the presence of particulate chloride alters the reaction product to produce nitryl chloride (ClNO2) which undergoes photolysis to generate chlorine atoms and nitrogen dioxide (NO2). Both chlorine and NO2 affect atmospheric chemistry and air quality. We present an updated gas-phase chlorine mechanism that can b...

  6. Impact of a new condensed toluene mechanism on air quality model predictions in the US

    OpenAIRE

    Sarwar, G.; K. W. Appel; A. G. Carlton; Mathur, R.; K. Schere; Zhang, R.; MAJEED, M.A.

    2010-01-01

    A new condensed toluene mechanism is incorporated into the Community Multiscale Air Quality Modeling system. Model simulations are performed using the CB05 chemical mechanism containing the existing (base) and the new toluene mechanism for the western and eastern US for a summer month. With current estimates of tropospheric emission burden, the new toluene mechanism increases monthly mean daily maximum 8-h ozone by 1.0–3.0 ppbv in Los Angeles, Portland, Seattle, Chicago, Cleveland, northeaste...

  7. Impact of the New South Wales fires during October 2013 on regional air quality in eastern Australia

    OpenAIRE

    Rea, Géraldine; Paton-Walsh, Clare; Turquety, Solène; Cope, Martin; Griffith, David

    2016-01-01

    Smoke plumes from fires contain atmospheric pollutants that can be transported to populated areas and effect regional air quality. In this paper, the characteristics and impact of the fire plumes from a major fire event that occurred in October 2013 (17–26) in the New South Wales (NSW) in Australia, near the populated areas of Sydney and Wollongong, are studied. Measurements from the Fourier Transform InfraRed (FTIR) spectrometer located at the University of Wollongong allowed a calculation o...

  8. Transportation and Air Quality

    Science.gov (United States)

    ... factors research. - Modeling & Inventories - Testing & Measuring Emissions - Clean Automotive Technologies - Emission Factors Research This page is maintained by EPA's Office of Transportation and Air Quality (OTAQ) . For more: About Us | Get E-mail ...

  9. Regional Air Quality Data

    Data.gov (United States)

    U.S. Environmental Protection Agency — This asset provides data on regional air quality, including trace level SO2, nitric acid, ozone, carbon monoxide, and NOy; and particulate sulfate, nitrate, and...

  10. Introduction to Indoor Air Quality

    Science.gov (United States)

    ... US Environmental Protection Agency Search Search Indoor Air Quality (IAQ) Share Facebook Twitter Google+ Pinterest Contact Us ... Indoor Air Quality An Introduction to Indoor Air Quality IAQ & Health Causes of IAQ Problems Identifying IAQ ...

  11. Impacts of aircraft emissions on the air quality near the ground

    Directory of Open Access Journals (Sweden)

    H. Lee

    2013-06-01

    Full Text Available The continuing increase in demand for commercial aviation transport raises questions about the effects of resulting emissions on the environment. The purpose of this study is to investigate, using a global chemistry transport model, to what extent aviation emissions outside the boundary layer influence air quality in the boundary layer. The large-scale effects of current levels of aircraft emissions were studied through comparison of multiple simulations allowing for the separated effects of aviation emissions occurring in the low, middle and upper troposphere. We show that emissions near cruise altitudes (9–11 km in altitude rather than emissions during landing and take-off are responsible for most of the total odd-nitrogen (NOy, ozone (O3 and aerosol perturbations near the ground with a noticeable seasonal difference. Overall, the perturbations of these species are smaller than 1 ppb even in winter when the perturbations are greater than in summer. Based on the widely used air quality standards and uncertainty of state-of-the-art models, we conclude that aviation-induced perturbations have a negligible effect on air quality even in areas with heavy air traffic. Aviation emissions lead to a less than 1% aerosol enhancement in the boundary layer due to a slight increase in ammonium nitrate (NH4NO3 during cold seasons and a statistically insignificant aerosol perturbation in summer. In addition, statistical analysis using probability density functions, Hellinger distance, and p value indicate that aviation emissions outside the boundary layer do not affect the occurrence of extremely high aerosol concentrations in the boundary layer. An additional sensitivity simulation assuming the doubling of surface ammonia emissions demonstrates that the aviation induced aerosol increase near the ground is highly dependent on background ammonia concentrations whose current range of uncertainty is large.

  12. Impacts of aircraft emissions on the air quality near the ground

    Directory of Open Access Journals (Sweden)

    H. Lee

    2013-01-01

    Full Text Available The continuing increase in demand for commercial aviation transport raises questions about the effects of resulting emissions on the environment. The purpose of this study is to investigate, using a global chemistry transport model, to what extent aviation emissions outside the boundary layer influence air quality in the boundary layer. The effects of current levels of aircraft emissions were studied through comparison of multiple simulations allowing for the separated effects of aviation emissions occurring in the low, middle and upper troposphere. We show that emissions near cruise altitudes rather than emissions during landing and take-off are responsible for most of the total odd-nitrogen (NOy, ozone (O3 and aerosol perturbations near the ground with a noticeable seasonal difference. Overall, the perturbations of these species are smaller than 1 ppb even in winter when the perturbations are greater than in summer. Based on the widely used air quality standards and uncertainty of state-of-the-art models, we conclude that aviation-induced perturbations have a negligible effect on air quality even in areas with heavy air traffic. Aviation emissions lead to a less than 1% aerosol enhancement in the boundary layer due to a slight increase in ammonium nitrate (NH4NO3 during cold seasons and a statistically insignificant aerosol perturbation in summer. In addition, statistical analysis using probability density functions, Hellinger distance, and p-value indicate that aviation emissions outside the boundary layer do not affect the occurrence of extremely high aerosol concentrations in the boundary layer. An additional sensitivity simulation assuming the doubling of surface ammonia emissions demonstrates that the aviation induced aerosol increase near the ground is highly dependent on background ammonia concentrations whose current range of uncertainty is large.

  13. Impact of transpacific aerosol on air quality over the United States: A perspective from aerosol-cloud-radiation interactions

    Science.gov (United States)

    Tao, Zhining; Yu, Hongbin; Chin, Mian

    2016-01-01

    Observations have well established that aerosols from various sources in Asia, Europe, and Africa can travel across the Pacific and reach the contiguous United States (U.S.) at least on episodic bases throughout a year, with a maximum import in spring. The imported aerosol not only can serve as an additional source to regional air pollution (e.g., direct input), but also can influence regional air quality through the aerosol-cloud-radiation (ACR) interactions that change local and regional meteorology. This study assessed impacts of the transpacific aerosol on air quality, focusing on surface ozone and PM2.5, over the U.S. using the NASA Unified Weather Research Forecast model. Based on the results of 3-month (April to June of 2010) simulations, the impact of direct input (as an additional source) of transpacific aerosol caused an increase of surface PM2.5 concentration by approximately 1.5 μg m-3 over the west coast and about 0.5 μg m-3 over the east coast of the U.S. By influencing key meteorological processes through the ACR interactions, the transpacific aerosol exerted a significant effect on both surface PM2.5 (±6 μg m-3) and ozone (±12 ppbv) over the central and eastern U.S. This suggests that the transpacific transport of aerosol could either improve or deteriorate local air quality and complicate local effort toward the compliance with the U.S. National Ambient Air Quality Standards.

  14. Aerosol climate effects and air quality impacts from 1980 to 2030

    International Nuclear Information System (INIS)

    We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and, additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 W m-2 and the total aerosol forcing decreases from -0.10 to -0.94 W m-2 (AIE decreases from -0.13 to -0.68 W m-2) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 W m-2), but the magnitude decreases (-0.3 W m-2) considerably for the future scenario. Over Asia, we evaluate the role of biofuel- and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of 2) in biofuel- and transport-based emissions for 2030 A1B over Asia. Projected changes from present day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are sensitive to emissions used. Uncertainty in present-day emissions suggests that future

  15. Impacts of residential heating intervention measures on air quality and progress towards targets in Christchurch and Timaru, New Zealand

    Science.gov (United States)

    Scott, Angelique J.; Scarrott, Carl

    2011-06-01

    Elevated wintertime particulate concentrations in the New Zealand cities of Christchurch and Timaru are mostly attributed to the burning of wood and coal for residential heating. A carrot-and-stick approach was adopted for managing air quality in Christchurch, where strict intervention measures were introduced together with a residential heater replacement programme to encourage householders to change to cleaner forms of heating. A similar approach was only recently implemented for Timaru. This paper presents the results of a partial accountability analysis, where the impact of these measures on the target source, PM 10 emissions, and PM 10 concentrations are quantified. A statistical model was developed to estimate trends in the concentrations, which were tested for significance after accounting for meteorological effects, and to estimate the probability of meeting air quality targets. Results for Christchurch and Timaru are compared to illustrate the impacts of differing levels of intervention on air quality. In Christchurch, approximately 34,000 (76%) open fires and old solid fuel burners were replaced with cleaner heating technology from 2002 to 2009, and total open fires and solid fuel burner numbers decreased by 45%. Over the same time period, estimated PM 10 emissions reduced by 71% and PM 10 concentrations by 52% (maxima), 36% (winter mean), 26% (winter median) and 41% (meteorology-adjusted winter means). In Timaru, just 3000 (50%) open fires and old solid fuel burners were replaced from 2001 to 2008, with total open fire and solid fuel burner numbers reduced by 24%. PM 10 emissions declined by 32%, with low reductions in the PM 10 concentrations (maxima decreased by 7%, winter means by 11% and winter medians by 3%). These findings, supported by the results of the meteorology corrected trend analysis for Christchurch, strongly indicate that the combination of stringent intervention measures and financial incentives has led to substantial air quality

  16. Air quality impacts of European wildfire emissions in a changing climate

    Science.gov (United States)

    Knorr, Wolfgang; Dentener, Frank; Hantson, Stijn; Jiang, Leiwen; Klimont, Zbigniew; Arneth, Almut

    2016-05-01

    Wildfires are not only a threat to human property and a vital element of many ecosystems, but also an important source of air pollution. In this study, we first review the available evidence for a past or possible future climate-driven increase in wildfire emissions in Europe. We then introduce an ensemble of model simulations with a coupled wildfire-dynamic-ecosystem model, which we combine with published spatial maps of both wildfire and anthropogenic emissions of several major air pollutants to arrive at air pollutant emission projections for several time slices during the 21st century. The results indicate moderate wildfire-driven emission increases until 2050, but there is a possibility of large increases until the last decades of this century at high levels of climate change. We identify southern and north-eastern Europe as potential areas where wildfires may surpass anthropogenic pollution sources during the summer months. Under a scenario of high levels of climate change (Representative Concentration Pathway, RCP, 8.5), emissions from wildfires in central and northern Portugal and possibly southern Italy and along the west coast of the Balkan peninsula are projected to reach levels that could affect annual mean particulate matter concentrations enough to be relevant for meeting WHO air quality targets.

  17. Dangerous waste incineration and its impact on air quality. Case study: the incinerator SC Mondeco SRL Suceava

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2015-03-01

    Full Text Available Dangerous waste, such as oil residues, pesticides, lacquers, stains, glues, organic solvents, hospital and food industry residues represent a major risk for all components of the environment (water, air, earth, soil, flora, fauna, people as well. Consequently, their incineration with high-performance burning installations lessens the impact on the environment, especially on the air quality, and it gives the possibility to recuperate the warmth of the incineration. This research presents a representative technique of incineration of dangerous waste at S.C. Mondeco S.R.L. Suceava, which runs according to the European standards, located in the industrial zone of Suceava, on the Suceava river valley Suceava. Also it is analysed the impact of this unit on the quality of nearby air. Moreover, not only the concentrations of gases and powders during the action of the incineration process (paramaters that are continuously monitored by highly methods are analysed, but also here are described the dispersions of those pollutants in the air, taking into account the characteristics of the source and the meteorological parametres that are in the riverbed. 

  18. C-PORT: A Community-Scale Near-Source Air Quality System to Assess Port-Related Air Quality Impacts

    Science.gov (United States)

    With increasing activity in global trade, there has been increased activity in transportation by rail, road and ships to move cargo. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission source at the ports may impact local air qu...

  19. Quantifying wildfire impacts on air quality during the ARCTAS-CARB campaign: Contribution of fire emissions to NAAQS exceedances

    Science.gov (United States)

    Hu, Y.; Odman, M. T.; Russell, A.; Zhang, X.; Kondragunta, S.; Yu, H.; Bian, H.; Munchak, L. A.; Mattoo, S.; Remer, L. A.

    2012-12-01

    Increasingly frequent wildfires in the US have led to imposed adverse impacts on rural and urban air quality. During severe wildfire episodes, exceedances of NAAQS for ozone and PM2.5 have occurred. The US EPA allows these "exceptional events" to be exempted from being used in the designation of an area exceeding NAAQS. However, how much the wildfires contribute to elevated ozone and PM2.5 observations are poorly understood and not readily quantified. For example, the northern California wildfires of summer 2008 are suspected of causing severe air pollution in the urban areas in California. Here we employed a state of art air quality model - CMAQ equipped with the sensitivity analysis tool DDM-3D - to quantify the wildfire emissions' contribution to the exceedances of NAAQS during the 2008 summer northern California wildfires period. We simulated the air quality impacts of the 2008 northern California wildfires using CMAQ, equipped with a new SOA module including the multi-generational oxidation process. The simulation covers the period of June 15 through July 14, 2008. Three nesting grids are used with the 36-km grid covering the CONUS, the 12-km grid covering California and the 4-km grid covering most metro areas in California. All the three grids have 34 vertical layers extending to ~16km above the ground with the first layer ~18m thick. We evaluate model performance by examining ozone and PM2.5 as well as other gaseous and PM components against observations from multiple platforms: surface, airborne and space. The June-July 2008 ARCTAS-CARB campaign, which was conducted in the same period, has additional airborne data collected in flights chasing the wildfire plumes, along with the regular surface network measurements and satellite observations, providing an extensive database to evaluate model deficiencies and improve model performance in capturing the wildfire impacts on air quality. Further, having these various data allows inter-comparison of the relative

  20. 32 CFR 989.30 - Air quality.

    Science.gov (United States)

    2010-07-01

    ... been implemented by regulation, 40 CFR 93, Subpart B. All EIAP documents must address applicable... 32 National Defense 6 2010-07-01 2010-07-01 false Air quality. 989.30 Section 989.30 National... ENVIRONMENTAL IMPACT ANALYSIS PROCESS (EIAP) § 989.30 Air quality. Section 176(c) of the Clean Air...

  1. Impact assessment of PM10 cement plants emissions on urban air quality using the SCIPUFF dispersion model.

    Science.gov (United States)

    Leone, Vincenzo; Cervone, Guido; Iovino, Pasquale

    2016-09-01

    The Second-order Closure Integrated Puff (SCIPUFF) model was used to study the impact on urban air quality caused by two cement plants emissions located near the city of Caserta, Italy, during the entire year of 2015. The simulated and observed PM10 concentrations were compared using three monitoring stations located in urban and sub-urban area of Caserta city. Both simulated and observed concentrations are shown to be highest in winter, lower in autumn and spring and lowest in summer. Model results generally follow the pattern of the observed concentrations but have a systematic under-prediction of the concentration values. Measures of the bias, NMSE and RMSE indicate a good correlation between observed and estimated values. The SCIPUFF model data analysis suggest that the cement plants are major sources for the measured PM10 values and are responsible for the deterioration of the urban air quality in the city of Caserta. PMID:27485615

  2. The Impact of Improved Cloud Characterization in the Weather Research & Forecasting (WRF) Model on Air Quality Simulations

    Science.gov (United States)

    Pour Biazar, A.; McNider, R. T.; Doty, K.; Park, Y. H.; Khan, M. N.; Dornblaser, B.

    2013-12-01

    In air quality simulations, clouds have a significant role as they modulate photolysis rates, impact boundary-layer development, lead to deep vertical mixing of pollutants and precursors, and induce aqueous phase chemistry. Unfortunately, numerical meteorological models still have difficulty in creating clouds in the right place and time compared to observed clouds. This is especially the case when synoptic-scale forcing is weak, as often is the case during air pollution episodes in the Southeast United States. In turn, a poor representation of clouds impacts the photochemical model's ability in simulating the air quality. In the current activity the Geostationary Operational Environmental Satellite (GOES) derived cloud fields are assimilated within Weather Research and Forecasting (WRF) model to improve simulated clouds. A technique was developed to dynamically support cloud formation/dissipation within WRF based on GOES observations. Satellites provide the best observational platform for defining the formation and location of clouds. The basic assumption in the technique is that model clouds on average are associated with positive vertical motion and clear areas with negative vertical motion. Thus, the technique uses observations to identify model cloud errors, estimates a target vertical velocity and moisture to create/remove clouds, and adjust the flow field accordingly. The technique was implemented and tested in WRF for a month-long simulation during August 2006. The results show 7-10% improvement in model cloud simulation. The technique proved to be effective regardless of the convective parameterization scheme used. Furthermore, the impact of these improvements on air quality simulations was investigated. Preliminary results from this activity will be presented.

  3. Estimating the impact of air temperature and relative humidity change on the water quality of Lake Manzala, Egypt

    Directory of Open Access Journals (Sweden)

    Gehan A.H. Sallam

    2015-11-01

    Full Text Available By the late eighties the problem of climate change and its possible impacts had become an issue of global concern. Climate variables play an important role in controlling the water circulation and the water quality of lakes either as freshwater reservoirs, or as brackish lagoons. In Egypt, Lake Manzala is the largest and the most productive lake of the northern coastal lakes. In this study, continuous measurement data from the Real Time Water Quality Monitoring stations in Lake Manzala was statistically analyzed to determine the regional and seasonal variations of the selected water quality parameters in relation to changes in two climate variables: air temperature and relative humidity. Simple formulas are elaborated using the DataFit software to predict the selected water quality parameters of the Lake including Power of Hydrogen (pH, Dissolved Oxygen (DO, Electrical Conductivity (EC, Total Dissolved Solids (TDS, Turbidity, and Chlorophyll as a function of air temperature and relative humidity. It was revealed that there is a measured relation between air temperature and relative humidity and the pH, DO, EC and TDS parameters and there is no significant effect on the other two parameters: turbidity and chlorophyll.

  4. Land use changes and its impacts on air quality and atmospheric patterns

    Science.gov (United States)

    Freitas, E. D.; Mazzoli, C. R.; Martins, L. D.; Martins, J. A.; Carvalho, V.; Andrade, M.

    2013-05-01

    Possible modifications on atmospheric patterns and air quality caused by land use changes are discussed in this work. With the increasing interest in alternative energy sources, mainly due to the replacement of fossil fuels, large part of the Brazilian territory is being used for sugar cane cultivation. The resultant modifications in land use and some activities associated to this crop are studied with some detail through numerical modeling of the atmosphere. The same tool was applied to study the effect of surface type and emission sources over urban areas in the neighborhoods of the cultivated areas, in particular those located in the Metropolitan Area of Campinas, inside the state of São Paulo, Brazil. The main focus of this work was to identify some relationship between these two types of land use modification and its influence on the regional atmospheric circulation patterns and air quality over agricultural and urban areas affected by biomass burning and the traditional sources of pollutants, such as industries and vehicles. First, the effect of urban areas was analyzed and it was possible to identify typical patterns associated with urban heat islands, especially over the city of Campinas. In this region, air temperature differences up to 3 K were detected during night time. During the day, due to the atmospheric conditions of the studied period, this effect was not significant. Afterwards, the effect of sugar cane cultivated regions was discussed. The results show that the regions of sugar cane grow can significantly modify the surface energy fluxes, with direct consequences to the standards of local temperature and humidity and over nearby regions. Sensitivity tests were carried out during part of September, 2007, through the substitution of the sugar cane by a generic crop in the model, and show that during the day the cultivated areas can present temperatures up to 0,65 k higher than those in the case of the generic one. Throughout the dispersion module

  5. Impacts of residential heating intervention measures on air quality and progress towards targets in Christchurch and Timaru, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A.J.; Scarrott, C. [Environment Canterbury, Christchurch (New Zealand)

    2011-06-15

    Elevated wintertime particulate concentrations in the New Zealand cities of Christchurch and Timaru are mostly attributed to the burning of wood and coal for residential heating. A carrot-and-stick approach was adopted for managing air quality in Christchurch, where strict intervention measures were introduced together with a residential heater replacement programme to encourage householders to change to cleaner forms of heating. A similar approach was only recently implemented for Timaru. This paper presents the results of a partial accountability analysis, where the impact of these measures on the target source, PM10 emissions, and PM10, concentrations are quantified. A statistical model was developed to estimate trends in the concentrations, which were tested for significance after accounting for meteorological effects, and to estimate the probability of meeting air quality targets. Results for Christchurch and Timaru are compared to illustrate the impacts of differing levels of intervention on air quality. In Christchurch, approximately 34,000 (76%) open fires and old solid fuel burners were replaced with cleaner heating technology from 2002 to 2009, and total open fires and solid fuel burner numbers decreased by 45%. Over the same time period, estimated PM10 emissions reduced by 71% and PM10 concentrations by 52% (maxima), 36% (winter mean), 26% (winter median) and 41% (meteorology-adjusted winter means). In Timaru, just 3000 (50%) open fires and old solid fuel burners were replaced from 2001 to 2008, with total open fire and solid fuel burner numbers reduced by 24%. PM10 emissions declined by 32%, with low reductions in the PM10 concentrations (maxima decreased by 7%, winter means by 11% and winter medians by 3%). These findings indicate that the combination of stringent intervention measures and financial incentives has led to substantial air quality improvements in Christchurch.

  6. Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact

    Directory of Open Access Journals (Sweden)

    T. Wang

    2010-08-01

    Full Text Available This paper presents the first results of the measurements of trace gases and aerosols at three surface sites in and outside Beijing before and during the 2008 Olympics. The official air pollution index near the Olympic Stadium and the data from our nearby site revealed an obvious association between air quality and meteorology and different responses of secondary and primary pollutants to the control measures. Ambient concentrations of vehicle-related nitrogen oxides (NOx and volatile organic compounds (VOCs at an urban site dropped by 25% and 20–45% in the first two weeks after full control was put in place, but the levels of ozone, sulfate and nitrate in PM2.5 increased by 16%, 64%, 37%, respectively, compared to the period prior to the full control; wind data and back trajectories indicated the contribution of regional pollution from the North China Plain. Air quality (for both primary and secondary pollutants improved significantly during the Games, which were also associated with the changes in weather conditions (prolonged rainfall, decreased temperature, and more frequent air masses from clean regions. A comparison of the ozone data at three sites on eight ozone-pollution days, when the air masses were from the southeast-south-southwest sector, showed that regional pollution sources contributed >34–88% to the peak ozone concentrations at the urban site in Beijing. Regional sources also contributed significantly to the CO concentrations in urban Beijing. Ozone production efficiencies at two sites were low (~3 ppbv/ppbv, indicating that ozone formation was being controlled by VOCs. Compared with data collected in 2005 at a downwind site, the concentrations of ozone, sulfur dioxide (SO2, total sulfur (SO2+PM2.5 sulfate, carbon monoxide (CO, reactive aromatics (toluene and xylenes sharply decreased (by 8–64% in 2008, but no significant changes were observed for the concentrations of

  7. Impact on local air quality of the Danish landworks in the fixed link across Oeresund

    International Nuclear Information System (INIS)

    The combined bridge and tunnel link between Sweden and Denmark (the Oeresund Link) and the related land constructions are expected to be in operation around the turn of the century. This new link across the Oeresund and the island Amager may result in significant changes in traffic pattern and traffic intensity - and therefore changes in air quality in some areas can not be excluded. An investigation initiated in 1994 on the Danish side of the link comprises monitoring of present air pollution at the Airport Motorway and model evaluations of future pollution levels at the motorway and in six street canyons. For all locations the pollution levels are calculated for the present situation and for scenarios for the years 2000 and 2010 both with and without the fixed link. For the future scenarios and expected development of vehicle technology is taken into account. It appears that the general air quality in the area will not be worsen. Only for benzene there is a continued risk of violation of limit values; this may however be changed by planned emission restrictions. A special situation however, may arise near the apartment buildings 'Vinkelhusene'. Here it has been decided to cover about 700 m of the motorway, in order to reduce noise and to avoid a barrier effect. This will result in increased pollution levels near the tunnel exits. All calculations are performed with dispersion models developed at the National Environmental Research Institute and are based on traffic scenarios from a traffic model developed by Anders Nyvig Ltd. (au) 10 refs

  8. Siberian Biomass Burning Plumes Across the Pacific: Impact on Surface Air Quality in the Pacific Northwest

    Science.gov (United States)

    Jaffe, D.; Weiss-Penzias, P.; Dennison, J.; Bertschi, I.; Westphal, D.

    2003-12-01

    During the summer of 2003, we conducted ground and airborne observations of CO, O3 and aerosols in the Pacific Northwest. The airborne data is discussed by Bertschi and Jaffe. In this paper we discuss the surface data. Observations were made at the Cheeka Peak Observatory on the remote northwest tip of Washington state and we have supplemented this with data from the regional Puget Sound air quality network. In two cases we observed significant enhancements in surface CO, O3 and aerosols associated with the large Siberian biomass fires which occurred during the summer of 2003. The first episode occurred on June 2-3, 2003. During this period our aircraft observations and the NAAPS global model identified significant enhancements due to long range transport of emissions from Siberian fires and this was also seen at surface sites around the Puget Sound. In some locations the ozone enhancements were significant and may have contributed to a local air pollution episode two days later. In the second case, on August 4-5, our aircraft observations and the NAAPS global model again confirmed the presence of Siberian biomass burning emissions. This was seen at our Cheeka Peak site as a substantial elevation in CO and aerosols, but with a more modest enhancement in O3. During this period, aerosol concentrations were elevated to 10-15 ug/m3 (PM 2.5) around the Puget Sound. Our observations demonstrate that long range transport can occur during summer and that it can have a significant influence on surface air quality in the western U.S.

  9. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    Energy Technology Data Exchange (ETDEWEB)

    Qiaoqiao Wang; Min Shao; Ying Liu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China); Kuster, William; Goldan, Paul [Earth System Research Laboratory, U.S. Department of Commerce, Boulder, CO 80305, (United States); Xiaohua Li; Yuan Liu; Sihua Lu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China)

    2007-12-15

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K{sup +} as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM{sub 2.5} concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM{sub 2.5} in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.02013;16.8% and 4.02013;19.0% of PM{sub 2.5} concentrations in Xinken and Guangzhou downtown, respectively. (Author).

  10. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    Energy Technology Data Exchange (ETDEWEB)

    Qiaoqiao Wang; Min Shao; Ying Liu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China); Kuster, William; Goldan, Paul [Earth System Research Laboratory, U.S. Department of Commerce, Boulder, CO 80305, (United States); Xiaohua Li; Yuan Liu; Sihua Lu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China)

    2007-12-15

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K{sup +} as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM{sub 2.5} concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM{sub 2.5} in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.02013;16.8% and 4.02013;19.0% of PM{sub 2.5} concentrations in Xinken and Guangzhou downtown, respectively. (Author)

  11. Indoor air quality

    International Nuclear Information System (INIS)

    Indoor Air Quality is rapidly becoming a major environmental concern because a significant amount of people spend a substantial amount of time in a variety of different indoor environments. Health effects from indoor pollutants fall into two categories: those that are experienced immediately after exposure and those that do not show up until years later. They are: radon, formaldehyde, asbestos, lead and household organic chemicals. The authors presented a source-by-source look at the most common indoor air pollutants, their potential health effects, and ways to reduce their levels in the home. There are three basic strategies to improve indoor air quality: one method is source control, another is through ventilation improvements, and the third is the utilization of some sort of mechanical device such as air cleaners

  12. Up the stack : coal-fired electricity's toxic impact : an OCAA air quality report

    International Nuclear Information System (INIS)

    Ontario Power Generation (OPG) must report annually its releases and transfers of 268 chemicals to the federal National Pollutant Release Inventory (NPRI). Each OPG facility reports the amount of chemicals released to the air, land, water and injected under ground at the facility site. The facilities must also report the amount of chemicals that are transferred off-site for treatment, sewage, disposal, recycling or energy recovery. In 1999 and 2000, atmospheric releases from OPG's coal-fired plants accounted for a significant percentage of the total pollutants released for Ontario and Canada. OPG's facilities are often in the top 5 in Ontario and Canada for releases of various chemicals, including persistent toxic chemicals. In 1999, the Nanticoke coal-fired power plant on Lake Erie was ranked first in Canada for releases to the air. Data reported for the 1999 and 2000 reporting period for dioxins and furans, hexachlorobenzene, mercury, metals (chromium, nickel and arsenic), and acid gases such as hydrochloric acid, hydrogen fluoride, and sulphuric acid clearly indicates that OPG coal-fired plants are a leading source of air pollution in Canada and Ontario. The Ontario Clean Air Alliance suggests the data is sufficient to phase-out the use of coal for power generation in Ontario. It recommends conserving energy and replacing coal-fired power with renewable energy sources such as wind and water power. Converting coal facilities to high-efficiency natural gas units would also reduce the toxic impacts of OPG's coal-fired power plants. As an immediate first step, it was recommended that the government should ban non-emergency exports of coal-fired electricity during smog-alert periods in Ontario. 11 tabs

  13. Application of nonparametric regression and statistical testing to identify the impact of oil and natural gas development on local air quality

    Energy Technology Data Exchange (ETDEWEB)

    Pekney, Natalie J.; Cheng, Hanqi; Small, Mitchell J.

    2015-11-05

    Abstract: The objective of the current work was to develop a statistical method and associated tool to evaluate the impact of oil and natural gas exploration and production activities on local air quality.

  14. Good air quality in offices improves productivity

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2000-01-01

    quality. The impact on productivity justifies a much higher indoor air quality than the minimum levels prescribed in present standards and guidelines. One way of providing air of high quality for people to breathe, without involving excessive ventilation rates and energy use, is to provide "personalized...

  15. Air Quality Guide for Ozone

    Science.gov (United States)

    Local Air Quality Conditions Zip Code: State : My Current Location Air Quality Guide for Ozone Ground-level ozone is one of our nation’s most common air pollutants. Use the chart below to help reduce ...

  16. Air quality management planning (AQMP

    Directory of Open Access Journals (Sweden)

    Sivertsen Bjarne

    2012-01-01

    Full Text Available In most urban areas of the world, particulate matter (PM levels pose severe problems, addressed in several policy areas (air quality, climate change, and human health. PM presents multiple challenges due to the multitude of its sources, spanning many sectors of economic activity as well as nature, and due to the complexity of atmospheric processes involved in its transport and secondary formation. For the authorities, the goal is to assure minimal impacts of atmospheric PM levels, in practice represented by compliance with existing regulations and standards. This may be achieved through an air quality management plan (AQMP. In Northern America and in parts of Europe, comprehensive research programs have guided development of AQMP over the last forty years. This cumulated experience can be utilized by others who face the same problems, but have yet to develop their own substantial research base. The main purpose of the AQMP development process is to establish an effective and sound basis for planning and management of air quality in a selected area. This type of planning will ensure that significant sources of impacts are identified and controlled in a most cost-effective manner. The choice of tools, methods and input information is often dictated by their availability, and should be evaluated against current best practices. Important elements of the AQMP are the identification of sources and development of a complete emission inventory, the development and operation of an air quality monitoring programme, and the development and application of atmospheric dispersion models. Major task is to collect the necessary input data. The development of the AQMP will take into account: - Air Quality Management System (AQMS requirements; - Operational and functional structure requirements; - Source identification through emission inventories; - Source reduction alternatives, which may be implemented; - Mechanisms for facilitating interdepartmental

  17. A comparison of methods for the assessment of odor impacts on air quality: Field inspection (VDI 3940) and the air dispersion model CALPUFF

    Science.gov (United States)

    Ranzato, Laura; Barausse, Alberto; Mantovani, Alice; Pittarello, Alberto; Benzo, Maurizio; Palmeri, Luca

    2012-12-01

    Unpleasant odors are a major cause of public complaints concerning air quality and represent a growing social problem in industrialized countries. However, the assessment of odor pollution is still regarded as a difficult task, because olfactory nuisance can be caused by many different chemical compounds, often found in hard-to-detect concentrations, and the perception of odors is influenced by subjective thresholds; moreover, the impact of odor sources on air quality is mediated by complex atmospheric dispersion processes. The development of standardized assessment approaches to odor pollution and proper international regulatory tools are urgently needed. In particular, comparisons of the methodologies commonly used nowadays to assess odor impacts on air quality are required. Here, we assess the olfactory nuisance caused by an anaerobic treatment plant for municipal solid waste by means of two alternative techniques: the field inspection procedure and the atmospheric dispersion model CALPUFF. Our goal was to compare rigorously their estimates of odor nuisance, both qualitatively (spatial extent of odor impact) and quantitatively (intensity of odor nuisance). To define the impact of odors, we referred to the German standards, based on the frequency of odor episodes in terms of odor hours. We report a satisfying, although not perfect agreement between the estimates provided by the two techniques. For example, they assessed similar spatial extents of odor pollution, but different frequencies of odor episodes in locations where the odor nuisance was highest. The comparison highlights strengths and weaknesses for both approaches. CALPUFF is a cheaper methodology which can be used predictively, but fugitive emissions are difficult to model reliably, because of uncertainty regarding timing, location and emission rate. Field inspection takes into account the role of human perception, but unlike the model it does not always characterize precisely the extent of the odor

  18. Impacts of Stratospheric Ozone Change on Tropospheric Chemistry and Air Quality

    Science.gov (United States)

    Wu, S.; Zhang, H.

    2013-05-01

    The stratospheric ozone has decreased greatly since 1980 due to ozone depleting substances (ODSs). As a result of the implementation of the Montreal Protocol and its Amendments and Adjustments, stratospheric ozone is expected to recover towards its pre-1980 level in the coming decades. We examine the implications of stratospheric ozone recovery for the tropospheric chemistry and ozone air quality with a global chemical transport model (GEOS-Chem). Significant decreases in surface ozone photolysis rates due to stratospheric ozone recovery are simulated. Increases in ozone lifetime by up to 7% are calculated in the troposphere. The global average OH decreases by 1.74% and the global burden of tropospheric ozone increased by 0.78%. The perturbations to tropospheirc ozone and surface ozone show large seasonal and spatial variations. General increases in surface ozone are calculated for each season, with increases by up to 5% for some regions.

  19. Impact of a new condensed toluene mechanism on air quality model predictions in the US

    Directory of Open Access Journals (Sweden)

    G. Sarwar

    2010-12-01

    Full Text Available A new condensed toluene mechanism is incorporated into the Community Multiscale Air Quality Modeling system. Model simulations are performed using the CB05 chemical mechanism containing the existing (base and the new toluene mechanism for the western and eastern US for a summer month. With current estimates of tropospheric emission burden, the new toluene mechanism increases monthly mean daily maximum 8-h ozone by 1.0–3.0 ppbv in Los Angeles, Portland, Seattle, Chicago, Cleveland, northeastern US, and Detroit compared to that with the base toluene chemistry. It reduces model mean bias for ozone at elevated observed ozone mixing ratios. While the new mechanism increases predicted ozone, it does not enhance ozone production efficiency. Sensitivity study suggests that it can further enhance ozone if elevated toluene emissions are present. While changes in total fine particulate mass are small, predictions of in-cloud SOA increase substantially.

  20. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings

    Directory of Open Access Journals (Sweden)

    J. P. Zhang

    2012-06-01

    Full Text Available This study investigated the air pollution characteristics of synoptic-scale circulation in the Beijing megacity, and provided quantitative evaluation of the impacts of circulation patterns on air quality during the 2008 Beijing Summer Olympics. Nine weather circulation types (CTs were objectively identified over the North China region during 2000–2009, using obliquely rotated T-mode principal component analysis (PCA. The resulting CTs were examined in relation to the local meteorology, regional transport pathways, and air quality parameters, respectively. The FLEXPART-WRF model was used to calculate 48-h backward plume trajectories for each CT. Each CT was characterized with distinct local meteorology and air mass origin. CT 1 (high pressure to the west with a strong pressure gradient was characterized by a northwestern air mass origin, with the smallest local and southeasterly air mass sources, and CT 6 (high pressure to the northwest had air mass sources mostly from the north and east. On the contrary, CTs 5, 8, and 9 (weak pressure field, high pressure to the east, and low pressure to the northwest, respectively were characterized by southern and southeastern trajectories, which indicated a greater influence of high pollutant emission sources. In turn, poor air quality in Beijing (high loadings of PM10, BC, SO2, NO2, NOx, O3, AOD, and low visibility was associated with these CTs. Good air quality in Beijing was associated with CTs 1 and 6. The average visibilities (with ±1σ in Beijing for CTs 1 and 6 during 2000–2009 were 18.5 ± 8.3 km and 14.3 ± 8.5 km, respectively. In contrast, low visibility values of 6.0 ± 3.5 km, 6.6 ± 3.7 km, and 6.7 ± 3.6 km were found in CTs 5, 8, and 9, respectively. The mean concentrations of PM10 for CTs 1, 6, 5, 8, and 9 during 2005–2009 were 90.3 ± 76.3 μg m−3, 111.7 ± 89.6 μg m−3, 173.4 ± 105.8 μg m

  1. Chemical Transport and Reduced-Form Models for Assessing Air Quality Impacts of Current and Future Energy Scenarios

    Science.gov (United States)

    Adams, P. J.

    2015-12-01

    Though essential for informed decision-making, it is challenging to estimate the air quality and public health impacts associated with current and future energy generation scenarios because the analysis must address the complicated atmospheric processes that air pollutants undergo: emissions, dispersion, chemistry, and removal. Employing a chemical transport model (CTM) is the most rigorous way to address these atmospheric processes. However, CTMs are expensive from a computational standpoint and, therefore, beyond the reach of policy analysis for many types of problems. On the other hand, previously available reduced-form models used for policy analysis fall short of the rigor of CTMs and may lead to biased results. To address this gap, we developed the Estimating Air pollution Social Impacts Using Regression (EASIUR) method, which builds parameterizations that predict per-tonne social costs and intake fractions for pollutants emitted from any location in the United States. Derived from a large database of tagged CTM simulations, the EASIUR method predicts social costs almost indistinguishable from a full CTM but with negligible computational requirements. We found that the average mortality-related social costs from inorganic PM2.5 and its precursors in the United States are 150,000-180,000/t EC, 21,000-34,000/t SO2, 4,200-15,000/t NOx, and 29,000-85,000/t NH3. This talk will demonstrate examples of using both CTMs and reduced-form models for assessing air quality impacts associated with current energy production activities as well as a future deployment of carbon capture and sequestration.

