WorldWideScience

Sample records for air pollution-mediated impacts

  1. Malaria infection, poor nutrition and indoor air pollution mediate socioeconomic differences in adverse pregnancy outcomes in Cape Coast, Ghana.

    Directory of Open Access Journals (Sweden)

    Adeladza K Amegah

    Full Text Available BACKGROUND: The epidemiological evidence linking socioeconomic deprivation with adverse pregnancy outcomes has been conflicting mainly due to poor measurement of socioeconomic status (SES. Studies have also failed to evaluate the plausible pathways through which socioeconomic disadvantage impacts on pregnancy outcomes. We investigated the importance of maternal SES as determinant of birth weight and gestational duration in an urban area and evaluated main causal pathways for the influence of SES. METHODS: A population-based cross-sectional study was conducted among 559 mothers accessing postnatal services at the four main health facilities in Cape Coast, Ghana in 2011. Information on socioeconomic characteristics of the mothers was collected in a structured questionnaire. RESULTS: In multivariate linear regression adjusting for maternal age, parity and gender of newborn, low SES resulted in 292 g (95% CI: 440-145 reduction in birth weight. Important SES-related determinants were neighborhood poverty (221 g; 95% CI: 355-87, low education (187 g; 95% CI: 355-20, studentship during pregnancy (291 g; 95% CI: 506-76 and low income (147 g; 95% CI: 277-17. In causal pathway analysis, malaria infection (6-20%, poor nutrition (2-51% and indoor air pollution (10-62% mediated substantial proportions of the observed effects of socioeconomic deprivation on birth weight. Generalized linear models adjusting for confounders indicated a 218% (RR: 3.18; 95% CI: 1.41-7.21 risk increase of LBW and 83% (RR: 1.83; 95% CI: 1.31-2.56 of PTB among low income mothers. Low and middle SES was associated with 357% (RR: 4.57; 95% CI: 1.67-12.49 and 278% (RR: 3.78; 95% CI: 1.39-10.27 increased risk of LBW respectively. Malaria infection, poor nutrition and indoor air pollution respectively mediated 10-21%, 16-44% and 31-52% of the observed effects of socioeconomic disadvantage on LBW risk. CONCLUSION: We provide evidence of the effects of socioeconomic deprivation

  2. Air pollution: Impact and prevention

    OpenAIRE

    SIERRA-VARGAS, MARTHA PATRICIA; Teran, Luis M.

    2012-01-01

    ABSTRACT Air pollution is becoming a major health problem that affects millions of people worldwide. In support of this observation, the World Health Organization estimates that every year, 2.4 million people die because of the effects of air pollution on health. Mitigation strategies such as changes in diesel engine technology could result in fewer premature mortalities, as suggested by the US Environmental Protection Agency. This review: (i) discusses the impact of air pollution on respirat...

  3. Air-cushioning in impact problems

    KAUST Repository

    Moore, M. R.

    2013-05-12

    This paper concerns the displacement potential formulation of the post-impact influence of an air-cushioning layer on the 2D impact of a liquid half-space by a rigid body. The liquid and air are both ideal and incompressible and attention is focussed on cases when the density ratio between the air and liquid is small. In particular, the correction to classical Wagner theory is analysed in detail for the impact of circular cylinders and wedges. © The Authors 2013. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.

  4. Population Dynamics and Air Pollution: The Impact of Demographics on Health Impact Assessment of Air Pollution

    OpenAIRE

    Esben Meulengracht Flachs; Jan Sørensen; Jakob Bønløkke; Henrik Brønnum-Hansen

    2013-01-01

    Objective. To explore how three different assumptions on demographics affect the health impact of Danish emitted air pollution in Denmark from 2005 to 2030, with health impact modeled from 2005 to 2050. Methods. Modeled air pollution from Danish sources was used as exposure in a newly developed health impact assessment model, which models four major diseases and mortality causes in addition to all-cause mortality. The modeling was at the municipal level, which divides the approximately 5.5 M ...

  5. Impact of Air Movement on Eye Symptoms

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Sakoi, Tomonori; Kolencíková, Sona;

    2013-01-01

    The impact of direction, oscillation and temperature of isothermal room air movement on eye discomfort and tear film quality was studied. Twenty-four male subjects participated in the experiment. Horizontal air movement against the face and chest was generated by a large desk fan – LDF and a small...... when the airflow was directed against the face and when against the chest, LDF with and without oscillation and PV. Eye tear film samples were taken and analyzed at the beginning and the end of the exposures. Eye irritation and dryness were reported by the subjects. The air movement under individual...... desk fan (2.5 W) powered by laptop computer – USBF and upward movement by a personalized ventilation supplying air from desk front edge - PV. The exposed subject had control over the rotation speed of the fans as well as the personalized airflow rate and its direction to be against the chest, upward...

  6. Drop impact splashing and air entrapment

    KAUST Repository

    Thoraval, Marie-Jean

    2013-03-01

    Drop impact is a canonical problem in fluid mechanics, with numerous applications in industrial as well as natural phenomena. The extremely simple initial configuration of the experiment can produce a very large variety of fast and complex dynamics. Scientific progress was made in parallel with major improvements in imaging and computational technologies. Most recently, high-speed imaging video cameras have opened the exploration of new phenomena occurring at the micro-second scale, and parallel computing allowed realistic direct numerical simulations of drop impacts. We combine these tools to bring a new understanding of two fundamental aspects of drop impacts: splashing and air entrapment. The early dynamics of a drop impacting on a liquid pool at high velocity produces an ejecta sheet, emerging horizontally in the neck between the drop and the pool. We show how the interaction of this thin liquid sheet with the air, the drop or the pool, can produce micro-droplets and bubble rings. Then we detail how the breakup of the air film stretched between the drop and the pool for lower impact velocities can produce a myriad of micro-bubbles.

  7. Health impact of air pollution to children.

    Science.gov (United States)

    Sram, Radim J; Binkova, Blanka; Dostal, Miroslav; Merkerova-Dostalova, Michaela; Libalova, Helena; Milcova, Alena; Rossner, Pavel; Rossnerova, Andrea; Schmuczerova, Jana; Svecova, Vlasta; Topinka, Jan; Votavova, Hana

    2013-08-01

    Health impact of air pollution to children was studied over the last twenty years in heavily polluted parts of the Czech Republic during. The research program (Teplice Program) analyzed these effects in the polluted district Teplice (North Bohemia) and control district Prachatice (Southern Bohemia). Study of pregnancy outcomes for newborns delivered between 1994 and 1998 demonstrated that increase in intrauterine growth retardation (IUGR) was associated with PM10 and c-PAHs exposure (carcinogenic polycyclic aromatic hydrocarbons) in the first month of gestation. Morbidity was followed in the cohort of newborns (N=1492) up to the age of 10years. Coal combustion in homes was associated with increased incidence of lower respiratory track illness and impaired early childhood skeletal growth up to the age of 3years. In preschool children, we observed the effect of increased concentrations of PM2.5 and PAHs on development of bronchitis. The Northern Moravia Region (Silesia) is characterized by high concentrations of c-PAHs due to industrial air pollution. Exposure to B[a]P (benzo[a]pyrene) in Ostrava-Radvanice is the highest in the EU. Children from this part of the city of Ostrava suffered higher incidence of acute respiratory diseases in the first year of life. Gene expression profiles in leukocytes of asthmatic children compared to children without asthma were evaluated in groups from Ostrava-Radvanice and Prachatice. The results suggest the distinct molecular phenotype of asthma bronchiale in children living in polluted Ostrava region compared to children living in Prachatice. The effect of exposure to air pollution to biomarkers in newborns was analyzed in Prague vs. Ceske Budejovice, two locations with different levels of pollution in winter season. B[a]P concentrations were higher in Ceske Budejovice. DNA adducts and micronuclei were also elevated in cord blood in Ceske Budejovice in comparison to Prague. Study of gene expression profiles in the cord blood showed

  8. Universal mechanism for air entrainment during liquid impact

    Science.gov (United States)

    Hendrix, Maurice H. W.; Bouwhuis, Wilco; van der Meer, Devaraj; Lohse, Detlef; Snoeijer, Jacco H.

    2016-02-01

    When a mm-sized liquid drop approaches a deep liquid pool, both the interface of the drop and the pool deform before the drop touches the pool. The build up of air pressure prior to coalescence is responsible for this deformation. Due to this deformation, air can be entrained at the bottom of the drop during the impact. We quantify the amount of entrained air numerically, using the Boundary Integral Method (BIM) for potential flow for the drop and the pool, coupled to viscous lubrication theory for the air film that has to be squeezed out during impact. We compare our results to various experimental data and find excellent agreement for the amount of air that is entrapped during impact onto a pool. Next, the impact of a rigid sphere onto a pool is numerically investigated and the air that is entrapped in this case also matches with available experimental data. In both cases of drop and sphere impact onto a pool the numerical air bubble volume V_b is found to be in agreement with the theoretical scaling V_b/V_{drop/sphere} ~ St^{-4/3}, where St is the Stokes number. This is the same scaling that has been found for drop impact onto a solid surface in previous research. This implies a universal mechanism for air entrainment for these different impact scenarios, which has been suggested in recent experimental work, but is now further elucidated with numerical results.

  9. Immune- and Pollution-mediated DNA Damage in Two Wild Mya arenaria Clam Populations

    OpenAIRE

    François Gagné; M. Laura Martín-Díaz; Christian Blaise

    2009-01-01

    In aquatic environments, genotoxicity results from the effects of pollution combined with the inflammatory response triggered by the immune system. Indeed, the production of nitrosylated DNA and proteins are though to arise from the production of peroxinitrite during phagocytosis and inflammation. The purpose of this study was to examine new DNA biomarkers that differentiate between immune- and pollution-mediated genotoxicity in wild clam populations. Intertidal clam populations were sampled ...

  10. Assessments of biofuel sustainability: air pollution and health impacts

    OpenAIRE

    Tsao, Chi-Chung

    2012-01-01

    Accelerating biofuel production has been promoted as an opportunity to enhance energy security, offset greenhouse gas emissions and support rural economies. However, large uncertainties remain in the impacts of biofuels, particularly, on air quality and human health. Sugarcane ethanol is one of the most widely used biofuels, and Brazil is its largest producer. Here a systematic framework, including emission modeling, air quality simulation, and health impact assessment was developed to quanti...

  11. Universal mechanism for air entrainment during liquid impact

    CERN Document Server

    Hendrix, Maurice H W; van der Meer, Devaraj; Lohse, Detlef; Snoeijer, Jacco H

    2015-01-01

    When a mm-sized liquid drop approaches a deep liquid pool, both the interface of the drop and the pool deform before the drop touches the pool. The build up of air pressure prior to coalescence is responsible for this deformation. Due to this deformation, air can be entrained at the bottom of the drop during the impact. We quantify the amount of entrained air numerically, using the Boundary Integral Method (BIM) for potential flow for the drop and the pool, coupled to viscous lubrication theory for the air film that has to be squeezed out during impact. We compare our results to various experimental data and find excellent agreement for the amount of air that is entrapped during impact onto a pool. Next, the impact of a rigid sphere onto a pool is numerically investigated and the air that is entrapped in this case also matches with available experimental data. In both cases of drop and sphere impact onto a pool the numerical air bubble volume V_b is found to be in agreement with the theoretical scaling V_b/V_...

  12. Impact of air traffic on the climate

    Energy Technology Data Exchange (ETDEWEB)

    Stief, G. [Florence Univ. (Italy). Ist. di Agrometeorologia

    1997-12-31

    Though emission from world-wide air traffic may seem to be relatively small in comparison to that from all other anthropogenic sources, the deleterious effect on the climate of the gases and particles emitted by planes is disproportionately large. It is thought that air traffic, working together with pollutants that have already accumulated at critical heights, and depending on humidity and temperature, plays a decisive role in helping to cause the changes, presented below, in global radiation, sunshine duration, rainfall and maximum and minimum temperatures which are taking place. (author) 7 refs.

  13. The impact of periodic air pollution peaks in Beijing on air quality governance in China

    OpenAIRE

    Schwabe, Julian; Hassler, Markus

    2016-01-01

    During the month of January 2013, Beijing suffered air pollution of unprecedented intensity. This event, which was named “airpocalypse” in international media, was followed by vibrant media reporting and public discussion on the topic and prompted the central government to issue unusually ambitious measures to contain air pollution more effectively. This paper explores the impact of the airpocalypse on China’s air quality governance by conducting a qualitative analysis of pollution control po...

  14. Review of air pollution and health impacts in Malaysia

    International Nuclear Information System (INIS)

    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO2), Nitrogen Dioxide (NO2), Ozone (O3), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO2) are the predominant pollutants. Other pollutants such as CO, Ox, SO2, and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts

  15. STUDY ON JETS IMPACT IN AIR FOR ENERGY DISSIPATION

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper is concerned with the applications of water jet impact in air to energy dissipation. The scattered jet flow impinges into the downstream water plunge pool, which greatly improves the inflow condition of the submerged jet in the pool and make it diffuse very quickly. The model experiments were conducted, which showed that a large jet flow could be scattered by a small one through impacting. The minimum discharge ratio for flow dispersion was studied. The unequal jet impact in air for energy dissipation was brought forward firstly in this paper as a new type of energy dissipator.

  16. Generating scenarios to predict air quality impact in public health

    Energy Technology Data Exchange (ETDEWEB)

    Garcia, J.M.; Coelho, L.M.R.; Gouveia, C.; Cerdeira, R. [Escola Superior de Tecnologia de Setubal (EST-IPS), Setubal (Portugal); Ferreira, T.; Baptista, M.N. [Hospital Na. Sa. do Rosario, Servico de Pediatria, Barreiro (Portugal)

    2004-07-01

    This study intends to associate air quality with public health by generating air quality scenarios, under different future perspectives in Barreiro. This city is located in middle south of Portugal nearby Lisbon and it has a large resident population, an important industrial area and intense traffic. In this study ADMS-urban was used to simulate the possible scenarios of future air quality in this city, taking into consideration the probable city development and future activities. Special attention was given to the future evolutions of traffic, industrial activities, demographical and geographical expansion. The new EU directives about air quality and the CAFE program were also considered. To correlate the impact of the future air quality of the city and public health, a children population sample was used. This study team is also composed by paediatric doctors from Hospital N{sup a}. S{sup a}. do Rosario that contribute with public health information and helped to identify air quality related diseases. (orig.)

  17. Ionization Impact on the Air Cleaning Efficiency in the Interior

    OpenAIRE

    Černecký Jozef; Valentová Karina; Pivarčiová Elena; Božek Pavol

    2015-01-01

    The paper deals with ionization impact on efficient cleaning of air in a measuring chamber which has been cleaned and closed against any outer impacts (e.g. impurities, dust from another room, human odours). Smoking has an impact on the number of positive and negative ions including the concentration of particulate matter PM10. We investigated the ion concentration according to the presence of cigarette smoke in the room and according to the change of lit cigarette distance from the supply of...

  18. Health impact of air pollution to children

    Czech Academy of Sciences Publication Activity Database

    Šrám, Radim; Binková, B.; Dostál, Miroslav; Merkerová-Dostálová, M.; Líbalová, Helena; Milcová, Alena; Rössner ml., Pavel; Rössnerová, Andrea; Schmuczerová, Jana; Švecová, Vlasta; Topinka, Jan; Votavová, H.

    2013-01-01

    Roč. 216, č. 5 (2013), s. 533-540. ISSN 1438-4639 R&D Projects: GA MŽP(CZ) SP/1B3/8/08; GA MŠk 2B08005; GA ČR GAP503/11/0084; GA ČR GAP503/11/0142 Institutional support: RVO:68378041 Keywords : PM2.5 * carcinogenic polycyclic aromatic hydrocarbons * pregnancy outcome Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.276, year: 2013

  19. Valuing the health impacts from particulate air pollution in Tianjin

    OpenAIRE

    Zhou Yuan; Richard S.J. Tol

    2005-01-01

    Although China has made dramatic economic progress in recent years, air pollution continues to be the most visible environmental problem and imposes significant health and economic costs on society. Using data on pollutant concentration and population for 2003, this paper estimates the economic costs of health related effects due to particulate air pollution in urban areas of Tianjin, China. Exposure-response functions are used to quantify the impact on human health. Value of a statistical li...

  20. Impact of temperature and humidity on perceived indoor air quality

    Energy Technology Data Exchange (ETDEWEB)

    Fang, Lei

    1997-11-01

    This thesis deals with the impact of temperature and humidity on the emission of pollutants from five building materials and on the perception of air polluted by the material emissions. The impact was studied in the temperature range 18-28 deg. C and the humidity range 30-70%RH, corresponding to conditions often pertaining in normal non-industrial indoor environments. The five building materials used in the study were: PVC flooring, waterborne acrylic floor varnish, loomed polyamide carpet with latex backing, waterborn acrylic wall paint and acrylic sealant; all these materials are commonly use din buildings. The effect of temperature and humidity on emission and perception of air pollutant emitted from the five building materials is described, using a specially developed exposure system. A computer-controlled exposure system was developed. The design of the system allowed the impact of temperature and humidity on the emission of pollutants from the materials to be judged separately from the impact on perception. The effect of temperature and humidity on emission and on perception was investigated at nine different combinations of three temperature levels 18 deg. C, 23 deg. C, 28 deg. C and three relative humidity levels 30%, 50%, 70%. A sensory panel assessed the acceptability of the air after facial exposure. Chemical measurements of the pollutants emitted were also made. The impact of temperature and humidity on perception of air quality during whole-body exposure is discussed. The influence of the pre-exposure temperature/humidity on perception of air quality and the time course of adaptation of air quality perception with different combinations of temperature and humidity were also investigated. It is recommended that future ventilation standards should include the effect of indoor air temperature and humidity in ventilation requirements. (EG) 86 refs.

  1. Columbia River final environmental impact statement. Appendix B: Air quality

    International Nuclear Information System (INIS)

    The System Operation Review (SOR) is a study and environmental compliance process being used by the three Federal agencies to analyze future operations of the system and river use issues. The goal of the SOR is to achieve a coordinated system operation strategy for the river that better meets the needs of all river users. This technical appendix addresses only the effects of alternative system operating strategies for managing the Columbia River system. This appendix consists of eight chapters. Chapter 1 describes the air quality issues that were raised in the SOR scoping process and provides an overview of the study process used to evaluate air quality effects from various system operation alternatives. Chapter 2 describes the Federal, state, and local programs that regulate air quality and discusses the air quality standards that are relevant to the analysis. It also gives an overview of the limatology of the region and the existing air quality in the Columbia River Basin, including areas of non-attainment for relevant air quality standards. Chapter 3 presents the methods this study uses for the analysis of air quality and for the evaluation of human health effects from air pollutants. Chapter 4 provides the study results for the System Operating Strategy (SOS) alternatives and potential mitigation measures. Chapter 5 compares impacts on air quality and human health across alternatives, and discusses mitigation measures and cumulative effects. Chapters 6, 7, and 8 contain the list of preparers, glossary, and references, respectively. Technical exhibits supporting the analysis are also included

  2. Urban air pollution, climate and its impact on asthma morbidity

    Institute of Scientific and Technical Information of China (English)

    Lyudmila Vasilievna Veremchuk; Vera Innokentievna Yankova; Tatyana Isaakovna Vitkina; Anna Vladimirovna Nazarenko; Kirill Sergeevich Golokhvast

    2016-01-01

    Objective: To study the mechanism of formation of air quality and to determine the impact of the studied factors on asthma morbidity in Vladivostok. Methods: The evaluation of air pollution in Vladivostok was done using long-term (2008–2012) monitoring data (temperature, humidity, atmospheric pressure, wind speed, etc.). The levels of suspended particulate matter, nitrogen and sulfur dioxide, carbon monoxide, ammonia, formaldehyde (mg/m3) in six stationary observation posts were assessed. We studied the aerosol suspensions of solid particles, which were collected during snowfall from precipitation (snow) and air in 14 districts with different levels of anthropogenic impact. Melted snow was analyzed on laser granulometry. The impact of air pollution on the distribution of asthma morbidity was evaluated in various age groups by data of federal statistical observation obtained from 8 adults and 7 children municipal clinics in Vladivostok (2008–2012). Results: The content of suspended particulate components of pollution remained more stable, due to the features of atmospheric circulation, rugged terrain and residential development. The nano- and micro-sized particles (0–50 mm), which can absorb highly toxic metals, prevail in dust aerosols. These respirable fractions of particles, even in small doses, can contribute to the increase in asthma morbidity in the city. Conclusions: We determined that asthma morbidity depends from general air pollution (in the range of 18.3%). It was detected that the highest age-specific dependence is associated with the content of particulate matter, carbon monoxide and nitrogen dioxide in air.

  3. Recognizing the impact of ambient air pollution on skin health.

    Science.gov (United States)

    Mancebo, S E; Wang, S Q

    2015-12-01

    Ambient air pollution is a known public health hazard that negatively impacts non-cutaneous organs; however, our knowledge regarding the effects on skin remains limited. Current scientific evidence suggests there are four mechanisms by which ambient air pollutants cause adverse effects on skin health: (i) generation of free radicals, (ii) induction of inflammatory cascade and subsequent impairment of skin barrier, (iii) activation of the aryl hydrocarbon receptor (AhR) and (iv) alterations to skin microflora. In this review, we provide a comprehensive overview on ambient air pollutants and their relevant sources, and highlight current evidence of the effects on skin. PMID:26289769

  4. Ionization Impact on the Air Cleaning Efficiency in the Interior

    Directory of Open Access Journals (Sweden)

    Černecký Jozef

    2015-08-01

    Full Text Available The paper deals with ionization impact on efficient cleaning of air in a measuring chamber which has been cleaned and closed against any outer impacts (e.g. impurities, dust from another room, human odours. Smoking has an impact on the number of positive and negative ions including the concentration of particulate matter PM10. We investigated the ion concentration according to the presence of cigarette smoke in the room and according to the change of lit cigarette distance from the supply of ionized air. Due to the experiment there was simulated smoking at the relative air humidity φ = 37 % and φ = 39 % and temperature of 20 °C in the room. Increased PM10 concentrations were caused only by cigarette smoke pollution or more precisely by artificially created higher humidity in the measuring room excluding ambient environment impacts. The aim of the experiments was to prove influence of ionization on the elimination of cigarette smoke. The measurements showed that the highest efficiency of PM10 particulate removal was achieved when the distance of smoking cigarettes from ionization source was 3 m and the air humidity was 39 %. The consequent increase of the distance of smoking cigarettes from the ionization source significantly decreased the efficiency of particle removal. The difference between ionized and natural air is minimal at the bigger distance.

  5. Evaluation of air quality and noise impact assessments, Davis Canyon

    International Nuclear Information System (INIS)

    In this report, several issues are identified regarding the air quality and noise assessments presented in the final salt repository environmental assessment (EA) prepared by the US Department of Energy for the Davis Canyon, Utah, site. Necessary revisions to the data and methods used to develop the EA impact assessment are described. Then, a comparative evaluation is presented in which estimated impacts based upon the revised data and methods are compared with the impacts published in the EA. The evaluation indicates that the conclusions of the EA air quality and noise impact sections would be unchanged. Consequently, the guideline findings presented in Chapter 6 of the EA are also unchanged by the revised analysis. 50 refs., 16 tabs

  6. The Impact of Air Exchange Effectiveness on Thermal Comfort in an Air-Conditioned Office

    Directory of Open Access Journals (Sweden)

    Roonak Daghigh

    2009-01-01

    Full Text Available Problem statement: Impact of air exchange effectiveness on thermal comfort has not been investigated and, therefore, not well understood .Therefore, the influence of air exchange effectiveness on thermal comfort is investigated in this study. Approach: The main objective of this research is to investigate the thermal comfort level of an air-conditioned office room under 14 windows-door opening arrangements as a function of maximum, minimum and mean Air Exchange Effectiveness (AEE, as has not been inquired into already. The tracer gas decay method has been applied during the experimental procedures to estimate air exchange effectiveness, on the basis of room average and local mean age of air. Simultaneously, thermal comfort variables were measured and through these data, the thermal comforts Fanger's indices (PMV and PPD were calculated. Staff answered a survey on their sensation of the indoor climate. Results: Results of 60 survey responses to thermal comfort questions in office and indoor air quality are presented. This study has shown that there are relationship between AEE and thermal comfort and three linear regression equations of PMV versus AEE can be derived for this air-conditioned office. Conclusion: Studies on the effect of air exchange effectiveness on thermal comfort in an office have shown that Thermal comfort is influenced by AEE, which go beyond the six factors which have been taken into account in PMV modeling.

  7. Impact of air temperature, relative humidity, air movement and pollution on eye blinking

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Lyubenova, Velina S.; Skwarczynski, Mariusz;

    2011-01-01

    The effect of indoor air temperature, relative humidity, velocity and pollution on occupants’ eye blink frequency (BF) was examined. In total sixty subjects participated in eight 4 hour experiments without and with facially applied air movement under individual control of the subjects. Air movement...... of either polluted room air supplied isothermally or clean and cool air was used. Eye blinking video record for the last 15 min of each exposure were analysed. The increase of the room air temperature and relative humidity from 23 °C and 40% to 26 °C and 70% or to 28 °C and 70% decreased the BF....... At temperature of 26 °C and relative humidity of 70% facially applied flow of polluted room air didn’t have significant impact on BF in comparison without air movement. The increase of BF due to decrease of temperature and humidity and increase of velocity may be compensated due to the increase in air cleanness....

  8. Impact of air temperature, relative humidity, air movement and pollution on eye blinking

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Lyubenova, Velina S.; Skwarczynski, Mariusz; Kaczmarczyk, Jan

    2011-01-01

    The effect of indoor air temperature, relative humidity, velocity and pollution on occupants’ eye blink frequency (BF) was examined. In total sixty subjects participated in eight 4 hour experiments without and with facially applied air movement under individual control of the subjects. Air movement...... of either polluted room air supplied isothermally or clean and cool air was used. Eye blinking video record for the last 15 min of each exposure were analysed. The increase of the room air temperature and relative humidity from 23 °C and 40% to 26 °C and 70% or to 28 °C and 70% decreased the BF. At...... temperature of 26 °C and relative humidity of 70% facially applied flow of polluted room air didn’t have significant impact on BF in comparison without air movement. The increase of BF due to decrease of temperature and humidity and increase of velocity may be compensated due to the increase in air cleanness....

  9. Impact of air quality guidelines on COPD sufferers

    Science.gov (United States)

    Liu, Youcheng; Yan, Shuang; Poh, Karen; Liu, Suyang; Iyioriobhe, Emanehi; Sterling, David A

    2016-01-01

    Background COPD is one of the leading causes of morbidity and mortality in both high- and low-income countries and a major public health burden worldwide. While cigarette smoking remains the main cause of COPD, outdoor and indoor air pollution are important risk factors to its etiology. Although studies over the last 30 years helped reduce the values, it is not very clear if the current air quality guidelines are adequately protective for COPD sufferers. Objective This systematic review was to summarize the up-to-date literature on the impact of air pollution on the COPD sufferers. Methods PubMed and Google Scholar were utilized to search for articles related to our study’s focus. Search terms included “COPD exacerbation”, “air pollution”, “air quality guidelines”, “air quality standards”, “COPD morbidity and mortality”, “chronic bronchitis”, and “air pollution control” separately and in combination. We focused on articles from 1990 to 2015. We also used articles prior to 1990 if they contained relevant information. We focused on articles written in English or with an English abstract. We also used the articles in the reference lists of the identified articles. Results Both short-term and long-term exposures to outdoor air pollution around the world are associated with the mortality and morbidity of COPD sufferers even at levels below the current air quality guidelines. Biomass cooking in low-income countries was clearly associated with COPD morbidity in adult nonsmoking females. Conclusion There is a need to continue to improve the air quality guidelines. A range of intervention measures could be selected at different levels based on countries’ socioeconomic conditions to reduce the air pollution exposure and COPD burden. PMID:27143874

  10. Acute Health Impact of Air Pollution in China

    Science.gov (United States)

    Feng, T.; Zhao, Y.; Zheng, M.

    2014-12-01

    Air pollution not only has long term health impact, but can affect health through acute exposure. This paper, using air pollution index (API) as overall evaluation of air quality, blood pressure and vital capacity as health outcomes, focuses on the acute health impact of air pollution in China. Current result suggests that after controlling smoking history, occupational exposure, income and education, API is positively associated with blood pressure and negatively associated with vital capacity. The associations became stronger for people with hypertension or pulmonary functional diseases, which indicates that these people are more sensitive to air pollution. Among three pollutants which API measures, that is inhalable particles (PM10), sulfur dioxide (SO2) and nitrogen dioxide (NO2), PM10 is most statistically associated with blood pressure increase and vital capacity decrease. Further study will focusing on the following two questions. The first question is how various time lags affect the associations among API, blood pressure and vital capacity. The second question is how differently people in various cohorts reacts to acute exposure to air pollution. The differences in reactions of blood pressure and vital capacity between people in urban and rural areas, genders, various age cohorts, distinct income and education groups will be further studied.

  11. Exploring Air-Climate-Energy Impacts with GCAM-USA

    Science.gov (United States)

    The Global Climate Assessment Model (GCAM) is a global integrated assessment model used for exploring future scenarios and examining strategies that address air pollution, climate change and energy (ACE) goals. My research focuseson integration of impact factors in GCAM-USA and a...

  12. IMPACT OF A PRIMARY SULFATE EMISSION SOURCE ON AIR QUALITY

    Science.gov (United States)

    A one-month study was carried out at an isolated oil-fired power plant in New York State to assess the impact of primary sulfate emissions on air quality. Emissions of total sulfate from the source varied from 22 kg/hr to 82 kg/hr per boiler with the sulfuric acid concentration a...

  13. Air pollution impacts from carbon capture and storage (CCS)

    Energy Technology Data Exchange (ETDEWEB)

    Harmelen, T. van; Horssen, A. van; Jozwicka, M.; Pulles, T. (TNO, Delft (Netherlands)); Odeh, N. (AEA Technology, Harwell (United Kingdom)); Adams, M. (EEA, Copenhagen (Denmark))

    2011-11-15

    This report comprises two separate complementary parts that address the links between CCS implementation and its subsequent impacts on GHG and air pollutant emissions on a life-cycle basis: Part A discusses and presents key findings from the latest literature, focusing upon the potential air pollution impacts across the CCS life-cycle arising from the implementation of the main foreseen technologies. Both negative and positive impacts on air quality are presently suggested in the literature - the basis of scientific knowledge on these issues is rapidly advancing. Part B comprises a case study that quantifies and highlights the range of GHG and air pollutant life-cycle emissions that could occur by 2050 under a low-carbon pathway should CCS be implemented in power plants across the European Union under various hypothetical scenarios. A particular focus of the study was to quantify the main life-cycle emissions of the air pollutants taking into account the latest knowledge on air pollutant emission factors and life-cycle aspects of the CCS life-cycle as described in Part A of the report. Pollutants considered in the report were the main GHGs CO{sub 2}, methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) and the main air pollutants with potential to harm human health and/or the environment - nitrogen oxides (NO{sub X}), sulphur dioxide (SO{sub 2}), ammonia (NH{sub 3}), non-methane volatile organic compounds (NMVOCs) and particulate matter (PM{sub 10}). (Author)

  14. Air pollution impacts from demand-side management

    International Nuclear Information System (INIS)

    Air-polluting emission rates and energy-efficiency ratings vary widely among power plants, depending on location, age and whether the power plant is repowered. Traditional regulations require installation of specified emission control equipment that varies among power plants. These regulations do not specify that utilities first dispatch the cleanest power plants as demand varies from peak to off-peak periods. This empirical analysis shows, for 2 years out of 20, that demand-side management (DSM) programs increase air pollution. One reason for this result is that regulations require installation of specific emission-control technology but do not provide the incentive to take actual emissions or their air quality impacts into account when operating the system. For certain types of air pollutants and in some regions, regulatory programs now include markets for tradable emission credits. Such programs may alter this incentive. (author)

  15. Episodic air quality impacts of plug-in electric vehicles

    Science.gov (United States)

    Razeghi, Ghazal; Carreras-Sospedra, Marc; Brown, Tim; Brouwer, Jack; Dabdub, Donald; Samuelsen, Scott

    2016-07-01

    In this paper, the Spatially and Temporally Resolved Energy and Environment Tool (STREET) is used in conjunction with University of California Irvine - California Institute of Technology (UCI-CIT) atmospheric chemistry and transport model to assess the impact of deploying plug-in electric vehicles and integrating wind energy into the electricity grid on urban air quality. STREET is used to generate emissions profiles associated with transportation and power generation sectors for different future cases. These profiles are then used as inputs to UCI-CIT to assess the impact of each case on urban air quality. The results show an overall improvement in 8-h averaged ozone and 24-h averaged particulate matter concentrations in the South Coast Air Basin (SoCAB) with localized increases in some cases. The most significant reductions occur northeast of the region where baseline concentrations are highest (up to 6 ppb decrease in 8-h-averaged ozone and 6 μg/m3 decrease in 24-h-averaged PM2.5). The results also indicate that, without integration of wind energy into the electricity grid, the temporal vehicle charging profile has very little to no effect on urban air quality. With the addition of wind energy to the grid mix, improvement in air quality is observed while charging at off-peak hours compared to the business as usual scenario.

  16. Impacts of Mixing on Acceptable Indoor Air Quality in Homes

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Walker, Iain I.

    2010-01-01

    Ventilation reduces occupant exposure to indoor contaminants by diluting or removing them. In a multi-zone environment such as a house, every zone will have different dilution rates and contaminant source strengths. The total ventilation rate is the most important factor in determining occupant exposure to given contaminant sources, but the zone-specific distribution of exhaust and supply air and the mixing of ventilation air can play significant roles. Different types of ventilation systems will provide different amounts of mixing depending on several factors such as air leakage, air distribution system, and contaminant source and occupant locations. Most U.S. and Canadian homes have central heating, ventilation, and air conditioning systems, which tend to mix the air; thus, the indoor air in different zones tends to be well mixed for significant fractions of the year. This article reports recent results of investigations to determine the impact of air mixing on exposures of residential occupants to prototypical contaminants of concern. We summarize existing literature and extend past analyses to determine the parameters than affect air mixing as well as the impacts of mixing on occupant exposure, and to draw conclusions that are relevant for standards development and for practitioners designing and installing home ventilation systems. The primary conclusion is that mixing will not substantially affect the mean indoor air quality across a broad population of occupants, homes, and ventilation systems, but it can reduce the number of occupants who are exposed to extreme pollutant levels. If the policy objective is to minimize the number of people exposed above a given pollutant threshold, some amount of mixing will be of net benefit even though it does not benefit average exposure. If the policy is to minimize exposure on average, then mixing air in homes is detrimental and should not be encouraged. We also conclude that most homes in the US have adequate mixing

  17. Air travel, life-style, energy use and environmental impact

    Energy Technology Data Exchange (ETDEWEB)

    Krueger Nielsen, S.

    2001-09-01

    The overall aim of this project is to investigate the linkages between energy use, life style and environmental impact. As a case of study, this report investigates the future possibilities for reducing the growth in greenhouse gas emissions from commercial civil air transport, that is passenger air travel and airfreight. The season for this choice of focus is that we found that commercial civil air transport may become a relatively large energy consumer and greenhouse gas emitter in the future. For example, according to different scenarios presented by Intergovernmental Panel on Climate Change (IPCC), commercial civil air transport's fuel burn may grow by between 0,8 percent a factor of 1,6 and 16 between 1990 and 2050 and 2050. The actual growth in fuel consumption will depend on the future growth in airborne passenger travel and freight and the improvement rate for the specific fuel efficiency. As a central mid-term estimate the IPCC foresees that the fuel consumption may grow by around 3 percent per year until 2015. This report looks into the possibilities for reducing the growth in air traffic, as well as the possibilities for reducing the specific fuel consumption, to achieve an environmentally sustainable development. For commercial civil air transport the main challenge seems to lie in the strong growth rates currently envisioned by the aeronautical industry for the next decades. Like it is the case with most other types of (fossil) energy intensive activities the bulk of air traffic is currently performed in and between industrialised countries. In an environmentally sustainable World countries should aim at distributing resources evenly between the World's citizens. Therefore, on the longer term, there are tremendous challenges to be overcome. Achieving environmentally sustainable commercial civil air transport will first of all require that people living in currently industrialised countries stop travelling ever more by air each year. As it is

  18. Impact of air pollution on reproductive health in Northern Bohemia

    Czech Academy of Sciences Publication Activity Database

    Rubeš, J.; Selevan, S. G.; Šrám, Radim; Evenson, D. P.; Perreault, S. D.

    Dordrecht : Springer, 2007 - (P.Nicolopoulou-Stamati), s. 207-224 ISBN 1-4020-4828-9 R&D Projects: GA MŽP ZZ/340/1/97; GA MŽP SI/340/2/00; GA AV ČR 1QS500390506 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution * male reproductive health * sperm quality Subject RIV: DN - Health Impact of the Environment Quality

  19. Comparing air quality impacts of hydrogen and gasoline

    OpenAIRE

    Sperling, Dan; Wang, Guihua; Ogden, Joan M.

    2008-01-01

    This paper uses a lifecycle approach to analyze potential air quality impacts of hydrogen and gasoline use in light duty vehicles. The analysis is conducted for scenarios in 2005 and 2025 in Sacramento, California for CO, NOx, VOC, and PM10. Three natural gas-based hydrogen supply pathways are analyzed: onsite hydrogen production via small-scale steam methane reforming (SMR), central large-scale hydrogen production via SMR with gaseous hydrogen pipeline delivery, and central hydrogen producti...

  20. The impact of added insulation on air leakage

    Energy Technology Data Exchange (ETDEWEB)

    Anon

    2002-01-01

    It is relatively easy to calculate the impact on energy consumption when thermal insulation is added to the building envelope. However, other effects such as air leakage through the exterior wall assembly, and the potential for water condensation also have to be considered. By adding insulation to the exterior wall assembly, the temperature gradient of the wall is changed and the risk of condensation is increased, especially if warm, moist indoor air can flow through the wall. The study by Dominique Derome, Paul Fazio and Guylaine Desmarais for the CMHC Research Division, of which this paper is a summary, examined three types of air leakage paths, i.e. long air exfiltration path; concentrated air exfiltration path; and distributed exfiltration path. Experiments involved placing 38 mm rigid extruded polystyrene insulation on the interior side of three wood studs and fiberglass batt insulation wall assemblies, while four other samples had the same 38 mm rigid extruded polystyrene insulation added on the exterior of the assembly over the fiberboard sheathing. Both, warm and cold side additions of rigid foam insulation to the existing assemblies increased thermal performance by 55 per cent. When blown cellulose fibre was used as insulation instead of fibreglass batting, the increase in thermal performance was 66 per cent. Addition of the rigid foam insulation on the warm side tended to increase the effectiveness. For example, moisture content generally did not rise above 25 per cent, whereas it could climb up to 70 per cent when the insulation was added on the cold side.

  1. Navajo Generating Station and Air Visibility Regulations: Alternatives and Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Hurlbut, D. J.; Haase, S.; Brinkman, G.; Funk, K.; Gelman, R.; Lantz, E.; Larney, C.; Peterson, D.; Worley, C.; Liebsch, E.

    2012-01-01

    Pursuant to the Clean Air Act, the U.S. Environmental Protection Agency (EPA) announced in 2009 its intent to issue rules for controlling emissions from Navajo Generating Station that could affect visibility at the Grand Canyon and at several other national parks and wilderness areas. The final rule will conform to what EPA determines is the best available retrofit technology (BART) for the control of haze-causing air pollutants, especially nitrogen oxides. While EPA is ultimately responsible for setting Navajo Generating Station's BART standards in its final rule, it will be the U.S. Department of the Interior's responsibility to manage compliance and the related impacts. This study aims to assist both Interior and EPA by providing an objective assessment of issues relating to the power sector.

  2. Solar Park Impacts on Air and Soil Microclimate

    Science.gov (United States)

    Armstrong, A.; Ostle, N. J.; Whitaker, J.

    2015-12-01

    The drive towards low carbon energy sources and increasing energy demand has resulted in a rapid rise in solar photovoltaics across the world. A substantial proportion of photovoltaics are large-scale ground-mounted systems, solar parks, causing a notable land use change. While the impacts of photovoltaic panel production and disposal have been considered, the consequences of the operation of solar parks on the hosting landscape are poorly resolved. Here, we present data which demonstrates that a solar park sited on permanent grassland in the UK significantly impacted the air and soil microclimate. Specifically, we observed (1) cooler soil under the photovoltaic panels during the summer and between the photovoltaic panel rows during the winter; (2) dampening of the diurnal variation in air temperature and absolute humidity from the spring to the autumn; (3) lower photosynthetically active radiation and a lower direct:diffuse under the panels; and (4) reduced wind speed between the panel rows and substantially reduced wind speeds under the panels. Further, there were differences in vegetation type and productivity and greenhouse gas emissions. Given the centrality of climate on ecosystem function, quantifying the microclimatic impacts of this emerging land use change is critical. We anticipate these data will help develop understanding of effects in other climates, under different solar park designs and the implications for the function and service provision of the hosting landscape.

  3. Assessing Climate Impacts on Air Pollution from Models and Measurements

    Science.gov (United States)

    Holloway, T.; Plachinski, S. D.; Morton, J. L.; Spak, S.

    2011-12-01

    It is well known that large-scale patterns in temperature, humidity, solar radiation and atmospheric circulation affect formation and transport of atmospheric constituents. These relationships have supported a growing body of work projecting changes in ozone (O3), and to a lesser extent aerosols, as a function of changing climate. Typically, global and regional chemical transport models are used to quantify climate impacts on air pollution, but the ability of these models to assess weather-dependent chemical processes has not been thoroughly evaluated. Quantifying model sensitivity to climate poses the additional challenge of isolating the local to synoptic scale effects of meteorological conditions on chemistry and transport from concurrent trends in emissions, hemispheric background concentrations, and land cover change. Understanding how well models capture historic climate-chemistry relationships is essential in projecting future climate impacts, in that it allows for better evaluation of model skill and improved understanding of climate-chemistry relationships. We compare the sensitivity of chemistry-climate relationships, as simulated by the EPA Community Multiscale Air Quality (CMAQ) model, with observed historical response characteristics from EPA Air Quality System (AQS) monitoring data. We present results for O3, sulfate and nitrate aerosols, and ambient mercury concentrations. Despite the fact that CMAQ over-predicts daily maximum 8-hour ground-level O3 concentrations relative to AQS data, the model does an excellent job at simulating the response of O3 to daily maximum temperature. In both model and observations, we find that higher temperatures produce higher O3 across most of the U.S., as expected in summertime conditions. However, distinct regions appear in both datasets where temperature and O3 are anti-correlated - for example, over the Upper Midwestern U.S. states of Iowa, Missouri, Illinois, and Indiana in July 2002. Characterizing uncertainties

  4. EDITORIAL: Global impacts of particulate matter air pollution

    Science.gov (United States)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    sulfate aerosol exposure (both domestically and on downwind continents), while presenting a new metric to quantify the impact of distance on health-relevant exposure: the 'influence potential'. Extending the scope of aerosol impacts from health to climate, Bond outlines the barriers to including aerosols in climate agreements, and proposes solutions to facilitate the integration of this key climate species in a policy context. Together, the articles scope out the state-of-the-science with respect to key issues in international air pollution. All four studies advance understanding the human health implications of air pollution, by drawing from worldwide data sources and considering a global perspective on key processes and impacts. To extend exposure estimates, like those of van Vliet and Kinney or Liu and Mauzerall, and to evaluate the induced physiological response of PM exposure, typically existing dose response relationships are applied. Unfortunately, the common practice of applying health response estimates from one location to another is problematic. In addition to potential differences in the chemical composition of particles, the underlying populations may differ with respect to their baseline health status, occupational exposures, age and gender distribution, and behavioral factors such as nutrition and smoking habits. Health response to a given stressor is affected by the quality of and access to health care, which varies widely, and can be almost non-existent in some regions of developing countries. Further, exposure to ambient PM is affected by the relative fraction of time spent in different settings (e.g., work, home, outside, in transit), the activities that affect ventilation rate (e.g., exercising heavily versus sitting still), and housing characteristics that alter the penetration of outdoor particles into indoor environments (e.g., housing materials, windows, air conditioning). To make the most of exposure estimates, the 'missing link' is the

  5. The Impact of Dry Saharan Air on Tropical Cyclone Intensification

    Science.gov (United States)

    Braun, Scott A.

    2012-01-01

    The controversial role of the dry Saharan Air Layer (SAL) on tropical storm intensification in the Atlantic will be addressed. The SAL has been argued in previous studies to have potential positive influences on storm development, but most recent studies have argued for a strong suppressing influence on storm intensification as a result of dry air, high stability, increased vertical wind shear, and microphysical impacts of dust. Here, we focus on observations of Hurricane Helene (2006), which occurred during the NASA African Monsoon Multidisciplinary Activities (NAMMA) experiment. Satellite and airborne observations, combined with global meteorological analyses depict the initial environment of Helene as being dominated by the SAL, although with minimal evidence that the SAL air actually penetrated to the core of the disturbance. Over the next several days, the SAL air quickly moved westward and was gradually replaced by a very dry, dust-free layer associated with subsidence. Despite the wrapping of this very dry air around the storm, Helene intensified steadily to a Category 3 hurricane suggesting that the dry air was unable to significantly slow storm intensification. Several uncertainties remain about the role of the SAL in Helene (and in tropical cyclones in general). To better address these uncertainties, NASA will be conducting a three year airborne campaign called the Hurricane and Severe Storm Sentinel (HS3). The HS3 objectives are: To obtain critical measurements in the hurricane environment in order to identify the role of key factors such as large-scale wind systems (troughs, jet streams), Saharan air masses, African Easterly Waves and their embedded critical layers (that help to isolate tropical disturbances from hostile environments). To observe and understand the three-dimensional mesoscale and convective-scale internal structures of tropical disturbances and cyclones and their role in intensity change. The mission objectives will be achieved using

  6. Impact of clean air legislation on the petroleum industry

    International Nuclear Information System (INIS)

    As the 1990s begin, the petroleum refining and marketing industry faces an unprecedented number of environmental issues that, combined, will bring major changes in the fundamentals of the business by the turn of the century. The following background on the history of environmentally driven change in the oil business provides a broad view of current environmental laws and regulations, while addressing timing and general impacts on the downstream segment. It will then focus on the Clean Air Act of 1990, providing information on the range of areas this comprehensive legislative initiative will regulate. Finally, the discussion narrows to the mobile source provisions of the act. It is through this section that the most foundational changes in our business will occur. In this paper the nature of those changes are discussed, and a short list of issues with potential for significant impact on a global basis are covered

  7. Impact of biomass burning sources on seasonal aerosol air quality

    Science.gov (United States)

    Reisen, Fabienne; Meyer, C. P. (Mick); Keywood, Melita D.

    2013-03-01

    In the Huon Valley, Tasmania, current public perception is that smoke from regeneration burning is the principal cause of pollution events in autumn. These events lead to exceedences of national air quality standards and to significant health impacts on the rural population. To date there is little data on the significance of the impact. The aim of the study was to quantitatively assess the seasonal atmospheric particle loadings in the Huon Valley and determine the impact of smoke pollution. The study monitored fine (PM2.5) and coarse (PM10) particle concentrations and their chemical composition at two locations in the Huon Valley, Geeveston, an urban site and Grove, a rural site, between March 2009 and November 2010. The monitoring program clearly showed that biomass burning was a significant source of PM2.5 in the Huon Valley, leading to exceedences of the 24 h PM2.5 Ambient Air Quality National Environment Protection Measures advisory standard on a number of occasions. Significant increases of PM2.5 concentrations above background occurred during periods of prescribed burning as well as during the winter season. Although the intensity of emissions from prescribed burns (PB) and residential woodheaters (WH) was similar, emissions from WH were the largest source of PM2.5, with a contribution of 77% to the ambient PM2.5 load compared to an 11% contribution from PB. The results have also shown a greater impact on air quality at the urban site than at the rural site, indicating that PM2.5 concentrations are primarily influenced by localised sources rather than by regional pollution. The potential impact on local residents of the high PM concentrations during the PB and WH season was assessed. WH pollution is largely a persistent night-time issue in contrast to PB events which generally occur during the day and are of short duration. Due to the long persistence of high PM concentrations in winter, indoor PM concentrations are unlikely to be substantially lower than

  8. Impacts of contaminant storage on indoor air quality: Model development

    Science.gov (United States)

    Sherman, Max H.; Hult, Erin L.

    2013-06-01

    A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde in building materials and the concentration of the species in the indoor air. Storage buffering can decrease the effect of ventilation on the indoor concentration, compared to the inverse dependence of indoor concentration on the air exchange rate that is consistent with a constant emission rate source. If the exposure time of an occupant is long relative to the timescale of depletion of the compound from the storage medium, however, the total exposure will depend inversely on the air exchange rate. This lumped capacitance model is also applied to moisture buffering in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model provides a framework to interpret the impact of storage buffering on time-varying concentrations of chemical species and resulting occupant exposure. Pseudo-steady-state behavior is validated using field measurements. Model behavior over longer times is consistent with formaldehyde and moisture concentration measurements in previous studies.

  9. Impacts of contaminant storage on indoor air quality: Model development

    Energy Technology Data Exchange (ETDEWEB)

    Sherman, Max H.; Hult, Erin L.

    2013-02-26

    A first-order, lumped capacitance model is used to describe the buffering of airborne chemical species by building materials and furnishings in the indoor environment. The model is applied to describe the interaction between formaldehyde in building materials and the concentration of the species in the indoor air. Storage buffering can decrease the effect of ventilation on the indoor concentration, compared to the inverse dependence of indoor concentration on the air exchange rate that is consistent with a constant emission rate source. If the exposure time of an occupant is long relative to the time scale of depletion of the compound from the storage medium, however, the total exposure will depend inversely on the air exchange rate. This lumped capacitance model is also applied to moisture buffering in the indoor environment, which occurs over much shorter depletion timescales of the order of days. This model provides a framework to interpret the impact of storage buffering on time-varying concentrations of chemical species and resulting occupant exposure. Pseudo-steady state behavior is validated using field measurements. Model behavior over longer times is consistent with formaldehyde and moisture concentration measurements in previous studies.

  10. Air quality impacts of power plant emissions in Beijing

    International Nuclear Information System (INIS)

    The CALMET/CALPUFF modeling system was applied to estimate the air quality impacts of power plants in 2000 and 2008 in Beijing, and the intake fractions (IF) were calculated to see the public health risks posed. Results show that in 2000 the high emission contribution induced a relatively small contribution to average ambient concentration and a significant impact on the urban area (9.52 μg/m3 of SO2 and 5.29 μg/m3 of NOx). The IF of SO2, NOx and PM10 are 7.4 x 10-6, 7.4 x 10-6 and 8.7 x 10-5, respectively. Control measures such as fuel substitution, flue gas desulfurization, dust control improvement and flue gas denitration planned before 2008 will greatly mitigate the SO2 and PM10 pollution, especially alleviating the pressure on the urban area to reach the National Ambient Air Quality Standard (NAAQS). NOx pollution will be mitigated with 34% decrease in concentration but further controls are still needed. - CALMET/CALPUFF modeling estimates sizeable reductions in SO2, PM10 and NOx pollution from power plants by 2008 for Beijing

  11. Air pollution and ecology. From local to global impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fenger, J. [National Institute of Environmental Research, Dept. of Atmospheric Environment, Roskilde (Denmark)

    1996-11-01

    Human impact on nature is increasing - not only in magnitude, but also in geographical scale. It has been known for centuries, that vegetation does not thrive near air pollution sources, but it was not before after the Second World War that the importance of long range transport of pollutants was realized - first for sulphur and nitrogen compounds, later for photochemical oxidants. The results have been acidification of rivers and lakes, forest dieback and eutrophication of inner waters. In recent decades the attention has been focused on global effects: Ozone depletion and increased greenhouse effect. Here air pollution threatens to alter the conditions of life on the entire Earth. In the political and public debate - and sometimes in science as well - the problems are treated separately. Since however, the basic phenomena all take place in the same atmosphere, they are more or less interrelated. Also the environmental effects must be considered a result of a complex impact. This complexity should be taken into account in the planning of an effective abatement strategy. (au) 11 refs.

  12. Impact of California air quality control policies on the use and demand for natural gas

    International Nuclear Information System (INIS)

    This paper discusses the impact of California's air quality control policies on the use of natural gas. In this paper the author would like to briefly review the regulatory structure for air pollution control in California, summarize the requirement of the California Clean Air Act of 1988, and discuss the impacts of our regulatory programs on the use and demand for natural gas

  13. Air quality impact analysis in support of the new production reactor environmental impact statement

    International Nuclear Information System (INIS)

    The Pacific Northwest Laboratory (PNL) conducted this air quality impact analysis for the US Department of Energy (DOE). The purpose of this work was to provide Argonne National Laboratory (ANL) with the required estimates of ground-level concentrations of five criteria air pollutants at the Hanford Site boundary from each of the stationary sources associated with the new production reactor (NPR) and its supporting facilities. The DOE proposes to provide new production capacity for the primary production of tritium and secondary production of plutonium to support the US nuclear weapons program. Three alternative reactor technologies are being considered by DOE: the light-water reactor, the low-temperature, heavy-water reactor, and the modular high-temperature, gas-cooled reactor. In this study, PNL provided estimates of the impacts of the proposed action on the ground-level concentration of the criteria air pollutants for each of the alternative technologies. The criteria pollutants were sulfur dioxide, nitrogen dioxide, carbon monoxide, total suspended particulates, and particulates with a diameter of less than 10 microns. Ground-level concentrations were estimated for the peak construction phase activities expected to occur in 1997 and for the operational phase activities beginning in the year 2000. Ground-level concentrations of the primary air pollutants were estimated to be well below any of the applicable national or state ambient air quality standards. 12 refs., 19 tabs

  14. Some impacts of the 1990 Clean Air Act and state clean-air regulations on the fertilizer industry

    International Nuclear Information System (INIS)

    The Clean Air Act amendments of 1990 will intensify national efforts to reduce air pollution. They will have major impacts on governmental agencies and on industrial and commercial facilities throughout the country. As with other industries, it is essential for fertilizer dealers and producers to understand how these changes to the Clean Air Act can significantly change the way they do business. This paper is proffered as an overview of ways in which the 1990 amendments to the Clean Air Act may impact the fertilizer industry. The nonattainment, toxics, and permit provisions of the amended act will be three areas of particular concern to the fertilizer industry. Implementation of the new regulatory requirements of this legislation promises to be a long and onerous process for all concerned. However, it appears that state and local regulations may have a much more profound impact on the fertilizer industry than the new Clean Air Act

  15. Road construction: Emissions Factors and Air Quality Impacts

    Science.gov (United States)

    Font Font, Anna M.; Baker, Timothy; Mudway, Ian; Fuller, Gary W.

    2014-05-01

    Very few studies have investigated the air pollution impacts of road construction. Over a 17 month period a congested main road in south east London was widened from two lanes to four. Emissions factors for road construction were determined and a notable deterioration in residential air quality was found with the final expanded road layout. Air quality monitoring sites measuring PM10, PM2.5, NOX, NO2 and meteorological variables were deployed on both sides of the road construction to quantify ambient air quality before, during and after the completion of the road works, with additional measurements from a nearby background site. PM10 samples were collected for oxidative potential measurements. PM10 was the only pollutant to increase during the construction; mean PM10 from the road increased by 15 µg m-3 during working hours; weekdays between 6 am and 5 pm; and on Saturdays between 6 am and 12 pm, compared to concentrations before the road works. During the construction the number of days with daily mean PM10 concentrations greater than 50 µg m-3 was more than 35 for both sides of the road, breaching the European Union Limit Value (LV). Downwind-upwind differences were used to calculate real-world PM10 emissions associated to the construction activity by means of box modelling. The quantity of PM10 emitted per area and month of construction was 0.0009 kg PM10 m-2 month-1 for the construction period. This emission factor was similar to the one used in the UK National Atmospheric Emissions Inventory (NAEI). Worst case construction emissions factors were 0.0105 kg PM10 m-2 month-1, compared to 0.0448 kg PM10 m-2 month-1 and 0.1038 kg PM10 m-2 month-1 used in current European and US inventories, respectively. After the completion of the road widening an increase in all pollutants was measured during rush hour peaks: 2-4 µg m-3 for PM10; 1 µg m-3 for PM2.5; 20 and 4 ppbv (40 and 8 µg m-3) for NOX and NO2, respectively, leading to a breach of the NO2 annual mean LV

  16. Impacts of air, water and soil contamination on forests

    International Nuclear Information System (INIS)

    The result of our literature search is presented; it deals with the measuring points and screens used in the former GDR to determine the stress of the forests by air pollution (immissions, depositions, soil contamination, stress of waters, biological monitoring). In the second part we present the results of our search regarding the research done in the former GDR on methods of forest damage survey, on material balance of forest ecosystems, on modifications in the forest soile caused by depositions, on the possible impacts on the quality of waters, and on the influence of liming and fertilizer application on the material balance of forest stands damaged by immissions. Proposals are made for further research. (orig.)

  17. Air quality impacts analysis for area G. Final report

    International Nuclear Information System (INIS)

    The impact of fugitive radioactive emissions from the disposal site, Area G, was evaluated in support of site characterization for the Performance Assessment and for the Radioactive Air Emissions Management (RAEM) program. Fugitive emissions of tritiated water and contaminated windblown dust were considered. Data from an extensive field measurement program were used to estimate annual emissions of tritiated water. Fugitive dust models were used to calculate estimates of the annual emissions of windblown dust. These estimates were combined with data on contamination levels in surface soils to develop annual emission rates for specific radionuclides: tritium, uranium-238, cesium-137, plutonium-238, plutonium-239,240, and strontium-90. The CAP-88 atmospheric transport model was used to predict areas potentially affected by long-term dust deposition and atmospheric concentrations. The annual emission rate of tritiated water was estimated from the field data to be 14.0 Ci/yr. The emission rate of soil-borne radionuclides from open areas and from soils handling operations totaled less than 1x10-4 Ci/yr. The CAP-88 results were used to develop effective dose equivalents (EDEs) for receptor locations downwind of Area G. All EDEs were several orders of magnitude below the national standard of 10 mrem/yr. Fugitive air emissions from Area G were found not to pose a health threat to persons living or working downwind of the facility

  18. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    DEFF Research Database (Denmark)

    Skwarczynski, Mariusz; Melikov, Arsen Krikor; Kaczmarczyk, J.;

    2010-01-01

    The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and...... local air velocity under a constant air temperature of 26 degrees C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front...... room air temperature of 26 degrees C and relative humidity of 70%....

  19. Human Response to Ductless Personalised Ventilation: Impact of Air Movement, Temperature and Cleanness on Eye Symptoms

    DEFF Research Database (Denmark)

    Dalewski, Mariusz; Fillon, Maelys; Bivolarova, Maria;

    2013-01-01

    environment facially applied individually controlled air movement of room air, with or without local filtering, did not have significant impact on eye blink frequency and tear film quality. The local air movement and air cleaning resulted in increased eye blinking frequency and improvement of tear film......The performance of ductless personalized ventilation (DPV) in conjunction with displacement ventilation (DV) was studied in relation to peoples’ health, comfort and performance. This paper presents results on the impact of room air temperature, using of DPV and local air filtration on eye blink...

  20. Modeling Regional Air Quality Impacts from Indonesian Biomass Burning

    Science.gov (United States)

    Jumbam, L.; Raffuse, S. M.; Wiedinmyer, C.; Larkin, N.

    2012-12-01

    Smoke from thousands of forest-clearing burns in Indonesia cause widespread air quality impacts in cities across southeastern Asia. These fires, which can produce significant smoke due to peat burning, are readily detected by polar orbiting satellites. Widespread smoke can be seen in satellite imagery, and high concentrations of particulate matter are detected by ground based sensors. Here we present results of a pilot modeling study focusing on the September 2011 Indonesian smoke episode. In the study, fire location information was collected from the National Aeronautics and Space Administration's (NASA) Moderate Resolution Imaging Spectroradiometer (MODIS). The BlueSky modeling framework, which links information about fire locations with smoke emissions and meteorological models, was used to pass the fire location information from MODIS through the Fire INventories from NCAR (FINN) methodology to estimate emissions of aerosol and gaseous pollutants from the fires. These emissions were further directed by BlueSky through the Hybrid Single Particle Lagrangian Integrated Trajectory (HYSPLIT) model, which predicted the dispersion and transport of PM2.5 from the fires. The resulting regional PM2.5 concentration maps from BlueSky were compared with satellite imagery and urban ground stations, where available. This work demonstrates the extension of a system developed for producing daily smoke predictions in the United States outside of North America for the first time. We discuss the implications of regional smoke impacts and possibilities for predictive smoke modeling to protect public health in southeastern Asia.

  1. Air Quality and Indoor Environmental Exposures: Clinical Impacts

    Science.gov (United States)

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more pol...

  2. Public-health impact of outdoor air pollution for 2nd air pollution management policy in Seoul metropolitan area, Korea

    OpenAIRE

    Leem, Jong Han; Kim, Soon Tae; Kim, Hwan Cheol

    2015-01-01

    Objectives Air pollution contributes to mortality and morbidity. We estimated the impact of outdoor air pollution on public health in Seoul metropolitan area, Korea. Attributable cases of morbidity and mortality were estimated. Methods Epidemiology-based exposure-response functions for a 10 μg/m3 increase in particulate matter (PM2.5 and PM10) were used to quantify the effects of air pollution. Cases attributable to air pollution were estimated for mortality (adults ≥ 30 years), respiratory a...

  3. Impact of AIRS Thermodynamic Profile on Regional Weather Forecast

    Science.gov (United States)

    Chou, Shih-Hung; Zavodsky, Brad; Jedlovee, Gary

    2010-01-01

    Prudent assimilation of AIRS thermodynamic profiles and quality indicators can improve initial conditions for regional weather models. AIRS-enhanced analysis has warmer and moister PBL. Forecasts with AIRS profiles are generally closer to NAM analyses than CNTL. Assimilation of AIRS leads to an overall QPF improvement in 6-h accumulated precipitation forecasts. Including AIRS profiles in assimilation process enhances the moist instability and produces stronger updrafts and a better precipitation forecast than the CNTL run.

  4. Air

    International Nuclear Information System (INIS)

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  5. Impact of individually controlled facially applied air movement on perceived air quality at high humidity

    Energy Technology Data Exchange (ETDEWEB)

    Skwarczynski, M.A. [Faculty of Environmental Engineering, Institute of Environmental Protection Engineering, Department of Indoor Environment Engineering, Lublin University of Technology, Lublin (Poland); International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Melikov, A.K.; Lyubenova, V. [International Centre for Indoor Environment and Energy, Department of Civil Engineering, Technical University of Denmark, Copenhagen (Denmark); Kaczmarczyk, J. [Faculty of Energy and Environmental Engineering, Department of Heating, Ventilation and Dust Removal Technology, Silesian University of Technology, Gliwice (Poland)

    2010-10-15

    The effect of facially applied air movement on perceived air quality (PAQ) at high humidity was studied. Thirty subjects (21 males and 9 females) participated in three, 3-h experiments performed in a climate chamber. The experimental conditions covered three combinations of relative humidity and local air velocity under a constant air temperature of 26 C, namely: 70% relative humidity without air movement, 30% relative humidity without air movement and 70% relative humidity with air movement under isothermal conditions. Personalized ventilation was used to supply room air from the front toward the upper part of the body (upper chest, head). The subjects could control the flow rate (velocity) of the supplied air in the vicinity of their bodies. The results indicate an airflow with elevated velocity applied to the face significantly improves the acceptability of the air quality at the room air temperature of 26 C and relative humidity of 70%. (author)

  6. Quantifying the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building.

    Science.gov (United States)

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Adamkiewicz, Gary; Spengler, John D

    2016-01-01

    Improper natural ventilation practices may deteriorate indoor air quality when in close proximity to roadways, although the intention is often to reduce energy consumption. In this study, we employed a CFD-based air quality model to quantify the impact of traffic-related air pollution on the indoor air quality of a naturally ventilated building. Our study found that the building envelope restricts dispersion and dilution of particulate matter. The indoor concentration in the baseline condition located 10m away from the roadway is roughly 16-21% greater than that at the edge of the roadway. The indoor flow recirculation creates a well-mixed zone with little variation in fine particle concentration (i.e., 253nm). For ultrafine particles (air intakes are important to the indoor air quality of existing buildings adjacent to roadways. PMID:26829764

  7. Impact of fine particles in ambient air on lung cancer

    Institute of Scientific and Technical Information of China (English)

    Gerard Hoek; Ole Raaschou-Nielsen

    2014-01-01

    Recently, the International Agency for Research on Cancer (IARC) has classified outdoor air pol ution and the particulate matter component of outdoor air pollution as class I carcinogen. Air pollution is consistently associated with lung cancer in epidemiologic and experimental studies. The IARC assessment is specifical y designed as hazard identification, and it does not quantify the magnitude of the cancer risk. This article addresses the magnitude of the lung cancer risk in the population due to ambient air pol ution exposure.

  8. Impact of Aircraft Performance Characteristics on Air Traffic Delays

    OpenAIRE

    Aydan CAVCAR; CAVCAR, Mustafa

    2004-01-01

    Air transportation has been suffering for decades from delays caused by air traffic congestion. This paper presents the effect of aircraft performance differences on air traffic delays. Rate of climb and cruising speeds of 70 different aircraft types are compared to demonstrate performance differences in the current transport aircraft fleet. The effect of these performance differences on air traffic delays is proved by a deterministic calculation of delays for a departure queue cons...

