WorldWideScience

Sample records for air pollution exposure

  1. AirPEx. Air Pollution Exposure Model

    Energy Technology Data Exchange (ETDEWEB)

    Freijer, J.I.; Bloemen, H.J.Th.; De Loos, S.; Marra, M.; Rombout, P.J.A.; Steentjes, G.M.; Van Veen, M.P.

    1997-12-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The principal grounds for studying the inhalatory exposure of humans to air pollutants are formed by the need for realistic exposure/dose estimates to evaluate the health effects of these pollutants. The AirPEx (Air Pollution Exposure) model, developed to assess the time- and space-dependence of inhalatory exposure of humans to air pollution, has been implemented for use as a Windows 3.1 computer program. The program is suited to estimating various exposure and dose quantities for individuals, as well as for populations and subpopulations. This report describes the fundamentals of the AirPEx model and provides a user manual for the computer program. Several examples included in the report illustrate the possibilities of the AirPEx model in exposure assessment. The model will be used at the National Institute of Public Health and the Environment as a tool in analysing the current exposure of the Dutch population to air pollutants. 57 refs.

  2. AirPEx: Air Pollution Exposure Model

    NARCIS (Netherlands)

    Freijer JI; Bloemen HJTh; Loos S de; Marra M; Rombout PJA; Steentjes GM; Veen MP van; LBO

    1997-01-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The

  3. Human Exposure Assessment for Air Pollution.

    Science.gov (United States)

    Han, Bin; Hu, Li-Wen; Bai, Zhipeng

    2017-01-01

    Assessment of human exposure to air pollution is a fundamental part of the more general process of health risk assessment. The measurement methods for exposure assessment now include personal exposure monitoring, indoor-outdoor sampling, mobile monitoring, and exposure assessment modeling (such as proximity models, interpolation model, air dispersion models, and land-use regression (LUR) models). Among these methods, personal exposure measurement is considered to be the most accurate method of pollutant exposure assessment until now, since it can better quantify observed differences and better reflect exposure among smaller groups of people at ground level. And since the great differences of geographical environment, source distribution, pollution characteristics, economic conditions, and living habits, there is a wide range of differences between indoor, outdoor, and individual air pollution exposure in different regions of China. In general, the indoor particles in most Chinese families comprise infiltrated outdoor particles, particles generated indoors, and a few secondary organic aerosol particles, and in most cases, outdoor particle pollution concentrations are a major contributor to indoor concentrations in China. Furthermore, since the time, energy, and expense are limited, it is difficult to measure the concentration of pollutants for each individual. In recent years, obtaining the concentration of air pollutants by using a variety of exposure assessment models is becoming a main method which could solve the problem of the increasing number of individuals in epidemiology studies.

  4. Patient-Provider Discussions About Strategies to Limit Air Pollution Exposures.

    Science.gov (United States)

    Mirabelli, Maria C; Damon, Scott A; Beavers, Suzanne F; Sircar, Kanta D

    2018-06-11

    Exposure to air pollution negatively affects respiratory and cardiovascular health. The objective of this study was to describe the extent to which health professionals report talking about how to limit exposure to air pollution during periods of poor air quality with their at-risk patients. In 2015, a total of 1,751 health professionals completed an online survey and reported whether they talk with their patients about limiting their exposure to air pollution. In 2017, these data were analyzed to assess the frequency that health professionals in primary care, pediatrics, obstetrics/gynecology, and nursing reported talking about limiting air pollution exposure with patients who have respiratory or cardiovascular diseases, were aged ≤18 years, were aged ≥65 years, or were pregnant women. Frequencies of positive responses were assessed across categories of provider- and practice-level characteristics. Overall, 714 (41%) respondents reported ever talking with their patients about limiting their exposure to air pollution. Thirty-four percent and 16% of providers specifically reported talking with their patients with respiratory or cardiovascular disease diagnoses, respectively. Percentages of health professionals who reported talking with their patients about limiting air pollution exposure were highest among respondents in pediatrics (56%) and lowest among respondents in obstetrics/gynecology (0%). Despite the well-described health effects of exposure to air pollution, the majority of respondents did not report talking with their patients about limiting their exposure to air pollution. These findings reveal clear opportunities to improve awareness about strategies to limit air pollution exposure among sensitive groups of patients and their health care providers. Published by Elsevier Inc.

  5. Prenatal air pollution exposure and newborn blood pressure

    NARCIS (Netherlands)

    van Rossem, Lenie; Rifas-Shiman, Sheryl L.; Melly, Steven J.; Kloog, Itai; Luttmann-Gibson, Heike; Zanobetti, Antonella; Coull, Brent A.; Schwartz, Joel D.; Mittleman, Murray A.; Oken, Emily; Gillman, Matthew W.; Koutrakis, Petros; Gold, Diane R.

    2015-01-01

    Background: Air pollution exposure has been associated with increased blood pressure in adults. oBjective: We examined associations of antenatal exposure to ambient air pollution with newborn systolic blood pressure (SBP). Methods: We studied 1,131 mother–infant pairs in a Boston, Massachusetts,

  6. Air Pollution Exposure Modeling for Health Studies | Science ...

    Science.gov (United States)

    Dr. Michael Breen is leading the development of air pollution exposure models, integrated with novel personal sensor technologies, to improve exposure and risk assessments for individuals in health studies. He is co-investigator for multiple health studies assessing the exposure and effects of air pollutants. These health studies include participants with asthma, diabetes, and coronary artery disease living in various U.S. cities. He has developed, evaluated, and applied novel exposure modeling and time-activity tools, which includes the Exposure Model for Individuals (EMI), GPS-based Microenvironment Tracker (MicroTrac) and Exposure Tracker models. At this seminar, Dr. Breen will present the development and application of these models to predict individual-level personal exposures to particulate matter (PM) for two health studies in central North Carolina. These health studies examine the association between PM and adverse health outcomes for susceptible individuals. During Dr. Breen’s visit, he will also have the opportunity to establish additional collaborations with researchers at Harvard University that may benefit from the use of exposure models for cohort health studies. These research projects that link air pollution exposure with adverse health outcomes benefit EPA by developing model-predicted exposure-dose metrics for individuals in health studies to improve the understanding of exposure-response behavior of air pollutants, and to reduce participant

  7. A review of air exchange rate models for air pollution exposure assessments.

    Science.gov (United States)

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  8. Effects of Ambient Air Pollution Exposure on Olfaction: A Review.

    Science.gov (United States)

    Ajmani, Gaurav S; Suh, Helen H; Pinto, Jayant M

    2016-11-01

    Olfactory dysfunction affects millions of people worldwide. This sensory impairment is associated with neurodegenerative disease and significantly decreased quality of life. Exposure to airborne pollutants has been implicated in olfactory decline, likely due to the anatomic susceptibility of the olfactory nerve to the environment. Historically, studies have focused on occupational exposures, but more recent studies have considered effects from exposure to ambient air pollutants. To examine all relevant human data evaluating a link between ambient pollution exposure and olfaction and to review supporting animal data in order to examine potential mechanisms for pollution-associated olfactory loss. We identified and reviewed relevant articles from 1950 to 2015 using PubMed and Web of Science and focusing on human epidemiologic and pathophysiologic studies. Animal studies were included only to support pertinent data on humans. We reviewed findings from these studies evaluating a relationship between environmental pollutant exposure and olfactory function. We identified and reviewed 17 articles, with 1 additional article added from a bibliography search, for a total of 18 human studies. There is evidence in human epidemiologic and pathologic studies that increased exposure to ambient air pollutants is associated with olfactory dysfunction. However, most studies have used proxies for pollution exposure in small samples of convenience. Human pathologic studies, with supporting animal work, have also shown that air pollution can contact the olfactory epithelium, translocate to the olfactory bulb, and migrate to the olfactory cortex. Pollutants can deposit at each location, causing direct damage and disruption of tissue morphology or inducing local inflammation and cellular stress responses. Ambient air pollution may impact human olfactory function. Additional studies are needed to examine air pollution-related olfactory impacts on the general population using measured

  9. Towards Personal Exposures: How Technology Is Changing Air Pollution and Health Research.

    Science.gov (United States)

    Larkin, A; Hystad, P

    2017-12-01

    We present a review of emerging technologies and how these can transform personal air pollution exposure assessment and subsequent health research. Estimating personal air pollution exposures is currently split broadly into methods for modeling exposures for large populations versus measuring exposures for small populations. Air pollution sensors, smartphones, and air pollution models capitalizing on big/new data sources offer tremendous opportunity for unifying these approaches and improving long-term personal exposure prediction at scales needed for population-based research. A multi-disciplinary approach is needed to combine these technologies to not only estimate personal exposures for epidemiological research but also determine drivers of these exposures and new prevention opportunities. While available technologies can revolutionize air pollution exposure research, ethical, privacy, logistical, and data science challenges must be met before widespread implementations occur. Available technologies and related advances in data science can improve long-term personal air pollution exposure estimates at scales needed for population-based research. This will advance our ability to evaluate the impacts of air pollution on human health and develop effective prevention strategies.

  10. Confounding and exposure measurement error in air pollution epidemiology.

    Science.gov (United States)

    Sheppard, Lianne; Burnett, Richard T; Szpiro, Adam A; Kim, Sun-Young; Jerrett, Michael; Pope, C Arden; Brunekreef, Bert

    2012-06-01

    Studies in air pollution epidemiology may suffer from some specific forms of confounding and exposure measurement error. This contribution discusses these, mostly in the framework of cohort studies. Evaluation of potential confounding is critical in studies of the health effects of air pollution. The association between long-term exposure to ambient air pollution and mortality has been investigated using cohort studies in which subjects are followed over time with respect to their vital status. In such studies, control for individual-level confounders such as smoking is important, as is control for area-level confounders such as neighborhood socio-economic status. In addition, there may be spatial dependencies in the survival data that need to be addressed. These issues are illustrated using the American Cancer Society Cancer Prevention II cohort. Exposure measurement error is a challenge in epidemiology because inference about health effects can be incorrect when the measured or predicted exposure used in the analysis is different from the underlying true exposure. Air pollution epidemiology rarely if ever uses personal measurements of exposure for reasons of cost and feasibility. Exposure measurement error in air pollution epidemiology comes in various dominant forms, which are different for time-series and cohort studies. The challenges are reviewed and a number of suggested solutions are discussed for both study domains.

  11. Opportunities for using spatial property assessment data in air pollution exposure assessments

    Directory of Open Access Journals (Sweden)

    Keller C Peter

    2005-10-01

    Full Text Available Abstract Background Many epidemiological studies examining the relationships between adverse health outcomes and exposure to air pollutants use ambient air pollution measurements as a proxy for personal exposure levels. When pollution levels vary at neighbourhood levels, using ambient pollution data from sparsely located fixed monitors may inadequately capture the spatial variation in ambient pollution. A major constraint to moving toward exposure assessments and epidemiological studies of air pollution at a neighbourhood level is the lack of readily available data at appropriate spatial resolutions. Spatial property assessment data are widely available in North America and may provide an opportunity for developing neighbourhood level air pollution exposure assessments. Results This paper provides a detailed description of spatial property assessment data available in the Pacific Northwest of Canada and the United States, and provides examples of potential applications of spatial property assessment data for improving air pollution exposure assessment at the neighbourhood scale, including: (1 creating variables for use in land use regression modelling of neighbourhood levels of ambient air pollution; (2 enhancing wood smoke exposure estimates by mapping fireplace locations; and (3 using data available on individual building characteristics to produce a regional air pollution infiltration model. Conclusion Spatial property assessment data are an extremely detailed data source at a fine spatial resolution, and therefore a source of information that could improve the quality and spatial resolution of current air pollution exposure assessments.

  12. Air pollution exposure modeling of individuals

    Science.gov (United States)

    Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates. These surrogates can induce exposure error since they do not account for (1) time spent indoors with ambient PM2.5 levels attenuated from outdoor...

  13. Climate change impacts on human exposures to air pollution ...

    Science.gov (United States)

    This is an abstract for a presentations at the Annual Conference of the International Society on Exposure Science and Environmental Epidemiology. This presentation will serve as an introduction to the symposium. As we consider the potential health impacts of a warming planet, the relationships between climate change and air pollutants become increasingly important to understand. These relationships are complex and highly variable, causing a variety of environmental impacts at local, regional and global scales. Human exposures and health impacts for air pollutants have the potential to be altered by changes in climate through multiple factors that drive population exposures to these pollutants. Research on this topic will provide both state and local governments with the tools and scientific knowledge base to undertake any necessary adaptation of the air pollution regulations and/or public health management systems in the face of climate change.

  14. Characterizing Air Pollution Exposure Misclassification Errors Using Detailed Cell Phone Location Data

    Science.gov (United States)

    Yu, H.; Russell, A. G.; Mulholland, J. A.

    2017-12-01

    In air pollution epidemiologic studies with spatially resolved air pollution data, exposures are often estimated using the home locations of individual subjects. Due primarily to lack of data or logistic difficulties, the spatiotemporal mobility of subjects are mostly neglected, which are expected to result in exposure misclassification errors. In this study, we applied detailed cell phone location data to characterize potential exposure misclassification errors associated with home-based exposure estimation of air pollution. The cell phone data sample consists of 9,886 unique simcard IDs collected on one mid-week day in October, 2013 from Shenzhen, China. The Community Multi-scale Air Quality model was used to simulate hourly ambient concentrations of six chosen pollutants at 3 km spatial resolution, which were then fused with observational data to correct for potential modeling biases and errors. Air pollution exposure for each simcard ID was estimated by matching hourly pollutant concentrations with detailed location data for corresponding IDs. Finally, the results were compared with exposure estimates obtained using the home location method to assess potential exposure misclassification errors. Our results show that the home-based method is likely to have substantial exposure misclassification errors, over-estimating exposures for subjects with higher exposure levels and under-estimating exposures for those with lower exposure levels. This has the potential to lead to a bias-to-the-null in the health effect estimates. Our findings suggest that the use of cell phone data has the potential for improving the characterization of exposure and exposure misclassification in air pollution epidemiology studies.

  15. Effects of long-term exposure to air pollution on natural-cause mortality

    DEFF Research Database (Denmark)

    Beelen, Rob; Raaschou-Nielsen, Ole; Stafoggia, Massimo

    2013-01-01

    Few studies on long-term exposure to air pollution and mortality have been reported from Europe. Within the multicentre European Study of Cohorts for Air Pollution Effects (ESCAPE), we aimed to investigate the association between natural-cause mortality and long-term exposure to several air...... pollutants....

  16. Spatial and Temporal Dynamics in Air Pollution Exposure Assessment

    Science.gov (United States)

    Dias, Daniela; Tchepel, Oxana

    2018-01-01

    Analyzing individual exposure in urban areas offers several challenges where both the individual’s activities and air pollution levels demonstrate a large degree of spatial and temporal dynamics. This review article discusses the concepts, key elements, current developments in assessing personal exposure to urban air pollution (seventy-two studies reviewed) and respective advantages and disadvantages. A new conceptual structure to organize personal exposure assessment methods is proposed according to two classification criteria: (i) spatial-temporal variations of individuals’ activities (point-fixed or trajectory based) and (ii) characterization of air quality (variable or uniform). This review suggests that the spatial and temporal variability of urban air pollution levels in combination with indoor exposures and individual’s time-activity patterns are key elements of personal exposure assessment. In the literature review, the majority of revised studies (44 studies) indicate that the trajectory based with variable air quality approach provides a promising framework for tackling the important question of inter- and intra-variability of individual exposure. However, future quantitative comparison between the different approaches should be performed, and the selection of the most appropriate approach for exposure quantification should take into account the purpose of the health study. This review provides a structured basis for the intercomparing of different methodologies and to make their advantages and limitations more transparent in addressing specific research objectives. PMID:29558426

  17. Spatial resolution requirements for traffic-related air pollutant exposure evaluations

    Science.gov (United States)

    Batterman, Stuart; Chambliss, Sarah; Isakov, Vlad

    2014-09-01

    Vehicle emissions represent one of the most important air pollution sources in most urban areas, and elevated concentrations of pollutants found near major roads have been associated with many adverse health impacts. To understand these impacts, exposure estimates should reflect the spatial and temporal patterns observed for traffic-related air pollutants. This paper evaluates the spatial resolution and zonal systems required to estimate accurately intraurban and near-road exposures of traffic-related air pollutants. The analyses use the detailed information assembled for a large (800 km2) area centered on Detroit, Michigan, USA. Concentrations of nitrogen oxides (NOx) due to vehicle emissions were estimated using hourly traffic volumes and speeds on 9700 links representing all but minor roads in the city, the MOVES2010 emission model, the RLINE dispersion model, local meteorological data, a temporal resolution of 1 h, and spatial resolution as low as 10 m. Model estimates were joined with the corresponding shape files to estimate residential exposures for 700,000 individuals at property parcel, census block, census tract, and ZIP code levels. We evaluate joining methods, the spatial resolution needed to meet specific error criteria, and the extent of exposure misclassification. To portray traffic-related air pollutant exposure, raster or inverse distance-weighted interpolations are superior to nearest neighbor approaches, and interpolations between receptors and points of interest should not exceed about 40 m near major roads, and 100 m at larger distances. For census tracts and ZIP codes, average exposures are overestimated since few individuals live very near major roads, the range of concentrations is compressed, most exposures are misclassified, and high concentrations near roads are entirely omitted. While smaller zones improve performance considerably, even block-level data can misclassify many individuals. To estimate exposures and impacts of traffic

  18. Confounding and exposure measurement error in air pollution epidemiology

    NARCIS (Netherlands)

    Sheppard, L.; Burnett, R.T.; Szpiro, A.A.; Kim, J.Y.; Jerrett, M.; Pope, C.; Brunekreef, B.|info:eu-repo/dai/nl/067548180

    2012-01-01

    Studies in air pollution epidemiology may suffer from some specific forms of confounding and exposure measurement error. This contribution discusses these, mostly in the framework of cohort studies. Evaluation of potential confounding is critical in studies of the health effects of air pollution.

  19. Long-term exposure to indoor air pollution and wheezing symptoms in infants

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, O.; Hermansen, M.N.; Loland, L.

    2010-01-01

    Long-term exposure to air pollution is suspected to cause recurrent wheeze in infants. The few previous studies have had ambiguous results. The objective of this study was to estimate the impact of measured long-term exposure to indoor air pollution on wheezing symptoms in infants. We monitored......-point 'any symptom-day' (yes/no) and by standard linear regression with the end-point 'number of symptom-days'. The results showed no systematic association between risk for wheezing symptoms and the levels of these air pollutants with various indoor and outdoor sources. In conclusion, we found no evidence...... of an association between long-term exposure to indoor air pollution and wheezing symptoms in infants, suggesting that indoor air pollution is not causally related to the underlying disease. Practical Implications Nitrogen oxides, formaldehyde and fine particles were measured in the air in infants' bedrooms...

  20. Road traffic air and noise pollution exposure assessment - A review of tools and techniques.

    Science.gov (United States)

    Khan, Jibran; Ketzel, Matthias; Kakosimos, Konstantinos; Sørensen, Mette; Jensen, Steen Solvang

    2018-09-01

    Road traffic induces air and noise pollution in urban environments having negative impacts on human health. Thus, estimating exposure to road traffic air and noise pollution (hereafter, air and noise pollution) is important in order to improve the understanding of human health outcomes in epidemiological studies. The aims of this review are (i) to summarize current practices of modelling and exposure assessment techniques for road traffic air and noise pollution (ii) to highlight the potential of existing tools and techniques for their combined exposure assessment for air and noise together with associated challenges, research gaps and priorities. The study reviews literature about air and noise pollution from urban road traffic, including other relevant characteristics such as the employed dispersion models, Geographic Information System (GIS)-based tool, spatial scale of exposure assessment, study location, sample size, type of traffic data and building geometry information. Deterministic modelling is the most frequently used assessment technique for both air and noise pollution of short-term and long-term exposure. We observed a larger variety among air pollution models as compared to the applied noise models. Correlations between air and noise pollution vary significantly (0.05-0.74) and are affected by several parameters such as traffic attributes, building attributes and meteorology etc. Buildings act as screens for the dispersion of pollution, but the reduction effect is much larger for noise than for air pollution. While, meteorology has a greater influence on air pollution levels as compared to noise, although also important for noise pollution. There is a significant potential for developing a standard tool to assess combined exposure of traffic related air and noise pollution to facilitate health related studies. GIS, due to its geographic nature, is well established and has a significant capability to simultaneously address both exposures. Copyright

  1. Quantifying human exposure to air pollution--moving from static monitoring to spatio-temporally resolved personal exposure assessment.

    Science.gov (United States)

    Steinle, Susanne; Reis, Stefan; Sabel, Clive Eric

    2013-01-15

    Quantifying human exposure to air pollutants is a challenging task. Ambient concentrations of air pollutants at potentially harmful levels are ubiquitous in urban areas and subject to high spatial and temporal variability. At the same time, every individual has unique activity-patterns. Exposure results from multifaceted relationships and interactions between environmental and human systems, adding complexity to the assessment process. Traditionally, approaches to quantify human exposure have relied on pollutant concentrations from fixed air quality network sites and static population distributions. New developments in sensor technology now enable us to monitor personal exposure to air pollutants directly while people are moving through their activity spaces and varying concentration fields. The literature review on which this paper is based on reflects recent developments in the assessment of human exposure to air pollution. This includes the discussion of methodologies and concepts, and the elaboration of approaches and study designs applied in the field. We identify shortcomings of current approaches and discuss future research needs. We close by proposing a novel conceptual model for the integrated assessment of human exposure to air pollutants taking into account latest technological capabilities and contextual information. Copyright © 2012 Elsevier B.V. All rights reserved.

  2. Short-term exposure to air pollution and digital vascular function.

    Science.gov (United States)

    Ljungman, Petter L; Wilker, Elissa H; Rice, Mary B; Schwartz, Joel; Gold, Diane R; Koutrakis, Petros; Vita, Joseph A; Mitchell, Gary F; Vasan, Ramachandran S; Benjamin, Emelia J; Mittleman, Murray A; Hamburg, Naomi M

    2014-09-01

    We investigated associations between ambient air pollution and microvessel function measured by peripheral arterial tonometry between 2003 and 2008 in the Framingham Heart Study Offspring and Third Generation Cohorts. We measured particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), black carbon, sulfates, particle number, nitrogen oxides, and ozone by using fixed monitors, and we determined moving averages for 1-7 days preceding vascular testing. We examined associations between these exposures and hyperemic response to ischemia and baseline pulse amplitude, a measure of arterial tone (n = 2,369). Higher short-term exposure to air pollutants, including PM2.5, black carbon, and particle number was associated with higher baseline pulse amplitude. For example, higher 3-day average PM2.5 exposure was associated with 6.3% higher baseline pulse amplitude (95% confidence interval: 2.0, 10.9). However, there were no consistent associations between the air pollution exposures assessed and hyperemic response. Our findings in a community-based sample exposed to relatively low pollution levels suggest that short-term exposure to ambient particulate pollution is not associated with vasodilator response, but that particulate air pollution is associated with baseline pulse amplitude, suggesting potentially adverse alterations in baseline vascular tone or compliance. © The Author 2014. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  3. Quantifying human exposure to air pollution - moving from static monitoring to spatio-temporally resolved personal exposure assessment

    DEFF Research Database (Denmark)

    Steinle, Susanne; Reis, Stefan; Sabel, Clive E

    2013-01-01

    exposure studies to accurately assess human health risks. ? We discuss potential and shortcomings of methods and tools with a focus on how their development influences study design. ? We propose a novel conceptual model for integrated health impact assessment of human exposure to air pollutants. ? We......Quantifying human exposure to air pollutants is a challenging task. Ambient concentrations of air pollutants at potentially harmful levels are ubiquitous in urban areas and subject to high spatial and temporal variability. At the same time, every individual has unique activity-patterns. Exposure...... results from multifaceted relationships and interactions between environmental and human systems, adding complexity to the assessment process. Traditionally, approaches to quantify human exposure have relied on pollutant concentrations from fixed air quality network sites and static population...

  4. Prenatal Air Pollution Exposure and Early Cardiovascular Phenotypes in Young Adults.

    Directory of Open Access Journals (Sweden)

    Carrie V Breton

    Full Text Available Exposure to ambient air pollutants increases risk for adverse cardiovascular health outcomes in adults. We aimed to evaluate the contribution of prenatal air pollutant exposure to cardiovascular health, which has not been thoroughly evaluated. The Testing Responses on Youth (TROY study consists of 768 college students recruited from the University of Southern California in 2007-2009. Participants attended one study visit during which blood pressure, heart rate and carotid artery arterial stiffness (CAS and carotid artery intima-media thickness (CIMT were assessed. Prenatal residential addresses were geocoded and used to assign prenatal and postnatal air pollutant exposure estimates using the U.S. Environmental Protection Agency's Air Quality System (AQS database. The associations between CAS, CIMT and air pollutants were assessed using linear regression analysis. Prenatal PM10 and PM2.5 exposures were associated with increased CAS. For example, a 2 SD increase in prenatal PM2.5 was associated with CAS indices, including a 5% increase (β = 1.05, 95% CI 1.00-1.10 in carotid stiffness index beta, a 5% increase (β = 1.05, 95% CI 1.01-1.10 in Young's elastic modulus and a 5% decrease (β = 0.95, 95% CI 0.91-0.99 in distensibility. Mutually adjusted models of pre- and postnatal PM2.5 further suggested the prenatal exposure was most relevant exposure period for CAS. No associations were observed for CIMT. In conclusion, prenatal exposure to elevated air pollutants may increase carotid arterial stiffness in a young adult population of college students. Efforts aimed at limiting prenatal exposures are important public health goals.

  5. Long-term exposure to air pollution and asthma hospitalisations in older adults: a cohort study

    DEFF Research Database (Denmark)

    Andersen, Zorana Jovanovic; Bønnelykke, Klaus; Hvidberg, Martin

    2012-01-01

    Exposure to air pollution in early life contributes to the burden of childhood asthma, but it is not clear whether long-term exposure to air pollution can lead to asthma onset or progression in adulthood.......Exposure to air pollution in early life contributes to the burden of childhood asthma, but it is not clear whether long-term exposure to air pollution can lead to asthma onset or progression in adulthood....

  6. Accumulative effects of indoor air pollution exposure on leukocyte telomere length among non-smokers

    International Nuclear Information System (INIS)

    Lin, Nan; Mu, Xinlin; Wang, Guilian; Ren, Yu'ang; Su, Shu; Li, Zhiwen; Wang, Bin; Tao, Shu

    2017-01-01

    Indoor air pollution is an important environmental factor that contributes to the burden of various diseases. Long-term exposure to ambient air pollution is associated with telomere shortening. However, the association between chronic indoor air pollution from household fuel combustion and leukocyte telomere length has not been studied. In our study, 137 cancer-free non-smokers were recruited. Their exposure levels to indoor air pollution from 1985 to 2014 were assessed using a face-to-face interview questionnaire, and leukocyte telomere length (LTL) was measured using a monochrome multiplex quantitative PCR method. Accumulative exposure to solid fuel usage for cooking was negatively correlated with LTL. The LTL of residents who were exposed to solid fuel combustion for three decades (LTL = 0.70 ± 0.17) was significantly shorter than that of other populations. In addition, education and occupation were related to both exposure to solid fuel and LTL. Sociodemographic factors may play a mediating role in the correlation between leukocyte telomere length and environmental exposure to indoor air pollution. In conclusion, long-term exposure to indoor air pollution may cause LTL dysfunction. - Highlights: • This is the first study to investigate a clear association between indoor air pollution and leukocyte telomere length. • Chronic exposure to household solid fuel combustion and leukocyte telomere length presented a negative correlation. • Shortest leukocyte telomere length belonged to population cooking for longest time. • Education and occupation were remarkably associated with leukocyte telomere length via relating with indoor air pollution. - Long-term exposure to household solid fuel combustion is negatively associated with LTL.

  7. Prenatal air pollution exposure and newborn blood pressure.

    Science.gov (United States)

    van Rossem, Lenie; Rifas-Shiman, Sheryl L; Melly, Steven J; Kloog, Itai; Luttmann-Gibson, Heike; Zanobetti, Antonella; Coull, Brent A; Schwartz, Joel D; Mittleman, Murray A; Oken, Emily; Gillman, Matthew W; Koutrakis, Petros; Gold, Diane R

    2015-04-01

    Air pollution exposure has been associated with increased blood pressure in adults. We examined associations of antenatal exposure to ambient air pollution with newborn systolic blood pressure (SBP). We studied 1,131 mother-infant pairs in a Boston, Massachusetts, area pre-birth cohort. We calculated average exposures by trimester and during the 2 to 90 days before birth for temporally resolved fine particulate matter (≤ 2.5 μm; PM2.5), black carbon (BC), nitrogen oxides, nitrogen dioxide, ozone (O3), and carbon monoxide measured at stationary monitoring sites, and for spatiotemporally resolved estimates of PM2.5 and BC at the residence level. We measured SBP at a mean age of 30 ± 18 hr with an automated device. We used mixed-effects models to examine associations between air pollutant exposures and SBP, taking into account measurement circumstances; child's birth weight; mother's age, race/ethnicity, socioeconomic position, and third-trimester BP; and time trend. Estimates represent differences in SBP associated with an interquartile range (IQR) increase in each pollutant. Higher mean PM2.5 and BC exposures during the third trimester were associated with higher SBP (e.g., 1.0 mmHg; 95% CI: 0.1, 1.8 for a 0.32-μg/m3 increase in mean 90-day residential BC). In contrast, O3 was negatively associated with SBP (e.g., -2.3 mmHg; 95% CI: -4.4, -0.2 for a 13.5-ppb increase during the 90 days before birth). Exposures to PM2.5 and BC in late pregnancy were positively associated with newborn SBP, whereas O3 was negatively associated with SBP. Longitudinal follow-up will enable us to assess the implications of these findings for health during later childhood and adulthood.

  8. Acute exposure to air pollution triggers atrial fibrillation.

    Science.gov (United States)

    Link, Mark S; Luttmann-Gibson, Heike; Schwartz, Joel; Mittleman, Murray A; Wessler, Benjamin; Gold, Diane R; Dockery, Douglas W; Laden, Francine

    2013-08-27

    This study sought to evaluate the association of air pollution with the onset of atrial fibrillation (AF). Air pollution in general and more specifically particulate matter has been associated with cardiovascular events. Although ventricular arrhythmias are traditionally thought to convey the increased cardiovascular risk, AF may also contribute. Patients with dual chamber implantable cardioverter-defibrillators (ICDs) were enrolled and followed prospectively. The association of AF onset with air quality including ambient particulate matter pollution between 2 and 48 h prior to the AF were examined. Of 176 patients followed for an average of 1.9 years, 49 patients had 328 episodes of AF lasting ≥ 30 s. Positive but nonsignificant associations were found for PM2.5 in the prior 24 h, but stronger associations were found with shorter exposure windows. The odds of AF increased by 26% (95% confidence interval: 8% to 47%) for each 6.0 μg/m(3) increase in PM2.5 in the 2 h prior to the event (p = 0.004). The odds of AF were highest at the upper quartile of mean PM2.5. PM was associated with increased odds of AF onset within hours following exposure in patients with known cardiac disease. Air pollution is an acute trigger of AF, likely contributing to the pollution-associated adverse cardiac outcomes observed in epidemiological studies. Copyright © 2013 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. Cognitive Effects of Air Pollution Exposures and Potential Mechanistic Underpinnings.

    Science.gov (United States)

    Allen, J L; Klocke, C; Morris-Schaffer, K; Conrad, K; Sobolewski, M; Cory-Slechta, D A

    2017-06-01

    This review sought to address the potential for air pollutants to impair cognition and mechanisms by which that might occur. Air pollution has been associated with deficits in cognitive functions across a wide range of epidemiological studies, both with developmental and adult exposures. Studies in animal models are significantly more limited in number, with somewhat inconsistent findings to date for measures of learning, but show more consistent impairments for short-term memory. Potential contributory mechanisms include oxidative stress/inflammation, altered levels of dopamine and/or glutamate, and changes in synaptic plasticity/structure. Epidemiological studies are consistent with adverse effects of air pollutants on cognition, but additional studies and better phenotypic characterization are needed for animal models, including more precise delineation of specific components of cognition that are affected, as well as definitions of critical exposure periods for such effects and the components of air pollution responsible. This would permit development of more circumscribed hypotheses as to potential behavioral and neurobiological mechanisms.

  10. Accumulative effects of indoor air pollution exposure on leukocyte telomere length among non-smokers.

    Science.gov (United States)

    Lin, Nan; Mu, Xinlin; Wang, Guilian; Ren, Yu'ang; Su, Shu; Li, Zhiwen; Wang, Bin; Tao, Shu

    2017-08-01

    Indoor air pollution is an important environmental factor that contributes to the burden of various diseases. Long-term exposure to ambient air pollution is associated with telomere shortening. However, the association between chronic indoor air pollution from household fuel combustion and leukocyte telomere length has not been studied. In our study, 137 cancer-free non-smokers were recruited. Their exposure levels to indoor air pollution from 1985 to 2014 were assessed using a face-to-face interview questionnaire, and leukocyte telomere length (LTL) was measured using a monochrome multiplex quantitative PCR method. Accumulative exposure to solid fuel usage for cooking was negatively correlated with LTL. The LTL of residents who were exposed to solid fuel combustion for three decades (LTL = 0.70 ± 0.17) was significantly shorter than that of other populations. In addition, education and occupation were related to both exposure to solid fuel and LTL. Sociodemographic factors may play a mediating role in the correlation between leukocyte telomere length and environmental exposure to indoor air pollution. In conclusion, long-term exposure to indoor air pollution may cause LTL dysfunction. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Ambient air pollution exposure and full-term birth weight in California

    Directory of Open Access Journals (Sweden)

    Sadd James L

    2010-07-01

    Full Text Available Abstract Background Studies have identified relationships between air pollution and birth weight, but have been inconsistent in identifying individual pollutants inversely associated with birth weight or elucidating susceptibility of the fetus by trimester of exposure. We examined effects of prenatal ambient pollution exposure on average birth weight and risk of low birth weight in full-term births. Methods We estimated average ambient air pollutant concentrations throughout pregnancy in the neighborhoods of women who delivered term singleton live births between 1996 and 2006 in California. We adjusted effect estimates of air pollutants on birth weight for infant characteristics, maternal characteristics, neighborhood socioeconomic factors, and year and season of birth. Results 3,545,177 singleton births had monitoring for at least one air pollutant within a 10 km radius of the tract or ZIP Code of the mother's residence. In multivariate models, pollutants were associated with decreased birth weight; -5.4 grams (95% confidence interval -6.8 g, -4.1 g per ppm carbon monoxide, -9.0 g (-9.6 g, -8.4 g per pphm nitrogen dioxide, -5.7 g (-6.6 g, -4.9 g per pphm ozone, -7.7 g (-7.9 g, -6.6 g per 10 μg/m3 particulate matter under 10 μm, -12.8 g (-14.3 g, -11.3 g per 10 μg/m3 particulate matter under 2.5 μm, and -9.3 g (-10.7 g, -7.9 g per 10 μg/m3 of coarse particulate matter. With the exception of carbon monoxide, estimates were largely unchanged after controlling for co-pollutants. Effect estimates for the third trimester largely reflect the results seen from full pregnancy exposure estimates; greater variation in results is seen in effect estimates specific to the first and second trimesters. Conclusions This study indicates that maternal exposure to ambient air pollution results in modestly lower infant birth weight. A small decline in birth weight is unlikely to have clinical relevance for individual infants, and there is debate about whether

  12. Using cell phone location to assess misclassification errors in air pollution exposure estimation.

    Science.gov (United States)

    Yu, Haofei; Russell, Armistead; Mulholland, James; Huang, Zhijiong

    2018-02-01

    Air pollution epidemiologic and health impact studies often rely on home addresses to estimate individual subject's pollution exposure. In this study, we used detailed cell phone location data, the call detail record (CDR), to account for the impact of spatiotemporal subject mobility on estimates of ambient air pollutant exposure. This approach was applied on a sample with 9886 unique simcard IDs in Shenzhen, China, on one mid-week day in October 2013. Hourly ambient concentrations of six chosen pollutants were simulated by the Community Multi-scale Air Quality model fused with observational data, and matched with detailed location data for these IDs. The results were compared with exposure estimates using home addresses to assess potential exposure misclassification errors. We found the misclassifications errors are likely to be substantial when home location alone is applied. The CDR based approach indicates that the home based approach tends to over-estimate exposures for subjects with higher exposure levels and under-estimate exposures for those with lower exposure levels. Our results show that the cell phone location based approach can be used to assess exposure misclassification error and has the potential for improving exposure estimates in air pollution epidemiology studies. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. An assessment of air pollutant exposure methods in Mexico City, Mexico.

    Science.gov (United States)

    Rivera-González, Luis O; Zhang, Zhenzhen; Sánchez, Brisa N; Zhang, Kai; Brown, Daniel G; Rojas-Bracho, Leonora; Osornio-Vargas, Alvaro; Vadillo-Ortega, Felipe; O'Neill, Marie S

    2015-05-01

    Geostatistical interpolation methods to estimate individual exposure to outdoor air pollutants can be used in pregnancy cohorts where personal exposure data are not collected. Our objectives were to a) develop four assessment methods (citywide average (CWA); nearest monitor (NM); inverse distance weighting (IDW); and ordinary Kriging (OK)), and b) compare daily metrics and cross-validations of interpolation models. We obtained 2008 hourly data from Mexico City's outdoor air monitoring network for PM10, PM2.5, O3, CO, NO2, and SO2 and constructed daily exposure metrics for 1,000 simulated individual locations across five populated geographic zones. Descriptive statistics from all methods were calculated for dry and wet seasons, and by zone. We also evaluated IDW and OK methods' ability to predict measured concentrations at monitors using cross validation and a coefficient of variation (COV). All methods were performed using SAS 9.3, except ordinary Kriging which was modeled using R's gstat package. Overall, mean concentrations and standard deviations were similar among the different methods for each pollutant. Correlations between methods were generally high (r=0.77 to 0.99). However, ranges of estimated concentrations determined by NM, IDW, and OK were wider than the ranges for CWA. Root mean square errors for OK were consistently equal to or lower than for the IDW method. OK standard errors varied considerably between pollutants and the computed COVs ranged from 0.46 (least error) for SO2 and PM10 to 3.91 (most error) for PM2.5. OK predicted concentrations measured at the monitors better than IDW and NM. Given the similarity in results for the exposure methods, OK is preferred because this method alone provides predicted standard errors which can be incorporated in statistical models. The daily estimated exposures calculated using these different exposure methods provide flexibility to evaluate multiple windows of exposure during pregnancy, not just trimester or

  14. Air Pollution Exposure During Pregnancy and Fetal Markers of Metabolic function

    Science.gov (United States)

    Lavigne, Eric; Ashley-Martin, Jillian; Dodds, Linda; Arbuckle, Tye E.; Hystad, Perry; Johnson, Markey; Crouse, Dan L.; Ettinger, Adrienne S.; Shapiro, Gabriel D.; Fisher, Mandy; Morisset, Anne-Sophie; Taback, Shayne; Bouchard, Maryse F.; Sun, Liu; Monnier, Patricia; Dallaire, Renée; Fraser, William D.

    2016-01-01

    Previous evidence suggests that exposure to outdoor air pollution during pregnancy could alter fetal metabolic function, which could increase the risk of obesity in childhood. However, to our knowledge, no epidemiologic study has investigated the association between prenatal exposure to air pollution and indicators of fetal metabolic function. We investigated the association between maternal exposure to nitrogen dioxide and fine particulate matter (aerodynamic diameter ≤2.5 µm) and umbilical cord blood leptin and adiponectin levels with mixed-effects linear regression models among 1,257 mother-infant pairs from the Maternal-Infant Research on Environmental Chemicals (MIREC) Study, conducted in Canada (2008–2011). We observed that an interquartile-range increase in average exposure to fine particulate matter (3.2 µg/m3) during pregnancy was associated with an 11% (95% confidence interval: 4, 17) increase in adiponectin levels. We also observed 13% (95% confidence interval: 6, 20) higher adiponectin levels per interquartile-range increase in average exposure to nitrogen dioxide (13.6 parts per billion) during pregnancy. Significant associations were seen between air pollution markers and cord blood leptin levels in models that adjusted for birth weight z score but not in models that did not adjust for birth weight z score. The roles of prenatal exposure to air pollution and fetal metabolic function in the potential development of childhood obesity should be further explored. PMID:27026336

  15. Fuel combustion, air pollution exposure, and health: The situation in developing countries

    International Nuclear Information System (INIS)

    Smith, K.R.

    1993-01-01

    There are a number of recent studies of air pollution in developing-country cities, each of necessity relying heavily on the one available source of comparative international ambient monitoring data, Global Environment Monitoring System (GEMS). In this review, therefore, rather than simply reproduce the GEMS data. The author chose to examine developing-country air pollution from the standpoint of a useful analysis technique that has been under development in recent years: Basically the review is composed of four parts: (1) a brief description of the historical and current relationship between energy use and air pollution; (2) an explanation of the idea of exposure assessment and the power that it can bring to analyses of the health impacts of air pollution; (3) focusing on developing countries, a global exposure assessment, combining demographic data with GEMS outdoor data and less-developed country (LDC) indoor air-monitoring studies; (4) a review of the health effects literature relevant to the micro-environments found to harbor the largest human exposures. 104 refs

  16. Dynamic assessment of exposure to air pollution using mobile phone data.

    Science.gov (United States)

    Dewulf, Bart; Neutens, Tijs; Lefebvre, Wouter; Seynaeve, Gerdy; Vanpoucke, Charlotte; Beckx, Carolien; Van de Weghe, Nico

    2016-04-21

    Exposure to air pollution can have major health impacts, such as respiratory and cardiovascular diseases. Traditionally, only the air pollution concentration at the home location is taken into account in health impact assessments and epidemiological studies. Neglecting individual travel patterns can lead to a bias in air pollution exposure assessments. In this work, we present a novel approach to calculate the daily exposure to air pollution using mobile phone data of approximately 5 million mobile phone users living in Belgium. At present, this data is collected and stored by telecom operators mainly for management of the mobile network. Yet it represents a major source of information in the study of human mobility. We calculate the exposure to NO2 using two approaches: assuming people stay at home the entire day (traditional static approach), and incorporating individual travel patterns using their location inferred from their use of the mobile phone network (dynamic approach). The mean exposure to NO2 increases with 1.27 μg/m(3) (4.3%) during the week and with 0.12 μg/m(3) (0.4%) during the weekend when incorporating individual travel patterns. During the week, mostly people living in municipalities surrounding larger cities experience the highest increase in NO2 exposure when incorporating their travel patterns, probably because most of them work in these larger cities with higher NO2 concentrations. It is relevant for health impact assessments and epidemiological studies to incorporate individual travel patterns in estimating air pollution exposure. Mobile phone data is a promising data source to determine individual travel patterns, because of the advantages (e.g. low costs, large sample size, passive data collection) compared to travel surveys, GPS, and smartphone data (i.e. data captured by applications on smartphones).

  17. Participatory measurements of individual exposure to air pollution in urban areas

    Science.gov (United States)

    Madelin, Malika; Duché, Sarah; Dupuis, Vincent

    2016-04-01

    Air pollution is a major environmental issue in urban areas. Chronic and high concentration exposure presents a health risk with cardiovascular and respiratory problems and longer term nervous, carcinogenic and endocrine problems. In addition to the estimations based on simulations of both background and regional pollution and of the pollution induced by the traffic, knowing exposure of each individual is a key issue. This exposure reflects the high variability of pollution at fine spatial and time scales, according to the proximity of emission sources and the urban morphology outside. The emergence of citizen science and the progress of miniaturized electronics, low-cost and accessible to (almost) everyone, offers new opportunities for the monitoring of air pollution, but also for the citizens' awareness of their individual exposure to air pollution. In this communication, we propose to present a participatory research project 'What is your air?' (project funded by the Île-de-France region), which aims at raising awareness on the theme of air quality, its monitoring with sensors assembled in a FabLab workshop and an online participatory mapping. Beyond the discussion on technical choices, the stages of manufacture or the sensor calibration procedures, we discuss the measurements made, in this case the fine particle concentration measurements, which are dated and georeferenced (communication via a mobile phone). They show high variability between the measurements (in part linked to the substrates, land use, traffic) and low daily contrasts. In addition to the analysis of the measurements and their comparison with the official data, we also discuss the choice of representation of information, including mapping, and therefore the message about pollution to communicate.

  18. Effects of air pollution exposure on glucose metabolism in Los Angeles minority children.

    Science.gov (United States)

    Toledo-Corral, C M; Alderete, T L; Habre, R; Berhane, K; Lurmann, F W; Weigensberg, M J; Goran, M I; Gilliland, F D

    2018-01-01

    Growing evidence indicates that ambient (AAP: NO 2 , PM 2.5 and O 3 ) and traffic-related air pollutants (TRAP) contribute to metabolic disease risk in adults; however, few studies have examined these relationships in children. Metabolic profiling was performed in 429 overweight and obese African-American and Latino youth living in urban Los Angeles, California. This cross-sectional study estimated individual residential air pollution exposure and used linear regression to examine relationships between air pollution and metabolic outcomes. AAP and TRAP exposure were associated with adverse effects on glucose metabolism independent of body fat percent. PM 2.5 was associated with 25.0% higher fasting insulin (p pollution exposure was associated with a metabolic profile that is characteristic of increased risk for type 2 diabetes. These results indicate that increased prior year exposure to air pollution may adversely affect type 2 diabetes-related pathophysiology in overweight and obese minority children. © 2016 World Obesity Federation.

  19. Heterogeneity of passenger exposure to air pollutants in public transport microenvironments

    Science.gov (United States)

    Yang, Fenhuan; Kaul, Daya; Wong, Ka Chun; Westerdahl, Dane; Sun, Li; Ho, Kin-fai; Tian, Linwei; Brimblecombe, Peter; Ning, Zhi

    2015-05-01

    Epidemiologic studies have linked human exposure to pollutants with adverse health effects. Passenger exposure in public transport systems contributes an important fraction of daily burden of air pollutants. While there is extensive literature reporting the concentrations of pollutants in public transport systems in different cities, there are few studies systematically addressing the heterogeneity of passenger exposure in different transit microenvironments, in cabins of different transit vehicles and in areas with different characteristics. The present study investigated PM2.5 (particulate matter with aerodynamic diameters smaller than 2.5 μm), black carbon (BC), ultrafine particles (UFP) and carbon monoxide (CO) pollutant concentrations in various public road transport systems in highly urbanized city of Hong Kong. Using a trolley case housing numerous portable air monitors, we conducted a total of 119 trips during the campaign. Transit microenvironments, classified as 1). busy and secondary roadside bus stops; 2). open and enclosed termini; 3). above- and under-ground Motor Rail Transport (MTR) platforms, were investigated and compared to identify the factors that may affect passenger exposures. The pollutants inside bus and MTR cabins were also investigated together with a comparison of time integrated exposure between the transit modes. Busy roadside and enclosed termini demonstrated the highest average particle concentrations while the lowest was found on the MTR platforms. Traffic-related pollutants BC, UFP and CO showed larger variations than PM2.5 across different microenvironments and areas confirming their heterogeneity in urban environments. In-cabin pollutant concentrations showed distinct patterns with BC and UFP high in diesel bus cabins and CO high in LPG bus cabins, suggesting possible self-pollution issues and/or penetration of on-road pollutants inside cabins during bus transit. The total passenger exposure along selected routes, showed bus

  20. Long term exposure to ambient air pollution and incidence of acute coronary events

    DEFF Research Database (Denmark)

    Cesaroni, Giulia; Forastiere, Francesco; Stafoggia, Massimo

    2014-01-01

    To study the effect of long term exposure to airborne pollutants on the incidence of acute coronary events in 11 cohorts participating in the European Study of Cohorts for Air Pollution Effects (ESCAPE).......To study the effect of long term exposure to airborne pollutants on the incidence of acute coronary events in 11 cohorts participating in the European Study of Cohorts for Air Pollution Effects (ESCAPE)....

  1. Measurement Error Correction for Predicted Spatiotemporal Air Pollution Exposures.

    Science.gov (United States)

    Keller, Joshua P; Chang, Howard H; Strickland, Matthew J; Szpiro, Adam A

    2017-05-01

    Air pollution cohort studies are frequently analyzed in two stages, first modeling exposure then using predicted exposures to estimate health effects in a second regression model. The difference between predicted and unobserved true exposures introduces a form of measurement error in the second stage health model. Recent methods for spatial data correct for measurement error with a bootstrap and by requiring the study design ensure spatial compatibility, that is, monitor and subject locations are drawn from the same spatial distribution. These methods have not previously been applied to spatiotemporal exposure data. We analyzed the association between fine particulate matter (PM2.5) and birth weight in the US state of Georgia using records with estimated date of conception during 2002-2005 (n = 403,881). We predicted trimester-specific PM2.5 exposure using a complex spatiotemporal exposure model. To improve spatial compatibility, we restricted to mothers residing in counties with a PM2.5 monitor (n = 180,440). We accounted for additional measurement error via a nonparametric bootstrap. Third trimester PM2.5 exposure was associated with lower birth weight in the uncorrected (-2.4 g per 1 μg/m difference in exposure; 95% confidence interval [CI]: -3.9, -0.8) and bootstrap-corrected (-2.5 g, 95% CI: -4.2, -0.8) analyses. Results for the unrestricted analysis were attenuated (-0.66 g, 95% CI: -1.7, 0.35). This study presents a novel application of measurement error correction for spatiotemporal air pollution exposures. Our results demonstrate the importance of spatial compatibility between monitor and subject locations and provide evidence of the association between air pollution exposure and birth weight.

  2. Evaluation of AirGIS: a GIS-based air pollution and human exposure modelling system

    DEFF Research Database (Denmark)

    Ketzel, Matthias; Berkowicz, Ruwim; Hvidberg, Martin

    2011-01-01

    This study describes in brief the latest extensions of the Danish Geographic Information System (GIS)-based air pollution and human exposure modelling system (AirGIS), which has been developed in Denmark since 2001 and gives results of an evaluation with measured air pollution data. The system...... shows, in general, a good performance for both long-term averages (annual and monthly averages), short-term averages (hourly and daily) as well as when reproducing spatial variation in air pollution concentrations. Some shortcomings and future perspectives of the system are discussed too....

  3. Air pollution and the fetal origin of disease: A systematic review of the molecular signatures of air pollution exposure in human placenta.

    Science.gov (United States)

    Luyten, Leen J; Saenen, Nelly D; Janssen, Bram G; Vrijens, Karen; Plusquin, Michelle; Roels, Harry A; Debacq-Chainiaux, Florence; Nawrot, Tim S

    2018-06-13

    Fetal development is a crucial window of susceptibility in which exposure-related alterations can be induced on the molecular level, leading to potential changes in metabolism and development. The placenta serves as a gatekeeper between mother and fetus, and is in contact with environmental stressors throughout pregnancy. This makes the placenta as a temporary organ an informative non-invasive matrix suitable to investigate omics-related aberrations in association with in utero exposures such as ambient air pollution. To summarize and discuss the current evidence and define the gaps of knowledge concerning human placental -omics markers in association with prenatal exposure to ambient air pollution. Two investigators independently searched the PubMed, ScienceDirect, and Scopus databases to identify all studies published until January 2017 with an emphasis on epidemiological research on prenatal exposure to ambient air pollution and the effect on placental -omics signatures. From the initial 386 articles, 25 were retained following an a priori set inclusion and exclusion criteria. We identified eleven studies on the genome, two on the transcriptome, five on the epigenome, five on the proteome category, one study with both genomic and proteomic topics, and one study with both genomic and transcriptomic topics. Six studies discussed the triple relationship between exposure to air pollution during pregnancy, the associated placental -omics marker(s), and the potential effect on disease development later in life. So far, no metabolomic or exposomic data discussing associations between the placenta and prenatal exposure to air pollution have been published. Integration of placental biomarkers in an environmental epidemiological context enables researchers to address fundamental questions essential in unraveling the fetal origin of disease and helps to better define the pregnancy exposome of air pollution. Copyright © 2018 Elsevier Inc. All rights reserved.

  4. Respiratory effects of commuters' exposure to air pollution in traffic.

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2011-03-01

    Much time is spent in traffic, especially during rush hours, when air pollution concentrations on roads are relatively high. Controlled exposure studies have shown acute respiratory effects of short, high exposures to air pollution from motor vehicles. Acute health effects of lower real-life exposures in traffic are unclear. Exposures of 34 healthy, nonsmoking adult volunteers were repeatedly measured while commuting for 2 hours by bus, car, or bicycle. Particle number (PN), particulate matter (PM2.5 and PM10), and soot exposures were measured. Lung function and airway resistance were measured directly before, directly following, and 6 hours after exposure. Exhaled nitric oxide (NO) was measured directly before and 6 hours after exposure. Inhaled doses were estimated based on monitored heart rates. Mixed models were used to analyze effects of exposure on changes in health parameters after exposure compared with before. PN, PM10, and soot were associated with decreased peak expiratory flow directly following but not 6 hours after exposure. PN doses were associated with decreases in maximum midexpiratory flow and forced expiratory flow (FEV1) 6 hours after exposure, whereas PN and soot exposures were associated with increased maximum midexpiratory flow and FEV1 directly after exposure. PN and soot were associated with increased exhaled NO after car and bus but not bicycle trips. PN was also associated with an increase in airway resistance directly following exposure but not 6 hours later. We found modest effects of 2-hour in-traffic exposure to air pollutants on peak flow, exhaled NO, and airway resistance.

  5. Effects of prenatal exposure to air pollution on preeclampsia in Shenzhen, China.

    Science.gov (United States)

    Wang, Qiong; Zhang, Huanhuan; Liang, Qianhong; Knibbs, Luke D; Ren, Meng; Li, Changchang; Bao, Junzhe; Wang, Suhan; He, Yiling; Zhu, Lei; Wang, Xuemei; Zhao, Qingguo; Huang, Cunrui

    2018-06-01

    The impact of ambient air pollution on pregnant women is a concern in China. However, little is known about the association between air pollution and preeclampsia and the potential modifying effects of meteorological conditions have not been assessed. This study aimed to assess the effects of prenatal exposure to air pollution on preeclampsia, and to explore whether temperature and humidity modify the effects. We performed a retrospective cohort study based on 1.21 million singleton births from the birth registration system in Shenzhen, China, between 2005 and 2012. Daily average measurements of particulate matter air temperature (T), and dew point (T d ) were collected. Logistic regression models were performed to estimate associations between air pollution and preeclampsia during the first and second trimesters, and during the entire pregnancy. In each time window, we observed a positive gradient of increasing preeclampsia risk with increasing quartiles of PM 10 and SO 2 exposure. When stratified by T and T d in three categories (95th percentile), we found a significant interaction between PM 10 and T d on preeclampsia; the adverse effects of PM 10 increased with T d . During the entire pregnancy, there was a null association between PM 10 and preeclampsia under T d   95th percentile. We also found that air pollution effects on preeclampsia in autumn/winter seasons were stronger than those in the spring/summer. This is the first study to address modifying effects of meteorological factors on the association between air pollution and preeclampsia. Findings indicate that prenatal exposure to PM 10 and SO 2 increase preeclampsia risk in Shenzhen, China, and the effects could be modified by humidity. Pregnant women should limit air pollution exposure, particularly during humid periods. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Association between exposure to ambient air pollution and renal function in Korean adults.

    Science.gov (United States)

    Kim, Hyun-Jin; Min, Jin-Young; Seo, Yong-Seok; Min, Kyoung-Bok

    2018-01-01

    Ambient air pollution has a negative effect on many diseases, such as cardiovascular and respiratory diseases. Recent studies have reported a relationship between air pollution and renal function, but the results were limited to exposure to particulate matter (PM). This study was to identify associations between various air pollutants and renal function among Korean adults. Nationwide survey data for a total of 24,407 adults were analyzed. We calculated the estimated glomerular filtration rate (eGFR) for each individual to assess their renal function and used this to categorize those with chronic kidney disease (CKD). To evaluate exposure to ambient air pollution, we used the annual mean concentrations of four ambient air pollutants: PM with an aerodynamic diameter ≤ 10 μm (PM 10 ), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), and carbon monoxide (CO). We identified significant inverse relationships between the air pollutants PM 10 and NO 2 and eGFR in all statistical adjustment models (all p  ambient air pollutants were significantly related to an increased risk of CKD in the unadjusted model ( p   0.05). Exposures to PM 10 and NO 2 were significantly associated with decreases in eGFR levels, but not CKD, in Korean adults.

  7. Socioeconomic and ethnic inequalities in exposure to air and noise pollution in London.

    Science.gov (United States)

    Tonne, Cathryn; Milà, Carles; Fecht, Daniela; Alvarez, Mar; Gulliver, John; Smith, James; Beevers, Sean; Ross Anderson, H; Kelly, Frank

    2018-06-01

    Transport-related air and noise pollution, exposures linked to adverse health outcomes, varies within cities potentially resulting in exposure inequalities. Relatively little is known regarding inequalities in personal exposure to air pollution or transport-related noise. Our objectives were to quantify socioeconomic and ethnic inequalities in London in 1) air pollution exposure at residence compared to personal exposure; and 2) transport-related noise at residence from different sources. We used individual-level data from the London Travel Demand Survey (n = 45,079) between 2006 and 2010. We modeled residential (CMAQ-urban) and personal (London Hybrid Exposure Model) particulate matter pollution using quantile and logistic regression. We observed inverse patterns in inequalities in air pollution when estimated at residence versus personal exposure with respect to household income (categorical, 8 groups). Compared to the lowest income group (£75,000) had lower residential NO 2 (-1.3 (95% CI -2.1, -0.6) μg/m 3 in the 95th exposure quantile) but higher personal NO 2 exposure (1.9 (95% CI 1.6, 2.3) μg/m 3 in the 95th quantile), which was driven largely by transport mode and duration. Inequalities in residential exposure to NO 2 with respect to area-level deprivation were larger at lower exposure quantiles (e.g. estimate for NO 2 5.1 (95% CI 4.6, 5.5) at quantile 0.15 versus 1.9 (95% CI 1.1, 2.6) at quantile 0.95), reflecting low-deprivation, high residential NO 2 areas in the city centre. Air pollution exposure at residence consistently overestimated personal exposure; this overestimation varied with age, household income, and area-level income deprivation. Inequalities in road traffic noise were generally small. In logistic regression models, the odds of living within a 50 dB contour of aircraft noise were highest in individuals with the highest household income, white ethnicity, and with the lowest area-level income deprivation. Odds of living within a 50

  8. Exposure of Mammalian Cells to Air-Pollutant Mixtures at the Air-Liquid Interface

    Science.gov (United States)

    It has been widely accepted that exposure of mammalian cells to air-pollutant mixtures at the air-liquid interface is a more realistic approach than exposing cell under submerged conditions. The VITROCELL systems, are commercially available systems for air-liquid interface expo...

  9. Acute and recent air pollution exposure and cardiovascular events at labour and delivery

    Science.gov (United States)

    Männistö, Tuija; Mendola, Pauline; Grantz, Katherine Laughon; Leishear, Kira; Sundaram, Rajeshwari; Sherman, Seth; Ying, Qi; Liu, Danping

    2017-01-01

    Objective To study the relationship between acute air pollution exposure and cardiovascular events during labour/delivery. Methods The Consortium on Safe Labor (2002–2008), an observational US cohort with 223 502 singleton deliveries provided electronic medical records. Air pollution exposure was estimated by modified Community Multiscale Air Quality models. Cardiovascular events (cardiac failure/arrest, stroke, myocardial infarcts and other events) were recorded in the hospital discharge records for 687 pregnancies (0.3%). Logistic regression with generalised estimating equations estimated the relationship between cardiovascular events and daily air pollutant levels for delivery day and the 7 days preceding delivery. Results Increased odds of cardiovascular events were observed for each IQR increase in exposure to nitric oxides at 5 and 6 days prior to delivery (OR=1.17, 99% CI 1.04 to 1.30 and OR=1.15, 1.03 to 1.28, respectively). High exposure to toxic air pollution species such as ethylbenzene (OR=1.50, 1.08 to 2.09), m-xylene (OR=1.54, 1.11 to 2.13), o-xylene (OR=1.51, 1.09 to 2.09), p-xylene (OR=1.43, 1.03 to 1.99) and toluene (OR=1.42, 1.02 to 1.97) at 5 days prior to delivery were also associated with cardiovascular events. Decreased odds of events were observed with exposure to ozone. Conclusions Air pollution in the days prior to delivery, especially nitrogen oxides and some toxic air pollution species, was associated with increased risk of cardiovascular events during the labour/delivery admission. PMID:26105036

  10. Interactions of GST Polymorphisms in Air Pollution Exposure and Respiratory Diseases and Allergies.

    Science.gov (United States)

    Bowatte, Gayan; Lodge, Caroline J; Perret, Jennifer L; Matheson, Melanie C; Dharmage, Shyamali C

    2016-11-01

    The purpose of this review is to summarize the evidence from recently published original studies investigating how glutathione S-transferase (GST) gene polymorphisms modify the impact of air pollution on asthma, allergic diseases, and lung function. Current studies in epidemiological and controlled human experiments found evidence to suggest that GSTs modify the impact of air pollution exposure on respiratory diseases and allergies. Of the nine articles included in this review, all except one identified at least one significant interaction with at least one of glutathione S-transferase pi 1 (GSTP1), glutathione S-transferase mu 1 (GSTM1), or glutathione S-transferase theta 1 (GSTT1) genes and air pollution exposure. The findings of these studies, however, are markedly different. This difference can be partially explained by regional variation in the exposure levels and oxidative potential of different pollutants and by other interactions involving a number of unaccounted environment exposures and multiple genes. Although there is evidence of an interaction between GST genes and air pollution exposure for the risk of respiratory disease and allergies, results are not concordant. Further investigations are needed to explore the reasons behind the discordancy.

  11. Exposure to air pollution and pulmonary function in university students.

    Science.gov (United States)

    Hong, Yun-Chul; Leem, Jong-Han; Lee, Kwan-Hee; Park, Dong-Hyun; Jang, Jae-Yeon; Kim, Sun-Tae; Ha, Eun-Hee

    2005-03-01

    Exposure to air pollution has been reported to be associated with increase in pulmonary disease. The aims of the present study were to examine the use of personal nitrogen dioxide (NO(2)) samplers as a means of measuring exposure to air pollution and to investigate the relationship between personal exposure to air pollution and pulmonary function. We measured individual exposures to NO(2) using passive personal NO(2) samplers for 298 healthy university students. Questionnaire interview was conducted for traffic-related factors, and spirometry was performed when the samplers were returned after 1 day. Personal NO(2) concentrations varied, depending on the distance between residence and a main road (P=0.029). Students who used transportation for more than 1 h were exposed to higher levels of NO(2) than those using transportation for less than 1 h (P=0.032). In terms of transportation, riding in a bus or subway caused significantly higher exposure than not using them (P=0.046). NO(2) exposure was not significantly associated with forced vital capacity (FVC) or forced expiratory volume in 1 s (FEV(1)) but was associated with the ratio of FEV(1)/FVC and mid-expiratory flow between 25% and 75% of the forced vital capacity (FEF(25-75)) (Ppollution and are associated with decreased pulmonary function.

  12. Effects of climate change on residential infiltration and air pollution exposure.

    Science.gov (United States)

    Ilacqua, Vito; Dawson, John; Breen, Michael; Singer, Sarany; Berg, Ashley

    2017-01-01

    Air exchange through infiltration is driven partly by indoor/outdoor temperature differences, and as climate change increases ambient temperatures, such differences could vary considerably even with small ambient temperature increments, altering patterns of exposures to both indoor and outdoor pollutants. We calculated changes in air fluxes through infiltration for prototypical detached homes in nine metropolitan areas in the United States (Atlanta, Boston, Chicago, Houston, Los Angeles, Minneapolis, New York, Phoenix, and Seattle) from 1970-2000 to 2040-2070. The Lawrence Berkeley National Laboratory model of infiltration was used in combination with climate data from eight regionally downscaled climate models from the North American Regional Climate Change Assessment Program. Averaged over all study locations, seasons, and climate models, air exchange through infiltration would decrease by ~5%. Localized increased infiltration is expected during the summer months, up to 20-30%. Seasonal and daily variability in infiltration are also expected to increase, particularly during the summer months. Diminished infiltration in future climate scenarios may be expected to increase exposure to indoor sources of air pollution, unless these ventilation reductions are otherwise compensated. Exposure to ambient air pollution, conversely, could be mitigated by lower infiltration, although peak exposure increases during summer months should be considered, as well as other mechanisms.

  13. Indoor air pollution

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    2001-01-01

    Indoor air pollution is a potential risk to human health. Prolonged exposure to indoor pollutants may cause various infectious, allergic and other diseases. Indoor pollutants can emanate from a broad array of internal and external sources. Internal sources include building and furnishing materials, consumer and commercial products, office equipment, micro-organisms, pesticides and human occupants activities. External sources include soil, water supplies and outside makeup air. The main indoor air pollutants of concern are inorganic gases, formaldehyde and other volatile organic compounds, pesticides, radon and its daughters, particulates and microbes. The magnitude of human exposure to indoor pollutants can be estimated or predicted with the help of mathematical models which have been developed using the data from source emission testing and field monitoring of pollutants. In order to minimize human exposure to indoor pollutants, many countries have formulated guidelines / standards for the maximum permissible levels of main pollutants. Acceptable indoor air quality can be achieved by controlling indoor pollution sources and by effective ventilation system for removal of indoor pollutants. (author)

  14. Air pollution exposure is associated with restrictive ventilatory patterns

    NARCIS (Netherlands)

    de Jong, Kim; Vonk, Judith M.; Zijlema, Wilma L.; Stolk, Ronald P.; van der Plaat, Diana A.; Hoek, Gerard; Brunekreef, Bert; Postma, Dirkje S.; Boezen, H. Marike

    2016-01-01

    Exposure to ambient air pollution is associated with a substantial burden of morbidity and mortality worldwide [1]. In a recent paper, Adam et al. [2] showed significantly impaired levels of forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) associated with exposure to the

  15. Racial Differences in Perceptions of Air Pollution Health Risk: Does Environmental Exposure Matter?

    Directory of Open Access Journals (Sweden)

    Jayajit Chakraborty

    2017-01-01

    Full Text Available This article extends environmental risk perception research by exploring how potential health risk from exposure to industrial and vehicular air pollutants, as well as other contextual and socio-demographic factors, influence racial/ethnic differences in air pollution health risk perception. Our study site is the Greater Houston metropolitan area, Texas, USA—a racially/ethnically diverse area facing high levels of exposure to pollutants from both industrial and transportation sources. We integrate primary household-level survey data with estimates of excess cancer risk from ambient exposure to industrial and on-road mobile source emissions of air toxics obtained from the U.S. Environmental Protection Agency. Statistical analysis is based on multivariate generalized estimation equation models which account for geographic clustering of surveyed households. Our results reveal significantly higher risk perceptions for non-Hispanic Black residents and those exposed to greater cancer risk from industrial pollutants, and also indicate that gender influences the relationship between race/ethnicity and air pollution risk perception. These findings highlight the need to incorporate measures of environmental health risk exposure in future analysis of social disparities in risk perception.