  2. The Regional Impacts of Cooking and Heating Emissions on Ambient Air Quality and Disease Burden in China.

    Science.gov (United States)

    Archer-Nicholls, Scott; Carter, Ellison; Kumar, Rajesh; Xiao, Qingyang; Liu, Yang; Frostad, Joseph; Forouzanfar, Mohammad H; Cohen, Aaron; Brauer, Michael; Baumgartner, Jill; Wiedinmyer, Christine

    2016-09-01

    Exposure to air pollution is a major risk factor globally and particularly in Asia. A large portion of air pollutants result from residential combustion of solid biomass and coal fuel for cooking and heating. This study presents a regional modeling sensitivity analysis to estimate the impact of residential emissions from cooking and heating activities on the burden of disease at a provincial level in China. Model surface PM2.5 fields are shown to compare well when evaluated against surface air quality measurements. Scenarios run without residential sector and residential heating emissions are used in conjunction with the Global Burden of Disease 2013 framework to calculate the proportion of deaths and disability adjusted life years attributable to PM2.5 exposure from residential emissions. Overall, we estimate that 341 000 (306 000-370 000; 95% confidence interval) premature deaths in China are attributable to residential combustion emissions, approximately a third of the deaths attributable to all ambient PM2.5 pollution, with 159 000 (142 000-172 000) and 182 000 (163 000-197 000) premature deaths from heating and cooking emissions, respectively. Our findings emphasize the need to mitigate emissions from both residential heating and cooking sources to reduce the health impacts of ambient air pollution in China. PMID:27479733

  3. Impact on indoor air quality during burning of Pakistani coal briquettes

    International Nuclear Information System (INIS)

    A comparison was made of airborne emissions from combustion of new types of Pakistani coal briquettes and traditional fuels. A mud-lined Angethi stove was operated under the standard nominal conditions of burning 200 g charges of fuel inside a 12 m3 shed with a forced rate of air exchange of 14/hr. Coal was cold briquetted with lime, clay, and oxidant. Traditional fuels were wood, charcoal, and animal dung. Compared to raw coal, the amended coal gave fourfold reduced emission of respirable-size particles (RSP) while dramatically reducing overall SO2 release. Initial burning was restricted to the outer layers of the briquettes during which time reaction of SO2 with lime was incomplete and early emissions of SO2 were substantial. The measurements overall indicated that, with respect to CO, SO2, NOx, and RSP, substitution of amended coal briquettes for traditional fuels will not worsen indoor air quality during domestic cooking. The traditional fuels and coal briquettes emit elevated peak amounts of CO (100-250μL/L), SO2 (2-5 μL/L), and NOx (1-5 μL/L) in the early phase of volatiles burning with much reduced emissions in the later char-burning phase. Stove operators can substantially lower exposures by lighting the fuel outside and later moving the stove inside

  4. A modelling study of air quality impact of odd-even day traffic restriction scheme before, during and after the 2008 Beijing Olympic Games

    OpenAIRE

    Cai, H.; S. D. Xie

    2010-01-01

    Systematic air pollution control measures were designed and implemented to improve air quality for the 2008 Beijing Olympics. This study focuses on the evaluation of the air quality impacts of a short-term odd-even day traffic restriction scheme (TRS) implemented before, during and after the Games, based on modelling simulation by a well validated urban-scale air quality model. Concentration levels of CO, PM10, NO2 and O3 we...

  5. The environmental impact on air quality and exposure to carbon monoxide from charcoal production in southern Brazil.

    Science.gov (United States)

    Gomes, Gabriel Meneghetti Faé; Encarnação, Fábio

    2012-07-01

    Black wattle silviculture is an important activity in southern Brazil. Much of the wood is used in the production of charcoal and the pyrolysis products impacts on air quality. This paper estimates the level of atmospheric contamination from the production of charcoal in one region of Brazil. We describe a low-cost charcoal kiln that can capture condensable gases and we estimate the levels of exposure of kiln workers to carbon monoxide. The latter results indicated that exposure to carbon monoxide can be reduced from an average of 950 ppm to 907 ppm and the mass of gases reduced by 16.8%. PMID:22541721

  6. Elemental carbon as an indicator for evaluating the impact of traffic measures on air quality and health

    Science.gov (United States)

    Keuken, M. P.; Jonkers, S.; Zandveld, P.; Voogt, M.; Elshout van den, S.

    2012-12-01

    From 2005 to 2009 there was a 40% decrease in the number of days on which the European daily limit value of PM10 was exceeded at traffic locations in European cities. Yet, in many of these cities, air quality is still not in compliance with the European Air Quality Directive and additional traffic measures are planned. Our study shows that elemental carbon (EC) is a more appropriate indicator than PM2.5 and PM10 for evaluating the impact of traffic measures on air quality and health. The modelled improvement in EC concentration was translated in life years gained as a result of a traffic measure. This was investigated for a speed management zone on a motorway in the city of Rotterdam. Eighty-five per cent of those living within 400 m of the motorway gained 0-1 months of life expectancy and another 15% gained 1-3 months, depending on their distance from the motorway. In addition, EC was used to evaluate a low emission zone in Amsterdam, specifically for those living along inner-urban roads with intense traffic levels. The zone only restricts heavy duty vehicles with Euro emission class 0 to 2, Euro 3 older than eight years or more recent Euro 3 without diesel particulate filter. The results indicate a population-weighted, average gain of 0.2 months in life expectancy as compared with a maximum potential gain of 2.9 months. It is concluded that on motorways speed management is an effective measure, while a low emission zone as implemented in our case study, is less effective to reduce health effects of road traffic emissions. For inner-urban roads reduction of traffic volume seems the most effective traffic measure for improving air quality and health.

  7. Air Quality Monitoring Programme

    DEFF Research Database (Denmark)

    Kemp, K.; Palmgren, F.

    The Danish Air Quality Monitoring Programme (LMP IV) has been revised in accordance with the Framework Directive and the first three daughter directives of SO2, NOx/NO2, PM10, lead, benzene, CO and ozone. PM10 samplers are under installation and the installation will be completed during 2002...

  8. Indoor Air Quality

    DEFF Research Database (Denmark)

    Selman, Ayser Dawod; Heiselberg, Per

    Overall purpose of the research is to provide an overview of the relevance and importance of various defined Indoor Air Quality (IAQ) parameters in a European perspective. Based on the report it should be possible to prioritize which countries to target for further activities as well as it should...

  9. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings

    Directory of Open Access Journals (Sweden)

    J. P. Zhang

    2011-12-01

    Full Text Available This study investigated the air pollution characteristics of synoptic-scale circulation in the Beijing megacity, and provided holistic evaluation of the impacts of circulation patterns on air quality during the 2008 Beijing Summer Olympics. Nine weather circulation types (CTs were objectively identified over the North China region during 2000–2009, using obliquely rotated T-mode principal component analysis (PCA. The resulting CTs were examined in relation to the local meteorology, regional transport pathways, and air quality parameters, respectively. The FLEXPART-WRF model was used to calculate 48-h backward plume trajectories for each CT. Nine CTs were characterized, with distinct local meteorology and air mass origins. CT 1 (high to the west with a strong pressure gradient was characterized by a northwestern origin, with the smallest local and southeasterly air mass sources, and CT 6 (high to the northwest had air mass sources mostly from the north and east. In contrast, CTs 5, 8, and 9 (unique, high to the east, and low to the northwest, respectively were characterized by southern and southeastern trajectories, which indicated a greater influence of high pollutant emission sources. In turn, poor air quality in Beijing (high loadings of PM10, BC, SO2, NO2, O3, AOD, and low visibility was associated with these CTs. Good air quality in Beijing was associated with CTs 1 and 6. The average visibilities (with ±1 σ in Beijing for CTs 1 and 6 during 2000–2009 were 18.5 ± 8.3 km and 14.3 ± 8.5 km, respectively. In contrast, poor visibility values of 6.0 ± 3.5 km, 6.6 ± 3.7 km, and 6.7 ± 3.6 km were found in CTs 5, 8, and 9, respectively. The mean concentrations of PM10 for CTs 1, 6, 5, 8, and 9 during 2005–2009 were 90.3 ± 76.3 μg m−3, 111.7 ± 89.6 μg m−3, 173.4 ± 105.8 μg m−3, 158.4 ± 90.0 μg m−3, and 151.2 ± 93.1 μg m

  10. Indoor air quality

    International Nuclear Information System (INIS)

    Rising energy prices, among other factors, have generated an incentive to reduce ventilation rates and thereby reduce the cost of heating and cooling buildings. Reduced ventilation in buildings may significantly increase exposure to indoor air pollution and perhaps have adverse effects on occupant health and comfort. Preliminary findings suggest that reduced ventilation may adversely affect indoor air quality unless appropriate control strategies are undertaken. The strategies used to control indoor air pollution depend on the specific pollutant or class of pollutants encountered, and differ somewhat depending on whether the application is to an existing building or a new building under design and construction. Whenever possible, the first course of action is prevention or reduction of pollutant emissions at the source. In most buildings, control measures involve a combination of prevention, removal, and suppression. Common sources of indoor air pollution in buildings, the specific pollutants emitted by each source, the potential health effects, and possible control techniques are discussed

  11. Application of nonparametric regression and statistical testing to identify the impact of oil and natural gas development on local air quality

    Science.gov (United States)

    Cheng, Hanqi; Small, Mitchell J.; Pekney, Natalie J.

    2015-10-01

    The objective of the current work was to develop a statistical method and associated tool to evaluate the impact of oil and natural gas exploration and production activities on local air quality. Nonparametric regression of pollutant concentrations on wind direction was combined with bootstrap hypothesis testing to provide statistical inference regarding the existence of a local/regional air quality impact. The block bootstrap method was employed to address the effect of autocorrelation on test significance. The method was applied to short-term air monitoring data collected at three sites within Pennsylvania's Allegheny National Forest. All of the measured pollutant concentrations were well below the National Ambient Air Quality Standards, so the usual criteria and methods for data analysis were not sufficient. Using advanced directional analysis methods, test results were first applied to verify the existence of a regional impact at a background site. Next the impact of an oil field on local NOx and SO2 concentrations at a second monitoring site was identified after removal of the regional effect. Analysis of a third site also revealed air quality impacts from nearby areas with a high density of oil and gas wells. All results and conclusions were quantified in terms of statistical significance level for the associated inferences. The proposed method can be used to formulate hypotheses and verify conclusions regarding oil and gas well impacts on air quality and support better-informed decisions for their management and regulation.

  12. Impact of 2050 climate change on North American wildfire: consequences for ozone air quality

    Directory of Open Access Journals (Sweden)

    X. Yue

    2015-05-01

    Full Text Available We estimate future area burned in Alaskan and Canadian forest by the midcentury (2046–2065 based on the simulated meteorology from 13 climate models under the A1B scenario. We develop ecoregion-dependent regressions using observed relationships between annual total area burned and a suite of meteorological variables and fire weather indices, and apply these regressions to the simulated meteorology. We find that for Alaska and western Canada almost all models predict significant (p < 0.05 increases in area burned at the midcentury, with median values ranging from 150 to 390%, depending on the ecoregion. Such changes are attributed to the higher surface air temperatures and 500 hPa geopotential heights relative to present day, which together lead to favorable conditions for wildfire spread. Elsewhere the model predictions are not as robust. For the central and southern Canadian ecoregions, the models predict increases in area burned of 45–90%. Except for the Taiga Plain, where area burned decreases by 50%, no robust trends are found in northern Canada, due to the competing effects of hotter weather and wetter conditions there. Using the GEOS-Chem chemical transport model, we find that changes in wildfire emissions alone increase mean summertime surface ozone levels by 5 ppbv for Alaska, 3 ppbv for Canada, and 1 ppbv for the western US by the midcentury. In the northwestern US states, local wildfire emissions at midcentury enhance surface ozone by an average of 1 ppbv, while transport of boreal fire pollution further degrades ozone air quality by an additional 0.5 ppbv. The projected changes in wildfire activity increase daily summertime surface ozone above the 95th percentile by 1 ppbv in the northwestern US, 5 ppbv in the high latitudes of Canada, and 15 ppbv in Alaska, suggesting a greater frequency of pollution episodes in the future atmosphere.

  13. Air quality in the Industrial Heartland of Alberta, Canada and potential impacts on human health

    Science.gov (United States)

    Simpson, Isobel J.; Marrero, Josette E.; Batterman, Stuart; Meinardi, Simone; Barletta, Barbara; Blake, Donald R.

    2013-12-01

    The “Industrial Heartland” of Alberta is Canada's largest hydrocarbon processing center, with more than 40 major chemical, petrochemical, and oil and gas facilities. Emissions from these industries affect local air quality and human health. This paper characterizes ambient levels of 77 volatile organic compounds (VOCs) in the region using high-precision measurements collected in summer 2010. Remarkably strong enhancements of 43 VOCs were detected, and concentrations in the industrial plumes were often similar to or even higher than levels measured in some of the world's largest cities and industrial regions. For example maximum levels of propene and i-pentane exceeded 100 ppbv, and 1,3-butadiene, a known carcinogen, reached 27 ppbv. Major VOC sources included propene fractionation, diluent separation and bitumen processing. Emissions of the measured VOCs increased the hydroxyl radical reactivity (kOH), a measure of the potential to form downwind ozone, from 3.4 s-1 in background air to 62 s-1 in the most concentrated plumes. The plume value was comparable to polluted megacity values, and acetaldehyde, propene and 1,3-butadiene contributed over half of the plume kOH. Based on a 13-year record (1994-2006) at the county level, the incidence of male hematopoietic cancers (leukemia and non-Hodgkin lymphoma) was higher in communities closest to the Industrial Heartland compared to neighboring counties. While a causal association between these cancers and exposure to industrial emissions cannot be confirmed, this pattern and the elevated VOC levels warrant actions to reduce emissions of known carcinogens, including benzene and 1,3-butadiene.

  14. Atmospheric ammonia over China: emission estimates and impacts on air quality

    Science.gov (United States)

    Zhang, Lin; Zhao, Yuanhong; Chen, Youfan; Henze, Daven

    2016-04-01

    Ammonia (NH3) in the atmosphere is an important precursor of inorganic aerosols, and its deposition through wet and dry processes can cause adverse effects on ecosystems. The ammonia emissions over China are particularly large due to intensive agricultural activities, yet our current estimates of Chinese ammonia emissions and associated consequences on air quality are subject to large errors. Here we use the GEOS-Chem chemical transport model and its adjoint model to better quantify this issue. The TES satellite observations of ammonia concentrations and surface measurements of wet deposition fluxes are assimilated into the model to constrain the ammonia emissions over China. Optimized emissions show a strong seasonal variability with emissions in summer a factor of 3 higher than winter. We improve the bottom-up estimate of Chinese ammonia emissions from fertilizer use by using more practical feritilizer application rates for different crop types, which explains most of the discrepancies between our top-down estimates and prior emission estimates. We further use the GEOS-Chem adjoint at 0.25x0.3125 degree resolution to examine the sources contributing to the PM2.5 air pollution over North China. We show that wintertime PM2.5 over Beijing is largely contributed by residential and industrial sources, and ammonia emissions from agriculture activities. PM2.5 concentrations over North China are particularly sensitive to NH3 emissions in cold seasons due to strong nitrate formation. By converting shorted-lived nitric acid to aerosol nitrate, NH3 significantly promotes the regional transport influences of PM2.5 sources.

  15. Neighborhood-scale air quality impacts of emissions from motor vehicles and aircraft

    Science.gov (United States)

    Choi, Wonsik; Hu, Shishan; He, Meilu; Kozawa, Kathleen; Mara, Steve; Winer, Arthur M.; Paulson, Suzanne E.

    2013-12-01

    A mobile monitoring platform (MMP) was used to measure real-time air pollutant concentrations in different built environments of Boyle Heights (BH, a lower-income community enclosed by several freeways); Downtown Los Angeles (DTLA, adjacent to BH with taller buildings and surrounded by several freeways); and West Los Angeles (WLA, an affluent community traversed by two freeways) in summer afternoons of 2008 and 2011 (only for WLA). Significant inter-community and less significant but observable intra-community differences in traffic-related pollutant concentrations were observed both in the residential neighborhoods studied and on their arterial roadways between BH, DTLA, and WLA, particularly for ultrafine particles (UFP). HEV, defined as vehicles creating plumes with concentrations more than three standard deviations from the adjusted local baseline, were encountered during 6-13% of sampling time, during which they accounted for 17-55% of total UFP concentrations both on arterial roadways and in residential neighborhoods. If instead a single threshold value is used to define HEVs in all areas, HEV's were calculated to make larger contributions to UFP concentrations in BH than other communities by factors of 2-10 or more. Santa Monica Airport located in WLA appears to be a significant source for elevated UFP concentrations in nearby residential neighborhoods 80-400 m downwind. In the WLA area, we also showed, on a neighborhood scale, striking and immediate reductions in particulate pollution (˜70% reductions in both UFP and, somewhat surprisingly, PM2.5), corresponding to dramatic decreases in traffic densities during an I-405 closure event (“Carmageddon”) compared to non-closure Saturday levels. Although pollution reduction due to decreased traffic is not unexpected, this dramatic improvement in particulate pollution provides clear evidence air quality can be improved through strategies such as heavy-duty-diesel vehicle retrofits, earlier retirement of HEV

  16. Urban air quality in Europe

    International Nuclear Information System (INIS)

    This book provides an overview of air quality in urban environments in Europe, focusing on air pollutant emission sources and formation mechanisms, measurement and modeling strategies, and future perspectives. The emission sources described are biomass burning, vehicular traffic, industry and agriculture, but also African dust and long-range transport of pollutants across the European regions. The impact of these emission sources and processes on atmospheric particulate matter, ozone, nitrogen oxides and volatile and semi-volatile organic compounds is discussed and critical areas for particulate matter and nitrogen dioxide in Europe are identified. Finally, this volume presents future perspectives, mainly regarding upcoming air quality monitoring strategies, metrics of interest, such as submicron and nanoparticles, and indoor and outdoor exposure scenarios.

  17. Evaluation of biomass burning across North West Europe and its impact on air quality

    Science.gov (United States)

    Cordell, R. L.; Mazet, M.; Dechoux, C.; Hama, S. M. L.; Staelens, J.; Hofman, J.; Stroobants, C.; Roekens, E.; Kos, G. P. A.; Weijers, E. P.; Frumau, K. F. A.; Panteliadis, P.; Delaunay, T.; Wyche, K. P.; Monks, P. S.

    2016-09-01

    Atmospheric particulate pollution is a significant problem across the EU and there is concern that there may be an increasing contribution from biomass burning, driven by rising fuel prices and an increased interest in the use of renewable energy sources. This study was carried out to assess current levels of biomass burning and the contribution to total PM10 across five sites in North-West Europe; an area which is frequently affected by poor air quality. Biomass burning was quantified by the determination of levoglucosan concentrations from PM10 aerosol filters collected over a 14 month period in 2013/2014 and continued for a further 12 months at the UK site in Leicester. Levoglucosan levels indicated a distinct period of increased biomass combustion between November and March. Within this period monthly average concentrations ranged between 23 ± 9.7 and 283 ± 163 ng/m3, with Lille showing consistently higher levels than the sites in Belgium, the Netherlands and the UK. The estimated contribution to PM10 was, as expected, highest in the winter season where the season average percentage contribution was lowest in Wijk aan Zee at 2.7 ± 1.4% and again highest in Lille at 11.6 ± 3.8%, with a PM10 mass concentration from biomass that ranged from 0.56 μg/m3 in Leicester to 2.08 μg/m3 in Lille. Overall there was poor correlation between the levoglucosan concentrations measured at the different sites indicating that normally biomass burning would only affect atmospheric particulate pollution in the local area; however, there was evidence that extreme burning events such as the Easter fires traditionally held in parts of North-West Europe can have far wider ranging effects on air quality. Network validation measurements were also taken using a mobile monitoring station which visited the fixed sites to carry out concurrent collections of aerosol filters; the result of which demonstrated the reliability of both PM10 and levoglucosan measurements.

  18. Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact

    Directory of Open Access Journals (Sweden)

    T. Wang

    2010-05-01

    Full Text Available This paper presents the first results of the atmospheric measurements of trace gases and aerosols at three surface sites in and around Beijing before and during the 2008 Olympics. We focus on secondary pollutants including ozone, fine sulfate and nitrate, and the contribution of regional sources in summer 2008. The results reveal different responses of secondary pollutants to the control measures from primary pollutants. Ambient concentrations of vehicle-related nitrogen oxides (NOx and volatile organic compounds (VOCs at an urban site dropped by 25% and 20–45% in the first two weeks after full control was put in place, but the levels of ozone, sulfate and nitrate in PM2.5 increased by 16%, 64%, 37%, respectively, compared to the period prior to the full control; wind data and back trajectories indicated the contribution of regional pollution from the North China Plain. Air quality (for both primary and secondary pollutants improved significantly during the Games, which were also associated with the changes in weather conditions (prolonged rainfall, decreased temperature, and more frequent air masses from clean regions. A comparison of the ozone data at three sites on eight ozone-pollution days, when the air masses were from the southeast-south-southwest sector, showed that regional pollution sources contributed 34%–88% to the peak ozone concentrations in urban Beijing. Ozone production efficiencies at two sites were low (~3 ppbv/ppbv, indicating that ozone formation was being controlled by VOCs. Compared with data collected in 2005 at a downwind site, the concentrations of ozone, sulfur dioxide (SO2, total sulfur (SO2+PM2.5 sulfate, carbon monoxide (CO, reactive aromatics (toluene and xylenes sharply decreased (by 8–64% in 2008, but no significant changes were observed for the concentrations of PM2.5, fine sulfate, total odd reactive nitrogen (NOy, and longer

  19. The impact of weather changes on air quality and health in the United States in 1994–2012

    International Nuclear Information System (INIS)

    Air quality is heavily influenced by weather conditions. In this study, we assessed the impact of long-term weather changes on air quality and health in the US during 1994–2012. We quantified past weather-related increases, or ‘weather penalty’, in ozone (O3) and fine particulate matter (PM2.5), and thereafter estimated the associated excess deaths. Using statistical regression methods, we derived the weather penalty as the additional increases in air pollution relative to trends assuming constant weather conditions (i.e., weather-adjusted trends). During our study period, temperature increased and wind speed decreased in most US regions. Nationally, weather-related 8 h max O3 increases were 0.18 ppb per year (95% CI: 0.06, 0.31) in the warm season (May–October) and 0.07 ppb per year (95% CI: 0.02, 0.13) in the cold season (November–April). The weather penalties on O3 were relatively larger than PM2.5 weather penalties, which were 0.056 μgm−3 per year (95% CI: 0.016, 0.096) in warm months and 0.027 μgm−3 per year (95% CI: 0.010, 0.043) in cold months. Weather penalties on O3 and PM2.5 were associated with 290 (95% CI: 80, 510) and 770 (95% CI: 190, 1350) excess annual deaths, respectively. Over a 19-year period, this amounts to 20 300 excess deaths (5600 from O3, 14 700 from PM2.5) attributable to the weather penalty on air quality. (letter)

  20. Air quality indicators

    International Nuclear Information System (INIS)

    This report proposes and describes in detail several air quality indicators that may be used to describe population exposure. The suggested indicators account for temporal and spatial patterns of pollution and movements of individuals between different micro-environments. The Air Quality Indicator /AQI) should represent both the spatial and temporal aspects of pollution exposure that may have important effects on health. Two indicators are needed, the Population Air Quality Indicator and the Individual Air Quality Indicator. Mean concentrations, 98th percentile and maximum values are the traditional indicators for estimating exposure. the temporal variability of PM-10 and NO2, however, is here described by means of: 1) The rate of change of pollution as the difference between two consecutive hourly values and of 2) episodes, described in terms of number, duration and winter episode period, maximum concentration in the episode and integrated episode exposure (episode AOT50/100). The spatial variation of AQIs can be described in several ways, e.g.: 1) Concentrations in neighbouring grid squares can be compared as an indication of spatial variation and 2) point estimates can be compared to grid values for a description of variation within a grid. Both methods are presented here. A test of the representativity of static point estimates for pollution exposure is to compare them to an estimate of air pollution exposure accounting for movements between different locations, obtained using diaries. The ultimate aim of AQIs is to describe the population exposure to ambient pollution. This is done by estimating the number of people exposed using different characteristics of AQIs. The data used to describe these indicators originates from dispersion modelling of short-term air pollution concentrations in Oslo. Two series of data are used. One represents hour-for hour concentrations in the 1 km2 grid system covering the city of Oslo, winter 1994/95, calculated by the grid

  1. Impact of vehicular strike on particulate matter air quality: results from a natural intervention study in Kathmandu valley.

    Science.gov (United States)

    Fransen, Michelle; Pérodin, Joanne; Hada, Jayjeev; He, Xin; Sapkota, Amir

    2013-04-01

    In this natural intervention study, we evaluated the impact of vehicular shutdown during bandhas (general strikes) and meteorological parameters on ambient PM10 concentrations (particulate matter of aerodynamic diameter 10 μm or less) in the Kathmandu Valley, Nepal. Publicly available PM10 data (January 2003-February 2008) collected at six monitoring stations were combined with meteorological and bandh data. Linear mixed effects regression models were used to examine the effects of bandhas on PM10 concentrations. Lower PM10 concentrations were observed during the monsoon season compared to the winter, across all monitoring stations, with the largest reduction observed for the urban high traffic area (mean ± standard deviation: 290 ± 71 vs 143 ± 36 μg/m(3)). In the high traffic area, there was 36 μg/m(3) decrease in PM10 concentration during the bandh period compared to 2 days preceding the bandh, adjusting for season, rainfall, temperature, and windspeed. The improvements in air quality were short lived: PM10 concentration in the urban high traffic area increased by an average of 26 μg/m(3) within the first 2 days after the bandh. Our results suggest that controlling vehicular traffic can have an immediate impact in improving particulate matter air quality even among the most polluted cities in the world. PMID:23433338

  2. The impact of traffic-flow patterns on air quality in urban street canyons.

    Science.gov (United States)

    Thaker, Prashant; Gokhale, Sharad

    2016-01-01

    We investigated the effect of different urban traffic-flow patterns on pollutant dispersion in different winds in a real asymmetric street canyon. Free-flow traffic causes more turbulence in the canyon facilitating more dispersion and a reduction in pedestrian level concentration. The comparison of with and without a vehicle-induced-turbulence revealed that when winds were perpendicular, the free-flow traffic reduced the concentration by 73% on the windward side with a minor increase of 17% on the leeward side, whereas for parallel winds, it reduced the concentration by 51% and 29%. The congested-flow traffic increased the concentrations on the leeward side by 47% when winds were perpendicular posing a higher risk to health, whereas reduced it by 17-42% for parallel winds. The urban air quality and public health can, therefore, be improved by improving the traffic-flow patterns in street canyons as vehicle-induced turbulence has been shown to contribute significantly to dispersion. PMID:26412198

  3. The Impact of Climate Change on Air Quality and Respiratory Disease: Maryland/DC Metropolitan Area

    Science.gov (United States)

    Kaushiva, A.; Strong, S. B.; Babin, S. M.; Paxton, L. J.

    2011-12-01

    Ground level ozone, or tropospheric ozone, forms smog and becomes directly harmful to humans by exacerbating respiratory conditions, primarily asthma (Knowlton et al. 2004). As climate change progresses, increased ozone concentrations emerge as a major public health concern (Gardiner et al. 2011). Increasing ground level ozone concentrations have been directly correlated with rising temperatures (Patz et al. 2005). The projected increase in ozone concentration caused by climate induced temperature change is 1-2 ppb in 2020 and 2-7 ppb in 2050, with associated temperature increases of 1-2 degrees Fahrenheit and 2-5.5 degrees Fahrenheit, respectively (UCS, 2011). Those with existing respiratory conditions, children and the elderly, and those who spend a significant amount of time outdoors are the most sensitive to ground level ozone pollution (Schlink et al. 2006). In Maryland, there would be approximately 68,894 occurrences of acute respiratory symptoms associated with a 2 ppb climate penalty in 2020, and the total costs for health impacts associated with this would be approximately $133,398,027 (UCS, 2011). In their 2011 "State of the Air" report, the American Lung Association rated the Washington/Baltimore/Northern Virginia region as one of the 25 most ozone polluted regions nationwide (ALA, 2011). We examine asthma hospital admissions data for the Maryland/DC metropolitan region between 2005 and 2010 and identify possible correlations with the reported ozone measurements provided by the EPA (CASTNET). We examine trends between the archived temperatures from NCEP reanalysis data, the EPA ozone data, and reported asthma cases. We utilize these trends to investigate the future impact of changes in ozone concentration based on the IPCC AR4 and SRES emissions scenarios and attempt to quantify the financial burden of its implications. Visualizations from this data can serve as important educational and planning tools for decision makers in the Maryland, DC, and

  4. Development of PM2.5 source impact spatial fields using a hybrid source apportionment air quality model

    Directory of Open Access Journals (Sweden)

    C. E. Ivey

    2015-01-01

    Full Text Available An integral part of air quality management is knowledge of the impact of pollutant sources on ambient concentrations of particulate matter (PM. There is also a growing desire to directly use source impact estimates in health studies; however, source impacts cannot be directly measured. Several limitations are inherent in most source apportionment methods, which has led to the development of a novel hybrid approach that is used to estimate source impacts by combining the capabilities of receptor modeling (RM and chemical transport modeling (CTM. The hybrid CTM-RM method calculates adjustment factors to refine the CTM-estimated impact of sources at monitoring sites using pollutant species observations and the results of CTM sensitivity analyses, though it does not directly generate spatial source impact fields. The CTM used here is the Community Multi-Scale Air Quality (CMAQ model, and the RM approach is based on the Chemical Mass Balance model. This work presents a method that utilizes kriging to spatially interpolate source-specific impact adjustment factors to generate revised CTM source impact fields from the CTM-RM method results, and is applied to January 2004 over the continental United States. The kriging step is evaluated using data withholding and by comparing results to data from alternative networks. Directly applied and spatially interpolated hybrid adjustment factors at withheld monitors had a correlation coefficient of 0.89, a linear regression slope of 0.83 ± 0.02, and an intercept of 0.14 ± 0.02. Refined source contributions reflect current knowledge of PM emissions (e.g., significant differences in biomass burning impact fields. Concentrations of 19 species and total PM2.5 mass were reconstructed for withheld monitors using directly applied and spatially interpolated hybrid adjustment factors. The mean concentrations of total PM2.5 for withheld monitors were 11.7 (± 8.3, 16.3 (± 11, 8.59 (± 4.7, and 9.20 (± 5.7 μg m−3

  5. Air quality impacts of plug-in hybrid electric vehicles in Texas: evaluating three battery charging scenarios

    International Nuclear Information System (INIS)

    The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NOx emissions from EGUs during times of day when the vehicle is charging, and a decrease in NOx from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NOx emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.

  6. Impact of traffic volume and composition on the air quality and pedestrian exposure in urban street canyon

    Science.gov (United States)

    Rakowska, Agata; Wong, Ka Chun; Townsend, Thomas; Chan, Ka Lok; Westerdahl, Dane; Ng, Simon; Močnik, Griša; Drinovec, Luka; Ning, Zhi

    2014-12-01

    Vehicle emissions are identified as a major source of air pollution in metropolitan areas. Emission control programs in many cities have been implemented as part of larger scale transport policy interventions to control traffic pollutants and reduce public health risks. These interventions include provision of traffic-free and low emission zones and congestion charging. Various studies have investigated the impact of urban street configurations, such as street canyon in urban centers, on pollutants dispersion and roadside air quality. However, there are few investigations in the literature to study the impact of change of fleet composition and street canyon effects on the on-road pollutants concentrations and associated roadside pedestrian exposure to the pollutants. This study presents an experimental investigation on the traffic related gas and particle pollutants in and near major streets in one of the most developed business districts in Hong Kong, known as Central. Both street canyon and open roadway configurations were included in the study design. Mobile measurement techniques were deployed to monitor both on-road and roadside pollutants concentrations at different times of the day and on different days of a week. Multiple traffic counting points were also established to concurrently collect data on traffic volume and fleet composition on individual streets. Street canyon effects were evident with elevated on-road pollutants concentrations. Diesel vehicles were found to be associated with observed pollutant levels. Roadside black carbon concentrations were found to correlate with their on-road levels but with reduced concentrations. However, ultrafine particles showed very high concentrations in roadside environment with almost unity of roadside/on-road ratios possibly due to the accumulation of primary emissions and secondary PM formation. The results from the study provide useful information for the effective urban transport design and bus route

  7. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    A. Rudd and D. Bergey

    2015-08-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.

  8. Impact of urban emission on air-quality over central Europe: present day and future emissions perspective

    Science.gov (United States)

    Huszar, Peter; Belda, Michal; Halenka, Tomas; Karlicky, Jan

    2016-04-01

    The purpose of the study is to quantify the impact of present-day and future urban emission from central European cities on the regional air-quality (AQ), based on a modeling couple of the regional climate model RegCM4.2 and the chemistry transport model CAMx, including two-way interactions. A series of simulations was carried out for the present (2001-2010) decade and two future decades (2026-2035 and 2046-2055) either with all urban emissions included (base case) or without considering urban emissions. As we are interested on the impact of emission changes only, the impact of different driving meteorological conditions in the future (due to climate change) are not considered. The emissions used is the TNO MEGAPOLI European emission database that includes country/sector based scenarios for years 2030 and 2050, which were used for the encompassing decades. Further, the sensitivity of ozone production to urban emissions was examined by performing reduction experiments with -20% emission perturbation of NOx and/or NMVOC. The model was also validated using surface measurements of key pollutants. Selected air-quality measures were used as metrics describing the cities emission impact on regional air pollution. Due to urban emissions, significant ozone titration occurs over cities while over rural areas further from, ozone production is modeled, mainly in terms of number of exceedances and accumulated exceedances over the threshold of 40 ppbv. Urban NOx, SO2 and PM2.5 emissions also significantly contribute to concentrations in the cities themselves (up to 50-70% for NOx and SO2 , and up to 55% for PM2.5), but the contribution is large over rural areas as well (10-20%). Although air pollution over cities is largely determined by the local urban emissions, considerable (often a few tens of %) fraction of the concentration is attributable to other sources from rural areas and minor cities. The future urban emission AQ fingerprint is, in general, slightly smaller than in

  9. Future Air Quality in Danish Cities

    DEFF Research Database (Denmark)

    Jensen, S. S.; Berkowicz, R.; Winther, M.;

    The impact of new EU vehicle emission and fuel quality directives on the future air quality in Danish cities has been modelled for comparison with new limit values in the new EU directive on assessment and management of urban air quality. Nested modelling was applied using a set of air quality and...... emission models to predict concentration levels in the regional background, urban background and at street level. Air pollution levels were predicted to decrease for NO2, CO and benzene (ozone increased slightly) and the results show that the levels will not exceed the new EU limit values in 2010 despite...

  10. Good air quality in offices improves productivity

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2000-01-01

    quality. The impact on productivity justifies a much higher indoor air quality than the minimum levels prescribed in present standards and guidelines. One way of providing air of high quality for people to breathe, without involving excessive ventilation rates and energy use, is to provide "personalized......Three recent independent studies have documented that the quality of indoor air has a significant and positive influence on the productivity of office workers. A combined analysis of the results of the three studies shows a significant relationship between productivity and perceived indoor air...

  11. Ozone - Current Air Quality Index

    Science.gov (United States)

    ... more announcements Air Quality Basics Air Quality Index | Ozone | Particle Pollution | Smoke from fires | What You Can ... Partners Kids Movies NAQ Conferences NOAA Older Adults Ozone Particle Pollution (PM2.5, PM10) Publications Publicaciones (En ...

  12. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation??s (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  13. Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Office of Air and Radiation's (OAR) Ambient Air Quality Data (Current) contains ambient air pollution data collected by EPA, other federal agencies, as well as...

  14. Urban air quality management. V. 1

    International Nuclear Information System (INIS)

    This is the first in a series of reports commissioned by the International Petroleum Industry Environmental Conservation Association (IPIECA) to represent members' views on the management of urban air quality in the growing cities in developing countries. In this report, a general, science based framework is provided as a basis for understanding the nature of the problem in any specific urban area, the range of solutions that might be available, and the potential impact of each solution and its least cost privatisation. The topics covered are: a process for urban air quality management; setting air quality targets; a structured approach to the assessment of current and future air quality modelling methodologies; identification and collation of air quality model input data; development of socio-economic scenarios -long-term trend forecasting; cost effectiveness studies; the IPIECA approach to urban air quality management - development of partnerships; encouraging commitment to implementation of programme recommendations. (7 figures; 2 tables; 18 references). (UK)

  15. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    Energy Technology Data Exchange (ETDEWEB)

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  16. Impact of the Popocatepetl's volcanic activity on the air quality of Puebla City, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, A. [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, Puebla (Mexico); Gay, C. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, UNAM, Mexico, D.F. (Mexico); Flores, Y. [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, Puebla (Mexico)

    2005-01-01

    In this work we report measurements of atmospheric pollutants in Puebla City, including those registered during the period characterized by intense volcanic activity from Popocatepetl volcano between December 2000 and January 2001. We used a gaussian air dispersion model to calculate the impact of sulfur compounds from volcanic emissions on the measurements of these compounds in the stations belonging to Puebla City Atmospheric Monitoring Network. The data show that during the analyzed period, this volcanic emissions affected the air quality, increasing the indexes of PM{sub 1}0, CO and sulfur compounds. Also, the results of applying a Gaussian air dispersion model to these sulfur compounds explains the measurements from Tecnologico station for days with intense volcanic activity and wind coming from the volcano to Puebla City. [Spanish] En este trabajo se reportan mediciones de contaminantes atmosfericos en la ciudad de Puebla, incluyendo las registradas durante el periodo caracterizado por una intensa actividad del volcan Popocatepetl, entre diciembre de 200 y enero de 2001. Aplicamos un modelo de dispersion gaussiano para calcular el impacto de las emisiones volcanicas de compuestos de azufre en las mediciones de estos compuestos en las estaciones de la Red de Monitoreo Atmosferico de la ciudad de Puebla. Los datos muestran que durante el periodo analizado, las emisiones volcanicas afectaron la calidad del aire incrementando los indices de PM{sub 1}0, CO y compuestos de azufre. Ademas, los resultados del modelo gaussiano de dispersion del aire para los compuestos de azufre, explican las mediciones de la estacion Tecnologico para los dias con intensa actividad volcanica y viento viniendo del volcan hacia la ciudad de Puebla.

  17. Impact of Marcellus Shale natural gas development in southwest Pennsylvania on volatile organic compound emissions and regional air quality.

    Science.gov (United States)

    Swarthout, Robert F; Russo, Rachel S; Zhou, Yong; Miller, Brandon M; Mitchell, Brittney; Horsman, Emily; Lipsky, Eric; McCabe, David C; Baum, Ellen; Sive, Barkley C

    2015-03-01

    The Marcellus Shale is the largest natural gas deposit in the U.S. and rapid development of this resource has raised concerns about regional air pollution. A field campaign was conducted in the southwestern Pennsylvania region of the Marcellus Shale to investigate the impact of unconventional natural gas (UNG) production operations on regional air quality. Whole air samples were collected throughout an 8050 km(2) grid surrounding Pittsburgh and analyzed for methane, carbon dioxide, and C1-C10 volatile organic compounds (VOCs). Elevated mixing ratios of methane and C2-C8 alkanes were observed in areas with the highest density of UNG wells. Source apportionment was used to identify characteristic emission ratios for UNG sources, and results indicated that UNG emissions were responsible for the majority of mixing ratios of C2-C8 alkanes, but accounted for a small proportion of alkene and aromatic compounds. The VOC emissions from UNG operations accounted for 17 ± 19% of the regional kinetic hydroxyl radical reactivity of nonbiogenic VOCs suggesting that natural gas emissions may affect compliance with federal ozone standards. A first approximation of methane emissions from the study area of 10.0 ± 5.2 kg s(-1) provides a baseline for determining the efficacy of regulatory emission control efforts. PMID:25594231

  18. The Impact of a Laki-style Eruption on Cloud Drops, Indirect Radiative Forcing and Air Quality

    Science.gov (United States)

    Carslaw, K.; Schmidt, A.; Mann, G.; Pringle, K. J.; Forster, P.; Wilson, M.; Thordarson, T.

    2010-12-01

    We assess the impact of 1783-1784 Laki eruption on changes in cloud drop number concentrations and the aerosol indirect (cloud) radiative forcing using an advanced global aerosol microphysics model. We further extend these simulations to quantify the impact of a modern-day Laki on air quality. Our results suggest that the first aerosol indirect effect is of similar magnitude as the direct forcing calculated in previous assessments of the Laki eruption, but has a different spatial pattern. We estimate that northern hemisphere mean cloud drop concentrations in low-level clouds increased by a factor 2.7 in the 3 months after the onset of the eruption, with peak changes exceeding a factor 10. The calculated northern hemisphere mean aerosol indirect effect peaks at -5.2 W/m2 in the month after the eruption and remains larger than -2 W/m2 for 6 months. From our understanding of anthropogenic aerosol effects on modern-day clouds, the calculated changes in cloud drop concentrations after Laki are likely to have caused substantial changes in pecipitation and cloud dynamics. Our results also show that a modern-day Laki-style volcanic air pollution event would be a severe health hazard, increasing excess mortality in Europe on a scale that is at least comparable with excess mortality due to seasonal flu. Investigating the potential impact of such an eruption is crucial in order to inform policy makers and society about the potential impact of such an event so that precautionary measures can be taken.