  9. Impact of air pollution on health in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kruzyzanowski, M. [WHO European Centre for Environment and Health, Bilthoven (Netherlands)

    1995-12-31

    Assessment of health risks due to air pollution should be an important indicator for setting the priorities for the environmental policies and for the abatement of the pollution. The scale of such assessment depends on the level, and scope, of the policy decisions relying on the evaluation. The analysis may range from an estimate of the health impact of a single pollution source, through the risk assessment in a community or a region of a country, to an international, or pan-continental approach. Such assessment, addressing population of all Europe, was one of the aims of the project `Concern for Europe`s Tomorrow` (CET). The WHO European Centre for Environment and Health completed this project, and the corresponding report, as a contribution to the Second European Conference on Environment and Health which gathered ministries of health and of environment from all European countries in Helsinki in June 1994. Using the report as the background information, the ministries have endorsed the `Environmental Health Action Plan for Europe`, the document formulating common environmental health policy of the Region. In this article, the summary of the evaluation will be presented and the main constraints of the pan-European approach will be addressed. (author)

  10. Evaluating impacts of Clean Air Act compliance strategies

    International Nuclear Information System (INIS)

    The Clean Air Act Amendments of 1990 requires that by the year 2000, US SO2 emissions must be reduced by 10 million tons. This requirement will have significant impact on coal-fired electric utilities. As a result, most utilities are currently evaluating numerous compliance options, including buying allowances, coal cleaning/blending/switching, and flue gas scrubbing. Moreover, each utility must address its own unique circumstances with regard to competition, efficiency, capital expenditures, reliability, etc. and many utilities may choose a combination of compliance options to simultaneously satisfy their environmental, performance, and financial objectives. The Coal Quality Expert, which is being developed under a clean coal technology project funded by US DOE and EPRI, will predict the economic, operational, and environmental benefits of using higher-quality coals and provides an assessment of the merits of various post-combustion control technologies for specific utility applications. This paper presents background on how utilities evaluate their compliance options, and it describes how the Coal Quality Expert could be used for such evaluations in the future to assure that each utility can select the best combination of coal specifications and emission control technologies to meet its compliance objectives

  11. Impact of aerosol direct effect on East Asian air quality during the EAST-AIRE campaign

    Science.gov (United States)

    Wang, Jing; Allen, Dale J.; Pickering, Kenneth E.; Li, Zhanqing; He, Hao

    2016-06-01

    WRF-Chem simulations were performed for the March 2005 East Asian Studies of Tropospheric Aerosols: an International Regional Experiment (EAST-AIRE) Intensive Observation Campaign (IOC) to investigate the direct effects of aerosols on surface radiation and air quality. Domain-wide, WRF-Chem showed a decrease of 20 W/m2 in surface shortwave (SW) radiation due to the aerosol direct effect (ADE), consistent with observational studies. The ADE caused 24 h surface PM2.5 (particulate matter with diameter Sichuan Basin (9.6%), due to different aerosol compositions in these four regions. Conversely, surface 1 h maximum ozone was reduced by 2.3% domain-wide and up to 12% in eastern China because less radiation reached the surface. We also investigated the impact of reducing SO2 and black carbon (BC) emissions by 80% on aerosol amounts via two sensitivity simulations. Reducing SO2 decreased surface PM2.5 concentrations in the Sichuan Basin and southern China by 5.4% and decreased ozone by up to 6 ppbv in the Sichuan Basin and Southern China. Reducing BC emissions decreased PM2.5 by 3% in eastern China and the Sichuan Basin but increased surface ozone by up to 3.6 ppbv in eastern China and the Sichuan Basin. This study indicates that the benefits of reducing PM2.5 associated with reducing absorbing aerosols may be partially offset by increases in ozone at least for a scenario when NOx and VOC emissions are unchanged.

  12. Automobile air-conditioning its energy and environmental impact; La climatisation automobile impact energetique et environnemental

    Energy Technology Data Exchange (ETDEWEB)

    Barbusse, St.; Gagnepain, L.

    2003-05-01

    Over the last three decades, automobile manufacturers have made a lot of progress in specific fuel consumption and engine emissions of pollutants. Yet the impact of these improvements on vehicle consumption has been limited by increased dynamic performances (maxi-mum speed, torque), increased safety (power steering and power brakes) and increased comfort (noise and vibration reduction, electric windows and thermal comfort). Because of this, the real CO{sub 2}-emission levels in vehicles is still high in a context where road transport is a major factor in the balance sheet of greenhouse gas emissions, thus in complying with the inter-national climate convention. Although European, Japanese and Korean manufacturers signed an important agreement with the European Commission for voluntarily reducing CO{sub 2} emissions from their vehicles, with a weighted average emission goal by sales of 140 grams per km on the MVEG approval cycle by 2008, it has to be noted that the European procedures for measuring fuel consumption and CO{sub 2} emissions do not take accessories into account, especially air-condition ng (A/C). The big dissemination of this equipment recognized as a big energy consumer and as using a refrigerant with a high global warming potential ed ADEME to implement a set of assessments of A/C's energy and environmental impact. In particular these assessments include studies of vehicle equipment rates, analyses of impact on fuel consumption as well as regulated pollutant emissions in the exhaust, a characterization of the refrigerant leakage levels and an estimate of greenhouse gas emissions for all air-conditioned vehicles. This leaflet summarizes the results of these actions. All of these studies and additional data are presented in greater detail in the document,-'Automobile Air-conditioning' (ADEME reference no. 4985). (author)

  13. Projections of air pollutant emissions and its impacts on regional air quality in China in 2020

    Directory of Open Access Journals (Sweden)

    J. Xing

    2011-04-01

    Full Text Available Anthropogenic emissions of air pollutants in China influence not only local and regional environments but also the global atmospheric environment; therefore, it is important to understand how China's air pollutant emissions will change and how they will affect regional air quality in the future. Emission scenarios in 2020 were projected using forecasts of energy consumption and emission control strategies based on emissions in 2005, and on recent development plans for key industries in China. We developed four emission scenarios: REF[0] (current control legislations and implementation status, PC[0] (improvement of energy efficiencies and current environmental legislation, PC[1] (improvement of energy efficiencies and better implementation of environmental legislation, and PC[2] (improvement of energy efficiencies and strict environmental legislation. Under the REF[0] scenario, the emission of SO2, NOx, VOC and NH3 will increase by 17%, 50%, 49% and 18% in 2020, while PM10 emissions will be reduced by 10% over East China, compared to that in 2005. In PC[2], sustainable energy polices will reduce SO2, NOx and PM10 emissions by 4.1 Tg, 2.6 Tg and 1.8 Tg, respectively; better implementation of current control policies will reduce SO2, NOx and PM10 emission by 2.9 Tg, 1.8 Tg, and 1.4 Tg, respectively; strict emission standards will reduce SO2, NOx and PM10 emissions by 3.2 Tg, 3.9 Tg, and 1.7 Tg, respectively. Under the PC[2] scenario, SO2 and PM10 emissions will decrease by 18% and 38%, while NOx and VOC emissions will increase by 3% and 8%, compared to that in 2005. Future air quality in China was simulated using the Community Multi-scale Air Quality Model (CMAQ. Under REF[0] emissions, compared to 2005, the surface concentrations of SO2, NO2, hourly

  14. Projections of air pollutant emissions and its impacts on regional air quality in China in 2020

    Directory of Open Access Journals (Sweden)

    J. Xing

    2010-11-01

    Full Text Available Anthropogenic emissions of air pollutants in China influence not only local and regional environments but also the global atmospheric environment; therefore, it is important to understand how China's air pollutant emissions will change and how they will affect regional air quality in the future. Emission scenarios in 2020 were projected using forecasts of energy consumption and emission control strategies based on emissions in 2005, and on recent development plans for key industries in China. We developed four emission scenarios: REF[0] (current control legislations and implementation status, PC[0] (improvement of energy efficiencies and current environmental legislation, PC[1] (improvement of energy efficiencies and better implementation of environmental legislation, and PC[2] (improvement of energy efficiencies and strict environmental legislation. Under the REF[0] scenario, the emission of SO2, NOx, VOC and NH3 will increase by 17%, 50%, 49% and 18% in 2020, while PM will be reduced by 10% over East China, compared to that in 2005. In PC[2], sustainable energy polices will reduce SO2, NOx and PM10 emissions by 4.1 Tg, 2.6 Tg and 1.8 Tg, respectively; better implementation of current control policies will reduce SO2, NOx and PM10 emission by 2.9 Tg, 1.8 Tg, and 1.4 Tg, respectively; strict emission standards will reduce SO2, NOx and PM10 emissions by 3.2 Tg, 3.9 Tg, and 1.7 Tg, respectively. Under the PC[2] scenario, SO2 and PM10 emissions will decrease by 18% and 38%, while NOx and VOC emissions will increase by 3% and 8%, compared to that in 2005. Future air quality in China was simulated using the Community Multi-scale Air Quality Model (CMAQ with 2005 emissions and 2020 emission scenarios. Under REF[0] emissions, the concentrations of SO2, NO2, hourly

  15. Air Quality of Beijing and Impacts of the New Ambient Air Quality Standard

    OpenAIRE

    Wei Chen; Fusheng Wang; Guofeng Xiao; Kai Wu; Shixuan Zhang

    2015-01-01

    Beijing has been publishing daily reports on its air quality since 2000, and while the air pollution index (API) shows that the air quality has improved greatly since 2000, this is not the perception of Beijing’s residents. The new national ambient air quality standard (NAAQS-2012), which includes the monitoring of PM2.5, has posed stricter standards for evaluating air quality. With the new national standard, the air quality in Beijing is calculated using both NAAQS-2012 and the previous stan...

  16. Analysis of Air Pollution Impact Factors in China: A MIMIC Modeling Approach

    OpenAIRE

    Jing Gao; Lei Zhang

    2015-01-01

    In this study, we investigate the impact factors on air pollution in terms of CO2, SO2 and NOx emissions simultaneously in China and compare changes in air pollution across provinces from 1998 to 2011 using a Multiple Indicators and Multiple Causes Model (MIMIC) within a Structural Equation Model (SEM) framework. Our findings reveal that GDP per capita and total population have the largest impacts on air pollution, followed by energy intensity, foreign direct investment, population density, a...

  17. The Impact of International Air Transport Liberalisation: The Case of Nigeria

    OpenAIRE

    Ismaila, D

    2013-01-01

    The impact of air transport liberalisation suggested by economic theory and globalisation inspired Nigeria to adopt a more liberal policy towards its international Air Service Agreements (ASA). The policy involves implementing the Yamoussoukro Declaration with some African countries, an Open Skies Agreement with the US, and the easing of some market access regulations with several other countries. This study explores the extent to which international air transport liberalisation has impacted ...

  18. The impact of international shipping on European air quality and climate forcing

    Energy Technology Data Exchange (ETDEWEB)

    van Aardenne, J. [European Environment Agency (EEA), Copenhagen (Denmark); Colette, A. [INERIS (France); Degraeuwe, B.; de Vlieger, I. [VITO (Belgium); Hammingh, P. [PBL Netherlands Environmental Assessment Agency (Netherlands); Viana, M. [CSIC (Spain)

    2013-03-15

    This EEA Technical report provides an overview on the state of knowledge on the impact of international shipping in European waters to air quality and climate change. Based on literature review and model assessment studies information is provided on past and future emissions of air pollutants and greenhouse gases, monitoring of ship emissions, emission mitigation policies and impact on European air quality and radiative forcing. (Author)

  19. Impact of air entrainment on the microstructure and mechanical performance of high performance mortar

    OpenAIRE

    Dils, Jeroen; Boel, Veerle; De Schutter, Geert

    2015-01-01

    At the Magnel Laboratory for Concrete Research an intensive vacuum mixer which can regulate the air pressure is available. As such the amount of entrapped air in cementitious materials can be varied. The effect of the reduced air content due to vacuum mixing on the rheology and workability was already investigated in previous work. Furthermore, the previous work investigated the influence of entrained air on the rheological properties. The impact of vacuum mixing on the compressive strength a...

  20. Potential Air Quality Impacts of Global Bioenergy Crop Cultivation

    Science.gov (United States)

    Porter, W. C.; Rosenstiel, T. N.; Barsanti, K. C.

    2012-12-01

    The use of bioenergy crops as a replacement for traditional coal-powered electricity generation will require large-scale land-use change, and the resulting changes in emissions of biogenic volatile organic compounds (BVOCs) may have negative impacts on local to regional air quality. BVOCs contribute to the formation of both ozone (O3) and fine particulate matter (PM2.5), with magnitudes of specific compound emissions governed largely by plant speciation and land coverage. For this reason, large-scale land-use change has the potential to markedly alter regional O3 and PM2.5 levels, especially if there are large differences between the emission profiles of the replacement bioenergy crops (many of which are high BVOC emitters) and the previous crops or land cover. In this work, replacement areas suitable for the cultivation of the bioenergy crops switchgrass (Panicum virgatum) and giant reed (Arundo donax) were selected based on existing global inventories of under-utilized cropland and local climatological conditions. These two crops are among the most popular current candidates for bioenergy production, and provide contrasting examples of energy densities and emissions profiles. While giant reed has been selected in an ongoing large-scale coal-to-biocharcoal conversion in the Northwestern United States due to its high crop yields and energy density, it is also among the highest biogenic emitters of isoprene. On the other hand, switchgrass produces less biomass per acre, but also emits essentially no isoprene and low total BVOCs. The effects of large-scale conversion to these crops on O3 and PM2.5 were simulated using version 1.1 of the Community Earth System Model (CESM) coupled with version 2.1 of the Model of Emissions of Gases and Aerosols from Nature (MEGAN). By comparing crop replacement scenarios involving A. donax and P. virgatum, the sensitivities of O3 and PM2.5 levels to worldwide increases in bioenergy production were examined, providing an initial

  1. Evaluation of the Impact of AIRS Radiance and Profile Data Assimilation in Partly Cloudy Regions

    Science.gov (United States)

    Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary

    2013-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of a long-term series of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.

  2. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, Armin [Building Science Corporation, Somerville, MA (United States); Bergey, Daniel [Building Science Corporation, Somerville, MA (United States)

    2014-02-01

    In this project, Building America research team Building Science Corporation tested the effectiveness of ventilation systems at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. This was because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four system factor categories: balance, distribution, outside air source, and recirculation filtration. Recommended system factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  3. Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Rudd, A.; Bergey, D.

    2014-02-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy. It was inferior because the source of outside air was not direct from outside, the ventilation air was not distributed, and no provision existed for air filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year.

  4. Air Quality of Beijing and Impacts of the New Ambient Air Quality Standard

    Directory of Open Access Journals (Sweden)

    Wei Chen

    2015-08-01

    Full Text Available Beijing has been publishing daily reports on its air quality since 2000, and while the air pollution index (API shows that the air quality has improved greatly since 2000, this is not the perception of Beijing’s residents. The new national ambient air quality standard (NAAQS-2012, which includes the monitoring of PM2.5, has posed stricter standards for evaluating air quality. With the new national standard, the air quality in Beijing is calculated using both NAAQS-2012 and the previous standard. The annual attainment rate has dropped from 75.5% to 50.7%. The spatial analysis of air quality shows that only a background station could attain the national standard, while urban and suburban stations exceed the national standard. Among the six pollutants included in the NAAQS-2012, PM2.5 is the major contributor to the air quality index (AQI comparing with the five other pollutants. The results indicate that under previous NAAQS without PM2.5 monitoring, the air quality has improved greatly in the past decade.  By considering PM2.5, the air quality attainment has dropped greatly. Furthermore, a great effort is needed for local government to bring down the PM2.5 concentration.

  5. Urban air pollution, climate and its impact on asthma morbidity

    Directory of Open Access Journals (Sweden)

    Lyudmila Vasilievna Veremchuk

    2016-01-01

    Conclusions: We determined that asthma morbidity depends from general air pollution (in the range of 18.3%. It was detected that the highest age-specific dependence is associated with the content of particulate matter, carbon monoxide and nitrogen dioxide in air.

  6. Impact of inherent meteorology uncertainty on air quality model predictions

    Science.gov (United States)

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...

  7. Impact of inlet air cooling on gas turbine performance

    OpenAIRE

    Szymon Jarzębowski; Ewa Pyzik; Andrzej Miller

    2012-01-01

    In this article different possibilities of gas turbine inlet air cooling were presented. The method of defining power gain caused by air cooling was discussed. The results of increasing power output level of several different turbines and one gas turbine in combine cycle in domestic ambient conditions were presented and discussed. Significant turbine power gains were received.

  8. Numerical Investigation of the Consequences of Land Impacts, Water Impacts, or Air Bursts of Asteroids

    Science.gov (United States)

    Ezzedine, S. M.; Dearborn, D. S.; Miller, P. L.

    2015-12-01

    The annual probability of an asteroid impact is low, but over time, such catastrophic events are inevitable. Interest in assessing the impact consequences has led us to develop a physics-based framework to seamlessly simulate the event from entry to impact, including air and water shock propagation and wave generation. The non-linear effects are simulated using the hydrodynamics code GEODYN. As effects propagate outward, they become a wave source for the linear-elastic-wave propagation code, WPP/WWP. The GEODYN-WPP/WWP coupling is based on the structured adaptive-mesh-refinement infrastructure, SAMRAI, and has been used in FEMA table-top exercises conducted in 2013 and 2014, and more recently, the 2015 Planetary Defense Conference exercise. Results from these simulations provide an estimate of onshore effects and can inform more sophisticated inundation models. The capabilities of this methodology are illustrated by providing results for different impact locations, and an exploration of asteroid size on the waves arriving at the shoreline of area cities. We constructed the maximum and minimum envelops of water-wave heights given the size of the asteroid and the location of the impact along the risk corridor. Such profiles can inform emergency response and disaster-mitigation efforts, and may be used for design of maritime protection or assessment of risk to shoreline structures of interest. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-675390-DRAFT.

  9. Impacts Of Passive Removal Materials On Indoor Air Quality

    DEFF Research Database (Denmark)

    Darling, Erin; Cros, Clement; Wargocki, Pawel; Kolarik, Jakub; Targowski, Adam; Morrison, Glenn C.; Corsi, Richard L.

    2011-01-01

    continuous acceptability scale. Materials were either new carpet that was aired out for three weeks, clay plaster applied to gypsum wallboard that was aired out for up to one month, both materials, or neither. Perceived Air Quality (PAQ) assessed by the panel was most acceptable and concentrations of...... aldehydes were lowest when only clay plaster or both clay plaster and carpet were in the chambers without ozone. The least acceptable PAQ and the highest concentrations of aldehydes were observed when carpet and ozone were present together; addition of clay plaster for this condition improved PAQ and...

  10. Methodology for Valuing the Health Impacts of Air Pollution

    OpenAIRE

    Narain, Urvashi; Sall, Chris

    2016-01-01

    This report is meant to inform a joint publication by the World Bank and Institute for Health Metrics and Evaluation (IHME) on the economic costs of air pollution. Air pollution is a global challenge and one that is acutely felt in developing countries. Illnesses caused by ambient and household air pollution claim the lives of nearly 6 million people each year. The goal of the joint World Bank-IHME report is to raise awareness about the severity of this challenge and to strengthen the busi...

  11. Aircraft impact risk assessment data base for assessment of fixed wing air carrier impact risk in the vicinity of airports

    International Nuclear Information System (INIS)

    The FIXED WING AIRCRAFT accidents occurring to US air carriers during the years 1956 through 1977 are listed, with those resulting in impact within five miles of airports in the contiguous US being considered in detail as to location of impact relative to the airport runways

  12. ANTIQUITY IMPACT OF AIR POLLUTION AT GADARA, JORDAN

    OpenAIRE

    Abu-Allaban, Mahmoud; El-Khalili, Mohammad M.M.

    2013-01-01

    Several recent studies have pointed out that the northern parts of Jordan are exposed to high levels of ground ozone. North Jordan is a wealthy reservoir of ancient heritage including six out of the ten Decapolis Cities. It is alleged that air pollution-via acid deposition - has led to the deterioration and erosion of buildings, structures, statues, and monuments. Therefore, this research is conducted to assess air quality at Gadara, the capital of the ancient Decapolis and to come up with mi...

  13. Energy Impacts of Oversized Residential Air Conditioners -- Simulation Study of Retrofit Sequence Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Booten, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Christensen, C. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Winkler, J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-11-01

    This research addresses the question of what are the energy consequences for oversizing of an air conditioner in a home. Conventional wisdom holds that oversizing the AC results in significant energy penalties. However, the reason for this was shown to be due to crankcase heaters and not due to cycling performance of the AC, and is only valid for a particular set of assumptions. Adding or removing individual characteristics, such as ducts or crankcase heaters, can have measurable impacts on energy use. However, with all other home characteristics held constant, oversizing the AC generally has a small effect on cooling energy use, even if the cycling performance of the unit is poor. The relevant aspects of air conditioner modeling are discussed to illustrate the effects of the cycling loss coefficient, Cd, capacity, climate, ducts and parasitic losses such as crankcase heaters. A case study of a typical 1960's vintage home demonstrates results in the context of whole building simulations using EnergyPlus.

  14. The impact of temperature and humidity on perception and emission of indoor air pollutants

    DEFF Research Database (Denmark)

    Fang, Lei; Clausen, Geo; Fanger, Povl Ole

    1996-01-01

    Sensory response to air polluted by five building materials under different combinations of temperature and humidity in the ranges 18°C-28°C and 30%-70% was studied in the laboratory. The experiments were designed to study separately the impact of temperature and humidity on the perception of air...... polluted by materials, and on the emission of pollutants from the materials. At all tested pollution levels of the five materials, the air was perceived significantly less acceptable with increasing temperature and humidity, and the impact of temperature and humidity on perception decreased with increasing...... pollution level. A significant linear correlation between acceptability and enthalpy of the air was found to describe the influence of temperature and humidity on perception. The impact of temperature and humidity on sensory emission was less significant than the impact on perception; however, the sensory...

  15. Impact of Ambient Air Pollution on Public Health under Various Traffic Policies in Shanghai,China

    Institute of Scientific and Technical Information of China (English)

    CHAN-GHONG CHEN; HAI-DONG KAN; CHENG HUANG; LI LI; YUN-HUI ZHANG; REN-JIE CHEN; BING-HENG CHEN

    2009-01-01

    Objective To investigate the potential impact of ambient air pollution on public health under various traffic policies in Shanghai. Methods The exposure level of Shanghai residents to air pollution under various planned traffic scenarios was estimated,and the public health impact was assessed using concentration-response functions derived from available epidemiological studies. Results Our results showed that ambient air pollution in relation to traffic scenarios had a significant impact on the future health status of Shanghai residents.Compared with the base case scenario,implementation of various traffic scenarios could prevent 759-1574,1885-2420,and 2277-2650 PM10-related avoidable deaths (mean-value) in 2010,2015,and 2020,respectively.It could also decrease the incidence of several relevant diseases. Conclusion Our findings emphasize the need to consider air pollution-related health effects as an important impact of traffic policy in Shanghai.

  16. Environmental impact of an industrial compressed air system for solar power in South Africa

    OpenAIRE

    Gouws, Rupert

    2012-01-01

    Almost 14% of the electricity generated by the national energy supplier (Eskom) in South Africa is sold directly to the mining sector and almost 20% is utilized directly by the compressed air systems of the mining sector. The industrial compressed air systems in South Africa therefore have a substantial impact on the environment in terms of emissions output. In this paper a solar powered compressor is installed parallel to an existing industrial compressed air system. The environmental (emiss...

  17. Air quality and radiative forcing impacts of anthropogenic volatile organic compound emissions from ten world regions

    OpenAIRE

    M. M. Fry; M. D. Schwarzkopf; Adelman, Z.; West, J. J.

    2013-01-01

    Non-methane volatile organic compounds (NMVOCs) influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF) impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions decreases glo...

  18. Air quality and radiative forcing impacts of anthropogenic volatile organic compound emissions from ten world regions

    OpenAIRE

    M. M. Fry; M. D. Schwarzkopf; Adelman, Z.; West, J. J.

    2014-01-01

    Non-methane volatile organic compounds (NMVOCs) influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF) impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions de...

  19. The impact of marine organics on the air quality of the western United States

    OpenAIRE

    Gantt, B.; N. Meskhidze; A. G. Carlton

    2010-01-01

    The impact of marine organic emissions to the air quality in coastal areas of the western United States is studied using the latest version of the US Environmental Protection Agency (EPA) regional-scale Community Multiscale Air Quality (CMAQv4.7) modeling system. Emissions of marine isoprene, monoterpenes, and primary organic matter (POM) from the ocean are implemented into the model to provide a comprehensive view of the connection between ocean biology and atmospheric chemistry and air poll...

  20. IMPACT OF INFORMATION ON THE DELIVERY OF CARGO WITH AIR TRANSPORT

    OpenAIRE

    Габріелова, Т.Ю.; National Aviation University; Войцеховський, В.С.; National Aviation University

    2014-01-01

    Peculiarities of the impact of informatization on the process of cargo delivery involving air transport under conditions of competitive environment dynamic development have been considered. Information products providing uploading capacity on an extensive air route network were analysed. The role of international mediation bodies for financial settlements between participants of air transportation process was determined. Basic aspects of the pricing control depending on the condition of fligh...

  1. Traffic Impacts on PM2.5 Air Quality in Nairobi, Kenya

    OpenAIRE

    Kinney, Patrick L.; Gichuru, Michael Gatari; Volavka-Close, Nicole; Ngo, Nicole; Ndiba, Peter K.; Law, Anna; Gachanja, Anthony; Gaita, Samuel Mwaniki; Chillrud, Steven N.; Sclar, Elliott

    2011-01-01

    Motor vehicle traffic is an important source of particulate pollution in cities of the developing world, where rapid growth, coupled with a lack of effective transport and land use planning, may result in harmful levels of fine particles (PM2.5) in the air. However, a lack of air monitoring data hinders health impact assessments and the development of transportation and land use policies that could reduce health burdens due to outdoor air pollution. To address this important need, a study of ...

  2. The impact of sea-air mode on air cargo transport

    OpenAIRE

    Al-Hajri, Ghanem Mohamed

    1997-01-01

    The following research looks into the concept of sea-air intermodality, a combination of two or more modes of transport for the carriage of goods from origin to destination. The study examines why and how this form of transport evolved to become a viable alternative to the conventional single modes of ocean and air transport. The viability of the sea-air mode depends on various equally important factors which are analysed in depth, with a special emphasis on the sea-ai...

  3. Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry

    NARCIS (Netherlands)

    Veen, van der R.C.A.; Tran, A.T.; Lohse, D.; Sun, C.

    2012-01-01

    A drop impacting on a solid surface deforms before the liquid makes contact with the surface. We directly measure the time evolution of the air layer profile under the droplet using high-speed color interferometry, obtaining the air layer thickness before and during the wetting process. Based on the

  4. Impact of inherent meteorology uncertainty on air quality model predictions

    Science.gov (United States)

    Gilliam, Robert C.; Hogrefe, Christian; Godowitch, James M.; Napelenok, Sergey; Mathur, Rohit; Rao, S. Trivikrama

    2015-12-01

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is important to understand how uncertainties in these inputs affect the simulated concentrations. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. Most studies explore this uncertainty by running different meteorological models or the same model with different physics options and in some cases combinations of different meteorological and air quality models. While these have been shown to be useful techniques in some cases, we present a technique that leverages the initial condition perturbations of a weather forecast ensemble, namely, the Short-Range Ensemble Forecast system to drive the four-dimensional data assimilation in the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model with a key focus being the response of ozone chemistry and transport. Results confirm that a sizable spread in WRF solutions, including common weather variables of temperature, wind, boundary layer depth, clouds, and radiation, can cause a relatively large range of ozone-mixing ratios. Pollutant transport can be altered by hundreds of kilometers over several days. Ozone-mixing ratios of the ensemble can vary as much as 10-20 ppb or 20-30% in areas that typically have higher pollution levels.

  5. Air quality and particles: impact on the environment and health. What to prescribe for tomorrow?

    International Nuclear Information System (INIS)

    After having recalled that particles in the air are present under the form of liquid or solid matters and are characterized by their size, and that the term aerosol is generally used for a mix of air and particles in suspension, this publication proposes an overview of tools used to characterize particle pollutions, of the different impacts of particles on health, on the way ecosystems react with particle pollutions, on impacts of particles on building environment (outside and inside)

  6. Evaluating impacts of air pollution in China on public health: Implications for future air pollution and energy policies

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.P.; Mauzerall, D.L. [Princeton University, Princeton, NJ (United States). Woodrow Wilson School of Public & Internal Affairs

    2006-03-15

    Our objective is to establish the link between energy consumption and technologies, air pollution concentrations, and resulting impacts on public health in eastern China. We use Zaozhuang, a city in eastern China heavily dependent on coal, as a case study to quantify the impacts that air pollution in eastern China had on public health in 2000 and the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual (BAU), through the implementation of best available emission control technology (BACT) and advanced coal gasification technologies (ACGT). We use an integrated assessment approach, utilizing state-of-the-science air quality and meteorological models, engineering, epidemiology, and economics, to achieve this objective. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang, using the 'willingness-to-pay' metric, was equivalent to 10% of Zaozhuang's GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have more than tripled. With no new air pollution controls implemented between 2000 and 2020 but with projected increases in energy use, we estimate health damages from air pollution exposure to be equivalent to 16% of Zaozhuang's projected 2020 GDP. BACT and ACGT (with only 24% penetration in Zaozhuang and providing 2% of energy needs in three surrounding municipalities) could reduce the potential health damage of air pollution in 2020 to 13% and 8% of projected GDP, respectively. Benefits to public health, of substantial monetary value, can be achieved through the use of BACT; health benefits from the use of ACGT could be even larger.

  7. Potential impact of a US climate policy and air quality regulations on future air quality and climate change

    OpenAIRE

    Lee, Y. H; D. T. Shindell; Faluvegi, G.; R. W. Pinder

    2015-01-01

    We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that reduces 2050 CO2 emissions to be 50 % below 2005 emissions. Using NASA GISS ModelE2, we look at the impacts in year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL for the Purpose of Scenario Exploration...

  8. The impact of information on perceived air quality

    DEFF Research Database (Denmark)

    Wilkins, K.; Wolkoff, Peder; Knudsen, Henrik Nellemose;

    2007-01-01

    As indoor air quality complaints cannot be explained satisfactorily and building materials can be a major source of indoor air pollution, we hypothesized that emissions from building materials perceived as unfamiliar or annoying odors may contribute to such complaints. To test this hypothesis......, emissions from indoor building materials containing linseed oil (organic) and comparable synthetic (synthetic) materials were evaluated by a naı¨ve sensory panel for evaluation of odor intensity (OI) and odor acceptability (OA). The building materials were concealed in ventilated climate chambers of the...

  9. Atmospheric emissions and air quality impacts from natural gas production and use.

    Science.gov (United States)

    Allen, David T

    2014-01-01

    The US Energy Information Administration projects that hydraulic fracturing of shale formations will become a dominant source of domestic natural gas supply over the next several decades, transforming the energy landscape in the United States. However, the environmental impacts associated with fracking for shale gas have made it controversial. This review examines emissions and impacts of air pollutants associated with shale gas production and use. Emissions and impacts of greenhouse gases, photochemically active air pollutants, and toxic air pollutants are described. In addition to the direct atmospheric impacts of expanded natural gas production, indirect effects are also described. Widespread availability of shale gas can drive down natural gas prices, which, in turn, can impact the use patterns for natural gas. Natural gas production and use in electricity generation are used as a case study for examining these indirect consequences of expanded natural gas availability. PMID:24498952

  10. The impact of an air quality advisory program on voluntary mobile source air pollution reduction

    Science.gov (United States)

    Blanken, Peter D.; Dillon, Jennifer; Wismann, Genevieve

    Air pollution from mobile source emissions is a major cause of air quality degradation in the Denver, Colorado, metropolitan area. The projected increase in both population and vehicle miles driven, coupled with the high altitude, predominantly clear skies, and prevalent wintertime temperature inversions aid in the formation and retention of pollutants. The Colorado Department of Public Health issues an air quality advisory daily during the high pollution season (November 1-March 31) with the objective of improving air quality through voluntary driving restrictions and a mandatory wood burning ban. We hypothesized that the advisory had no effect on commuter behavior due to lack of awareness and understanding, lack of alternative means of travel, or lack of concern. We mailed an anonymous, self-administered survey to 1000 commuters living in the cities of Boulder and Westminster, Colorado. Despite the fact that the vast majority of the respondents were aware of the daily advisory (94%), understood what it meant (93%), and heard the posting at least once a day (71%) in time to choose alternative forms of transportation, the advisory did not alter commuter travel. Commuters traveled mainly as the sole occupant of a car and most (76%) never changed the way they commuted based on the daily advisory. Many claimed schedules or work locations did not allow them to use alternative transportation methods. We suggested a practical way to improve the advisory would be to reduce or eliminate public transit fares on poor air quality days.

  11. Evaluating impacts of air pollution in China on public health: implications for future air pollution and energy policies

    Energy Technology Data Exchange (ETDEWEB)

    Xiaoping Wang; Mauzerall, D.L. [Princeton University, Princeton, NJ (United States). Science, Technology and Environmental Policy Program

    2006-03-15

    Our objective is to establish the link between energy consumption and technologies, air pollution concentrations, and resulting impacts on public health in eastern China. We use Zaozhuang, a city in eastern China heavily dependent on coal, as a case study to quantify the impacts that air pollution in eastern China had on public health in 2000 and the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual (BAU), through the implementation of best available emission control technology (BACT) and advanced coal gasification technologies (ACGT). We use an integrated assessment approach, utilizing state-of-the-science air quality and meteorological models, engineering, epidemiology, and economics, to achieve this objective. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang, using the ''willingness-to-pay'' metric, was equivalent to 10% of Zaozhuang's GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have more than tripled. With no new air pollution controls implemented between 2000 and 2020 but with projected increases in energy use, we estimate health damages from air pollution exposure to be equivalent to 16% of Zaozhuang's projected 2020 GDP. BACT and ACGT (with only 24% penetration in Zaozhuang and providing 2% of energy needs in three surrounding municipalities) could reduce the potential health damage of air pollution in 2020 to 13% and 8% of projected GDP, respectively. Benefits to public health, of substantial monetary value, can be achieved through the use of BACT; health benefits from the use of ACGT could be even larger. Despite significant uncertainty associated with each element of the integrated assessment approach, we demonstrate that substantial benefits to public health could be achieved in this region of eastern China through the use of additional pollution

  12. Health Impact Assessment of Air Pollution in São Paulo, Brazil

    Science.gov (United States)

    Abe, Karina Camasmie; Miraglia, Simone Georges El Khouri

    2016-01-01

    Epidemiological research suggests that air pollution may cause chronic diseases, as well as exacerbation of related pathologies such as cardiovascular and respiratory morbidity and mortality. This study evaluates air pollution scenarios considering a Health Impact Assessment approach in São Paulo, Brazil. We have analyzed abatement scenarios of Particulate Matter (PM) with an aerodynamic diameter air pollution would also lower the demand for hospital care, since hospitalizations would diminish. In this sense, Brazil should urgently adopt WHO air pollution standards in order to improve the quality of life of its population. PMID:27409629

  13. Impact of operating wood-burning stoves on indoor air quality

    DEFF Research Database (Denmark)

    Afshari, Alireza; Jensen, Ole Michael; Bergsøe, Niels Christian; Carvalho, Ricardo Luis Teles de

    2011-01-01

    A field study on the impact of operating and reloading wood-burning stoves on the indoor air quality was carried out during two consecutive winters. In contrast to the majority of recent studies, which focussed on the ambient air quality and the penetration of particles to the indoor air, this...... study aims to understand to what extent the operation of a stove contributes to the generation of concentration of ultrafine particles in the indoor air. Therefore, different stoves were ignited in one session by the owner of the stove and in a subsequent session by an expert on wood-burning stoves. The...

  14. Health Impact Assessment of Air Pollution in São Paulo, Brazil.

    Science.gov (United States)

    Abe, Karina Camasmie; Miraglia, Simone Georges El Khouri

    2016-01-01

    Epidemiological research suggests that air pollution may cause chronic diseases, as well as exacerbation of related pathologies such as cardiovascular and respiratory morbidity and mortality. This study evaluates air pollution scenarios considering a Health Impact Assessment approach in São Paulo, Brazil. We have analyzed abatement scenarios of Particulate Matter (PM) with an aerodynamic diameter resources are scarce. Moreover, the reduced levels of air pollution would also lower the demand for hospital care, since hospitalizations would diminish. In this sense, Brazil should urgently adopt WHO air pollution standards in order to improve the quality of life of its population. PMID:27409629

  15. Air impacts of increased natural gas acquisition, processing, and use: a critical review.

    Science.gov (United States)

    Moore, Christopher W; Zielinska, Barbara; Pétron, Gabrielle; Jackson, Robert B

    2014-01-01

    During the past decade, technological advancements in the United States and Canada have led to rapid and intensive development of many unconventional natural gas plays (e.g., shale gas, tight sand gas, coal-bed methane), raising concerns about environmental impacts. Here, we summarize the current understanding of local and regional air quality impacts of natural gas extraction, production, and use. Air emissions from the natural gas life cycle include greenhouse gases, ozone precursors (volatile organic compounds and nitrogen oxides), air toxics, and particulates. National and state regulators primarily use generic emission inventories to assess the climate, air quality, and health impacts of natural gas systems. These inventories rely on limited, incomplete, and sometimes outdated emission factors and activity data, based on few measurements. We discuss case studies for specific air impacts grouped by natural gas life cycle segment, summarize the potential benefits of using natural gas over other fossil fuels, and examine national and state emission regulations pertaining to natural gas systems. Finally, we highlight specific gaps in scientific knowledge and suggest that substantial additional measurements of air emissions from the natural gas life cycle are essential to understanding the impacts and benefits of this resource. PMID:24588259

  16. An energy impact assessment of indoor air quality acceptance for air-conditioned offices

    International Nuclear Information System (INIS)

    Treatment of fresh air in ventilation systems for the air-conditioning consumes a considerable amount of energy and affects the indoor air quality (IAQ). The ventilation demand is primarily related to the occupant load. In this study, the ventilation demands due to occupant load variations and occupant acceptability were examined against certain IAQ objectives using the mass balance of carbon dioxide (CO2) concentrations in an air-conditioned office. In particular, this study proposed a ventilation model for the consideration of the occupant load variations and occupant acceptability based on the regional survey of typical offices (422 samples) in Hong Kong. The model was applied to evaluate the relative energy performance of different IAQ objectives in ventilation systems for typical office buildings in Hong Kong. The results showed that the energy consumption of a ventilation system would be correlated with the occupant load and acceptability in the air-conditioned office. Indicative CO2 levels of 800 ppmv, 1000 ppmv and 1200 ppmv corresponding to 83%, 97% and 99.7% survey samples were shown, corresponding to the thermal energy consumptions of 1500 MJ m-2 yr-1, 960 MJ m-2 yr-1and 670 MJ m-2 yr-1, respectively. In regards to the monetary issue, an annual value of HK$ 762 million per year in electrical consumption could be saved in all office buildings in Hong Kong when the indoor target CO2 concentration is increased from 1000 ppmv to 1200 ppmv. To achieve an excellent IAQ following the existing design standard, i.e. to decrease the CO2 level from 1000 ppmv to 800 ppmv, 56% additional energy would be consumed, corresponding to an annual value of HK$ 1,419 million, even though the occupant acceptability is only improved from 81% to 86%. The development of the models in this study would be useful for the energy performance evaluation of ventilation systems in air-conditioned offices

  17. Air quality impacts due to construction of LWR waste management facilities

    International Nuclear Information System (INIS)

    Air quality impacts of construction activities and induced housing growth as a result of construction activities were evaluated for four possible facilities in the LWR fuel cycle: a fuel reprocessing facility, fuel storage facility, fuel fabrication plant, and a nuclear power plant. Since the fuel reprocessing facility would require the largest labor force, the impacts of construction of that facility were evaluated in detail

  18. Recent climate and air pollution impacts on Indian agriculture

    OpenAIRE

    Burney, Jennifer; V. Ramanathan

    2014-01-01

    Rising temperatures because of increased emissions of long-lived greenhouse gases (LLGHGs) have had and will continue to have significant negative impacts on crop yields. However, other climate changes caused by short-lived climate pollutants (SLCPs) are also significant for agricultural productivity. The SLCPs black carbon and ozone impact temperature, precipitation, radiation, and—in the case of ozone—are directly toxic to plants. To our knowledge, this study provides the first integrated h...

  19. Air Intake System Impact on Gas Turbine Performance

    OpenAIRE

    Sandøy, Marie Lindmark

    2010-01-01

    Limitations of space and weight on offshore platforms have made gas turbines the main supplier of power in these installations. Particles escaping from the inlet air filtration systems cause fouling of the gas turbine compressor section and decrease the overall effciency of the engines. New focus on decreasing global environmental gas emissions has made the importance of optimal gas turbine operation increasingly important. This thesis documents gas turbine degradation mechanisms and evaluati...

  20. AIR QUALITY IMPACTS OF LIQUEFIED NATURAL GAS IN THE SOUTH COAST AIR BASIN OF CALIFORNIA

    Energy Technology Data Exchange (ETDEWEB)

    Carerras-Sospedra, Marc; Brouwer, Jack; Dabdub, Donald; Lunden, Melissa; Singer, Brett

    2011-07-01

    The effects of liquefied natural gas (LNG) on pollutant emission inventories and air quality in the South Coast Air Basin of California were evaluated using recent LNG emission measurements by Lawrence Berkeley National Laboratory and the Southern California Gas Company (SoCalGas), and with a state-of-the-art air quality model. Pollutant emissions can be affected by LNG owing to differences in composition and physical properties, including the Wobbe index, a measure of energy delivery rate. This analysis uses LNG distribution scenarios developed by modeling Southern California gas flows, including supplies from the LNG receiving terminal in Baja California, Mexico. Based on these scenarios, the projected penetratino of LNG in the South Coast Air Basin is expected to be limited. In addition, the increased Wobbe index of delivered gas (resulting from mixtures of LNG and conventional gas supplies) is expected to cause increases smaller than 0.05 percent in overall (area-wide) emissions of nitrogen oxides (NOx). BAsed on the photochemical state of the South Coast Air Basin, any increase in NOx is expected to cause an increase in the highest local ozone concentrations, and this is reflected in model results. However, the magnitude of the increase is well below the generally accepted accuracy of the model and would not be discernible with the existing monitoring network. Modeling of hypothetical scenarios indicates that discernible changes to ambient ozone and particulate matter concentrations would occur only at LNG distribution rates that are not achievable with current or planned infrastructure and with Wobbe index vlaues that exceed current gas quality tariffs. Results of these hypothetical scenarios are presented for consideration of any proposed substantial expansion of LNG supply infrastructure in Southern California.

  1. Electricity supply. Older plants' impact on reliability and air quality

    International Nuclear Information System (INIS)

    Life extension of fossil fuel plants is a relatively recent phenomenon; thus, utilities have little experience to demonstrate the longer-term operating reliability of plants with an extended service life. While utility industry officials and government and industry studies express optimism that these plants will continue to operate reliably, the officials and the studies also caution that it is too soon to determine how pursuing life extension will affect the reliability of the nation's electricity supply. According to DOE, the number of fossil fuel generating units' 30 years old or older is expected to increase from about 2,500 in 1989 to roughly 3,700 in 1998, increasing such plants' share of overall generating capacity from 13 percent in 1989 to 27 percent in 1998. EPA estimates that with existing air quality requirements, fossil fuel plant emissions will increase steadily during the coming decade. Proposed acid rain control legislation, which would affect many plants that may have their service life extended, would require utilities to significantly reduce emissions by the year 2000 but would allow utilities flexibility in deciding how and where to achieve the reductions. If such legislation is enacted, utilities generally are expected to find reducing emissions from existing plants more cost-effective than replacing them and to continue extending plants' service life. Officials of DOE and utility organizations expressed concern, however, that EPA could decide, as it did for one plant in 1988, that alterations made in extending the service life of plants exempted from the Clean Air Act would result in increased emissions and thus cause the altered plants to lose their exemption. According to the officials, the additional costs of achieving the Clean Air Act's standards could discourage some life extension projects. However, such decisions by EPA could also reduce the nation's total power plant emissions by eliminating an existing incentive to retain exempt

  2. Noise impacts from professional dog grooming forced-air dryers

    OpenAIRE

    Peter M. Scheifele; Johnson, Michael T.; Byrne, David C.; Clark, John G.; Ashley Vandlik; Kretschmer, Laura W.; Kristine E Sonstrom

    2012-01-01

    This study was designed to measure the sound output of four commonly used brands of forced-air dryers used by dog groomers in the United States. Many dog groomers have questions about the effect of this exposure on their hearing, as well as on the hearing of the dogs that are being groomed. Readings taken from each dryer at 1 meter (the likely distance of the dryer from the groomer and the dog) showed average levels ranging from 105.5 to 108.3 dB SPL or 94.8 to 108.0 dBA. Using the 90 dBA cri...

  3. ANTHROPIC IMPACT ON AIR QUALITY IN THE DANUBE REGION

    Directory of Open Access Journals (Sweden)

    VOINA A.

    2016-07-01

    Full Text Available There were monitored by data acquisition both in summer and winter period, the concentrations of pollutants - SO2, NO2 and particulate matter (PM10 – existing in air on the territory of 6 counties bordering the Danube. After processing and analysis of collected data have been found that: SO2 pollution may be due primarily burning fuel with high sulfur content and / or industrial activities for carbonic products (anodes for obtaining the electrolytic aluminum, graphite electrodes etc.; pollution with NO2 comes primarily from automobile exhaust gases; particulate matter pollution may be due both loess soil (high winds in dry periods characteristic of the area i

  4. Radon in ground water - Hydrogeologic impact and indoor air contamination

    International Nuclear Information System (INIS)

    This book focuses on: geologic and hydrogeologic controls that influence radon occurrence; monitoring radon, radium and other radioactivity from geologic sources; mining impacts on occurrence of radon, radium, and other radioactivity in ground water; sampling and analysis; radon and radium in water supply wells; predictive models for occurrence of radon and other radioactivity; and remedial action

  5. Impact of trash burning on air quality in Mexico City.

    Science.gov (United States)

    Hodzic, A; Wiedinmyer, C; Salcedo, D; Jimenez, J L

    2012-05-01

    Air pollution experienced by expanding urban areas is responsible for serious health effects and death for millions of people every year. Trash burning is a common disposal method in poor areas, yet it is uncontrolled in many countries, and its contribution to air pollution is unclear due to uncertainties in its emissions. Here we develop a new trash burning emission inventory for Mexico City based on inverse socioeconomic levels and recently measured emission factors, and apply a chemistry-transport model to analyze the effects on pollutant concentrations. Trash burning is estimated to emit 25 tons of primary organic aerosols (POA) per day, which is comparable to fossil fuel POA emissions in Mexico City, and causes an increase in average organic aerosol concentrations of ∼0.3 μg m(-3) downtown and up to 2 μg m(-3) in highly populated suburbs near the sources of emission. An evaluation using submicrometer antimony suggests that our emission estimates are reasonable. Mitigation of trash burning could reduce the levels of organic aerosols by 2-40% and those of PM(2.5) by 1-15% over the metropolitan area. The trash burning contributions to carbon monoxide, nitrogen oxides, and volatile organic compounds were found to be very small (organic aerosols are also very small. PMID:22458823

  6. Assessment of the Impact of The East Asian Summer Monsoon on the Air Quality Over China

    Science.gov (United States)

    Hao, Nan; Ding, Aijun; Safieddine, Sarah; Valks, Pieter; Clerbaux, Cathy; Trautmann, Thomas

    2016-04-01

    Air pollution is one of the most important environmental problems in developing Asian countries like China. In this region, studies showed that the East Asian monsoon plays a significant role in characterizing the temporal variation and spatial patterns of air pollution, since monsoon is a major atmospheric system affecting air mass transport, convection, and precipitation. Knowledge gaps still exist in the understanding of Asian monsoon impact on the air quality in China under the background of global climate change. For the first time satellite observations of tropospheric ozone and its precursors will be integrated with the ground-based, aircraft measurements of air pollutants and model simulations to study the impact of the East Asian monsoon on air quality in China. We apply multi-platform satellite observations by the GOME-2, IASI, and MOPITT instruments to analyze tropospheric ozone and CO, precursors of ozone (NO2, HCHO and CHOCHO) and other related trace gases over China. Two years measurements of air pollutants including NO2, HONO, SO2, HCHO and CHOCHO at a regional back-ground site in the western part of the Yangtze River Delta (YRD) in eastern China will be presented. The potential of using the current generation of satellite instruments, ground-based instruments and aircraft to monitor air quality changes caused by the East Asian monsoon circulation will be presented. Preliminary comparison results between satellite measurement and limited but valuable ground-based and aircraft measurements will also be showed.

  7. Strategies for reducing the environmental impacts of room air conditioners in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Grignon-Masse, Laurent, E-mail: laurent.grignon-masse@mines-paristech.f [Mines ParisTech, Center for Energy and Processes, 60 Boulevard Saint Michel, 75272 Paris Cedex 06 (France); Riviere, Philippe, E-mail: philippe.riviere@mines-paristech.f [Mines ParisTech, Center for Energy and Processes, 60 Boulevard Saint Michel, 75272 Paris Cedex 06 (France); Adnot, Jerome, E-mail: jerome.adnot@mines-paristech.f [Mines ParisTech, Center for Energy and Processes, 60 Boulevard Saint Michel, 75272 Paris Cedex 06 (France)

    2011-04-15

    In Europe, buildings tend to be equipped with individual air conditioners, which constitute a fast growing electrical end-use. In this context, this study aims to assess the environmental impacts of European individual air conditioners and to analyse policy strategies to reduce these impacts. After analysing the European context concerning individual air conditioners, the environmental impacts of European air conditioners are assessed using a Life Cycle Analysis approach. The following step consists in studying, both technically and economically, different improvement options aiming at reducing the environmental impacts of these appliances. These results, obtained at the product level, are then generalised at the European level and different policy measures are defined and analysed. The main conclusion is that the implementation of a Minimum Energy Performance Standard based on Least Life Cycle Costs could save up to 49 TWh and 20 MtCO{sub 2-eq} in 2020 and be economically beneficial to the European end-user. - Research highlights: {yields} A methodology based on Life Cycle Analysis is applied to European air conditioners. {yields} Environmental impacts are mainly due to energy consumption. {yields} There is a high potential for energy savings at very low costs for end users.

  8. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    Energy Technology Data Exchange (ETDEWEB)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA`s Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

  9. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    Energy Technology Data Exchange (ETDEWEB)

    Hootman, H.A.; Vernet, J.E.

    1991-11-01

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors.

  10. Air toxics provisions of the Clean Air Act: Potential impacts on energy

    International Nuclear Information System (INIS)

    This report provides an overview of the provisions of the Clean Air Act and its Amendments of 1990 that identify hazardous air pollutant (HAP) emissions and addresses their regulation by the US Environmental Protection Agency (EPA). It defines the major energy sector sources of these HAPs that would be affected by the regulations. Attention is focused on regulations that would cover coke oven emissions; chromium emission from industrial cooling towers and the electroplating process; HAP emissions from tank vessels, asbestos-related activities, organic solvent use, and ethylene oxide sterilization; and emissions of air toxics from municipal waste combustors. The possible implications of Title III regulations for the coal, natural gas, petroleum, uranium, and electric utility industries are examined. The report discusses five major databases of HAP emissions: (1) TRI (EPA's Toxic Release Inventory); (2) PISCES (Power Plant Integrated Systems: Chemical Emissions Studies developed by the Electric Power Research Institute); (3) 1985 Emissions Inventory on volatile organic compounds (used for the National Acid Precipitation Assessment Program); (4) Particulate Matter Species Manual (EPA); and (5) Toxics Emission Inventory (National Aeronautics and Space Administration). It also offers information on emission control technologies for municipal waste combustors

  11. Economic evaluation of environmental impacts: methodology of valuation of health impacts due to air pollution around a typical power plant

    International Nuclear Information System (INIS)

    This paper provides methodology for valuation of health impact due to air pollution around a typical power plant expansion project. Inputs from EIA study of a typical coal based thermal power plant (TPP) expansion project (850+210 Mw capacity) performed by NEERI is taken for the valuation purpose. (author)

  12. Evaluating the Impact of Air Pollution on Human Health in China: the Price of Clean Air

    Science.gov (United States)

    Wang, X.; Mauzerall, D. L.; Hu, Y.; Russell, A. G.; Woo, J.; Streets, D. G.

    2003-12-01

    Population growth, rapid urbanization and economic development are contributing to increased energy consumption in China. One of the unintended consequences is poor air quality due to a lack of environmental controls. The coal dependent energy structure in China only worsens the situation. Quantification of the environmental costs resulting from air pollution is needed in order to provide a mechanism for making strategic energy policy that accounts for the life-cycle cost of energy use. However, few such studies have been conducted for China that examine the entire energy system. Here we examine the extent to which public health has been compromised due to elevated air pollution and how China could incorporate environmental costs into future energy and environmental policies. Taking the Shandong region in eastern China as a case study, we develop a high-resolution regional inventory for anthropogenic emissions of NOx, CO, PM2.5, PM10, VOCs, NH3 and SO2. SMOKE (Sparse Matrix Operator Kernel Emissions Modeling System) is used to process spatial and temporal distributions and chemical speciation of the regional emissions, MM5 (the Fifth-Generation NCAR/Penn State Meso-scale Model, Version 3) is used to generate meteorology and Models3/CMAQ (Community Multi-scale Air Quality Modeling System) is used to simulate ambient concentrations of particulates and other gaseous species in this region. We then estimate the mortality and morbidity in this region resulting from exposure to these air pollutants. We also estimate the monetary values associated with the resulting mortality and morbidity and quantify the contributions from various economic sectors (i.e. power generation, transportation, industry, residential and others). Finally, we examine the potential health benefits that adoption of best available or advanced energy (coal-based, in particular) and environmental technologies in different sectors could bring about. The results of these analyses are intended to provide

  13. The role of Health Impact Assessment in the setting of air quality standards: An Australian perspective

    International Nuclear Information System (INIS)

    The approaches used for setting or reviewing air quality standards vary from country to country. The purpose of this research was to consider the potential to improve decision-making through integration of HIA into the processes to review and set air quality standards used in Australia. To assess the value of HIA in this policy process, its strengths and weaknesses were evaluated aligned with review of international processes for setting air quality standards. Air quality standard setting programmes elsewhere have either used HIA or have amalgamated and incorporated factors normally found within HIA frameworks. They clearly demonstrate the value of a formalised HIA process for setting air quality standards in Australia. The following elements should be taken into consideration when using HIA in standard setting. (a) The adequacy of a mainly technical approach in current standard setting procedures to consider social determinants of health. (b) The importance of risk assessment criteria and information within the HIA process. The assessment of risk should consider equity, the distribution of variations in air quality in different locations and the potential impacts on health. (c) The uncertainties in extrapolating evidence from one population to another or to subpopulations, especially the more vulnerable, due to differing environmental factors and population variables. (d) The significance of communication with all potential stakeholders on issues associated with the management of air quality. In Australia there is also an opportunity for HIA to be used in conjunction with the NEPM to develop local air quality standard measures. The outcomes of this research indicated that the use of HIA for air quality standard setting at the national and local levels would prove advantageous. -- Highlights: • Health Impact Assessment framework has been applied to a policy development process. • HIA process was evaluated for application in air quality standard setting.

  14. The role of Health Impact Assessment in the setting of air quality standards: An Australian perspective

    Energy Technology Data Exchange (ETDEWEB)

    Spickett, Jeffery, E-mail: J.Spickett@curtin.edu.au [WHO Collaborating Centre for Environmental Health Impact Assessment (Australia); Faculty of Health Sciences, School of Public Health, Curtin University, Perth, Western Australia (Australia); Katscherian, Dianne [WHO Collaborating Centre for Environmental Health Impact Assessment (Australia); Faculty of Health Sciences, School of Public Health, Curtin University, Perth, Western Australia (Australia); Harris, Patrick [CHETRE — UNSW Research Centre for Primary Health Care and Equity, University of New South Wales (Australia)

    2013-11-15

    The approaches used for setting or reviewing air quality standards vary from country to country. The purpose of this research was to consider the potential to improve decision-making through integration of HIA into the processes to review and set air quality standards used in Australia. To assess the value of HIA in this policy process, its strengths and weaknesses were evaluated aligned with review of international processes for setting air quality standards. Air quality standard setting programmes elsewhere have either used HIA or have amalgamated and incorporated factors normally found within HIA frameworks. They clearly demonstrate the value of a formalised HIA process for setting air quality standards in Australia. The following elements should be taken into consideration when using HIA in standard setting. (a) The adequacy of a mainly technical approach in current standard setting procedures to consider social determinants of health. (b) The importance of risk assessment criteria and information within the HIA process. The assessment of risk should consider equity, the distribution of variations in air quality in different locations and the potential impacts on health. (c) The uncertainties in extrapolating evidence from one population to another or to subpopulations, especially the more vulnerable, due to differing environmental factors and population variables. (d) The significance of communication with all potential stakeholders on issues associated with the management of air quality. In Australia there is also an opportunity for HIA to be used in conjunction with the NEPM to develop local air quality standard measures. The outcomes of this research indicated that the use of HIA for air quality standard setting at the national and local levels would prove advantageous. -- Highlights: • Health Impact Assessment framework has been applied to a policy development process. • HIA process was evaluated for application in air quality standard setting.

  15. Health impact assessment of air pollution using a dynamic exposure profile: Implications for exposure and health impact estimates

    Energy Technology Data Exchange (ETDEWEB)

    Dhondt, Stijn, E-mail: stijn.dhondt@vub.ac.be [Department of Medical Sociology and Health Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels (Belgium); Beckx, Carolien, E-mail: Carolien.Beckx@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Degraeuwe, Bart, E-mail: Bart.Degraeuwe@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Lefebvre, Wouter, E-mail: Wouter.Lefebvre@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Kochan, Bruno, E-mail: Bruno.Kochan@uhasselt.be [Transportation Research Institute, Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek (Belgium); Bellemans, Tom, E-mail: Tom.Bellemans@uhasselt.be [Transportation Research Institute, Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek (Belgium); Int Panis, Luc, E-mail: Luc.intpanis@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Transportation Research Institute, Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek (Belgium); Macharis, Cathy, E-mail: cjmachar@vub.ac.be [Department MOSI-Transport and Logistics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels (Belgium); Putman, Koen, E-mail: kputman@vub.ac.be [Department of Medical Sociology and Health Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels (Belgium); Interuniversity Centre for Health Economics Research (I-CHER), Vrije Universiteit Brussel, Brussels (Belgium)

    2012-09-15

    In both ambient air pollution epidemiology and health impact assessment an accurate assessment of the population exposure is crucial. Although considerable advances have been made in assessing human exposure outdoors, the assessments often do not consider the impact of individual travel behavior on such exposures. Population-based exposures to NO{sub 2} and O{sub 3} using only home addresses were compared with models that integrate all time-activity patterns-including time in commute-for Flanders and Brussels. The exposure estimates were used to estimate the air pollution impact on years of life lost due to respiratory mortality. Health impact of NO{sub 2} using an exposure that integrates time-activity information was on average 1.2% higher than when assuming that people are always at their home address. For ozone the overall estimated health impact was 0.8% lower. Local differences could be much larger, with estimates that differ up to 12% from the exposure using residential addresses only. Depending on age and gender, deviations from the population average were seen. Our results showed modest differences on a regional level. At the local level, however, time-activity patterns indicated larger differences in exposure and health impact estimates, mainly for people living in more rural areas. These results suggest that for local analyses the dynamic approach can contribute to an improved assessment of the health impact of various types of pollution and to the understanding of exposure differences between population groups. - Highlights: Black-Right-Pointing-Pointer Exposure to ambient air pollution was assessed integrating population mobility. Black-Right-Pointing-Pointer This dynamic exposure was integrated into a health impact assessment. Black-Right-Pointing-Pointer Differences between the dynamic and residential exposure were quantified. Black-Right-Pointing-Pointer Modest differences in health impact were found at a regional level. Black

  16. Health impact assessment of air pollution using a dynamic exposure profile: Implications for exposure and health impact estimates

    International Nuclear Information System (INIS)

    In both ambient air pollution epidemiology and health impact assessment an accurate assessment of the population exposure is crucial. Although considerable advances have been made in assessing human exposure outdoors, the assessments often do not consider the impact of individual travel behavior on such exposures. Population-based exposures to NO2 and O3 using only home addresses were compared with models that integrate all time-activity patterns—including time in commute—for Flanders and Brussels. The exposure estimates were used to estimate the air pollution impact on years of life lost due to respiratory mortality. Health impact of NO2 using an exposure that integrates time-activity information was on average 1.2% higher than when assuming that people are always at their home address. For ozone the overall estimated health impact was 0.8% lower. Local differences could be much larger, with estimates that differ up to 12% from the exposure using residential addresses only. Depending on age and gender, deviations from the population average were seen. Our results showed modest differences on a regional level. At the local level, however, time-activity patterns indicated larger differences in exposure and health impact estimates, mainly for people living in more rural areas. These results suggest that for local analyses the dynamic approach can contribute to an improved assessment of the health impact of various types of pollution and to the understanding of exposure differences between population groups. - Highlights: ► Exposure to ambient air pollution was assessed integrating population mobility. ► This dynamic exposure was integrated into a health impact assessment. ► Differences between the dynamic and residential exposure were quantified. ► Modest differences in health impact were found at a regional level. ► At municipal level larger differences were found, influenced by gender and age.

  17. Evaluation of air quality and noise impact assessments, Deaf Smith County

    Energy Technology Data Exchange (ETDEWEB)

    1986-05-01

    In this report, several issues are identified regarding the air quality and noise impact assessments presented in the final salt repository environmental assessment (EA) prepared by the US Department of Energy for the Deaf Smith County, Texas, site. Necessary revisions to the data and methods used to develop the EA impact assessment are described. Then, a comparative evaluation is presented in which estimated impacts based upon the revised data and methods are compared with the impacts published in the EA. The evaluation indicates that the conclusions of the EA air quality and noise impacts sections would be unchanged. Consequently, the guideline findings presented in Chapter 6 of the EA are also unchanged by the revised analysis. 13 tabs.

  18. Evaluation of air quality and noise impact assessments, Deaf Smith County

    International Nuclear Information System (INIS)

    In this report, several issues are identified regarding the air quality and noise impact assessments presented in the final salt repository environmental assessment (EA) prepared by the US Department of Energy for the Deaf Smith County, Texas, site. Necessary revisions to the data and methods used to develop the EA impact assessment are described. Then, a comparative evaluation is presented in which estimated impacts based upon the revised data and methods are compared with the impacts published in the EA. The evaluation indicates that the conclusions of the EA air quality and noise impacts sections would be unchanged. Consequently, the guideline findings presented in Chapter 6 of the EA are also unchanged by the revised analysis. 13 tabs

  19. Understanding Energy Impacts of Oversized Air Conditioners; NREL Highlights, Research & Development, NREL (National Renewable Energy Laboratory)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2015-06-01

    This NREL highlight describes a simulation-based study that analyzes the energy impacts of oversized residential air conditioners. Researchers found that, if parasitic power losses are minimal, there is very little increase in energy use for oversizing an air conditioner. The research demonstrates that new residential air conditioners can be sized primarily based on comfort considerations, because capacity typically has minimal impact on energy efficiency. The results of this research can be useful for contractors and homeowners when choosing a new air conditioner or heat pump during retrofits of existing homes. If the selected unit has a crankcase heater, performing proper load calculations to be sure the new unit is not oversized will help avoid excessive energy use.

  20. Human perception of air movement. Impact of frequency and airflow direction on draught sensation

    Energy Technology Data Exchange (ETDEWEB)

    Genhong Zhou

    1999-08-01

    Draught is defined as an unwanted local cooling of the human body caused by air movement. Air velocity and temperature are the main characteristics of air movement in rooms. Characteristics of instantaneous air velocity and temperature records previously measured in ventilated indoor spaces were analyzed. Air velocity and temperature fluctuated randomly. The amplitude and frequency of the fluctuations changed over time. Air movements around the human body were measured with a three-dimensional laser Doppler amemometer. A new parameter, equivalent frequency, was defined as an integral single parameter for describing the frequency characteristics of air velocity. The equivalent frequency of a randomly fluctuating velocity is defined as the frequency of sinusoidal velocity fluctuations with the same ratio of the standard deviation of acceleration to the standard deviation of air velocity as in the random velocity fluctuations. The equivalent frequencies of numerous instantaneous air-velocity records measured in ventilated space were analysed. The equivalent frequency of an airflow in an indoor space was found to be 0.1 to 2 Hz. The equivalent frequencies of most of the airflows were between 0.2 and 0.6 Hz. The relation between equivalent frequency and mean air velocity and standard deviation was established. Experiments were performed to identify the impact of the equivalent frequency on the human perception of draught. Forty subjects (20 women and 20 men) were subjected to airflows from behind with mean air velocities of 0.1, 0.2 and 0.3 m/s, with equivalent frequencies from 0 to 1 Hz at an air temperature of 20 deg. C. In this human-subject experimental study the frequency was found to have a significant impact on draught sensation. Subjects were more sensitive to airflow at an equivalent frequency between 0.2 and 0.6 Hz. A mathematical model for the simulation of draught was established and a computer program was developed for simulating the draught. The program

  1. The impact of changing technology on the demand for air transportation

    Science.gov (United States)

    Kneafsey, J. T.; Taneja, N. K.

    1978-01-01

    Demand models for air transportation that are sensitive to the impact of changing technology were developed. The models are responsive to potential changes in technology, and to changing economic, social, and political factors as well. In addition to anticipating the wide differences in the factors influencing the demand for long haul and short haul air travel, the models were designed to clearly distinguish among the unique features of these markets.

  2. Wheat straw burning and its associated impacts on Beijing air quality

    Institute of Scientific and Technical Information of China (English)

    LI LingJun; WANG Ying; ZHANG Qiang; LI JinXiang; YANG XiaoGuang; JIN Jun

    2008-01-01

    Based on MODIS images, large-scale flow field charts and environmental monitoring data, we thoroughly analyzed the spatial distribution of wheat straw burning in North China, with focus on its environmental impacts on the air quality of Beijing and pollution transport paths. And we anatomized changes of air quality in Beijing under the impacts of pollution generated by wheat straw burning around. The results indicate that: (1) The North China Plain, a winter-wheat growing area, is the main source of pollutants induced by wheat straw burning in Beijing. The direction of south-west is the dominant heavy pollution transport path. (2) Impacts of wheat straw burning on air quality are mainly manifested by significantly increasing CO concentration. (3) Precursors of O3 generated by wheat straw burning, combining with favorable meteorological conditions, can induce increasing O3 concentration greatly. NO concentration will be greatly increased due to decreasing O3 concentration at night.(4) Atmospheric particles, especially the fine ones, from wheat straw burning exert considerable influence on Beijing air quality. (5) Different contributions of wheat straw burning to pollutants are identified.Ratios of PM10/SO2, CO/SO2, etc., can be applied to indicate pollution extent of wheat straw burning.High ratios of PM10/SO2 and CO/SO2 show that the air quality was heavily impacted by wheat straw burning and these ratios can be employed as indicators of contribution of wheat straw burning to the degradation of Beijing air quality. (6) Randomness of wheat straw burning activities renders random outbreak of air pollution of this type. Regional and extensive wheat straw burning activities can cause serious air pollution event.