  16. Strategies to determine and control the contributions of indoor air pollution to total inhalation exposure (STRATEX)

    DEFF Research Database (Denmark)

    Cochet, C.; Fernandes, E.O.; Jantunen, M.

    ECA-IAQ (European Collaborative Action, Urban Air, Indoor Environment and Human Exposure), 2006. Strategies to determine and control the contributions of indoor air pollution to total inhalation exposure (STRATEX), Report No 25. EUR 22503 EN. Luxembourg: Office for Official Publications...... of the European Communities It is now well established that indoor air pollution contributes significantly to the global burden of disease of the population. Therefore, the knowledge of this contribution is essential in view of risk assessment and management. The ECA STRATEX report collates the respective...... information and describes the strategies to determine population exposure to indoor air pollutants. Its major goal is to emphasise the importance of the contribution of indoor air to total air exposure. Taking this contribution into account is a prerequisite for sound risk assessment of air pollution...

  17. Air pollution exposure and preeclampsia among US women with and without asthma

    Energy Technology Data Exchange (ETDEWEB)

    Mendola, Pauline, E-mail: pauline.mendola@nih.gov [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Wallace, Maeve [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Liu, Danping [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Biostatistics and Bioinformatics Branch, Rockville, MD 20852 (United States); Robledo, Candace [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Männistö, Tuija [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States); Northern Finland Laboratory Centre NordLab, Oulu (Finland); Department of Clinical Chemistry, University of Oulu, Oulu (Finland); Medical Research Center Oulu, Oulu University Hospital and University of Oulu, PO Box 500, 90029 OYS (Finland); Department of Chronic Disease Prevention, National Institute for Health and Welfare, PO Box 310, 90101 Oulu (Finland); Grantz, Katherine L. [Eunice Kennedy Shriver National Institute of Child Health and Human Development, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20852 (United States)

    2016-07-15

    Maternal asthma and air pollutants have been independently associated with preeclampsia but rarely studied together. Our objective was to comprehensively evaluate preeclampsia risk based on the interaction of maternal asthma and air pollutants. Preeclampsia and asthma diagnoses, demographic and clinical data came from electronic medical records for 210,508 singleton deliveries. Modified Community Multiscale Air Quality models estimated preconception, first and second trimester and whole pregnancy exposure to: particulate matter (PM)<2.5 and <10 µm, ozone, nitrogen oxides (NO{sub x}), sulfur dioxide (SO{sub 2}) and carbon monoxide (CO); PM{sub 2.5} constituents; volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Asthma-pollutant interaction adjusted relative risks (RR) and 95% confidence intervals (CI) for preeclampsia were calculated by interquartile range for criteria pollutants and high exposure (≥75th percentile) for PAHs and VOCs. Asthmatics had higher risk associated with first trimester NO{sub x} and SO{sub 2} and whole pregnancy elemental carbon (EC) exposure than non-asthmatics, but only EC significantly increased risk (RR=1.11, CI:1.03–1.21). Asthmatics also had a 10% increased risk associated with second trimester CO. Significant interactions were observed for nearly all VOCs and asthmatics had higher risk during all time windows for benzene, ethylbenzene, m-xylene, o-xylene, p-xylene and toluene while most PAHs did not increase risk. - Highlights: • Asthma is common in pregnancy and asthmatic women have increased preeclampsia risk. • Air pollution could differentially increase preeclampsia risk for asthmatic women. • Preeclampsia risk was higher for asthmatics than non-asthmatics after VOC exposure. • Asthmatics also had higher risk after whole pregnancy exposure to elemental carbon. • Pregnant women with asthma appear to be particularly vulnerable to air pollutants.

  18. Air pollution exposure and preeclampsia among US women with and without asthma

    International Nuclear Information System (INIS)

    Mendola, Pauline; Wallace, Maeve; Liu, Danping; Robledo, Candace; Männistö, Tuija; Grantz, Katherine L.

    2016-01-01

    Maternal asthma and air pollutants have been independently associated with preeclampsia but rarely studied together. Our objective was to comprehensively evaluate preeclampsia risk based on the interaction of maternal asthma and air pollutants. Preeclampsia and asthma diagnoses, demographic and clinical data came from electronic medical records for 210,508 singleton deliveries. Modified Community Multiscale Air Quality models estimated preconception, first and second trimester and whole pregnancy exposure to: particulate matter (PM)<2.5 and <10 µm, ozone, nitrogen oxides (NO x ), sulfur dioxide (SO 2 ) and carbon monoxide (CO); PM 2.5 constituents; volatile organic compounds (VOCs) and polycyclic aromatic hydrocarbons (PAHs). Asthma-pollutant interaction adjusted relative risks (RR) and 95% confidence intervals (CI) for preeclampsia were calculated by interquartile range for criteria pollutants and high exposure (≥75th percentile) for PAHs and VOCs. Asthmatics had higher risk associated with first trimester NO x and SO 2 and whole pregnancy elemental carbon (EC) exposure than non-asthmatics, but only EC significantly increased risk (RR=1.11, CI:1.03–1.21). Asthmatics also had a 10% increased risk associated with second trimester CO. Significant interactions were observed for nearly all VOCs and asthmatics had higher risk during all time windows for benzene, ethylbenzene, m-xylene, o-xylene, p-xylene and toluene while most PAHs did not increase risk. - Highlights: • Asthma is common in pregnancy and asthmatic women have increased preeclampsia risk. • Air pollution could differentially increase preeclampsia risk for asthmatic women. • Preeclampsia risk was higher for asthmatics than non-asthmatics after VOC exposure. • Asthmatics also had higher risk after whole pregnancy exposure to elemental carbon. • Pregnant women with asthma appear to be particularly vulnerable to air pollutants.

  19. Using Google Location History to track personal exposure to air pollution

    Science.gov (United States)

    Marais, E. A.; Wiedinmyer, C.

    2017-12-01

    Big data is increasingly used in air pollution research to monitor air quality and develop mitigation strategies. Google Location History provides an archive of geolocation and time information from mobile devices that can be used to track personal exposure to air pollution. Here we demonstrate the utility of Google Location History for assessing true exposure of individuals to air pollution hazardous to human health in an increasingly mobile world. We use the GEOS-Chem chemical transport model at coarse resolution (2° × 2.5°; latitude × longitude) to calculate and sample surface concentrations of fine particle mass (PM2.5) and ozone concentrations at the same time and location of each of six volunteers for 2 years (June 2015 to May 2017) and compare this to annual mean PM2.5 and ozone estimated at their postal addresses. The latter is synonymous with Global Burden of Disease studies that use a static population distribution map. We find that mobile PM2.5 is higher than static PM2.5 for most (five out of six) volunteers and can lead to a 10% increase in the risk for ischemic heart disease and stroke mortality. The difference may be more if instead a high resolution CTM or an abundant air quality monitoring network is used. There is tremendous potential to exploit geolocation and time data from mobile devices for cohort health studies and to determine best practices for limiting personal exposure to air pollution.

  20. Exposure to traffic noise and air pollution and risk for febrile seizure: a cohort study.

    Science.gov (United States)

    Hjortebjerg, Dorrit; Nybo Andersen, Anne-Marie; Ketzel, Matthias; Raaschou-Nielsen, Ole; Sørensen, Mette

    2018-03-25

    Objectives Exposure to traffic noise and air pollution is suspected to increase susceptibility to viral infections - the main triggering factor for febrile seizures. No studies have examined these two exposures in relation to febrile seizures. We aimed to investigate whether exposure to road traffic noise and air pollution are associated with risk of febrile seizures in childhood. Methods From our study base of 51 465 singletons from a national birth cohort, we identified 2175 cases with febrile seizures using a nationwide registry. Residential address history from conception to six years of age were found in national registers, and road traffic noise (L den ) and air pollution (NO 2 ) were modeled for all addresses. Analyses were done using Cox proportional hazard model with adjustment for potential confounders, including mutual exposure adjustment. Results An interquartile range (IQR) increase in childhood exposure to road traffic noise and air pollution was associated with an 11% [incidence rate ratio (IRR) 1.11, 95% confidence interval (CI) 1.04-1.19) and 5% (IRR 1.05, 95% CI 1.02-1.07) higher risk for febrile seizures, respectively, after adjustment for potential confounders. Weaker tendencies were seen for pregnancy exposure. In models with mutual exposure adjustment, the estimates were slightly lower, with IRR of 1.08 (95% CI 1.00-1.16) and 1.03 (95% CI 0.99-1.06) per IQR increase in childhood exposure to road traffic noise and air pollution, respectively. Conclusions This study suggests that residential exposure to road traffic noise and air pollution is associated with higher risk for febrile seizures.

  1. Exposure of pregnant women to cookstove-related household air pollution in urban and periurban Trujillo, Peru.

    Science.gov (United States)

    St Helen, Gideon; Aguilar-Villalobos, Manuel; Adetona, Olorunfemi; Cassidy, Brandon; Bayer, Charlene W; Hendry, Robert; Hall, Daniel B; Naeher, Luke P

    2015-01-01

    Although evidence suggests associations between maternal exposure to air pollution and adverse birth outcomes, pregnant women's exposure to household air pollution in developing countries is understudied. Personal exposures of pregnant women (N = 100) in Trujillo, Peru, to air pollutants and their indoor concentrations were measured. The effects of stove-use-related characteristics and ambient air pollution on exposure were determined using mixed-effects models. Significant differences in 48-hour kitchen concentrations of particulate matter (PM2.5), carbon monoxide (CO), and nitrogen dioxide (NO2) concentrations were observed across fuel types (p health risks even in homes where cleaner burning gas stoves were used.

  2. Ambient air pollution exposure and the incidence of related health effects among racial/ethnic minorities

    Energy Technology Data Exchange (ETDEWEB)

    Nieves, L.A.; Wernette, D.R.

    1997-02-01

    Differences among racial and ethnic groups in morbidity and mortality rates for diseases, including diseases with environmental causes, have been extensively documented. However, documenting the linkages between environmental contaminants, individual exposures, and disease incidence has been hindered by difficulties in measuring exposure for the population in general and for minority populations in particular. After briefly discussing research findings on associations of common air pollutants with disease incidence, the authors summarize recent studies of radial/ethnic subgroup differences in incidence of these diseases in the US. They then present evidence of both historic and current patterns of disproportionate minority group exposure to air pollution as measured by residence in areas where ambient air quality standards are violated. The current indications of disproportionate potential exposures of minority and low-income populations to air pollutants represent the continuation of a historical trend. The evidence of linkage between disproportionate exposure to air pollution of racial/ethnic minorities and low-income groups and their higher rates of some air pollution-related diseases is largely circumstantial. Differences in disease incidence and mortality rates among racial/ethnic groups are discussed for respiratory diseases, cancers, and lead poisoning. Pollutants of concern include CO, Pb, SO{sub 2}, O{sub 3}, and particulates.

  3. Residential exposure to traffic-related air pollution and survival after heart failure.

    Science.gov (United States)

    Medina-Ramón, Mercedes; Goldberg, Robert; Melly, Steven; Mittleman, Murray A; Schwartz, Joel

    2008-04-01

    Although patients with heart failure (HF) have been identified as particularly susceptible to the acute effects of air pollution, the effects of long-term exposure to air pollution on patients with this increasingly prevalent disease are largely unknown. This study was designed to examine the mortality risk associated with residential exposure to traffic-related air pollution among HF patients. A total of 1,389 patients hospitalized with acute HF in greater Worcester, Massachusetts, during 2000 were followed for survival through December 2005. We used daily traffic within 100 and 300 m of residence as well as the distance from residence to major roadways and to bus routes as proxies for residential exposure to traffic-related air pollution. We assessed mortality risks for each exposure variable using Cox proportional hazards models adjusted for prognostic factors. After the 5-year follow-up, only 334 (24%) subjects were still alive. An interquartile range increase in daily traffic within 100 m of home was associated with a mortality hazard ratio (HR) of 1.15 [95% confidence interval (CI), 1.05-1.25], whereas for traffic within 300 m this association was 1.09 (95% CI, 1.01-1.19). The mortality risk decreased with increasing distance to bus routes (HR = 0.88; 95% CI, 0.81-0.96) and was larger for those living within 100 m of a major roadway or 50 m of a bus route (HR = 1.30; 95% CI, 1.13-1.49). Adjustment for area-based income and educational level slightly attenuated these associations. Residential exposure to traffic-related air pollution increases the mortality risk after hospitalization with acute HF. Reducing exposure to traffic-related emissions may improve the long-term prognosis of HF patients.

  4. Incorporating Measurement Error from Modeled Air Pollution Exposures into Epidemiological Analyses.

    Science.gov (United States)

    Samoli, Evangelia; Butland, Barbara K

    2017-12-01

    Outdoor air pollution exposures used in epidemiological studies are commonly predicted from spatiotemporal models incorporating limited measurements, temporal factors, geographic information system variables, and/or satellite data. Measurement error in these exposure estimates leads to imprecise estimation of health effects and their standard errors. We reviewed methods for measurement error correction that have been applied in epidemiological studies that use model-derived air pollution data. We identified seven cohort studies and one panel study that have employed measurement error correction methods. These methods included regression calibration, risk set regression calibration, regression calibration with instrumental variables, the simulation extrapolation approach (SIMEX), and methods under the non-parametric or parameter bootstrap. Corrections resulted in small increases in the absolute magnitude of the health effect estimate and its standard error under most scenarios. Limited application of measurement error correction methods in air pollution studies may be attributed to the absence of exposure validation data and the methodological complexity of the proposed methods. Future epidemiological studies should consider in their design phase the requirements for the measurement error correction method to be later applied, while methodological advances are needed under the multi-pollutants setting.

  5. Exposure to Ambient Air Pollution and Premature Rupture of Membranes.

    Science.gov (United States)

    Wallace, Maeve E; Grantz, Katherine L; Liu, Danping; Zhu, Yeyi; Kim, Sung Soo; Mendola, Pauline

    2016-06-15

    Premature rupture of membranes (PROM) is a major factor that predisposes women to preterm delivery. Results from previous studies have suggested that there are associations between exposure to air pollution and preterm birth, but evidence of a relationship with PROM is sparse. Modified Community Multiscale Air Quality models were used to estimate mean exposures to particulate matter less than 10 µm or less than 2.5 µm in aerodynamic diameter, nitrogen oxides, carbon monoxide, sulfur dioxide, and ozone among 223,375 singleton deliveries in the Air Quality and Reproductive Health Study (2002-2008). We used log-linear models with generalized estimating equations to estimate adjusted relative risks and 95% confidence intervals for PROM per each interquartile-range increase in pollutants across the whole pregnancy, on the day of delivery, and 5 hours before delivery. Whole-pregnancy exposures to carbon monoxide and sulfur dioxide were associated with an increased risk of PROM (for carbon monoxide, relative risk (RR) = 1.09, 95% confidence interval (CI): 1.04, 1.14; for sulfur dioxide, RR = 1.15, 95% CI: 1.06, 1.25) but not preterm PROM. Ozone exposure increased the risk of PROM on the day of delivery (RR = 1.06, 95% CI: 1.02, 1.09) and 1 day prior (RR = 1.04, 95% CI: 1.01, 1.07). In the 5 hours preceding delivery, there were 3%-7% increases in risk associated with exposure to ozone and particulate matter less than 2.5 µm in aerodynamic diameter and inverse associations with exposure to carbon monoxide and nitrogen oxides. Acute and long-term air pollutant exposures merit further study in relation to PROM. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health 2016. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  6. Does respiratory health contribute to the effects of long-term air pollution exposure on cardiovascular mortality?

    OpenAIRE

    Heinrich Joachim; Gehring Ulrike; Ranft Ulrich; Sugiri Dorothea; Schikowski Tamara; Wichmann H-Erich; Krämer Ursula

    2007-01-01

    Abstract Background There is growing epidemiological evidence that short-term and long-term exposure to high levels of air pollution may increase cardiovascular morbidity and mortality. In addition, epidemiological studies have shown an association between air pollution exposure and respiratory health. To what extent the association between cardiovascular mortality and air pollution is driven by the impact of air pollution on respiratory health is unknown. The aim of this study was to investi...

  7. Neurobehavioral effects of exposure to traffic-related air pollution and transportation noise in primary schoolchildren.

    Science.gov (United States)

    van Kempen, Elise; Fischer, Paul; Janssen, Nicole; Houthuijs, Danny; van Kamp, Irene; Stansfeld, Stephen; Cassee, Flemming

    2012-05-01

    Children living close to roads are exposed to both traffic noise and traffic-related air pollution. There are indications that both exposures affect cognitive functioning. So far, the effects of both exposures have only been investigated separately. To investigate the relationship between air pollution and transportation noise on the cognitive performance of primary schoolchildren in both the home and school setting. Data acquired within RANCH from 553 children (aged 9-11 years) from 24 primary schools were analysed using multilevel modelling with adjustment for a range of socio-economic and life-style factors. Exposure to NO(2) (which is in urban areas an indicator for traffic-related air pollution) at school was statistically significantly associated with a decrease in the memory span length measured during DMST (χ(2)=6.8, df=1, p=0.01). This remained after additional adjustment for transportation noise. Statistically significant associations were observed between road and air traffic noise exposure at school and the number of errors made during the 'arrow' (χ(2)=7.5, df=1, p=0.006) and 'switch' (χ(2)=4.8, df=1, p=0.028) conditions of the SAT. This remained after adjustment for NO(2). No effects of air pollution exposure or transportation noise exposure at home were observed. Combined exposure of air pollution and road traffic noise had a significant effect on the reaction times measured during the SRTT and the 'block' and the 'arrow' conditions of the SAT. Our results provide some support that prolonged exposure to traffic-related air pollution as well as to noise adversely affects cognitive functioning. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Health and household air pollution from solid fuel use: the need for improved exposure assessment.

    Science.gov (United States)

    Clark, Maggie L; Peel, Jennifer L; Balakrishnan, Kalpana; Breysse, Patrick N; Chillrud, Steven N; Naeher, Luke P; Rodes, Charles E; Vette, Alan F; Balbus, John M

    2013-10-01

    Nearly 3 billion people worldwide rely on solid fuel combustion to meet basic household energy needs. The resulting exposure to air pollution causes an estimated 4.5% of the global burden of disease. Large variability and a lack of resources for research and development have resulted in highly uncertain exposure estimates. We sought to identify research priorities for exposure assessment that will more accurately and precisely define exposure-response relationships of household air pollution necessary to inform future cleaner-burning cookstove dissemination programs. As part of an international workshop in May 2011, an expert group characterized the state of the science and developed recommendations for exposure assessment of household air pollution. The following priority research areas were identified to explain variability and reduce uncertainty of household air pollution exposure measurements: improved characterization of spatial and temporal variability for studies examining both short- and long-term health effects; development and validation of measurement technology and approaches to conduct complex exposure assessments in resource-limited settings with a large range of pollutant concentrations; and development and validation of biomarkers for estimating dose. Addressing these priority research areas, which will inherently require an increased allocation of resources for cookstove research, will lead to better characterization of exposure-response relationships. Although the type and extent of exposure assessment will necessarily depend on the goal and design of the cookstove study, without improved understanding of exposure-response relationships, the level of air pollution reduction necessary to meet the health targets of cookstove interventions will remain uncertain.

  9. Perimenarchal air pollution exposure and menstrual disorders.

    Science.gov (United States)

    Mahalingaiah, S; Missmer, S E; Cheng, J J; Chavarro, J; Laden, F; Hart, J E

    2018-01-25

    What is the association between perimenarchal exposure to total suspended particulate (TSP) in air, menstrual irregularity phenotypes and time to menstrual cycle regularity? Exposures to TSP during high school are associated with slightly increased odds of menstrual irregularity and longer time to regularity in high school and early adulthood. The menstrual cycle is responsive to hormonal regulation. Particulate matter air pollution has demonstrated hormonal activity. However, it is not known if air pollution is associated with menstrual cycle regularity. Cross sectional study of 34 832 of the original 116 430 women (29.91%) enrolled in 1989 from the Nurses' Health Study II (NHSII). The follow-up rate for this analytic sample was 97.76% at the 1991 survey. Annual averages of TSP were available for each year of high school attendance. We created three case definitions including high school menstrual irregularity and androgen excess. The time to menstrual cycle regularity was reported by participants as air pollution in the adolescent and early adulthood window may be especially important, given its association with phenotypes of menstrual irregularity. The data from this study agrees with existing literature regarding air pollution and reproductive tract diseases. Shruthi Mahalingaiah: Reproductive Scientist Development Program HD000849, and a research grant from the Boston University Department of Obstetrics and Gynecology, Stacey Missmer: R01HD57210 from the National Institute of Child Health and Human Development and the Massachusetts Institute of Technology Center for Environmental Health Sciences Translational Pilot Project Program, R01CA50385 from the National Cancer Institute, Jaime Hart and Francine Laden: 5R01ES017017 from the National Institute for Environmental Health Sciences, Jaime Hart: P30 ES00002 from the National Institute for Environmental Health Sciences at the National Institute of Health, The Nurses' Health Study II is supported by

  10. Advances in Understanding Air Pollution and Cardiovascular Diseases: The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air)

    Science.gov (United States)

    Kaufman, Joel D.; Spalt, Elizabeth W.; Curl, Cynthia L.; Hajat, Anjum; Jones, Miranda R.; Kim, Sun-Young; Vedal, Sverre; Szpiro, Adam A.; Gassett, Amanda; Sheppard, Lianne; Daviglus, Martha L.; Adar, Sara D.

    2016-01-01

    The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) leveraged the platform of the MESA cohort into a prospective longitudinal study of relationships between air pollution and cardiovascular health. MESA Air researchers developed fine-scale, state-of-the-art air pollution exposure models for the MESA Air communities, creating individual exposure estimates for each participant. These models combine cohort-specific exposure monitoring, existing monitoring systems, and an extensive database of geographic and meteorological information. Together with extensive phenotyping in MESA—and adding participants and health measurements to the cohort—MESA Air investigated environmental exposures on a wide range of outcomes. Advances by the MESA Air team included not only a new approach to exposure modeling but also biostatistical advances in addressing exposure measurement error and temporal confounding. The MESA Air study advanced our understanding of the impact of air pollutants on cardiovascular disease and provided a research platform for advances in environmental epidemiology. PMID:27741981

  11. Indoor air pollution

    International Nuclear Information System (INIS)

    Spengler, J.D.

    1985-01-01

    Although official efforts to control air pollution have traditionally focused on outdoor air, it is now apparent that elevated contaminant concentrations are common inside some private and public buildings. Concerns about potential public health problems due to indoor air pollution are based on evidence that urban residents typically spend more than 90 percent of their time indoors, concentrations of some contaminants are higher indoors than outdoors, and for some pollutants personal exposures are not characterized adequately by outdoor measurements. Among the more important indoor contaminants associated with health or irritation effects are passive tobacco smoke, radon decay products, carbon monoxide, nitrogen dioxide, formaldehyde, asbestos fibers, microorganisms and aeroallergens. Efforts to assess health risks associated with indoor air pollution are limited by insufficient information about the number of people exposed, the pattern and severity of exposures, and the health consequences of exposures. An overall strategy should be developed to investigate indoor exposures, health effects, control options, and public policy alternatives

  12. Traffic, air pollution, minority and socio-economic status: addressing inequities in exposure and risk.

    Science.gov (United States)

    Pratt, Gregory C; Vadali, Monika L; Kvale, Dorian L; Ellickson, Kristie M

    2015-05-19

    Higher levels of nearby traffic increase exposure to air pollution and adversely affect health outcomes. Populations with lower socio-economic status (SES) are particularly vulnerable to stressors like air pollution. We investigated cumulative exposures and risks from traffic and from MNRiskS-modeled air pollution in multiple source categories across demographic groups. Exposures and risks, especially from on-road sources, were higher than the mean for minorities and low SES populations and lower than the mean for white and high SES populations. Owning multiple vehicles and driving alone were linked to lower household exposures and risks. Those not owning a vehicle and walking or using transit had higher household exposures and risks. These results confirm for our study location that populations on the lower end of the socio-economic spectrum and minorities are disproportionately exposed to traffic and air pollution and at higher risk for adverse health outcomes. A major source of disparities appears to be the transportation infrastructure. Those outside the urban core had lower risks but drove more, while those living nearer the urban core tended to drive less but had higher exposures and risks from on-road sources. We suggest policy considerations for addressing these inequities.

  13. The health burden of pollution: the impact of prenatal exposure to air pollutants

    Directory of Open Access Journals (Sweden)

    Vieira SE

    2015-06-01

    Full Text Available Sandra E Vieira Pediatrics Department, Medical School, University of São Paulo, São Paulo, Brazil Abstract: Exposure to atmospheric pollutants in both open and closed environments is a major cause of morbidity and mortality that may be both controlled and minimized. Despite growing evidence, several controversies and disagreements exist among the studies that have analyzed the effects of prenatal pollutant exposure. This review article aims to analyze primary scientific evidence of the effects of air pollution during pregnancy and the impact of these effects on the fetus, infant health, and in particular, the respiratory system. We performed a review of articles from the PubMed and Web of Science databases that were published in English within the past 5 years, particularly those related to birth cohorts that began in pregnancy with follow-up until the first years of life. The largest reported effects are associated with prenatal exposure to particulate matter, nitrogen dioxide, and tobacco smoke. The primary effects affect birth weight and other parameters of fetal biometry. There is strong evidence regarding the impact of pollutants on morbidity secondary to respiratory problems. Growing evidence links maternal smoking to childhood asthma and wheezing. The role of passive maternal smoking is less clear. Great heterogeneity exists among studies. There is a need for additional studies on birth cohorts to monitor the relationship between the exposure of pregnant women to pollutants and their children’s progress during the first years of life. Keywords: air pollutants, pregnancy, birth weight, lung disease, tobacco, fetal development

  14. Letter to the Editor: Applications Air Q Model on Estimate Health Effects Exposure to Air Pollutants

    Directory of Open Access Journals (Sweden)

    Gholamreza Goudarzi

    2016-02-01

    Full Text Available Epidemiologic studies in worldwide have measured increases in mortality and morbidity associated with air pollution (1-3. Quantifying the effects of air pollution on the human health in urban area causes an increasingly critical component in policy discussion (4-6. Air Q model was proved to be a valid and reliable tool to predicts health effects related to criteria  pollutants (particulate matter (PM, ozone (O3, nitrogen dioxide (NO2, sulfur dioxide (SO2, and carbon monoxide (CO, determinate  the  potential short term effects of air pollution  and allows the examination of various scenarios in which emission rates of pollutants are varied (7,8. Air Q software provided by the WHO European Centre for Environment and Health (ECEH (9. Air Q model is based on cohort studies and used to estimates of both attributable average reductions in life-span and numbers of mortality and morbidity associated with exposure to air pollution (10,11. Applications

  15. Maternal air pollution exposure and preterm birth in Wuxi, China: Effect modification by maternal age.

    Science.gov (United States)

    Han, Yingying; Jiang, Panhua; Dong, Tianyu; Ding, Xinliang; Chen, Ting; Villanger, Gro Dehli; Aase, Heidi; Huang, Lu; Xia, Yankai

    2018-08-15

    Numerous studies have investigated prenatal air pollution and shown that air pollutants have adverse effect on birth outcomes. However, which trimester was the most sensitive and whether the effect was related to maternal age is still ambiguous. This study aims to explore the association between maternal air pollution exposure during pregnancy and preterm birth, and if this relationship is modified by maternal age. In this retrospective cohort study, we examine the causal relationship of prenatal exposure to air pollutants including particulate matters, which are less than 10 µm (PM 10 ), and ozone (O 3 ), which is one of the gaseous pollutants, on preterm birth by gestational age. A total of 6693 pregnant women were recruited from Wuxi Maternal and Child Health Care Hospital. The participants were dichotomized into child-bearing age group ( = 35 years old) in order to analyze the effect modification by maternal age. Logistic and linear regression models were performed to assess the risk for preterm birth (gestational age air pollution exposure. With adjustment for covariates, the highest level of PM 10 exposure significantly increased the risk of preterm birth by 1.42-fold (95% CI: 1.10, 1.85) compared those with the lowest level in the second trimester. Trimester-specific PM 10 exposure was positively associated with gestational age, whereas O 3 exposure was associated with gestational age in the early pregnancy. When stratified by maternal age, PM 10 exposure was significantly associated with an increased risk of preterm birth only in the advanced age group during pregnancy (OR:2.15, 95% CI: 1.13, 4.07). The results suggested that PM 10 exposure associated with preterm birth was modified by advanced maternal age (OR interaction = 2.00, 95% CI: 1.02, 3.91, P interaction = 0.032). Prenatal air pollution exposure would increase risk of preterm birth and reduced gestational age. Thus, more attention should be paid to the effects of ambient air pollution

  16. Disease and Health Inequalities Attributable to Air Pollutant Exposure in Detroit, Michigan

    Directory of Open Access Journals (Sweden)

    Sheena E. Martenies

    2017-10-01

    Full Text Available The environmental burden of disease is the mortality and morbidity attributable to exposures of air pollution and other stressors. The inequality metrics used in cumulative impact and environmental justice studies can be incorporated into environmental burden studies to better understand the health disparities of ambient air pollutant exposures. This study examines the diseases and health disparities attributable to air pollutants for the Detroit urban area. We apportion this burden to various groups of emission sources and pollutants, and show how the burden is distributed among demographic and socioeconomic subgroups. The analysis uses spatially-resolved estimates of exposures, baseline health rates, age-stratified populations, and demographic characteristics that serve as proxies for increased vulnerability, e.g., race/ethnicity and income. Based on current levels, exposures to fine particulate matter (PM2.5, ozone (O3, sulfur dioxide (SO2, and nitrogen dioxide (NO2 are responsible for more than 10,000 disability-adjusted life years (DALYs per year, causing an annual monetized health impact of $6.5 billion. This burden is mainly driven by PM2.5 and O3 exposures, which cause 660 premature deaths each year among the 945,000 individuals in the study area. NO2 exposures, largely from traffic, are important for respiratory outcomes among older adults and children with asthma, e.g., 46% of air-pollution related asthma hospitalizations are due to NO2 exposures. Based on quantitative inequality metrics, the greatest inequality of health burdens results from industrial and traffic emissions. These metrics also show disproportionate burdens among Hispanic/Latino populations due to industrial emissions, and among low income populations due to traffic emissions. Attributable health burdens are a function of exposures, susceptibility and vulnerability (e.g., baseline incidence rates, and population density. Because of these dependencies, inequality

  17. Air Pollution Exposure Modeling for Epidemiology Studies and Public Health

    Science.gov (United States)

    Air pollution epidemiology studies of ambient fine particulate matter (PM2.5) often use outdoor concentrations as exposure surrogates. These surrogates can induce exposure error since they do not account for (1) time spent indoors with ambient PM2.5 levels attenuated from outdoor...

  18. Effect of Exposure to Air Pollution on Placental Weight in Isfahan-Iran.

    Science.gov (United States)

    Ghasemi-Tehrani, Hatav; Fallah, Setare; Mozafarian, Nafiseh; Miranzadeh, Sareh; Sadeghi, Shokooh; Azidhak, Azam

    2017-06-01

    Objective: To determine the effect of Air Quality Index (AQI) in the first trimester of pregnancy on birth weight, placental weight, and the ratio of placental weight to the birth weight (pw-bw) in Isfahan. Materials and methods: This cross-sectional study was done on 312 consecutive pregnant women in Beheshti Hospital in Isfahan city in 2013. Information on air pollution was received from the Environmental department of Isfahan. Average exposure to air pollution in the first trimester of pregnancy was calculated for eachpregnant woman. In order to compare quantitative and qualitative variables, analysis of variance (ANOVA), and chi-square were applied. After that, the multiple linear regression analysis was used to assess the association the Air Quality Index (AQI) on birth weight, placental weight and the ratio of pw-bw. Potential confounders including age, baby gender, smoking of husband, maternal BMI, maternal occupation, and education and mother's residential area were considered. A statistical significant association were considered for P-value less than 0.05. Results: The findings showed that there is inverse relationship between exposure to air pollution and placental weight in the first trimester of pregnancy after controlling potential confounders (β = -2.57, p-value = 0.008). The inverse relationship between air pollution and the ratio of pw-bw was found. (β = -0.001, p-value = 0.002). Conclusion: The results of this study suggest that air pollution is associated with newborns' health which in turn is a warning alarm for considering some actions in both sides of reducing the air pollution and teaching the pregnant women about the adverse effects of air pollution on the pregnancy outcomes.

  19. Effect of Exposure to Air Pollution on Placental Weight in Isfahan-Iran

    Directory of Open Access Journals (Sweden)

    Hatav Ghasemi Tehrani

    2017-10-01

    Full Text Available Objective: To determine the effect of Air Quality Index (AQI in the first trimester of pregnancy on birth weight, placental weight, and the ratio of placental weight to the birth weight (pw-bw in Isfahan.Materials and methods: This cross-sectional study was done on 312 consecutive pregnant women in Beheshti Hospital in Isfahan city in 2013. Information on air pollution was received from the Environmental department of Isfahan. Average exposure to air pollution in the first trimester of pregnancy was calculated for eachpregnant woman. In order to compare quantitative and qualitative variables, analysis of variance (ANOVA, and chi-square were applied. After that, the multiple linear regression analysis was used to assess the association the Air Quality Index (AQI on birth weight, placental weight and the ratio of pw-bw. Potential confounders including age, baby gender, smoking of husband, maternal BMI, maternal occupation, and education and mother’s residential area were considered. A statistical significant association were considered for P-value less than 0.05.Results: The findings showed that there is inverse relationship between exposure to air pollution and placental weight in the first trimester of pregnancy after controlling potential confounders (β = -2.57, p-value = 0.008. The inverse relationship between air pollution and the ratio of pw-bw was found. (β = -0.001, p-value = 0.002.Conclusion: The results of this study suggest that air pollution is associated with newborns’ health which in turn is a warning alarm for considering some actions in both sides of reducing the air pollution and teaching the pregnant women about the adverse effects of air pollution on the pregnancy outcomes.

  20. Exposure to ambient air pollution--does it affect semen quality and the level of reproductive hormones?

    Science.gov (United States)

    Radwan, Michał; Jurewicz, Joanna; Polańska, Kinga; Sobala, Wojciech; Radwan, Paweł; Bochenek, Michał; Hanke, Wojciech

    2016-01-01

    Ambient air pollution has been associated with a variety of reproductive disorders. However, a limited amount of research has been conducted to examine the association between air pollution and male reproductive outcomes, specifically semen quality. The present study was designed to address the hypothesis that exposure to fluctuating levels of specific air pollutants adversely affects sperm parameters and the level of reproductive hormones. The study population consisted of 327 men who were attending an infertility clinic in Łodź, Poland for diagnostic purposes and who had normal semen concentration of 15-300 mln/ml. All participants were interviewed and provided a semen sample. Air quality data were obtained from AirBase database. The statistically significant association was observed between abnormalities in sperm morphology and exposure to all examined air pollutants (PM10, PM2.5, SO2, NOX, CO). Exposure to air pollutants (PM10, PM2.5, CO, NOx) was also negatively associated with the level of testosterone. Additional exposure to PM2.5, PM10 increase the percentage of cells with immature chromatin (HDS). The present study provides suggestive evidence of an association between ambient air pollution and sperm quality. Further research is needed to explore this association in more detail. Individual precise exposure assessment would be needed for more detailed risk characterization.

  1. Spatial measurement error and correction by spatial SIMEX in linear regression models when using predicted air pollution exposures.

    Science.gov (United States)

    Alexeeff, Stacey E; Carroll, Raymond J; Coull, Brent

    2016-04-01

    Spatial modeling of air pollution exposures is widespread in air pollution epidemiology research as a way to improve exposure assessment. However, there are key sources of exposure model uncertainty when air pollution is modeled, including estimation error and model misspecification. We examine the use of predicted air pollution levels in linear health effect models under a measurement error framework. For the prediction of air pollution exposures, we consider a universal Kriging framework, which may include land-use regression terms in the mean function and a spatial covariance structure for the residuals. We derive the bias induced by estimation error and by model misspecification in the exposure model, and we find that a misspecified exposure model can induce asymptotic bias in the effect estimate of air pollution on health. We propose a new spatial simulation extrapolation (SIMEX) procedure, and we demonstrate that the procedure has good performance in correcting this asymptotic bias. We illustrate spatial SIMEX in a study of air pollution and birthweight in Massachusetts. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Effects of personal air pollution exposure on asthma symptoms, lung function and airway inflammation.

    Science.gov (United States)

    Chambers, L; Finch, J; Edwards, K; Jeanjean, A; Leigh, R; Gonem, S

    2018-03-11

    There is evidence that air pollution increases the risk of asthma hospitalizations and healthcare utilization, but the effects on day-to-day asthma control are not fully understood. We undertook a prospective single-centre panel study to test the hypothesis that personal air pollution exposure is associated with asthma symptoms, lung function and airway inflammation. Thirty-two patients with a clinical diagnosis of asthma were provided with a personal air pollution monitor (Cairclip NO 2 /O 3 ) which was kept on or around their person throughout the 12-week follow-up period. Ambient levels of NO 2 and particulate matter were modelled based upon satellite imaging data. Directly measured ozone, NO 2 and particulate matter levels were obtained from a monitoring station in central Leicester. Participants made daily electronic records of asthma symptoms, peak expiratory flow and exhaled nitric oxide. Spirometry and asthma symptom questionnaires were completed at fortnightly study visits. Data were analysed using linear mixed effects models and cross-correlation. Cairclip exposure data were of good quality with clear evidence of diurnal variability and a missing data rate of approximately 20%. We were unable to detect consistent relationships between personal air pollution exposure and clinical outcomes in the group as a whole. In an exploratory subgroup analysis, total oxidant exposure was associated with increased daytime symptoms in women but not men. We did not find compelling evidence that air pollution exposure impacts on day-to-day clinical control in an unselected asthma population, but further studies are required in larger populations with higher exposure levels. Women may be more susceptible than men to the effects of air pollution, an observation which requires confirmation in future studies. © 2018 John Wiley & Sons Ltd.

  3. Case report: Atrial fibrillation following exposure to ambient air pollution particles

    Science.gov (United States)

    CONTEXT: Exposure to air pollution can result in the onset of atrial fibrillation. CASE PRESENTATION: We present a case of a 58 year old woman who volunteered to participate in a controlled exposure to concentrated ambient particles (CAPs). Twenty minutes into the exposure, there...

  4. Traffic, Air Pollution, Minority and Socio-Economic Status: Addressing Inequities in Exposure and Risk

    Science.gov (United States)

    Pratt, Gregory C.; Vadali, Monika L.; Kvale, Dorian L.; Ellickson, Kristie M.

    2015-01-01

    Higher levels of nearby traffic increase exposure to air pollution and adversely affect health outcomes. Populations with lower socio-economic status (SES) are particularly vulnerable to stressors like air pollution. We investigated cumulative exposures and risks from traffic and from MNRiskS-modeled air pollution in multiple source categories across demographic groups. Exposures and risks, especially from on-road sources, were higher than the mean for minorities and low SES populations and lower than the mean for white and high SES populations. Owning multiple vehicles and driving alone were linked to lower household exposures and risks. Those not owning a vehicle and walking or using transit had higher household exposures and risks. These results confirm for our study location that populations on the lower end of the socio-economic spectrum and minorities are disproportionately exposed to traffic and air pollution and at higher risk for adverse health outcomes. A major source of disparities appears to be the transportation infrastructure. Those outside the urban core had lower risks but drove more, while those living nearer the urban core tended to drive less but had higher exposures and risks from on-road sources. We suggest policy considerations for addressing these inequities. PMID:25996888

  5. Associations between maternal exposure to air pollution and traffic noise and newborn's size at birth

    DEFF Research Database (Denmark)

    Hjortebjerg, Dorrit; Andersen, Anne Marie Nybo; Ketzel, Matthias

    2016-01-01

    BACKGROUND: Maternal exposure to air pollution and traffic noise has been suggested to impair fetal growth, but studies have reported inconsistent findings. Objective To investigate associations between residential air pollution and traffic noise during pregnancy and newborn's size at birth....... METHODS: From a national birth cohort we identified 75,166 live-born singletons born at term with information on the children's size at birth. Residential address history from conception until birth was collected and air pollution (NO2 and NOx) and road traffic noise was modeled at all addresses...... between air pollution and birth weight. Exposure to residential road traffic noise was weakly associated with reduced head circumference, whereas none of the other newborn's size indicators were associated with noise, neither before nor after adjustment for air pollution. CONCLUSIONS: This study indicates...

  6. Genome-Wide Interaction Analysis of Air Pollution Exposure and Childhood Asthma with Functional Follow-up.

    Science.gov (United States)

    Gref, Anna; Merid, Simon K; Gruzieva, Olena; Ballereau, Stéphane; Becker, Allan; Bellander, Tom; Bergström, Anna; Bossé, Yohan; Bottai, Matteo; Chan-Yeung, Moira; Fuertes, Elaine; Ierodiakonou, Despo; Jiang, Ruiwei; Joly, Stéphane; Jones, Meaghan; Kobor, Michael S; Korek, Michal; Kozyrskyj, Anita L; Kumar, Ashish; Lemonnier, Nathanaël; MacIntyre, Elaina; Ménard, Camille; Nickle, David; Obeidat, Ma'en; Pellet, Johann; Standl, Marie; Sääf, Annika; Söderhäll, Cilla; Tiesler, Carla M T; van den Berge, Maarten; Vonk, Judith M; Vora, Hita; Xu, Cheng-Jian; Antó, Josep M; Auffray, Charles; Brauer, Michael; Bousquet, Jean; Brunekreef, Bert; Gauderman, W James; Heinrich, Joachim; Kere, Juha; Koppelman, Gerard H; Postma, Dirkje; Carlsten, Christopher; Pershagen, Göran; Melén, Erik

    2017-05-15

    The evidence supporting an association between traffic-related air pollution exposure and incident childhood asthma is inconsistent and may depend on genetic factors. To identify gene-environment interaction effects on childhood asthma using genome-wide single-nucleotide polymorphism (SNP) data and air pollution exposure. Identified loci were further analyzed at epigenetic and transcriptomic levels. We used land use regression models to estimate individual air pollution exposure (represented by outdoor NO 2 levels) at the birth address and performed a genome-wide interaction study for doctors' diagnoses of asthma up to 8 years in three European birth cohorts (n = 1,534) with look-up for interaction in two separate North American cohorts, CHS (Children's Health Study) and CAPPS/SAGE (Canadian Asthma Primary Prevention Study/Study of Asthma, Genetics and Environment) (n = 1,602 and 186 subjects, respectively). We assessed expression quantitative trait locus effects in human lung specimens and blood, as well as associations among air pollution exposure, methylation, and transcriptomic patterns. In the European cohorts, 186 SNPs had an interaction P asthma development and provided supportive evidence for interaction with air pollution for ADCY2, B4GALT5, and DLG2.

  7. Contribution of smoking and air pollution exposure in urban areas to social differences in respiratory health

    Directory of Open Access Journals (Sweden)

    Ranft Ulrich

    2008-05-01

    Full Text Available Abstract Background Socio-economic status, smoking, and exposure to increased levels of environmental air pollution are associated with adverse effects on respiratory health. We assessed the contribution of occupational exposures, smoking and outdoor air pollution as competing factors for the association between socio-economic status and respiratory health indicators in a cohort of women from the Ruhr area aged 55 at the time of investigation between 1985 and 1990. Methods Data of 1251 women with spirometry and complete questionnaire information about respiratory diseases, smoking and potential confounders were used in the analyses. Exposure to large-scale air pollution was assessed with data from monitoring stations. Exposure to small-scale air pollution was assessed as traffic-related exposure by distance to the nearest major road. Socio-economic status was defined by educational level. Multiple regression models were used to estimate the contribution of occupational exposures, smoking and outdoor air pollution to social differences in respiratory health. Results Women with less than 10 years of school education in comparison to more than 10 years of school education were more often occupationally exposed (16.4% vs. 10.1%, smoked more often (20.3% vs. 13.9%, and lived more often close to major roads (26.0% vs. 22.9%. Long-term exposure to increased levels of PM10 was significantly associated with lower school education. Women with low school education were more likely to suffer from respiratory symptoms and had reduced lung function. In the multivariate analysis the associations between education and respiratory health attenuated after adjusting for occupational exposure, smoking and outdoor air pollution. The crude odds ratio for the association between the lung function indicator FEV1 less than 80% of predicted value and educational level (10 years of school education was 1.83 (95% CI: 1.22–2.74. This changed to 1.56 (95% CI: 1.03–2

  8. Simulation of Population-Based Commuter Exposure to NO2 Using Different Air Pollution Models

    Directory of Open Access Journals (Sweden)

    Martina S. Ragettli

    2014-05-01

    Full Text Available We simulated commuter routes and long-term exposure to traffic-related air pollution during commute in a representative population sample in Basel (Switzerland, and evaluated three air pollution models with different spatial resolution for estimating commute exposures to nitrogen dioxide (NO2 as a marker of long-term exposure to traffic-related air pollution. Our approach includes spatially and temporally resolved data on actual commuter routes, travel modes and three air pollution models. Annual mean NO2 commuter exposures were similar between models. However, we found more within-city and within-subject variability in annual mean (±SD NO2 commuter exposure with a high resolution dispersion model (40 ± 7 µg m−3, range: 21–61 than with a dispersion model with a lower resolution (39 ± 5 µg m−3; range: 24–51, and a land use regression model (41 ± 5 µg m−3; range: 24–54. Highest median cumulative exposures were calculated along motorized transport and bicycle routes, and the lowest for walking. For estimating commuter exposure within a city and being interested also in small-scale variability between roads, a model with a high resolution is recommended. For larger scale epidemiological health assessment studies, models with a coarser spatial resolution are likely sufficient, especially when study areas include suburban and rural areas.

  9. Modeling exposure to air pollution and cardiovascular mortality: the ESCAPE study

    NARCIS (Netherlands)

    Wang, M.|info:eu-repo/dai/nl/345480279

    2013-01-01

    Exposure assessment is one of the key issues for health effect estimates in environmental epidemiology. Recent interest has increased in exposure modeling incorporating Geographic Information System (GIS) data to capture small-scale spatial variability in air pollution concentrations. Land use

  10. Exposure to Mobile Source Air Pollution in Early-life and Childhood Asthma Incidence: The Kaiser Air Pollution and Pediatric Asthma Study.

    Science.gov (United States)

    Pennington, Audrey Flak; Strickland, Matthew J; Klein, Mitchel; Zhai, Xinxin; Bates, Josephine T; Drews-Botsch, Carolyn; Hansen, Craig; Russell, Armistead G; Tolbert, Paige E; Darrow, Lyndsey A

    2018-01-01

    Early-life exposure to traffic-related air pollution exacerbates childhood asthma, but it is unclear what role it plays in asthma development. The association between exposure to primary mobile source pollutants during pregnancy and during infancy and asthma incidence by ages 2 through 6 was examined in the Kaiser Air Pollution and Pediatric Asthma Study, a racially diverse birth cohort of 24,608 children born between 2000 and 2010 and insured by Kaiser Permanente Georgia. We estimated concentrations of mobile source fine particulate matter (PM2.5, µg/m), nitrogen oxides (NOX, ppb), and carbon monoxide (CO, ppm) at the maternal and child residence using a Research LINE source dispersion model for near-surface releases. Asthma was defined using diagnoses and medication dispensings from medical records. We used binomial generalized linear regression to model the impact of exposure continuously and by quintiles on asthma risk. Controlling for covariates and modeling log-transformed exposure, a 2.7-fold increase in first year of life PM2.5 was associated with an absolute 4.1% (95% confidence interval, 1.6%, 6.6%) increase in risk of asthma by age 5. Quintile analysis showed an increase in risk from the first to second quintile, but similar risk across quintiles 2-5. Risk differences increased with follow-up age. Results were similar for NOX and CO and for exposure during pregnancy and the first year of life owing to high correlation. Results provide limited evidence for an association of early-life mobile source air pollution with childhood asthma incidence with a steeper concentration-response relationship observed at lower levels of exposure.

  11. How much, how long, what, and where: air pollution exposure assessment for epidemiologic studies of respiratory disease.

    Science.gov (United States)

    Brauer, Michael

    2010-05-01

    Epidemiology has played an important role in the understanding of air pollution as a risk factor for respiratory disease and in the evidence base for air quality standards. With the widespread availability of genetic information and increasingly sophisticated measurements of molecular markers of adverse effects, there is a need for more specific and precise assessment of exposure to maximize the potential information to be derived from epidemiologic studies. Here advances in air pollution exposure assessment and their applications to studies of respiratory disease are reviewed, with a focus on recent studies of traffic-related air pollution and asthma. Although continuous measurements of personal exposures for all study subjects for a complete study period might be considered the desired "gold standard" for exposure, this is rarely, if ever, achieved due to feasibility constraints. Given this, exposure is typically estimated using models. Recent applications of geospatial (e.g., land use regression) models to studies of respiratory disease have made possible new study designs focused on spatial variability in exposure within urban areas and have provided new insights into the potential role of traffic-related air pollution (TRAP) as a risk factor for the development of childhood asthma. Substantial uncertainty remains, however, regarding what agent(s) within TRAP might be responsible for the observed associations. Future research will require increasing the specificity of exposure assessment to identify the potential roles of individual air pollution components, to elucidate potential mechanisms, and to facilitate studies of mixtures and gene-air pollution interactions.

  12. Associations between lifestyle and air pollution exposure: Potential for confounding in large administrative data cohorts.

    Science.gov (United States)

    Strak, Maciej; Janssen, Nicole; Beelen, Rob; Schmitz, Oliver; Karssenberg, Derek; Houthuijs, Danny; van den Brink, Carolien; Dijst, Martin; Brunekreef, Bert; Hoek, Gerard

    2017-07-01

    Cohorts based on administrative data have size advantages over individual cohorts in investigating air pollution risks, but often lack in-depth information on individual risk factors related to lifestyle. If there is a correlation between lifestyle and air pollution, omitted lifestyle variables may result in biased air pollution risk estimates. Correlations between lifestyle and air pollution can be induced by socio-economic status affecting both lifestyle and air pollution exposure. Our overall aim was to assess potential confounding by missing lifestyle factors on air pollution mortality risk estimates. The first aim was to assess associations between long-term exposure to several air pollutants and lifestyle factors. The second aim was to assess whether these associations were sensitive to adjustment for individual and area-level socioeconomic status (SES), and whether they differed between subgroups of the population. Using the obtained air pollution-lifestyle associations and indirect adjustment methods, our third aim was to investigate the potential bias due to missing lifestyle information on air pollution mortality risk estimates in administrative cohorts. We used a recent Dutch national health survey of 387,195 adults to investigate the associations of PM 10 , PM 2.5 , PM 2.5-10 , PM 2.5 absorbance, OP DTT, OP ESR and NO 2 annual average concentrations at the residential address from land use regression models with individual smoking habits, alcohol consumption, physical activity and body mass index. We assessed the associations with and without adjustment for neighborhood and individual SES characteristics typically available in administrative data cohorts. We illustrated the effect of including lifestyle information on the air pollution mortality risk estimates in administrative cohort studies using a published indirect adjustment method. Current smoking and alcohol consumption were generally positively associated with air pollution. Physical activity

  13. Air pollution and heart rate variability: effect modification by chronic lead exposure.

    Science.gov (United States)

    Park, Sung Kyun; O'Neill, Marie S; Vokonas, Pantel S; Sparrow, David; Wright, Robert O; Coull, Brent; Nie, Huiling; Hu, Howard; Schwartz, Joel

    2008-01-01

    Outdoor air pollution and lead exposure can disturb cardiac autonomic function, but the effects of both these exposures together have not been studied. We examined whether higher cumulative lead exposures, as measured by bone lead, modified cross-sectional associations between air pollution and heart rate variability among 384 elderly men from the Normative Aging Study. We used linear regression, controlling for clinical, demographic, and environmental covariates. We found graded, significant reductions in both high-frequency and low-frequency powers of heart rate variability in relation to ozone and sulfate across the quartiles of tibia lead. Interquartile range increases in ozone and sulfate were associated respectively, with 38% decrease (95% confidence interval = -54.6% to -14.9%) and 22% decrease (-40.4% to 1.6%) in high frequency, and 38% decrease (-51.9% to -20.4%) and 12% decrease (-28.6% to 9.3%) in low frequency, in the highest quartile of tibia lead after controlling for potential confounders. We observed similar but weaker effect modification by tibia lead adjusted for education and cumulative traffic (residuals of the regression of tibia lead on education and cumulative traffic). Patella lead modified only the ozone effect on heart rate variability. People with long-term exposure to higher levels of lead may be more sensitive to cardiac autonomic dysfunction on high air pollution days. Efforts to understand how environmental exposures affect the health of an aging population should consider both current levels of pollution and history of lead exposure as susceptibility factors.

  14. Association between long-term exposure to traffic-related air pollution and subclinical atherosclerosis: the REGICOR study

    NARCIS (Netherlands)

    Rivera, Marcela; Basagaña, Xavier; Aguilera, Inmaculada; Foraster, Maria; Agis, David; de Groot, Eric; Perez, Laura; Mendez, Michelle A.; Bouso, Laura; Targa, Jaume; Ramos, Rafael; Sala, Joan; Marrugat, Jaume; Elosua, Roberto; Künzli, Nino

    2013-01-01

    Epidemiological evidence of the effects of long-term exposure to air pollution on the chronic processes of atherogenesis is limited. We investigated the association of long-term exposure to traffic-related air pollution with subclinical atherosclerosis, measured by carotid intima media thickness

  15. Epigenome-wide meta-analysis of methylation in children related to prenatal NO2 air pollution exposure

    NARCIS (Netherlands)

    Gruzieva, O.; Xu, C.J.; Breton, C.V.; Annesi-Maesano, I.; Antó, J.M.; Auffray, C.; Ballereau, S.; Bellander, T.; Bousquet, J.; Bustamante, M.; Charles, M.A.; de Kluizenaar, Y.; Den Dekker, H.T.; Duijts, L.; Felix, J.F.; Gehring, U.; Guxens, M.; Jaddoe, V.V.W.; Jankipersadsing, S.A.; Merid, S.K.; Kere, J.; Kumar, A.; Lemonnier, N.; Lepeule, J.; Nystad, W.; Page, C.M.; Panasevich, S.; Postma, D.; Slama, R.; Sunyer, J.; Söderhäll, C.; Yao, J.; London, S.J.; Pershagen, G.; Koppelman, G.H.; Melén, E.

    2017-01-01

    Background: Prenatal exposure to air pollution is considered to be associated with adverse effects on child health. This may partly be mediated by mechanisms related to DNA methylation. Objectives: We investigated associations between exposure to air pollution, using nitrogen dioxide (NO2) as

  16. Air pollution exposure, cause-specific deaths and hospitalizations in a highly polluted Italian region.

    Science.gov (United States)

    Carugno, Michele; Consonni, Dario; Randi, Giorgia; Catelan, Dolores; Grisotto, Laura; Bertazzi, Pier Alberto; Biggeri, Annibale; Baccini, Michela

    2016-05-01

    The Lombardy region in northern Italy ranks among the most air polluted areas of Europe. Previous studies showed air pollution short-term effects on all-cause mortality. We examine here the effects of particulate matter with aerodynamic diameter ≤10µm (PM10) and nitrogen dioxide (NO2) exposure on deaths and hospitalizations from specific causes, including cardiac, cerebrovascular and respiratory diseases. We considered air pollution, mortality and hospitalization data for a non-opportunistic sample of 18 highly polluted and most densely populated areas of the region in the years 2003-2006. We obtained area-specific effect estimates for PM10 and NO2 from a Poisson regression model on the daily number of total deaths or cause-specific hospitalizations and then combined them in a Bayesian random-effects meta-analysis. For cause-specific mortality, we applied a case-crossover analysis. Age- and season-specific analyses were also performed. Effect estimates were expressed as percent variation in mortality or hospitalizations associated with a 10µg/m(3) increase in PM10 or NO2 concentration. Natural mortality was positively associated with both pollutants (0.30%, 90% Credibility Interval [CrI]: -0.31; 0.78 for PM10; 0.70%, 90%CrI: 0.10; 1.27 for NO2). Cardiovascular deaths showed a higher percent variation in association with NO2 (1.12%, 90% Confidence Interval [CI]: 0.14; 2.11), while the percent variation for respiratory mortality was highest in association with PM10 (1.64%, 90%CI: 0.35; 2.93). The effect of both pollutants was more evident in the summer season. Air pollution was also associated to hospitalizations, the highest variations being 0.77% (90%CrI: 0.22; 1.43) for PM10 and respiratory diseases, and 1.70% (90%CrI: 0.39; 2.84) for NO2 and cerebrovascular diseases. The effect of PM10 on respiratory hospital admissions appeared to increase with age. For both pollutants, effects on cerebrovascular hospitalizations were more evident in subjects aged less than

  17. Retos futuros de la exposición personal a contaminantes en aire Future challenges regarding personal exposure to air pollutants

    Directory of Open Access Journals (Sweden)

    Pascual Pérez Ballesta

    2005-12-01

    Full Text Available El concepto de exposición de la población como un indicador directo del impacto de la contaminación sobre la salud pública es una consecuencia lógica del hecho de definir como objetivo primordial de las medidas de calidad del aire la protección de la salud del individuo. En este artículo se presenta la exposición a contaminantes en aire en diversos ámbitos como: la higiene industrial, la contaminación de ambientes interiores y su repercusión sobre la legislación de calidad del aire. La disminución del riesgo de salud de la población a la exposición de contaminantes en aire abre numerosos retos a la hora de definir indicadores de exposición, estrategias de control y evaluaciones efectivas de la exposición de la población.The concept of population exposure as a direct indicator of the impact of pollution on public health is a consequence of the fact that the final aim of air quality measurements is the protection of the individuals' health. This article presents a picture of the exposure to air pollutants in different environments: industrial hygiene, indoor pollution and air quality legislation. The reduction of the health risk of the population to air pollution exposure opens new challenges when defining exposure indicators, control strategies and an effective assessment human exposure.

  18. Association between Household Air Pollution Exposure and Chronic Obstructive Pulmonary Disease Outcomes in 13 Low- and Middle-Income Country Settings.

    Science.gov (United States)

    Siddharthan, Trishul; Grigsby, Matthew R; Goodman, Dina; Chowdhury, Muhammad; Rubinstein, Adolfo; Irazola, Vilma; Gutierrez, Laura; Miranda, J Jaime; Bernabe-Ortiz, Antonio; Alam, Dewan; Kirenga, Bruce; Jones, Rupert; van Gemert, Frederick; Wise, Robert A; Checkley, William

    2018-03-01

    Forty percent of households worldwide burn biomass fuels for energy, which may be the most important contributor to household air pollution. To examine the association between household air pollution exposure and chronic obstructive pulmonary disease (COPD) outcomes in 13 resource-poor settings. We analyzed data from 12,396 adult participants living in 13 resource-poor, population-based settings. Household air pollution exposure was defined as using biomass materials as the primary fuel source in the home. We used multivariable regressions to assess the relationship between household air pollution exposure and COPD outcomes, evaluated for interactions, and conducted sensitivity analyses to test the robustness of our findings. Average age was 54.9 years (44.2-59.6 yr across settings), 48.5% were women (38.3-54.5%), prevalence of household air pollution exposure was 38% (0.5-99.6%), and 8.8% (1.7-15.5%) had COPD. Participants with household air pollution exposure were 41% more likely to have COPD (adjusted odds ratio, 1.41; 95% confidence interval, 1.18-1.68) than those without the exposure, and 13.5% (6.4-20.6%) of COPD prevalence may be caused by household air pollution exposure, compared with 12.4% caused by cigarette smoking. The association between household air pollution exposure and COPD was stronger in women (1.70; 1.24-2.32) than in men (1.21; 0.92-1.58). Household air pollution exposure was associated with a higher prevalence of COPD, particularly among women, and it is likely a leading population-attributable risk factor for COPD in resource-poor settings.

  19. Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Pope III, C.A.; Burnett, R.T.; Thun, M.J.; Calle, E.E.; Krewski, D.; Ito, K.; Thurston, G.D. [Brigham Young University, Provo, UT (United States)

    2003-03-06

    A study was conducted to the relationship between long-term exposure to fine particulate air pollution and all-cause, lung cancer, and cardiopulmonary mortality. Vital status and cause of death data were collected by the American Cancer Society as part of the Cancer Prevention II study, an ongoing prospective mortality study, which enrolled approximately 1.2 million adults in 1982. Participants completed a questionnaire detailing individual risk factor data (age, sex, race, weight, height, smoking history, education, marital status, diet, alcohol consumption, and occupational exposures). The risk factor data for approximately 500 000 adults were linked with air pollution data for metropolitan areas throughout the United States and combined with vital status and cause of death data through December 31, 1998. Fine particulate and sulfur oxide-related pollution were found to be associated with all-cause, lung cancer, and cardiopulmonary mortality. Each 10-{mu}g/m{sup 3} elevation in fine particulate air pollution was associated with approximately a 4%, 6%, and 8% increased risk of all-cause, cardiopulmonary, and lung cancer mortality, respectively. Measures of coarse particle fraction and total suspended particles were not consistently associated with mortality. It was concluded that long-term exposure to combustion-related fine particulate air pollution is an important environmental risk factor for cardiopulmonary and lung cancer mortality. 31 refs., 5 figs., 2 tabs.

  20. Commuters' exposure to particulate matter air pollution is affected by mode of transport, fuel type, and route.

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-06-01

    Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. The aim of our study was to assess differences in commuters' exposure to traffic-related air pollution related to transport mode, route, and fuel type. We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Commuters' rush hour exposures were significantly influenced by mode of transport, route, and fuel type.

  1. Implications of Combined Exposure to Household Air Pollution and HIV on Neurocognition in Children

    Directory of Open Access Journals (Sweden)

    Megan K. Suter

    2018-01-01

    Full Text Available Air pollution exposure and HIV infection can each cause neurocognitive insult in children. The purpose of this study was to test whether children with combined high air pollution exposure and perinatal HIV infection have even greater risk of neurocognitive impairment. This was a cross-sectional study of HIV-uninfected unexposed (HUU and HIV-infected children and their caregivers in Nairobi, Kenya. We used a detailed neuropsychological battery to evaluate neurocognitive functioning in several domains. We measured caregiver 24-h personal CO exposure as a proxy for child CO exposure and child urinary 1-hydroxypyrene (1-OHP, a biomarker for exposure to polycyclic aromatic hydrocarbons (PAHs. Median 24-h caregiver CO exposure was 6.1 and 3.7 ppm for 45 HIV-infected (mean age 6.6 years and 49 HUU (mean age 6.7 years, respectively; 48.5% of HIV-infected and 38.6% of HUU had caregiver 24-h CO levels exceeding the WHO recommended level. Median 1-OHP exposure was 0.6 and 0.7 µmol/mol creatinine among HIV-infected and HUU children, respectively. HIV-infected children with high urinary 1-OHP (exceeding 0.68 µmol/mol creatinine had significantly lower global cognition (p = 0.04, delayed memory (p = 0.01, and attention scores (p = 0.003. Among HUU children, urinary 1-OHP and caregiver 24-h caregiver CO were not significantly associated with neurocognitive function. Our findings suggest that combined chronic exposure to air pollutants and perinatal HIV infection may be associated with poorer neurocognitive outcomes. High prevalence of air pollution exposure highlights the need to reduce these exposures.

  2. Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

    2007-02-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media

  3. Modification by antioxidant supplementation of changes in human lung function associated with air pollutant exposure: A systematic review

    Directory of Open Access Journals (Sweden)

    Chow Katherine S

    2011-07-01

    Full Text Available Abstract Background Outdoor air pollution, given its demonstrated negative effects on the respiratory system, is a growing public health concern worldwide, particularly in urban cities. Human exposure to pollutants such as ozone, nitrogen oxides, combustion-related particulate matter and oxides of sulfur is responsible for significant cardiopulmonary morbidity and mortality in both adults and children. Several antioxidants have shown an ability to partially attenuate the negative physiological and functional impacts of air pollutants. This study systematically presents current data on the potential benefits of antioxidant supplementation on lung function outcomes associated with air pollutant exposures in intact humans. Methods Electronic databases (MEDLINE, EMBASE, BIOSIS Previews, Web of Sciences, Environmental Sciences & Pollution Management and TOXNET were systematically searched for all studies published up to April 2009. Search terms relating to the concepts of respiratory tract diseases, respiratory function tests, air pollution, and antioxidants were used. Data was systematically abstracted from original articles that satisfied selection criteria for inclusion. For inclusion, the studies needed to have evaluated human subjects, given supplemental antioxidants, under conditions of known levels of air pollutants with measured lung function before and after antioxidant administration and/or air pollution exposure. Selected studies were summarized and conclusions presented. Results Eight studies investigated the role of antioxidant supplementation on measured lung function outcomes after subject exposure to air pollutants under controlled conditions; 5 of these studies concluded that pollutant-induced airway hyper-responsiveness and diminution in lung function measurements were attenuated by antioxidant supplementation. The remaining five studies took place under ambient (uncontrolled exposures and unanimously concluded that antioxidant

  4. Hybrid Air Quality Modeling Approach For Use in the Near-Road Exposures to Urban Air Pollutant Study (NEXUS)

    Science.gov (United States)

    The Near-road EXposures to Urban air pollutant Study (NEXUS) investigated whether children with asthma living in close proximity to major roadways in Detroit, MI, (particularly near roadways with high diesel traffic) have greater health impacts associated with exposure to air pol...

  5. Traffic-related air pollution exposure and incidence of stroke in four cohorts from Stockholm.

    Science.gov (United States)

    Korek, Michal J; Bellander, Tom D; Lind, Tomas; Bottai, Matteo; Eneroth, Kristina M; Caracciolo, Barbara; de Faire, Ulf H; Fratiglioni, Laura; Hilding, Agneta; Leander, Karin; Magnusson, Patrik K E; Pedersen, Nancy L; Östenson, Claes-Göran; Pershagen, Göran; Penell, Johanna C

    2015-01-01

    We investigated the risk of stroke related to long-term ambient air pollution exposure, in particular the role of various exposure time windows, using four cohorts from Stockholm County, Sweden. In total, 22,587 individuals were recruited from 1992 to 2004 and followed until 2011. Yearly air pollution levels resulting from local road traffic emissions were assessed at participant residences using dispersion models for particulate matter (PM10) and nitrogen oxides (NOX). Cohort-specific hazard ratios were estimated for time-weighted air pollution exposure during different time windows and the incidence of stroke, adjusted for common risk factors, and then meta-analysed. Overall, 868 subjects suffered a non-fatal or fatal stroke during 238,731 person-years of follow-up. An increment of 20 μg/m(3) in estimated annual mean of road-traffic related NOX exposure at recruitment was associated with a hazard ratio of 1.16 (95% CI 0.83-1.61), with evidence of heterogeneity between the cohorts. For PM10, an increment of 10 μg/m(3) corresponded to a hazard ratio of 1.14 (95% CI 0.68-1.90). Time-window analyses did not reveal any clear induction-latency pattern. In conclusion, we found suggestive evidence of an association between long-term exposure to NOX and PM10 from local traffic and stroke at comparatively low levels of air pollution.