  19. Air quality impacts of European wildfire emissions in a changing climate

    OpenAIRE

    Knorr, W.; Dentener, F.; Hantson, S.; Jiang, L.; Klimont, Z.; A. Arneth

    2016-01-01

    Wildfires are not only a threat to human property and a vital element of many ecosystems, but also an important source of air pollution. In this study, we first review the available evidence for a past or possible future climate-driven increase in wildfire emissions in Europe. We then introduce an ensemble of model simulations with a coupled wildfire–dynamic-ecosystem model, which we combine with published spatial maps of both wildfire and anthropogenic emissions of several major air pollutan...

  20. Air filtration and indoor air quality

    DEFF Research Database (Denmark)

    Bekö, Gabriel

    decent ventilation and air cleaning/air filtration, high indoor air quality cannot be accomplished. The need for effective air filtration has increased with increasing evidence on the hazardous effects of fine particles. Moreover, the air contains gaseous pollutants, removal of which requires various air...... contradictions should motivate manufacturers and researchers to develop new efficient filtration techniques and/or improve the existing ones. Development of low polluting filtration techniques, which are at the same time easy and inexpensive to maintain is the way forward in the future....

  1. The Economic Value of Air Quality Forecasting

    Science.gov (United States)

    Anderson-Sumo, Tasha

    Both long-term and daily air quality forecasts provide an essential component to human health and impact costs. According the American Lung Association, the estimated current annual cost of air pollution related illness in the United States, adjusted for inflation (3% per year), is approximately $152 billion. Many of the risks such as hospital visits and morality are associated with poor air quality days (where the Air Quality Index is greater than 100). Groups such as sensitive groups become more susceptible to the resulting conditions and more accurate forecasts would help to take more appropriate precautions. This research focuses on evaluating the utility of air quality forecasting in terms of its potential impacts by building on air quality forecasting and economical metrics. Our analysis includes data collected during the summertime ozone seasons between 2010 and 2012 from air quality models for the Washington, DC/Baltimore, MD region. The metrics that are relevant to our analysis include: (1) The number of times that a high ozone or particulate matter (PM) episode is correctly forecasted, (2) the number of times that high ozone or PM episode is forecasted when it does not occur and (3) the number of times when the air quality forecast predicts a cleaner air episode when the air was observed to have high ozone or PM. Our collection of data included available air quality model forecasts of ozone and particulate matter data from the U.S. Environmental Protection Agency (EPA)'s AIRNOW as well as observational data of ozone and particulate matter from Clean Air Partners. We evaluated the performance of the air quality forecasts with that of the observational data and found that the forecast models perform well for the Baltimore/Washington region and the time interval observed. We estimate the potential amount for the Baltimore/Washington region accrues to a savings of up to 5,905 lives and 5.9 billion dollars per year. This total assumes perfect compliance with

  2. An overview of indoor air quality and its impact on respiratory health among Malaysian school-aged children.

    Science.gov (United States)

    Choo, Chua Poh; Jalaludin, Juliana

    2015-01-01

    The indoor environment is a major source of human exposure to pollutants. Some pollutants can have concentrations that are several times higher indoors than outdoors. Prolonged exposure may lead to adverse biologic effects, even at low concentrations. Several studies done in Malaysia had underlined the role of indoor air pollution in affecting respiratory health, especially for school-aged children. A critical review was conducted on the quantitative literature linking indoor air pollution with respiratory illnesses among school-aged children. This paper reviews evidence of the association between indoor air quality (IAQ) and its implications on respiratory health among Malaysian school-aged children. This review summarizes six relevant studies conducted in Malaysia for the past 10 years. Previous epidemiologic studies relevant to indoor air pollutants and their implications on school-aged children's respiratory health were obtained from electronic database and included as a reference in this review. The existing reviewed data emphasize the impact of IAQ parameters, namely, indoor temperature, ventilation rates, indoor concentration of carbon dioxide (CO2), carbon monoxide (CO), particulate matters (PM), volatile organic compounds (VOCs), nitrogen dioxide (NO2) and airborne microbes, on children's respiratory health. The study found that most of the Malaysian school-aged children are exposed to the inadequate environment during their times spent either in their houses or in their classrooms, which is not in compliance with the established standards. Children living in households or studying in schools in urban areas are more likely to suffer from respiratory illnesses compared with children living in homes or studying in schools in rural areas. PMID:25411980

  3. Air quality assessment for Portugal

    OpenAIRE

    Monteiro, A; Miranda, A. I.; C. Borrego; R. Vautard

    2007-01-01

    According to the Air Quality Framework Directive, air pollutant concentration levels have to be assessed and reported annually by each European Union member state, taking into consideration European air quality standards. Plans and programmes should be implemented in zones and agglomerations where pollutant concentrations exceed the limit and target values. The main objective of this study is to perform a long-term air quality simulation for Portugal, using the CHIMERE chemistry-transport mod...

  4. Evaluating the Air Quality, Climate Change, and Economic Impacts of Biogas Management Technologies

    Science.gov (United States)

    This is an abstract for a presentation that describes a project to evaluate economic and environmental performance of several biogas management technologies. It will analyze various criteria air pollutants, greenhouse gas emissions, and costs associated with the use of biogas. Th...

  5. Urban air quality

    International Nuclear Information System (INIS)

    Since 1950 the world population has more than doubled, and the global number of cars has increased by a factor of 10. In the same period the fraction of people living in urban areas has increased by a factor of 4. In year 2000 this will amount to nearly half of the world population. About 20 urban regions will each have populations above 10 million people. Seen over longer periods, pollution in major cities tends to increase during the built up phase, they pass through a maximum and are then again reduced, as abatement strategies are developed. In the industrialised western world urban air pollution is in some respects in the last stage with effectively reduced levels of sulphur dioxide and soot. In recent decades however, the increasing traffic has switched the attention to nitrogen oxides, organic compounds and small particles. In some cities photochemical air pollution is an important urban problem, but in the northern part of Europe it is a large-scale phenomenon, with ozone levels in urban streets being normally lower than in rural areas. Cities in Eastern Europe have been (and in many cases still are) heavily polluted. After the recent political upheaval, followed by a temporary recession and a subsequent introduction of new technologies, the situation appears to improve. However, the rising number of private cars is an emerging problem. In most developing countries the rapid urbanisation has so far resulted in uncontrolled growth and deteriorating environment. Air pollution levels are here still rising on many fronts. Apart from being sources of local air pollution, urban activities are significant contributors to transboundary pollution and to the rising global concentrations of greenhouse gasses. Attempts to solve urban problems by introducing cleaner, more energy-efficient technologies will generally have a beneficial impact on these large-scale problems. Attempts based on city planning with a spreading of the activities, on the other hand, may generate

  6. Urban air quality

    Science.gov (United States)

    Fenger, Jes

    Since 1950 the world population has more than doubled, and the global number of cars has increased by a factor of 10. In the same period the fraction of people living in urban areas has increased by a factor of 4. In year 2000 this will amount to nearly half of the world population. About 20 urban regions will each have populations above 10 million people. Seen over longer periods, pollution in major cities tends to increase during the built up phase, they pass through a maximum and are then again reduced, as abatement strategies are developed. In the industrialised western world urban air pollution is in some respects in the last stage with effectively reduced levels of sulphur dioxide and soot. In recent decades however, the increasing traffic has switched the attention to nitrogen oxides, organic compounds and small particles. In some cities photochemical air pollution is an important urban problem, but in the northern part of Europe it is a large-scale phenomenon, with ozone levels in urban streets being normally lower than in rural areas. Cities in Eastern Europe have been (and in many cases still are) heavily polluted. After the recent political upheaval, followed by a temporary recession and a subsequent introduction of new technologies, the situation appears to improve. However, the rising number of private cars is an emerging problem. In most developing countries the rapid urbanisation has so far resulted in uncontrolled growth and deteriorating environment. Air pollution levels are here still rising on many fronts. Apart from being sources of local air pollution, urban activities are significant contributors to transboundary pollution and to the rising global concentrations of greenhouse gasses. Attempts to solve urban problems by introducing cleaner, more energy-efficient technologies will generally have a beneficial impact on these large-scale problems. Attempts based on city planning with a spreading of the activities, on the other hand, may generate

  7. Modeling nitrous acid and its impact on ozone and hydroxyl radical during the Texas Air Quality Study 2006

    OpenAIRE

    Czader, B. H.; Rappenglück, B.; P. Percell; Byun, D. W.; F. Ngan; Kim, S

    2012-01-01

    Nitrous acid (HONO) mixing ratios for the Houston metropolitan area were simulated with the Community Multiscale Air Quality (CMAQ) Model for an episode during the Texas Air Quality Study (TexAQS) II in August/September 2006 and compared to in-situ MC/IC (mist-chamber/ion chromatograph) and long path DOAS (Differential Optical Absorption Spectroscopy) measurements at three different altitude ranges. Several HONO sources were accounted for in simulations, such as gas phase fo...

  8. Modeling nitrous acid and its impact on ozone and hydroxyl radical during the Texas Air Quality Study 2006

    OpenAIRE

    B. H. Czader; Rappenglück, B.; Percell, P.; D. W. Byun; F. Ngan; Kim, S.

    2012-01-01

    Nitrous acid (HONO) mixing ratios for the Houston metropolitan area were simulated with the Community Multiscale Air Quality (CMAQ) model for an episode during the Texas Air Quality Study (TexAQS) II in August/September 2006 and compared to in-situ MC/IC (mist-chamber/ion chromatograph) and long path DOAS (Differential Optical Absorption Spectroscopy) measurements at three different altitudes. Several HONO sources were accounted for in simulations, such as gas phase formation, direct emission...

  9. Modeling nitrous acid and its impact on ozone and hydroxyl radical during the Texas Air Quality Study 2006

    OpenAIRE

    B. H. Czader; Rappenglück, B.; Percell, P.; D. W. Byun; F. Ngan; Kim, S.

    2012-01-01

    Nitrous acid (HONO) mixing ratios for the Houston metropolitan area were simulated with the Community Multiscale Air Quality (CMAQ) Model for an episode during the Texas Air Quality Study (TexAQS) II in August/September 2006 and compared to in-situ MC/IC (mist-chamber/ion chromatograph) and long path DOAS (Differential Optical Absorption Spectroscopy) measurements at three different altitude ranges. Several HONO sources were accounted for in simulations, such as gas phase formation, direct em...

  10. Modeling the impacts of biomass burning on air quality in and around Mexico City

    OpenAIRE

    W. Lei; G Li; L. T. Molina

    2013-01-01

    The local and regional impacts of open fires and trash burning on ground-level ozone (O3) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA) wer...

  11. Modeling the impacts of biomass burning on air quality in and around Mexico City

    OpenAIRE

    W. Lei; G Li; L. T. Molina

    2012-01-01

    The local and regional impacts of open fires and trash burning on ground-level ozone (O[subscript 3]) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA) were cons...

  12. Development of PM2.5 source impact spatial fields using a hybrid source apportionment air quality model

    Science.gov (United States)

    Ivey, C. E.; Holmes, H. A.; Hu, Y. T.; Mulholland, J. A.; Russell, A. G.

    2015-07-01

    An integral part of air quality management is knowledge of the impact of pollutant sources on ambient concentrations of particulate matter (PM). There is also a growing desire to directly use source impact estimates in health studies; however, source impacts cannot be directly measured. Several limitations are inherent in most source apportionment methods motivating the development of a novel hybrid approach that is used to estimate source impacts by combining the capabilities of receptor models (RMs) and chemical transport models (CTMs). The hybrid CTM-RM method calculates adjustment factors to refine the CTM-estimated impact of sources at monitoring sites using pollutant species observations and the results of CTM sensitivity analyses, though it does not directly generate spatial source impact fields. The CTM used here is the Community Multiscale Air Quality (CMAQ) model, and the RM approach is based on the chemical mass balance (CMB) model. This work presents a method that utilizes kriging to spatially interpolate source-specific impact adjustment factors to generate revised CTM source impact fields from the CTM-RM method results, and is applied for January 2004 over the continental United States. The kriging step is evaluated using data withholding and by comparing results to data from alternative networks. Data withholding also provides an estimate of method uncertainty. Directly applied (hybrid, HYB) and spatially interpolated (spatial hybrid, SH) hybrid adjustment factors at withheld observation sites had a correlation coefficient of 0.89, a linear regression slope of 0.83 ± 0.02, and an intercept of 0.14 ± 0.02. Refined source contributions reflect current knowledge of PM emissions (e.g., significant differences in biomass burning impact fields). Concentrations of 19 species and total PM2.5 mass were reconstructed for withheld observation sites using HYB and SH adjustment factors. The mean concentrations of total PM2.5 at withheld observation sites were

  13. Health Impact Assessment of a Predicted Air Quality Change by Moving Traffic from an Urban Ring Road into a Tunnel. The Case of Antwerp, Belgium

    OpenAIRE

    Van Brusselen, Daan; Arrazola de Oñate, Wouter; Maiheu, Bino; Vranckx, Stijn; Lefebvre, Wouter; Janssen, Stijn; Nawrot, Tim S; Nemery, Ben; Avonts, Dirk

    2016-01-01

    Background The Antwerp ring road has a traffic density of 300,000 vehicles per day and borders the city center. The ‘Ringland project’ aims to change the current ‘open air ring road’ into a ‘filtered tunneled ring road’, putting the entire urban ring road into a tunnel and thus filtering air pollution. We conducted a health impact assessment (HIA) to quantify the possible benefit of a ‘filtered tunneled ring road’, as compared to the ‘open air ring road’ scenario, on air quality and its long-...

  14. Air quality impacts of European wildfire emissions in a changing climate

    OpenAIRE

    KNORR Wolfgang; Dentener, Frank; Hantson, Stijn; Jiang, Leiwen; Klimont, Zbigniew; Arneth, Almut

    2016-01-01

    Wildfires are not only a threat to human property and a vital element of many ecosystems, but also an important source of air pollution. In this study, we first review the available evidence for a past or possible future climate-driven increase in wildfire emissions in Europe. We then introduce an ensemble of model simulations with a coupled wildfire–dynamic-ecosystem model, which we combine with published spatial maps of both wildfire and anthropogenic emissions of several ...

  15. Impact of emission controls on air quality in Beijing during APEC 2014: lidar ceilometer observations

    OpenAIRE

    Tang, G; Zhu, X.; Hu, B.; Xin, J.; Wang, L.; Münkel, C.; G. Mao; Wang, Y.

    2015-01-01

    The implementation of emission reductions during the 2014 Asia-Pacific Economic Cooperation (APEC) summit provides a valuable opportunity to study air pollution in Beijing. From 15 October to 30 November 2014, the height of the atmospheric mixing layer and the vertical attenuated backscattering coefficient profiles were observed online using a~lidar ceilometer. Compared with fine particulate matter (PM2.5) and aeros...

  16. Impact of NOx vehicle emission standards failure on Air Quality in Europe

    OpenAIRE

    Borken-Kleefeld, J.; Kiesewetter, G.; Papageorgiou, T.; Ntziachristos, L.

    2012-01-01

    Vehicle exhaust emission standards have been tightened in the EU for several decades now, in order to protect health and the environment. This has led to a substantial decrease in total pollutant emissions, despite the growing volumes of passenger and freight transport. However, national emissions, particularly of NOx, exceed the ceilings accorded under the Gothenburg Protocol of the UNECE's Convention on Long-Range Transboundary Air Pollution (LRTAP) (EEA 2012) in twelve EU Member States. T...

  17. Perception and Barriers to Indoor Air Quality and Perceived Impact on Respiratory Health: An Assessment in Rural Honduras

    Directory of Open Access Journals (Sweden)

    Audrey Le

    2014-01-01

    Full Text Available Objective. The aim of this study was to identify household-specific factors associated with respiratory symptoms and to study the perceived impact of indoor air pollution (IAP as a health issue. Methods. An IRB-approved, voluntary, anonymous 23-item survey was conducted in Spanish at a medical outreach clinic in June 2012 and at the homes of survey respondents N=79. Comparative analyses were performed to investigate relationships between specific house characteristics and respiratory complaints. Results. Seventy-nine surveys were completed. Respiratory symptoms were frequently reported by survey respondents: 42% stated that smoke in their household caused them to have watery eyes, 42% reported household members with coughs within the past two weeks, and 25% stated that there were currently household members experiencing difficulty in breathing. Stove location and kitchen roof construction material were significantly associated with frequency of respiratory symptoms. The vast majority used firewood as their major fuel type. Most respondents indicated that neither indoor air quality was a problem nor did it affect their daily life. Conclusions. Respiratory complaints are common in Yoro, Honduras. Stove location and kitchen roof construction material were significantly associated with frequency of respiratory symptoms; this may have implications for efforts to improve respiratory health in the region.

  18. Air Quality and Health Impacts of Future Ethanol Production and Use in São Paulo State, Brazil

    Science.gov (United States)

    Scovronick, Noah; França, Daniela; Alonso, Marcelo; Almeida, Claudia; Longo, Karla; Freitas, Saulo; Rudorff, Bernardo; Wilkinson, Paul

    2016-01-01

    It is often argued that liquid biofuels are cleaner than fossil fuels, and therefore better for human health, however, the evidence on this issue is still unclear. Brazil’s high uptake of ethanol and role as a major producer makes it the most appropriate case study to assess the merits of different biofuel policies. Accordingly, we modeled the impact on air quality and health of two future fuel scenarios in São Paulo State: a business-as-usual scenario where ethanol production and use proceeds according to government predictions and a counterfactual scenario where ethanol is frozen at 2010 levels and future transport fuel demand is met with gasoline. The population-weighted exposure to fine particulate matter (PM2.5) and ozone was 3.0 μg/m3 and 0.3 ppb lower, respectively, in 2020 in the scenario emphasizing gasoline compared with the business-as-usual (ethanol) scenario. The lower exposure to both pollutants in the gasoline scenario would result in the population living 1100 additional life-years in the first year, and if sustained, would increase to 40,000 life-years in year 20 and continue to rise. Without additional measures to limit emissions, increasing the use of ethanol in Brazil could lead to higher air pollution-related population health burdens when compared to policy that prioritizes gasoline. PMID:27409628

  19. Air Quality and Health Impacts of Future Ethanol Production and Use in São Paulo State, Brazil.

    Science.gov (United States)

    Scovronick, Noah; França, Daniela; Alonso, Marcelo; Almeida, Claudia; Longo, Karla; Freitas, Saulo; Rudorff, Bernardo; Wilkinson, Paul

    2016-01-01

    It is often argued that liquid biofuels are cleaner than fossil fuels, and therefore better for human health, however, the evidence on this issue is still unclear. Brazil's high uptake of ethanol and role as a major producer makes it the most appropriate case study to assess the merits of different biofuel policies. Accordingly, we modeled the impact on air quality and health of two future fuel scenarios in São Paulo State: a business-as-usual scenario where ethanol production and use proceeds according to government predictions and a counterfactual scenario where ethanol is frozen at 2010 levels and future transport fuel demand is met with gasoline. The population-weighted exposure to fine particulate matter (PM2.5) and ozone was 3.0 μg/m³ and 0.3 ppb lower, respectively, in 2020 in the scenario emphasizing gasoline compared with the business-as-usual (ethanol) scenario. The lower exposure to both pollutants in the gasoline scenario would result in the population living 1100 additional life-years in the first year, and if sustained, would increase to 40,000 life-years in year 20 and continue to rise. Without additional measures to limit emissions, increasing the use of ethanol in Brazil could lead to higher air pollution-related population health burdens when compared to policy that prioritizes gasoline. PMID:27409628

  20. An amalgamation of 3D city models in urban air quality modelling for improving visual impact analysis

    DEFF Research Database (Denmark)

    Ujang, U.; Anton, F.; Ariffin, A.;

    2015-01-01

    Geographical Information Systems (GISs) can be seen as a common tool to map and visualize the air quality index based on geographical locations. However, in urban areas, the area resolution for air quality models is less than 2 kilometres.Since the main emissions agent in urban areas is predomina......,engineers and policy makers to design the street geometry (building height and width, green areas, pedestrian walks, roads width, etc.).......Geographical Information Systems (GISs) can be seen as a common tool to map and visualize the air quality index based on geographical locations. However, in urban areas, the area resolution for air quality models is less than 2 kilometres.Since the main emissions agent in urban areas is...... physical data input. The Level of Details (LoD) in 3D city models (i.e. LoD1 and LoD2) ascertains the potentials of implementing air quality modelling for urban areas. Therefore, this research is focused towards investigating the integration of 3D city models in air quality modelling for urban areas. The...

  1. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.

    Science.gov (United States)

    Kelly, Frank; Anderson, H Ross; Armstrong, Ben; Atkinson, Richard; Barratt, Ben; Beevers, Sean; Derwent, Dick; Green, David; Mudway, Ian; Wilkinson, Paul

    2011-04-01

    not find evidence of temporal changes in roadside measurements of NOx, NO, and NO2, nor in urban background concentrations of NOx. (The latter result, however, concealed divergent trends in NO, which fell, and NO2, which rose.) Although based upon fewer stations, there was evidence that background concentrations of PM10 and CO fell within the CCZ compared with outside the zone. We also analyzed the trends in background concentrations for all London monitoring stations; as distance from the center of the CCZ increased, we found some evidence of an increasing gradation in NO and PM10 concentrations before versus after the intervention. This suggests a possible intermediate effect on air quality in the area immediately surrounding the CCZ. Although London is relatively well served with air quality monitoring stations, our study was restricted by the availability of only a few monitoring sites within the CCZ, and only one of those was at a roadside location. The results derived from this single roadside site are not likely to be an adequate basis for evaluating this complex urban traffic management scheme. Our primary approach to assessing the impact of the CCS was to analyze the changes in geometric mean pollutant concentrations in the 2 years before and 2 years after the CCS was introduced and to compare changes at monitoring stations within the CCZ with those in a distant control area (8 km from the CCZ center) unlikely to be influenced by the CCS. We saw this as the most robust analytical approach with which to examine the CCS Study Database, but in the fourth part of the project we did consider three other approaches: ethane as an indicator of pollution dispersion; the cumulative sum (CUSUM) statistical technique; and bivariate polar plots for local emissions. All three were subsequently judged as requiring further development outside of the scope of this study. However, despite their investigative nature, each technique provided useful information supporting the

  2. Characterization of Early Stage Marcellus Shale Development Atmospheric Emissions and Regional Air Quality Impacts using Fast Mobile Measurements

    Science.gov (United States)

    Goetz, J. D.; Floerchinger, C. R.; Fortner, E.; Wormhoult, J.; Massoli, P.; Herndon, S. C.; Kolb, C. E., Jr.; Knighton, W. B.; Shaw, S. L.; Knipping, E. M.; DeCarlo, P. F.

    2014-12-01

    The Marcellus shale is the largest shale gas resource in the United States and is found in the Appalachian region. Rapid large-scale development, and the scarcity of direct air measurements make the impact of Marcellus shale development on local and regional air quality and the global climate highly uncertain. Air pollutant and greenhouse gas emission sources include transitory emission from well pad development as well as persistent sources including the processing and distribution of natural gas. In 2012, the Aerodyne Inc. Mobile Laboratory was equipped with a suite of real-time (~ 1 Hz) instrumentation to measure source emissions associated with Marcellus shale development and to characterize regional air quality in the Marcellus basin. The Aerodyne Inc. Mobile Laboratory was equipped to measure methane, ethane, N2O (tracer gas), C2H2 (tracer gas), CO2, CO, NOx, aerosols (number, mass, and composition), and VOC including light aromatic compounds and constituents of natural gas. Site-specific emissions from Marcellus shale development were quantified using tracer release ratio methods. Emissions of sub-micron aerosol mass and VOC were generally not observed at any tracer release site, although particle number concentrations were often enhanced. Compressor stations were found to have the largest emission rates of combustion products with NOx emissions ranging from 0.01 to 1.6 tons per day (tpd) and CO emissions ranging from 0.03 to 0.42 tpd. Transient sources, including a well site in the drill phase, were observed to be large emitters of natural gas. The largest methane emissions observed in the study were at a flowback well completion with a value of 7.7 tpd. Production well pads were observed to have the lowest emissions of natural gas and the emission of combustion products was only observed at one of three well pads investigated. Regional background measurements of all measured species were made while driving between tracer release sites and while stationary

  3. Climate and air quality impacts of altered BVOC fluxes from land cover change in Southeast Asia 1990 - 2010

    Science.gov (United States)

    Harper, Kandice; Yue, Xu; Unger, Nadine

    2016-04-01

    Large-scale transformation of the natural rainforests of Southeast Asia in recent decades, driven primarily by logging and agroforestry activities, including rapid expansion of plantations of high-isoprene-emitting oil palm (Elaeis guineensis) trees at the expense of comparatively low-emitting natural dipterocarp rainforests, may have altered the prevailing regime of biogenic volatile organic compound (BVOC) fluxes from this tropical region. Chemical processing of isoprene in the atmosphere impacts the magnitude and distribution of several short-lived climate forcers, including ozone and secondary organic aerosols. Consequently, modification of the fluxes of isoprene and other BVOCs from vegetation serves as a mechanism by which tropical land cover change impacts both air quality and climate. We apply satellite-derived snapshots of land cover for the period 1990 - 2010 to the NASA ModelE2-Yale Interactive Terrestrial Biosphere (ModelE2-YIBs) global carbon-chemistry-climate model to quantify the impact of Southeast Asian land cover change on atmospheric chemical composition and climate driven by changes in isoprene emission. NASA ModelE2-YIBs features a fully interactive land carbon cycle and includes a BVOC emission algorithm which energetically couples isoprene production to photosynthesis. The time-slice simulations are nudged with large-scale winds from the GMAO reanalysis dataset and are forced with monthly anthropogenic and biomass burning reactive air pollution emissions from the MACCity emissions inventory. Relative to the year 1990, regional isoprene emissions in 2010 increased by 2.6 TgC/yr from the expansion of Southeast Asian oil palm plantations and decreased by 0.7 TgC/yr from the loss of regional dipterocarp rainforest. Considering only the impact of land-cover-change-induced isoprene emission changes in Southeast Asia over this period, we calculate a spatially heterogeneous impact on regional seasonal surface-level ozone concentrations (minimum: -1

  4. The impact of China's vehicle emissions on regional air quality in 2000 and 2020: a scenario analysis

    Directory of Open Access Journals (Sweden)

    E. Saikawa

    2011-09-01

    Full Text Available The number of vehicles in China has been increasing rapidly. We evaluate the impact of current and possible future vehicle emissions from China on Asian air quality. We modify the Regional Emission Inventory in Asia (REAS for China's road transport sector in 2000 using updated Chinese data for the number of vehicles, annual mileage, and emission factors. We develop two scenarios for 2020: a scenario where emission factors remain the same as they were in 2000 (No-Policy, NoPol, and a scenario where Euro 3 vehicle emission standards are applied to all vehicles (except motorcycles and rural vehicles. The Euro 3 scenario is an approximation of what may be the case in 2020 as, starting in 2008, all new vehicles in China (except motorcycles were required to meet the Euro 3 emission standards. Using the Weather Research and Forecasting model coupled with Chemistry (WRF/Chem, we examine the regional air quality response to China's vehicle emissions in 2000 and in 2020 for the NoPol and Euro 3 scenarios. We evaluate the 2000 model results with observations in Japan, China, Korea, and Russia. Under NoPol in 2020, emissions of carbon monoxide (CO, nitrogen oxides (NOx, non-methane volatile organic compounds (NMVOCs, black carbon (BC, and organic carbon (OC from China's vehicles more than double compared to the 2000 baseline. If all vehicles meet the Euro 3 regulations in 2020, however, these emissions are reduced by more than 50% relative to NoPol. The implementation of stringent vehicle emission standards leads to a large, simultaneous reduction of the surface ozone (O3 mixing ratios and particulate matter (PM2.5 concentrations. In the Euro 3 scenario, surface O3 is reduced by more than 10 ppbv and surface PM2.5 is reduced by more than 10 μg m−3 relative to NoPol in Northeast China in all seasons. In spring, surface O3 mixing ratios and PM2.5 concentrations in

  5. Impact of emission controls on air quality in Beijing during APEC 2014: lidar ceilometer observations

    Science.gov (United States)

    Tang, G.; Zhu, X.; Hu, B.; Xin, J.; Wang, L.; Münkel, C.; Mao, G.; Wang, Y.

    2015-11-01

    The implementation of emission reductions during the 2014 Asia-Pacific Economic Cooperation (APEC) summit provides a valuable opportunity to study air pollution in Beijing. From 15 October to 30 November 2014, the height of the atmospheric mixing layer and the vertical attenuated backscattering coefficient profiles were observed online using a~lidar ceilometer. Compared with fine particulate matter (PM2.5) and aerosol optical depth (AOD) data, the attenuated backscattering coefficients measured by the lidar ceilometer were strongly correlated with the PM2.5 concentration and AOD (correlation coefficients of 0.89 and 0.86, respectively). This result demonstrated the reliability of the vertical distribution of particles measured by the lidar ceilometer. By classifying different degrees of air pollution based on visibility, we found that during the transition period of air pollution, which was affected by transport of southerly flows in the mixing layer, the attenuated backscattering coefficient from 0 to 1500 m was enhanced by approximately 1.4 Mm-1 sr-1 (140 %). During the polluted period, the attenuated backscattering coefficient from 0 to 300 m suddenly increased, and the coefficient near the surface peaked (approximately 14 Mm-1 sr-1); however, the attenuated backscattering coefficient from 300 to 900 m decreased gradually, and the average value from 0 to 1500 m decreased by 0.5 Mm-1sr-1 (20 %). The height of the mixing layer gradually decreased, and the ratio of CO / SO2 gradually increased, which indicate that the polluted period was dominated by local contribution. Due to the emission reductions during APEC (DAPEC), the concentration of PM2.5 decreased by 59.2 and 58.9 % and visibility improved by 70.2 and 56.0 % compared to before (BAPEC) and after APEC (AAPEC), respectively. The contribution of regional transport in DAPEC decreased by approximately 36 and 25 %, and the local contribution decreased by approximately 48 and 54 % compared to BAPEC and AAPEC

  6. Air quality impacts of a CicLAvia event in Downtown Los Angeles, CA.

    Science.gov (United States)

    Shu, Shi; Batteate, Christina; Cole, Brian; Froines, John; Zhu, Yifang

    2016-01-01

    CicLAvia in Los Angeles, CA is the open streets program that closes streets to motorized vehicles and invites people to walk, run, play or ride their bicycles on these streets, allowing them to experience the city in a new way and get exercise at the same time. Since the events reduce the motorized traffic flow, which is a significant source of air pollution, on the streets, it is reasonable to hypothesize that the CicLAvia events can reduce the concentrations of traffic-emitted air pollutants during the road closure. This study is the first experiment to test this hypothesis. The on-road and community-wide ultrafine particle (UFP) and PM2.5 were measured on the Event-Sunday (October 5th, 2014) and the Pre- and Post- Sundays (September 28(th) and October 12(th), 2014). Data analysis results showed the on-road UFP and PM2.5 reduction was 21% and 49%, respectively, and the community-wide PM2.5 reduction was 12%. PMID:26493865

  7. Atmospheric ammonia and its impacts on regional air quality over the megacity of Shanghai, China

    Science.gov (United States)

    Wang, Shanshan; Nan, Jialiang; Shi, Chanzhen; Fu, Qingyan; Gao, Song; Wang, Dongfang; Cui, Huxiong; Saiz-Lopez, Alfonso; Zhou, Bin

    2015-10-01

    Atmospheric ammonia (NH3) has great environmental implications due to its important role in ecosystem and global nitrogen cycle, as well as contribution to secondary particle formation. Here, we report long-term continuous measurements of NH3 at different locations (i.e. urban, industrial and rural) in Shanghai, China, which provide an unprecedented portrait of temporal and spatial characteristics of atmospheric NH3 in and around this megacity. In addition to point emission sources, air masses originated from or that have passed over ammonia rich areas, e.g. rural and industrial sites, increase the observed NH3 concentrations inside the urban area of Shanghai. Remarkable high-frequency NH3 variations were measured at the industrial site, indicating instantaneous nearby industrial emission peaks. Additionally, we observed strong positive exponential correlations between NH4+/(NH4++NH3) and sulfate-nitrate-ammonium (SNA) aerosols, PM2.5 mass concentrations, implying a considerable contribution of gas-to-particle conversion of ammonia to SNA aerosol formation. Lower temperature and higher humidity conditions were found to favor the conversion of gaseous ammonia to particle ammonium, particularly in autumn. Although NH3 is currently not included in China’s emission control policies of air pollution precursors, our results highlight the urgency and importance of monitoring gaseous ammonia and improving its emission inventory in and around Shanghai.

  8. Model study of the ship emissions impact on the air quality in the Adriatic/Ionian area

    Science.gov (United States)

    Karagiannidis, Athanasios; Poupkou, Anastasia; Liora, Natalia; Dimopoulos, Spiros; Giannaros, Christos; Melas, Dimitrios; Argiriou, Athanassios

    2015-04-01

    The increase of the ship traffic for touristic and commercial purposes is one of the EU Blue Growth targets. The Adriatic/Ionian is one of the sea-basin strategic areas for this target. The purpose of the study is the examination of the impact of the ship emissions on the gaseous and particulate pollutants concentrations in the Adriatic/Ionian area for which the current scientific knowledge is limited. The impact is simulated over a domain covering the Central and Eastern Mediterranean in 10 km resolution during a summer period (July) and a winter period (January) of the year 2012. The modeling system used consists of the photochemical model CAMx off line coupled with the meteorological model WRF. The zero-out modeling method is implemented involving CAMx simulations performed while including and omitting the ship emission data. The simulations are based on the European scale anthropogenic emission inventory of The Netherlands Organisation (TNO) for the reference year 2009. Natural emissions (NMVOCs from the vegetation, sea salt, wind-blown dust), estimated with the use of the Natural Emission MOdel (NEMO) developed by the Aristotle University of Thessaloniki, are accounted for in the photochemical model runs. The spatial distribution of the resulting differences in the gaseous and particulate pollutant concentration fields for both emission scenarios are presented and discussed, providing an estimation of the contribution of ship emissions on the determination of the air quality in the Adriatic/Ionian countries

  9. Impact of urbanization level on urban air quality: a case of fine particles (PM(2.5)) in Chinese cities.

    Science.gov (United States)

    Han, Lijian; Zhou, Weiqi; Li, Weifeng; Li, Li

    2014-11-01

    We examined and compared PM2.5 concentrations in urban and the surrounding regions, and further investigated the impact of urbanization on urban PM2.5 concentrations at the Chinese prefectures. Annual PM2.5 concentrations in most prefectures were greater than 10 μg/m(3), the air quality guideline of the World Health Organization. Those prefectures were mainly distributed along the east coast and southeast of Sichuan province; The urban PM2.5 concentrations ( [Formula: see text] ) in 85 cities were greater than (>10 μg/m(3)) those in the surrounding area. Those cities were mainly located in the Beijing-Sichuan and Shanghai-Guangxi belts. In addition, [Formula: see text] was less than (China or nearby mega cities; Significant positive correlations were found between [Formula: see text] and urban population (R(2) = 0.99, P industry fraction (R(2) = 0.71, P < 0.05), suggesting that urbanization had considerable impact on PM2.5 concentrations. PMID:25113968

  10. Seaport-Surface Transportation Access and Air Quality

    OpenAIRE

    Shaw, Peter L.

    1993-01-01

    Seaports are dependent upon the supporting surface transportation network. Where port cargo volume is growing in already air-polluted urban areas, increased highway and rail traffic is perceived as exacerbating air quality conditions. In some seaport locations, stringent air quality control measures may impact operations and access, thereby possibly causing serious negative impacts on the economy. In still other areas, inadequate air quality controls may inadvertently foster more air pollution.

  11. Impact of the 2002 Canadian Forest Fires on Particulate Matter Air Quality in Baltimore City

    OpenAIRE

    Sapkota, A.; Symons, J. M.; J. Kleissl; Wang, L.; Parlange, M. B.; Ondov, J.; Breysse, P. N.; Diette, G B; Eggleston, P.A.; T. J. Buckley, 2005

    2005-01-01

    With increasing evidence of adverse health effects associated with particulate matter (PM), the exposure impact of natural sources, such as forest fires, has substantial public health relevance. In addition to the threat to nearby communities, pollutants released from forest fires can travel thousands of kilometers to heavily populated urban areas. There was a dramatic increase in forest fire activity in the province of Quebec, Canada, during July 2002. The transport of PM released from these...

  12. Air quality and future energy system planning

    Science.gov (United States)

    Sobral Mourao, Zenaida; Konadu, Dennis; Lupton, Rick

    2016-04-01

    Ambient air pollution has been linked to an increasing number of premature deaths throughout the world. Projected increases in demand for food, energy resources and manufactured products will likely contribute to exacerbate air pollution with an increasing impact on human health, agricultural productivity and climate change. Current events such as tampering emissions tests by VW car manufacturers, failure to comply with EU Air Quality directives and WHO guidelines by many EU countries, the problem of smog in Chinese cities and new industrial emissions regulations represent unique challenges but also opportunities for regulators, local authorities and industry. However current models and practices of energy and resource use do not consider ambient air impacts as an integral part of the planing process. Furthermore the analysis of drivers, sources and impacts of air pollution is often fragmented, difficult to understand and lacks effective visualization tools that bring all of these components together. This work aims to develop a model that links impacts of air quality on human health and ecosystems to current and future developments in the energy system, industrial and agricultural activity and patterns of land use. The model will be added to the ForeseerTM tool, which is an integrated resource analysis platform that has been developed at the University of Cambridge initially with funding from BP and more recently through the EPSRC funded Whole Systems Energy Modeling (WholeSEM) project. The basis of the tool is a set of linked physical models for energy, water and land, including the technologies that are used to transform these resources into final services such as housing, food, transport and household goods. The new air quality model will explore different feedback effects between energy, land and atmospheric systems with the overarching goal of supporting better communication about the drivers of air quality and to incorporate concerns about air quality into

  13. A model study of the impact of emission control strategies on Los Angeles air quality

    Science.gov (United States)

    Hameed, S.; Stewart, R. W.; Lebedeff, S. A.

    1976-01-01

    A generalized cell model is developed for the calculation of city-wide averages of photochemical smog components in Los Angeles. This model takes into account the effects of variations with time and within the city of the source strengths, the wind field, and the mixing depth. The effect of the influx of background pollution from outside the modeled volume is also included. Several control strategies for reducing automobile emissions are then introduced into the model, and their impact on predicted pollutant levels, particularly those of O3, are investigated.

  14. No free polluting anymore: The impact of a vehicle pollution charge on air quality

    OpenAIRE

    Cerruti, Davide

    2013-01-01

    The paper analyzes the impact of a vehicle pollution charge (Ecopass), enforced at peak time, on nitrogen oxides concentration in Milan. Using hourly data on pollution concentration and a vector auto regressive model, I estimate the short and long run effects of the policy, the effects outside the Ecopass area and during off-peak time. Results suggest that Ecopass reduced pollution in the short run, but had no effect in the long run. The effect on zones outside Ecopass area is not homogeneous...