  3. Forest fire impact on air quality: the Lançon-De-Provence 2005 case

    OpenAIRE

    Strada, Susanna; Mari, Céline; Filippi, Jean Baptiste; Bosseur, Frédéric

    2010-01-01

    International audience Forest fires release significant amounts of gases and aerosols into the atmosphere. Depending on meteorological conditions, fire emissions can efficiently spoil air quality and visibility far away from the source. The aim of this study is to evaluate the fire impact on air quality downwind of the burning region in the Mediterranean zone. Wildfire behaviour is simulated using a semi-physical model, ForeFire, based on an analytical resolution of the rate of spread. For...

  4. Wheat straw burning and its associated impacts on Beijing air quality

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Based on MODIS images, large-scale flow field charts and environmental monitoring data, we thor- oughly analyzed the spatial distribution of wheat straw burning in North China, with focus on its envi- ronmental impacts on the air quality of Beijing and pollution transport paths. And we anatomized changes of air quality in Beijing under the impacts of pollution generated by wheat straw burning around. The results indicate that: (1) The North China Plain, a winter-wheat growing area, is the main source of pollutants induced by wheat straw burning in Beijing. The direction of south-west is the dominant heavy pollution transport path. (2) Impacts of wheat straw burning on air quality are mainly manifested by significantly increasing CO concentration. (3) Precursors of O3 generated by wheat straw burning, combining with favorable meteorological conditions, can induce increasing O3 concentration greatly. NO concentration will be greatly increased due to decreasing O3 concentration at night. (4) Atmospheric particles, especially the fine ones, from wheat straw burning exert considerable influ- ence on Beijing air quality. (5) Different contributions of wheat straw burning to pollutants are identified. Ratios of PM10/SO2, CO/SO2, etc., can be applied to indicate pollution extent of wheat straw burning. High ratios of PM10/SO2 and CO/SO2 show that the air quality was heavily impacted by wheat straw burning and these ratios can be employed as indicators of contribution of wheat straw burning to the degradation of Beijing air quality. (6) Randomness of wheat straw burning activities renders random outbreak of air pollution of this type. Regional and extensive wheat straw burning activities can cause serious air pollution event.

  5. Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models

    OpenAIRE

    Chuanglin Fang; Haimeng Liu; Guangdong Li; Dongqi Sun; Zhuang Miao

    2015-01-01

    Urban air pollution is one of the most visible environmental problems to have accompanied China’s rapid urbanization. Based on emission inventory data from 2014, gathered from 289 cities, we used Global and Local Moran’s I to measure the spatial autorrelation of Air Quality Index (AQI) values at the city level, and employed Ordinary Least Squares (OLS), Spatial Lag Model (SAR), and Geographically Weighted Regression (GWR) to quantitatively estimate the comprehensive impact and spatial variati...

  6. Proceedings of the 10th world clean air congress. Impacts and management

    Energy Technology Data Exchange (ETDEWEB)

    Kaemaeri, J.; Tolvanen, M.; Anttila, P.; Salonen, R.O. [eds.

    1995-12-31

    Rapid economical growth and expansion of human population have produced a number of environmental problems with varying geographic dimensions. While local problems remain near the pollution sources, the focus of the scientific community is more and more shifted towards regional, continental and global consequences of air pollutants. The theme of the 10th Clean Air Congress `Growing Challenges from Local to Global` reflects the growing demand from the scientific and professional community working in air pollution prevention and environmental protection - more and more complex mechanisms should be understood on a growing spatial scale. The 10th World Clean Air Congress addresses in its more than 400 presentations, documented in three Volumes of Proceedings, the history, the present and the potential futures of the air pollution problems. This volume includes all papers of paths C `Pollutant Impacts`, D `Pollution Management`, and E `Health Effects`. Path C includes numerous highly relevant papers dealing with climate change and greenhouse gases, as well as with environmental effects of air pollutants mostly on materials and vegetation. The most critical issues on air pollutant management throw light on national and regional abatement strategies and on the applicability of various tools for pollution management. The path on effects on human health includes a session on `Air pollution epidemiology` sponsored by the Economic Commission for Europe and a session on `Health effect control strategies` sponsored by the UN World Health Organization. In these sessions invited speakers describe the current understanding of human responses to air pollution exposure

  7. Measures against the adverse impact of natural wind on air-cooled condensers in power plant

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    The natural wind plays disadvantageous roles in the operation of air-cooled steam condensers in power plant.It is of use to take various measures against the adverse effect of wind for the performance improvement of air-cooled condensers.Based on representative 2×600 MW direct air-cooled power plant,three ways that can arrange and optimize the flow field of cooling air thus enhance the heat transfer of air-cooled condensers were proposed.The physical and mathematical models of air-cooled condensers with various flow leading measures were presented and the flow and temperature fields of cooling air were obtained by CFD simulation.The back pressures of turbine were calculated for different measures on the basis of the heat transfer model of air-cooled condensers.The results show that the performance of air-cooled condensers is improved thus the back pressure of turbine is lowered to some extent by taking measures against the adverse impact of natural wind.

  8. Impact of operating wood-burning stoves on indoor air quality

    DEFF Research Database (Denmark)

    Afshari, Alireza; Jensen, Ole Michael; Bergsøe, Niels Christian; Luis Teles de Carvalho, Ricardo

    2011-01-01

    A field study on the impact of operating and reloading wood-burning stoves on the indoor air quality was carried out during two consecutive winters. In contrast to the majority of recent studies, which focussed on the ambient air quality and the penetration of particles to the indoor air, this...... study aims to understand to what extent the operation of a stove contributes to the generation of concentration of ultrafine particles in the indoor air. Therefore, different stoves were ignited in one session by the owner of the stove and in a subsequent session by an expert on wood-burning stoves. The...... study was conducted in seven typical Danish detached houses without other indoor activities taking place. In each house the average air change rate during one week was measured (using passive tracer gas technique) and the indoor and outdoor temperature and relative humidity were recorded continuously...

  9. Impacts of air pressure on the evolution of nanosecond pulse discharge products

    Science.gov (United States)

    Yu, Jin-Lu; He, Li-Ming; Ding, Wei; Wang, Yu-Qian; Du, Chun

    2013-05-01

    Based on the nonequilibrium plasma dynamics of air discharge, a dynamic model of zero-dimensional plasma is established by combining the component density equation, the Boltzmann equation, and the energy transfer equation. The evolution properties of nanosecond pulse discharge (NPD) plasma under different air pressures are calculated. The results show that the air pressure has significant impacts on the NPD products and the peak values of particle number density for particles such as O atoms, O3 molecules, N2(A3) molecules in excited states, and NO molecules. It increases at first and then decreases with the increase of air pressure. On the other hand, the peak values of particle number density for N2(B3) and N2(C3) molecules in excited states are only slightly affected by the air pressure.

  10. Impacts of air pressure on the evolution of nanosecond pulse discharge products

    International Nuclear Information System (INIS)

    Based on the nonequilibrium plasma dynamics of air discharge, a dynamic model of zero-dimensional plasma is established by combining the component density equation, the Boltzmann equation, and the energy transfer equation. The evolution properties of nanosecond pulse discharge (NPD) plasma under different air pressures are calculated. The results show that the air pressure has significant impacts on the NPD products and the peak values of particle number density for particles such as O atoms, O3 molecules, N2(A3) molecules in excited states, and NO molecules. It increases at first and then decreases with the increase of air pressure. On the other hand, the peak values of particle number density for N2(B3) and N2(C3) molecules in excited states are only slightly affected by the air pressure. (physics of gases, plasmas, and electric discharges)

  11. Impacts of air pressure on the evolution of nanosecond pulse discharge products

    Institute of Scientific and Technical Information of China (English)

    Yu Jin-Lu; He Li-Ming; Ding Wei; Wang Yu-Qian; Du Chun

    2013-01-01

    Based on the nonequilibrium plasma dynamics of air discharge,a dynamic model of zero-dimensional plasma is established by combining the component density equation,the Boltzmann equation,and the energy transfer equation.The evolution properties of nanosecond pulse discharge (NPD) plasma under different air pressures are calculated.The results show that the air pressure has significant impacts on the NPD products and the peak values of particle number density for particles such as O atoms,O3 molecules,N2(A3) molecules in excited states,and NO molecules.It increases at first and then decreases with the increase of air pressure.On the other hand,the peak values of particle number density for N2(B3)and N2(C3) molecules in excited states are only slightly affected by the air pressure.

  12. Potential Impact of a US Climate Policy and Air Quality Regulations on Future Air Quality and Climate Change

    Science.gov (United States)

    Lee, Y. H.; Faluvegi, Gregory S.

    2016-01-01

    We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that aims to reduce 2050 CO2 emissions to be 50% below 2005 emissions. Using the NASA GISS ModelE2 general circulation model, we look at the impacts for year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL (MARKet ALlocation) for the Purpose of Scenario Exploration), and other US emissions data sets and the rest of the world emissions data sets are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in year 2030 and 2055 but result in positive radiative forcing. Under this scenario, no more emission constraints are added after 2020, and the impacts on air quality and climate change are similar between year 2030 and 2055. Surface particulate matter with a diameter smaller than 2.5 micron PM(sub 2:5) is reduced by 2 approximately µg/m(sup -3) on average over the USA, and surface ozone by approximately 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the USA, mainly due to the PM(sub 2:5) reduction approximately (74 200 lives saved). The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading to a strong positive radiative forcing (RF) over the USA by both aerosols' direct and indirect forcing: the total RF is approximately 0.04 W m(sup -2) over the globe, and approximately 0.8 W m(sup -2) over the USA. Under the hypothetical climate policy, a future CO2 emissions cut is achieved in part by relying less on coal, and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it could lead to potential climate disbenefits over the USA. In 2055, the US

  13. Potential impact of a US climate policy and air quality regulations on future air quality and climate change

    Science.gov (United States)

    Lee, Yunha; Shindell, Drew T.; Faluvegi, Greg; Pinder, Rob W.

    2016-04-01

    We have investigated how future air quality and climate change are influenced by the US air quality regulations that existed or were proposed in 2013 and a hypothetical climate mitigation policy that aims to reduce 2050 CO2 emissions to be 50 % below 2005 emissions. Using the NASA GISS ModelE2 general circulation model, we look at the impacts for year 2030 and 2055. The US energy-sector emissions are from the GLIMPSE project (GEOS-Chem LIDORT Integrated with MARKAL (MARKet ALlocation) for the Purpose of Scenario Exploration), and other US emissions data sets and the rest of the world emissions data sets are based on the RCP4.5 scenario. The US air quality regulations are projected to have a strong beneficial impact on US air quality and public health in year 2030 and 2055 but result in positive radiative forcing. Under this scenario, no more emission constraints are added after 2020, and the impacts on air quality and climate change are similar between year 2030 and 2055. Surface particulate matter with a diameter smaller than 2.5 µm (PM2.5) is reduced by ˜ 2 µg m-3 on average over the USA, and surface ozone by ˜ 8 ppbv. The improved air quality prevents about 91 400 premature deaths in the USA, mainly due to the PM2.5 reduction (˜ 74 200 lives saved). The air quality regulations reduce the light-reflecting aerosols (i.e., sulfate and organic matter) more than the light-absorbing species (i.e., black carbon and ozone), leading to a strong positive radiative forcing (RF) over the USA by both aerosols' direct and indirect forcing: the total RF is ˜ 0.04 W m-2 over the globe, and ˜ 0.8 W m-2 over the USA. Under the hypothetical climate policy, a future CO2 emissions cut is achieved in part by relying less on coal, and thus SO2 emissions are noticeably reduced. This provides air quality co-benefits, but it could lead to potential climate disbenefits over the USA. In 2055, the US mean total RF is +0.22 W m-2 due to positive aerosol direct and indirect forcing

  14. Air Pollution and Climate Change Health Impact Assessment. The ACHIA Project

    International Nuclear Information System (INIS)

    Climate change may affect human health via interactions with air pollutants such as ozone and PM2.5. These air pollutants are linked to climate because they can be both affected by and have effects on climate. In coming decades, substantial, cost-effective improvements in public health may be achieved with well-planned strategies to mitigate climate impacts while also reducing health effects of ozone and PM2.5. Climate mitigation actions affect greenhouse pollutant emissions, including methane and black carbon, but also may affect other key air pollution precursors such as NOx, CO, and SOx. To better understand the potential of such strategies, studies are needed that assess possible future health impacts under alternative assumptions about future emissions and climate across multiple spatial scales. The overall objective of this project is to apply state of the art climate, air quality, and health modelling tools to assess future health impacts of ozone and PM2.5 under different IPCCs scenario of climate change, focusing specifically on pollution-related health co-benefits which could be achieved under alternative climate mitigation pathways in the period 2030-2050. This question will be explored at three spatial scales: global, regional (Europe), and urban (Paris). ACHIA is comprised of an integrated set of four work packages: WP1. Global Climate and Air Pollution Impacts of Alternative Emissions Pathways; WP2. Climate and Air Quality at Regional and Urban Scales: Results for Europe and Paris; WP3. Health Impact Assessment; WP4. Dissemination, Evaluation, Management. ACHIA is designed to create an interdisciplinary approach to the impacts of climate change on health through air quality changes, and to start longer-term collaborations between communities. We expect the project to advance state of art across all WPs, with important implications for research groups around the world. A particular innovation of the project is the multi-scale aspect, i.e., the analysis

  15. Trapping of air in impact between a body and shallow water

    OpenAIRE

    Korobkin, A. A.; Ellis, A. S.; Smith, F. T.

    2008-01-01

    Near-impact behaviour is investigated for a solid body approaching another solid body with two immiscible incompressible viscous fluids occupying the gap in between. The fluids have viscosity and density ratios which are extreme, the most notable combination being water and air, such that either or both of the bodies are covered by a thin film of water. Air-water interaction and the commonly observed phenomenon of air trapping are of concern in the presence of the two or three thin layers and...

  16. Estimating the Impact of Urbanization on Air Quality in China Using Spatial Regression Models

    Directory of Open Access Journals (Sweden)

    Chuanglin Fang

    2015-11-01

    Full Text Available Urban air pollution is one of the most visible environmental problems to have accompanied China’s rapid urbanization. Based on emission inventory data from 2014, gathered from 289 cities, we used Global and Local Moran’s I to measure the spatial autorrelation of Air Quality Index (AQI values at the city level, and employed Ordinary Least Squares (OLS, Spatial Lag Model (SAR, and Geographically Weighted Regression (GWR to quantitatively estimate the comprehensive impact and spatial variations of China’s urbanization process on air quality. The results show that a significant spatial dependence and heterogeneity existed in AQI values. Regression models revealed urbanization has played an important negative role in determining air quality in Chinese cities. The population, urbanization rate, automobile density, and the proportion of secondary industry were all found to have had a significant influence over air quality. Per capita Gross Domestic Product (GDP and the scale of urban land use, however, failed the significance test at 10% level. The GWR model performed better than global models and the results of GWR modeling show that the relationship between urbanization and air quality was not constant in space. Further, the local parameter estimates suggest significant spatial variation in the impacts of various urbanization factors on air quality.

  17. Impact of air pressure on volatile organic compound emissions from a carpet

    Institute of Scientific and Technical Information of China (English)

    高鹏; 邓琴琴; LIN; Chao-hsin; 杨旭东

    2009-01-01

    The measurement of volatile organic compound (VOC) emissions from materials is normally conducted under standard environmental conditions, i.e., (23±1) ℃ temperature, (50±5)% relative humidity, and 0.1 MPa pressure. In order to define VOC emissions in non-standard environmental conditions, it is necessary to study the impact of key environmental parameters on emissions. This paper evaluates the impact of air pressure on VOC emissions from an aircraft carpet. The correlation between air pressure and VOC diffusion coefficient is derived, and the emission model is applied to studying the VOC emissions under pressure conditions of less than 0.1 MPa.

  18. Impact of room fragrance products on indoor air quality

    Science.gov (United States)

    Uhde, Erik; Schulz, Nicole

    2015-04-01

    Everyday life can no longer be imagined without fragrances and scented products. For the consumer, countless products exists which are solely or partly intended to give off a certain scent in sufficient concentrations to odorize a complete room. Sprays, diffusers and evaporators, scented candles and automatic devices for the distribution of fragrance liquids are typical examples of such products. If the consumer uses such products, his consent to the release of certain chemicals in his home can be implied, however, he may not know what kind of fragrance substances and solvents will be present in which concentrations. In this study, we determined the volatile emissions of a number of fragrance products in detail. Measurements were carried out under controlled conditions in test chambers. The products were tested in a passive (unused) and an active state, wherever applicable. Following a defined test protocol, the release of volatile organic compounds, ultrafine particles and NOx was monitored for each product. The potential for forming secondary organic aerosols under the influence of ozone was studied, and for a selection of products the long-term emission behavior was assessed. A remarkable variety of fragrance substances was found and more than 100 relevant compounds were identified and quantified. While it is the intended function of such products to release fragrance substances, also considerable amounts of non-odorous solvents and by-products were found to be released from several air fresheners. Emissions rates exceeding 2 mg/(unit*h) were measured for the five most common solvents.

  19. Environmental impact of alternative fuel on Tehran air pollution

    International Nuclear Information System (INIS)

    Seventy percent of the air pollution in the city of Tehran stems from mobile sources, and in comparison with other major cities of the world, Iran's capital experiences one of the most polluted metropolitan areas. There exists a surplus of liquid petroleum gas (LPG) in the Persian Gulf and Iranian market, in addition, Iran possesses the second largest reservoir of natural gas in the world. These alternative energy resources create a favorable potential fuel for city of Tehran. Experiments carried out in Tehran indicate that in converting the taxis from gasoline to a dual fuel (LPG/gasoline) car or to a dual fuel natural gas vehicle (NGV) reduce all major pollutants (CO, HC, NOX, Pb) substantially. Following the author's recommendation, the number of LPG dispensing units in gas stations are increasing and the number of dual fuel taxis amount to several thousands in the metropolitan area. The conversion of diesel buses in the Tehran Public Transportation Corporation to natural gas (NGV) has been recommended by the author and vast experimental works are underway at the present time

  20. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

    Science.gov (United States)

    Turnock, S. T.; Butt, E. W.; Richardson, T. B.; Mann, G. W.; Reddington, C. L.; Forster, P. M.; Haywood, J.; Crippa, M.; Janssens-Maenhout, G.; Johnson, C. E.; Bellouin, N.; Carslaw, K. S.; Spracklen, D. V.

    2016-02-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000-116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr-1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and human

  1. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

    International Nuclear Information System (INIS)

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM2.5) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM2.5 concentrations is calculated to have prevented 80 000 (37 000–116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US$232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr−1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality and

  2. THE COUNTER-JET FORMATION IN AN AIR BUBBLE INDUCED BY THE IMPACT OF SHOCK WAVES

    Institute of Scientific and Technical Information of China (English)

    BAI Li-xin; XU Wei-lin; LI Chao; GAO Yan-dong

    2011-01-01

    The interaction of an air bubble (isolated in water or attached to a boundary) with shock waves induced by electric sparks is investigated by high-speed photography.The interaction is closely related to the counter-jet induced by the impact of shock waves.The formation of a counter-jet in an air bubble is related to the liquid jet formed in the same air bubble,but the mechanism is different with that of the counter-jet formation in a collapsing cavitation bubble.The formation of a counter-jet in an air bubble is related to discharge energy,air bubble size and radius of shock wave.With a given energy of the spark discharge,the formation of a counter-jet in an air bubble is related to δ/ε (the ratio of the dimensionless bubble-bubble distance to the dimensionless air bubble radius).The counter-jet will only be produced when δ/ε is in the range of 1.2-2.2.The counter-jet in an air bubble is of an important nuclei-generating mechanism.

  3. Lifecycle impacts of natural gas to hydrogen pathways on urban air quality

    OpenAIRE

    Wang, Guihua; Ogden, Joan M; Nicholas, Michael A

    2007-01-01

    In this paper we examine the potential air quality impacts of hydrogen transportation fuel from a lifecycle analysis perspective, including impacts from fuel production, delivery, and vehicle use. We assume that hydrogen fuel cell vehicles are introduced in a specific region, Sacramento County, California. We consider two levels of market penetration where 9% or 20% of the light duty fleet are hydrogen fuel cell vehicles. The following three natural gas to hydrogen supply pathways are assesse...

  4. Economic impacts of EU clean air policies assessed in a CGE framework

    OpenAIRE

    VRONTISI ZOI; Abrell, Jan; NEUWAHL FREDERIK; Saveyn, Bert; Wagner, Fabian

    2016-01-01

    This paper assesses the macroeconomic and sectoral impacts of the "Clean Air Policy Package" proposed by the European Commission in December 2013. The analysis incorporates both the expenditures necessary to implement the policy by 2030 and the resulting positive feedback effects on human health and crop production. A decomposition analysis identifies the important drivers of the macroeconomic impacts. We show that while expenditure on pollution abatement is a cost for the abating sector...

  5. Skating on a Film of Air: Drops Impacting on a Surface

    CERN Document Server

    Kolinski, John M; Mandre, Shreyas; Brenner, Michael P; Weitz, David A; Mahadevan, L

    2011-01-01

    Drops impacting on a surface are ubiquitous in our everyday experience. This impact is understood within a commonly accepted hydrodynamic picture: it is initiated by a rapid shock and a subsequent ejection of a sheet leading to beautiful splashing patterns. However, this picture ignores the essential role of the air that is trapped between the impacting drop and the surface. Here we describe a new imaging modality that is sensitive to the behavior right at the surface. We show that a very thin film of air, only a few tens of nanometers thick, remains trapped between the falling drop and the surface as the drop spreads. The thin film of air serves to lubricate the drop enabling the fluid to skate on the air film laterally outward at surprisingly high velocities, consistent with theoretical predictions. Eventually this thin film of air must break down as the fluid wets the surface. We suggest that this occurs in a spinodal-like fashion, and causes a very rapid spreading of a wetting front outwards; simultaneous...

  6. Impact on local air quality of the planned fixed link across Oresund

    DEFF Research Database (Denmark)

    Fenger, Jes; Vignati, Elisabetta; Berkowicz, Ruwim;

    1996-01-01

    The planned combined bridge and tunnel link between Sweden and Denmark (the Oresund Link) is expected to be in operation around the turn of the century. So far the impacts of the Oresund Link on air pollution have been discussed mainly in terms of changes in emissions, taking into account...

  7. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    NARCIS (Netherlands)

    Moreno, T.; Kojima, T.; Amato, F.; Lucarelli, F.; Rosa, J. de la; Calzolai, G.; Nava, S.; Chiari, M.; Alastuey, A.; Querol, X.; Gibbons, W.

    2013-01-01

    The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and M

  8. Impact of air staging along furnace height on NO{sub x} emissions from pulverized coal combustion

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Weidong; Lin, Zhengchun; Kuang, Jinguo; Li, Youyi [School of Mechanical and Power Engineering, Shanghai Jiao Tong University, No. 800, Dongchuan Road, Minhang District, Shanghai 20024 (China)

    2010-06-15

    Experiments were carried out on an electrically heated multi-path air inlet one-dimensional furnace to assess NO{sub x} emission characteristics of an overall air-staged (also termed air staging along furnace height) combustion of bituminous coal. The impact of main parameters of overall air-staged combustion technology, including burnout air position, air stoichiometric ratio, levels of burnout air (the number of burnout air arranged at different heights of the furnace), and the ratios of the burnout air flow rates and pulverized coal fineness of industrial interest, on NO{sub x} emission were simulated to study in the experimental furnace, as well as the impact of air staging on the carbon content of the fly ash produced. These results suggest that air-staged combustion affects a pronounced reduction in NO{sub x} emissions from the combustion of bituminous coal. The more deeply the air is staged, the further the NO{sub x} emission is reduced. Two-level air staging yields a greater reduction in NO{sub x} emission than single-level air staging. For pulverized coal of differing fineness, the best ratio between the burnout air rates in the two-level staging ranges from 0.6 to 0.3. In middle air-staged degree combustion with f{sub M} = 0.75, pulverized coal fineness, R{sub 90} (%), has a greater influence on NO{sub x} emission, whereas R{sub 90} has little influence on NO{sub x} emission for deep air-staged degree with f{sub M} = 0.61. Air-staged combustion with proper burnout air position has little effect on the burnout. For overall air-staged combustion, proper burnout air position and air-staged rate should be considered together in order to achieve high combustion efficiency. (author)

  9. Lifecycle impacts of natural gas to hydrogen pathways on urban air quality

    International Nuclear Information System (INIS)

    In this paper we examine the potential air quality impacts of hydrogen transportation fuel from a lifecycle analysis perspective, including impacts from fuel production, delivery, and vehicle use. We assume that hydrogen fuel cell vehicles are introduced in a specific region, Sacramento County, California. We consider two levels of market penetration where 9% or 20% of the light duty fleet are hydrogen fuel cell vehicles. The following three natural gas to hydrogen supply pathways are assessed in detail and compared in terms of emissions and the resulting changes in ambient air quality: (1) onsite hydrogen production; (2) centralized hydrogen production with gaseous hydrogen pipeline delivery systems; and (3) centralized hydrogen production with liquid hydrogen truck delivery systems. All the pathways examined use steam methane reforming (SMR) of natural gas to produce hydrogen. The source contributions to incremental air pollution are estimated and compared among hydrogen pathways. All of the hydrogen pathways result in extremely low contributions to ambient air concentrations of NOx, CO, particulates, and SOx, typically less than 0.1% of the current ambient pollution for both levels of market penetration. Among the hydrogen supply options, it is found that the central SMR with pipeline delivery systems is the lowest pollution option available provided the plant is located to avoid transport of pollutants into the city via prevailing winds. The onsite hydrogen pathway is comparable to the central hydrogen pathway with pipeline systems in terms of the resulting air pollution. The pathway with liquid hydrogen trucks has a greater impact on air quality relative to the other pathways due to emissions associated with diesel trucks and electricity consumption to liquefy hydrogen. However, all three hydrogen pathways result in negligible air pollution in the region. (author)

  10. Modeling the impact of air transport on the economy - practices, problems and prospects

    Directory of Open Access Journals (Sweden)

    Sonia Huderek-Glapska

    2016-03-01

    Full Text Available Background: The issue of measuring the contribution of air transport to the regional economy is very important nowadays since many airport infrastructure projects are being implemented, using available European Union funds. As a result of growing transport needs and increasing incomes among the population, the air transport market is strongly developing.  This development results to many direct and indirect socio-economic benefits to locations in close proximity of an airport but also in the whole economy. The measurement of these benefits is important because the decisions made with respect to air transport influence local and regional economic performance. The most commonly used tool for measuring the positive effects associated with the operation of an airport is the input-output analysis. The aim of the article is to present the characteristics of the input-output method, to indicate its applications in Poland - the country with the most dynamic growth of air transport, to present the possible limitations of this method and propose improvements. Methods: The method used in this research is one that measures the effects of changes in the economy as a result of air transport activity. Particular input-output analysis is used. Results: On the background of the results of modeling the impact of polish airport on regional economy in 2009 the updated analysis in 2012 is provided. The economic impacts of Krakow, Katowice, Wroclaw and Szczecin airports are estimated. Then the limitations of input-output method are presented and suggestions of possible improvements are made. Comments: Proper measurement of the impact of airport's operation and investment on the economy, leads to more effective air transport policy development. For future research, the advanced input-output method to assess the positive impact of airports on regional development is recommended. However, a comprehensive assessment of the operation and expansion of airport

  11. An aggregated indicator of air-pollution impacts involved by transports

    International Nuclear Information System (INIS)

    We intend to build a global environmental impact indicator of air pollution to assess transport infrastructures, technologies or flows. This indicator tries to be simple and transparent to facilitate its use in decision-making. The intention is for the indicator to be like the Global Warming Potential (GWP), which establishes a relationship between the emission of six greenhouse gases and the average temperature increase of the Earth. The indicator therefore allows estimating the global environmental impact of transport-generated air pollution, while simultaneously conserving the value of the environmental impact of each type of air pollution and the emission assessment. This work is based on an environmental impact typology, a set of indicators, and aggregation architecture of atmospheric pollution. The typology is established as a function of the specific and homogenous characteristics of each type of pollution in terms of pollutants, impact mechanisms, targets and environmental impacts. To ensure exhaustiveness and non-redundancy, 10 types of air pollution impact are proposed: greenhouse effect, ozone depletion, direct eco-toxicity (this type of pollution excludes greenhouse effects on nature, ozone depletion, eutrophication, acidification and photochemical pollution), eutrophication, acidification, photochemical pollution, restricted direct health effects (not taking into account welfare, and excluding the effects on health of the greenhouse effect, ozone depletion, acidification and photochemical pollution), sensitive pollution (annoyance caused by odours and fumes), and degradation of common and historical man-made heritage. Indicators similar to GWP can be identified in the literature for each type of atmospheric pollution, except for the degradation of common and historical man-made heritage, for which none indicator have been suggested. However, these indicators do not seem to have achieved wide scientific consensus, except for GWP, which may make it

  12. Air-Pollution and Cardiometabolic Diseases (AIRCMD): A Prospective Study Investigating the Impact of Air Pollution Exposure and Propensity for Type II Diabetes

    OpenAIRE

    Sun, Zhichao; Mukherjee, Bhramar; Brook, Robert D.; Gatts, Geoffrey A.; Yang, Fumo; Fan, Zhongjie; Brook, Jeffrey R.; Sun, Qinghua; Rajagopalan, Sanjay

    2012-01-01

    There is a paucity of prospective cohort studies investigating the impact of environmental factors on the development of cardiometabolic (CM) disorders like Type II diabetes (T2DM). The objective of the Air-Pollution and Cardiometabolic Diseases (AIRCMD) study is to investigate the impact of personal level air pollution measures [personal black carbon (BC)/sulfate measures] and ambient fine particulate matter [(PM2.5)/NO2] levels on propensity to Type II diabetes in Beijing, China. Subjects w...

  13. Impacted canine extraction by ridge expansion using air scaler surgical instruments: a case report.

    Science.gov (United States)

    Agabiti, Ivo; Bernardello, Fabio; Nevins, Myron; Wang, Hom-Lay

    2014-01-01

    The presence of an impacted tooth interferes with ideal implant placement. In such cases, atraumatic extraction is recommended in order to avoid difficult and complex bone regeneration procedures. In the present case report, a novel surgical approach to extract a horizontally impacted canine using an edentulous ridge expansion (ERE) technique and air scaler surgical devices is described. A 74-year-old female patient had a maxillary left horizontally impacted canine. The tooth was extracted after elevating a partial-thickness flap and performing an ERE technique using air scaler surgical instruments. The impacted tooth was fragmented through the breach created in the expanded ridge, and the fragments were carefully removed. A suitably sized implant was placed at the time of surgery. The treated site healed without complication. The implant was integrated, successfully restored, and stable after a 3-year follow-up period. This case report demonstrates a novel surgical approach to extract an impacted canine through ridge expansion, using air scaler surgical devices that allow implant placement in an ideal position. PMID:25171039

  14. Air Quality Impacts of Increased Use of Ethanol under the United States' Energy Independence and Security Act

    Science.gov (United States)

    Increased use of ethanol in the United States fuel supply will impact emissions and ambient concentrations of greenhouse gases, “criteria” pollutants for which the U. S. EPA sets ambient air quality standards, and a variety of air toxic compounds. This paper focuses on impacts of...

  15. Time-resolved imaging of a compressible air disc under a drop impacting on a solid surface

    KAUST Repository

    Li, Erqiang

    2015-09-07

    When a drop impacts on a solid surface, its rapid deceleration is cushioned by a thin layer of air, which leads to the entrapment of a bubble under its centre. For large impact velocities the lubrication pressure in this air layer becomes large enough to compress the air. Herein we use high-speed interferometry, with 200 ns time-resolution, to directly observe the thickness evolution of the air layer during the entire bubble entrapment process. The initial disc radius and thickness shows excellent agreement with available theoretical models, based on adiabatic compression. For the largest impact velocities the air is compressed by as much as a factor of 14. Immediately following the contact, the air disc shows rapid vertical expansion. The radial speed of the surface minima just before contact, can reach 50 times the impact velocity of the drop.

  16. Air quality and climate impacts due to CNG conversion of motor vehicles in Dhaka, Bangladesh.

    Science.gov (United States)

    Wadud, Zia; Khan, Tanzila

    2013-12-17

    Dhaka had recently experienced rapid conversion of its motor vehicle fleet to run on compressed natural gas (CNG). This paper quantifies ex-post the air quality and climate benefits of the CNG conversion policy, including monetary valuations, through an impact pathway approach. Around 2045 (1665) avoided premature deaths in greater Dhaka (City Corporation) can be attributed to air quality improvements from the CNG conversion policy in 2010, resulting in a saving of around USD 400 million. Majority of these health benefits resulted from the conversion of high-emitting diesel vehicles. CNG conversion was clearly detrimental from climate change perspective using the changes in CO2 and CH4 only (CH4 emissions increased); however, after considering other global pollutants (especially black carbon), the climate impact was ambiguous. Uncertainty assessment using input distributions and Monte Carlo simulation along with a sensitivity analysis show that large uncertainties remain for climate impacts. For our most likely estimate, there were some climate costs, valued at USD 17.7 million, which is an order of magnitude smaller than the air quality benefits. This indicates that such policies can and should be undertaken on the grounds of improving local air pollution alone and that precautions should be taken to reduce the potentially unintended increases in GHG emissions or other unintended effects. PMID:24195736

  17. Climate change and pollutant emissions impacts on air quality in 2050 over Portugal

    Science.gov (United States)

    Sá, E.; Martins, H.; Ferreira, J.; Marta-Almeida, M.; Rocha, A.; Carvalho, A.; Freitas, S.; Borrego, C.

    2016-04-01

    Changes in climate and air pollutant emissions will affect future air quality from global to urban scale. In this study, regional air quality simulations for historical and future periods are conducted, with CAMx version 6.0, to investigate the impacts of future climate and anthropogenic emission projections on air quality over Portugal and the Porto metropolitan area in 2050. The climate and the emission projections were derived from the Representative Concentrations Pathways (RCP8.5) scenario. Modelling results show that climate change will impact NO2, PM10 and O3 concentrations over Portugal. The NO2 and PM10 annual means will increase in Portugal and in the Porto municipality, and the maximum 8-hr daily O3 value will increase in the Porto suburban areas (approximately 5%) and decrease in the urban area (approximately 2%). When considering climate change and projected anthropogenic emissions, the NO2 annual mean decreases (approximately 50%); PM10 annual mean will increase in Portugal and decrease in Porto municipality (approximately 13%); however PM10 and O3 levels increase and extremes occur more often, surpassing the currently legislated annual limits and displaying a higher frequency of daily exceedances. This air quality degradation is likely to be related with the trends found for the 2046-2065 climate, which implies warmer and dryer conditions, and with the increase of background concentrations of ozone and particulate matter. The results demonstrate the need for Portuguese authorities and policy-makers to design and implement air quality management strategies that take climate change impacts into account.

  18. Human Response to Ductless Personalised Ventilation: Impact of Air Movement, Temperature and Cleanness on Eye Symptoms

    OpenAIRE

    Dalewski, Mariusz; Fillon, Maelys; Bivolarova, Maria; Melikov, Arsen Krikor

    2013-01-01

    The performance of ductless personalized ventilation (DPV) in conjunction with displacement ventilation (DV) was studied in relation to peoples’ health, comfort and performance. This paper presents results on the impact of room air temperature, using of DPV and local air filtration on eye blink rate and tear film quality. In a test room with DV and six workstations 30 human subjects were exposed for four hours to each of the following 5 experimental conditions: 23 °C and DV only, 23 °C and DP...

  19. Evaluation of cooking energy cost, efficiency, impact on air pollution and policy in Nigeria

    Energy Technology Data Exchange (ETDEWEB)

    Anozie, A.N.; Bakare, A.R.; Sonibare, J.A. [Department of Chemical Engineering, Obafemi Awolowo University, P.O. Box 013, Ile-Ife (Nigeria); Oyebisi, T.O. [Technology Planning and Development Unit, Obafemi Awolowo University, P.O. Box 013, Ile-Ife (Nigeria)

    2007-07-15

    This study evaluated the cooking energy costs and efficiencies, the air pollution impacts of cooking energy consumption and the impact of the energy policy in the cooking energy sector in Nigeria. Water boiling and cooking experiments using the common cooking energy sources (fuel wood, kerosene, liquefied petroleum gas (LPG) and electricity) and common food items (water, yam and beans) were carried out. Energy surveys were carried out to determine the cooking energy use patterns in the urban and rural areas. It was found that fuel wood is the least expensive cooking energy source and LPG is the most expensive. Energy use efficiencies for boiling water were estimated at 25%, 46%, 73%, 79%, 66% and 90% for fuel wood, kerosene, gas, electric immersion coil, electric heating coil and electric hot plate, respectively. Energy intensity was found to be a comparative measure of energy efficiency. The impacts of air pollution from household cooking suggested a possibility of significant air pollutants contribution to the ambient environment using any of the energy carriers considered except electricity. The cooking energy use patterns showed that fuel wood is the predominant energy source for cooking in the rural areas while kerosene is the predominant energy source in the urban areas, revealing that the energy policy in the country had made no impact in the cooking energy sector. Recommendations for improving the energy supply situation were given and for removing the barriers that prevent the implementation of the recommendations. (author)

  20. Evaluation of the Impact of Atmospheric Infrared Sounder (AIRS) Radiance and Profile Data Assimilation in Partly Cloudy Regions

    Science.gov (United States)

    Zavodsky, Bradley; Srikishen, Jayanthi; Jedlovec, Gary

    2013-01-01

    Improvements to global and regional numerical weather prediction have been demonstrated through assimilation of data from NASA s Atmospheric Infrared Sounder (AIRS). Current operational data assimilation systems use AIRS radiances, but impact on regional forecasts has been much smaller than for global forecasts. Retrieved profiles from AIRS contain much of the information that is contained in the radiances and may be able to reveal reasons for this reduced impact. Assimilating AIRS retrieved profiles in an identical analysis configuration to the radiances, tracking the quantity and quality of the assimilated data in each technique, and examining analysis increments and forecast impact from each data type can yield clues as to the reasons for the reduced impact. By doing this with regional scale models individual synoptic features (and the impact of AIRS on these features) can be more easily tracked. This project examines the assimilation of hyperspectral sounder data used in operational numerical weather prediction by comparing operational techniques used for AIRS radiances and research techniques used for AIRS retrieved profiles. Parallel versions of a configuration of the Weather Research and Forecasting (WRF) model with Gridpoint Statistical Interpolation (GSI) are run to examine the impact AIRS radiances and retrieved profiles. Statistical evaluation of 6 weeks of forecast runs will be compared along with preliminary results of in-depth investigations for select case comparing the analysis increments in partly cloudy regions and short-term forecast impacts.

  1. Potential Impact of the National Plan for Future Electric Power Supply on Air Quality in Korea

    Science.gov (United States)

    Shim, C.; Hong, J.

    2014-12-01

    Korean Ministry of Trade, Industry and Energy (MOTIE) announced the national plan for Korea's future electric power supply (2013 - 2027) in 2013. According to the plan, the national demand for electricity will be increased by 60% compared to that of 2010 and primary energy sources for electric generation will still lean on the fossil fuels such as petroleum, LNG, and coal, which would be a potential threat to air quality of Korea. This study focused on two subjects: (1) How the spatial distribution of the primary air pollutant's emissions (i.e., NOx, SOx, CO, PM) will be changed and (2) How the primary emission changes will influence on the national ambient air quality including ozone in 2027. We used GEOS-Chem model simulation with modification of Korean emissions inventory (Clean Air Policy Support System (CAPSS)) to simulate the current and future air quality in Korea. The national total emissions of CO, NOx, SOx, PM in year 2027 will be increased by 3%, 8%, 13%, 2%, respectively compared to 2010 and there are additional concern that the future location of the power plants will be closer to the Seoul Metropolitan Area (SMA), where there are approximately 20 million population vulnerable to the potentially worsened air quality. While there are slight increase of concentration of CO, NOx, SOx, and PM in 2027, the O3 concentration is expected to be similar to the level of 2010. Those results may imply the characteristics of air pollution in East Asia such as potentially severe O3 titration and poorer O3/CO or O3/NOx ratio. Furthermore, we will discuss on the impact of transboundary pollution transport from China in the future, which is one of the large factors to control the air quality of Korea.

  2. Air pollution and its impact on human health in mega cities

    International Nuclear Information System (INIS)

    One of the major problems faced by the over crowded mega-cities of the world in general and that in third world is the alarming levels of air pollution causing damage to the health of its inhabitants. In Cairo estimated lives lost annually due to air pollution varies between 4000 to 16000 while Delhi has been rated as the most polluted city in the world. Karachi now a mega-city typically represents pollution status of the third world. Major cause of pollution is more than 0.62 millions vehicles on the roads. The pollution due to industries is localized and mainly affects the health of the workers. Measurement carried out for the selected areas along the roads carrying high density traffic show a very high pollution level (CO, 3 to 10 ppm; CO/sub 2/,170 to 350 ppm; HC 0.274 to 0.360 vol. %; particulate matter 67.0 to 565.5 ug/m/sup 3/. A parallel hospital survey to correlate air borne disease with air pollution indicates that over 16600 to 22977 patients suffered from air borne diseases while 6377 from bacterial infection. Analysis showed that 70% of the patients suffering from airborne disease come from the surveyed areas with high level pollution. Cancer is shifting from old age to middle age group indicating deteriorating air environment. Ratio of male to female patients is 2:1, which is indicative of hazardous ambient air quality outside to which men are exposed more than women. The paper discusses in depth the air pollution and its impact on human health in mega cities with Karachi as a case study. (author)

  3. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Weather Forecasting

    Science.gov (United States)

    Chou, Shih-Hung; Zavodsky, Bradley T.; Jedlovee, Gary J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles with accuracy comparable to that of radiosondes. The purpose of this paper is to describe a procedure to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research Weather Research and Forecasting (WRF-ARW) model using its three-dimension variational (3DVAR) analysis component (WRF-Var). Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in both clear and partly cloudy regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts due to instability added in the forecast soundings by the AIRS profiles. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  4. Health and Cellular Impacts of Air Pollutants: From Cytoprotection to Cytotoxicity

    Directory of Open Access Journals (Sweden)

    Karine Andreau

    2012-01-01

    Full Text Available Air pollution as one of the ravages of our modern societies is primarily linked to urban centers, industrial activities, or road traffic. These atmospheric pollutants have been incriminated in deleterious health effects by numerous epidemiological and in vitro studies. Environmental air pollutants are a heterogeneous mixture of particles suspended into a liquid and gaseous phase which trigger the disruption of redox homeostasis—known under the term of cellular oxidative stress—in relation with the establishment of inflammation and cell death via necrosis, apoptosis, or autophagy. Activation or repression of the apoptotic process as an adaptative response to xenobiotics might lead to either acute or chronic toxicity. The purpose of this paper is to highlight the central role of oxidative stress induced by air pollutants and to focus on the subsequent cellular impacts ranging from cytoprotection to cytotoxicity by decreasing or stimulating apoptosis, respectively.

  5. MEGAPOLI: concept of multi-scale modelling of megacity impact on air quality and climate

    Science.gov (United States)

    Baklanov, A.; Lawrence, M.; Pandis, S.; Mahura, A.; Finardi, S.; Moussiopoulos, N.; Beekmann, M.; Laj, P.; Gomes, L.; Jaffrezo, J.-L.; Borbon, A.; Coll, I.; Gros, V.; Sciare, J.; Kukkonen, J.; Galmarini, S.; Giorgi, F.; Grimmond, S.; Esau, I.; Stohl, A.; Denby, B.; Wagner, T.; Butler, T.; Baltensperger, U.; Builtjes, P.; van den Hout, D.; van der Gon, H. D.; Collins, B.; Schluenzen, H.; Kulmala, M.; Zilitinkevich, S.; Sokhi, R.; Friedrich, R.; Theloke, J.; Kummer, U.; Jalkinen, L.; Halenka, T.; Wiedensholer, A.; Pyle, J.; Rossow, W. B.

    2010-11-01

    The EU FP7 Project MEGAPOLI: "Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation" (http://megapoli.info) brings together leading European research groups, state-of-the-art scientific tools and key players from non-European countries to investigate the interactions among megacities, air quality and climate. MEGAPOLI bridges the spatial and temporal scales that connect local emissions, air quality and weather with global atmospheric chemistry and climate. The suggested concept of multi-scale integrated modelling of megacity impact on air quality and climate and vice versa is discussed in the paper. It requires considering different spatial and temporal dimensions: time scales from seconds and hours (to understand the interaction mechanisms) up to years and decades (to consider the climate effects); spatial resolutions: with model down- and up-scaling from street- to global-scale; and two-way interactions between meteorological and chemical processes.

  6. Impact of the 1990 Clean Air Act amendments to the biomass industry

    International Nuclear Information System (INIS)

    The direct impacts of the Clean Air Act on the existing biomass industry will be focused in four areas: Title I (nonattainment), Title III (air toxics), Title V (operating permits) and Title VII (enforcement). These four Titles will result in tighter emission limitations and other requirements on existing sources of air pollution. Two other areas should provide incentives for new biomass utilization. Title II (mobile sources) will promote the development of a clean fuels program; biomass is expected to play a key role as ethanol fuel resources are explicitly promoted by the Act. Title IV (acid rain control) will encourage the generation of power through renewable energy sources, including biomass. While there are several new requirements which will require industry to tighten controls and reduce emissions, there are also significant benefits to the biomass industry as well. A Title by Title description explains the applicable new requirements and the potential economic opportunities

  7. Evaluating the Impact of AIRS Observations on Regional Forecasts at the SPoRT Center

    Science.gov (United States)

    Zavodsky, Bradley

    2011-01-01

    NASA Short-term Prediction Research and Transition (SPoRT) Center collaborates with operational partners of different sizes and operational goals to improve forecasts using targeted projects and data sets. Modeling and DA activities focus on demonstrating utility of NASA data sets and capabilities within operational systems. SPoRT has successfully assimilated the Atmospheric Infrared Sounder (AIRS) radiance and profile data. A collaborative project is underway with the Joint Center for Satellite Data Assimilation (JCSDA) to use AIRS profiles to better understand the impact of AIRS radiances assimilated within Gridpoint Statistical Interpolation (GSI) in hopes of engaging the operational DA community in a reassessment of assimilation methodologies to more effectively assimilate hyperspectral radiances.

  8. Air

    Science.gov (United States)

    ... house) Industrial emissions (like smoke and chemicals from factories) Household cleaners (spray cleaners, air fresheners) Car emissions (like carbon monoxide) *All of these things make up “particle pollution.” They mostly come from cars, trucks, buses, and ...

  9. The Impact of Residential Combustion Emissions on Air Quality and Human Health in China

    Science.gov (United States)

    Archer-Nicholls, S.; Wiedinmyer, C.; Baumgartner, J.; Brauer, M.; Cohen, A.; Carter, E.; Frostad, J.; Forouzanfar, M.; Xiao, Q.; Liu, Y.; Yang, X.; Hongjiang, N.; Kun, N.

    2015-12-01

    Solid fuel cookstoves are used heavily in rural China for both residential cooking and heating purposes. Their use contributes significantly to regional emissions of several key pollutants, including carbon monoxide, volatile organic compounds, oxides of nitrogen, and aerosol particles. The residential sector was responsible for approximately 36%, 46% and 81% of China's total primary PM2.5, BC and OC emissions respectively in 2005 (Lei et al., 2011). These emissions have serious consequences for household air pollution, ambient air quality, tropospheric ozone formation, and the resulting population health and climate impacts. This paper presents initial findings from the modeling component of a multi-disciplinary energy intervention study currently being conducted in Sichuan, China. The purpose of this effort is to quantify the impact of residential cooking and heating emissions on regional air quality and human health. Simulations with varying levels of residential emissions have been carried out for the whole of 2014 using the Weather Research and Forecasting model with Chemistry (WRF-Chem), a fully-coupled, "online" regional chemical transport model. Model output is evaluated against surface air quality measurements across China and compared with seasonal (winter and summer) ambient air pollution measurements conducted at the Sichuan study site in 2014. The model output is applied to available exposure—response relationships between PM2.5 and cardiopulmonary health outcomes. The sensitivity in different regions across China to the different cookstove emission scenarios and seasonality of impacts are presented. By estimating the mortality and disease burden risk attributable to residential emissions we demonstrate the potential benefits from large-scale energy interventions. Lei Y, Zhang Q, He KB, Streets DG. 2011. Primary anthropogenic aerosol emission trends for China, 1990-2005. Atmos. Chem. Phys. 11:931-954.

  10. Impact of global climate change on regional air quality: Introduction to the thematic issue

    International Nuclear Information System (INIS)

    Despite the major international efforts devoted to the understanding and to the future estimate of global climate change and its impact on regional scale processes, the evolution of the atmospheric composition in a changing climate is far to be understood. In particular, the future evolution of the concentration of near-surface pollutants determining air quality at a scale affecting human health and ecosystems is a subject of intense scientific research. This thematic issue reviews the current scientific knowledge of the consequences of global climate change on regional air quality and its related impact on the biosphere and on human mortality. This article provides a presentation of the key issues, summarizes the current knowledge, and introduces the thematic issue. (authors)

  11. Impacts of air-sea exchange coefficients on snowfall events over the Korean Peninsula

    Science.gov (United States)

    Kang, Jung-Yoon; Kwon, Young Cheol

    2016-08-01

    Snowfall over the Korean Peninsula is mainly associated with air mass transformation by the fluxes across the air-sea interface during cold-air outbreaks over the warm Yellow Sea. The heat and momentum exchange coefficients in the surface flux parameterization are key parameters of flux calculations across the air-sea interface. This study investigates the effects of the air-sea exchange coefficients on the simulations of snowfall events over the Korean Peninsula using the Weather Research and Forecasting (WRF) model. Two snowfall cases are selected for this study. One is a heavy snowfall event that took place on January 4, 2010, and the other is a light snowfall event that occurred on December 23-24, 2011. Several sensitivity tests are carried out with increased and decreased heat and momentum exchange coefficients. The domain-averaged precipitation is increased (decreased) with increased (decreased) heat exchange coefficient because the increased (decreased) surface heat flux leads to more (less) moist conditions in the low level of the atmosphere. On the other hand, the domain-averaged precipitation is decreased (increased) with increased (decreased) momentum exchange coefficient because the increased (decreased) momentum coefficient causes reduction (increase) of wind speed and heat flux. The variation of precipitation in the heat exchange coefficient experiments is much larger than that in the momentum exchange coefficient experiments because the change of heat flux has a more direct impact on moisture flux and snowfall amount, while the change of momentum flux has a rather indirect impact via wind speed changes. The low-pressure system is intensified and moves toward North when the heat exchange coefficient is increased because warming and moistening of the lower atmosphere contributes to destabilize the air mass, resulting in the change of precipitation pattern over the Korean Peninsula in the heat exchange coefficient experiments.

  12. Impacts of South East Biomass Burning on local air quality in South China Sea

    Science.gov (United States)

    Wai-man Yeung, Irene; Fat Lam, Yun; Eniolu Morakinyo, Tobi

    2016-04-01

    Biomass burning is a significant source of carbon monoxide and particulate matter, which is not only contribute to the local air pollution, but also regional air pollution. This study investigated the impacts of biomass burning emissions from Southeast Asia (SEA) as well as its contribution to the local air pollution in East and South China Sea, including Hong Kong and Taiwan. Three years (2012 - 2014) of the Hybrid Single Particle Lagrangian-Integrated Trajectory (HYSPLIT) with particles dispersion analyses using NCEP (Final) Operational Global Analysis data (FNL) data (2012 - 2014) were analyzed to track down all possible long-range transport from SEA with a sinking motion that worsened the surface air quality (tropospheric downwash from the free troposphere). The major sources of SEA biomass burning emissions were first identified using high fire emissions from the Global Fire Emission Database (GFED), followed by the HYSPLIT backward trajectory dispersion modeling analysis. The analyses were compared with the local observation data from Tai Mo Shan (1,000 msl) and Tap Mun (60 msl) in Hong Kong, as well as the data from Lulin mountain (2,600 msl) in Taiwan, to assess the possible impacts of SEA biomass burning on local air quality. The correlation between long-range transport events from the particles dispersion results and locally observed air quality data indicated that the background concentrations of ozone, PM2.5 and PM10 at the surface stations were enhanced by 12 μg/m3, 4 μg/m3 and 7 μg/m3, respectively, while the long-range transport contributed to enhancements of 4 μg/m3, 4 μg/m3 and 8 μg/m3 for O3, PM2.5 and PM10, respectively at the lower free atmosphere.

  13. The impact and bounce of air bubbles at a flat fluid interface.

    Science.gov (United States)

    Manica, Rogerio; Klaseboer, Evert; Chan, Derek Y C

    2016-04-01

    The rise and impact of bubbles at an initially flat but deformable liquid-air interface in ultraclean liquid systems are modelled by taking into account the buoyancy force, hydrodynamic drag, inertial added mass effect and drainage of the thin film between the bubble and the interface. The bubble-surface interaction is analyzed using lubrication theory that allows for both bubble and surface deformation under a balance of normal stresses and surface tension as well as the long-range nature of deformation along the interface. The quantitative result for collision and bounce is sensitive to the impact velocity of the rising bubble. This velocity is controlled by the combined effects of interfacial tension via the Young-Laplace equation and hydrodynamic stress on the surface, which determine the deformation of the bubble. The drag force that arises from the hydrodynamic stress in turn depends on the hydrodynamic boundary conditions on the bubble surface and its shape. These interrelated factors are accounted for in a consistent manner. The model can predict the rise velocity and shape of millimeter-size bubbles in ultra-clean water, in two silicone oils of different densities and viscosities and in ethanol without any adjustable parameters. The collision and bounce of such bubbles with a flat water/air, silicone oil/air and ethanol/air interface can then be predicted with excellent agreement when compared to experimental observations. PMID:26924623

  14. Impact of current policies on future air quality and health outcomes in Delhi, India

    Science.gov (United States)

    Dholakia, Hem H.; Purohit, Pallav; Rao, Shilpa; Garg, Amit

    2013-08-01

    A key policy challenge in Indian megacities is to curb high concentrations of PM2.5 and mitigate associated adverse health impacts. Using the Greenhouse Gases and Air Pollution Interactions and Synergies (GAINS) model we carry out an integrated analysis of the air quality regulations across different sectors for the city of Delhi. Our findings show that PM2.5 concentrations for Delhi will not reach the recommended national ambient air quality standards (NAAQS) even by 2030 under the current policies scenario. Adopting advanced control technologies reduces PM2.5 concentrations by about 60% and all-cause mortality by half in 2030. Climate change mitigation policies significantly reduce greenhouse gases, but have a modest impact on reducing PM2.5 concentrations. Stringent policies to control the net flow of air pollution from trans-boundary sources will play a crucial role in reducing pollution levels in Delhi city. Achieving NAAQS requires a stringent policy portfolio that combines advanced control technologies with a switch to cleaner fuels and the control of trans-boundary pollution.

  15. Cancer incidence in Priolo, Sicily: a spatial approach for estimation of industrial air pollution impact

    OpenAIRE

    Lucia Fazzo; Mario Carere; Francesco Tisano; Caterina Bruno; Achille Cernigliaro; Maria Rita Cicero; Pietro Comba; Maria Luisa Contrino; Marco De Santis; Fabrizio Falleni; Vincenzo Ingallinella; Anselmo Madeddu; Ida Marcello; Carlo Regalbuto; Giovanna Sciacca

    2016-01-01

    The territory around the industrial Sicilian area of Priolo, Italy, has been defined as a contaminated site (CS) of national priority for remediation because of diffuse environmental contamination caused by large industrial settlements. The present study investigates the spatial distribution of cancer into the CS territory (period 1999-2006). Different geographical methods used for the evaluation of the impact of industrial air pollutants were adopted. Using the database of Syracuse Province ...

  16. Integrated Modelling for Health and Environmental Impact Assessment of Air Pollution and Climate Change

    OpenAIRE

    Reis, Stefan; Oxley, Tim; Rowe, Ed

    2010-01-01

    Modelling the impacts of air pollution and climate change on human health and ecosystems in integrated assessment models (IAMs) has emerged as a key tool to inform policy decision making, where simplistic solutions are unlikely to deliver efficient and sustainable pathways for future development. Model integration is facing a complex set of challenges in different dimensions, as integrated models have to be: Spatially explicit and of sufficiently high spatial resolution for...

  17. The health burden of pollution: the impact of prenatal exposure to air pollutants

    OpenAIRE

    Sandra E. VIEIRA

    2015-01-01

    Exposure to atmospheric pollutants in both open and closed environments is a major cause of morbidity and mortality that may be both controlled and minimized. Despite growing evidence, several controversies and disagreements exist among the studies that have analyzed the effects of prenatal pollutant exposure. This review article aims to analyze primary scientific evidence of the effects of air pollution during pregnancy and the impact of these effects on the fetus, infant health, and in part...

  18. On the long term impact of emissions from central European cities on regional air-quality

    OpenAIRE

    P. Huszar; M. Belda; T. Halenka

    2015-01-01

    For the purpose of qualifying and quantifying the impact of urban emission from Central European cities on the present-day regional air-quality, the regional climate model RegCM4.2 was coupled with the chemistry transport model CAMx, including two-way interactions. A series of simulations was carried out for the 2001–2010 period either with all urban emissions included (base case) or without considering urban emissions. Further, the sensitivity of ozone production to urban e...

  19. MEMS Microphone Array Sensor for Air-Coupled Impact-Echo

    OpenAIRE

    Robin Groschup; Grosse, Christian U.

    2015-01-01

    Impact-Echo (IE) is a nondestructive testing technique for plate like concrete structures. We propose a new sensor concept for air-coupled IE measurements. By using an array of MEMS (micro-electro-mechanical system) microphones, instead of a single receiver, several operational advantages compared to conventional sensing strategies in IE are achieved. The MEMS microphone array sensor is cost effective, less sensitive to undesired effects like acoustic noise and has an optimized sensitivity fo...

  20. Impacts of extreme air temperatures on cyanobacteria in five deep peri-Alpine lakes

    OpenAIRE

    Nicole GALLINA; Anneville, Orlane; Beniston, Martin

    2011-01-01

    Cyanobacteria are of major interest in freshwater ecosystems, since they are able to produce toxins with potentially negative impacts on the environment, health and thus on economics and society. It is therefore important for water management authorities to assess the manner in which cyanobacteria may evolve under climate change, especially in the Alpine Region where warming is projected by climate models to be more important than the global average. In this study, air temperature extremes un...

  1. Understanding Anthropogenic Impacts on Air Quality at Rural Locations Using High Time Resolution Particle Composition Measurements

    Science.gov (United States)

    Collett, J. L.; Lee, T.; Yu, X.; Sullivan, A.; Kreidenweis, S. M.; Malm, W.

    2006-12-01

    Many of our nation's National Parks, wilderness areas and other visually protected environments are located in regions where urban, agricultural, and other anthropogenic emissions periodically exert strong impacts on local air quality. In this presentation we will use high time resolution (15 min) measurements of particle composition to examine the frequency and magnitude of these impacts and to elucidate changes in aerosol chemistry occurring during transitions between periods of strong anthropogenic impact and periods when atmospheric composition is more strongly influenced by natural emissions and/or regional air quality. Highlights will be drawn from a series of field campaigns at locations around the U.S., including Yosemite National Park (downwind of the Central Valley of California), San Gorgonio Wilderness Area (downwind of the Los Angeles basin), Bondville, Illinois (a rural Midwestern site), Great Smoky Mountains National Park (a rural, mountain location in the polluted southeast U.S.), Brigantine National Wildlife Refuge, New Jersey (a coastal site on the U.S. eastern seaboard), and Rocky Mountain National Park, Colorado (located in the mountains west of the Colorado Front Range urban corridor). Particle composition measurements were made using a Particle Into Liquid Sampler (PILS) coupled to two on-line ion chromatographs. We will demonstrate how air quality at these locations is strongly influenced by local and regional transport phenomena and illustrate the influence of anthropogenic emissions on both fine and coarse particle concentrations and speciation.

  2. Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution.

    Science.gov (United States)

    Péter, Szabolcs; Holguin, Fernando; Wood, Lisa G; Clougherty, Jane E; Raederstorff, Daniel; Antal, Magda; Weber, Peter; Eggersdorfer, Manfred

    2015-12-01

    Air pollution worldwide has been associated with cardiovascular and respiratory morbidity and mortality, particularly in urban settings with elevated concentrations of primary pollutants. Air pollution is a very complex mixture of primary and secondary gases and particles, and its potential to cause harm can depend on multiple factors-including physical and chemical characteristics of pollutants, which varies with fine-scale location (e.g., by proximity to local emission sources)-as well as local meteorology, topography, and population susceptibility. It has been hypothesized that the intake of anti-oxidant and anti-inflammatory nutrients may ameliorate various respiratory and cardiovascular effects of air pollution through reductions in oxidative stress and inflammation. To date, several studies have suggested that some harmful effects of air pollution may be modified by intake of essential micronutrients (such as B vitamins, and vitamins C, D, and E) and long-chain polyunsaturated fatty acids. Here, we review the existing literature related to the potential for nutrition to modify the health impacts of air pollution, and offer a framework for examining these interactions. PMID:26690474

  3. Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution

    Directory of Open Access Journals (Sweden)

    Szabolcs Péter

    2015-12-01

    Full Text Available Air pollution worldwide has been associated with cardiovascular and respiratory morbidity and mortality, particularly in urban settings with elevated concentrations of primary pollutants. Air pollution is a very complex mixture of primary and secondary gases and particles, and its potential to cause harm can depend on multiple factors—including physical and chemical characteristics of pollutants, which varies with fine-scale location (e.g., by proximity to local emission sources—as well as local meteorology, topography, and population susceptibility. It has been hypothesized that the intake of anti-oxidant and anti-inflammatory nutrients may ameliorate various respiratory and cardiovascular effects of air pollution through reductions in oxidative stress and inflammation. To date, several studies have suggested that some harmful effects of air pollution may be modified by intake of essential micronutrients (such as B vitamins, and vitamins C, D, and E and long-chain polyunsaturated fatty acids. Here, we review the existing literature related to the potential for nutrition to modify the health impacts of air pollution, and offer a framework for examining these interactions.

  4. Measuring the Impact of Urban Air Pollution: Hedonic Price Analysis and Health Production Function

    Directory of Open Access Journals (Sweden)

    Endah Saptutyningsih

    2015-12-01

    Full Text Available This study aims to value air quality from the urban housing market in Yogyakarta City. It is also provides estimation of marginal willingness to pay for the air quality improvement and estimation of the consumer surplus due to reduce of air quality. The methodological framework for estimation is based on a hedonic price model. The result of hedonic price method concludes that by adopting a two-stage estimation procedure to estimate the relationship between air quality and property value, on the average, an increase in the level of O3 by one percent will increases the property price by 0.063 percent. By using a health production function and demand function mitigation can be seen that the medical history of the individual has effect on the number of working days lost. Meanwhile, O3 pollution has positive effect on the amount of medical expenses for mitigation. Decreasing in O3 pollution causes a decrease in the level of medical expenses to mitigate. Therefore, it is important to reduce the negative impacts of air pollution.

  5. Environmental impacts of air-gun surveys on glass sponges : final report

    Energy Technology Data Exchange (ETDEWEB)

    Tunnicliffe, V.; Yahel, G. [Victoria Univ., Victoria, BC (Canada). Dept. of Biology; Chapman, R.; Wilmut, M. [Victoria Univ., Victoria, BC (Canada). School of Earth and Ocean Sciences

    2008-09-15

    Air-gun surveys associated with the oil and gas exploration in the Queen Charlotte Basin will insonify the seafloor with broadband, high intensity noise, exposing the glass sponge reef systems of that area to acoustic impacts. Tissue integrity and behaviour of marine animals can be affected by the acoustic harassment of water propagated vibration. This paper examined the effects of acoustic noise on the behaviour of glass sponges. The purpose of the study was to test the hypothesis that the acoustic vibration produced by a small, surface operated air gun would not alter the normal pattern of sponge feeding activities. The paper described the methods, with particular reference to the study site; sponge pumping rate; and acoustic effects on sponge pumping. Results were presented for ambient conditions; air gun shots; sponge pumping responses to air gun shots; and correlation of sponge response and ambient current. The question of whether the sponge's excurrent flow responds to the pressure from a series of air-gun shots was addressed by a statistical analysis over all the excurrent data from the experiment. It was concluded that there is little or no evidence that the acoustic pressure from the shots influences the physiological functions of the sponge. 22 refs., 2 tabs., 11 figs.

  6. Impact of Atmospheric Infrared Sounder (AIRS) Thermodynamic Profiles on Regional Precipitation Forecasting

    Science.gov (United States)

    Chou, S.-H.; Zavodsky, B. T.; Jedloved, G. J.

    2010-01-01

    In data sparse regions, remotely-sensed observations can be used to improve analyses and lead to better forecasts. One such source comes from the Atmospheric Infrared Sounder (AIRS), which together with the Advanced Microwave Sounding Unit (AMSU), provides temperature and moisture profiles in clear and cloudy regions with accuracy which approaches that of radiosondes. The purpose of this paper is to describe an approach to assimilate AIRS thermodynamic profile data into a regional configuration of the Advanced Research WRF (ARW) model using WRF-Var. Quality indicators are used to select only the highest quality temperature and moisture profiles for assimilation in clear and partly cloudy regions, and uncontaminated portions of retrievals above clouds in overcast regions. Separate error characteristics for land and water profiles are also used in the assimilation process. Assimilation results indicate that AIRS profiles produce an analysis closer to in situ observations than the background field. Forecasts from a 37-day case study period in the winter of 2007 show that AIRS profile data can lead to improvements in 6-h cumulative precipitation forecasts resulting from improved thermodynamic fields. Additionally, in a convective heavy rainfall event from February 2007, assimilation of AIRS profiles produces a more unstable boundary layer resulting in enhanced updrafts in the model. These updrafts produce a squall line and precipitation totals that more closely reflect ground-based observations than a no AIRS control forecast. The location of available high-quality AIRS profiles ahead of approaching storm systems is found to be of paramount importance to the amount of impact the observations will have on the resulting forecasts.

  7. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    International Nuclear Information System (INIS)

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010–2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations

  8. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    Science.gov (United States)

    Marlier, Miriam E.; DeFries, Ruth S.; Kim, Patrick S.; Gaveau, David L. A.; Koplitz, Shannon N.; Jacob, Daniel J.; Mickley, Loretta J.; Margono, Belinda A.; Myers, Samuel S.