  6. Chronic obstructive pulmonary disease and long-term exposure to traffic-related air pollution: a cohort study

    DEFF Research Database (Denmark)

    Andersen, Zorana J; Hvidberg, Martin; Jensen, Steen S

    2011-01-01

    Short-term exposure to air pollution has been associated with exacerbation of chronic obstructive pulmonary disease (COPD), whereas the role of long-term exposures on the development of COPD is not yet fully understood.......Short-term exposure to air pollution has been associated with exacerbation of chronic obstructive pulmonary disease (COPD), whereas the role of long-term exposures on the development of COPD is not yet fully understood....

  7. Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus

    International Nuclear Information System (INIS)

    Robledo, Candace A.; Mendola, Pauline; Yeung, Edwina; Männistö, Tuija; Sundaram, Rajeshwari; Liu, Danping; Ying, Qi; Sherman, Seth; Grantz, Katherine L.

    2015-01-01

    Background: Air pollution has been linked to gestational diabetes mellitus (GDM) but no studies have evaluated impact of preconception and early pregnancy air pollution exposures on GDM risk. Methods: Electronic medical records provided data on 219,952 singleton deliveries to mothers with (n=11,334) and without GDM (n=208,618). Average maternal exposures to particulate matter (PM) ≤ 2.5 μm (PM 2.5 ) and PM 2.5 constituents, PM ≤ 10 μm (PM 10 ), nitrogen oxides (NO x ), carbon monoxide, sulfur dioxide (SO 2 ) and ozone (O 3 ) were estimated for the 3-month preconception window, first trimester, and gestational weeks 1–24 based on modified Community Multiscale Air Quality models for delivery hospital referral regions. Binary regression models with robust standard errors estimated relative risks (RR) for GDM per interquartile range (IQR) increase in pollutant concentrations adjusted for study site, maternal age and race/ethnicity. Results: Preconception maternal exposure to NO X (RR=1.09, 95% CI: 1.04, 1.13) and SO 2 (RR=1.05, 1.01, 1.09) were associated with increased risk of subsequent GDM and risk estimates remained elevated for first trimester exposure. Preconception O 3 was associated with lower risk of subsequent GDM (RR=0.93, 0.90, 0.96) but risks increased later in pregnancy. Conclusion: Maternal exposures to NO x and SO 2 preconception and during the first few weeks of pregnancy were associated with increased GDM risk. O 3 appeared to increase GDM risk in association with mid-pregnancy exposure but not in earlier time windows. These common exposures merit further investigation. - Highlights: • Air pollution may be related to gestational diabetes (GDM). • No prior studies have examined preconception exposure. • Maternal exposure to NO x and SO 2 before conception increased subsequent GDM risk. • NO x and SO 2 exposure in the first seven weeks of pregnancy also increased GDM risk. • Early exposure to O 3 reduced GDM risk but risk increased

  8. A Comparison of Exposure Metrics for Traffic-Related Air Pollutants: Application to Epidemiology Studies in Detroit, Michigan

    Science.gov (United States)

    Vehicles are major sources of air pollutant emissions, and individuals living near large roads endure high exposures and health risks associated with traffic-related air pollutants. Air pollution epidemiology, health risk, environmental justice, and transportation planning studi...

  9. Modelling of human exposure to air pollution in the urban environment: a GPS-based approach.

    Science.gov (United States)

    Dias, Daniela; Tchepel, Oxana

    2014-03-01

    The main objective of this work was the development of a new modelling tool for quantification of human exposure to traffic-related air pollution within distinct microenvironments by using a novel approach for trajectory analysis of the individuals. For this purpose, mobile phones with Global Positioning System technology have been used to collect daily trajectories of the individuals with higher temporal resolution and a trajectory data mining, and geo-spatial analysis algorithm was developed and implemented within a Geographical Information System to obtain time-activity patterns. These data were combined with air pollutant concentrations estimated for several microenvironments. In addition to outdoor, pollutant concentrations in distinct indoor microenvironments are characterised using a probabilistic approach. An example of the application for PM2.5 is presented and discussed. The results obtained for daily average individual exposure correspond to a mean value of 10.6 and 6.0-16.4 μg m(-3) in terms of 5th-95th percentiles. Analysis of the results shows that the use of point air quality measurements for exposure assessment will not explain the intra- and inter-variability of individuals' exposure levels. The methodology developed and implemented in this work provides time-sequence of the exposure events thus making possible association of the exposure with the individual activities and delivers main statistics on individual's air pollution exposure with high spatio-temporal resolution.

  10. Establishing an air pollution monitoring network for intra-urban population exposure assessment : a location-allocation approach

    Energy Technology Data Exchange (ETDEWEB)

    Kanaroglou, P.S. [McMaster Univ., Hamilton, ON (Canada). School of Geography and Geology; Jerrett, M.; Beckerman, B.; Arain, M.A. [McMaster Univ., Hamilton, ON (Canada). School of Geography and Geology]|[McMaster Univ., Hamilton, ON (Canada). McMaster Inst. of Environment and Health; Morrison, J. [Carleton Univ., Ottawa, ON (Canada). School of Computer Science; Gilbert, N.L. [Health Canada, Ottawa, ON (Canada). Air Health Effects Div; Brook, J.R. [Meteorological Service of Canada, Toronto, ON (Canada)

    2004-10-01

    A study was conducted to assess the relation between traffic-generated air pollution and health reactions ranging from childhood asthma to mortality from lung cancer. In particular, it developed a formal method of optimally locating a dense network of air pollution monitoring stations in order to derive an exposure assessment model based on the data obtained from the monitoring stations and related land use, population and biophysical information. The method for determining the locations of 100 nitrogen dioxide monitors in Toronto, Ontario focused on land use, transportation infrastructure and the distribution of at-risk populations. The exposure assessment produced reasonable estimates at the intra-urban scale. This method for locating air pollution monitors effectively maximizes sampling coverage in relation to important socio-demographic characteristics and likely pollution variability. The location-allocation approach integrates many variables into the demand surface to reconfigure a monitoring network and is especially useful for measuring traffic pollutants with fine-scale spatial variability. The method also shows great promise for improving the assessment of exposure to ambient air pollution in epidemiologic studies. 19 refs., 3 tabs., 4 figs.

  11. Danger in the Air: Air Pollution and Cognitive Dysfunction.

    Science.gov (United States)

    Cipriani, Gabriele; Danti, Sabrina; Carlesi, Cecilia; Borin, Gemma

    2018-01-01

    Clean air is considered to be a basic requirement for human health and well-being. To examine the relationship between cognitive performance and ambient pollution exposure. Studies were identified through a systematic search of online scientific databases, in addition to a manual search of the reference lists from the identified papers. Air pollution is a multifaceted toxic chemical mixture capable of assaulting the central nervous system. Despite being a relatively new area of investigation, overall, there is mounting evidence implicating adverse effects of air pollution on cognitive function in both adults and children. Consistent evidence showed that exposure to air pollution, specifically exposure to particulate matter, caused poor age-related cognitive performance. Living in areas with high levels of air pollution has been linked to markers of neuroinflammation and neuropathology that are associated with neurodegenerative conditions such as Alzheimer's disease-like brain pathologies.

  12. Does respiratory health contribute to the effects of long-term air pollution exposure on cardiovascular mortality?

    Directory of Open Access Journals (Sweden)

    Heinrich Joachim

    2007-03-01

    Full Text Available Abstract Background There is growing epidemiological evidence that short-term and long-term exposure to high levels of air pollution may increase cardiovascular morbidity and mortality. In addition, epidemiological studies have shown an association between air pollution exposure and respiratory health. To what extent the association between cardiovascular mortality and air pollution is driven by the impact of air pollution on respiratory health is unknown. The aim of this study was to investigate whether respiratory health at baseline contributes to the effects of long-term exposure to high levels of air pollution on cardiovascular mortality in a cohort of elderly women. Method We analyzed data from 4750 women, aged 55 at the baseline investigation in the years 1985–1994. 2593 of these women had their lung function tested by spirometry. Respiratory diseases and symptoms were asked by questionnaire. Ambient air pollution exposure was assessed by the concentrations of NO2 and total suspended particles at fixed monitoring sites and by the distance of residency to a major road. A mortality follow-up of these women was conducted between 2001 and 2003. For the statistical analysis, Cox' regression was used. Results Women with impaired lung function or pre-existing respiratory diseases had a higher risk of dying from cardiovascular causes. The impact of impaired lung function declined over time. The risk ratio (RR of women with forced expiratory volume in one second (FEV1 of less than 80% predicted to die from cardiovascular causes was RR = 3.79 (95%CI: 1.64–8.74 at 5 years survival time and RR = 1.35 (95%CI: 0.66–2.77 at 12 years. The association between air pollution levels and cardiovascular death rate was strong and statistically significant. However, this association did only change marginally when including indicators of respiratory health into the regression analysis. Furthermore, no interaction between air pollution and respiratory health

  13. Does respiratory health contribute to the effects of long-term air pollution exposure on cardiovascular mortality?

    Science.gov (United States)

    Schikowski, Tamara; Sugiri, Dorothea; Ranft, Ulrich; Gehring, Ulrike; Heinrich, Joachim; Wichmann, H-Erich; Krämer, Ursula

    2007-03-07

    There is growing epidemiological evidence that short-term and long-term exposure to high levels of air pollution may increase cardiovascular morbidity and mortality. In addition, epidemiological studies have shown an association between air pollution exposure and respiratory health. To what extent the association between cardiovascular mortality and air pollution is driven by the impact of air pollution on respiratory health is unknown. The aim of this study was to investigate whether respiratory health at baseline contributes to the effects of long-term exposure to high levels of air pollution on cardiovascular mortality in a cohort of elderly women. We analyzed data from 4750 women, aged 55 at the baseline investigation in the years 1985-1994. 2593 of these women had their lung function tested by spirometry. Respiratory diseases and symptoms were asked by questionnaire. Ambient air pollution exposure was assessed by the concentrations of NO2 and total suspended particles at fixed monitoring sites and by the distance of residency to a major road. A mortality follow-up of these women was conducted between 2001 and 2003. For the statistical analysis, Cox' regression was used. Women with impaired lung function or pre-existing respiratory diseases had a higher risk of dying from cardiovascular causes. The impact of impaired lung function declined over time. The risk ratio (RR) of women with forced expiratory volume in one second (FEV1) of less than 80% predicted to die from cardiovascular causes was RR = 3.79 (95%CI: 1.64-8.74) at 5 years survival time and RR = 1.35 (95%CI: 0.66-2.77) at 12 years. The association between air pollution levels and cardiovascular death rate was strong and statistically significant. However, this association did only change marginally when including indicators of respiratory health into the regression analysis. Furthermore, no interaction between air pollution and respiratory health on cardiovascular mortality indicating a higher risk of

  14. Prenatal exposure to outdoor air pollution and child behavioral problems at school age in Japan.

    Science.gov (United States)

    Yorifuji, Takashi; Kashima, Saori; Diez, Midory Higa; Kado, Yoko; Sanada, Satoshi; Doi, Hiroyuki

    2017-02-01

    Recent studies suggest positive associations between prenatal exposure to ambient air pollution and neurodevelopment of children, but evidence on the adverse effects of exposure to air pollution on child neurobehavioral development remains limited. We thus examined associations between prenatal exposure to outdoor air pollution and child behavioral problems at school age, using data from a nationwide population-based longitudinal survey in Japan, where participants were recruited in 2001 and are continuously followed. Suspended particulate matter (SPM), nitrogen dioxide, and sulfur dioxide concentrations during the 9months before birth were obtained at municipality level and assigned to those participants born in the corresponding municipality. We analyzed data from singleton births with linked pollution data available (e.g., n=33,911 for SPM). We used responses to survey questions about behavioral problems at age 8years. We conducted multilevel logistic regression analysis, adjusting for individual and municipality-level variables. Air pollution exposure during gestation was positively associated with risk for behavioral problems related to attention and delinquent or aggressive behavior. In the fully adjusted models, odds ratios following a one-interquartile-range increase in SPM were 1.06 (95% confidence interval: 1.01, 1.11) for interrupting others, 1.09 (1.03, 1.15) for failure to pay attention when crossing a street, 1.06 (1.01, 1.11) for lying, and 1.07 (1.02, 1.13) for causing public disturbance. Prenatal exposure to outdoor air pollution was associated with behavioral problems related to attention and delinquent or aggressive behavior at age 8years in a nationally representative sample in Japan. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Historic air pollution exposure and long-term mortality risks in England and Wales: prospective longitudinal cohort study.

    Science.gov (United States)

    Hansell, Anna; Ghosh, Rebecca E; Blangiardo, Marta; Perkins, Chloe; Vienneau, Danielle; Goffe, Kayoung; Briggs, David; Gulliver, John

    2016-04-01

    Long-term air pollution exposure contributes to mortality but there are few studies examining effects of very long-term (>25 years) exposures. This study investigated modelled air pollution concentrations at residence for 1971, 1981, 1991 (black smoke (BS) and SO2) and 2001 (PM10) in relation to mortality up to 2009 in 367,658 members of the longitudinal survey, a 1% sample of the English Census. Outcomes were all-cause (excluding accidents), cardiovascular (CV) and respiratory mortality. BS and SO2 exposures remained associated with mortality decades after exposure-BS exposure in 1971 was significantly associated with all-cause (OR 1.02 (95% CI 1.01 to 1.04)) and respiratory (OR 1.05 (95% CI 1.01 to 1.09)) mortality in 2002-2009 (ORs expressed per 10 μg/m(3)). Largest effect sizes were seen for more recent exposures and for respiratory disease. PM10 exposure in 2001 was associated with all outcomes in 2002-2009 with stronger associations for respiratory (OR 1.22 (95% CI 1.04 to 1.44)) than CV mortality (OR 1.12 (95% CI 1.01 to 1.25)). Adjusting PM10 for past BS and SO2 exposures in 1971, 1981 and 1991 reduced the all-cause OR to 1.16 (95% CI 1.07 to 1.26) while CV and respiratory associations lost significance, suggesting confounding by past air pollution exposure, but there was no evidence for effect modification. Limitations include limited information on confounding by smoking and exposure misclassification of historic exposures. This large national study suggests that air pollution exposure has long-term effects on mortality that persist decades after exposure, and that historic air pollution exposures influence current estimates of associations between air pollution and mortality. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  16. Beneficial cardiovascular effects of reducing exposure to particulate air pollution with a simple facemask.

    Science.gov (United States)

    Langrish, Jeremy P; Mills, Nicholas L; Chan, Julian Kk; Leseman, Daan Lac; Aitken, Robert J; Fokkens, Paul Hb; Cassee, Flemming R; Li, Jing; Donaldson, Ken; Newby, David E; Jiang, Lixin

    2009-03-13

    Exposure to air pollution is an important risk factor for cardiovascular morbidity and mortality, and is associated with increased blood pressure, reduced heart rate variability, endothelial dysfunction and myocardial ischaemia. Our objectives were to assess the cardiovascular effects of reducing air pollution exposure by wearing a facemask. In an open-label cross-over randomised controlled trial, 15 healthy volunteers (median age 28 years) walked on a predefined city centre route in Beijing in the presence and absence of a highly efficient facemask. Personal exposure to ambient air pollution and exercise was assessed continuously using portable real-time monitors and global positional system tracking respectively. Cardiovascular effects were assessed by continuous 12-lead electrocardiographic and ambulatory blood pressure monitoring. Ambient exposure (PM2.5 86 +/- 61 vs 140 +/- 113 mug/m3; particle number 2.4 +/- 0.4 vs 2.3 +/- 0.4 x 104 particles/cm3), temperature (29 +/- 1 vs 28 +/- 3 degrees C) and relative humidity (63 +/- 10 vs 64 +/- 19%) were similar (P > 0.05 for all) on both study days. During the 2-hour city walk, systolic blood pressure was lower (114 +/- 10 vs 121 +/- 11 mmHg, P 0.05). Over the 24-hour period heart rate variability increased (SDNN 65.6 +/- 11.5 vs 61.2 +/- 11.4 ms, P pollution on blood pressure and heart rate variability. This simple intervention has the potential to protect susceptible individuals and prevent cardiovascular events in cities with high concentrations of ambient air pollution.

  17. A geographic approach to modelling human exposure to traffic air pollution using GIS

    Energy Technology Data Exchange (ETDEWEB)

    Solvang Jensen, S.

    1998-10-01

    A new exposure model has been developed that is based on a physical, single media (air) and single source (traffic) micro environmental approach that estimates traffic related exposures geographically with the postal address as exposure indicator. The micro environments: residence, workplace and street (road user exposure) may be considered. The model estimates outdoor levels for selected ambient air pollutants (benzene, CO, NO{sub 2} and O{sub 3}). The influence of outdoor air pollution on indoor levels can be estimated using average (I/O-ratios. The model has a very high spatial resolution (the address), a high temporal resolution (one hour) and may be used to predict past, present and future exposures. The model may be used for impact assessment of control measures provided that the changes to the model inputs are obtained. The exposure model takes advantage of a standard Geographic Information System (GIS) (ArcView and Avenue) for generation of inputs, for visualisation of input and output, and uses available digital maps, national administrative registers and a local traffic database, and the Danish Operational Street Pollution Model (OSPM). The exposure model presents a new approach to exposure determination by integration of digital maps, administrative registers, a street pollution model and GIS. New methods have been developed to generate the required input parameters for the OSPM model: to geocode buildings using cadastral maps and address points, to automatically generate street configuration data based on digital maps, the BBR and GIS; to predict the temporal variation in traffic and related parameters; and to provide hourly background levels for the OSPM model. (EG) 109 refs.

  18. Socioeconomic inequalities and exposure to traffic-related air pollution in the city of São Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    Mateus Habermann

    2014-01-01

    Full Text Available Air pollution is a leading public health concern. In addition, poor populations have been reported as showing increased exposure to such pollution. The current study thus aimed to evaluate the socioeconomic status of the population exposed to vehicle-related air pollution in the city of São Paulo, Brazil. The study used data from the 2010 Census on head-of-household’s mean monthly income and the percentage of households connected to the sewage system. Exposure to air pollutants was estimated according to traffic density in the census tract plus a 200m surrounding buffer. The relationship between exposure and socioeconomic variables was analyzed by the Kruskal-Wallis test. Exposure increased with increasing socioeconomic status (p < 0.001. The population with the highest socioeconomic status lives in the most polluted areas of the city. However, place of residence alone is not capable of measuring exposure. The study suggests that future epidemiological studies include other indicators of vulnerability.

  19. Exposure-response functions for health effects of air pollutants based on epidemiological findings

    Energy Technology Data Exchange (ETDEWEB)

    Aunan, K

    1995-10-01

    The objective of this report is to provide exposure-response functions for health effects and air pollution, which can be used in cost-effectiveness analyses of abatement measures. When cost-effective abatement strategies for air pollution are analyzed, and when air quality standards are set, it is important to have quantitative knowledge about health damage. In spite of their shortcomings, epidemiological studies provide a sound basis for exposure-response functions because they involve a random cross section of the population. In this report the exposure-response functions apply to the relation between air pollutant concentrations and relative effect frequencies, and involve the following health effect end-points: acute and chronic respiratory symptoms in children and adults, asthma episodes in children and adults, eye irritations, headache, lung damage in children, excess mortality, lung cancer incidence. The effects are attributed to one indicator component, which in many cases is particles, but for some effects NO{sub 2}, SO{sub 2}, O{sub 3}, or CO. A calculation procedure is suggested which makes it possible to estimate excess annual symptom-days for short-term effects using the annual average concentration. 103 refs., 1 table

  20. In-traffic air pollution exposure and CC16, blood coagulation, and inflammation markers in healthy adults.

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Meliefste, Kees; Krop, Esmeralda; van den Hazel, Peter; Brunekreef, Bert

    2011-10-01

    Exposure to traffic-related air pollution is a risk factor for cardiovascular events, probably involving mechanisms of inflammation and coagulation. Little is known about effects of the short exposures encountered while participating in traffic. The objective of the study was to examine effects of exposure of commuters to air pollution on cardiovascular biomarkers. Thirty-four healthy adult volunteers commuted for 2 hr by bus, car, or bicycle during the morning rush hour. During the commute, exposure to particle number, particulate matter (PM) ≤ 2.5 µm in aerodynamic diameter (PM2.5), PM ≤ 10 µm in diameter (PM10), and soot was measured. We estimated inhaled doses based on heart rate monitoring. Shortly before exposure and 6 hr after exposure, blood samples were taken and analyzed for CC16 (Clara cell protein 16), blood cell count, coagulation markers, and inflammation markers. Between June 2007 and June 2008, 352 pre- and postexposure blood samples were collected on 47 test days. We used mixed models to analyze the associations between exposure and changes in health parameters. We observed no consistent associations between the air pollution exposures and doses and the various biomarkers that we investigated. Air pollution exposure during commuting was not consistently associated with acute changes in inflammation markers, blood cell counts, or blood coagulation markers.

  1. Health impact assessment of air pollution using a dynamic exposure profile: Implications for exposure and health impact estimates

    International Nuclear Information System (INIS)

    Dhondt, Stijn; Beckx, Carolien; Degraeuwe, Bart; Lefebvre, Wouter; Kochan, Bruno; Bellemans, Tom; Int Panis, Luc; Macharis, Cathy; Putman, Koen

    2012-01-01

    In both ambient air pollution epidemiology and health impact assessment an accurate assessment of the population exposure is crucial. Although considerable advances have been made in assessing human exposure outdoors, the assessments often do not consider the impact of individual travel behavior on such exposures. Population-based exposures to NO 2 and O 3 using only home addresses were compared with models that integrate all time-activity patterns—including time in commute—for Flanders and Brussels. The exposure estimates were used to estimate the air pollution impact on years of life lost due to respiratory mortality. Health impact of NO 2 using an exposure that integrates time-activity information was on average 1.2% higher than when assuming that people are always at their home address. For ozone the overall estimated health impact was 0.8% lower. Local differences could be much larger, with estimates that differ up to 12% from the exposure using residential addresses only. Depending on age and gender, deviations from the population average were seen. Our results showed modest differences on a regional level. At the local level, however, time-activity patterns indicated larger differences in exposure and health impact estimates, mainly for people living in more rural areas. These results suggest that for local analyses the dynamic approach can contribute to an improved assessment of the health impact of various types of pollution and to the understanding of exposure differences between population groups. - Highlights: ► Exposure to ambient air pollution was assessed integrating population mobility. ► This dynamic exposure was integrated into a health impact assessment. ► Differences between the dynamic and residential exposure were quantified. ► Modest differences in health impact were found at a regional level. ► At municipal level larger differences were found, influenced by gender and age.

  2. Cyclist route choice, traffic-related air pollution, and lung function: a scripted exposure study.

    Science.gov (United States)

    Jarjour, Sarah; Jerrett, Michael; Westerdahl, Dane; de Nazelle, Audrey; Hanning, Cooper; Daly, Laura; Lipsitt, Jonah; Balmes, John

    2013-02-07

    A travel mode shift to active transportation such as bicycling would help reduce traffic volume and related air pollution emissions as well as promote increased physical activity level. Cyclists, however, are at risk for exposure to vehicle-related air pollutants due to their proximity to vehicle traffic and elevated respiratory rates. To promote safe bicycle commuting, the City of Berkeley, California, has designated a network of residential streets as "Bicycle Boulevards." We hypothesized that cyclist exposure to air pollution would be lower on these Bicycle Boulevards when compared to busier roads and this elevated exposure may result in reduced lung function. We recruited 15 healthy adults to cycle on two routes - a low-traffic Bicycle Boulevard route and a high-traffic route. Each participant cycled on the low-traffic route once and the high-traffic route once. We mounted pollutant monitors and a global positioning system (GPS) on the bicycles. The monitors were all synced to GPS time so pollutant measurements could be spatially plotted. We measured lung function using spirometry before and after each bike ride. We found that fine and ultrafine particulate matter, carbon monoxide, and black carbon were all elevated on the high-traffic route compared to the low-traffic route. There were no corresponding changes in the lung function of healthy non-asthmatic study subjects. We also found that wind-speed affected pollution concentrations. These results suggest that by selecting low-traffic Bicycle Boulevards instead of heavily trafficked roads, cyclists can reduce their exposure to vehicle-related air pollution. The lung function results indicate that elevated pollutant exposure may not have acute negative effects on healthy cyclists, but further research is necessary to determine long-term effects on a more diverse population. This study and broader field of research have the potential to encourage policy-makers and city planners to expand infrastructure to

  3. Spatiotemporal air pollution exposure assessment for a Canadian population-based lung cancer case-control study

    Directory of Open Access Journals (Sweden)

    Hystad Perry

    2012-04-01

    Full Text Available Abstract Background Few epidemiological studies of air pollution have used residential histories to develop long-term retrospective exposure estimates for multiple ambient air pollutants and vehicle and industrial emissions. We present such an exposure assessment for a Canadian population-based lung cancer case-control study of 8353 individuals using self-reported residential histories from 1975 to 1994. We also examine the implications of disregarding and/or improperly accounting for residential mobility in long-term exposure assessments. Methods National spatial surfaces of ambient air pollution were compiled from recent satellite-based estimates (for PM2.5 and NO2 and a chemical transport model (for O3. The surfaces were adjusted with historical annual air pollution monitoring data, using either spatiotemporal interpolation or linear regression. Model evaluation was conducted using an independent ten percent subset of monitoring data per year. Proximity to major roads, incorporating a temporal weighting factor based on Canadian mobile-source emission estimates, was used to estimate exposure to vehicle emissions. A comprehensive inventory of geocoded industries was used to estimate proximity to major and minor industrial emissions. Results Calibration of the national PM2.5 surface using annual spatiotemporal interpolation predicted historical PM2.5 measurement data best (R2 = 0.51, while linear regression incorporating the national surfaces, a time-trend and population density best predicted historical concentrations of NO2 (R2 = 0.38 and O3 (R2 = 0.56. Applying the models to study participants residential histories between 1975 and 1994 resulted in mean PM2.5, NO2 and O3 exposures of 11.3 μg/m3 (SD = 2.6, 17.7 ppb (4.1, and 26.4 ppb (3.4 respectively. On average, individuals lived within 300 m of a highway for 2.9 years (15% of exposure-years and within 3 km of a major industrial emitter for 6.4 years (32% of exposure-years. Approximately 50

  4. Polluted air--outdoors and indoors.

    Science.gov (United States)

    Myers, I; Maynard, R L

    2005-09-01

    Many air pollutants which are considered important in ambient (outdoor) air are also found, sometimes at higher levels, in indoor air. With demanding standards having been set for many of these pollutants, both in the workplace and ambient air, consideration of the problems posed by indoor pollution is gaining pace. Studies on exposure to pollutants found in the indoor domestic environment are increasing and are contributing to an already significant compilation of datasets. Improvement in monitoring techniques has helped this process. Documented reports of fatalities from carbon monoxide poisonings are still worrying. However, studies on health effects of non-fatal, long term, low dose, indoor exposure to carbon monoxide and other pollutants, are still inconclusive and too infrequently documented. Of particular concern are the levels of air pollutants found in the domestic indoor environment in developing countries, despite simple interventions such as vented stoves having shown their value. Exposure to biomass smoke is still a level that would be considered unacceptable on health grounds in developed countries. As in the occupational environment, steps need to be taken to control the risks from exposure to the harmful constituents of indoor air in the home. However, the difficulty regarding regulation of the domestic indoor environment is its inherent privacy. Monitoring levels of pollutants in the home and ensuring regulations are adhered to, would likely prove difficult, especially when individual behaviour patterns and activities have the greatest influence on pollutant levels in indoor air. To this end, the Department of Health is developing guidance on indoor air pollution to encourage the reduction of pollutant levels in indoor domestic air. The importance of the effects of domestic indoor air on health and its contribution to the health of the worker are increasingly appreciated. Occupational physicians, by training and interest, are well placed to extend

  5. A Numerical Simulation of Traffic-Related Air Pollution Exposures in Urban Street Canyons

    Science.gov (United States)

    Liu, J.; Fu, X.; Tao, S.

    2016-12-01

    Urban street canyons are usually associated with intensive vehicle emissions. However, the high buildings successively along both sides of a street block the dispersion of traffic-generated air pollutants, which enhances human exposure and adversely affects human health. In this study, an urban scale traffic pollution dispersion model is developed with the consideration of street distribution, canyon geometry, background meteorology, traffic assignment, traffic emissions and air pollutant dispersion. Vehicle exhausts generated from traffic flows will first disperse inside a street canyon along the micro-scale wind field (generated by computational fluid dynamics (CFD) model) and then leave the street canyon and further disperse over the urban area. On the basis of this model, the effects of canyon geometry on the distribution of NOx and CO from traffic emissions were studied over the center of Beijing, China. We found that an increase of building height along the streets leads to higher pollution levels inside streets and lower pollution levels outside, resulting in higher domain-averaged concentrations over the area. In addition, street canyons with equal (or highly uneven) building heights on two sides of a street tend to lower the urban-scale air pollution concentrations at pedestrian level. Our results indicate that canyon geometry strongly influences human exposure to traffic pollutants in the populated urban area. Carefully planning street layout and canyon geometry in consideration of traffic demand as well as local weather pattern may significantly reduce the chances of unhealthy air being inhaled by urban residents.

  6. Air pollution epidemiology. Assessment of health effects and risks

    Energy Technology Data Exchange (ETDEWEB)

    Katsouyanni, K. [Athens Univ. (Greece). Dept. of Hygiene and Epidemiology

    1995-12-31

    Air pollution epidemiology is the study of the occurrence and distribution of health outcomes in association with community air pollution exposure. It is therefore specific in the exposure variable. Air pollution health effects became evident during high air pollution episodes which occurred in the first decades of our century. Since then, legal and other control measures have led to lower air pollution levels. However, recent results from several studies indicate that lower levels of air pollution than the previously considered safe have serious adverse health effects. Although, there is increasingly agreement that air pollution, at levels measured today, affects health, there is still a lot to be understood concerning specific causal pollutants, biologic mechanisms involved and sensitive groups of individuals. The extent of potential confounding, time-considerations in air pollution effects, individual variation in air pollution exposure and exposure misclassification are some factors which complicate the study of these issues. (author)

  7. Air pollution epidemiology. Assessment of health effects and risks

    Energy Technology Data Exchange (ETDEWEB)

    Katsouyanni, K [Athens Univ. (Greece). Dept. of Hygiene and Epidemiology

    1996-12-31

    Air pollution epidemiology is the study of the occurrence and distribution of health outcomes in association with community air pollution exposure. It is therefore specific in the exposure variable. Air pollution health effects became evident during high air pollution episodes which occurred in the first decades of our century. Since then, legal and other control measures have led to lower air pollution levels. However, recent results from several studies indicate that lower levels of air pollution than the previously considered safe have serious adverse health effects. Although, there is increasingly agreement that air pollution, at levels measured today, affects health, there is still a lot to be understood concerning specific causal pollutants, biologic mechanisms involved and sensitive groups of individuals. The extent of potential confounding, time-considerations in air pollution effects, individual variation in air pollution exposure and exposure misclassification are some factors which complicate the study of these issues. (author)

  8. Validation of traffic-related air pollution exposure estimates for long-term studies

    NARCIS (Netherlands)

    Van Roosbroeck, S.

    2007-01-01

    This thesis describes a series of studies that investigate the validity of using outdoor concentrations and/or traffic-related indicator exposure variables as a measure for exposure assessment in epidemiological studies on the long-term effect of traffic-related air pollution. A pilot study was

  9. Outdoor air pollution and sperm quality.

    Science.gov (United States)

    Lafuente, Rafael; García-Blàquez, Núria; Jacquemin, Bénédicte; Checa, Miguel Angel

    2016-09-15

    Exposure to air pollution has been clearly associated with a range of adverse health effects, including reproductive toxicity, but its effects on male semen quality are still unclear. We performed a systematic review (up to June 2016) to assess the impact of air pollutants on sperm quality. We included 17 semi-ecological, panel, and cohort studies, assessing outdoor air pollutants, such as PM2.5, PM10, NOx, SO2, and O3, and their effects on DNA fragmentation, sperm count, sperm motility, and sperm morphology. Thirteen studies assessed air pollution exposure measured environmentally, and six used biomarkers of air pollution exposure (two did both). We rated the studies using the Newcastle-Ottawa Scale and assessed with the exposure method. Taking into account these factors and the number of studies finding significant results (positive or negative), the evidence supporting an effect of air pollution on DNA fragmentation is weak but suggestive, on sperm motility is limited and probably inexistent, on lower sperm count is inconclusive, and on sperm morphology is very suggestive. Because of the diversity of air pollutants and sperm parameters, and the studies' designs, we were unable to perform a meta-analysis. In summary, most studies concluded that outdoor air pollution affects at least one of the four semen quality parameters included in the review. However, results lack consistency, and furthermore, studies were not comparable. Studies using standardized air pollution and semen measures are required to obtain more reliable conclusions. CRD42015007175. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  10. Preconception and early pregnancy air pollution exposures and risk of gestational diabetes mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Robledo, Candace A. [Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20892 (United States); Mendola, Pauline, E-mail: pauline.mendola@mail.nih.gov [Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20892 (United States); Yeung, Edwina; Männistö, Tuija [Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20892 (United States); Sundaram, Rajeshwari; Liu, Danping [Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Biostatistics and Bioinformatics Branch, Rockville, MD 20892 (United States); Ying, Qi [Texas A& M University, Zachary Department of Civil Engineering, College Station, TX 77845 (United States); Sherman, Seth [The EMMES Corporation, Rockville, MD 20852 (United States); Grantz, Katherine L. [Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Division of Intramural Population Health Research, Epidemiology Branch, Rockville, MD 20892 (United States)

    2015-02-15

    Background: Air pollution has been linked to gestational diabetes mellitus (GDM) but no studies have evaluated impact of preconception and early pregnancy air pollution exposures on GDM risk. Methods: Electronic medical records provided data on 219,952 singleton deliveries to mothers with (n=11,334) and without GDM (n=208,618). Average maternal exposures to particulate matter (PM) ≤ 2.5 μm (PM{sub 2.5}) and PM{sub 2.5} constituents, PM ≤ 10 μm (PM{sub 10}), nitrogen oxides (NO{sub x}), carbon monoxide, sulfur dioxide (SO{sub 2}) and ozone (O{sub 3}) were estimated for the 3-month preconception window, first trimester, and gestational weeks 1–24 based on modified Community Multiscale Air Quality models for delivery hospital referral regions. Binary regression models with robust standard errors estimated relative risks (RR) for GDM per interquartile range (IQR) increase in pollutant concentrations adjusted for study site, maternal age and race/ethnicity. Results: Preconception maternal exposure to NO{sub X} (RR=1.09, 95% CI: 1.04, 1.13) and SO{sub 2} (RR=1.05, 1.01, 1.09) were associated with increased risk of subsequent GDM and risk estimates remained elevated for first trimester exposure. Preconception O{sub 3} was associated with lower risk of subsequent GDM (RR=0.93, 0.90, 0.96) but risks increased later in pregnancy. Conclusion: Maternal exposures to NO{sub x} and SO{sub 2} preconception and during the first few weeks of pregnancy were associated with increased GDM risk. O{sub 3} appeared to increase GDM risk in association with mid-pregnancy exposure but not in earlier time windows. These common exposures merit further investigation. - Highlights: • Air pollution may be related to gestational diabetes (GDM). • No prior studies have examined preconception exposure. • Maternal exposure to NO{sub x} and SO{sub 2} before conception increased subsequent GDM risk. • NO{sub x} and SO{sub 2} exposure in the first seven weeks of pregnancy also increased

  11. Short-Term Exposure to Air Pollution and Lung Function in the Framingham Heart Study

    Science.gov (United States)

    Ljungman, Petter L.; Wilker, Elissa H.; Gold, Diane R.; Schwartz, Joel D.; Koutrakis, Petros; Washko, George R.; O’Connor, George T.; Mittleman, Murray A.

    2013-01-01

    Rationale: Short-term exposure to ambient air pollution has been associated with lower lung function. Few studies have examined whether these associations are detectable at relatively low levels of pollution within current U.S. Environmental Protection Agency (EPA) standards. Objectives: To examine exposure to ambient air pollutants within EPA standards and lung function in a large cohort study. Methods: We included 3,262 participants of the Framingham Offspring and Third Generation cohorts living within 40 km of the Harvard Supersite monitor in Boston, Massachusetts (5,358 examinations, 1995–2011) who were not current smokers, with previous-day pollutant levels in compliance with EPA standards. We compared lung function (FEV1 and FVC) after previous-day exposure to particulate matter less than 2.5 μm in diameter (PM2.5), nitrogen dioxide (NO2), and ozone (O3) in the “moderate” range of the EPA Air Quality Index to exposure in the “good” range. We also examined linear relationships between moving averages of pollutant concentrations 1, 2, 3, 5, and 7 days before spirometry and lung function. Measurements and Main Results: Exposure to pollutant concentrations in the “moderate” range of the EPA Air Quality Index was associated with a 20.1-ml lower FEV1 for PM2.5 (95% confidence interval [CI], −33.4, −6.9), a 30.6-ml lower FEV1 for NO2 (95% CI, −60.9, −0.2), and a 55.7-ml lower FEV1 for O3 (95% CI, −100.7, −10.8) compared with the “good” range. The 1- and 2-day moving averages of PM2.5, NO2, and O3 before testing were negatively associated with FEV1 and FVC. Conclusions: Short-term exposure to PM2.5, NO2, and O3 within current EPA standards was associated with lower lung function in this cohort of adults. PMID:24200465

  12. Measuring combined exposure to environmental pressures in urban areas: an air quality and noise pollution assessment approach.

    Science.gov (United States)

    Vlachokostas, Ch; Achillas, Ch; Michailidou, A V; Moussiopoulos, Nu

    2012-02-01

    This study presents a methodological scheme developed to provide a combined air and noise pollution exposure assessment based on measurements from personal portable monitors. Provided that air and noise pollution are considered in a co-exposure approach, they represent a significant environmental hazard to public health. The methodology is demonstrated for the city of Thessaloniki, Greece. The results of an extensive field campaign are presented and the variations in personal exposure between modes of transport, routes, streets and transport microenvironments are evaluated. Air pollution and noise measurements were performed simultaneously along several commuting routes, during the morning and evening rush hours. Combined exposure to environmental pollutants is highlighted based on the Combined Exposure Factor (CEF) and Combined Dose and Exposure Factor (CDEF). The CDEF takes into account the potential relative uptake of each pollutant by considering the physical activities of each citizen. Rather than viewing environmental pollutants separately for planning and environmental sustainability considerations, the possibility of an easy-to-comprehend co-exposure approach based on these two indices is demonstrated. Furthermore, they provide for the first time a combined exposure assessment to these environmental pollutants for Thessaloniki and in this sense they could be of importance for local public authorities and decision makers. A considerable environmental burden for the citizens of Thessaloniki, especially for VOCs and noise pollution levels is observed. The material herein points out the importance of measuring public health stressors and the necessity of considering urban environmental pollution in a holistic way. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. The possible association between exposure to air pollution and the risk for congenital malformations.

    Science.gov (United States)

    Farhi, Adel; Boyko, Valentina; Almagor, Jonatan; Benenson, Itzhak; Segre, Enrico; Rudich, Yinon; Stern, Eli; Lerner-Geva, Liat

    2014-11-01

    Over the last decade, there is growing evidence that exposure to air pollution may be associated with increased risk for congenital malformations. To evaluate the possible association between exposures to air pollution during pregnancy and congenital malformations among infants born following spontaneously conceived (SC) pregnancies and assisted reproductive technology (ART) pregnancies. This is an historical cohort study comprising 216,730 infants: 207,825 SC infants and 8905 ART conceived infants, during the periods 1997-2004. Air pollution data including sulfur dioxide (SO2), particulate matter air monitoring stations database for the study period. Using a geographic information system (GIS) and the Kriging procedure, exposure to air pollution during the first trimester and the entire pregnancy was assessed for each woman according to her residential location. Logistic regression models with generalized estimating equation (GEE) approach were used to evaluate the adjusted risk for congenital malformations. In the study cohort increased concentrations of PM10 and NOx pollutants in the entire pregnancy were associated with slightly increased risk for congenital malformations: OR 1.06(95% CI, 1.01-1.11) for 10 µg/m(3) increase in PM10 and OR 1.03(95% CI, 1.01-1.04) for 10 ppb increase in NOx. Specific malformations were evident in the circulatory system (for PM10 and NOx exposure) and genital organs (for NOx exposure). SO2 and O3 pollutants were not significantly associated with increased risk for congenital malformations. In the ART group higher concentrations of SO2 and O3 in entire pregnancy were associated (although not significantly) with an increased risk for congenital malformations: OR 1.06(95% CI, 0.96-1.17) for 1 ppb increase in SO2 and OR 1.15(95% CI, 0.69-1.91) for 10 ppb increase in O3. Exposure to higher levels of PM10 and NOx during pregnancy was associated with an increased risk for congenital malformations. Specific malformations were evident in

  14. Minimizing Air Pollution Exposure: A Practical Policy to Protect Vulnerable Older Adults from Death and Disability.

    Science.gov (United States)

    Woodward, Nick; Levine, Morgan

    2016-02-01

    Air pollution causes an estimated 200,000 deaths per year in the United States alone. Older adults are at greater risk of mortality caused by air pollution. Here we quantify the number of older adult facilities in Los Angeles County that are exposed to high levels of traffic derived air pollution, and propose policy solutions to reduce pollution exposure to this vulnerable subgroup. Distances between 20,362 intersections and 858 elder care facilities were estimated, and roads or highways within 500 of facilities were used to estimate traffic volume exposure. Of the 858 facilities, 54 were located near at least one major roadway, defined as a traffic volume over 100,000 cars/day. These 54 facilities house approximately 6,000 older adults. Following standards established for schools, we recommend legislation mandating the placement of new elder care facilities a minimum of 500 feet from major roadways in order to reduce unnecessary mortality risk from pollution exposure.

  15. Lung functions at school age and chronic exposure to outdoor and indoor air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, M.; Kundi, M.; Wiesenberger, W. [Vienna Univ. (Austria). Dept. of Preventive Medicine

    1995-12-31

    Early signs of lung function impairment have been found correlated with annual concentrations of outdoor air pollutants and with passive smoking. To investigate the combined effects of both indicators of chronic exposure to air pollution pulmonary functions in all elementary and high school children of an Austrian town was examined for 5 years. (author)

  16. Lung functions at school age and chronic exposure to outdoor and indoor air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Neuberger, M; Kundi, M; Wiesenberger, W [Vienna Univ. (Austria). Dept. of Preventive Medicine

    1996-12-31

    Early signs of lung function impairment have been found correlated with annual concentrations of outdoor air pollutants and with passive smoking. To investigate the combined effects of both indicators of chronic exposure to air pollution pulmonary functions in all elementary and high school children of an Austrian town was examined for 5 years. (author)

  17. Hybrid Air Quality Modeling Approach for use in the Hear-road Exposures to Urban air pollutant Study(NEXUS)

    Science.gov (United States)

    The paper presents a hybrid air quality modeling approach and its application in NEXUS in order to provide spatial and temporally varying exposure estimates and identification of the mobile source contribution to the total pollutant exposure. Model-based exposure metrics, associa...

  18. Stroke and Long-Term Exposure to Outdoor Air Pollution From Nitrogen Dioxide A Cohort Study

    DEFF Research Database (Denmark)

    Andersen, Zorana Jovanovic; Kristiansen, Luise Cederkvist; Andersen, Klaus K.

    2012-01-01

    Background and Purpose-Years of exposure to tobacco smoke substantially increase the risk for stroke. Whether long-term exposure to outdoor air pollution can lead to stroke is not yet established. We examined the association between long-term exposure to traffic-related air pollution and incident...... and fatal stroke in a prospective cohort study.Methods-We followed 57 053 participants of the Danish Diet, Cancer and Health cohort in the Hospital Discharge Register for the first-ever hospital admission for stroke (incident stroke) between baseline (1993-1997) and 2006 and defined fatal strokes as death...

  19. Reducing personal exposure to particulate air pollution improves cardiovascular health in patients with coronary heart disease.

    Science.gov (United States)

    Langrish, Jeremy P; Li, Xi; Wang, Shengfeng; Lee, Matthew M Y; Barnes, Gareth D; Miller, Mark R; Cassee, Flemming R; Boon, Nicholas A; Donaldson, Ken; Li, Jing; Li, Liming; Mills, Nicholas L; Newby, David E; Jiang, Lixin

    2012-03-01

    Air pollution exposure increases cardiovascular morbidity and mortality and is a major global public health concern. We investigated the benefits of reducing personal exposure to urban air pollution in patients with coronary heart disease. In an open randomized crossover trial, 98 patients with coronary heart disease walked on a predefined route in central Beijing, China, under different conditions: once while using a highly efficient face mask, and once while not using the mask. Symptoms, exercise, personal air pollution exposure, blood pressure, heart rate, and 12-lead electrocardiography were monitored throughout the 24-hr study period. Ambient air pollutants were dominated by fine and ultrafine particulate matter (PM) that was present at high levels [74 μg/m³ for PM(2.5) (PM with aerodynamic diamater reduced maximal ST segment depression (-142 vs. -156 μV, p = 0.046) over the 24-hr period. When the face mask was used during the prescribed walk, mean arterial pressure was lower (93 ± 10 vs. 96 ± 10 mmHg, p = 0.025) and heart rate variability increased (high-frequency power: 54 vs. 40 msec², p = 0.005; high-frequency normalized power: 23.5 vs. 20.5 msec, p = 0.001; root mean square successive differences: 16.7 vs. 14.8 msec, p = 0.007). However, mask use did not appear to influence heart rate or energy expenditure. Reducing personal exposure to air pollution using a highly efficient face mask appeared to reduce symptoms and improve a range of cardiovascular health measures in patients with coronary heart disease. Such interventions to reduce personal exposure to PM air pollution have the potential to reduce the incidence of cardiovascular events in this highly susceptible population.

  20. Cardiovascular effects of air pollution.

    Science.gov (United States)

    Bourdrel, Thomas; Bind, Marie-Abèle; Béjot, Yannick; Morel, Olivier; Argacha, Jean-François

    2017-11-01

    Air pollution is composed of particulate matter (PM) and gaseous pollutants, such as nitrogen dioxide and ozone. PM is classified according to size into coarse particles (PM 10 ), fine particles (PM 2.5 ) and ultrafine particles. We aim to provide an original review of the scientific evidence from epidemiological and experimental studies examining the cardiovascular effects of outdoor air pollution. Pooled epidemiological studies reported that a 10μg/m 3 increase in long-term exposure to PM 2.5 was associated with an 11% increase in cardiovascular mortality. Increased cardiovascular mortality was also related to long-term and short-term exposure to nitrogen dioxide. Exposure to air pollution and road traffic was associated with an increased risk of arteriosclerosis, as shown by premature aortic and coronary calcification. Short-term increases in air pollution were associated with an increased risk of myocardial infarction, stroke and acute heart failure. The risk was increased even when pollutant concentrations were below European standards. Reinforcing the evidence from epidemiological studies, numerous experimental studies demonstrated that air pollution promotes a systemic vascular oxidative stress reaction. Radical oxygen species induce endothelial dysfunction, monocyte activation and some proatherogenic changes in lipoproteins, which initiate plaque formation. Furthermore, air pollution favours thrombus formation, because of an increase in coagulation factors and platelet activation. Experimental studies also indicate that some pollutants have more harmful cardiovascular effects, such as combustion-derived PM 2.5 and ultrafine particles. Air pollution is a major contributor to cardiovascular diseases. Promotion of safer air quality appears to be a new challenge in cardiovascular disease prevention. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Evaluating methods for estimating space-time paths of individuals in calculating long-term personal exposure to air pollution

    Science.gov (United States)

    Schmitz, Oliver; Soenario, Ivan; Vaartjes, Ilonca; Strak, Maciek; Hoek, Gerard; Brunekreef, Bert; Dijst, Martin; Karssenberg, Derek

    2016-04-01

    Air pollution is one of the major concerns for human health. Associations between air pollution and health are often calculated using long-term (i.e. years to decades) information on personal exposure for each individual in a cohort. Personal exposure is the air pollution aggregated along the space-time path visited by an individual. As air pollution may vary considerably in space and time, for instance due to motorised traffic, the estimation of the spatio-temporal location of a persons' space-time path is important to identify the personal exposure. However, long term exposure is mostly calculated using the air pollution concentration at the x, y location of someone's home which does not consider that individuals are mobile (commuting, recreation, relocation). This assumption is often made as it is a major challenge to estimate space-time paths for all individuals in large cohorts, mostly because limited information on mobility of individuals is available. We address this issue by evaluating multiple approaches for the calculation of space-time paths, thereby estimating the personal exposure along these space-time paths with hyper resolution air pollution maps at national scale. This allows us to evaluate the effect of the space-time path and resulting personal exposure. Air pollution (e.g. NO2, PM10) was mapped for the entire Netherlands at a resolution of 5×5 m2 using the land use regression models developed in the European Study of Cohorts for Air Pollution Effects (ESCAPE, http://escapeproject.eu/) and the open source software PCRaster (http://www.pcraster.eu). The models use predictor variables like population density, land use, and traffic related data sets, and are able to model spatial variation and within-city variability of annual average concentration values. We approximated space-time paths for all individuals in a cohort using various aggregations, including those representing space-time paths as the outline of a persons' home or associated parcel

  2. Quantification of years of life lost attributable to chronic air pollution exposure in a health impact assessment: the case of Nantes

    International Nuclear Information System (INIS)

    Guillois-Becel, Y.; Eilstein, D.; Glorennec, Ph.; Lefranc, A.

    2007-01-01

    Background: When French regional planning for air quality first began, exposure-response functions from time-series studies were used to assess the short-term health impact of urban air pollution. The World Health Organisation also suggests that exposure-response functions from cohort studies be taken into account to evaluate the effects of chronic exposure and to quantify the prematurity of deaths related to chronic exposure to air pollution. This work characterizes the long term effects of air pollution in Nantes by considering years of life lost as well as the number of attributable deaths. methods: the study population is classified in birth cohorts. for each cohort, 2 survival curves are built based on current mortality conditions: the first is built for current exposure to air pollution and the second for exposure to a lower reference level of air pollution. The area between the 2 curves represents years of life lost attributable to urban air pollution. results: the estimated number of premature deaths due to air pollution is approximately 56, or about 2% of the deaths of those older than 30 years. The health impact on the Nantes population is estimated at 27.2 years of life lost attributable to urban air pollution in 1999 and 2388.1 years of life lost for the 1999-2008 period. This amounts to a decrease of roughly 4 months in the life expectancy of those aged 30 years. Conclusion: This study, which also identifies and discusses relevant errors and uncertainty, confirmed that air pollution in Nantes has significant health effects and that chronic exposure plays an essential role in this impact. the number of years of life lost and the reduction in life expectancy provide new reasons to reject the assumption that health effects are limited to the premature deaths of terminally-ill people. the expected health gains in Nantes associated with reduced although still moderate air pollution levels are on the same scale as, and possibly better than, those found in 9

  3. Air pollution exposure estimation using dispersion modelling and continuous monitoring data in a prospective birth cohort study in the Netherlands

    Directory of Open Access Journals (Sweden)

    Van den Hooven Edith H

    2012-02-01

    Full Text Available Abstract Previous studies suggest that pregnant women and children are particularly vulnerable to the adverse effects of air pollution. A prospective cohort study in pregnant women and their children enables identification of the specific effects and critical periods. This paper describes the design of air pollution exposure assessment for participants of the Generation R Study, a population-based prospective cohort study from early pregnancy onwards in 9778 women in the Netherlands. Individual exposures to PM10 and NO2 levels at the home address were estimated for mothers and children, using a combination of advanced dispersion modelling and continuous monitoring data, taking into account the spatial and temporal variation in air pollution concentrations. Full residential history was considered. We observed substantial spatial and temporal variation in air pollution exposure levels. The Generation R Study provides unique possibilities to examine effects of short- and long-term air pollution exposure on various maternal and childhood outcomes and to identify potential critical windows of exposure.

  4. Validity of a traffic air pollutant dispersion model to assess exposure to fine particles.

    Science.gov (United States)

    Kostrzewa, Aude; Reungoat, Patrice; Raherison, Chantal

    2009-08-01

    Fine particles (PM(2.5)) are an important component of air pollution. Epidemiological studies have shown health effects due to ambient air particles, particularly allergies in children. Since the main difficulty is to determine exposure to such pollution, traffic air pollutant (TAP) dispersions models have been developed to improve the estimation of individual exposure levels. One such model, the ExTra index, has been validated for nitrogen oxide concentrations but not for other pollutants. The purpose of this study was to assess the validity of the ExTra index to assess PM(2.5) exposure. We compared PM(2.5) concentrations calculated by the ExTra index to reference measures (passive samplers situated under the covered part of the playground), in 15 schools in Bordeaux, in 2000. First, we collected the input data required by the ExTra index: background and local pollution depending on traffic, meteorology and topography. Second, the ExTra index was calculated for each school. Statistical analysis consisted of a graphic description; then, we calculated an intraclass correlation coefficient. Concentrations calculated with the ExTra index and the reference method were similar. The ExTra index underestimated exposure by 2.2 microg m(-3) on average compared to the reference method. The intraclass correlation coefficient was 0.85 and its 95% confidence interval was [0.62; 0.95]. The results suggest that the ExTra index provides an assessment of PM(2.5) exposure similar to that of the reference method. Although caution is required in interpreting these results owing to the small number of sites, the ExTra index could be a useful epidemiological tool for reconstructing individual exposure, an important challenge in epidemiology.

  5. Ambient air pollution and thrombosis.

    Science.gov (United States)

    Robertson, Sarah; Miller, Mark R

    2018-01-03

    Air pollution is a growing public health concern of global significance. Acute and chronic exposure is known to impair cardiovascular function, exacerbate disease and increase cardiovascular mortality. Several plausible biological mechanisms have been proposed for these associations, however, at present, the pathways are incomplete. A seminal review by the American Heart Association (2010) concluded that the thrombotic effects of particulate air pollution likely contributed to their effects on cardiovascular mortality and morbidity. The aim of the current review is to appraise the newly accumulated scientific evidence (2009-2016) on contribution of haemostasis and thrombosis towards cardiovascular disease induced by exposure to both particulate and gaseous pollutants.Seventy four publications were reviewed in-depth. The weight of evidence suggests that acute exposure to fine particulate matter (PM 2.5 ) induces a shift in the haemostatic balance towards a pro-thrombotic/pro-coagulative state. Insufficient data was available to ascertain if a similar relationship exists for gaseous pollutants, and very few studies have addressed long-term exposure to ambient air pollution. Platelet activation, oxidative stress, interplay between interleukin-6 and tissue factor, all appear to be potentially important mechanisms in pollution-mediated thrombosis, together with an emerging role for circulating microvesicles and epigenetic changes.Overall, the recent literature supports, and arguably strengthens, the contention that air pollution contributes to cardiovascular morbidity by promoting haemostasis. The volume and diversity of the evidence highlights the complexity of the pathophysiologic mechanisms by which air pollution promotes thrombosis; multiple pathways are plausible and it is most likely they act in concert. Future research should address the role gaseous pollutants play in the cardiovascular effects of air pollution mixture and direct comparison of potentially

  6. Genetic variation in biotransformation enzymes, air pollution exposures, and risk of spina bifida.

    Science.gov (United States)

    Padula, Amy M; Yang, Wei; Schultz, Kathleen; Lurmann, Fred; Hammond, S Katharine; Shaw, Gary M

    2018-05-01

    Spina bifida is a birth defect characterized by incomplete closure of the embryonic neural tube. Genetic factors as well as environmental factors have been observed to influence risks for spina bifida. Few studies have investigated possible gene-environment interactions that could contribute to spina bifida risk. The aim of this study is to examine the interaction between gene variants in biotransformation enzyme pathways and ambient air pollution exposures and risk of spina bifida. We evaluated the role of air pollution exposure during pregnancy and gene variants of biotransformation enzymes from bloodspots and buccal cells in a California population-based case-control (86 cases of spina bifida and 208 non-malformed controls) study. We considered race/ethnicity and folic acid vitamin use as potential effect modifiers and adjusted for those factors and smoking. We observed gene-environment interactions between each of the five pollutants and several gene variants: NO (ABCC2), NO 2 (ABCC2, SLC01B1), PM 10 (ABCC2, CYP1A1, CYP2B6, CYP2C19, CYP2D6, NAT2, SLC01B1, SLC01B3), PM 2.5 (CYP1A1 and CYP1A2). These analyses show positive interactions between air pollution exposure during early pregnancy and gene variants associated with metabolizing enzymes. These exploratory results suggest that some individuals based on their genetic background may be more susceptible to the adverse effects of pollution. © 2018 Wiley Periodicals, Inc.

  7. Health impact assessment of air pollution using a dynamic exposure profile: Implications for exposure and health impact estimates

    Energy Technology Data Exchange (ETDEWEB)

    Dhondt, Stijn, E-mail: stijn.dhondt@vub.ac.be [Department of Medical Sociology and Health Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels (Belgium); Beckx, Carolien, E-mail: Carolien.Beckx@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Degraeuwe, Bart, E-mail: Bart.Degraeuwe@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Lefebvre, Wouter, E-mail: Wouter.Lefebvre@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Kochan, Bruno, E-mail: Bruno.Kochan@uhasselt.be [Transportation Research Institute, Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek (Belgium); Bellemans, Tom, E-mail: Tom.Bellemans@uhasselt.be [Transportation Research Institute, Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek (Belgium); Int Panis, Luc, E-mail: Luc.intpanis@vito.be [Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol (Belgium); Transportation Research Institute, Hasselt University, Wetenschapspark 5 bus 6, 3590 Diepenbeek (Belgium); Macharis, Cathy, E-mail: cjmachar@vub.ac.be [Department MOSI-Transport and Logistics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050, Brussels (Belgium); Putman, Koen, E-mail: kputman@vub.ac.be [Department of Medical Sociology and Health Sciences, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090, Brussels (Belgium); Interuniversity Centre for Health Economics Research (I-CHER), Vrije Universiteit Brussel, Brussels (Belgium)

    2012-09-15

    In both ambient air pollution epidemiology and health impact assessment an accurate assessment of the population exposure is crucial. Although considerable advances have been made in assessing human exposure outdoors, the assessments often do not consider the impact of individual travel behavior on such exposures. Population-based exposures to NO{sub 2} and O{sub 3} using only home addresses were compared with models that integrate all time-activity patterns-including time in commute-for Flanders and Brussels. The exposure estimates were used to estimate the air pollution impact on years of life lost due to respiratory mortality. Health impact of NO{sub 2} using an exposure that integrates time-activity information was on average 1.2% higher than when assuming that people are always at their home address. For ozone the overall estimated health impact was 0.8% lower. Local differences could be much larger, with estimates that differ up to 12% from the exposure using residential addresses only. Depending on age and gender, deviations from the population average were seen. Our results showed modest differences on a regional level. At the local level, however, time-activity patterns indicated larger differences in exposure and health impact estimates, mainly for people living in more rural areas. These results suggest that for local analyses the dynamic approach can contribute to an improved assessment of the health impact of various types of pollution and to the understanding of exposure differences between population groups. - Highlights: Black-Right-Pointing-Pointer Exposure to ambient air pollution was assessed integrating population mobility. Black-Right-Pointing-Pointer This dynamic exposure was integrated into a health impact assessment. Black-Right-Pointing-Pointer Differences between the dynamic and residential exposure were quantified. Black-Right-Pointing-Pointer Modest differences in health impact were found at a regional level. Black

  8. Long-term exposure to air pollution and the risk of suicide death: A population-based cohort study.

    Science.gov (United States)

    Min, Jin-Young; Kim, Hye-Jin; Min, Kyoung-Bok

    2018-07-01

    Suicide is a major public health problem. Previous studies have reported a significant association between acute exposure to air pollution and suicide; little attention has been paid to the long-term effects of air pollution on risk of suicide. We investigated whether long-term exposure to particulate matter of ≤10μm in diameter (PM 10 ), nitrogen dioxide (NO 2 ), and sulfur dioxide (SO 2 ) would be associated with a greater risk of death by suicide. The study sample comprised 265,749 adults enrolled in the National Health Insurance Service-National Sample Cohort (2002-2013) in South Korea. Suicide death was defined as per ICD-10 code. Data on air pollution exposure used nationwide monitoring data, and individual exposure levels were assigned using geographic information systems. Air pollution exposure was categorized as the interquartile range (IQR) and quartiles. Hazards ratios (HRs) were calculated for the occurrence of suicide death after adjusting for potential covariates. During the study period, 564 (0.2%) subjects died from suicide. Increases in IQR pollutants (7.5μg/m 3 for PM 10 , 11.8ppb for NO 2 , and 0.8ppb for SO 2 ) significantly increased HR for suicide death [PM 10 : HR=3.09 (95% CI: 2.63-3.63); NO 2 : HR=1.33 (95% CI: 1.09-1.64); and SO 2 : HR=1.15 (95% CI: 1.07-1.24)]. Compared with the lowest level of air pollutants (Quartile 1), the risk of suicide significantly increased in the highest quartile level (Quartile 4) for PM 10 (HR=4.03; 95% CI: 2.97-5.47) and SO 2 (HR=1.65; 95% CI: 1.29-2.11) and in the third quartile for NO 2 (HR=1.52; 95% CI: 1.17-1.96). HRs for subjects with a physical or mental disorder were higher than that those for subjects without the disorder. Subjects living in metropolitan areas were more vulnerable to long-term PM 10 exposure than those living in non-metropolitan areas. Long-term exposure to air pollution was associated with a significantly increased risk of suicide death. People having underlying diseases or

  9. Air Pollution Exposure and Abnormal Glucose Tolerance during Pregnancy: The Project Viva Cohort

    Science.gov (United States)

    Gold, Diane R.; Rifas-Shiman, Sheryl L.; Koutrakis, Petros; Schwartz, Joel D.; Kloog, Itai; Melly, Steven; Coull, Brent A.; Zanobetti, Antonella; Gillman, Matthew W.; Oken, Emily

    2014-01-01

    Background: Exposure to fine particulate matter (PM with diameter ≤ 2.5 μm; PM2.5) has been linked to type 2 diabetes mellitus, but associations with hyperglycemia in pregnancy have not been well studied. Methods: We studied Boston, Massachusetts–area pregnant women without known diabetes. We identified impaired glucose tolerance (IGT) and gestational diabetes mellitus (GDM) during pregnancy from clinical glucose tolerance tests at median 28.1 weeks gestation. We used residential addresses to estimate second-trimester PM2.5 and black carbon exposure via a central monitoring site and spatiotemporal models. We estimated residential traffic density and roadway proximity as surrogates for exposure to traffic-related air pollution. We performed multinomial logistic regression analyses adjusted for sociodemographic covariates, and used multiple imputation to account for missing data. Results: Of 2,093 women, 65 (3%) had IGT and 118 (6%) had GDM. Second-trimester spatiotemporal exposures ranged from 8.5 to 15.9 μg/m3 for PM2.5 and from 0.1 to 1.7 μg/m3 for black carbon. Traffic density was 0–30,860 vehicles/day × length of road (kilometers) within 100 m; 281 (13%) women lived ≤ 200 m from a major road. The prevalence of IGT was elevated in the highest (vs. lowest) quartile of exposure to spatiotemporal PM2.5 [odds ratio (OR) = 2.63; 95% CI: 1.15, 6.01] and traffic density (OR = 2.66; 95% CI: 1.24, 5.71). IGT also was positively associated with other exposure measures, although associations were not statistically significant. No pollutant exposures were positively associated with GDM. Conclusions: Greater exposure to PM2.5 and other traffic-related pollutants during pregnancy was associated with IGT but not GDM. Air pollution may contribute to abnormal glycemia in pregnancy. Citation: Fleisch AF, Gold DR, Rifas-Shiman SL, Koutrakis P, Schwartz JD, Kloog I, Melly S, Coull BA, Zanobetti A, Gillman MW, Oken E. 2014. Air pollution exposure and abnormal glucose

  10. [Air pollutant exposure during pregnancy and fetal and early childhood development. Research protocol of the INMA (Childhood and Environment Project)].

    Science.gov (United States)

    Esplugues, Ana; Fernández-Patier, Rosalía; Aguilera, Inma; Iñíguez, Carmen; García Dos Santos, Saúl; Aguirre Alfaro, Amelia; Lacasaña, Marina; Estarlich, Marisa; Grimalt, Joan O; Fernández, Marieta; Rebagliato, Marisa; Sala, María; Tardón, Adonina; Torrent, Maties; Martínez, María Dolores; Ribas-Fitó, Núria; Sunyer, Jordi; Ballester, Ferran

    2007-01-01

    The INMA (INfancia y Medio Ambiente [Spanish for Environment and Childhood]) project is a cooperative research network. This project aims to study the effects of environment and diet on fetal and early childhood development. This article aims to present the air pollutant exposure protocol during pregnancy and fetal and early childhood development of the INMA project. The information to assess air pollutant exposure during pregnancy is based on outdoor measurement of air pollutants (nitrogen dioxide [NO2], volatile organic compounds [VOC], ozone, particulate matter [PM10, PM2,5 ] and of their composition [polycyclic aromatic hydrocarbons]); measurement of indoor and personal exposure (VOC and NO2); urinary measurement of a biological marker of hydrocarbon exposure (1-hydroxypyrene); and data gathered by questionnaires and geographic information systems. These data allow individual air pollutant exposure indexes to be developed, which can then be used to analyze the possible effects of exposure on fetal development and child health. This protocol and the type of study allow an approximation to individual air pollutant exposure to be obtained. Finally, the large number of participants (N = 4,000), as well as their geographic and social diversity, increases the study's potential.

  11. LONGITUDINAL STUDY OF SEMEN QUALITY AFTER INTERMITTENT EXPOSURE TO AIR POLLUTION

    Science.gov (United States)

    LONGITUDINAL STUDY OF SEMEN QUALITY AFTER INTERMITTENT EXPOSURE TO AIR POLLUTION. J. Rubes*, D. Zudova*, Veterinary Research Institute, Brno, CR, S.G. Selevan*, US EPA/ORD/NCEA, Washington, DC, D.P. Evenson, South Dakota State University, Brookings, SD, and S.D. Perreault, US ...

  12. Respiratory hospitalizations of children and residential exposure to traffic air pollution in Jerusalem.

    Science.gov (United States)

    Nirel, Ronit; Schiff, Michal; Paltiel, Ora

    2015-01-01

    Although exposure to traffic-related air pollution has been reported to be associated with respiratory morbidity in children, this association has not been examined in Israel. Jerusalem is ranked among the leading Israeli cities in transport-related air pollution. This case-control study examined whether pediatric hospitalization for respiratory diseases in Jerusalem is related to residential exposure to traffic-related air pollution. Cases (n=4844) were Jerusalem residents aged 0-14 years hospitalized for respiratory illnesses between 2000 and 2006. These were compared to children admitted electively (n=2161) or urgently (n=3085) for non-respiratory conditions. Individual measures of exposure included distance from residence to nearest main road, the total length of main roads, traffic volume, and bus load within buffers of 50, 150, and 300m around each address. Cases were more likely to have any diesel buses passing within 50m of their home (adjusted odds ratios=1.16 and 1.10, 95% confidence intervals 1.04-1.30 and 1.01-1.20 for elective and emergency controls, respectively). Our findings indicated that older girls (5-14) and younger boys (0-4) had increased risks of respiratory hospitalization, albeit with generally widened confidence intervals due to small sample sizes. Our results add to the limited body of evidence regarding associations between diesel exhaust particles and respiratory morbidity. The findings also point to possible differential associations between traffic-related air pollution and pediatric hospitalization among boys and girls in different age groups. Copyright © 2014 Elsevier GmbH. All rights reserved.