  15. Impact of air quality in Kuala Lumpur on human lung function

    International Nuclear Information System (INIS)

    In Malaysia, the 1997 haze was the worst air pollution episode ever experienced by the country. The polluted air consists of various of various gases and aerosols including nitrogen dioxide and particulate matter (PM/sub 10/). A spirometry study on lung function of traffic policemen (n=45) in KL showed a correlation between lung volumes and the concentration of NO/sub 2/ they were directly exposed to (0.014 ppm) The controls were UPM students and staff (n=23, non-smokers) of the same age group exposed to 0.005 ppm. There were significant reductions (unpaired t-test, p<0.05) in FVC compared to control (2.84++0.12 vs. e. 21+-0.16), FEV (2.54+-0.12 vs 3.04+-0.13), FEV/sub 1/ % (84.14+-2.09 vs 92.02+-1.36) and FEF/sub 25-75 %/ (3.23+-0.26 vs 4.50 +0.35), indicative of obstructions that may occur in both the large and smaller airways. In addition, higher percentage of respiratory symptoms were reported in the study subjects, the highest was continuous coughs (32% vs. 9%). Another study was done on school children in KL and Negri Sembilan, who were exposed to PM/sub 10/ of 103.27 mu g/m/sup 3/ and 47.35 mu g /m/sup 3/ respectively. Spirometric measurements show significant reductions in VC and FVC for boys compared to control (32% vs 3.25+-0.43 and 2.64+-0.48 v 2.94+-0.52, respectively) indicating signs of airways obstruction and lung restriction. Respiratory symptoms were also higher in the study subjects. The highest is chest tightness (63.18% in female, 35.19% in male) and breathing difficulties (53.05%) and 22.08% respectively) compared to controls. Conclusion made from the two studies was; exposure to 0.014 ppm of NO/sub 2/ and 103.27 mu g/m-3 of PM/sub 10/ correlates with reduced human lung function and increased respiratory symptoms due to obstruction of airways and restriction of the lung. (author)

  16. Investigating the air quality in aircraft cabins

    International Nuclear Information System (INIS)

    In recent years, there has been increasing concern about the air quality in aircraft cabins and its effects on health and safety for crew and passengers. Some of the major worries are risk of communication of infectious diseases, high incidence of respiratory diseases caused by low air moisture, and increased concentration of carbon dioxide from exhaled air due to the cabin air being recirculated. It also happens that fumes and gases enter the cabin by way of the ventilation system. This article describes the EU-funded research programme called CabinAir. The project aims to: (1) establish the current level of air quality in aircraft cabins, (2) establish the relationship between cabin air quality and the performance of environmental control and filtration systems, the air distribution, the energy consumption and the environmental impact of fuel burn. (3) develop new designs and technical solutions to improve the environmental control system and cabin air distribution/control systems, (4) optimise air quality in the cabin and minimise fuel consumption and environmental impacts, (5) develop performance specifications for the components, (6) draft European Pre-Normative Standards

  17. Impact on air quality of measures to reduce CO2 emissions from road traffic in Basel, Rotterdam, Xi'an and Suzhou

    NARCIS (Netherlands)

    Keuken, M.P.; Jonkers, S.; Verhagen, H.L.M.; Perez, L.; Truëb, S.; Okkerse, W.J.; Liu, J.; Pan, X.C.; Zheng, L.; Wang, H.; Xu, R.; Sabel, C.E.

    2014-01-01

    Two traffic scenarios to reduce CO2 emissions from road traffic in two European cities (Basel and Rotterdam) and two Chinese cities (Xi'an and Suzhou) were evaluated in terms of their impact on air quality. The two scenarios, one modelling a reduction of private vehicle kilometres driven by 10% on u

  18. An integrated approach for the evaluation of technological hazard impacts on air quality: the case of the Val d'Agri oil/gas plant

    Science.gov (United States)

    Calvello, M.; Esposito, F.; Trippetta, S.

    2014-08-01

    The Val d'Agri area (southern Italy) hosts one of the biggest onshore European reservoir and the largest oil/gas pre-treatment plant, named Centro Olio Val d'Agri (COVA), located in a rural/anthropized context. Several hazards are associated with this plant. These are mainly represented by possible impacts of the COVA atmospheric emissions on the local air quality and human health. This work uses a novel approach based on the integration of air quality measurements from the regional monitoring network, additional experimental measurements (i.e. sub-micrometre particulate matter (PM1) and black carbon (BC)) and advanced statistical analyses to provide a preliminary evaluation of the Val d'Agri air quality state and give some indication of specific areas potentially affected by COVA hazards. Results show that the COVA plant emissions have a particular impact on the air quality of the area closest to it. In this area several pollutants specifically related to the COVA combustion processes (i.e. nitrogen oxides, benzene and toluene) show the highest concentration values and significant correlations. The proposed approach represents a first step in the assessment of the risks associated with oil/gas exploration and pre-treatment activities and a starting point for the development of effective and exportable air quality monitoring strategies.

  19. An integrated approach for the evaluation of technological hazard impacts on air quality: the case of the Val d'Agri oil/gas plant

    Directory of Open Access Journals (Sweden)

    M. Calvello

    2014-04-01

    Full Text Available The Val d'Agri area (southern Italy hosts the biggest on-shore European reservoir and the largest oil/gas pre-treatment plant, named Centro Olio Val d'Agri (COVA, located in a rural/anthropized context. Several hazards are associated to this plant. These are mainly represented by possible impacts of the COVA atmospheric emissions on the local air quality and human health. This work uses a novel approach based on the integration of air quality measurements from the regional monitoring network, additional experimental measurements (i.e., sub-micrometric particulate matter – PM1 and Black Carbon – BC and advanced statistical analyses to provide a preliminary evaluation of the Val d'Agri air quality state and give some indications of specific areas potentially affected by COVA hazards. Results show that the COVA plant emissions exert an impact especially on the air quality of the area closest to it. In this area several pollutants specifically related to the COVA combustion processes (i.e., nitrogen oxides, benzene and toluene show the highest concentration values and significant correlations. The proposed approach represents a first step in the assessment of the risks associated to oil/gas exploration and pre-treatment activities and a starting point for the development of effective and exportable air quality monitoring strategies.

  20. Enhancing indoor air quality –The air filter advantage

    Directory of Open Access Journals (Sweden)

    Vannan Kandi Vijayan

    2015-01-01

    Full Text Available Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality.

  1. Enhancing indoor air quality -The air filter advantage.

    Science.gov (United States)

    Vijayan, Vannan Kandi; Paramesh, Haralappa; Salvi, Sundeep Santosh; Dalal, Alpa Anil Kumar

    2015-01-01

    Air pollution has become the world's single biggest environmental health risk, linked to around 7 million deaths in 2012 according to a recent World Health Organisation (WHO) report. The new data further reveals a stronger link between, indoor and outdoor air pollution exposure and cardiovascular diseases, such as strokes and ischemic heart disease, as well as between air pollution and cancer. The role of air pollution in the development of respiratory diseases, including acute respiratory infections and chronic obstructive pulmonary diseases, is well known. While both indoor and outdoor pollution affect health, recent statistics on the impact of household indoor pollutants (HAP) is alarming. The WHO factsheet on HAP and health states that 3.8 million premature deaths annually - including stroke, ischemic heart disease, chronic obstructive pulmonary disease (COPD) and lung cancer are attributed to exposure to household air pollution. Use of air cleaners and filters are one of the suggested strategies to improve indoor air quality. This review discusses the impact of air pollutants with special focus on indoor air pollutants and the benefits of air filters in improving indoor air quality. PMID:26628762

  2. Air Quality and Climate Change

    International Nuclear Information System (INIS)

    Climate change and air quality are closely related: through the policy measures implemented to mitigate these major environmental threats but also through the geophysical processes that drive them. We designed, developed and implemented a comprehensive regional air quality and climate modeling System to investigate future air quality in Europe taking into account the combined pressure of future climate change and long range transport. Using the prospective scenarios of the last generation of pathways for both climate change (emissions of well mixed greenhouse gases) and air pollutants, we can provide a quantitative view into the possible future air quality in Europe. We find that ozone pollution will decrease substantially under the most stringent scenario but the efforts of the air quality legislation will be adversely compensated by the penalty of global warming and long range transport for the business as usual scenario. For particulate matter, the projected reduction of emissions efficiently reduces exposure levels. (authors)

  3. Quantification of emissions from domestic heating in residential areas of İzmir, Turkey and assessment of the impact on local/regional air-quality

    International Nuclear Information System (INIS)

    Air pollution in cities is a major environmental problem principally in the developing countries. The quantification of emissions is a basic requirement to assess the human influence to the atmosphere. The air quality generally shows decreases with the major contribution residential emissions and meteorology in the winter season in the big cities. Poor meteorological conditions especially inversion events for the efficient mixing of air pollutants occurred during the winter months in İzmir. With this work we quantify the amount of domestic heating emissions for particulate matter (PM10), sulfur dioxides (SO2), nitrogen dioxides (NO2), volatile organic compounds (VOC) and carbon monoxide (CO) together with greenhouse gases which are carbon dioxide (CO2), nitrous oxide (N2O) and methane (CH4) in İzmir for 2008–2009 winter season. The results showed that the most affected residential areas were central districts in the city center from domestic heating emissions due to meteorological condition and demographic reasons. Air quality modeling is a great tool for assisting policy makers how to decrease emissions and improve air quality. At the second part of the study, calculated emissions were modeled by using CALMET/CALPUFF dispersion modeling system and plotted in the form of air pollution maps by using geographical information system to determine the locations and estimate the effects of the new residential areas that will be established in the future in İzmir. - Highlights: • The air pollution in cities especially shows raises with the opening of winter season. • Air pollution has become a problem due to rapid urbanization in İzmir, Turkey. • The air quality shows decreases with the residential emissions in İzmir's winter. • With this work we quantify the amount of domestic heating emissions for pollutants. • The impact of emissions on local air-quality is determined by using dispersion model

  4. The impact of the emissions inspection of motor vehicles on air quality

    International Nuclear Information System (INIS)

    In recent decades there was significant increase of inactive, passive and also in ecological safety of motor vehicles. The tax for increasing vehicle safety is the fact that in the current produced vehicle there is more electronics than at the Apollo, which landed on the Moon. Current motor vehicles produce (with the exception of CO2) about 10 to 100 times fewer emissions (depending on the issue) as vehicles produced in the 60s and TOs . In developing these vehicles, their manufacturers try to develop vehicles with the lowest production not only of harmful emissions, but also with the lowest fuel consumption. Therefore by minimizing production of carbon dioxide CO2, which is on the one hand so-called 'Green house gas' and on the other hand is an indicator of quality of oxidative process. The problem now is to control these vehicles in use and adjustment of control methods and technological requirements for instruments, that the information of emission control of vehicles in use will be the highest.

  5. When smoke comes to town: The impact of biomass burning smoke on air quality

    Science.gov (United States)

    Keywood, Melita; Cope, Martin; Meyer, C. P. Mick; Iinuma, Yoshi; Emmerson, Kathryn

    2015-11-01

    Biomass burning aerosols influence the radiative balance of the earth-atmosphere system. They also reduce visibility and impact human health. In addition, trace gases and aerosols emitted to the atmosphere during large biomass burning episodes may have a significant effect on atmospheric chemistry due to the presence of reactive species. Six hundred and ninety wildfires burned more than one million hectares in Victoria, Australia between December 2006 and February 2007. Thick smoke haze was transported to Melbourne (population 3.9 million) on several occasions, causing PM10 (particulate mass less than 10 μm in diameter) concentrations to exceed 200 μg m-3. The presence of elevated total secondary organic aerosol (SOA) and speciated SOA compounds (including pinene and cineole oxidation products), O3, and the larger aerosol mode diameter during smoke impacted periods indicated the presence of photochemical oxidation within the plume. The presence of organosulfate compounds and nitro-oxy organosulfate compounds indicated oxidation may have occurred in the presence of acidic seed aerosol and that oxidation may also have occurred at night. Older smoke plumes (aged 30 h) displayed higher concentrations of a number of gaseous and aerosol species relative to the younger smoke plumes (aged 3 h). SOA compounds made up a greater fraction of speciated organic mass in the old plume than in the young plume where speciated biomass burning compounds dominated. Cineole oxidation products made up a greater fraction of the speciated SOA compounds in the old plume while pinene oxidation products made up a greater fraction of the total SOA speciated mass in the samples from the young plume. This may be a result of the slower reaction rate of cineole with OH. Organosulfate compounds and nitro-oxy organosulfate compounds made up greater fractions of the speciated SOA mass in the old plume consistent with the production of nitro-oxy organosulfate compounds under night time conditions in

  6. Evaluation of sanitary impact of the air pollution. A risk analysis process at the local level for the regional plans of air quality; Evaluation de l'impact sanitaire de la pollution atmospherique. Une demarche d'analyse de risque a l'echelle locale pour les plans regionaux de la qualite de l'air

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The aim of this document is to propose a standardised and clear thought process allowing to evaluate the sanitary impact of air pollution from existing data collected in routine. It is actually only possible for areas having an air quality monitoring network. The general principle of this approach, its advantages and its limits are showed. (N.C.)

  7. Impact of the New South Wales fires during October 2013 on regional air quality in eastern Australia

    Science.gov (United States)

    Rea, Géraldine; Paton-Walsh, Clare; Turquety, Solène; Cope, Martin; Griffith, David

    2016-04-01

    Smoke plumes from fires contain atmospheric pollutants that can be transported to populated areas and effect regional air quality. In this paper, the characteristics and impact of the fire plumes from a major fire event that occurred in October 2013 (17-26) in the New South Wales (NSW) in Australia, near the populated areas of Sydney and Wollongong, are studied. Measurements from the Fourier Transform InfraRed (FTIR) spectrometer located at the University of Wollongong allowed a calculation of specific emission factors (EFs) in terms of grams per kilogram of dry fuel burned: 1640 g kg-1 of carbon dioxide; 107 g kg-1 of carbon monoxide; 7.8 g kg-1 of methane; and 0.16 g kg-1 of nitrous oxide. These EFs have then been used to calculate daily fire emissions for the NSW fire event using the APIFLAME emissions' model, leading to an increase of 54% of CO emitted compared to calculations with EFs from Akagi et al. (2011), widely used in the literature. Simulations have been conducted for this event using the regional chemistry-transport model (CTM) CHIMERE, allowing the first evaluation of its regional impact. Fire emissions are assumed well mixed into the boundary layer. The model simulations have been evaluated compared to measurements at the NSW air quality stations. The mean correlation coefficients (R) are 0.44 for PM10, 0.60 for PM2.5 and 0.79 for CO, with a negative bias for CO (-14%) and a positive bias for PM2.5 (64%). The model shows higher performance for lower boundary layer heights and wind speeds. According to the observations, 7 days show concentrations exceeding the air quality Australian national standards for PM10, 8 days for PM2.5. In the simulations, 5 days are correctly simulated for PM10, 8 days for PM2.5. For PM10, the model predicts 1 additional day of exceedance (one false detection). During this fire episode, inner Sydney is affected during 5 days by PM exceedances, that are mainly attributed to organic carbon in the model simulations. To

  8. Air Quality Facilities

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — Facilities with operating permits for Title V of the Federal Clean Air Act, as well as facilities required to submit an air emissions inventory, and other...

  9. Quantifying the impacts of socio-economic factors on air quality in Chinese cities from 2000 to 2009

    International Nuclear Information System (INIS)

    Socio-economic factors have significant influences on air quality and are commonly used to guide environmental planning and management. Based on data from 85 long-term daily monitoring cities in China, air quality as evaluated by AOFDAQ-A (Annual Occurrence Frequency of Daily Air Quality above Level III), was correlated to socio-economic variable groups of urbanization, pollution and environmental treatment by variation partitioning and hierarchical partitioning methods. We found: (1) the three groups explained 43.5% of the variance in AOFDAQ-A; (2) the contribution of “environmental investment” to AOFDAQ-A shown a time lag effect; (3) “population in mining sector” and “coverage of green space in built-up area” were respectively the most significant negative and positive explanatory socio-economic variables; (4) using eight largest contributing individual factors, a linear model to predict variance in AOFDAQ-A was constructed. Results from our study provide a valuable reference for the management and control of air quality in Chinese cities. - Highlights: ► Urban air quality as evaluated by AOFDAQ-A was correlated to socio-economic variable groups. ► Variable groups explained 43.5% of the variance in AOFDAQ-A. ► “Coverage of green space in built-up area” was the most significant positive variable. ► A linear model to predict variance in AOFDAQ-A was constructed. ► Contributions of 21 socio-economic variables to AOFDAQ-A was quantified. - Socio-economic variable groups of urbanization, pollution and environmental treatment explained 43.5% of the variance in air quality of Chinese cities.

  10. Using models to interpret the impact of roadside barriers on near-road air quality

    Science.gov (United States)

    Amini, Seyedmorteza; Ahangar, Faraz Enayati; Schulte, Nico; Venkatram, Akula

    2016-08-01

    The question this paper addresses is whether semi-empirical dispersion models based on data from controlled wind tunnel and tracer experiments can describe data collected downwind of a sound barrier next to a real-world urban highway. Both models are based on the mixed wake model described in Schulte et al. (2014). The first neglects the effects of stability on dispersion, and the second accounts for reduced entrainment into the wake of the barrier under unstable conditions. The models were evaluated with data collected downwind of a kilometer-long barrier next to the I-215 freeway running next to the University of California campus in Riverside. The data included measurements of 1) ultrafine particle (UFP) concentrations at several distances from the barrier, 2) micrometeorological variables upwind and downwind of the barrier, and 3) traffic flow separated by automobiles and trucks. Because the emission factor for UFP is highly uncertain, we treated it as a model parameter whose value is obtained by fitting model estimates to observations of UFP concentrations measured at distances where the barrier impact is not dominant. Both models provide adequate descriptions of both the magnitude and the spatial variation of observed concentrations. The good performance of the models reinforces the conclusion from Schulte et al. (2014) that the presence of the barrier is equivalent to shifting the line sources on the road upwind by a distance of about HU/u∗ where H is the barrier height, U is the wind velocity at half of the barrier height, and u∗ is the friction velocity. The models predict that a 4 m barrier results in a 35% reduction in average concentration within 40 m (10 times the barrier height) of the barrier, relative to the no-barrier site. This concentration reduction is 55% if the barrier height is doubled.

  11. Alternative transportation fuels and air quality

    International Nuclear Information System (INIS)

    The paper discusses the air quality impact of the following alternative fuels: reformulated gasoline, methanol, ethanol, diesel, compressed natural gas, liquid petroleum gases, hydrogen, and electric power. Emissions of NOx, CO, and toxic compounds, as well as global climatic change impacts are described

  12. Quantifying impacts on air quality of vehicular emissions in Sao Paulo and Rio de Janeiro

    Science.gov (United States)

    Artaxo, Paulo; Ferreira de Brito, Joel; Godoy, José Marcus; Luiza Godoy, Maria; Junior, Djacinto

    2016-04-01

    Vehicular emissions in megacities such as Sao Paulo and Rio de Janeiro are increasingly becoming a global issue. The São Paulo Metropolitan Area (SPMA), located in Southeast of Brazil, is a megacity with a population of 18 million people, with 7 million cars and large-scale industrial emissions. Rio de Janeiro is also a large city with different meteorology than São Paulo. All cars in Brazil runs gasohol, with 23% ethanol in gasoline, and for the last 10 years, flex cars that can run on gasohol, ethanol or any mixture dominate the market. Overall ethanol accounts for about 30-40% of fuel burned in both cities. To improve the understanding of vehicular emission impacts on aerosol composition and life cycle in these two large megacities a source apportionment study, combining online and offline measurements, was performed. Aerosols were collected for one year to capture seasonal variability at 4 sites in each city, with inorganic and organic aerosol component being sampled. Organic and elemental carbon were measured using a Sunset Laboratory Dual Optics (transmission and reflectance) Carbon Analyzer and about 22 trace elements has been measured using polarized X-Ray Fluorescence (XRF). Aerosol mass and black carbon were also measured, as well as trace gases to help in aerosol source apportionment. In Sao Paulo, the average PM2.5 mass concentration obtained varied from 9.6 to 12.2 μg m-3 for the several sites, and similar concentrations were measured in Rio de Janeiro. At all sites, organic matter (OM) has dominated fine mode aerosol concentration with 42 to 60% of the aerosol mass. EC accounted for 21 to 31% of fine mode aerosol mass concentration. Sulfate accounted for 21 to 26% of PM2.5 for the sites. Aerosol source apportionment was done with receptor analysis and integration with online data such as PTR-MS, Aethalometers, Nephelometers and ACSM helped to apportion vehicular emissions. For the 8 sites operated in Sao Paulo and Rio de Janeiro, vehicular

  13. Impact of Land-Use and Land-Cover Change on urban air quality in representative cities of China

    Science.gov (United States)

    Sun, L.; Wei, J.; Duan, D. H.; Guo, Y. M.; Yang, D. X.; Jia, C.; Mi, X. T.

    2016-05-01

    The atmospheric particulate pollution in China is getting worse. Land-Use and Land-Cover Change (LUCC) is a key factor that affects atmospheric particulate pollution. Understanding the response of particulate pollution to LUCC is necessary for environmental protection. Eight representative cities in China, Qingdao, Jinan, Zhengzhou, Xi'an, Lanzhou, Zhangye, Jiuquan, and Urumqi were selected to analyze the relationship between particulate pollution and LUCC. The MODIS (MODerate-resolution Imaging Spectroradiometer) aerosol product (MOD04) was used to estimate atmospheric particulate pollution for nearly 10 years, from 2001 to 2010. Six land-use types, water, woodland, grassland, cultivated land, urban, and unused land, were obtained from the MODIS land cover product (MOD12), where the LUCC of each category was estimated. The response of particulate pollution to LUCC was analyzed from the above mentioned two types of data. Moreover, the impacts of time-lag and urban type changes on particulate pollution were also considered. Analysis results showed that due to natural factors, or human activities such as urban sprawl or deforestation, etc., the response of particulate pollution to LUCC shows obvious differences in different areas. The correlation between particulate pollution and LUCC is lower in coastal areas but higher in inland areas. The dominant factor affecting urban air quality in LUCC changes from ocean, to woodland, to urban land, and eventually into grassland or unused land when moving from the coast to inland China.

  14. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  15. Changing the spatial location of electricity generation to increase water availability in areas with drought: a feasibility study and quantification of air quality impacts in Texas

    International Nuclear Information System (INIS)

    The feasibility, cost, and air quality impacts of using electrical grids to shift water use from drought-stricken regions to areas with more water availability were examined. Power plant cooling represents a large portion of freshwater withdrawals in the United States, and shifting where electricity generation occurs can allow the grid to act as a virtual water pipeline, increasing water availability in regions with drought by reducing water consumption and withdrawals for power generation. During a 2006 drought, shifting electricity generation out of the most impacted areas of South Texas (∼10% of base case generation) to other parts of the grid would have been feasible using transmission and power generation available at the time, and some areas would experience changes in air quality. Although expensive, drought-based electricity dispatch is a potential parallel strategy that can be faster to implement than other infrastructure changes, such as air cooling or water pipelines. (letter)

  16. An OSSE to Study the Impact of Sentinel S4, S5P and S5 Spaceborne Observations on Air Quality Data Assimilation Systems

    Science.gov (United States)

    Eskes, H.; Veefkind, P.; Williams, J. E.; Oude Nijhuis, A.; de Haan, J.; Attié, J. L.; Abida, R.; Ricaud, P.; El Amraoui, L.; Timmermans, R.; Segers, A.; Kujanpää, J.; Tamminen, J.; Lahoz, W. A.; Schuettemeyer, D.; Veihelmann, B.

    2015-12-01

    ISOTROP (Impact of Spaceborne Observations on Tropospheric Composition Analysis and Forecast) is an ESA funded OSSE study. It's aim is to quantify the impact of the European Sentinel 4 (GEO) and 5 (LEO) measurements of ozone, CO, NO2 and HCHO to better constrain pollutant concentrations and precursor emissions that influence air quality. The project is based on a cross-OSSE approach which involves two independent air quality models. Each of the models generated the nature run for the other model, used subsequently in two linked OSSE studies. The models involved are MOCAGE, and the air quality model LOTOS-EUROS combined with the global TM5 chemistry-transport model. The work is based on state-of-the-art synthetic observations and their error characteristics derived by the KNMI and FMI teams involved in the TROPOMI retrieval algorithm development. In our contribution we will discuss the ISOTROP OSSE setup, synthetic observations and impact of the sentinel observations on high-resolution (7km) air quality analyses for Europe.

  17. Mining Information form a Coupled Air Quality Model to Examine the Impacts of Agricultural Management Practices on Air and Groundwater Quality

    Science.gov (United States)

    Attributing nitrogen (N) in the environment to emissions from agricultural management practices is difficult because of the complex and inter-related chemical and biological reactions associated with N and its cascading effects across land, air and water. Such analyses are criti...

  18. Modeled Trends in Impacts of Landing and Takeoff Aircraft Emissions on Surface Air-Quality in U.S for 2005, 2010 and 2018

    Science.gov (United States)

    Vennam, L. P.

    2014-12-01

    Understanding the present-day impacts of aircraft emissions on surface air quality is essential to plan potential mitigation policies for future growth. Stringent regulation on mobile source-related emissions in the recent past coupled with anticipated rise in the growth in aviation activity can increase the relative impacts of aviation-attributable surface air quality if adequate measures for reducing aviation emissions are not implemented. Though aircraft emissions during in-flight mode (at upper altitudes) contribute a significant (70 - 80%) proportion of the total aviation emissions, landing and takeoff (LTO) related emissions can have immediate impact on surface air quality, as most of the large airports are located in urban areas, specifically those that are designated in nonattainment for O3 and/or PM2.5. In this study, we modeled impacts of aircraft emissions during LTO cycles on surface air quality using the latest version of the CMAQ model for two contemporary years (2005, 2010) and one future year (2018). For this regional scale modeling study, we used highly resolved aircraft emissions from the FAA's Aviation Environmental Design Tool (AEDT), meteorology from NASA's Modern-Era Retrospective Analysis for Research and Applications (MERRA) downscaled with the WRF model, dynamically varying chemical boundary conditions from the CAM-Chem global model (which also used the same AEDT emissions but at the global scale), and spatio-temporally resolved lightning NOx emissions estimated using National Lightning Detection Network (NLDN) flash density data. We evaluated our model results with air quality observations from surface-based networks and in-situ aircraft observation data for the contemporary years. We will present results from model evaluation using this enhanced modeling system, as well as the trajectories in aviation- related air quality (focusing on O3, NO2 and PM2.5) for the three modeling years considered in this study. These findings will help plan

  19. Results of the California Healthy Homes Indoor Air Quality Study of 2011-2013: impact of natural gas appliances on air pollutant concentrations.

    Science.gov (United States)

    Mullen, N A; Li, J; Russell, M L; Spears, M; Less, B D; Singer, B C

    2016-04-01

    This study was conducted to assess the current impact of natural gas appliances on air quality in California homes. Data were collected via telephone interviews and measurements inside and outside of 352 homes. Passive samplers measured time-resolved CO and time-integrated NOX , NO2 , formaldehyde, and acetaldehyde over ~6-day periods in November 2011 - April 2012 and October 2012 - March 2013. The fraction of indoor NOX and NO2 attributable to indoor sources was estimated. NOX , NO2 , and highest 1-h CO were higher in homes that cooked with gas and increased with amount of gas cooking. NOX and NO2 were higher in homes with cooktop pilot burners, relative to gas cooking without pilots. Homes with a pilot burner on a floor or wall furnace had higher kitchen and bedroom NOX and NO2 compared to homes without a furnace pilot. When scaled to account for varying home size and mixing volume, indoor-attributed bedroom and kitchen NOX and kitchen NO2 were not higher in homes with wall or floor furnace pilot burners, although bedroom NO2 was higher. In homes that cooked 4 h or more with gas, self-reported use of kitchen exhaust was associated with lower NOX , NO2 , and highest 1-h CO. Gas appliances were not associated with higher concentrations of formaldehyde or acetaldehyde. PMID:25647016

  20. Residential indoor air quality guideline : ozone

    International Nuclear Information System (INIS)

    Ozone (O3) is a colourless gas that reacts rapidly on surfaces and with other constituents in the air. Sources of indoor O3 include devices sold as home air cleaners, and some types of office equipment. Outdoor O3 is also an important contributor to indoor levels of O3, depending on the air exchange rate with indoor environments. This residential indoor air quality guideline examined factors that affect the introduction, dispersion and removal of O3 indoors. The health effects of prolonged exposure to O3 were discussed, and studies conducted to evaluate the population health impacts of O3 were reviewed. The studies demonstrated that there is a significant association between ambient O3 and adverse health impacts. Exposure guidelines for residential indoor air quality were discussed. 14 refs.

  1. Trade-offs between energy cost and health impact in a regional coupled energy-air quality model: the LEAQ model

    International Nuclear Information System (INIS)

    This letter presents a methodology for an integrated energy-air quality model in a cost and impact trade-off framework, applicable at the regional scale. ETEM (the Energy Technology Environmental Model) minimizes the energy cost at a given level of sectoral emissions. An efficient, reduced-order Eulerian air quality model (TAPOM-Lite) simulates some consecutive days where the meteorological conditions are favorable to the occurrence of an ozone episode. A health impact function has been developed to perform the feedback from ozone concentrations to the energy cost. The decomposition optimization problem is solved using an Oracle-based technique. We report on an implementation for the Grand Duchy of Luxembourg, varying the parameters of the impact function.

  2. Quantifying the impacts of socio-economic factors on air quality in Chinese cities from 2000 to 2009.

    Science.gov (United States)

    Zhao, Juanjuan; Chen, Shengbin; Wang, Hua; Ren, Yin; Du, Ke; Xu, Weihua; Zheng, Hua; Jiang, Bo

    2012-08-01

    Socio-economic factors have significant influences on air quality and are commonly used to guide environmental planning and management. Based on data from 85 long-term daily monitoring cities in China, air quality as evaluated by AOFDAQ-A (Annual Occurrence Frequency of Daily Air Quality above Level III), was correlated to socio-economic variable groups of urbanization, pollution and environmental treatment by variation partitioning and hierarchical partitioning methods. We found: (1) the three groups explained 43.5% of the variance in AOFDAQ-A; (2) the contribution of "environmental investment" to AOFDAQ-A shown a time lag effect; (3) "population in mining sector" and "coverage of green space in built-up area" were respectively the most significant negative and positive explanatory socio-economic variables; (4) using eight largest contributing individual factors, a linear model to predict variance in AOFDAQ-A was constructed. Results from our study provide a valuable reference for the management and control of air quality in Chinese cities. PMID:22575095

  3. Downscaling a Global Climate Model to Simulate Climate Change Impacts on U.S. Regional and Urban Air Quality

    Science.gov (United States)

    Trail, M.; Tsimpidi, A. P.; Liu, P.; Tsigaridis, K.; Hu, Y.; Nenes, A.; Russell, A. G.

    2013-01-01

    Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with WRF to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the continental United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12km by 12km resolution, as well as the effect of evolving climate conditions on the air quality at major U.S. cities. The high resolution simulations produce somewhat different results than the coarse resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the U.S. during fall (Western U.S., Texas, Northeastern, and Southeastern U.S), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (Northeast). We also find that daily peak temperatures tend to increase in most major cities in the U.S. which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.

  4. Downscaling a global climate model to simulate climate change impacts on US regional and urban air quality

    Directory of Open Access Journals (Sweden)

    M. Trail

    2013-04-01

    Full Text Available Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with WRF to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the continental United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12 km by 12 km resolution, as well as the effect of evolving climate conditions on the air quality at major US cities. The high resolution simulations produce somewhat different results than the coarse resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the US during fall (Western US, Texas, Northeastern, and Southeastern US, one region during summer (Texas, and one region where changes potentially would lead to better air quality during spring (northeast. We also find that daily peak temperatures tend to increase in most major cities in the US which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.

  5. Examining the Impacts of Land Use on Air Quality from a Spatio-Temporal Perspective in Wuhan, China

    Directory of Open Access Journals (Sweden)

    Gang Xu

    2016-04-01

    Full Text Available Air pollution is one of the key environmental problems associated with urbanization and land use. Taking Wuhan city, Central China, as a case example, we explore the quantitative relationship between land use (built-up land, water bodies, and vegetation and air quality (SO2, NO2, and PM10 based on nine ground-level monitoring sites from a long-term spatio-temporal perspective in 2007–2014. Five buffers with radiuses from 0.5 to 4 km are created at each site in geographical information system (GIS and areas of land use categories within different buffers at each site are calculated. Socio-economic development, energy use, traffic emission, industrial emission, and meteorological condition are taken into consideration to control the influences of those factors on air quality. Results of bivariate correlation analysis between land use variables and annual average concentrations of air pollutants indicate that land use categories have discriminatory effects on different air pollutants, whether for the direction of correlation, the magnitude of correlation or the spatial scale effect of correlation. Stepwise linear regressions are used to quantitatively model their relationships and the results reveal that land use significantly influence air quality. Built-up land with one standard deviation growth will cause 2% increases in NO2 concentration while vegetation will cause 5% decreases. The increases of water bodies with one standard deviation are associated with 3%–6% decreases of SO2 or PM10 concentration, which is comparable to the mitigation effect of meteorology factor such as precipitation. Land use strategies should be paid much more attention while making air pollution reduction policies.

  6. Measurement of non-methane hydrocarbons in Taipei city and their impact on ozone formation in relation to air quality.

    Science.gov (United States)

    Wu, Ben-Zen; Chang, Chih-Chung; Sree, Usha; Chiu, Konghwa; Lo, Jiunn-Guang

    2006-08-18

    Air pollutants data from semi-continuous measurements at multiple sampling sites in Taipei metropolitan area of Taiwan was obtained by collecting air samples in canisters. The hydrocarbon composition was determined by using GC/MS and GC/FID. The air samples were pre-concentrated onto glass beads prior to separation by PLOT and DB-1 columns of GC. The method showed detection limit of NO2 were measured by UV-differential optical absorption spectroscopy (UV-DOAS), and were utilized to determine the relative importance of non-methane hydrocarbons (NMHC) and significant contribution of NO2 in limiting ozone formation. The obtained results suggest that ozone formation in Taipei city is probably limited by the supply of non-methane hydrocarbons. The concentration profile of targeted pollutants was compared to other metropolitan areas to determine air quality and the pollutant sources. PMID:17723619

  7. Air Quality at Your Street

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Becker, Thomas; Ketzel, Matthias;

    concerned citizents, or in the context of localization of institutions, etc. The purpose of the project ‘Air Quality at Your Street’ is to create interactive air quality maps on the internet using webGIS to illustrate the geographical variation of air quality in Denmark for selected health related air...... is calculated with a model system consisting of a regional model (DEHM), an urban background model (UBM) and a street model (OSPM) with associated meteorology and emissions data etc. Recently updated input data has been used for the road network and traffic data based on the national traffic model...... (LTM) from DTU Transport as well as data on travel speeds based on GPS data from SpeedMap from the Danish Road Directorate. Modelled concentrations have been compared to fixed regional, urban background and street air quality monitoring stations to assess uncertainties, and to model results from about...

  8. Air quality indices : a review

    International Nuclear Information System (INIS)

    Pollution Probe presents some background information that will help in the development of a national Air Quality Index (AQI) in Canada. This report examines the issues that should be addressed in revising the national Index of the Quality of Air (IQUA) or creating a new national Air Quality Index. The IQUA was devised in 1976 and provides Canadians with real-time information on the state of community air quality by including major pollutants and their synergies. It is currently being used for air quality management plans and air quality alert systems. At the same time that the IQUA was devised, the United States Environmental Protection Agency (US EPA) produced a parallel air quality index known as the Pollution Standard Index (PSI) which incorporated 5 criteria pollutants (particulate matter, sulphur dioxide, carbon monoxide, nitrogen oxide and ground level ozone) for which national health-based standards were devised. In 1999, the US EPA renamed their index the Air Quality Index (AQI) and made revisions to the primary health-based national ambient air quality standards for ground-level ozone and particulate matter. Separate values for PM2.5 and PM10 were incorporated and mandatory reporting was required for metropolitan areas with populations of 350,000 or more. Similarly, the IQUA has undergone major developments that affect the validity of the index, including: rejection by the Working Group on Air Quality Objectives and Guidelines of the previous maximum desirable and maximum acceptable air quality criteria, recognition that standards for many of the contaminants are outdated, developing more sensitive instrumentation for real-time monitoring of contaminants. This report also describes the use of the national short term Air Quality Index by provincial, territorial and local authorities in Canada. Pollution Probe recommends setting up a mechanism to review and revise IQUA on a regular basis that would incorporate governments, the medical profession, special

  9. Examining the Impacts of Land Use on Air Quality from a Spatio-Temporal Perspective in Wuhan, China

    OpenAIRE

    Gang Xu; Limin Jiao; Suli Zhao; Man Yuan; Xiaoming Li; Yuyao Han; Boen Zhang; Ting Dong

    2016-01-01

    Air pollution is one of the key environmental problems associated with urbanization and land use. Taking Wuhan city, Central China, as a case example, we explore the quantitative relationship between land use (built-up land, water bodies, and vegetation) and air quality (SO2, NO2, and PM10) based on nine ground-level monitoring sites from a long-term spatio-temporal perspective in 2007–2014. Five buffers with radiuses from 0.5 to 4 km are created at each site in geographical information syste...

  10. INDOOR AIR QUALITY ANALYSIS

    OpenAIRE

    Wang, Xin

    2010-01-01

    With the development of modern architecture, one of the building's interior decoration, furnishings, appliances and equipment have become increasingly demanding, making construction of the indoor environment of increasing pollution, increasing pollution, indoor environmental pollution hazards to human is also a growing the greater. This thesis summarizes the major indoor air pollution sources and major pollutants. Indoor air pollutants are formaldehyde, radon, ammonia, total volatile org...

  11. Estimating the impact of air temperature and relative humidity change on the water quality of Lake Manzala, Egypt

    OpenAIRE

    Gehan A.H. Sallam; Elsayed, E.A.

    2015-01-01

    By the late eighties the problem of climate change and its possible impacts had become an issue of global concern. Climate variables play an important role in controlling the water circulation and the water quality of lakes either as freshwater reservoirs, or as brackish lagoons. In Egypt, Lake Manzala is the largest and the most productive lake of the northern coastal lakes. In this study, continuous measurement data from the Real Time Water Quality Monitoring stations in Lake Manzala was st...

  12. Mind Your Indoor Air Quality

    Science.gov (United States)

    Mak, Lily

    2012-01-01

    When it comes to excelling in the classroom, it turns out the air students are breathing is just as important as the lessons they are learning. Studies show poor indoor air quality (IAQ) can lessen the comfort of students as well as staff--affecting concentration, attendance and student performance. It can even lead to lower IQs. What's more, poor…

  13. Impact of anthropogenic emission on air-quality over a megacity – revealed from an intensive atmospheric campaign during the Chinese Spring Festival

    OpenAIRE

    Deng, C.; Li, J.; Zhang, R.; J. S. Fu; Wang, Q.; Y. Lin; Zhuang, G.; Huang, K.; Q. Fu

    2012-01-01

    The Chinese Spring Festival is one of the most important traditional festivals in China. The peak transport in the Spring Festival season (spring travel rush) provides a unique opportunity for investigating the impact of human activities on air quality in the Chinese megacities as emission sources varied and fluctuated greatly prior to, during and after the festival. Enhanced vehicular emission during the spring travel rush before the festival resulted in high level pollutants of NOx (...

  14. Impact of anthropogenic emission on air quality over a megacity – revealed from an intensive atmospheric campaign during the Chinese Spring Festival

    OpenAIRE

    Huang, K.; Zhuang, G.; Y. Lin; Wang, Q.; J. S. Fu; Zhang, R.; Li, J.; Deng, C.; Q. Fu

    2012-01-01

    The Chinese Spring Festival is one of the most important traditional festivals in China. The peak transport in the Spring Festival season (spring travel rush) provides a unique opportunity for investigating the impact of human activity on air quality in the Chinese megacities. Emission sources are varied and fluctuate greatly before, during and after the Festival. Increased vehicular emissions during the "spring travel rush" before the 2009 Festival resulted in high level pollutants of NO<...