    2015-05-01

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010-2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations and

  9. Wintertime Air Quality Impacts from Oil and Natural Gas Drilling Operations in the Bakken Formation Region

    Science.gov (United States)

    Evanoski-Cole, Ashley; Sive, Barkley; Zhou, Yong; Prenni, Anthony; Schurman, Misha; Day, Derek; Sullivan, Amy; Li, Yi; Hand, Jenny; Gebhart, Kristi; Schichtel, Bret; Collett, Jeffrey

    2016-04-01

    Oil and natural gas extraction has dramatically increased in the last decade in the United States due to the increased use of unconventional drilling techniques which include horizontal drilling and hydraulic fracturing. The impact of these drilling activities on local and regional air quality in oil and gas basins across the country are still relatively unknown, especially in recently developed basins such as the Bakken shale formation. This study is the first to conduct a comprehensive characterization of the regional air quality in the Bakken region. The Bakken shale formation, part of the Williston basin, is located in North Dakota and Montana in the United States and Saskatchewan and Manitoba in Canada. Oil and gas drilling operations can impact air quality in a variety of ways, including the generation of atmospheric particulate matter (PM), hazardous air pollutants, ozone, and greenhouse gas emissions. During the winter especially, PM formation can be enhanced and meteorological conditions can favor increased concentrations of PM and other pollutants. In this study, ground-based measurements throughout the Bakken region in North Dakota and Montana were collected over two consecutive winters to gain regional trends of air quality impacts from the oil and gas drilling activities. Additionally, one field site had a comprehensive suite of instrumentation operating at high time resolution to gain detailed characterization of the atmospheric composition. Measurements included organic carbon and black carbon concentrations in PM, the characterization of inorganic PM, inorganic gases, volatile organic compounds (VOCs), precipitation and meteorology. These elevated PM episodes were further investigated using the local meteorological conditions and regional transport patterns. Episodes of elevated concentrations of nitrogen oxides and sulfur dioxide were also detected. The VOC concentrations were analyzed and specific VOCs that are known oil and gas tracers were used

  10. On the impact of entrapped air in infiltration under ponding conditions. Part a: Preferential air flow path effects on infiltration

    Science.gov (United States)

    Mizrahi, Guy; Weisbrod, Noam; Furman, Alex

    2015-04-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge (MAR) or soil aquifer treatment (SAT) of treated wastewater. Earlier studies found that under ponding conditions, air is being entrapped and compressed until it reaches a pressure which will enable the air to escape (unstable air flow). They also found that entrapped air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate, under ponding conditions, the effects of: (1) irregular surface topography on preferential air flow path development (stable air flow); (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape through 20 ports installed along the column perimeter. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular surface (high and low surface zones). Additionally, Helle-show experiments were conducted in order to obtain a visual observation of preferential air flow path development. The measurements were carried out using a tension meter, air pressure transducers, TDR and video cameras. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the

  11. Evaluation of urban air pollution impact. Brest and Nantes impact at long term; Evaluation de l'impact sanitaire de la pollution atmospherique urbaine. Brest et Nantes impact a long terme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    The assessment for Brest and Nantes of the health impact in 1999 of chronic exposure to air pollution relies on four stages: health outcome identification, the selection of exposure-response functions, exposure assessment and risk characterization. The study characterizes: - the health gain due to a 25% decrease in air pollution levels; - the expected health impact of a 15% rise in air pollution levels. The results give the number of deaths attributable to air pollution. As for the health gain, the gain in days of life expectancy is also calculated. The study for Brest relies on one single exposure-response function. Concerning Nantes, the air control network is more complete and allows to use four exposure-response functions. The health gain due to a 25% decrease in air pollution levels is interpreted as a prudent evaluation of the health impact of air pollution. The estimated number of deaths due to the impact is around 38 (23 - 53) for Brest and around 40 (14 - 65) for Nantes. It means a decrease in the lifespan of 48 (29 - 68) days for Brest and 51 (17 - 84) days for Nantes. The uncertainty about exposure evaluation, the use of American exposure-response functions and of strong hypotheses to calculate the lifespan reduction generate more errors and uncertainty than for short term health impact assessment. (author)

  12. Evaluating the CLimate and Air Quality ImPacts of Short-livEd Pollutants (ECLIPSE)

    Science.gov (United States)

    Stohl, Andreas

    2015-04-01

    The ECLIPSE (Evaluating the CLimate and Air Quality ImPacts of Short-livEd Pollutants) EU project studied the influence of short-lived climate forcers (SLCFs, e.g., aerosols, methane, ozone) on past, current and future climate and has finished in March 2015. ECLIPSE has created a consistent emission data set for short- and long-lived climate forcers for the recent past and future scenarios. This inventory also includes new source categories (e.g., gas flaring emissions) and is already in use by many groups worldwide. A small ensemble of models was used to quantify radiative forcing of SLCFs by region and sector. Existing and new metrics for quantifying climate impacts were studied and Global Temperature Change Potential on a 20-year time horizon (GTP20) was selected to rank potential emission mitigation measures. The 20 most effective measures with a non-negative impact on air quality were then used to define a mitigation scenario. For the first time, a small ensemble of coupled climate models performed transient model simulations of the control and the mitigation scenario, to quantify the impact of the SLCF mitigation measures on global and regional temperature and precipitation. This presentation will summarize the main findings of ECLIPSE and extract the policy-relevant recommendations from the project. Findings will also be discussed in the light of a detailed evaluation of the models against measurements in Europe, the Arctic and Asia.

  13. Ambient air toxics monitoring and impact analysis for a resource recovery facility

    International Nuclear Information System (INIS)

    Ambient air monitoring has been conducted for approximately three years beginning in January of 1988 at four locations surrounding the Greater Detroit Resource Recovery Facility (GDRRF). The GDRRF began burning refuse-derived fuel (RDF) in early 1989. Two sampling locations operated by Roy F. Weston, Inc. are located in Michigan near the facility, and two sampling locations operated by Environment Canada are located across the Detroit River in Ontario. The groups of compounds sampled include dioxins and furans, PCBs, polycyclic aromatic hydrocarbons (PAHs), trace metals, and inorganic acids. The sampling results comprise one of the most comprehensive databases available for assessment of RRF air quality impacts. This paper presents a comparison of the sampling results between two of the four sampling locations. The site locations were chosen to represent background and impacted sites based on dispersion modeling and climatology. The background and impacted site results are statistically compared to determine impacts from the facility. Also, multiple regression and principal components techniques are used to identify source-receptor relations and source signatures

  14. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    Science.gov (United States)

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice. PMID:26681325

  15. Air-conditioning Australian households: The impact of dynamic peak pricing

    Energy Technology Data Exchange (ETDEWEB)

    Strengers, Yolande, E-mail: yolande.strengers@rmit.edu.a [Centre for Design, RMIT University, GPO Box 2476, Melbourne VIC 3001 (Australia)

    2010-11-15

    International mandates for smart metering are enabling variable and real-time pricing regimes such as dynamic peak pricing (DPP), which charges 10-40 times the off-peak rate for electricity during short periods. This regime aims to reduce peak electricity demand (predominantly due to increase in residential air-conditioning usage) and curb greenhouse gas emissions. Although trials indicate that DPP can achieve significant demand reductions, particularly in summer, little is known about how or why households change their cooling practices in response to this strategy. This paper discusses the outcomes of a small qualitative study assessing the impact of a DPP trial on household cooling practices in the Australian state of New South Wales. The study challenges common assumptions about the necessity of air-conditioning and impact of price signals. It finds that DPP engages households as co-managers of their cooling practices through a series of notification signals (SMS, phone, in-home display, email, etc.). Further, by linking the price signal to air-conditioning, some householders consider this practice discretionary for short periods of time. The paper concludes by warning that policy makers and utilities may serve to legitimise air-conditioning usage and/or negate demand reductions by failing to acknowledge the non-rational dynamics of DPP and household cooling practices. - Research highlights: {yields}Most householders consider air-conditioning discretionary during DPP events {yields}DPP engages householders as co-managers of their demand {yields}Notification of an upcoming DPP event is significant to the response {yields}Householders feel obligated to respond to DPP for a range of non-financial reasons

  16. Determining air quality and greenhouse gas impacts of hydrogen infrastructure and fuel cell vehicles.

    Science.gov (United States)

    Stephens-Romero, Shane; Carreras-Sospedra, Marc; Brouwer, Jacob; Dabdub, Donald; Samuelsen, Scott

    2009-12-01

    Adoption of hydrogen infrastructure and hydrogen fuel cell vehicles (HFCVs) to replace gasoline internal combustion engine (ICE) vehicles has been proposed as a strategy to reduce criteria pollutant and greenhouse gas (GHG) emissions from the transportation sector and transition to fuel independence. However, it is uncertain (1) to what degree the reduction in criteria pollutants will impact urban air quality, and (2) how the reductions in pollutant emissions and concomitant urban air quality impacts compare to ultralow emission gasoline-powered vehicles projected for a future year (e.g., 2060). To address these questions, the present study introduces a "spatially and temporally resolved energy and environment tool" (STREET) to characterize the pollutant and GHG emissions associated with a comprehensive hydrogen supply infrastructure and HFCVs at a high level of geographic and temporal resolution. To demonstrate the utility of STREET, two spatially and temporally resolved scenarios for hydrogen infrastructure are evaluated in a prototypical urban airshed (the South Coast Air Basin of California) using geographic information systems (GIS) data. The well-to-wheels (WTW) GHG emissions are quantified and the air quality is established using a detailed atmospheric chemistry and transport model followed by a comparison to a future gasoline scenario comprised of advanced ICE vehicles. One hydrogen scenario includes more renewable primary energy sources for hydrogen generation and the other includes more fossil fuel sources. The two scenarios encompass a variety of hydrogen generation, distribution, and fueling strategies. GHG emissions reductions range from 61 to 68% for both hydrogen scenarios in parallel with substantial improvements in urban air quality (e.g., reductions of 10 ppb in peak 8-h-averaged ozone and 6 mug/m(3) in 24-h-averaged particulate matter concentrations, particularly in regions of the airshed where concentrations are highest for the gasoline scenario

  17. Air-conditioning Australian households: The impact of dynamic peak pricing

    International Nuclear Information System (INIS)

    International mandates for smart metering are enabling variable and real-time pricing regimes such as dynamic peak pricing (DPP), which charges 10-40 times the off-peak rate for electricity during short periods. This regime aims to reduce peak electricity demand (predominantly due to increase in residential air-conditioning usage) and curb greenhouse gas emissions. Although trials indicate that DPP can achieve significant demand reductions, particularly in summer, little is known about how or why households change their cooling practices in response to this strategy. This paper discusses the outcomes of a small qualitative study assessing the impact of a DPP trial on household cooling practices in the Australian state of New South Wales. The study challenges common assumptions about the necessity of air-conditioning and impact of price signals. It finds that DPP engages households as co-managers of their cooling practices through a series of notification signals (SMS, phone, in-home display, email, etc.). Further, by linking the price signal to air-conditioning, some householders consider this practice discretionary for short periods of time. The paper concludes by warning that policy makers and utilities may serve to legitimise air-conditioning usage and/or negate demand reductions by failing to acknowledge the non-rational dynamics of DPP and household cooling practices. - Research highlights: →Most householders consider air-conditioning discretionary during DPP events →DPP engages householders as co-managers of their demand →Notification of an upcoming DPP event is significant to the response →Householders feel obligated to respond to DPP for a range of non-financial reasons

  18. Potential impact of climate change on air pollution-related human health effects.

    Science.gov (United States)

    Tagaris, Efthimios; Liao, Kuo-Jen; Delucia, Anthony J; Deck, Leland; Amar, Praveen; Russell, Armistead G

    2009-07-01

    The potential health impact of ambient ozone and PM2.5 concentrations modulated by climate change over the United States is investigated using combined atmospheric and health modeling. Regional air quality modeling for 2001 and 2050 was conducted using CMAQ Modeling System with meteorology from the GISS Global Climate Model, downscaled regionally using MM5,keeping boundary conditions of air pollutants, emission sources, population, activity levels, and pollution controls constant. BenMap was employed to estimate the air pollution health outcomes at the county, state, and national level for 2050 caused by the effect of meteorology on future ozone and PM2.5 concentrations. The changes in calculated annual mean PM2.5 concentrations show a relatively modest change with positive and negative responses (increasing PM2.5 levels across the northeastern U.S.) although average ozone levels slightly decrease across the northern sections of the U.S., and increase across the southern tier. Results suggest that climate change driven air quality-related health effects will be adversely affected in more then 2/3 of the continental U.S. Changes in health effects induced by PM2.5 dominate compared to those caused by ozone. PM2.5-induced premature mortality is about 15 times higher then that due to ozone. Nationally the analysis suggests approximately 4000 additional annual premature deaths due to climate change impacts on PM2.5 vs 300 due to climate change-induced ozone changes. However, the impacts vary spatially. Increased premature mortality due to elevated ozone concentrations will be offset by lower mortality from reductions in PM2.5 in 11 states. Uncertainties related to different emissions projections used to simulate future climate, and the uncertainties forecasting the meteorology, are large although there are potentially important unaddressed uncertainties (e.g., downscaling, speciation, interaction, exposure, and concentration-response function of the human health studies

  19. The impact of meteorological forcings on gas phase air pollutants over Europe

    Science.gov (United States)

    Watson, Laura; Lacressonnière, Gwendoline; Gauss, Michael; Engardt, Magnuz; Andersson, Camilla; Josse, Béatrice; Marécal, Virginie; Nyiri, Agnes; Sobolowski, Stefan; Siour, Guillaume; Vautard, Robert

    2015-10-01

    The impact of meteorological forcings on gas phase air pollutants (ozone and nitrogen dioxide) over Europe was studied using four offline chemistry transport models (CTMs) as part of the IMPACT2C project. This study uses long (20- and 30-year) simulations to evaluate the present-day performance of the CTMs, which is a necessary first step before undertaking any analysis of future air quality impacts. Two sets of meteorological forcings were used for each model: reanalysis of past observation data (ERA-Interim) and Global Climate Model (GCM) output. The results for the simulations forced by reanalysis data were assessed in relation to AirBase v7 measurement data, and it was determined that all four models slightly overpredict annual O3 values (mean biases range between 0.7 and 6.6 ppb) and three out of the four models underpredict observed annual NO2 (mean biases range between -3.1 and -5.2 ppb). The simulations forced by climate models result in spatially averaged monthly concentrations of O3 that are generally between 0 and 5 ppb higher than the values obtained from simulations forced by reanalysis data; therefore it was concluded that the use of climate models introduces an additional bias to the results, but this bias tends not to be significant in the majority of cases. The bias in O3 results appears to be correlated mainly to differences in temperature and boundary layer height between the two types of simulations, whereas the less significant bias in NO2 is negatively correlated to temperature and boundary layer height. It is also clear that the selection of chemical boundary conditions is an important factor in determining the variability of O3 model results. These results will be used as a baseline for the interpretation of future work, which will include an analysis of future climate scenarios upon European air quality.

  20. The impacts of CO2 capture technologies on transboundary air pollution in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Van Harmelen, T.; Van Horssen, A.; Van Gijlswijk, R. [TNO Built Environment and Geosciences, Delft (Netherlands); Koornneef, J.; Ramirez Ramirez, A. [Utrecht University, Utrecht (Netherlands)

    2008-05-15

    The objective of the inventory phase 1 of the project on the title subject is two-fold: (1) to assess the impacts of different CO2 capture technologies on transboundary air pollution in the Netherlands in 2020. Other possible environmental impacts such as toxic emissions and safety are considered qualitatively; and (2) to provide recommendations for further research in the in-depth phase 2 in order to address the current knowledge gaps found in this area. The inventory summarises all (public) available information that is relevant for transboundary air pollution and presents it in understandable terms for environmental experts and policymakers who are not CCS (carbon dioxide capture and storage) experts. The project surveys the present scientific literature and interviews key players in the carbon capture community in the Netherlands to present the current insights and state of capture technology, particularly with respect to transboundary air pollution. This has been done taking into account the angles of both research and policy needs. The information gathered is combined with scenario information for the year 2020 on carbon capture technology and transboundary air pollution in order to sketch ranges of possible impacts of carbon capture technologies in the Netherlands in this year. Chapter 2 explains the methodology and the research process taken in the project. Chapter 3 introduces the different capture technologies in the form a structured description. Chapter 4 describes the results of the assessment of capture technologies in terms of a comparative analysis and a what-if emission scenario analysis for the Netherlands. Chapter 5 closes the report with conclusions and recommendations for further research.

  1. The impacts of CO2 capture technologies on transboundary air pollution in the Netherlands

    International Nuclear Information System (INIS)

    The objective of the inventory phase 1 of the project on the title subject is two-fold: (1) to assess the impacts of different CO2 capture technologies on transboundary air pollution in the Netherlands in 2020. Other possible environmental impacts such as toxic emissions and safety are considered qualitatively; and (2) to provide recommendations for further research in the in-depth phase 2 in order to address the current knowledge gaps found in this area. The inventory summarises all (public) available information that is relevant for transboundary air pollution and presents it in understandable terms for environmental experts and policymakers who are not CCS (carbon dioxide capture and storage) experts. The project surveys the present scientific literature and interviews key players in the carbon capture community in the Netherlands to present the current insights and state of capture technology, particularly with respect to transboundary air pollution. This has been done taking into account the angles of both research and policy needs. The information gathered is combined with scenario information for the year 2020 on carbon capture technology and transboundary air pollution in order to sketch ranges of possible impacts of carbon capture technologies in the Netherlands in this year. Chapter 2 explains the methodology and the research process taken in the project. Chapter 3 introduces the different capture technologies in the form a structured description. Chapter 4 describes the results of the assessment of capture technologies in terms of a comparative analysis and a what-if emission scenario analysis for the Netherlands. Chapter 5 closes the report with conclusions and recommendations for further research

  2. Evaluating the Impacts of Transboundary Air pollution from China on Air Quality in the U.S. Using a Regression Framework

    Science.gov (United States)

    Ngo, N. S.; Bao, X.; Zhong, N.

    2014-12-01

    China is the largest emitter of anthropogenic air pollution in the world and previous work has shown the environmental impacts of the long-range transport (LRT) of air pollution from China to the U.S. via chemical transport models, in situ observations, isentropic back trajectories, and to a lesser extent statistical models. However, these studies generally focus on a narrow time period due to data constraints. In this study, we build upon the literature using econometric techniques to isolate the impacts on U.S. air quality from the LRT of air pollution from China. We use a unique daily data set of China's air pollution index (API) and PM10 concentrations at the city level and merge these information with daily monitor data in California (CA) between 2000 and 2013. We first employ a distributed lag model to examine daily patterns, and then exploit a "natural experiment." In the latter methodology, since air pollution is rarely randomly assigned, we examine the impacts of specific events that affect air quality in China, but are plausibly uncorrelated to factors affecting air pollution in CA. For example, Chinese New Year (CNY) is a major week-long holiday and we show pollution levels in China decrease during this time period, likely from reductions in industrial production. CNY varies each calendar year since it is based off the lunar new year, so the timing of this pollution reduction could be considered "as good as random" or exogenous to factors affecting air quality in CA. Using a regression framework including weather, seasonal and geographic controls, we can potentially isolate the impact of the LRT of air pollution to CA. First, results from the distributed lag model suggest that in the Spring, when LRT peaks, a 1 μg/m3 increase in daily PM10 from China between 10 and 14 days ago is associated with an increase in today's PM2.5 in CA of 0.022 μg/m3 (mean daily PM2.5 in CA is 12 μg/m3). Second, we find that if CNY occurred 5 to 9 days ago, today's PM2.5 in

  3. Situation of regional plans for air quality. Acknowledgement of sanitary aspects. Situation of realised impact studies of urban air pollution

    International Nuclear Information System (INIS)

    The law on air and use of energy recommended in 1996 the implementation of regional plans for air quality (P.Q.R.A.) that have to rely on an evaluation of air pollution effects on health. 21 P.Q.R.A. have been published and the report gives the situation, their sanitary orientations and their applications. An inquiry lead in the 21 regions, near the different regional actors in the air and health field completes the report. (N.C.)

  4. Thermodynamic assessment of impact of inlet air cooling techniques on gas turbine and combined cycle performance

    International Nuclear Information System (INIS)

    The article is focused on the comparison of impact of two different methods of inlet air cooling (vapor compression and vapor absorption cooling) integrated to a cooled gas turbine based combined cycle plant. Air-film cooling has been adopted as the cooling technique for gas turbine blades. A parametric study of the effect of compressor pressure ratio, compressor inlet temperature (Ti,C), turbine inlet temperature (Ti,T), ambient relative humidity and ambient temperature on performance parameters of plant has been carried out. Optimum Ti,T corresponding to maximum plant efficiency of combined cycle increases by 100 °C due to the integration of inlet air cooling. It has been observed that vapor compression cooling improves the efficiency of gas turbine cycle by 4.88% and work output by 14.77%. In case of vapor absorption cooling an improvement of 17.2% in gas cycle work output and 9.47% in gas cycle efficiency has been observed. For combined cycle configuration, however, vapor compression cooling should be preferred over absorption cooling in terms of higher plant performance. The optimum value of compressor inlet temperature has been observed to be 20 °C for the chosen set of conditions for both the inlet air cooling schemes. - Highlights: • Inlet air cooling improves performance of cooled gas turbine based combined cycle. • Vapor compression inlet air cooling is superior to vapor absorption inlet cooling. • For every turbine inlet temperature, there exists an optimum pressure ratio. • The optimum compressor inlet temperature is found to be 293 K

  5. Thermodynamic impact of aquifer permeability on the performance of a compressed air energy storage plant

    International Nuclear Information System (INIS)

    Highlights: • Design procedure of an aquifer compressed air energy storage system was proposed. • An approach to select aquifers with adequate permeability was presented. • Applied an exergy analysis to exam the impact of permeability on plant economics. • The exergy destruction in the aquifer was reduced as the permeability increased. - Abstract: Economic, large-scale energy storage technology plays a key role in enabling the utility industry to integrate more renewable energy sources into the grid. Compressed air energy storage in porous geological formations has the potential to become one of the principal energy storage technologies in the future. Storing pressurized air in aquifers has several advantages, including large storage capacity, geologically widespread availability, relatively constant pressure, and relatively low construction cost. The performance of a compressed air energy storage plant is influenced by the subsurface reservoir properties. In this paper, the design criteria, calculation procedure, and exergy analysis approach to quantify the influence of aquifer permeability on compressed air energy storage plants are proposed. A case-study model was built to simulate a compressed air energy storage plant using aquifers with porosities of 30% and different permeabilities (0.01–1.0 darcies). The exergy destruction rates and exergy and thermal efficiencies were calculated. The results indicated that as the permeability increased, the exergy destruction due to a pressure drop of working fluid in an aquifer decreased; as the permeability increased, both thermal and exergy efficiencies increased, and the net output of the plant increased. The benefits are more obvious when the permeability increased from low (⩽0.05 darcies) to medium–high values (⩾0.25 darcies)

  6. The potential impact of proposed hazardous air pollutant legislation on the US refining industry

    International Nuclear Information System (INIS)

    The Administration has recently submitted a Clean Air Act Bill to Congress which would significantly modify the regulatory treatment of industrial hazardous air pollutants (air toxics). The adverse economic impacts of this legislation on the petroleum refining industry could be substantial. Depending on how EPA interprets the legislative language, the capital costs of compliance for the proposed bill could range from $1.3 to $15.0 billion. At the upper end of the range, costs of this order of magnitude would be over 2.5 times larger than the combined estimated cost of EPAs gasoline volatility (RVP) regulations and the proposed diesel sulfur content regulations. Potential compliance costs could be as much as $0.40 per barrel processed for large, complex refineries and as much as $0.50 per barrel for some small, simple refineries. For perspective, total refining costs, including a normal return on investment, are $4--5 per barrel. Because foreign refineries supplying the US will not be affected by the US air toxics regulations, US refineries may not be able to raise prices sufficiently to recover their compliance costs. For this reason, the air toxic legislation may put US refineries at an economic disadvantage relative to foreign competitors. Even under the best petroleum product market conditions, costs of $0.40 to $0.50 per barrel processed could reduce US Gulf refiner cash operating margins by as much as 29 percent. Under less favorable market conditions, such as the mid-80's when refiners were losing money, the hazardous air pollutant regulations could greatly increase US refiner operating losses and potentially lead to closure of some marginal refineries

  7. Impact of Obstructive Sleep Apnea on Neurocognitive Function and Impact of Continuous Positive Air Pressure.

    Science.gov (United States)

    Davies, Charles R; Harrington, John J

    2016-09-01

    There is evidence that obstructive sleep apnea (OSA) can negatively impact attention, memory, learning, executive function, and overall intellectual function in adults and children. Imaging techniques, including MRI, MR diffusion tensor imaging, MR spectroscopy, and fMRI, have provided additional insight into the anatomic and functional underpinnings of OSA-related cognitive impairment. Both animal and human studies have looked to elucidate the separate effects of oxygen desaturation and sleep fragmentation on independent aspects of cognition. Data from animal models point to neuro-inflammation and oxidative stress as driving factors of cognitive impairment. PMID:27542875

  8. Air ventilation impacts of the "wall effect" resulting from the alignment of high-rise buildings

    Science.gov (United States)

    Yim, S. H. L.; Fung, J. C. H.; Lau, A. K. H.; Kot, S. C.

    The objective of this study is to investigate the air ventilation impacts of the so called "wall effect" caused by the alignment of high-rise buildings in complex building clusters. The research method employs the numerical algorithm of computational fluid dynamics (CFD - FLUENT) to simulate the steady-state wind field in a typical Hong Kong urban setting and investigate pollutant dispersion inside the street canyon utilizing a pollutant transport model. The model settings of validation study were accomplished by comparing the simulation wind field around a single building block to wind tunnel data. The results revealed that our model simulation is fairly close to the wind tunnel measurements. In this paper, a typical dense building distribution in Hong Kong with 2 incident wind directions (0° and 22.5°) is studied. Two performance indicators are used to quantify the air ventilation impacts, namely the velocity ratio ( VR) and the retention time ( T r) of pollutants at the street level. The results indicated that the velocity ratio at 2 m above ground was reduced 40% and retention time of pollutants increased 80% inside the street canyon when high-rise buildings with 4 times height of the street canyon were aligned as a "wall" upstream. While this reduction of air ventilation was anticipated, the magnitude is significant and this result clearly has important implications for building and urban planning.

  9. Air quality impact and physicochemical aging of biomass burning aerosols during the 2007 San Diego wildfires.

    Science.gov (United States)

    Zauscher, Melanie D; Wang, Ying; Moore, Meagan J K; Gaston, Cassandra J; Prather, Kimberly A

    2013-07-16

    Intense wildfires burning >360000 acres in San Diego during October, 2007 provided a unique opportunity to study the impact of wildfires on local air quality and biomass burning aerosol (BBA) aging. The size-resolved mixing state of individual particles was measured in real-time with an aerosol time-of-flight mass spectrometer (ATOFMS) for 10 days after the fires commenced. Particle concentrations were high county-wide due to the wildfires; 84% of 120-400 nm particles by number were identified as BBA, with particles potassium salts heterogeneously reacting with inorganic acids was observed with continuous high temporal resolution for the first time. Ten distinct chemical types shown as BBA factors were identified through positive matrix factorization coupled to single particle analysis, including particles comprised of potassium chloride and organic nitrogen during the beginning of the wildfires, ammonium nitrate and amines after an increase of relative humidity, and sulfate dominated when the air mass back trajectories passed through the Los Angeles port region. Understanding BBA aging processes and quantifying the size-resolved mass and number concentrations are important in determining the overall impact of wildfires on air quality, health, and climate. PMID:23750590

  10. Impacts of flare emissions from an ethylene plant shutdown to regional air quality

    Science.gov (United States)

    Wang, Ziyuan; Wang, Sujing; Xu, Qiang; Ho, Thomas

    2016-08-01

    Critical operations of chemical process industry (CPI) plants such as ethylene plant shutdowns could emit a huge amount of VOCs and NOx, which may result in localized and transient ozone pollution events. In this paper, a general methodology for studying dynamic ozone impacts associated with flare emissions from ethylene plant shutdowns has been developed. This multi-scale simulation study integrates process knowledge of plant shutdown emissions in terms of flow rate and speciation together with regional air-quality modeling to quantitatively investigate the sensitivity of ground-level ozone change due to an ethylene plant shutdown. The study shows the maximum hourly ozone increments can vary significantly by different plant locations and temporal factors including background ozone data and solar radiation intensity. It helps provide a cost-effective air-quality control strategy for industries by choosing the optimal starting time of plant shutdown operations in terms of minimizing the induced ozone impact (reduced from 34.1 ppb to 1.2 ppb in the performed case studies). This study provides valuable technical supports for both CPI and environmental policy makers on cost-effective air-quality controls in the future.

  11. Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China

    Directory of Open Access Journals (Sweden)

    Xiaopeng Guo

    2014-12-01

    Full Text Available Spurred by the increasingly serious air pollution problem, the Chinese government has launched a series of policies to put forward specific measures of power structure adjustment and the control objectives of air pollution and coal consumption. Other policies pointed out that the coal resources regional blockades will be broken by improving transportation networks and constructing new logistics nodes. Thermal power takes the largest part of China’s total installed power generation capacity, so these policies will undoubtedly impact thermal coal supply chain member enterprises. Based on the actual situation in China, this paper figures out how the member enterprises adjust their business decisions to satisfy the requirements of air pollution prevention and control policies by establishing system dynamic models of policy impact transfer. These dynamic analyses can help coal enterprises and thermal power enterprises do strategic environmental assessments and find directions of sustainable development. Furthermore, the policy simulated results of this paper provide the Chinese government with suggestions for policy-making to make sure that the energy conservation and emission reduction policies and sustainable energy policies can work more efficiently.

  12. Asian Dust particles impacts on air quality and radiative forcing over Korea

    International Nuclear Information System (INIS)

    Asian Dust particles originated from the deserts and loess areas of the Asian continent are often transported over Korea, Japan, and the North Pacific Ocean during spring season. Major air mass pathway of Asian dust storm to Korea is from either north-western Chinese desert regions or north-eastern Chinese sandy areas. The local atmospheric environment condition in Korea is greatly impacted by Asian dust particles transported by prevailing westerly wind. Since these Asian dust particles pass through heavily populated urban and industrial areas in China before it reach Korean peninsular, their physical, chemical and optical properties vary depending on the atmospheric conditions and air mass pathway characteristics. An integrated system approach has been adopted at the Advanced Environment Monitoring Research Center (ADEMRC), Gwangju Institute Science and Technology (GIST), Korea for effective monitoring of atmospheric aerosols utilizing various in-situ and optical remote sensing methods, which include a multi-channel Raman LIDAR system, sunphotometer, satellite, and in-situ instruments. Results from recent studies on impacts of Asian dust particles on local air quality and radiative forcing over Korea are summarized here.

  13. The Impact of Air Pollution on Human Health: Focusing on the Rudnyi Altay Industrial Area

    Directory of Open Access Journals (Sweden)

    Vitaliy G. Salnikov

    2011-01-01

    Full Text Available Problem statement: Air pollution in Kazakhstan is significant environmental problem. The air pollution level of cities and industrial centers remains rather high. The highest level of air pollution is registered in Ridder, Ust-Kamenogorsk, Almaty, Zyryanovsk, Aktau, Atyrau, Shymkent, Taraz, Petropavlovsk and Temirtau. The enterprises of the Rudnyi Altay, Pavlodar Oblast and enterprises of oil and gas complex in West-Kazakhstan, Atyrau and Mangistau Oblasts play the negative role in air pollution. About one third of industrial enterprises have no sanitary protective zones of standard sizes. A considerable part of the population of industrial centers live in the zone of a direct impact of harmful industrial factors emissions of polluting substances into the air, noise, vibration, electrical magnet fields and other physical factors (Dahl et al., 2001; Kaiser and Pulsipher, 2007; Farmer and Farmer, 2000. Under the conditions of the air polluter impact there is high morbidity and mortality from cardio-vascular diseases, respiratory disease, nervous system and sensory organ disturbances, gastrointestinal disease and circulatory disease. Poor air quality has been cited as a factor in these conditions (Jensena et al., 1997; Namazbaeva et al., 2010. Then we provide details a correlation between the level of disease of malignant tumors and the emissions from stationary sources in Rudnyi Altay industrial area. To reveal the quantitative relationship between the disease of malignant tumors and the change in the quantity of emissions was carried out regression analysis and model. Regression analysis and model confirms a significant direct correlation between the incidence of malignant tumors and the amount of emissions from stationary sources (correlation coefficient R = 0,6. Analysis of vital statistics revealed the increased disease rate. Conclusion: Health status of the populations is negatively affected by the unfavorable environmental

  14. Assessing indoor air quality options: Final environmental impact statement on new energy-efficient home programs: Volume 2

    International Nuclear Information System (INIS)

    This report discusses the impact of energy conservation measures on indoor air quality in various size residential buildings. This volume includes appendices on ventilation rates, indoor pollutant levels, health effects, human risk assessment, radon, fiberglass hazards, tobacco smoke, mitigation

  15. Impact of LHC data on the interpretation of Λ{sub η} measured from air-shower fluctuations

    Energy Technology Data Exchange (ETDEWEB)

    Kuotb Awad, Alaa; Baur, Sebastian; Akbiyik, Melike; Baus, Colin; Katkov, Igor; Ulrich, Ralf; Woehrmann, Hauke [KIT, Karlsruhe (Germany); Collaboration: Pierre Auger-Collaboration

    2015-07-01

    It is demonstrated how LHC data is used to improve interaction models. The impact on the interpretation of air-showers measurements is shown. An updated version of the conversion factor from Λ{sub η} to σ{sub p-air} is determined. The model-related uncertainties are reduced with the new interaction models, which results in more precise proton-air cross section measurements obtained from UHECR data.

  16. Impact of LHC data on the interpretation of Λη measured from air-shower fluctuations

    International Nuclear Information System (INIS)

    It is demonstrated how LHC data is used to improve interaction models. The impact on the interpretation of air-showers measurements is shown. An updated version of the conversion factor from Λη to σp-air is determined. The model-related uncertainties are reduced with the new interaction models, which results in more precise proton-air cross section measurements obtained from UHECR data.

  17. [Impact of heavy-duty diesel vehicles on air quality and control of their emissions].

    Science.gov (United States)

    Zhou, Lei; Wang, Bo-Guang; Tang, Da-Gang

    2011-08-01

    Through an analysis of the characteristics of diesel vehicle emissions and motor vehicle emissions inventories, this paper examines the impact of heavy-duty diesel vehicles on air quality in China as well as issues related to the control of their emissions. Heavy-duty diesel vehicles emit large amounts of nitrogen oxides and particulate matter. Nitrogen oxides is one of the important precursors for the formation of secondary particles and ozone in the atmosphere, causing regional haze. Diesel particulate matter is a major toxic air pollutant with adverse effect on human health, and in particular, the ultrafine particles in 30-100 nm size range can pose great health risks because of its extremely small sizes. Motor vehicles have become a major source of air pollution in many metropolitan areas and city cluster in China, and among them the heavy-duty diesel vehicles are a dominant contributor of nitrogen oxides and particulate matter emissions. Hence, controlling heavy-duty diesel vehicle emissions should be a key component of an effective air quality management plan, and a number of issues related to heavy-duty diesel vehicle emissions need to be addressed. PMID:22619934

  18. Impact of the June 2013 Riau province Sumatera smoke haze event on regional air pollution

    Science.gov (United States)

    Dewi Ayu Kusumaningtyas, Sheila; Aldrian, Edvin

    2016-07-01

    Forest and land fires in Riau province of Sumatera increase along with the rapid deforestation, land clearing, and are induced by dry climate. Forest and land fires, which occur routinely every year, cause trans-boundary air pollution up to Singapore. Economic losses were felt by Indonesia and Singapore as the affected country thus creates tensions among neighboring countries. A high concentration of aerosols are emitted from fire which degrade the local air quality and reduce visibility. This study aimed to analyze the impact of the June 2013 smoke haze event on the environment and air quality both in Riau and Singapore as well as to characterize the aerosol properties in Singapore during the fire period. Air quality parameters combine with aerosols from Aerosol Robotic Network (AERONET) data and some environmental parameters, i.e. rainfall, visibility, and hotspot numbers are investigated. There are significant relationships between aerosol and environmental parameters both in Riau and Singapore. From Hysplit modeling and a day lag correlation, smoke haze in Singapore is traced back to fire locations in Riau province after propagated one day. Aerosol characterization through aerosol optical depth (AOD), Ångstrom parameter and particle size distribution indicate the presence of fine aerosols in a great number in Singapore, which is characteristic of biomass burning aerosols. Fire and smoke haze even impaired economic activity both in Riau and Singapore, thus leaving some accounted economic losses as reported by some agencies.

  19. Forty years increase of the air ambient temperature in Greece: The impact on buildings

    International Nuclear Information System (INIS)

    Highlights: • Forty years hourly data series from nine meteorological stations in Greece are analysed. • The air temperature increase influences the buildings’ energy demand. • A typical office building’s energy demand is examined. • The heating load is decreased by about 1 kWh/m2 per decade. • The cooling load is increased by about 5 kWh/m2 per decade. - Abstract: Air temperatures in urban areas continue to increase because of the heat island phenomenon (UHI) and the undeniable warming of the lower atmosphere during the past few decades. The observed high ambient air temperatures intensify the energy demand in cities, deteriorate urban comfort conditions, endanger the vulnerable population and amplify pollution problems especially in regions with hot climatic conditions. The present paper analyses 40 years of hourly data series from nine meteorological stations in Greece in order to understand the impact of air temperature and relative humidity trends on the energy consumption of buildings. Using a typical office building, the analysis showed that for the period in question the heating load in the Greek building sector has decreased by about 1 kWh/m2 per decade, while the cooling load increased by about 5 kWh/m2 per decade. This phenomenon has major environmental, economic and social consequences, which will be amplified in the upcoming decades in view of the expected man-made climatic changes in this geographic area

  20. Impact of urban parameterization on high resolution air quality forecast with the GEM – AQ model

    Directory of Open Access Journals (Sweden)

    J. W. Kaminski

    2012-04-01

    Full Text Available The aim of this study is to assess the impact of urban cover on high-resolution air quality forecast simulations with the GEM-AQ model. The impact of urban area on the ambient atmosphere is non-stationary and short-term variability of meteorological conditions may result in significant changes of the observed intensity of urban heat island and pollutant concentrations. In this study we used the Town Energy Balance (TEB parameterization to represent urban effects on modelled meteorological and air quality parameters at the final nesting level with horizontal resolution of ~5 km over Southern Poland. Three one-day cases representing different meteorological conditions were selected and the model was run with and without the TEB parameterization. Three urban cover categories were used in the TEB parameterization: mid-high buildings, sparse buildings and a mix of buildings and nature. Urban cover layers were constructed based on an area fraction of towns in a grid cell. To analyze the impact of urban parameterization on modelled meteorological and air quality parameters, anomalies in the lowest model layer for the temperature, wind speed and pollutant concentrations were calculated. Anomalies of the specific humidity fields indicate that the use of the TEB parameterization leads to a systematic reduction of moisture content in the air. Comparison with temperature and wind speed measurements taken at urban background monitoring stations shows that application of urban parameterization improves model results. For primary pollutants the impact of urban areas is most significant in regions characterized with high emissions. In most cases the anomalies of NO2 and CO concentrations are negative. This reduction is most likely caused by an enhanced vertical mixing due to elevated surface temperature and modified vertical stability. Although the outcome from this study is promising, it does not give an answer concerning the benefits of using TEB in the GEM

  1. Air quality impacts of increased use of ethanol under the United States’ Energy Independence and Security Act

    Science.gov (United States)

    Cook, Rich; Phillips, Sharon; Houyoux, Marc; Dolwick, Pat; Mason, Rich; Yanca, Catherine; Zawacki, Margaret; Davidson, Ken; Michaels, Harvey; Harvey, Craig; Somers, Joseph; Luecken, Deborah

    2011-12-01

    Increased use of ethanol in the United States fuel supply will impact emissions and ambient concentrations of greenhouse gases, "criteria" pollutants for which the U. S. EPA sets ambient air quality standards, and a variety of air toxic compounds. This paper focuses on impacts of increased ethanol use on ozone and air toxics under a potential implementation scenario resulting from mandates in the U. S. Energy Independence and Security Act (EISA) of 2007. The assessment of impacts was done for calendar year 2022, when 36 billion gallons of renewable fuels must be used. Impacts were assessed relative to a baseline which assumed ethanol volumes mandated by the first renewable fuels standard promulgated by U. S. EPA in early 2007. This assessment addresses both impacts of increased ethanol use on vehicle and other engine emissions, referred to as "downstream" emissions, and "upstream" impacts, i.e., those connected with fuel production and distribution. Air quality modeling was performed for the continental United States using the Community Multi-scale Air Quality Model (CMAQ), version 4.7. Pollutants included in the assessment were ozone, acetaldehyde, ethanol, formaldehyde, acrolein, benzene, and 1,3-butadiene. Results suggest that increased ethanol use due to EISA in 2022 will adversely increase ozone concentrations over much of the U.S., by as much as 1 ppb. However, EISA is projected to improve ozone air quality in a few highly-populated areas that currently have poor air quality. Most of the ozone improvements are due to our assumption of increases in nitrogen oxides (NO x) in volatile organic compound (VOC)-limited areas. While there are some localized impacts, the EISA renewable fuel standards have relatively little impact on national average ambient concentrations of most air toxics, although ethanol concentrations increase substantially. Significant uncertainties are associated with all results, due to limitations in available data. These uncertainties are

  2. On the impact of entrapped air in infiltration under ponding conditions: Part a: Preferential air flow path effects on infiltration

    Science.gov (United States)

    Weisbord, N.; Mizrahi, G.; Furman, A.

    2015-12-01

    Entrapped air effects on infiltration under ponding conditions could be important for massive infiltration of managed aquifer recharge or soil aquifer treatment. Earlier studies found that under ponding conditions air could reduce infiltration by 70-90%. Most studies have dealt with entrapped air effects when soil surface topography is flat. The objective of this study is to investigate the effects of: (1) irregular surface topography on preferential air flow path development; (2) preferential air flow path on infiltration; and (3) hydraulic head on infiltration when air is trapped. Column experiments were used to investigate these particular effects. A 140 cm deep and 30 cm wide column packed with silica sand was used under two boundary conditions: in the first, air can only escape vertically upward through the soil surface; in the second, air is free to escape. The surface was flooded with 13 liters of water, with ponding depth decreasing with time. Two soil surface conditions were tested: flat surface and irregular. It was found that in irregular surfaces, stable air flow through preferential paths was developed in the high altitude zones. Flat surface topography caused unstable air flow through random paths. Comparison between irregular and flat surface topography showed that the entrapped air pressure was lower and the infiltration rate was about 40% higher in the irregular surface topography than in the flat surface topography. No difference of infiltration rate between flat and irregular surface topography was observed when air was free to escape along the infiltration path. It was also found that at the first stage of infiltration, higher hydraulic heads caused higher entrapped air pressures and lower infiltration rates. In contrast, higher hydraulic head results in higher infiltration rate, when air was free to escape. Our results suggest that during ponding conditions: (1) preferential air flow paths develop at high surface zones of irregular topography

  3. Forty years of improvements in European air quality: regional policy-industry interactions with global impacts

    Science.gov (United States)

    Crippa, Monica; Janssens-Maenhout, Greet; Dentener, Frank; Guizzardi, Diego; Sindelarova, Katerina; Muntean, Marilena; Van Dingenen, Rita; Granier, Claire

    2016-03-01

    The EDGARv4.3.1 (Emissions Database for Global Atmospheric Research) global anthropogenic emissions inventory of gaseous (SO2, NOx, CO, non-methane volatile organic compounds and NH3) and particulate (PM10, PM2.5, black and organic carbon) air pollutants for the period 1970-2010 is used to develop retrospective air pollution emissions scenarios to quantify the roles and contributions of changes in energy consumption and efficiency, technology progress and end-of-pipe emission reduction measures and their resulting impact on health and crop yields at European and global scale. The reference EDGARv4.3.1 emissions include observed and reported changes in activity data, fuel consumption and air pollution abatement technologies over the past 4 decades, combined with Tier 1 and region-specific Tier 2 emission factors. Two further retrospective scenarios assess the interplay of policy and industry. The highest emission STAG_TECH scenario assesses the impact of the technology and end-of-pipe reduction measures in the European Union, by considering historical fuel consumption, along with a stagnation of technology with constant emission factors since 1970, and assuming no further abatement measures and improvement imposed by European emission standards. The lowest emission STAG_ENERGY scenario evaluates the impact of increased fuel consumption by considering unchanged energy consumption since the year 1970, but assuming the technological development, end-of-pipe reductions, fuel mix and energy efficiency of 2010. Our scenario analysis focuses on the three most important and most regulated sectors (power generation, manufacturing industry and road transport), which are subject to multi-pollutant European Union Air Quality regulations. Stagnation of technology and air pollution reduction measures at 1970 levels would have led to 129 % (or factor 2.3) higher SO2, 71 % higher NOx and 69 % higher PM2.5 emissions in Europe (EU27), demonstrating the large role that technology has

  4. Source apportionment and air quality impact assessment studies in Beijing/China

    Science.gov (United States)

    Suppan, P.; Schrader, S.; Shen, R.; Ling, H.; Schäfer, K.; Norra, S.; Vogel, B.; Wang, Y.

    2012-04-01

    More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: Examples of long term measurements of PM2.5 filter sampling in 2005 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. Further experimental studies include the operation of remote sensing systems to determine continuously the MLH (by a ceilometer) and gaseous air pollutants near the ground (by DOAS systems) as well as at the 320 m measurement tower (adhesive plates at different heights for passive particle collection) in cooperation with the Institute of Atmospheric Physics (IAP) of the Chinese Academy of Sciences (CAS). The influence of the MLH on

  5. Influence of air quality model resolution on uncertainty associated with health impacts

    Directory of Open Access Journals (Sweden)

    T. M. Thompson

    2012-10-01

    Full Text Available We use regional air quality modeling to evaluate the impact of model resolution on uncertainty associated with the human health benefits resulting from proposed air quality regulations. Using a regional photochemical model (CAMx, we ran a modeling episode with meteorological inputs simulating conditions as they occurred during August through September 2006 (a period representative of conditions leading to high ozone, and two emissions inventories (a 2006 base case and a 2018 proposed control scenario, both for Houston, Texas at 36, 12, 4 and 2 km resolution. The base case model performance was evaluated for each resolution against daily maximum 8-h averaged ozone measured at monitoring stations. Results from each resolution were more similar to each other than they were to measured values. Population-weighted ozone concentrations were calculated for each resolution and applied to concentration response functions (with 95% confidence intervals to estimate the health impacts of modeled ozone reduction from the base case to the control scenario. We found that estimated avoided mortalities were not significantly different between the 2, 4 and 12 km resolution runs, but the 36 km resolution may over-predict some potential health impacts. Given the cost/benefit analysis requirements motivated by Executive Order 12866 as it applies to the Clean Air Act, the uncertainty associated with human health impacts and therefore the results reported in this study, we conclude that health impacts calculated from population weighted ozone concentrations obtained using regional photochemical models at 36 km resolution fall within the range of values obtained using fine (12 km or finer resolution modeling. However, in some cases, 36 km resolution may not be fine enough to statistically replicate the results achieved using 2, 4 or 12 km resolution. On average, when modeling at 36 km resolution, an estimated 5 deaths per week during the May through September ozone

  6. Theoretical evaluation on the impact of heat exchanger in Advanced Adiabatic Compressed Air Energy Storage system

    International Nuclear Information System (INIS)

    Highlights: • A multi-stage AA-CAES system model is established based on thermodynamic theory. • Four Cases about pressure loss and effectiveness of heat exchanger are investigated. • The impact of pressure loss on conversion of heat energy in TES is more sensitive. • The impact of heat exchanger effectiveness in charge process on system is stronger. • Pressure loss in heat exchanger affects the change trends of system efficiency. - Abstract: Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) is a large-scale energy storage system based on gas turbine technology and thermal energy storage (TES). Electrical energy can be converted into internal energy of air and heat energy in TES during the charge process, while reverse energy conversion proceeds during discharge process. The performance of AA-CAES system requires further improvement in order to increase efficiency. In this paper, a multi-stage AA-CAES system model is established, and the influence of effectiveness and pressure loss in heat exchanger on energy conversion and utilization efficiency of AA-CAES system is analyzed theoretically based on the theory of thermodynamics. Four Cases about effectiveness and pressure loss of heat exchanger are investigated and compared with each other. It is found that effectiveness and pressure loss of heat exchanger are directly related to energy conversion and utilization in AA-CAES system. System efficiency changes with the variation of heat exchanger effectiveness and the impact of pressure loss on conversion of heat energy in TES is more sensitive than that of internal energy of air. Pressure loss can cause the complexity of system efficiency change. With appropriate selection of the values of heat exchanger effectiveness for both charge and discharge processes, an AA-CAES system with a higher efficiency could be expected

  7. The impact of climate upon variation in air pollution using a synoptic climatological approach

    International Nuclear Information System (INIS)

    The Environmental Protection Agency has set national ambient air quality standards for six different pollutants: sulfur dioxide, nitrogen dioxide, ozone, total suspended particulates, nitrogen oxides, and oxidants. The goal of this study was to apply an automatic air mass-based synoptic methodology to surface weather data in order to evaluate the impact of climate on the above pollutant concentrations in Philadelphia, PA; Dallas, TX; and St. Louis, MO. A group of synoptic categories depicting the summer and winter weather in each city was developed using principal components analysis and average linkage clustering. The concentrations of the six air pollutants were then related to the synoptic weather categories. The synoptic categories and associated weather conditions exhibiting particularly high pollution concentrations were analyzed in detail. Ultimately, the procedure was validated for prediction of future pollutant levels. The results from this study support the conclusion that there is a close link between synoptic-air mass combinations and various pollutant concentrations. The climate-pollutant relationship seems to change from summer to winter in the three cities. It appears that climatic thresholds could be found for high levels of various air pollutants. Similar synoptic conditions appear to lead to high accumulations of all six pollutants, although the transportation-related pollutants showed more dependency on the level of solar radiation. These pollutants seem to be more significant in the southern city of Dallas. The synoptic methodology proved to be of assistance in developing a weather/pollution watch-warning system; such a system would be designed to signal impending synoptic conditions which could significantly raise pollutant concentrations

  8. Air quality and radiative forcing impacts of anthropogenic volatile organic compound emissions from ten world regions

    Science.gov (United States)

    Fry, M. M.; Schwarzkopf, M. D.; Adelman, Z.; West, J. J.

    2014-01-01

    Non-methane volatile organic compounds (NMVOCs) influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF) impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions decreases global annual average tropospheric methane and ozone by 36.6 ppbv and 3.3 Tg, respectively, and surface ozone by 0.67 ppbv. All regional reductions slow the production of peroxyacetyl nitrate (PAN), resulting in regional to intercontinental PAN decreases and regional NOx increases. These NOx increases drive tropospheric ozone increases nearby or downwind of source regions in the Southern Hemisphere (South America, Southeast Asia, Africa, and Australia). Some regions' NMVOC emissions contribute importantly to air pollution in other regions, such as East Asia, the Middle East, and Europe, whose impact on US surface ozone is 43%, 34%, and 34% of North America's impact. Global and regional NMVOC reductions produce widespread negative net RFs (cooling) across both hemispheres from tropospheric ozone and methane decreases, and regional warming and cooling from changes in tropospheric ozone and sulfate (via several oxidation pathways). The 100 yr and 20 yr global warming potentials (GWP100, GWP20) are 2.36 and 5.83 for the global reduction, and 0.079 to 6.05 and -1.13 to 18.9 among the 10 regions. The NMVOC RF and GWP estimates are generally lower than previously modeled estimates, due to the greater NMVOC/NOx emissions ratios simulated, which result in less sensitivity to NMVOC emissions changes and smaller global O3 burden responses, in addition to differences in the representation of NMVOCs and oxidation chemistry among models. Accounting for a fuller set of RF contributions may change the

  9. Air quality and radiative forcing impacts of anthropogenic volatile organic compound emissions from ten world regions

    Directory of Open Access Journals (Sweden)

    M. M. Fry

    2013-08-01

    Full Text Available Non-methane volatile organic compounds (NMVOCs influence air quality and global climate change through their effects on secondary air pollutants and climate forcers. Here we simulate the air quality and radiative forcing (RF impacts of changes in ozone, methane, and sulfate from halving anthropogenic NMVOC emissions globally and from 10 regions individually, using a global chemical transport model and a standalone radiative transfer model. Halving global NMVOC emissions decreases global annual average tropospheric methane and ozone by 36.6 ppbv and 3.3 Tg, respectively, and surface ozone by 0.67 ppbv. All regional reductions slow the production of PAN, resulting in regional to intercontinental PAN decreases and regional NOx increases. These NOx increases drive tropospheric ozone increases nearby or downwind of source regions in the Southern Hemisphere (South America, Southeast Asia, Africa, and Australia. Some regions' NMVOC emissions contribute importantly to air pollution in other regions, such as East Asia, Middle East, and Europe, whose impact on US surface ozone is 43%, 34%, and 34% of North America's impact. Global and regional NMVOC reductions produce widespread negative net RFs (cooling across both hemispheres from tropospheric ozone and methane decreases, and regional warming and cooling from changes in tropospheric ozone and sulfate (via several oxidation pathways. The total global net RF for NMVOCs is estimated as 0.0277 W m−2 (~1.8% of CO2 RF since the preindustrial. The 100 yr and 20 yr global warming potentials (GWP100, GWP20 are 2.36 and 5.83 for the global reduction, and 0.079 to 6.05 and −1.13 to 18.9 among the 10 regions. The NMVOC RF and GWP estimates are generally lower than previously modeled estimates, due to differences among models in ozone, methane, and sulfate sensitivities, and the climate forcings included in each estimate. Accounting for a~fuller set of RF contributions may change the relative magnitude of each

  10. C-PORT: A Community-Scale Near-Source Air Quality System to Assess Port-Related Air Quality Impacts

    Science.gov (United States)

    With increasing activity in global trade, there has been increased activity in transportation by rail, road and ships to move cargo. Based upon multiple near-road and near-source monitoring studies, both busy roadways and large emission source at the ports may impact local air qu...

  11. High-speed impact test of an air-transportable plutonium nitrate shipping container

    International Nuclear Information System (INIS)

    To obtain information on package response for comparison with other test environments, a high-speed impact test was performed on a modified Federal Republic of Germany 18B plutonium nitrate air-transportable container. The container, modified with reinforcing rings for improved crush resistance around the inner tube assembly, was impacted at a velocity of 137 m/s onto an unyielding surface. Substantial crushing of the foam overpack and extensive deformation of the container cavity occurred, causing release of the liquid surrogate contents from the titanium shipping container. The container damage resulting from the high-speed pulldown test was more severe than that from a 185-m free fall onto a semirigid surface by a similar container or the crush environment produced by a 9-m drop of a 2-Mg block onto the container resting on an unyielding surface

  12. Influence of air quality model resolution on uncertainty associated with health impacts

    Directory of Open Access Journals (Sweden)

    T. M. Thompson

    2012-06-01

    Full Text Available We use regional air quality modeling to evaluate the impact of model resolution on uncertainty associated with the human health benefits resulting from proposed air quality regulations. Using a regional photochemical model (CAMx, we ran a modeling episode with meteorological inputs representing conditions as they occurred during August through September 2006, and two emissions inventories (a 2006 base case and a 2018 proposed control scenario, both for Houston, Texas at 36, 12, 4 and 2 km resolution. The base case model performance was evaluated for each resolution against daily maximum 8-h averaged ozone measured at monitoring stations. Results from each resolution were more similar to each other than they were to measured values. Population-weighted ozone concentrations were calculated for each resolution and applied to concentration response functions (with 95% confidence intervals to estimate the health impacts of modeled ozone reduction from the base case to the control scenario. We found that estimated avoided mortalities were not significantly different between 2, 4 and 12 km resolution runs, but 36 km resolution may over-predict some potential health impacts. Given the cost/benefit analysis requirements of the Clean Air Act, the uncertainty associated with human health impacts and therefore the results reported in this study, we conclude that health impacts calculated from population weighted ozone concentrations obtained using regional photochemical models at 36 km resolution fall within the range of values obtained using fine (12 km or finer resolution modeling. However, in some cases, 36 km resolution may not be fine enough to statistically replicate the results achieved using 2 and 4 km resolution. On average, when modeling at 36 km resolution, 7 deaths per ozone month were avoided because of ozone reductions resulting from the proposed emissions reductions (95% confidence interval was 2–9. When modeling at 2, 4 or 12 km finer

  13. Oxidative damage to biological macromolecules in Prague bus drivers and garagemen: Impact of air pollution and genetic polymorphisms

    Czech Academy of Sciences Publication Activity Database

    Bagryantseva, Yana; Novotná, Božena; Rössner ml., Pavel; Chvátalová, Irena; Milcová, Alena; Švecová, Vlasta; Lněničková, Zdena; Solanský, I.; Šrám, Radim

    2010-01-01

    Roč. 199, č. 1 (2010), s. 60-68. ISSN 0378-4274 R&D Projects: GA MŽP(CZ) SP/1B3/8/08 Institutional research plan: CEZ:AV0Z50390512 Keywords : air pollution * bud drivers * oxidative stress Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.581, year: 2010

  14. Impacts of potential CO2-reduction policies on air quality in the United States.

    Science.gov (United States)

    Trail, Marcus A; Tsimpidi, Alexandra P; Liu, Peng; Tsigaridis, Kostas; Hu, Yongtao; Rudokas, Jason R; Miller, Paul J; Nenes, Athanasios; Russell, Armistead G

    2015-04-21

    Impacts of emissions changes from four potential U.S. CO2 emission reduction policies on 2050 air quality are analyzed using the community multiscale air quality model (CMAQ). Future meteorology was downscaled from the Goddard Institute for Space Studies (GISS) ModelE General Circulation Model (GCM) to the regional scale using the Weather Research Forecasting (WRF) model. We use emissions growth factors from the EPAUS9r MARKAL model to project emissions inventories for two climate tax scenarios, a combined transportation and energy scenario, a biomass energy scenario and a reference case. Implementation of a relatively aggressive carbon tax leads to improved PM2.5 air quality compared to the reference case as incentives increase for facilities to install flue-gas desulfurization (FGD) and carbon capture and sequestration (CCS) technologies. However, less capital is available to install NOX reduction technologies, resulting in an O3 increase. A policy aimed at reducing CO2 from the transportation sector and electricity production sectors leads to reduced emissions of mobile source NOX, thus reducing O3. Over most of the U.S., this scenario leads to reduced PM2.5 concentrations. However, increased primary PM2.5 emissions associated with fuel switching in the residential and industrial sectors leads to increased organic matter (OM) and PM2.5 in some cities. PMID:25811418

  15. Impact of Aspect Ratio and Solar Heating on Street Conyn Air Temperature

    Directory of Open Access Journals (Sweden)

    Rizwan Ahmed Memon

    2011-01-01

    Full Text Available The results obtained from RNG (Re-Normalization Group version of k-? turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy transport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios one to eight and surface temperature difference (??s-a of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature of high and low AR street canyons ( AR was positive and high with higher ??s-a. Conversely, the AR become negative and low gradually with lower values of ??s-a. These results could be very beneficial for the city and regional planners, civil engineers and HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements.

  16. Impact of aspect ratio and solar heating on street canyon air temperature

    International Nuclear Information System (INIS)

    The results obtained from RNG (Re-Normalization Group) version of k-and turbulence model are reported in this study. The model is adopted to elucidate the impact of different building aspect ratios (i.e., ratio of building-height-to-street-canyon-width) and solar heating on temperatures in street canyon. The validation of Navier-Stokes and energy an sport equations showed that the model prediction for air-temperature and ambient wind provides reasonable accuracy. The model was applied on AR (Aspect Ratios) one to eight and surface temperature difference (delta and theta/sub s-a/)) of 2 -8. Notably, air-temperatures were higher in high AR street canyons in particular on the leeward side of the street canyon. Further investigation showed that the difference between the air-temperature 'high and low AR street canyons (AR) was positive and high with higher delta and theta/sub s-a/) conversely, the AR become negative and low gradually with lower values of delta and theta(/sub s-a/). These results could be very beneficial for the city and regional planners, civil engineers Id HVAC experts who design street canyons and strive for human thermal comfort with minimum possible energy requirements. (author)

  17. The air quality impacts of road closures associated with the 2004 Democratic National Convention in Boston

    Directory of Open Access Journals (Sweden)

    Clougherty Jane E

    2006-05-01

    Full Text Available Abstract Background The Democratic National Convention (DNC in Boston, Massachusetts in 2004 provided an opportunity to evaluate the impacts of a localized and short-term but potentially significant change in traffic patterns on air quality, and to determine the optimal monitoring approach to address events of this nature. It was anticipated that the road closures associated with the DNC would both influence the overall air pollution level and the distribution of concentrations across the city, through shifts in traffic patterns. Methods To capture these effects, we placed passive nitrogen dioxide badges at 40 sites around metropolitan Boston before, during, and after the DNC, with the goal of capturing the array of hypothesized impacts. In addition, we continuously measured elemental carbon at three sites, and gathered continuous air pollution data from US EPA fixed-site monitors and traffic count data from the Massachusetts Highway Department. Results There were significant reductions in traffic volume on the highway with closures north of Boston, with relatively little change along other highways, indicating a more isolated traffic reduction rather than an across-the-board decrease. For our nitrogen dioxide samples, while there was a relatively small change in mean concentrations, there was significant heterogeneity across sites, which corresponded with our a priori classifications of road segments. The median ratio of nitrogen dioxide concentrations during the DNC relative to non-DNC sampling periods was 0.58 at sites with hypothesized traffic reductions, versus 0.88 for sites with no changes hypothesized and 1.15 for sites with hypothesized traffic increases. Continuous monitors measured slightly lower concentrations of elemental carbon and nitrogen dioxide during road closure periods at monitors proximate to closed highway segments, but not for PM2.5 or further from major highways. Conclusion We conclude that there was a small but

  18. On the long term impact of emissions from central European cities on regional air-quality

    Science.gov (United States)

    Huszar, P.; Belda, M.; Halenka, T.

    2015-11-01

    For the purpose of qualifying and quantifying the impact of urban emission from Central European cities on the present-day regional air-quality, the regional climate model RegCM4.2 was coupled with the chemistry transport model CAMx, including two-way interactions. A series of simulations was carried out for the 2001-2010 period either with all urban emissions included (base case) or without considering urban emissions. Further, the sensitivity of ozone production to urban emissions was examined by performing reduction experiments with -20 % emission perturbation of NOx and/or NMVOC. The validation of the modeling system's air-quality related outputs using AirBase and EMEP surface measurements showed satisfactory reproduction of the monthly variation for ozone (O3), nitrogen dioxide (NO2) and sulfur dioxide (SO2). In terms of hourly correlations, reasonable values are achieved for ozone (r around 0.5-0.8) and for NO2 (0.4-0.6), but SO2 is poorly or not correlated at all with measurements (r around 0.2-0.5). The modeled fine particulates (PM2.5) are usually underestimated, especially in winter, mainly due to underestimation of nitrates and carbonaceous aerosols. EC air-quality measures were chosen as metrics describing the cities emission impact on regional air pollution. Due to urban emissions, significant ozone titration occurs over cities while over rural areas remote from cities, ozone production is modeled, mainly in terms of number of exceedances and accumulated exceedances over the threshold of 40 ppbv. Urban NOx, SO2 and PM2.5 emissions also significantly contribute to concentrations in the cities themselves (up to 50-70 % for NOx and SO2, and up to 60 % for PM2.5), but the contribution is large over rural areas as well (10-20 %). Although air pollution over cities is largely determined by the local urban emissions, considerable (often a few tens of %) fraction of the concentration is attributable to other sources from rural areas and minor cities. Further

  19. On the long-term impact of emissions from central European cities on regional air quality

    Science.gov (United States)

    Huszar, P.; Belda, M.; Halenka, T.

    2016-02-01

    For the purpose of qualifying and quantifying the impact of urban emission from Central European cities on the present-day regional air quality, the regional climate model RegCM4.2 was coupled with the chemistry transport model CAMx, including two-way interactions. A series of simulations was carried out for the 2001-2010 period either with all urban emissions included (base case) or without considering urban emissions. Further, the sensitivity of ozone production to urban emissions was examined by performing reduction experiments with -20 % emission perturbation of NOx and/or non-methane volatile organic compounds (NMVOC). The modeling system's air quality related outputs were evaluated using AirBase, and EMEP surface measurements showed reasonable reproduction of the monthly variation for ozone (O3), but the annual cycle of nitrogen dioxide (NO2) and sulfur dioxide (SO2) is more biased. In terms of hourly correlations, values achieved for ozone and NO2 are 0.5-0.8 and 0.4-0.6, but SO2 is poorly or not correlated at all with measurements (r around 0.2-0.5). The modeled fine particulates (PM2.5) are usually underestimated, especially in winter, mainly due to underestimation of nitrates and carbonaceous aerosols. European air quality measures were chosen as metrics describing the cities emission impact on regional air pollution. Due to urban emissions, significant ozone titration occurs over cities while over rural areas remote from cities, ozone production is modeled, mainly in terms of number of exceedances and accumulated exceedances over the threshold of 40 ppbv. Urban NOx, SO2 and PM2.5 emissions also significantly contribute to concentrations in the cities themselves (up to 50-70 % for NOx and SO2, and up to 60 % for PM2.5), but the contribution is large over rural areas as well (10-20 %). Although air pollution over cities is largely determined by the local urban emissions, considerable (often a few tens of %) fraction of the concentration is attributable to

  20. Comparisons of air quality impacts of fleet electrification and increased use of biofuels

    International Nuclear Information System (INIS)

    The air quality impacts of the partial electrification of the transportation fleet and the use of biofuels (E85) were modeled for the Austin Metropolitan Statistical Area, based on a 2030 vision of regional development. Changes in ozone precursor emissions and predicted ozone, carbon monoxide and aldehyde concentrations were estimated for multiple electrification and biofuel scenarios. Maximum changes in hourly ozone concentration from the use of plug-in hybrid electric vehicles (PHEVs) for 17% of the vehicle miles traveled ranged from - 8.5 to 2.2 ppb, relative to a base case with no electrification and minimal biofuel use, depending on time of day and location. Differences in daily maximum 1 h ozone concentration ranged from - 2.3 to 0.004 ppb. Replacement of all gasoline fuels with E85 had a smaller effect than PHEVs on maximum daily ozone concentrations. Maximum ozone changes for this scenario ranged from - 2.1 to 2.8 ppb and the difference in daily maximum 1 h ozone concentrations ranged from - 1.53 to 0 ppb relative to the base case. The smaller improvements in maximum ozone concentrations associated with extensive (100%) use of biofuels, compared to a smaller (17%) penetration of PHEVs, suggests that higher levels of PHEV penetration may lead to even greater improvements; however, the higher penetration would require expansion of the electrical grid capacity. The air quality impacts of the PHEVs would then depend on the emissions associated with the added generation.