  13. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution.

    Science.gov (United States)

    Kelly, Frank J; Fussell, Julia C

    2017-09-01

    Exposure to ambient air pollution is associated with adverse cardiovascular outcomes. These are manifested through several, likely overlapping, pathways including at the functional level, endothelial dysfunction, atherosclerosis, pro-coagulation and alterations in autonomic nervous system balance and blood pressure. At numerous points within each of these pathways, there is potential for cellular oxidative imbalances to occur. The current review examines epidemiological, occupational and controlled exposure studies and research employing healthy and diseased animal models, isolated organs and cell cultures in assessing the importance of the pro-oxidant potential of air pollution in the development of cardiovascular disease outcomes. The collective body of data provides evidence that oxidative stress (OS) is not only central to eliciting specific cardiac endpoints, but is also implicated in modulating the risk of succumbing to cardiovascular disease, sensitivity to ischemia/reperfusion injury and the onset and progression of metabolic disease following ambient pollution exposure. To add to this large research effort conducted to date, further work is required to provide greater insight into areas such as (a) whether an oxidative imbalance triggers and/or worsens the effect and/or is representative of the consequence of disease progression, (b) OS pathways and cardiac outcomes caused by individual pollutants within air pollution mixtures, or as a consequence of inter-pollutant interactions and (c) potential protection provided by nutritional supplements and/or pharmacological agents with antioxidant properties, in susceptible populations residing in polluted urban cities. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Ambient Air Pollution and Risk for Ischemic Stroke: A Short-Term Exposure Assessment in South China

    Directory of Open Access Journals (Sweden)

    Pi Guo

    2017-09-01

    Full Text Available Data on the association between air pollution and risk of ischemic stroke in China are still limited. This study aimed to investigate the association between short-term exposure to ambient air pollution and risk of ischemic strokes in Guangzhou, the most densely-populated city in south China, using a large-scale multicenter database of stroke hospital admissions. Daily counts of ischemic stroke admissions over the study years 2013–2015 were obtained from the Guangzhou Cardiovascular and Cerebrovascular Disease Event Surveillance System. Daily particulate matter <2.5 μm in diameter (PM2.5, sulfur dioxide (SO2, nitrogen dioxide (NO2, ozone (O3, and meteorological data were collected. The associations between air pollutants and hospital admissions for stroke were examined using relative risks (RRs and their corresponding 95% confidence intervals (CIs based on time-series Poisson regression models, adjusting for temperature, public holiday, day of week, and temporal trends in stroke. Ischemic stroke admissions increased from 27,532 to 35,279 through 2013 to 2015, increasing by 28.14%. Parameter estimates for NO2 exposure were robust regardless of the model used. The association between same-day NO2 (RR = 1.0509, 95% CI: 1.0353–1.0668 exposure and stroke risk was significant when accounting for other air pollutants, day of the week, public holidays, temperature, and temporal trends in stroke events. Overall, we observed a borderline significant association between NO2 exposure modeled as an averaged lag effect and ischemic stroke risk. This study provides data on air pollution exposures and stroke risk, and contributes to better planning of clinical services and emergency contingency response for stroke.

  15. In-vehicle exposures to particulate air pollution in Canadian metropolitan areas: the urban transportation exposure study.

    Science.gov (United States)

    Weichenthal, Scott; Van Ryswyk, Keith; Kulka, Ryan; Sun, Liu; Wallace, Lance; Joseph, Lawrence

    2015-01-06

    Commuters may be exposed to increased levels of traffic-related air pollution owing to close proximity to traffic-emissions. We collected in-vehicle and roof-top air pollution measurements over 238 commutes in Montreal, Toronto, and Vancouver, Canada between 2010 and 2013. Voice recordings were used to collect real-time information on traffic density and the presence of diesel vehicles and multivariable linear regression models were used to estimate the impact of these factors on in-vehicle pollutant concentrations (and indoor/outdoor ratios) along with parameters for road type, land use, and meteorology. In-vehicle PM2.5 and NO2 concentrations consistently exceeded regional outdoor levels and each unit increase in the rate of encountering diesel vehicles (count/min) was associated with substantial increases (>100%) in in-vehicle concentrations of ultrafine particles (UFPs), black carbon, and PM2.5 as well as strong increases (>15%) in indoor/outdoor ratios. A model based on meteorology and the length of highway roads within a 500 m buffer explained 53% of the variation in in-vehicle UFPs; however, models for PM2.5 (R(2) = 0.24) and black carbon (R(2) = 0.30) did not perform as well. Our findings suggest that vehicle commuters experience increased exposure to air pollutants and that traffic characteristics, land use, road types, and meteorology are important determinants of these exposures.

  16. The association between low level exposures to ambient air pollution and term low birth weight: a retrospective cohort study

    Directory of Open Access Journals (Sweden)

    Stieb David

    2006-02-01

    Full Text Available Abstract Background Studies in areas with relatively high levels of air pollution have found some positive associations between exposures to ambient levels of air pollution and several birth outcomes including low birth weight (LBW. The purpose of this study was to examine the association between LBW among term infants and ambient air pollution, by trimester of exposure, in a region of lower level exposures. Methods The relationship between LBW and ambient levels of particulate matter up to 10 um in diameter (PM10, sulfur dioxide (SO2 and ground-level ozone (O3 was evaluated using the Nova Scotia Atlee Perinatal Database and ambient air monitoring data from the Environment Canada National Air Pollution Surveillance Network and the Nova Scotia Department of Environment. The cohort consisted of live singleton births (≥37 weeks of gestation between January1,1988 and December31,2000. Maternal exposures to air pollution were assigned to women living within 25 km of a monitoring station at the time of birth. Air pollution was evaluated as a continuous and categorical variable (using quartile exposures for each trimester and relative risks were estimated from logistic regression, adjusted for confounding variables. Results There were 74,284 women with a term, singleton birth during the study period and with exposure data. In the analyses unadjusted for year of birth, first trimester exposures in the highest quartile for SO2 and PM10suggested an increased risk of delivering a LBW infant (relative risk = 1.36, 95% confidence interval = 1.04 to 1.78 for SO2 exposure and relative risk = 1.33, 95% confidence interval = 1.02 to 1.74 for PM10. After adjustment for birth year, the relative risks were attenuated somewhat and not statistically significant. A dose-response relationship for SO2 was noted with increasing levels of exposure. No statistically significant effects were noted for ozone. Conclusion Our results suggest that exposure during the first

  17. Exposure to Severe Urban Air Pollution Influences Cognitive Outcomes, Brain Volume and Systemic Inflammation in Clinically Healthy Children

    Science.gov (United States)

    Calderon-Garciduenas, Lilian; Engle, Randall; Mora-Tiscareno, Antonieta; Styner, Martin; Gomez-Garza, Gilberto; Zhu, Hongtu; Jewells, Valerie; Torres-Jardon, Ricardo; Romero, Lina; Monroy-Acosta, Maria E.; Bryant, Christopher; Gonzalez-Gonzalez, Luis Oscar; Medina-Cortina, Humberto; D'Angiulli, Amedeo

    2011-01-01

    Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes,…

  18. Long-Term Exposure to Ambient Air Pollution and Incidence of Cerebrovascular Events

    DEFF Research Database (Denmark)

    Stafoggia, Massimo; Cesaroni, Giulia; Peters, Annette

    2014-01-01

    and occurrence of a first stroke was evaluated. Individual air pollution exposures were predicted from land-use regression models developed within the "European Study of Cohorts for Air Pollution Effects" (ESCAPE). The exposures were: PM2.5 (particulate matter [PM] below 2.5 µm in diameter), coarse PM (PM...... between 2.5 and 10 µm), PM10 (PM below 10 µm), PM2.5 absorbance, nitrogen oxides, and two traffic indicators. Cohort-specific analyses were conducted using Cox proportional hazards models. Random-effects meta-analysis was used for pooled effect estimation. RESULTS: 99,446 subjects were included, 3......,086 of whom developed stroke. A 5-μg/m(3) increase in annual PM2.5 exposure was associated with 19% increased risk of incident stroke (hazard ratio [HR] = 1.19, 95% confidence interval [CI]: 0.88, 1.62). Similar findings were obtained for PM10. The results were robust to adjustment for an extensive list...

  19. A Modeling Investigation of Human Exposure to Select Traffic-Related Air Pollutants in the Tampa Area: Spatiotemporal Distributions of Concentrations, Social Distributions of Exposures, and Impacts of Urban Design on Both

    Science.gov (United States)

    Yu, Haofei

    Increasing vehicle dependence in the United States has resulted in substantial emissions of traffic-related air pollutants that contribute to the deterioration of urban air quality. Exposure to urban air pollutants trigger a number of public health concerns, including the potential of inequality of exposures and health effects among population subgroups. To better understand the impact of traffic-related pollutants on air quality, exposure, and exposure inequality, modeling methods that can appropriately characterize the spatiotemporally resolved concentration distributions of traffic-related pollutants need to be improved. These modeling methods can then be used to investigate the impacts of urban design and transportation management choices on air quality, pollution exposures, and related inequality. This work will address these needs with three objectives: 1) to improve modeling methods for investigating interactions between city and transportation design choices and air pollution exposures, 2) to characterize current exposures and the social distribution of exposures to traffic-related air pollutants for the case study area of Hillsborough County, Florida, and 3) to determine expected impacts of urban design and transportation management choices on air quality, air pollution exposures, and exposure inequality. To achieve these objectives, the impacts of a small-scale transportation management project, specifically the '95 Express' high occupancy toll lane project, on pollutant emissions and nearby air quality was investigated. Next, a modeling method capable of characterizing spatiotemporally resolved pollutant emissions, concentrations, and exposures was developed and applied to estimate the impact of traffic-related pollutants on exposure and exposure inequalities among several population subgroups in Hillsborough County, Florida. Finally, using these results as baseline, the impacts of sprawl and compact urban forms, as well as vehicle fleet electrification

  20. Ambient Air Pollution and Biomarkers of Health Effect.

    Science.gov (United States)

    Yang, Di; Yang, Xuan; Deng, Furong; Guo, Xinbiao

    2017-01-01

    Recently, the air pollution situation of our country is very serious along with the development of urbanization and industrialization. Studies indicate that the exposure of air pollution can cause a rise of incidence and mortality of many diseases, such as chronic obstructive pulmonary disease (COPD), asthma, myocardial infarction, and so on. However, there is now growing evidence showing that significant air pollution exposures are associated with early biomarkers in various systems of the body. In order to better prevent and control the damage effect of air pollution, this article summarizes comprehensively epidemiological studies about the bad effects on the biomarkers of respiratory system, cardiovascular system, and genetic and epigenetic system exposure to ambient air pollution.

  1. Ambient air pollution and semen quality.

    Science.gov (United States)

    Nobles, Carrie J; Schisterman, Enrique F; Ha, Sandie; Kim, Keewan; Mumford, Sunni L; Buck Louis, Germaine M; Chen, Zhen; Liu, Danping; Sherman, Seth; Mendola, Pauline

    2018-05-01

    Ambient air pollution is associated with systemic increases in oxidative stress, to which sperm are particularly sensitive. Although decrements in semen quality represent a key mechanism for impaired fecundability, prior research has not established a clear association between air pollution and semen quality. To address this, we evaluated the association between ambient air pollution and semen quality among men with moderate air pollution exposure. Of 501 couples in the LIFE study, 467 male partners provided one or more semen samples. Average residential exposure to criteria air pollutants and fine particle constituents in the 72 days before ejaculation was estimated using modified Community Multiscale Air Quality models. Generalized estimating equation models estimated the association between air pollutants and semen quality parameters (volume, count, percent hypo-osmotic swollen, motility, sperm head, morphology and sperm chromatin parameters). Models adjusted for age, body mass index, smoking and season. Most associations between air pollutants and semen parameters were small. However, associations were observed for an interquartile increase in fine particulates ≤2.5 µm and decreased sperm head size, including -0.22 (95% CI -0.34, -0.11) µm 2 for area, -0.06 (95% CI -0.09, -0.03) µm for length and -0.09 (95% CI -0.19, -0.06) µm for perimeter. Fine particulates were also associated with 1.03 (95% CI 0.40, 1.66) greater percent sperm head with acrosome. Air pollution exposure was not associated with semen quality, except for sperm head parameters. Moderate levels of ambient air pollution may not be a major contributor to semen quality. Published by Elsevier Inc.

  2. Exposure to hazardous air pollutants and the risk of amyotrophic lateral sclerosis

    International Nuclear Information System (INIS)

    Malek, Angela M.; Barchowsky, Aaron; Bowser, Robert; Heiman-Patterson, Terry; Lacomis, David; Rana, Sandeep; Ada Youk; Talbott, Evelyn O.

    2015-01-01

    Background: Amyotrophic lateral sclerosis (ALS) is a serious and rapidly fatal neurodegenerative disorder with an annual incidence of 1–2.6/100,000 persons. Few known risk factors exist although gene–environment interaction is suspected. We investigated the relationship between suspected neurotoxicant hazardous air pollutants (HAPs) exposure and ALS. Methods: A case–control study involving sporadic ALS cases (n = 51) and matched controls (n = 51) was conducted from 2008 to 2011. Geocoded residential addresses were linked to U.S. EPA NATA data (1999, 2002, and 2005) by census tract. Odds ratios (ORs) and 95% confidence intervals (CIs) were calculated using conditional logistic regression. Results: Residential exposure to aromatic solvents significantly elevated the risk of ALS among cases compared to controls in 2002 (OR = 5.03, 95% CI: 1.29, 19.53) and 1999 (OR = 4.27, 95% CI: 1.09, 16.79) following adjustment for education, smoking, and other exposure groups. Metals, pesticides, and other HAPs were not associated with ALS. Conclusions: A potential relationship is suggested between residential ambient air aromatic solvent exposure and risk of ALS in this study. - Highlights: • The effects of ambient air pollutants and risk of ALS was assessed. • EPA NATA data linked to geocoded addresses for 1999, 2002, and 2005. • Residential exposure to aromatic solvents was associated with an increased risk of ALS. - Residential exposure to aromatic solvents was associated with an increased risk of ALS

  3. Assessment of exposure to traffic related air pollution of children attending schools near motorways

    International Nuclear Information System (INIS)

    Janssen, Nicole A.H.; Vliet, Patricia H.N. van; Aarts, Francee; Harssema, Hendrik; Brunekreef, Bert

    2001-01-01

    To assess exposure to air pollution from traffic of children attending schools near motorways, traffic related air pollution (PM 2.5 , NO 2 and benzene) was measured in and outside 24 schools located within 400m of motorways in the Netherlands. Reflectance of PM 2.5 filters was measured as a proxy for elemental carbon (EC). The relationship between this proxy and measurements of EC was studied in a sub-sample and a high correlation was established. In both indoor and outdoor air, concentrations of PM 2.5 and 'soot' significantly increased with increasing truck traffic density and significantly decreased with increasing distance. Indoor NO 2 concentrations significantly increased with increasing car traffic. The percentage of time that the school was downwind of the motorway during the measurements was significantly associated with 'soot' and NO 2 , but no with PM 2.5 and benzene. Estimated yearly averaged concentrations, calculated after standardising for differences in the background concentrations during the measurements, showed an about 2.5 fold range in 'soot', benzene (indoors and outdoors) and NO 2 (indoors) concentrations. For PM 2.5 (indoors and outdoors) and NO 2 outdoors the range was smaller (1.4-1.7). Standardised concentrations were highly correlated with the results of two other approaches that were used to order the exposures at the schools. This study has shown that concentrations of air pollutants in and outside schools near motorways are significantly associated with distance, traffic density and composition, and percentage of time downwind. These variables can therefore be used to assess exposure to traffic related air pollution of subjects living near motorways. Furthermore, the yearly averaged concentrations of PM 2.5 , soot, NO 2 and benzene can be used as a more direct measure of long-term exposure in epidemiological studies of the children attending the 24 schools. (Author)

  4. Exposure to Ambient Fine Particulate Air Pollution in Utero as a Risk Factor for Child Stunting in Bangladesh.

    Science.gov (United States)

    Goyal, Nihit; Canning, David

    2017-12-23

    Pregnant mothers in Bangladesh are exposed to very high and worsening levels of ambient air pollution. Maternal exposure to fine particulate matter has been associated with low birth weight at much lower levels of exposure, leading us to suspect the potentially large effects of air pollution on stunting in children in Bangladesh. We estimate the relationship between exposure to air pollution in utero and child stunting by pooling outcome data from four waves of the nationally representative Bangladesh Demographic and Health Survey conducted between 2004 and 2014, and calculating children's exposure to ambient fine particulate matter in utero using high resolution satellite data. We find significant increases in the relative risk of child stunting, wasting, and underweight with higher levels of in utero exposure to air pollution, after controlling for other factors that have been found to contribute to child anthropometric failure. We estimate the relative risk of stunting in the second, third, and fourth quartiles of exposure as 1.074 (95% confidence interval: 1.014-1.138), 1.150 (95% confidence interval: 1.069-1.237, and 1.132 (95% confidence interval: 1.031-1.243), respectively. Over half of all children in Bangladesh in our sample were exposed to an annual ambient fine particulate matter level in excess of 46 µg/m³; these children had a relative risk of stunting over 1.13 times that of children in the lowest quartile of exposure. Reducing air pollution in Bangladesh could significantly contribute to the Sustainable Development Goal of reducing child stunting.

  5. A proper choice of route significantly reduces air pollution exposure--a study on bicycle and bus trips in urban streets.

    Science.gov (United States)

    Hertel, Ole; Hvidberg, Martin; Ketzel, Matthias; Storm, Lars; Stausgaard, Lizzi

    2008-01-15

    A proper selection of route through the urban area may significantly reduce the air pollution exposure. This is the main conclusion from the presented study. Air pollution exposure is determined for two selected cohorts along the route going from home to working place, and back from working place to home. Exposure is determined with a street pollution model for three scenarios: bicycling along the shortest possible route, bicycling along the low exposure route along less trafficked streets, and finally taking the shortest trip using public transport. Furthermore, calculations are performed for the cases the trip takes place inside as well as outside the traffic rush hours. The results show that the accumulated air pollution exposure for the low exposure route is between 10% and 30% lower for the primary pollutants (NO(x) and CO). However, the difference is insignificant and in some cases even negative for the secondary pollutants (NO(2) and PM(10)/PM(2.5)). Considering only the contribution from traffic in the travelled streets, the accumulated air pollution exposure is between 54% and 67% lower for the low exposure route. The bus is generally following highly trafficked streets, and the accumulated exposure along the bus route is therefore between 79% and 115% higher than the high exposure bicycle route (the short bicycle route). Travelling outside the rush hour time periods reduces the accumulated exposure between 10% and 30% for the primary pollutants, and between 5% and 20% for the secondary pollutants. The study indicates that a web based route planner for selecting the low exposure route through the city might be a good service for the public. In addition the public may be advised to travel outside rush hour time periods.

  6. Indoor air pollution levels in public buildings in Thailand and exposure assessment.

    Science.gov (United States)

    Klinmalee, Aungsiri; Srimongkol, Kasama; Kim Oanh, Nguyen Thi

    2009-09-01

    Levels of pollutants including PM2.5 and PM2.5 composition (black carbon and water soluble ions), SO(2), NO(2), CO, CO(2), and BTEX (benzene, toluene, ethylbenzene, xylene) were monitored for indoor and outdoor air at a university campus and a shopping center, both located in the Northern suburb of Bangkok. Sampling was done during December 2005-February 2006 on both weekdays and weekends. At the university, indoor monitoring was done in two different air conditioned classrooms which shows the I/O ratios for all pollutants to be below 0.5-0.8 during the weekends. However, on weekdays the ratios for CO(2) and most detected BTEX were above 1.0. The concept of classroom occupancy was defined using a function of the student number in a lecture hour and the number of lecture hours per day. Classroom 2, which had a higher occupancy than classroom 1, was characterized by higher concentrations of most pollutants. PM2.5 was an exception and was higher in classroom 1 (37 microg/m(3), weekdays) as compared to classroom 2 (26 microg/m(3), weekdays) which was likely linked to the dust resuspension from the carpeted floor in the former. Monitoring was also done in the shopping mall at three different sites. Indoor pollutants levels and the I/O ratios at the shopping mall were higher than at the university. Levels of all pollutants measured at the car park, except for toluene and CO(2), were the highest. I/O ratios of the pollutants at the mall were above 1.0, which indicates the relatively higher influence of the indoor sources. However, the black carbon content in PM2.5 outdoor is higher than indoor, which suggest the important contribution from outdoor combustion sources such as the traffic. Major sources of outdoor air pollution in the areas were briefly discussed. Exposure modeling was applied using the time activity and measured pollutant concentrations to assess the exposure of different groups of people in the study areas. High exposure to PM2.5, especially for the people

  7. Exposure to indoor air pollution in a reconstructed house from Danish Iron Age

    DEFF Research Database (Denmark)

    Skov, Henrik; Christensen, Carsten Stentoft; Fenger, Jes

    2000-01-01

    The adverse effects of air pollution on health have been recognised for millennia, but only in recent centuries they have been directly documented. In this paper evidence of the levels of exposure in the Danish Iron Age has been obtained from real measurements. The personal exposure to NO2...

  8. The health effects of exercising in air pollution.

    Science.gov (United States)

    Giles, Luisa V; Koehle, Michael S

    2014-02-01

    The health benefits of exercise are well known. Many of the most accessible forms of exercise, such as walking, cycling, and running often occur outdoors. This means that exercising outdoors may increase exposure to urban air pollution. Regular exercise plays a key role in improving some of the physiologic mechanisms and health outcomes that air pollution exposure may exacerbate. This problem presents an interesting challenge of balancing the beneficial effects of exercise along with the detrimental effects of air pollution upon health. This article summarizes the pulmonary, cardiovascular, cognitive, and systemic health effects of exposure to particulate matter, ozone, and carbon monoxide during exercise. It also summarizes how air pollution exposure affects maximal oxygen consumption and exercise performance. This article highlights ways in which exercisers could mitigate the adverse health effects of air pollution exposure during exercise and draws attention to the potential importance of land use planning in selecting exercise facilities.

  9. Air Pollution and Stroke.

    Science.gov (United States)

    Lee, Kuan Ken; Miller, Mark R; Shah, Anoop S V

    2018-01-01

    The adverse health effects of air pollution have long been recognised; however, there is less awareness that the majority of the morbidity and mortality caused by air pollution is due to its effects on the cardiovascular system. Evidence from epidemiological studies have demonstrated a strong association between air pollution and cardiovascular diseases including stroke. Although the relative risk is small at an individual level, the ubiquitous nature of exposure to air pollution means that the absolute risk at a population level is on a par with "traditional" risk factors for cardiovascular disease. Of particular concern are findings that the strength of this association is stronger in low and middle income countries where air pollution is projected to rise as a result of rapid industrialisation. The underlying biological mechanisms through which air pollutants exert their effect on the vasculature are still an area of intense discussion. A greater understanding of the effect size and mechanisms is necessary to develop effective strategies at individual and policy levels to mitigate the adverse cardiovascular effects of air pollution.

  10. EXPOSURE TO PARTICULATE MATTER, VOLATILE ORGANIC COMPOUNDS, AND OTHER AIR POLLUTANTS INSIDE PATROL CARS

    Science.gov (United States)

    People driving in a vehicle might receive an enhanced dose of mobile source pollutants that are considered a potential risk for cardiovascular diseases. The exposure to components of air pollution in highway patrol vehicles, at an ambient, and a roadside location was determined d...

  11. Healthy neighborhoods: walkability and air pollution.

    Science.gov (United States)

    Marshall, Julian D; Brauer, Michael; Frank, Lawrence D

    2009-11-01

    The built environment may influence health in part through the promotion of physical activity and exposure to pollution. To date, no studies have explored interactions between neighborhood walkability and air pollution exposure. We estimated concentrations of nitric oxide (NO), a marker for direct vehicle emissions), and ozone (O(3)) and a neighborhood walkability score, for 49,702 (89% of total) postal codes in Vancouver, British Columbia, Canada. NO concentrations were estimated from a land-use regression model, O(3) was estimated from ambient monitoring data; walkability was calculated based on geographic attributes such as land-use mix, street connectivity, and residential density. All three attributes exhibit an urban-rural gradient, with high walkability and NO concentrations, and low O(3) concentrations, near the city center. Lower-income areas tend to have higher NO concentrations and walkability and lower O(3) concentrations. Higher-income areas tend to have lower pollution (NO and O(3)). "Sweet-spot" neighborhoods (low pollution, high walkability) are generally located near but not at the city center and are almost exclusively higher income. Increased concentration of activities in urban settings yields both health costs and benefits. Our research identifies neighborhoods that do especially well (and especially poorly) for walkability and air pollution exposure. Work is needed to ensure that the poor do not bear an undue burden of urban air pollution and that neighborhoods designed for walking, bicycling, or mass transit do not adversely affect resident's exposure to air pollution. Analyses presented here could be replicated in other cities and tracked over time to better understand interactions among neighborhood walkability, air pollution exposure, and income level.

  12. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Sean H Ling

    2009-06-01

    Full Text Available Sean H Ling, Stephan F van EedenJames Hogg iCAPTURE Centre for Pulmonary and Cardiovascular Research and Heart and Lung Institute, University of British Columbia, Vancouver, British Columbia, CanadaAbstract: Due to the rapid urbanization of the world population, a better understanding of the detrimental effects of exposure to urban air pollution on chronic lung disease is necessary. Strong epidemiological evidence suggests that exposure to particulate matter (PM air pollution causes exacerbations of pre-existing lung conditions, such as, chronic obstructive pulmonary disease (COPD resulting in increased morbidity and mortality. However, little is known whether a chronic, low-grade exposure to ambient PM can cause the development and progression of COPD. The deposition of PM in the respiratory tract depends predominantly on the size of the particles, with larger particles deposited in the upper and larger airways and smaller particles penetrating deep into the alveolar spaces. Ineffective clearance of this PM from the airways could cause particle retention in lung tissues, resulting in a chronic, low-grade inflammatory response that may be pathogenetically important in both the exacerbation, as well as, the progression of lung disease. This review focuses on the adverse effects of exposure to ambient PM air pollution on the exacerbation, progression, and development of COPD.Keywords: chronic obstructive pulmonary disease, particulate matter, air pollution, alveolar macrophage

  13. Evaluation of air-liquid interface exposure systems for in vitro assessment of airborne pollutants

    Science.gov (United States)

    Exposure of cells to airborne pollutants at the air-liquid interface (ALI) is a more realistic approach than exposures of submerged cells. The published literature, however, describes irreproducible and/or unrealistic experimental conditions using ALI systems. We have compared fi...

  14. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study.

    NARCIS (Netherlands)

    Brunekreef, B.|info:eu-repo/dai/nl/067548180; Beelen, R.M.J.|info:eu-repo/dai/nl/30483100X; Hoek, G.|info:eu-repo/dai/nl/069553475; Schouten, L.J.; Bausch-Goldbohm, S.; Fischer, P.; Armstrong, B.; Hughes, E.; Jerrett, M.; v.d. Brandt, P.A.

    2009-01-01

    Evidence is increasing that long-term exposure to ambient air pollution is associated with deaths from cardiopulmonary diseases. In a 2002 pilot study, we reported clear indications that traffic-related air pollution, especially at the local scale, was related to cardiopulmonary mortality in a

  15. Association of Air Pollution Exposure and Interleukin-13 Haplotype with the Risk of Aggregate Bronchitic Symptoms in Children

    Directory of Open Access Journals (Sweden)

    Yungling Leo Lee

    2018-03-01

    Full Text Available Interleukin-13(IL-13 might play an important role in driving aggregate bronchitic symptoms pathogenesis. However, none of the studies assessed the interaction between air pollutants exposure and IL-13 gene on the risk of aggregate bronchitic symptoms in non-asthma children. To assess the independent and joint effects of the exposure to air pollution and IL-13 haplotypes on the risk of aggregate bronchitic symptoms, we conducted a cross-sectional study and focused on non-asthma children. The study population consisted of 2944 children. The effect of each air pollutant on the risk of aggregate bronchitic symptoms was estimated as odds ratios per interquartile range (IQR change. In the multiple logistic regressions, adjusted for confounding factors, the risk of chronic phlegm was associated with PM2.5 exposure (aOR, 1.59; 95% CI, 1.07–2.37 per 12.51 μg/m3 change, O3 exposure (aOR, 1.54 95% CI, 1.05–2.27 per 8.28 ppb change and SO2 exposure (aOR, 1.19; 95% CI, 1.02–1.39 per 0.98 ppb change. Our study further provides the evidence that gene-environment interactions between IL-13 haplotype and O3 exposure on chronic phlegm (95% CI for interaction, 1.01–1.38. Identifying children who are more sensitive to air pollution helps us to provide them an efficient prevention to avoid aggregate bronchitic symptoms. Keywords: Air pollutants, Interleukin-13, Bronchitic symptoms

  16. An assessment of hopanes in settled dust and air as indicators of exposure to traffic-related air pollution in Windsor, Ontario

    Science.gov (United States)

    Curran, Jason

    Traffic-related air pollution (TRAP) has been linked with several adverse health effects. We investigated hopanes, markers of primary particle emissions from gasoline and diesel engines, in house dust as an alternative approach for assessing exposure to TRAP in Windsor, Ontario. Settled house dust was collected from the homes of 28 study participants (10 -- 13 yrs). The dust was then analyzed for a suite of hopanes by gas chromatography-mass spectrometry. We calculated correlations between dust hopane concentrations and estimates of annual average NO2 concentrations derived from an existing LUR model. Hopanes were consistently present in detectable quantities in house dust. Annual average outdoor NO2 estimated was moderately correlated with hopanes in house dust (r = 0.46; pefficiency or the presence of an attached garage. Hopanes measured in settled house dust show promise as an indicator of long-term exposure to traffic-related air pollution. Keywords: hopane; air pollution; traffic; dust; exposure; TRAP.

  17. The European concerted action on air pollution epidemiology

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann-Liebrich, U. [Basel Univ. (Switzerland). Inst. for Social and Preventive Medicine

    1995-12-31

    The European Concerted Action on Air Pollution Epidemiology was started in 1990 with the aim of bringing together European researchers in the field and improving research through collaboration and by preparing documents which would help to this end and by organizing workshops. A further aim was to stimulate cooperative research. Air pollution epidemiology investigates human effects of community air pollution by epidemiological methods. Epidemiology in general investigates the distribution and determinants of health-related states and events in populations. Diseases in which air pollution may play a significant role are mainly diseases of the respiratory system, for example chronic non-specific lung disease and lung cancer. Most diseases caused by air pollution can also be caused by other factors. Air pollution epidemiology is therefore specific in the expo variable (community air pollution) rather than in the type of health effects being studied. Air pollution epidemiology is beset with some specially challenging difficulties: ubiquitous exposure and as a consequence limited heterogeneity in exposure, low relative risks, few or specific health end points, and strong confounding. Further on the exposure-effect relationship is complicated by assumptions inherent to different study designs which relate to the exposure duration necessary to produce a certain health effect. In reports and workshops the concerted action tries to propose strategies to deal with these problems. (author)

  18. The European concerted action on air pollution epidemiology

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann-Liebrich, U [Basel Univ. (Switzerland). Inst. for Social and Preventive Medicine

    1996-12-31

    The European Concerted Action on Air Pollution Epidemiology was started in 1990 with the aim of bringing together European researchers in the field and improving research through collaboration and by preparing documents which would help to this end and by organizing workshops. A further aim was to stimulate cooperative research. Air pollution epidemiology investigates human effects of community air pollution by epidemiological methods. Epidemiology in general investigates the distribution and determinants of health-related states and events in populations. Diseases in which air pollution may play a significant role are mainly diseases of the respiratory system, for example chronic non-specific lung disease and lung cancer. Most diseases caused by air pollution can also be caused by other factors. Air pollution epidemiology is therefore specific in the expo variable (community air pollution) rather than in the type of health effects being studied. Air pollution epidemiology is beset with some specially challenging difficulties: ubiquitous exposure and as a consequence limited heterogeneity in exposure, low relative risks, few or specific health end points, and strong confounding. Further on the exposure-effect relationship is complicated by assumptions inherent to different study designs which relate to the exposure duration necessary to produce a certain health effect. In reports and workshops the concerted action tries to propose strategies to deal with these problems. (author)

  19. Interactions between particulate air pollution and temperature in air pollution mortality time series studies

    International Nuclear Information System (INIS)

    Roberts, Steven

    2004-01-01

    In many community time series studies on the effect of particulate air pollution on mortality, particulate air pollution is modeled additively. In this study, we investigated the interaction between daily particulate air pollution and daily mean temperature in Cook County, Illinois and Allegheny County, Pennsylvania, using data for the period 1987-1994. This was done through the use of joint particulate air pollution-temperature response surfaces and by stratifying the effect of particulate air pollution on mortality by temperature. Evidence that the effect of particulate air pollution on mortality may depend on temperature is found. However, the results were sensitive to the number of degrees of freedom used in the confounder adjustments, the particulate air pollution exposure measure, and how the effects of temperature on mortality are modeled. The results were less sensitive to the estimation method used--generalized linear models and natural cubic splines or generalized additive models and smoothing splines. The results of this study suggest that in community particulate air pollution mortality time series studies the possibility of an interaction between daily particulate air pollution and daily mean temperature should be considered

  20. Long-term exposure to air pollution and mammographic density in the Danish Diet, Cancer and Health cohort

    DEFF Research Database (Denmark)

    Huynh, Stephanie; von Euler-Chelpin, My; Raaschou-Nielsen, Ole

    2015-01-01

    investigated the association between long-term exposure to traffic-related air pollution and MD in a prospective cohort of women 50 years and older. METHODS: For the 4,769 women (3,930 postmenopausal) participants in the Danish Diet, Cancer and Health cohort (1993-1997) who attended mammographic screening...... 1971 until cohort baseline (1993-97) and MD was analyzed using logistic regression, adjusting for confounders, and separately by menopause, smoking status, and obesity. RESULTS: We found inverse, statistically borderline significant associations between long-term exposure to air pollution and having...... mixed/dense MD in our fully adjusted model (OR; 95% CI: 0.96; 0.93-1.01 per 20 μg/m(3) of NOx and 0.89; 0.80- 0.98 per 10 μg/m(3) of NO2). There was no interaction with menopause, smoking, or obesity. CONCLUSION: Traffic-related air pollution exposure does not increase MD, indicating that if air...

  1. Health effects of long-term exposure to air pollution: An overview of major respiratory and cardiovascular diseases and diabetes

    Directory of Open Access Journals (Sweden)

    Jovanovic-Andersen Zorana

    2012-01-01

    Full Text Available Large number of studies provided convincing evidence for adverse effects of exposure to outdoor air pollution on human health, and served as basis for current USA and EU Air Quality Standards and limit values. Still, new knowledge is emerging, expanding our understanding of vast effects of exposure to air pollution on human health of this ubiquitous exposure affecting millions of people in urban setting. This paper focuses on the studies of health effects of long-term (chronic exposures to air pollution, and includes major chronic and acute diseases in adults and especially elderly, which will present increasing public health burden, due to improving longevity and projected increasing numbers of elderly. The paper gives overview over the most relevant and latest literature presented by different health outcomes: chronic obstructive pulmonary disease, asthma, pneumonia, cardiovascular disease, and diabetes.

  2. Exposure to ambient air pollution and the incidence of dementia: A population-based cohort study.

    Science.gov (United States)

    Chen, Hong; Kwong, Jeffrey C; Copes, Ray; Hystad, Perry; van Donkelaar, Aaron; Tu, Karen; Brook, Jeffrey R; Goldberg, Mark S; Martin, Randall V; Murray, Brian J; Wilton, Andrew S; Kopp, Alexander; Burnett, Richard T

    2017-11-01

    Emerging studies have implicated air pollution in the neurodegenerative processes. Less is known about the influence of air pollution, especially at the relatively low levels, on developing dementia. We conducted a population-based cohort study in Ontario, Canada, where the concentrations of pollutants are among the lowest in the world, to assess whether air pollution exposure is associated with incident dementia. The study population comprised all Ontario residents who, on 1 April 2001, were 55-85years old, Canadian-born, and free of physician-diagnosed dementia (~2.1 million individuals). Follow-up extended until 2013. We used population-based health administrative databases with a validated algorithm to ascertain incident diagnosis of dementia as well as prevalent cases. Using satellite observations, land-use regression model, and an optimal interpolation method, we derived long-term average exposure to fine particulate matter (≤2.5μm in diameter) (PM 2.5 ), nitrogen dioxide (NO 2 ), and ozone (O 3 ), respectively at the subjects' historical residences based on a population-based registry. We used multilevel spatial random-effects Cox proportional hazards models, adjusting for individual and contextual factors, such as diabetes, brain injury, and neighborhood income. We conducted various sensitivity analyses, such as lagging exposure up to 10years and considering a negative control outcome for which no (or weaker) association with air pollution is expected. We identified 257,816 incident cases of dementia in 2001-2013. We found a positive association between PM 2.5 and dementia incidence, with a hazard ratio (HR) of 1.04 (95% confidence interval (CI): 1.03-1.05) for every interquartile-range increase in exposure to PM 2.5 . Similarly, NO 2 was associated with increased incidence of dementia (HR=1.10; 95% CI: 1.08-1.12). No association was found for O 3 . These associations were robust to all sensitivity analyses examined. These estimates translate to 6.1% of

  3. A geographic approach to modelling human exposure to traffic air pollution using GIS. Separate appendix report

    Energy Technology Data Exchange (ETDEWEB)

    Solvang Jensen, S.

    1998-10-01

    A new exposure model has been developed that is based on a physical, single media (air) and single source (traffic) micro environmental approach that estimates traffic related exposures geographically with the postal address as exposure indicator. The micro environments: residence, workplace and street (road user exposure) may be considered. The model estimates outdoor levels for selected ambient air pollutants (benzene, CO, NO{sub 2} and O{sub 3}). The influence of outdoor air pollution on indoor levels can be estimated using average (I/O-ratios. The model has a very high spatial resolution (the address), a high temporal resolution (one hour) and may be used to predict past, present and future exposures. The model may be used for impact assessment of control measures provided that the changes to the model inputs are obtained. The exposure model takes advantage of a standard Geographic Information System (GIS) (ArcView and Avenue) for generation of inputs, for visualisation of input and output, and uses available digital maps, national administrative registers and a local traffic database, and the Danish Operational Street Pollution Model (OSPM). The exposure model presents a new approach to exposure determination by integration of digital maps, administrative registers, a street pollution model and GIS. New methods have been developed to generate the required input parameters for the OSPM model: to geocode buildings using cadastral maps and address points, to automatically generate street configuration data based on digital maps, the BBR and GIS; to predict the temporal variation in traffic and related parameters; and to provide hourly background levels for the OSPM model. (EG)

  4. Ambient and household air pollution: complex triggers of disease

    Science.gov (United States)

    Farmer, Stephen A.; Nelin, Timothy D.; Falvo, Michael J.

    2014-01-01

    Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants. PMID:24929855

  5. Ambient and household air pollution: complex triggers of disease.

    Science.gov (United States)

    Farmer, Stephen A; Nelin, Timothy D; Falvo, Michael J; Wold, Loren E

    2014-08-15

    Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants.

  6. Air pollution during pregnancy and lung development in the child.

    Science.gov (United States)

    Korten, Insa; Ramsey, Kathryn; Latzin, Philipp

    2017-01-01

    Air pollution exposure has increased extensively in recent years and there is considerable evidence that exposure to particulate matter can lead to adverse respiratory outcomes. The health impacts of exposure to air pollution during the prenatal period is especially concerning as it can impair organogenesis and organ development, which can lead to long-term complications. Exposure to air pollution during pregnancy affects respiratory health in different ways. Lung development might be impaired by air pollution indirectly by causing lower birth weight, premature birth or disturbed development of the immune system. Exposure to air pollution during pregnancy has also been linked to decreased lung function in infancy and childhood, increased respiratory symptoms, and the development of childhood asthma. In addition, impaired lung development contributes to infant mortality. The mechanisms of how prenatal air pollution affects the lungs are not fully understood, but likely involve interplay of environmental and epigenetic effects. The current epidemiological evidence on the effect of air pollution during pregnancy on lung function and children's respiratory health is summarized in this review. While evidence for the adverse effects of prenatal air pollution on lung development and health continue to mount, rigorous actions must be taken to reduce air pollution exposure and thus long-term respiratory morbidity and mortality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Using smartphones to collect time-activity data for long-term personal-level air pollution exposure assessment.

    Science.gov (United States)

    Glasgow, Mark L; Rudra, Carole B; Yoo, Eun-Hye; Demirbas, Murat; Merriman, Joel; Nayak, Pramod; Crabtree-Ide, Christina; Szpiro, Adam A; Rudra, Atri; Wactawski-Wende, Jean; Mu, Lina

    2016-06-01

    Because of the spatiotemporal variability of people and air pollutants within cities, it is important to account for a person's movements over time when estimating personal air pollution exposure. This study aimed to examine the feasibility of using smartphones to collect personal-level time-activity data. Using Skyhook Wireless's hybrid geolocation module, we developed "Apolux" (Air, Pollution, Exposure), an Android(TM) smartphone application designed to track participants' location in 5-min intervals for 3 months. From 42 participants, we compared Apolux data with contemporaneous data from two self-reported, 24-h time-activity diaries. About three-fourths of measurements were collected within 5 min of each other (mean=74.14%), and 79% of participants reporting constantly powered-on smartphones (n=38) had a daily average data collection frequency of <10 min. Apolux's degree of temporal resolution varied across manufacturers, mobile networks, and the time of day that data collection occurred. The discrepancy between diary points and corresponding Apolux data was 342.3 m (Euclidian distance) and varied across mobile networks. This study's high compliance and feasibility for data collection demonstrates the potential for integrating smartphone-based time-activity data into long-term and large-scale air pollution exposure studies.

  8. Exposure to urban air pollution and bone health in clinically healthy six-year-old children.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Mora-Tiscareño, Antonieta; Francolira, Maricela; Torres-Jardón, Ricardo; Peña-Cruz, Bernardo; Palacios-López, Carolina; Zhu, Hongtu; Kong, Linglong; Mendoza-Mendoza, Nicolás; Montesinoscorrea, Hortencia; Romero, Lina; Valencia-Salazar, Gildardo; Kavanaugh, Michael; Frenk, Silvestre

    2013-01-01

    Air pollution induces systemic inflammation, as well as respiratory, myocardial and brain inflammation in children. Peak bone mass is influenced by environmental factors. We tested the hypothesis that six-year-olds with lifetime exposures to urban air pollution will have alterations in inflammatory markers and bone mineral density (BMD) as opposed to low-polluted city residents when matched for BMI, breast feeding history, skin phototype, age, sex and socioeconomic status. This pilot study included 20 children from Mexico City (MC) (6.17 years ± 0.63 years) and 15 controls (6.27 years ± 0.76 years). We performed full paediatric examinations, a history of outdoor exposures, seven-day dietary recalls, serum inflammatory markers and dual-energy X-ray absorptiometry (DXA). Children in MC had significantly higher concentrations of IL-6 (p=0.001), marked reductions in total blood neutrophils (p= 0.0002) and an increase in monocytes (p=0.005). MC children also had an insufficient Vitamin D intake and spent less time outdoors than controls (p<0.001) in an environment characterized by decreased UV light, with ozone and fine particulates concentrations above standard values. There were no significant differences between the cohorts in DXA Z scores. The impact of systemic inflammation, vitamin D insufficiency, air pollution, urban violence and poverty may have long-term bone detrimental outcomes in exposed paediatric populations as they grow older, increasing the risk of low bone mass and osteoporosis. The selection of reference populations for DXA must take into account air pollution exposures.

  9. A dynamic activity-based population modelling approach to evaluate exposure to air pollution: Methods and application to a Dutch urban area

    International Nuclear Information System (INIS)

    Beckx, Carolien; Int Panis, Luc; Arentze, Theo; Janssens, Davy; Torfs, Rudi; Broekx, Steven; Wets, Geert

    2009-01-01

    Recent air quality studies have highlighted that important differences in pollutant concentrations can occur over the day and between different locations. Traditional exposure analyses, however, assume that people are only exposed to pollution at their place of residence. Activity-based models, which recently have emerged from the field of transportation research, offer a technique to micro-simulate activity patterns of a population with a high resolution in space and time. Due to their characteristics, this model can be applied to establish a dynamic exposure assessment to air pollution. This paper presents a new exposure methodology, using a micro-simulator of activity-travel behaviour, to develop a dynamic exposure assessment. The methodology is applied to a Dutch urban area to demonstrate the advantages of the approach for exposure analysis. The results for the exposure to PM 10 and PM 2.5 , air pollutants considered as hazardous for human health, reveal large differences between the static and the dynamic approach, mainly due to an underestimation of the number of hours spent in the urban region by the static method. We can conclude that this dynamic population modelling approach is an important improvement over traditional methods and offers a new and more sensitive way for estimating population exposure to air pollution. In the light of the new European directive, aimed at reducing the exposure of the population to PM 2.5 , this new approach contributes to a much more accurate exposure assessment that helps evaluate policies to reduce public exposure to air pollution

  10. IN VIVO EVIDENCE OF FREE RADICAL FORMATION IN THE RAT LUNG AFTER EXPOSURE TO AN EMISSION SOURCE AIR POLLUTION PARTICLE

    Science.gov (United States)

    Exposure to air pollution particles can be associated with increased human morbidity and mortality. The mechanism(s) of lung injury remains unknown. We tested the hypothesis that lung exposure to oil fly ash (an emission source air pollution particle) causes in vivo free radical ...

  11. Association between long-term exposure to ambient air pollution and diabetes mortality in the US.

    Science.gov (United States)

    Lim, Chris C; Hayes, Richard B; Ahn, Jiyoung; Shao, Yongzhao; Silverman, Debra T; Jones, Rena R; Garcia, Cynthia; Thurston, George D

    2018-05-17

    Recent mechanistic and epidemiological evidence implicates air pollution as a potential risk factor for diabetes; however, mortality risks have not been evaluated in a large US cohort assessing exposures to multiple pollutants with detailed consideration of personal risk factors for diabetes. We assessed the effects of long-term ambient air pollution exposures on diabetes mortality in the NIH-AARP Diet and Health Study, a cohort of approximately a half million subjects across the contiguous U.S. The cohort, with a follow-up period between 1995 and 2011, was linked to residential census tract estimates for annual mean concentration levels of PM 2.5 , NO 2 , and O 3 . Associations between the air pollutants and the risk of diabetes mortality (N = 3598) were evaluated using multivariate Cox proportional hazards models adjusted for both individual-level and census-level contextual covariates. Diabetes mortality was significantly associated with increasing levels of both PM 2.5 (HR = 1.19; 95% CI: 1.03-1.39 per 10 μg/m 3 ) and NO 2 (HR = 1.09; 95% CI: 1.01-1.18 per 10 ppb). The strength of the relationship was robust to alternate exposure assessments and model specifications. We also observed significant effect modification, with elevated mortality risks observed among those with higher BMI and lower levels of fruit consumption. We found that long-term exposure to PM 2.5 and NO 2 , but not O 3 , is related to increased risk of diabetes mortality in the U.S, with attenuation of adverse effects by lower BMI and higher fruit consumption, suggesting that air pollution is involved in the etiology and/or control of diabetes. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Impact of noise and air pollution on pregnancy outcomes.

    Science.gov (United States)

    Gehring, Ulrike; Tamburic, Lillian; Sbihi, Hind; Davies, Hugh W; Brauer, Michael

    2014-05-01

    Motorized traffic is an important source of both air pollution and community noise. While there is growing evidence for an adverse effect of ambient air pollution on reproductive health, little is known about the association between traffic noise and pregnancy outcomes. We evaluated the impact of residential noise exposure on small size for gestational age, preterm birth, term birth weight, and low birth weight at term in a population-based cohort study, for which we previously reported associations between air pollution and pregnancy outcomes. We also evaluated potential confounding of air pollution effects by noise and vice versa. Linked administrative health data sets were used to identify 68,238 singleton births (1999-2002) in Vancouver, British Columbia, Canada, with complete covariate data (sex, ethnicity, parity, birth month and year, income, and education) and maternal residential history. We estimated exposure to noise with a deterministic model (CadnaA) and exposure to air pollution using temporally adjusted land-use regression models and inverse distance weighting of stationary monitors for the entire pregnancy. Noise exposure was negatively associated with term birth weight (mean difference = -19 [95% confidence interval = -23 to -15] g per 6 dB(A)). In joint air pollution-noise models, associations between noise and term birth weight remained largely unchanged, whereas associations decreased for all air pollutants. Traffic may affect birth weight through exposure to both air pollution and noise.

  13. Traffic-related air pollution - the health effects scrutinized

    NARCIS (Netherlands)

    Nijland, M.E.

    2013-01-01

    Numerous studies have been published on the health effects associated with exposure to air pollution. Air pollution is acknowledged as a public health risk and air quality regulations are set for specific air pollutants to protect human health. A major pollutant, well known for its adverse health

  14. Air Pollution Exposure—A Trigger for Myocardial Infarction?

    Directory of Open Access Journals (Sweden)

    Niklas Berglind

    2010-03-01

    Full Text Available The association between ambient air pollution exposure and hospitalization for cardiovascular events has been reported in several studies with conflicting results. A case-crossover design was used to investigate the effects of air pollution in 660 first-time myocardial infarction cases in Stockholm in 1993–1994, interviewed shortly after diagnosis using a standard protocol. Air pollution data came from central urban background monitors. No associations were observed between the risk for onset of myocardial infarction and two-hour or 24-hour air pollution exposure. No evidence of susceptible subgroups was found. This study provides no support that moderately elevated air pollution levels trigger first-time myocardial infarction.

  15. Exposures to Walkability and Particulate Air Pollution in a Nationwide Cohort of Women

    Science.gov (United States)

    James, Peter; Hart, Jaime E.; Laden, Francine

    2015-01-01

    Background Features of neighborhoods associated with walkability (i.e., connectivity, accessibility, and density) may also be correlated with levels of ambient air pollution, which would attenuate the health benefits of walkability. Objectives We examined the relationship between neighborhood walkability and ambient air pollution in a cross-sectional analysis of a cohort study spanning the entire United States using residence-level exposure assessment for ambient air pollution and the built environment. Methods Using data from the Nurses’ Health Study, we used linear regression to estimate the association between a neighborhood walkability index, combining neighborhood intersection count, business count, and population density (defined from Census data, infoUSA business data, and StreetMap USA data), and air pollution, defined from a GIS-based spatiotemporal PM2.5 model. Results After adjustment for Census tract median income, median home value, and percent with no high school education, the highest tertile of walkability index, intersection count, business count, and population density was associated with a with 1.58 (95% CI 1.54, 1.62), 1.20 (95% CI 1.16, 1.24), 1.31 (95% CI 1.27, 1.35), and 1.84 (95% CI 1.80, 1.88) μg/m3 higher level of PM2.5 respectively, compared to the lowest tertile. Results varied somewhat by neighborhood socioeconomic status and greatly by region. Conclusions This nationwide analysis showed a positive relationship between neighborhood walkability and modeled air pollution levels, which were consistent after adjustment for neighborhood-level socioeconomic status. Regional differences in the air pollution-walkability relationship demonstrate that there are factors that vary across region that allow for walkable neighborhoods with low levels of air pollution. PMID:26397775

  16. Association of Air Pollution Exposures With High-Density Lipoprotein Cholesterol and Particle Number: The Multi-Ethnic Study of Atherosclerosis.

    Science.gov (United States)

    Bell, Griffith; Mora, Samia; Greenland, Philip; Tsai, Michael; Gill, Ed; Kaufman, Joel D

    2017-05-01

    The relationship between air pollution and cardiovascular disease may be explained by changes in high-density lipoprotein (HDL). We examined the cross-sectional relationship between air pollution and both HDL cholesterol and HDL particle number in the MESA Air study (Multi-Ethnic Study of Atherosclerosis Air Pollution). Study participants were 6654 white, black, Hispanic, and Chinese men and women aged 45 to 84 years. We estimated individual residential ambient fine particulate pollution exposure (PM 2.5 ) and black carbon concentrations using a fine-scale likelihood-based spatiotemporal model and cohort-specific monitoring. Exposure periods were averaged to 12 months, 3 months, and 2 weeks prior to examination. HDL cholesterol and HDL particle number were measured in the year 2000 using the cholesterol oxidase method and nuclear magnetic resonance spectroscopy, respectively. We used multivariable linear regression to examine the relationship between air pollution exposure and HDL measures. A 0.7×10 - 6 m - 1 higher exposure to black carbon (a marker of traffic-related pollution) averaged over a 1-year period was significantly associated with a lower HDL cholesterol (-1.68 mg/dL; 95% confidence interval, -2.86 to -0.50) and approached significance with HDL particle number (-0.55 mg/dL; 95% confidence interval, -1.13 to 0.03). In the 3-month averaging time period, a 5 μg/m 3 higher PM 2.5 was associated with lower HDL particle number (-0.64 μmol/L; 95% confidence interval, -1.01 to -0.26), but not HDL cholesterol (-0.05 mg/dL; 95% confidence interval, -0.82 to 0.71). These data are consistent with the hypothesis that exposure to air pollution is adversely associated with measures of HDL. © 2017 American Heart Association, Inc.

  17. Associations between maternal exposure to air pollution and traffic noise and newborn's size at birth: A cohort study.

    Science.gov (United States)

    Hjortebjerg, Dorrit; Andersen, Anne Marie Nybo; Ketzel, Matthias; Pedersen, Marie; Raaschou-Nielsen, Ole; Sørensen, Mette

    2016-10-01

    Maternal exposure to air pollution and traffic noise has been suggested to impair fetal growth, but studies have reported inconsistent findings. Objective To investigate associations between residential air pollution and traffic noise during pregnancy and newborn's size at birth. From a national birth cohort we identified 75,166 live-born singletons born at term with information on the children's size at birth. Residential address history from conception until birth was collected and air pollution (NO2 and NOx) and road traffic noise was modeled at all addresses. Associations between exposures and indicators of newborn's size at birth: birth weight, placental weight and head and abdominal circumference were analyzed by linear and logistic regression, and adjusted for potential confounders. In mutually adjusted models we found a 10μg/m(3) higher time-weighted mean exposure to NO2 during pregnancy to be associated with a 0.35mm smaller head circumference (95% confidence interval (CI): 95% CI: -0.57; -0.12); a 0.50mm smaller abdominal circumference (95% CI: -0.80; -0.20) and a 5.02g higher placental weight (95% CI: 2.93; 7.11). No associations were found between air pollution and birth weight. Exposure to residential road traffic noise was weakly associated with reduced head circumference, whereas none of the other newborn's size indicators were associated with noise, neither before nor after adjustment for air pollution. This study indicates that air pollution may result in a small reduction in offspring's birth head and abdominal circumference, but not birth weight, whereas traffic noise seems not to affect newborn's size at birth. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Exposure to long-term air pollution and road traffic noise in relation to cholesterol: A cross-sectional study.

    Science.gov (United States)

    Sørensen, Mette; Hjortebjerg, Dorrit; Eriksen, Kirsten T; Ketzel, Matthias; Tjønneland, Anne; Overvad, Kim; Raaschou-Nielsen, Ole

    2015-12-01

    Exposure to traffic noise and air pollution have both been associated with cardiovascular disease, though the mechanisms behind are not yet clear. We aimed to investigate whether the two exposures were associated with levels of cholesterol in a cross-sectional design. In 1993–1997, 39,863 participants aged 50–64 year and living in the Greater Copenhagen area were enrolled in a population-based cohort study. For each participant, non-fasting total cholesterol was determined in whole blood samples on the day of enrolment. Residential addresses 5-years preceding enrolment were identified in a national register and road traffic noise (Lden) were modeled for all addresses. For air pollution, nitrogen dioxide (NO2) was modeled at all addresses using a dispersion model and PM2.5 was modeled at all enrolment addresses using a land-use regression model. Analyses were done using linear regression with adjustment for potential confounders as well as mutual adjustment for the three exposures. Baseline residential exposure to the interquartile range of road traffic noise,NO2 and PM2.5 was associated with a 0.58 mg/dl (95% confidence interval: −0.09; 1.25), a 0.68 mg/dl (0.22; 1.16) and a 0.78 mg/dl (0.22; 1.34) higher level of total cholesterol in single pollutant models, respectively. In two pollutant models with adjustment for noise in air pollution models and vice versa, the association between air pollution and cholesterol remained for both air pollution variables (NO2: 0.72 (0.11; 1.34); PM2.5: 0.70 (0.12; 1.28) mg/dl), whereas there was no association for noise (−0.08mg/dl). In three-pollutant models (NO2, PM2.5 and road traffic noise), estimates for NO2 and PM2.5 were slightly diminished (NO2: 0.58 (−0.05; 1.22); PM2.5: 0.57 (−0.02; 1.17) mg/dl). Air pollution and possibly also road traffic noise may be associated with slightly higher levels of cholesterol, though associations for the two exposures were difficult to separate.

  19. Indoor air pollution: a public health perspective

    International Nuclear Information System (INIS)

    Spengler, J.D.; Sexton, K.

    1983-01-01

    Although official efforts to control air pollution have traditionally focused on outdoor air, it is now apparent that elevated contaminant concentrations are common inside some private and public buildings. Concerns about potential public health problems due to indoor air pollution are based on evidence that urban residents typically spend more than 90 percent of their time indoors, concentrations of some contaminants are higher indoors than outdoors, and for some pollutants personal exposures are not characterized adequately by outdoor measurements. Among the more important indoor contaminants associated with health or irritation effects are passive tobacco smoke, radon decay products, carbon monoxide, nitrogen dioxide, formaldehyde, asbestos fibers, microorganisms, and aeroallergens. Efforts to assess health risks associated with indoor air pollution are limited by insufficient information about the number of people exposed, the pattern and severity of exposures, and the health consequences of exposures. An overall strategy should be developed to investigate indoor exposures, health effects, control options, and public policy alternatives

  20. Elevated biomarkers of sympatho-adrenomedullary activity linked to e-waste air pollutant exposure in preschool children.

    Science.gov (United States)

    Cong, Xiaowei; Xu, Xijin; Xu, Long; Li, Minghui; Xu, Cheng; Qin, Qilin; Huo, Xia

    2018-06-01

    Air pollution is a risk factor for cardiovascular disease (CVD), and cardiovascular regulatory changes in childhood contribute to the development and progression of cardiovascular events at older ages. The aim of the study was to investigate the effect of air pollutant exposure on the child sympatho-adrenomedullary (SAM) system, which plays a vital role in regulating and controlling the cardiovascular system. Two plasma biomarkers (plasma epinephrine and norepinephrine) of SAM activity and heart rate were measured in preschool children (n = 228) living in Guiyu, and native (n = 104) and non-native children (n = 91) living in a reference area (Haojiang) for >1 year. Air pollution data, over the 4-months before the health examination, was also collected. Environmental PM 2.5 , PM 10 , SO 2 , NO 2 and CO, plasma norepinephrine and heart rate of the e-waste recycling area were significantly higher than for the non-e-waste recycling area. However, there was no difference in plasma norepinephrine and heart rate between native children living in the non-e-waste recycling area and non-native children living in the non-e-waste recycling area. PM 2.5 , PM 10 , SO 2 and NO 2 data, over the 30-day and the 4-month average of pollution before the health examination, showed a positive association with plasma norepinephrine level. PM 2.5 , PM 10 , SO 2 , NO 2 and CO concentrations, over the 24 h of the day of the health examination, the 3 previous 24-hour periods before the health examination, and the 24 h after the health examination, were related to increase in heart rate. At the same time, plasma norepinephrine and heart rate on children in the high air pollution level group (≤50-m radius of family-run workshops) were higher than those in the low air pollution level group. Our results suggest that air pollution exposure in e-waste recycling areas could result in an increase in heart rate and plasma norepinephrine, implying e-waste air pollutant exposure

  1. Impact of commuting exposure to traffic-related air pollution on cognitive development in children walking to school.

    Science.gov (United States)

    Alvarez-Pedrerol, Mar; Rivas, Ioar; López-Vicente, Mònica; Suades-González, Elisabet; Donaire-Gonzalez, David; Cirach, Marta; de Castro, Montserrat; Esnaola, Mikel; Basagaña, Xavier; Dadvand, Payam; Nieuwenhuijsen, Mark; Sunyer, Jordi

    2017-12-01

    A few studies have found associations between the exposure to traffic-related air pollution at school and/or home and cognitive development. The impact on cognitive development of the exposure to air pollutants during commuting has not been explored. We aimed to assess the role of the exposure to traffic-related air pollutants during walking commute to school on cognitive development of children. We performed a longitudinal study of children (n = 1,234, aged 7-10 y) from 39 schools in Barcelona (Catalonia, Spain) who commuted by foot to school. Children were tested four times during a 12-month follow-up to characterize their developmental trajectories of working memory (d' of the three-back numbers test) and inattentiveness (hit reaction time standard error of the Attention Network Test). Average particulate matter ≤2.5 μm (PM 2.5 ), Black Carbon (BC) and NO 2 concentrations were estimated using Land Use Regression for the shortest walking route to school. Differences in cognitive growth were evaluated by linear mixed effects models with age-by-pollutant interaction terms. Exposure to PM 2.5 and BC from the commutes by foot was associated with a reduction in the growth of working memory (an interquartile range increase in PM 2.5 and BC concentrations decreased the annual growth of working memory by 5.4 (95% CI [-10.2, -0.6]) and 4.6 (95% CI [-9.0, -0.1]) points, respectively). The findings for NO 2 were not conclusive and none of the pollutants were associated with inattentiveness. Efforts should be made to implement pedestrian school pathways through low traffic streets in order to increase security and minimize children's exposure to air pollutants. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Respiratory health effects of air pollution: update on biomass smoke and traffic pollution.

    Science.gov (United States)

    Laumbach, Robert J; Kipen, Howard M

    2012-01-01

    Mounting evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, and possibly tuberculosis. Although associations between air pollution and respiratory disease are complex, recent epidemiologic studies have led to an increased recognition of the emerging importance of traffic-related air pollution in both developed and less-developed countries, as well as the continued importance of emissions from domestic fires burning biomass fuels, primarily in the less-developed world. Emissions from these sources lead to personal exposures to complex mixtures of air pollutants that change rapidly in space and time because of varying emission rates, distances from source, ventilation rates, and other factors. Although the high degree of variability in personal exposure to pollutants from these sources remains a challenge, newer methods for measuring and modeling these exposures are beginning to unravel complex associations with asthma and other respiratory tract diseases. These studies indicate that air pollution from these sources is a major preventable cause of increased incidence and exacerbation of respiratory disease. Physicians can help to reduce the risk of adverse respiratory effects of exposure to biomass and traffic air pollutants by promoting awareness and supporting individual and community-level interventions. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  3. Long-term exposure to ambient air pollution and mortality due to cardiovascular disease and cerebrovascular disease in Shenyang, China.

    Directory of Open Access Journals (Sweden)

    Pengfei Zhang

    Full Text Available BACKGROUND: The relationship between ambient air pollution exposure and mortality of cardiovascular and cerebrovascular diseases in human is controversial, and there is little information about how exposures to ambient air pollution contribution to the mortality of cardiovascular and cerebrovascular diseases among Chinese. The aim of the present study was to examine whether exposure to ambient-air pollution increases the risk for cardiovascular and cerebrovascular disease. METHODOLOGY/PRINCIPAL FINDINGS: We conducted a retrospective cohort study among humans to examine the association between compound-air pollutants [particulate matter <10 µm in aerodynamic diameter (PM(10, sulfur dioxide (SO(2 and nitrogen dioxide (NO(2] and mortality in Shenyang, China, using 12 years of data (1998-2009. Also, stratified analysis by sex, age, education, and income was conducted for cardiovascular and cerebrovascular mortality. The results showed that an increase of 10 µg/m(3 in a year average concentration of PM(10 corresponds to 55% increase in the risk of a death cardiovascular disease (hazard ratio [HR], 1.55; 95% confidence interval [CI], 1.51 to 1.60 and 49% increase in cerebrovascular disease (HR, 1.49; 95% CI, 1.45 to 1.53, respectively. The corresponding figures of adjusted HR (95%CI for a 10 µg/m(3 increase in NO(2 was 2.46 (2.31 to 2.63 for cardiovascular mortality and 2.44 (2.27 to 2.62 for cerebrovascular mortality, respectively. The effects of air pollution were more evident in female that in male, and nonsmokers and residents with BMI<18.5 were more vulnerable to outdoor air pollution. CONCLUSION/SIGNIFICANCE: Long-term exposure to ambient air pollution is associated with the death of cardiovascular and cerebrovascular diseases among Chinese populations.

  4. Journey-time exposure to particulate air pollution

    Science.gov (United States)

    Gulliver, John; Briggs, David J.

    Journey-time exposures to particulate air pollution were investigated in Leicester, UK, between January and March 2005. Samples of TSP, PM 10, PM 2.5, and PM 1 were simultaneously collected using light scattering devices whilst journeys were made by walking an in-car. Over a period of two months, 33 pairs of walking and in-car measurements were collected along two circular routes. Average exposures while walking were seen to be higher than those found in-car for each of the particle fractions: average walking to in-car ratios were 1.2 (± 0.6), 1.5 (± 0.6), 1.3 (± 0.6), and 1.4 (± 0.6) μg m -3 for coarse (TSP-PM 10), intermediate (PM 10-PM 2.5), fine (PM 2.5-PM 1), and very fine particles (PM 1), respectively. Correlations between walking and in-car exposures were seen to be weak for coarse particles ( r=0.10, p=0.58), moderate for the intermediate particles ( r=0.49, pcar exposures were 25% higher than the same fixed-site monitor. Particles with an aerodynamic diameter of less than 2.5 μm were seen to be highly correlated between walking and in-car particle exposures and a rural fixed-site monitor about 30 km south of Leicester.