  15. Indoor air quality research

    International Nuclear Information System (INIS)

    The various types of pollutant found in indoor air are introduced and the effects on the health of the occupants of buildings summarized. The ''sick'' building syndrome is described in detail and the need for further investigation into its causes and remedies is stressed. 8 tabs

  16. Perception and Barriers to Indoor Air Quality and Perceived Impact on Respiratory Health: An Assessment in Rural Honduras

    OpenAIRE

    Audrey Le; Gonzalo Bearman; Kakotan Sanogo; Michael P. Stevens

    2014-01-01

    Objective. The aim of this study was to identify household-specific factors associated with respiratory symptoms and to study the perceived impact of indoor air pollution (IAP) as a health issue. Methods. An IRB-approved, voluntary, anonymous 23-item survey was conducted in Spanish at a medical outreach clinic in June 2012 and at the homes of survey respondents N=79. Comparative analyses were performed to investigate relationships between specific house characteristics and respiratory complai...

  17. Considering the sanitary aspects in regional plans for air quality. Situation of sanitary impacts of urban air pollution studies; Prise en compte des aspects sanitaires dans les Plans regionaux pour la qualite de l'air. Bilan des etudes d'impact sanitaires de la pollution atmospherique urbaine realisees

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-15

    The law on air and the rational use of energy of the 30. september 1996 forecasts the setting up of regional planning for the air quality that have to rely on the support of an evaluation of sanitary effects of air pollution. To help the local sanitary authorities in this mission, the National Institute of Sanitary Surveillance and the C.I.R.E. have realised a methodological guide on evaluation of sanitary impact of urban air pollution in different contexts. (N.C.)

  18. Investigation of infiltration and indoor air quality

    International Nuclear Information System (INIS)

    A multitask study was performed in the State of New York to provide information for guiding home energy conservation programs while maintaining acceptable indoor air quality. During the study, the statistical distribution of radon concentrations inside 2,400 homes was determined. The relationships among radon levels, house characteristics, and sources were also investigated. The direct impact that two specific air infiltration reduction measures--caulking and weatherstripping of windows and doors, and installation of storm windows and storm doors--have on house air leakage was investigated in 60 homes. The effect of house age on the impact of weatherization was also evaluated. Indoor and outdoor measurements of NO2, CO, SO2, and respirable suspended particulates (RSP) were made for 400 homes to determine the effect of combustion sources on indoor air quality and to characterize the statistical distribution of the concentrations. Finally, the combustion source data were combined with the information on air infiltration reduction measures to estimate the potential impact of these measures on indoor air quality

  19. Assessing the air quality impact of nitrogen oxides and benzene from road traffic and domestic heating and the associated cancer risk in an urban area of Verona (Italy)

    Science.gov (United States)

    Schiavon, Marco; Redivo, Martina; Antonacci, Gianluca; Rada, Elena Cristina; Ragazzi, Marco; Zardi, Dino; Giovannini, Lorenzo

    2015-11-01

    Simulations of emission and dispersion of nitrogen oxides (NOx) are performed in an urban area of Verona (Italy), characterized by street canyons and typical sources of urban pollutants. Two dominant source categories are considered: road traffic and, as an element of novelty, domestic heaters. Also, to assess the impact of urban air pollution on human health and, in particular, the cancer risk, simulations of emission and dispersion of benzene are carried out. Emissions from road traffic are estimated by the COPERT 4 algorithm, whilst NOx emission factors from domestic heaters are retrieved by means of criteria provided in the technical literature. Then maps of the annual mean concentrations of NOx and benzene are calculated using the AUSTAL2000 dispersion model, considering both scenarios representing the current situation, and scenarios simulating the introduction of environmental strategies for air pollution mitigation. The simulations highlight potentially critical situations of human exposure that may not be detected by the conventional network of air quality monitoring stations. The proposed methodology provides a support for air quality policies, such as planning targeted measurement campaigns, re-locating monitoring stations and adopting measures in favour of better air quality in urban planning. In particular, the estimation of the induced cancer risk is an important starting point to conduct zoning analyses and to detect the areas where population is more directly exposed to potential risks for health.

  20. Louisiana Air Quality - Using ASTER, Landsat 5, and MODIS to Assess the Impact of Sugar Cane and Marsh Burning Practices on Local Air Quality

    Science.gov (United States)

    Clark, Robert; Reahard, Ross; Robin, Chad; Zeringue, Jared

    2010-01-01

    document the impact of these smoke plumes on local populations for the improvement of biomass burning policies in Louisiana.

  1. Aeromicrobiology/air quality

    Science.gov (United States)

    Andersen, Gary L.; Frisch, A.S.; Kellogg, Christina A.; Levetin, E.; Lighthart, Bruce; Paterno, D.

    2009-01-01

    The most prevalent microorganisms, viruses, bacteria, and fungi, are introduced into the atmosphere from many anthropogenic sources such as agricultural, industrial and urban activities, termed microbial air pollution (MAP), and natural sources. These include soil, vegetation, and ocean surfaces that have been disturbed by atmospheric turbulence. The airborne concentrations range from nil to great numbers and change as functions of time of day, season, location, and upwind sources. While airborne, they may settle out immediately or be transported great distances. Further, most viable airborne cells can be rendered nonviable due to temperature effects, dehydration or rehydration, UV radiation, and/or air pollution effects. Mathematical microbial survival models that simulate these effects have been developed.

  2. Manual on indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Diamond, R.C.; Grimsrud, D.T.

    1983-12-01

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues.

  3. Manual on indoor air quality

    International Nuclear Information System (INIS)

    This reference manual was prepared to assist electric utilities in helping homeowners, builders, and new home buyers to understand a broad range of issues related to indoor air quality. The manual is directed to technically knowledgeable persons employed by utility companies - the customer service or marketing representative, applications engineer, or technician - who may not have specific expertise in indoor air quality issues. In addition to providing monitoring and control techniques, the manual summarizes the link between pollutant concentrations, air exchange, and energy conservation and describes the characteristics and health effects of selected pollutants. Where technical information is too lengthy or complex for inclusion in this volume, reference sources are given. Information for this manual was gathered from technical studies, manufacturers' information, and other materials from professional societies, institutes, and associations. The aim has been to provide objective technical and descriptive information that can be used by utility personnel to make informed decisions about indoor air quality issues

  4. Modelling the emissions from ships in ports and their impact on air quality in the metropolitan area of Hamburg

    Science.gov (United States)

    Ramacher, Martin; Karl, Matthias; Aulinger, Armin; Bieser, Johannes; Matthias, Volker; Quante, Markus

    2016-04-01

    Exhaust emissions from shipping contribute significantly to the anthropogenic burden of air pollutants such as nitrogen oxides (NOX) and particulate matter (PM). Ships emit not only when sailing on open sea, but also when approaching harbors, during port manoeuvers and at berth to produce electricity and heat for the ship's operations. This affects the population of harbor cities because long-term exposure to PM and NOX has significant effects on human health. The European Union has therefore has set air quality standards for air pollutants. Many port cities have problems meeting these standards. The port of Hamburg with around 10.000 ship calls per year is Germany's largest seaport and Europe's second largest container port. Air quality standard reporting in Hamburg has revealed problems in meeting limits for NO2 and PM10. The amount and contribution of port related ship emissions (38% for NOx and 17% for PM10) to the overall emissions in the metropolitan area in 2005 [BSU Hamburg (2012): Luftreinhalteplan für Hamburg. 1. Fortschreibung 2012] has been modelled with a bottom up approach by using statistical data of ship activities in the harbor, technical vessel information and specific emission algorithms [GAUSS (2008): Quantifizierung von gasförmigen Emissionen durch Maschinenanlagen der Seeschiffart an der deutschen Küste]. However, knowledge about the spatial distribution of the harbor ship emissions over the city area is crucial when it comes to air quality standards and policy decisions to protect human health. Hence, this model study examines the spatial distribution of harbor ship emissions (NOX, PM10) and their deposition in the Hamburg metropolitan area. The transport and chemical transformation of atmospheric pollutants is calculated with the well-established chemistry transport model TAPM (The Air Pollution Model). TAPM is a three-dimensional coupled prognostic meteorological and air pollution model with a condensed chemistry scheme including

  5. Impact of in-barn manure separation on biological air quality in an experimental setup identical to that in swine buildings.

    Science.gov (United States)

    Lavoie, J; Godbout, S; Lemay, S P; Belzile, M

    2009-07-01

    In-barn manure separation systems are becoming popular due to various environmental pressures on the swine industry. According to the literature, separation of feces and urine directly underneath the slats should have a positive impact on barn air quality. Removal and rapid separation of the two phases (solid/liquid) would reduce the dust and bioaerosol emissions, which would significantly improve the air quality in pig-housing facilities. From an occupational health and safety perspective, the maximum endotoxin and total bacteria concentrations to ensure workers' safety should not exceed 450 endotoxin units per cubic meter of air (EU m(-3)) and 10(4) colony-forming units per cubic meter of air (CFU m(-3)), respectively. In the current study, the effect on air quality of six in-barn manure handling systems was measured. A flat scraper system and four separation systems installed under the slats (a conveyor belt system, a conveyor net system, and a V-shaped scraper operated at two operation frequencies) were evaluated and compared to a conventional pull-plug system (control). The experiment took place in twelve independent and identical rooms housing four grower-finisher pigs each, and air samples were collected and analyzed for total dust, endotoxins, bacteria, and mold counts. The results obtained from this experimental setup show that the separation of feces and urine under the slats would concentrate at least 80% of the phosphorus in the solid phase. The total bacteria and endotoxin concentrations are lower than those found in commercial hog barns but remain higher than the recommended levels. Only the total dust concentrations are approximately 10% of their regulated value. This separation has no impact on dust and bioaerosol concentrations compared to the control. PMID:19728546

  6. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia

    International Nuclear Information System (INIS)

    Fires associated with agricultural and plantation development in Indonesia impact ecosystem services and release emissions into the atmosphere that degrade regional air quality and contribute to greenhouse gas concentrations. In this study, we estimate the relative contributions of the oil palm, timber (for wood pulp and paper), and logging industries in Sumatra and Kalimantan to land cover change, fire activity, and regional population exposure to smoke concentrations. Concessions for these three industries cover 21% and 49% of the land area in Sumatra and Kalimantan respectively, with the highest overall area in lowlands on mineral soils instead of more carbon-rich peatlands. In 2012, most remaining forest area was located in logging concessions for both islands, and for all combined concessions, there was higher remaining lowland and peatland forest area in Kalimantan (45% and 46%, respectively) versus Sumatra (20% and 27%, respectively). Emissions from all combined concessions comprised 41% of total fire emissions (within and outside of concession boundaries) in Sumatra and 27% in Kalimantan for the 2006 burning season, which had high fire activity relative to decadal emissions. Most fire emissions were observed in concessions located on peatlands and non-forested lowlands, the latter of which could include concessions that are currently under production, cleared in preparation for production, or abandoned lands. For the 2006 burning season, timber concessions from Sumatra (47% of area and 88% of emissions) and oil palm concessions from Kalimantan (33% of area and 67% of emissions) contributed the most to concession-related fire emissions from each island. Although fire emissions from concessions were higher in Kalimantan, emissions from Sumatra contributed 63% of concession-related smoke concentrations for the population-weighted region because fire sources were located closer to population centers. In order to protect regional public health, our results

  7. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia

    Science.gov (United States)

    Marlier, Miriam E.; DeFries, Ruth S.; Kim, Patrick S.; Koplitz, Shannon N.; Jacob, Daniel J.; Mickley, Loretta J.; Myers, Samuel S.

    2015-08-01

    Fires associated with agricultural and plantation development in Indonesia impact ecosystem services and release emissions into the atmosphere that degrade regional air quality and contribute to greenhouse gas concentrations. In this study, we estimate the relative contributions of the oil palm, timber (for wood pulp and paper), and logging industries in Sumatra and Kalimantan to land cover change, fire activity, and regional population exposure to smoke concentrations. Concessions for these three industries cover 21% and 49% of the land area in Sumatra and Kalimantan respectively, with the highest overall area in lowlands on mineral soils instead of more carbon-rich peatlands. In 2012, most remaining forest area was located in logging concessions for both islands, and for all combined concessions, there was higher remaining lowland and peatland forest area in Kalimantan (45% and 46%, respectively) versus Sumatra (20% and 27%, respectively). Emissions from all combined concessions comprised 41% of total fire emissions (within and outside of concession boundaries) in Sumatra and 27% in Kalimantan for the 2006 burning season, which had high fire activity relative to decadal emissions. Most fire emissions were observed in concessions located on peatlands and non-forested lowlands, the latter of which could include concessions that are currently under production, cleared in preparation for production, or abandoned lands. For the 2006 burning season, timber concessions from Sumatra (47% of area and 88% of emissions) and oil palm concessions from Kalimantan (33% of area and 67% of emissions) contributed the most to concession-related fire emissions from each island. Although fire emissions from concessions were higher in Kalimantan, emissions from Sumatra contributed 63% of concession-related smoke concentrations for the population-weighted region because fire sources were located closer to population centers. In order to protect regional public health, our results

  8. THE IMPACT OF THE INDUSTRIAL PROCESSING ACTIVITY OF THE OIL AT S.C. ARPECHIM ON THE AIR QUALITY

    Directory of Open Access Journals (Sweden)

    Emilia POPESCU, Marian POPESCU, Mihai Lucian MĂNOIU

    2012-12-01

    Full Text Available The atmospheric air is the main component of the surrounding environment directly involved in the pollution phenomenon. Together with the other sequences of the biosphere it represents a prior element for maintaining life, for keeping its natural quality, representing a major objective for human communities. As Barde I. Ph., Economie et Politique de l’environment, P.V.F. Paris 1992 showed, we can talk about air pollution when the presence of a foreign substance from its normal composition, or the variation of its natural components, in important proportions, are susceptible to determine a harmful effect or to create a prejudice or discomfort. The European Council environmental protection Committee stated even since 1967 that a normal constituent of the air must be considered pollutant when its concentration exceeds the normal background with 0, 03%. The purpose of the present work is to analyze the pollution degree of the environment (air generated by S.C. ARPECHIM in the areas of Pitesti – Environment protection agency, Pitesti – Stadium, Pitesti – Prundu neighborhood, Bradu, Oarja, Topoloveni, Stefanesti – Valea Mare.

  9. Air quality analysis and related risk assessment for the Bonneville Power Administration's Resource Program Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C S; Burk, K W; Driver, C J; Liljegren, J C; Neitzel, D A; Schwartz, M N; Dana, M T; Laws, G L; Mahoney, L A; Rhoads, K

    1992-04-01

    The Bonneville Power Administration (BPA) is considering 12 different alternatives for acquiring energy resources over the next 20 years. Each of the alternatives utilizes a full range of energy resources (e.g., coal, cogeneration, conservation, and nuclear); however, individual alternatives place greater emphases on different types of power-producing resources and employ different timetables for implementing these resources. The environmental impacts that would result from the implementation of each alternative and the economic valuations of these impacts, will be an important consideration in the alternative selection process. In this report we discuss the methods used to estimate environmental impacts from the resource alternatives. We focus on pollutant emissions rates, ground-level air concentrations of basic criteria pollutants, the acidity of rain, particulate deposition, ozone concentrations, visibility attenuation, global warming, human health effects, agricultural and forest impacts, and wildlife impacts. For this study, pollutant emission rates are computed by processing BPA data on power production and associated pollutant emissions. The assessment of human health effects from ozone indicated little variation between the resource alternatives. Impacts on plants, crops, and wildlife populations from power plant emissions are projected to be minimal for all resource alternatives.

  10. Observing and simulating the impact of growing urbanization on air quality and climate in the Eastern Mediterranean

    Science.gov (United States)

    Kanakidou, Maria; Myriokefalitakis, Stelios; Mihalopoulos, Nikos; Vrekoussis, Mihalis; Daskalakis, Nikos; Sfakianaki, Maria; Hatziannastassiou, Nikos; Im, Ulas

    2016-07-01

    The Mediterranean, and particularly its east basin, is a crossroad of air masses coming from Europe, Asia and Africa. Over this area, anthropogenic emissions, mainly from Europe, Balkans and the Black Sea, meet with natural emissions from Sahara (Saharan dust), vegetation and the ocean as well as from biomass burning, overall presenting a strong seasonal pattern. As a consequence of its unique location and emissions, the Mediterranean region is climatically very sensitive and often exposed to multiple stresses, such as a simultaneous water shortage and elevated air pollution exposure. During the last decades, the Eastern Mediterranean, following the general trend, has experienced a rapid growth in urbanization, including increased vehicle circulation, and industrialization, all impacting pollutant emissions in the atmosphere. Air pollution is one of the challenging environmental problems for Istanbul and Cairo megacities but also for the whole Eastern Mediterranean region. The recent financial crisis resulted in changes in human habits, energy production and subsequently air pollution. This resulted in changes in tropospheric composition that reflect changes in natural emissions and in human behavior have been detected by satellites and simulated by chemistry transport models. The results are presented and their robustness is discussed.

  11. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere - Part 1: Tropospheric composition and air quality

    Science.gov (United States)

    Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.

    2013-07-01

    Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuels in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here, we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector; however, the magnitude and type of improvement depend on the scenario. Model results show that the adoption of H2 fuel cells would decrease tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and would decrease those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9%) in the B1 scenario

  12. The impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere - Part 1: Tropospheric composition and air quality

    Science.gov (United States)

    Wang, D.; Jia, W.; Olsen, S. C.; Wuebbles, D. J.; Dubey, M. K.; Rockett, A. A.

    2012-08-01

    Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs) emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2) has been proposed as an energy carrier to substitute for fossil fuel in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here we evaluate the impact of a future (2050) H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem). Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ) regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector, however, the magnitude and type of improvement depend on the scenario. Model results show that with the adoption of H2 fuel cells decreases tropospheric burdens of ozone (7%), CO (14%), NOx (16%), soot (17%), sulfate aerosol (4%), and ammonium nitrate aerosol (12%) in the A1FI scenario, and decreases those of ozone (5%), CO (4%), NOx (11%), soot (7%), sulfate aerosol (4%), and ammonium nitrate aerosol (9 %) in the B1 scenario. The

  13. The impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere – Part 1: Tropospheric composition and air quality

    Directory of Open Access Journals (Sweden)

    A. A. Rockett

    2012-08-01

    Full Text Available Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2 has been proposed as an energy carrier to substitute for fossil fuel in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here we evaluate the impact of a future (2050 H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem. Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector, however, the magnitude and type of improvement depend on the scenario. Model results show that with the adoption of H2 fuel cells decreases tropospheric burdens of ozone (7%, CO (14%, NOx (16%, soot (17%, sulfate aerosol (4%, and ammonium nitrate aerosol (12% in the A1FI scenario, and decreases those of ozone (5%, CO (4%, NOx (11%, soot (7%, sulfate aerosol (4%, and ammonium nitrate aerosol (9 % in the B1 scenario. The

  14. Impact of a future H2-based road transportation sector on the composition and chemistry of the atmosphere – Part 1: Tropospheric composition and air quality

    Directory of Open Access Journals (Sweden)

    D. Wang

    2013-07-01

    Full Text Available Vehicles burning fossil fuel emit a number of substances that change the composition and chemistry of the atmosphere, and contribute to global air and water pollution and climate change. For example, nitrogen oxides and volatile organic compounds (VOCs emitted as byproducts of fossil fuel combustion are key precursors to ground-level ozone and aerosol formation. In addition, on-road vehicles are major CO2 emitters. In order to tackle these problems, molecular hydrogen (H2 has been proposed as an energy carrier to substitute for fossil fuels in the future. However, before implementing any such strategy it is crucial to evaluate its potential impacts on air quality and climate. Here, we evaluate the impact of a future (2050 H2-based road transportation sector on tropospheric chemistry and air quality for several possible growth and technology adoption scenarios. The growth scenarios are based on the high and low emissions Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios, A1FI and B1, respectively. The technological adoption scenarios include H2 fuel cell and H2 internal combustion engine options. The impacts are evaluated with the Community Atmospheric Model Chemistry global chemistry transport model (CAM-Chem. Higher resolution simulations focusing on the contiguous United States are also carried out with the Community Multiscale Air Quality Modeling System (CMAQ regional chemistry transport model. For all scenarios future air quality improves with the adoption of a H2-based road transportation sector; however, the magnitude and type of improvement depend on the scenario. Model results show that the adoption of H2 fuel cells would decrease tropospheric burdens of ozone (7%, CO (14%, NOx (16%, soot (17%, sulfate aerosol (4%, and ammonium nitrate aerosol (12% in the A1FI scenario, and would decrease those of ozone (5%, CO (4%, NOx (11%, soot (7%, sulfate aerosol (4%, and ammonium nitrate aerosol (9% in the B1 scenario

  15. Provide good air quality for people and improve their productivity

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2000-01-01

    quality. The impact on productivity justifies a much higher indoor air quality than the minimum levels prescribed in present standards and guidelines. One way of providing air of high quality for people to breathe, without involving excessive ventilation rates and energy use, is to provide "personalized...

  16. Historical Ambient Air Quality Data Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The Historical Ambient Air Quality Data Inventory contains measured and estimated data on ambient air pollution for use in assessing air quality, assisting in...

  17. 77 FR 21896 - Approval and Promulgation of Air Quality Implementation Plans; State of Nevada; Regional Haze...

    Science.gov (United States)

    2012-04-12

    ... Pollution Control Technology 4. Remaining Useful Life of the Source 5. Energy and Non-Air Quality Impacts VI...; (2) the energy and non-air quality environmental impacts of compliance; (3) any existing pollution... potential non-air quality impact. Nevada Energy cited these as negative impacts in its consideration of...

  18. Trading emissions improve air quality

    International Nuclear Information System (INIS)

    While admitting sharply contrasting views exist, James M. Lents of the South Coast Air Quality Management District in southern California sees emissions trading open-quotes as a lifesaver for our troubled planet.close quotes He explains: open-quotes If political support for the environment is to be maintained, we must seek the most economical and flexible means of pursuing cleanup. At present, market incentives and emissions trading represent our best hope.close quotes Lents is putting his money where his pen is. The air quality management district he heads plans to use market incentives, including emissions trading, to reduce air pollution in the notoriously dirty southern California area. When the system goes into operation in 1994, he estimates it will save southern California businesses more than $400 million a year in compliance costs, while also making major improvements in the region's air quality. If the idea works there, why won't it work elsewhere, even on a global scale, Lents asks? He believes it will. But open-quotes the ultimate success of emissions-trading programs, whether regional, national, or international in scope, lies in the proof that they're actually achieving reductions in harmful emissions,close quotes he emphasizes. open-quotes These reductions must be real and verifiable to satisfy the Clean Air Act and a skeptical public.close quotes

  19. Modeling nitrous acid and its impact on ozone and hydroxyl radical during the Texas Air Quality Study 2006

    Directory of Open Access Journals (Sweden)

    B. H. Czader

    2012-08-01

    Full Text Available Nitrous acid (HONO mixing ratios for the Houston metropolitan area were simulated with the Community Multiscale Air Quality (CMAQ Model for an episode during the Texas Air Quality Study (TexAQS II in August/September 2006 and compared to in-situ MC/IC (mist-chamber/ion chromatograph and long path DOAS (Differential Optical Absorption Spectroscopy measurements at three different altitude ranges. Several HONO sources were accounted for in simulations, such as gas phase formation, direct emissions, nitrogen dioxide (NO2 hydrolysis, photo-induced formation from excited NO2 and photo-induced conversion of NO2 into HONO on surfaces covered with organic materials. Compared to the gas-phase HONO formation there was about a tenfold increase in HONO mixing ratios when additional HONO sources were taken into account, which improved the correlation between modeled and measured values. Concentrations of HONO simulated with only gas phase chemistry did not change with altitude, while measured HONO concentrations decrease with height. A trend of decreasing HONO concentration with altitude was well captured with CMAQ predicted concentrations when heterogeneous chemistry and photolytic sources of HONO were taken into account. Heterogeneous HONO production mainly accelerated morning ozone formation, albeit slightly. Also HONO formation from excited NO2 only slightly affected HONO and ozone (O3 concentrations. Photo-induced conversion of NO2 into HONO on surfaces covered with organic materials turned out to be a strong source of daytime HONO. Since HONO immediately photo-dissociates during daytime its ambient mixing ratios were only marginally altered (up to 0.5 ppbv, but significant increase in the hydroxyl radical (OH and ozone concentration was obtained. In contrast to heterogeneous HONO formation that mainly accelerated morning ozone formation, inclusion of photo-induced surface chemistry

  20. Modeling nitrous acid and its impact on ozone and hydroxyl radical during the Texas Air Quality Study 2006

    Directory of Open Access Journals (Sweden)

    B. H. Czader

    2012-02-01

    Full Text Available Nitrous acid (HONO mixing ratios for the Houston metropolitan area were simulated with the Community Multiscale Air Quality (CMAQ model for an episode during the Texas Air Quality Study (TexAQS II in August/September 2006 and compared to in-situ MC/IC (mist-chamber/ion chromatograph and long path DOAS (Differential Optical Absorption Spectroscopy measurements at three different altitudes. Several HONO sources were accounted for in simulations, such as gas phase formation, direct emissions, nitrogen dioxide (NO2* hydrolysis, photo-induced formation from excited NO2* and photo-induced conversion of NO2 into HONO on surfaces covered with organic materials. Compared to the gas-phase HONO formation there was about a tenfold increase in HONO mixing ratios when additional HONO sources were taken into account, which improved the correlation between modeled and measured values. Concentrations of HONO simulated with only gas phase chemistry did not change with altitude, while measured HONO concentrations decrease with height. A trend of decreasing HONO concentration with altitude was well captured with CMAQ predicted concentrations when heterogeneous chemistry and photolytic sources of HONO were taken into account. Heterogeneous HONO production mainly accelerated morning ozone formation, albeit slightly. Also HONO formation from excited NO2 only slightly affected HONO and ozone (O3 concentrations. Photo-induced conversion of NO2 into HONO on surfaces covered with organic materials turned out to be a strong source of daytime HONO. Since HONO immediately photo-dissociates during daytime its ambient mixing ratios were only marginally altered (up to 0.5 ppbv, but significant increase in the hydroxyl radical (OH and ozone concentration was obtained. In contrast to heterogeneous HONO formation that mainly accelerated morning ozone formation, inclusion of photo

  1. Wood energy and air quality

    International Nuclear Information System (INIS)

    This publication first recalls the main benefits of the use of wood, the first source of renewable energy in France: abundant and local resource, low CO2 emission, competitiveness, job creation. It comments the relationship between the use of this source of energy and the compliance with air quality standards as they are notably defined by European directives, as the use of wood as heating source is one of the recommended lever to improve air quality. The publication comments emissions generated by this type of heating (mainly in the housing sector, with some critical meteorological periods). Levers for actions are discussed: fleet renewal to promote the best performing equipment, practice improvements (fuel quality, apparatus maintenance). Actions undertaken by the ADEME are briefly reviewed: support to individual equipment fleet modernisation, support to R and D, support to the sector, and information and communication

  2. Development of a vehicle emission inventory with high temporal-spatial resolution based on NRT traffic data and its impact on air pollution in Beijing - Part 2: Impact of vehicle emission on urban air quality

    Science.gov (United States)

    He, Jianjun; Wu, Lin; Mao, Hongjun; Liu, Hongli; Jing, Boyu; Yu, Ye; Ren, Peipei; Feng, Cheng; Liu, Xuehao

    2016-03-01

    A companion paper developed a vehicle emission inventory with high temporal-spatial resolution (HTSVE) with a bottom-up methodology based on local emission factors, complemented with the widely used emission factors of COPERT model and near-real-time (NRT) traffic data on a specific road segment for 2013 in urban Beijing (Jing et al., 2016), which is used to investigate the impact of vehicle pollution on air pollution in this study. Based on the sensitivity analysis method of switching on/off pollutant emissions in the Chinese air quality forecasting model CUACE, a modelling study was carried out to evaluate the contributions of vehicle emission to the air pollution in Beijing's main urban areas in the periods of summer (July) and winter (December) 2013. Generally, the CUACE model had good performance of the concentration simulation of pollutants. The model simulation has been improved by using HTSVE. The vehicle emission contribution (VEC) to ambient pollutant concentrations not only changes with seasons but also changes with time. The mean VEC, affected by regional pollutant transports significantly, is 55.4 and 48.5 % for NO2 and 5.4 and 10.5 % for PM2.5 in July and December 2013 respectively. Regardless of regional transports, relative vehicle emission contribution (RVEC) to NO2 is 59.2 and 57.8 % in July and December 2013, while it is 8.7 and 13.9 % for PM2.5. The RVEC to PM2.5 is lower than the PM2.5 contribution rate for vehicle emission in total emission, which may be due to dry deposition of PM2.5 from vehicle emission in the near-surface layer occuring more easily than from elevated source emission.

  3. Equivalence in Ventilation and Indoor Air Quality

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max; Walker, Iain; Logue, Jennifer

    2011-08-01

    We ventilate buildings to provide acceptable indoor air quality (IAQ). Ventilation standards (such as American Society of Heating, Refrigerating, and Air-Conditioning Enginners [ASHRAE] Standard 62) specify minimum ventilation rates without taking into account the impact of those rates on IAQ. Innovative ventilation management is often a desirable element of reducing energy consumption or improving IAQ or comfort. Variable ventilation is one innovative strategy. To use variable ventilation in a way that meets standards, it is necessary to have a method for determining equivalence in terms of either ventilation or indoor air quality. This study develops methods to calculate either equivalent ventilation or equivalent IAQ. We demonstrate that equivalent ventilation can be used as the basis for dynamic ventilation control, reducing peak load and infiltration of outdoor contaminants. We also show that equivalent IAQ could allow some contaminants to exceed current standards if other contaminants are more stringently controlled.

  4. User-Centric Indoor Air Quality Monitoring on Mobile Devices

    OpenAIRE

    Jiang, Yifei; University of Colorado, Boulder; Li, Kun; University of Colorado, Boulder; Piedrahita, Ricardo; University of Colorado, Boulder; Yun, Xiang; University of Michigan; Tian, Lei; University of Colorado, Boulder; Mansata, Omkar M.; University of Michigan; Lv, Qin; University of Colorado, Boulder; Dick, Robert P.; University of Michigan; Hannigan, Michael; University of Colorado, Boulder; Shang, Li; University of Colorado, Boulder

    2013-01-01

    Since people spend a majority of their time indoors, indoor air quality (IAQ) can have a significant impact on human health, safety, productivity, and comfort. Due to the diversity and dynamics of people's indoor activities, it is important to monitor IAQ for each individual. Most existing air quality sensing systems are stationary or focus on outdoor air quality. In contrast, we propose MAQS, a user-centric mobile sensing system for IAQ monitoring. MAQS users carry portable, indoor location ...

  5. Megacities, air quality and climate

    Science.gov (United States)

    Baklanov, Alexander; Molina, Luisa T.; Gauss, Michael

    2016-02-01

    The rapid urbanization and growing number of megacities and urban complexes requires new types of research and services that make best use of science and available technology. With an increasing number of humans now living in urban sprawls, there are urgent needs of examining what the rising number of megacities means for air pollution, local climate and the effects these changes have on global climate. Such integrated studies and services should assist cities in facing hazards such as storm surge, flooding, heat waves, and air pollution episodes, especially in changing climates. While important advances have been made, new interdisciplinary research studies are needed to increase our understanding of the interactions between emissions, air quality, and regional and global climates. Studies need to address both basic and applied research and bridge the spatial and temporal scales connecting local emissions and air pollution and local weather, global atmospheric chemistry and climate. This paper reviews the current status of studies of the complex interactions between climate, air quality and megacities, and identifies the main gaps in our current knowledge as well as further research needs in this important field of research.

  6. Uncertainty in Regional Air Quality Modeling

    Science.gov (United States)

    Digar, Antara

    Effective pollution mitigation is the key to successful air quality management. Although states invest millions of dollars to predict future air quality, the regulatory modeling and analysis process to inform pollution control strategy remains uncertain. Traditionally deterministic ‘bright-line’ tests are applied to evaluate the sufficiency of a control strategy to attain an air quality standard. A critical part of regulatory attainment demonstration is the prediction of future pollutant levels using photochemical air quality models. However, because models are uncertain, they yield a false sense of precision that pollutant response to emission controls is perfectly known and may eventually mislead the selection of control policies. These uncertainties in turn affect the health impact assessment of air pollution control strategies. This thesis explores beyond the conventional practice of deterministic attainment demonstration and presents novel approaches to yield probabilistic representations of pollutant response to emission controls by accounting for uncertainties in regional air quality planning. Computationally-efficient methods are developed and validated to characterize uncertainty in the prediction of secondary pollutant (ozone and particulate matter) sensitivities to precursor emissions in the presence of uncertainties in model assumptions and input parameters. We also introduce impact factors that enable identification of model inputs and scenarios that strongly influence pollutant concentrations and sensitivity to precursor emissions. We demonstrate how these probabilistic approaches could be applied to determine the likelihood that any control measure will yield regulatory attainment, or could be extended to evaluate probabilistic health benefits of emission controls, considering uncertainties in both air quality models and epidemiological concentration-response relationships. Finally, ground-level observations for pollutant (ozone) and precursor

  7. Indoor Air Quality in Schools: Clean Air Is Good Business.

    Science.gov (United States)

    Guarneiri, Michele A.

    2003-01-01

    Describes the effect of poor indoor air quality (IAQ) on student health, the cost of safeguarding good IAQ, the cause of poor IAQ in schools, how to tell whether a school has an IAQ problem, and how the U.S. Environmental Protection Agency can help schools improve indoor air quality though the use of their free "Indoor Air Quality Tools for…

  8. Urban air quality in the Asian region

    Energy Technology Data Exchange (ETDEWEB)

    Hopke, Philip K. [Center for Air Resources Engineering and Science, Department of Chemical and Biomolecular Engineering, Clarkson University, Potsdam, NY 13699-5708 (United States)], E-mail: hopkepk@clarkson.edu; Cohen, David D. [Australian Nuclear Science and Technology Organisation (ANSTO), Physics Division, Private Mail Bag 1, Menai 2234, NSW (Australia); Begum, Bilkis A.; Biswas, Swapan K. [Bangladesh Atomic Energy Commission (BAEC), Atomic Energy Centre, Dhaka (AECD), P.O. Box 164, Dhaka (Bangladesh); Ni Bangfa [China Institute of Atomic Energy (CIAE), China National Nuclear Corp. (CNNC), P.O. Box 275-50, Beijing 102413 (China); Pandit, Gauri Girish [Bhabha Atomic Research Centre, Trombay, Mumbai 400085 (India); Santoso, Muhayatun [Center for Nuclear Technology of Material and Radiometry, National Nuclear Energy Agency (BATAN), Jl. Tamansari 71, Bandung 40132 (Indonesia); Chung, Yong-Sam [Hanaro Center, Korea Atomic Energy Research Institute (KAERI), 150 Dukjin-dong, Yusung-ku, P.O. Box 105, Daejon 305-600 (Korea, Republic of); Davy, Perry; Markwitz, Andreas [Institute of Geological and Nuclear Sciences (GNS), 30 Gracefield Road, P.O. Box 31-312, Lower Hutt (New Zealand); Waheed, Shahida; Siddique, Naila [Division of Nuclear Chemistry, PINSTECH, Pakistan Atomic Energy Commission (PAEC), P.O. Box 1482, Nilore, Islamabad (Pakistan); Santos, Flora L.; Pabroa, Preciosa Corazon B. [Philippine Nuclear Research Institute (PNRI), Commonwealth Avenue, Diliman, P.O. Box 213, Quezon City 1101 (Philippines); Seneviratne, Manikkuwadura Consy Shirani [Atomic Energy Authority, 60/460, Baseline Road, Orugodawatta, Wellampitiya (Sri Lanka); Wimolwattanapun, Wanna; Bunprapob, Supamatthree [Thailand Institute of Nuclear Technology (TINT), 16 Vibhavadi Rangsit Road, Bangkok 10900 (Thailand); Thu Bac Vuong [Centre for Radiation Protection, Institute of Nuclear Sciences and Technology, P.O. Box 5T-160, Cau Giay (Viet Nam)] (and others)

    2008-10-01

    Over the past decade, member states of the Regional Co-operation Agreement (RCA), an intergovernmental agreement for the East Asia and Pacific region under the auspices of the IAEA with the assistance of international organizations and financial institutions such as the World Bank and the Asian Development Bank, have started to set in place policies and legislation for air pollution abatement. To support planning and evaluate the effectiveness of control programs, data are needed that characterizes urban air quality. The focus of this measurement program describe in this report is on size segregated particulate air pollution. Such airborne particulate matter can have a significant impact on human health and urban visibility. These data provide the input to receptor models that may permit the mitigation of these impacts by identification and quantitative apportionment of the particle sources. The aim of this report is to provide an overview of the measurements of concentrations and composition of particulate air pollution in two size fractions across the participating countries. For many of the large cities in this region, the measured particulate matter concentrations are greater than air quality standards or guidelines that have been adopted in developed countries.

  9. Urban air quality in the Asian region

    International Nuclear Information System (INIS)

    Over the past decade, member states of the Regional Co-operation Agreement (RCA), an intergovernmental agreement for the East Asia and Pacific region under the auspices of the IAEA with the assistance of international organizations and financial institutions such as the World Bank and the Asian Development Bank, have started to set in place policies and legislation for air pollution abatement. To support planning and evaluate the effectiveness of control programs, data are needed that characterizes urban air quality. The focus of this measurement program describe in this report is on size segregated particulate air pollution. Such airborne particulate matter can have a significant impact on human health and urban visibility. These data provide the input to receptor models that may permit the mitigation of these impacts by identification and quantitative apportionment of the particle sources. The aim of this report is to provide an overview of the measurements of concentrations and composition of particulate air pollution in two size fractions across the participating countries. For many of the large cities in this region, the measured particulate matter concentrations are greater than air quality standards or guidelines that have been adopted in developed countries

  10. Air Quality in Alternative Housing Systems May Have an Impact on Laying Hen Welfare. Part I—Dust

    Science.gov (United States)

    David, Bruce; Oppermann Moe, Randi; Michel, Virginie; Lund, Vonne; Mejdell, Cecilie

    2015-01-01

    The new legislation for laying hens in the European Union put a ban on conventional cages. Production systems must now provide the hens with access to a nest, a perch, and material for dust bathing. These requirements will improve the behavioral aspects of animal welfare. However, when hens are kept with access to litter, it is a concern that polluted air may become an increased threat to health and therefore also a welfare problem. This article reviews the literature regarding the health and welfare effects birds experience when exposed to barn dust. Dust is composed of inorganic and organic compounds, from the birds themselves as well as from feed, litter, and building materials. Dust may be a vector for microorganisms and toxins. In general, studies indicate that housing systems where laying hens have access to litter as aviaries and floor systems consistently have higher concentrations of suspended dust than caged hens with little (furnished cages) or no access to litter (conventional cages). The higher dust levels in aviaries and floor housing are also caused by increased bird activity in the non-cage systems. There are gaps in both the basic and applied knowledge of how birds react to dust and aerosol contaminants, i.e., what levels they find aversive and/or impair health. Nevertheless, high dust levels may compromise the health and welfare of both birds and their caretakers and the poor air quality often found in new poultry housing systems needs to be addressed. It is necessary to develop prophylactic measures and to refine the production systems in order to achieve the full welfare benefits of the cage ban. PMID:26479370

  11. Air Quality in Alternative Housing Systems May Have an Impact on Laying Hen Welfare. Part I—Dust

    Directory of Open Access Journals (Sweden)

    Bruce David

    2015-07-01

    Full Text Available The new legislation for laying hens in the European Union put a ban on conventional cages. Production systems must now provide the hens with access to a nest, a perch, and material for dust bathing. These requirements will improve the behavioral aspects of animal welfare. However, when hens are kept with access to litter, it is a concern that polluted air may become an increased threat to health and therefore also a welfare problem. This article reviews the literature regarding the health and welfare effects birds experience when exposed to barn dust. Dust is composed of inorganic and organic compounds, from the birds themselves as well as from feed, litter, and building materials. Dust may be a vector for microorganisms and toxins. In general, studies indicate that housing systems where laying hens have access to litter as aviaries and floor systems consistently have higher concentrations of suspended dust than caged hens with little (furnished cages or no access to litter (conventional cages. The higher dust levels in aviaries and floor housing are also caused by increased bird activity in the non-cage systems. There are gaps in both the basic and applied knowledge of how birds react to dust and aerosol contaminants, i.e., what levels they find aversive and/or impair health. Nevertheless, high dust levels may compromise the health and welfare of both birds and their caretakers and the poor air quality often found in new poultry housing systems needs to be addressed. It is necessary to develop prophylactic measures and to refine the production systems in order to achieve the full welfare benefits of the cage ban.