  1. Impact air quality by wildfire and agricultural fire in Mexico city 2015

    Science.gov (United States)

    Mendoza Campos, Alejandra; Agustín García Reynoso, José; Castro Romero, Telma Gloria; Carbajal Pérez, José Noel; Mar Morales, Bertha Eugenia; Gerardo Ruiz Suárez, Luis

    2016-04-01

    A forest fire is a large-scale process natural combustion where different types of flora and fauna of different sizes and ages are consumed. Consequently, forest fires are a potential source of large amounts of air pollutants that must be considered when trying to relate emissions to the air quality in neighboring cities of forest areas as in the Valley of Mexico. The size, intensity and occurrence of a forest fire directly dependent variables such as weather conditions, topography, vegetation type and its moisture content and the mass of fuel per hectare. An agricultural fire is a controlled combustion, which occurred a negligence can get out of control and increase the burned area or the possibly become a wildfire. Once a fire starts, the dry combustible material is consumed first. If the energy release is large and of sufficient duration, drying green material occurs live, with subsequent burning it. Under proper fuel and environmental conditions, this process can start a chain reaction. These events occur mainly in the dry season. Forest fires and agriculture fires contribute directly in the increase of carbon dioxide (CO2) into the atmosphere; The main pollutants emitted to the atmosphere by a wildfire are the PM10, PM2.5, NOx and VOC's, the consequences have by fire are deforestation, soil erosion or change of structure and composition of forests (Villers, 2006), also it affects ecosystems and the health of the population. In this study the impact of air quality for the emissions of particulate matter less than ten microns PM10, by wildfire and agricultural fire occurred on the same day and same place, the study was evaluated in Mexico City the Delegation Milpa Alta in the community of San Lorenzo Tlacoyucan, the fire occurred on 3rd March, 2015, the wildfire duration 12 hours consuming 32 hectares of oak forest and the agricultural fire duration 6 hours consumed 16 hectares of corn. To evaluate the impact of air quality the WRF-Chem, WRF-Fire and METv3

  2. Health and air quality 2005 : phase 2 : valuation of health impacts from air quality in the Lower Fraser Valley airshed

    Energy Technology Data Exchange (ETDEWEB)

    Furberg, M.; Preston, K. [RWDI West Inc., Vancouver, BC (Canada); Sawyer, D. [Marbek Resource Consultants Ltd., Ottawa, ON (Canada); Brauer, M. [British Columbia Univ., Vancouver, BC (Canada). School of Occupational and Environmental Hygiene; Hanvelt, R. [British Columbia Univ., Vancouver, BC (Canada). Dept. of Health Care and Epidemiology

    2005-07-15

    This study provided estimates the health benefits and costs associated with specified changes in ambient air concentrations of particulate matter (PM) and ozone in the Lower Fraser Valley (LFV). Estimates were developed on a regional level. The study focused on PM and ozone, as current air quality monitoring data and scientific findings have indicated that these are the air contaminants of greatest concern in the region. Known air quality health outcome relationships were applied in a spreadsheet model to predict changes in health outcomes associated with 6 ambient air quality scenarios for 3 sub-regions within the LFV airshed. Concentration response functions based on epidemiological studies were used to estimate the number of health events associated with changes in air quality. For each scenario, the model calculated the expected number of the following health outcomes: mortality; chronic bronchitis; respiratory hospital admissions; cardiac hospital admissions; emergency room visits; child acute bronchitis; restricted activity days; asthma symptom days; minor restricted activity days and acute respiratory symptom days. The model also produced the dollar value of the health outcomes. A dollar metric was used so that the health outcomes could be aggregated and compared with other air quality management actions such the costs of improving ambient air quality. Results indicated that improving ambient air quality in the LFV will produce valued and socially desirable benefits, including reduced mortality and morbidity. The measures contemplated by decision-makers to maintain and improve air quality in the LFV will trigger benefits that are likely to be significant. 101 refs., 7 tabs., 7 figs.

  3. Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.

    Science.gov (United States)

    Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.

    2007-12-01

    Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.

  4. THE IMPACT OF SOME AIR POLLUTANTS ON THE VEGETATION NEARBY THE INDUSTRIAL PLATFORMS

    Directory of Open Access Journals (Sweden)

    POPESCU SIMONA MARIANA

    2013-03-01

    Full Text Available Plants are affected primarily by air pollution. This is generated by the accumulation in the atmospheric air of gaseous chemical compounds or solid particles in the form of powder, which are then deposited on the ground. The gaseouse pollutants result from industrial activities, such as the sulphur compounds (SO2, SO3, H2S, carbon sulphide, nitrogen oxides (NO, NO2 and carbon (CO and CO2. The impact of air pollution can cause severe damages to the plants located near industrial areas, especially because the most Romanian thermal power plants were built in a period when their operation impact on the environment was undervalued, and the constraints related to the environmental protection were relatively few. The pollutants enter plants through stomata causing a reduction of metabolic processes. The study has been conducted during 2010-2012 in Craiova City, in the area of the powerplant CET I – Isalnita, on 15 species both annual and perenae from spontaneous plants in the influence area. The observations were particularly conducted for the following purposes: identification of the inflicted organs (leafs, bodies, branches; percentage of the organs inflicted; the pollutant implied; to answer what kind of pollutant is implied; to classify the species with regard to their sensibility to the studied pollutants, respectevily: NO2, SO2, PM10. The main result of this study are: the main pollutants, which affects the vegetation are SO2, NO2 and particulate matter, this pollutants affecting more the leafs than the bodies of the plants, the number of individuals affected varies between 15-70 %; the following species can be considered as bioindicator: Pinus nigra, Urtica dioica, Phaseolus vulgaris.

  5. Impact of airflow interaction on inhaled air quality and transport of contaminants in rooms with personalized and total volume ventilation

    DEFF Research Database (Denmark)

    Melikov, Arsen Krikor; Cermak, Radim; Kovar, O.;

    2003-01-01

    ventilation. In total, 80 L/s of clean air supplied at 20°C was distributed between the ventilation systems at different combinations of personalized airflow rate. Two breathing thermal manikins were used to simulate occupants in a full-scale test room. Regardless of the airflow interaction, the inhaled air......The impact of airflow interaction on inhaled air quality and transport of contaminants between occupants was studied in regard to pollution from floor covering, human bioeffluents and exhaled air, with combinations of two personalized ventilation systems (PV) with mixing and displacement...... quality with personalized and mixing ventilation was higher or at least similar compared to mixing ventilation alone. In the case of PV combined with displacement ventilation, the interaction caused mixing of the room air, an increase in the transport of bioeffluents and exhaled air between occupants and...

  6. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    Directory of Open Access Journals (Sweden)

    T. Moreno

    2012-09-01

    Full Text Available The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a~pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples (ICP-AES and ICP-MS and hourly Streaker (PIXE samples of particulate matter collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa" and metalliferous sulphatic pollutants arriving in Western Japan during spring 2011. The main aerosol sources recognised by PMF analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5–10, As-bearing sulphatic aerosol (PM0.1–2.5, metalliferous sodic PM interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the more undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.

  7. Up the stack : coal-fired electricity's toxic impact : an OCAA air quality report

    International Nuclear Information System (INIS)

    Ontario Power Generation (OPG) must report annually its releases and transfers of 268 chemicals to the federal National Pollutant Release Inventory (NPRI). Each OPG facility reports the amount of chemicals released to the air, land, water and injected under ground at the facility site. The facilities must also report the amount of chemicals that are transferred off-site for treatment, sewage, disposal, recycling or energy recovery. In 1999 and 2000, atmospheric releases from OPG's coal-fired plants accounted for a significant percentage of the total pollutants released for Ontario and Canada. OPG's facilities are often in the top 5 in Ontario and Canada for releases of various chemicals, including persistent toxic chemicals. In 1999, the Nanticoke coal-fired power plant on Lake Erie was ranked first in Canada for releases to the air. Data reported for the 1999 and 2000 reporting period for dioxins and furans, hexachlorobenzene, mercury, metals (chromium, nickel and arsenic), and acid gases such as hydrochloric acid, hydrogen fluoride, and sulphuric acid clearly indicates that OPG coal-fired plants are a leading source of air pollution in Canada and Ontario. The Ontario Clean Air Alliance suggests the data is sufficient to phase-out the use of coal for power generation in Ontario. It recommends conserving energy and replacing coal-fired power with renewable energy sources such as wind and water power. Converting coal facilities to high-efficiency natural gas units would also reduce the toxic impacts of OPG's coal-fired power plants. As an immediate first step, it was recommended that the government should ban non-emergency exports of coal-fired electricity during smog-alert periods in Ontario. 11 tabs

  8. Daily and hourly chemical impact of springtime transboundary aerosols on Japanese air quality

    Directory of Open Access Journals (Sweden)

    T. Moreno

    2013-02-01

    Full Text Available The regular eastward drift of transboundary aerosol intrusions from the Asian mainland into the NW Pacific region has a pervasive impact on air quality in Japan, especially during springtime. Analysis of 24-h filter samples with Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES and Mass Spectrometry (ICP-MS, and hourly Streaker with Particle Induced X-ray Emission (PIXE samples collected continuously for six weeks reveal the chemistry of successive waves of natural mineral desert dust ("Kosa" and metalliferous sulphatic pollutants arriving in western Japan during spring 2011. The main aerosol sources recognised by Positive Matrix Factorization (PMF analysis of Streaker data are mineral dust and fresh sea salt (both mostly in the coarser fraction PM2.5–10, As-bearing sulphatic aerosol (PM0.1–2.5, metalliferous sodic particulate matter (PM interpreted as aged, industrially contaminated marine aerosol, and ZnCu-bearing aerosols. Whereas mineral dust arrivals are typically highly transient, peaking over a few hours, sulphatic intrusions build up and decline more slowly, and are accompanied by notable rises in ambient concentrations of metallic trace elements such as Pb, As, Zn, Sn and Cd. The magnitude of the loss in regional air quality due to the spread and persistence of pollution from mainland Asia is especially clear when cleansing oceanic air advects westward across Japan, removing the continental influence and reducing concentrations of the undesirable metalliferous pollutants by over 90%. Our new chemical database, especially the Streaker data, demonstrates the rapidly changing complexity of ambient air inhaled during these transboundary events, and implicates Chinese coal combustion as the main source of the anthropogenic aerosol component.

  9. The usefulness of air quality monitoring and air quality impact studies before the introduction of reformulated gasolines in developing countries. Mexico City, a real case study

    Energy Technology Data Exchange (ETDEWEB)

    Bravo, H.A.; Torres, R.J. [Universidad Nacional Autonoma de Mexico (Mexico). Section de Contaminacion Ambiental

    2000-07-01

    Urban air pollution is a major environmental problem in several developing countries in the world. This phenomenon seems to be related to the growth of both the urban population in large cities and the number of old and poorly maintained car fleets. The expected rise of population in the next century in countries which suffer from lack of capital for air pollution control, means that there is a great potential for the worsening of the air quality. The worldwide promote policy to phase out lead in gasolines has not proved to be an adequate option in improving the environmental quality. Mexico City Metropolitan Area (MCMA) represents a case in which the introduction of reformulated gasolines in an old car fleet has resulted in the reduction of the airborne lead levels but has worsened the ozone concentration of its urban atmosphere. This paper critically analyzes the chronological evolution of the ozone air pollution problem in MCMA after the successive occurrence of several changes in the formulation of low leaded and unleaded gasolines. It also presents evidences of the usefulness potential of air quality monitoring activities and air quality impact studies on the definition of realistic fuel reformulation policies of developing countries. (author)

  10. The impact of decreases in air temperature and increases in ozone on markers of endothelial function in individuals having type-2 diabetes

    Science.gov (United States)

    Several studies have reported an association between air pollution and endothelial dysfunction, especially in individuals having diabetes. However, very few studies have examined the impact of air temperature on endothelial function. The objective of this analysis was to investig...

  11. Modeling emissions and dispersion of contaminants from cleanup activities at a mixed waste site to estimate air impacts and risks

    International Nuclear Information System (INIS)

    The transport and dispersion of contaminants via the air pathway is a major concern during cleanup of contaminated sites. Impacts to air quality and human health during cleanup were evaluated for the Weldon Spring site by using site-specific information for source areas, activities, and receptor locations. In order to ensure protection of human health and the environment, results are being used to focus on those cleanup activities for which release controls should be emphasized

  12. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings

    OpenAIRE

    Zhang, J.P.; T. Zhu; Zhang, Q H; C. C. Li; H. L. Shu; Y Ying; Dai, Z. P.; Wang, X.; Liu, X. Y.; A. M. Liang; H. X. Shen; B. Q. Yi

    2012-01-01

    This study investigated the air pollution characteristics of synoptic-scale circulation in the Beijing megacity, and provided quantitative evaluation of the impacts of circulation patterns on air quality during the 2008 Beijing Summer Olympics. Nine weather circulation types (CTs) were objectively identified over the North China region during 2000–2009, using obliquely rotated T-mode principal component analysis (PCA). The resulting CTs were examined in relation to the local meteorology, regi...

  13. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings

    OpenAIRE

    Zhang, J.P.; T. Zhu; Zhang, Q H; C. C. Li; H. L. Shu; Y Ying; Dai, Z. P.; Liu, X. Y.; A. M. Liang; H. X. Shen

    2011-01-01

    This study investigated the air pollution characteristics of synoptic-scale circulation in the Beijing megacity, and provided holistic evaluation of the impacts of circulation patterns on air quality during the 2008 Beijing Summer Olympics. Nine weather circulation types (CTs) were objectively identified over the North China region during 2000–2009, using obliquely rotated T-mode principal component analysis (PCA). The resulting CTs were examined in relation to the local meteorology, ...

  14. Mitigating the Impacts of Uncontrolled Air Flow on Indoor Environmental Quality and Energy Demand in Non-Residential Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Hugh I. Henderson; Jensen Zhang; James B. Cummings; Terry Brennan

    2006-07-31

    This multi-faceted study evaluated several aspects of uncontrolled air flows in commercial buildings in both Northern and Southern climates. Field data were collected from 25 small commercial buildings in New York State to understand baseline conditions for Northern buildings. Laboratory wall assembly testing was completed at Syracuse University to understand the impact of typical air leakage pathways on heat and moisture transport within wall assemblies for both Northern and Southern building applications. The experimental data from the laboratory tests were used to verify detailed heat and moisture (HAM) simulation models that could be used to evaluate a wider array of building applications and situations. Whole building testing at FSEC's Building Science Laboratory (BSL) systematically evaluated the energy and IAQ impacts of duct leakage with various attic and ceiling configurations. This systematic test carefully controlled all aspects of building performance to quantify the impact of duct leakage and unbalanced flow. The newest features of the EnergyPlus building simulation tool were used to model the combined impacts of duct leakage, ceiling leakage, unbalanced flows, and air conditioner performance. The experimental data provided the basis to validate the simulation model so it could be used to study the impact of duct leakage over a wide range of climates and applications. The overall objective of this project was to transfer work and knowledge that has been done on uncontrolled air flow in non-residential buildings in Florida to a national basis. This objective was implemented by means of four tasks: (1) Field testing and monitoring of uncontrolled air flow in a sample of New York buildings; (2) Detailed wall assembly laboratory measurements and modeling; (3) Whole building experiments and simulation of uncontrolled air flows; and (4) Develop and implement training on uncontrolled air flows for Practitioners in New York State.

  15. Japanese power electronics inverter technology and its impact on the American air conditioning industry

    Energy Technology Data Exchange (ETDEWEB)

    Ushimaru, Kenji.

    1990-08-01

    Since 1983, technological advances and market growth of inverter- driven variable-speed heat pumps in Japan have been dramatic. The high level of market penetration was promoted by a combination of political, economic, and trade policies in Japan. A unique environment was created in which the leading domestic industries-- microprocessor manufacturing, compressors for air conditioning and refrigerators, and power electronic devices--were able to direct the development and market success of inverter-driven heat pumps. As a result, leading US variable-speed heat pump manufacturers should expect a challenge from the Japanese producers of power devices and microprocessors. Because of the vertically-integrated production structure in Japan, in contrast to the out-sourcing culture of the United States, price competition at the component level (such as inverters, sensors, and controls) may impact the structure of the industry more severely than final product sales. 54 refs., 47 figs., 1 tab.

  16. Preliminary assessment of future refining impacts of the Clean Air Act Amendments of 1990

    International Nuclear Information System (INIS)

    A preliminary assessment of the future refining impacts of the Clean Air Act Amendments of 1990 has been performed with the Navy Mobility Fuels Forecasting Systems. The assessment suggests that gasoline reformulation costs in domestic coastal and near-coastal refining regions in the year 2000 could be 3.5 to 5.6 cents per gallon (in terms of 1989 currency). For heating value equivalent to one gallon of conventional gasoline, the regional total added costs (including reformulation costs) for reformulated gasoline could be 5.9 to 8.0 cents. In blending reformulated gasolines, the reduction of butane for lower Reid vapor pressure and the reduction of reformate for lower aromatics are generally compensated by increased percentages of alkylate and/or straight run naphthas. Relatively larger refinery process capacity additions are required for butane isomerization, alkylation, aromatics recovery, and distillate hydrotreating. 21 refs., 3 figs., 18 tabs

  17. Impact of a new condensed toluene mechanism on air quality model predictions in the US

    Directory of Open Access Journals (Sweden)

    G. Sarwar

    2011-03-01

    Full Text Available A new condensed toluene mechanism is incorporated into the Community Multiscale Air Quality Modeling system. Model simulations are performed using the CB05 chemical mechanism containing the existing (base and the new toluene mechanism for the western and eastern US for a summer month. With current estimates of tropospheric emission burden, the new toluene mechanism increases monthly mean daily maximum 8-h ozone by 1.0–3.0 ppbv in Los Angeles, Portland, Seattle, Chicago, Cleveland, northeastern US, and Detroit compared to that with the base toluene chemistry. It reduces model mean bias for ozone at elevated observed ozone concentrations. While the new mechanism increases predicted ozone, it does not enhance ozone production efficiency. A sensitivity study suggests that it can further enhance ozone if elevated toluene emissions are present. While it increases in-cloud secondary organic aerosol substantially, its impact on total fine particle mass concentration is small.

  18. Volcanic gas emissions and their impact on ambient air character at Kilauea Volcano, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, A.J.; Elias, T. [Minerals Management Service, Menlo Park, CA (United States); Navarrete, R. [Geological Survey, Hawaii National Park, HI (United States). Hawaiian Volcano Observatory

    1994-12-31

    Gas emissions from Kilauea occur from the summit caldera, along the middle East Rift Zone (ERZ), and where lava enters the ocean. We estimate that the current ERZ eruption of Kilauea releases between 400 metric tonnes of SO{sub 2} per day, during eruptive pauses, to as much as 1850 metric tonnes per day during actively erupting periods, along with lesser amounts of other chemically and radiatively active species including H{sub 2}S, HCl and HF. In order to characterize gas emissions from Kilauea in a meaningful way for assessing environmental impact, we made a series of replicate grab-sample measurements of ambient air and precipitation at the summit of Kilauea, along its ERZ, and at coastal sites where lava enters the ocean. The grab-sampling data combined with SO{sub 2} emission rates, and continuous air quality and meteorological monitoring at the summit of Kilauea show that the effects of these emissions on ambient air character are a complex function of chemical reactivity, source geometry and effusivity, and local meteorology. Prevailing tradewinds typically carry the gases and aerosols released to the southwest, where they are further distributed by the regional wind regime. Episodes of kona, or low speed variable winds sometimes disrupt this pattern, however, and allow the gases and their oxidation products to collect at the summit and eastern side of the island. Summit solfatara areas of Kilauea are distinguished by moderate to high ambient SO{sub 2}, high H{sub 2}S at one location, and low H{sub 2}S at all others, and negligible HCl concentrations, as measured 1 m from degassing point-sources. Summit solfatara rain water has high sulfate and low chloride ion concentrations, and low pH.

  19. Impact of bicycle route type on exposure to traffic-related air pollution.

    Science.gov (United States)

    MacNaughton, Piers; Melly, Steven; Vallarino, Jose; Adamkiewicz, Gary; Spengler, John D

    2014-08-15

    Cyclists are exposed to traffic-related air pollution (TRAP) during their commutes due to their proximity to vehicular traffic. Two of the main components of TRAP are black carbon (BC) and nitrogen dioxide (NO2), which have both been causally associated with increased mortality. To assess the impact of cyclists' exposure to TRAP, a battery-powered mobile monitoring station was designed to sample air pollutants along five bike routes in Boston, Massachusetts. The bike routes were categorized into three types: bike paths, which are separated from vehicle traffic; bike lanes, which are adjacent to traffic; and designated bike lanes, which are shared traffic lanes for buses and cyclists. Bike lanes were found to have significantly higher concentrations of BC and NO2 than bike paths in both adjusted and unadjusted generalized linear models. Higher concentrations were observed in designated bike lanes than bike paths; however, this association was only significant for NO2. After adjusting for traffic density, background concentration, and proximity to intersections, bike lanes were found to have concentrations of BC and NO2 that were approximately 33% higher than bike paths. Distance from the road, vegetation barriers, and reduced intersection density appear to influence these variations. These findings suggest that cyclists can reduce their exposure to TRAP during their commute by using bike paths preferentially over bike lanes regardless of the potential increase of traffic near these routes. PMID:24840278

  20. Air temperature changes and their impact on permafrost ecosystems in eastern Siberia

    Directory of Open Access Journals (Sweden)

    Desyatkin Roman

    2015-01-01

    Full Text Available Significant increasing of mean annual air temperatures, freezing index and thawing index - have exerted a considerable impact on the state of permafrost landscapes and ecosystems in Eastern Siberia on the last few decades. Many animals and plants have shifted their ranges and this may be the precursor of northward shifts of the landscape zones. Landscapes that contain ground ice bodies in the underlying permafrost are especially sensitive to climate warming. Increase of mean annual air temperature for 2-3°C over the last three decades has resulted an increase in ground temperature by 0.4-1.3°C in the upper part of permafrost, which in turn has led intensification of negative cryogenic processes. Previous year’s measurements of greenhouses gases emission in the Middle Taiga forest of central Yakutia were found to show high values and spatial variability. The wet meadow soils and shallow lakes have highest methane fluxes, almost comparable with emissions from tropical peatlands. Permafrost ecosystems respond to global warming quite rapidly. This makes the study of their changes somewhat easier, but still requires meticulous attention to observations, research, and analysis of the processes under way.

  1. Impact of ship emissions on air pollution and AOD over North Atlantic and European Arctic

    Science.gov (United States)

    Kaminski, Jacek W.; Struzewska, Joanna; Jefimow, Maciej; Durka, Pawel

    2016-04-01

    The iAREA project is combined of experimental and theoretical research in order to contribute to the new knowledge on the impact of absorbing aerosols on the climate system in the European Arctic (http://www.igf.fuw.edu.pl/iAREA). A tropospheric chemistry model GEM-AQ (Global Environmental Multiscale Air Quality) was used as a computational tool. The core of the model is based on a weather prediction model with environmental processes (chemistry and aerosols) implanted on-line and are interactive (i.e. providing feedback of chemistry on radiation and dynamics). The numerical grid covered the Euro-Atlantic region with the resolution of 50 km. Emissions developed by NILU in the ECLIPSE project was used (Klimont et al., 2013). The model was run for two 1-year scenarios. 2014 was chosen as a base year for simulations and analysis. Scenarios include a base run with most up-to-date emissions and a run without maritime emissions. The analysis will focus on the contribution of maritime emissions on levels of particulate matter and gaseous pollutants over the European Arctic, North Atlantic and coastal areas. The annual variability will be assessed based on monthly mean near-surface concentration fields. Analysis of shipping transport on near-surface air pollution over the Euro-Atlantic region will be assessed for ozone, NO2, SO2, CO, PM10, PM2.5. Also, a contribution of ship emissions to AOD will be analysed.

  2. Modeling the impact of solid noise barriers on near road air quality

    Science.gov (United States)

    Venkatram, Akula; Isakov, Vlad; Deshmukh, Parikshit; Baldauf, Richard

    2016-09-01

    Studies based on field measurements, wind tunnel experiments, and controlled tracer gas releases indicate that solid, roadside noise barriers can lead to reductions in downwind near-road air pollutant concentrations. A tracer gas study showed that a solid barrier reduced pollutant concentrations as much as 80% next to the barrier relative to an open area under unstable meteorological conditions, which corresponds to typical daytime conditions when residents living or children going to school near roadways are most likely to be exposed to traffic emissions. The data from this tracer gas study and a wind tunnel simulation were used to develop a model to describe dispersion of traffic emissions near a highway in the presence of a solid noise barrier. The model is used to interpret real-world data collected during a field study conducted in a complex urban environment next to a large highway in Phoenix, Arizona, USA. We show that the analysis of the data with the model yields useful information on the emission factors and the mitigation impact of the barrier on near-road air quality. The estimated emission factors for the four species, ultrafine particles, CO, NO2, and black carbon, are consistent with data cited in the literature. The results suggest that the model accounted for reductions in pollutant concentrations from a 4.5 m high noise barrier, ranging from 40% next to the barrier to 10% at 300 m from the barrier.

  3. Simulation of air quality impacts from prescribed fires on an urban area.

    Science.gov (United States)

    Hu, Yongtao; Odman, M Talat; Chang, Michael E; Jackson, William; Lee, Sangil; Edgerton, Eric S; Baumann, Karsten; Russell, Armistead G

    2008-05-15

    On February 28, 2007, a severe smoke event caused by prescribed forest fires occurred in Atlanta, GA. Later smoke events in the southeastern metropolitan areas of the United States caused by the Georgia-Florida wild forest fires further magnified the significance of forest fire emissions and the benefits of being able to accurately predict such occurrences. By using preburning information, we utilize an operational forecasting system to simulate the potential air quality impacts from two large February 28th fires. Our "forecast" predicts that the scheduled prescribed fires would have resulted in over 1 million Atlanta residents being potentially exposed to fine particle matter (PM2.5) levels of 35 microg m(-3) or higher from 4 p.m. to midnight. The simulated peak 1 h PM2.5 concentration is about 121 microg m(-3). Our study suggests that the current air quality forecasting technology can be a useful tool for helping the management of fire activities to protect public health. With postburning information, our "hindcast" predictions improved significantly on timing and location and slightly on peak values. "Hindcast" simulations also indicated that additional isoprenoid emissions from pine species temporarily triggered by the fire could induce rapid ozone and secondary organic aerosol formation during late winter. Results from this study suggest that fire induced biogenic volatile organic compounds emissions missing from current fire emissions estimate should be included in the future. PMID:18546707

  4. Modeling the impacts of biomass burning on air quality in and around Mexico City

    Directory of Open Access Journals (Sweden)

    W. Lei

    2012-09-01

    Full Text Available The local and regional impacts of open fires and trash burning on ground-level ozone (O3 and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA, and the simulated impacts of open fires on organic aerosol (OA were consistent with many observation-based estimates. We did not detect significant effects of open fires and trash burning on surface O3 concentrations in the MCMA and surrounding region. In contrast, they had important influences on OA and elemental carbon (EC, contributing about 60, 22, 33, and 22% to primary OA (POA, secondary OA (SOA, total OA (TOA, and EC, respectively, on both the local and regional scales. Although the emissions of trash burning are substantially lower than those from open fires, trash burning made slightly smaller but comparable contributions to OA as open fires did, and exerted an even higher influence on EC. SOA formation due to the open fires and trash burning enhanced the OA concentration by about 10 and 5% in the MCMA, respectively. On the annual basis and taking the biofuel use emissions into consideration, we estimated that biomass burning contributed about 60, 30, and 25%, respectively, to the loadings of POA, SOA and EC in both the MCMA and its surrounding region, with about 35, 18, and 15% from open fires and trash burning. The estimates of biomass burning impacts in this study may contain considerable uncertainties due to the uncertainties in their emission estimates, extrapolations and the nature of spot comparison. More observation and modeling studies are needed to accurately assess the impacts of biomass burning on tropospheric chemistry, regional and global air quality, and climate change.

  5. The health burden of pollution: the impact of prenatal exposure to air pollutants

    Directory of Open Access Journals (Sweden)

    Vieira SE

    2015-06-01

    Full Text Available Sandra E Vieira Pediatrics Department, Medical School, University of São Paulo, São Paulo, Brazil Abstract: Exposure to atmospheric pollutants in both open and closed environments is a major cause of morbidity and mortality that may be both controlled and minimized. Despite growing evidence, several controversies and disagreements exist among the studies that have analyzed the effects of prenatal pollutant exposure. This review article aims to analyze primary scientific evidence of the effects of air pollution during pregnancy and the impact of these effects on the fetus, infant health, and in particular, the respiratory system. We performed a review of articles from the PubMed and Web of Science databases that were published in English within the past 5 years, particularly those related to birth cohorts that began in pregnancy with follow-up until the first years of life. The largest reported effects are associated with prenatal exposure to particulate matter, nitrogen dioxide, and tobacco smoke. The primary effects affect birth weight and other parameters of fetal biometry. There is strong evidence regarding the impact of pollutants on morbidity secondary to respiratory problems. Growing evidence links maternal smoking to childhood asthma and wheezing. The role of passive maternal smoking is less clear. Great heterogeneity exists among studies. There is a need for additional studies on birth cohorts to monitor the relationship between the exposure of pregnant women to pollutants and their children’s progress during the first years of life. Keywords: air pollutants, pregnancy, birth weight, lung disease, tobacco, fetal development

  6. Air quality analysis for the Western Area Power Administration's 2004 Power Marketing Plan Environmental Impact Statement

    International Nuclear Information System (INIS)

    The Western Area Power Administration (Western) markets and transmits electric power throughout 15 western states. Western's Sierra Nevada Customer Service Region (Sierra Nevada Region) markets approximately 1,480 megawatts (MW) of firm power (plus 100 MW of seasonal peaking capacity) from the Central Valley Project (CVP) and other resources. Western's mission is to sell and deliver electricity generated from these resources. Western's capacity and energy sales must be in conformance with the laws that govern its sale of electrical power. Further, Western's hydropower operations at each facility must comply with minimum and maximum flows and other constraints set by other regulatory agencies. The Sierra Nevada Region proposes to develop a marketing plan that defines the products and services it would offer beyond the year 2004 and the eligibility and allocation criteria for its electric power resources. Because determining levels of long-term firm power resources to be marketed and subsequently entering into contracts for the delivery of related products and services could be a major Federal action with potentially significant impacts to the human environment, the 2004 Power Marketing Plan Environmental Impact Statement (2004 EIS) is being prepared. Decisions made by the Sierra Nevada Region on how and when to supply power to its customers would influence the operation of power plants within the Western Systems Coordinating Council (WSCC). If the resources affected are thermal resources, this could in turn affect the amount, timing, and location of pollutant emissions to the air at locations throughout the western United States. This report has been produced in conjunction with the 2004 EIS to provide a more detailed discussion of the air quality implications of the 2004 power marketing plan

  7. Comparison of the Performance of Chilled Beam with Swirl Jet and Diffuse Ceiling Air Supply: Impact of Heat Load Distribution

    DEFF Research Database (Denmark)

    Bertheussen, Bård; Mustakallio, Panu; Kosonen, Risto;

    2013-01-01

    The impact of heat load strength and positioning on the indoor environment generated by diffuse ceiling air supply and chilled beam with radial swirl jet was studied and compared. An office room with two persons and a meeting room with six persons were simulated in a test room (4.5 x 3.95 x 3.5 m3...... (ventilation effectiveness of 0.4) and the air flow rate had to be above minimum to safeguard the indoor air quality. The radial swirl jet of chilled beam also was not capable of creating complete mixing at high and concentrated heat load (ventilation effectiveness of 0.7)....

  8. Section 112 hazardous air pollutants Clean Air Act Amendments of 1990; potential impact of fossil/NUC

    International Nuclear Information System (INIS)

    Control of hazardous air pollutants under the Clean Air Act (CAA) goes back several decades. Section 112 of the 1970 CAA as amended in 1977 served as the national statutory basis for controlling hazardous air pollutants until the most recent 1990 Amendments. Following severe criticism of the effectiveness of the Act to address hazardous air pollutant issues and a pile of seemingly never ending lawsuits challenging the regulatory process, the U.S. Congress has substantially rewritten Section 112 in the 1990 CAA Amendments. Many provisions heretofore requiring findings or regulatory decisions by the Environmental Protection Agency (EPA) Administrator are now automatic in the sense that the decisions have already been made by the US Congress legislatively. Thus, the new Section 112 has eliminated many of the existing regulatory obstacles, or safeguards; this will likely result in sweeping new regulatory programs mandating extensive controls on many industrial activities. A much needed study program to address fossil fuel fired steam electric generating units' hazardous air emissions and to identify control alternatives to regulate these emissions, if regulation is required, was incorporated into new Section 112. Because of this study, the regulatory fate of these units under the new Section 112 remains highly uncertain. An extensive regulatory program addressing hazardous air pollutants of these utility units under Section 112 would dwarf electric utility costs associated with the new acid rain control program. First, this paper identifies major provisions of the old law and the resulting regulatory status for both coal and nuclear power facilities before addressing the new Section 112 under the 1990 CAA Amendments and potential implications for electric utilities specifically

  9. Evaluation of sanitary impact of the urban air pollution. Avignon area impact at short and long term; Evaluation de l'impact sanitaire de la pollution atmospherique urbaine. Zone d'Avignon impact a court et long terme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    An health impact assessment of air pollution based on the I.n.V.S. guidelines has been conducted in Avignon according to the Regional Plan for the quality of air in the region of Provence Alpes Cote d'Azur. Short term impact of atmospheric pollution has been estimated in term of mortality (total, cardiovascular and respiratory mortality) and hospital admissions (for respiratory, cardiovascular and cardiac reasons) attributable to air pollution. Long-term impact was also assessed by the number of deaths due to atmospheric pollution. The study has been carried out in seven cities homogeneously exposed belonging to Vaucluse (Avignon, Le Pontet, Morieres les Avignon, Sorgues and Vedene) and two cities of the Gard department (les Angles and Villeneuve les Avignon) representing a study population of 153,624 inhabitants. Two period of study have been defined: period 1999-2000 for short and long term evaluations on the mortality and the year 2001 for the morbidity analysis. This study rests on methodological principles of E.I.S. (evaluation of sanitary impact) of urban air pollution whom methodology is in four steps: identification of dangers, exposure estimation, choice of exposure-risk relationship and risk characterisation. The pollutions indicators are built from four pollutants nitrogen dioxide, ozone, sulfur dioxide and PM{sub 10}. The exposure-risk relationships used come from epidemiological studies realised in general population, by preferring the multi centers studies and European ones. The number of deaths by year due to air pollution is 23, whom 10 by cardiovascular diseases, 2 by respiratory diseases. The most efficient scenario are these ones corresponding to air pollution decreases of 25% in the considered pollutant. About the long term sanitary benefits, the different scenario show that the European norm forecasted for 2005 is respected. The respect of the European norm expected for 2010 should allow to avoid 10 deaths on the totality of registered

  10. Evolution of the airport and air transport industry in Colombia and it’s impact on the economy

    Directory of Open Access Journals (Sweden)

    Oscar Diaz Olariaga

    2015-02-01

    Full Text Available Purpose: This article aims to describe the development and evolution of the airports and air transport industry in Colombia. During the past fifteen years Colombia has witnessed a remarkably rapid and dynamic growth in air transport. This period coincides with the establishment and continuous implementation of public policy specifically designed for the air transport sector and airports. Methodology / Approach: The evolution of air transport in Colombia is evaluated descriptively through the analysis of air transport and socio-economic historical data. The impact of public and investment policies is analyzed through a cause-effect approach. Findings: This paper describes how the air transport/airport industry in Colombia has been directly and positively affected by the implementation of public policies and other legislation, while measuring the effect and impact of this industry on the Colombian economy. Originality  / Value: This work fills a notorious deficiency in specialized literature concerning air transport in Colombia and Latin America in all its aspects and dimensions.

  11. Oil and gas impacts on air quality in federal lands in the Bakken region: an overview of the Bakken Air Quality Study and first results

    Science.gov (United States)

    Prenni, A. J.; Day, D. E.; Evanoski-Cole, A. R.; Sive, B. C.; Hecobian, A.; Zhou, Y.; Gebhart, K. A.; Hand, J. L.; Sullivan, A. P.; Li, Y.; Schurman, M. I.; Desyaterik, Y.; Malm, W. C.; Collett, J. L., Jr.; Schichtel, B. A.

    2016-02-01

    The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region over the past decade. Along with this development has come an increase in associated emissions to the atmosphere. Concern about potential impacts of these emissions on federal lands in the region prompted the National Park Service to sponsor the Bakken Air Quality Study over two winters in 2013-2014. Here we provide an overview of the study and present some initial results aimed at better understanding the impact of local oil and gas emissions on regional air quality. Data from the study, along with long-term monitoring data, suggest that while power plants are still an important emissions source in the region, emissions from oil and gas activities are impacting ambient concentrations of nitrogen oxides and black carbon and may dominate recent observed trends in pollutant concentrations at some of the study sites. Measurements of volatile organic compounds also definitively show that oil and gas emissions were present in almost every air mass sampled over a period of more than 4 months.

  12. Oil and gas impacts on air quality in federal lands in the Bakken region: an overview of the Bakken Air Quality Study and first results

    Directory of Open Access Journals (Sweden)

    A. J. Prenni

    2015-10-01

    Full Text Available The Bakken formation contains billions of barrels of oil and gas trapped in rock and shale. Horizontal drilling and hydraulic fracturing methods have allowed for extraction of these resources, leading to exponential growth of oil production in the region over the past decade. Along with this development has come an increase in associated emissions to the atmosphere. Concern about potential impacts of these emissions on federal lands in the region prompted the National Park Service to sponsor the Bakken Air Quality Study over two winters in 2013–2014. Here we provide an overview of the study and present some initial results aimed at better understanding the impact of local oil and gas emissions on regional air quality. Data from the study, along with long term monitoring data, suggest that while power plants are still an important emissions source in the region, emissions from oil and gas activities are impacting ambient concentrations of nitrogen oxides and black carbon and may dominate recent observed trends in pollutant concentrations at some of the study sites. Measurements of volatile organic compounds also definitively show that oil and gas emissions were present in almost every air mass sampled over a period of more than four months.

  13. Impact of air pollutants from surface transport sources on human health: A modeling and epidemiological approach.

    Science.gov (United States)

    Aggarwal, Preeti; Jain, Suresh

    2015-10-01

    This study adopted an integrated 'source-to-receptor' assessment paradigm in order to determine the effects of emissions from passenger transport on urban air quality and human health in the megacity, Delhi. The emission modeling was carried out for the base year 2007 and three alternate (ALT) policy scenarios along with a business as usual (BAU) scenario for the year 2021. An Activity-Structure-Emission Factor (ASF) framework was adapted for emission modeling, followed by a grid-wise air quality assessment using AERMOD and a health impact assessment using an epidemiological approach. It was observed that a 2021-ALT-III scenario resulted in a maximum concentration reduction of ~24%, ~42% and ~58% for carbon monoxide (CO), nitrogen dioxide (NO2) and particulate matter (PM), respectively, compared to a 2021-BAU scenario. Further, it results in significant reductions in respiratory and cardiovascular mortality, morbidity and Disability Adjusted Life Years (DALY) by 41% and 58% on exposure to PM2.5 and NO2 concentrations when compared to the 2021-BAU scenario, respectively. In other words, a mix of proposed policy interventions namely the full-phased introduction of the Integrated Mass Transit System, fixed bus speed, stringent vehicle emission norms and a hike in parking fees for private vehicles would help in strengthening the capability of passenger transport to cater to a growing transport demand with a minimum health burden in the Delhi region. Further, the study estimated that the transport of goods would be responsible for ~5.5% additional VKT in the 2021-BAU scenario; however, it will contribute ~49% and ~55% additional NO2 and PM2.5 concentrations, respectively, in the Delhi region. Implementation of diesel particulate filters for goods vehicles in the 2021-ALT-IV-O scenario would help in the reduction of ~87% of PM2.5 concentration, compared to the 2021-BAU scenario; translating into a gain of 1267 and 505 DALY per million people from exposure to PM2.5 and NO

  14. Characterisation of the impact of open biomass burning on urban air quality in Brisbane, Australia.

    Science.gov (United States)

    He, Congrong; Miljevic, Branka; Crilley, Leigh R; Surawski, Nicholas C; Bartsch, Jennifer; Salimi, Farhad; Uhde, Erik; Schnelle-Kreis, Jürgen; Orasche, Jürgen; Ristovski, Zoran; Ayoko, Godwin A; Zimmermann, Ralf; Morawska, Lidia

    2016-05-01

    Open biomass burning from wildfires and the prescribed burning of forests and farmland is a frequent occurrence in South-East Queensland (SEQ), Australia. This work reports on data collected from 10 to 30 September 2011, which covers the days before (10-14 September), during (15-20 September) and after (21-30 September) a period of biomass burning in SEQ. The aim of this project was to comprehensively quantify the impact of the biomass burning on air quality in Brisbane, the capital city of Queensland. A multi-parameter field measurement campaign was conducted and ambient air quality data from 13 monitoring stations across SEQ were analysed. During the burning period, the average concentrations of all measured pollutants increased (from 20% to 430%) compared to the non-burning period (both before and after burning), except for total xylenes. The average concentration of O3, NO2, SO2, benzene, formaldehyde, PM10, PM2.5 and visibility-reducing particles reached their highest levels for the year, which were up to 10 times higher than annual average levels, while PM10, PM2.5 and SO2 concentrations exceeded the WHO 24-hour guidelines and O3 concentration exceeded the WHO maximum 8-hour average threshold during the burning period. Overall spatial variations showed that all measured pollutants, with the exception of O3, were closer to spatial homogeneity during the burning compared to the non-burning period. In addition to the above, elevated concentrations of three biomass burning organic tracers (levoglucosan, mannosan and galactosan), together with the amount of non-refractory organic particles (PM1) and the average value of f60 (attributed to levoglucosan), reinforce that elevated pollutant concentration levels were due to emissions from open biomass burning events, 70% of which were prescribed burning events. This study, which is the first and most comprehensive of its kind in Australia, provides quantitative evidence of the significant impact of open biomass burning

  15. Evaluation of sanitary impact of urban air pollution. Agglomeration of Bayonne impact at short and long term; Evaluation de l'impact sanitaire de la pollution atmospherique urbaine. Agglomeration de Bayonne impact a cour et long terme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    A health impact assessment of air pollution based on the I.n.V.S. guidelines has been conducted in Bayonne according to the regional Plan for the quality of air in the region of Aquitaine. It has been carried out in 16 cities homogeneously exposed, belonging to Bayonne agglomeration, representing a study population of 148,742 inhabitants. Atmospheric pollution indicators analyzed are ozone, nitrogen dioxide and particles having diameter below 10 {mu}m. Short-term impact of atmospheric pollution has been estimated in term of mortality (total, cardiovascular and respiratory mortality) and on hospital intakes (for respiratory, cardiovascular and cardiac reasons) attributable to air pollution. Long term impact was also assessed by the number of deaths due to atmospheric pollution. In 2001, the atmospheric pollution has directly been responsible in the studied area for 20 anticipated deaths. A decrease by 25% of the pollutants could allow avoiding half of the premature deaths and hospital intakes attributable to air pollution. Concerning long term effects, a decrease by 5 {mu}g/m{sup 3} of the annual mean of PM{sub 10} could allow avoiding 32 deaths per year. These results should be interpreted with care because of the limits of the method. However, they show that air pollution impact is non negligible even in a small agglomeration like Bayonne, since everyone is exposed to air pollution. They also suggest that a policy of atmospheric pollution reduction only based on not exceeding the standard levels would not have the expected benefits on the public health point of view. To decrease at the source the everyday and total pollutants emissions would be more efficient. (author)

  16. Evaluation of sanitary impact of urban air pollution. Agglomeration of Agen impact at short and long term; Evaluation de l'impact sanitaire de la pollution atmospherique urbaine. Agglomeration d'Agen impact a court et long terme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A health impact assessment of air pollution based on the I.n.V.S. guidelines has been conducted in Agen according to the regional Plan for the quality of air in the region of Aquitaine to assess short term effects of pollutants on morbidity (hospital admissions in 2002) and mortality (deaths in 2001), and long-term effects on mortality. This study is based on the four standardised steps of health risk assessment. It has been carried out in 8 cities homogeneously exposed, belonging to Agen agglomeration, representing a study population of 60,515 inhabitants. Atmospheric pollution indicators analysed are ozone and particles having diameter below 10 {mu}m. Short-term impact of atmospheric pollution has been estimated in term of mortality (total, cardiovascular and respiratory mortality) and on hospital intakes (for respiratory, cardiovascular and cardiac reasons) attributable to air pollution.Long-term impact was also assessed by the number of deaths due to atmospheric pollution. In 2001, the atmospheric pollution has directly been responsible in the studied area of 4 anticipated deaths, including 2 for cardiovascular reason. A decrease by 25% of the pollutants could allow avoiding 2 premature deaths per year among the 4 attributable to air pollution. Concerning long-term effects, a decrease by 5 {mu}g/m{sup 3} of the annual mean of P.M.10 would allow avoiding 11 premature deaths per year. The results of this study should be interpreted with care because of the limits of the method. However, they show that air pollution can have a health impact even in a small city like Agen, since everyone is exposed to air pollution. (author)

  17. Evaluation of sanitary impact of urban air pollution. Agglomeration of Perigueux impact at short and long term; Evaluation de l'impact sanitaire de la pollution atmospherique urbaine. Agglomeration de Perigueux impact a court et long terme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-15

    A health impact assessment of air pollution based on the I.n.V.S. guidelines has been conducted in Perigueux according to the regional Plan for the quality of air in the region of Aquitaine. It has been carried out in 5 cities homogeneously exposed, belonging to Perigueux agglomeration, representing a study population of 52,948 inhabitants. Atmospheric pollution indicators analysed are ozone, nitrogen dioxide and particles having diameter below 10 {mu}m. Short-term impact of atmospheric pollution has been estimated in term of mortality (total, cardiovascular and respiratory mortality) and on hospital intakes (for respiratory, cardiovascular and cardiac reasons) attributable to air pollution. Long term impact was also assessed by the number of deaths due to atmospheric pollution. In 2001, the atmospheric pollution has directly been responsible in the studied area for 5 anticipated deaths. A decrease by 25% of the pollutants could allow avoiding half of the premature deaths and hospital intakes attributable to air pollution. Concerning long term effects, a decrease by 5 {mu}g/m{sup 3} of the annual mean of P.M.10 could allow avoiding 10 deaths per year. These results should be interpreted with care because of the limits of the method. However, they show that air pollution can have an impact even in a small agglomeration like Perigueux, since everyone is exposed to air pollution. They also suggest that a policy of atmospheric pollution reduction only based on not exceeding the standard levels would not have the expected benefits on the public health point of view. To decrease at the source the every day and total pollutants emissions would be more efficient. (author)

  18. Impacts of urban land-surface forcing on ozone air quality in the Seoul metropolitan area

    Directory of Open Access Journals (Sweden)

    Y.-H. Ryu

    2013-02-01

    Full Text Available Modified local meteorology owing to heterogeneities in the urban–rural surface can affect urban air quality. In this study, the impacts of urban land-surface forcing on ozone air quality during a high ozone (O3 episode in the Seoul metropolitan area, South Korea, are investigated using a high-resolution chemical transport model (CMAQ. Under fair weather conditions, the temperature excess (urban heat island significantly modifies boundary layer characteristics/structures and local circulations. The modified boundary layer and local circulations result in an increase in O3 levels in the urban area of 16 ppb in the nighttime and 13 ppb in the daytime. Enhanced turbulence in the deep urban boundary layer dilutes pollutants such as NOx, and this contributes to the elevated O3 levels through the reduced O3 destruction by NO in the NOx-rich environment. The advection of O3 precursors over the mountains near Seoul by the prevailing valley-breeze circulation in the mid- to late morning results in the build-up of O3 over the mountains in conjunction with biogenic volatile organic compound (BVOC emissions there. As the prevailing local circulation in the afternoon changes to urban-breeze circulation, the O3-rich air masses over the mountains are advected over the urban area. The urban-breeze circulation exerts significant influences on not only the advection of O3 but also the chemical production of O3 under the circumstances in which both anthropogenic and biogenic (natural emissions play important roles in O3 formation. As the air masses that are characterized by low NOx and high BVOC levels and long OH chain length are advected over the urban area from the surroundings, the ozone production efficiency increases in the urban area. The relatively strong vertical mixing in the urban boundary layer embedded in the

  19. Impacts of cooking system on indoor air environment: a case study on a Bangladeshi village

    International Nuclear Information System (INIS)

    Energy is needed to meet the subsistence requirement as well as to meet the demand for economic growth and development. As like many other third world countries still more than half of the total consumed energy comes from the traditional fuels in Bangladesh. This is causing rapid deforestation and consequently a change in the eco-systems leading to erosion and change in the climatic pattern. Extreme use of raw (low quality) biomass traditional cook stoves causes significant impacts on indoor air environment and as well on human health. In the study, an assessment of the cooking energy usage pattern, its potential impacts on indoor air environment and human health in a village named Deyara in Khulna district has been performed. The socio-economic status of the villagers and cooking energy usage pattern were evaluated by a questionnaire survey. In the study village Deyara, about 74% of the total households rely on biomass fuel, where the mostly used biomass is trees and its residues (46%), next the crop wastes (39%) and lastly the cow dung (15%). Emissions of different types of air pollutants and greenhouse gases from the burning of biomass cooking fuels the study village are estimated. In the study area the estimated annual emission of CO/sub 2/ is 45.5 tons which about 94% of the total emission, where CO is 4.5%, PM is 1 % and about 0.5% emission is of SO/sub x/, NO/sub x/, N/sub 2/O. In the study area the concentrations of air pollutants in the kitchen environment were estimated using an indoor air quality model. The model results show that the concentration around the household areas is not at tolerable level and due to only 1 hour biomass burning this concentration is 323 mg/m/sup 3/ for CO, 50.6 mg/m/sup 3/ for PM, 15 mg/m/sup 3/ for NO/sub 2/ and 9.6 mg/m/sup 3/ for SO/sub 2/. Not only this, from the combustion of biomass cooking fuels this concentrations of different carcinogens are also at high levels. For 1 hour burning of biomass fuel this concentration is

  20. The health burden of pollution: the impact of prenatal exposure to air pollutants.

    Science.gov (United States)

    Vieira, Sandra E

    2015-01-01

    Exposure to atmospheric pollutants in both open and closed environments is a major cause of morbidity and mortality that may be both controlled and minimized. Despite growing evidence, several controversies and disagreements exist among the studies that have analyzed the effects of prenatal pollutant exposure. This review article aims to analyze primary scientific evidence of the effects of air pollution during pregnancy and the impact of these effects on the fetus, infant health, and in particular, the respiratory system. We performed a review of articles from the PubMed and Web of Science databases that were published in English within the past 5 years, particularly those related to birth cohorts that began in pregnancy with follow-up until the first years of life. The largest reported effects are associated with prenatal exposure to particulate matter, nitrogen dioxide, and tobacco smoke. The primary effects affect birth weight and other parameters of fetal biometry. There is strong evidence regarding the impact of pollutants on morbidity secondary to respiratory problems. Growing evidence links maternal smoking to childhood asthma and wheezing. The role of passive maternal smoking is less clear. Great heterogeneity exists among studies. There is a need for additional studies on birth cohorts to monitor the relationship between the exposure of pregnant women to pollutants and their children's progress during the first years of life. PMID:26089661

  1. Impacts of air pollution exposure on the allergenic properties of Arizona cypress pollens

    International Nuclear Information System (INIS)

    Epidemiological studies have demonstrated that urbanization and high levels of vehicle emissions correlated with the increasing trend of pollen-induced respiratory allergies. Numerous works have investigated the role of pollutants in the pathogenesis of respiratory diseases but impacts of anthropogenic pollution on pollen allergenic properties are still poorly understood. The objective of this survey was to evaluate impacts of the traffic-related pollution on the structure and allergenic protein content of Arizona cypress (Cupressus arizonica, CA) pollens, recognized as a rising cause of seasonal allergy in various regions worldwide. According to our results, traffic-related air pollution by its direct effects on the elemental composition of pollens considerably increased the fragility of the pollen exine, causing numerous cracks in its surface and facilitating pollen content liberation. Pollen grains were also covered by numerous submicronic orbicules which may act as effective vectors for pollen-released components into the lower regions of respiratory organs. On the other hand, this study provides us reliable explications about the low efficiency of standard commercial allergens in the diagnosis of the Arizona cypress pollen allergy in Tehran. Although traffic related pollution affects the allergenic components of CA pollens, the repercussions on the respiratory health of urban populations have yet to be clarified and need further investigations.

  2. Impacts of air pollution exposure on the allergenic properties of Arizona cypress pollens

    Science.gov (United States)

    Shahali, Y.; Pourpak, Z.; Moin, M.; Zare, A.; Majd, A.

    2009-02-01

    Epidemiological studies have demonstrated that urbanization and high levels of vehicle emissions correlated with the increasing trend of pollen-induced respiratory allergies. Numerous works have investigated the role of pollutants in the pathogenesis of respiratory diseases but impacts of anthropogenic pollution on pollen allergenic properties are still poorly understood. The objective of this survey was to evaluate impacts of the traffic-related pollution on the structure and allergenic protein content of Arizona cypress (Cupressus arizonica, CA) pollens, recognized as a rising cause of seasonal allergy in various regions worldwide. According to our results, traffic-related air pollution by its direct effects on the elemental composition of pollens considerably increased the fragility of the pollen exine, causing numerous cracks in its surface and facilitating pollen content liberation. Pollen grains were also covered by numerous submicronic orbicules which may act as effective vectors for pollen-released components into the lower regions of respiratory organs. On the other hand, this study provides us reliable explications about the low efficiency of standard commercial allergens in the diagnosis of the Arizona cypress pollen allergy in Tehran. Although traffic related pollution affects the allergenic components of CA pollens, the repercussions on the respiratory health of urban populations have yet to be clarified and need further investigations.

  3. Evaluating the climate and air quality impacts of short-lived pollutants

    Directory of Open Access Journals (Sweden)

    A. Stohl

    2015-06-01

    Full Text Available This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants. ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs: methane, aerosols and ozone, and their precursor species and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs and six chemistry transport models (CTMs. The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for Northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20 was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20 year climate impact. These measures

  4. Evaluation of sanitary impact of urban air pollution. Agglomeration of Bordeaux impact at short and long term; Evaluation de l'impact sanitaire de la pollution atmospherique urbaine. Agglomeration de Bordeaux impact a cour et long terme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    A health impact assessment of air pollution based on the I.n.V.S. guidelines has been conducted in Bordeaux area. Atmospheric pollution indicators analyzed were ozone, nitrogen dioxide and particles having diameter below 10 {mu}m. Short term impact of atmospheric pollution has been estimated in term of mortality (total, cardiovascular and respiratory mortality) and hospital admissions (for respiratory, cardiovascular and cardiac reasons) attributable to air pollution. Long-term impact was also assessed by the number of deaths due to atmospheric pollution. The study has been carried out in 22 cities homogeneously exposed belonging to Bordeaux agglomeration, representing a study population of 604,238 inhabitants. In 2001, the atmospheric pollution has directly been responsible in the studied area of 56 anticipated deaths, including half for cardiovascular reasons and 7 for respiratory reasons. Regarding morbidity, 29 hospital admissions for respiratory disease were attributable to air pollution in 2002, including two-thirds among elderly people (aged 65 years and over). Further more, 81 hospitalizations for cardiovascular diseases that occurred in 2002 were attributable to air pollution, including 27 for cardiac reasons. A decrease by 25% of the pollutants could have allowed avoiding about half of the premature deaths and hospital intakes attributable to air pollution. Concerning long term effects, about 200 annual deaths are attributable to chronic exposure to air pollution, and a decrease by 5{mu}g/m{sup 3} of the annual mean of PM{sub 10} could allow avoiding half of these deaths. The results have to be interpreted with care because of the limits of the H.I.A. method. However, they show that air pollution has a non negligible impact even in a city like Bordeaux where target values are mostly respected. They also show that reducing air pollution can have a significant impact in term of mortality and morbidity. However, a policy of atmospheric pollution reduction

  5. Understanding the impact of recent advances in isoprene photooxidation on simulations of regional air quality

    Directory of Open Access Journals (Sweden)

    Y. Xie

    2013-08-01

    Full Text Available The CMAQ (Community Multiscale Air Quality us model in combination with observations for INTEX-NA/ICARTT (Intercontinental Chemical Transport Experiment–North America/International Consortium for Atmospheric Research on Transport and Transformation 2004 are used to evaluate recent advances in isoprene oxidation chemistry and provide constraints on isoprene nitrate yields, isoprene nitrate lifetimes, and NOx recycling rates. We incorporate recent advances in isoprene oxidation chemistry into the SAPRC-07 chemical mechanism within the US EPA (United States Environmental Protection Agency CMAQ model. The results show improved model performance for a range of species compared against aircraft observations from the INTEX-NA/ICARTT 2004 field campaign. We further investigate the key processes in isoprene nitrate chemistry and evaluate the impact of uncertainties in the isoprene nitrate yield, NOx (NOx = NO + NO2 recycling efficiency, dry deposition velocity, and RO2 + HO2 reaction rates. We focus our examination on the southeastern United States, which is impacted by both abundant isoprene emissions and high levels of anthropogenic pollutants. We find that NOx concentrations increase by 4–9% as a result of reduced removal by isoprene nitrate chemistry. O3 increases by 2 ppbv as a result of changes in NOx. OH concentrations increase by 30%, which can be primarily attributed to greater HOx production. We find that the model can capture observed total alkyl and multifunctional nitrates (∑ANs and their relationship with O3 by assuming either an isoprene nitrate yield of 6% and daytime lifetime of 6 hours or a yield of 12% and lifetime of 4 h. Uncertainties in the isoprene nitrates can impact ozone production by 10% and OH concentrations by 6%. The uncertainties in NOx recycling efficiency appear to have larger effects than uncertainties in isoprene nitrate yield and dry deposition velocity. Further progress depends on improved understanding of

  6. Development and application of procedures to evaluate air quality and visibility impacts of low-altitude flying operations

    Energy Technology Data Exchange (ETDEWEB)

    Liebsch, E.J.

    1990-08-01

    This report describes the development and application of procedures to evaluate the effects of low-altitude aircraft flights on air quality and visibility. The work summarized in this report was undertaken as part of the larger task of assessing the various potential environmental impacts associated with low-altitude military airspaces. Accomplishing the air quality/visibility analysis for the GEIS included (1) development and application of an integrated air quality model and aircraft emissions database specifically for Military Training Route (MTR) or similar flight operations, (2) selection and application of an existing air quality model to analyze the more widespread and less concentrated aircraft emissions from military Operations Areas (MOAs) and Restricted Areas (RAs), and (3) development and application of procedures to assess impacts of aircraft emissions on visibility. Existing air quality models were considered to be inadequate for predicting ground-level concentrations of pollutants emitted by aircraft along MTRs; therefore, the Single-Aircraft Instantaneous Line Source (SAILS) and Multiple-Aircraft Instantaneous Line Source (MAILS) models were developed to estimate potential impacts along MTRs. Furthermore, a protocol was developed and then applied in the field to determine the degree of visibility impairment caused by aircraft engine exhaust plumes. 19 refs., 2 figs., 3 tabs.

  7. Do current levels of air pollution kill? The impact of air pollution on population mortality in England

    OpenAIRE

    Janke, KM; Propper, C; J. Henderson

    2009-01-01

    The current air quality limit values for airborne pollutants in the UK are low by historical standards and are at levels that are believed not to harm health. We assess whether this view is correct. We examine the relationship between common sources of airborne pollution and population mortality for England. We use data at local authority level for 1998-2005 to examine whether current levels of airborne pollution, as measured by annual mean concentrations of carbon monoxide, nitrogen dioxide,...

  8. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    International Nuclear Information System (INIS)

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K+ as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM2.5 concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM2.5 in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.02013;16.8% and 4.02013;19.0% of PM2.5 concentrations in Xinken and Guangzhou downtown, respectively. (Author)

  9. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    Science.gov (United States)

    Wang, Qiaoqiao; Shao, Min; Liu, Ying; William, Kuster; Paul, Goldan; Li, Xiaohua; Liu, Yuan; Lu, Sihua

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K + as a tracer could result in bias because of the existence of other K + sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM2.5 concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM2.5 in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.0-16.8% and 4.0-19.0% of PM2.5 concentrations in Xinken and Guangzhou downtown, respectively.

  10. Impact of HONO sources on the performance of mesoscale air quality models

    Science.gov (United States)

    Gonçalves, M.; Dabdub, D.; Chang, W. L.; Jorba, O.; Baldasano, J. M.

    2012-07-01

    Nitrous acid (HONO) photolysis constitutes a primary source of OH in the early morning, which leads to changes in model gas-phase and particulate matter concentrations. However, state-of-the-art models of chemical mechanisms share a common representation of gas-phase chemistry leading to HONO that fails in reproducing the observed profiles. Hence, there is a growing interest in improving the definition of additional HONO sources within air quality models, i.e. direct emissions or heterogeneous reactions. In order to test their feasibility under atmospheric conditions, the WRF-ARW/HERMES/CMAQ modeling system is applied with high horizontal resolution (4 × 4 km2) to Spain for November 24-27, 2008. HONO modeled sources include: (1) direct emissions from on-road transport; NO2 hydrolysis on aerosol and ground surfaces, the latter with (2) kinetics depending exclusively on available surfaces for reaction and (3) refined kinetics considering also relative humidity dependence; and (4) photoenhanced NO2 reduction on ground surfaces. The DOMINO measurement campaign performed in El Arenosillo (Southern Spain) provides valuable HONO observations. Modeled HONO results are consistently below observations, even when the most effective scenario is assessed, corresponding to contributions of direct emissions and NO2 hydrolysis with the simplest kinetics parameterization. With the additional sources of HONO, PM2.5 predictions can be up to 14% larger in urban areas. Quantified impacts on secondary pollutants have to be taken as a low threshold, due to the proven underestimation of HONO levels. It is fundamental to improve HONO sources definition within air quality models, both for the scientific community and decision makers.

  11. Impact of wildfire smoke in Buenos Aires, Argentina, on ocular surface

    Directory of Open Access Journals (Sweden)

    Martin Berra

    2015-04-01

    Full Text Available Purpose: To evaluate the acute impact of the wildfire smoke episode in 2008 on the ocular surface of subjects living in the Metropolitan Area of Buenos Aires (MABA. Methods: A total of 86 subjects were evaluated: Group 1 comprised patients from a public ophthalmology hospital (N=35 and Group 2 comprised healthy volunteers (N=51. All subjects answered a questionnaire on ocular symptoms and underwent ophthalmologic examination [bulbar conjunctival hyperemia, corneal fluorescein staining, rose bengal vital staining, tear break-up time (TBUT, Schirmer I test, tear lysozyme, and impression cytology] during and after the acute episode. Concentrations of carbon monoxide (CO, nitrogen dioxide (NO2, and particulate matter (PM were measured before, during, and after the acute episode. Results: Both groups showed a statically significant increase in ocular symptoms and bulbar conjunctival hyperemia and a statically significant decrease in tear break-up time during the acute episode. Group 1 showed more severe symptoms and a statistically significant increase in fluorescein and rose bengal staining intensities during the acute episode. We found a significant negative correlation between ocular symptoms and tear break-up time. During the episode, the levels of CO, NO2, and particulate matter in MABA were four times higher than the usual average levels for the same period in 2007 and 2009. Conclusions: Increased air pollution from the burning of biomass is associated with a decrease in the stability of the tear film (TBUT, generating areas of ocular surface exposure that may be the cause of the increased feeling of irritation. Group 1 was more affected by not having a healthy ocular surface, and thus consulted an ophthalmologist. Cytological changes in the conjunctiva were not observed, which could be due to the short duration of the episode.

  12. Aromatic compound emissions from municipal solid waste landfill: Emission factors and their impact on air pollution

    Science.gov (United States)

    Liu, Yanjun; Lu, Wenjing; Guo, Hanwen; Ming, Zhongyuan; Wang, Chi; Xu, Sai; Liu, Yanting; Wang, Hongtao

    2016-08-01

    Aromatic compounds (ACs) are major components of volatile organic compounds emitted from municipal solid waste (MSW) landfills. The ACs emissions from the working face of a landfill in Beijing were studied from 2014 to 2015 using a modified wind tunnel system. Emission factors (EFs) of fugitive ACs emissions from the working face of the landfill were proposed according to statistical analyses to cope with their uncertainty. And their impacts on air quality were assessed for the first time. Toluene was the dominant AC with an average emission rate of 38.8 ± 43.0 μg m-2 s-1 (at a sweeping velocity of 0.26 m s-1). An increasing trend in AC emission rates was observed from 12:00 to 18:00 and then peaked at 21:00 (314.3 μg m-2 s-1). The probability density functions (PDFs) of AC emission rates could be classified into three distributions: Gaussian, log-normal, and logistic. EFs of ACs from the working face of the landfill were proposed according to the 95th percentile cumulative emission rates and the wind effects on ACs emissions. The annual ozone formation and secondary organic aerosol formation potential caused by AC emissions from landfills in Beijing were estimated to be 8.86 × 105 kg year-1 and 3.46 × 104 kg year-1, respectively. Toluene, m + p-xylene, and 1,3,5-trimethylbenzene were the most significant contributors to air pollution. Although ACs pollutions from landfills accounts for less percentage (∼0.1%) compared with other anthropogenic sources, their fugitive emissions which cannot be controlled efficiently deserve more attention and further investigation.

  13. Assessing air quality and climate impacts of future ground freight choice in United States

    Science.gov (United States)

    Liu, L.; Bond, T. C.; Smith, S.; Lee, B.; Ouyang, Y.; Hwang, T.; Barkan, C.; Lee, S.; Daenzer, K.