  5. Mobile phones as monitors of personal exposure to air pollution: Is this the future?

    Directory of Open Access Journals (Sweden)

    Mawutorli Nyarku

    Full Text Available Mobile phones have a large spectrum of applications, aiding in risk prevention and improving health and wellbeing of their owners. So far, however, they have not been used for direct assessment of personal exposure to air pollution. In this study, we comprehensively evaluated the first, and the only available, mobile phone-BROAD Life-equipped with air pollution sensors (PM2.5 and VOC, to answer the question whether this technology is a viable option in the quest of reducing the burden of disease to air pollution. We tested its performance, applicability and suitability for the purpose by subjecting it to varied concentrations of different types of aerosol particles (cigarette smoke, petrol exhaust and concrete dust and formaldehyde under controlled laboratory conditions, as well as to ambient particles during field measurements. Six reference instruments were used in the study: AEROTRAK Optical Particle Counter (OPC model number 9306, DustTrak, Aerodynamic Particle Counter (APS, Scanning Mobility Particle Sizer (SMPS, Tapered Element Oscillating Microbalance (TEOM and Formaldehyde Analyser. Overall, we found that the phone's response was linear at higher particle number concentrations in the chamber, above 5 and 10 μg m-3, for combustion and concrete dust particles, respectively, and for higher formaldehyde concentrations, making it potentially suitable for applications in polluted environments. At lower ambient concentrations of particles around 10 ug m-3 and 20 μg m-3 for PM2.5 and PM10, respectively, the phone's response was below its noise level, suggesting that it is not suitable for ambient monitoring under relatively clean urban conditions. This mobile phone has a number of limitations that may hinder its use in personal exposure and for continuous monitoring. Despite these limitations, it may be used for comparative assessments, for example when comparing outcomes of intervention measures or local impacts of air pollution sources. It

  6. Mobile phones as monitors of personal exposure to air pollution: Is this the future?

    Science.gov (United States)

    Nyarku, Mawutorli; Mazaheri, Mandana; Jayaratne, Rohan; Dunbabin, Matthew; Rahman, Md Mahmudur; Uhde, Erik

    2018-01-01

    Mobile phones have a large spectrum of applications, aiding in risk prevention and improving health and wellbeing of their owners. So far, however, they have not been used for direct assessment of personal exposure to air pollution. In this study, we comprehensively evaluated the first, and the only available, mobile phone—BROAD Life—equipped with air pollution sensors (PM2.5 and VOC), to answer the question whether this technology is a viable option in the quest of reducing the burden of disease to air pollution. We tested its performance, applicability and suitability for the purpose by subjecting it to varied concentrations of different types of aerosol particles (cigarette smoke, petrol exhaust and concrete dust) and formaldehyde under controlled laboratory conditions, as well as to ambient particles during field measurements. Six reference instruments were used in the study: AEROTRAK Optical Particle Counter (OPC model number 9306), DustTrak, Aerodynamic Particle Counter (APS), Scanning Mobility Particle Sizer (SMPS), Tapered Element Oscillating Microbalance (TEOM) and Formaldehyde Analyser. Overall, we found that the phone’s response was linear at higher particle number concentrations in the chamber, above 5 and 10 μg m-3, for combustion and concrete dust particles, respectively, and for higher formaldehyde concentrations, making it potentially suitable for applications in polluted environments. At lower ambient concentrations of particles around 10 ug m-3 and 20 μg m-3 for PM2.5 and PM10, respectively, the phone’s response was below its noise level, suggesting that it is not suitable for ambient monitoring under relatively clean urban conditions. This mobile phone has a number of limitations that may hinder its use in personal exposure and for continuous monitoring. Despite these limitations, it may be used for comparative assessments, for example when comparing outcomes of intervention measures or local impacts of air pollution sources. It should

  7. Mobile phones as monitors of personal exposure to air pollution: Is this the future?

    Science.gov (United States)

    Nyarku, Mawutorli; Mazaheri, Mandana; Jayaratne, Rohan; Dunbabin, Matthew; Rahman, Md Mahmudur; Uhde, Erik; Morawska, Lidia

    2018-01-01

    Mobile phones have a large spectrum of applications, aiding in risk prevention and improving health and wellbeing of their owners. So far, however, they have not been used for direct assessment of personal exposure to air pollution. In this study, we comprehensively evaluated the first, and the only available, mobile phone-BROAD Life-equipped with air pollution sensors (PM2.5 and VOC), to answer the question whether this technology is a viable option in the quest of reducing the burden of disease to air pollution. We tested its performance, applicability and suitability for the purpose by subjecting it to varied concentrations of different types of aerosol particles (cigarette smoke, petrol exhaust and concrete dust) and formaldehyde under controlled laboratory conditions, as well as to ambient particles during field measurements. Six reference instruments were used in the study: AEROTRAK Optical Particle Counter (OPC model number 9306), DustTrak, Aerodynamic Particle Counter (APS), Scanning Mobility Particle Sizer (SMPS), Tapered Element Oscillating Microbalance (TEOM) and Formaldehyde Analyser. Overall, we found that the phone's response was linear at higher particle number concentrations in the chamber, above 5 and 10 μg m-3, for combustion and concrete dust particles, respectively, and for higher formaldehyde concentrations, making it potentially suitable for applications in polluted environments. At lower ambient concentrations of particles around 10 ug m-3 and 20 μg m-3 for PM2.5 and PM10, respectively, the phone's response was below its noise level, suggesting that it is not suitable for ambient monitoring under relatively clean urban conditions. This mobile phone has a number of limitations that may hinder its use in personal exposure and for continuous monitoring. Despite these limitations, it may be used for comparative assessments, for example when comparing outcomes of intervention measures or local impacts of air pollution sources. It should be kept

  8. Air pollution and lung cancer incidence in 17 European cohorts

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, Ole; Andersen, Zorana Jovanovic; Beelen, Rob

    2013-01-01

    Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations.......Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations....

  9. Air pollution exposure and gestational diabetes mellitus among pregnant women in Massachusetts: a cohort study.

    Science.gov (United States)

    Fleisch, Abby F; Kloog, Itai; Luttmann-Gibson, Heike; Gold, Diane R; Oken, Emily; Schwartz, Joel D

    2016-02-24

    Rodent and human studies suggest an association between air pollution exposure and type 2 diabetes mellitus, but the extent to which air pollution is associated with gestational diabetes mellitus (GDM) is less clear. We used the Massachusetts Registry of Vital Records to study primiparous women pregnant from 2003-2008 without pre-existing diabetes. We used satellite-based spatiotemporal models to estimate first and second trimester residential particulate (PM2.5) exposure and geographic information systems to estimate neighborhood traffic density. We obtained GDM status from birth records. We performed logistic regression analyses adjusted for sociodemographics on the full cohort and after stratification by maternal age and smoking habits. Of 159,373 women, 5,381 (3.4 %) developed GDM. Residential PM2.5 exposure ranged 1.3-19.3 μg/m(3) over the second trimester. None of the exposures were associated with GDM in the full cohort [e.g. OR 0.99 (95 % CI: 0.95, 1.03) for each interquartile range (IQR) increment in second trimester PM2.5]. There were also no consistent associations after stratification by smoking habits. When the cohort was stratified by maternal age, women less than 20 years had 1.36 higher odds of GDM (95 % CI: 1.08, 1.70) for each IQR increment in second trimester PM2.5 exposure. Although we found no evidence of an association between air pollution exposure and GDM among all women in our study, greater exposure to PM2.5 during the second trimester was associated with GDM in the youngest age stratum.

  10. Mortality among population with exposure to industrial air pollution containing nickel and other toxic metals.

    Science.gov (United States)

    Pasanen, Kari; Pukkala, Eero; Turunen, Anu W; Patama, Toni; Jussila, Ilkka; Makkonen, Sari; Salonen, Raimo O; Verkasalo, Pia K

    2012-05-01

    To assess disease mortality among people with exposure to metal-rich particulate air pollution. We conducted a cohort study on mortality from 1981 to 2005 among 33,573 people living near a nickel/copper smelter in Harjavalta, Finland. Nickel concentration in soil humus was selected as an indicator for long-term exposure. Relative risks--adjusted for age, socioeconomic status, and calendar period--were calculated for three exposure zones. The relative risks for diseases of the circulatory system by increasing exposure were 0.93 (95% confidence interval = 0.79 to 1.09), 1.20 (1.04 to 1.39), and 1.18 (1.00 to 1.39) among men and 1.01 (0.88 to 1.17), 1.20 (1.04 to 1.38), and 1.14 (0.97 to 1.33) among women. Exclusion of smelter workers from the cohort did not materially change the results. Long-term environmental exposure to metal-rich air pollution was associated with increased mortality from circulatory diseases.

  11. Allergic diseases and air pollution.

    Science.gov (United States)

    Lee, Suh-Young; Chang, Yoon-Seok; Cho, Sang-Heon

    2013-07-01

    The prevalence of allergic diseases has been increasing rapidly, especially in developing countries. Various adverse health outcomes such as allergic disease can be attributed to rapidly increasing air pollution levels. Rapid urbanization and increased energy consumption worldwide have exposed the human body to not only increased quantities of ambient air pollution, but also a greater variety of pollutants. Many studies clearly demonstrate that air pollutants potently trigger asthma exacerbation. Evidence that transportation-related pollutants contribute to the development of allergies is also emerging. Moreover, exposure to particulate matter, ozone, and nitrogen dioxide contributes to the increased susceptibility to respiratory infections. This article focuses on the current understanding of the detrimental effects of air pollutants on allergic disease including exacerbation to the development of asthma, allergic rhinitis, and eczema as well as epigenetic regulation.

  12. Transcriptome-wide analyses indicate mitochondrial responses to particulate air pollution exposure

    DEFF Research Database (Denmark)

    Winckelmans, Ellen; Nawrot, Tim S.; Tsamou, Maria

    2017-01-01

    validation cohort (n = 169, 55.6% women). Results: Overrepresentation analyses revealed significant pathways (p-value transport chain (ETC) for medium-term exposure in women. For men, medium-term PM10....... Conclusions: In this exploratory study, we identified mitochondrial genes and pathways associated with particulate air pollution indicating upregulation of energy producing pathways as a potential mechanism to compensate for PM-induced mitochondrial damage....

  13. Exposure to occupational air pollution and cardiac function in workers of the Esfahan Steel Industry, Iran.

    Science.gov (United States)

    Golshahi, Jafar; Sadeghi, Masoumeh; Saqira, Mohammad; Zavar, Reihaneh; Sadeghifar, Mostafa; Roohafza, Hamidreza

    2016-06-01

    Air pollution is recognized as an important risk factor for cardiovascular disease. We investigated association of exposure to occupational air pollution and cardiac function in the workers of the steel industry. Fifty male workers of the agglomeration and coke-making parts of the Esfahan Steel Company were randomly selected (n = 50). Workers in the administrative parts were studied as controls (n = 50). Those with known history of hypertension, dyslipidemia, or diabetes, and active smokers were not included. Data of age, body mass index, employment duration, blood pressure, fasting blood sugar, and lipid profile were gathered. Echocardiography was performed to evaluate cardiac function. Left ventricular ejection fraction was lower in workers of the agglomeration/coke-making parts than in controls (mean difference = 5 to 5.5 %, P steel industry is associated with left heart systolic dysfunction. Possible right heart insults due to air pollution exposure warrant further investigations.

  14. Long-Term Exposure to Ambient Air Pollution in Childhood-Adolescence and Lung Function in Adulthood.

    Science.gov (United States)

    Dubrowski, A; Kliś, K; Żurawiecka, M; Dereń, K; Barszcz, M; Nowakowski, D; Wronka, I

    2018-02-15

    The aim of the study was to evaluate the effect of air pollution in the dwelling place during childhood-adolescence on respiratory function in early adulthood. The study was conducted in 220 female and 160 male university undergraduates in the cities of Cracow and Wroclaw in Poland and consisted of spirometry to assess lung function. The subjects' exposure to pollution during childhood-adolescence was assessed from the data acquired by the Polish Chief Inspectorate for Environmental Protection. We found differences in all spirometry variables depending on benz[a]piren exposure, in FVC% and FEV 1 /%FVC depending on PM 2.5 content, and in FVC% depending on NO 2 content . Statistically significant differences in spirometry variables were also found in relation to the degree of urbanization of the place of living during the early life period in question. The higher the urbanization, the higher is FEV 1 % and FCV%, and the lower FEV 1 /%FVC. Additionally, undergraduates of Cracow University had worse lung function compared to those of Wroclaw University. In conclusion, air pollution in the dwelling place during childhood-adolescence has an impact on lung function in early adulthood, independently of the current exposure to pollutants.

  15. Determinants of perceived air pollution annoyance and association between annoyance scores and air pollution (PM 2.5, NO 2) concentrations in the European EXPOLIS study

    Science.gov (United States)

    Rotko, Tuulia; Oglesby, Lucy; Künzli, Nino; Carrer, Paolo; Nieuwenhuijsen, Mark J.; Jantunen, Matti

    Apart from its traditionally considered objective impacts on health, air pollution can also have perceived effects, such as annoyance. The psychological effects of air pollution may often be more important to well-being than the biophysical effects. Health effects of perceived annoyance from air pollution are so far unknown. More knowledge of air pollution annoyance levels, determinants and also associations with different air pollution components is needed. In the European air pollution exposure study, EXPOLIS, the air pollution annoyance as perceived at home, workplace and in traffic were surveyed among other study objectives. Overall 1736 randomly drawn 25-55-yr-old subjects participated in six cities (Athens, Basel, Milan, Oxford, Prague and Helsinki). Levels and predictors of individual perceived annoyances from air pollution were assessed. Instead of the usual air pollution concentrations at fixed monitoring sites, this paper compares the measured microenvironment concentrations and personal exposures of PM 2.5 and NO 2 to the perceived annoyance levels. A considerable proportion of the adults surveyed was annoyed by air pollution. Female gender, self-reported respiratory symptoms, downtown living and self-reported sensitivity to air pollution were directly associated with high air pollution annoyance score while in traffic, but smoking status, age or education level were not significantly associated. Population level annoyance averages correlated with the city average exposure levels of PM 2.5 and NO 2. A high correlation was observed between the personal 48-h PM 2.5 exposure and perceived annoyance at home as well as between the mean annoyance at work and both the average work indoor PM 2.5 and the personal work time PM 2.5 exposure. With the other significant determinants (gender, city code, home location) and home outdoor levels the model explained 14% (PM 2.5) and 19% (NO 2) of the variation in perceived air pollution annoyance in traffic. Compared to

  16. What can individuals do to reduce personal health risks from air pollution?

    Science.gov (United States)

    Laumbach, Robert; Meng, Qingyu; Kipen, Howard

    2015-01-01

    In many areas of the world, concentrations of ambient air pollutants exceed levels associated with increased risk of acute and chronic health problems. While effective policies to reduce emissions at their sources are clearly preferable, some evidence supports the effectiveness of individual actions to reduce exposure and health risks. Personal exposure to ambient air pollution can be reduced on high air pollution days by staying indoors, reducing outdoor air infiltration to indoors, cleaning indoor air with air filters, and limiting physical exertion, especially outdoors and near air pollution sources. Limited evidence suggests that the use of respirators may be effective in some circumstances. Awareness of air pollution levels is facilitated by a growing number of public air quality alert systems. Avoiding exposure to air pollutants is especially important for susceptible individuals with chronic cardiovascular or pulmonary disease, children, and the elderly. Research on mechanisms underlying the adverse health effects of air pollution have suggested potential pharmaceutical or chemopreventive interventions, such as antioxidant or antithrombotic agents, but in the absence of data on health outcomes, no sound recommendations can be made for primary prevention. Health care providers and their patients should carefully consider individual circumstances related to outdoor and indoor air pollutant exposure levels and susceptibility to those air pollutants when deciding on a course of action to reduce personal exposure and health risks from ambient air pollutants. Careful consideration is especially warranted when interventions may have unintended negative consequences, such as when efforts to avoid exposure to air pollutants lead to reduced physical activity or when there is evidence that dietary supplements, such as antioxidants, have potential adverse health effects. These potential complications of partially effective personal interventions to reduce exposure or

  17. Using machine learning to identify air pollution exposure profiles associated with early cognitive skills among U.S. children

    International Nuclear Information System (INIS)

    Stingone, Jeanette A.; Pandey, Om P.; Claudio, Luz; Pandey, Gaurav

    2017-01-01

    Data-driven machine learning methods present an opportunity to simultaneously assess the impact of multiple air pollutants on health outcomes. The goal of this study was to apply a two-stage, data-driven approach to identify associations between air pollutant exposure profiles and children's cognitive skills. Data from 6900 children enrolled in the Early Childhood Longitudinal Study, Birth Cohort, a national study of children born in 2001 and followed through kindergarten, were linked to estimated concentrations of 104 ambient air toxics in the 2002 National Air Toxics Assessment using ZIP code of residence at age 9 months. In the first-stage, 100 regression trees were learned to identify ambient air pollutant exposure profiles most closely associated with scores on a standardized mathematics test administered to children in kindergarten. In the second-stage, the exposure profiles frequently predicting lower math scores were included within linear regression models and adjusted for confounders in order to estimate the magnitude of their effect on math scores. This approach was applied to the full population, and then to the populations living in urban and highly-populated urban areas. Our first-stage results in the full population suggested children with low trichloroethylene exposure had significantly lower math scores. This association was not observed for children living in urban communities, suggesting that confounding related to urbanicity needs to be considered within the first-stage. When restricting our analysis to populations living in urban and highly-populated urban areas, high isophorone levels were found to predict lower math scores. Within adjusted regression models of children in highly-populated urban areas, the estimated effect of higher isophorone exposure on math scores was −1.19 points (95% CI −1.94, −0.44). Similar results were observed for the overall population of urban children. This data-driven, two-stage approach can be

  18. Factors influencing time-location patterns and their impact on estimates of exposure: the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air).

    Science.gov (United States)

    Spalt, Elizabeth W; Curl, Cynthia L; Allen, Ryan W; Cohen, Martin; Williams, Kayleen; Hirsch, Jana A; Adar, Sara D; Kaufman, Joel D

    2016-06-01

    We assessed time-location patterns and the role of individual- and residential-level characteristics on these patterns within the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) cohort and also investigated the impact of individual-level time-location patterns on individual-level estimates of exposure to outdoor air pollution. Reported time-location patterns varied significantly by demographic factors such as age, gender, race/ethnicity, income, education, and employment status. On average, Chinese participants reported spending significantly more time indoors and less time outdoors and in transit than White, Black, or Hispanic participants. Using a tiered linear regression approach, we predicted time indoors at home and total time indoors. Our model, developed using forward-selection procedures, explained 43% of the variability in time spent indoors at home, and incorporated demographic, health, lifestyle, and built environment factors. Time-weighted air pollution predictions calculated using recommended time indoors from USEPA overestimated exposures as compared with predictions made with MESA Air participant-specific information. These data fill an important gap in the literature by describing the impact of individual and residential characteristics on time-location patterns and by demonstrating the impact of population-specific data on exposure estimates.

  19. Acute effect of ambient air pollution on stroke mortality in the China air pollution and health effects study.

    Science.gov (United States)

    Chen, Renjie; Zhang, Yuhao; Yang, Chunxue; Zhao, Zhuohui; Xu, Xiaohui; Kan, Haidong

    2013-04-01

    There have been no multicity studies on the acute effects of air pollution on stroke mortality in China. This study was undertaken to examine the associations between daily stroke mortality and outdoor air pollution (particulate matter air pollution with daily stroke mortality. Air pollution was associated with daily stroke mortality in 8 Chinese cities. In the combined analysis, an increase of 10 μg/m(3) of 2-day moving average concentrations of particulate matter air pollution and risk of stroke mortality. To our knowledge, this is the first multicity study in China, or even in other developing countries, to report the acute effect of air pollution on stroke mortality. Our results contribute to very limited data on the effect of air pollution on stroke for high-exposure settings typical in developing countries.

  20. Household air pollution and its effects on health.

    Science.gov (United States)

    Apte, Komalkirti; Salvi, Sundeep

    2016-01-01

    Household air pollution is a leading cause of disability-adjusted life years in Southeast Asia and the third leading cause of disability-adjusted life years globally. There are at least sixty sources of household air pollution, and these vary from country to country. Indoor tobacco smoking, construction material used in building houses, fuel used for cooking, heating and lighting, use of incense and various forms of mosquito repellents, use of pesticides and chemicals used for cleaning at home, and use of artificial fragrances are some of the various sources that contribute to household air pollution. Household air pollution affects all stages of life with multi-systemic health effects, and its effects are evident right from pre-conception to old age. In utero exposure to household air pollutants has been shown to have health effects which resonate over the entire lifetime. Exposures to indoor air pollutants in early childhood also tend to have repercussions throughout life. The respiratory system bears the maximum brunt, but effects on the cardiovascular system, endocrine system, and nervous system are largely underplayed. Household air pollutants have also been implicated in the development of various types of cancers. Identifying household air pollutants and their health implications helps us prepare for various health-related issues. However, the real challenge is adopting changes to reduce the health effects of household air pollution and designing innovative interventions to minimize the risk of further exposure. This review is an attempt to understand the various sources of household air pollution, the effects on health, and strategies to deal with this emergent risk factor of global mortality and morbidity.

  1. Air pollution

    International Nuclear Information System (INIS)

    Nelson, P.

    2000-01-01

    Australian cites experience a number of current and emerging air pollution problems. Concentrations of traditional primary pollutants such as CO, lead and dust have fallen in recent years as a consequence of air pollutant control measures, and the widespread introduction of lead-free petrol. However, recommended guidelines for ozone, the principal component of photochemical smog, are regularly exceeded in major capital cities in the summer months. In addition, it is predicted that extensive urban expansion will lead to much greater dependence on the motor vehicle as the primary means of transportation. Effects of air pollution are felt at a variety of scales. Traditionally, concerns about gaseous and particulate emissions from industrial and vehicular sources were focused on local impacts due to exposure to toxic species such as CO and lead. As noted above, concentrations of these pollutants have been reduced by a variety of control measures. Pollutants which have effects at a regional scale, such as photochemically-produced ozone, and acidic gases and particles have proved more difficult to reduce. In general, these pollutants arc not the result of direct emissions to atmosphere, but result from complex secondary processes driven by photochemical reactions of species such as NO 2 and aldehydes. In addition, global effects of gaseous and particulate emissions to the atmosphere have received significant recent attention, concentrations of atmospheric CO 2 with predicted impacts on global climate, and ozone depletion due to anthropogenic emissions of chlorine-containing chemicals are the two major examples. Combustion processes from petrol- and diesel-fuelled vehicles, make major contributions to air pollution, and the magnitude of this contribution is discussed in this article

  2. Developing a Clinical Approach to Air Pollution and Cardiovascular Health.

    Science.gov (United States)

    Hadley, Michael B; Baumgartner, Jill; Vedanthan, Rajesh

    2018-02-13

    Nearly 3 billion people are exposed to household air pollution emitted from inefficient cooking and heating stoves, and almost the entire global population is exposed to detectable levels of outdoor air pollution from traffic, industry, and other sources. Over 3 million people die annually of ischemic heart disease or stroke attributed to air pollution, more than from traditional cardiac risk factors such as obesity, diabetes mellitus, or smoking. Clinicians have a role to play in reducing the burden of pollution-attributable cardiovascular disease. However, there currently exists no clear clinical approach to this problem. Here, we provide a blueprint for an evidence-based clinical approach to assessing and mitigating cardiovascular risk from exposure to air pollution. We begin with a discussion of the global burden of pollution-attributable cardiovascular disease, including a review of the mechanisms by which particulate matter air pollution leads to cardiovascular outcomes. Next, we offer a simple patient-screening tool using known risk factors for pollution exposure. We then discuss approaches to quantifying air pollution exposures and cardiovascular risk, including the development of risk maps for clinical catchment areas. We review a collection of interventions for household and outdoor air pollution, which clinicians can tailor to patients and populations at risk. Finally, we identify future research needed to quantify pollution exposures and validate clinical interventions. Overall, we demonstrate that clinicians can be empowered to mitigate the global burden of cardiovascular disease attributable to air pollution. © 2018 American Heart Association, Inc.

  3. Spatial associations between socioeconomic groups and NO2 air pollution exposure within three large Canadian cities.

    Science.gov (United States)

    Pinault, Lauren; Crouse, Daniel; Jerrett, Michael; Brauer, Michael; Tjepkema, Michael

    2016-05-01

    Previous studies of environmental justice in Canadian cities have linked lower socioeconomic status to greater air pollution exposures at coarse geographic scales, (i.e., Census Tracts). However, studies that examine these associations at finer scales are less common, as are comparisons among cities. To assess differences in exposure to air pollution among socioeconomic groups, we assigned estimates of exposure to ambient nitrogen dioxide (NO2), a marker for traffic-related pollution, from city-wide land use regression models to respondents of the 2006 Canadian census long-form questionnaire in Toronto, Montreal, and Vancouver. Data were aggregated at a finer scale than in most previous studies (i.e., by Dissemination Area (DA), which includes approximately 400-700 persons). We developed simultaneous autoregressive (SAR) models, which account for spatial autocorrelation, to identify associations between NO2 exposure and indicators of social and material deprivation. In Canada's three largest cities, DAs with greater proportions of tenants and residents who do not speak either English or French were characterised by greater exposures to ambient NO2. We also observed positive associations between NO2 concentrations and indicators of social deprivation, including the proportion of persons living alone (in Toronto), and the proportion of persons who were unmarried/not in a common-law relationship (in Vancouver). Other common measures of deprivation (e.g., lone-parent families, unemployment) were not associated with NO2 exposures. DAs characterised by selected indicators of deprivation were associated with higher concentrations of ambient NO2 air pollution in the three largest cities in Canada. Crown Copyright © 2016. Published by Elsevier Inc. All rights reserved.

  4. Impact of acute exposure to air pollution on the cardiorespiratory performance of military firemen

    Directory of Open Access Journals (Sweden)

    R.S. Oliveira

    2006-12-01

    Full Text Available The objective of the present study was to determine the impact of acute short-term exposure to air pollution on the cardiorespiratory performance of military fireman living and working in the city of Guarujá, São Paulo, Brazil. Twenty-five healthy non-smoking firemen aged 24 to 45 years had about 1 h of exposure to low and high levels of air pollution. The tests consisted of two phases: phase A, in Bertioga, a town with low levels of air pollution, and phase B, in Cubatão, a polluted town, with a 7-day interval between phases. The volunteers remained in the cities (Bertioga/Cubatão only for the time required to perform the tests. Cumulative load 10 ± 2 min-long exertion tests were performed on a treadmill, consisting of a 2-min stage at a load of 7 km/h, followed by increasing exertion of 1 km h-1 min-1 until the maximum individual limit. There were statistically significant differences (P < 0.05 in anaerobic threshold (AT between Cubatão (35.04 ± 4.91 mL kg-1 min-1 and Bertioga (36.98 ± 5.62 mL kg-1 min-1; P = 0.01, in the heart rate at AT (AT HR; Cubatão 152.08 ± 14.86 bpm, Bertioga 157.44 ± 13.64 bpm; P = 0.001, and in percent maximal oxygen consumption at AT (AT%VO2max; Cubatão 64.56 ± 6.55%, Bertioga 67.40 ± 5.35%; P = 0.03. However, there were no differences in VO2max, maximal heart rate or velocity at AT (ATvel observed in firemen between towns. The acute exposure to pollutants in Cubatão, SP, caused a significant reduction in the performance at submaximal levels of physical exertion.

  5. Air Pollution Exposure and Physical Activity in China: Current Knowledge, Public Health Implications, and Future Research Needs

    Directory of Open Access Journals (Sweden)

    Jiaojiao Lü

    2015-11-01

    Full Text Available Deteriorating air quality in China has created global public health concerns in regard to health and health-related behaviors. Although emerging environmental regulations address ambient air pollution in China, the level of enforcement and long-term impact of these measures remain unknown. Exposure to air pollution has been shown to lead to multiple adverse health outcomes, including increased rates of heart disease and mortality. However, a lesser-known but increasingly significant concern is the relationship between air pollution and its effects on outdoor exercise. This is especially important in China, which has a culturally rooted lifestyle that encourages participation in outdoor physical activity. This article evaluates the intersection of air pollution and outdoor exercise and provides a discussion of issues related to its public health impact in China, where efforts to promote a healthy lifestyle may be adversely affected by the ambient air pollution that has accompanied rapid economic development and urbanization.

  6. Air Pollution Exposure and Physical Activity in China: Current Knowledge, Public Health Implications, and Future Research Needs.

    Science.gov (United States)

    Lü, Jiaojiao; Liang, Leichao; Feng, Yi; Li, Rena; Liu, Yu

    2015-11-20

    Deteriorating air quality in China has created global public health concerns in regard to health and health-related behaviors. Although emerging environmental regulations address ambient air pollution in China, the level of enforcement and long-term impact of these measures remain unknown. Exposure to air pollution has been shown to lead to multiple adverse health outcomes, including increased rates of heart disease and mortality. However, a lesser-known but increasingly significant concern is the relationship between air pollution and its effects on outdoor exercise. This is especially important in China, which has a culturally rooted lifestyle that encourages participation in outdoor physical activity. This article evaluates the intersection of air pollution and outdoor exercise and provides a discussion of issues related to its public health impact in China, where efforts to promote a healthy lifestyle may be adversely affected by the ambient air pollution that has accompanied rapid economic development and urbanization.

  7. Indoor air pollution

    International Nuclear Information System (INIS)

    Anwar, J.; Hussain, F.

    2005-01-01

    Indoor air pollution after being a neglected subject for a number of years, is attracting attention recently because it is a side effect of energy crisis. About 50% of world's 6 billion population, mostly in developing countries, depend on biomass and coal in the form of wood, dung and crop residues for domestic energy because of poverty. These materials are burnt in simple stoves with incomplete combustion and infants, children and women are exposed to high levels of indoor air pollution for a considerable period, approximately between 2-4 hours daily. Current worldwide trade in wood fuel is over US $7 billion and about 2 million people are employed full time in production and marketing it. One of the most annoying and common indoor pollutant in both, developing and developed countries, is cigarette smoke. Children in gas-equipped homes had higher incidences of respiratory disease. Babies' DNA can be damaged even before they are born if their mothers breathe polluted air. Exposure to indoor air pollution may be responsible for nearly 2 million excess deaths in developing countries and for 4% of the global burden of the disease. Only a few indoor pollutants have been studied in detail. Indoor air pollution is a major health threat on which further research is needed to define the extent of the problem more precisely and to determine solutions by the policy-makers instead of neglecting it because sufferers mostly belong to Third World countries. (author)

  8. Prenatal exposure to residential air pollution and infant mental development: modulation by antioxidants and detoxification factors.

    Science.gov (United States)

    Guxens, Mònica; Aguilera, Inmaculada; Ballester, Ferran; Estarlich, Marisa; Fernández-Somoano, Ana; Lertxundi, Aitana; Lertxundi, Nerea; Mendez, Michelle A; Tardón, Adonina; Vrijheid, Martine; Sunyer, Jordi

    2012-01-01

    Air pollution effects on children's neurodevelopment have recently been suggested to occur most likely through the oxidative stress pathway. We aimed to assess whether prenatal exposure to residential air pollution is associated with impaired infant mental development, and whether antioxidant/detoxification factors modulate this association. In the Spanish INfancia y Medio Ambiente (INMA; Environment and Childhood) Project, 2,644 pregnant women were recruited during their first trimester. Nitrogen dioxide (NO2) and benzene were measured with passive samplers covering the study areas. Land use regression models were developed for each pollutant to predict average outdoor air pollution levels for the entire pregnancy at each residential address. Maternal diet was obtained at first trimester through a validated food frequency questionnaire. Around 14 months, infant mental development was assessed using Bayley Scales of Infant Development. Among the 1,889 children included in the analysis, mean exposure during pregnancy was 29.0 μg/m3 for NO2 and 1.5 μg/m3 for benzene. Exposure to NO2 and benzene showed an inverse association with mental development, although not statistically significant, after adjusting for potential confounders [β (95% confidence interval) = -0.95 (-3.90, 1.89) and -1.57 (-3.69, 0.56), respectively, for a doubling of each compound]. Stronger inverse associations were estimated for both pollutants among infants whose mothers reported low intakes of fruits/vegetables during pregnancy [-4.13 (-7.06, -1.21) and -4.37 (-6.89, -1.86) for NO2 and benzene, respectively], with little evidence of associations in the high-intake group (interaction p-values of 0.073 and 0.047). Inverse associations were also stronger in non-breast-fed infants and infants with low maternal vitamin D, but effect estimates and interactions were not significant. Our findings suggest that prenatal exposure to residential air pollutants may adversely affect infant mental

  9. Socioeconomic and urban-rural differentials in exposure to air pollution and mortality burden in England.

    Science.gov (United States)

    Milojevic, Ai; Niedzwiedz, Claire L; Pearce, Jamie; Milner, James; MacKenzie, Ian A; Doherty, Ruth M; Wilkinson, Paul

    2017-10-06

    Socioeconomically disadvantaged populations often have higher exposures to particulate air pollution, which can be expected to contribute to differentials in life expectancy. We examined socioeconomic differentials in exposure and air pollution-related mortality relating to larger scale (5 km resolution) variations in background concentrations of selected pollutants across England. Ozone and particulate matter (sub-divided into PM 10 , PM 2.5 , PM 2.5-10 , primary, nitrate and sulphate PM 2.5 ) were simulated at 5 km horizontal resolution using an atmospheric chemistry transport model (EMEP4UK). Annual mean concentrations of these pollutants were assigned to all 1,202,578 residential postcodes in England, which were classified by urban-rural status and socioeconomic deprivation based on the income and employment domains of the 2010 English Index of Multiple Deprivation for the Lower-level Super Output Area of residence. We used life table methods to estimate PM 2.5 -attributable life years (LYs) lost in both relative and absolute terms. Concentrations of the most particulate fractions, but not of nitrate PM 2.5 or ozone, were modestly higher in areas of greater socioeconomic deprivation. Relationships between pollution level and socioeconomic deprivation were non-linear and varied by urban-rural status. The pattern of PM 2.5 concentrations made only a small contribution to the steep socioeconomic gradient in LYs lost due to PM 2.5 per 10 3 population, which primarily was driven by the steep socioeconomic gradient in underlying mortality rates. In rural areas, the absolute burden of air pollution-related LYs lost was lowest in the most deprived deciles. Air pollution shows modest socioeconomic patterning at 5 km resolution in England, but absolute attributable mortality burdens are strongly related to area-level deprivation because of underlying mortality rates. Measures that cause a general reduction in background concentrations of air pollution may modestly

  10. Cough and environmental air pollution in China.

    Science.gov (United States)

    Zhang, Qingling; Qiu, Minzhi; Lai, Kefang; Zhong, Nanshan

    2015-12-01

    With fast-paced urbanization and increased energy consumption in rapidly industrialized modern China, the level of outdoor and indoor air pollution resulting from industrial and motor vehicle emissions has been increasing at an accelerated rate. Thus, there is a significant increase in the prevalence of respiratory symptoms such as coughing, wheezing, and decreased pulmonary function. Experimental exposure research and epidemiological studies have indicated that exposure to particulate matter, ozone, nitrogen dioxide, and environmental tobacco smoke have a harmful influence on development of respiratory diseases and are significantly associated with cough and wheeze. This review mainly discusses the effect of air pollutants on respiratory health, particularly with respect to cough, the links between air pollutants and microorganisms, and air pollutant sources. Particular attention is paid to studies in urban areas of China where the levels of ambient and indoor air pollution are significantly higher than World Health Organization recommendations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Intrauterine and early postnatal exposure to outdoor air pollution and lung function at preschool age.

    Science.gov (United States)

    Morales, Eva; Garcia-Esteban, Raquel; de la Cruz, Oscar Asensio; Basterrechea, Mikel; Lertxundi, Aitana; de Dicastillo, Maria D Martinez López; Zabaleta, Carlos; Sunyer, Jordi

    2015-01-01

    Effects of prenatal and postnatal exposure to air pollution on lung function at preschool age remain unexplored. We examined the association of exposure to air pollution during specific trimesters of pregnancy and postnatal life with lung function in preschoolers. Lung function was assessed with spirometry in preschoolers aged 4.5 years (n=620) participating in the INfancia y Medio Ambiente (INMA) cohort. Temporally adjusted land use regression (LUR) models were applied to estimate individual residential exposures to benzene and nitrogen dioxide (NO₂) during specific trimesters of pregnancy and early postnatal life (the first year of life). Recent and current (1 year and 1 week before lung function testing, respectively) exposures to NO₂ and nitrogen oxides (NOx) were also assessed. Exposure to higher levels of benzene and NO₂ during pregnancy was associated with reduced lung function. FEV1 estimates for an IQR increase in exposures during the second trimester of pregnancy were -18.4 mL, 95% CI -34.8 to -2.1 for benzene and -28.0 mL, 95% CI -52.9 to -3.2 for NO₂. Relative risk (RR) of low lung function (<80% of predicted FEV1) for an IQR increase in benzene and NO₂ during the second trimester of pregnancy were 1.22, 95% CI 1.02 to 1.46 and 1.30, 95% CI 0.97 to 1.76, respectively. Associations for early postnatal, recent and current exposures were not statistically significant. Stronger associations appeared among allergic children and those of lower social class. Prenatal exposure to residential traffic-related air pollution may result in long-term lung function deficits at preschool age. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  12. Traffic-related particulate air pollution exposure in urban areas

    Science.gov (United States)

    Borrego, C.; Tchepel, O.; Costa, A. M.; Martins, H.; Ferreira, J.; Miranda, A. I.

    In the last years, there has been an increase of scientific studies confirming that long- and short-term exposure to particulate matter (PM) pollution leads to adverse health effects. The development of a methodology for the determination of accumulated human exposure in urban areas is the main objective of the current work, combining information on concentrations at different microenvironments and population time-activity pattern data. A link between a mesoscale meteorological and dispersion model and a local scale air quality model was developed to define the boundary conditions for the local scale application. The time-activity pattern of the population was derived from statistical information for different sub-population groups and linked to digital city maps. Finally, the hourly PM 10 concentrations for indoor and outdoor microenvironments were estimated for the Lisbon city centre, which was chosen as the case-study, based on the local scale air quality model application for a selected period. This methodology is a first approach to estimate population exposure, calculated as the total daily values above the thresholds recommended for long- and short-term health effects. Obtained results reveal that in Lisbon city centre a large number of persons are exposed to PM levels exceeding the legislated limit value.

  13. Overall human mortality and morbidity due to exposure to air pollution.

    Science.gov (United States)

    Samek, Lucyna

    2016-01-01

    Concentrations of particulate matter that contains particles with diameter ≤ 10 mm (PM10) and diameter ≤ 2.5 mm (PM2.5) as well as nitrogen dioxide (NO2) have considerable impact on human mortality, especially in the cases when cardiovascular or respiratory causes are attributed. Additionally, they affect morbidity. An estimation of human mortality and morbidity due to the increased concentrations of PM10, PM2.5 and NO2 between the years 2005-2013 was performed for the city of Kraków, Poland. For this purpose the Air Quality Health Impact Assessment Tool (AirQ) software was successfully applied. The Air Quality Health Impact Assessment Tool was used for the calculation of the total, cardiovascular and respiratory mortality as well as hospital admissions related to cardiovascular and respiratory diseases. Data on concentrations of PM10, PM2.5 and NO2, which was obtained from the website of the Voivodeship Inspectorate for Environmental Protection (WIOS) in Kraków, was used in this study. Total mortality due to exposure to PM10 in 2005 was found to be 41 deaths per 100 000 and dropped to 30 deaths per 100 000 in 2013. Cardiovascular mortality was 2 times lower than the total mortality. However, hospital admissions due to respiratory diseases were more than an order of magnitude higher than the respiratory mortality. The calculated total mortality due to PM2.5 was higher than that due to PM10. Air pollution was determined to have a significant effect on human health. The values obtained by the use of the AirQ software for the city of Kraków imply that exposure to polluted air can result in serious health problems. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  14. Overall human mortality and morbidity due to exposure to air pollution

    Directory of Open Access Journals (Sweden)

    Lucyna Samek

    2016-06-01

    Full Text Available Objectives: Concentrations of particulate matter that contains particles with diameter ≤ 10 mm (PM10 and diameter ≤ 2.5 mm (PM2.5 as well as nitrogen dioxide (NO2 have considerable impact on human mortality, especially in the cases when cardiovascular or respiratory causes are attributed. Additionally, they affect morbidity. An estimation of human mortality and morbidity due to the increased concentrations of PM10, PM2.5 and NO2 between the years 2005–2013 was performed for the city of Kraków, Poland. For this purpose the Air Quality Health Impact Assessment Tool (AirQ software was successfully applied. Material and Methods: The Air Quality Health Impact Assessment Tool was used for the calculation of the total, cardiovascular and respiratory mortality as well as hospital admissions related to cardiovascular and respiratory diseases. Data on concentrations of PM10, PM2.5 and NO2, which was obtained from the website of the Voivodeship Inspectorate for Environmental Protection (WIOS in Kraków, was used in this study. Results: Total mortality due to exposure to PM10 in 2005 was found to be 41 deaths per 100 000 and dropped to 30 deaths per 100 000 in 2013. Cardiovascular mortality was 2 times lower than the total mortality. However, hospital admissions due to respiratory diseases were more than an order of magnitude higher than the respiratory mortality. Conclusions: The calculated total mortality due to PM2.5 was higher than that due to PM10. Air pollution was determined to have a significant effect on human health. The values obtained by the use of the AirQ software for the city of Kraków imply that exposure to polluted air can result in serious health problems.

  15. Modeling personal exposure to traffic related air pollutants

    NARCIS (Netherlands)

    Montagne, D.R.

    2015-01-01

    The first part of this thesis is about the VE3SPA project. Land use regression (LUR) models are often used to predict the outdoor air pollution at the home address of study participants, to study long-term effects of air pollution. While several studies have documented that PM2.5 mass measured at a

  16. Population Dynamics and Air Pollution

    DEFF Research Database (Denmark)

    Flachs, Esben Meulengracht; Sørensen, Jan; Bønløkke, Jacob

    2013-01-01

    Objective. To explore how three different assumptions on demographics affect the health impact of Danish emitted air pollution in Denmark from 2005 to 2030, with health impact modeled from 2005 to 2050. Methods. Modeled air pollution from Danish sources was used as exposure in a newly developed......) a static year 2005 population, (2) morbidity and mortality fixed at the year 2005 level, or (3) an expected development. Results. The health impact of air pollution was estimated at 672,000, 290,000, and 280,000 lost life years depending on demographic assumptions and the corresponding social costs at 430.......4 M€, 317.5 M€, and 261.6 M€ through the modeled years 2005–2050. Conclusion. The modeled health impact of air pollution differed widely with the demographic assumptions, and thus demographics and assumptions on demographics played a key role in making health impact assessments on air pollution....

  17. Exposure to air pollution and self-reported effects on Chinese students: A case study of 13 megacities

    Science.gov (United States)

    2018-01-01

    Air pollution causes severe physical and psychological health complications. Considering China’s continuously-deteriorating air quality, this study aimed to assess the self-reported effects of air pollution on the behavior and physical health of the students of 13 densely populated cities, and their awareness, practices, and perception of air pollution and its associated public health risks. A detailed, closed-ended questionnaire was administered to 2100 students from 54 universities and schools across China. The questionnaire, which had 24 questions, was categorized into four sections. The first two sections were focused on air pollution-associated behavior and psychology, and physical effects; while the final two sections focused on the subjects’ awareness and perceptions, and practices and concerns about air pollution. The respondents reported that long-term exposure to air pollution had significantly affected their psychology and behavior, as well as their physical health. The respondents were aware of the different adverse impacts of air pollution (respiratory infections, allergies, and cardiovascular problems), and hence had adopted different preventive measures, such as the use of respiratory masks and glasses or goggles, regularly drinking water, and consuming rich foods. It was concluded that air pollution and haze had negative physical and psychological effects on the respondents, which led to severe changes in behavior. Proper management, future planning, and implementing strict environmental laws are suggested before this problem worsens and becomes life-threatening. PMID:29547657

  18. Exposure to air pollution and self-reported effects on Chinese students: A case study of 13 megacities.

    Science.gov (United States)

    Rajper, Sohail Ahmed; Ullah, Sana; Li, Zhongqiu

    2018-01-01

    Air pollution causes severe physical and psychological health complications. Considering China's continuously-deteriorating air quality, this study aimed to assess the self-reported effects of air pollution on the behavior and physical health of the students of 13 densely populated cities, and their awareness, practices, and perception of air pollution and its associated public health risks. A detailed, closed-ended questionnaire was administered to 2100 students from 54 universities and schools across China. The questionnaire, which had 24 questions, was categorized into four sections. The first two sections were focused on air pollution-associated behavior and psychology, and physical effects; while the final two sections focused on the subjects' awareness and perceptions, and practices and concerns about air pollution. The respondents reported that long-term exposure to air pollution had significantly affected their psychology and behavior, as well as their physical health. The respondents were aware of the different adverse impacts of air pollution (respiratory infections, allergies, and cardiovascular problems), and hence had adopted different preventive measures, such as the use of respiratory masks and glasses or goggles, regularly drinking water, and consuming rich foods. It was concluded that air pollution and haze had negative physical and psychological effects on the respondents, which led to severe changes in behavior. Proper management, future planning, and implementing strict environmental laws are suggested before this problem worsens and becomes life-threatening.

  19. Adverse respiratory effects of outdoor air pollution in the elderly.

    Science.gov (United States)

    Bentayeb, M; Simoni, M; Baiz, N; Norback, D; Baldacci, S; Maio, S; Viegi, G; Annesi-Maesano, I

    2012-09-01

    Compared to the rest of the population, the elderly are potentially highly susceptible to the effects of outdoor air pollution due to normal and pathological ageing. The purpose of the present review was to gather data on the effects on respiratory health of outdoor air pollution in the elderly, on whom data are scarce. These show statistically significant short-term and chronic adverse effects of various outdoor air pollutants on cardiopulmonary morbidity and mortality in the elderly. When exposed to air pollution, the elderly experience more hospital admissions for asthma and chronic obstructive pulmonary disease (COPD) and higher COPD mortality than others. Previous studies also indicate that research on the health effects of air pollution in the elderly has been affected by methodological problems in terms of exposure and health effect assessments. Few pollutants have been considered, and exposure assessment has been based mostly on background air pollution and more rarely on objective measurements and modelling. Significant progress needs to be made through the development of 'hybrid' models utilising the strengths of information on exposure in various environments to several air pollutants, coupled with daily activity exposure patterns. Investigations of chronic effects of air pollution and of multi-pollutant mixtures are needed to better understand the role of air pollution in the elderly. Lastly, smoking, occupation, comorbidities, treatment and the neighbourhood context should be considered as confounders or modifiers of such a role. In this context, the underlying biological, physiological and toxicological mechanisms need to be explored to better understand the phenomenon through a multidisciplinary approach.

  20. A Conceptual Framework for the Assessment of Cumulative Exposure to Air Pollution at a Fine Spatial Scale

    Directory of Open Access Journals (Sweden)

    Kihal-Talantikite Wahida

    2016-03-01

    Full Text Available Many epidemiological studies examining long-term health effects of exposure to air pollutants have characterized exposure by the outdoor air concentrations at sites that may be distant to subjects’ residences at different points in time. The temporal and spatial mobility of subjects and the spatial scale of exposure assessment could thus lead to misclassification in the cumulative exposure estimation. This paper attempts to fill the gap regarding cumulative exposure assessment to air pollution at a fine spatial scale in epidemiological studies investigating long-term health effects. We propose a conceptual framework showing how major difficulties in cumulative long-term exposure assessment could be surmounted. We then illustrate this conceptual model on the case of exposure to NO2 following two steps: (i retrospective reconstitution of NO2 concentrations at a fine spatial scale; and (ii a novel approach to assigning the time-relevant exposure estimates at the census block level, using all available data on residential mobility throughout a 10- to 20-year period prior to that for which the health events are to be detected. Our conceptual framework is both flexible and convenient for the needs of different epidemiological study designs.

  1. A Conceptual Framework for the Assessment of Cumulative Exposure to Air Pollution at a Fine Spatial Scale

    Science.gov (United States)

    Wahida, Kihal-Talantikite; Padilla, Cindy M.; Denis, Zmirou-Navier; Olivier, Blanchard; Géraldine, Le Nir; Philippe, Quenel; Séverine, Deguen

    2016-01-01

    Many epidemiological studies examining long-term health effects of exposure to air pollutants have characterized exposure by the outdoor air concentrations at sites that may be distant to subjects’ residences at different points in time. The temporal and spatial mobility of subjects and the spatial scale of exposure assessment could thus lead to misclassification in the cumulative exposure estimation. This paper attempts to fill the gap regarding cumulative exposure assessment to air pollution at a fine spatial scale in epidemiological studies investigating long-term health effects. We propose a conceptual framework showing how major difficulties in cumulative long-term exposure assessment could be surmounted. We then illustrate this conceptual model on the case of exposure to NO2 following two steps: (i) retrospective reconstitution of NO2 concentrations at a fine spatial scale; and (ii) a novel approach to assigning the time-relevant exposure estimates at the census block level, using all available data on residential mobility throughout a 10- to 20-year period prior to that for which the health events are to be detected. Our conceptual framework is both flexible and convenient for the needs of different epidemiological study designs. PMID:26999170

  2. Long term exposure to air pollution and mortality in an elderly cohort in Hong Kong.

    Science.gov (United States)

    Yang, Yang; Tang, Robert; Qiu, Hong; Lai, Poh-Chin; Wong, Paulina; Thach, Thuan-Quoc; Allen, Ryan; Brauer, Michael; Tian, Linwei; Barratt, Benjamin

    2018-08-01

    Several studies have reported associations between long term exposure to air pollutants and cause-specific mortality. However, since the concentrations of air pollutants in Asia are much higher compared to those reported in North American and European cohort studies, cohort studies on long term effects of air pollutants in Asia are needed for disease burden assessment and to inform policy. To assess the effects of long-term exposure to particulate matter with aerodynamic diameter mortality in an elderly cohort in Hong Kong. In a cohort of 66,820 participants who were older than or equal to 65 years old in Hong Kong from 1998 to 2011, air pollutant concentrations were estimated by land use regression and assigned to the residential addresses of all participants at baseline and for each year during a 11 year follow up period. Hazard ratios (HRs) of cause-specific mortality (including all natural cause, cardiovascular and respiratory mortality) associated with air pollutants were estimated with Cox models, including a number of personal and area-level socioeconomic, demographic, and lifestyle factors. The median concentration of PM 2.5 during the baseline period was 42.2 μg/m 3 with an IQR of 5.5 μg/m 3 , 12.1 (9.6) μg/m 3 for BC and 104 (25.6) μg/m 3 for NO 2 . For PM 2.5 , adjusted HR per IQR increase and per 10 μg/m 3 for natural cause mortality was 1.03 (95%CI: 1.01, 1.06) and 1.06 (95%CI: 1.02, 1.11) respectively. The corresponding HR were 1.06 (95%CI: 1.02, 1.10) and 1.01 (95%CI: 0.96, 1.06) for cardiovascular disease and respiratory disease mortality, respectively. For BC, the HR of an interquartile range increase for all natural cause mortality was 1.03 (95%CI: 1.00, 1.05). The corresponding HR was 1.07 (95%CI: 1.03, 1.11) and 0.99 (95%CI: 0.94, 1.04) for cardiovascular disease and respiratory disease mortality. For NO 2 , almost all HRs were approximately 1.0, except for IHD (ischemic heart disease) mortality. Long-term exposure to ambient PM

  3. [Relationship between air pollution exposure during pregnancy and birth weight of term singleton live-birth newborns].

    Science.gov (United States)

    Guo, L Q; Zhang, Q; Zhao, D D; Wang, L L; Chen, Y; Mi, B B; Dang, S N; Yan, H

    2017-10-10

    Objective: This study explored the association between air pollution exposure and birth weight by using the multilevel linear model, after controlling related meteorological factors and individual differences of both mothers and babies. Methods: Women of childbearing age who were pregnant in Xi'an from 2010 to 2013, were selected as objects of this study. Multistage random sampling method was used to select 4 631 subjects followed by a self-designed questionnaire survey. Data related to quality of air and meteorology were gathered from routine monitoring system. Gestational age and date of birth, together with the average levels of air pollution were calculated for each trimester on each mother, and then the impact of air pollution on birth weight was assessed. A multilevel linear model was employed to investigate the association between the levels of exposure to air pollution by birth weight. Confounding factors were under control. We established three models in this study: Model 1 which involving the variable of air pollution exposure. Model 2 was adjusted for variables in Model 1 plus some other individual differences of both mother and baby. Model 3 was adjusted for variables in Model 2 plus meteorological factors. Results: There were significant differences seen in birth weight within the subgroups of gender, gestational age, mother's reproductive age, maternal education, residential areas and family incomes ( P 0.05). Data from Model 3 indicated that a decrease of 13.3 g(10.9 g in Model 2) and 6.6 g (5.9 g in Model 2) in birth weight that were associated with an increase of 10 μg/m(3) in the average level of NO(2) and PM(10) during the second trimester; A decrease of 13.7 g (9.8 g in Model 2) in birth weight was associated with an increase of 10 μg/m(3) in the average level of NO(2) during the third trimester. Conclusion: After controlling for meteorological factors, the levels of exposure to NO(2) and PM(10) during the second trimester and NO(2) during the

  4. Validating novel air pollution sensors to improve exposure estimates for epidemiological analyses and citizen science.

    Science.gov (United States)

    Jerrett, Michael; Donaire-Gonzalez, David; Popoola, Olalekan; Jones, Roderic; Cohen, Ronald C; Almanza, Estela; de Nazelle, Audrey; Mead, Iq; Carrasco-Turigas, Glòria; Cole-Hunter, Tom; Triguero-Mas, Margarita; Seto, Edmund; Nieuwenhuijsen, Mark

    2017-10-01

    Low cost, personal air pollution sensors may reduce exposure measurement errors in epidemiological investigations and contribute to citizen science initiatives. Here we assess the validity of a low cost personal air pollution sensor. Study participants were drawn from two ongoing epidemiological projects in Barcelona, Spain. Participants repeatedly wore the pollution sensor - which measured carbon monoxide (CO), nitric oxide (NO), and nitrogen dioxide (NO 2 ). We also compared personal sensor measurements to those from more expensive instruments. Our personal sensors had moderate to high correlations with government monitors with averaging times of 1-h and 30-min epochs (r ~ 0.38-0.8) for NO and CO, but had low to moderate correlations with NO 2 (~0.04-0.67). Correlations between the personal sensors and more expensive research instruments were higher than with the government monitors. The sensors were able to detect high and low air pollution levels in agreement with expectations (e.g., high levels on or near busy roadways and lower levels in background residential areas and parks). Our findings suggest that the low cost, personal sensors have potential to reduce exposure measurement error in epidemiological studies and provide valid data for citizen science studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Respiratory effects of air pollution on children.

    Science.gov (United States)

    Goldizen, Fiona C; Sly, Peter D; Knibbs, Luke D

    2016-01-01

    A substantial proportion of the global burden of disease is directly or indirectly attributable to exposure to air pollution. Exposures occurring during the periods of organogenesis and rapid lung growth during fetal development and early post-natal life are especially damaging. In this State of the Art review, we discuss air toxicants impacting on children's respiratory health, routes of exposure with an emphasis on unique pathways relevant to young children, methods of exposure assessment and their limitations and the adverse health consequences of exposures. Finally, we point out gaps in knowledge and research needs in this area. A greater understanding of the adverse health consequences of exposure to air pollution in early life is required to encourage policy makers to reduce such exposures and improve human health. © 2015 Wiley Periodicals, Inc.

  6. Adult lung function and long-term air pollution exposure. ESCAPE: a multicentre cohort study and meta-analysis

    Science.gov (United States)

    Adam, Martin; Schikowski, Tamara; Carsin, Anne Elie; Cai, Yutong; Jacquemin, Benedicte; Sanchez, Margaux; Vierkötter, Andrea; Marcon, Alessandro; Keidel, Dirk; Sugiri, Dorothee; Al Kanani, Zaina; Nadif, Rachel; Siroux, Valérie; Hardy, Rebecca; Kuh, Diana; Rochat, Thierry; Bridevaux, Pierre-Olivier; Eeftens, Marloes; Tsai, Ming-Yi; Villani, Simona; Phuleria, Harish Chandra; Birk, Matthias; Cyrys, Josef; Cirach, Marta; de Nazelle, Audrey; Nieuwenhuijsen, Mark J.; Forsberg, Bertil; de Hoogh, Kees; Declerq, Christophe; Bono, Roberto; Piccioni, Pavilio; Quass, Ulrich; Heinrich, Joachim; Jarvis, Deborah; Pin, Isabelle; Beelen, Rob; Hoek, Gerard; Brunekreef, Bert; Schindler, Christian; Sunyer, Jordi; Krämer, Ursula; Kauffmann, Francine; Hansell, Anna L.; Künzli, Nino; Probst-Hensch, Nicole

    2015-01-01

    The chronic impact of ambient air pollutants on lung function in adults is not fully understood. The objective of this study was to investigate the association of long-term exposure to ambient air pollution with lung function in adult participants from five cohorts in the European Study of Cohorts for Air Pollution Effects (ESCAPE). Residential exposure to nitrogen oxides (NO2, NOx) and particulate matter (PM) was modelled and traffic indicators were assessed in a standardised manner. The spirometric parameters forced expiratory volume in 1 s (FEV1) and forced vital capacity (FVC) from 7613 subjects were considered as outcomes. Cohort-specific results were combined using meta-analysis. We did not observe an association of air pollution with longitudinal change in lung function, but we observed that a 10 μg·m−3 increase in NO2 exposure was associated with lower levels of FEV1 (−14.0 mL, 95% CI −25.8 to −2.1) and FVC (−14.9 mL, 95% CI −28.7 to −1.1). An increase of 10 μg·m−3 in PM10, but not other PM metrics (PM2.5, coarse fraction of PM, PM absorbance), was associated with a lower level of FEV1 (−44.6 mL, 95% CI −85.4 to −3.8) and FVC (−59.0 mL, 95% CI −112.3 to −5.6). The associations were particularly strong in obese persons. This study adds to the evidence for an adverse association of ambient air pollution with lung function in adults at very low levels in Europe. PMID:25193994

  7. Health effects and sources of indoor air pollution. Part I

    International Nuclear Information System (INIS)

    Samet, J.M.; Marbury, M.C.; Spengler, J.D.

    1987-01-01

    Since the early 1970s, the health effects of indoor air pollution have been investigated with increasing intensity. Consequently, a large body of literature is now available on diverse aspects of indoor air pollution: sources, concentrations, health effects, engineering, and policy. This review begins with a review of the principal pollutants found in indoor environments and their sources. Subsequently, exposure to indoor air pollutants and health effects are considered, with an emphasis on those indoor air quality problems of greatest concern at present: passive exposure to tobacco smoke, nitrogen dioxide from gas-fueled cooking stoves, formaldehyde exposure, radon daughter exposure, and the diverse health problems encountered by workers in newer sealed office buildings. The review concludes by briefly addressing assessment of indoor air quality, control technology, research needs, and clinical implications. 243 references

  8. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease.

    Science.gov (United States)

    Levesque, Shannon; Surace, Michael J; McDonald, Jacob; Block, Michelle L

    2011-08-24

    Increasing evidence links diverse forms of air pollution to neuroinflammation and neuropathology in both human and animal models, but the effects of long-term exposures are poorly understood. We explored the central nervous system consequences of subchronic exposure to diesel exhaust (DE) and addressed the minimum levels necessary to elicit neuroinflammation and markers of early neuropathology. Male Fischer 344 rats were exposed to DE (992, 311, 100, 35 and 0 μg PM/m³) by inhalation over 6 months. DE exposure resulted in elevated levels of TNFα at high concentrations in all regions tested, with the exception of the cerebellum. The midbrain region was the most sensitive, where exposures as low as 100 μg PM/m³ significantly increased brain TNFα levels. However, this sensitivity to DE was not conferred to all markers of neuroinflammation, as the midbrain showed no increase in IL-6 expression at any concentration tested, an increase in IL-1β at only high concentrations, and a decrease in MIP-1α expression, supporting that compensatory mechanisms may occur with subchronic exposure. Aβ42 levels were the highest in the frontal lobe of mice exposed to 992 μg PM/m³ and tau [pS199] levels were elevated at the higher DE concentrations (992 and 311 μg PM/m³) in both the temporal lobe and frontal lobe, indicating that proteins linked to preclinical Alzheimer's disease were affected. α Synuclein levels were elevated in the midbrain in response to the 992 μg PM/m³ exposure, supporting that air pollution may be associated with early Parkinson's disease-like pathology. Together, the data support that the midbrain may be more sensitive to the neuroinflammatory effects of subchronic air pollution exposure. However, the DE-induced elevation of proteins associated with neurodegenerative diseases was limited to only the higher exposures, suggesting that air pollution-induced neuroinflammation may precede preclinical markers of neurodegenerative disease in the midbrain.

  9. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease

    Directory of Open Access Journals (Sweden)

    McDonald Jacob

    2011-08-01

    Full Text Available Abstract Background Increasing evidence links diverse forms of air pollution to neuroinflammation and neuropathology in both human and animal models, but the effects of long-term exposures are poorly understood. Objective We explored the central nervous system consequences of subchronic exposure to diesel exhaust (DE and addressed the minimum levels necessary to elicit neuroinflammation and markers of early neuropathology. Methods Male Fischer 344 rats were exposed to DE (992, 311, 100, 35 and 0 μg PM/m3 by inhalation over 6 months. Results DE exposure resulted in elevated levels of TNFα at high concentrations in all regions tested, with the exception of the cerebellum. The midbrain region was the most sensitive, where exposures as low as 100 μg PM/m3 significantly increased brain TNFα levels. However, this sensitivity to DE was not conferred to all markers of neuroinflammation, as the midbrain showed no increase in IL-6 expression at any concentration tested, an increase in IL-1β at only high concentrations, and a decrease in MIP-1α expression, supporting that compensatory mechanisms may occur with subchronic exposure. Aβ42 levels were the highest in the frontal lobe of mice exposed to 992 μg PM/m3 and tau [pS199] levels were elevated at the higher DE concentrations (992 and 311 μg PM/m3 in both the temporal lobe and frontal lobe, indicating that proteins linked to preclinical Alzheimer's disease were affected. α Synuclein levels were elevated in the midbrain in response to the 992 μg PM/m3 exposure, supporting that air pollution may be associated with early Parkinson's disease-like pathology. Conclusions Together, the data support that the midbrain may be more sensitive to the neuroinflammatory effects of subchronic air pollution exposure. However, the DE-induced elevation of proteins associated with neurodegenerative diseases was limited to only the higher exposures, suggesting that air pollution-induced neuroinflammation may

  10. Commuters’ Exposure to Particulate Matter Air Pollution Is Affected by Mode of Transport, Fuel Type, and Route

    Science.gov (United States)

    Zuurbier, Moniek; Hoek, Gerard; Oldenwening, Marieke; Lenters, Virissa; Meliefste, Kees; van den Hazel, Peter; Brunekreef, Bert

    2010-01-01

    Background Commuters are exposed to high concentrations of air pollutants, but little quantitative information is currently available on differences in exposure between different modes of transport, routes, and fuel types. Objectives The aim of our study was to assess differences in commuters’ exposure to traffic-related air pollution related to transport mode, route, and fuel type. Methods We measured particle number counts (PNCs) and concentrations of PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), PM10, and soot between June 2007 and June 2008 on 47 weekdays, from 0800 to 1000 hours, in diesel and electric buses, gasoline- and diesel-fueled cars, and along two bicycle routes with different traffic intensities in Arnhem, the Netherlands. In addition, each-day measurements were taken at an urban background location. Results We found that median PNC exposures were highest in diesel buses (38,500 particles/cm3) and for cyclists along the high-traffic intensity route (46,600 particles/cm3) and lowest in electric buses (29,200 particles/cm3). Median PM10 exposure was highest from diesel buses (47 μg/m3) and lowest along the high- and low-traffic bicycle routes (39 and 37 μg/m3). The median soot exposure was highest in gasoline-fueled cars (9.0 × 10−5/m), diesel cars (7.9 × 10−5/m), and diesel buses (7.4 × 10−5/m) and lowest along the low-traffic bicycle route (4.9 × 10−5/m). Because the minute ventilation (volume of air per minute) of cyclists, which we estimated from measured heart rates, was twice the minute ventilation of car and bus passengers, we calculated that the inhaled air pollution doses were highest for cyclists. With the exception of PM10, we found that inhaled air pollution doses were lowest for electric bus passengers. Conclusions Commuters’ rush hour exposures were significantly influenced by mode of transport, route, and fuel type. PMID:20185385

  11. Metro Commuter Exposures to Particulate Air Pollution and PM2.5-Associated Elements in Three Canadian Cities: The Urban Transportation Exposure Study.

    Science.gov (United States)

    Van Ryswyk, Keith; Anastasopolos, Angelos T; Evans, Greg; Sun, Liu; Sabaliauskas, Kelly; Kulka, Ryan; Wallace, Lance; Weichenthal, Scott

    2017-05-16

    System-representative commuter air pollution exposure data were collected for the metro systems of Toronto, Montreal, and Vancouver, Canada. Pollutants measured included PM 2.5 (PM = particulate matter), PM 10 , ultrafine particles, black carbon, and the elemental composition of PM 2.5 . Sampling over three weeks was conducted in summer and winter for each city and covered each system on a daily basis. Mixed-effect linear regression models were used to identify system features related to particulate exposures. Ambient levels of PM 2.5 and its elemental components were compared to those of the metro in each city. A microenvironmental exposure model was used to estimate the contribution of a 70 min metro commute to daily mean exposure to PM 2.5 elemental and mass concentrations. Time spent in the metro was estimated to contribute the majority of daily exposure to several metallic elements of PM 2.5 and 21.2%, 11.3% and 11.5% of daily PM 2.5 exposure in Toronto, Montreal, and Vancouver, respectively. Findings suggest that particle air pollutant levels in Canadian metros are substantially impacted by the systems themselves, are highly enriched in steel-based elements, and can contribute a large portion of PM 2.5 and its elemental components to a metro commuter's daily exposure.

  12. The impact of ambient air pollution on the human blood metabolome.

    Science.gov (United States)

    Vlaanderen, J J; Janssen, N A; Hoek, G; Keski-Rahkonen, P; Barupal, D K; Cassee, F R; Gosens, I; Strak, M; Steenhof, M; Lan, Q; Brunekreef, B; Scalbert, A; Vermeulen, R C H

    2017-07-01

    Biological perturbations caused by air pollution might be reflected in the compounds present in blood originating from air pollutants and endogenous metabolites influenced by air pollution (defined here as part of the blood metabolome). We aimed to assess the perturbation of the blood metabolome in response to short term exposure to air pollution. We exposed 31 healthy volunteers to ambient air pollution for 5h. We measured exposure to particulate matter, particle number concentrations, absorbance, elemental/organic carbon, trace metals, secondary inorganic components, endotoxin content, gaseous pollutants, and particulate matter oxidative potential. We collected blood from the participants 2h before and 2 and 18h after exposure. We employed untargeted metabolite profiling to monitor 3873 metabolic features in 493 blood samples from these volunteers. We assessed lung function using spirometry and six acute phase proteins in peripheral blood. We assessed the association of the metabolic features with the measured air pollutants and with health markers that we previously observed to be associated with air pollution in this study. We observed 89 robust associations between air pollutants and metabolic features two hours after exposure and 118 robust associations 18h after exposure. Some of the metabolic features that were associated with air pollutants were also associated with acute health effects, especially changes in forced expiratory volume in 1s. We successfully identified tyrosine, guanosine, and hypoxanthine among the associated features. Bioinformatics approach Mummichog predicted enriched pathway activity in eight pathways, among which tyrosine metabolism. This study demonstrates for the first time the application of untargeted metabolite profiling to assess the impact of air pollution on the blood metabolome. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Oxidative stress and inflammation generated DNA damage by exposure to air pollution particles

    DEFF Research Database (Denmark)

    Møller, Peter; Danielsen, Pernille Høgh; Karottki, Dorina Gabriela

    2014-01-01

    at different locations (spatial variability), times (temporal variability) or particle size fraction across different experimental systems of acellular conditions, cultured cells, animals and humans. Nevertheless, there is substantial variation in the genotoxic, inflammation and oxidative stress potential......Generation of oxidatively damaged DNA by particulate matter (PM) is hypothesized to occur via production of reactive oxygen species (ROS) and inflammation. We investigated this hypothesis by comparing ROS production, inflammation and oxidatively damaged DNA in different experimental systems...... investigating air pollution particles. There is substantial evidence indicating that exposure to air pollution particles was associated with elevated levels of oxidatively damaged nucleobases in circulating blood cells and urine from humans, which is supported by observations of elevated levels of genotoxicity...