  12. The Bonneville Power Administration new energy-efficient homes programs: Final environmental impact statement: Volume 1, Assessing indoor air quality options

    International Nuclear Information System (INIS)

    BPA has underway marketing and incentive programs to encourage the construction of new energy-efficient homes that comply with Model Conservation Standards (MCS) developed by the Northwest Power Planning Council. These homes are designed to have lower infiltration rates than current building practices provide, which is likely to contribute to increased levels of indoor air pollutants, and may adversely affect the health of occupants. BPA's current and past new homes programs maintained ventilation rates comparable to those found in current practice homes by requiring balanced mechanical ventilation. BPA now proposes to give builders and consumers more flexibility by increasing the options for protecting indoor air quality in its new homes programs. This proposal is the impetus for this Environmental Impact Statement (EIS), which was prepared for BPA by Pacific Northwest Laboratory. BPS is preparing this EIS to assess whether other techniques maintain indoor air quality comparable to that found in homes built using current practices. Although many pollutants are potentially of great concern, our analysis concentrates on radon and formaldehyde. It is based on measured concentrations of these pollutants and measured ventilation rates in current practice. Ventilation was measured using fan pressurization tests, which measure only air leakage, and perfluorocarbon tracer gas (PFT) tests, which account for ventilation from mechanical devices and occupant behavior in addition to air leakage. These tests yielded two different estimates. We used these data to estimate pollutant concentrations and lifetime cancer rates under three alternative actions. Under all of the alternatives, radon had a much greater effect than formaldehyde. 102 refs

  13. Air pollution: Impact and prevention

    OpenAIRE

    SIERRA-VARGAS, MARTHA PATRICIA; Teran, Luis M.

    2012-01-01

    ABSTRACT Air pollution is becoming a major health problem that affects millions of people worldwide. In support of this observation, the World Health Organization estimates that every year, 2.4 million people die because of the effects of air pollution on health. Mitigation strategies such as changes in diesel engine technology could result in fewer premature mortalities, as suggested by the US Environmental Protection Agency. This review: (i) discusses the impact of air pollution on respirat...

  14. Impact of Emissions from Power Stations on the Ambient Air Quality of Selected Urban Areas in Kuwait

    Directory of Open Access Journals (Sweden)

    Bader N.A. Azmi

    2008-01-01

    Full Text Available In Kuwait, two main power stations, one comprising of seven-300MW steam generators at Doha and other with eight-300MW steam generators at Subyia cover the major power requirement of Kuwait city. These stations used different types of fuel oil as the prime source of energy that has different sulpher contents (S%. Comprehensive emission inventories for year the 2001 were used to execute Source Complex model for Short-term Dispersion (ISCST4.5 to predict ambient ground level concentrations of sulphur dioxide (SO2 and nitrogen oxide (NOx at selected receptors. A yearlong meteorological data were used in conjunction with the dispersion model to compute SO2 and NOx levels in and around the power stations. For validation of the model, computed results were compared with the measured daily average values at a fixed Kuwait EPA air quality monitoring station located at the roof of polyclinic in Rabia residential area. Contributions of each power station to the highest predicted values were assessed. Significance of the fifty highest hourly, daily and annual ground level concentration values under existing meteorological conditions was analyzed. The results for year 2001 revealed that daily and annual mean predicted SO2 concentrations had exceedance about 5.7% and 0.16% respectively of the total area under investigation. Based on these results, mitigation strategies would be proposed to abate high pollution levels caused by these power stations.

  15. The impact of the Cyprus comprehensive smoking ban on air quality and economic business of hospitality venues

    Directory of Open Access Journals (Sweden)

    Christophi Costas A

    2013-01-01

    Full Text Available Abstract Background Several countries, including Cyprus, have passed smoke-free legislations in recent years. The goal of this study was to assess the indoor levels of particulate matter in hospitality venues in Cyprus before and after the implementation of the law on 1/1/2010, evaluate the role of enforcement, and examine the legislation’s effect on revenue and employment. Methods Several hospitality venues (n = 35 were sampled between April 2007 and January 2008, and 21 of those were re-sampled after the introduction of the smoking ban, between March and May 2010. Data on enforcement was provided by the Cyprus Police whereas data on revenue and employment within the hospitality industry of Cyprus were obtained from the Cyprus Statistical Service; comparisons were made between the corresponding figures before and after the implementation of the law. Results The median level of PM2.5 associated with secondhand smoking was 161 μg/m3 pre-ban and dropped to 3 μg/m3 post-ban (98% decrease, p  Conclusion Smoke free legislations, when enforced, are highly effective in improving the air quality and reducing the levels of indoor PM2.5. Strict enforcement plays a key role in the successful implementation of smoking bans. Even in nations with high smoking prevalence comprehensive smoking laws can be effectively implemented and have no negative effect on accommodation, food, and beverage services.

  16. Urban impact on air quality in RegCM/CAMx couple for MEGAPOLI project - high resolution sensitivity study

    Science.gov (United States)

    Halenka, T.; Huszar, P.; Belda, M.

    2010-09-01

    Recent studies show considerable effect of atmospheric chemistry and aerosols on climate on regional and local scale. For the purpose of qualifying and quantifying the magnitude of climate forcing due to atmospheric chemistry/aerosols on regional scale, the development of coupling of regional climate model and chemistry/aerosol model was started on the Department of Meteorology and Environmental Protection, Charles University, Prague, for the EC FP6 Project QUANTIFY and EC FP6 Project CECILIA. For this coupling, existing regional climate model and chemistry transport model have been used at very high resolution of 10km grid. Climate is calculated using RegCM while chemistry is solved by CAMx. The experiments with the couple have been prepared for EC FP7 project MEGAPOLI assessing the impact of the megacities and industrialized areas on climate. Meteorological fields generated by RCM drive CAMx transport, chemistry and a dry/wet deposition. A preprocessor utility was developed for transforming RegCM provided fields to CAMx input fields and format. New domain have been settled for MEGAPOLI purpose in 10km resolution including all the European "megacities" regions, i.e. London metropolitan area, Paris region, industrialized Ruhr area, Po valley etc. There is critical issue of the emission inventories available for 10km resolution including the urban hot-spots, TNO emissions are adopted for this sensitivity study in 10km resolution for comparison of the results with the simulation based on merged TNO emissions, i.e. basically original EMEP emissions at 50 km grid. The sensitivity test to switch on/off Paris area emissions is analysed as well. Preliminary results for year 2005 are presented and discussed to reveal whether the concept of effective emission indices could help to parameterize the urban plume effects in lower resolution models. Interactive coupling is compared to study the potential of possible impact of urban air-pollution to the urban area climate.

  17. Impact of temperature and humidity on acceptability of indoor air quality during immediate and longer whole-body exposures

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1997-01-01

    Acceptability of clean air and air polluted by building materials was studied in climate chambers with different levels of air temperature and humidity in the ranges 18-28°C and 30-70%. The immediate acceptability after entering a chamber and the acceptability during a 20-minute whole-body exposure...

  18. Air quality in Europe - 2012 report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-09-15

    This report presents an overview and analysis of the status and trends of air quality in Europe based on concentration measurements in ambient air and data on anthropogenic emissions and trends from 2001 - when mandatory monitoring of ambient air concentrations of selected pollutants first produced reliable air quality information - to 2010. (Author)

  19. Air quality in Europe - 2011 report

    Energy Technology Data Exchange (ETDEWEB)

    Guerreiro, C.; Larssen, S. (Norsk Inst. for Luftforskning (NILU), Lillestroem (Norway)); Leeuw, F. de (RIVM, Bilthoven (Netherlands)); Foltescu, V. (EEA, Copenhagen (Denmark))

    2011-11-15

    The annual report 'Air quality in Europe' summarises the most recent evaluation of Europe's air quality status. It is mainly based on air quality measurement data that have been made available officially by 32 EEA member countries as well as 6 EEA cooperating countries. The report includes maps and analyses of air quality status over the calendar year 2009. It also analyses air quality trends over the past years. The evaluation of the status and trends of air quality is based on ambient air measurements, in conjunction with reported anthropogenic emissions. The report summarizes the main effects of different air pollutants on human health, the environment and the climate. An overview of policies and measures at European level is also given for each pollutant. This report reviews progress towards meeting the requirements of the two air quality directives in force as well as the air quality guidelines set by the World Health Organization (WHO). The report is produced in support of European and national policy development and implementation in the field of air quality. It also supports air quality management and informs the general public on the current status and trends of air quality in Europe. (Author)

  20. Indoor Air Quality in Chemistry Laboratories.

    Science.gov (United States)

    Hays, Steve M.

    This paper presents air quality and ventilation data from an existing chemical laboratory facility and discusses the work practice changes implemented in response to deficiencies in ventilation. General methods for improving air quality in existing laboratories are presented and investigation techniques for characterizing air quality are…

  1. Workshop on indoor air quality research needs

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized. (DLS)

  2. Workshop on indoor air quality research needs

    International Nuclear Information System (INIS)

    Workshop participants report on indoor air quality research needs including the monitoring of indoor air quality, report of the instrumentation subgroup of indoor air quality, health effects, and the report of the control technology session. Risk analysis studies addressing indoor environments were also summarized

  3. A process for selecting ecological indicators for application in monitoring impacts to Air Quality Related Values (AQRVs) from atmospheric pollutants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    White, G.J.; Breckenridge, R.P.

    1997-01-01

    Section 160 of the Clean Air Act (CAA) calls for measures be taken {open_quotes}to preserve, protect, and enhance air quality in national parks, national wilderness areas, national monuments, national seashores, and other areas of special national or regional natural, recreational, scenic, or historic value.{close_quotes} Pursuant to this, stringent requirement have been established for {open_quotes}Class I{close_quotes} areas, which include most National Parks and Wilderness Areas. Federal Land Managers (FLMs) are charged with the task of carrying out these requirements through the identification of air quality related values (AQRVs) that are potentially at risk from atmospheric pollutants. This is a complex task, the success of which is dependent on the gathering of information on a wide variety of factors that contribute to the potential for impacting resources in Class I areas. Further complicating the issue is the diversity of ecological systems found in Class I areas. There is a critical need for the development of monitoring programs to assess the status of AQRVs in Class I areas with respect to impacts caused by atmospheric pollutants. These monitoring programs must be based on the measurement of a carefully selected suite of key physical, chemical, and biological parameters that serve as indicators of the status of the ecosystems found in Class I areas. Such programs must be both scientifically-based and cost-effective, and must provide the data necessary for FLMs to make objective, defensible decisions. This document summarizes a method for developing AQRV monitoring programs in Class I areas.

  4. Impacts of Ozone-vegetation Interactions and Biogeochemical Feedbacks on Atmospheric Composition and Air Quality Under Climate Change

    Science.gov (United States)

    Sadeke, M.; Tai, A. P. K.; Lombardozzi, D.; Val Martin, M.

    2015-12-01

    Surface ozone pollution is one of the major environmental concerns due to its damaging effects on human and vegetation. One of the largest uncertainties of future surface ozone prediction comes from its interaction with vegetation under a changing climate. Ozone can be modulated by vegetation through, e.g., biogenic emissions, dry deposition and transpiration. These processes are in turn affected by chronic exposure to ozone via lowered photosynthesis rate and stomatal conductance. Both ozone and vegetation growth are expected to be altered by climate change. To better understand these climate-ozone-vegetation interactions and possible feedbacks on ozone itself via vegetation, we implement an online ozone-vegetation scheme [Lombardozzi et al., 2015] into the Community Earth System Model (CESM) with active atmospheric chemistry, climate and land surface components. Previous overestimation of surface ozone in eastern US, Canada and Europe is shown to be reduced by >8 ppb, reflecting improved model-observation comparison. Simulated surface ozone is lower by 3.7 ppb on average globally. Such reductions (and improvements) in simulated ozone are caused mainly by lower isoprene emission arising from reduced leaf area index in response to chronic ozone exposure. Effects via transpiration are also potentially significant but require better characterization. Such findings suggest that ozone-vegetation interaction may substantially alter future ozone simulations, especially under changing climate and ambient CO2 levels, which would further modulate ozone-vegetation interactions. Inclusion of such interactions in Earth system models is thus necessary to give more realistic estimation and prediction of surface ozone. This is crucial for better policy formulation regarding air quality, land use and climate change mitigation. Reference list: Lombardozzi, D., et al. "The Influence of Chronic Ozone Exposure on Global Carbon and Water Cycles." Journal of Climate 28.1 (2015): 292-305.

  5. Impact of climate and land cover changes on tropospheric ozone air quality and public health in East Asia between 1980 and 2010

    Science.gov (United States)

    Fu, Y.; Tai, A. P. K.

    2015-09-01

    Understanding how historical climate and land cover changes have affected tropospheric ozone in East Asia would help constrain the large uncertainties associated with future East Asian air quality projections. We perform a series of simulations using a global chemical transport model driven by assimilated meteorological data and a suite of land cover and land use data to examine the public health effects associated with changes in climate, land cover, land use, and anthropogenic emissions between the 5-year periods 1981-1985 and 2007-2011 in East Asia. We find that between these two periods land cover change alone could lead to a decrease in summertime surface ozone by up to 4 ppbv in East Asia and ~ 2000 fewer ozone-related premature deaths per year, driven mostly by enhanced dry deposition resulting from climate- and CO2-induced increase in vegetation density, which more than offsets the effect of reduced isoprene emission arising from cropland expansion. Climate change alone could lead to an increase in summertime ozone by 2-10 ppbv in most regions of East Asia and ~ 6000 more premature deaths annually, mostly attributable to warming. The combined impacts (-2 to +12 ppbv) show that while the effect of climate change is more pronounced, land cover change could offset part of the climate effect and lead to a previously unknown public health benefit. While the changes in anthropogenic emissions remain the largest contributor to deteriorating ozone air quality in East Asia over the past 30 years, we show that climate change and land cover changes could lead to a substantial modification of ozone levels, and thus should come into consideration when formulating future air quality management strategies. We also show that the sensitivity of surface ozone to land cover change is more dependent on dry deposition than on isoprene emission in most of East Asia, leading to ozone responses that are quite distinct from that in North America, where most ozone

  6. Human perception of visual air quality (uniform haze)

    Science.gov (United States)

    Malm, William; Kelley, Karen; Molenar, John; Daniel, Terry

    The National Park Service and the U.S. Environmental Protection Agency are cooperatively conducting ongoing studies of human perception of visual air quality. Major objectives of this program include: (1) determination of the relationship between judgments of visual air quality of actual three dimensional scenes and a surrogate slide representation of that scene, (2) examination of the effect of sun angle and meteorological conditions on perceived visual air quality, (3) examination of the effect of demographic background on observer's judgments of visual air quality, (4) establishment of a functional relationship between human perception of visual air quality and various electro-optical parameters for several different scenic vistas and (5) development of a model capable of predicting the sensitivity of a park to visual air pollution impact. Preliminary results of a previous study involving one vista revealed a linear relationship between human perception and apparent vista contrast for constant vista illumination and ground cover. A more general formalism for averaging vista color contrast appeared to account for effects that snow cover and varying illumination have on the sensitivity of perceived visual air quality to air pollution. These functional relationships are re-examined using a number of southwestern vistas. A first order model capable of predicting perceived visual air quality as a function of change in air pollution is developed. In addition, the relationship between perceived visual air quality of actual three dimensional scenes and pictoral surrogates is examined.

  7. Evaluation of US and UK Models in Simulating the Impact of Barriers on Near-Road Air Quality

    Science.gov (United States)

    The possibility that roadside noise barriers can act to mitigate traffic-related air pollution exposures for people living and working near major roadways is being considered in the context of public health protection. Air pollution dispersion models that can accurately simulate ...

  8. Proceedings of the upwind downwind air quality conference 2004 : a practical conference on improving air quality

    International Nuclear Information System (INIS)

    This conference provided a forum for policy makers, environmental managers, urban designers and citizens to discuss current air quality issues. It provided information on urban sprawl and the resulting human health impacts. Many presentations described efforts that are currently underway to improve local air quality through smart growth initiatives, new urban design approaches, successful airshed management and planning legislation. The roles that industry, community groups and governments play in achieving air quality improvements were also highlighted. The mitigation efforts relate to both natural areas and industrial corridors and involve reducing waste, consuming less energy, changing our modes of transportation, and wise land use in urban areas. Sixteen presentations were indexed separately for inclusion in this database. refs., tabs., figs

  9. HPCN and air quality modeling

    OpenAIRE

    Blom, Joke; Lioen, W.M.; Verwer, Jan

    1998-01-01

    We discuss the implementation of an off-line air quality model (AQM). More precisely, how to design a code for an AQM that runs efficiently on a variety of computer platforms. We implemented our ideas in an AQM benchmark and we show the performance of this benchmark on the different architectural paradigms. A second subject of the paper is the I/O performance of the Cray~T3E for an off-line model. We implemented the required I/O in different ways and show that none of these results in a truly...

  10. Association between air quality and quality of life.

    Science.gov (United States)

    Darçın, Murat

    2014-02-01

    Air quality-or its converse, air pollution-is a significant risk factor for human health. Recent studies have reported association between air pollution and human health. There are numerous diseases that may be caused by air pollution such as respiratory infection, lung cancer, cardiovascular disease, chronic obstructive pulmonary disease, and asthma. In this study, the relationship between air quality and quality of life was examined by using canonical correlation analysis. Data of this study was collected from 27 countries. WHO statistics were used as the main source of quality of life data set (Y variables set). European Environment Agency statistics and (for outdoor air-PM10) WHO statistics were used as the main source of air quality data set (X variables set). It is found that there are significant positive correlation between air quality and quality of life. PMID:24014226

  11. Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century

    Directory of Open Access Journals (Sweden)

    S. Wu

    2012-02-01

    Full Text Available The effects of future land use and land cover change on the chemical composition of the atmosphere and air quality are largely unknown. To investigate the potential effects associated with future changes in vegetation driven by atmospheric CO2 concentrations, climate, and anthropogenic land use over the 21st century, we performed a series of model experiments combining a general circulation model with a dynamic global vegetation model and an atmospheric chemical-transport model. Our results indicate that climate- and CO2-induced changes in vegetation composition and density between 2100 and 2000 could lead to decreases in summer afternoon surface ozone of up to 10 ppb over large areas of the northern mid-latitudes. This is largely driven by the substantial increases in ozone dry deposition associated with increases in vegetation density in a warmer climate with higher atmospheric CO2 abundance. Climate-driven vegetation changes over the period 2000–2100 lead to general increases in isoprene emissions, globally by 15% in 2050 and 36% in 2100. These increases in isoprene emissions result in decreases in surface ozone concentrations where the NOx levels are low, such as in remote tropical rainforests. However, over polluted regions, such as the northeastern United States, ozone concentrations are calculated to increase with higher isoprene emissions in the future. Increases in biogenic emissions also lead to higher concentrations of secondary organic aerosols, which increase globally by 10% in 2050 and 20% in 2100. Summertime surface concentrations of secondary organic aerosols are calculated to increase by up to 1 μg m−3 and double for large areas in Eurasia over the period of 2000–2100. When we use a scenario of future anthropogenic land use change, we find less increase in global isoprene emissions due to replacement of higher-emitting forests by lower-emitting cropland. The global

  12. Impacts of changes in land use and land cover on atmospheric chemistry and air quality over the 21st century

    Directory of Open Access Journals (Sweden)

    S. Wu

    2011-05-01

    Full Text Available The effects of future land use and land cover change on the chemical composition of the atmosphere and air quality are largely unknown. To investigate the potential effects associated with future changes in vegetation driven by atmospheric CO2 concentrations, climate, and anthropogenic land use over the 21st century, we performed a series of model experiments combining a general circulation model with a dynamic global vegetation model and an atmospheric chemical-transport model. Our results indicate that climate- and CO2-induced changes in vegetation composition and density could lead to decreases in summer afternoon surface ozone of up to 10 ppb over large areas of the northern mid-latitudes. This is largely driven by the substantial increases in ozone dry deposition associated with changes in the composition of temperate and boreal forests where conifer forests are replaced by those dominated by broadleaf tree types, as well as a CO2-driven increase in vegetation density. Climate-driven vegetation changes over the period 2000–2100 lead to general increases in isoprene emissions, globally by 15 % in 2050 and 36 % in 2100. These increases in isoprene emissions result in decreases in surface ozone concentrations where the NOx levels are low, such as in remote tropical rainforests. However, over polluted regions, such as the northeastern United States, ozone concentrations are calculated to increase with higher isoprene emissions in the future. Increases in biogenic emissions also lead to higher concentrations of secondary organic aerosols, which increase globally by 10 % in 2050 and 20 % in 2100. Surface concentrations of secondary organic aerosols are calculated to increase by up to 1 μg m−3 for large areas in Eurasia. When we use a scenario of future anthropogenic land use change, we find less increase in global isoprene emissions due to replacement of higher-emitting forests by lower

  13. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Xiao-Ming, E-mail: xhu@ou.edu [Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, OK 73072 (United States); Ma, ZhiQiang, E-mail: zqma@ium.cn [Institute of Urban Meteorology, China Meteorological Administration, Beijing 100089 (China); Lin, Weili [Key Laboratory for Atmospheric Chemistry, Center for Atmospheric Watch and Services, Chinese Academy of Meteorological Sciences, Beijing, 100081 (China); Zhang, Hongliang; Hu, Jianlin [Department of Civil and Environmental Engineering, University of California, Davis, CA 95616 (United States); Wang, Ying; Xu, Xiaobin [Key Laboratory for Atmospheric Chemistry, Center for Atmospheric Watch and Services, Chinese Academy of Meteorological Sciences, Beijing, 100081 (China); Fuentes, Jose D. [Department of Meteorology, Pennsylvania State University, University Park, PA 16802 (United States); Xue, Ming [Center for Analysis and Prediction of Storms, and School of Meteorology, University of Oklahoma, Norman, OK 73072 (United States)

    2014-11-15

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (∼ 1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O{sub 3} pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events. - Highlights: • Low mixed layer exacerbates air pollution over the North China Plain (NCP) • Warm advection from the Loess

  14. Impact of the Loess Plateau on the atmospheric boundary layer structure and air quality in the North China Plain: A case study

    International Nuclear Information System (INIS)

    The North China Plain (NCP), to the east of the Loess Plateau, experiences severe regional air pollution. During the daytime in the summer, the Loess Plateau acts as an elevated heat source. The impacts of such a thermal effect on meteorological phenomena (e.g., waves, precipitation) in this region have been discussed. However, its impacts on the atmospheric boundary layer structure and air quality have not been reported. It is hypothesized that the thermal effect of the Plateau likely modulates the boundary layer structure and ambient concentrations of pollutants over the NCP under certain meteorological conditions. Thus, this study investigates such effect and its impacts using measurements and three-dimensional model simulations. It is found that in the presence of daytime westerly wind in the lower troposphere (∼ 1 km above the NCP), warmer air above the Loess Plateau was transported over the NCP and imposed a thermal inversion above the mixed boundary layer, which acted as a lid and suppressed the mixed layer growth. As a result, pollutants accumulated in the shallow mixed layer and ozone was efficiently produced. The downward branch of the thermally-induced Mountain-Plains Solenoid circulation over the NCP contributed to enhancing the capping inversion and exacerbating air pollution. Previous studies have reported that low mixed layer, a factor for elevated pollution in the NCP, may be caused by aerosol scattering and absorption of solar radiation, frontal inversion, and large scale subsidence. The present study revealed a different mechanism (i.e., westerly warm advection) for the suppression of the mixed layer in summer NCP, which caused severe O3 pollution. This study has important implications for understanding the essential meteorological factors for pollution episodes in this region and forecasting these severe events. - Highlights: • Low mixed layer exacerbates air pollution over the North China Plain (NCP) • Warm advection from the Loess Plateau

  15. Mexico City Air Quality Research Initiative

    International Nuclear Information System (INIS)

    The Mexico City Air Quality Research Initiative is one project that is examining the complex relationship between air pollution, economic growth, societal values, and air quality policies. This paper describes the programs that are being used to fulfill the three tasks of the project: air pollution modeling and simulation, air pollution monitoring, and strategic evaluation. The two lead institutions for this project are the Mexican Petroleum Institute and Los Alamos National Laboratory

  16. Meteorological determinants of air quality

    Science.gov (United States)

    Turoldo, F.; Del Frate, S.; Gallai, I.; Giaiotti, D. B.; Montanari, F.; Stel, F.; Goi, D.

    2010-09-01

    Air quality is the result of complex phenomena, among which the major role is played by human emissions of pollutants. Atmospheric processes act as determinants, e.g., modulating, dumping or amplifying the effects of emissions as an orchestra's director does with musical instruments. In this work, a series of small-scale and meso-scale meteorological determinants of air-quality are presented as they are observed in an area characterized by complex orography (Friuli Venezia Giulia, in the north-eastern side of Italy). In particular, attention is devoted to: i) meso-scale flows favouring the persistence of high concentrations of particulate matter; ii) meso-scale periodic flows (breezes) favouring high values of particulate matter; iii) local-scale thermodynamic behaviour favouring high atmospheric values of nitrogen oxides. The effects of these different classes of determinants are shown through comparisons between anthropic emissions (mainly traffic) and ground-based measurements. The relevance of complex orography (relatively steep relieves near to the sea) is shown for the meso-scale flows and, in particular, for local-scale periodic flows, which favour the increase of high pollutants concentrations mainly in summer, when the breezes regime is particularly relevant. Part of these results have been achieved through the ETS - Alpine Space EU project iMONITRAF!

  17. Dynamic evaluation of air quality models over European regions

    OpenAIRE

    Thunis, P.; Pisoni, E.; Degraeuwe, B.; Kranenburg, R.; Schaap, M.; Clappier, A.

    2014-01-01

    Chemistry-transport models are increasingly used in Europe for estimating air quality or forecasting changes in pollution levels. But with this increased use of modeling arises the need of harmonizing the methodologies to determine the quality of air quality model applications. This is complex for planning applications, i.e. when models are used to assess the impact of realistic or virtual emission scenarios. In this work, the methodology based on the calculation of potencies proposed by Thun...

  18. Evaluating The Air Quality Impacts Of The 2008 Beijing Olympic Games: The Spatial Distribution Of Inhalable Particulate Matter And Their Impact Factors

    Science.gov (United States)

    Zhao, Wenhui; Gong, Huili; Zhao, Wenji; Li, Xiaojuan; Tang, Ming

    2010-10-01

    To achieve good air quality and improve traffic during Olympic Games, the Beijing Municipal Government enacted a series of emission control regulations before and during these events. It created a valuable case study to evaluate the effectiveness of these measures on mitigating air pollution and protecting public health. In this paper, we report the results from our field campaign from summer 2007 to 2009 on the on- road emission factors of inhalable particulate matter (IPM) as well as the meteorological factors like temperature, wind speed and humidity. The control measures on vehicle and using light-duty gasoline vehicles showed considerable reduction in the Olympic year (2008) and after-Olympic year (2009) compared to the pre-Olympic year (2007). The concentration of IPM increased with higher construction ratio and population density, while decreased by the higher vegetation cover ratio (VCR). It is also influenced by meteorological factors: temperature has a positive correlation with coarse particle and negative correlation with fine particle. However, the correlation between humidity and fine IPM was positive and negative in coarse IPM. The most influence factor is humidity, the temperature was the second and the wind speed was the least.

  19. Indoor air quality control; Sisaeilman laadun hallinta

    Energy Technology Data Exchange (ETDEWEB)

    Villberg, K.; Saarela, K.; Tirkkonen, T. [VTT Building and Transport, Espoo (FI)] [and others

    2004-06-01

    Indoor Air Quality Control-project (Dno 188/401/00, 40724/00), one part of the Finnish Research Programme on Environmental Health (SYTTY), was consisted of three parts. In part one the objective was to establish a causal connection between indoor air quality, perceived comfort and diagnosed health effects. The indoor air quality was measured with methods used today in the Finnish classification, but complementary new methods were applied and tested for their relevance in attaining a better coverage of different chemical substances in indoor air. The health and comprehensive indoor air data were collected from subjects, which were chosen among the patients treated in Helsinki University Central Hospital because of building related symptoms. Additionally control families were randomly selected from Helsinki area. All participants were interviewed for their residential conditions and any building related problems using modified Oerebro and Tuohilampi questionnaires. Clinical data was only collected from the patients in medical examination. All these data was used as additional information in drafting conclusions and recommendations for the improvement of characterising indoor air quality and the classification procedure. In the second part the aim was to develop procedures to evaluate the irritating and odorous chemical compounds of material emissions and the perceived air quality. The causative relationships between sensory assessment method used in the present Finnish Classification of Building Materials, olfactometry and emission measurements in chemical terms were determined. Another objective of this project was to investigate irritation properties of building material emissions and chemical mixtures by the mouse bioassay. In addition the indicator value of human evaluation was clarified for estimating irritancy of building material emission and for studying an impact of ageing of materials on odour and irritation responses. Finally a model was developed for

  20. Impacts of air-sea interactions on regional air quality predictions using WRF/Chem v3.6.1 coupled with ROMS v3.7: southeastern US example

    Science.gov (United States)

    He, J.; He, R.; Zhang, Y.

    2015-11-01

    Air-sea interactions have significant impacts on coastal convection and surface fluxes exchange, which are important for the spatial and vertical distributions of air pollutants that affect public health, particularly in densely populated coastal areas. To understand the impacts of air-sea interactions on coastal air quality predictions, sensitivity simulations with different cumulus parameterization schemes and atmosphere-ocean coupling are conducted in this work over southeastern US in July 2010 using the Weather Research and Forecasting Model with Chemistry (WRF/Chem). The results show that different cumulus parameterization schemes can result in an 85 m difference in the domain averaged planetary boundary layer height (PBLH), and 4.8 mm difference in the domain averaged daily precipitation. Comparing to WRF/Chem without air-sea interactions, WRF/Chem with a 1-D ocean mixed layer model (WRF/Chem-OML) and WRF/Chem coupled with a 3-D Regional Ocean Modeling System (WRF/Chem-ROMS) predict the domain averaged changes in the sea surface temperature of 0.1 and 1.0 °C, respectively. The simulated differences in the surface concentrations of ozone (O3) and PM2.5 between WRF/Chem-ROMS and WRF/Chem can be as large as 17.3 ppb and 7.9 μg m-3, respectively. The largest changes simulated from WRF/Chem-ROMS in surface concentrations of O3 and particulate matter with diameter less than and equal to 2.5 μm (PM2.5) occur not only along coast and remote ocean, but also over some inland areas. Extensive validations against observations, show that WRF/Chem-ROMS improves the predictions of most cloud and radiative variables, and surface concentrations of some chemical species such as sulfur dioxide, nitric acid, maximum 1 h and 8 h O3, sulfate, ammonium, nitrate, and particulate matter with diameter less than and equal to 10 μm (PM10). This illustrates the benefits and needs of using coupled atmospheric-ocean model with advanced model representations of air-sea interactions for

  1. The Air Sensor Citizen Science Toolbox: A Collaboration in Community Air Quality Monitoring and Mapping

    Science.gov (United States)

    Research in Action: Collect air quality data to characterize near-road/near-source hotspots; Determine potential impact on nearby residences & roadways; Case study of successful use of such data; Relationship between distance to roadways and industrial sources, exposure to...

  2. Air quality and communication. Special issue

    International Nuclear Information System (INIS)

    In six articles Attention is paid to mainly the practical appliances of communication in relation to the aspects of air quality: the perceptions of air pollution of those people who are affected by it; the tuning of information on air quality to the wishes and needs of citizens; tools enabling visualisation of future situations in the living environment in various scenarios; results of a study of the need for information on air quality among citizens and general practitioners; experiences with websites on air quality obtained in two European projects. (mk)

  3. 30 CFR 75.321 - Air quality.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Air quality. 75.321 Section 75.321 Mineral Resources MINE SAFETY AND HEALTH ADMINISTRATION, DEPARTMENT OF LABOR COAL MINE SAFETY AND HEALTH MANDATORY SAFETY STANDARDS-UNDERGROUND COAL MINES Ventilation § 75.321 Air quality. (a)(1) The air in areas...

  4. Representativeness of air quality monitoring networks

    NARCIS (Netherlands)

    Duyzer, J.; Hout, D. van den; Zandveld, P.; Ratingen, S. van

    2015-01-01

    The suitability of European networks to check compliance with air quality standards and to assess exposure of the population was investigated. An air quality model (URBIS) was applied to estimate and compare the spatial distribution of the concentration of nitrogen dioxide (NO2) in ambient air in fo

  5. Updated ozone absorption cross section will reduce air quality compliance

    Science.gov (United States)

    Sofen, E. D.; Evans, M. J.; Lewis, A. C.

    2015-12-01

    Photometric ozone measurements rely upon an accurate value of the ozone absorption cross section at 253.65 nm. This has recently been re-evaluated by Viallon et al. (2015) as 1.8 % smaller than the accepted value (Hearn, 1961) used for the preceding 50 years. Thus, ozone measurements that applied the older cross section systematically underestimate the amount of ozone in air. We correct the reported historical surface data from North America and Europe and find that this modest change in cross section has a significant impact on the number of locations that are out of compliance with air quality regulations if the air quality standards remain the same. We find 18, 23, and 20 % increases in the number of sites that are out of compliance with current US, Canadian, and European ozone air quality health standards for the year 2012. Should the new cross-section value be applied, it would impact attainment of air quality standards and compliance with relevant clean air acts, unless the air quality target values themselves were also changed proportionately. We draw attention to how a small change in gas metrology has a global impact on attainment and compliance with legal air quality standards. We suggest that further laboratory work to evaluate the new cross section is needed and suggest three possible technical and policy responses should the new cross section be adopted.

  6. The microbiological quality of air improves when using air conditioning systems in cars

    OpenAIRE

    Holdack-Janssen Hinrich; Kenneweg Björn; Gastmeier Petra; Vonberg Ralf-Peter; Sohr Dorit; Chaberny Iris F

    2010-01-01

    Abstract Background Because of better comfort, air conditioning systems are a common feature in automobiles these days. However, its impact on the number of particles and microorganisms inside the vehicle - and by this its impact on the risk of an allergic reaction - is yet unknown. Methods Over a time period of 30 months, the quality of air was investigated in three different types of cars (VW Passat, VW Polo FSI, Seat Alhambra) that were all equipped with a automatic air conditioning system...

  7. Report by the Commission of environment accounting and economy - Health and outdoor air quality

    International Nuclear Information System (INIS)

    After an overview of the issue of air pollution (definition, pollutant emission, population exposure, main air pollutants and emission sources, assessment of air quality in France), this report discusses the various impacts of air pollution on health and their related costs: pathologies associated with a bad air quality, categories which are more exposed than others, assessment of health impacts of air pollution, health costs. The next part describes the current policies aimed at improving air quality: European and international commitments, national policy, public policy tools, impacts of policies of struggle against air pollution by some pollutants, current researches and knowledge to be improved

  8. Co-benefits of air quality and climate change policies on air quality of the Mediterranean

    Science.gov (United States)

    Pozzoli, Luca; Mert Gokturk, Ozan; Unal, Alper; Kindap, Tayfun; Janssens-Maenhout, Greet

    2015-04-01

    The Mediterranean basin is one of the regions of the world where significant impacts due to climate changes are predicted to occur in the future. Observations and model simulations are used to provide to the policy makers scientifically based estimates of the necessity to adjust national emission reductions needed to achieve air quality objectives in the context of a changing climate, which is not only driven by GHGs, but also by short lived climate pollutants, such as tropospheric ozone and aerosols. There is an increasing interest and need to design cost-benefit emission reduction strategies, which could improve both regional air quality and global climate change. In this study we used the WRF-CMAQ air quality modelling system to quantify the contribution of anthropogenic emissions to ozone and particulate matter concentrations in Europe and the Eastern Mediterranean and to understand how this contribution could change in different future scenarios. We have investigated four different future scenarios for year 2050 defined during the European Project CIRCE: a "business as usual" scenario (BAU) where no or just actual measures are taken into account; an "air quality" scenario (BAP) which implements the National Emission Ceiling directive 2001/81/EC member states of the European Union (EU-27); a "climate change" scenario (CC) which implements global climate policies decoupled from air pollution policies; and an "integrated air quality and climate policy" scenario (CAP) which explores the co-benefit of global climate and EU-27 air pollution policies. The BAP scenario largely decreases summer ozone concentrations over almost the entire continent, while the CC and CAP scenarios similarly determine lower decreases in summer ozone but extending all over the Mediterranean, the Middle East countries and Russia. Similar patterns are found for winter PM concentrations; BAP scenario improves pollution levels only in the Western EU countries, and the CAP scenario determines

  9. 77 FR 12524 - Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality...

    Science.gov (United States)

    2012-03-01

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Indiana; Lead Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule...) under the Clean Air Act (CAA). This submittal incorporates the National Ambient Air Quality...

  10. Quality of air in Asuncion

    International Nuclear Information System (INIS)

    The quality of the air in the city of Asuncion was evaluated, studying the distribution of the main chemical elements that are present in the sampling sites, using Bio monitors Tillandsia Meridionalis Baker and Tillandsia Recurvata L. and analyzed by of the ray-x florescence, technique the data were analyzed by means of the AXIL software and the results were a statistically analyzed by the SPSS Software for the creation of the maps of concentration distribution of the different elements from interest. The project was carried out multidisciplinary group integrated by the CNEA as Coordinator and executor; the Facultad de Ciencias Agrarias; the Facultad de Ciencias Quimicas; the Facultad de Ciencias Exactas y Naturales of the Universidad Nacional de Asuncion, as well as the Municipalidad de Asuncion.The material was done by specialists in the field and with the financial support of the IAEA

  11. Impact of Air Movement on Eye Symptoms

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Sakoi, Tomonori; Kolencíková, Sona;

    2013-01-01

    The impact of direction, oscillation and temperature of isothermal room air movement on eye discomfort and tear film quality was studied. Twenty-four male subjects participated in the experiment. Horizontal air movement against the face and chest was generated by a large desk fan – LDF and a small...... when the airflow was directed against the face and when against the chest, LDF with and without oscillation and PV. Eye tear film samples were taken and analyzed at the beginning and the end of the exposures. Eye irritation and dryness were reported by the subjects. The air movement under individual...... desk fan (2.5 W) powered by laptop computer – USBF and upward movement by a personalized ventilation supplying air from desk front edge - PV. The exposed subject had control over the rotation speed of the fans as well as the personalized airflow rate and its direction to be against the chest, upward...