    2013-12-01

    The demand for freight transportation has continued to increase due to the growth of domestic and international trade. Emissions from ground freight (truck and railways) account for around 7% of the greenhouse gas emissions, 4% of the primary particulate matter emission and 25% of the NOx emissions in the U.S. Freight railways are generally more fuel efficient than trucks and cause less congestion. Freight demand and emissions are affected by many factors, including economic activity, the spatial distribution of demand, freight modal choice and routing decision, and the technology used in each modal type. This work links these four critical aspects of freight emission system to project the spatial distribution of emissions and pollutant concentration from ground freight transport in the U.S. between 2010 and 2050. Macroeconomic scenarios are used to forecast economic activities. Future spatial structure of employment and commodity demand in major metropolitan areas are estimated using spatial models and a shift-share model, respectively. Freight flow concentration and congestion patterns in inter-regional transportation networks are predicted from a four-step freight demand forecasting model. An asymptotic vehicle routing model is also developed to estimate delivery ton-miles for intra-regional freight shipment in metropolitan areas. Projected freight activities are then converted into impacts on air quality and climate. CO2 emissions are determined using a simple model of freight activity and fuel efficiency, and compared with the projected CO2 emissions from the Second Generation Model. Emissions of air pollutants including PM, NOx and CO are calculated with a vehicle fleet model SPEW-Trend, which incorporates the dynamic change of technologies. Emissions are projected under three economic scenarios to represent different plausible futures. Pollutant concentrations are then estimated using tagged chemical tracers in an atmospheric model with the emissions serving

  14. Preliminary examination of the impacts of repository site characterization activities and facility construction and operation activities on Hanford air quality

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C.S.; Ramsdell, J.V.

    1986-04-01

    Air quality impacts that would result from site characterization activities and from the construction and operation of a high-level nuclear wste repository at Hanford are estimated using two simple atmospheric dispersion models, HANCHI and CHISHORT. Model results indicate that pollutant concentrations would not exceed ambient air quality standards at any point outside the Hanford fenceline or at any publicly accessible location within the Hanford Site. The increase in pollutant concentrations in nearby communities due to site activities would be minimal. HANCHI and CHISHORT are documented in the appendices of this document. Further study of the repository's impact on air quality will be conducted when more detailed project plans and work schedules are available.

  15. Preliminary examination of the impacts of repository site characterization activities and facility construction and operation activities on Hanford air quality

    International Nuclear Information System (INIS)

    Air quality impacts that would result from site characterization activities and from the construction and operation of a high-level nuclear wste repository at Hanford are estimated using two simple atmospheric dispersion models, HANCHI and CHISHORT. Model results indicate that pollutant concentrations would not exceed ambient air quality standards at any point outside the Hanford fenceline or at any publicly accessible location within the Hanford Site. The increase in pollutant concentrations in nearby communities due to site activities would be minimal. HANCHI and CHISHORT are documented in the appendices of this document. Further study of the repository's impact on air quality will be conducted when more detailed project plans and work schedules are available

  16. A comparison of methods for the assessment of odor impacts on air quality: Field inspection (VDI 3940) and the air dispersion model CALPUFF

    Science.gov (United States)

    Ranzato, Laura; Barausse, Alberto; Mantovani, Alice; Pittarello, Alberto; Benzo, Maurizio; Palmeri, Luca

    2012-12-01

    Unpleasant odors are a major cause of public complaints concerning air quality and represent a growing social problem in industrialized countries. However, the assessment of odor pollution is still regarded as a difficult task, because olfactory nuisance can be caused by many different chemical compounds, often found in hard-to-detect concentrations, and the perception of odors is influenced by subjective thresholds; moreover, the impact of odor sources on air quality is mediated by complex atmospheric dispersion processes. The development of standardized assessment approaches to odor pollution and proper international regulatory tools are urgently needed. In particular, comparisons of the methodologies commonly used nowadays to assess odor impacts on air quality are required. Here, we assess the olfactory nuisance caused by an anaerobic treatment plant for municipal solid waste by means of two alternative techniques: the field inspection procedure and the atmospheric dispersion model CALPUFF. Our goal was to compare rigorously their estimates of odor nuisance, both qualitatively (spatial extent of odor impact) and quantitatively (intensity of odor nuisance). To define the impact of odors, we referred to the German standards, based on the frequency of odor episodes in terms of odor hours. We report a satisfying, although not perfect agreement between the estimates provided by the two techniques. For example, they assessed similar spatial extents of odor pollution, but different frequencies of odor episodes in locations where the odor nuisance was highest. The comparison highlights strengths and weaknesses for both approaches. CALPUFF is a cheaper methodology which can be used predictively, but fugitive emissions are difficult to model reliably, because of uncertainty regarding timing, location and emission rate. Field inspection takes into account the role of human perception, but unlike the model it does not always characterize precisely the extent of the odor

  17. Impact of acute exposure to air pollution on the cardiorespiratory performance of military firemen

    Directory of Open Access Journals (Sweden)

    R.S. Oliveira

    2006-12-01

    Full Text Available The objective of the present study was to determine the impact of acute short-term exposure to air pollution on the cardiorespiratory performance of military fireman living and working in the city of Guarujá, São Paulo, Brazil. Twenty-five healthy non-smoking firemen aged 24 to 45 years had about 1 h of exposure to low and high levels of air pollution. The tests consisted of two phases: phase A, in Bertioga, a town with low levels of air pollution, and phase B, in Cubatão, a polluted town, with a 7-day interval between phases. The volunteers remained in the cities (Bertioga/Cubatão only for the time required to perform the tests. Cumulative load 10 ± 2 min-long exertion tests were performed on a treadmill, consisting of a 2-min stage at a load of 7 km/h, followed by increasing exertion of 1 km h-1 min-1 until the maximum individual limit. There were statistically significant differences (P < 0.05 in anaerobic threshold (AT between Cubatão (35.04 ± 4.91 mL kg-1 min-1 and Bertioga (36.98 ± 5.62 mL kg-1 min-1; P = 0.01, in the heart rate at AT (AT HR; Cubatão 152.08 ± 14.86 bpm, Bertioga 157.44 ± 13.64 bpm; P = 0.001, and in percent maximal oxygen consumption at AT (AT%VO2max; Cubatão 64.56 ± 6.55%, Bertioga 67.40 ± 5.35%; P = 0.03. However, there were no differences in VO2max, maximal heart rate or velocity at AT (ATvel observed in firemen between towns. The acute exposure to pollutants in Cubatão, SP, caused a significant reduction in the performance at submaximal levels of physical exertion.

  18. Evaluating the Impact of Atmospheric Infrared Sounder (AIRS) Data On Convective Forecasts

    Science.gov (United States)

    Kozlowski, Danielle; Zavodsky, Bradley

    2011-01-01

    The Short-term Prediction Research and Transition Center (SPoRT) is a collaborative partnership between NASA and operational forecasting partners, including a number of National Weather Service (NWS) offices. SPoRT provides real-time NASA products and capabilities to its partners to address specific operational forecast challenges. The mission of SPoRT is to transition observations and research capabilities into operations to help improve short-term weather forecasts on a regional scale. Two areas of focus are data assimilation and modeling, which can to help accomplish SPoRT's programmatic goals of transitioning NASA data to operational users. Forecasting convective weather is one challenge that faces operational forecasters. Current numerical weather prediction (NWP) models that operational forecasters use struggle to properly forecast location, timing, intensity and/or mode of convection. Given the proper atmospheric conditions, convection can lead to severe weather. SPoRT's partners in the National Oceanic and Atmospheric Administration (NOAA) have a mission to protect the life and property of American citizens. This mission has been tested as recently as this 2011 severe weather season, which has seen more than 300 fatalities and injuries and total damages exceeding $10 billion. In fact, during the three day period from 25-27 April, 1,265 storms reports (362 tornado reports) were collected making this three day period one of most active in American history. To address the forecast challenge of convective weather, SPoRT produces a real-time NWP model called the SPoRT Weather Research and Forecasting (SPoRT-WRF), which incorporates unique NASA data sets. One of the NASA assets used in this unique model configuration is retrieved profiles from the Atmospheric Infrared Sounder (AIRS).The goal of this project is to determine the impact that these AIRS profiles have on the SPoRT-WRF forecasts by comparing to a current operational model and a control SPoRT-WRF model

  19. Mercury and Air Toxic Element Impacts of Coal Combustion By-Product Disposal and Utilizaton

    Energy Technology Data Exchange (ETDEWEB)

    David Hassett; Loreal Heebink; Debra Pflughoeft-Hassett; Tera Buckley; Erick Zacher; Mei Xin; Mae Sexauer Gustin; Rob Jung

    2007-03-31

    The University of North Dakota Energy & Environmental Research Center (EERC) conducted a multiyear study to evaluate the impact of mercury and other air toxic elements (ATEs) on the management of coal combustion by-products (CCBs). The ATEs evaluated in this project were arsenic, cadmium, chromium, lead, nickel, and selenium. The study included laboratory tasks to develop measurement techniques for mercury and ATE releases, sample characterization, and release experiments. A field task was also performed to measure mercury releases at a field site. Samples of fly ash and flue gas desulfurization (FGD) materials were collected preferentially from full-scale coal-fired power plants operating both without and with mercury control technologies in place. In some cases, samples from pilot- and bench-scale emission control tests were included in the laboratory studies. Several sets of 'paired' baseline and test fly ash and FGD materials collected during full-scale mercury emission control tests were also included in laboratory evaluations. Samples from mercury emission control tests all contained activated carbon (AC) and some also incorporated a sorbent-enhancing agent (EA). Laboratory release experiments focused on measuring releases of mercury under conditions designed to simulate CCB exposure to water, ambient-temperature air, elevated temperatures, and microbes in both wet and dry conditions. Results of laboratory evaluations indicated that: (1) Mercury and sometimes selenium are collected with AC used for mercury emission control and, therefore, present at higher concentrations than samples collected without mercury emission controls present. (2) Mercury is stable on CCBs collected from systems both without and with mercury emission controls present under most conditions tested, with the exception of vapor-phase releases of mercury exposed to elevated temperatures. (3) The presence of carbon either from added AC or from unburned coal can result in mercury

  20. Impact of external industrial sources on the regional and local air quality of Mexico Megacity

    Science.gov (United States)

    Almanza, V. H.; Molina, L. T.; Li, G.; Fast, J.; Sosa, G.

    2013-10-01

    The air quality of megacities can be influenced by external emissions sources on both global and regional scale, and at the same time their outflow emissions can exert an important impact to the surrounding environment. The present study evaluates an SO2 peak observed on 24 March 2006 at the suburban supersite T1 and ambient air quality monitoring stations located in the north region of the Mexico City Metropolitan Area (MCMA) during MILAGRO campaign. We found that this peak could be related to an important episodic emission event from Tizayuca region, northeast of the MCMA. Back trajectories analyses suggest that the emission event started in the early morning at 04:00 LST and lasted for about 9 h. The estimated emission rate is noticeably high, about 2 kg s-1. This finding suggests the possibility of "overlooked" emission sources in this region that could influence the air quality of the MCMA. This further motivated us to study the cement plants, including those in the State of Hidalgo and in the State of Mexico, and we found that they can contribute in the NE region of the basin (about 41.7%), at the suburban supersite T1 (41.23%) and at some monitoring stations their contribution can be even higher than from the Tula Industrial Complex. The contribution of Tula Industrial Complex to regional ozone levels is estimated. The model suggests low contribution to the MCMA (1 ppb to 4 ppb) and slightly higher at the suburban T1 (6 ppb) and rural T2 (5 ppb) supersites. However, the contribution could be as high as 10 ppb in the upper northwest region of the basin and in the southwest and south-southeast regions of State of Hidalgo. In addition, a first estimate of the potential contribution from flaring activities to regional ozone levels is presented. Emission rates are estimated with a CFD combustion model. Results suggest that up to 30% of the total regional ozone from TIC could be related to flaring activities. Finally, the influence in SO2 levels from technological

  1. Examining the impact of heterogeneous nitryl chloride production on air quality across the United States

    Directory of Open Access Journals (Sweden)

    G. Sarwar

    2012-02-01

    Full Text Available The heterogeneous hydrolysis of dinitrogen pentoxide (N2O5 has typically been modeled as only producing nitric acid. However, recent field studies have confirmed that the presence of particulate chloride alters the reaction product to produce nitryl chloride (ClNO2 which undergoes photolysis to generate chlorine atoms and nitrogen dioxide (NO2. Both chlorine and NO2 affect atmospheric chemistry and air quality. We present an updated gas-phase chlorine mechanism that can be combined with the Carbon Bond 05 mechanism and incorporate the combined mechanism into the Community Multiscale Air Quality modeling system. We then update the current model treatment of heterogeneous hydrolysis of N2O5 to include ClNO2 as a product. The model, in combination with a comprehensive inventory of chlorine compounds, reactive nitrogen, particulate matter, and organic compounds, is used to evaluate the impact of the heterogeneous ClNO2 production on air quality across the United States for the months of February and September in 2006. The heterogeneous production increases ClNO2 in coastal as well as many in-land areas in the United States. Particulate chloride derived from sea-salts, anthropogenic sources, and forest fires activates the heterogeneous production of ClNO2. With current estimates of tropospheric emissions burden, it modestly enhances monthly mean 8-h ozone (up to 1–2 ppbv or 3–4% but causes large increases (up to 13 ppbv in isolated episodes. It also substantially reduce the mean total nitrate by up to 0.8–2.0 μg m−3 or 11–21%. Modeled ClNO2 accounts for up to 3–4% of the monthly mean total reactive nitrogen. Sensitivity results of the model suggest that ClNO2 formation is limited more by the presence of particulate chloride than by the abundance of N2O5.

  2. Impact of external industrial sources on the regional and local air quality of Mexico Megacity

    Directory of Open Access Journals (Sweden)

    V. H. Almanza

    2013-10-01

    Full Text Available The air quality of megacities can be influenced by external emissions sources on both global and regional scale, and at the same time their outflow emissions can exert an important impact to the surrounding environment. The present study evaluates an SO2 peak observed on 24 March 2006 at the suburban supersite T1 and ambient air quality monitoring stations located in the north region of the Mexico City Metropolitan Area (MCMA during MILAGRO campaign. We found that this peak could be related to an important episodic emission event from Tizayuca region, northeast of the MCMA. Back trajectories analyses suggest that the emission event started in the early morning at 04:00 LST and lasted for about 9 h. The estimated emission rate is noticeably high, about 2 kg s−1. This finding suggests the possibility of "overlooked" emission sources in this region that could influence the air quality of the MCMA. This further motivated us to study the cement plants, including those in the State of Hidalgo and in the State of Mexico, and we found that they can contribute in the NE region of the basin (about 41.7%, at the suburban supersite T1 (41.23% and at some monitoring stations their contribution can be even higher than from the Tula Industrial Complex. The contribution of Tula Industrial Complex to regional ozone levels is estimated. The model suggests low contribution to the MCMA (1 ppb to 4 ppb and slightly higher at the suburban T1 (6 ppb and rural T2 (5 ppb supersites. However, the contribution could be as high as 10 ppb in the upper northwest region of the basin and in the southwest and south-southeast regions of State of Hidalgo. In addition, a first estimate of the potential contribution from flaring activities to regional ozone levels is presented. Emission rates are estimated with a CFD combustion model. Results suggest that up to 30% of the total regional ozone from TIC could be related to flaring activities. Finally, the influence in SO2 levels

  3. Evaluation of the impact of AIRS profiles on prediction of Indian summer monsoon using WRF variational data assimilation system

    Science.gov (United States)

    Raju, Attada; Parekh, Anant; Kumar, Prashant; Gnanaseelan, C.

    2015-08-01

    This study investigates the impact of temperature and moisture profiles from Atmospheric Infrared Sounder (AIRS) on the prediction of the Indian summer monsoon, using the variational data assimilation system annexed to the Weather Research and Forecasting model. In this study, three numerical experiments are carried out. The first is the control and includes no assimilation; in the second, named Conv, assimilation of conventional Global Telecommunication System data is performed. The third one, named ConvAIRS, is identical to the Conv except that it also includes assimilation of AIRS profiles. The initial fields of tropospheric temperature and water vapor mixing ratio showed significant improvement over the model domain. Assimilation of AIRS profiles has significant impact on predicting the seasonal mean monsoon characteristics such as tropospheric temperature, low-level moisture distribution, easterly wind shear, and precipitation. The vertical structure of the root-mean-square error is substantially affected by the assimilation of AIRS profiles, with smaller errors in temperature, humidity, and wind magnitude. The consequent improved representation of moisture convergence in the boundary layer (deep convection as well) causes an increase in precipitation forecast skill. The fact that the monsoonal circulation is better captured, thanks to an improved representation of thermal gradients, which in turn leads to more realistic moisture transport, is particularly noteworthy. Several previous data impact studies with AIRS and other sensors have focused on the short or medium range of the forecast. The demonstrated improvement in all the predicted fields associated with the Indian summer monsoon, consequent to the month long assimilation of AIRS profiles, is an innovative finding with large implications to the operational seasonal forecasting capabilities over the Indian subcontinent.

  4. Comparison of Air Impaction and Electrostatic Dust Collector Sampling Methods to Assess Airborne Fungal Contamination in Public Buildings.

    Science.gov (United States)

    Normand, Anne-Cécile; Ranque, Stéphane; Cassagne, Carole; Gaudart, Jean; Sallah, Kankoé; Charpin, Denis-André; Piarroux, Renaud

    2016-03-01

    Many ailments can be linked to exposure to indoor airborne fungus. However, obtaining a precise measurement of airborne fungal levels is complicated partly due to indoor air fluctuations and non-standardized techniques. Electrostatic dust collector (EDC) sampling devices have been used to measure a wide range of airborne analytes, including endotoxins, allergens, β-glucans, and microbial DNA in various indoor environments. In contrast, viable mold contamination has only been assessed in highly contaminated environments such as farms and archive buildings. This study aimed to assess the use of EDCs, compared with repeated air-impactor measurements, to assess airborne viable fungal flora in moderately contaminated indoor environments. Indoor airborne fungal flora was cultured from EDCs and daily air-impaction samples collected in an office building and a daycare center. The quantitative fungal measurements obtained using a single EDC significantly correlated with the cumulative measurement of nine daily air impactions. Both methods enabled the assessment of fungal exposure, although a few differences were observed between the detected fungal species and the relative quantity of each species. EDCs were also used over a 32-month period to monitor indoor airborne fungal flora in a hospital office building, which enabled us to assess the impact of outdoor events (e.g. ground excavations) on the fungal flora levels on the indoor environment. In conclusion, EDC-based measurements provided a relatively accurate profile of the viable airborne flora present during a sampling period. In particular, EDCs provided a more representative assessment of fungal levels compared with single air-impactor sampling. The EDC technique is also simpler than performing repetitive air-impaction measures over the course of several consecutive days. EDC is a versatile tool for collecting airborne samples and was efficient for measuring mold levels in indoor environments. PMID:26491105

  5. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    Science.gov (United States)

    Hoseeinzadeh, Sepideh; Gorji-Bandpy, Mofid

    2012-04-01

    This paper presents a computational fluid dynamics (CFD) calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  6. The impact of mass flow and masking on the pressure drop of air filter in heavy-duty diesel engine

    Directory of Open Access Journals (Sweden)

    Gorji-Bandpy Mofid

    2012-04-01

    Full Text Available This paper presents a computational fluid dynamics (CFD calculation approach to predict and evaluate the impact of the mass-flow inlet on the pressure drop of turbocharger`s air filtfer in heavy-duty diesel engine. The numerical computations were carried out using a commercial CFD program whereas the inlet area of the air filter consisted of several holes connected to a channel. After entering through the channel, the air passes among the holes and enters the air filter. The effect of masking holes and hydraulic diameter is studied and investigated on pressure drop. The results indicate that pressure drop increase with decreasing of hydraulic diameter and masking of the holes has considerable affect on the pressure drop.

  7. On the Potential Impact of Daytime Surface Sensible Heat Flux on the Dissipation of Martian Cold Air Outbreaks

    Science.gov (United States)

    Segal, M.; Arritt, R. W.; Tillman, J. E.

    1997-01-01

    The Martian daytime soil surface temperature is governed primarily by the net irradiance balance and surface soil heat flux. Thus the outbreak of a cold air mass generates increased sensible heat flux that is conducive to daytime dissipation of the cold air mass thermal characteristics. Conceptual and scaling evaluations of this dissipation are provided while comparison is made with similar situations on Earth. It is estimated that sensible heat flux contribution to the dissipation of the original thermal structure of the cold air could be three times larger than the corresponding situation on Earth. Illustrative numerical model simulations provide scaling of the potential impact on the dissipation of cold air masses for various combinations of background wind speed and latitudes.

  8. Impact of facially applied air movement on the development of the thermal plume above a sitting occupant

    DEFF Research Database (Denmark)

    Zukowska, Daria; Melikov, Arsen Krikor; Popiolek, Zbigniew J.; Spletsteser, Joanna

    2011-01-01

    convection boundary layer enveloping the body and caused scattering in the measured values of air speed and temperature excess in the plume. In comparison with the case without airflow, the integral characteristics including volume flux, momentum flux, buoyancy force density and enthalpy flux were greater......In the future the implementation of low power office equipment in practice will make thermal plumes generated by occupants one of the dominant flows affecting the air distribution in spaces. Advanced air distribution methods, such as personalized ventilation, are expected to become widely...... implemented in practice. In this study the impact of locally applied airflow on the thermal plume generated by a sitting human body was investigated. The experiment was performed in a climate chamber with upward piston flow. A thermal manikin was sitting on a computer chair behind a table. The air speed and...

  9. Impact of Long-term Exposure to Air Particulate Matter on Life Expectancy and Survival Rate of Shanghai Residents

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To evaluate the impact of long-term air particulate matter exposure on the life expectancy and survival rate of Shanghai residents. Methods Epidemiology - based exposureresponse function was used for the calculation of attributable deaths to air particulate matter in Shanghai, and the effect of long-term exposure to particulate matter on life expectancy and survival rate was estimated using the life table of Shanghai residents in 1999. Results It was shown that in 1999, the long-term air particulate matter exposure caused 1.34-1.69 years reduction of life expectancy and a decrease of survival rate for each age group of Shanghai residents. Conclusion The effect of long-term exposure to air particulate matter on life expectancy is substantial in Shanghai.

  10. Modeling the impacts of biomass burning on air quality in and around Mexico City

    Directory of Open Access Journals (Sweden)

    W. Lei

    2013-03-01

    the impacts of biomass burning on tropospheric chemistry, regional and global air quality, and climate change.

  11. Modeling the impacts of biomass burning on air quality in and around Mexico City

    Science.gov (United States)

    Lei, W.; Li, G.; Molina, L. T.

    2013-03-01

    impacts of biomass burning on tropospheric chemistry, regional and global air quality, and climate change.

  12. Impact of Hong Kong's Voluntary Catalytic Converter Replacement Programme on Roadside Air Quality

    Science.gov (United States)

    Simpson, I. J.; Guo, H.; Louie, P. K. K.; Luk, C.; Lyu, X.; Meinardi, S.; Yam, Y. S.; Blake, D. R.

    2015-12-01

    As part of its ongoing policies to improve roadside air quality, in 2013 the Hong Kong government launched an incentive programme to replace catalytic converters and oxygen sensors in taxis and light buses mainly fueled by liquefied petroleum gas (LPG). The majority of replacements occurred from October 2013 to April 2014, with 75% of eligible vehicles participating in the programme, or 16,472 vehicles. Based on taxi exhaust measurements at a Hong Kong vehicle testing facility, the concentrations of n-butane, propane and i-butane (the primary components of LPG) decreased by 97% following the replacements. To determine the impact of the programme on roadside air quality, long-term measurements of volatile organic compounds (VOCs) were analyzed before, during and after the replacement programme, mainly at a busy roadside location in Mong Kok, Hong Kong. A clear decrease in the levels of major pollutants associated with LPG vehicle exhaust was observed at the roadside. For example, average (± 1 standard deviation) n-butane levels from October to April decreased from 13.0 ± 3.6 and 13.9 ± 2.6 ppbv in the two years preceding the programme, to 9.2 ± 2.9 ppbv during the programme, to 6.2 ± 1.7 ppbv the year after the programme. By contrast, compounds such as i-pentane that are not strongly associated with LPG or with LPG exhaust remained steady, averaging 0.90 ± 0.34, 1.01 ± 0.31, 0.93 ± 0.37, and 0.91 ± 0.42 ppbv from October to April of 2011/12, 2012/13, 2013/14 and 2014/15, respectively. Impacts of the programme on roadside levels of nitrogen oxides (NOx) and ozone (O3) will also be discussed. Because many taxis are high mileage vehicles that travel several hundred kilometers daily, their catalytic converters need to be replaced approximately every 18 months. Therefore ongoing vehicle maintenance will be required in order to preserve the gains made from this initial subsidy programme.

  13. Evaluating the climate and air quality impacts of short-lived pollutants

    Science.gov (United States)

    Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.

    2015-09-01

    This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together

  14. Aerosol Health Impact Source Attribution Studies with the CMAQ Adjoint Air Quality Model

    Science.gov (United States)

    Turner, M. D.

    Fine particulate matter (PM2.5) is an air pollutant consisting of a mixture of solid and liquid particles suspended in the atmosphere. Knowledge of the sources and distributions of PM2.5 is important for many reasons, two of which are that PM2.5 has an adverse effect on human health and also an effect on climate change. Recent studies have suggested that health benefits resulting from a unit decrease in black carbon (BC) are four to nine times larger than benefits resulting from an equivalent change in PM2.5 mass. The goal of this thesis is to quantify the role of emissions from different sectors and different locations in governing the total health impacts, risk, and maximum individual risk of exposure to BC both nationally and regionally in the US. We develop and use the CMAQ adjoint model to quantify the role of emissions from all modeled sectors, times, and locations on premature deaths attributed to exposure to BC. From a national analysis, we find that damages resulting from anthropogenic emissions of BC are strongly correlated with population and premature death. However, we find little correlation between damages and emission magnitude, suggesting that controls on the largest emissions may not be the most efficient means of reducing damages resulting from BC emissions. Rather, the best proxy for locations with damaging BC emissions is locations where premature deaths occur. Onroad diesel and nonroad vehicle emissions are the largest contributors to premature deaths attributed to exposure to BC, while onroad gasoline emissions cause the highest deaths per amount emitted. Additionally, emissions in fall and winter contribute to more premature deaths (and more per amount emitted) than emissions in spring and summer. From a regional analysis, we find that emissions from outside each of six urban areas account for 7% to 27% of the premature deaths attributed to exposure to BC within the region. Within the region encompassing New York City and Philadelphia

  15. The Impact of Climate Change on Air Quality and Respiratory Disease: Maryland/DC Metropolitan Area

    Science.gov (United States)

    Kaushiva, A.; Strong, S. B.; Babin, S. M.; Paxton, L. J.

    2011-12-01

    Ground level ozone, or tropospheric ozone, forms smog and becomes directly harmful to humans by exacerbating respiratory conditions, primarily asthma (Knowlton et al. 2004). As climate change progresses, increased ozone concentrations emerge as a major public health concern (Gardiner et al. 2011). Increasing ground level ozone concentrations have been directly correlated with rising temperatures (Patz et al. 2005). The projected increase in ozone concentration caused by climate induced temperature change is 1-2 ppb in 2020 and 2-7 ppb in 2050, with associated temperature increases of 1-2 degrees Fahrenheit and 2-5.5 degrees Fahrenheit, respectively (UCS, 2011). Those with existing respiratory conditions, children and the elderly, and those who spend a significant amount of time outdoors are the most sensitive to ground level ozone pollution (Schlink et al. 2006). In Maryland, there would be approximately 68,894 occurrences of acute respiratory symptoms associated with a 2 ppb climate penalty in 2020, and the total costs for health impacts associated with this would be approximately $133,398,027 (UCS, 2011). In their 2011 "State of the Air" report, the American Lung Association rated the Washington/Baltimore/Northern Virginia region as one of the 25 most ozone polluted regions nationwide (ALA, 2011). We examine asthma hospital admissions data for the Maryland/DC metropolitan region between 2005 and 2010 and identify possible correlations with the reported ozone measurements provided by the EPA (CASTNET). We examine trends between the archived temperatures from NCEP reanalysis data, the EPA ozone data, and reported asthma cases. We utilize these trends to investigate the future impact of changes in ozone concentration based on the IPCC AR4 and SRES emissions scenarios and attempt to quantify the financial burden of its implications. Visualizations from this data can serve as important educational and planning tools for decision makers in the Maryland, DC, and

  16. Impact of a new gasoline benzene regulation on ambient air pollutants in Anchorage, Alaska

    Science.gov (United States)

    Yano, Yuriko; Morris, Stephen S.; Salerno, Christopher; Schlapia, Anne M.; Stichick, Mathew

    2016-05-01

    The purpose of this study was to quantify the impact of a new U.S. Environmental Protection Agency (EPA) standard that limits the amount of benzene allowed in gasoline on ambient benzene concentrations. This new standard, together with two companion regulations that limit cold-temperature automotive emissions and the permeability of portable fuel containers, was expected to lower the levels of ambient benzene and other volatile organic compounds (VOCs) nationwide. In this study the impact of the gasoline benzene standard was evaluated in Anchorage, Alaska in a two-phase ambient air monitoring study conducted before and after the new gasoline standard was implemented. Gasoline sold by Anchorage retailers was also evaluated in each phase to determine the content of benzene and other gasoline components. The average benzene content in Anchorage gasoline was reduced by 70%, from 5.05% (w/w) to 1.53% (w/w) following the implementation of the standard. The annual mean ambient benzene concentration fell by 51%, from 0.99 ppbv in Phase 1 to 0.49 ppbv in Phase 2. Analysis suggests the change in gasoline benzene content alone reduced benzene emissions by 46%. The changes in toluene, ethylbenzene, and xylene content in gasoline between Phase 1 and 2 were relatively small and the differences in the mean ambient concentrations of these compounds between phases were modest. Our results suggest that cold winter communities in high latitude and mountainous regions may benefit more from the gasoline benzene standard because of high benzene emissions resulting from vehicle cold start and a tendency to develop atmospheric stagnation conditions in the winter.

  17. Measuring the Impact of Urban Air Pollution: Hedonic Price Analysis and Health Production Function

    OpenAIRE

    Endah Saptutyningsih; Ahmad Ma’ruf

    2015-01-01

    This study aims to value air quality from the urban housing market in Yogyakarta City. It is also provides estimation of marginal willingness to pay for the air quality improvement and estimation of the consumer surplus due to reduce of air quality. The methodological framework for estimation is based on a hedonic price model. The result of hedonic price method concludes that by adopting a two-stage estimation procedure to estimate the relationship between air quality and property value, on t...

  18. Evaluation of sanitary impact of the air pollution. A risk analysis process at the local level for the regional plans of air quality; Evaluation de l'impact sanitaire de la pollution atmospherique. Une demarche d'analyse de risque a l'echelle locale pour les plans regionaux de la qualite de l'air

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-07-01

    The aim of this document is to propose a standardised and clear thought process allowing to evaluate the sanitary impact of air pollution from existing data collected in routine. It is actually only possible for areas having an air quality monitoring network. The general principle of this approach, its advantages and its limits are showed. (N.C.)

  19. The impact of a forced reduction in traffic volumes on urban air pollution

    International Nuclear Information System (INIS)

    The Middle East military conflict of summer 2006 resulted in a few weeks in which the city of Haifa, Israel, and its environs experienced very profound variations in the commercial and personal activities. Large industrial plants continued almost normal operations but activities of small scale industry, shopping, and personal commuting were drastically reduced, leading to a dramatic decrease in the commercial and personal traffic volumes. This period of reduced activity serves as a real life experiment for assessment and demonstration of the impact that human activity, and mainly road traffic, may have on the air pollution levels in a bustling middle-sized city. The analysis is made especially sharp and reliable due to the abruptness of the beginning and the end of the reduced activity period, its length, and the stable summer meteorological conditions in the eastern Mediterranean region. The reduced traffic volumes resulted in lowered levels of NO2, hydrocarbons and particulate matter. The decrease in these pollutants' mean concentration was significantly larger than the reduction in the mean traffic volume. Slightly higher mean O3 concentrations were observed during the reduced traffic period. (author)

  20. Cancer incidence in Priolo, Sicily: a spatial approach for estimation of industrial air pollution impact

    Directory of Open Access Journals (Sweden)

    Lucia Fazzo

    2016-04-01

    Full Text Available The territory around the industrial Sicilian area of Priolo, Italy, has been defined as a contaminated site (CS of national priority for remediation because of diffuse environmental contamination caused by large industrial settlements. The present study investigates the spatial distribution of cancer into the CS territory (period 1999-2006. Different geographical methods used for the evaluation of the impact of industrial air pollutants were adopted. Using the database of Syracuse Province Cancer Registry, gender-specific standardised incidence ratios were calculated for 35 tumour sites for the CS overall and for each municipality included in the CS. A cluster analysis for 17 selected neoplasms was performed at micro-geographical level. The identification of the priority index contaminants (PICs present in environmental matrices and a review of their carcinogenicity have been performed and applied in the interpretation of the findings. The area has a higher cancer incidence with respect to the provincial population, in particular excess is registered among both genders of lung, bladder and breast cancers as well as skin melanoma and pleural mesothelioma and there is an a priori evidence of association with the exposure to PICs. The study highlights the need to provide different approaches in CSs where several exposure pathways might be relevant for the population. The presence of potential sources of asbestos exposure deserves specific concern.

  1. Cancer incidence in Priolo, Sicily: a spatial approach for estimation of industrial air pollution impact.

    Science.gov (United States)

    Fazzo, Lucia; Carere, Mario; Tisano, Francesco; Bruno, Caterina; Cernigliaro, Achille; Cicero, Maria Rita; Comba, Pietro; Contrino, Maria Luisa; De Santis, Marco; Falleni, Fabrizio; Ingallinella, Vincenzo; Madeddu, Anselmo; Marcello, Ida; Regalbuto, Carlo; Sciacca, Giovanna; Soggiu, Maria Eleonora; Zona, Amerigo

    2016-01-01

    The territory around the industrial Sicilian area of Priolo, Italy, has been defined as a contaminated site (CS) of national priority for remediation because of diffuse environmental contamination caused by large industrial settlements. The present study investigates the spatial distribution of cancer into the CS territory (period 1999-2006). Different geographical methods used for the evaluation of the impact of industrial air pollutants were adopted. Using the database of Syracuse Province Cancer Registry, gender-specific standardised incidence ratios were calculated for 35 tumour sites for the CS overall and for each municipality included in the CS. A cluster analysis for 17 selected neoplasms was performed at micro-geographical level. The identification of the priority index contaminants (PICs) present in environmental matrices and a review of their carcinogenicity have been performed and applied in the interpretation of the findings. The area has a higher cancer incidence with respect to the provincial population, in particular excess is registered among both genders of lung, bladder and breast cancers as well as skin melanoma and pleural mesothelioma and there is an a priori evidence of association with the exposure to PICs. The study highlights the need to provide different approaches in CSs where several exposure pathways might be relevant for the population. The presence of potential sources of asbestos exposure deserves specific concern. PMID:27087035

  2. THE IMPACT OF LABORATORY AIR TEMPERATURE AND RELATIVE HUMIDITY ON BENTONITE WATER ABSORPTION CAPACITY

    Directory of Open Access Journals (Sweden)

    Helena Strgar

    2011-12-01

    Full Text Available Bentonite, which is a mineral component of geosynthetic clay liners, has important physical and chemical properties that ensure very small hydraulic permeability. The main component of bentonite is a clay mineral called sodium montmorillonite whose very low permeability is due to its ability to swell. The deposits of bentonite are spread all over the world, however, only a very small number of those deposits satisfies all the quality and durability demands that must be met if the bentonite is to be used in the sealing barriers. Depending on the location of installation and their purpose, geosynthetic clay liners must meet certain requirements. Their compatibility with the prescribed criterion is confirmed through various laboratory procedures. Amongst them are tests examining the index indicators (free swell index, fluid loss index, and water absorption capacity. This paper presents results regarding the impact of laboratory air temperature and relative humidity of the testing area on the water absorption capacity. This is one of the criteria that bentonite must satisfy during the quality and durability control of the mineral component of geosynthetic clay liner (the paper is published in Croatian.

  3. Impact of primary formaldehyde on air pollution in the Mexico City Metropolitan Area

    Directory of Open Access Journals (Sweden)

    W. Lei

    2008-11-01

    Full Text Available Formaldehyde (HCHO is a radical source that plays an important role in urban atmospheric chemistry and ozone formation. The Mexico City Metropolitan Area (MCMA is characterized by high anthropogenic emissions of HCHO (primary HCHO, which together with photochemical production of HCHO from hydrocarbon oxidation (secondary HCHO, lead to high ambient HCHO levels. The CAMx chemical transport model was employed to evaluate the impact of primary HCHO on its ambient concentration, on the ROx radical budget, and on ozone (O3 formation in the MCMA. Important radical sources, including HCHO, HONO, and O3-olefin reactions, were constrained by measurements from routine observations of the local ambient air monitoring network and the MCMA-2003 field campaign. Primary HCHO was found not only contributing significantly to the ambient HCHO concentration, but also enhancing the radical budget and O3 production in the urban atmosphere of the MCMA. Overall in the urban area, total daytime radical production is enhanced by up to 10% and peak O3 concentration by up to 8%. While primary HCHO contributes predominantly to the ambient HCHO concentration between nighttime and morning rush hours, significant influence on the radical budget and O3 production starts early morning, culminates at mid-morning and is sustained until early afternoon.

  4. Simulation of climate change impacts on grain sorghum production grown under free air CO2 enrichment

    Science.gov (United States)

    Fu, Tongcheng; Ko, Jonghan; Wall, Gerard W.; Pinter, Paul J.; Kimball, Bruce A.; Ottman, Michael J.; Kim, Han-Yong

    2016-07-01

    Potential impacts of climate change on grain sorghum (Sorghum bicolor) productivity were investigated using the CERES-sorghum model in the Decision Support System for Agrotechnology Transfer v4.5. The model was first calibrated for a sorghum cultivar grown in a free air CO2 enrichment experiment at the University of Arizona, Maricopa, Arizona, USA in 1998. The model was then validated with an independent dataset collected in 1999. The simulated grain yield, growth, and soil water of sorghum for the both years were in statistical agreement with the corresponding measurements, respectively. Neither simulated nor measured yields responded to elevated CO2, but both were sensitive to water supply. The validated model was then applied to simulate possible effects of climate change on sorghum grain yield and water use efficiency in western North America for the years 2080-2100. The projected CO2 fertilizer effect on grain yield was dominated by the adverse effect of projected temperature increases. Therefore, temperature appears to be a dominant driver of the global climate change influencing future sorghum productivity. These results suggest that an increase in water demand for sorghum production should be anticipated in a future high-CO2 world.

  5. Factors influencing the spatial extent of mobile source air pollution impacts: a meta-analysis

    Directory of Open Access Journals (Sweden)

    Levy Jonathan I

    2007-05-01

    Full Text Available Abstract Background There has been growing interest among exposure assessors, epidemiologists, and policymakers in the concept of "hot spots", or more broadly, the "spatial extent" of impacts from traffic-related air pollutants. This review attempts to quantitatively synthesize findings about the spatial extent under various circumstances. Methods We include both the peer-reviewed literature and government reports, and focus on four significant air pollutants: carbon monoxide, benzene, nitrogen oxides, and particulate matter (including both ultrafine particle counts and fine particle mass. From the identified studies, we extracted information about significant factors that would be hypothesized to influence the spatial extent within the study, such as the study type (e.g., monitoring, air dispersion modeling, GIS-based epidemiological studies, focus on concentrations or health risks, pollutant under study, background concentration, emission rate, and meteorological factors, as well as the study's implicit or explicit definition of spatial extent. We supplement this meta-analysis with results from some illustrative atmospheric dispersion modeling. Results We found that pollutant characteristics and background concentrations best explained variability in previously published spatial extent estimates, with a modifying influence of local meteorology, once some extreme values based on health risk estimates were removed from the analysis. As hypothesized, inert pollutants with high background concentrations had the largest spatial extent (often demonstrating no significant gradient, and pollutants formed in near-source chemical reactions (e.g., nitrogen dioxide had a larger spatial extent than pollutants depleted in near-source chemical reactions or removed through coagulation processes (e.g., nitrogen oxide and ultrafine particles. Our illustrative dispersion model illustrated the complex interplay of spatial extent definitions, emission rates

  6. Residential demand response reduces air pollutant emissions on peak electricity demand days in New York City

    International Nuclear Information System (INIS)

    Many urban areas in the United States have experienced difficulty meeting the National Ambient Air Quality Standards (NAAQS), partially due to pollution from electricity generating units. We evaluated the potential for residential demand response to reduce pollutant emissions on days with above average pollutant emissions and a high potential for poor air quality. The study focused on New York City (NYC) due to non-attainment with NAAQS standards, large exposed populations, and the existing goal of reducing pollutant emissions. The baseline demand response scenario simulated a 1.8% average reduction in NYC peak demand on 49 days throughout the summer. Nitrogen oxide and particulate matter less than 2.5 μm in diameter emission reductions were predicted to occur (−70, −1.1 metric tons (MT) annually), although, these were not likely to be sufficient for NYC to meet the NAAQS. Air pollution mediated damages were predicted to decrease by $100,000–$300,000 annually. A sensitivity analysis predicted that substantially larger pollutant emission reductions would occur if electricity demand was shifted from daytime hours to nighttime hours, or the total consumption decreased. Policies which incentivize shifting electricity consumption away from periods of high human and environmental impacts should be implemented, including policies directed toward residential consumers. - Highlights: • The impact of residential demand response on air emissions was modeled. • Residential demand response will decrease pollutant emissions in NYC. • Emissions reductions occur during periods with high potential for poor air quality. • Shifting demand to nighttime hours was more beneficial than to off-peak daytime hours

  7. Air Impacts of Unconventional Natural Gas Development: A Barnett Shale Case Study

    Science.gov (United States)

    Moore, C. W.; Zielinska, B.; Campbell, D.; Fujita, E.

    2013-12-01

    Radiello samplers. In addition, weekly PM2.5 samples were collected on Teflon and quartz filters that were analyzed for mass and elements (Teflon filters), for organic and elemental carbon (OC and EC) by thermal/optical reflectance (TOR) method and for polycyclic aromatic hydrocarbons (PAH) using a gas chromatography/mass spectrometry (GC/MS) technique (quartz filters).VOC emissions from condensate tanks were largely low molecular weight hydrocarbons, however these tanks were enhancing local benzene concentrations mostly through malfunctioning valves. PAH concentrations were low (in pg m-3 range) but the average PAH concentration profiles (higher fraction of methylated PAHs) indicated an influence of compressor engine exhausts and increased diesel transportation traffic. These measurements, however, only represent a small 'snap-shot' of the overall emissions picture from this area. For instance during this one month study, the compressor station was predominantly downwind of the community and this may not be the case in other times of the year. Long-term study of these systems, especially in areas that have yet to experience this type of exploration, but will in the future, is needed to truly evaluate the air impacts of unconventional natural gas development.

  8. Volatile organic compound emissions from unconventional natural gas production: Source signatures and air quality impacts

    Science.gov (United States)

    Swarthout, Robert F.

    Advances in horizontal drilling and hydraulic fracturing over the past two decades have allowed access to previously unrecoverable reservoirs of natural gas and led to an increase in natural gas production. Intensive unconventional natural gas extraction has led to concerns about impacts on air quality. Unconventional natural gas production has the potential to emit vast quantities of volatile organic compounds (VOCs) into the atmosphere. Many VOCs can be toxic, can produce ground-level ozone or secondary organic aerosols, and can impact climate. This dissertation presents the results of experiments designed to validate VOC measurement techniques, to quantify VOC emission rates from natural gas sources, to identify source signatures specific to natural gas emissions, and to quantify the impacts of these emissions on potential ozone formation and human health. Measurement campaigns were conducted in two natural gas production regions: the Denver-Julesburg Basin in northeast Colorado and the Marcellus Shale region surrounding Pittsburgh, Pennsylvania. An informal measurement intercomparison validated the canister sampling methodology used throughout this dissertation for the measurement of oxygenated VOCs. Mixing ratios of many VOCs measured during both campaigns were similar to or higher than those observed in polluted cities. Fluxes of natural gas-associated VOCs in Colorado ranged from 1.5-3 times industry estimates. Similar emission ratios relative to propane were observed for C2-C6 alkanes in both regions, and an isopentane:n-pentane ratio ≈1 was identified as a unique tracer for natural gas emissions. Source apportionment estimates indicated that natural gas emissions were responsible for the majority of C2-C8 alkanes observed in each region, but accounted for a small proportion of alkenes and aromatic compounds. Natural gas emissions in both regions accounted for approximately 20% of hydroxyl radical reactivity, which could hinder federal ozone standard

  9. The impact of human perception of simultaneous exposure to thermal load, low-frequency ventilation noise and indoor air pollution

    DEFF Research Database (Denmark)

    Alm, Ole; Witterseh, Thomas; Clausen, Geo;

    1999-01-01

    Human perception of simultaneous exposure to combinations of three different levels of operative temperature, low-frequency ventilation noise and indoor air pollution (27 combinations) was studied in climate chambers. The operative temperatures studied were: 26.0 deg.C, 27.6 deg.C and 29.6 deg.......C, and the sound pressure levels were: 45 dB(A), 48 dB(A) and 51 dB(A). The air pollution corresponding to these three levels of perceived air quality (at 26 deg.C) was: 1.1 decipol (dp), 2.4 dp and 4.5 dp. A 1 deg.C change in operative temperature had the same impact on the human perception of the overall...... conditions as a change of 3.8 dB(A) in sound pressure level or a change of 7 dp in air pollution (at 26 deg.C). The percentage of dissatisfied with the perceived air quality increased with increasing temperature. An elevated temperature had a dominant impact on the human perception of the indoor environment...

  10. Approaches for controlling air pollutants and their environmental impacts generated from coal-based electricity generation in China.

    Science.gov (United States)

    Xu, Changqing; Hong, Jinglan; Ren, Yixin; Wang, Qingsong; Yuan, Xueliang

    2015-08-01

    This study aims at qualifying air pollutants and environmental impacts generated from coal-based power plants and providing useful information for decision makers on the management of coal-based power plants in China. Results showed that approximately 9.03, 54.95, 62.08, and 12.12% of the national carbon dioxide, sulfur dioxide, nitrogen oxides, and particulate matter emissions, respectively, in 2011were generated from coal-based electricity generation. The air pollutants were mainly generated from east China because of the well-developed economy and energy-intensive industries in the region. Coal-washing technology can simply and significantly reduce the environmental burden because of the relativity low content of coal gangue and sulfur in washed coal. Optimizing the efficiency of raw materials and energy consumption is additional key factor to reduce the potential environmental impacts. In addition, improving the efficiency of air pollutants (e.g., dust, mercury, sulfur dioxide, nitrogen oxides) control system and implementing the strict requirements on air pollutants for power plants are important ways for reducing the potential environmental impacts of coal-based electricity generation in China. PMID:25903190

  11. Air pollution-induced health impacts on the national economy of China: demonstration of a computable general equilibrium approach.

    Science.gov (United States)

    Wan, Yue; Yang, Hongwei; Masui, Toshihiko

    2005-01-01

    At the present time, ambient air pollution is a serious public health problem in China. Based on the concentration-response relationship provided by international and domestic epidemiologic studies, the authors estimated the mortality and morbidity induced by the ambient air pollution of 2000. To address the mechanism of the health impact on the national economy, the authors applied a computable general equilibrium (CGE) model, named AIM/Material China, containing 39 production sectors and 32 commodities. AIM/Material analyzes changes of the gross domestic product (GDP), final demand, and production activity originating from health damages. If ambient air quality met Grade II of China's air quality standard in 2000, then the avoidable GDP loss would be 0.38%o of the national total, of which 95% was led by labor loss. Comparatively, medical expenditure had less impact on national economy, which is explained from the aspect of the final demand by commodities and the production activities by sectors. The authors conclude that the CGE model is a suitable tool for assessing health impacts from a point of view of national economy through the discussion about its applicability. PMID:16121834

  12. Impact on the air quality in Córdoba México by sugar cane burning

    Science.gov (United States)

    de Jesús Figueroa, José; Mugica, Violeta; Millán, Fernando; Santiago, Naxieli; Torres, Miguel; Hernández, Francisco

    2016-04-01

    Mexico is the sixth larger producer of sugarcane in the world, and the City of Córdoba located in Veracruz, Mexico is surrounded by 13 sugar mills and hundreds of hectares of sugarcane fields. Nevertheless, large plumes of smoke are observed due to the burning of sugarcane fields with the purpose to make easy the manual harvest, protecting the workers from leaves, insects and snakes. In addition, after harvest, straw and other wastes are burned to prepare the land. The air pollution has an important impact to the health of inhabitants due to the presence of toxics such as polycyclic aromatic hydrocarbons, but also has an impact to global warming since has been published that black carbon emitted due to incomplete combustion has a high warming potency and that is the second climatic forcer after CO2. In order to determine the impact of these agriculture practices, a monitoring campaign of PM2.5 was carried out every six days from April to August 2015 in the City of Córdoba and a rural place close to the fields. Particle concentrations were determined and organic and black carbon were analyzed with thermo-optic equipment (TOT-Niosh, Sunset Lab) and an ethalometer (Sootscaner). In addition the concentration levels of 17 polycyclic aromatic hydrocarbons (PAHs) were measured using GC-MS. PM2.5 average concentrations during harvesting in the urban and the rural zone were 138.3±43.6 μg/m3 and 147.4±27.3 μg/m3 respectively, whereas the concentrations during the no-harvesting period were 63.7±7.6 μg/m3 and 44.9±7.0 μg/m3 for the same places, showing that during harvesting the PM2.5 concentrations increase up to 3 times presenting most of the days bad air quality. The sum of PAHs in the urban and the rural locations were 3.36±0.72 ng/m3 and 1.58±0.49 ng/m3 during harvesting; these values are 43% and 54% greater than during the no-harvesting period. The most abundant PAHs were in all cases indene[1,2,3-c,d]pyrene, benzo[b]fluoranthene, benzo[a]pyrene, and benzo

  13. Technology Solutions Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts

    Energy Technology Data Exchange (ETDEWEB)

    A. Rudd and D. Bergey

    2015-08-01

    Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs.

  14. Evaluation of urban air pollution impact. Agglomeration of Toulon impact at short and long term; Evaluation de l'impact sanitaire de la pollution atmospherique urbaine. Agglomeration de Toulon impact a cour et long terme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A health impact assessment of air pollution based on the I.n.V.S. guidelines has been conducted in Toulon according to the Regional Plan for the quality of air in the region of Provence-Alpes-Cote d Azur. Short-term effects on morbidity (hospital admissions) and mortality and long-term effects on mortality were estimated. Four cities were included in the study area: Toulon, La Garde, La Seyne-sur-mer and La Valette-du-Var (population: 267.808 inhabitants. Two periods of study have been defined: 1999 for the mortality analysis and 2000 for the morbidity analysis and the long- term effects. For 1999, number of advanced deaths due to air pollution is around 84 for total mortality including 30 deaths due to cardio-vascular diseases and 10 deaths due to respiratory diseases. The different scenarios of air pollution reduction showed that the most effective ones are those which lead to reduce of 25% the mean of the involved pollutant. Regarding long-term effects, the different scenario showed that the respect of the European Community limits value for the year 2010 would allow to avoid 118 deaths over one year. Results showed that air pollution are even resulting in health effects for some levels of pollution lower than current French limits. The most effective actions should therefore associate reduction of the source emissions on a daily basis and decrease of the over-limits levels of pollution. (author)

  15. Impact of an improved Cuban emissions inventory on air quality simulations

    Science.gov (United States)

    Sanchez Gacita, M.; Alonso, M. F.; Longo, K. M.; de Freitas, S. R.

    2010-12-01

    The energy sector in the Central America and Caribbean regions is primarily fossil fuel based and one of the major sources of air pollution in the region. In Cuba, energy production is responsible for 99% of SO2 emissions, 98% of NOX and 94% of CO, with emissions in 2000 of 588.59 Gg, 149.57 Gg and 536.42 Gg, respectively, according to the Cuban National Inventory - CNI. Electric power generation plants, the most important sub-sector, are highlighted as point sources of high emissions, in particular, SO2. Global inventories are shown to be inaccurate for Cuba. RETRO has non-zero data for just one cell, over the city of Havana. EDGAR has deficiencies in its geographical distribution, with no emissions over the city of Havana, and the distribution of emissions by sectors is unrealistic according to the CNI: for instance, in the case of SO2, it distributes emissions nearly equally between electricity generation and the remaining sectors, which is inaccurate. More importantly, emissions are overestimated, with the notable exception of SO2 and NMVOC. The most important reasons are the particularities of Cuba, including the extensive employ of fossil fuels with little refining and high sulfur content in energy production and industrial processes such as asphalt production, and the use of low efficiency technologies. This work presents an improved emissions inventory with CNI data and detailed emissions for all major power generation plants. The impact of this improvement was assessed through numerical air quality simulations of the transport and transformation of these emissions from a regional perspective, conducted with the CCATT-BRAMS 3D atmospheric chemical transport model, developed and maintained by INPE, Brazil. Boundary conditions were supplied by global model MOCAGE with chemistry scheme RELACS. Simulations with the new inventory were conducted with CATT-BRAMS using chemical mechanism RELACS, incorporated as part of this work, for two months (January and August

  16. Impact of Sustainable Environmental Expenditures Policy on Air Pollution Reduction, During European Integration Framework

    Directory of Open Access Journals (Sweden)

    Ionel Bostan

    2016-05-01

    Full Text Available Pursuant to the growth of society, against the boosting of scientific and technological progress, also arises the negative effect of pollution acceleration. In this context, we relate to risks that imply the growth of pollution, especially against nuisance air pollution increase (CO, SO2, NO etc. with major implications on the growth of greenhouse effect, the melting of the ice fields, respectively the pollution of the soil with nitrates from fertilizers intensively used in agriculture. Our study is up-to-date, as pursuant to the ONU Conference from Paris (France 2015, Conference on Climate Changes, they reached an agreement and the adopted text admits the menace of climate modifications is far more important than previously acknowledged and engages the participants to reduce their pollutant emissions. The researchers’ current concerns focus on studying the effects of the redistribution of financial resources obtained by practising the ‘green’ fiscal policy on dependent variables. Observing them, we integrate the respective variables into complex models analysed by multiple regression (both standard and robust and the fixed effects panel on 20 European countries which also reflect the different effects on the environmental policy and the expenses it incurred. The main purpose of the analysis we aim to accomplish is the impact of the policy for environment expenditure tenable within the European framework on against nuisance air pollution attenuation. The statistical analysis aims at identifying these effects by means of regression equations (OLS, robust regression (M method, fixed and random effects, using panel data from 18 EU countries, as well as Switzerland and Turkey due to their position in relation to the community block; we will analyse the period between 1995-2013. Further to the application of multiple regression statistical methods (OLS and robust M, our results show that teimiqgdp expenses played a major role in the reduction

  17. Impact of sulfur content regulations of shipping fuel on coastal air quality

    Science.gov (United States)

    Seyler, André; Wittrock, Folkard; Kattner, Lisa; Mathieu-Üffing, Barbara; Weigelt, Andreas; Peters, Enno; Richter, Andreas; Schmolke, Stefan; Burrows, John P.

    2016-04-01

    plumes. Long term time evolutions have been evaluated to show the impact of recent sulfur emission regulations on the measured SO2 pollution levels. In 2015, a significant decrease of SO2 emissions has been found compared to the years before. This shows that the new, more restrictive fuel sulfur content limits lead to a clear improvement in coastal air quality.

  18. Fighting ambient air pollution and its impact on health: from human rights to the right to a clean environment.

    Science.gov (United States)

    Guillerm, N; Cesari, G

    2015-08-01

    Clean air is one of the basic requirements of human health and well-being. However, almost nine out of 10 individuals living in urban areas are affected by air pollution. Populations living in Africa, South-East Asia, and in low- and middle-income countries across all regions are the most exposed. Exposure to outdoor air pollution ranks as the ninth leading risk factor for mortality, killing 3.2 million people each year, especially young children, the elderly, persons with lung or cardiovascular disease, those who work or exercise outdoors and low-income populations. In October 2013, the International Agency for Research on Cancer (IARC) classified outdoor air pollution as carcinogenic to humans, calling air pollution 'a major environmental health problem'. Human rights and environmental norms are powerful tools to combat air pollution and its impact on health. The dependence of human rights on environmental quality has been recognised in international texts and by human rights treaty bodies. The growing awareness of the environment has already yielded considerable legislative and regulatory output. However, the implementation of standards remains a pervasive problem. In the fight against violations of norms, citizens have a crucial role to play. We discuss the relevance of a yet to be proclaimed standalone right to a healthy environment. PMID:26162353

  19. Air cargo market outlook and impact via the NASA CLASS project. [Cargo/Logistics Airlift Systems Study

    Science.gov (United States)

    Winston, M. M.; Conner, D. W.

    1980-01-01

    An overview is given of the Cargo/Logistics Airlift Systems Study (CLASS) project which was a 10 man-year effort carried out by two contractor teams, aimed at defining factors impacting future system growth and obtaining market requirements and design guidelines for future air freighters. Growth projection was estimated by two approaches: one, an optimal systems approach with a more efficient and cost effective system considered as being available in 1990; and the other, an evolutionary approach with an econometric behavior model used to predict long term evolution from the present system. Both approaches predict significant growth in demand for international air freighter services and less growth for U.S. domestic services. Economic analysis of air freighter fleet options indicate very strong market appeal of derivative widebody transports in 1990 with little incentive to develop all new dedicated air freighters utilizing the 1990's technology until sometime beyond the year 2000. Advanced air freighters would be economically attractive for a wide range of payload sizes (to 500 metric tons), however, if a government would share in the RD and T costs by virtue of its needs for a slightly modified version of a civil air freighter design (a.g. military airlifter).

  20. High Electricity Demand in the Northeast U.S.: PJM Reliability Network and Peaking Unit Impacts on Air Quality.

    Science.gov (United States)

    Farkas, Caroline M; Moeller, Michael D; Felder, Frank A; Henderson, Barron H; Carlton, Annmarie G

    2016-08-01

    On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.S. and estimate air quality for four emission scenarios with the Community Multiscale Air Quality (CMAQ) model during the July 2006 heat wave. Further, we population-weight ambient values as a surrogate for potential population exposure. Emissions from electricity reliability networks negatively impact air quality in their own region and in neighboring geographic areas. Monitored and controlled PJM peaking units are generally located in economically depressed areas and can contribute up to 87% of hourly maximum PM2.5 mass locally. Potential population exposure to peaking unit PM2.5 mass is highest in the model domain's most populated cities. Average daily temperature and national gross domestic product steer peaking unit heat input. Air quality planning that capitalizes on a priori knowledge of local electricity demand and economics may provide a more holistic approach to protect human health within the context of growing energy needs in a changing world. PMID:27385064

  1. Deformation mechanisms and impact attenuation characteristics of thin-walled collapsible air chambers used in head protection.

    Science.gov (United States)

    Lamb, L; Hoshizaki, T B

    2009-11-01

    Head injuries are a major cause of morbidity and mortality worldwide, many resulting from sporting activities. There is a constant need in the head protection industry for improved methods to manage impacts and to reduce the risk of mild and severe head injuries. Contemporary head protection primarily consists of foam with several inherent disadvantages, including a limited ability to provide effective energy absorption under both low and high impact velocities. Recently, thin-walled collapsible chambers were engineered to address this problem and have been implemented into sport helmets. The chambers consist of four engineering elements which define their dynamic performance: geometry, air volume, material, and venting system. This research analysed the contribution of air flow through an orifice to the chamber's management of impact energy. The objective of this study was to determine the effect of the chamber's vent diameter and material stiffness on peak force and venting rate during an impact. Two material stiffnesses (thermoplastic polyurethane 45D and thermoplastic polyurethane 90A) and five vent diameters (1 mm, 2 mm, 3 mm, 4 mm, and 5 mm) were tested at three inbound velocities (1.3 m/s, 2.3 m/s, and 3.0 m/s). Each chamber was impacted ten times using a monorail drop system. Analysis of the results revealed that the material stiffness, vent diameter, and inbound velocity all had a significant effect on peak force and venting rate (p force than the smallest vent, while this relationship reversed at high inbound velocities. Under low velocities the air flowrate was negatively correlated and the flow duration was positively correlated to the peak force. Under high velocities, the air flowrate was positively correlated and the duration was negatively correlated to the peak force. This suggested that, under low velocities, chambers performed optimally when air was dissipated quickly, for a short duration; however, as the chamber approached a critical failure

  2. Considering the sanitary aspects in regional plans for air quality. Situation of sanitary impacts of urban air pollution studies; Prise en compte des aspects sanitaires dans les Plans regionaux pour la qualite de l'air. Bilan des etudes d'impact sanitaires de la pollution atmospherique urbaine realisees

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-12-15

    The law on air and the rational use of energy of the 30. september 1996 forecasts the setting up of regional planning for the air quality that have to rely on the support of an evaluation of sanitary effects of air pollution. To help the local sanitary authorities in this mission, the National Institute of Sanitary Surveillance and the C.I.R.E. have realised a methodological guide on evaluation of sanitary impact of urban air pollution in different contexts. (N.C.)

  3. Spatial Air Quality Impacts of Increased Natural Gas Development and Use in Texas

    Science.gov (United States)

    Allen, D.; Pacsi, A. P.

    2013-12-01

    Compared to coal-fired power plants on a per MWh basis, natural-gas electricity generators in the grid of the Electricity Reliability Council of Texas (ERCOT) emit substantially less nitrogen oxides (NOx) and sulfur dioxide (SO2), which are precursors for the formation of ozone (O3) and fine particulate matter (PM2.5). In addition, several life-cycle assessments have concluded that the development and use of shale gas resources will likely lead to air quality benefits, despite emissions associated with natural gas production, due to changes in fuel utilization in the electricity generation sector. The formation of ozone and PM2.5 is non-linear, however, and depends on spatial and temporal patterns associated with the precursor emissions. This study used Texas as a case-study for the changes in regional ozone and PM2.5 concentrations associated with natural gas production and use in electricity generation in the state. Texas makes a compelling case study since it was among the first states with large-scale shale gas production with horizontal drilling and hydraulic fracturing technologies, since it has a self-contained electric grid (ERCOT), and since it includes several regions which do not currently meet Federal standards for ozone. This study utilized an optimal power flow model for electricity generation in ERCOT, coupled with a regional photochemical model to estimate the ozone and PM2.5 impacts of changes to natural gas production and use in the state. The utilization of natural gas is highly dependent on the relative price of natural gas compared to coal. Thus, the amount of natural gas consumed in power generation in ERCOT was estimated for a range of prices from 1.89-7.74, which have occurred in Texas since 2006. Sensitivity scenarios in which natural gas production emissions in the Barnett Shale were raised or lowered depending on demand for the fuel in the electricity generation sector were also examined. Overall results indicate that regional ozone and

  4. The impacts of air-pollution motivated automobile consumption tax adjustments of China

    OpenAIRE

    Xiao, Junji; Ju, Heng

    2011-01-01

    A concomitant of the rapid development of the automobile industry in China is the serious air pollution and carbon dioxide emission. There are various regulation instruments to reduce the air pollution from automobile sources. China government chooses a small-displacement oriented consumption tax as well as fuel tax to alleviate the worse air pollution. This paper evaluates the effects of both policy instruments on fuel consumption and social welfare. Our empirical results show that fuel tax ...

  5. Air Passenger Transport In The APEC: Regulatory Impacts and Prospects for Asia Pacific Integration

    OpenAIRE

    Grosso, Massimo Geloso

    2012-01-01

    This study aims at assessing the prospects for a more liberal air passenger transport regime in the Asia Pacific region under the auspices of the Asia Pacific Economic Cooperation (APEC). The decades-old bilateral air services regime has been under pressure to reform for several years. Notwithstanding the critical role that international air transport plays in the ongoing integration of Asia Pacific economies, the airline industry remains one of the region’s most heavily regulated. Estimates ...

  6. Impact of Uncertainties in Hadron Production on Air-Shower Predictions

    OpenAIRE

    Pierog, T.; Engel, R.; Heck, D.

    2006-01-01

    At high energy, cosmic rays can only be studied by measuring the extensive air showers they produce in the atmosphere of the Earth. Although the main features of air showers can be understood within a simple model of successive interactions, detailed simulations and a realistic description of particle production are needed to calculate observables relevant to air shower experiments. Currently hadronic interaction models are the main source of uncertainty of such simulations. We will study the...

  7. Air pollution and its impacts on health in Vitoria, Espirito Santo, Brazil

    Science.gov (United States)

    de Freitas, Clarice Umbelino; de Leon, Antonio Ponce; Juger, Washington; Gouveia, Nelson

    2016-01-01

    ABSTRACT OBJECTIVE To analyze the impact of air pollution on respiratory and cardiovascular morbidity of children and adults in the city of Vitoria, state of Espirito Santo. METHODS A study was carried out using time-series models via Poisson regression from hospitalization and pollutant data in Vitoria, ES, Southeastern Brazil, from 2001 to 2006. Fine particulate matter (PM10), sulfur dioxide (SO2), and ozone (O3) were tested as independent variables in simple and cumulative lags of up to five days. Temperature, humidity and variables indicating weekdays and city holidays were added as control variables in the models. RESULTS For each increment of 10 µg/m3 of the pollutants PM10, SO2, and O3, the percentage of relative risk (%RR) for hospitalizations due to total respiratory diseases increased 9.67 (95%CI 11.84-7.54), 6.98 (95%CI 9.98-4.17) and 1.93 (95%CI 2.95-0.93), respectively. We found %RR = 6.60 (95%CI 9.53-3.75), %RR = 5.19 (95%CI 9.01-1.5), and %RR = 3.68 (95%CI 5.07-2.31) for respiratory diseases in children under the age of five years for PM10, SO2, and O3, respectively. Cardiovascular diseases showed a significant relationship with O3, with %RR = 2.11 (95%CI 3.18-1.06). CONCLUSIONS Respiratory diseases presented a stronger and more consistent relationship with the pollutants researched in Vitoria. A better dose-response relationship was observed when using cumulative lags in polynomial distributed lag models. PMID:26982960

  8. Impact of primary formaldehyde on air pollution in the Mexico City Metropolitan Area

    Directory of Open Access Journals (Sweden)

    W. Lei

    2009-04-01

    Full Text Available Formaldehyde (HCHO is a radical source that plays an important role in urban atmospheric chemistry and ozone formation. The Mexico City Metropolitan Area (MCMA is characterized by high anthropogenic emissions of HCHO (primary HCHO, which together with photochemical production of HCHO from hydrocarbon oxidation (secondary HCHO, lead to high ambient HCHO levels. The CAMx chemical transport model was employed to evaluate the impact of primary HCHO on its ambient concentration, on the ROx radical budget, and on ozone (O3 formation in the MCMA. Important radical sources, including HCHO, HONO, and O3-olefin reactions, were constrained by measurements from routine observations of the local ambient air monitoring network and the MCMA-2003 field campaign. Primary HCHO was found not only to contribute significantly to the ambient HCHO concentration, but also to enhance the radical budget and O3 production in the urban atmosphere of the MCMA. Overall in the urban area, total daytime radical production is enhanced by up to 10% and peak O3 concentration by up to 8%; moreover primary HCHO tends to make O3 both production rates and ambient concentration peak half an hour earlier. While primary HCHO contributes predominantly to the ambient HCHO concentration between nighttime and morning rush hours, significant influence on the radical budget and O3 production starts early in the morning, peaks at mid-morning and is sustained until early afternoon.