  14. Increasing fine particulate air pollution in China and the potential use of exposure and biomarker data in disease prevention.

    Science.gov (United States)

    Wendt, Chris H; Ramachandran, Gurumurthy; Lo, Charles; Hertz, Marshall; Mandel, Jeffrey H

    2015-03-16

    Increased industrialization and urbanization have led to marked increases in air pollutants in China over the last decade. Pollutant levels in the north and eastern regions are often four times higher than current daily levels in the United States. Recent reports indicate a higher incidence of lung cancer and mortality in men and urban dwellers, but the contribution of air pollution to these findings remains unknown. Future studies that define individual exposures, combined with biomarkers linked to disease, will be essential to the understanding of risk posed by air pollution in China.

  15. Spatial-temporal modeling of the association between air pollution exposure and preterm birth: identifying critical windows of exposure.

    Science.gov (United States)

    Warren, Joshua; Fuentes, Montserrat; Herring, Amy; Langlois, Peter

    2012-12-01

    Exposure to high levels of air pollution during the pregnancy is associated with increased probability of preterm birth (PTB), a major cause of infant morbidity and mortality. New statistical methodology is required to specifically determine when a particular pollutant impacts the PTB outcome, to determine the role of different pollutants, and to characterize the spatial variability in these results. We develop a new Bayesian spatial model for PTB which identifies susceptible windows throughout the pregnancy jointly for multiple pollutants (PM(2.5) , ozone) while allowing these windows to vary continuously across space and time. We geo-code vital record birth data from Texas (2002-2004) and link them with standard pollution monitoring data and a newly introduced EPA product of calibrated air pollution model output. We apply the fully spatial model to a region of 13 counties in eastern Texas consisting of highly urban as well as rural areas. Our results indicate significant signal in the first two trimesters of pregnancy with different pollutants leading to different critical windows. Introducing the spatial aspect uncovers critical windows previously unidentified when space is ignored. A proper inference procedure is introduced to correctly analyze these windows. © 2012, The International Biometric Society.

  16. Association of long-term exposure to community noise and traffic-related air pollution with coronary heart disease mortality.

    Science.gov (United States)

    Gan, Wen Qi; Davies, Hugh W; Koehoorn, Mieke; Brauer, Michael

    2012-05-01

    In metropolitan areas, road traffic is a major contributor to ambient air pollution and the dominant source of community noise. The authors investigated the independent and joint influences of community noise and traffic-related air pollution on risk of coronary heart disease (CHD) mortality in a population-based cohort study with a 5-year exposure period (January 1994-December 1998) and a 4-year follow-up period (January 1999-December 2002). Individuals who were 45-85 years of age and resided in metropolitan Vancouver, Canada, during the exposure period and did not have known CHD at baseline were included (n = 445,868). Individual exposures to community noise and traffic-related air pollutants, including black carbon, particulate matter less than or equal to 2.5 μm in aerodynamic diameter, nitrogen dioxide, and nitric oxide, were estimated at each person's residence using a noise prediction model and land-use regression models, respectively. CHD deaths were identified from the provincial death registration database. After adjustment for potential confounders, including traffic-related air pollutants or noise, elevations in noise and black carbon equal to the interquartile ranges were associated with 6% (95% confidence interval: 1, 11) and 4% (95% confidence interval: 1, 8) increases, respectively, in CHD mortality. Subjects in the highest noise decile had a 22% (95% confidence interval: 4, 43) increase in CHD mortality compared with persons in the lowest decile. These findings suggest that there are independent effects of traffic-related noise and air pollution on CHD mortality.

  17. Effect of long-term exposure to air pollution on anxiety and depression in adults: A cross-sectional study.

    Science.gov (United States)

    Vert, Cristina; Sánchez-Benavides, Gonzalo; Martínez, David; Gotsens, Xavier; Gramunt, Nina; Cirach, Marta; Molinuevo, José Luis; Sunyer, Jordi; Nieuwenhuijsen, Mark J; Crous-Bou, Marta; Gascon, Mireia

    2017-08-01

    The association between exposure to air pollutants and mental disorders among adults has been suggested, although results are not consistent. To analyze the association between long-term exposure to air pollution and history of anxiety and depression disorders and of medication use (benzodiazepines and antidepressants) in adults living in Barcelona. A total of 958 adults (45-74 years old) residents in Barcelona, most of them having at least one of their parents diagnosed with dementia (86%), and participating in the ALFA (Alzheimer and Families) study, were included. We used Land Use Regression (LUR) models to estimate long-term residential exposure (period 2009-2014) to PM 2.5 , PM 2.5 absorbance (PM 2.5 abs), PM 10 , PM coarse, NO 2 and NO x . Between 2013 and 2014 participants self-reported their history of anxiety and depression disorders and related medication use. The analysis was focused on those participants reporting outcome occurrence from 2009 onwards (until 2014). We observed an increased odds of history of depression disorders with increasing concentrations of all air pollutants [e.g. an increased odds of depression of 2.00 (95% CI; 1.37, 2.93) for each 10μg/m 3 NO 2 increase]. Such associations were consistent with an increased odds of medication use in relation to higher concentrations of air pollutants [e.g. an increased odds of antidepressants use of 1.23 (1.04, 1.44) for each 20μg/m 3 NO x increase]. Associations regarding anxiety disorders did not reach statistical significance. Our study shows that increasing long-term exposure to air pollution may increase the odds of depression and the use of antidepressants and benzodiazepines. Further studies are needed to replicate our results and confirm this association. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Does low to moderate environmental exposure to noise and air pollution influence preterm delivery in medium-sized cities?

    Science.gov (United States)

    Barba-Vasseur, Marie; Bernard, Nadine; Pujol, Sophie; Sagot, Paul; Riethmuller, Didier; Thiriez, Gérard; Houot, Hélène; Defrance, Jérôme; Mariet, Anne-Sophie; Luu, Vinh-Phuc; Barbier, Alice; Benzenine, Eric; Quantin, Catherine; Mauny, Frédéric

    2017-12-01

    Preterm birth (PB) is an important predictor of childhood morbidity and educational performance. Beyond the known risk factors, environmental factors, such as air pollution and noise, have been implicated in PB. In urban areas, these pollutants coexist. Very few studies have examined the effects of multi-exposure on the pregnancy duration. The objective of this study was to analyse the relationship between PB and environmental chronic multi-exposure to noise and air pollution in medium-sized cities. A case-control study was conducted among women living in the city of Besançon (121 671 inhabitants) or in the urban unit of Dijon (243 936 inhabitants) and who delivered in a university hospital between 2005 and 2009. Only singleton pregnancies without associated pathologies were considered. Four controls were matched to each case in terms of the mother's age and delivery location. Residential noise and nitrogen dioxide (NO2) exposures were calculated at the mother's address. Conditional logistic regression models were applied, and sensitivity analyses were performed. This study included 302 cases and 1204 controls. The correlation between noise and NO2 indices ranged from 0.41 to 0.59. No significant differences were found in pollutant exposure levels between cases and controls. The adjusted odds ratios ranged between 0.96 and 1.08. Sensitivity analysis conducted using different temporal and spatial exposure windows demonstrated the same results. The results are in favour of a lack of connection between preterm delivery and multi-exposure to noise and air pollution in medium-sized cities for pregnant women without underlying disease. © The Author 2017; all rights reserved. Published by Oxford University Press on behalf of the International Epidemiological Association

  19. A Review of Epidemiological Research on Adverse Neurological Effects of Exposure to Ambient Air Pollution

    Science.gov (United States)

    Xu, Xiaohui; Ha, Sandie Uyen; Basnet, Rakshya

    2016-01-01

    There is a growing body of epidemiological research reporting the neurological effects of ambient air pollution. We examined current evidence, identified the strengths and weaknesses of published epidemiological studies, and suggest future directions for research in this area. Studies were identified through a systematic search of online scientific databases, in addition to a manual search of the reference lists from the identified papers. Despite being a relatively new area of investigation, overall, there is mounting evidence implicating adverse effects of air pollution on neurobehavioral function in both adults and children. Further research is needed to expand our understanding of these relationships, including improvement in the accuracy of exposure assessments; focusing on specific toxicants and their relationships to specific health endpoints, such as neurodevelopmental disorders and neurodegenerative diseases; investigating the combined neurological effects of multiple air pollutants; and further exploration of genetic susceptibility for neurotoxicity of air pollution. In order to achieve these goals collaborative efforts are needed from multidisciplinary teams, including experts in toxicology, biostatistics, geographical science, epidemiology, and neurology. PMID:27547751

  20. Adult air pollution exposure and risk of infertility in the Nurses' Health Study II.

    Science.gov (United States)

    Mahalingaiah, S; Hart, J E; Laden, F; Farland, L V; Hewlett, M M; Chavarro, J; Aschengrau, A; Missmer, S A

    2016-03-01

    Is there an association between air pollution exposures and incident infertility? Increased exposure to air pollution is associated with an increased incidence of infertility. Exposures to air pollution have been associated with lower conception and fertility rates. However, the impact of pollution on infertility incidence is unknown. Prospective cohort study using data collected from 116 430 female nurses from September 1989 to December 2003 as part of the Nurses' Health Study II cohort. Infertility was defined by report of attempted conception for ≥12 months without success. Participants were able to report if evaluation was sought and if so, offer multiple clinical indications for infertility. After exclusion, 36 294 members were included in the analysis. Proximity to major roadways and ambient exposures to particulate matter less than 10 microns (PM10), between 2.5 and 10 microns (PM2.5-10), and less than 2.5 microns (PM2.5) were determined for residential addresses for the 36 294 members between the years of 1993 and 2003. Hazard ratios (HR) and 95% confidence intervals (CI) were calculated using multivariable adjusted Cox proportional hazard models with time-varying covariates. Over 213 416 person-years, there were 2508 incident reports of infertility. Results for overall infertility were inconsistent across exposure types. We observed a small increased risk for those living closer to compared to farther from a major road, multivariable adjusted HR = 1.11 (CI: 1.02-1.20). This was consistent for those reporting primary or secondary infertility. For women living closer to compared to farther from a major road, for primary infertility HR = 1.05 (CI: 0.94-1.17), while for secondary infertility HR = 1.21 (CI: 1.07-1.36). In addition, the HR for every 10 µg/m(3) increase in cumulative PM2.5-10 among women with primary infertility was 1.10 (CI: 0.96-1.27), and similarly was 1.10 (CI: 0.94-1.28) for those with secondary infertility. Within the 2 year window of

  1. Associations between long-term exposure to air pollution, glycosylated hemoglobin and diabetes.

    Science.gov (United States)

    Honda, Trenton; Pun, Vivian C; Manjourides, Justin; Suh, Helen

    2017-10-01

    Air pollution exposures have been shown to adversely impact health through a number of biological pathways associated with glucose metabolism. However, few studies have evaluated the associations between air pollution and glycosylated hemoglobin (HbA1c) levels. Further, no studies have evaluated these associations in US populations or investigated whether associations differ in diabetic as compared to non-diabetic populations. To address this knowledge gap, we investigated the associations between airborne fine particulate matter (PM 2.5 ) and nitrogen dioxide (NO 2 ) and HbA1c levels in both diabetic and non-diabetic older Americans. We also examined the impact of PM 2.5 and NO 2 on prevalent diabetes mellitus (DM) in this cohort. We used multilevel logistic and linear regression models to evaluate the association between long-term average air pollutant levels and prevalence of DM and HbA1c levels, respectively, among 4121 older (57+ years) Americans enrolled in the National Social Life, Health, and Aging Project between 2005 and 2011. All models adjusted for age, sex, body mass index, smoking status, race, household income, education level, neighborhood socioeconomic status, geographic region, urbanicity and diabetic medication use. We estimated participant-specific exposures to PM 2.5 on a six-kilometer grid covering the conterminous U.S. using spatio-temporal models, and to NO 2 using nearest measurements from the Environmental Protection Agency's Air Quality System. HbA1c levels were measured for participants in each of two data collection waves from dried blood spots and log-transformed prior to analysis. Participants were considered diabetic if they had HbA1c values≥6.5% or reported taking diabetic medication. The prevalence of diabetes at study entry was 22.2% (n=916) and the mean HbA1c was 6.0±1.1%. Mean one-year moving average PM 2.5 and NO 2 exposures were 10.4±3.0μg/m 3 and 13.1±7.0 ppb, respectively. An inter-quartile range (IQR, 3.9μg/m 3

  2. Baseline repeated measures from controlled human exposure studies: associations between ambient air pollution exposure and the systemic inflammatory biomarkers IL-6 and fibrinogen.

    Science.gov (United States)

    Thompson, Aaron M S; Zanobetti, Antonella; Silverman, Frances; Schwartz, Joel; Coull, Brent; Urch, Bruce; Speck, Mary; Brook, Jeffrey R; Manno, Michael; Gold, Diane R

    2010-01-01

    Systemic inflammation may be one of the mechanisms mediating the association between ambient air pollution and cardiovascular morbidity and mortality. Interleukin-6 (IL-6) and fibrinogen are biomarkers of systemic inflammation that are independent risk factors for cardio-vascular disease. We investigated the association between ambient air pollution and systemic inflammation using baseline measurements of IL-6 and fibrinogen from controlled human exposure studies. In this retrospective analysis we used repeated-measures data in 45 nonsmoking subjects. Hourly and daily moving averages were calculated for ozone, nitrogen dioxide, sulfur dioxide, and particulate matter pollutants on systemic IL-6 and fibrinogen. Effect modification by season was considered. We observed a positive association between IL-6 and O3 [0.31 SD per O3 interquartile range (IQR); 95% confidence interval (CI), 0.080.54] and between IL-6 and SO2 (0.25 SD per SO2 IQR; 95% CI, 0.060.43). We observed the strongest effects using 4-day moving averages. Responses to pollutants varied by season and tended to be higher in the summer, particularly for O3 and PM2.5. Fibrinogen was not associated with pollution. This study demonstrates a significant association between ambient pollutant levels and baseline levels of systemic IL-6. These findings have potential implications for controlled human exposure studies. Future research should consider whether ambient pollution exposure before chamber exposure modifies IL-6 response.

  3. Positive association between short-term ambient air pollution exposure and children blood pressure in China-Result from the Seven Northeast Cities (SNEC) study.

    Science.gov (United States)

    Zeng, Xiao-Wen; Qian, Zhengmin Min; Vaughn, Michael G; Nelson, Erik J; Dharmage, Shyamali C; Bowatte, Gayan; Perret, Jennifer; Chen, Duo-Hong; Ma, Huimin; Lin, Shao; de Foy, Benjamin; Hu, Li-Wen; Yang, Bo-Yi; Xu, Shu-Li; Zhang, Chuan; Tian, Yan-Peng; Nian, Min; Wang, Jia; Xiao, Xiang; Bao, Wen-Wen; Zhang, Ya-Zhi; Dong, Guang-Hui

    2017-05-01

    The impact of ambient air pollution on health causes concerns in China. However, little is known about the association of short-term air pollution exposure with blood pressure (BP) in children. The goal of present study was to assess the association between short-term air pollution and BP in children from a highly polluted area in China. This study enrolled 9354 children in 24 elementary and middle schools (aged 5-17 years) from the Seven Northeast Cities (SNEC) study, respectively, during the period of 2012-2013. Ambient air pollutants, including particulate matter with an aerodynamic diameter of ≤10 μm (PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ) and ozone (O 3 ) on the days (1-5 days) preceding BP examination were collected from local air monitoring stations. Generalized additive models and two-level regression analyses were used to evaluate the relationship between air pollution and BP after adjusting for other covariates. Results showed that with an interquartile range (IQR) increase in PM 10 (50.0 μg/m 3 ) and O 3 (53.0 μg/m 3 ) level during the 5-day mean exposure, positive associations with elevated BP were observed, with an odds ratio of 2.17 (95% CI, 1.61-2.93) for PM 10 and 2.77 (95% CI, 1.94-3.95) for O 3 . Both systolic BP and diastolic BP levels were positively associated with an IQR increase of four air pollutants at different lag times. Specifically, an IQR increase in the 5-day mean of PM 10 and O 3 was associated with elevation of 2.07 mmHg (95% CI, 1.71-2.44) and 3.29 mmHg (95% CI, 2.86-3.72) in systolic BP, respectively. When stratified by sex, positive relationships were observed for elevated BP with NO 2 exposure only in males. This is the first report on the relationship between ambient short-term air pollution exposure and children BP in China. Findings indicate a need to control air pollutants and protect children from heavy air pollution exposure in China. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Can the Air Pollution Index be used to communicate the health risks of air pollution?

    Science.gov (United States)

    Li, Li; Lin, Guo-Zhen; Liu, Hua-Zhang; Guo, Yuming; Ou, Chun-Quan; Chen, Ping-Yan

    2015-10-01

    The validity of using the Air Pollution Index (API) to assess health impacts of air pollution and potential modification by individual characteristics on air pollution effects remain uncertain. We applied distributed lag non-linear models (DLNMs) to assess associations of daily API, specific pollution indices for PM10, SO2, NO2 and the weighted combined API (APIw) with mortality during 2003-2011 in Guangzhou, China. An increase of 10 in API was associated with a 0.88% (95% confidence interval (CI): 0.50, 1.27%) increase of non-accidental mortality at lag 0-2 days. Harvesting effects appeared after 2 days' exposure. The effect estimate of API over lag 0-15 days was statistically significant and similar with those of pollutant-specific indices and APIw. Stronger associations between API and mortality were observed in the elderly, females and residents with low educational attainment. In conclusion, the API can be used to communicate health risks of air pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Developmental Neurotoxicity of Traffic-Related Air Pollution: Focus on Autism.

    Science.gov (United States)

    Costa, Lucio G; Chang, Yu-Chi; Cole, Toby B

    2017-06-01

    Epidemiological and animal studies suggest that air pollution may negatively affect the central nervous system (CNS) and contribute to CNS diseases. Traffic-related air pollution is a major contributor to global air pollution, and diesel exhaust (DE) is its most important component. Several studies suggest that young individuals may be particularly susceptible to air pollution-induced neurotoxicity and that perinatal exposure may cause or contribute to developmental disabilities and behavioral abnormalities. In particular, a number of recent studies have found associations between exposures to traffic-related air pollution and autism spectrum disorders (ASD), which are characterized by impairment in socialization and in communication and by the presence of repetitive and unusual behaviors. The cause(s) of ASD are unknown, and while it may have a hereditary component, environmental factors are increasingly suspected as playing a pivotal role in its etiology, particularly in genetically susceptible individuals. Autistic children present higher levels of neuroinflammation and systemic inflammation, which are also hallmarks of exposure to traffic-related air pollution. Gene-environment interactions may play a relevant role in determining individual susceptibility to air pollution developmental neurotoxicity. Given the worldwide presence of elevated air pollution, studies on its effects and mechanisms on the developing brain, genetic susceptibility, role in neurodevelopmental disorders, and possible therapeutic interventions are certainly warranted.

  6. Effects of exposure to noise and indoor air pollution on human perception and symptoms

    DEFF Research Database (Denmark)

    Witterseh, Thomas; Wargocki, Pawel; Fang, Lei

    1999-01-01

    The objective of the present study was to investigate human perception and SBS symptoms when people are exposed simultaneously to different levels of air pollution and ventilation noise. The air quality in an office was modified by placing or removing a carpet and the background noise level...... of the occupants were recorded throughout the exposure period. During occupation, the subjects performed simulated office work. The results show that elevated air pollution and noise in an office can interact and negatively affect office workers by increasing the prevalence of SBS symptoms. A moderate increase...... was modified by playing a recording of ventilation noise. Thirty female subjects, six at a time, occupied the office for 4.4 hours. The subjects assessed the air quality, the noise, and the indoor environment upon entering the office and on six occasions during occupation. Furthermore, SBS symptoms...

  7. Parental stress and air pollution increase childhood asthma in China.

    Science.gov (United States)

    Deng, Qihong; Deng, Linjing; Lu, Chan; Li, Yuguo; Norbäck, Dan

    2018-08-01

    Although air pollution and social stress may independently increase childhood asthma, little is known on their synergistic effect on asthma, particularly in China with high levels of stress and air pollution. To examine associations between exposure to a combination of parental stress and air pollution and asthma prevalence in children. We conducted a cohort study of 2406 preschool children in Changsha (2011-2012). A questionnaire was used to collect children's lifetime prevalence of asthma and their parental stress. Parental socioeconomic and psychosocial stresses were respectively defined in terms of housing size and difficulty concentrating. Children's exposure to ambient air pollutants was estimated using concentrations measured at monitoring stations. Associations between exposure to parental stress and air pollution and childhood asthma were estimated by multiple logistic regression models using odds ratio (OR) and 95% confidence interval (CI). Life time prevalence of asthma in preschool children (6.7%) was significantly associated with parental socioeconomic and psychosocial stresses with OR (95% CI) respectively 1.48 (1.02-2.16) and 1.64 (1.00-2.71). Asthma was also associated with exposure to air pollutants, with adjusted OR (95% CI) during prenatal and postnatal periods respectively 1.43 (1.10-1.86) and 1.35 (1.02-1.79) for SO 2 and 1.61 (1.19-2.18) and 1.76 (1.19-2.61) for NO 2 . The association with air pollution was significant only in children exposed to high parental stress, the association with parental stress was significant only in children exposed to high air pollution, and the association was the strongest in children exposed to a combination of parental stress and air pollution. Sensitivity analysis showed that the synergistic effects of parental stress and air pollution on childhood asthma were stronger in boys. Parental stress and air pollution were synergistically associated with increased childhood asthma, indicating a common biological

  8. Pet exposure in utero and postnatal decreases the effects of air pollutants on hypertension in children: A large population based cohort study.

    Science.gov (United States)

    Lawrence, Wayne R; Yang, Mo; Lin, Shao; Wang, Si-Quan; Liu, Yimin; Ma, Huimin; Chen, Duo-Hong; Yang, Bo-Yi; Zeng, Xiao-Wen; Hu, Li-Wen; Dong, Guang-Hui

    2018-07-01

    The effect of ambient air pollution exposure on childhood hypertension has emerged as a concern in China, and previous studies suggested pet ownership is associated with lower blood pressure (BP). However, limited information exists on the interactive effects pet ownership and air pollution exposure has on hypertension. We investigated the interactions between exposure to pet ownership and air pollutants on hypertension in Chinese children. 9354 students in twenty-four elementary and middle schools (aged 5-17 years) in Northeastern China were evaluated during 2012-2013. Four-year average concentrations of particulate matter with aerodynamic diameter of ≤10 μm (PM 10 ), SO 2 , NO 2 , and O 3 , were collected in the 24 districts from 2009 to 2012. Hypertension was defined as average diastolic or systolic BP (three time measurements) in the 95th percentile or higher based on height, age, and sex. To examine effects, two-level regression analysis was used, controlling covariates. Consistent interactions between exposure to pet and air pollutants were observed. Compared to children exposed to pet, those not exposed exhibited consistently stronger effects of air pollution. The highest odds ratios (ORs) per 30.6 μg/m 3 increase in PM 10 were 1.79 (95%confidence interval [95%CI]: 1.29-2.50) in children without current pet exposure compared to 1.24 (95%CI: 0.85-1.82) in children with current pet exposure. As for BP, only O 3 had an interaction for all exposure to pet ownership types, and showed lower BP in children exposed to pet. The increases in mean diastolic BP per 46.3 μg/m 3 increase in O 3 were 0.60  mmHg (95%CI: 0.21, 0.48) in children without pet exposure in utero compared with 0.34  mmHg (95%CI: 0.21, 0.48) in their counterparts. When stratified by age, pet exposure was more protective among younger children. In conclusion, in this large population-based cohort, pet ownership is associated with smaller associations between air pollution and

  9. Indoor air pollution and cognitive function among older Mexican adults.

    Science.gov (United States)

    Saenz, Joseph L; Wong, Rebeca; Ailshire, Jennifer A

    2018-01-01

    A growing body of research suggests exposure to high levels of outdoor air pollution may negatively affect cognitive functioning in older adults, but less is known about the link between indoor sources of air pollution and cognitive functioning. We examine the association between exposure to indoor air pollution and cognitive function among older adults in Mexico, a developing country where combustion of biomass for domestic energy remains common. Data come from the 2012 Wave of the Mexican Health and Aging Study. The analytic sample consists of 13 023 Mexican adults over age 50. Indoor air pollution is assessed by the reported use of wood or coal as the household's primary cooking fuel. Cognitive function is measured with assessments of verbal learning, verbal recall, attention, orientation and verbal fluency. Ordinary least squares regression is used to examine cross-sectional differences in cognitive function according to indoor air pollution exposure while accounting for demographic, household, health and economic characteristics. Approximately 16% of the sample reported using wood or coal as their primary cooking fuel, but this was far more common among those residing in the most rural areas (53%). Exposure to indoor air pollution was associated with poorer cognitive performance across all assessments, with the exception of verbal recall, even in fully adjusted models. Indoor air pollution may be an important factor for the cognitive health of older Mexican adults. Public health efforts should continue to develop interventions to reduce exposure to indoor air pollution in rural Mexico. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2018. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  10. Hypoxia Stress Test Reveals Exaggerated Cardiovascular Effects in Hypertensive Rats after Exposure to the Air Pollutant Acrolein

    Science.gov (United States)

    Exposure to air pollution increases the risk of cardiovascular morbidity and mortality, especially in susceptible populations with cardiovascular disease. Stress tests are useful in assessing cardiovascular risk and manifesting latent effects of exposure. The goal of this study w...

  11. Health effects associated with exposure to ambient air pollution.

    Science.gov (United States)

    Samet, Jonathan; Krewski, Daniel

    2007-02-01

    The World Health Organization has identified ambient air pollution as a high public health priority, based on estimates of air pollution related death and disability-adjusted life years derived in its Global Burden of Disease initiative. The NERAM Colloquium Series on Health and Air Quality was initiated to strengthen the linkage between scientists, policymakers, and other stakeholders by reviewing the current state of science, identifying policy-relevant gaps and uncertainties in the scientific evidence, and proposing a path forward for research and policy to improve air quality and public health. The objective of this paper is to review the current state of science addressing the impacts of air pollution on human health. The paper is one of four background papers prepared for the 2003 NERAM/AirNet Conference on Strategies for Clean Air and Health, the third meeting in the international Colloquium Series. The review is based on the framework and findings of the U.S. National Research Committee (NRC) on Research Priorities for Airborne Particulate Matter and addresses key questions underlying air quality risk management policy decisions.

  12. Childhood autism spectrum disorders and exposure to nitrogen dioxide, and particulate matter air pollution: A review and meta-analysis.

    Science.gov (United States)

    Flores-Pajot, Marie-Claire; Ofner, Marianna; Do, Minh T; Lavigne, Eric; Villeneuve, Paul J

    2016-11-01

    Genetic and environmental factors have been recognized to play an important role in autism. The possibility that exposure to outdoor air pollution increases the risk of autism spectrum disorder (ASD) has been an emerging area of research. Herein, we present a systematic review, and meta-analysis of published epidemiological studies that have investigated these associations. We undertook a comprehensive search strategy to identify studies that investigated outdoor air pollution and autism in children. Overall, seven cohorts and five case-control studies met our inclusion criteria for the meta-analysis. We summarized the associations between exposure to air pollution and ASD based on the following critical exposure windows: (i) first, second and third trimester of pregnancy, (ii) entire pregnancy, and (iii) postnatal period. Random effects meta-analysis modeling was undertaken to derive pooled risk estimates for these exposures across the studies. The meta-estimates for the change in ASD associated with a 10μg/m 3 increase in exposure in PM 2.5 and 10 ppb increase in NO 2 during pregnancy were 1.34 (95% CI:0.83, 2.17) and 1.05 (95% CI:0.99, 1.11), respectively. Stronger associations were observed for exposures received after birth, but these estimates were unstable as they were based on only two studies. O 3 exposure was weakly associated with ASD during the third trimester of pregnancy and during the entire pregnancy, however, these estimates were also based on only two studies. Our meta-analysis support the hypothesis that exposure to ambient air pollution is associated with an increased risk of autism. Our findings should be interpreted cautiously due to relatively small number of studies, and several studies were unable to control for other key risk factors. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Long-term air pollution exposure and cardio- respiratory mortality: a review.

    Science.gov (United States)

    Hoek, Gerard; Krishnan, Ranjini M; Beelen, Rob; Peters, Annette; Ostro, Bart; Brunekreef, Bert; Kaufman, Joel D

    2013-05-28

    Current day concentrations of ambient air pollution have been associated with a range of adverse health effects, particularly mortality and morbidity due to cardiovascular and respiratory diseases. In this review, we summarize the evidence from epidemiological studies on long-term exposure to fine and coarse particles, nitrogen dioxide (NO2) and elemental carbon on mortality from all-causes, cardiovascular disease and respiratory disease. We also summarize the findings on potentially susceptible subgroups across studies. We identified studies through a search in the databases Medline and Scopus and previous reviews until January 2013 and performed a meta-analysis if more than five studies were available for the same exposure metric.

  14. Air pollution and population health: a global challenge.

    Science.gov (United States)

    Chen, Bingheng; Kan, Haidong

    2008-03-01

    "Air pollution and population health" is one of the most important environmental and public health issues. Economic development, urbanization, energy consumption, transportation/motorization, and rapid population growth are major driving forces of air pollution in large cities, especially in megacities. Air pollution levels in developed countries have been decreasing dramatically in recent decades. However, in developing countries and in countries in transition, air pollution levels are still at relatively high levels, though the levels have been gradually decreasing or have remained stable during rapid economic development. In recent years, several hundred epidemiological studies have emerged showing adverse health effects associated with short-term and long-term exposure to air pollutants. Time-series studies conducted in Asian cities also showed similar health effects on mortality associated with exposure to particulate matter (PM), sulfur dioxide (SO(2)), nitrogen dioxide (NO(2)) and ozone (O(3)) to those explored in Europe and North America. The World Health Organization (WHO) published the "WHO Air Quality Guidelines (AQGs), Global Update" in 2006. These updated AQGs provide much stricter guidelines for PM, NO(2), SO(2) and O(3). Considering that current air pollution levels are much higher than the WHO-recommended AQGs, interim targets for these four air pollutants are also recommended for member states, especially for developing countries in setting their country-specific air quality standards. In conclusion, ambient air pollution is a health hazard. It is more important in Asian developing countries within the context of pollution level and population density. Improving air quality has substantial, measurable and important public health benefits.

  15. Health and Household Air Pollution from Solid Fuel Use: The Needfor Improved Exposure Assessment

    Science.gov (United States)

    Background: Nearly half the world’s population relies on solid fuel combustion to meet basic household energy needs (e.g., cooking and heating). Resulting air pollution exposures are estimated to cause 3% of the global burden of disease. Large variability and a lack of resource...

  16. Air pollution: what matters most? : Physical, chemical and oxidative properties of air pollution components related to toxic effects

    NARCIS (Netherlands)

    Steenhof, M.

    2015-01-01

    Numerous studies have been published on the adverse health effects associated with both short- and long-term exposure to air pollution. Air pollution is a heterogeneous, complex mixture of gases, liquids, and particulate matter (PM). Up to now, PM mass concentration has been the metric of choice to

  17. Can the Air Pollution Index be used to communicate the health risks of air pollution?

    International Nuclear Information System (INIS)

    Li, Li; Lin, Guo-Zhen; Liu, Hua-Zhang; Guo, Yuming; Ou, Chun-Quan; Chen, Ping-Yan

    2015-01-01

    The validity of using the Air Pollution Index (API) to assess health impacts of air pollution and potential modification by individual characteristics on air pollution effects remain uncertain. We applied distributed lag non-linear models (DLNMs) to assess associations of daily API, specific pollution indices for PM 10 , SO 2 , NO 2 and the weighted combined API (APIw) with mortality during 2003–2011 in Guangzhou, China. An increase of 10 in API was associated with a 0.88% (95% confidence interval (CI): 0.50, 1.27%) increase of non-accidental mortality at lag 0–2 days. Harvesting effects appeared after 2 days’ exposure. The effect estimate of API over lag 0–15 days was statistically significant and similar with those of pollutant-specific indices and APIw. Stronger associations between API and mortality were observed in the elderly, females and residents with low educational attainment. In conclusion, the API can be used to communicate health risks of air pollution. - Highlights: • The cumulative effects of API on mortality over lag 0–15 days remained significant. • The indices for three specific pollutants had similar associations with mortality. • The effects of API were modified by age, gender and educational attainment. • Our findings can help to communicate health risks of air pollution to the public. - The Air Pollution Index communicates health risks of air pollution

  18. Air pollution and arrhythmic risk: the smog is yet to clear.

    Science.gov (United States)

    Watkins, Alex; Danilewitz, Marlon; Kusha, Marjan; Massé, Stéphane; Urch, Bruce; Quadros, Kenneth; Spears, Danna; Farid, Talha; Nanthakumar, Kumaraswamy

    2013-06-01

    Epidemiologic evidence has demonstrated that air pollution may impair cardiovascular health, leading to potentially life-threatening arrhythmias. Efforts have been made, with the use of epidemiologic data and controlled exposures in diverse animal and human populations, to verify the relationship between air pollution and arrhythmias. The purpose of this review is to examine and contrast the epidemiologic and toxicologic evidence to date that relates airborne pollutants with cardiac arrhythmia. We have explored the potential biological mechanisms driving this association. Using the PubMed database, we conducted a literature search that included the terms "air pollution" and "arrhythmia" and eventually divergent synonyms such as "particulate matter," "bradycardia," and "atrial fibrillation." We reviewed epidemiologic studies and controlled human and animal exposures independently to determine whether observational conclusions were corroborated by toxicologic results. Numerous pollutants have demonstrated some arrhythmic capacity among healthy and health-compromised populations. However, some exposure studies have shown no significant correlation of air pollutants with arrhythmia, which suggests some uncertainty about the arrhythmogenic potential of air pollution and the mechanisms involved in arrhythmogenesis. While data from an increasing number of controlled exposures with human volunteers suggest a potential mechanistic link between air pollution and altered cardiac electrophysiology, definite conclusions regarding air pollution and arrhythmia are elusive as the direct arrhythmic effects of air pollutants are not entirely consistent across all studies. Copyright © 2013 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  19. [Prolonged exposure to atmospheric air pollution and mortality from respiratory causes].

    Science.gov (United States)

    Eilstein, D

    2009-12-01

    Different designs can be used to analyze the relationships between respiratory mortality and long term exposure to atmospheric pollution: epidemiological studies (cohort, prevalence study) demonstrate the reality of the relationship and toxicological studies explain it. Cohort studies have the advantage of being able to take into account many confounding factors and thus avoid biases (which is not the case with prevalence studies), but require significant human and financial resources. They were first adopted in the US, but are now more often applied in Europe. The results are relatively consistent, as they all show a statistically significant association between an increase in particulate pollution and cardiopulmonary mortality. Mortality from lung cancer is also associated with long term exposition to particles and sometimes to ozone or nitrogen oxides. Cerebrovascular diseases and sudden death of young children have also been associated with particulate pollution. The relationships are more powerful for long term than short term exposure but are also linear and without threshold. In order to explain these effects (today the causality of the relationship is certain) there are many possible factors, particularly regarding particulate exposures: an increase in cardiovascular risk biomarkers (fibrinogen, white blood cells, and platelets), atherosclerosis, chronic inflammation of lung tissues increased by acute exposure, etc. More and more studies address the interaction between gene and environment and even epigenetic phenomena which could be responsible of these effects. Public Health impact could be quantified. The European E&H surveillance program Apheis, for example, estimated that if PM2.5 levels remained below 15 microg/m(3), a 30 year old person could see his life expectancy increased by 1 month to 2 years, depending on the studied city. Finally, mortality is not the only relevant indicator for health effects of air pollution. ISAAC studies address asthma

  20. Associations between maternal weekly air pollutant exposures and low birth weight: a distributed lag non-linear model

    Science.gov (United States)

    Wu, Han; Jiang, Baofa; Zhu, Ping; Geng, Xingyi; Liu, Zhong; Cui, Liangliang; Yang, Liping

    2018-02-01

    When discussing the association between birth weight and air pollution, previous studies mainly focus on the maternal trimester-specific exposures during pregnancy, whereas the possible associations between birth weight and weekly-specific exposures have been largely neglected. We conducted a nested 1:4 matched case-control study in Jinan, China to examine the weekly-specific associations during pregnancy between maternal fine particulate matter (aerodynamic diameter gender-, gestational age-, and parity-specific standard score (BWGAP z-score) was calculated as the outcome of interest. Distributed lag non-linear models (DLNMs) were applied to estimate weekly-specific relationship between maternal air pollutant exposures and birth weight. For an increase of per inter-quartile range in maternal PM2.5 exposure concentration during pregnancy, the BWGAP z-score decreased significantly during the 27th-33th gestational weeks with the strongest association in the 30th gestational weeks (standard deviation units decrease in BWGAP z-score: -0.049, 95% CI: -0.080 -0.017, in three-pollutant model). No significant association between maternal weekly NO2 or SO2 BWGAP z-score was observed. In conclusion, this study provides evidence that maternal PM2.5 exposure during the 27th-33th gestational weeks may reduce the birth weight in the context of very high pollution level of PM2.5.

  1. Clinical effects of air pollution on the central nervous system; a review.

    Science.gov (United States)

    Babadjouni, Robin M; Hodis, Drew M; Radwanski, Ryan; Durazo, Ramon; Patel, Arati; Liu, Qinghai; Mack, William J

    2017-09-01

    The purpose of this review is to describe recent clinical and epidemiological studies examining the adverse effects of urban air pollution on the central nervous system (CNS). Air pollution and particulate matter (PM) are associated with neuroinflammation and reactive oxygen species (ROS). These processes affect multiple CNS pathways. The conceptual framework of this review focuses on adverse effects of air pollution with respect to neurocognition, white matter disease, stroke, and carotid artery disease. Both children and older individuals exposed to air pollution exhibit signs of cognitive dysfunction. However, evidence on middle-aged cohorts is lacking. White matter injury secondary to air pollution exposure is a putative mechanism for neurocognitive decline. Air pollution is associated with exacerbations of neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. Increases in stroke incidences and mortalities are seen in the setting of air pollution exposure and CNS pathology is robust. Large populations living in highly polluted environments are at risk. This review aims to outline current knowledge of air pollution exposure effects on neurological health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Elemental analysis of lichen bioaccumulators before exposure as transplants in air pollution monitoring

    International Nuclear Information System (INIS)

    Pantelica, A.; Cercasov, V.

    2003-01-01

    Lichen transplants from relatively unpolluted sites are successfully used as heavy metal bioaccumulators for long-term air pollution monitoring. Significant element accumulations are generally revealed after 6 to 12 months of exposure. The main objective of this interdisciplinary research is to get a low-price survey of the air pollution level in some critical areas of Romania by nuclear and atomic analytical methods, based on the element accumulating property of transplanted lichens. The lichen species Evernia prunastri and Pseudevernia furfuracea collected from the Prealps, northeast Italy, have been selected for this study. Experimental setup for standardized lichen exposure needs special plastic frames ('little traps': 15 · 15 · 1.5 cm, with 1cm 2 mesh) which are fixed horizontally on stainless steel posts at about 1.5 m above the ground. Prior to exposure, the lichen material is cleansed of some vegetal impurities and then shortly washed using de-ionised water. The initial (zero-level) contents of lichens were determined by Instrumental Neutron Activation Analysis (INAA) and Energy Dispersive X-Ray Fluorescence Analysis (EDXRFA) methods. INAA was carried out at the Institute of Physics and Nuclear Engineering in Bucharest (IFIN) and while EDXRFA at the University of Hohenheim in Stuttgart. The investigated elements were: As, Br, Ca, Cd, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Sb, Se, V and Zn. From among them, Cd, Co and Sb can be determined only by INAA and ICP-MS, Pb only by EDXRFA and PIXE, and S only by EDXRFA. A statistical intercomparison of the results allowed a good quality control of the used analytical methods for these specific matrices. This work was supported in part by European Commission Center of Excellence Project ICA1-CT-2000-70023: IDRANAP (Inter-Disciplinary Research and Applications based on Nuclear and Atomic Physics), Work Package 2 (Air pollution monitoring by sampling airborne particulate matter combined with lichen bioaccumulator exposure

  3. Potential sources of bias in the use of individual's recall of the frequency of exposure to air pollution for use in exposure assessment in epidemiological studies: a cross-sectional survey

    Directory of Open Access Journals (Sweden)

    Bickerstaff Karen

    2004-03-01

    Full Text Available Abstract Background In a previous study it has been shown that mean population perception of air pollution correlates well with physical measures of actual air pollution and could be used as a measure of exposure to air pollution, at least for those forms of pollution perceptible to humans. However, for such a measure to be valid researchers would need to be confident that it was not strongly biased by possible confounding variables. This study reports the association between perception of above average levels of air pollution compared with others in the neighbourhood and a number of factors that may influence reporting. Methods This was a postal cross-sectional study of 3402 households in England in a mixed rural and urban area adjacent to a large industrial complex. Respondents were asked about their social and demographic characteristics, the presence of respiratory symptoms and frequency of exposure to a range of pollution types. Results and discussion There were strong associations (p Conclusions We did not find any evidence of bias that would substantially invalidate mean population reporting of air pollution severity as a measure of exposure in epidemiological studies, though care may be needed in interpreting results where those factors found to be significant in this study vary substantially between areas.

  4. Differential Exposure to Hazardous Air Pollution in the United States: A Multilevel Analysis of Urbanization and Neighborhood Socioeconomic Deprivation

    Directory of Open Access Journals (Sweden)

    Frank C. Curriero

    2012-06-01

    Full Text Available Population exposure to multiple chemicals in air presents significant challenges for environmental public health. Air quality regulations distinguish criteria air pollutants (CAPs (e.g., ozone, PM2.5 from hazardous air pollutants (HAPs—187 chemicals which include carcinogens and others that are associated with respiratory, cardiovascular, neurological and numerous other non-cancer health effects. Evidence of the public’s cumulative exposure and the health effects of HAPs are quite limited. A multilevel model is used to assess differential exposure to HAP respiratory, neurological, and cancer hazards (2005 related to the Townsend Index of Socioeconomic Deprivation (TSI, after adjustment for regional population size and economic activity, and local population density. We found significant positive associations between tract TSI and respiratory and cancer HAP exposure hazards, and smaller effects for neurological HAPs. Tracts in the top quintile of TSI have between 38%–60% higher HAP exposure than the bottom quintile; increasing population size from the bottom quintile to the top quintile modifies HAP exposure hazard related to TSI, increasing cancer HAP exposure hazard by 6% to 20% and increasing respiratory HAP exposure hazard by 12% to 27%. This study demonstrates the value of social epidemiological methods for analyzing differential exposure and advancing cumulative risk assessment.

  5. Differential exposure to hazardous air pollution in the United States: a multilevel analysis of urbanization and neighborhood socioeconomic deprivation.

    Science.gov (United States)

    Young, Gary S; Fox, Mary A; Trush, Michael; Kanarek, Norma; Glass, Thomas A; Curriero, Frank C

    2012-06-01

    Population exposure to multiple chemicals in air presents significant challenges for environmental public health. Air quality regulations distinguish criteria air pollutants (CAPs) (e.g., ozone, PM2.5) from hazardous air pollutants (HAPs)-187 chemicals which include carcinogens and others that are associated with respiratory, cardiovascular, neurological and numerous other non-cancer health effects. Evidence of the public's cumulative exposure and the health effects of HAPs are quite limited. A multilevel model is used to assess differential exposure to HAP respiratory, neurological, and cancer hazards (2005) related to the Townsend Index of Socioeconomic Deprivation (TSI), after adjustment for regional population size and economic activity, and local population density. We found significant positive associations between tract TSI and respiratory and cancer HAP exposure hazards, and smaller effects for neurological HAPs. Tracts in the top quintile of TSI have between 38%-60% higher HAP exposure than the bottom quintile; increasing population size from the bottom quintile to the top quintile modifies HAP exposure hazard related to TSI, increasing cancer HAP exposure hazard by 6% to 20% and increasing respiratory HAP exposure hazard by 12% to 27%. This study demonstrates the value of social epidemiological methods for analyzing differential exposure and advancing cumulative risk assessment.

  6. Spatial analysis of air pollution and childhood asthma in Hamilton, Canada: comparing exposure methods in sensitive subgroups

    Directory of Open Access Journals (Sweden)

    Arain Altaf

    2009-04-01

    Full Text Available Abstract Background Variations in air pollution exposure within a community may be associated with asthma prevalence. However, studies conducted to date have produced inconsistent results, possibly due to errors in measurement of the exposures. Methods A standardized asthma survey was administered to children in grades one and eight in Hamilton, Canada, in 1994–95 (N ~1467. Exposure to air pollution was estimated in four ways: (1 distance from roadways; (2 interpolated surfaces for ozone, sulfur dioxide, particulate matter and nitrous oxides from seven to nine governmental monitoring stations; (3 a kriged nitrogen dioxide (NO2 surface based on a network of 100 passive NO2 monitors; and (4 a land use regression (LUR model derived from the same monitoring network. Logistic regressions were used to test associations between asthma and air pollution, controlling for variables including neighbourhood income, dwelling value, state of housing, a deprivation index and smoking. Results There were no significant associations between any of the exposure estimates and asthma in the whole population, but large effects were detected the subgroup of children without hayfever (predominately in girls. The most robust effects were observed for the association of asthma without hayfever and NO2LUR OR = 1.86 (95%CI, 1.59–2.16 in all girls and OR = 2.98 (95%CI, 0.98–9.06 for older girls, over an interquartile range increase and controlling for confounders. Conclusion Our findings indicate that traffic-related pollutants, such as NO2, are associated with asthma without overt evidence of other atopic disorders among female children living in a medium-sized Canadian city. The effects were sensitive to the method of exposure estimation. More refined exposure models produced the most robust associations.

  7. Ambient air pollution and adult asthma incidence in six European cohorts (ESCAPE)

    NARCIS (Netherlands)

    Jacquemin, Bénédicte; Siroux, Valérie; Sanchez, Margaux; Carsin, Anne-Elie; Schikowski, Tamara; Adam, Martin; Bellisario, Valeria; Buschka, Anna; Bono, Roberto; Brunekreef, Bert|info:eu-repo/dai/nl/067548180; Cai, Yutong; Cirach, Marta; Clavel-Chapelon, Françoise; Declercq, Christophe; de Marco, Roberto; de Nazelle, Audrey; Ducret-Stich, Regina E; Ferretti, Virginia Valeria; Gerbase, Margaret W; Hardy, Rebecca; Heinrich, Joachim; Janson, Christer; Jarvis, Deborah; Al Kanaani, Zaina; Keidel, Dirk; Kuh, Diana; Le Moual, Nicole; Nieuwenhuijsen, Mark J; Marcon, Alessandro; Modig, Lars; Pin, Isabelle; Rochat, Thierry; Schindler, Christian; Sugiri, Dorothea; Stempfelet, Morgane; Temam, Sofia; Tsai, Ming-Yi; Varraso, Raphaëlle; Vienneau, Danielle; Vierkötter, Andrea; Hansell, Anna L; Krämer, Ursula; Probst-Hensch, Nicole M; Sunyer, Jordi; Künzli, Nino; Kauffmann, Francine

    BACKGROUND: Short-term exposure to air pollution has adverse effects among patients with asthma, but whether long-term exposure to air pollution is a cause of adult-onset asthma is unclear. OBJECTIVE: We aimed to investigate the association between air pollution and adult onset asthma. METHODS:

  8. The impacts of short-term exposure to noise and traffic-related air pollution on heart rate variability in young healthy adults.

    Science.gov (United States)

    Huang, Jing; Deng, Furong; Wu, Shaowei; Lu, Henry; Hao, Yu; Guo, Xinbiao

    2013-01-01

    Traffic-related air pollution and noise are associated with cardiovascular diseases, and alternation of heart rate variability (HRV), which reflects cardiac autonomic function, is one of the mechanisms. However, few studies considered the impacts of noise when exploring associations between air pollution and HRV. We explored whether noise modifies associations between short-term exposure to traffic-related air pollution and HRV in young healthy adults. In this randomized, crossover study, 40 young healthy adults stayed for 2 h in a traffic center and, on a separate occasion, in a park. Personal exposure to traffic-related air pollutants and noise were measured and ambulatory electrocardiogram was performed. Effects were estimated using mixed-effects regression models. Traffic-related air pollution and noise were both associated with HRV, and effects of air pollutants were amplified at high noise level (>65.6 A-weighted decibels (dB[A])) compared with low noise level (≤ 65.6 dB[A]). High frequency (HF) decreased by -4.61% (95% confidence interval, -6.75% to-2.42%) per 10 μg/m(3) increment in fine particle (PM2.5) at 5-min moving average, but effects became insignificant at low noise level (P>0.05). Similar effects modification was observed for black carbon (BC) and carbon monoxide (CO). We conclude that noise is an important factor influencing the effects of air pollution on HRV.

  9. Effects of air pollution on the skin: A review.

    Science.gov (United States)

    Puri, Poonam; Nandar, Shashi Kumar; Kathuria, Sushruta; Ramesh, V

    2017-01-01

    The increase in air pollution over the years has had major effects on the human skin. Various air pollutants such as ultraviolet radiation, polycyclic aromatic hydrocarbons, volatile organic compounds, oxides, particulate matter, ozone and cigarette smoke affect the skin as it is the outermost barrier. Air pollutants damage the skin by inducing oxidative stress. Although human skin acts as a biological shield against pro-oxidative chemicals and physical air pollutants, prolonged or repetitive exposure to high levels of these pollutants may have profound negative effects on the skin. Exposure to ultraviolet radiation has been associated with extrinsic skin aging and skin cancers. Cigarette smoke contributes to premature aging and an increase in the incidence of psoriasis, acne and skin cancers. It is also implicated in allergic skin conditions such as atopic dermatitis and eczema. Polyaromatic hydrocarbons are associated with extrinsic skin aging, pigmentation, cancers and acneiform eruptions. Volatile organic compounds have been associated with atopic dermatitis. Given the increasing levels of air pollution and its detrimental effects on the skin, it is advisable to use strategies to decrease air pollution.

  10. Comparison of air pollution exposures in active vs. passive travel modes in European cities: A quantitative review.

    Science.gov (United States)

    de Nazelle, Audrey; Bode, Olivier; Orjuela, Juan Pablo

    2017-02-01

    Transport microenvironments tend to have higher air pollutant concentrations than other settings most people encounter in their daily lives. The choice of travel modes may affect significantly individuals' exposures; however such considerations are typically not accounted for in exposure assessment used in environmental health studies. In particular, with increasing interest in the promotion of active travel, health impact studies that attempt to estimate potential adverse consequences of potential increased pollutant inhalation during walking or cycling have emerged. Such studies require a quantification of relative exposures in travel modes. The literature on air pollution exposures in travel microenvironments in Europe was reviewed. Studies which measured various travel modes including at least walking or cycling in a simultaneous or quasi-simultaneous design were selected. Data from these studies were harmonized to allow for a quantitative synthesis of the estimates. Ranges of ratios and 95% confidence interval (CI) of air pollution exposure between modes and between background and transportation modes were estimated. Ten studies measuring fine particulate matter (PM 2.5 ), black carbon (BC), ultrafine particles (UFP), and/or carbon monoxide (CO) in the walk, bicycle, car and/or bus modes were included in the analysis. Only three reported on CO and BC and results should be interpreted with caution. Pedestrians were shown to be the most consistently least exposed of all across studies, with the bus, bicycle and car modes on average 1.3 to 1.5 times higher for PM 2.5 ; 1.1 to 1.7 times higher for UFP; and 1.3 to 2.9 times higher for CO; however the 95% CI included 1 for the UFP walk to bus ratio. Only for BC were pedestrians more exposed than bus users on average (bus to walk ratio 0.8), but remained less exposed than those on bicycles or in cars. Car users tended to be the most exposed (from 2.9 times higher than pedestrians for BC down to similar exposures to

  11. The Effects of Air Pollution and Temperature on COPD.

    Science.gov (United States)

    Hansel, Nadia N; McCormack, Meredith C; Kim, Victor

    2016-06-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12-16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature-both heat and cold-have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance.

  12. Lung Cancer Risk and Residential Exposure to Air Pollution: A Korean Population-Based Case-Control Study.

    Science.gov (United States)

    Lamichhane, Dirga Kumar; Kim, Hwan Cheol; Choi, Chang Min; Shin, Myung Hee; Shim, Young Mog; Leem, Jong Han; Ryu, Jeong Seon; Nam, Hae Seong; Park, Sung Min

    2017-11-01

    To investigate the association between long-term exposure to ambient air pollution and lung cancer incidence in Koreans. This was a population-based case-control study covering 908 lung cancer patients and 908 controls selected from a random sample of people within each Korean province and matched according to age, sex, and smoking status. We developed land-use regression models to estimate annual residential exposure to particulate matter (PM₁₀) and nitrogen dioxide (NO₂) over a 20-year exposure period. Logistic regression was used to estimate odds ratios (ORs) and their corresponding 95% confidence intervals (CI). Increases in lung cancer incidence (expressed as adjusted OR) were 1.09 (95% CI: 0.96-1.23) with a ten-unit increase in PM₁₀ (μg/m³) and 1.10 (95% CI: 1.00-1.22) with a ten-unit increase in NO₂ (ppb). Tendencies for stronger associations between air pollution and lung cancer incidence were noted among never smokers, among those with low fruit consumption, and among those with a higher education level. Air pollution was more strongly associated with squamous cell and small cell carcinomas than with adenocarcinoma of the lung. This study provides evidence that PM10 and NO₂ contribute to lung cancer incidence in Korea. © Copyright: Yonsei University College of Medicine 2017

  13. Cleaning products and air fresheners: exposure to primary and secondary air pollutants

    DEFF Research Database (Denmark)

    Nazaroff, W.; Weschler, Charles J.

    2004-01-01

    Building occupants, including cleaning personnel, are exposed to a wide variety of airborne chemicals when cleaning agents and air fresheners are used in buildings. Certain of these chemicals are listed by the state of California as toxic air contaminants (TACs) and a subset of these are regulated...... by the US federal government as hazardous air pollutants (HAPs). California's Proposition 65 list of species recognized as carcinogens or reproductive toxicants also includes constituents of certain cleaning products and air fresheners. In addition, many cleaning agents and air fresheners contain chemicals...... that can react with other air contaminants to yield potentially harmful secondary products. For example, terpenes can react rapidly with ozone in indoor air generating many secondary pollutants, including TACs such as formaldehyde. Furthermore, ozone-terpene reactions produce the hydroxyl radical, which...

  14. Long-term air pollution exposure and cardio- respiratory mortality: a review

    Science.gov (United States)

    2013-01-01

    Current day concentrations of ambient air pollution have been associated with a range of adverse health effects, particularly mortality and morbidity due to cardiovascular and respiratory diseases. In this review, we summarize the evidence from epidemiological studies on long-term exposure to fine and coarse particles, nitrogen dioxide (NO2) and elemental carbon on mortality from all-causes, cardiovascular disease and respiratory disease. We also summarize the findings on potentially susceptible subgroups across studies. We identified studies through a search in the databases Medline and Scopus and previous reviews until January 2013 and performed a meta-analysis if more than five studies were available for the same exposure metric. There is a significant number of new studies on long-term air pollution exposure, covering a wider geographic area, including Asia. These recent studies support associations found in previous cohort studies on PM2.5. The pooled effect estimate expressed as excess risk per 10 μg/m3 increase in PM2.5 exposure was 6% (95% CI 4, 8%) for all-cause and 11% (95% CI 5, 16%) for cardiovascular mortality. Long-term exposure to PM2.5 was more associated with mortality from cardiovascular disease (particularly ischemic heart disease) than from non-malignant respiratory diseases (pooled estimate 3% (95% CI −6, 13%)). Significant heterogeneity in PM2.5 effect estimates was found across studies, likely related to differences in particle composition, infiltration of particles indoors, population characteristics and methodological differences in exposure assessment and confounder control. All-cause mortality was significantly associated with elemental carbon (pooled estimate per 1 μg/m3 6% (95% CI 5, 7%)) and NO2 (pooled estimate per 10 μg/m3 5% (95% CI 3, 8%)), both markers of combustion sources. There was little evidence for an association between long term coarse particulate matter exposure and mortality, possibly due to the small number of

  15. Cardiovascular Effects of Long-Term Exposure to Air Pollution: A Population-Based Study With 900 845 Person-Years of Follow-up.

    Science.gov (United States)

    Kim, Hyeanji; Kim, Joonghee; Kim, Sunhwa; Kang, Si-Hyuck; Kim, Hee-Jun; Kim, Ho; Heo, Jongbae; Yi, Seung-Muk; Kim, Kyuseok; Youn, Tae-Jin; Chae, In-Ho

    2017-11-08

    Studies have shown that long-term exposure to air pollution such as fine particulate matter (≤2.5 μm in aerodynamic diameter [PM 2.5 ]) increases the risk of all-cause and cardiovascular mortality. To date, however, there are limited data on the impact of air pollution on specific cardiovascular diseases. This study aimed to evaluate cardiovascular effects of long-term exposure to air pollution among residents of Seoul, Korea. Healthy participants with no previous history of cardiovascular disease were evaluated between 2007 and 2013. Exposure to air pollutants was estimated by linking the location of outdoor monitors to the ZIP code of each participant's residence. Crude and adjusted analyses were performed using Cox regression models to evaluate the risk for composite cardiovascular events including cardiovascular mortality, acute myocardial infarction, congestive heart failure, and stroke. A total of 136 094 participants were followed for a median of 7.0 years (900 845 person-years). The risk of major cardiovascular events increased with higher mean concentrations of PM 2.5 in a linear relationship, with a hazard ratio of 1.36 (95% confidence interval, 1.29-1.43) per 1 μg/m 3 PM 2.5 . Other pollutants including PM 2.5-10 of CO, SO 2 , and NO 2 , but not O 3 , were significantly associated with increased risk of cardiovascular events. The burden from air pollution was comparable to that from hypertension and diabetes mellitus. This large-scale population-based study demonstrated that long-term exposure to air pollution including PM 2.5 increases the risk of major cardiovascular disease and mortality. Air pollution should be considered an important modifiable environmental cardiovascular risk factor. © 2017 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley.

  16. [Individual exposure to air pollution in urban areas: the example of Marseille].

    Science.gov (United States)

    Grimaldi, Frédérique; Viala, Alain

    2007-01-01

    We examined the exposure of an urban population to the following air pollutants, in the home and outdoors: nitrogen dioxide, benzene and its derivative BTXE, carbon monoxide, ozone, aldehydes and particulate matter (PM)2,5. Measurements were made continuously during 48-hour periods in summer and in winter, in non-smoking volunteers, using passive and active samplers and appropriate analytical methods. NO2 concentrations were relatively low (lower in summer than in winter). Individual overall exposure correlated strongly with levels in the home. Benzene levels were high both outdoors and in the home, and were higher in winter than in summer; 47% of the volunteers were exposed to mean values up to 5 microg x m(-3) (annual mean value outdoors). Benzene derivative levels were also higher in winter than in summer. Personal exposure to CO was low and related to determinants such as trafic and environmental tobacco smoke (ETS). Mean concentrations of O3 were low in winter and higher in summer, owing to higher outdoor photochemical pollution. The most abundant aldehydes were formaldehyde, acetaldehyde and acrolein ; personal exposure was low. Overall personal exposure to formaldehyde correlated with concentrations in the home. PM2,5 reached high levels in the home in winter and outdoors in summer.

  17. Associations of outdoor air pollution with hemorrhagic stroke mortality.

    Science.gov (United States)

    Yorifuji, Takashi; Kawachi, Ichiro; Sakamoto, Tetsuro; Doi, Hiroyuki

    2011-02-01

    Evidence linking short-term exposure to outdoor air pollution with hemorrhagic stroke is inconsistent. We evaluated the associations between outdoor air pollution and specific types of stroke in Tokyo, Japan, from April 2003 to December 2008. We obtained daily counts of stroke mortality (n = 41,440) and concentrations of nitrogen dioxide as well as particles less than 2.5 μm in diameter. Time-series analysis was employed. Although same-day air pollutants were positively associated with ischemic stroke and intracerebral hemorrhage mortality, both air pollutants were more strongly associated with subarachnoid hemorrhage mortality: rate ratio was 1.041 (95% confidence interval: 1.011-1.072) for each 10 μg/m3 increase in the previous-day particles less than 2.5 μm. This study suggests that short-term exposure to outdoor air pollution increases the risks of hemorrhagic stroke mortality as well as ischemic stroke mortality.

  18. Air Pollution and Otitis Media in Children: A Systematic Review of Literature

    Science.gov (United States)

    Tham, Rachel; Perret, Jennifer L.; Bloom, Michael S.; Dong, Guanghui; Waidyatillake, Nilakshi; Bui, Dinh; Morgan, Geoffrey G.; Jalaludin, Bin; Lodge, Caroline J.

    2018-01-01

    Young children are particularly vulnerable to otitis media (OM) which globally affects over 80% of children below the age of 3 years. Although there is convincing evidence for an association between environmental tobacco smoke exposure and OM in children, the relationship with ambient air pollution is not clear. We aimed to systematically review the literature on the relationship between ambient air pollution exposure and OM in children. A systematic search was performed in PubMed and EMBASE databases. Of 934 references identified, 24 articles were included. There is an increasing body of evidence supporting an association between higher ambient air pollution exposure and a higher risk of OM in children. While NO2 showed the most consistent association with OM, other specific pollutants showed inconsistent associations. Studies were mainly conducted in high/middle income countries with limited evidence from low-income countries. Although there was a general consensus that higher air pollution exposure is associated with a greater prevalence of OM, the evidence for associations with specific pollutants is inconsistent. More well-designed studies on associations between specific air pollutants as risk factors for OM are warranted, especially in low income countries with high air pollution levels. PMID:29401661

  19. Air Pollution and Otitis Media in Children: A Systematic Review of Literature.

    Science.gov (United States)

    Bowatte, Gayan; Tham, Rachel; Perret, Jennifer L; Bloom, Michael S; Dong, Guanghui; Waidyatillake, Nilakshi; Bui, Dinh; Morgan, Geoffrey G; Jalaludin, Bin; Lodge, Caroline J; Dharmage, Shyamali C

    2018-02-03

    Young children are particularly vulnerable to otitis media (OM) which globally affects over 80% of children below the age of 3 years. Although there is convincing evidence for an association between environmental tobacco smoke exposure and OM in children, the relationship with ambient air pollution is not clear. We aimed to systematically review the literature on the relationship between ambient air pollution exposure and OM in children. A systematic search was performed in PubMed and EMBASE databases. Of 934 references identified, 24 articles were included. There is an increasing body of evidence supporting an association between higher ambient air pollution exposure and a higher risk of OM in children. While NO₂ showed the most consistent association with OM, other specific pollutants showed inconsistent associations. Studies were mainly conducted in high/middle income countries with limited evidence from low-income countries. Although there was a general consensus that higher air pollution exposure is associated with a greater prevalence of OM, the evidence for associations with specific pollutants is inconsistent. More well-designed studies on associations between specific air pollutants as risk factors for OM are warranted, especially in low income countries with high air pollution levels.

  20. Public Health and Air Pollution in Asia (PAPA): A Multicity Study of Short-Term Effects of Air Pollution on Mortality

    OpenAIRE

    Wong, Chit-Ming; Vichit-Vadakan, Nuntavarn; Kan, Haidong; Qian, Zhengmin

    2008-01-01

    Background and Objectives: Although the deleterious effects of air pollution from fossil fuel combustion have been demonstrated in many Western nations, fewer studies have been conducted in Asia. The Public Health and Air Pollution in Asia (PAPA) project assessed the effects of short-term exposure to air pollution on daily mortality in Bangkok, Thailand, and in three cities in China: Hong Kong, Shanghai, and Wuhan. Methods: Poisson regression models incorporating natural spline smoothing func...

  1. Preventive Effect of Residential Green Space on Infantile Atopic Dermatitis Associated with Prenatal Air Pollution Exposure.

    Science.gov (United States)

    Lee, Ji-Young; Lamichhane, Dirga Kumar; Lee, Myeongjee; Ye, Shinhee; Kwon, Jung-Hyun; Park, Myung-Sook; Kim, Hwan-Cheol; Leem, Jong-Han; Hong, Yun-Chul; Kim, Yangho; Ha, Mina; Ha, Eunhee

    2018-01-09

    Few birth cohort studies have examined the role of traffic-related air pollution (TRAP) in the development of infantile atopic dermatitis (AD), but none have investigated the role of preventive factors such as green spaces. The aim of this study was to investigate whether exposure to nitrogen dioxide (NO₂) and particulate matter with an aerodynamic diameter of Health study. Subjects were geocoded to their residential addresses and matched with air pollution data modeled using land-use regression. Information on infantile AD was obtained by using a questionnaire administered to the parents or guardians of the children. The association between infantile AD and exposure to NO₂ and PM 10 was determined using logistic regression models. We assessed the effects of residential green spaces using stratified analyses and by entering product terms into the logistic regression models. The risk of infantile AD significantly increased with an increase in air pollution exposure during the first trimester of pregnancy. The adjusted odds ratio (OR) and 95% confidence interval (CI) were 1.219 (1.023-1.452) per 10 μg/m³ increase in PM 10 and 1.353 (1.027-1.782) per 10 ppb increase in NO₂. An increase in the green space within 200 m of residence was associated with a decreased risk of AD (OR = 0.996, 95% CI: 0.993-0.999). The stratified analysis of residential green space revealed stronger associations between infantile AD and PM 10 and NO₂ exposure during the first trimester in the areas in the lower tertiles of green space. This study indicated that exposure to TRAP during the first trimester of pregnancy is associated with infantile AD. Less residential green space may intensify the association between TRAP exposure and infantile AD.

  2. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to indoor air pollution

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Lagercrantz, L.; Sundell, Jan

    2009-01-01

    The concentration of nitric oxide (NO) in exhaled and aspirated nasal air was used to objectively assess human response to indoor air pollutants in a climate chamber exposure experiment. The concentration of NO was measured before exposure, after 2, and 4.5 h of exposure, using a chemiluminescence...... by the exposures. The results may indicate an association between polluted indoor air and subclinical inflammation.Measurement of nitric oxide in exhaled air is a possible objective marker of subclinical inflammation in healthy adults....... NO analyzer. Sixteen healthy female subjects were exposed to two indoor air pollutants and to a clean reference condition for 4.5 h. Subjective assessments of the environment were obtained by questionnaires. After exposure (4.5 h) to the two polluted conditions a small increase in NO concentration in exhaled...