  12. Impact of growing urbanization on air quality and climate in the East Mediterranean - An overview of the first results from the CITYZEN project

    Science.gov (United States)

    Kanakidou, Maria

    2010-05-01

    The Mediterranean, and particularly its east basin, is a crossroad of air masses coming from Europe, Asia and Africa. Over this area, anthropogenic emissions, mainly from Europe, Balkans and the Black Sea, meet with natural emissions from Saharan dust, vegetation and the sea, as well as from biomass burning, in overall presenting a strong seasonal pattern. As a consequence of its unique location and emissions, the Mediterranean region is climatically very sensitive and often exposed to multiple stresses, such as a simultaneous water shortage and elevated air pollution exposure. The east basin of the Mediterranean and the surrounding regions, include significant megacities such as Istanbul and Cairo, but also several large urban centers like to its north part Athens and Thessaloniki; to the east Izmir and Adana, Amman, Beirut, Damascus and to the south Alexandria. The region covers from rural to maritime and desert conditions. During the last decades, the East Mediterranean, following the general trend, has experienced a rapid growth in urbanization, including enhanced vehicle circulation, and in industrialization, all impacting pollutant emissions in the atmosphere. Air pollution is one of the challenging environmental problems in Istanbul and Cairo megacities but also for the whole East Mediterranean region. Ozone and aerosol air quality limits are often exceeded over the entire Mediterranean, in particular during summer. High ozone and aerosol concentrations are harmful for human health and ecosystems, and they can also be responsible for agricultural crop loss and climate change. The contribution of various sources to these exceedances remains to be determined. In addition the importance of interactions between natural and anthropogenic emissions in the area has to be evaluated. For this purpose, in the frame of the CityZEN EU funded project, available records of air pollution levels over the past decades have been compiled and analysed for Istanbul and Cairo

  13. Air quality strategy for Hong Kong

    Energy Technology Data Exchange (ETDEWEB)

    Alex, N.K.Y. [Air Policy Group, Wanchai (Hong Kong). Environmental Protection Dept.

    1995-12-31

    Hong Kong has experienced unimpeded economic growth for four decades but at the same time has suffered from growing air pollution. A new look at the air quality strategy is therefore required to bring about sustainable development. (author)

  14. Measured Cooling Season Results Relating the Impact of Mechanical Ventilation on Energy, Comfort, and Indoor Air Quality in Humid Climates

    Energy Technology Data Exchange (ETDEWEB)

    Martin, Eric; Amos, Bryan; McIlvaine, Janet; Chasar, David; Widder, Sarah H.; Fonorow, Ken

    2014-08-22

    Conference Paper for ACEEE Summer Study in Buildings discussing results to date of a project evaluating the impact of ventialtion on energy use, comfort, durability, and cost in the hot humid climate.

  15. Methods for sulfate air quality management

    OpenAIRE

    Cass, Glen R.; McMurry, Pamela S.; Houseworth, James E

    1980-01-01

    Executive Summary Abstract: A study of methods for sulfate air quality control strategy design has been conducted. Analytical tools developed were tested within a case study of the nature and causes of the high sulfate concentrations observed in the Los Angeles area. A principal objective was to investigate the least costly means for sulfate air quality improvement in that locale. A long-run average emissions to air quality model was derived which computes pollutant concentrations fr...

  16. Air Quality Assessment Using Interpolation Technique

    Directory of Open Access Journals (Sweden)

    Awkash Kumar

    2016-07-01

    Full Text Available Air pollution is increasing rapidly in almost all cities around the world due to increase in population. Mumbai city in India is one of the mega cities where air quality is deteriorating at a very rapid rate. Air quality monitoring stations have been installed in the city to regulate air pollution control strategies to reduce the air pollution level. In this paper, air quality assessment has been carried out over the sample region using interpolation techniques. The technique Inverse Distance Weighting (IDW of Geographical Information System (GIS has been used to perform interpolation with the help of concentration data on air quality at three locations of Mumbai for the year 2008. The classification was done for the spatial and temporal variation in air quality levels for Mumbai region. The seasonal and annual variations of air quality levels for SO2, NOx and SPM (Suspended Particulate Matter have been focused in this study. Results show that SPM concentration always exceeded the permissible limit of National Ambient Air Quality Standard. Also, seasonal trends of pollutant SPM was low in monsoon due rain fall. The finding of this study will help to formulate control strategies for rational management of air pollution and can be used for many other regions.

  17. Impacts of the Denver Cyclone on Regional Air Quality and Aerosol Formation in the Colorado Front Range during FRAPPÉ 2014

    OpenAIRE

    Vu, Kennedy T.; Dingle, Justin H.; Bahreini, Roya; Reddy, Patrick J.; Campos, Teresa L.; Diskin, Glenn S.; Fried, Alan; Herndon, Scott C.; Hornbrook, Rebecca S.; Huey, Greg; Kaser, Lisa; Montzka, Denise D.; Nowak, John B.; Richter, Dirk; Roscioli, Joseph R.

    2016-01-01

    We present airborne measurements made in the Colorado Front Range aboard the NSF C-130 aircraft during the 2014 Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) project. Data on trace gases, non-refractory sub-micron aerosol chemical constituents, and aerosol optical extinction (βext) at λ = 632 nm in the presence and absence of a surface mesoscale circulation pattern, called the Denver Cyclone, were analyzed in three study regions of the Front Range: In-F...

  18. Impact Assessment of Biomass Burning on Air Quality in Southeast and East Asia During BASE-ASIA

    Science.gov (United States)

    Huang, Kan; Fu, Joshua S.; Hsu, N. Christina; Gao, Yang; Dong, Xinyi; Tsay, Si-Chee; Lam, Yun Fat

    2013-01-01

    A synergy of numerical simulation, ground-based measurement and satellite observation was applied to evaluate the impact of biomass burning originating from Southeast Asia (SE Asia) within the framework of NASA's 2006 Biomass burning Aerosols in Southeast Asia: Smoke Impact Assessment (BASE-ASIA). Biomass burning emissions in the spring of 2006 peaked in MarcheApril when most intense biomass burning occurred in Myanmar, northern Thailand, Laos, and parts of Vietnam and Cambodia. Model performances were reasonably validated by comparing to both satellite and ground-based observations despite overestimation or underestimation occurring in specific regions due to high uncertainties of biomass burning emission. Chemical tracers of particulate K(+), OC concentrations, and OC/EC ratios showed distinct regional characteristics, suggesting biomass burning and local emission dominated the aerosol chemistry. CMAQ modeled aerosol chemical components were underestimated at most circumstances and the converted AOD values from CMAQ were biased low at about a factor of 2, probably due to the underestimation of biomass emissions. Scenario simulation indicated that the impact of biomass burning to the downwind regions spread over a large area via the Asian spring monsoon, which included Southern China, South China Sea, and Taiwan Strait. Comparison of AERONET aerosol optical properties with simulation at multi-sites clearly demonstrated the biomass burning impact via longrange transport. In the source region, the contribution from biomass burning to AOD was estimated to be over 56%. While in the downwind regions, the contribution was still significant within the range of 26%-62%.

  19. Biofuels, vehicle emissions, and urban air quality.

    Science.gov (United States)

    Wallington, Timothy J; Anderson, James E; Kurtz, Eric M; Tennison, Paul J

    2016-07-18

    Increased biofuel content in automotive fuels impacts vehicle tailpipe emissions via two mechanisms: fuel chemistry and engine calibration. Fuel chemistry effects are generally well recognized, while engine calibration effects are not. It is important that investigations of the impact of biofuels on vehicle emissions consider the impact of engine calibration effects and are conducted using vehicles designed to operate using such fuels. We report the results of emission measurements from a Ford F-350 fueled with either fossil diesel or a biodiesel surrogate (butyl nonanoate) and demonstrate the critical influence of engine calibration on NOx emissions. Using the production calibration the emissions of NOx were higher with the biodiesel fuel. Using an adjusted calibration (maintaining equivalent exhaust oxygen concentration to that of the fossil diesel at the same conditions by adjusting injected fuel quantities) the emissions of NOx were unchanged, or lower, with biodiesel fuel. For ethanol, a review of the literature data addressing the impact of ethanol blend levels (E0-E85) on emissions from gasoline light-duty vehicles in the U.S. is presented. The available data suggest that emissions of NOx, non-methane hydrocarbons, particulate matter (PM), and mobile source air toxics (compounds known, or suspected, to cause serious health impacts) from modern gasoline and diesel vehicles are not adversely affected by increased biofuel content over the range for which the vehicles are designed to operate. Future increases in biofuel content when accomplished in concert with changes in engine design and calibration for new vehicles should not result in problematic increases in emissions impacting urban air quality and may in fact facilitate future required emissions reductions. A systems perspective (fuel and vehicle) is needed to fully understand, and optimize, the benefits of biofuels when blended into gasoline and diesel. PMID:27112132

  20. Assessments of biofuel sustainability: air pollution and health impacts

    OpenAIRE

    Tsao, Chi-Chung

    2012-01-01

    Accelerating biofuel production has been promoted as an opportunity to enhance energy security, offset greenhouse gas emissions and support rural economies. However, large uncertainties remain in the impacts of biofuels, particularly, on air quality and human health. Sugarcane ethanol is one of the most widely used biofuels, and Brazil is its largest producer. Here a systematic framework, including emission modeling, air quality simulation, and health impact assessment was developed to quanti...

  1. Impact of local traffic exclusion on near-road air quality: Findings from the New York City 'Summer Streets' campaign

    International Nuclear Information System (INIS)

    We monitored curbside airborne particulate matter (PM) concentrations and its proinflammatory capacity during 3 weekends when vehicle traffic was excluded from Park. Ave., New York City. Fine PM concentration peaked in the morning regardless of traffic while ultrafine PM was 58% lower during mornings without traffic. Ultrafine PM concentration varied linearly with traffic flow, while fine PM spiked sharply in response to random traffic events that were weakly correlated with the traffic signal cycle. Ultrafine PM concentrations decayed exponentially with distance from a cross street with unrestricted traffic flow, reaching background levels within 100 m of the source. IL-6 induction was typically highest on Friday afternoons but showed no clear relationship to the presence of traffic. The coarse fraction (>2.5 μm) had the greatest intrinsic inflammatory capacity, suggesting that coarse PM still warrants attention even as the research focus is shifting to nano-particles. - Highlights: → During a period of traffic exclusion morning PM2.5 concentration remained high. → Ultrafine concentrations were lower during mornings without traffic. → While ultrafine PM varied linearly with traffic flow, fine PM was unrelated to flow. → Ultrafine PM decayed exponentially with distance from a cross street with traffic. → The coarse fraction (>2.5 mm) had the greatest intrinsic inflammatory capacity. - Traffic exclusion had variable effects on local particle concentrations and biomarker induction that were inconsistent with the simple expectation that air would be cleaner without traffic.

  2. Assessment of Emerging Regional Air Quality (AQ) and Greenhouse Gas (GHG) Impacts and Potential Mitigation Strategies in U.S. Energy Sectors

    Science.gov (United States)

    Kinnon, Michael Mac

    The current domestic reliance on high-emitting fossil fuels for energy needs is the key driver of U.S. greenhouse gas (GHG) and pollutant emissions driving both climate change and regional air quality (AQ) concerns. Moving forward, emission sources in U.S. energy sectors will be subjected to changes driven by numerous phenomena, including technology evolution, environmental impacts, sustainability goals, and socioeconomic factors. This evolution will directly affect emissions source-related impacts on regional AQ that effective emissions control strategies must account for, including relative source contributions. Though previous studies have evaluated the emissions and AQ impacts of different sectors, technologies and fuels, most previous studies have assessed emissions impacts only without using advanced atmospheric models to accurately account for both spatial and temporal emissions perturbations and atmospheric chemistry and transport. In addition, few previous studies have considered the integration of multiple technologies and fuels in different U.S. regions.. Finally, most studies do not project emissions several decades into the future to assess what sources should be targeted with priority over time. These aspects are critical for understanding how both emissions sources and potential mitigation strategies impact the formation and fate of primary and secondary pollutants, including ground-level ozone and particulate matter concentrations. Therefore, this work utilizes a set of modeling tools to project and then to spatially and temporally resolve emissions as input into a 3-D Eulerian AQ model to assess how sources of emissions contribute to future atmospheric pollutant burdens. Further, analyses of the potential impacts of alternative energy strategies contained in potential mitigation strategies are conducted for priority targets to develop an understanding of how to maximize AQ benefits and avoid unforeseen deleterious tradeoffs between GHG reduction

  3. Impact of increased vehicle emissions on the ozone concentrations around beach areas in summer using air quality modeling system

    Science.gov (United States)

    Song, S.; Kim, Y.; Shon, Z.; Kang, Y.; Jeong, J.

    2012-12-01

    The impact of pollutant emissions by the huge amount of road traffic around beaches on the ozone (O3) concentrations in the surrounding regions were evaluated using a numerical modeling approach during the beach opening period (BOP) (July to August). This analysis was performed based on two simulation conditions: 1) with mobile emissions during the BOP (i.e. BOP case); and 2) during the normal period (i.e. NOR case). On-road mobile emissions were estimated from the emission factors, vehicle kilometers traveled, and deterioration factors at several roads close to beaches in Busan, Korea during a 4-day observation period (29 and 31 July and 1 and 3 August) of the BOP in 2010. The emission data was then applied to the 3-D chemical transport model (i.e. the WRF-CMAQ modeling system). A process analysis (PA) was also used to assess the contributions of the individual physical and chemical processes to the production or loss of O3 in the study area. The model study suggested the possibility that road traffic emissions near the beach area can have a direct impact on the O3 concentrations in the source regions as well as their surrounding/downwind regions. The maximum negative impact of mobile emissions on the O3 concentrations between the BOP and NOR cases was predicted near the beach areas: by -4 ppb during the day due to the high NOx emissions with the high NOx/VOC ratio and -8 ppb during the late evening due to the fast titration of O3 by NO. The PA showed that the rate of O3 destruction due to the road traffic emissions around the beach areas decreased by -2.3 (weekend, 31 July) and -5.5 ppb h-1 (weekday, 3 August) during the day. Acknowledgments: This work was funded by the Korea Meteorological Administration Research and Development Program under Grant CATER_2012-6140. This work was also funded by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2010-0021141).

  4. 40 CFR 240.205 - Air quality.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Air quality. 240.205 Section 240.205 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES GUIDELINES FOR THE THERMAL PROCESSING OF SOLID WASTES Requirements and Recommended Procedures § 240.205 Air quality....

  5. Air quality and industry [in the Netherlands

    International Nuclear Information System (INIS)

    It sometimes happens that environmental permits for industry or businesses are reversed because assessment and motivation of the decision has been inaccurate. Therefore, the Interregional Consultation (IPO in Dutch) drafted an air quality examination as a tool to test the air quality aspect in licensing procedures of the Environmental Protection Law in the Netherlands

  6. REGIONAL AIR POLLUTION STUDY, QUALITY ASSURANCE AUDITS

    Science.gov (United States)

    RAPS Quality Assurance audits were conducted under this Task Order in continuation of the audit program previously conducted under Task Order No. 58. Quantitative field audits were conducted of the Regional Air Monitoring System (RAMS) Air Monitoring Stations, Local Air Monitorin...

  7. 75 FR 65594 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality...

    Science.gov (United States)

    2010-10-26

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Ohio Ambient Air Quality Standards AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY... consolidation of Ohio's Ambient Air Quality Standards (AAQS) into Ohio's State Implementation Plan (SIP)...

  8. 78 FR 30829 - Approval and Promulgation of Air Quality Implementation Plans; Illinois; Air Quality Standards...

    Science.gov (United States)

    2013-05-23

    ... AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Illinois; Air Quality Standards Revision AGENCY: Environmental Protection Agency (EPA). ACTION: Proposed rule. SUMMARY... current national ambient air quality standards (NAAQS) for ozone, lead, and particulate matter. EPA...

  9. A new air quality perception scale for global assessment of air pollution health effects.

    Science.gov (United States)

    Deguen, Séverine; Ségala, Claire; Pédrono, Gaëlle; Mesbah, Mounir

    2012-12-01

    Despite improvements in air quality in developed countries, air pollution remains a major public health issue. To fully assess the health impact, we must consider that air pollution exposure has both physical and psychological effects; this latter dimension, less documented, is more difficult to measure and subjective indicators constitute an appropriate alternative. In this context, this work presents the methodological development of a new scale to measure the perception of air quality, useful as an exposure or risk appraisal metric in public health contexts. On the basis of the responses from 2,522 subjects in eight French cities, psychometric methods are used to construct the scale from 22 items that assess risk perception (anxiety about health and quality of life) and the extent to which air pollution is a nuisance (sensorial perception and symptoms). The scale is robust, reproducible, and discriminates between subpopulations more susceptible to poor air pollution perception. The individual risk factors of poor air pollution perception are coherent with those findings in the risk perception literature. Perception of air pollution by the general public is a key issue in the development of comprehensive risk assessment studies as well as in air pollution risk management and policy. This study offers a useful new tool to measure such efforts and to help set priorities for air quality improvements in combination with air quality measurements. PMID:22852801

  10. Air quality and urban management in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, M. [Stanford Univ. (United States). Center for Conservation Biology; Joffre, S. [Finnish Meteorological Inst., Helsinki (Finland)

    1995-12-31

    Important changes in the quality of urban air have occurred in Europe during the last 20 years. Urban air quality trends are clearly correlated to changes in production and consumption processes which have occurred in European cities during the last decades. However, the way these trends are linked with the changes in the urban structure is not yet fully appreciated. A set of indicators is proposed to examine the relationships between air quality, energy consumption and transportation trends. On this basis is argued that the current decentralization of the urban structure and specialization of land use are major driving forces in current urban air pollution. The range of actions and tools to improve urban air quality should include: (1) land use planning, (2) efficient urban management, and (3) measures directed to protecting the quality of the urban environment. (author)

  11. Indoor Air Quality in Primary Schools

    OpenAIRE

    Freitas, Maria do Carmo; Canha, Nuno; Martinho, Maria; Almeida-Silva, Marina; Almeida, Susana Marta; Pegas, Priscilla; Alves, Célia; Pio, Casimiro; Trancoso, Maria; Sousa, Rita; Mouro, Filomena; Contreiras, Teresa

    2011-01-01

    Clean air is a basic requirement of life (World Health Organization, 2010). The Indoor Air Quality (IAQ) has been the object of several studies due to an increasing concern within the scientific community on the effects of indoor air quality upon health, especially as people tend to spend more time indoors than outdoors (Franck et al., 2011; Canha et al., 2010; WHO, 2010; Environmental Protection Agency, 2010; Saliba et al., 2009; Fraga et al., 2008; Fromme et al., 2007; Guo et al., 2004; ...

  12. Pilot Implementation of a Field Study Design to Evaluate the Impact of Source Control Measures on Indoor Air Quality in High Performance Homes

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Chamness, Michele A.; Petersen, Joseph M.; Singer, Brett C.; Maddalena, Randy L.; Destaillats, Hugo

    2014-10-20

    To improve the indoor air quality in new, high performance homes, a variety of standards and rating programs have been introduced to identify building materials that are designed to have lower emission rates of key contaminants of concern and a number of building materials are being introduced that are certified to these standards. For example, the U.S. Department of Energy (DOE) Zero Energy Ready Home program requires certification under the U.S. Environmental Protection Agency (EPA) Indoor airPLUS (IaP) label, which requires the use of PS1 or PS2 certified plywood and OSB; low-formaldehyde emitting wood products; low- or no-VOC paints and coatings as certified by Green Seal Standard GS-11, GreenGuard, SCS Indoor Advantage Gold Standard, MPI Green Performance Standard, or another third party rating program; and Green Label-certified carpet and carpet cushions. However, little is known regarding the efficacy of the IAP requirements in measurably reducing contaminant exposures in homes. The goal of this project is to develop a robust experimental approach and collect preliminary data to support the evaluation of indoor air quality (IAQ) measures linked to IAP-approved low-emitting materials and finishes in new residential homes. To this end, the research team of Pacific Northwest National Laboratory (PNNL) and Lawrence Berkeley National Laboratory (LBNL) developed a detailed experimental plan to measure IAQ constituents and other parameters, over time, in new homes constructed with materials compliant with IAP’s low-emitting material and ventilation requirements (i.e., section 6.1, 6.2, 6.3, and 7.2) and similar homes constructed to the state building code with conventional materials. The IAQ in IAP and conventional homes of similar age, location, and construction style is quantified as the differences in the speciated VOC and aldehyde concentrations, normalized to dilution rates. The experimental plan consists of methods to evaluate the difference between low

  13. A smart indoor air quality sensor network

    Science.gov (United States)

    Wen, Jin

    2006-03-01

    The indoor air quality (IAQ) has an important impact on public health. Currently, the indoor air pollution, caused by gas, particle, and bio-aerosol pollutants, is considered as the top five environmental risks to public health and has an estimated cost of $2 billion/year due to medical cost and lost productivity. Furthermore, current buildings are especially vulnerable for chemical and biological warfare (CBW) agent contamination because the central air conditioning and ventilation system serve as a nature carrier to spread the released agent from one location to the whole indoor environment within a short time period. To assure the IAQ and safety for either new or existing buildings, real time comprehensive IAQ and CBW measurements are needed. With the development of new sensing technologies, economic and reliable comprehensive IAQ and CBW sensors become promising. However, few studies exist that examine the design and evaluation issues related to IAQ and CBW sensor network. In this paper, relevant research areas including IAQ and CBW sensor development, demand control ventilation, indoor CBW sensor system design, and sensor system design for other areas such as water system protection, fault detection and diagnosis, are reviewed and summarized. Potential research opportunities for IAQ and CBW sensor system design and evaluation are discussed.

  14. Air quality and human welfare

    Directory of Open Access Journals (Sweden)

    Sundseth K.

    2009-02-01

    Full Text Available Human welfare is generally referring to allocation of resources to fit the well being of humans. If high standard of well-being is to be maintained, the concerns for a healthy environment must be balanced against requirements of economic growth. In a natural capital system, human welfare is best served by improving the quality and flow of desired services delivered rather than merely increasing the total money flow. An ecosystem based management of living and natural resource use will steer this progress to the best of human welfare while the efficiency of ecosystem based management depends strongly on the availability of integrated assessment tools that will combine environmental models and monitoring data with ecological economic valuation methods. In applied welfare economics, the methodological approach to assess resource allocations towards societal optimality and thereby establish criteria for government intervention is often linked to tools as Cost-ffectiveness Analysis (CEA, Cost-Benefit Assessment (CBA or Multi-criteria Analysis (MCA. By illustrating an assessment on costs and benefits of the implementation of Hg emission reduction measures in the coal sector, it becomes obvious that for a full analysis of societal costs and benefits, several aspects of Hg pollution, sources, impacts and co-benefits need to be considered.

  15. Air quality and human welfare

    Science.gov (United States)

    Sundseth, K.; Pacyna, J. M.; Pacyna, E. G.

    2009-02-01

    Human welfare is generally referring to allocation of resources to fit the well being of humans. If high standard of well-being is to be maintained, the concerns for a healthy environment must be balanced against requirements of economic growth. In a natural capital system, human welfare is best served by improving the quality and flow of desired services delivered rather than merely increasing the total money flow. An ecosystem based management of living and natural resource use will steer this progress to the best of human welfare while the efficiency of ecosystem based management depends strongly on the availability of integrated assessment tools that will combine environmental models and monitoring data with ecological economic valuation methods. In applied welfare economics, the methodological approach to assess resource allocations towards societal optimality and thereby establish criteria for government intervention is often linked to tools as Cost-ffectiveness Analysis (CEA), Cost-Benefit Assessment (CBA) or Multi-criteria Analysis (MCA). By illustrating an assessment on costs and benefits of the implementation of Hg emission reduction measures in the coal sector, it becomes obvious that for a full analysis of societal costs and benefits, several aspects of Hg pollution, sources, impacts and co-benefits need to be considered.

  16. THE ASSESSMENT OF MICROBIOLOGICAL INDOOR AIR QUALITY IN BAKERIES

    Directory of Open Access Journals (Sweden)

    Elżbieta Wołejko

    2016-05-01

    Full Text Available The aim of this study was to assess microbiological indoor air quality of selected bakeries located in the region of Podlasie. The microbiological studies were conducted in autumn in 2014 in three selected bakeries. Microbiological air counts were measured by impaction using an air sampler MAS-100 NT. The microbiological air studies, comprised the determination of the total number of psychrophilic and mesophilic bacteria, namely indicator bacteria such as: bacteria of the species Pseudomonas fluorescens, mannitol-positive and mannitol-negative Staphylococc, the total number of bacteria from the Enterobacteriaceae family and fungi found in atmospheric air. The results of the study of indoor air polluted with the analyzed groups of microorganisms differed depending on the type of test air and the location of the manufacturing plant. In the plants, the concentration of mesophilic bacteria and mannitol–positive and mannitol-negative Staphylococcus exceeded the limit values of unpolluted air, according to the Polish Standard recommendations.

  17. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality

    Science.gov (United States)

    Hou, Pei; Wu, Shiliang

    2016-03-01

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology.

  18. The impacts of fireworks burning at Chinese Spring Festival on air quality and human health: insights of tracers, source evolution and aging processes

    Science.gov (United States)

    Kong, S.; Li, L.; Li, X.; Yin, Y.; Chen, K.; Liu, D.; Yuan, L.; Zhang, Y.; Shan, Y.; Ji, Y.

    2014-11-01

    To understand the impact of fireworks burning (FW) particles on air quality and human health during winter haze period, thirty-nine elements, ten water-soluble ions and eight fractions of carbonaceous species in atmospheric PM2.5 at Nanjing were investigated during 2014 Chinese Spring Festival (SF). Serious regional haze pollution persisted throughout the entire sampling period, PM2.5 averaging at 113 ± 69 μg m-3 and visibility at 4.8 ± 3.2 km. The holiday effect led to almost all the chemical species decreasing during the SF, except for Al, K, Ba and Sr which were related to FW. The source contributions of coal combustion, vehicle emission and road dust descreased dramatically, whereas FW contributed to about half of the PM2.5 during SF period. The intensive emission of FW particles at New Year's Eve accounted for 60.1% of the PM2.5. They also significnatly modified the chemical compositions of PM2.5, with 39.3% contributed by increased organic matter, followed by steadly increased loadings of secondary inorganic ions. The aging processes of the FW particles lasted for at least six days reflected by the variation of SO42-, characterized by heterogeneous reactions of SO2 and NOx on crustal materials directly from FW, the replacement of Cl- by NO3- and SO42- coating of NO3- and SO42- on soot, formation of secondary organic aerosols and metal-catalyzed formation of NO3- and SO42- at higher relative humidity. During aging, the main contributors to the extinction coefficient shifted from elemental carbon and organic matter to sulfate ammonium. The particles raised higher cancer risks by heavy metals (especially for Cd and As) as 1.62 ×10-6. This study provided detailed composition data and first comprehensive analysis of the aging processes of FW particles at serious haze pollution period and their potential impact on human health.

  19. Air quality and radiative impacts of Arctic shipping emissions in the summertime in northern Norway: from the local to the regional scale

    Directory of Open Access Journals (Sweden)

    L. Marelle

    2015-07-01

    Full Text Available In this study, we quantify the impacts of shipping pollution on air quality and shortwave radiative effect in northern Norway, using WRF-Chem simulations combined with high resolution, real-time STEAM2 shipping emissions. STEAM2 emissions are evaluated using airborne measurements from the ACCESS campaign, which was conducted in summer 2012, in two ways. First, emissions of NOx and SO2 are derived for specific ships from in-situ measurements in ship plumes and FLEXPART-WRF plume dispersion modeling, and these values are compared to STEAM2 emissions for the same ships. Second, regional WRF-Chem runs with and without ship emissions are performed at two different resolutions, 3 km × 3 km and 15 km × 15km, and evaluated against measurements along flight tracks and average campaign profiles in the marine boundary layer and lower troposphere. These comparisons show that differences between STEAM2 emissions and calculated emissions can be quite large (−57 to +148 % for individual ships, but that WRF-Chem simulations using STEAM2 emissions reproduce well the average NOx, SO2 and O3 measured during ACCESS flights. The same WRF-Chem simulations show that the magnitude of NOx and O3 production from ship emissions at the surface is not very sensitive (10 enhancements due to ships are moderately sensitive (15 % to resolution. The 15 km resolution WRF-Chem simulations are used to estimate the local and regional impacts of shipping pollution in northern Norway. Our results indicate that ship emissions are an important local source of pollution, enhancing 15 day averaged surface concentrations of NOx (∼ +80 %, O3 (∼ +5 %, black carbon (∼ +40 % and PM2.5 (∼ +10 % along the Norwegian coast. Over the same period ship emissions in northern Norway have a shortwave (direct + semi-direct + indirect radiative effect of −9.3 m W m-2 at the global scale.

  20. Multiplatform inversion of the 2013 Rim Fire smoke emissions using regional-scale modeling: important nocturnal fire activity, air quality, and climate impacts

    Science.gov (United States)

    Saide, P. E.; Peterson, D. A.; da Silva, A. M., Jr.; Ziemba, L. D.; Anderson, B.; Diskin, G. S.; Sachse, G. W.; Hair, J. W.; Butler, C. F.; Fenn, M. A.; Jimenez, J. L.; Campuzano Jost, P.; Dibb, J. E.; Yokelson, R. J.; Toon, B.; Carmichael, G. R.

    2014-12-01

    , suggesting that top-down emissions estimates for exceptional fire events could be underestimated by current inversion methods. The changes in fire emissions can significantly affect the fire impacts on surface air quality, aerosol loads and its effects on meteorology, highlighting the need of performing these studies.

  1. Impact of anthropogenic emission on air quality over a megacity - revealed from an intensive atmospheric campaign during the Chinese Spring Festival

    Science.gov (United States)

    Huang, K.; Zhuang, G.; Lin, Y.; Wang, Q.; Fu, J. S.; Zhang, R.; Li, J.; Deng, C.; Fu, Q.

    2012-12-01

    The Chinese Spring Festival is one of the most important traditional festivals in China. The peak transport in the Spring Festival season (spring travel rush) provides a unique opportunity for investigating the impact of human activity on air quality in the Chinese megacities. Emission sources are varied and fluctuate greatly before, during and after the Festival. Increased vehicular emissions during the "spring travel rush" before the 2009 Festival resulted in high level pollutants of NOx (270 μg m-3), CO (2572 μg m-3), black carbon (BC) (8.5 μg m-3) and extremely low single scattering albedo of 0.76 in Shanghai, indicating strong, fresh combustion. Organics contributed most to PM2.5, followed by NO3-, NH4+, and SO42-. During the Chinese Lunar New Year's Eve and Day, widespread usage of fireworks caused heavy pollution of extremely high aerosol concentration, scattering coefficient, SO2, and NOx. Due to the "spring travel rush" after the festival, anthropogenic emissions gradually climbed and mirrored corresponding increases in the aerosol components and gaseous pollutants. Secondary inorganic aerosol (SO42-, NO3-, and NH4+) accounted for a dominant fraction of 74% in PM2.5 due to an increase in human activity. There was a greater demand for energy as vast numbers of people using public transportation or driving their own vehicles returned home after the Festival. Factories and constructions sites were operating again. The potential source contribution function (PSCF) analysis illustrated the possible source areas for air pollutants of Shanghai. The effects of regional and long-range transport were both revealed. Five major sources, i.e. natural sources, vehicular emissions, burning of fireworks, industrial and metallurgical emissions, and coal burning were identified using the principle component analysis. The average visibility during the whole study period was less than 6 km. It had been estimated that 50% of the total light extinction was due to the high

  2. Impacts of the Denver Cyclone on Regional Air Quality and Aerosol Formation in the Colorado Front Range during the Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) 2014

    Science.gov (United States)

    Vu, K. K. T.; Dingle, J. H.; Bahreini, R.; Apel, E. C.; Campos, T. L.; Cantrell, C. A.; Flocke, F. M.; Fried, A.; Herndon, S. C.; Hills, A. J.; Hornbrook, R. S.; Huey, L. G.; Kaser, L.; Mauldin, L.; Montzka, D. D.; Nowak, J. B.; Richter, D.; Roscioli, J. R.; Shertz, S.; Stell, M. H.; Tanner, D.; Tyndall, G. S.; Walega, J.; Weibring, P.; Weinheimer, A. J.

    2015-12-01

    The northern Colorado Front Range continues to face challenges related to air quality, specifically ozone, and has been classified as a marginal non-attainment area by the U.S EPA. The highly complex topography and meteorology in the Colorado Front Range provide flow patterns that are driven by mountain-valley circulation, resulting in formation of the Denver Cyclone, strongly influencing concentrations of ozone and aerosol particles. However, the impact of the Denver Cyclone on aerosol formation has not been previously explored. In this study, airborne measurements were made during July 16 - August 18, 2014 aboard the NSF C-130 aircraft during the 2014 Front Range Air Pollution and Photochemistry Éxperiment (FRAPPÉ) project. We carried out fast time resolved measurements of ambient aerosol chemical constituents (organics, sulfate, nitrate, ammonium, and chloride) of non-refractory sub-micrometer particles using an Aerodyne compact time-of-flight aerosol mass spectrometer (mAMS). Pronounced increased mass concentrations of organics, nitrate, and sulfate in two distinct regions in the Front Range were observed during the cyclone episodes, in contrast to the non-cyclonic days. Organics dominated the mass concentrations on all days evaluated. The average mass concentration of organics during a cyclone event was 5.79 ± 1.48 μg·m-3 and were lower during the two non-cyclonic measurement days, 3.09 ± 1.18 μg·m-3. Average sulfate mass concentrations were 1.25 ± 0.41 μg·m-3 vs. 0.58 ± 0.20 μg·m-3 followed by nitrate with an average of 1.66 ± 0.92 μg·m-3 vs. 0.32 ± 0.41 μg·m-3 on cyclone vs. non-cyclonic days, respectively. Correlations between trace gas markers (carbon monoxide, nitrogen oxides, ozone, ammonia, and ethane), meteorological variables (relative humidity, temperature), and the extent of aerosol aging are evaluated and used to assess the Front Range aerosol formation and air quality impacts in the region during these events.

  3. Modelin the Transport and Chemical Evolution of Onshore and Offshore Emissions and Their Impact on Local and Regional Air Quality Using a Variable-Grid-Resolution Air Quality Model

    Energy Technology Data Exchange (ETDEWEB)

    Adel Hanna

    2008-10-16

    The overall objective of this research project was to develop an innovative modeling technique to adequately model the offshore/onshore transport of pollutants. The variable-grid modeling approach that was developed alleviates many of the shortcomings of the traditionally used nested regular-grid modeling approach, in particular related to biases near boundaries and the excessive computational requirements when using nested grids. The Gulf of Mexico region contiguous to the Houston-Galveston area and southern Louisiana was chosen as a test bed for the variable-grid modeling approach. In addition to the onshore high pollution emissions from various sources in those areas, emissions from on-shore and off-shore oil and gas exploration and production are additional sources of air pollution. We identified case studies for which to perform meteorological and air quality model simulations. Our approach included developing and evaluating the meteorological, emissions, and chemistry-transport modeling components for the variable-grid applications, with special focus on the geographic areas where the finest grid resolution was used. We evaluated the performance of two atmospheric boundary layer (ABL) schemes, and identified the best-performing scheme for simulating mesoscale circulations for different grid resolutions. Use of a newly developed surface data assimilation scheme resulted in improved meteorological model simulations. We also successfully ingested satellite-derived sea surface temperatures (SSTs) into the meteorological model simulations, leading to further improvements in simulated wind, temperature, and moisture fields. These improved meteorological fields were important for variable-grid simulations, especially related to capturing the land-sea breeze circulations that are critical for modeling offshore/onshore transport of pollutants in the Gulf region. We developed SMOKE-VGR, the variable-grid version of the SMOKE emissions processing model, and tested and

  4. Development of a high temporal-spatial resolution vehicle emission inventory based on NRT traffic data and its impact on air pollution in Beijing - Part 2: Impact of vehicle emission on urban air quality

    Science.gov (United States)

    He, J. J.; Wu, L.; Mao, H. J.; Liu, H. L.; Jing, B. Y.; Yu, Y.; Ren, P. P.; Feng, C.; Liu, X. H.

    2015-07-01

    In a companion paper (Jing et al., 2015), a high temporal-spatial resolution vehicle emission inventory (HTSVE) for 2013 in Beijing has been established based on near real time (NRT) traffic data and bottom up methodology. In this study, based on the sensitivity analysis method of switching on/off pollutant emissions in the Chinese air quality forecasting model CUACE, a modeling study was carried out to evaluate the contributions of vehicle emission to the air pollution in Beijing main urban areas in the periods of summer (July) and winter (December) 2013. Generally, CUACE model had good performance of pollutants concentration simulation. The model simulation has been improved by using HTSVE. The vehicle emission contribution (VEC) to ambient pollutant concentrations not only changes with seasons but also changes over moment. The mean VEC, affected by regional pollutant transports significantly, is 55.4 and 48.5 % for NO2, while 5.4 and 10.5 % for PM2.5 in July and December 2013, respectively. Regardless of regional transports, relative vehicle emission contribution (RVEC) to NO2 is 59.2 and 57.8 % in July and December 2013, while 8.7 and 13.9 % for PM2.5. The RVEC to PM2.5 is lower than PM2.5 contribution rate for vehicle emission in total emission, which may be caused by easily dry deposition of PM2.5 from vehicle emission in near-surface layer compared to elevated source emission.

  5. RESULTS OF A PILOT FIELD STUDY TO EVALUATE THE EFFECTIVENESS OF CLEANING RESIDENTIAL HEATING AND AIR-CONDITIONING SYSTEMS AND THE IMPACT ON INDOOR AIR QUALITY AND SYSTEM PERFORMANCE

    Science.gov (United States)

    The report discusses and gives results of a pilot field study to evaluate the effectiveness of air duct cleaning (ADC) as a source removal technique in residential heating and air-conditioning (HAC) systems and its impact on airborne particle, fiber, and bioaerosol concentrations...

  6. Summary findings from the border air quality study

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-15

    The Border Air Quality Study (BAQS) is an ongoing study which supports the development of an international strategy for the Georgia Basin-Puget Sound airshed. The study investigates the association of health risks with the exposure to a range of air pollutants. It identified links between air pollutants and several health impacts ranging from asthma to birthweight. The tools developed for studying air quality provide greater spatial resolution, thus enabling the identification of pollution hot spots that require monitoring and intervention. The tools also provide spatially accurate exposure data for future research and enable land-use decisions that reduce risk to the most vulnerable populations, including children and the elderly. The study found that traffic-related air pollution is an additional risk factor for disease, such as bronchiolitis, asthma and middle ear infections in children. Although air pollution is a known risk factor for cardiovascular disease, relatively few studies have evaluated the effects of chronic exposures. Therefore, the BAQS is currently assessing the relationship between air quality and cardiovascular diseases in the Metro Vancouver area, with particular attention to the combined effects of traffic-related air pollution and noise pollution. Wood smoke was also found to be an important source of air pollution, even in urban centres. The study showed that building design and ventilation can help reduce infiltration of air pollutants into buildings. It was concluded that despite some concerns, the air quality in the Georgia-Basin-Puget Sound region is good compared to other major metropolitan areas. Air quality managers can use the study to evaluate different policy scenarios and the associated economic costs of air pollution. 5 figs.