  9. Impact of Uncertainties in Hadron Production on Air-Shower Predictions

    CERN Document Server

    Pierog, T; Heck, D

    2006-01-01

    At high energy, cosmic rays can only be studied by measuring the extensive air showers they produce in the atmosphere of the Earth. Although the main features of air showers can be understood within a simple model of successive interactions, detailed simulations and a realistic description of particle production are needed to calculate observables relevant to air shower experiments. Currently hadronic interaction models are the main source of uncertainty of such simulations. We will study the effect of using different hadronic models available in CORSIKA and CONEX on extensive air shower predictions.

  10. Impact of Climate Change on Air Quality and Public Health in Urban Areas.

    Science.gov (United States)

    Hassan, Noor Artika; Hashim, Zailina; Hashim, Jamal Hisham

    2016-03-01

    This review discusses how climate undergo changes and the effect of climate change on air quality as well as public health. It also covers the inter relationship between climate and air quality. The air quality discussed here are in relation to the 5 criteria pollutants; ozone (O3), carbon dioxide (CO2), nitrogen dioxide (NO2), sulfur dioxide (SO2), and particulate matter (PM). Urban air pollution is the main concern due to higher anthropogenic activities in urban areas. The implications on health are also discussed. Mitigating measures are presented with the final conclusion. PMID:26141092

  11. Impacts of a clay plaster on indoor air quality assessed using chemical and sensory measurements

    DEFF Research Database (Denmark)

    Darling, Erin K.; Cros, Clement J.; Wargocki, Pawel; Kolarik, Jakub; Morrison, Glenn C.; Corsi, Richard L.

    2012-01-01

    plaster as a PRM for improving air quality by controlling ozone, perceived air quality (PAQ) was determined in the presence of eight combinations of an emitting and reactive pollutant source (new carpet), clay plaster applied to gypsum wallboard, and chamber air with and without ozone. A panel of 24 human....... Perceived air quality was most acceptable and concentrations of aldehydes were lowest when only clay plaster or both clay plaster and carpet were present in the chambers without ozone. The least acceptable PAQ and the highest concentrations of aldehydes were observed when carpet and ozone were present...... together; addition of clay plaster for this condition improved PAQ and considerably decreased aldehyde concentrations....

  12. Potential energy savings and environmental impacts of energy efficiency standards for vapor compression central air conditioning units in China

    Energy Technology Data Exchange (ETDEWEB)

    Lu Wei [Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University, Beijing 100084 (China)]. E-mail: tjluwei@163.com

    2007-03-15

    Owing to the rapid development of economy and the stable improvement of people's living standard, central air conditioning units are broadly used in China. This not only consumes large energy, but also results in adverse energy-related environmental issues. Energy efficiency standards are accepted effective policy tools to reduce energy consumption and pollutant emissions. Recently, China issued two national energy efficiency standards, GB19577-2004 and GB19576-2004, for vapor compression central air conditioning units for the first time. This paper first reviews the two standards, and then establishes a mathematic model to evaluate the potential energy savings and environmental impacts of the standards. The estimated results indicate implementing these standards will save massive energy, as well as benefit greatly to the environment. Obviously, it is significant to implement energy efficiency standards for central air conditioning units in China.

  13. Impact of various emission control schemes on air quality using WRF-Chem during APEC China 2014

    Science.gov (United States)

    Guo, Jianping; He, Jing; Liu, Hongli; Miao, Yucong; Liu, Huan; Zhai, Panmao

    2016-09-01

    Emission control measures have been implemented to make air quality good enough for Asia-Pacific Economic Cooperation (APEC) China 2014, which provides us with an ideal test-bed to determine how these measures affect air quality in Beijing and surrounding areas. Based on hourly observations at eight monitoring sites of Beijing, the concentrations of other primary atmospheric pollutants during APEC were found to have significantly lower magnitudes than those before APEC, with the exception of a higher O3 concentration. Overall, WRF/Chem reproduced the observed time series of PM2.5, PM10, NO2, CO, and O3 notably well. To investigate the impact of emission control measures on air quality on both local and regional scales, four emission control schemes were developed according to the locations where emission reduction had taken place; the corresponding simulations were subsequently run separately. Scheme S2 (emission control implemented in Beijing) resulted in reductions of 22%, 24%, 10% and 22% for the concentrations of PM2.5, PM10, NO2 and CO, respectively, compared with 14%, 14%, 8%, and 13% for scheme S3 (emission controls implemented from outside of Beijing). This finding indicates that the local emission reduction in Beijing contributes more to the improved air quality in Beijing during APEC China 2014 than does the emission reduction from outside of Beijing. In terms of the impact on the regional scale, the real emission control scheme led to significant reduction of PM2.5 throughout the whole domain. Although the regional impact cannot be completely ignored, both emission reduction measures implemented in Beijing and those implemented outside of Beijing favor greater reduction in PM2.5 in the domains where measurements are presumably taken, as compared with other domains. Therefore, to improve the air quality in Beijing, more coordinated efforts should be made, particularly in the aspect of more stringent reduction and control strategies on pollutant emission

  14. Environmental impact of the programs of substitution of room type air conditioning equipment; Impacto ambiental de los programas de sustitucion de equipos de aire tipo cuarto

    Energy Technology Data Exchange (ETDEWEB)

    Alarcon Aleman, Jose Mauricio [OLADE, Quito (Ecuador)

    2002-09-01

    The present article approaches in a general way the relation that exists between the environment and the saving of electrical energy, especially in the Programs of Demand Side Management (DSM). In particular form the potential environmental impacts are described, derived of the use and the discard of the room type air conditioning equipment, goes deep into the characteristics of their cooling fluids, as well as in the relation that these keep with the protocols of Montreal and Kyoto. Finally, this article comments the incidence which have, the manufacturers as the institutions that implement DSM programs, on the environmental part of the programs of substitution of room type air conditioning equipment. In addition it is briefly described, the pilot program developed by Fideicomiso para el Ahorro de Energia Electrica (FIDE) as a successful case. [Spanish] En forma general, el presente articulo aborda la relacion que existe entre el medio ambiente y el ahorro de energia electrica, especialmente en los Programas de Administracion por el Lado de la Demanda (ALD). En forma particular se describen los impactos ambientales potenciales, derivados del uso y desecho de los equipos de aire acondicionado tipo cuarto, se ahonda en las caracteristicas de sus refrigerantes, asi como en la relacion que estos guardan con los protocolos de Montreal y Kioto. Finalmente, se comenta la incidencia que tienen, tanto los fabricantes como las instituciones que implementan programas de ALD, sobre la parte ambiental de los programas de sustitucion de equipos de aire acondicionado tipo cuarto. Ademas se describe brevemente, el programa piloto desarrollado por el Fideicomiso para el Ahorro de Energia Electrica (FIDE) como un caso exitoso.

  15. AIRS Impact on the Analysis and Forecast Track of Tropical Cyclone Nargis in a Global Data Assimilation and Forecasting System

    Science.gov (United States)

    Reale, O.; Lau, W.K.; Susskind, J.; Brin, E.; Liu, E.; Riishojgaard, L. P.; Rosenburg, R.; Fuentes, M.

    2009-01-01

    Tropical cyclones in the northern Indian Ocean pose serious challenges to operational weather forecasting systems, partly due to their shorter lifespan and more erratic track, compared to those in the Atlantic and the Pacific. Moreover, the automated analyses of cyclones over the northern Indian Ocean, produced by operational global data assimilation systems (DASs), are generally of inferior quality than in other basins. In this work it is shown that the assimilation of Atmospheric Infrared Sounder (AIRS) temperature retrievals under partial cloudy conditions can significantly impact the representation of the cyclone Nargis (which caused devastating loss of life in Myanmar in May 2008) in a global DAS. Forecasts produced from these improved analyses by a global model produce substantially smaller track errors. The impact of the assimilation of clear-sky radiances on the same DAS and forecasting system is positive, but smaller than the one obtained by ingestion of AIRS retrievals, possibly due to poorer coverage.

  16. ESTIMATION OF THE MINING – WORK IMPACT ON SOIL, WATER AND AIR OF MOLDOVA NOUĂ, DISTRICT CARAŞ-SEVERIN

    OpenAIRE

    D. Beutura; Gh. Rogobete; S. Beutura; R. Bertici; Clara Tudor; O. Timbota

    2005-01-01

    Most of the mine explotation were made in a period when their impact on the environment was given less importance and the norms concerning environmental protection was relatively few. The result obtained in this study reveals that the greatest impact of the water and soil are the scatered powder from the spoil banks and the heavy metals some of th heavy metals, like Cu, Zn, Pb and Cd into the soil, exceeded the intervention threshold.If the air pollution is not important, the pollution of wat...

  17. ESTIMATION OF THE MINING – WORK IMPACT ON SOIL, WATER AND AIR OF MOLDOVA NOUĂ, DISTRICT CARAŞ-SEVERIN

    Directory of Open Access Journals (Sweden)

    D. Beutura

    2005-10-01

    Full Text Available Most of the mine explotation were made in a period when their impact on the environment was given less importance and the norms concerning environmental protection was relatively few. The result obtained in this study reveals that the greatest impact of the water and soil are the scatered powder from the spoil banks and the heavy metals some of th heavy metals, like Cu, Zn, Pb and Cd into the soil, exceeded the intervention threshold.If the air pollution is not important, the pollution of water was founded in the river Boşneag.

  18. The Regional Impacts of Cooking and Heating Emissions on Ambient Air Quality and Disease Burden in China.

    Science.gov (United States)

    Archer-Nicholls, Scott; Carter, Ellison; Kumar, Rajesh; Xiao, Qingyang; Liu, Yang; Frostad, Joseph; Forouzanfar, Mohammad H; Cohen, Aaron; Brauer, Michael; Baumgartner, Jill; Wiedinmyer, Christine

    2016-09-01

    Exposure to air pollution is a major risk factor globally and particularly in Asia. A large portion of air pollutants result from residential combustion of solid biomass and coal fuel for cooking and heating. This study presents a regional modeling sensitivity analysis to estimate the impact of residential emissions from cooking and heating activities on the burden of disease at a provincial level in China. Model surface PM2.5 fields are shown to compare well when evaluated against surface air quality measurements. Scenarios run without residential sector and residential heating emissions are used in conjunction with the Global Burden of Disease 2013 framework to calculate the proportion of deaths and disability adjusted life years attributable to PM2.5 exposure from residential emissions. Overall, we estimate that 341 000 (306 000-370 000; 95% confidence interval) premature deaths in China are attributable to residential combustion emissions, approximately a third of the deaths attributable to all ambient PM2.5 pollution, with 159 000 (142 000-172 000) and 182 000 (163 000-197 000) premature deaths from heating and cooking emissions, respectively. Our findings emphasize the need to mitigate emissions from both residential heating and cooking sources to reduce the health impacts of ambient air pollution in China. PMID:27479733

  19. Dangerous waste incineration and its impact on air quality. Case study: the incinerator SC Mondeco SRL Suceava

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2015-03-01

    Full Text Available Dangerous waste, such as oil residues, pesticides, lacquers, stains, glues, organic solvents, hospital and food industry residues represent a major risk for all components of the environment (water, air, earth, soil, flora, fauna, people as well. Consequently, their incineration with high-performance burning installations lessens the impact on the environment, especially on the air quality, and it gives the possibility to recuperate the warmth of the incineration. This research presents a representative technique of incineration of dangerous waste at S.C. Mondeco S.R.L. Suceava, which runs according to the European standards, located in the industrial zone of Suceava, on the Suceava river valley Suceava. Also it is analysed the impact of this unit on the quality of nearby air. Moreover, not only the concentrations of gases and powders during the action of the incineration process (paramaters that are continuously monitored by highly methods are analysed, but also here are described the dispersions of those pollutants in the air, taking into account the characteristics of the source and the meteorological parametres that are in the riverbed. 

  20. Impacts of Photovoltaic Power Plant Sitings and Distributed Solar Panels on Meteorology and Air Quality in Central California

    Science.gov (United States)

    Bastien, L. A.; Jin, L.; Brown, N. J.

    2012-12-01

    California's electric utility companies are required to use renewable energy to produce 20% of their power by 2010 and 33% by 2020. A main source of the power will be solar energy because photovoltaic technologies have advanced so much that large scale installations are being built and will be built in the future with even greater capacity. Rather than being a large emission source, these plants affect the ambient environment through albedo changes and by emission reductions associated with not burning fossil fuels to generate the same amount of electricity. Like conventional power plants, their impact on local meteorology and air quality depends on the specific technology, ambient atmospheric conditions, and the spatial location of the plant. Also, as solar panels on commercial and residential rooftops become even more common, the effect of distributed photovoltaic panels on meteorology and air quality is likely to become significant. In this study, we use the Weather Research and Forecasting (WRF) model and the Community Multiscale Air Quality (CMAQ) model at high resolution of 4 km x 4 km over several 5-day high-ozone episodes of the summer 2000 to assess the impact of photovoltaic panels on meteorology and air quality in Central California. We investigate the effect of locating a 1.0 Giga watt solar plant in different locations and the effect of distributed rooftop photovoltaic panels in major Californian cities, with a focus on peak and 8-hour average ozone and 24-hour average PM2.5.

  1. Perception and Barriers to Indoor Air Quality and Perceived Impact on Respiratory Health: An Assessment in Rural Honduras

    OpenAIRE

    Audrey Le; Gonzalo Bearman; Kakotan Sanogo; Michael P. Stevens

    2014-01-01

    Objective. The aim of this study was to identify household-specific factors associated with respiratory symptoms and to study the perceived impact of indoor air pollution (IAP) as a health issue. Methods. An IRB-approved, voluntary, anonymous 23-item survey was conducted in Spanish at a medical outreach clinic in June 2012 and at the homes of survey respondents N=79. Comparative analyses were performed to investigate relationships between specific house characteristics and respiratory complai...

  2. Impact of the New South Wales fires during October 2013 on regional air quality in eastern Australia

    OpenAIRE

    Rea, Géraldine; Paton-Walsh, Clare; Turquety, Solène; Cope, Martin; Griffith, David

    2016-01-01

    Smoke plumes from fires contain atmospheric pollutants that can be transported to populated areas and effect regional air quality. In this paper, the characteristics and impact of the fire plumes from a major fire event that occurred in October 2013 (17–26) in the New South Wales (NSW) in Australia, near the populated areas of Sydney and Wollongong, are studied. Measurements from the Fourier Transform InfraRed (FTIR) spectrometer located at the University of Wollongong allowed a calculation o...

  3. Impact of traffic related air pollution indicators on non-cystic fibrosis bronchiectasis mortality: a cohort analysis

    OpenAIRE

    Goeminne, Pieter C; Bijnens, Esmee; Nemery, Benoit; Nawrot, Tim; Dupont, Lieven

    2014-01-01

    Background Mortality in non-cystic fibrosis bronchiectasis (NCFB) is known to be influenced by a number of factors such as gender, age, smoking history and Pseudomonas aeruginosa, but the impact of traffic related air pollution indicators on NCFB mortality is unknown. Methods We followed 183 patients aged 18 to 65 years with a HRCT proven diagnosis of NCFB and typical symptoms, who had visited the outpatient clinic at the University Hospital of Leuven, Belgium, between June 2006 and October 2...

  4. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    Energy Technology Data Exchange (ETDEWEB)

    Qiaoqiao Wang; Min Shao; Ying Liu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China); Kuster, William; Goldan, Paul [Earth System Research Laboratory, U.S. Department of Commerce, Boulder, CO 80305, (United States); Xiaohua Li; Yuan Liu; Sihua Lu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China)

    2007-12-15

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K{sup +} as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM{sub 2.5} concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM{sub 2.5} in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.02013;16.8% and 4.02013;19.0% of PM{sub 2.5} concentrations in Xinken and Guangzhou downtown, respectively. (Author).

  5. Impact of biomass burning on urban air quality estimated by organic tracers: Guangzhou and Beijing as cases

    Energy Technology Data Exchange (ETDEWEB)

    Qiaoqiao Wang; Min Shao; Ying Liu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China); Kuster, William; Goldan, Paul [Earth System Research Laboratory, U.S. Department of Commerce, Boulder, CO 80305, (United States); Xiaohua Li; Yuan Liu; Sihua Lu [State Joint Key Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences, Peking University, Beijing 100871, (China)

    2007-12-15

    The impacts of biomass burning have not been adequately studied in China. In this work, chemical compositions of volatile organic compounds and particulate organic matters were measured in August 2005 in Beijing and in October 2004 in Guangzhou city. The performance of several possible tracers for biomass burning is compared by using acetonitrile as a reference compound. The correlations between the possible tracers and acetonitrile show that the use of K{sup +} as a tracer could result in bias because of the existence of other K+ sources in urban areas, while chloromethane is not reliable due to its wide use as industrial chemical. The impact of biomass burning on air quality is estimated using acetonitrile and levoglucosan as tracers. The results show that the impact of biomass burning is ubiquitous in both suburban and urban Guangzhou, and the frequencies of air pollution episodes significantly influenced by biomass burning were 100% for Xinken and 58% for downtown Guangzhou city. Fortunately, the air quality in only 2 out of 22 days was partly impacted by biomass burning in August in Beijing, the month that 2008 Olympic games will take place. The quantitative contribution of biomass burning to ambient PM{sub 2.5} concentrations in Guangzhou city was also estimated by the ratio of levoglocusan to PM{sub 2.5} in both the ambient air and biomass burning plumes. The results show that biomass burning contributes 3.02013;16.8% and 4.02013;19.0% of PM{sub 2.5} concentrations in Xinken and Guangzhou downtown, respectively. (Author)

  6. Prolonged length of stay associated with air leak following pulmonary resection has a negative impact on hospital margin

    OpenAIRE

    Wood,, J.S.; Lauer LM; Layton A; Tong KB

    2016-01-01

    Douglas E Wood,1 Lisa M Lauer,2 Andrew Layton,3 Kuo B Tong3 1Division of Cardiothoracic Surgery, Department of Surgery, University of Washington, Seattle, 2Spiration Inc., Redmond, WA, 3Quorum Consulting, Inc., San Francisco, CA, USABackground: Protracted hospitalizations due to air leaks following lung resections are a significant source of morbidity and prolonged hospital length of stay (LOS), with potentially significant impact on hospital margins. This study aimed to evaluate the relation...

  7. RESULTS OF A PILOT FIELD STUDY TO EVALUATE THE EFFECTIVENESS OF CLEANING RESIDENTIAL HEATING AND AIR-CONDITIONING SYSTEMS AND THE IMPACT ON INDOOR AIR QUALITY AND SYSTEM PERFORMANCE

    Science.gov (United States)

    The report discusses and gives results of a pilot field study to evaluate the effectiveness of air duct cleaning (ADC) as a source removal technique in residential heating and air-conditioning (HAC) systems and its impact on airborne particle, fiber, and bioaerosol concentrations...

  8. Building America Case Study: Ventilation System Effectiveness and Tested Indoor Air Quality Impacts, Tyler, Texas

    Energy Technology Data Exchange (ETDEWEB)

    2015-08-01

    ?Ventilation system effectiveness testing was conducted at two unoccupied, single-family, detached lab homes at the University of Texas - Tyler. Five ventilation system tests were conducted with various whole-building ventilation systems. Multizone fan pressurization testing characterized building and zone enclosure leakage. PFT testing showed multizone air change rates and interzonal airflow filtration. Indoor air recirculation by a central air distribution system can help improve the exhaust ventilation system by way of air mixing and filtration. In contrast, the supply and balanced ventilation systems showed that there is a significant benefit to drawing outside air from a known outside location, and filtering and distributing that air. Compared to the Exhaust systems, the CFIS and ERV systems showed better ventilation air distribution and lower concentrations of particulates, formaldehyde and other VOCs. System improvement percentages were estimated based on four System Factor Categories: Balance, Distribution, Outside Air Source, and Recirculation Filtration. Recommended System Factors could be applied to reduce ventilation fan airflow rates relative to ASHRAE Standard 62.2 to save energy and reduce moisture control risk in humid climates. HVAC energy savings were predicted to be 8-10%, or $50-$75/year. Cumulative particle counts for six particle sizes, and formaldehyde and other Top 20 VOC concentrations were measured in multiple zones. The testing showed that single-point exhaust ventilation was inferior as a whole-house ventilation strategy.

  9. IMPACT OF AUTOTRANSPORT PARK OF KYIV ON STATE OF ATMOSPHERIC AIR

    Directory of Open Access Journals (Sweden)

    Anna V. Yakovleva

    2009-04-01

    Full Text Available  The problem of atmospheric air pollution in Kyiv is described in the article. Such questions as motor transport emissions, health effects of components of exhaust gases, qualities of different kinds of fuel, levels of atmospheric air pollution in various districts of Kyiv are considered here.

  10. Air conditioning in a tropical climate: Impacts upon European residents in Darwin, Australia

    Science.gov (United States)

    Auliciems, A.; Dedear, R.

    1986-09-01

    The efficacy of current practices in air conditioning is investigated in the two monsoonal seasons in Darwin. Assessment is made of atmospheric parameters, clothing, metabolic rate. Some 1000 questionnaires are applied dealing with adaptations, health perceptions and preferences as related to air cooling and ventilation. The findings are discussed with reference to energy balance calculations and current models of psychological control in thermoregulation. The results indicate that Darwin's population is considerably overcooled, and contrary to assumptions and practice, air conditioning is not desired in office buildings during the “Dry”. In the home, air conditioning is not regarded as essential. The indications are that a rationalization of air cooling to comply with natural variability in warmth would lead to a significant reduction in energy consumption, and an overall enhancement to the health and comfort of the population through the greater ventilation rates that would be economically feasible were design temperatures lifted.

  11. Assessment of Air-Pollution Control Policy’s Impact on China’s PV Power: A System Dynamics Analysis

    Directory of Open Access Journals (Sweden)

    Xiaodan Guo

    2016-05-01

    Full Text Available Recently, China has brought out several air-pollution control policies, which indicate the prominent position that PV power hold in improving atmosphere environment. Under this policy environment, the development of China’s PV power will be greatly affected. Firstly, after analyzing the influencing path of air-pollution control policies on PV power, this paper built a system dynamics model, which can be used as a platform for predicting China’s PV power development in every policy scenario during 2015–2025. Secondly, different model parameters are put into the SD model to simulate three scenarios of air-pollution control policies. Comparisons between the simulated results of different policy scenarios measure the air-pollution control policy’s impact on China’s PV power in the aspect of generation, installed capacity, power curtailment and so on. This paper points out the long-term development pattern of China’s PV power under latest incentive policies, and provides reference for the policymakers to increase the effect and efficiency of air-pollution control policies.

  12. Assessing the Impact of Air Pollution on Grain Yield of Winter Wheat - A Case Study in the North China Plain.

    Science.gov (United States)

    Liu, Xiuwei; Sun, Hongyong; Feike, Til; Zhang, Xiying; Shao, Liwei; Chen, Suying

    2016-01-01

    The major wheat production region of China the North China Plain (NCP) is seriously affected by air pollution. In this study, yield of winter wheat (Triticum aestivum L.) was analyzed with respect to the potential impact of air pollution index under conditions of optimal crop management in the NCP from 2001 to 2012. Results showed that air pollution was especially serious at the early phase of winter wheat growth significantly influencing various weather factors. However, no significant correlations were found between final grain yield and the weather factors during the early growth phase. In contrast, significant correlations were found between grain yield and total solar radiation gap, sunshine hour gap, diurnal temperature range and relative humidity during the late growing phase. To disentangle the confounding effects of various weather factors, and test the isolated effect of air pollution induced changes in incoming global solar radiation on yield under ceteris paribus conditions, crop model based scenario-analysis was conducted. The simulation results of the calibrated Agricultural Production Systems Simulator (APSIM) model indicated that a reduction in radiation by 10% might cause a yield reduction by more than 10%. Increasing incident radiation by 10% would lead to yield increases of (only) 7%, with the effects being much stronger during the late growing phase compared to the early growing phase. However, there is evidence that APSIM overestimates the effect of air pollution induced changes on radiation, as it does not consider the changes in radiative properties of solar insulation, i.e. the relative increase of diffuse over direct radiation, which may partly alleviate the negative effects of reduced total radiation by air pollution. Concluding, the present study could not detect a significantly negative effect of air pollution on wheat yields in the NCP. PMID:27612146

  13. Using statistical models to explore ensemble uncertainty in climate impact studies: the example of air pollution in Europe

    Science.gov (United States)

    Lemaire, Vincent E. P.; Colette, Augustin; Menut, Laurent

    2016-03-01

    Because of its sensitivity to unfavorable weather patterns, air pollution is sensitive to climate change so that, in the future, a climate penalty could jeopardize the expected efficiency of air pollution mitigation measures. A common method to assess the impact of climate on air quality consists in implementing chemistry-transport models forced by climate projections. However, the computing cost of such methods requires optimizing ensemble exploration techniques. By using a training data set from a deterministic projection of climate and air quality over Europe, we identified the main meteorological drivers of air quality for eight regions in Europe and developed statistical models that could be used to predict air pollutant concentrations. The evolution of the key climate variables driving either particulate or gaseous pollution allows selecting the members of the EuroCordex ensemble of regional climate projections that should be used in priority for future air quality projections (CanESM2/RCA4; CNRM-CM5-LR/RCA4 and CSIRO-Mk3-6-0/RCA4 and MPI-ESM-LR/CCLM following the EuroCordex terminology). After having tested the validity of the statistical model in predictive mode, we can provide ranges of uncertainty attributed to the spread of the regional climate projection ensemble by the end of the century (2071-2100) for the RCP8.5. In the three regions where the statistical model of the impact of climate change on PM2.5 offers satisfactory performances, we find a climate benefit (a decrease of PM2.5 concentrations under future climate) of -1.08 (±0.21), -1.03 (±0.32), -0.83 (±0.14) µg m-3, for respectively Eastern Europe, Mid-Europe and Northern Italy. In the British-Irish Isles, Scandinavia, France, the Iberian Peninsula and the Mediterranean, the statistical model is not considered skillful enough to draw any conclusion for PM2.5. In Eastern Europe, France, the Iberian Peninsula, Mid-Europe and Northern Italy, the statistical model of the impact of climate change

  14. Prolonged length of stay associated with air leak following pulmonary resection has a negative impact on hospital margin

    Directory of Open Access Journals (Sweden)

    Wood DE

    2016-05-01

    Full Text Available Douglas E Wood,1 Lisa M Lauer,2 Andrew Layton,3 Kuo B Tong3 1Division of Cardiothoracic Surgery, Department of Surgery, University of Washington, Seattle, 2Spiration Inc., Redmond, WA, 3Quorum Consulting, Inc., San Francisco, CA, USABackground: Protracted hospitalizations due to air leaks following lung resections are a significant source of morbidity and prolonged hospital length of stay (LOS, with potentially significant impact on hospital margins. This study aimed to evaluate the relationship between air leaks, LOS, and financial outcomes among discharges following lung resections.Materials and methods: The Medicare Provider Analysis and Review file for fiscal year 2012 was utilized to identify inpatient hospital discharges that recorded International Classification of Diseases (ICD-9 procedure codes for lobectomy, segmentectomy, and lung volume reduction surgery (n=21,717. Discharges coded with postoperative air leaks (ICD-9-CM codes 512.2 and 512.84 were defined as the air leak diagnosis group (n=2,947, then subcategorized by LOS: 1 <7 days; 2 7–10 days; and 3 ≥11 days. Median hospital charges, costs, payments, and payment-to-cost ratios were compared between non-air leak and air leak groups, and across LOS subcategories.Results: For identified patients, hospital charges, costs, and payments were significantly greater among patients with air leak diagnoses compared to patients without (P<0.001. Hospital charges and costs increased substantially with prolonged LOS, but were not matched by a proportionate increase in hospital payments. Patients with LOS <7, 7–10, and ≥11 days had median hospital charges of US $57,129, $73,572, and $115,623, and costs of $17,594, $21,711, and $33,786, respectively. Hospital payment increases were substantially lower at $16,494, $16,307, and $19,337, respectively. The payment-to-cost ratio significantly lowered with each LOS increase (P<0.001. Higher inpatient hospital mortality was observed among the

  15. Impact of Air Tightness on the Evaluation of Building Energy Performance in Lithuania

    Directory of Open Access Journals (Sweden)

    Jolanta Šadauskienė

    2014-08-01

    Full Text Available In order to fulfil the European Energy Performance of Buildings Directive (EPBD requirements for the reduction of energy consumption, European national requirements have been created for building envelope thermal properties and calculation methodology to determine if building energy efficiency is created. This is however not true in all methodologies. The necessity of building air tightness appears only for new A class buildings, and there are no requirements for air tightness for other building classes. Therefore, the aim of this work is to improve the methodology for the calculation of energy efficiency of buildings, while taking into account the air tightness of the buildings. In order to achieve this aim, the sum energy consumption of investigated buildings was calculated, energy efficiency classes were determined, air tightness of the buildings was measured, and reasons for insufficient air tightness were analyzed. Investigation results show that the average value of air tightness of A energy efficiency class buildings is 0.6 h−1. The results of other investigated buildings, corresponding to B and C energy efficiency classes, show insufficient air tightness (the average n50 value is 6 h−1; herewith, energy consumption for heating is higher than calculated, according to the energy efficiency methodology. This paper provides an energy performance evaluation scheme, under which performed evaluation of energy performance of buildings ensures high quality construction work, building durability, and the reliability of heat-loss calculations.

  16. Statistical Analysis of the Impacts of Regional Transportation on the Air Quality in Beijing

    Science.gov (United States)

    Huang, Zhongwen; Zhang, Huiling; Tong, Lei; Xiao, Hang

    2016-04-01

    From October to December 2015, Beijing-Tianjin-Hebei (BTH) region had experienced several severe haze events. In order to assess the effects of the regional transportation on the air quality in Beijing, the air monitoring data (PM2.5, SO2, NO2 and CO) from that period published by Chinese National Environmental Monitoring Center (CNEMC) was collected and analyzed with various statistical models. The cities within BTH area were clustered into three groups according to the geographical conditions, while the air pollutant concentrations of cities within a group sharing similar variation trends. The Granger causality test results indicate that significant causal relationships exist between the air pollutant data of Beijing and its surrounding cities (Baoding, Chengde, Tianjin and Zhangjiakou) for the reference period. Then, linear regression models were constructed to capture the interdependency among the multiple time series. It shows that the observed air pollutant concentrations in Beijing were well consistent with the model-fitted results. More importantly, further analysis suggests that the air pollutants in Beijing were strongly affected by regional transportation, as the local sources only contributed 17.88%, 27.12%, 14.63% and 31.36% of PM2.5, SO2, NO2 and CO concentrations, respectively. And the major foreign source for Beijing was from Southwest (Baoding) direction, account for more than 42% of all these air pollutants. Thus, by combining various statistical models, it may not only be able to quickly predict the air qualities of any cities on a regional scale, but also to evaluate the local and regional source contributions for a particular city. Key words: regional transportation, air pollution, Granger causality test, statistical models

  17. CO2-capture and air quality. Synergy or conflict? A study of possible impacts

    International Nuclear Information System (INIS)

    Does CO2 capture and storage conflict with the objectives for air quality in the Netherlands? Or are win-win situations conceivable? These are important questions for policy makers today. It is expected that both conflicts and synergies will occur in the large scale implementation of CO2 capture in the Dutch electricity sector. This article provides a brief summary of part of the research program that was set up to unravel synergies and conflicts in policy for climate and air quality: the Dutch Policy Research Program on Air and Climate (BOLK) of the ministry of Housing, Spatial Planning and the Environment. [mk

  18. The Promise of Beijing: Evaluating the Impact of the 2008 Olympic Games on Air Quality

    OpenAIRE

    Yuyu Chen; Ginger Zhe Jin; Naresh Kumar; Guang Shi

    2011-01-01

    To prepare for the 2008 Olympic Games, China adopted a number of radical measures to improve air quality. Using officially reported air pollution index (API) from 2000 to 2009, we show that these measures improved the API of Beijing during and after the Games, but 60% of the effect faded away by the end of October 2009. Since the credibility of API data has been questioned, an objective and indirect measure of air quality at a high spatial resolution - aerosol optimal depth (AOD), derived usi...

  19. Numerical simulation of the impact of water-air fronts on radionuclide plumes in heterogeneous media

    International Nuclear Information System (INIS)

    The goal of this paper is to investigate the interaction of water-air fronts with radionuclide plumes in unsaturated heterogeneous porous media. This problem is modeled by a system of equations that describes both water-air flow and radionuclide transport. The water-air flow problem is solved numerically by a mixed finite element combined with a non-oscillatory central difference scheme. For the radionuclide transport equation we use the Modified Method of Characteristics (MMOC). We present results of numerical simulations for heterogeneous permeability fields taking into account sorption effects. (author)

  20. Aerosol climate effects and air quality impacts from 1980 to 2030

    International Nuclear Information System (INIS)

    We investigate aerosol effects on climate for 1980, 1995 (meant to reflect present day) and 2030 using the NASA Goddard Institute for Space Studies climate model coupled to an on-line aerosol source and transport model with interactive oxidant and aerosol chemistry. Aerosols simulated include sulfates, organic matter (OM), black carbon (BC), sea-salt and dust and, additionally, the amount of tropospheric ozone is calculated, allowing us to estimate both changes to air quality and climate for different time periods and emission amounts. We include both the direct aerosol effect and indirect aerosol effects for liquid-phase clouds. Future changes for the 2030 A1B scenario are examined, focusing on the Arctic and Asia, since changes are pronounced in these regions. Our results for the different time periods include both emission changes and physical climate changes. We find that the aerosol indirect effect (AIE) has a large impact on photochemical processing, decreasing ozone amount and ozone forcing, especially for the future (2030-1995). Ozone forcings increase from 0 to 0.12 W m-2 and the total aerosol forcing decreases from -0.10 to -0.94 W m-2 (AIE decreases from -0.13 to -0.68 W m-2) for 1995-1980 versus 2030-1995. Over the Arctic we find that compared to ozone and the direct aerosol effect, the AIE contributes the most to net radiative flux changes. The AIE, calculated for 1995-1980, is positive (1.0 W m-2), but the magnitude decreases (-0.3 W m-2) considerably for the future scenario. Over Asia, we evaluate the role of biofuel- and transportation-based emissions (for BC and OM) via a scenario (2030A) that includes a projected increase (factor of 2) in biofuel- and transport-based emissions for 2030 A1B over Asia. Projected changes from present day due to the 2030A emissions versus 2030 A1B are a factor of 4 decrease in summertime precipitation in Asia. Our results are sensitive to emissions used. Uncertainty in present-day emissions suggests that future

  1. Impact of transpacific aerosol on air quality over the United States: A perspective from aerosol-cloud-radiation interactions

    Science.gov (United States)

    Tao, Zhining; Yu, Hongbin; Chin, Mian

    2016-01-01

    Observations have well established that aerosols from various sources in Asia, Europe, and Africa can travel across the Pacific and reach the contiguous United States (U.S.) at least on episodic bases throughout a year, with a maximum import in spring. The imported aerosol not only can serve as an additional source to regional air pollution (e.g., direct input), but also can influence regional air quality through the aerosol-cloud-radiation (ACR) interactions that change local and regional meteorology. This study assessed impacts of the transpacific aerosol on air quality, focusing on surface ozone and PM2.5, over the U.S. using the NASA Unified Weather Research Forecast model. Based on the results of 3-month (April to June of 2010) simulations, the impact of direct input (as an additional source) of transpacific aerosol caused an increase of surface PM2.5 concentration by approximately 1.5 μg m-3 over the west coast and about 0.5 μg m-3 over the east coast of the U.S. By influencing key meteorological processes through the ACR interactions, the transpacific aerosol exerted a significant effect on both surface PM2.5 (±6 μg m-3) and ozone (±12 ppbv) over the central and eastern U.S. This suggests that the transpacific transport of aerosol could either improve or deteriorate local air quality and complicate local effort toward the compliance with the U.S. National Ambient Air Quality Standards.

  2. The Impact of Improved Cloud Characterization in the Weather Research & Forecasting (WRF) Model on Air Quality Simulations

    Science.gov (United States)

    Pour Biazar, A.; McNider, R. T.; Doty, K.; Park, Y. H.; Khan, M. N.; Dornblaser, B.

    2013-12-01

    In air quality simulations, clouds have a significant role as they modulate photolysis rates, impact boundary-layer development, lead to deep vertical mixing of pollutants and precursors, and induce aqueous phase chemistry. Unfortunately, numerical meteorological models still have difficulty in creating clouds in the right place and time compared to observed clouds. This is especially the case when synoptic-scale forcing is weak, as often is the case during air pollution episodes in the Southeast United States. In turn, a poor representation of clouds impacts the photochemical model's ability in simulating the air quality. In the current activity the Geostationary Operational Environmental Satellite (GOES) derived cloud fields are assimilated within Weather Research and Forecasting (WRF) model to improve simulated clouds. A technique was developed to dynamically support cloud formation/dissipation within WRF based on GOES observations. Satellites provide the best observational platform for defining the formation and location of clouds. The basic assumption in the technique is that model clouds on average are associated with positive vertical motion and clear areas with negative vertical motion. Thus, the technique uses observations to identify model cloud errors, estimates a target vertical velocity and moisture to create/remove clouds, and adjust the flow field accordingly. The technique was implemented and tested in WRF for a month-long simulation during August 2006. The results show 7-10% improvement in model cloud simulation. The technique proved to be effective regardless of the convective parameterization scheme used. Furthermore, the impact of these improvements on air quality simulations was investigated. Preliminary results from this activity will be presented.

  3. Chemical Transport and Reduced-Form Models for Assessing Air Quality Impacts of Current and Future Energy Scenarios

    Science.gov (United States)

    Adams, P. J.

    2015-12-01

    Though essential for informed decision-making, it is challenging to estimate the air quality and public health impacts associated with current and future energy generation scenarios because the analysis must address the complicated atmospheric processes that air pollutants undergo: emissions, dispersion, chemistry, and removal. Employing a chemical transport model (CTM) is the most rigorous way to address these atmospheric processes. However, CTMs are expensive from a computational standpoint and, therefore, beyond the reach of policy analysis for many types of problems. On the other hand, previously available reduced-form models used for policy analysis fall short of the rigor of CTMs and may lead to biased results. To address this gap, we developed the Estimating Air pollution Social Impacts Using Regression (EASIUR) method, which builds parameterizations that predict per-tonne social costs and intake fractions for pollutants emitted from any location in the United States. Derived from a large database of tagged CTM simulations, the EASIUR method predicts social costs almost indistinguishable from a full CTM but with negligible computational requirements. We found that the average mortality-related social costs from inorganic PM2.5 and its precursors in the United States are 150,000-180,000/t EC, 21,000-34,000/t SO2, 4,200-15,000/t NOx, and 29,000-85,000/t NH3. This talk will demonstrate examples of using both CTMs and reduced-form models for assessing air quality impacts associated with current energy production activities as well as a future deployment of carbon capture and sequestration.

  4. Evaluation of sanitary impact of urban air pollution. Agglomeration of Pau impact at short and long term; Evaluation de l'impact sanitaire de la pollution atmospherique urbaine. Agglomeration de Pau impact a cour et long terme

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-07-01

    A health impact assessment of air pollution based on the I.n.V.S. guidelines has been conducted in Pau according to the regional Plan for the quality of air in the region of Aquitaine. Short-term effects of pollutants on morbidity (hospital admissions in 2002) and mortality (deaths in 2001) have been estimated. Long-term effect on mortality was also assessed. This study is based on the four standardised steps of health risk assessment. It has been carried out in twenty-nine cities homogeneously exposed, belonging to Pau agglomeration, i.e. a study population of about 150,000 inhabitants. Atmospheric pollution indicators analysed are ozone, nitrogen dioxide, and particles having diameter below 10 {mu}m. Short-term impact of atmospheric pollution has been estimated in term of mortality (total, cardiovascular and respiratory mortality) and on hospital intakes (for respiratory, cardiovascular and cardiac reasons) attributable to air pollution. Long term impact was also assessed by the number of deaths due to atmospheric pollution. In 2001, the atmospheric pollution has directly been responsible in the studied area for 17 anticipated deaths, including 7 for cardiovascular reason and 2 for respiratory reason. Concerning morbidity, it generated 20 hospital admissions for cardiovascular reason in 2002, 11 for cardiac reason, and 7 for respiratory reason among elderly people. Regarding long-term health gains, an annually decrease according to the European standards levels of 2010 could allow avoiding 12 deaths per year, and a decrease by 30% of the pollutants could allow avoiding 33 premature deaths per year. This study shows that, even if the relative risks associated to air pollution are quite low, the number of attributable cases is non negligible since everyone is exposed to air pollution. It also shows that a policy of atmospheric pollution reduction only based on not exceeding the standard levels would not have the expected benefits on the public health point of view

  5. Impact Of Air Pollution On Property Values: A Hedonic Price Study

    Directory of Open Access Journals (Sweden)

    Endah Saptutyningsih

    2013-06-01

    Full Text Available The main purpose of this study is the calculation of implicit prices of the environmental level of air quality in Yogyakarta on the basis of housing property prices. By means of Geographical Information System, the housing property prices characterized from the area which have highest air pollution level in province of Yogyakarta. Carbon monoxide is used as the pollution variable. The methodological framework for estimation is based on a hedonic price model. This approach establishes a relationship between the price of a marketable good (e.g. housing and the amenities and characteristics this good contains. Therefore, if variations in air pollution levels occur, then households would change their behavior in an economic way by offering more money for housing located in highly improved environmental areas. The hedonic regression results that the housing price decrease while increasing the level of air contamination such substance as carbon monoxide.

  6. Impact of Oxygen Enriched Air Intake on the Exhaust of a Single Cylinder Diesel Engine

    Directory of Open Access Journals (Sweden)

    K. Rajkumar

    2011-01-01

    Full Text Available Problem statement: The objective of the research is to investigate the effect of using oxygen enriched air on Diesel engine exhaust emission. Approach: In the present experimental work a computerized Single cylinder Diesel engine with data acquisition system was used to study the effects of oxygen enriched air intake on Exhaust emissions. Engine test has been carried out in the above said engine for different loads and Exhaust Emissions like CO, CO2, NOx and HC with respect to different percentage of oxygen enrichment were discussed. Results and Conclusion: Increasing the oxygen content with the air leads to faster burn rates and the ability to control Exhaust Emissions. Added oxygen in the combustion air offers more potential for burning diesel. Oxy-fuel combustion reduces the volume of flue gases and reduces the effects of green house effect also.

  7. Cold Air Activities in July 2004 and Its Impact on Intense Rainfalls over Southwest China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The severe rainfall events in the mid-summer of July 2004 and the roles of cold air in the formation of heavy precipitation are investigated by using daily observational precipitation data of China and NCEP/NCAR reanalysis. The results show that the severe rainfalls in Southwest China are closely related to the cold air activities from the mid-high latitudes, and the events take place under the cooperative effects of mid-high latitude circulation and low latitude synoptic regimes. It is the merging of a cold vortex over mid-latitudes with the northward landing typhoon and eastward Southwest China Vortex, as well as the abrupt transformation from a transversal trough into an upright one that causes three large alterations of mid-high atmospheric circulation respectively in the early and middle ten days of this month. Then, the amplitude of long waves soon magnifies, leading to the unusual intrusion of cold air to low-latitude areas in the mid-summer. Meanwhile, the warm and humid southwest summer monsoon is quite active. The strong interactions of cold air and summer monsoon over Southwest China result in the large-scale convective rainfalls on the southern side of cold air.With regard to the activities of cold air, it can influence rainfalls in three prominent ways. Firstly, the incursion of upper-level cold air is often accompanied by partial southerly upper-level jet. The ascending branch of the corresponding secondary circulation, which is on the left front side of the jet center, provides the favorite dynamic upward motion for the rainfalls. Secondly, the southward movement of cold air contributes to the establishment of atmospheric baroclinic structure, which would lead to baroclinic disturbances. The atmospheric disturbances associated with the intrusion of cold air can destroy the potential instability stratification, release the convective available potential energy (CAPE) and finally cause convective activities. In addition, the advection processes of dry

  8. Household Air Pollution from Coal and Biomass Fuels in China: Measurements, Health Impacts, and Interventions

    OpenAIRE

    Zhang, Junfeng; SMITH, KIRK R.

    2007-01-01

    Objective Nearly all China’s rural residents and a shrinking fraction of urban residents use solid fuels (biomass and coal) for household cooking and/or heating. Consequently, global meta-analyses of epidemiologic studies indicate that indoor air pollution from solid fuel use in China is responsible for approximately 420,000 premature deaths annually, more than the approximately 300,000 attributed to urban outdoor air pollution in the country. Our objective in this review was to help elucidat...

  9. Impact Analysis of Air Pollutant Emission Policies on Thermal Coal Supply Chain Enterprises in China

    OpenAIRE

    Xiaopeng Guo; Xiaodan Guo; Jiahai Yuan

    2014-01-01

    Spurred by the increasingly serious air pollution problem, the Chinese government has launched a series of policies to put forward specific measures of power structure adjustment and the control objectives of air pollution and coal consumption. Other policies pointed out that the coal resources regional blockades will be broken by improving transportation networks and constructing new logistics nodes. Thermal power takes the largest part of China’s total installed power generation capacity,...

  10. Nutritional Solutions to Reduce Risks of Negative Health Impacts of Air Pollution

    OpenAIRE

    Szabolcs Péter; Fernando Holguin; Wood, Lisa G; Clougherty, Jane E; Daniel Raederstorff; Magda Antal; Peter Weber; Manfred Eggersdorfer

    2015-01-01

    Air pollution worldwide has been associated with cardiovascular and respiratory morbidity and mortality, particularly in urban settings with elevated concentrations of primary pollutants. Air pollution is a very complex mixture of primary and secondary gases and particles, and its potential to cause harm can depend on multiple factors—including physical and chemical characteristics of pollutants, which varies with fine-scale location (e.g., by proximity to local emission sources)—as well as l...

  11. Collapse of a non-axisymmetric, impact-created air cavity in water

    OpenAIRE

    Enriquez, Oscar R.; Peters, Ivo R.; Gekle, Stephan; Schmidt, Laura E.; Lohse, Detlef; van der Meer, Devaraj

    2011-01-01

    The axisymmetric collapse of a cylindrical air cavity in water follows a universal power law with logarithmic corrections. Nonetheless, it has been suggested that the introduction of a small azimuthal disturbance induces a long term memory effect, reflecting in oscillations which are no longer universal but remember the initial condition. In this work, we create non-axisymmetric air cavities by driving a metal disc through an initially-quiescent water surface and observe their subsequent grav...

  12. Impact of Air Tightness on the Evaluation of Building Energy Performance in Lithuania

    OpenAIRE

    Jolanta Šadauskienė; Valdas Paukštys; Lina Šeduikytė; Karolis Banionis

    2014-01-01

    In order to fulfil the European Energy Performance of Buildings Directive (EPBD) requirements for the reduction of energy consumption, European national requirements have been created for building envelope thermal properties and calculation methodology to determine if building energy efficiency is created. This is however not true in all methodologies. The necessity of building air tightness appears only for new A class buildings, and there are no requirements for air tightness for other buil...

  13. Air quality impacts of European wildfire emissions in a changing climate

    OpenAIRE

    Knorr, W.; Dentener, F.; Hantson, S.; Jiang, L.; Klimont, Z.; A. Arneth

    2016-01-01

    Wildfires are not only a threat to human property and a vital element of many ecosystems, but also an important source of air pollution. In this study, we first review the available evidence for a past or possible future climate-driven increase in wildfire emissions in Europe. We then introduce an ensemble of model simulations with a coupled wildfire–dynamic-ecosystem model, which we combine with published spatial maps of both wildfire and anthropogenic emissions of several major air pollutan...

  14. Typical synoptic situations and their impacts on the wintertime air pollution in the Guanzhong basin, China

    Science.gov (United States)

    Bei, Naifang; Li, Guohui; Huang, Ru-Jin; Cao, Junji; Meng, Ning; Feng, Tian; Liu, Suixin; Zhang, Ting; Zhang, Qiang; Molina, Luisa T.

    2016-06-01

    Rapid industrialization and urbanization have caused severe air pollution in the Guanzhong basin, northwestern China, with heavy haze events occurring frequently in recent winters. Using the NCEP reanalysis data, the large-scale synoptic situations influencing the Guanzhong basin during wintertime of 2013 are categorized into six types to evaluate the contribution of synoptic situations to the air pollution, including "north-low", "southwest-trough", "southeast-high", "transition", "southeast-trough", and "inland-high". The FLEXPART model has been utilized to demonstrate the corresponding pollutant transport patterns for the typical synoptic situations in the basin. Except for "southwest-trough" and "southeast-high" (defined as favorable synoptic situations), the other four synoptic conditions (defined as unfavorable synoptic situations) generally facilitate the accumulation of air pollutants, causing heavy air pollution in the basin. In association with the measurement of PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) in the basin, the unfavorable synoptic situations correspond to high PM2.5 mass concentrations or poor air quality and vice versa. The same analysis has also been applied to winters of 2008-2012, which shows that the basin was mainly influenced by the unfavorable synoptic situations during wintertime leading to poor air quality. The WRF-CHEM model has further been applied to simulate the selected 6 days representing the typical synoptic situations during the wintertime of 2013, and the results generally show a good agreement between the modeled distributions and variations of PM2.5 and the corresponding synoptic situations, demonstrating reasonable classification for the synoptic situations in the basin. Detailed meteorological conditions, such as temperature inversion, low-level horizontal wind speed, and planetary boundary layer, all contribute to heavy air pollution events in the basin under unfavorable synoptic conditions

  15. Impact Of Air Pollution On Property Values: A Hedonic Price Study

    OpenAIRE

    Endah Saptutyningsih

    2013-01-01

    The main purpose of this study is the calculation of implicit prices of the environmental level of air quality in Yogyakarta on the basis of housing property prices. By means of Geographical Information System, the housing property prices characterized from the area which have highest air pollution level in province of Yogyakarta. Carbon monoxide is used as the pollution variable. The methodological framework for estimation is based on a hedonic price model. This approach establishes a relati...

  16. Impact of Oxygen Enriched Air Intake on the Exhaust of a Single Cylinder Diesel Engine

    OpenAIRE

    Rajkumar, K; Govindarajan, P

    2011-01-01

    Problem statement: The objective of the research is to investigate the effect of using oxygen enriched air on Diesel engine exhaust emission. Approach: In the present experimental work a computerized Single cylinder Diesel engine with data acquisition system was used to study the effects of oxygen enriched air intake on Exhaust emissions. Engine test has been carried out in the above said engine for different loads and Exhaust Emissions like CO, CO2, NOx and HC with respec...

  17. Air quality during the 2008 Beijing Olympics: secondary pollutants and regional impact

    OpenAIRE

    Wang, T.; Nie, W.; Gao, J.; L. K. Xue; Gao, X M; Wang, X.F.; Qiu, J.; C. N. Poon; Meinardi, S.; Blake, D.; Wang, S. L.; Ding, A. J.; F. H. Chai; Zhang, Q. Z; Wang, W.X.

    2010-01-01

    This paper presents the first results of the measurements of trace gases and aerosols at three surface sites in and outside Beijing before and during the 2008 Olympics. The official air pollution index near the Olympic Stadium and the data from our nearby site revealed an obvious association between air quality and meteorology and different responses of secondary and primary pollutants to the control measures. Ambient concentrations of vehicle-related nitrogen oxides (NOx

  18. Health Impact and Control Policy of Air Pollution in Shanxi, China

    OpenAIRE

    2013-01-01

    Facing the increasing environmental degradation locally and globally, the Chinese government sets mandatory goals of 10% reduction of SO2 emission and 20% reduction of energy intensity in its 11th Five-Year Plan period (FYP, 2006-2010). This study uses Shanxi Province to show the health effects of air pollution and health benefits resulting from various air pollution control scenarios in Shanxi province, illustrate how policies and measures have been implemented in practice in the province as...

  19. Typical synoptic situations and their impacts on the wintertime air pollution in the Guanzhong basin, China

    OpenAIRE

    Bei, Naifang; Li, Guohui; Huang, Ru-Jin; Cao, Junji; Meng, Ning; Feng, Tian; Liu, Suixin; Zhang, Ting; Zhang, Qiang; Molina, Luisa T.

    2016-01-01

    Rapid industrialization and urbanization have caused severe air pollution in the Guanzhong basin, northwestern China, with heavy haze events occurring frequently in recent winters. Using the NCEP reanalysis data, the large-scale synoptic situations influencing the Guanzhong basin during wintertime of 2013 are categorized into six types to evaluate the contribution of synoptic situations to the air pollution, including “north-low”, “southwest-trough”, “southeast-high”, “trans...

  20. Quantifying wildfire impacts on air quality during the ARCTAS-CARB campaign: Contribution of fire emissions to NAAQS exceedances

    Science.gov (United States)

    Hu, Y.; Odman, M. T.; Russell, A.; Zhang, X.; Kondragunta, S.; Yu, H.; Bian, H.; Munchak, L. A.; Mattoo, S.; Remer, L. A.

    2012-12-01

    Increasingly frequent wildfires in the US have led to imposed adverse impacts on rural and urban air quality. During severe wildfire episodes, exceedances of NAAQS for ozone and PM2.5 have occurred. The US EPA allows these "exceptional events" to be exempted from being used in the designation of an area exceeding NAAQS. However, how much the wildfires contribute to elevated ozone and PM2.5 observations are poorly understood and not readily quantified. For example, the northern California wildfires of summer 2008 are suspected of causing severe air pollution in the urban areas in California. Here we employed a state of art air quality model - CMAQ equipped with the sensitivity analysis tool DDM-3D - to quantify the wildfire emissions' contribution to the exceedances of NAAQS during the 2008 summer northern California wildfires period. We simulated the air quality impacts of the 2008 northern California wildfires using CMAQ, equipped with a new SOA module including the multi-generational oxidation process. The simulation covers the period of June 15 through July 14, 2008. Three nesting grids are used with the 36-km grid covering the CONUS, the 12-km grid covering California and the 4-km grid covering most metro areas in California. All the three grids have 34 vertical layers extending to ~16km above the ground with the first layer ~18m thick. We evaluate model performance by examining ozone and PM2.5 as well as other gaseous and PM components against observations from multiple platforms: surface, airborne and space. The June-July 2008 ARCTAS-CARB campaign, which was conducted in the same period, has additional airborne data collected in flights chasing the wildfire plumes, along with the regular surface network measurements and satellite observations, providing an extensive database to evaluate model deficiencies and improve model performance in capturing the wildfire impacts on air quality. Further, having these various data allows inter-comparison of the relative

  1. Impacts of residential heating intervention measures on air quality and progress towards targets in Christchurch and Timaru, New Zealand

    Science.gov (United States)

    Scott, Angelique J.; Scarrott, Carl

    2011-06-01

    Elevated wintertime particulate concentrations in the New Zealand cities of Christchurch and Timaru are mostly attributed to the burning of wood and coal for residential heating. A carrot-and-stick approach was adopted for managing air quality in Christchurch, where strict intervention measures were introduced together with a residential heater replacement programme to encourage householders to change to cleaner forms of heating. A similar approach was only recently implemented for Timaru. This paper presents the results of a partial accountability analysis, where the impact of these measures on the target source, PM 10 emissions, and PM 10 concentrations are quantified. A statistical model was developed to estimate trends in the concentrations, which were tested for significance after accounting for meteorological effects, and to estimate the probability of meeting air quality targets. Results for Christchurch and Timaru are compared to illustrate the impacts of differing levels of intervention on air quality. In Christchurch, approximately 34,000 (76%) open fires and old solid fuel burners were replaced with cleaner heating technology from 2002 to 2009, and total open fires and solid fuel burner numbers decreased by 45%. Over the same time period, estimated PM 10 emissions reduced by 71% and PM 10 concentrations by 52% (maxima), 36% (winter mean), 26% (winter median) and 41% (meteorology-adjusted winter means). In Timaru, just 3000 (50%) open fires and old solid fuel burners were replaced from 2001 to 2008, with total open fire and solid fuel burner numbers reduced by 24%. PM 10 emissions declined by 32%, with low reductions in the PM 10 concentrations (maxima decreased by 7%, winter means by 11% and winter medians by 3%). These findings, supported by the results of the meteorology corrected trend analysis for Christchurch, strongly indicate that the combination of stringent intervention measures and financial incentives has led to substantial air quality

  2. Air quality analysis and related risk assessment for the Bonneville Power Administration's Resource Program Environmental Impact Statement

    Energy Technology Data Exchange (ETDEWEB)

    Glantz, C S; Burk, K W; Driver, C J; Liljegren, J C; Neitzel, D A; Schwartz, M N; Dana, M T; Laws, G L; Mahoney, L A; Rhoads, K

    1992-04-01

    The Bonneville Power Administration (BPA) is considering 12 different alternatives for acquiring energy resources over the next 20 years. Each of the alternatives utilizes a full range of energy resources (e.g., coal, cogeneration, conservation, and nuclear); however, individual alternatives place greater emphases on different types of power-producing resources and employ different timetables for implementing these resources. The environmental impacts that would result from the implementation of each alternative and the economic valuations of these impacts, will be an important consideration in the alternative selection process. In this report we discuss the methods used to estimate environmental impacts from the resource alternatives. We focus on pollutant emissions rates, ground-level air concentrations of basic criteria pollutants, the acidity of rain, particulate deposition, ozone concentrations, visibility attenuation, global warming, human health effects, agricultural and forest impacts, and wildlife impacts. For this study, pollutant emission rates are computed by processing BPA data on power production and associated pollutant emissions. The assessment of human health effects from ozone indicated little variation between the resource alternatives. Impacts on plants, crops, and wildlife populations from power plant emissions are projected to be minimal for all resource alternatives.

  3. Impact of co-flow air on buoyant diffusion flames flicker

    Energy Technology Data Exchange (ETDEWEB)

    Gohari Darabkhani, H., E-mail: h.g.darabkhani@gmail.com [School of Mechanical, Aerospace and Civil Engineering, University of Manchester, Sackville Street, Manchester M13 9PL (United Kingdom); Wang, Q.; Chen, L.; Zhang, Y. [Mechanical Engineering Department, University of Sheffield, Mapping Street, Sheffield S1 3JD (United Kingdom)

    2011-08-15

    Highlights: {yields} We present the co-flow effects on flickering behaviour of diffusion flames. {yields} Co-flow air is shown to fully suppress the buoyancy driven flame oscillations. {yields} Schlieren and PIV illustrate the shift of outer vortices beyond the flame zone. {yields} Stability controlling parameter as a ratio of air to fuel velocities is presented. {yields} Equation for linear increase in flickering frequency by co-flow air is presented. - Abstract: This paper describes experimental investigation of co-flow air velocity effects on the flickering behaviour of laminar non-lifted methane diffusion flames. Chemiluminescence, high-speed photography, schlieren and Particle Imaging Velocimetry (PIV), have been used to study the changes in the flame/vortex interactions as well as the flame flickering frequency and magnitude by the co-flow air. Four cases of methane flow rates at different co-flow air velocities are investigated. It has been observed that the flame dynamics and stability of co-flow diffusion flames are strongly affected by the co-flow air velocity. When the co-flow velocity has reached a certain value the buoyancy driven flame oscillation was completely suppressed. The schlieren and PIV imaging have revealed that the co-flow of air is able to push the initiation point of the outer toroidal vortices beyond the visible flame to create a very steady laminar flow region in the reaction zone. Then the buoyancy driven instability is only effective in the plume of hot gases above the visible flame. It is observed that a higher co-flow rate is needed in order to suppress the flame flickering at a higher fuel flow rate. Therefore the ratio of the air velocity to the fuel velocity, {gamma}, is a stability controlling parameter. The velocity ratio, {gamma}, was found to be 0.72 for the range of tested flow rates. The dominant flickering frequency was observed to increase linearly with the co-flow rate (a) as; f = 0.33a + 11. The frequency amplitudes

  4. Impact of co-flow air on buoyant diffusion flames flicker

    International Nuclear Information System (INIS)

    Highlights: → We present the co-flow effects on flickering behaviour of diffusion flames. → Co-flow air is shown to fully suppress the buoyancy driven flame oscillations. → Schlieren and PIV illustrate the shift of outer vortices beyond the flame zone. → Stability controlling parameter as a ratio of air to fuel velocities is presented. → Equation for linear increase in flickering frequency by co-flow air is presented. - Abstract: This paper describes experimental investigation of co-flow air velocity effects on the flickering behaviour of laminar non-lifted methane diffusion flames. Chemiluminescence, high-speed photography, schlieren and Particle Imaging Velocimetry (PIV), have been used to study the changes in the flame/vortex interactions as well as the flame flickering frequency and magnitude by the co-flow air. Four cases of methane flow rates at different co-flow air velocities are investigated. It has been observed that the flame dynamics and stability of co-flow diffusion flames are strongly affected by the co-flow air velocity. When the co-flow velocity has reached a certain value the buoyancy driven flame oscillation was completely suppressed. The schlieren and PIV imaging have revealed that the co-flow of air is able to push the initiation point of the outer toroidal vortices beyond the visible flame to create a very steady laminar flow region in the reaction zone. Then the buoyancy driven instability is only effective in the plume of hot gases above the visible flame. It is observed that a higher co-flow rate is needed in order to suppress the flame flickering at a higher fuel flow rate. Therefore the ratio of the air velocity to the fuel velocity, γ, is a stability controlling parameter. The velocity ratio, γ, was found to be 0.72 for the range of tested flow rates. The dominant flickering frequency was observed to increase linearly with the co-flow rate (a) as; f = 0.33a + 11. The frequency amplitudes, however, were observed to

  5. A simplified model for estimating population-scale energy impacts of building envelope air-tightening and mechanical ventilation retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Logue, Jennifer M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Turner, William J. N. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Trinity College Dublin, Dublin (Ireland); Walker, Iain S. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Singer, Brett C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2015-01-19

    Changing the air exchange rate of a home (the sum of the infiltration and mechanical ventilation airflow rates) affects the annual thermal conditioning energy. Large-scale changes to air exchange rates of the housing stock can significantly alter the residential sector's energy consumption. However, the complexity of existing residential energy models is a barrier to the accurate quantification of the impact of policy changes on a state or national level. The Incremental Ventilation Energy (IVE) model developed in this study combines the output of simple air exchange models with a limited set of housing characteristics to estimate the associated change in energy demand of homes. The IVE model was designed specifically to enable modellers to use existing databases of housing characteristics to determine the impact of ventilation policy change on a population scale. The IVE model estimates of energy change when applied to US homes with limited parameterisation are shown to be comparable to the estimates of a well-validated, complex residential energy model.

  6. Health impacts of air pollution on morbidity and mortality among children of Ciudad Juarez, Chihuahua, Mexico : working paper

    International Nuclear Information System (INIS)

    This study evaluated the impact of air pollution on a group of children in Ciudad Juarez, Mexico where a large urban population of children live in poor conditions. In particular, the study examined the associations between ozone ambient levels and respiratory-related emergency visits to hospitals by children. The impact of PM10 on respiratory health was also examined. Upper respiratory infections and asthma were found to be associated with ozone ambient levels for all age groups. In children aged 5 or less, ozone exposure was related to lower respiratory infections as well. Ambient air pollutants were not related to respiratory deaths in the population of children involved in this study, but data suggests that that PM10 ambient levels might increase the risk of respiratory mortality in infants less than one year old. An increase in respiratory mortality was noted among infants from the lowest socio-economic status (SES) group. This report emphasizes the need for implementing cost effective interventions to control existing air pollution problems and to prevent the situation from worsening. 22 refs., 27 tabs., 5 figs

  7. Contributions of gas flaring to a global air pollution hotspot: Spatial and temporal variations, impacts and alleviation

    Science.gov (United States)

    Anejionu, Obinna C. D.; Whyatt, J. Duncan; Blackburn, G. Alan; Price, Catheryn S.

    2015-10-01

    Studies of environmental impacts of gas flaring in the Niger Delta are hindered by limited access to official flaring emissions records and a paucity of reliable ambient monitoring data. This study uses a combination of geospatial technologies and dispersion modelling techniques to evaluate air pollution impacts of gas flaring on human health and natural ecosystems in the region. Results indicate that gas flaring is a major contributor to air pollution across the region, with concentrations exceeding WHO limits in some locations over certain time periods. Due to the predominant south-westerly wind, concentrations are higher in some states with little flaring activity than in others with significant flaring activity. Twenty million people inhabit areas of high flare-associated air pollution, which include all of the main ecological zones of the region, indicating that flaring poses a substantial threat to human health and the environment. Model scenarios demonstrated that substantial reductions in pollution could be achieved by stopping flaring at a small number of the most active sites and by improving overall flaring efficiency.

  8. Application of nonparametric regression and statistical testing to identify the impact of oil and natural gas development on local air quality

    Energy Technology Data Exchange (ETDEWEB)

    Pekney, Natalie J.; Cheng, Hanqi; Small, Mitchell J.

    2015-11-05

    Abstract: The objective of the current work was to develop a statistical method and associated tool to evaluate the impact of oil and natural gas exploration and production activities on local air quality.

  9. The impact of the congestion charging scheme on air quality in London. Part 1. Emissions modeling and analysis of air pollution measurements.