  3. The burden of ischemic heart disease related to ambient air pollution exposure in a coastal city in South China.

    Science.gov (United States)

    Huang, Jing; Li, Guoxing; Qian, Xujun; Xu, Guozhang; Zhao, Yan; Huang, Jian; Liu, Qichen; He, Tianfeng; Guo, Xinbiao

    2018-07-01

    Air pollution is considered one of the most important risk factors for ischemic heart disease (IHD), which is a major public health concern. The disease burden of IHD has continued to rise in China in the past two decades. However, epidemiological studies examining the associations between air pollution and IHD have been scarce in China, and the only studies were conducted in severe air pollution areas, where air pollution levels seriously exceed the World Health Organization Air Quality Guidelines. Whether the influence of air pollution on IHD in areas with relatively low levels of air pollution differs from the influence of high pollution levels in heavily studied areas was unknown until now. Furthermore, the estimation of the disease burden of IHD related to air pollution has been very limited. We conducted a time-series study to estimate the short-term burden of ambient air pollution on IHD using the indicator of years of life lost (YLL), based on 10 322 IHD deaths from 2011 to 2015 in Ningbo, a coastal city in South China. The mean concentrations of fine particle (PM 2.5 ), sulfur dioxide (SO 2 ) and nitrogen dioxide (NO 2 ) were 49.58 μg/m 3 , 21.34 μg/m 3 and 43.41 μg/m 3 , respectively. A 10 μg/m 3 increase in PM 2.5 , SO 2 and NO 2 was associated with changes in YLL of 0.71 (95%CI: - 0.21,1.64), 3.31 (95%CI: 0.78, 5.84), and 2.27 (95%CI: 0.26, 4.28) years, respectively. Relatively stronger impacts were found for gaseous pollutants than PM 2.5 . A larger increase in YLL was found in the younger population than in the older population for NO 2 exposure. In addition, estimations of the effects of SO 2 and NO 2 on YLL were higher for males than females. SO 2 exposure was positively associated with YLL in widowed group. The findings highlighted the importance of stringent air pollution control, especially for gaseous pollutants. Furthermore, using the indicator of YLL, considering the occurrence of death at different ages, provided more

  4. Can air pollution negate the health benefits of cycling and walking?

    Science.gov (United States)

    Tainio, Marko; de Nazelle, Audrey J; Götschi, Thomas; Kahlmeier, Sonja; Rojas-Rueda, David; Nieuwenhuijsen, Mark J; de Sá, Thiago Hérick; Kelly, Paul; Woodcock, James

    2016-06-01

    Active travel (cycling, walking) is beneficial for the health due to increased physical activity (PA). However, active travel may increase the intake of air pollution, leading to negative health consequences. We examined the risk-benefit balance between active travel related PA and exposure to air pollution across a range of air pollution and PA scenarios. The health effects of active travel and air pollution were estimated through changes in all-cause mortality for different levels of active travel and air pollution. Air pollution exposure was estimated through changes in background concentrations of fine particulate matter (PM2.5), ranging from 5 to 200μg/m3. For active travel exposure, we estimated cycling and walking from 0 up to 16h per day, respectively. These refer to long-term average levels of active travel and PM2.5 exposure. For the global average urban background PM2.5 concentration (22μg/m3) benefits of PA by far outweigh risks from air pollution even under the most extreme levels of active travel. In areas with PM2.5 concentrations of 100μg/m3, harms would exceed benefits after 1h 30min of cycling per day or more than 10h of walking per day. If the counterfactual was driving, rather than staying at home, the benefits of PA would exceed harms from air pollution up to 3h 30min of cycling per day. The results were sensitive to dose-response function (DRF) assumptions for PM2.5 and PA. PA benefits of active travel outweighed the harm caused by air pollution in all but the most extreme air pollution concentrations. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Biomarkers of ambient air pollution and lung cancer

    DEFF Research Database (Denmark)

    Demetriou, Christiana A; Raaschou-Nielsen, Ole; Loft, Steffen

    2012-01-01

    The association between ambient air pollution exposure and lung cancer risk has been investigated in prospective studies and the results are generally consistent, indicating that long-term exposure to air pollution may cause lung cancer. Despite the prospective nature and consistent findings...... and progression from external exposure to tumour formation and some have also been suggested as risk predictors of future cancer, reinforcing causal reasoning. However, methodological issues such as confounding, publication bias and use of surrogate tissues instead of target tissues in studies on these markers...

  6. Ambient concentrations and personal exposure to polycyclic aromatic hydrocarbons (PAH) in an urban community with mixed sources of air pollution

    Science.gov (United States)

    ZHU, XIANLEI; FAN, ZHIHUA (TINA); WU, XIANGMEI; JUNG, KYUNG HWA; OHMAN-STRICKLAND, PAMELA; BONANNO, LINDA J.; LIOY, PAUL J.

    2014-01-01

    Assessment of the health risks resulting from exposure to ambient polycyclic aromatic hydrocarbons (PAH) is limited by a lack of environmental exposure data among the general population. This study characterized personal exposure and ambient concentrations of PAH in the Village of Waterfront South (WFS), an urban community with many mixed sources of air toxics in Camden, New Jersey, and CopeWood/Davis Streets (CDS), an urban reference area located ~1 mile east of WFS. A total of 54 and 53 participants were recruited from non-smoking households in WFS and CDS, respectively. In all, 24-h personal and ambient air samples were collected simultaneously in both areas on weekdays and weekends during summer and winter. The ambient PAH concentrations in WFS were either significantly higher than or comparable to those in CDS, indicating the significant impact of local sources on PAH pollution in WFS. Analysis of diagnostic ratios and correlation suggested that diesel truck traffic, municipal waste combustion and industrial combustion were the major sources in WFS. In such an area, ambient air pollution contributed significantly to personal PAH exposure, explaining 44–96% of variability in personal concentrations. This study provides valuable data for examining the impact of local ambient PAH pollution on personal exposure and therefore potential health risks associated with environmental PAH pollution. PMID:21364704

  7. Air pollution and asthma severity in adults

    Science.gov (United States)

    Rage, Estelle; Siroux, Valérie; Künzli, Nino; Pin, Isabelle; Kauffmann, Francine

    2009-01-01

    Objectives There is evidence that exposure to air pollution affects asthma, but the effect of air pollution on asthma severity has not been addressed. The aim was to assess the relation between asthma severity during the past 12 months and home outdoor concentrations of air pollution. Methods Asthma severity over the last 12 months was assessed in two complementary ways among 328 adult asthmatics from the French Epidemiological study on the Genetics and Environment of Asthma (EGEA) examined between 1991 and 1995. The 4-class severity score integrated clinical events and type of treatment. The 5-level asthma score is based only on the occurrence of symptoms. Nitrogen dioxide (NO2), sulphur dioxide (SO2) and ozone (O3) concentrations were assigned to each residence using two different methods. The first was based on the closest monitor data from 1991–1995. The second consisted in spatial models that used geostatistical interpolations and then assigned air pollutants to the geo-coded residences (1998). Results Higher asthma severity score was significantly related to the 8-hour average of ozone during April-September (O3-8hr) and the number of days (O3-days) with 8-hour ozone averages above 110 μg.m−3 (for a 36-day increase, equivalent to the inter quartile range, in O3-days, odds ratio (95% confidence interval) 2.22 (1.61–3.07) for one class difference in score). Adjustment for age, sex, smoking habits, occupational exposure, and educational level did not alter results. Asthma severity was unrelated to NO2. Both exposure assessment methods and severity scores resulted in very similar findings. SO2 correlated with severity but reached statistical significance only for the model based assignment of exposure. Conclusions The observed associations between asthma severity and air pollution, in particular O3, support the hypothesis that air pollution at levels far below current standards increases asthma severity. PMID:19017701

  8. A Bayesian kriging model for estimating residential exposure to air pollution of children living in a high-risk area in Italy

    Directory of Open Access Journals (Sweden)

    Ana M. Vicedo-Cabrera

    2013-11-01

    Full Text Available A core challenge in epidemiological analysis of the impact of exposure to air pollution on health is assessment of the individual exposure for subjects at risk. Geographical information systems (GIS-based pollution mapping, such as kriging, has become one of the main tools for evaluating individual exposure to ambient pollutants. We applied universal Bayesian kriging to estimate the residential exposure to gaseous air pollutants for children living in a high-risk area (Milazzo- Valle del Mela in Sicily, Italy. Ad hoc air quality monitoring campaigns were carried out: 12 weekly measurements for sulphur dioxide (SO2 and nitrogen dioxide (NO2 were obtained from 21 passive dosimeters located at each school yard of the study area from November 2007 to April 2008. Universal Bayesian kriging was performed to predict individual exposure levels at each residential address for all 6- to 12-years-old children attending primary school at various locations in the study area. Land use, altitude, distance to main roads and population density were included as covariates in the models. A large geographical heterogeneity in air quality was recorded suggesting complex exposure patterns. We obtained a predicted mean level of 25.78 (±10.61 μg/m3 of NO2 and 4.10 (±2.71 μg/m3 of SO2 at 1,682 children’s residential addresses, with a normalised root mean squared error of 28% and 25%, respectively. We conclude that universal Bayesian kriging approach is a useful tool for the assessment of realistic exposure estimates with regard to ambient pollutants at home addresses. Its prediction uncertainty is highly informative and can be used for both designing subsequent campaigns and for improved modelling of epidemiological associations.

  9. Ambient air pollution as a risk factor for lung cancer

    Directory of Open Access Journals (Sweden)

    COHEN AARON J

    1997-01-01

    Full Text Available Epidemiologic studies over the last 40 years have observed that general ambient air pollution, chiefly due to the by- products of the incomplete combustion of fossil fuels, is associated with small relative increases in lung cancer. The evidence derives from studies of lung cancer trends, studies of occupational groups, comparisons of urban and rural populations, and case-control and cohort studies using diverse exposure metrics. Recent prospective cohort studies observed 30-50% increases in the risk of lung cancer in relation to approximately a doubling of respirable particle exposure. While these data reflect the effects of exposures in past decades, and despite some progress in reducing air pollution, large numbers of people in the US continue to be exposed to pollutant mixtures containing known or suspected carcinogens. These observations suggest that the most widely cited estimates of the proportional contribution of air pollution to lung cancer occurrence in the US, based largely on the results of animal experimentation, may be too low. It is important that better epidemiologic research be conducted to allow improved estimates of lung cancer risk from air pollution in the general population. The development and application of new epidemiologic methods, particularly the improved characterization of population-wide exposure to mixtures of air pollutants and the improved design of ecologic studies, could improve our ability to measure accurately the magnitude of excess cancer related to air pollution.

  10. Interaction between Chronic Obstructive Pulmonary Disease (COPD) and other important health conditions and measurable air pollution

    Science.gov (United States)

    Blagev, D. P.; Mendoza, D. L.; Rea, S.; Sorensen, J.

    2015-12-01

    Adverse health effects have been associated with urban pollutant exposure arising from close proximity to highly-emitting sources and atmospheric mixing. The relative air pollution exposure dose and time effects on various diseases remains unknown. This study compares the increased risk of health complications when patients are exposed to short term high-levels of air pollution vs. longer term exposure to lower levels of air pollution. We used the electronic medical record of an integrated hospital system based in Utah, Intermountain Healthcare, to identify a cohort of patients with Chronic Obstructive Pulmonary Disease (COPD) who were seen between 2009-2014. We determined patient demographics as well as comorbidity data and healthcare utilization. To determine the approximate air pollution dose and time exposure, we used the Hestia highly-resolved emissions inventory for Salt Lake County, Utah in conjunction with emissions based on the National Emissions Inventory (NEI). Hourly emissions of CO2 and criteria air pollutants were gridded at a 0.002o x 0.002o resolution for the study years. The resulting emissions were transported using the CALPUFF and AERMOD dispersion models to estimate air pollutant concentrations at an hourly 0.002o x 0.002oresolution. Additionally, pollutant concentrations were estimated at each patient's home and work address to estimate exposure. Multivariate analysis adjusting for patient demographics, comorbidities and severity of COPD was performed to determine association between air pollution exposure and the risk of hospitalization or emergency department (ED) visit for COPD exacerbation and an equivalency estimate for air pollution exposure was developed. We noted associations with air pollution levels for each pollutant and hospitalizations and ED visits for COPD and other patient comorbidities. We also present an equivalency estimate for dose of air pollution exposure and health outcomes. This analysis compares the increased risk of

  11. Assessing community exposure to hazardous air pollutants by combining optical remote sensing and "low-cost" sensor technologies

    Science.gov (United States)

    Pikelnaya, O.; Polidori, A.; Wimmer, R.; Mellqvist, J.; Samuelsson, J.; Marianne, E.; Andersson, P.; Brohede, S.; Izos, O.

    2017-12-01

    Industrial facilities such as refineries and oil processing facilities can be sources of chemicals adversely affecting human health, for example aromatic hydrocarbons and formaldehyde. In an urban setting, such as the South Coast Air Basin (SCAB), exposure to harmful air pollutants (HAP's) for residents of communities neighboring such facilities is of serious concern. Traditionally, exposure assessments are performed by modeling a community exposure using emission inventories and data collected at fixed air monitoring sites. However, recent field measurements found that emission inventories may underestimate HAP emissions from refineries; and HAP measurements data from fixed sites is lacking spatial resolution; as a result, the impact of HAP emissions on communities is highly uncertain. The next generation air monitoring technologies can help address these challenges. For example, dense "low-cost" sensors allow continuous monitoring of concentrations of pollutants within communities with high temporal- and spatial- resolution, and optical remote sensing (ORS) technologies offer measurements of emission fluxes and real-time ground-concentration mapping of HAPs. South Coast Air Quality Management District (SCAQMD) is currently conducting a multi-year study using ORS methods and "low-cost" Volatile Organic Compounds (VOCs) sensors to monitor HAP emissions from selected industrial facilities in the SCAB and their ambient concentrations in neighboring communities. For this purpose, quarterly mobile ORS surveys are conducted to quantify facility-wide emissions for VOCs, aromatic hydrocarbons and HCHO, and to collect ground-concentration profiles of these pollutants inside neighboring communities. Additionally, "low-cost" sensor nodes for deployment in neighborhood(s) downwind of the facilities have been developed in order to obtain long-term, granular data on neighborhood VOC concentrations, During this presentation we will discuss initial results of quarterly ORS

  12. A comparison of individual exposure, perception, and acceptable levels of PM2.5 with air pollution policy objectives in China.

    Science.gov (United States)

    Huang, Lei; Rao, Chao; van der Kuijp, Tsering Jan; Bi, Jun; Liu, Yang

    2017-08-01

    Atmospheric pollution has emerged as a major public health issue in China. Public perception and acceptable risk levels of air pollution can prompt individual behavioral changes and play a major role in the public's response to health risks. Therefore, to explore these responses and evaluate what constitutes publicly acceptable concentrations of fine particulate matter (PM 2.5 ), questionnaire surveys were conducted in three representative cities of China: Beijing, Nanjing, and Guangzhou. Great differences in public risk perception were revealed. Public perception of the health effects of air pollution (Effect) and familiarity with it (Familiarity) were significantly higher in the winter than in the summer, and also during severe haze days compared with typical days. The public perception of trust in the government (Trust) was consistent across all conditions. Exposure to severe haze pollution and experiencing harms from it were key factors influencing public willingness to respond to haze. These results reflected individual exposure levels correlating closely with risk perception and acceptance of PM 2.5 . However, a crucial gap exists between public acceptable risk levels (PARL) of air pollution and the policy objectives of the State Council's Action Plan. Thus, policymakers can utilize this study to develop more targeted measures to combat air pollution. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Traffic related air pollution : spatial variation, health effects and mitigation measures

    NARCIS (Netherlands)

    Dijkema, M.B.A.

    2011-01-01

    Air pollution is probably the most intensely studied field in today’s environmental health research. The extensive body of literature on health effects associated with air pollution exposure has lead to prioritization of air pollution as public health risk factor and air quality regulations

  14. Exposure to air pollution is associated with lung hyperinflation in healthy children and adolescents in Southwest Mexico City: a pilot study.

    Science.gov (United States)

    Calderón-Garcidueñas, L; Mora-Tiscareño, A; Chung, C J; Valencia, G; Fordham, L A; García, R; Osnaya, N; Romero, L; Acuña, H; Villarreal-Calderón, A; Devlin, R B; Koren, H S

    2000-06-01

    Air pollution produces adverse health effects. The consequences of lifelong daily exposures to atmospheric pollutants upon the respiratory apparatus of healthy children are of considerable clinical importance. We investigated the association between exposure to a highly polluted urban environment with a complex mixture of air pollutants-ozone and particulate matter the predominant ones-and chest x-ray abnormalities in 59 healthy Mexican children who are lifelong residents of Southwest Metropolitan Mexico City (SWMMC), with a negative history of tobacco exposure and respiratory illnesses. Their clinical results and x-ray findings were compared to those of 19 Mexican control children, residents of a low-pollution area, with a similar negative history of tobacco exposure and respiratory illnesses. Ozone concentrations in SWMMC exceeded the U.S. Environmental Protection Agency (U.S. EPA) National Ambient Air Quality Standard (NAAQS) for O(3): 0.08 ppm as 1-h maximal concentration, not to be exceeded more than 4 times a year, on 71% of days in 1986 and 95% in 1997, with values as high as 0.48 ppm. Ozone maximal peaks are usually recorded between 2 and 5 pm coinciding with children's outdoor physical activities. Children in the control group reported no upper or lower respiratory symptomatology. Every SWMMC child complained of upper and/or lower respiratory symptoms, including epistaxis, nasal dryness and crusting, cough, shortness of breath, and chest discomfort. Children aged 7-13 yr had the most symptomatology, while 5- to 6-year olds and adolescents with the lowest number of statistically significant outdoor exposure hours had less respiratory symptoms. Bilateral symmetric mild lung hyperinflation was significantly associated with exposure to the SWMMC atmosphere (p = .0004). Chronic and sustained inhalation of a complex mixture of air pollutants, including ozone and particulate matter (PM), is associated with lung hyperinflation, suggestive of small airway disease

  15. Adverse Reproductive Health Outcomes and Exposure to Gaseous and Particulate-Matter Air Pollution in Pregnant Women.

    Science.gov (United States)

    Wu, Jun; Laurent, Olivier; Li, Lianfa; Hu, Jianlin; Kleeman, Michael

    2016-07-01

    There is growing epidemiologic evidence of associations between maternal exposure to ambient air pollution and adverse birth outcomes, such as preterm birth (PTB). Recently, a few studies have also reported that exposure to ambient air pollution may also increase the risk of some common pregnancy complications, such as preeclampsia and gestational diabetes mellitus (GDM). Research findings, however, have been mixed. These inconsistent results could reflect genuine differences in the study populations, the study locations, the specific pollutants considered, the designs of the study, its methods of analysis, or random variation. Dr. Jun Wu of the University of California– Irvine, a recipient of HEI’s Walter A. Rosenblith New Investigator Award, and colleagues have examined the association between air pollution and adverse birth and pregnancy outcomes in California women. In addition, they examined the effect modification by socioeconomic status (SES) and other factors. A retrospective nested case–control study was conducted using birth certificate data from about 4.4 million birth records in California from 2001 to 2008. Wu and colleagues analyzed data on low birth weight (LBW) at term (infants born between 37 and 43 weeks of gestation and weighing less than 2500 g), PTB (infants born before 37 weeks of gestation), and preeclampsia (including eclampsia) of the mother during the pregnancy. In addition, they obtained data on GDM for the years 2006– 2008. In the analyses, all outcomes were included as binary variables. Maternal residential addresses at the time of delivery were geocoded, and a large suite of air pollution exposure metrics was considered, such as (1) regulatory monitoring data on concentrations of criteria pollutants NO2, PM2.5 (particulate matter ≤ 2.5 μm in aerodynamic diameter), and ozone (O3) estimated by empirical Bayesian kriging; (2) concentrations of primary and secondary PM2.5 and PM0.1 components and sources estimated by the

  16. Aircraft noise, air pollution, and mortality from myocardial infarction.

    Science.gov (United States)

    Huss, Anke; Spoerri, Adrian; Egger, Matthias; Röösli, Martin

    2010-11-01

    Myocardial infarction has been associated with both transportation noise and air pollution. We examined residential exposure to aircraft noise and mortality from myocardial infarction, taking air pollution into account. We analyzed the Swiss National Cohort, which includes geocoded information on residence. Exposure to aircraft noise and air pollution was determined based on geospatial noise and air-pollution (PM10) models and distance to major roads. We used Cox proportional hazard models, with age as the timescale. We compared the risk of death across categories of A-weighted sound pressure levels (dB(A)) and by duration of living in exposed corridors, adjusting for PM10 levels, distance to major roads, sex, education, and socioeconomic position of the municipality. We analyzed 4.6 million persons older than 30 years who were followed from near the end of 2000 through December 2005, including 15,532 deaths from myocardial infarction (ICD-10 codes I 21, I 22). Mortality increased with increasing level and duration of aircraft noise. The adjusted hazard ratio comparing ≥60 dB(A) with noise. Aircraft noise was associated with mortality from myocardial infarction, with a dose-response relationship for level and duration of exposure. The association does not appear to be explained by exposure to particulate matter air pollution, education, or socioeconomic status of the municipality.

  17. Using machine learning to identify air pollution exposure profiles associated with early cognitive skills among U.S. children.

    Science.gov (United States)

    Stingone, Jeanette A; Pandey, Om P; Claudio, Luz; Pandey, Gaurav

    2017-11-01

    Data-driven machine learning methods present an opportunity to simultaneously assess the impact of multiple air pollutants on health outcomes. The goal of this study was to apply a two-stage, data-driven approach to identify associations between air pollutant exposure profiles and children's cognitive skills. Data from 6900 children enrolled in the Early Childhood Longitudinal Study, Birth Cohort, a national study of children born in 2001 and followed through kindergarten, were linked to estimated concentrations of 104 ambient air toxics in the 2002 National Air Toxics Assessment using ZIP code of residence at age 9 months. In the first-stage, 100 regression trees were learned to identify ambient air pollutant exposure profiles most closely associated with scores on a standardized mathematics test administered to children in kindergarten. In the second-stage, the exposure profiles frequently predicting lower math scores were included within linear regression models and adjusted for confounders in order to estimate the magnitude of their effect on math scores. This approach was applied to the full population, and then to the populations living in urban and highly-populated urban areas. Our first-stage results in the full population suggested children with low trichloroethylene exposure had significantly lower math scores. This association was not observed for children living in urban communities, suggesting that confounding related to urbanicity needs to be considered within the first-stage. When restricting our analysis to populations living in urban and highly-populated urban areas, high isophorone levels were found to predict lower math scores. Within adjusted regression models of children in highly-populated urban areas, the estimated effect of higher isophorone exposure on math scores was -1.19 points (95% CI -1.94, -0.44). Similar results were observed for the overall population of urban children. This data-driven, two-stage approach can be applied to other

  18. Air Pollution and Otitis Media in Children: A Systematic Review of Literature

    Directory of Open Access Journals (Sweden)

    Gayan Bowatte

    2018-02-01

    Full Text Available Young children are particularly vulnerable to otitis media (OM which globally affects over 80% of children below the age of 3 years. Although there is convincing evidence for an association between environmental tobacco smoke exposure and OM in children, the relationship with ambient air pollution is not clear. We aimed to systematically review the literature on the relationship between ambient air pollution exposure and OM in children. A systematic search was performed in PubMed and EMBASE databases. Of 934 references identified, 24 articles were included. There is an increasing body of evidence supporting an association between higher ambient air pollution exposure and a higher risk of OM in children. While NO2 showed the most consistent association with OM, other specific pollutants showed inconsistent associations. Studies were mainly conducted in high/middle income countries with limited evidence from low-income countries. Although there was a general consensus that higher air pollution exposure is associated with a greater prevalence of OM, the evidence for associations with specific pollutants is inconsistent. More well-designed studies on associations between specific air pollutants as risk factors for OM are warranted, especially in low income countries with high air pollution levels.

  19. Passive control potentials of trees and on-street parked cars in reduction of air pollution exposure in urban street canyons

    International Nuclear Information System (INIS)

    Abhijith, K.V.; Gokhale, Sharad

    2015-01-01

    This study investigates the passive-control-potentials of trees and on-street parked cars on pedestrian exposure to air pollutants in a street canyon using three-dimensional CFD. Since, according to some studies trees deteriorate air quality and cars parked roadside improve it, the combine as well as separate effects of trees and on-street parked cars have been examined. For this, different tree canopy layouts and parking configurations have been developed and pedestrian exposure for each has been analysed. The results showed, for example, tree crown with high porosity and low-stand density in combination with parallel or perpendicular car parking reduced the pedestrian exposure considerably. - Highlights: • Trees and on-street parked cars can manipulate pollutant levels in street canyons. • Low stand density trees with 0° or 90° car parking reduce pedestrian exposure. • Trees with medium crown, high porosity, low stand density reduce pollutant levels. - This study investigated the combination of trees and on-street parked cars to manipulate pollutant levels in urban street canyons to reduce pedestrian exposure

  20. Effects of long-term exposure to traffic-related air pollution on mortality and lung cancer

    NARCIS (Netherlands)

    Beelen, R.M.J.

    2008-01-01

    We assessed the association between long-term exposure to air pollution and cause-specific mortality and lung cancer incidence using data from an ongoing cohort study: the Netherlands Cohort Study on Diet and Cancer (NLCS). The NLCS study was initiated in September 1986 with the enrollment of

  1. Urban air pollution in Sub-Saharan Africa: Time for action.

    Science.gov (United States)

    Amegah, A Kofi; Agyei-Mensah, Samuel

    2017-01-01

    Air quality in cities of Sub-Saharan African (SSA) countries has deteriorated with the situation driven by rapid population growth and its attendant increased vehicle ownership, increased use of solid fuels for cooking and heating, and poor waste management practices. Industrial expansion in these cities is also a major contributor to the worsening air pollution. Exposure to ambient air pollution is a major threat to human health in SSA with 176,000 deaths and 626,000 DALYs in the region attributable to ambient air pollution exposure. These estimates are however likely to be much higher than reported due to the limited data emanating from the region. Recently, the adoption of the World Health Assembly resolution on air pollution and health, and Sustainable Development Goals are a welcome boost for urban air pollution control efforts in SSA. In this article, we have outlined within the broad framework of these international policy instruments, measures for addressing urban air pollution and its associated health impacts in SSA sustainably. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Challenges and future direction of molecular research in air pollution-related lung cancers.

    Science.gov (United States)

    Shahadin, Maizatul Syafinaz; Ab Mutalib, Nurul Syakima; Latif, Mohd Talib; Greene, Catherine M; Hassan, Tidi

    2018-04-01

    Hazardous air pollutants or chemical release into the environment by a variety of natural and/or anthropogenic activities may give adverse effects to human health. Air pollutants such as sulphur dioxide (SO2), nitrogen oxides (NOx), carbon monoxide (CO), heavy metals and particulate matter (PM) affect number of different human organs, especially the respiratory system. The International Agency for Research on Cancer (IARC) reported that ambient air pollution is a cause of lung cancer. Recently, the agency has classified outdoor air pollution as well as PM air pollution as Group 1 carcinogens. In addition, several epidemiological studies have shown a positive association between air pollutants to lung cancer risks and mortality. However, there are only a few studies examining the molecular effects of air pollution exposure specifically in lung cancer due to multiple challenges to mimic air pollution exposure in basic experimentation. Another major issue is the lack of adequate adjustments for exposure misclassification as air pollution may differ temporo-spatially and socioeconomically. Thus, the purpose of this paper is to review the current molecular understanding of air pollution-related lung cancer and potential future direction in this challenging yet important research field. Copyright © 2018 Elsevier B.V. All rights reserved.

  3. Long-term exposure to ambient air pollution and respiratory disease mortality in Shenyang, China: a 12-year population-based retrospective cohort study.

    Science.gov (United States)

    Dong, Guang-Hui; Zhang, Pengfei; Sun, Baijun; Zhang, Liwen; Chen, Xi; Ma, Nannan; Yu, Fei; Guo, Huimin; Huang, Hui; Lee, Yungling Leo; Tang, Naijun; Chen, Jie

    2012-01-01

    In China, both the levels and patterns of outdoor air pollution have altered dramatically with the rapid economic development and urbanization over the past two decades. However, few studies have investigated the association of outdoor air pollution with respiratory mortality, especially in the high pollution range. We conducted a retrospective cohort study of 9,941 residents aged ≥35 years old in Shenyang, China, to examine the association between outdoor air pollutants [particulate matter mortality using 12 years of data. We applied extended Cox proportional hazards modeling with time-dependent covariates to respiratory mortality. Analyses were also stratified by age, sex, educational level, smoking status, personal income, occupational exposure and body mass index (BMI) to examine the association of air pollution with mortality. We found significant associations between PM(10) and NO(2) levels and respiratory disease mortality. Our analysis found a relative risk of 1.67 [95% confidence interval (CI) 1.60-1.74] and 2.97 (95% CI 2.69-3.27) for respiratory mortality per 10 µg/m(3) increase in PM(10) and NO(2), respectively. The effects of air pollution were more apparent in women than in men. Age, sex, educational level, smoking status, personal income, occupational exposure, BMI and exercise frequency influenced the relationship between outdoor PM(10) and NO(2) and mortality. For SO(2), only smoking, little regular exercise and BMI above 18.5 influenced the relationship with mortality. These data contribute to the scientific literature on the long-term effects of air pollution for the high-exposure settings typical in developing countries. Copyright © 2011 S. Karger AG, Basel.

  4. Pediatric respiratory and systemic effects of chronic air pollution exposure: nose, lung, heart, and brain pathology.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Franco-Lira, Maricela; Torres-Jardón, Ricardo; Henriquez-Roldán, Carlos; Barragán-Mejía, Gerardo; Valencia-Salazar, Gildardo; González-Maciel, Angelica; Reynoso-Robles, Rafael; Villarreal-Calderón, Rafael; Reed, William

    2007-01-01

    Exposures to particulate matter and gaseous air pollutants have been associated with respiratory tract inflammation, disruption of the nasal respiratory and olfactory barriers, systemic inflammation, production of mediators of inflammation capable of reaching the brain and systemic circulation of particulate matter. Mexico City (MC) residents are exposed to significant amounts of ozone, particulate matter and associated lipopolysaccharides. MC dogs exhibit brain inflammation and an acceleration of Alzheimer's-like pathology, suggesting that the brain is adversely affected by air pollutants. MC children, adolescents and adults have a significant upregulation of cyclooxygenase-2 (COX2) and interleukin-1beta (IL-1beta) in olfactory bulb and frontal cortex, as well as neuronal and astrocytic accumulation of the 42 amino acid form of beta -amyloid peptide (Abeta 42), including diffuse amyloid plaques in frontal cortex. The pathogenesis of Alzheimer's disease (AD) is characterized by brain inflammation and the accumulation of Abeta 42, which precede the appearance of neuritic plaques and neurofibrillary tangles, the pathological hallmarks of AD. Our findings of nasal barrier disruption, systemic inflammation, and the upregulation of COX2 and IL-1beta expression and Abeta 42 accumulation in brain suggests that sustained exposures to significant concentrations of air pollutants such as particulate matter could be a risk factor for AD and other neurodegenerative diseases.

  5. Impact of Residential Mobility on Exposure Assessment in Longitudinal Air Pollution Studies: A Sensitivity Analysis within the ESCAPE Project

    Directory of Open Access Journals (Sweden)

    Anna Oudin

    2012-01-01

    Full Text Available Exposure misclassification in longitudinal studies of air pollution exposure and health effects can occur due to residential mobility in a study population over followup. The aim of this study was to investigate to what extent residential mobility during followup can be expected to cause exposure misclassification in such studies, where exposure at the baseline address is used as the main exposure assessment. The addresses for each participant in a large population-based study (N>25,000 were obtained via national registers. We used a Land Use Regression model to estimate the NOx concentration for each participant's all addresses during the entire follow-up period (in average 14.6 years and calculated an average concentration during followup. The Land Use Regression model explained 83% of the variation in measured levels. In summary, the NOx concentration at the inclusion address was similar to the average concentration over followup with a correlation coefficient of 0.80, indicating that air pollution concentration at study inclusion address could be used as indicator of average air pollution concentrations over followup. The differences between an individual's inclusion and average follow-up mean concentration were small and seemed to be nondifferential with respect to a large range of factors and disease statuses, implying that bias due to residential mobility was small.

  6. Respiratory risks from household air pollution in low and middle income countries.

    Science.gov (United States)

    Gordon, Stephen B; Bruce, Nigel G; Grigg, Jonathan; Hibberd, Patricia L; Kurmi, Om P; Lam, Kin-bong Hubert; Mortimer, Kevin; Asante, Kwaku Poku; Balakrishnan, Kalpana; Balmes, John; Bar-Zeev, Naor; Bates, Michael N; Breysse, Patrick N; Buist, Sonia; Chen, Zhengming; Havens, Deborah; Jack, Darby; Jindal, Surinder; Kan, Haidong; Mehta, Sumi; Moschovis, Peter; Naeher, Luke; Patel, Archana; Perez-Padilla, Rogelio; Pope, Daniel; Rylance, Jamie; Semple, Sean; Martin, William J

    2014-10-01

    A third of the world's population uses solid fuel derived from plant material (biomass) or coal for cooking, heating, or lighting. These fuels are smoky, often used in an open fire or simple stove with incomplete combustion, and result in a large amount of household air pollution when smoke is poorly vented. Air pollution is the biggest environmental cause of death worldwide, with household air pollution accounting for about 3·5-4 million deaths every year. Women and children living in severe poverty have the greatest exposures to household air pollution. In this Commission, we review evidence for the association between household air pollution and respiratory infections, respiratory tract cancers, and chronic lung diseases. Respiratory infections (comprising both upper and lower respiratory tract infections with viruses, bacteria, and mycobacteria) have all been associated with exposure to household air pollution. Respiratory tract cancers, including both nasopharyngeal cancer and lung cancer, are strongly associated with pollution from coal burning and further data are needed about other solid fuels. Chronic lung diseases, including chronic obstructive pulmonary disease and bronchiectasis in women, are associated with solid fuel use for cooking, and the damaging effects of exposure to household air pollution in early life on lung development are yet to be fully described. We also review appropriate ways to measure exposure to household air pollution, as well as study design issues and potential effective interventions to prevent these disease burdens. Measurement of household air pollution needs individual, rather than fixed in place, monitoring because exposure varies by age, gender, location, and household role. Women and children are particularly susceptible to the toxic effects of pollution and are exposed to the highest concentrations. Interventions should target these high-risk groups and be of sufficient quality to make the air clean. To make clean energy

  7. Spatial variations in estimated chronic exposure to traffic-related air pollution in working populations: A simulation

    Directory of Open Access Journals (Sweden)

    Cloutier-Fisher Denise

    2008-07-01

    Full Text Available Abstract Background Chronic exposure to traffic-related air pollution is associated with a variety of health impacts in adults and recent studies show that exposure varies spatially, with some residents in a community more exposed than others. A spatial exposure simulation model (SESM which incorporates six microenvironments (home indoor, work indoor, other indoor, outdoor, in-vehicle to work and in-vehicle other is described and used to explore spatial variability in estimates of exposure to traffic-related nitrogen dioxide (not including indoor sources for working people. The study models spatial variability in estimated exposure aggregated at the census tracts level for 382 census tracts in the Greater Vancouver Regional District of British Columbia, Canada. Summary statistics relating to the distributions of the estimated exposures are compared visually through mapping. Observed variations are explored through analyses of model inputs. Results Two sources of spatial variability in exposure to traffic-related nitrogen dioxide were identified. Median estimates of total exposure ranged from 8 μg/m3 to 35 μg/m3 of annual average hourly NO2 for workers in different census tracts in the study area. Exposure estimates are highest where ambient pollution levels are highest. This reflects the regional gradient of pollution in the study area and the relatively high percentage of time spent at home locations. However, for workers within the same census tract, variations were observed in the partial exposure estimates associated with time spent outside the residential census tract. Simulation modeling shows that some workers may have exposures 1.3 times higher than other workers residing in the same census tract because of time spent away from the residential census tract, and that time spent in work census tracts contributes most to the differences in exposure. Exposure estimates associated with the activity of commuting by vehicle to work were

  8. Air pollution in moderately polluted urban areas: How does the definition of “neighborhood” impact exposure assessment?

    International Nuclear Information System (INIS)

    Tenailleau, Quentin M.; Mauny, Frédéric; Joly, Daniel; François, Stéphane; Bernard, Nadine

    2015-01-01

    Environmental health studies commonly quantify subjects' pollution exposure in their neighborhood. How this neighborhood is defined can vary, however, leading to different approaches to quantification whose impacts on exposure levels remain unclear. We explore the relationship between neighborhood definition and exposure assessment. NO 2 , benzene, PM 10 and PM 2.5 exposure estimates were computed in the vicinity of 10,825 buildings using twelve exposure assessment techniques reflecting different definitions of “neighborhood”. At the city scale, its definition does not significantly influence exposure estimates. It does impact levels at the building scale, however: at least a quarter of the buildings' exposure estimates for a 400 m buffer differ from the estimated 50 m buffer value (±1.0 μg/m 3 for NO 2 , PM 10 and PM 2.5 ; and ±0.05 μg/m 3 for benzene). This variation is significantly related to the definition of neighborhood. It is vitally important for investigators to understand the impact of chosen assessment techniques on exposure estimates. - Highlights: • Residential building air pollution was calculated using 12 assessment techniques. • These techniques refer to common epidemiological definitions of neighborhood. • At the city scale, neighborhood definition does not impact exposure estimates. • At the building scale, neighborhood definition does impact exposure estimates. • The impact of neighborhood definition varies with physical/deprivation variables. - Ignoring the impact of the neighborhood's definition on exposure estimates could lead to exposure quantification errors that impact resulting health studies, health risk evaluation, and consequently all the decision-making process.

  9. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  10. Study protocol: the effects of air pollution exposure and chronic respiratory disease on pneumonia risk in urban Malawian adults--the Acute Infection of the Respiratory Tract Study (The AIR Study).

    Science.gov (United States)

    Jary, Hannah; Mallewa, Jane; Nyirenda, Mulinda; Faragher, Brian; Heyderman, Robert; Peterson, Ingrid; Gordon, Stephen; Mortimer, Kevin

    2015-08-20

    Pneumonia is the 2nd leading cause of years of life lost worldwide and is a common cause of adult admissions to hospital in sub-Saharan Africa. Risk factors for adult pneumonia are well characterised in developed countries, but are less well described in sub-Saharan Africa where HIV is a major contributing factor. Exposure to indoor and outdoor air pollution is high, and tobacco smoking prevalence is increasing in sub-Saharan Africa, yet the contribution of these factors to the burden of chronic respiratory diseases in sub-Saharan Africa remains poorly understood. Furthermore, the extent to which the presence of chronic respiratory diseases and exposure to air pollution contribute to the burden of pneumonia is not known. The Acute Infection of the Respiratory Tract Study (The AIR Study) is a case-control study to identify preventable risk factors for adult pneumonia in the city of Blantyre, Malawi. Cases will be adults admitted with pneumonia, recruited from Queen Elizabeth Central Hospital, the largest teaching hospital in Malawi. Controls will be adults without pneumonia, recruited from the community. The AIR Study will recruit subjects and analyse data within strata defined by positive and negative HIV infection status. All participants will undergo thorough assessment for a range of potential preventable risk factors, with an emphasis on exposure to air pollution and the presence of chronic respiratory diseases. This will include collection of questionnaire data, clinical samples (blood, urine, sputum and breath samples), lung function data and air pollution monitoring in their home. Multivariate analysis will be used to identify the important risk factors contributing to the pneumonia burden in this setting. Identification of preventable risk factors will justify research into the effectiveness of targeted interventions to address this burden in the future. The AIR Study is the first study of radiologically confirmed pneumonia in which air pollution exposure

  11. Neurotoxicity of traffic-related air pollution.

    Science.gov (United States)

    Costa, Lucio G; Cole, Toby B; Coburn, Jacki; Chang, Yu-Chi; Dao, Khoi; Roqué, Pamela J

    2017-03-01

    The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer's disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300μg/m 3 for 6h) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2. Copyright © 2015 Elsevier B.V. All rights reserved.

  12. Population-Level Exposure to Particulate Air Pollution during Active Travel: Planning for Low-Exposure, Health-Promoting Cities.

    Science.gov (United States)

    Hankey, Steve; Lindsey, Greg; Marshall, Julian D

    2017-04-01

    Providing infrastructure and land uses to encourage active travel (i.e., bicycling and walking) are promising strategies for designing health-promoting cities. Population-level exposure to air pollution during active travel is understudied. Our goals were a ) to investigate population-level patterns in exposure during active travel, based on spatial estimates of bicycle traffic, pedestrian traffic, and particulate concentrations; and b ) to assess how those exposure patterns are associated with the built environment. We employed facility-demand models (active travel) and land use regression models (particulate concentrations) to estimate block-level ( n = 13,604) exposure during rush-hour (1600-1800 hours) in Minneapolis, Minnesota. We used the model-derived estimates to identify land use patterns and characteristics of the street network that are health promoting. We also assessed how exposure is correlated with indicators of health disparities (e.g., household income, proportion of nonwhite residents). Our work uses population-level rates of active travel (i.e., traffic flows) rather than the probability of walking or biking (i.e., "walkability" or "bikeability") to assess exposure. Active travel often occurs on high-traffic streets or near activity centers where particulate concentrations are highest (i.e., 20-42% of active travel occurs on blocks with high population-level exposure). Only 2-3% of blocks (3-8% of total active travel) are "sweet spots" (i.e., high active travel, low particulate concentrations); sweet spots are located a ) near but slightly removed from the city-center or b ) on off-street trails. We identified 1,721 blocks (~ 20% of local roads) where shifting active travel from high-traffic roads to adjacent low-traffic roads would reduce exposure by ~ 15%. Active travel is correlated with population density, land use mix, open space, and retail area; particulate concentrations were mostly unchanged with land use. Public health officials and

  13. [Air pollution, cardiovascular risk and hypertension].

    Science.gov (United States)

    Soldevila Bacardit, N; Vinyoles Bargalló, E; Agudo Ugena, J; Camps Vila, L

    2018-04-24

    Air pollution is a worrying factor and has an impact on public health. Multiple studies relate exposure to air pollutants with an increase in cardiovascular events, cardiovascular mortality and mortality for all causes. A relationship has also been demonstrated between increased pollution and high blood pressure, as well as a higher prevalence of hypertension. Pollutants that play a more relevant role in this association are particulate matters, nitrogen dioxide and sulphur dioxide. The objective of this review is to understand the mechanisms involved in this increase and to find the most recent publications that relate pollution, cardiovascular risk and hypertension. Copyright © 2018 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Public Health and Air Pollution in Asia (PAPA): a multicity study of short-term effects of air pollution on mortality.

    Science.gov (United States)

    Wong, Chit-Ming; Vichit-Vadakan, Nuntavarn; Kan, Haidong; Qian, Zhengmin

    2008-09-01

    Although the deleterious effects of air pollution from fossil fuel combustion have been demonstrated in many Western nations, fewer studies have been conducted in Asia. The Public Health and Air Pollution in Asia (PAPA) project assessed the effects of short-term exposure to air pollution on daily mortality in Bangkok, Thailand, and in three cities in China: Hong Kong, Shanghai, and Wuhan. Poisson regression models incorporating natural spline smoothing functions were used to adjust for seasonality and other time-varying covariates that might confound the association between air pollution and mortality. Effect estimates were determined for each city and then for the cities combined using a random effects method. In individual cities, associations were detected between most of the pollutants [nitrogen dioxide, sulfur dioxide, particulate matter air pollution than those in Western industrial nations because they spend more time outdoors and less time in air conditioning. Although the social and environmental conditions may be quite different, it is reasonable to apply estimates derived from previous health effect of air pollution studies in the West to Asia.

  15. Impacts of Transit-Oriented Compact-Growth on Air Pollutant Concentrations and Exposures in the Tampa Region

    Science.gov (United States)

    2018-03-31

    Amy L. Stuart (ORCID # 0000-0003-1229-493) The objective of this study was to model the potential impacts of alternative transit-oriented urban design scenarios on community exposures to roadway air pollution. We used a modeling framework developed p...

  16. Air pollution, environmental tobacco smoke, radon, and lung cancer

    International Nuclear Information System (INIS)

    Crawford, W.A.

    1988-01-01

    The health of populations in industrialized societies has been affected for many years by ambient air pollutants presenting a threat of chronic bronchitis and lung cancer. In the 1980s indoor pollutants received much needed investigation to assess their hazards to health. Exposure to environmental tobacco smoke and radon is now the subject of much research and concern. This review attempts to put some perspective on lung cancer that is attributable to lifetime exposure to airborne pollutants. The view is expressed that air pollution control authorities have played and are playing a major role in health improvement

  17. Measurement error in mobile source air pollution exposure estimates due to residential mobility during pregnancy.

    Science.gov (United States)

    Pennington, Audrey Flak; Strickland, Matthew J; Klein, Mitchel; Zhai, Xinxin; Russell, Armistead G; Hansen, Craig; Darrow, Lyndsey A

    2017-09-01

    Prenatal air pollution exposure is frequently estimated using maternal residential location at the time of delivery as a proxy for residence during pregnancy. We describe residential mobility during pregnancy among 19,951 children from the Kaiser Air Pollution and Pediatric Asthma Study, quantify measurement error in spatially resolved estimates of prenatal exposure to mobile source fine particulate matter (PM 2.5 ) due to ignoring this mobility, and simulate the impact of this error on estimates of epidemiologic associations. Two exposure estimates were compared, one calculated using complete residential histories during pregnancy (weighted average based on time spent at each address) and the second calculated using only residence at birth. Estimates were computed using annual averages of primary PM 2.5 from traffic emissions modeled using a Research LINE-source dispersion model for near-surface releases (RLINE) at 250 m resolution. In this cohort, 18.6% of children were born to mothers who moved at least once during pregnancy. Mobile source PM 2.5 exposure estimates calculated using complete residential histories during pregnancy and only residence at birth were highly correlated (r S >0.9). Simulations indicated that ignoring residential mobility resulted in modest bias of epidemiologic associations toward the null, but varied by maternal characteristics and prenatal exposure windows of interest (ranging from -2% to -10% bias).

  18. Maternal air pollution exposure induces fetal neuroinflammation and predisposes offspring to obesity in aduthood in a sex-specific manner

    Science.gov (United States)

    Emerging evidence suggests environmental chemical exposures during critical windows of development may contribute to the escalating prevalence of obesity. We tested the hypothesis that prenatal air pollution exposure would predispose the offspring to weight gain in adulthood. Pre...

  19. Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-AIR study)

    NARCIS (Netherlands)

    Beelen, R.; Hoek, G.; Brandt, P.A. van den; Goldbohm, R.A.; Fischer, P.; Schouten, L.J.; Jerrett, M.; Hughes, E.; Armstrong, B.; Brunekreef, B.

    2008-01-01

    Background: Several studies have found an effect on mortality of between-city contrasts in long-term exposure to air pollution. The effect of within-city contrasts is still poorly understood. Objectives: We studied the association between long-term exposure to traffic-related air pollution and

  20. Respiratory effects of particulate matter air pollution: studies on diesel exhaust, road tunnel, subway and wood smoke exposure in human subjects

    Energy Technology Data Exchange (ETDEWEB)

    Sehlstedt, Maria

    2011-07-01

    Background: Ambient air pollution is associated with adverse health effects, but the sources and components, which cause these effects is still incompletely understood. The aim of this thesis was to investigate the pulmonary effects of a variety of common air pollutants, including diesel exhaust, biomass smoke, and road tunnel and subway station environments. Healthy non-smoking volunteers were exposed in random order to the specific air pollutants and air/control, during intermittent exercise, followed by bronchoscopy. Methods and results: In study I, exposures were performed with diesel exhaust (DE) generated at transient engine load and air for 1 hour with bronchoscopy at 6 hours post-exposure. Immunohistochemical analyses of bronchial mucosal biopsies showed that DE exposure significantly increased the endothelial adhesion molecule expression of p-selectin and VCAM-1, together with increased bronchoalveolar lavage (BAL) eosinophils. In study II, the subjects were exposed for 1 hour to DE generated during idling with bronchoscopy at 6 hours. The bronchial mucosal biopsies showed significant increases in neutrophils, mast cells and lymphocytes together with bronchial wash neutrophils. Additionally, DE exposure significantly increased the nuclear translocation of the aryl hydrocarbon receptor (AhR) and phosphorylated c-jun in the bronchial epithelium. In contrast, the phase II enzyme NAD(P)H-quinone oxidoreductase 1 (NQO1) decreased after DE. In study III, the 2-hour exposures took place in a road tunnel with bronchoscopy 14 hours later. The road tunnel exposure significantly increased the total numbers of lymphocytes and alveolar macrophages in BAL, whereas NK cell and CD56+/T cell numbers significantly decreased. Additionally, the nuclear expression of phosphorylated c-jun in the bronchial epithelium was significantly increased after road tunnel exposure. In study IV, the subjects were exposed to metal-rich particulate aerosol for 2 hours at a subway station

  1. Exposure to Traffic-related Air Pollution During Pregnancy and Term Low Birth Weight: Estimation of Causal Associations in a Semiparametric Model

    Science.gov (United States)

    Padula, Amy M.; Mortimer, Kathleen; Hubbard, Alan; Lurmann, Frederick; Jerrett, Michael; Tager, Ira B.

    2012-01-01

    Traffic-related air pollution is recognized as an important contributor to health problems. Epidemiologic analyses suggest that prenatal exposure to traffic-related air pollutants may be associated with adverse birth outcomes; however, there is insufficient evidence to conclude that the relation is causal. The Study of Air Pollution, Genetics and Early Life Events comprises all births to women living in 4 counties in California's San Joaquin Valley during the years 2000–2006. The probability of low birth weight among full-term infants in the population was estimated using machine learning and targeted maximum likelihood estimation for each quartile of traffic exposure during pregnancy. If everyone lived near high-volume freeways (approximated as the fourth quartile of traffic density), the estimated probability of term low birth weight would be 2.27% (95% confidence interval: 2.16, 2.38) as compared with 2.02% (95% confidence interval: 1.90, 2.12) if everyone lived near smaller local roads (first quartile of traffic density). Assessment of potentially causal associations, in the absence of arbitrary model assumptions applied to the data, should result in relatively unbiased estimates. The current results support findings from previous studies that prenatal exposure to traffic-related air pollution may adversely affect birth weight among full-term infants. PMID:23045474

  2. Aircraft noise, air pollution, and mortality from myocardial infarction.

    NARCIS (Netherlands)

    Huss, A.; Spoerri, A.; Egger, M.; Roosli, M.

    2010-01-01

    OBJECTIVE: Myocardial infarction has been associated with both transportation noise and air pollution. We examined residential exposure to aircraft noise and mortality from myocardial infarction, taking air pollution into account. METHODS: We analyzed the Swiss National Cohort, which includes

  3. Exposure to severe urban air pollution influences cognitive outcomes, brain volume and systemic inflammation in clinically healthy children.

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian; Engle, Randall; Mora-Tiscareño, Antonieta; Styner, Martin; Gómez-Garza, Gilberto; Zhu, Hongtu; Jewells, Valerie; Torres-Jardón, Ricardo; Romero, Lina; Monroy-Acosta, Maria E; Bryant, Christopher; González-González, Luis Oscar; Medina-Cortina, Humberto; D'Angiulli, Amedeo

    2011-12-01

    Exposure to severe air pollution produces neuroinflammation and structural brain alterations in children. We tested whether patterns of brain growth, cognitive deficits and white matter hyperintensities (WMH) are associated with exposures to severe air pollution. Baseline and 1 year follow-up measurements of global and regional brain MRI volumes, cognitive abilities (Wechsler Intelligence Scale for Children-Revised, WISC-R), and serum inflammatory mediators were collected in 20 Mexico City (MC) children (10 with white matter hyperintensities, WMH(+), and 10 without, WMH(-)) and 10 matched controls (CTL) from a low polluted city. There were significant differences in white matter volumes between CTL and MC children - both WMH(+) and WMH(-) - in right parietal and bilateral temporal areas. Both WMH(-) and WMH(+) MC children showed progressive deficits, compared to CTL children, on the WISC-R Vocabulary and Digit Span subtests. The cognitive deficits in highly exposed children match the localization of the volumetric differences detected over the 1 year follow-up, since the deficits observed are consistent with impairment of parietal and temporal lobe functions. Regardless of the presence of prefrontal WMH, Mexico City children performed more poorly across a variety of cognitive tests, compared to CTL children, thus WMH(+) is likely only partially identifying underlying white matter pathology. Together these findings reveal that exposure to air pollution may perturb the trajectory of cerebral development and result in cognitive deficits during childhood. Copyright © 2011 Elsevier Inc. All rights reserved.

  4. The passive control of air pollution exposure in Dublin, Ireland: A combined measurement and modelling case study

    International Nuclear Information System (INIS)

    Gallagher, J.; Gill, L.W.; McNabola, A.

    2013-01-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. - Highlights: • Parked cars and LBWs were assessed as passive controls in an urban street canyon. • The calibrated model combined CFD

  5. The passive control of air pollution exposure in Dublin, Ireland: A combined measurement and modelling case study

    Energy Technology Data Exchange (ETDEWEB)

    Gallagher, J., E-mail: j.gallagher@bangor.ac.uk [School of Energy, Natural Resources and Geography, Bangor University (United Kingdom); Gill, L.W.; McNabola, A. [Dept. of Civil, Structural and Environmental Engineering, Trinity College Dublin (Ireland)

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. - Highlights: • Parked cars and LBWs were assessed as passive controls in an urban street canyon. • The calibrated model combined CFD

  6. Association of air pollution with increased incidence of ventricular tachyarrhythmias recorded by implantable cardioverter defibrillators: Vulnerable patients to air pollution.

    Science.gov (United States)

    Kim, In-Soo; Sohn, Jungwoo; Lee, Seung-Jun; Park, Jin-Kyu; Uhm, Jae-Sun; Pak, Hui-Nam; Lee, Moon-Hyoung; Kim, Changsoo; Joung, Boyoung

    2017-08-01

    This study investigated the acute effects of exposure to air pollution on ventricular tachyarrhythmias (VTAs) in an East Asian population. The association between air pollution and VTA has not yet been studied in an East Asian country affected by the Asian dust phenomenon, which worsens air quality. The study cohort consisted of 160patients with implantable cardioverter defibrillator (ICD) devices in the Seoul metropolitan area who were followed for 5.5±3.8years. We used ICD records of VTAs and matched these with hourly measurements of air pollutant concentrations and meteorological data. Fine particle mass and gaseous air pollution plus temperature and relative humidity were measured hourly during the study period. During the study period, 1064 VTA events including 204 instances of ventricular fibrillation (VF) were observed. We found a statistically significant association between overall VTA events and SO 2 (lag 24h; OR 1.49, 95%CI 1.16-1.92, p=0.002), PM 10 (lag 2h; OR 2.56, 95%CI 2.03-3.23, pair pollution and VTA were observed in a metropolitan area of an East Asian country. Exposures to SO 2 , PM 10 , NO 2 , and CO were significantly associated with VTAs in ICD patients with SHD. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Ambient air pollution triggers wheezing symptoms in infants

    DEFF Research Database (Denmark)

    Andersen, Zorana Jovanovic; Loft, S; Ketzel, Matthias

    2008-01-01

    There is limited evidence for the role of air pollution in the development and triggering of wheezing symptoms in young children. A study was undertaken to examine the effect of exposure to air pollution on wheezing symptoms in children under the age of 3 years with genetic susceptibility to asthma....

  8. A review of urban air pollution monitoring and exposure assessment methods

    OpenAIRE

    Xie, Xingzhe; Semanjski, Ivana; Gautama, Sidharta; Tsiligianni, Evaggelia; Deligiannis, Nikos; Rajan, Raj; Pasveer, Frank; Philips, Wilfried

    2017-01-01

    The impact of urban air pollution on the environments and human health has drawn increasing concerns from researchers, policymakers and citizens. To reduce the negative health impact, it is of great importance to measure the air pollution at high spatial resolution in a timely manner. Traditionally, air pollution is measured using dedicated instruments at fixed monitoring stations, which are placed sparsely in urban areas. With the development of low-cost micro-scale sensing technology in the...

  9. Noise Effects on Health in the Context of Air Pollution Exposure.

    Science.gov (United States)

    Stansfeld, Stephen A

    2015-10-14

    For public health policy and planning it is important to understand the relative contribution of environmental noise on health compared to other environmental stressors. Air pollution is the primary environmental stressor in relation to cardiovascular morbidity and mortality. This paper reports a narrative review of studies in which the associations of both environmental noise and air pollution with health have been examined. Studies of hypertension, myocardial infarction, stroke, mortality and cognitive outcomes were included. Results suggest independent effects of environmental noise from road traffic, aircraft and, with fewer studies, railway noise on cardiovascular outcomes after adjustment for air pollution. Comparative burden of disease studies demonstrate that air pollution is the primary environmental cause of disability adjusted life years lost (DALYs). Environmental noise is ranked second in terms of DALYs in Europe and the DALYs attributed to noise were more than those attributed to lead, ozone and dioxins. In conclusion, in planning and health impact assessment environmental noise should be considered an independent contributor to health risk which has a separate and substantial role in ill-health separate to that of air pollution.

  10. Children's Urinary Environmental Carbon Load. A Novel Marker Reflecting Residential Ambient Air Pollution Exposure?

    Science.gov (United States)

    Saenen, Nelly D; Bové, Hannelore; Steuwe, Christian; Roeffaers, Maarten B J; Provost, Eline B; Lefebvre, Wouter; Vanpoucke, Charlotte; Ameloot, Marcel; Nawrot, Tim S

    2017-10-01

    Ambient air pollution, including black carbon, entails a serious public health risk because of its carcinogenic potential and as climate pollutant. To date, an internal exposure marker for black carbon particles that have cleared from the systemic circulation into the urine does not exist. To develop and validate a novel method to measure black carbon particles in a label-free way in urine. We detected urinary carbon load in 289 children (aged 9-12 yr) using white-light generation under femtosecond pulsed laser illumination. Children's residential black carbon concentrations were estimated based on a high-resolution spatial temporal interpolation method. We were able to detect urinary black carbon in all children, with an overall average (SD) of 98.2 × 10 5 (29.8 × 10 5 ) particles/ml. The urinary black carbon load was positively associated with medium-term to chronic (1 mo or more) residential black carbon exposure: +5.33 × 10 5 particles/ml higher carbon load (95% confidence interval, 1.56 × 10 5 to 9.10 × 10 5 particles/ml) for an interquartile range increment in annual residential black carbon exposure. Consistently, children who lived closer to a major road (≤160 m) had higher urinary black carbon load (6.93 × 10 5 particles/ml; 95% confidence interval, 0.77 × 10 5 to 13.1 × 10 5 ). Urinary black carbon mirrors the accumulation of medium-term to chronic exposure to combustion-related air pollution. This specific biomarker reflects internal systemic black carbon particles cleared from the circulation into the urine, allowing investigators to unravel the complexity of particulate-related health effects.

  11. Interaction effects of long-term air pollution exposure and variants in the GSTP1, GSTT1 and GSTCD genes on risk of acute myocardial infarction and hypertension: a case-control study.

    Directory of Open Access Journals (Sweden)

    Anna Levinsson

    Full Text Available INTRODUCTION: Experimental and epidemiological studies have reported associations between air pollution exposure, in particular related to vehicle exhaust, and cardiovascular disease. A potential pathophysiological pathway is pollution-induced pulmonary oxidative stress, with secondary systemic inflammation. Genetic polymorphisms in genes implicated in oxidative stress, such as GSTP1, GSTT1 and GSTCD, may contribute to determining individual susceptibility to air pollution as a promoter of coronary vulnerability. AIMS: We aimed to investigate effects of long-term traffic-related air pollution exposure, as well as variants in GSTP1, GSTT1 and GSTCD, on risk of acute myocardial infarction (AMI and hypertension. In addition, we studied whether air pollution effects were modified by the investigated genetic variants. METHODS: Genotype data at 7 single nucleotide polymorphisms (SNPs in the GSTP1 gene, and one in each of the GSTT1 and GSTCD genes, as well as air pollution exposure estimates, were available for 119 AMI cases and 1310 randomly selected population controls. Population control individuals with systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg or on daily antihypertensive medication were defined as hypertensive (n = 468. Individual air pollution exposure levels were modeled as annual means of NO₂ (marker of vehicle exhaust pollutants using central monitoring data and dispersion models, linking to participants' home addresses. RESULTS: Air pollution was significantly associated with risk of AMI: OR 1.78 (95%CI 1.04-3.03 per 10 µg/m³ of long-term NO₂ exposure. Three GSTP1 SNPs were significantly associated with hypertension. The effect of air pollution on risk of AMI varied by genotype strata, although the suggested interaction was not significant. We saw no obvious interaction between genetic variants in the GST genes and air pollution exposure for hypertension. CONCLUSION: Air pollution exposure entails an

  12. Interaction effects of long-term air pollution exposure and variants in the GSTP1, GSTT1 and GSTCD genes on risk of acute myocardial infarction and hypertension: a case-control study.

    Science.gov (United States)

    Levinsson, Anna; Olin, Anna-Carin; Modig, Lars; Dahgam, Santosh; Björck, Lena; Rosengren, Annika; Nyberg, Fredrik

    2014-01-01

    Experimental and epidemiological studies have reported associations between air pollution exposure, in particular related to vehicle exhaust, and cardiovascular disease. A potential pathophysiological pathway is pollution-induced pulmonary oxidative stress, with secondary systemic inflammation. Genetic polymorphisms in genes implicated in oxidative stress, such as GSTP1, GSTT1 and GSTCD, may contribute to determining individual susceptibility to air pollution as a promoter of coronary vulnerability. We aimed to investigate effects of long-term traffic-related air pollution exposure, as well as variants in GSTP1, GSTT1 and GSTCD, on risk of acute myocardial infarction (AMI) and hypertension. In addition, we studied whether air pollution effects were modified by the investigated genetic variants. Genotype data at 7 single nucleotide polymorphisms (SNPs) in the GSTP1 gene, and one in each of the GSTT1 and GSTCD genes, as well as air pollution exposure estimates, were available for 119 AMI cases and 1310 randomly selected population controls. Population control individuals with systolic blood pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg or on daily antihypertensive medication were defined as hypertensive (n = 468). Individual air pollution exposure levels were modeled as annual means of NO₂ (marker of vehicle exhaust pollutants) using central monitoring data and dispersion models, linking to participants' home addresses. Air pollution was significantly associated with risk of AMI: OR 1.78 (95%CI 1.04-3.03) per 10 µg/m³ of long-term NO₂ exposure. Three GSTP1 SNPs were significantly associated with hypertension. The effect of air pollution on risk of AMI varied by genotype strata, although the suggested interaction was not significant. We saw no obvious interaction between genetic variants in the GST genes and air pollution exposure for hypertension. Air pollution exposure entails an increased risk of AMI, and this risk differed over genotype strata

  13. Early-life exposure to outdoor air pollution and respiratory health, ear infections, and eczema in infants from the INMA study

    DEFF Research Database (Denmark)

    Aguilera, Inmaculada; Pedersen, Marie; Garcia-Esteban, Raquel

    2013-01-01

    the first 12-18 months of age in a Spanish birth cohort of 2,199 infants. METHODS: We obtained parentally reported information on doctor-diagnosed lower respiratory tract infections (LRTI) and parental reports of wheezing, eczema, and ear infections. We estimated individual exposures to nitrogen dioxide (NO...... and lower respiratory tract infections in infants.......BACKGROUND: Prenatal and early-life periods may be critical windows for harmful effects of air pollution on infant health. OBJECTIVES: We studied the association of air pollution exposure during pregnancy and the first year of life with respiratory illnesses, ear infections, and eczema during...

  14. Home outdoor models for traffic-related air pollutants do not represent personal exposure measurements in Southern California

    International Nuclear Information System (INIS)

    Ducret-Stich, R; Gemperli, A; Ineichen, A; Phuleria, H C; Delfino, R J; Tjoa, T; Wu, J; Liu, L-J S

    2009-01-01

    Recent studies have used measurements or estimates of traffic-related air pollutants at home or school locations to link associations between exposure and health. However, little is known about the validity of these outdoor concentrations as an estimate for personal exposure to traffic. This paper compares modelled outdoor concentrations at home with personal exposure to traffic air pollution of 63 children in two areas in Los Angeles in 2003/2004. Exposure monitoring consisted of sixteen 10-day monitoring runs, with each run monitoring 4 subjects concurrently with the active personal DataRAM for particulate matter 25 ), elemental carbon (EC) and organic carbon (OC). One child per run had concurrent indoor/outdoor home monitoring. Measurements at central sites (24-hr PM 25 , EC, OC) were taken daily and concentrations of PM 25 , EC, and OC from traffic sources were calculated using the CALINE4 model for individual residences. We modelled outdoor concentrations of PM 2 5 , EC and OC with multilinear regression including GIS and meteorological parameters and adjusted for auto-correlation between repeated measurements. The model fit (R 2 ) for home outdoor estimates was 0.94, 0.74 and 0.80 for PM 25 , EC and OC, respectively. Comparisons between these outdoor estimates and the personal measurements showed a good agreement for PM 25 (R 2 =0.65-0.70) with a mean bias of -0.7±11.8|ag for the smog receptor area, and 18.9±16.2|ag for the traffic impacted area. However the outdoor estimates were not related to personal exposure for EC (R 2 =0.01-0.29) and OC (R 2 =0.03- 0.14). Conclusions: Predictions of outdoor concentrations can be used as approximations of personal exposure to PM 25 . However, they are not appropriate for estimating personal exposure to traffic-related air pollutants including EC and OC in studies of acute exposure-response relationships.

  15. Ambient air pollution exposure and respiratory, cardiovascular and cerebrovascular mortality in Cape Town, South Africa: 2001–2006.

    Science.gov (United States)

    Wichmann, Janine; Voyi, Kuku

    2012-11-05

    Little evidence is available on the strength of the association between ambient air pollution exposure and health effects in developing countries such as South Africa. The association between the 24-h average ambient PM(10), SO(2) and NO(2) levels and daily respiratory (RD), cardiovascular (CVD) and cerebrovascular (CBD) mortality in Cape Town (2001-2006) was investigated with a case-crossover design. For models that included entire year data, an inter-quartile range (IQR) increase in PM(10) (12 mg/m3) and NO(2) (12 mg/m3) significantly increased CBD mortality by 4% and 8%, respectively. A significant increase of 3% in CVD mortality was observed per IQR increase in NO(2) and SO(2) (8 mg/m3). In the warm period, PM(10) was significantly associated with RD and CVD mortality. NO(2) had significant associations with CBD, RD and CVD mortality, whilst SO(2) was associated with CVD mortality. None of the pollutants were associated with any of the three outcomes in the cold period. Susceptible groups depended on the cause-specific mortality and air pollutant. There is significant RD, CVD and CBD mortality risk associated with ambient air pollution exposure in South Africa, higher than reported in developed countries.

  16. Ambient Air Pollution Exposure and Respiratory, Cardiovascular and Cerebrovascular Mortality in Cape Town, South Africa: 2001–2006

    Directory of Open Access Journals (Sweden)

    Kuku Voyi

    2012-11-01

    Full Text Available Little evidence is available on the strength of the association between ambient air pollution exposure and health effects in developing countries such as South Africa. The association between the 24-h average ambient PM10, SO2 and NO2 levels and daily respiratory (RD, cardiovascular (CVD and cerebrovascular (CBD mortality in Cape Town (2001–2006 was investigated with a case-crossover design. For models that included entire year data, an inter-quartile range (IQR increase in PM10 (12 mg/m3 and NO2 (12 mg/m3 significantly increased CBD mortality by 4% and 8%, respectively. A significant increase of 3% in CVD mortality was observed per IQR increase in NO2 and SO2 (8 mg/m3. In the warm period, PM10 was significantly associated with RD and CVD mortality. NO2 had significant associations with CBD, RD and CVD mortality, whilst SO2 was associated with CVD mortality. None of the pollutants were associated with any of the three outcomes in the cold period. Susceptible groups depended on the cause-specific mortality and air pollutant. There is significant RD, CVD and CBD mortality risk associated with ambient air pollution exposure in South Africa, higher than reported in developed countries.