  7. Assessment of Ambient Air Quality in Riyadh City, Saudi Arabia.

    Directory of Open Access Journals (Sweden)

    B. H. Alharbi

    2014-08-01

    Full Text Available Concentrations of airborne particulate matter with an aerodynamic diameter less than 10 µm (PM10 and five gaseous air pollutants (O3, CO, NO2, SO2 and H2S were measured over a period of approximately six years (October 1999-June 2004 at five air quality monitoring network stations of King Abulaziz City for Science and Technology (KACST in Riyadh city, Saudi Arabia. The main objective of this study is to evaluate the quality of ambient air in relation to its possible effects on human health in the urban area of Riyadh city using the U.S. Environmental Protection Agency (USEPA Air Quality Index (AQI and break down analysis of five criteria pollutants (O3, CO, NO2 and SO2 and PM10 and Hydrogen Sulphide (H2S. The concentrations of selected pollutants in ambient air has shown upward trends except for sulfur dioxide (SO2 and hydrogen sulfide (H2S, which exhibited decreasing trends over the time. Using the AQI based on a health perspective, a breakdown analysis was conducted. The results confirmed that 71% of the time Riyadh city air is of “Good” quality using the AQI and causes almost no health impacts on city inhabitants. The remaining 29% of more problematic air quality is caused by PM10 (74% and SO2 (~24%. The study has revealed that both ozone (O3 and carbon monoxide (CO have little contribution to Riyadh air pollution at 2% and 0.52%, respectively.

  8. A review of scientifc linkages and interactions between climate change and air quality, with implications for air quality management in South Africa

    Directory of Open Access Journals (Sweden)

    Tirusha Thambiran

    2010-04-01

    Full Text Available In recent years there has been considerable advancement in our scientifc understanding of the linkages and interactions between climate change and air quality. A warmer, evolving climate is likely to have severe consequences for air quality due to impacts on pollution sources and meteorology. Climate-induced changes to sources of tropospheric ozone precursor gases and to atmospheric circulation are likely to lead to changes in both the concentration and dispersion of near-surface ozone that could act to offset improvements in air quality. The control of air pollutants through air quality management is also likely to impact on climate change, with reductions in ozone, particulate matter and sulphur dioxide being of particular interest. The improved understanding of the relationship between air quality and climate change provides a scientific basis for policy interventions. After a review of the scientific linkages, the potential to include climate change considerations in air quality management planning processes in South Africa was examined.

  9. Norma Primaria de calidad del aire AIR QUALITY STANDARD

    Directory of Open Access Journals (Sweden)

    PATRICIA MATUS C.

    2002-04-01

    Full Text Available Las normas primarias de calidad del aire tienen por finalidad proteger la salud de la población de la contaminación atmosférica. Ellas establecen un nivel de riesgo socialmente aceptado. Este artículo describe los antecedentes considerados durante el proceso de actualización de la regulación vigente en Chile. Detalla conceptos sobre la calidad del aire, describe los efectos en la salud de los contaminantes, y el procedimiento seguido para fijar los nuevos estándares Finaliza enumerando la norma primaria de calidad del aire, sus valores y los limites definidos para ser considerados en el ámbito de la gestión de los episodios críticos o de alta contaminaciónThe main purpose of air quality standards is to protect people health from air pollution. They establish a socially accepted level of risk. This article describes the background information considered during the process for updating the current Chilean regulation. Concepts about quality of air, and the effects of the pollutants on the health are described. The procedure followed to fix the new standards is detailed. Finally we state the primary air quality norm, its values as well as the critical limits in order to control critical events of high air pollution

  10. Situation of regional plans for air quality. Acknowledgement of sanitary aspects. Situation of realised impact studies of urban air pollution; Bilan des plans regionaux pour la qualite de l'air. Prise en compte des aspects sanitaires. Bilan des etudes d'impact de la pollution atmospherique urbaine realisees

    Energy Technology Data Exchange (ETDEWEB)

    D' Helf, M.; Cassadou, S

    2005-07-01

    The law on air and use of energy recommended in 1996 the implementation of regional plans for air quality (P.Q.R.A.) that have to rely on an evaluation of air pollution effects on health. 21 P.Q.R.A. have been published and the report gives the situation, their sanitary orientations and their applications. An inquiry lead in the 21 regions, near the different regional actors in the air and health field completes the report. (N.C.)

  11. ATMOSPHERIC AIR QUALITY IN CALARASI TOWN

    Directory of Open Access Journals (Sweden)

    Cecilia NEAGU

    2013-01-01

    Full Text Available The present paper seeks to highlight the appearance of air pollution in Calarasi region on the basis of the annual reports of the environment in recent years and of the integrated air quality management for Cǎlǎraşi (data are presented about current and future emissions and concentrations of pollutants I tried to mark out the impurity of the atmospheric air from this area.Emission data interpretation was made on the basis of the inventory of emissions of pollutants in the air made for fixed and mobile sources in Calarasi town in recent years using the program Corinvent and Corinair emission factors, and imissions data were used to monitor the air quality monitoring network air quality. The index of the quality of the air showed the highest values in winter.There have been occasional instances of the limit provided by law for particulate matter PM10, Calarasi, or being the intense traffic, the topoclimate in summer periods with high temperatures and deficient pluviometric regime, but also because housing fuel winter warming solid. There major problems of environmental pollution of air quality in Calarasi town that falls within the limits imposed by the legislation in force. This is due especially to the fact that many industrial centres have been closed.

  12. Determination and evaluation of air quality control. Manual of ambient air quality control in Germany

    Energy Technology Data Exchange (ETDEWEB)

    Lahmann, E.

    1997-07-01

    Measurement of air pollution emissions and ambient air quality are essential instruments for air quality control. By undertaking such measurements, pollutants are registered both at their place of origin and at the place where they may have an effect on people or the environment. Both types of measurement complement each other and are essential for the implementation of air quality legislation, particularly, in compliance with emission and ambient air quality limit values. Presented here are similar accounts of measurement principles and also contains as an Appendix a list of suitability-tested measuring devices which is based on information provided by the manufacturers. In addition, the guide of ambient air quality control contains further information on discontinuous measurement methods, on measurement planning and on the assessment of ambient air quality data. (orig./SR)

  13. Air quality concerns of unconventional oil and natural gas production.

    Science.gov (United States)

    Field, R A; Soltis, J; Murphy, S

    2014-05-01

    Increased use of hydraulic fracturing ("fracking") in unconventional oil and natural gas (O & NG) development from coal, sandstone, and shale deposits in the United States (US) has created environmental concerns over water and air quality impacts. In this perspective we focus on how the production of unconventional O & NG affects air quality. We pay particular attention to shale gas as this type of development has transformed natural gas production in the US and is set to become important in the rest of the world. A variety of potential emission sources can be spread over tens of thousands of acres of a production area and this complicates assessment of local and regional air quality impacts. We outline upstream activities including drilling, completion and production. After contrasting the context for development activities in the US and Europe we explore the use of inventories for determining air emissions. Location and scale of analysis is important, as O & NG production emissions in some US basins account for nearly 100% of the pollution burden, whereas in other basins these activities make up less than 10% of total air emissions. While emission inventories are beneficial to quantifying air emissions from a particular source category, they do have limitations when determining air quality impacts from a large area. Air monitoring is essential, not only to validate inventories, but also to measure impacts. We describe the use of measurements, including ground-based mobile monitoring, network stations, airborne, and satellite platforms for measuring air quality impacts. We identify nitrogen oxides, volatile organic compounds (VOC), ozone, hazardous air pollutants (HAP), and methane as pollutants of concern related to O & NG activities. These pollutants can contribute to air quality concerns and they may be regulated in ambient air, due to human health or climate forcing concerns. Close to well pads, emissions are concentrated and exposure to a wide range of

  14. Review of air pollution and health impacts in Malaysia

    International Nuclear Information System (INIS)

    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, Ox, SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts

  15. Air quality management in Riga area

    Energy Technology Data Exchange (ETDEWEB)

    Leitass, A. [Riga City Council (Latvia). Air Monitoring Dept.

    1995-12-31

    The present Air Quality Management System was started in 1992 as a result of co-operation between two cities - Riga and Norrkoping (Sweden) supported by BITS (The Swedish Agency for International Technical and Economic Co-operation). Lots of Swedish companies were involved in different parts of this project. The strategy is designed by INDIC company developing the AIRVIRO which is a computer based system for all aspects of air quality management. Air pollution in Riga is a serious problem affecting health and damaging valuable buildings of historic value. The majority of the city`s air pollution is the result of emission sources inside the city. The traffic is the predominant source of pollution now. The fossil fuel power stations in the country are not considered to affect the air quality situation in Riga. (author)

  16. Effect of Climate Change on Air Quality

    OpenAIRE

    Jacob, Daniel J.; Winner, Darrel A.

    2009-01-01

    Air quality is strongly dependent on weather and is therefore sensitive to climate change. Recent studies have provided estimates of this climate effect through correlations of air quality with meteorological variables, perturbation analyses in chemical transport models (CTMs), and CTM simulations driven by general circulation model (GCM) simulations of 21st-century climate change. We review these different approaches and their results. The future climate is expected to be more stagnant, due ...

  17. Cultural and Political Determinants of Air Quality

    OpenAIRE

    Francisca Guedes de Oliveira; Alexandra Leitão

    2012-01-01

    This paper investigates empirically the determinants of air quality in a large cross-section of countries. We assess air quality by sulfur emissions and, following the literature, we consider three different groups of determinants: economic, political and cultural. We confirm the existence of an EKC for sulfur (inverted-U shaped relation between wealth and pollution). Political determinants are proxied by ethnic or religious fractionalization indexes and the country’s legal origin (we conside...

  18. Indoor air quality analysis based on Hadoop

    International Nuclear Information System (INIS)

    The air of the office environment is our research object. The data of temperature, humidity, concentrations of carbon dioxide, carbon monoxide and ammonia are collected peer one to eight seconds by the sensor monitoring system. And all the data are stored in the Hbase database of Hadoop platform. With the help of HBase feature of column-oriented store and versioned (automatically add the time column), the time-series data sets are bulit based on the primary key Row-key and timestamp. The parallel computing programming model MapReduce is used to process millions of data collected by sensors. By analysing the changing trend of parameters' value at different time of the same day and at the same time of various dates, the impact of human factor and other factors on the room microenvironment is achieved according to the liquidity of the office staff. Moreover, the effective way to improve indoor air quality is proposed in the end of this paper

  19. Indoor air quality analysis based on Hadoop

    Science.gov (United States)

    Tuo, Wang; Yunhua, Sun; Song, Tian; Liang, Yu; Weihong, Cui

    2014-03-01

    The air of the office environment is our research object. The data of temperature, humidity, concentrations of carbon dioxide, carbon monoxide and ammonia are collected peer one to eight seconds by the sensor monitoring system. And all the data are stored in the Hbase database of Hadoop platform. With the help of HBase feature of column-oriented store and versioned (automatically add the time column), the time-series data sets are bulit based on the primary key Row-key and timestamp. The parallel computing programming model MapReduce is used to process millions of data collected by sensors. By analysing the changing trend of parameters' value at different time of the same day and at the same time of various dates, the impact of human factor and other factors on the room microenvironment is achieved according to the liquidity of the office staff. Moreover, the effective way to improve indoor air quality is proposed in the end of this paper.

  20. Air quality and radiative impacts of Arctic shipping emissions in the summertime in northern Norway: from the local to the regional scale

    Science.gov (United States)

    Marelle, Louis; Thomas, Jennie L.; Raut, Jean-Christophe; Law, Kathy S.; Jalkanen, Jukka-Pekka; Johansson, Lasse; Roiger, Anke; Schlager, Hans; Kim, Jin; Reiter, Anja; Weinzierl, Bernadett

    2016-02-01

    In this study, we quantify the impacts of shipping pollution on air quality and shortwave radiative effect in northern Norway, using WRF-Chem (Weather Research and Forecasting with chemistry) simulations combined with high-resolution, real-time STEAM2 (Ship Traffic Emissions Assessment Model version 2) shipping emissions. STEAM2 emissions are evaluated using airborne measurements from the ACCESS (Arctic Climate Change, Economy and Society) aircraft campaign, which was conducted in the summer 2012, in two ways. First, emissions of nitrogen oxides (NOx) and sulfur dioxide (SO2) are derived for specific ships by combining in situ measurements in ship plumes and FLEXPART-WRF plume dispersion modeling, and these values are compared to STEAM2 emissions for the same ships. Second, regional WRF-Chem runs with and without STEAM2 ship emissions are performed at two different resolutions, 3 km × 3 km and 15 km × 15 km, and evaluated against measurements along flight tracks and average campaign profiles in the marine boundary layer and lower troposphere. These comparisons show that differences between STEAM2 emissions and calculated emissions can be quite large (-57 to +148 %) for individual ships, but that WRF-Chem simulations using STEAM2 emissions reproduce well the average NOx, SO2 and O3 measured during ACCESS flights. The same WRF-Chem simulations show that the magnitude of NOx and ozone (O3) production from ship emissions at the surface is not very sensitive (important source of pollution along the Norwegian coast, enhancing 15-day-averaged surface concentrations of NOx ( ˜ +80 %), SO2 ( ˜ +80 %), O3 ( ˜ +5 %), black carbon ( ˜ +40 %), and PM2.5 ( ˜ +10 %). The residence time of black carbon originating from shipping emissions is 1.4 days. Over the same 15-day period, ship emissions in northern Norway have a global shortwave (direct + semi-direct + indirect) radiative effect of -9.3 m Wm-2.

  1. Characterizing a persistent Asian dust transport event: Optical properties and impact on air quality through the ground-based and satellite measurements over Nanjing, China

    Science.gov (United States)

    Han, Yong; Wu, Yonghua; Wang, Tijian; Xie, Chenbo; Zhao, Kun; Zhuang, Bingliang; Li, Shu

    2015-08-01

    The optical properties, time-height distribution and impact on the local air quality from a heavy Asian dust transport episode are investigated with a synergistic ground-based, satellite sensors and transport model on 1 May, 2011 at Nanjing (32.05° N, 118.78° E, and 94 m ASL) in southeast China. Two dust layers located in the planetary-boundary-layer (PBL, deserts and the higher one from the Taklimakan deserts. The dust aerosol layer shows the depolarization ratios at 0.1-0.2 and strong extinction coefficients of 1.0 km-1 at 532-nm, while the extinction-to-backscatter ratios (e.g. lidar ratios) of dust are 47.3-55 sr below 2.5 km. During this dust intrusion period, the aerosol optical depths (AOD) dramatically increase from 0.7 to 1.6 at 500-nm whereas the Angstrom exponents decrease from 1.2 to 0.2. Meanwhile, surface PM10 and PM2.5 concentrations show a significant and coincident increase with the peak value reaching 767 μg/m3 and 222 μg/m3, respectively, indicating the mixture of dust with the anthropogenic aerosols. Regional influences of the transported dust in east China are further illustrated by the AERONET-sunphotometer at Taihu and Xianghe sites (downwind and upwind from Nanjing), satellites MODIS, CALIPSO and model products. Furthermore, the model product of dust profile and surface concentration are evaluated with the ground-based and CALISPO observation. The results indicate the model is capable of simulating the right timing of dust transport event and most loading below 3-km altitude; normalization of model dust with the PM10 near the Gobi deserts improves modeling surface dust concentration in Nanjing.

  2. Impact of anthropogenic emission on air-quality over a megacity – revealed from an intensive atmospheric campaign during the Chinese Spring Festival

    Directory of Open Access Journals (Sweden)

    C. Deng

    2012-07-01

    Full Text Available The Chinese Spring Festival is one of the most important traditional festivals in China. The peak transport in the Spring Festival season (spring travel rush provides a unique opportunity for investigating the impact of human activities on air quality in the Chinese megacities as emission sources varied and fluctuated greatly prior to, during and after the festival. Enhanced vehicular emission during the spring travel rush before the festival resulted in high level pollutants of NOx (270 μg m−3, CO (2572 μg m−3, BC (8.5 μg m−3 and extremely low single scattering albedo of 0.70, indicating strong fresh combustion. Organics contributed most to PM2.5, followed by NO3−, NH4+, and SO42−. During the Chinese Lunar New Year's Eve and Day, widespread usage of fireworks burning caused heavy pollution of extremely high aerosol mass concentration, scattering coefficient, SO2 and NOx. Due to the spring travel rush after the festival, anthropogenic emission gradually climbed and mirrored corresponding increases in the aerosol components and gaseous pollutants. Secondary inorganic aerosol (SO42−, NO3−, and NH4+ accounted for a dominant fraction of 74% in PM2.5 due to the enhanced human activities, e.g. higher demand of energy usage from returned residents and re-open of factories and construction sites, more vehicle mileages due to returned workers and expanded public transportation. The average visibility during whole study period was less than 6 km. It was estimated that about 50% of the total light extinction was due to the high water vapor in the atmosphere. Of the aerosol extinction, organic aerosol had the largest contribution of 47%, followed by sulfate ammonium, nitrate ammonium and EC of 22%, 14%, and 12%, respectively. Our results indicated the dominant role of traffic-related aerosol species (i.e. organic aerosol, nitrate and EC on the formation of air pollution, and suggested the importance of controlling vehicle numbers and

  3. Impact of anthropogenic emission on air-quality over a megacity - revealed from an intensive atmospheric campaign during the Chinese Spring Festival

    Science.gov (United States)

    Huang, K.; Zhuang, G.; Lin, Y.; Wang, Q.; Fu, J. S.; Zhang, R.; Li, J.; Deng, C.; Fu, Q.

    2012-07-01

    The Chinese Spring Festival is one of the most important traditional festivals in China. The peak transport in the Spring Festival season (spring travel rush) provides a unique opportunity for investigating the impact of human activities on air quality in the Chinese megacities as emission sources varied and fluctuated greatly prior to, during and after the festival. Enhanced vehicular emission during the spring travel rush before the festival resulted in high level pollutants of NOx (270 μg m-3), CO (2572 μg m-3), BC (8.5 μg m-3) and extremely low single scattering albedo of 0.70, indicating strong fresh combustion. Organics contributed most to PM2.5, followed by NO3-, NH4+, and SO42-. During the Chinese Lunar New Year's Eve and Day, widespread usage of fireworks burning caused heavy pollution of extremely high aerosol mass concentration, scattering coefficient, SO2 and NOx. Due to the spring travel rush after the festival, anthropogenic emission gradually climbed and mirrored corresponding increases in the aerosol components and gaseous pollutants. Secondary inorganic aerosol (SO42-, NO3-, and NH4+) accounted for a dominant fraction of 74% in PM2.5 due to the enhanced human activities, e.g. higher demand of energy usage from returned residents and re-open of factories and construction sites, more vehicle mileages due to returned workers and expanded public transportation. The average visibility during whole study period was less than 6 km. It was estimated that about 50% of the total light extinction was due to the high water vapor in the atmosphere. Of the aerosol extinction, organic aerosol had the largest contribution of 47%, followed by sulfate ammonium, nitrate ammonium and EC of 22%, 14%, and 12%, respectively. Our results indicated the dominant role of traffic-related aerosol species (i.e. organic aerosol, nitrate and EC) on the formation of air pollution, and suggested the importance of controlling vehicle numbers and emissions in mega-cities of China

  4. The role of open-air inhalatoria in the air quality improvement in spa towns

    Directory of Open Access Journals (Sweden)

    Aleksandra Burkowska-But

    2014-08-01

    Full Text Available Objectives: The present study was aimed at evaluating microbiological contamination of air in Ciechocinek and Ino­wro­cław – Polish lowland spa towns. Additionally, the impact of open-air inhalatoria on the quality of air was evaluated. Material and Methods: Air samples were collected seasonally in the urban areas, in the recreation areas and in the vicinity of inhalatoria in both towns using impaction. The numbers of mesophilic bacteria, staphylococci, hemolytic bacteria and actinomycetes were determined on media according to the Polish Standard PN-86/Z-04111/02. The number of moulds was determined on media according to the Polish Standard PN-86/Z-04111/03. Results: While the highest numbers of microorganisms were noted at the sites located in the urban areas, the lowest numbers were noted in the vicinity of the open-air inhalatoria. In all the investigated air samples the values of bioaerosol concentrations were below the recommended TLVs (≤ 5000 CFU×m–3 for both bacteria and fungi in outdoor environments. Location of the sampling site was invariably a decisive factor in determining the number of microorganisms in the air. Conclusions: The aerosol which is formed in the open-air inhalatoria has a positive influence on microbiological air quality. Owing to a unique microclimate and low air contamination, Ciechocinek and Inowrocław comply with all necessary requirements set for health resorts specializing in treating upper respiratory tract infections.

  5. An investigation of infiltration and indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    1990-09-01

    A multitask study was performed in the State of New York to provide information for guiding home energy conservation programs while maintaining acceptable indoor air quality. During this study, the statistical distribution of radon concentrations inside 2400 homes was determined. The relationships among radon levels, house characteristics, and sources were also investigated. The direct impact that two specific air infiltration reduction measures -- caulking and weatherstripping of windows and doors, and installation of storm windows and storm doors -- have on house air leakage was investigated in 60 homes. The effect of house age on the impact of weatherization was also evaluated. Indoor and outdoor measurements of NO{sub 2}, CO, SO{sub 2}, and respirable suspended particulates (RSP) were made for 400 homes to determine the effect of combustion sources on indoor air quality and to characterize the statistical distribution of the concentrations. Finally, the combustion source data were combined with the information on air infiltration reduction measures to estimate the potential impact of these measures on indoor air quality. 87 tabs.

  6. The impacts of firework burning at the Chinese Spring Festival on air quality: insights of tracers, source evolution and aging processes

    Science.gov (United States)

    Kong, S. F.; Li, L.; Li, X. X.; Yin, Y.; Chen, K.; Liu, D. T.; Yuan, L.; Zhang, Y. J.; Shan, Y. P.; Ji, Y. Q.

    2015-02-01

    To understand the impact of firework-burning (FW) particles on air quality and human health during the winter haze period, 39 elements, 10 water-soluble ions and 8 fractions of carbonaceous species in atmospheric PM2.5 in Nanjing were investigated during the 2014 Chinese Spring Festival (SF). Serious regional haze pollution persisted throughout the entire sampling period, with PM2.5 averaging at 113 ± 69 μg m-3 and visibility at 4.8 ± 3.2 km. The holiday effect led to almost all the chemical species decreasing during the SF, except for Al, K, Ba and Sr which were related to FW. The source contributions of coal combustion, vehicle emission and road dust decreased dramatically, whereas FW contributed to about half of the PM2.5 during the SF period. The intensive emission of FW particles on New Year's Eve accounted for 60.1% of the PM2.5. Fireworks also obviously modified the chemical compositions of PM2.5, with 39.3% contributed by increased organic matter, followed by steadily increased loadings of secondary inorganic ions. The aging processes of the FW particles lasted for about 4 days reflected by the variations of Ba, Sr, NH4+, NO3-, SO42- and K+, characterized by heterogeneous reactions of SO2 and NOx on crustal materials directly from FW, the replacement of Cl- by NO3- and SO42-, coating of NO3- and SO42- on soot, formation of secondary organic aerosols and metal-catalyzed formation of NO3- and SO42- at higher relative humidity. During aging, the main contributors to the extinction coefficient shifted from elemental carbon and organic matter to ammonium sulfate. The particles raised higher cancer risk of 1.62 × 10-6 by heavy metals (especially for Cd and As). This study provided detailed composition data and first comprehensive analysis of the aging processes of FW particles during the serious haze pollution period and their potential impact on human health.

  7. The impacts of fireworks burning at Chinese Spring Festival on air quality and human health: insights of tracers, source evolution and aging processes

    Directory of Open Access Journals (Sweden)

    S. Kong

    2014-11-01

    Full Text Available To understand the impact of fireworks burning (FW particles on air quality and human health during winter haze period, thirty-nine elements, ten water-soluble ions and eight fractions of carbonaceous species in atmospheric PM2.5 at Nanjing were investigated during 2014 Chinese Spring Festival (SF. Serious regional haze pollution persisted throughout the entire sampling period, PM2.5 averaging at 113 ± 69 μg m−3 and visibility at 4.8 ± 3.2 km. The holiday effect led to almost all the chemical species decreasing during the SF, except for Al, K, Ba and Sr which were related to FW. The source contributions of coal combustion, vehicle emission and road dust descreased dramatically, whereas FW contributed to about half of the PM2.5 during SF period. The intensive emission of FW particles at New Year's Eve accounted for 60.1% of the PM2.5. They also significnatly modified the chemical compositions of PM2.5, with 39.3% contributed by increased organic matter, followed by steadly increased loadings of secondary inorganic ions. The aging processes of the FW particles lasted for at least six days reflected by the variation of SO42−, characterized by heterogeneous reactions of SO2 and NOx on crustal materials directly from FW, the replacement of Cl− by NO3− and SO42− coating of NO3− and SO42− on soot, formation of secondary organic aerosols and metal-catalyzed formation of NO3− and SO42− at higher relative humidity. During aging, the main contributors to the extinction coefficient shifted from elemental carbon and organic matter to sulfate ammonium. The particles raised higher cancer risks by heavy metals (especially for Cd and As as 1.62 ×10−6. This study provided detailed composition data and first comprehensive analysis of the aging processes of FW particles at serious haze pollution period and their potential impact on human health.

  8. Air quality estimation by computational intelligence methodologies

    Directory of Open Access Journals (Sweden)

    Ćirić Ivan T.

    2012-01-01

    Full Text Available The subject of this study is to compare different computational intelligence methodologies based on artificial neural networks used for forecasting an air quality parameter - the emission of CO2, in the city of Niš. Firstly, inputs of the CO2 emission estimator are analyzed and their measurement is explained. It is known that the traffic is the single largest emitter of CO2 in Europe. Therefore, a proper treatment of this component of pollution is very important for precise estimation of emission levels. With this in mind, measurements of traffic frequency and CO2 concentration were carried out at critical intersections in the city, as well as the monitoring of a vehicle direction at the crossroad. Finally, based on experimental data, different soft computing estimators were developed, such as feed forward neural network, recurrent neural network, and hybrid neuro-fuzzy estimator of CO2 emission levels. Test data for some characteristic cases presented at the end of the paper shows good agreement of developed estimator outputs with experimental data. Presented results are a true indicator of the implemented method usability. [Projekat Ministarstva nauke Republike Srbije, br. III42008-2/2011: Evaluation of Energy Performances and br. TR35016/2011: Indoor Environment Quality of Educational Buildings in Serbia with Impact to Health and Research of MHD Flows around the Bodies, in the Tip Clearances and Channels and Application in the MHD Pumps Development

  9. Impact of synoptic weather patterns and inter-decadal climate variability on air quality in the North China Plain during 1980-2013

    Science.gov (United States)

    Zhang, Yang; Ding, Aijun; Mao, Huiting; Nie, Wei; Zhou, Derong; Liu, Lixia; Huang, Xin; Fu, Congbin

    2016-01-01

    Potential relationships between air quality, synoptic weather patterns, and the East Asian Monsoon (EAM) over the North China Plain (NCP) were examined during the time period of 1980-2013 using a weather typing technique and ground-based air pollution index (API) data from three cities: Beijing, Tianjin and Shijiazhuang. Using the Kirchhofer method, circulation patterns during the 34-yr study period were classified into 5 categories, which were further used to understand the quantitative relationship between weather and air quality in NCP. The highest API values were associated with a stagnant weather condition when wide-spread stable conditions controlled most part of NCP, while westerly and southerly wind flowed over the northern and eastern part of this region, resulting in both the regional transport and local build-up of air pollutants. Under the continuous control of this weather pattern, API values were found to increase at a rate of 8.5 per day on average. Based on the qualitative and quantitative analysis, a significant correlation was found between the strength of EAM and inter-annual variability of frequencies of the weather patterns. The strengthening of summer/winter monsoon could increase the frequency of occurrence of cyclone/anticyclone related weather patterns. Time series of climate-induced variability in API over the 34 years were reconstructed based on the quantitative relationship between API and predominant weather patterns during 2001-2010. Significant connections between EAM and reconstructed API were found on both the inter-annual and inter-decadal scales. In winter and summer, strengthening/weakening of EAM, which was generally associated with the change of the representative circulation patterns, could improve/worsen air quality in this region.

  10. Impacts of transported background ozone on California air quality during the ARCTAS-CARB period – a multi-scale modeling study

    Directory of Open Access Journals (Sweden)

    C. Cai

    2010-05-01

    Full Text Available Multi-scale tracer and full-chemistry simulations with the STEM atmospheric chemistry model are used to analyze the effects of transported background ozone (O3 from the eastern Pacific on California air quality during the ARCTAS-CARB experiment conducted in June 2008. Previous work has focused on the importance of long-range transport of O3 to North America air quality in springtime. However during this summer experiment the long-range transport of O3 is also shown to be important. Simulated and observed O3 transport patterns from the coast to inland northern California are shown to vary based on meteorological conditions and the oceanic O3 profiles, which are strongly episodically affected by Asian inflows. Analysis of the correlations of O3 at various altitudes above the coastal site at Trinidad Head and at a downwind surface site in northern California, show that under long-range transport events, high O3 air-masses (O3>60 ppb at altitudes between about 2 and 4 km can be transported inland and can significantly influence surface O3 20–30 h later. These results show the importance of characterizing the vertical structure of the lateral boundary conditions (LBC needed in air quality simulations. The importance of the LBC on O3 prediction during this period is further studied through a series of sensitivity studies using different forms of LBC. It is shown that the use of the LBC downscaled from RAQMS global model that assimilated MLS and OMI data improves the model performance. We also show that the predictions can be further improved through the use of LBC based on NASA DC-8 airborne observations during the ARCTAS-CARB experiment. These results indicate the need to develop observational strategies to improve the representation of the vertical and temporal variations in the air over the eastern Pacific.

  11. Indoor air quality: radon and formaldehyde

    International Nuclear Information System (INIS)

    The WHO Regional Office for Europe has taken a leading role at the international level in reviewing and stimulating research and action on the potential health hazards of indoor air pollutants. A subject is given on page vi. It is now much more generally recognized than even five years ago that the use of particular materials for construction of buildings or for furniture and fittings is accompanied by certain risks, especially in view of the ''tightening'' of buildings to reduce energy costs, and increased reliance on central heating and air conditioning. For the last three years, the Regional Office, with the support of the Government of the Netherlands, has been developing a set of air quality guidelines for Europe. In addition to major air pollutants such as sulfur dioxide and particulates, these guidelines cover some 25 other inorganic and organic substances, including radon and formaldehyde. In 1985, a working group reviewed the latter two substances in relation to the ongoing indoor air quality programme of the Regional Office and also as part of the air quality guidelines. In view of the importance of these substances, it was decided to issue a separate report in the Environmental Health Series. The complete air quality guidelines will be published in mid-1987. (author)

  12. Frontiers in air quality modelling

    Directory of Open Access Journals (Sweden)

    A. Colette

    2013-08-01

    Full Text Available The first pan-European kilometre-scale atmospheric chemistry simulation is introduced. The continental-scale air pollution episode of January 2009 is modelled with the CHIMERE offline chemistry-transport model with a massive grid of 2 million horizontal points, performed on 2000 CPU of a high performance computing system hosted by the Research and Technology Computing Center at the French Alternative Energies and Atomic Energy Commission (CCRT/CEA. Besides the technical challenge, we find that model biases are significantly reduced, especially over urban areas. The high resolution grid also allows revisiting the contribution of individual city plumes to the European burden of pollution, providing new insights for designing air pollution control strategies.

  13. The impact of free-air CO_2 enrichment (FACE) and N supply on growth, yield and quality of rice crops with large panicle

    OpenAIRE

    Wang,Yulong / Yang,Lianxin / Huang,Jianye / Dong,Guichun

    2007-01-01

    Because CO_2 is needed for plant photosynthesis, the increase in atmospheric [CO_2] has the potential to enhance the growth and development of plant. However, the resultant effects on growth, yield and quality of field-grown rice remain unclear, especially under differing nitrogen (N) availability and/or using cultivars with large panicles. To investigate these, a Free-Air CO_2 Enrichment (FACE) experiment was performed at Wuxi, Jiangsu, China, in 2001-03. A japonica cultivar with large panic...

  14. An Overview of the 2013 Las Vegas Ozone Study (LVOS): Impact of stratospheric intrusions and long-range transport on surface air quality

    OpenAIRE

    A. O. Langford; Senff, C.J.; R.J., Alvarez; Brioude, Jérome; Cooper, O. R; J. S. Holloway; Lin, M.; Marchbanks, R.D.; R. B. Pierce; S. P. Sandberg; A. M. Weickmann; E. J. Williams

    2014-01-01

    International audience The 2013 Las Vegas Ozone Study (LVOS) was conducted in the late spring and early summer of 2013 to assess the seasonal contribution of stratosphere-to-troposphere transport (STT) and long-range transport to surface ozone in Clark County, Nevada and determine if these processes directly contribute to exceedances of the National Ambient Air Quality Standard (NAAQS) in this area. Secondary goals included the characterization of local ozone production, regional transport...

  15. Indoor air quality: a UK perspective

    International Nuclear Information System (INIS)

    Outdoor air quality has generally improved in the UK over the last 2 decades but during this period changing conditions within the home have tended to reduce ventilation and increase the opportunity for accumulation of undesirable levels of indoor air pollutants. Information obtained from laboratory and epidemiological studies suggest that indoor air pollutants are an important cause of avoidable morbidity and mortality in the UK. This paper reviews the major indoor air pollutants of concern in the UK and considers some of the special issues relevant to indoor environment. (author) 3 figs., 37 refs

  16. ATMOSPHERIC AIR QUALITY IN CALARASI TOWN

    OpenAIRE

    Cecilia NEAGU

    2013-01-01

    The present paper seeks to highlight the appearance of air pollution in Calarasi region on the basis of the annual reports of the environment in recent years and of the integrated air quality management for Cǎlǎraşi (data are presented about current and future emissions and concentrations of pollutants) I tried to mark out the impurity of the atmospheric air from this area.Emission data interpretation was made on the basis of the inventory of emissions of pollutants in the air made for fixed ...

  17. Impact of anthropogenic emission on air quality over a megacity – revealed from an intensive atmospheric campaign during the Chinese Spring Festival

    Directory of Open Access Journals (Sweden)

    K. Huang

    2012-12-01

    Full Text Available The Chinese Spring Festival is one of the most important traditional festivals in China. The peak transport in the Spring Festival season (spring travel rush provides a unique opportunity for investigating the impact of human activity on air quality in the Chinese megacities. Emission sources are varied and fluctuate greatly before, during and after the Festival. Increased vehicular emissions during the "spring travel rush" before the 2009 Festival resulted in high level pollutants of NOx (270 μg m−3, CO (2572 μg m−3, black carbon (BC (8.5 μg m−3 and extremely low single scattering albedo of 0.76 in Shanghai, indicating strong, fresh combustion. Organics contributed most to PM2.5, followed by NO3, NH4+, and SO42−. During the Chinese Lunar New Year's Eve and Day, widespread usage of fireworks caused heavy pollution of extremely high aerosol concentration, scattering coefficient, SO2, and NOx. Due to the "spring travel rush" after the festival, anthropogenic emissions gradually climbed and mirrored corresponding increases in the aerosol components and gaseous pollutants. Secondary inorganic aerosol (SO42−, NO3, and NH4+ accounted for a dominant fraction of 74% in PM2.5 due to an increase in human activity. There was a greater demand for energy as vast numbers of people using public transportation or driving their own vehicles returned home after the Festival. Factories and constructions sites were operating again.

    The potential source contribution function (PSCF analysis illustrated the possible source areas for air pollutants of Shanghai. The effects of regional and long-range transport were both revealed. Five major sources, i.e. natural sources, vehicular emissions, burning of fireworks, industrial

  18. Effects of political institutions on air quality

    International Nuclear Information System (INIS)

    We empirically test existing theories on the provision of public goods, in particular air quality, using data on sulfur dioxide (SO2) concentrations from the Global Environment Monitoring Projects for 107 cities in 42 countries from 1971 to 1996. The results are as follows: First, we provide additional support for the claim that the degree of democracy has an independent positive effect on air quality. Second, we find that among democracies, presidential systems are more conducive to air quality than parliamentary ones. Third, in testing competing claims about the effect of interest groups on public goods provision in democracies we establish that labor union strength contributes to lower environmental quality, whereas the strength of green parties has the opposite effect. (author)

  19. Simulating the impact of urban sprawl on air quality and population exposure in the German Ruhr area. Part II: Development and evaluation of an urban growth scenario

    OpenAIRE

    De Ridder, Koen; Lefebre, Filip; Adriaensen, Stefan; Arnold, Ute; Beckroege, Wolfgang; Bronner, Christine; Damsgaard, Ole; Dostal, Ivo; Dufek, Jiri; Hirsch, Jacky; Int Panis, Luc; Kotek, Zdenek; Ramadier, Thierry; Thierry, Annette; Vermoote, Stijn

    2008-01-01

    The impact of uncontrolled urban growth ('sprawl') on air pollution and associated population exposure is investigated. This is done for the Ruhr area in Germany, by means of a coupled modelling system dealing with land use changes, traffic, meteorology, and atmospheric dispersion and chemistry. In a companion paper [De Ridder, K., Lefebre F., Adriaensen S., Arnold U., Beckroege W., Bronner C., Damsgaard O., Dostal I., Dufek J., Hirsch J., Int Panis L., Kotek Z., Ramadier T., Thierry A., Verm...

  20. Developing consistent data and methods to measure the public health impacts of ambient air quality for Environmental Public Health Tracking: progress to date and future directions

    OpenAIRE

    Talbot, Thomas O.; Haley, Valerie B; Dimmick, W. Fred; Paulu, Chris; Evelyn O. Talbott; Rager, Judy

    2009-01-01

    Environmental Public Health Tracking (EPHT) staff at the state and national levels are developing nationally consistent data and methods to estimate the impact of ozone and fine particulate matter on hospitalizations for asthma and myocardial infarction. Pilot projects have demonstrated the feasibility of pooling state hospitalization data and linking these data to The United States Environmental Protection Agency (EPA) statistically based ambient air estimates for ozone and fine particulates...

  1. Air quality health index variation across British Columbia

    Energy Technology Data Exchange (ETDEWEB)

    Hasselback, P. [Interior Health Authority, Kelowna, BC (Canada); Taylor, E. [British Columbia Ministry of Health Living and Sport, Vancouver, BC (Canada)

    2010-09-15

    The new Air Quality Health Index (AQHI) is a tool aiming to present the health risks related to air pollution in Canada. This index can be used by individuals to help them reduce their health risk resulting from poor air quality. An assessment of the short term health risk induced by poor air quality is provided to Canadians through the AQHI. The AQHI is based on three factors: ambient concentrations of nitrogen dioxide, fine particulate matter and ozone, the local air quality information being presented on an hourly and daily basis and being calculated each hour for several locations across Canada. Pulmonary disorders and impacts on cardiac function are the more significant short term health risks. Longer term exposure to poor air quality is associated with increased rates of allergies and asthma, low birth weight, atherosclerosis, poorer lung development in children, lung cancer and ear infections. Information on the AQHI and on the variation across British Columbia of the health risk associated with this index are presented in this document. 19 refs., 5 tabs., 5 figs.

  2. Biomass and air quality the UK experience

    International Nuclear Information System (INIS)

    Policies to encourage the use of biomass in the UK can perhaps be held up as an example of how not to develop integrated environmental policy. The UK has considered the air quality effects of biomass burning only after putting in place policies that will hugely increase the amount of biomass burning plant that will be installed. Whilst these issues are now being addressed, it will be some time before a satisfactory framework will be in place. The current situation is not a positive one for all involved - air quality practitioners, climate change policy makers and the wider biomass industry. For clean air organisations such as Environmental Protection UK and our European counterparts there are essentially two lessons to take away. The first is that we have to raise our sights to look for potential threats to air quality from wider policy measures, and flag up potential concerns at the earliest opportunity. It is easy to focus on the job in hand (for example emissions from vehicles) and miss developments further afield. Secondly, and most importantly, we have to offer our own solutions to wider environmental challenges. Climate change is likely to remain the dominant global environmental issue for decades to come; clean air agencies need to understand this and put forward low carbon solutions that offer strong synergies with air quality. The alternati