    Science.gov (United States)

    Kelly, Frank; Anderson, H Ross; Armstrong, Ben; Atkinson, Richard; Barratt, Ben; Beevers, Sean; Derwent, Dick; Green, David; Mudway, Ian; Wilkinson, Paul

    2011-04-01

    not find evidence of temporal changes in roadside measurements of NOx, NO, and NO2, nor in urban background concentrations of NOx. (The latter result, however, concealed divergent trends in NO, which fell, and NO2, which rose.) Although based upon fewer stations, there was evidence that background concentrations of PM10 and CO fell within the CCZ compared with outside the zone. We also analyzed the trends in background concentrations for all London monitoring stations; as distance from the center of the CCZ increased, we found some evidence of an increasing gradation in NO and PM10 concentrations before versus after the intervention. This suggests a possible intermediate effect on air quality in the area immediately surrounding the CCZ. Although London is relatively well served with air quality monitoring stations, our study was restricted by the availability of only a few monitoring sites within the CCZ, and only one of those was at a roadside location. The results derived from this single roadside site are not likely to be an adequate basis for evaluating this complex urban traffic management scheme. Our primary approach to assessing the impact of the CCS was to analyze the changes in geometric mean pollutant concentrations in the 2 years before and 2 years after the CCS was introduced and to compare changes at monitoring stations within the CCZ with those in a distant control area (8 km from the CCZ center) unlikely to be influenced by the CCS. We saw this as the most robust analytical approach with which to examine the CCS Study Database, but in the fourth part of the project we did consider three other approaches: ethane as an indicator of pollution dispersion; the cumulative sum (CUSUM) statistical technique; and bivariate polar plots for local emissions. All three were subsequently judged as requiring further development outside of the scope of this study. However, despite their investigative nature, each technique provided useful information supporting the

  10. Economic impact of air pollution on timber markets: Studies from North America and Europe. Forest Service general technical report

    International Nuclear Information System (INIS)

    The impact of air pollution on forest health has in recent years become an issue of major public concern. This is true despite the fact that irrefutable cause-and-effect relationships have in most instances been quite difficult to establish. The purpose of the report is to assist government officials and other concerned parties by contributing to a better understanding of the economics of forest damage from air pollution. The papers presented here were written by seven economists who have studied the forestry air pollution situation and its relationship to timber markets. The first paper explains the economic linkages among fossil fuel consumption, air pollution externalities, and losses in timber markets. The five papers that follow are concerned with the actual estimation of damages across selected large geographic areas. One study deals with the Southeastern United States; three are national studies from Finland, the U.S., and Canada; and one is concerned with the entire European continent. Yet, while each of the studies is concerned with estimating damage within a large geographic area, the methods of analysis are diverse

  11. Air pollution, a rising environmental risk factor for cognition, neuroinflammation and neurodegeneration: The clinical impact on children and beyond.

    Science.gov (United States)

    Calderón-Garcidueñas, L; Leray, E; Heydarpour, P; Torres-Jardón, R; Reis, J

    2016-01-01

    Air pollution (indoors and outdoors) is a major issue in public health as epidemiological studies have highlighted its numerous detrimental health consequences (notably, respiratory and cardiovascular pathological conditions). Over the past 15 years, air pollution has also been considered a potent environmental risk factor for neurological diseases and neuropathology. This review examines the impact of air pollution on children's brain development and the clinical, cognitive, brain structural and metabolic consequences. Long-term potential consequences for adults' brains and the effects on multiple sclerosis (MS) are also discussed. One challenge is to assess the effects of lifetime exposures to outdoor and indoor environmental pollutants, including occupational exposures: how much, for how long and what type. Diffuse neuroinflammation, damage to the neurovascular unit, and the production of autoantibodies to neural and tight-junction proteins are worrisome findings in children chronically exposed to concentrations above the current standards for ozone and fine particulate matter (PM2.5), and may constitute significant risk factors for the development of Alzheimer's disease later in life. Finally, data supporting the role of air pollution as a risk factor for MS are reviewed, focusing on the effects of PM10 and nitrogen oxides. PMID:26718591

  12. Observing and simulating the impact of growing urbanization on air quality and climate in the Eastern Mediterranean

    Science.gov (United States)

    Kanakidou, Maria; Myriokefalitakis, Stelios; Mihalopoulos, Nikos; Vrekoussis, Mihalis; Daskalakis, Nikos; Sfakianaki, Maria; Hatziannastassiou, Nikos; Im, Ulas

    2016-07-01

    The Mediterranean, and particularly its east basin, is a crossroad of air masses coming from Europe, Asia and Africa. Over this area, anthropogenic emissions, mainly from Europe, Balkans and the Black Sea, meet with natural emissions from Sahara (Saharan dust), vegetation and the ocean as well as from biomass burning, overall presenting a strong seasonal pattern. As a consequence of its unique location and emissions, the Mediterranean region is climatically very sensitive and often exposed to multiple stresses, such as a simultaneous water shortage and elevated air pollution exposure. During the last decades, the Eastern Mediterranean, following the general trend, has experienced a rapid growth in urbanization, including increased vehicle circulation, and industrialization, all impacting pollutant emissions in the atmosphere. Air pollution is one of the challenging environmental problems for Istanbul and Cairo megacities but also for the whole Eastern Mediterranean region. The recent financial crisis resulted in changes in human habits, energy production and subsequently air pollution. This resulted in changes in tropospheric composition that reflect changes in natural emissions and in human behavior have been detected by satellites and simulated by chemistry transport models. The results are presented and their robustness is discussed.

  13. Radiation impact caused by activation of air from the future GSI accelerator facility fair

    International Nuclear Information System (INIS)

    The Gesellschaft fuer Schwerionenforschung in Darmstadt is planning a new accelerator Facility for Antiproton and Ion Research (FAIR). Two future experimental areas are regarded to be the most decisive points concerning the activation of air. One is the area for the production of antiprotons. A second crucial experimental area is the so-called Super Fragment Separator. The production of radioactive isotopes in air is calculated using the residual nuclei option of the Monte Carlo program FLUKA. The results are compared with the data for the activation of air given by Sullivan and in IAEA report 283. The resulting effective dose is calculated using a program package from the German Federal Office for Radiation Protection, the Bundesamt fuer Stranlenschutz. The results demonstrate that a direct emission of the total radioactivity produced into the air will probably conflict with the limits of the German Radiation Protection Ordinance. Special measures have to be planned in order to reduce the amount of radioactivity released into the air. (authors)

  14. Impact of Bay-Breeze Circulations on Surface Air Quality and Boundary Layer Export

    Science.gov (United States)

    Loughner, Christopher P.; Tzortziou, Maria; Follette-Cook, Melanie; Pickering, Kenneth E.; Goldberg, Daniel; Satam, Chinmay; Weinheimer, Andrew; Crawford, James H.; Knapp, David J.; Montzka, Denise D.; Diskin, Glenn S.; Dickerson, Russell R.

    2014-01-01

    Meteorological and air-quality model simulations are analyzed alongside observations to investigate the role of the Chesapeake Bay breeze on surface air quality, pollutant transport, and boundary layer venting. A case study was conducted to understand why a particular day was the only one during an 11-day ship-based field campaign on which surface ozone was not elevated in concentration over the Chesapeake Bay relative to the closest upwind site and why high ozone concentrations were observed aloft by in situ aircraft observations. Results show that southerly winds during the overnight and early-morning hours prevented the advection of air pollutants from the Washington, D.C., and Baltimore, Maryland, metropolitan areas over the surface waters of the bay. A strong and prolonged bay breeze developed during the late morning and early afternoon along the western coastline of the bay. The strength and duration of the bay breeze allowed pollutants to converge, resulting in high concentrations locally near the bay-breeze front within the Baltimore metropolitan area, where they were then lofted to the top of the planetary boundary layer (PBL). Near the top of the PBL, these pollutants were horizontally advected to a region with lower PBL heights, resulting in pollution transport out of the boundary layer and into the free troposphere. This elevated layer of air pollution aloft was transported downwind into New England by early the following morning where it likely mixed down to the surface, affecting air quality as the boundary layer grew.

  15. Impact of operating wood-burning fireplace ovens on indoor air quality.

    Science.gov (United States)

    Salthammer, Tunga; Schripp, Tobias; Wientzek, Sebastian; Wensing, Michael

    2014-05-01

    The use of combustion heat sources like wood-burning fireplaces has regained popularity in the past years due to increasing energy costs. While the outdoor emissions from wood ovens are strictly regulated in Germany, the indoor release of combustion products is rarely considered. Seven wood burning fireplaces were tested in private homes between November 2012 and March 2013. The indoor air quality was monitored before, during and after operation. The following parameters were measured: ultra-fine particles (5.6-560 nm), fine particles (0.3-20 μm), PM2.5, NOx, CO, CO2, formaldehyde, acetaldehyde, volatile organic compounds (VOCs) and benzo[a]pyrene (BaP). Most ovens were significant sources of particulate matter. In some cases, an increase of benzene and BaP concentrations was observed in the indoor air. The results illustrate that wood-burning fireplaces are potential sources of indoor air contaminants, especially ultra-fine particles. Under the aspect of lowering indoor air exchange rates and increasing the use of fuels with a net zero-carbon footprint, indoor combustion sources are an important topic for the future. With regards to consumer safety, product development and inspection should consider indoor air quality in addition to the present fire protection requirements. PMID:24364889

  16. Development of PM2.5 source impact spatial fields using a hybrid source apportionment air quality model

    Directory of Open Access Journals (Sweden)

    C. E. Ivey

    2015-01-01

    Full Text Available An integral part of air quality management is knowledge of the impact of pollutant sources on ambient concentrations of particulate matter (PM. There is also a growing desire to directly use source impact estimates in health studies; however, source impacts cannot be directly measured. Several limitations are inherent in most source apportionment methods, which has led to the development of a novel hybrid approach that is used to estimate source impacts by combining the capabilities of receptor modeling (RM and chemical transport modeling (CTM. The hybrid CTM-RM method calculates adjustment factors to refine the CTM-estimated impact of sources at monitoring sites using pollutant species observations and the results of CTM sensitivity analyses, though it does not directly generate spatial source impact fields. The CTM used here is the Community Multi-Scale Air Quality (CMAQ model, and the RM approach is based on the Chemical Mass Balance model. This work presents a method that utilizes kriging to spatially interpolate source-specific impact adjustment factors to generate revised CTM source impact fields from the CTM-RM method results, and is applied to January 2004 over the continental United States. The kriging step is evaluated using data withholding and by comparing results to data from alternative networks. Directly applied and spatially interpolated hybrid adjustment factors at withheld monitors had a correlation coefficient of 0.89, a linear regression slope of 0.83 ± 0.02, and an intercept of 0.14 ± 0.02. Refined source contributions reflect current knowledge of PM emissions (e.g., significant differences in biomass burning impact fields. Concentrations of 19 species and total PM2.5 mass were reconstructed for withheld monitors using directly applied and spatially interpolated hybrid adjustment factors. The mean concentrations of total PM2.5 for withheld monitors were 11.7 (± 8.3, 16.3 (± 11, 8.59 (± 4.7, and 9.20 (± 5.7 μg m−3

  17. The Impacts of a 2-Degree Rise in Global Temperatures upon Gas-Phase Air Pollutants in Europe

    Science.gov (United States)

    Watson, Laura; Josse, Béatrice; Marecal, Virginie; Lacressonnière, Gwendoline; Vautard, Robert; Gauss, Michael; Engardt, Magnuz; Nyiri, Agnes; Siour, Guillaume

    2014-05-01

    The 15th session of the Conference of Parties (COP 15) in 2009 ratified the Copenhagen Accord, which "recognises the scientific view that" global temperature rise should be held below 2 degrees C above pre-industrial levels in order to limit the impacts of climate change. Due to the fact that a 2-degree limit has been frequently referred to by policy makers in the context of the Copenhagen Accord and many other high-level policy statements, it is important that the impacts of this 2-degree increase in temperature are adequately analysed. To this end, the European Union sponsored the project IMPACT2C, which uses a multi-disciplinary international team to assess a wide variety of impacts of a 2-degree rise in global temperatures. For example, this future increase in temperature is expected to have a significant influence upon meteorological conditions such as temperature, precipitation, and wind direction and intensity; which will in turn affect the production, deposition, and distribution of air pollutants. For the first part of the air quality analysis within the IMPACT2C project, the impact of meteorological forcings on gas phase air pollutants over Europe was studied using four offline atmospheric chemistry transport models. Two sets of meteorological forcings were used for each model: reanalysis of past observation data and global climate model output. Anthropogenic emissions of ozone precursors for the year 2005 were used for all simulations in order to isolate the impact of meteorology and assess the robustness of the results across the different models. The differences between the simulations that use reanalysis of past observation data and the simulations that use global climate model output show how global climate models modify climate hindcasts by boundary conditions inputs: information that is necessary in order to interpret simulations of future climate. The baseline results were assessed by comparison with AirBase (Version 7) measurement data, and were

  18. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    International Nuclear Information System (INIS)

    This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect). A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches

  19. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    Energy Technology Data Exchange (ETDEWEB)

    Malík, M., E-mail: michal.malik@tul.cz; Primas, J.; Kopecký, V.; Svoboda, M. [Faculty of Mechatronics, Informatics and Interdisciplinary Studies, Technical University of Liberec, Liberec, 461 17 (Czech Republic)

    2014-01-15

    This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect). A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  20. Impact assessment of PM10 cement plants emissions on urban air quality using the SCIPUFF dispersion model.

    Science.gov (United States)

    Leone, Vincenzo; Cervone, Guido; Iovino, Pasquale

    2016-09-01

    The Second-order Closure Integrated Puff (SCIPUFF) model was used to study the impact on urban air quality caused by two cement plants emissions located near the city of Caserta, Italy, during the entire year of 2015. The simulated and observed PM10 concentrations were compared using three monitoring stations located in urban and sub-urban area of Caserta city. Both simulated and observed concentrations are shown to be highest in winter, lower in autumn and spring and lowest in summer. Model results generally follow the pattern of the observed concentrations but have a systematic under-prediction of the concentration values. Measures of the bias, NMSE and RMSE indicate a good correlation between observed and estimated values. The SCIPUFF model data analysis suggest that the cement plants are major sources for the measured PM10 values and are responsible for the deterioration of the urban air quality in the city of Caserta. PMID:27485615

  1. Calculation and measurement of a neutral air flow velocity impacting a high voltage capacitor with asymmetrical electrodes

    Directory of Open Access Journals (Sweden)

    M. Malík

    2014-01-01

    Full Text Available This paper deals with the effects surrounding phenomenon of a mechanical force generated on a high voltage asymmetrical capacitor (the so called Biefeld-Brown effect. A method to measure this force is described and a formula to calculate its value is also given. Based on this the authors derive a formula characterising the neutral air flow velocity impacting an asymmetrical capacitor connected to high voltage. This air flow under normal circumstances lessens the generated force. In the following part this velocity is measured using Particle Image Velocimetry measuring technique and the results of the theoretically calculated velocity and the experimentally measured value are compared. The authors found a good agreement between the results of both approaches.

  2. Impact of the electric compressor for automotive air conditioning system on fuel consumption and performance analysis

    Science.gov (United States)

    Zulkifli, A. A.; Dahlan, A. A.; Zulkifli, A. H.; Nasution, H.; Aziz, A. A.; Perang, M. R. M.; Jamil, H. M.; Misseri, M. N.

    2015-12-01

    Air conditioning system is the biggest auxiliary load in a vehicle where the compressor consumed the largest. Problem with conventional compressor is the cooling capacity cannot be control directly to fulfill the demand of thermal load inside vehicle cabin. This study is conducted experimentally to analyze the difference of fuel usage and air conditioning performance between conventional compressor and electric compressor of the air conditioning system in automobile. The electric compressor is powered by the car battery in non-electric vehicle which the alternator will recharge the battery. The car is setup on a roller dynamometer and the vehicle speed is varied at 0, 30, 60, 90 and 110 km/h at cabin temperature of 25°C and internal heat load of 100 and 400 Watt. The results shows electric compressor has better fuel consumption and coefficient of performance compared to the conventional compressor.

  3. Impact from indoor air mixing on the thoron progeny concentration and attachment fraction.

    Science.gov (United States)

    de With, G; de Jong, P

    2016-07-01

    Despite the considerable amount of work in the field of indoor thoron exposure, little studies have focussed on mitigation strategies to reduce exposure to thoron and its progeny. For this reason an advanced computer model has been developed that describes the dispersion and aerosol modelling from first principal using Computational Fluid Dynamics. The purpose of this study is to investigate the mitigation effects from air mixing on the progeny concentration and attachment with aerosols. The findings clearly demonstrate a reduction in thoron progeny concentration due to air mixing. The reduction in thoron progeny is up to 60% when maximum air mixing is applied. In addition there is a reduction in the unattached fraction from 1.2% under regular conditions to 0.3% in case of maximum mixing. PMID:27064565

  4. Application of nonparametric regression and statistical testing to identify the impact of oil and natural gas development on local air quality

    Science.gov (United States)

    Cheng, Hanqi; Small, Mitchell J.; Pekney, Natalie J.

    2015-10-01

    The objective of the current work was to develop a statistical method and associated tool to evaluate the impact of oil and natural gas exploration and production activities on local air quality. Nonparametric regression of pollutant concentrations on wind direction was combined with bootstrap hypothesis testing to provide statistical inference regarding the existence of a local/regional air quality impact. The block bootstrap method was employed to address the effect of autocorrelation on test significance. The method was applied to short-term air monitoring data collected at three sites within Pennsylvania's Allegheny National Forest. All of the measured pollutant concentrations were well below the National Ambient Air Quality Standards, so the usual criteria and methods for data analysis were not sufficient. Using advanced directional analysis methods, test results were first applied to verify the existence of a regional impact at a background site. Next the impact of an oil field on local NOx and SO2 concentrations at a second monitoring site was identified after removal of the regional effect. Analysis of a third site also revealed air quality impacts from nearby areas with a high density of oil and gas wells. All results and conclusions were quantified in terms of statistical significance level for the associated inferences. The proposed method can be used to formulate hypotheses and verify conclusions regarding oil and gas well impacts on air quality and support better-informed decisions for their management and regulation.

  5. Progress towards Managing Residential Electricity Demand: Impacts of Standards and Labeling for Refrigerators and Air Conditioners in India

    Energy Technology Data Exchange (ETDEWEB)

    McNeil, Michael A.; Iyer, Maithili

    2009-05-30

    The development of Energy Efficiency Standards and Labeling (EES&L) began in earnest in India in 2001 with the Energy Conservation Act and the establishment of the Indian Bureau of Energy Efficiency (BEE). The first main residential appliance to be targeted was refrigerators, soon to be followed by room air conditioners. Both of these appliances are of critical importance to India's residential electricity demand. About 15percent of Indian households own a refrigerator, and sales total about 4 million per year, but are growing. At the same time, the Indian refrigerator market has seen a strong trend towards larger and more consumptive frost-free units. Room air conditioners in India have traditionally been sold to commercial sector customers, but an increasing number are going to the residential sector. Room air conditioner sales growth in India peaked in the last few years at 20percent per year. In this paper, we perform an engineering-based analysis using data specific to Indian appliances. We evaluate costs and benefits to residential and commercial sector consumers from increased equipment costs and utility bill savings. The analysis finds that, while the BEE scheme presents net benefits to consumers, there remain opportunities for efficiency improvement that would optimize consumer benefits, according to Life Cycle Cost analysis. Due to the large and growing market for refrigerators and air conditioners in India, we forecast large impacts from the standards and labeling program as scheduled. By 2030, this program, if fully implemented would reduce Indian residential electricity consumption by 55 TWh. Overall savings through 2030 totals 385 TWh. Finally, while efficiency levels have been set for several years for refrigerators, labels and MEPS for these products remain voluntary. We therefore consider the negative impact of this delay of implementation to energy and financial savings achievable by 2030.

  6. Impacts of residential heating intervention measures on air quality and progress towards targets in Christchurch and Timaru, New Zealand

    Energy Technology Data Exchange (ETDEWEB)

    Scott, A.J.; Scarrott, C. [Environment Canterbury, Christchurch (New Zealand)

    2011-06-15

    Elevated wintertime particulate concentrations in the New Zealand cities of Christchurch and Timaru are mostly attributed to the burning of wood and coal for residential heating. A carrot-and-stick approach was adopted for managing air quality in Christchurch, where strict intervention measures were introduced together with a residential heater replacement programme to encourage householders to change to cleaner forms of heating. A similar approach was only recently implemented for Timaru. This paper presents the results of a partial accountability analysis, where the impact of these measures on the target source, PM10 emissions, and PM10, concentrations are quantified. A statistical model was developed to estimate trends in the concentrations, which were tested for significance after accounting for meteorological effects, and to estimate the probability of meeting air quality targets. Results for Christchurch and Timaru are compared to illustrate the impacts of differing levels of intervention on air quality. In Christchurch, approximately 34,000 (76%) open fires and old solid fuel burners were replaced with cleaner heating technology from 2002 to 2009, and total open fires and solid fuel burner numbers decreased by 45%. Over the same time period, estimated PM10 emissions reduced by 71% and PM10 concentrations by 52% (maxima), 36% (winter mean), 26% (winter median) and 41% (meteorology-adjusted winter means). In Timaru, just 3000 (50%) open fires and old solid fuel burners were replaced from 2001 to 2008, with total open fire and solid fuel burner numbers reduced by 24%. PM10 emissions declined by 32%, with low reductions in the PM10 concentrations (maxima decreased by 7%, winter means by 11% and winter medians by 3%). These findings indicate that the combination of stringent intervention measures and financial incentives has led to substantial air quality improvements in Christchurch.

  7. Transport sector strategies and their impact on the air quality and on greenhouse gasses

    International Nuclear Information System (INIS)

    The transport sector plays on essential role in our society, but generates non desired effects on the air quality as well on climate change. This is the reason why the transport and the environment governmental actions are crucial to mitigate them. In this article we introduced the most important resources and regulations to control and to evaluate the air quality and emissions, and also the most relevant objectives in transport actions to reduce them, not only in Spain but also in the European Union. We discuss herein their compliance degree and their effectiveness in relation with the transport emissions evolution during 1990-2006 in spain. (Author) 11 refs

  8. Examination on Impact of Air Ions toward Human Social Disorder Behavior

    International Nuclear Information System (INIS)

    Air ions are something that people can not see and feel. However, they exist surrounding human life. Imbalance inhalation of air ions can affect central nervous system, and physically it will affect human activities and create social disorder behavior. Some investigations have proved the relation above and devices for anticipating ionization have been innovated and available on the market. Furthermore, it has been found that individual resistance against ionization is different between genders. Therefore it is important to study character and to anticipate effects of ions and ionization, in order to build more comfortable environment. (author)

  9. Energy use and air pollution in Indonesia. Supply strategies, environmental impacts and pollution control

    International Nuclear Information System (INIS)

    This book summarises the results of the ''Markal Study'', which is part of the scientific cooperation between the Indonesian and German governments. The nine chapters cover: an introduction to Indonesia and the objectives of the study; demographic and economic developments; fast increasing domestic energy use; pollution development on Jawa in the case of insufficient control; risks for ecosystems on Jawa; health risks from air pollution; pollution development and control cost in the case of reduced emissions, carbon dioxide emission analysis, and final recommendations for air quality management. A bibliography of the project reports on which the book is based as well as other sources is presented. (UK)

  10. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings

    Directory of Open Access Journals (Sweden)

    J. P. Zhang

    2012-06-01

    Full Text Available This study investigated the air pollution characteristics of synoptic-scale circulation in the Beijing megacity, and provided quantitative evaluation of the impacts of circulation patterns on air quality during the 2008 Beijing Summer Olympics. Nine weather circulation types (CTs were objectively identified over the North China region during 2000–2009, using obliquely rotated T-mode principal component analysis (PCA. The resulting CTs were examined in relation to the local meteorology, regional transport pathways, and air quality parameters, respectively. The FLEXPART-WRF model was used to calculate 48-h backward plume trajectories for each CT. Each CT was characterized with distinct local meteorology and air mass origin. CT 1 (high pressure to the west with a strong pressure gradient was characterized by a northwestern air mass origin, with the smallest local and southeasterly air mass sources, and CT 6 (high pressure to the northwest had air mass sources mostly from the north and east. On the contrary, CTs 5, 8, and 9 (weak pressure field, high pressure to the east, and low pressure to the northwest, respectively were characterized by southern and southeastern trajectories, which indicated a greater influence of high pollutant emission sources. In turn, poor air quality in Beijing (high loadings of PM10, BC, SO2, NO2, NOx, O3, AOD, and low visibility was associated with these CTs. Good air quality in Beijing was associated with CTs 1 and 6. The average visibilities (with ±1σ in Beijing for CTs 1 and 6 during 2000–2009 were 18.5 ± 8.3 km and 14.3 ± 8.5 km, respectively. In contrast, low visibility values of 6.0 ± 3.5 km, 6.6 ± 3.7 km, and 6.7 ± 3.6 km were found in CTs 5, 8, and 9, respectively. The mean concentrations of PM10 for CTs 1, 6, 5, 8, and 9 during 2005–2009 were 90.3 ± 76.3 μg m−3, 111.7 ± 89.6 μg m−3, 173.4 ± 105.8 μg m

  11. The Influence of Tropical Air-Sea Interaction on the Climate Impact of Aerosols: A Hierarchical Modeling Approach

    Science.gov (United States)

    Hsieh, W. C.; Saravanan, R.; Chang, P.; Mahajan, S.

    2014-12-01

    In this study, we use a hierarchical modeling approach to investigate the influence of tropical air-sea feedbacks on climate impacts of aerosols in the Community Earth System Model (CESM). We construct four different models by coupling the atmospheric component of CESM, the Community Atmospheric Model (CAM), to four different ocean models: (i) the Data Ocean Model (DOM; prescribed SST), (i) Slab Ocean Model (SOM; thermodynamic coupling), (iii) Reduced Gravity Ocean Model (RGOM; dynamic coupling), and (iv) the Parallel Ocean Program (POP; full ocean model). These four models represent progressively increasing degree of coupling between the atmosphere and the ocean. The RGOM model, in particular, is tuned to produce a good simulation of ENSO and the associated tropical air-sea interaction, without being impacted by the climate drifts exhibited by fully-coupled GCMs. For each method of coupling, a pair of numerical experiments, including present day (year 2000) and preindustrial (year 1850) sulfate aerosol loading, were carried out. Our results indicate that the inclusion of air-sea interaction has large impacts on the spatial structure of the climate response induced by aerosols. In response to sulfate aerosol forcing, ITCZ shifts southwards as a result of the anomalous clockwise MMC change which transports moisture southwardly across the Equator. We present analyses of the regional response to sulfate aerosol forcing in the equatorial Pacific as well as the zonally-averaged response. The decomposition of the change in the net surface energy flux shows the most dominant terms are net shortwave radiative flux at the surface and latent heat flux. Further analyses show all ocean model simulations simulate a positive change of northward atmospheric energy transport across the Equator in response to the perturbed radiative sulfate forcing. This positive northward atmospheric energy transport change plays a role in compensating partially cooling caused by sulfate aerosols.

  12. Impact of air pollution and genotype variability on DNA damage in Prague policemen

    Czech Academy of Sciences Publication Activity Database

    Novotná, Božena; Topinka, Jan; Solanský, I.; Chvátalová, Irena; Lněničková, Zdena; Šrám, Radim

    2007-01-01

    Roč. 172, - (2007), s. 37-47. ISSN 0378-4274 R&D Projects: GA MŽP SL/5/160/05 Institutional research plan: CEZ:AV0Z50390512 Keywords : oxidative DNA damage * comet assay * carcinogenic polycyclic aromatic hydrocarbons Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.826, year: 2007

  13. Evaluation of the Impact of Media Marketing Strategies on Continuing Education Enrollments. AIR Forum 1982 Paper.

    Science.gov (United States)

    Campbell, Jill F.; Spiro, Louis M.

    The impact of media marketing strategies on continuing education enrollment at the State University of New York College at Brockport (SUNY-CB), was evaluated. The evaluation of advertising impacts used advertising records of SUNY-CB and other area colleges and a telephone questionnaire instrument. A stratified, random countywide sample, in…

  14. Impact of the Popocatepetl's volcanic activity on the air quality of Puebla City, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Juarez, A. [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, Puebla (Mexico); Gay, C. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, UNAM, Mexico, D.F. (Mexico); Flores, Y. [Facultad de Ciencias Fisico Matematicas, Universidad Autonoma de Puebla, Puebla (Mexico)

    2005-01-01

    In this work we report measurements of atmospheric pollutants in Puebla City, including those registered during the period characterized by intense volcanic activity from Popocatepetl volcano between December 2000 and January 2001. We used a gaussian air dispersion model to calculate the impact of sulfur compounds from volcanic emissions on the measurements of these compounds in the stations belonging to Puebla City Atmospheric Monitoring Network. The data show that during the analyzed period, this volcanic emissions affected the air quality, increasing the indexes of PM{sub 1}0, CO and sulfur compounds. Also, the results of applying a Gaussian air dispersion model to these sulfur compounds explains the measurements from Tecnologico station for days with intense volcanic activity and wind coming from the volcano to Puebla City. [Spanish] En este trabajo se reportan mediciones de contaminantes atmosfericos en la ciudad de Puebla, incluyendo las registradas durante el periodo caracterizado por una intensa actividad del volcan Popocatepetl, entre diciembre de 200 y enero de 2001. Aplicamos un modelo de dispersion gaussiano para calcular el impacto de las emisiones volcanicas de compuestos de azufre en las mediciones de estos compuestos en las estaciones de la Red de Monitoreo Atmosferico de la ciudad de Puebla. Los datos muestran que durante el periodo analizado, las emisiones volcanicas afectaron la calidad del aire incrementando los indices de PM{sub 1}0, CO y compuestos de azufre. Ademas, los resultados del modelo gaussiano de dispersion del aire para los compuestos de azufre, explican las mediciones de la estacion Tecnologico para los dias con intensa actividad volcanica y viento viniendo del volcan hacia la ciudad de Puebla.

  15. The environmental impact on air quality and exposure to carbon monoxide from charcoal production in southern Brazil.

    Science.gov (United States)

    Gomes, Gabriel Meneghetti Faé; Encarnação, Fábio

    2012-07-01

    Black wattle silviculture is an important activity in southern Brazil. Much of the wood is used in the production of charcoal and the pyrolysis products impacts on air quality. This paper estimates the level of atmospheric contamination from the production of charcoal in one region of Brazil. We describe a low-cost charcoal kiln that can capture condensable gases and we estimate the levels of exposure of kiln workers to carbon monoxide. The latter results indicated that exposure to carbon monoxide can be reduced from an average of 950 ppm to 907 ppm and the mass of gases reduced by 16.8%. PMID:22541721

  16. Local impact of air pollution: lessons from recent practices in economics and in public policies in the transport sector

    OpenAIRE

    Nicolas, Jp; DUPREZ,F; Durand, S.; Poisson, Fabrice; AUBERT, PL; Chiron, Mireille; Crozet, Y.; Lambert, Jacques

    2005-01-01

    This paper focuses on the economic valuation of the impact oflocal air pollution. Two main issues are considered: 1. The scientific issue: what is estimated, how and why? The main studies from the nineties are presented here. Two strong issues are stressed, with the diversity of valuation methods, on the one hand, and the debates on how to take the long term into account and the discount technique, on the other. 2. The political issue: how the results from the economic field are analysed and ...

  17. Impact of urban emission on air-quality over central Europe: present day and future emissions perspective

    Science.gov (United States)

    Huszar, Peter; Belda, Michal; Halenka, Tomas; Karlicky, Jan

    2016-04-01

    The purpose of the study is to quantify the impact of present-day and future urban emission from central European cities on the regional air-quality (AQ), based on a modeling couple of the regional climate model RegCM4.2 and the chemistry transport model CAMx, including two-way interactions. A series of simulations was carried out for the present (2001-2010) decade and two future decades (2026-2035 and 2046-2055) either with all urban emissions included (base case) or without considering urban emissions. As we are interested on the impact of emission changes only, the impact of different driving meteorological conditions in the future (due to climate change) are not considered. The emissions used is the TNO MEGAPOLI European emission database that includes country/sector based scenarios for years 2030 and 2050, which were used for the encompassing decades. Further, the sensitivity of ozone production to urban emissions was examined by performing reduction experiments with -20% emission perturbation of NOx and/or NMVOC. The model was also validated using surface measurements of key pollutants. Selected air-quality measures were used as metrics describing the cities emission impact on regional air pollution. Due to urban emissions, significant ozone titration occurs over cities while over rural areas further from, ozone production is modeled, mainly in terms of number of exceedances and accumulated exceedances over the threshold of 40 ppbv. Urban NOx, SO2 and PM2.5 emissions also significantly contribute to concentrations in the cities themselves (up to 50-70% for NOx and SO2 , and up to 55% for PM2.5), but the contribution is large over rural areas as well (10-20%). Although air pollution over cities is largely determined by the local urban emissions, considerable (often a few tens of %) fraction of the concentration is attributable to other sources from rural areas and minor cities. The future urban emission AQ fingerprint is, in general, slightly smaller than in

  18. Weatherization and Indoor Air Quality: Measured Impacts in Single Family Homes Under the Weatherization Assistance Program

    Energy Technology Data Exchange (ETDEWEB)

    Pigg, Scott [Energy Center of Wisconsin, Madison, WI (United States); Cautley, Dan [Energy Center of Wisconsin, Madison, WI (United States); Francisco, Paul [Univ. of Illinois, Urbana-Champaign, IL (United States); Hawkins, Beth A [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Brennan, Terry M [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2014-09-01

    This report summarizes findings from a national field study of indoor air quality parameters in homes treated under the Weatherization Assistance Program (WAP). The study involved testing and monitoring in 514 single-family homes (including mobile homes) located in 35 states and served by 88 local weatherization agencies.

  19. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature.

    Science.gov (United States)

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-01-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km(2) residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers. PMID:27079537

  20. The Impact of the Developmental Training Model on Staff Development in Air Force Child Development Programs

    Science.gov (United States)

    Bird, Candace Maria Edmonds

    2010-01-01

    In an effort to standardize training delivery and to individualize staff development based on observation and reflective practice, the Air Force implemented the Developmental Training Model (DTM) in its Child Development Programs. The goal of the Developmental Training Model is to enhance high quality programs through improvements in the training…

  1. Predicting the impacts of new technology aircraft on international air transportation demand

    Science.gov (United States)

    Ausrotas, R. A.

    1981-01-01

    International air transportation to and from the United States was analyzed. Long term and short term effects and causes of travel are described. The applicability of econometric methods to forecast passenger travel is discussed. A nomograph is developed which shows the interaction of economic growth, airline yields, and quality of service in producing international traffic.

  2. Air quality impacts of European wildfire emissions in a changing climate

    Science.gov (United States)

    Knorr, Wolfgang; Dentener, Frank; Hantson, Stijn; Jiang, Leiwen; Klimont, Zbigniew; Arneth, Almut

    2016-05-01

    Wildfires are not only a threat to human property and a vital element of many ecosystems, but also an important source of air pollution. In this study, we first review the available evidence for a past or possible future climate-driven increase in wildfire emissions in Europe. We then introduce an ensemble of model simulations with a coupled wildfire-dynamic-ecosystem model, which we combine with published spatial maps of both wildfire and anthropogenic emissions of several major air pollutants to arrive at air pollutant emission projections for several time slices during the 21st century. The results indicate moderate wildfire-driven emission increases until 2050, but there is a possibility of large increases until the last decades of this century at high levels of climate change. We identify southern and north-eastern Europe as potential areas where wildfires may surpass anthropogenic pollution sources during the summer months. Under a scenario of high levels of climate change (Representative Concentration Pathway, RCP, 8.5), emissions from wildfires in central and northern Portugal and possibly southern Italy and along the west coast of the Balkan peninsula are projected to reach levels that could affect annual mean particulate matter concentrations enough to be relevant for meeting WHO air quality targets.

  3. Application of 3-D Urbanization Index to Assess Impact of Urbanization on Air Temperature

    Science.gov (United States)

    Wu, Chih-Da; Lung, Shih-Chun Candice

    2016-04-01

    The lack of appropriate methodologies and indicators to quantify three-dimensional (3-D) building constructions poses challenges to authorities and urban planners when formulating polices to reduce health risks due to heat stress. This study evaluated the applicability of an innovative three-dimensional Urbanization Index (3DUI), based on remote sensing database, with a 5 m spatial resolution of 3-D man-made constructions to representing intra-urban variability of air temperature by assessing correlation of 3DUI with air temperature from a 3-D perspective. The results showed robust high correlation coefficients, ranging from 0.83 to 0.85, obtained within the 1,000 m circular buffer around weather stations regardless of season, year, or spatial location. Our findings demonstrated not only the strength of 3DUI in representing intra-urban air-temperature variability, but also its great potential for heat stress assessment within cities. In view of the maximum correlation between building volumes within the 1,000 m circular buffer and ambient air temperature, urban planning should consider setting ceilings for man-made construction volume in each 2 × 2 km2 residential community for thermal environment regulation, especially in Asian metropolis with high population density in city centers.

  4. Air-conditioning in the 21st century: impact on human productivity and energy consumption

    DEFF Research Database (Denmark)

    Fanger, Povl Ole

    2000-01-01

    Although air-conditioning has played a positive role for economic development in warm climates, its image is globally mixed. Field studies demonstrate that there are substantial numbers of dissatisfied people in many buildings, among them those suffering from Sick Building Syndrome (SBS) symptoms...

  5. Evaluating the Air Quality, Climate Change, and Economic Impacts of Biogas Management Technologies

    Science.gov (United States)

    This is an abstract for a presentation that describes a project to evaluate economic and environmental performance of several biogas management technologies. It will analyze various criteria air pollutants, greenhouse gas emissions, and costs associated with the use of biogas. Th...

  6. Modelling the impact of room temperature on concentrations of polychlorinated biphenyls (PCBs) in indoor air

    DEFF Research Database (Denmark)

    Lyng, Nadja; Clausen, Per Axel; Lundsgaard, Claus;

    2016-01-01

    Buildings contaminated with polychlorinated biphenyls (PCBs) are a health concern for the building occupants. Inhalation exposure is linked to indoor air concentrations of PCBs, which are known to be affected by indoor temperatures. In this study, a highly PCB contaminated room was heated to six...

  7. The impact of large scale biomass production on ozone air pollution in Europe

    NARCIS (Netherlands)

    Beltman, J.B.; Hendriks, C.; Tum, M.; Schaap, M.

    2013-01-01

    Tropospheric ozone contributes to the removal of air pollutants from the atmosphere but is itself a pollutant that is harmful to human health and vegetation. Biogenic isoprene emissions are important ozone precursors, and therefore future changes in land use that change isoprene emissions are likely

  8. Impact of summer office set air-conditioning temperature on energy consumption and thermal comfort

    Institute of Scientific and Technical Information of China (English)

    刘红; 马小磊; 高亚峰

    2009-01-01

    To explore the relationship between summer office set air-conditioning temperature and energy consumption related to air conditioning use to provide human thermal comfort,a comparison experiment was conducted in three similar offices at temperatures of 24,26 and 28 ℃ respectively. A thermal comfort questionnaire survey was conducted. It is demonstrated that air-conditioner energy consumption at the set temperature of 28 ℃ is 113% and 271% lower than at 26 ℃ and 24 ℃,respectively. A linear relationship exists between air-conditioner energy consumption and the indoor and outdoor temperature difference. When comfortably dressed,over 80% of research participants accept the set temperature of 28 ℃. The regression analysis leads to a neutral temperature of 26.2 ℃ and an acceptable temperature of 28.2 ℃ for over 80% of the research participants subjects,indicating that the current 26 ℃ set temperature for offices in summer,required by Chinese General Office of the State Council,can be increased to 28 ℃. Moreover,analysis of predicted mean vote(PMV) index shows that a set temperature of 27 ℃,not 26 ℃,is sufficiently comfortable for office staff wearing long-sleeve shirts,long pants and leather shoes.

  9. The impact of a photocatalytic paint on indoor air pollutants: Sensory assessments

    DEFF Research Database (Denmark)

    Kolarik, Jakub; Toftum, Jørn

    2012-01-01

    was illuminated by bulbs emitting visible/UV light. A mixture of common indoor pollutants, including emissions from chipboard, linoleum and carpet, as well as human bioffluents and isopropanol, were used to test the efficacy of the paint. A sensory panel of 35 subjects assessed the air quality in the test...

  10. Impact of climate change on commercial sector air conditioning energy consumption in subtropical Hong Kong

    International Nuclear Information System (INIS)

    Past and future trend of electricity use for air conditioning in the entire commercial sector in subtropical climates using 1979-2008 measured meteorological data as well as predictions for 2009-2100 from a general circulation model (MIROC3.2-H) was investigated. Air conditioning consumption showed an increasing trend over the past 30 years from 1979 to 2008. Principal component analysis (PCA) of measured and predicted monthly mean dry-bulb temperature, wet-bulb temperature and global solar radiation was conducted to determine a new climatic index Z for 1979-2008 and future 92 years (2009-2100) based on two emissions scenarios B1 and A1B (low and medium forcing). Through regression analysis, electricity use in air conditioning for the 92-year period was estimated. For low forcing, average consumption in 2009-2038, 2039-2068 and 2069-2100 would be, respectively, 5.7%, 12.8% and 18.4% more than the 1979-2008 average, with a mean 12.5% increase for the entire 92-year period. Medium forcing showed a similar increasing trend, but 1-4% more. Standard deviations of the monthly air conditioning consumption were found to be smaller suggesting possible reduction in seasonal variations in future years.

  11. Children's well-being at schools: Impact of climatic conditions and air pollution.

    Science.gov (United States)

    Salthammer, Tunga; Uhde, Erik; Schripp, Tobias; Schieweck, Alexandra; Morawska, Lidia; Mazaheri, Mandana; Clifford, Sam; He, Congrong; Buonanno, Giorgio; Querol, Xavier; Viana, Mar; Kumar, Prashant

    2016-09-01

    Human civilization is currently facing two particular challenges: population growth with a strong trend towards urbanization and climate change. The latter is now no longer seriously questioned. The primary concern is to limit anthropogenic climate change and to adapt our societies to its effects. Schools are a key part of the structure of our societies. If future generations are to take control of the manifold global problems, we have to offer our children the best possible infrastructure for their education: not only in terms of the didactic concepts, but also with regard to the climatic conditions in the school environment. Between the ages of 6 and 19, children spend up to 8h a day in classrooms. The conditions are, however, often inacceptable and regardless of the geographic situation, all the current studies report similar problems: classrooms being too small for the high number of school children, poor ventilation concepts, considerable outdoor air pollution and strong sources of indoor air pollution. There have been discussions about a beneficial and healthy air quality in classrooms for many years now and in recent years extensive studies have been carried out worldwide. The problems have been clearly outlined on a scientific level and there are prudent and feasible concepts to improve the situation. The growing number of publications also highlights the importance of this subject. High carbon dioxide concentrations in classrooms, which indicate poor ventilation conditions, and the increasing particle matter in urban outdoor air have, in particular, been identified as primary causes of poor indoor air quality in schools. Despite this, the conditions in most schools continue to be in need of improvement. There are many reasons for this. In some cases, the local administrative bodies do not have the budgets required to address such concerns, in other cases regulations and laws stand in contradiction to the demands for better indoor air quality, and sometimes

  12. Impact of the use of a hybrid turbine inlet air cooling system in arid climates

    International Nuclear Information System (INIS)

    Graphical abstract: Cooling the air entering the compressor section of a gas turbine is a proven method of increasing turbine power output, especially during peak summer demand, and it is increasingly being used in powerplants worldwide. Two turbine inlet air cooling (TIAC) systems are widely used: evaporative cooling and mechanical chilling. In this work, the prospects of using a hybrid turbine inlet air cooling (TIAC) system are investigated. The hybrid system consists of mechanical chilling followed by evaporative cooling. Such a system is capable of achieving a significant reduction in inlet air temperature that satisfies desired power output levels, while consuming less power than conventional mechanical chilling and less water than conventional evaporative cooling, thus combining the benefits of both approaches. Two hybrid system configurations are studied. In the first configuration, the first stage of the system uses water-cooled chillers that are coupled with dry coolers such that the condenser cooling water remains in a closed loop. In the second configuration, the first stage of the system uses water-cooled chillers but with conventional cooling towers. An assessment of the performance and economics of those two configurations is made by comparing them to conventional mechanical chilling and using realistic data. It was found that the TIAC systems are capable of boosting the power output of the gas turbine by 10% or more (of the power output of the ISO conditions). The cost operation analysis shows clearly the hybrid TIAC method with wet cooling has the advantage over the other methods and It would be profitable to install it in the new gas turbine power plants. The figure below shows a comparison of the water consumption for the three different cases. - Highlights: • New hybrid system for the turbine inlet air cooling is studied. • Hybrid system of mechanical chilling followed by evaporative cooling is used. • Hybrid turbine inlet air cooling

  13. The impact of circulation patterns on regional transport pathways and air quality over Beijing and its surroundings

    Directory of Open Access Journals (Sweden)

    J. P. Zhang

    2011-12-01

    Full Text Available This study investigated the air pollution characteristics of synoptic-scale circulation in the Beijing megacity, and provided holistic evaluation of the impacts of circulation patterns on air quality during the 2008 Beijing Summer Olympics. Nine weather circulation types (CTs were objectively identified over the North China region during 2000–2009, using obliquely rotated T-mode principal component analysis (PCA. The resulting CTs were examined in relation to the local meteorology, regional transport pathways, and air quality parameters, respectively. The FLEXPART-WRF model was used to calculate 48-h backward plume trajectories for each CT. Nine CTs were characterized, with distinct local meteorology and air mass origins. CT 1 (high to the west with a strong pressure gradient was characterized by a northwestern origin, with the smallest local and southeasterly air mass sources, and CT 6 (high to the northwest had air mass sources mostly from the north and east. In contrast, CTs 5, 8, and 9 (unique, high to the east, and low to the northwest, respectively were characterized by southern and southeastern trajectories, which indicated a greater influence of high pollutant emission sources. In turn, poor air quality in Beijing (high loadings of PM10, BC, SO2, NO2, O3, AOD, and low visibility was associated with these CTs. Good air quality in Beijing was associated with CTs 1 and 6. The average visibilities (with ±1 σ in Beijing for CTs 1 and 6 during 2000–2009 were 18.5 ± 8.3 km and 14.3 ± 8.5 km, respectively. In contrast, poor visibility values of 6.0 ± 3.5 km, 6.6 ± 3.7 km, and 6.7 ± 3.6 km were found in CTs 5, 8, and 9, respectively. The mean concentrations of PM10 for CTs 1, 6, 5, 8, and 9 during 2005–2009 were 90.3 ± 76.3 μg m−3, 111.7 ± 89.6 μg m−3, 173.4 ± 105.8 μg m−3, 158.4 ± 90.0 μg m−3, and 151.2 ± 93.1 μg m

  14. Short-term impacts of air pollutants in Switzerland: Preliminary scenario calculations for selected Swiss energy systems

    Energy Technology Data Exchange (ETDEWEB)

    Andreani-Aksoyoglu, S.; Keller, J. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1999-08-01

    In the frame of the comprehensive assessment of Swiss energy systems, air quality simulations were performed by using a 3-dimensional photo-chemical dispersion model. The objective is to investigate the impacts of pollutants in Switzerland for future options of Swiss energy systems. Four scenarios were investigated: Base Case: simulations with the projected emissions for the year 2030, Scenario 1) all nuclear power plants were replaced by oil-driven combined cycle plants (CCP), Scenarios 2 to 4) traffic emissions were reduced in whole Switzerland as well as in the cities and on the highways separately. Changes in the pollutant concentrations and depositions, and the possible short-term impacts are discussed on the basis of exceedences of critical levels for plants and limits given to protect the public health. (author) 2 figs., 7 refs.

  15. The impact of the 1990 Clean Air Act Amendments on biofuels usage and waste-to-energy systems

    International Nuclear Information System (INIS)

    The 1990 Clean Air Act Amendments represent the most sweeping revisions to the Act to date and the impact of these changes will alter the environmental framework within which waste-to-energy facilities currently operate. This paper discusses the most important aspects of the Amendments as they affect waste-to-energy systems including new major source provisions, siting in non-attainment areas, Title III treatment of municipal waste combustion, special incentive allowances under Title IV for use of renewable resources, alternative fuel usage, and the harsh enforcement regime. The paper also will provide conference attendees with guidance on how the new Act will change the way facilities structure their deals including prospects for creative financing, the market for allowances, retrofitting potential fuel-switching options, impact on construction contracts and costs to the industry

  16. Health Impact Assessment of a Predicted Air Quality Change by Moving Traffic from an Urban Ring Road into a Tunnel. The Case of Antwerp, Belgium

    OpenAIRE

    Van Brusselen, Daan; Arrazola de Oñate, Wouter; Maiheu, Bino; Vranckx, Stijn; Lefebvre, Wouter; Janssen, Stijn; Nawrot, Tim S; Nemery, Ben; Avonts, Dirk

    2016-01-01

    Background The Antwerp ring road has a traffic density of 300,000 vehicles per day and borders the city center. The ‘Ringland project’ aims to change the current ‘open air ring road’ into a ‘filtered tunneled ring road’, putting the entire urban ring road into a tunnel and thus filtering air pollution. We conducted a health impact assessment (HIA) to quantify the possible benefit of a ‘filtered tunneled ring road’, as compared to the ‘open air ring road’ scenario, on air quality and its long-...

  17. A modelling study of air quality impact of odd-even day traffic restriction scheme before, during and after the 2008 Beijing Olympic Games

    OpenAIRE

    Cai, H.; S. D. Xie

    2010-01-01

    Systematic air pollution control measures were designed and implemented to improve air quality for the 2008 Beijing Olympics. This study focuses on the evaluation of the air quality impacts of a short-term odd-even day traffic restriction scheme (TRS) implemented before, during and after the Games, based on modelling simulation by a well validated urban-scale air quality model. Concentration levels of CO, PM10, NO2 and O3 we...

  18. Air quality impacts of plug-in hybrid electric vehicles in Texas: evaluating three battery charging scenarios

    International Nuclear Information System (INIS)

    The air quality impacts of replacing approximately 20% of the gasoline-powered light duty vehicle miles traveled (VMT) with electric VMT by the year 2018 were examined for four major cities in Texas: Dallas/Ft Worth, Houston, Austin, and San Antonio. Plug-in hybrid electric vehicle (PHEV) charging was assumed to occur on the electric grid controlled by the Electricity Reliability Council of Texas (ERCOT), and three charging scenarios were examined: nighttime charging, charging to maximize battery life, and charging to maximize driver convenience. A subset of electricity generating units (EGUs) in Texas that were found to contribute the majority of the electricity generation needed to charge PHEVs at the times of day associated with each scenario was modeled using a regional photochemical model (CAMx). The net impacts of the PHEVs on the emissions of precursors to the formation of ozone included an increase in NOx emissions from EGUs during times of day when the vehicle is charging, and a decrease in NOx from mobile emissions. The changes in maximum daily 8 h ozone concentrations and average exposure potential at twelve air quality monitors in Texas were predicted on the basis of these changes in NOx emissions. For all scenarios, at all monitors, the impact of changes in vehicular emissions, rather than EGU emissions, dominated the ozone impact. In general, PHEVs lead to an increase in ozone during nighttime hours (due to decreased scavenging from both vehicles and EGU stacks) and a decrease in ozone during daytime hours. A few monitors showed a larger increase in ozone for the convenience charging scenario versus the other two scenarios. Additionally, cumulative ozone exposure results indicate that nighttime charging is most likely to reduce a measure of ozone exposure potential versus the other two scenarios.

  19. The Impact of a Laki-style Eruption on Cloud Drops, Indirect Radiative Forcing and Air Quality

    Science.gov (United States)

    Carslaw, K.; Schmidt, A.; Mann, G.; Pringle, K. J.; Forster, P.; Wilson, M.; Thordarson, T.

    2010-12-01

    We assess the impact of 1783-1784 Laki eruption on changes in cloud drop number concentrations and the aerosol indirect (cloud) radiative forcing using an advanced global aerosol microphysics model. We further extend these simulations to quantify the impact of a modern-day Laki on air quality. Our results suggest that the first aerosol indirect effect is of similar magnitude as the direct forcing calculated in previous assessments of the Laki eruption, but has a different spatial pattern. We estimate that northern hemisphere mean cloud drop concentrations in low-level clouds increased by a factor 2.7 in the 3 months after the onset of the eruption, with peak changes exceeding a factor 10. The calculated northern hemisphere mean aerosol indirect effect peaks at -5.2 W/m2 in the month after the eruption and remains larger than -2 W/m2 for 6 months. From our understanding of anthropogenic aerosol effects on modern-day clouds, the calculated changes in cloud drop concentrations after Laki are likely to have caused substantial changes in pecipitation and cloud dynamics. Our results also show that a modern-day Laki-style volcanic air pollution event would be a severe health hazard, increasing excess mortality in Europe on a scale that is at least comparable with excess mortality due to seasonal flu. Investigating the potential impact of such an eruption is crucial in order to inform policy makers and society about the potential impact of such an event so that precautionary measures can be taken.

  20. Consumer life-cycle cost impacts of energy-efficiency standards for residential-type central air conditioners and heat pumps

    International Nuclear Information System (INIS)

    In support of the federal government's efforts to raise the minimum energy-efficiency standards for residential-type central air conditioners and heat pumps, a consumer life-cycle cost (LCC) analysis was conducted to demonstrate the economic impacts on individual consumers from revisions to the standards. LCC is the consumer's cost of purchasing and installing an air conditioner or heat pump and operating the unit over its lifetime. The LCC analysis is conducted on a nationally representative sample of air conditioner and heat pump consumers resulting in a distribution of LCC impacts showing the percentage of consumers that are either benefiting or being burdened by increased standards. Relative to the existing minimum efficiency standard of 10 SEER, the results show that a majority of split system air conditioner and heat pump consumers will either benefit or be insignificantly impacted by increased efficiency standards of up to 13 SEER

  1. Modeling the impacts of biomass burning on air quality in and around Mexico City

    OpenAIRE

    W. Lei; G Li; L. T. Molina

    2013-01-01

    The local and regional impacts of open fires and trash burning on ground-level ozone (O3) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA) wer...

  2. Modeling the impacts of biomass burning on air quality in and around Mexico City

    OpenAIRE

    W. Lei; G Li; L. T. Molina

    2012-01-01

    The local and regional impacts of open fires and trash burning on ground-level ozone (O[subscript 3]) and fine carbonaceous aerosols in the Mexico City Metropolitan Area (MCMA) and surrounding region during two high fire periods in March 2006 have been evaluated using WRF-CHEM model. The model captured reasonably well the measurement-derived magnitude and temporal variation of the biomass burning organic aerosol (BBOA), and the simulated impacts of open fires on organic aerosol (OA) were cons...

  3. The impact of air pollution on the level of micronuclei measured by automated image analysis

    Czech Academy of Sciences Publication Activity Database

    Rössnerová, Andrea; Špátová, Milada; Rossner, P.; Solanský, I.; Šrám, Radim

    2009-01-01

    Roč. 669, 1-2 (2009), s. 42-47. ISSN 0027-5107 R&D Projects: GA AV ČR 1QS500390506; GA MŠk 2B06088; GA MŠk 2B08005 Institutional research plan: CEZ:AV0Z50390512 Keywords : micronuclei * binucleated cells * automated image analysis Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 3.556, year: 2009

  4. Refined weighted sum of gray gases model for air-fuel combustion and its impacts

    DEFF Research Database (Denmark)

    Yin, Chungen

    2013-01-01

    in computational fluid dynamics (CFD) simulation of air-fuel combustion processes. It represents a reasonable compromise between an oversimplified gray gas model and a comprehensive approach addressing high-resolution dependency of radiative properties and intensity upon wavelength. The WSGGM......Radiation is the principal mode of heat transfer in utility boiler furnaces. Models for radiative properties play a vital role in reliable simulations of utility boilers and simulation-based design and optimization. The weighted sum of gray gases model (WSGGM) is one of the most widely used models...... coefficients evaluated by Smith et al. for several partial pressures of CO2 and H2O vapor are often used for gas temperatures up to 2400 K, which is supplemented by the coefficient values presented by Coppalle and Vervisch for higher temperatures until 3000 K. This paper refines the air-fuel WSGGM in terms of...

  5. The impact of municipal solid waste landfills in Suceava County on air quality

    Directory of Open Access Journals (Sweden)

    Dumitru MIHĂILĂ

    2014-08-01

    Full Text Available The location of municipal solid waste (MSW landfills in inappropriate places is a serious risk to the quality of all environmental factors. These waste disposal sites can become major sources of air quality deterioration through emissions of toxic gas resulted from anaerobic decomposition of organic waste. The paper discusses in detail the qualitative and quantitative effects of municipal waste landfills of the main urban settlements in Suceava County (Suceava City municipal landfill and Gura Humorului, Rădăuţi, Siret, Câmpulung Moldovenesc, Fălticeni and Vatra Dornei urban waste landfills on air quality. The dispersion of methane emitted from the largest MSW landfill in the county, the Suceava municipal landfill respectively, is also presented, taking into account seasonal, daytime and nighttime meteorological parameters

  6. Impact of Air Pollutants on Oxidative Stress in Common Autophagy-Mediated Aging Diseases

    Directory of Open Access Journals (Sweden)

    Mohamed Saber Numan

    2015-02-01

    Full Text Available Atmospheric pollution-induced cellular oxidative stress is probably one of the pathogenic mechanisms involved in most of the common autophagy-mediated aging diseases, including neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS, Alzheimer’s, disease, as well as Paget’s disease of bone with or without frontotemporal dementia and inclusion body myopathy. Oxidative stress has serious damaging effects on the cellular contents: DNA, RNA, cellular proteins, and cellular organelles. Autophagy has a pivotal role in recycling these damaged non-functional organelles and misfolded or unfolded proteins. In this paper, we highlight, through a narrative review of the literature, that when autophagy processes are impaired during aging, in presence of cumulative air pollution-induced cellular oxidative stress and due to a direct effect on air pollutant, autophagy-mediated aging diseases may occur.

  7. Impact of Marcellus Shale natural gas development in southwest Pennsylvania on volatile organic compound emissions and regional air quality.

    Science.gov (United States)

    Swarthout, Robert F; Russo, Rachel S; Zhou, Yong; Miller, Brandon M; Mitchell, Brittney; Horsman, Emily; Lipsky, Eric; McCabe, David C; Baum, Ellen; Sive, Barkley C

    2015-03-01

    The Marcellus Shale is the largest natural gas deposit in the U.S. and rapid development of this resource has raised concerns about regional air pollution. A field campaign was conducted in the southwestern Pennsylvania region of the Marcellus Shale to investigate the impact of unconventional natural gas (UNG) production operations on regional air quality. Whole air samples were collected throughout an 8050 km(2) grid surrounding Pittsburgh and analyzed for methane, carbon dioxide, and C1-C10 volatile organic compounds (VOCs). Elevated mixing ratios of methane and C2-C8 alkanes were observed in areas with the highest density of UNG wells. Source apportionment was used to identify characteristic emission ratios for UNG sources, and results indicated that UNG emissions were responsible for the majority of mixing ratios of C2-C8 alkanes, but accounted for a small proportion of alkene and aromatic compounds. The VOC emissions from UNG operations accounted for 17 ± 19% of the regional kinetic hydroxyl radical reactivity of nonbiogenic VOCs suggesting that natural gas emissions may affect compliance with federal ozone standards. A first approximation of methane emissions from the study area of 10.0 ± 5.2 kg s(-1) provides a baseline for determining the efficacy of regulatory emission control efforts. PMID:25594231

  8. ASSESSMENT OF SO2 CONCENTRATION IN AMBIENT AIR AND ITS IMPACT ON HUMAN HEALTH IN THE CITY OF GWALIOR, INDIA

    Directory of Open Access Journals (Sweden)

    Ishfaq Ahmad

    2014-09-01

    Full Text Available Gwalior is a historical and major city in the Indian state of Madhya Pradesh. It is located south of Delhi the capital city of India, and 423 kilometers north of Bhopal, the state capital. Gwalior is being called as The Heart of Incredible India. Gwalior is surrounded by industrial and commercial zones of neighboring districts (Malanpur – Bhind, Banmor – Morena on all three main directions. Rapid increase in urbanization with vehicle congestion has increased enormously on the roads of Gwalior city. As a result of this, gaseous pollutants (SOx, NOx and Respirable and suspended particulate matter pollutants are continuously increasing in the ambient air of Gwalior city. Levels of SO2 were monitored at 4 locations of Gwalior city by using high volume air sampler (Envirotech APM 415 and 411. The average ambient air concentration of SO2 was found below the permissible limits of NAAQS of CPCB at all the sites. Comparatively somewhat higher concentration of SO2 was observed during these months. A health survey was also carried out which demonstrated that symptoms were developed such as sneezing, sore throat, shortness of breath, wheezing, chest tightness, skin irritation, nausea etc. In this study, an exposure–response assessment (aged 10 to 60 years was carried out related to health problems due to vehicular pollution between the months of November-2013 to May-2014 (winter. The main objectives of this study are to investigate the state of vehicular emission in Gwalior and to investigate the impact of vehicular emission on people.

  9. The NEMO-AROME WMED high-resolution air-sea coupled system: impact on dense water formation

    Science.gov (United States)

    Léger, Fabien; Lebeaupin Brossier, Cindy; Giordani, Hervé; Arsouze, Thomas; Beuvier, Jonathan; Bouin, Marie-Noëlle; Ducrocq, Véronique; Fourrié, Nadia

    2016-04-01

    The North-Western Mediterranean Sea is a key location where intense air-sea exchanges occur, especially during winter when the succession of strong northerly and north-westerly wind boosts the dense water formation. The second Special Observation Period (SOP2) of the HyMeX program, which took place between 1st February and 15th March 2013, was dedicated to the observation of the dense water formation and ocean deep convection processes. During this period, several platforms sampled the area, providing a unique dataset to better identify the coupled processes leading to dense water formation. This study investigates the impacts of the fine scale ocean-atmosphere coupled processes on dense water formation during winter 2012-2013. We developed the coupling between the NEMO-WMED36 ocean model (1/36° resolution) and the AROME-WMED numerical weather prediction model (2.5 km resolution) and ran the high-resolution air-sea coupled system over SOP2. The coupled simulation is compared to an ocean-only simulation forced by AROME-WMED operational forecasts and to air-sea observations collected during the HyMeX SOP2. The results show small differences in term of surface fluxes. Dense water formation is slightly changed in the coupled simulation, whereas fine-scale ocean processes are significantly modified.

  10. Estimating the impact of air temperature and relative humidity change on the water quality of Lake Manzala, Egypt

    Directory of Open Access Journals (Sweden)

    Gehan A.H. Sallam

    2015-11-01

    Full Text Available By the late eighties the problem of climate change and its possible impacts had become an issue of global concern. Climate variables play an important role in controlling the water circulation and the water quality of lakes either as freshwater reservoirs, or as brackish lagoons. In Egypt, Lake Manzala is the largest and the most productive lake of the northern coastal lakes. In this study, continuous measurement data from the Real Time Water Quality Monitoring stations in Lake Manzala was statistically analyzed to determine the regional and seasonal variations of the selected water quality parameters in relation to changes in two climate variables: air temperature and relative humidity. Simple formulas are elaborated using the DataFit software to predict the selected water quality parameters of the Lake including Power of Hydrogen (pH, Dissolved Oxygen (DO, Electrical Conductivity (EC, Total Dissolved Solids (TDS, Turbidity, and Chlorophyll as a function of air temperature and relative humidity. It was revealed that there is a measured relation between air temperature and relative humidity and the pH, DO, EC and TDS parameters and there is no significant effect on the other two parameters: turbidity and chlorophyll.

  11. Cluster analysis of the impact of air back-trajectories on aerosol optical properties at Hornsund, Spitsbergen

    Directory of Open Access Journals (Sweden)

    A. Rozwadowska

    2010-02-01

    Full Text Available In this paper, spectra of aerosol optical thickness from the AERONET (AErosol RObotic NETwork station at Hornsund in the southern part of Spitsbergen were employed to study the impact of air mass history on aerosol optical thickness for wavelength λ=500 nm – AOT(500 – and the Ångström exponent. Backward trajectories computed, using the NOAA HYSPLIT model, were used to trace air history. It was found that in spring, the changes in AOT values over the Hornsund station were strongly influenced by air mass trajectories 8 days or longer in duration, arriving both in the free troposphere and at an altitude of 1 km above sea level. Nevertheless, free tropospheric advection was dominant. AOT variability in summer was best explained by the local direction and speed of advection (1-day trajectories and was dominated by the effectiveness of cleansing processes. During the ASTAR 2007 campaign, the aerosols near Hornsund displayed low AOT values ranging from 0.06 to 0.09, which is lower than the mean AOT(500 for spring seasons from 2005 to 2007 (0.110±0.007; mean ± standard deviation of mean. 9 April 2007 with AOT(500=0.147 was exceptional. The back-trajectories belonged to clusters with low and average cluster mean AOT. Apart from the maximum AOT of 9 April 2007, the observed AOT values were close to or lower than the means for the clusters to which they belonged.

  12. Cluster analysis of an impact of air back-trajectories on aerosol optical properties at Hornsund, Spitsbergen

    Directory of Open Access Journals (Sweden)

    A. Rozwadowska

    2009-07-01

    Full Text Available In this paper spectra of aerosol optical thickness from AERONET (AErosol RObotic NETwork station at Hornsund in the southern part of Spitsbergen were employed to study the impact of air mass history on aerosol optical thickness (AOT(500 and Angstrom coefficient. Backward trajectories computed by means of NOAA HYSPLIT model were used to trace air history. It was found that in spring changes in AOT values over the Hornsund station were influenced by the at least 8-day trajectories of air, which was advected both in free troposphere and in the boundary layer. However, the free tropospheric advection was dominating. In summer the AOT variability was created mainly by local conditions, local direction and speed of advection (1-day trajectories. During the ASTAR 2007 campaign aerosols near Hornsund showed low AOT values ranging from 0.06 to 0.09, which is lower than the mean AOT(500 for spring seasons from 2005 to 2007 (0.110±0.007; mean ± standard deviation of mean. The 9 April 2007 with AOT(500=0.147 was an exception. Back-trajectories belonged to the clusters of low and average cluster mean AOT value. Beside the maximum AOT of the 9 April 2007, the observed AOT values were close to the means for the clusters to which they belonged or were lower than the means.

  13. Environmental Regulations on Air Pollution in China and Their Impact on Infant Mortality

    OpenAIRE

    Tanaka, Shinsuke

    2012-01-01

    Developing countries rank highest in air pollution worldwide, yet regulations of such pollution are still rare in these countries, thereby whether, and to what extent, those regulations lead to health benefits remain an open question. Since 1995, the Chinese government has imposed stringent regulations on pollutant emissions from power plants, as one of the first regulatory attempts on a large scale in a developing country. Exploiting the variation in the regulatory status across time and spa...

  14. Impact of Sustainable Environmental Expenditures Policy on Air Pollution Reduction, During European Integration Framework

    OpenAIRE

    Ionel Bostan; Mihaela Onofrei; Elena-Doina Dascălu; Bogdan Fîrtescu; Carmen Toderascu

    2016-01-01

    Pursuant to the growth of society, against the boosting of scientific and technological progress, also arises the negative effect of pollution acceleration. In this context, we relate to risks that imply the growth of pollution, especially against nuisance air pollution increase (CO, SO2, NO etc.) with major implications on the growth of greenhouse effect, the melting of the ice fields, respectively the pollut