  17. Association of Long-Term Exposure to Transportation Noise and Traffic-Related Air Pollution with the Incidence of Diabetes: A Prospective Cohort Study.

    Science.gov (United States)

    Clark, Charlotte; Sbihi, Hind; Tamburic, Lillian; Brauer, Michael; Frank, Lawrence D; Davies, Hugh W

    2017-08-31

    Evidence for an association between transportation noise and cardiovascular disease has increased; however, few studies have examined metabolic outcomes such as diabetes or accounted for environmental coexposures such as air pollution, greenness, or walkability. Because diabetes prevalence is increasing and may be on the causal pathway between noise and cardiovascular disease, we examined the influence of long-term residential transportation noise exposure and traffic-related air pollution on the incidence of diabetes using a population-based cohort in British Columbia, Canada. We examined the influence of transportation noise exposure over a 5-y period (1994-1998) on incident diabetes cases in a population-based prospective cohort study (n=380,738) of metropolitan Vancouver (BC) residents who were 45-85 y old, with 4-y of follow-up (1999-2002). Annual average transportation noise (Lden), air pollution [black carbon, particulate matter with aerodynamic diameter Transportation noise was associated with the incidence of diabetes [interquartile range (IQR) increase, 6.8 A-weighted decibels (dBA); OR=1.08 (95% CI: 1.05, 1.10)]. This association remained after adjustment for environmental coexposures including traffic-related air pollutants, greenness, and neighborhood walkability. After adjustment for coexposure to noise, traffic-related air pollutants were not associated with the incidence of diabetes, whereas greenness was protective. We found a positive association between residential transportation noise and diabetes, adding to the growing body of evidence that noise pollution exposure may be independently linked to metabolic health and should be considered when developing public health interventions. https://doi.org/10.1289/EHP1279.

  18. Long-term exposure to ambient air pollution and mortality in a Chinese tuberculosis cohort.

    Science.gov (United States)

    Peng, Zhuoxin; Liu, Cong; Xu, Biao; Kan, Haidong; Wang, Weibing

    2017-02-15

    Evidence for the relationship between exposure to ambient air pollution and the mortality of tuberculosis (TB) patients is limited. We analyzed the association between long-term exposure to particulate matter mortality in a Chinese TB patients cohort from 2003 to 2013. Data from the Global Burden of Disease 2013 estimate were used to assess yearly average concentrations of PM 2.5 and ozone at the household addresses of participants. Cox regression was used to calculate adjusted hazard ratios (aHRs) and 95% confidence intervals (CIs) for cause-specific mortality, controlling for demographic and other TB-related factors. There were 4444 eligible subjects, including 891 deaths, over a median follow-up of 2464days. Per an interquartile range increase (2.06μg/m 3 ), multivariable analysis indicated that exposure to PM 2.5 was significantly associated with overall mortality (aHR=1.30, 95% CI: 1.19, 1.42), mortality from TB (aHR=1.46, 95% CI: 1.15, 1.85), respiratory cancers (aHR=1.72, 95% CI: 1.36, 2.19), other respiratory diseases (aHR=1.19, 95% CI: 1.02, 1.38), and other cancers (aHR=1.76, 95% CI: 1.33, 2.32). Long-term exposure to PM 2.5 increases the risk of death from TB and other diseases among TB patients. It suggests that the control of ambient air pollution may help decreasing the mortality caused by TB. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Contribution of the in-vehicle microenvironment to individual ambient-source nitrogen dioxide exposure: the Multi-Ethnic Study of Atherosclerosis and Air Pollution.

    Science.gov (United States)

    Hazlehurst, Marnie F; Spalt, Elizabeth W; Nicholas, Tyler P; Curl, Cynthia L; Davey, Mark E; Burke, Gregory L; Watson, Karol E; Vedal, Sverre; Kaufman, Joel D

    2018-03-06

    Exposure estimates that do not account for time in-transit may underestimate exposure to traffic-related air pollution, but exact contributions have not been studied directly. We conducted a 2-week monitoring, including novel in-vehicle sampling, in a subset of the Multi-Ethnic Study of Atherosclerosis and Air Pollution cohort in two cities. Participants spent the majority of their time indoors and only 4.4% of their time (63 min/day) in-vehicle, on average. The mean ambient-source NO 2 concentration was 5.1 ppb indoors and 32.3 ppb in-vehicle during drives. On average, indoor exposure contributed 69% and in-vehicle exposure contributed 24% of participants' ambient-source NO 2 exposure. For participants in the highest quartile of time in-vehicle (≥1.3 h/day), indoor and in-vehicle contributions were 60 and 31%, respectively. Incorporating infiltrated indoor and measured in-vehicle NO 2 produced exposure estimates 5.6 ppb lower, on average, than using only outdoor concentrations. The indoor microenvironment accounted for the largest proportion of ambient-source exposure in this older population, despite higher concentrations of NO 2 outdoors and in vehicles than indoors. In-vehicle exposure was more influential among participants who drove the most and for participants residing in areas with lower outdoor air pollution. Failure to characterize exposures in these microenvironments may contribute to exposure misclassification in epidemiologic studies.

  20. Residential outdoor air pollution and allergen sensitization in schoolchildren in Oslo, Norway

    NARCIS (Netherlands)

    Oftedal, B.; Brunekreef, B.; Nystad, W.; Nafstad, P.

    2007-01-01

    Background Epidemiological studies that have investigated the association between air pollution and atopy have found inconsistent results. Furthermore, often exposure to outdoor air pollution has had limited quality, and more individual exposure is needed. Objective To investigate the relations

  1. Impacts of air pollution wave on years of life lost: A crucial way to communicate the health risks of air pollution to the public.

    Science.gov (United States)

    Huang, Jing; Pan, Xiaochuan; Guo, Xinbiao; Li, Guoxing

    2018-04-01

    Limited studies have explored the impacts of exposure to sustained high levels of air pollution (air pollution wave) on mortality. Given that the frequency, intensity and duration of air pollution wave has been increasing in highly polluted regions recently, understanding the impacts of air pollution wave is crucial. In this study, air pollution wave was defined as 2 or more consecutive days with air pollution index (API) > 100. The impacts of air pollution wave on years of life lost (YLL) due to non-accidental, cardiovascular and respiratory deaths were evaluated by considering both consecutive days with high levels of air pollution and daily air pollution levels in Tianjin, China, from 2006 to 2011. The results showed the durational effect of consecutive days with high levels of air pollution was substantial in addition to the effect of daily air pollution. For instance, the durational effect was related to an increase in YLL of 116.6 (95% CI: 4.8, 228.5) years from non-accidental deaths when the air pollution wave was sustained for 4 days, while the corresponding daily air pollution's effect was 121.2 (95% CI: 55.2, 187.1) years. A better interpretation of the health risks of air pollution wave is crucial for air pollution control policy making and public health interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Effect of environmental air pollution on cardiovascular diseases.

    Science.gov (United States)

    Meo, S A; Suraya, F

    2015-12-01

    Environmental air pollution has become a leading health concern especially in the developing countries with more urbanization, industrialization and rapidly growing population. Prolonged exposure to air pollution is a risk factor for cardiovascular diseases. The present study aimed to investigate the effects of environmental air pollution on progression of cardiovascular problems. In this study, we identified 6880 published articles through a systematic database including ISI-Web of Science, PubMed and EMBASE. The allied literature was searched by using the key words such as environmental pollution, air pollution, particulate matter pollutants PM 2.5 μm-PM 10 μm. Literature in which environmental air pollution and cardiac diseases were discussed was included. Descriptive information was retrieved from the selected literature. Finally, we included 67 publications and remaining studies were excluded. Environmental pollution can cause high blood pressure, arrhythmias, enhanced coagulation, thrombosis, acute arterial vasoconstriction, atherosclerosis, ischemic heart diseases, myocardial infarction and even heart failure. Environmental air pollution is associated with increased risk of cardiovascular diseases. Environmental pollution exerts its detrimental effects on the heart by developing pulmonary inflammation, systemic inflammation, oxidative stress, endothelial dysfunction and prothrombotic changes. Environmental protection officials must take high priority steps to minimize the air pollution to decrease the prevalence of cardiovascular diseases.

  3. A cross-sectional study with an improved methodology to assess occupational air pollution exposure and respiratory health in motorcycle taxi driving

    International Nuclear Information System (INIS)

    Lawin, Herve; Agodokpessi, Gildas; Ayelo, Paul; Kagima, Jacqueline; Sonoukon, Rodrigue; Mbatchou Ngahane, Bertrand H.; Awopeju, Olayemi; Vollmer, William M.; Nemery, Benoit; Burney, Peter; Fayomi, Benjamin

    2016-01-01

    Introduction: Motorcycle taxi driving is common in many African cities. This study tested whether this occupation is associated with more respiratory disorders in a context of widespread urban air pollution with an improved methodology. Methods: In a cross sectional study we compared 85 male motorcycle taxi drivers in the capital city of the Republic of Benin (Cotonou) with an age and neighborhood matched control group. All participants carried a portable carbon monoxide data logger for 8 hours per day to assess exposure to air pollution. Respiratory symptoms were obtained using a standardized questionnaire and pulmonary function was assessed by spirometry. Results: The two groups did not differ significantly (p > 0.10) in their age, height, educational level, and exposures to smoke from biomass fuels and tobacco products. The taxi drivers were exposed to higher mean (SD) levels of carbon monoxide (7.6 ± 4.9 ppmvs. 5.4 ± 3.8 ppm p = 0.001). They reported more phlegm and tended to have slightly lower levels of lung function, although these differences were not statistically significant. Conclusion: In this cross sectional study of young motorcycle taxi drivers with substantial exposure to urban traffic and a matched control group, we found no evidence for respiratory impairment. A follow-up of such study population with other pollution exposure surrogate and other clinical endpoint may provide a more robust conclusion regarding the exposure response in this professional group. - Highlights: • Need of improved study method to assess air pollution effect in exposed workers • This study compared motorcycle taxi drivers and a matched control group • Personal carbon monoxide exposure and respiratory disorders were collected • No evidence of more respiratory disorders even though pollutant exposure was higher

  4. A cross-sectional study with an improved methodology to assess occupational air pollution exposure and respiratory health in motorcycle taxi driving

    Energy Technology Data Exchange (ETDEWEB)

    Lawin, Herve, E-mail: hervelawin@yahoo.fr [Unit of Teaching and Research in Occupational and Environmental Health, Department of Public Health, Faculty of Health Sciences, University of Abomey-Calavi (Benin); Agodokpessi, Gildas [Centre National Hospitalier et Universitaire de Pneumo-Phtisiologie, Cotonou (Benin); Ayelo, Paul [Unit of Teaching and Research in Occupational and Environmental Health, Department of Public Health, Faculty of Health Sciences, University of Abomey-Calavi (Benin); Kagima, Jacqueline [Department of internal medicine, Egerton University (Kenya); Sonoukon, Rodrigue [Unit of Teaching and Research in Occupational and Environmental Health, Department of Public Health, Faculty of Health Sciences, University of Abomey-Calavi (Benin); Mbatchou Ngahane, Bertrand H. [Department of Internal Medicine, Douala General Hospital, Cameroon Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala (Cameroon); Awopeju, Olayemi [Department of Medicine, Obafemi Awolowo University, Ile Ife (Nigeria); Vollmer, William M. [Center for Health Research, Kaiser Permanente Northwest, Portland (United States); Nemery, Benoit [Dept. of Public Health, Occupational and Environmental Insurance Medicine, KU Leuven, Leuven (Belgium); Burney, Peter [National Heart & Lung Institute, Imperial College, London (United Kingdom); Fayomi, Benjamin [Unit of Teaching and Research in Occupational and Environmental Health, Department of Public Health, Faculty of Health Sciences, University of Abomey-Calavi (Benin)

    2016-04-15

    Introduction: Motorcycle taxi driving is common in many African cities. This study tested whether this occupation is associated with more respiratory disorders in a context of widespread urban air pollution with an improved methodology. Methods: In a cross sectional study we compared 85 male motorcycle taxi drivers in the capital city of the Republic of Benin (Cotonou) with an age and neighborhood matched control group. All participants carried a portable carbon monoxide data logger for 8 hours per day to assess exposure to air pollution. Respiratory symptoms were obtained using a standardized questionnaire and pulmonary function was assessed by spirometry. Results: The two groups did not differ significantly (p > 0.10) in their age, height, educational level, and exposures to smoke from biomass fuels and tobacco products. The taxi drivers were exposed to higher mean (SD) levels of carbon monoxide (7.6 ± 4.9 ppmvs. 5.4 ± 3.8 ppm p = 0.001). They reported more phlegm and tended to have slightly lower levels of lung function, although these differences were not statistically significant. Conclusion: In this cross sectional study of young motorcycle taxi drivers with substantial exposure to urban traffic and a matched control group, we found no evidence for respiratory impairment. A follow-up of such study population with other pollution exposure surrogate and other clinical endpoint may provide a more robust conclusion regarding the exposure response in this professional group. - Highlights: • Need of improved study method to assess air pollution effect in exposed workers • This study compared motorcycle taxi drivers and a matched control group • Personal carbon monoxide exposure and respiratory disorders were collected • No evidence of more respiratory disorders even though pollutant exposure was higher.

  5. The Impact of Multi-pollutant Clusters on the Association between Fine Particulate Air Pollution and Microvascular Function

    Science.gov (United States)

    Ljungman, Petter L.; Wilker, Elissa H.; Rice, Mary B.; Austin, Elena; Schwartz, Joel; Gold, Diane R.; Koutrakis, Petros; Benjamin, Emelia J.; Vita, Joseph A.; Mitchell, Gary F.; Vasan, Ramachandran S.

    2016-01-01

    Background Prior studies including the Framingham Heart Study have suggested associations between single components of air pollution and vascular function; however, underlying mixtures of air pollution may have distinct associations with vascular function. Methods We used a k-means approach to construct five distinct pollution mixtures from elemental analyses of particle filters, air pollution monitoring data, and meteorology. Exposure was modeled as an interaction between fine particle mass (PM2.5), and concurrent pollution cluster. Outcome variables were two measures of microvascular function in the fingertip in the Framingham Offspring and Third Generation cohorts from 2003-2008. Results In 1,720 participants, associations between PM2.5 and baseline pulse amplitude tonometry differed by air pollution cluster (interaction p value 0.009). Higher PM2.5 on days with low mass concentrations but high proportion of ultrafine particles from traffic was associated with 18% (95% CI 4.6%; 33%) higher baseline pulse amplitude per 5 μg/m3 and days with high contributions of oil and wood combustion with 16% (95% CI 0.2%; 34%) higher baseline pulse amplitude. We observed no variation in associations of PM2.5 with hyperemic response to ischemia observed across air pollution clusters. Conclusions PM2.5 exposure from air pollution mixtures with large contributions of local ultrafine particles from traffic, heating oil and wood combustion was associated with higher baseline pulse amplitude but not PAT ratio. Our findings suggest little association between acute exposure to air pollution clusters reflective of select sources and hyperemic response to ischemia, but possible associations with excessive small artery pulsatility with potentially deleterious microvascular consequences. PMID:26562062

  6. Redox Toxicology of Ambient Air Pollution

    Science.gov (United States)

    Ambient air pollution is a leading global cause of morbidity and mortality. Millions of Americans live in areas in which levels of tropospheric ozone exceed air quality standards, while exposure to particulate matter (PM2.5) alone results in 3.2 million excess deaths annually wor...

  7. Exposure to air pollutants during the early weeks of pregnancy, and placenta praevia and placenta accreta in the western part of Japan.

    Science.gov (United States)

    Michikawa, Takehiro; Morokuma, Seiichi; Yamazaki, Shin; Fukushima, Kotaro; Kato, Kiyoko; Nitta, Hiroshi

    2016-01-01

    Placenta praevia is an obstetric complication involving placental implantation in the lower uterine segment. Given the suggested aetiology of placenta praevia, adverse biological effects of air pollutants, such as plasma viscosity increment, endothelial dysfunction, and systemic inflammation, have the potential to induce low implantation. We explored the association between exposure to air pollutants during the pregnancy period up to implantation, and placenta praevia, in pregnant Japanese women. The outcome also included placenta accreta, which often exists in combination with placenta praevia. From the Japan Perinatal Registry Network database, we obtained data on 40,573 singleton pregnant women in western Japan (Kyushu-Okinawa Districts) between 2005 and 2010. We assigned pollutant concentrations (suspended particulate matter [SPM], ozone, nitrogen dioxide [NO2], and sulphur dioxide [SO2]), measured at the nearest monitoring station to the respective delivery hospital of each woman. A logistic regression model was used to adjust for several covariates. The odds ratios (ORs) of placenta praevia per 10 units increase were 1.12 (95% confidence interval (CI)=1.01-1.23) for SPM over 0-4weeks of gestation, and 1.08 (1.00-1.16) for ozone. The association between exposure to NO2 and SO2, and praevia, was in the direction of increased risk. SPM exposure during 0-4weeks was associated with placenta accreta without praevia (OR=1.33, 95% CI=1.07-1.66). We found no association with exposure to air pollutants during 5-12weeks and the second trimester. Exposure to air pollutants through to implantation was positively associated with placenta praevia and accreta. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. The passive control of air pollution exposure in Dublin, Ireland: a combined measurement and modelling case study.

    Science.gov (United States)

    Gallagher, J; Gill, L W; McNabola, A

    2013-08-01

    This study investigates the potential real world application of passive control systems to reduce personal pollutant exposure in an urban street canyon in Dublin, Ireland. The implementation of parked cars and/or low boundary walls as a passive control system has been shown to minimise personal exposure to pollutants on footpaths in previous investigations. However, previous research has been limited to generic numerical modelling studies. This study combines real-time traffic data, meteorological conditions and pollution concentrations, in a real world urban street canyon before and after the implementation of a passive control system. Using a combination of field measurements and numerical modelling this study assessed the potential impact of passive controls on personal exposure to nitric oxide (NO) concentrations in the street canyon in winter conditions. A calibrated numerical model of the urban street canyon was developed, taking into account the variability in traffic and meteorological conditions. The modelling system combined the computational fluid dynamic (CFD) simulations and a semi-empirical equation, and demonstrated a good agreement with measured field data collected in the street canyon. The results indicated that lane distribution, fleet composition and vehicular turbulence all affected pollutant dispersion, in addition to the canyon geometry and local meteorological conditions. The introduction of passive controls displayed mixed results for improvements in air quality on the footpaths for different wind and traffic conditions. Parked cars demonstrated the most comprehensive passive control system with average improvements in air quality of up to 15% on the footpaths. This study highlights the potential of passive controls in a real street canyon to increase dispersion and improve air quality at street level. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. Integrated monitoring and assessment of air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Hertel, O.

    2009-09-15

    Improved quality, better understanding of processes and optimisation of allocated resources, these are the main advantages of applying Integrated Monitoring and Assessment (IMA) in air quality management. The IMA is defined as the combined use of measurements and model calculations. The use of IMA is demonstrated with examples with different aims: to obtain data for air pollution in urban streets, to assess human exposure to traffic air pollution, and to assess atmospheric deposition of nitrogen compounds to marine and terrestrial ecosystems. (author)

  10. A dynamic urban air pollution population exposure assessment study using model and population density data derived by mobile phone traffic

    Science.gov (United States)

    Gariazzo, Claudio; Pelliccioni, Armando; Bolignano, Andrea

    2016-04-01

    A dynamic city-wide air pollution exposure assessment study has been carried out for the urban population of Rome, Italy, by using time resolved population distribution maps, derived by mobile phone traffic data, and modelled air pollutants (NO2, O3 and PM2.5) concentrations obtained by an integrated air dispersion modelling system. More than a million of persons were tracked during two months (March and April 2015) for their position within the city and its surroundings areas, with a time resolution of 15 min and mapped over an irregular grid system with a minimum resolution of 0.26 × 0.34 Km2. In addition, demographics information (as gender and age ranges) were available in a separated dataset not connected with the total population one. Such BigData were matched in time and space with air pollution model results and then used to produce hourly and daily resolved cumulative population exposures during the studied period. A significant mobility of population was identified with higher population densities in downtown areas during daytime increasing of up to 1000 people/Km2 with respect to nigh-time one, likely produced by commuters, tourists and working age population. Strong variability (up to ±50% for NO2) of population exposures were detected as an effect of both mobility and time/spatial changing in pollutants concentrations. A comparison with the correspondent stationary approach based on National Census data, allows detecting the inability of latter in estimating the actual variability of population exposure. Significant underestimations of the amount of population exposed to daily PM2.5 WHO guideline was identified for the Census approach. Very small differences (up to a few μg/m3) on exposure were detected for gender and age ranges population classes.

  11. Air pollution and risk of hospitalization for epilepsy: the role of farm use of nitrogen fertilizers and emissions of the agricultural air pollutant, nitrous oxide

    Directory of Open Access Journals (Sweden)

    Keith Fluegge

    Full Text Available ABSTRACT The link between various air pollutants and hospitalization for epilepsy has come under scrutiny. We have proposed that exposure to air pollution and specifically the pervasive agricultural air pollutant and greenhouse gas, nitrous oxide (N2O, may provoke susceptibility to neurodevelopmental disorders. Evidence supports a role of N2O exposure in reducing epileptiform seizure activity, while withdrawal from the drug has been shown to induce seizure-like activity. Therefore, we show here that the statewide use of anthropogenic nitrogen fertilizers (the most recognized causal contributor to environmental N2O burden is significantly negatively associated with hospitalization for epilepsy in all three pre-specified hospitalization categories, even after multiple pollutant comparison correction (p<.007, while the other identified pollutants were not consistently statistically significantly associated with hospitalization for epilepsy. We discuss potential neurological mechanisms underpinning this association between air pollutants associated with farm use of anthropogenic nitrogen fertilizers and hospitalization for epilepsy.

  12. Road traffic noise, air pollution components and cardiovascular events.

    Science.gov (United States)

    de Kluizenaar, Yvonne; van Lenthe, Frank J; Visschedijk, Antoon J H; Zandveld, Peter Y J; Miedema, Henk M E; Mackenbach, Johan P

    2013-01-01

    Traffic noise and air pollution have been associated with cardiovascular health effects. Until date, only a limited amount of prospective epidemiological studies is available on long-term effects of road traffic noise and combustion related air pollution. This study investigates the relationship between road traffic noise and air pollution and hospital admissions for ischemic heart disease (IHD: International Classification of Diseases (ICD9) 410-414) or cerebrovascular disease (cerebrovascular event [CVE]: ICD9 430-438). We linked baseline questionnaire data to 13 years of follow-up on hospital admissions and road traffic noise and air pollution exposure, for a large random sample (N = 18,213) of inhabitants of the Eindhoven region, Netherlands. Subjects with cardiovascular event during follow-up on average had higher road traffic noise day, evening, night level (L den) and air pollution exposure at the home. After adjustment for confounders (age, sex, body mass index, smoking, education, exercise, marital status, alcohol use, work situation, financial difficulties), increased exposure did not exert a significant increased risk of hospital admission for IHD or cerebrovascular disease. Relative risks (RRs) for a 5 (th) to 95 (th) percentile interval increase were 1.03 (0.88-1.20) for L den; 1.04 (0.90-1.21) for particulate matter (PM 10 ); 1.05 (0.91-1.20) for elemental carbon (EC); and 1.12 (096-1.32) for nitrogen dioxide (NO 2 ) in the full model. While the risk estimate seemed highest for NO 2 , for a 5 (th) to 95 (th) percentile interval increase, expressed as RRs per 1 μg/m 3 increases, hazard ratios seemed highest for EC (RR 1.04 [0.92-1.18]). In the subgroup of study participants with a history of cardiovascular disease, RR estimates seemed highest for noise exposure (1.19 [0.87-1.64] for L den); in the subgroup of elderly RR seemed highest for air pollution exposure (RR 1.24 [0.93-1.66] for NO 2 ).

  13. Air pollution and chronic airway diseases: what should people know and do?

    OpenAIRE

    Jiang, Xu-Qin; Mei, Xiao-Dong; Feng, Di

    2016-01-01

    The health effects of air pollution remain a public health concern worldwide. Exposure to air pollution has many substantial adverse effects on human health. Globally, seven million deaths were attributable to the joint effects of household and ambient air pollution. Subjects with chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are especially vulnerable to the detrimental effects of air pollutants. Air pollution can induce the acute exacerbation of...

  14. Noise Effects on Health in the Context of Air Pollution Exposure

    Science.gov (United States)

    Stansfeld, Stephen A.

    2015-01-01

    For public health policy and planning it is important to understand the relative contribution of environmental noise on health compared to other environmental stressors. Air pollution is the primary environmental stressor in relation to cardiovascular morbidity and mortality. This paper reports a narrative review of studies in which the associations of both environmental noise and air pollution with health have been examined. Studies of hypertension, myocardial infarction, stroke, mortality and cognitive outcomes were included. Results suggest independent effects of environmental noise from road traffic, aircraft and, with fewer studies, railway noise on cardiovascular outcomes after adjustment for air pollution. Comparative burden of disease studies demonstrate that air pollution is the primary environmental cause of disability adjusted life years lost (DALYs). Environmental noise is ranked second in terms of DALYs in Europe and the DALYs attributed to noise were more than those attributed to lead, ozone and dioxins. In conclusion, in planning and health impact assessment environmental noise should be considered an independent contributor to health risk which has a separate and substantial role in ill-health separate to that of air pollution. PMID:26473905

  15. Individual air pollution monitors. 2. Examination of some nonoccupational research and regulatory uses and needs

    Energy Technology Data Exchange (ETDEWEB)

    Morgan, M.G.; Morris, S.C.

    1977-01-01

    Knowledge of the relationship between ambient air pollution levels measured at fixed monitoring stations and the actual exposure of the population is very limited. Indeed, there is rapidly growing evidence that fixed-station monitors do not provide adequate data for population exposure. This report examines available data for carbon monoxide (CO) and sulfur dioxide (SO/sub 2/) and presents a new analysis. Actual population exposure to CO appears to be consistently higher than expected from fixed-station data, while limited evidence suggests that exposures to SO/sub 2/ are lower. A reported general relationship between indoor and outdoor levels of SO/sub 2/ is not supported by the data. If air pollution represents a threat to public health, then more attention must be given to total population exposure to pollutants. A selective use of individual air pollution monitors that can be worn or carried appears to be required at some stage by any experimental design seeking to uncover the relation between air pollution exposure and health effects. Additionally, potential uses of individual monitoring in air pollution regulation are explored. Current status and research needs for individual air pollution monitors are examined and a first-order evaluation is given of the promise held by the candidate instrumentation technologies. A national program of support for the development of individual air pollution monitors is recommended.

  16. A Unified Spatiotemporal Modeling Approach for Predicting Concentrations of Multiple Air Pollutants in the Multi-Ethnic Study of Atherosclerosis and Air Pollution

    Science.gov (United States)

    Olives, Casey; Kim, Sun-Young; Sheppard, Lianne; Sampson, Paul D.; Szpiro, Adam A.; Oron, Assaf P.; Lindström, Johan; Vedal, Sverre; Kaufman, Joel D.

    2014-01-01

    Background: Cohort studies of the relationship between air pollution exposure and chronic health effects require predictions of exposure over long periods of time. Objectives: We developed a unified modeling approach for predicting fine particulate matter, nitrogen dioxide, oxides of nitrogen, and black carbon (as measured by light absorption coefficient) in six U.S. metropolitan regions from 1999 through early 2012 as part of the Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air). Methods: We obtained monitoring data from regulatory networks and supplemented those data with study-specific measurements collected from MESA Air community locations and participants’ homes. In each region, we applied a spatiotemporal model that included a long-term spatial mean, time trends with spatially varying coefficients, and a spatiotemporal residual. The mean structure was derived from a large set of geographic covariates that was reduced using partial least-squares regression. We estimated time trends from observed time series and used spatial smoothing methods to borrow strength between observations. Results: Prediction accuracy was high for most models, with cross-validation R2 (R2CV) > 0.80 at regulatory and fixed sites for most regions and pollutants. At home sites, overall R2CV ranged from 0.45 to 0.92, and temporally adjusted R2CV ranged from 0.23 to 0.92. Conclusions: This novel spatiotemporal modeling approach provides accurate fine-scale predictions in multiple regions for four pollutants. We have generated participant-specific predictions for MESA Air to investigate health effects of long-term air pollution exposures. These successes highlight modeling advances that can be adopted more widely in modern cohort studies. Citation: Keller JP, Olives C, Kim SY, Sheppard L, Sampson PD, Szpiro AA, Oron AP, Lindström J, Vedal S, Kaufman JD. 2015. A unified spatiotemporal modeling approach for predicting concentrations of multiple air pollutants in the Multi

  17. Health status and air pollution related socioeconomic concerns in urban China.

    Science.gov (United States)

    Jiao, Kaishan; Xu, Mengjia; Liu, Meng

    2018-02-05

    China is experiencing environmental issues and related health effects due to its industrialization and urbanization. The health effects associated with air pollution are not just a matter of epidemiology and environmental science research, but also an important social science issue. Literature about the relationship of socioeconomic factors with the environment and health factors is inadequate. The relationship between air pollution exposure and health effects in China was investigated with consideration of the socioeconomic factors. Based on nationwide survey data of China in 2014, we applied the multilevel mixed-effects model to evaluate how socioeconomic status (represented by education and income) contributed to the relationship between self-rated air pollution and self-rated health status at community level and individual level. The findings indicated that there was a non-linear relationship between the community socioeconomic status and community air pollution in urban China, with the highest level of air pollution presented in the communities with moderate socioeconomic status. In addition, health effects associated air pollution in different socioeconomic status groups were not equal. Self-rated air pollution had the greatest impact on self-rated health of the lower socioeconomic groups. With the increase of socioeconomic status, the effect of self-rated air pollution on self-rated health decreased. This study verified the different levels of exposure to air pollution and inequality in health effects among different socioeconomic groups in China. It is imperative for the government to urgently formulate public policies to enhance the ability of the lower socioeconomic groups to circumvent air pollution and reduce the health damage caused by air pollution.

  18. Air Pollution and Exercise: A Perspective from China

    Science.gov (United States)

    Wang, Zhen

    2016-01-01

    China is experiencing an air pollution crisis, which has already had a significantly negative impact on the health of the Chinese people. Although exercising is considered a useful means to prevent chronic diseases, it could actually lead to adverse effects due to extra exposure to polluted air when done outdoors. After a brief description of the…

  19. GPS-based Microenvironment Tracker (MicroTrac) Model to Estimate Time-Location of Individuals for Air Pollution Exposure Assessments: Model Evaluation in Central North Carolina

    Science.gov (United States)

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure...

  20. Integrating travel behavior with land use regression to estimate dynamic air pollution exposure in Hong Kong.

    Science.gov (United States)

    Tang, Robert; Tian, Linwei; Thach, Thuan-Quoc; Tsui, Tsz Him; Brauer, Michael; Lee, Martha; Allen, Ryan; Yuchi, Weiran; Lai, Poh-Chin; Wong, Paulina; Barratt, Benjamin

    2018-04-01

    Epidemiological studies typically use subjects' residential address to estimate individuals' air pollution exposure. However, in reality this exposure is rarely static as people move from home to work/study locations and commute during the day. Integrating mobility and time-activity data may reduce errors and biases, thereby improving estimates of health risks. To incorporate land use regression with movement and building infiltration data to estimate time-weighted air pollution exposures stratified by age, sex, and employment status for population subgroups in Hong Kong. A large population-representative survey (N = 89,385) was used to characterize travel behavior, and derive time-activity pattern for each subject. Infiltration factors calculated from indoor/outdoor monitoring campaigns were used to estimate micro-environmental concentrations. We evaluated dynamic and static (residential location-only) exposures in a staged modeling approach to quantify effects of each component. Higher levels of exposures were found for working adults and students due to increased mobility. Compared to subjects aged 65 or older, exposures to PM 2.5 , BC, and NO 2 were 13%, 39% and 14% higher, respectively for subjects aged below 18, and 3%, 18% and 11% higher, respectively for working adults. Exposures of females were approximately 4% lower than those of males. Dynamic exposures were around 20% lower than ambient exposures at residential addresses. The incorporation of infiltration and mobility increased heterogeneity in population exposure and allowed identification of highly exposed groups. The use of ambient concentrations may lead to exposure misclassification which introduces bias, resulting in lower effect estimates than 'true' exposures. Copyright © 2018 Elsevier Ltd. All rights reserved.

  1. [Influence of industrial pollution of ambient air on health of workers engaged into open air activities in cold conditions].

    Science.gov (United States)

    Chashchin, V P; Siurin, S A; Gudkov, A B; Popova, O N; Voronin, A Iu

    2014-01-01

    The article presents the results of a study on assessment of occupational exposure to air pollutants and related health effects in3792 outdoor workers engaged in operations performed in the vicinity of non-ferrous metallurgical facilities in Far North. Findings are that during cold season repeated climate and weather conditions are associated with higher level of chemical hazards and dust in surface air. At the air temperature below -17 degrees C, maximal single concentrations of major pollutants can exceed MAC up to 10 times. With that, transitory disablement morbidity parameters and occupational accidents frequency increase significantly. The workers with long exposure to cooling meteorological factors and air pollution demonstrate significantly increased prevalence of respiratory and circulatory diseases, despite relatively low levels of sculpture dioxide and dust in the air, not exceeding the occupational exposure limits. It has been concluded that severe cold is to be considered asa factor increasing occupational risk at air polluted outdoor worksites dueto more intense air pollution, higher traumatism risk and lower efficiency of filter antidust masks respiratory PPE and due to modification of the toxic effects.

  2. The Association of Ambient Air Pollution and Traffic Exposures With Selected Congenital Anomalies in the San Joaquin Valley of California

    Science.gov (United States)

    Padula, Amy M.; Tager, Ira B.; Carmichael, Suzan L.; Hammond, S. Katharine; Lurmann, Frederick; Shaw, Gary M.

    2013-01-01

    Congenital anomalies are a leading cause of infant mortality and are important contributors to subsequent morbidity. Studies suggest associations between environmental contaminants and some anomalies, although evidence is limited. We aimed to investigate whether ambient air pollutant and traffic exposures in early gestation contribute to the risk of selected congenital anomalies in the San Joaquin Valley of California, 1997–2006. Seven exposures and 5 outcomes were included for a total of 35 investigated associations. We observed increased odds of neural tube defects when comparing the highest with the lowest quartile of exposure for several pollutants after adjusting for maternal race/ethnicity, education, and multivitamin use. The adjusted odds ratio for neural tube defects among those with the highest carbon monoxide exposure was 1.9 (95% confidence interval: 1.1, 3.2) compared with those with the lowest exposure, and there was a monotonic exposure-response across quartiles. The highest quartile of nitrogen oxide exposure was associated with neural tube defects (adjusted odds ratio = 1.8, 95% confidence interval: 1.1, 2.8). The adjusted odds ratio for the highest quartile of nitrogen dioxide exposure was 1.7 (95% confidence interval: 1.1, 2.7). Ozone was associated with decreased odds of neural tube defects. Our results extend the limited body of evidence regarding air pollution exposure and adverse birth outcomes. PMID:23538941

  3. Air pollution exposure during critical time periods in gestation and alterations in cord blood lymphocyte distribution: a cohort of livebirths

    Directory of Open Access Journals (Sweden)

    Herr Caroline EW

    2010-08-01

    Full Text Available Abstract Background Toxic exposures have been shown to influence maturation of the immune system during gestation. This study investigates the association between cord blood lymphocyte proportions and maternal exposure to air pollution during each gestational month. Methods Cord blood was analyzed using a FACSort flow cytometer to determine proportions of T lymphocytes (CD3+ cells and their subsets, CD4+ and CD8+, B lymphocytes (CD19+ and natural killer (NK cells. Ambient air concentrations of 12 polycyclic aromatic hydrocarbons (PAH and particulate matter 2.5 were measured using fixed site monitors. Arithmetic means of these pollutants, calculated for each gestational month, were used as exposure metrics. Data on covariates were obtained from medical records and questionnaires. Multivariable linear regression models were fitted to estimate associations between monthly PAH or PM2.5 and cord blood lymphocytes, adjusting for year of birth and district of residence and, in further models, gestational season and number of prior live births. Results The adjusted models show significant associations between PAHs or PM2.5 during early gestation and increases in CD3+ and CD4+ lymphocytes percentages and decreases in CD19+ and NK cell percentages in cord blood. In contrast, exposures during late gestation were associated with decreases in CD3+ and CD4+ fractions and increases in CD19+ and NK cell fractions. There was no significant association between alterations in lymphocyte distribution and air pollution exposure during the mid gestation. Conclusions PAHs and PM2.5 in ambient air may influence fetal immune development via shifts in cord blood lymphocytes distributions. Associations appear to differ by exposure in early versus late gestation.

  4. Harvard Air Pollution Health Study in six cites in the USA

    Energy Technology Data Exchange (ETDEWEB)

    Spengler, J D; Ferris, Jr, B G

    1985-08-01

    The Harvard Air Pollution Health Study has been a ten year prospective study of respiratory symptoms and pulmonary function of children and adults living in six US communities. Indices of acute and chronic effects of air pollution exposures have been studied. Evidence is presented for adverse effects of ambient and indoor air pollution on children. Relationships between ambient TSP concentrations and hospital emergency room admissions, temporary decreases in pulmonary functions and prevalence of community bronchitis all indicate a slight adverse effect. Refinements of these relationships will occur when fine fraction and acid sulfate aerosol concentrations are incorporated into the health analysis. Exposures to cigarette smoke at home are associated with increased reported respiratory symptoms in children. There is a negative relationship between maternal smoking and age and sex adjusted height for children. Results from indoor and personal exposure studies have lead to the design of an acute symptoms and indoor air pollution study. Between 1985 and 1988 1800 children will be tracked for a year while respirable particles, nitrogen dioxide, water vapor and air exchange will be measured in their homes. Using continuous sulfate/sulfuric acid monitors built at Harvard, we are characterizing the magnitude, duration and frequency of acid aerosol events in each of our study cities. This information will be utilized in the analysis of the respiratory symptom data. The Harvard Air Pollution Health Study is providing information on the relationship among health variables and air pollutant exposures. In addition, this study will add to our understanding of lung growth and aging and the risk factors associated with chronic respiratory disabilities.

  5. Population Dynamics and Air Pollution: The Impact of Demographics on Health Impact Assessment of Air Pollution

    Directory of Open Access Journals (Sweden)

    Esben Meulengracht Flachs

    2013-01-01

    Full Text Available Objective. To explore how three different assumptions on demographics affect the health impact of Danish emitted air pollution in Denmark from 2005 to 2030, with health impact modeled from 2005 to 2050. Methods. Modeled air pollution from Danish sources was used as exposure in a newly developed health impact assessment model, which models four major diseases and mortality causes in addition to all-cause mortality. The modeling was at the municipal level, which divides the approximately 5.5 M residents in Denmark into 99 municipalities. Three sets of demographic assumptions were used: (1 a static year 2005 population, (2 morbidity and mortality fixed at the year 2005 level, or (3 an expected development. Results. The health impact of air pollution was estimated at 672,000, 290,000, and 280,000 lost life years depending on demographic assumptions and the corresponding social costs at 430.4 M€, 317.5 M€, and 261.6 M€ through the modeled years 2005–2050. Conclusion. The modeled health impact of air pollution differed widely with the demographic assumptions, and thus demographics and assumptions on demographics played a key role in making health impact assessments on air pollution.

  6. Ultrafine particle air pollution inside diesel-propelled passenger trains.

    Science.gov (United States)

    Abramesko, Victoria; Tartakovsky, Leonid

    2017-07-01

    Locomotives with diesel engines are used worldwide and are an important source of air pollution. Pollutant emissions by locomotive engines affect the air quality inside passenger trains. This study is aimed at investigating ultrafine particle (UFP) air pollution inside passenger trains and providing a basis for assessing passenger exposure to this pollutant. The concentrations of UFPs inside the carriages of push-pull trains are dramatically higher when the train operates in pull mode. This clearly shows that locomotive engine emissions are a dominant factor in train passengers' exposure to UFPs. The highest levels of UFP air pollution are observed inside the carriages of pull trains close to the locomotive. In push mode, the UFP number concentrations were lower by factors of 2.6-43 (depending on the carriage type) compared to pull mode. The UFP concentrations are substantially lower in diesel multiple-unit trains than in trains operating in pull mode. A significant influence of the train movement regime on the UFP NC inside a carriage is observed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Exposure to Air Pollutants During Physical Activity

    NARCIS (Netherlands)

    Ramos, C.A.

    2016-01-01

    The context for this thesis is the concern that people who practice physical activity are more susceptible to air pollution. For the studies presented here, three perspectives of physical activity were considered: in indoor, i) physical activity in fitness centers; in outdoor ii) the use of bicycle

  8. The price of air pollution

    International Nuclear Information System (INIS)

    Hiemstra-Holtkamp, I.V.L.

    2006-01-01

    The mortality in the Netherlands as a result of exposure to particulates is 18,000 per year. Less known is the high number of cases of sickness cased by air pollution and related cost for the Dutch society [nl

  9. Exposure to air pollution and noise from road traffic and risk of congenital anomalies in the Danish National Birth Cohort

    DEFF Research Database (Denmark)

    Pedersen, Marie; Garne, Ester; Hansen-Nord, Nete

    2017-01-01

    BACKGROUND: Ambient air pollution has been associated with certain congenital anomalies, but few studies rely on assessment of fine-scale variation in air quality and associations with noise from road traffic are unexplored. METHODS: Among 84,218 liveborn singletons (1997-2002) from the Danish...... associated with these subgroups of anomalies as well as with an increased OR for orofacial cleft anomalies (1.17, 0.94-1.47). Inverse associations for several both air pollution and noise were observed for atrial septal defects (0.85, 0.68-1.04 and 0.81, 0.65-0.99, respectively). CONCLUSIONS: Residential...... road traffic exposure to noise or air pollution during pregnancy did not seem to pose a risk for development of congenital anomalies....

  10. Correlation between co-exposures to noise and air pollution from traffic sources.

    NARCIS (Netherlands)

    Davies, H.W.; Vlaanderen, J.J.; Henderson, S.E.; Brauer, M.

    2009-01-01

    BACKGROUND: Both air and noise pollution associated with motor vehicle traffic have been associated with cardiovascular disease. Similarities in pollution source and health outcome mean that there is potential for noise to confound studies of air pollution and cardiovascular disease, and vice versa,

  11. Cancer risk disparities between hispanic and non-hispanic white populations: the role of exposure to indoor air pollution.

    Science.gov (United States)

    Hun, Diana E; Siegel, Jeffrey A; Morandi, Maria T; Stock, Thomas H; Corsi, Richard L

    2009-12-01

    Hispanics are the fastest growing minority group in the United States; however, minimal information is available on their cancer risks from exposures to hazardous air pollutants (HAPs) and how these risks compare to risks to non-Hispanic whites. We estimated the personal exposure and cancer risk of Hispanic and white adults who participated in the Relationships of Indoor, Outdoor, and Personal Air (RIOPA) study. We evaluated 12 of the sampled volatile organic compounds and carbonyls and identified the HAPs of most concern and their possible sources. Furthermore, we examined sociodemographic factors and building characteristics. Cumulative cancer risks (CCRs) estimated for Hispanics (median = 519 x 10(-6), 90th percentile = 3,968 x 10(-6)) and for whites (median = 443 x 10(-6), 90th percentile = 751 x 10(-6)) were much greater than the U.S. Environmental Protection Agency (EPA) benchmark of 10(-6). Cumulative risks were dominated by formaldehyde and p-dichlorobenzene (p-DCB) and, to a lesser extent, by acetaldehyde, chloroform, and benzene. Exposure to all of these compounds except benzene was primarily due to indoor residential sources. Hispanics had statistically higher CCRs than did whites (p exposure to p-DCB, chloroform, and benzene. Formaldehyde was the largest contributor to CCR for 69% of Hispanics and 88% of whites. Cancer risks for pollutants emitted indoors increased in houses with lower ventilation rates. Hispanics appear to be disproportionately affected by certain HAPs from indoor and outdoor sources. Policies that aim to reduce risk from exposure to HAPs for the entire population and population subgroups should consider indoor air pollution.

  12. Short-Term Exposure to Ambient Air Pollution and Biomarkers of Systemic Inflammation: The Framingham Heart Study.

    Science.gov (United States)

    Li, Wenyuan; Dorans, Kirsten S; Wilker, Elissa H; Rice, Mary B; Ljungman, Petter L; Schwartz, Joel D; Coull, Brent A; Koutrakis, Petros; Gold, Diane R; Keaney, John F; Vasan, Ramachandran S; Benjamin, Emelia J; Mittleman, Murray A

    2017-09-01

    The objective of this study is to examine associations between short-term exposure to ambient air pollution and circulating biomarkers of systemic inflammation in participants from the Framingham Offspring and Third Generation cohorts in the greater Boston area. We included 3996 noncurrent smoking participants (mean age, 53.6 years; 54% women) who lived within 50 km from a central air pollution monitoring site in Boston, MA, and calculated the 1- to 7-day moving averages of fine particulate matter (diameterpollution was associated with higher levels of C-reactive protein, interleukin-6, and tumor necrosis factor receptor 2 but not fibrinogen or tumor necrosis factor α in individuals residing in the greater Boston area. © 2017 American Heart Association, Inc.

  13. Reduced gene expression levels after chronic exposure to high concentrations of air pollutants

    Czech Academy of Sciences Publication Activity Database

    Rössner ml., Pavel; Tulupová, Elena; Rössnerová, Andrea; Líbalová, Helena; Hoňková, Kateřina; Gmuender, H.; Pastorková, Anna; Švecová, Vlasta; Topinka, Jan; Šrám, Radim

    2015-01-01

    Roč. 780, oct (2015), s. 60-70 ISSN 0027-5107 R&D Projects: GA MŽP(CZ) SP/1B3/8/08; GA MŠk(CZ) LO1508; GA ČR GA13-13458S; GA MŠk 2B08005 Institutional support: RVO:68378041 Keywords : chronic exposure * air pollution * gene expression profiles * human health * particulate matter * polycyclic aromatic hydrocarbons Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.581, year: 2015

  14. Exposure to traffic-generated air pollutants mediates alterations in brain microvascular integrity in wildtype mice on a high-fat diet.

    Science.gov (United States)

    Suwannasual, Usa; Lucero, JoAnn; McDonald, Jacob D; Lund, Amie K

    2018-01-01

    Air pollution-exposure is associated with detrimental outcomes in the central nervous system (CNS) such as cerebrovascular disorders, including stroke, and neurodegenerative diseases. While the mechanisms of these CNS-related outcomes involved have not been fully elucidated, exposure to traffic-generated air pollutants has been associated with altered blood brain barrier (BBB) integrity and permeability. The current study investigated whether inhalation exposure to mixed vehicle emissions (MVE) alters cerebral microvascular integrity in healthy 3 mo old C57BL/6 mice, as well as whether exposure-mediated effects were exacerbated by a high-fat (HF) vs. low-fat (LF) diet. Mice on each diet were randomly assigned to be exposed to either filtered air (FA) or MVE [100PM/m 3 vehicle emissions mixture: 30µg PM/m 3 gasoline engine + 70µg PM/m 3 diesel engine emissions; median size ~ 60nm; particle mass size distribution median of ~ 1µm (range: diet, results in altered BBB integrity and increased ox-LDL signaling in the cerebral vasculature in a wildtype animal model. Copyright © 2017 Elsevier Inc. All rights reserved.

  15. Time-varying cycle average and daily variation in ambient air pollution and fecundability.

    Science.gov (United States)

    Nobles, Carrie J; Schisterman, Enrique F; Ha, Sandie; Buck Louis, Germaine M; Sherman, Seth; Mendola, Pauline

    2018-01-01

    Does ambient air pollution affect fecundability? While cycle-average air pollution exposure was not associated with fecundability, we observed some associations for acute exposure around ovulation and implantation with fecundability. Ambient air pollution exposure has been associated with adverse pregnancy outcomes and decrements in semen quality. The LIFE study (2005-2009), a prospective time-to-pregnancy study, enrolled 501 couples who were followed for up to one year of attempting pregnancy. Average air pollutant exposure was assessed for the menstrual cycle before and during the proliferative phase of each observed cycle (n = 500 couples; n = 2360 cycles) and daily acute exposure was assessed for sensitive windows of each observed cycle (n = 440 couples; n = 1897 cycles). Discrete-time survival analysis modeled the association between fecundability and an interquartile range increase in each pollutant, adjusting for co-pollutants, site, age, race/ethnicity, parity, body mass index, smoking, income and education. Cycle-average air pollutant exposure was not associated with fecundability. In acute models, fecundability was diminished with exposure to ozone the day before ovulation and nitrogen oxides 8 days post ovulation (fecundability odds ratio [FOR] 0.83, 95% confidence interval [CI]: 0.72, 0.96 and FOR 0.84, 95% CI: 0.71, 0.99, respectively). However, particulate matter ≤10 microns 6 days post ovulation was associated with greater fecundability (FOR 1.25, 95% CI: 1.01, 1.54). Although our study was unlikely to be biased due to confounding, misclassification of air pollution exposure and the moderate study size may have limited our ability to detect an association between ambient air pollution and fecundability. While no associations were observed for cycle-average ambient air pollution exposure, consistent with past research in the United States, exposure during critical windows of hormonal variability was associated with prospectively measured couple

  16. Association of ambient air pollution with the prevalence and incidence of COPD

    NARCIS (Netherlands)

    Schikowski, Tamara; Adam, Martin; Marcon, Alessandro; Cai, Yutong; Vierkötter, Andrea; Carsin, Anne Elie; Jacquemin, Benedicte; Al Kanani, Zaina; Beelen, Rob; Birk, Matthias; Bridevaux, Pierre Olivier; Brunekreef, Bert; Burney, Peter; Cirach, Marta; Cyrys, Josef; De Hoogh, Kees; De Marco, Roberto; De Nazelle, Audrey; Declercq, Christophe; Forsberg, Bertil; Hardy, Rebecca; Heinrich, Joachim; Hoek, Gerard; Jarvis, Debbie; Keidel, Dirk; Kuh, Diane; Kuhlbusch, Thomas; Migliore, Enrica; Mosler, Gioia; Nieuwenhuijsen, Mark J.; Phuleria, Harish; Rochat, Thierry; Schindler, Christian; Villani, Simona; Tsai, Ming Yi; Zemp, Elisabeth; Hansell, Anna; Kauffmann, Francine; Sunyer, Jordi; Probst-Hensch, Nicole; Krämer, Ursula; Künzli, Nino

    2014-01-01

    The role of air pollution in chronic obstructive pulmonary disease (COPD) remains uncertain. The aim was to assess the impact of chronic exposure to air pollution on COPD in four cohorts using the standardised ESCAPE exposure estimates. Annual average particulate matter (PM), nitrogen oxides (NO x)

  17. Air Pollution Exposure and Lung Function in Children : The ESCAPE Project

    NARCIS (Netherlands)

    Gehring, Ulrike; Gruzieva, Olena; Agius, Raymond M.; Beelen, Rob; Custovic, Adnan; Cyrys, Josef; Eeftens, Marloes; Flexeder, Claudia; Fuertes, Elaine; Heinrich, Joachim; Hoffmann, Barbara; de Jongste, Johan C.; Kerkhof, Marjan; Kluemper, Claudia; Korek, Michal; Moelter, Anna; Schultz, Erica S.; Simpson, Angela; Sugiri, Dorothea; Svartengren, Magnus; von Berg, Andrea; Wijga, Alet H.; Pershagen, Goeran; Brunekreef, Bert

    2013-01-01

    BACKGROUND: There is evidence for adverse effects of outdoor air pollution on lung function of children. Quantitative summaries of the effects of air pollution on lung function, however, are lacking due to large differences among studies. OBJECTIVES: We aimed to study the association between

  18. Respiratory and inflammatory responses to short-term exposure to traffic-related air pollution with and without moderate physical activity.

    Science.gov (United States)

    Kubesch, Nadine Janet; de Nazelle, Audrey; Westerdahl, Dane; Martinez, David; Carrasco-Turigas, Gloria; Bouso, Laura; Guerra, Stefano; Nieuwenhuijsen, Mark J

    2015-04-01

    Exposure to traffic-related air pollution (TRAP) has been associated with adverse respiratory and systemic outcomes. Physical activity (PA) in polluted air may increase pollutant uptake and thereby health effects. The authors aimed to determine the short-term health effects of TRAP in healthy participants and any possible modifying effect of PA. Crossover real-world exposure study comparing in 28 healthy participants pulmonary and inflammatory responses to four different exposure scenarios: 2 h exposure in a high and low TRAP environment, each at rest and in combination with intermittent moderate PA, consisting of four 15 min rest and cycling intervals. Data were analysed using mixed effect models for repeated measures. Intermittent PA compared to rest, irrespective of the TRAP exposure status, increased statistically significant (p≤0.05) pulmonary function (forced expiratory volume in 1 s (34 mL), forced vital capacity (29 mL), forced expiratory flow (FEF25-75%) (91 mL)), lung inflammation (fraction of exhaled nitric oxide, FeNO, (0.89 ppb)), and systemic inflammation markers interleukin-6 (52.3%), leucocytes (9.7%) and neutrophils count (18.8%). Interquartile increases in coarse particulate matter were statistically significantly associated with increased FeNO (0.80 ppb) and neutrophil count (5.7%), while PM2.5 and PM10 (particulate matter smaller than 2.5 and 10 µm in diameter, respectively) increased leucocytes (5.1% and 4.0%, respectively). We found no consistent evidence for an interaction between TRAP and PA for any of the outcomes of interest. In a healthy population, intermittent moderate PA has beneficial effects on pulmonary function even when performed in a highly polluted environment. This study also suggests that particulate air pollution is inducing pulmonary and systemic inflammatory responses. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  19. Air pollution and environmental justice in the Great Lakes region

    Science.gov (United States)

    Comer, Bryan

    While it is true that air quality has steadily improved in the Great Lakes region, air pollution remains at unhealthy concentrations in many areas. Research suggests that vulnerable and susceptible groups in society -- e.g., minorities, the poor, children, and poorly educated -- are often disproportionately impacted by exposure to environmental hazards, including air pollution. This dissertation explores the relationship between exposure to ambient air pollution (interpolated concentrations of fine particulate matter, PM2.5) and sociodemographic factors (race, housing value, housing status, education, age, and population density) at the Census block-group level in the Great Lakes region of the United States. A relatively novel approach to quantitative environmental justice analysis, geographically weighted regression (GWR), is compared with a simplified approach: ordinary least squares (OLS) regression. While OLS creates one global model to describe the relationship between air pollution exposure and sociodemographic factors, GWR creates many local models (one at each Census block group) that account for local variations in this relationship by allowing the value of regression coefficients to vary over space, overcoming OLS's assumption of homogeneity and spatial independence. Results suggest that GWR can elucidate patterns of potential environmental injustices that OLS models may miss. In fact, GWR results show that the relationship between exposure to ambient air pollution and sociodemographic characteristics is non-stationary and can vary geographically and temporally throughout the Great Lakes region. This suggests that regulators may need to address environmental justice issues at the neighborhood level, while understanding that the severity of environmental injustices can change throughout the year.

  20. Augmentation of arginase 1 expression by exposure to air pollution exacerbates the airways hyperresponsiveness in murine models of asthma

    Directory of Open Access Journals (Sweden)

    Amatullah Hajera

    2011-02-01

    Full Text Available Abstract Background Arginase overexpression contributes to airways hyperresponsiveness (AHR in asthma. Arginase expression is further augmented in cigarette smoking asthmatics, suggesting that it may be upregulated by environmental pollution. Thus, we hypothesize that arginase contributes to the exacerbation of respiratory symptoms following exposure to air pollution, and that pharmacologic inhibition of arginase would abrogate the pollution-induced AHR. Methods To investigate the role of arginase in the air pollution-induced exacerbation of airways responsiveness, we employed two murine models of allergic airways inflammation. Mice were sensitized to ovalbumin (OVA and challenged with nebulized PBS (OVA/PBS or OVA (OVA/OVA for three consecutive days (sub-acute model or 12 weeks (chronic model, which exhibit inflammatory cell influx and remodeling/AHR, respectively. Twenty-four hours after the final challenge, mice were exposed to concentrated ambient fine particles plus ozone (CAP+O3, or HEPA-filtered air (FA, for 4 hours. After the CAP+O3 exposures, mice underwent tracheal cannulation and were treated with an aerosolized arginase inhibitor (S-boronoethyl-L-cysteine; BEC or vehicle, immediately before determination of respiratory function and methacholine-responsiveness using the flexiVent®. Lungs were then collected for comparison of arginase activity, protein expression, and immunohistochemical localization. Results Compared to FA, arginase activity was significantly augmented in the lungs of CAP+O3-exposed OVA/OVA mice in both the sub-acute and chronic models. Western blotting and immunohistochemical staining revealed that the increased activity was due to arginase 1 expression in the area surrounding the airways in both models. Arginase inhibition significantly reduced the CAP+O3-induced increase in AHR in both models. Conclusions This study demonstrates that arginase is upregulated following environmental exposures in murine models of

  1. Air pollution and health in Sri Lanka: a review of epidemiologic studies

    Directory of Open Access Journals (Sweden)

    Sathiakumar Nalini

    2010-06-01

    Full Text Available Abstract Background Air pollution is increasingly documented as a threat to public health in most developing countries. Evaluation of current air quality levels, regulatory standards and scientific literature on outdoor and indoor air pollution, and health effects are important to identify the burden, develop and implement interventions and to fill knowledge gaps in Sri Lanka. Methods PUBMED and Medline databases, local journals and conference proceedings were searched for epidemiologic studies pertaining to air pollution and health effects in Sri Lanka. All the studies pertaining to air pollution and health effects were considered. Results Sixteen studies investigated the association between exposure to ambient or indoor air pollution (IAP and various health outcomes ranging from respiratory symptoms, low birth weight and lung cancers. Of the sixteen, three used a case control design. Half of the studies collected exposure data only through questionnaires. There were positive associations between air pollution and adverse health effects in all studies. Methodological limitations in most of the studies resulted in poor quantification of risk estimates. Conclusion A limited number of epidemiological studies in Sri Lanka have investigated the health effects of air pollution. Based on findings of studies and reported air quality levels, air pollution may be considered a neglected public health problem in Sri Lanka.

  2. Air pollution and health in Sri Lanka: a review of epidemiologic studies.

    Science.gov (United States)

    Nandasena, Yatagama Lokuge S; Wickremasinghe, Ananda R; Sathiakumar, Nalini

    2010-06-02

    Air pollution is increasingly documented as a threat to public health in most developing countries. Evaluation of current air quality levels, regulatory standards and scientific literature on outdoor and indoor air pollution, and health effects are important to identify the burden, develop and implement interventions and to fill knowledge gaps in Sri Lanka. PUBMED and Medline databases, local journals and conference proceedings were searched for epidemiologic studies pertaining to air pollution and health effects in Sri Lanka. All the studies pertaining to air pollution and health effects were considered. Sixteen studies investigated the association between exposure to ambient or indoor air pollution (IAP) and various health outcomes ranging from respiratory symptoms, low birth weight and lung cancers. Of the sixteen, three used a case control design. Half of the studies collected exposure data only through questionnaires. There were positive associations between air pollution and adverse health effects in all studies. Methodological limitations in most of the studies resulted in poor quantification of risk estimates. A limited number of epidemiological studies in Sri Lanka have investigated the health effects of air pollution. Based on findings of studies and reported air quality levels, air pollution may be considered a neglected public health problem in Sri Lanka.

  3. Health impact of urban air pollution: the case of the metropolitan Paris area

    International Nuclear Information System (INIS)

    Myrto, V.; Menut, L.; Chatignoux, E.

    2011-01-01

    Urban meteorology and atmospheric composition has become an issue of great public concern. Mega-cities are areas of great population density and also of high rates of gaseous and particulate matter emission. The health of the residents of such large agglomerations will potentially be influenced by the local air-pollution, its formation and dispersion. Efforts are made to link air-pollution and health. Several questions are open: what is the relative contribution of the ambient air-pollution compared to all other exposure factors? What is the 'real' level of exposure reaching the individuals of a population? Can we distinguish the health effects of multiple- pollutants? To answer to these questions we have developed a modeling framework that maps the exposure of the Parisian population to ozone, nitrogen dioxide and fine particles at hourly resolution. This integrated model incorporates a meteorological model, a three-dimensional Eulerian air-quality model and a human exposure module. The first results of this modeling effort suggest new epidemiological evidence of the relationship between ambient air pollution levels and mortality over the city of Paris. (authors)

  4. Evaluating the effect of human activity patterns on air pollution exposure using an integrated field-based and agent-based modelling framework

    Science.gov (United States)

    Schmitz, Oliver; Beelen, Rob M. J.; de Bakker, Merijn P.; Karssenberg, Derek

    2015-04-01

    Constructing spatio-temporal numerical models to support risk assessment, such as assessing the exposure of humans to air pollution, often requires the integration of field-based and agent-based modelling approaches. Continuous environmental variables such as air pollution are best represented using the field-based approach which considers phenomena as continuous fields having attribute values at all locations. When calculating human exposure to such pollutants it is, however, preferable to consider the population as a set of individuals each with a particular activity pattern. This would allow to account for the spatio-temporal variation in a pollutant along the space-time paths travelled by individuals, determined, for example, by home and work locations, road network, and travel times. Modelling this activity pattern requires an agent-based or individual based modelling approach. In general, field- and agent-based models are constructed with the help of separate software tools, while both approaches should play together in an interacting way and preferably should be combined into one modelling framework, which would allow for efficient and effective implementation of models by domain specialists. To overcome this lack in integrated modelling frameworks, we aim at the development of concepts and software for an integrated field-based and agent-based modelling framework. Concepts merging field- and agent-based modelling were implemented by extending PCRaster (http://www.pcraster.eu), a field-based modelling library implemented in C++, with components for 1) representation of discrete, mobile, agents, 2) spatial networks and algorithms by integrating the NetworkX library (http://networkx.github.io), allowing therefore to calculate e.g. shortest routes or total transport costs between locations, and 3) functions for field-network interactions, allowing to assign field-based attribute values to networks (i.e. as edge weights), such as aggregated or averaged

  5. Air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, W; Mainwaring, S J

    1984-01-01

    This book deals with the nature of air pollution. The numerous sources of unwanted gases and dust particles in the air are discussed. Details are presented of the effects of pollutants on man, animals, vegetation and on inanimate materials. Methods used to measure, monitor and control air pollution are presented. The authors include information on the socio-economic factors which impinge on pollution control and on the problems the future will bring as methods of generating energy change and industries provide new sources of pollutants.

  6. The impact of prenatal exposure to air pollution on childhood wheezing and asthma: A systematic review.

    Science.gov (United States)

    Hehua, Zhang; Qing, Chang; Shanyan, Gao; Qijun, Wu; Yuhong, Zhao

    2017-11-01

    There has been no clear consensus about whether prenatal exposure to air pollution contributes to the development of wheezing and asthma in children. We conducted a systematic review to analyze the association between exposure to different pollutants during pregnancy and the development of childhood wheezing and asthma. We systematically reviewed epidemiological studies published through June 6, 2017 available in the MEDLINE and Web of Science databases. We included studies that examined the association between prenatal exposure to any air pollutants except tobacco smoke and the incidence or prevalence of "wheezing" or "asthma" from birth to 14 years of age. We extracted key characteristics of each included study using a template of predefined data items. We used the Critical Appraisal Skills Programme checklists to assess the validity of each included study. We conducted overall and subgroup meta-analyses for each summary exposure-outcome association. Pooled odds ratios (OR) with 95% confidence intervals (CI) were estimated by using a random effects model. Eighteen studies met our eligibility criteria. There was notable variability in exposure assessment methods. The overall random effects risk estimates (95% CI) of different pollutants were 1.04 (0.94-1.15) aromatic hydrocarbons (PAH), 1.04 (1.01-1.07) NO 2 , 1.4 (0.97-2.03) PM 2.5 for childhood wheeze and 1.07 (1.01-1.14) NO 2 , 1 (0.97-1.03) PM 2.5 , 1.02 (0.98-1.07) SO 2 , 1.08 (1.05-1.12) PM 10 for childhood asthma. Minimal heterogeneity was seen for PAH and SO 2 , while some heterogeneity was observed for PM 10 , PM 2.5 and NO 2 . The overall and subgroup risk estimates from the meta-analyses showed statistically significant associations between prenatal exposures to NO 2 , SO 2 , and PM 10 and the risk of wheezing and asthma development in childhood. There is insufficient evidence to show an effect of prenatal exposure to BC, CO, and O 3 on childhood wheezing and asthma. Further studies are needed to

  7. Exposure to Outdoor Air Pollution and Chronic Bronchitis in Adults: A Case-Control Study

    Directory of Open Access Journals (Sweden)

    P Salameh

    2012-08-01

    Full Text Available Background: Although Lebanon is a highly polluted country, so far no study has specifically been designed to assess the association between outdoor air pollution and chronic bronchitis in this country. Objective: To assess the association between exposure to outdoor air pollution and chronic bronchitis in Lebanon. Methods: A pilot case-control study was conducted in two tertiary care hospitals. Cases consisted of patients diagnosed with chronic bronchitis by a pulmonologist and those epidemiologically confirmed. Controls included individuals free of any respiratory signs or symptoms. After obtaining informed consent, a standardized questionnaire was administered. Results: Bivariate, stratified (over smoking status and gender and multivariate analyses revealed that passive smoking at home (ORa: 2.56, 95% CI: 1.73–3.80 and at work (ORa: 1.89, 95% CI: 1.13–3.17; older age (ORa: 1.75, 95% CI: 1.55–2.39; lower education (ORa: 1.44, 95% CI: 1.21–1.72; living close to a busy road (ORa: 1.95, 95% CI: 1.31– 2.89 and to a local power plant (ORa: 1.62, 95% CI: 1.07–2.45; and heating home by hot air conditioning (ORa: 1.85, 95% CI: 1.00–3.43 were moderately associated with chronic bronchitis; an inverse association was found with heating home electrically (ORa: 0.58, 95% CI: 0.39–0.85. A positive dose-effect relationship was observed in those living close to a busy road and to a local diesel exhaust source. Conclusion: Chronic bronchitis is associated with outdoor air pollution.

  8. Does Traffic-related Air Pollution Explain Associations of Aircraft and Road Traffic Noise Exposure on Children's Health and Cognition? A Secondary Analysis of the United Kingdom Sample From the RANCH Project

    Science.gov (United States)

    Clark, Charlotte; Crombie, Rosanna; Head, Jenny; van Kamp, Irene; van Kempen, Elise; Stansfeld, Stephen A.

    2012-01-01

    The authors examined whether air pollution at school (nitrogen dioxide) is associated with poorer child cognition and health and whether adjustment for air pollution explains or moderates previously observed associations between aircraft and road traffic noise at school and children's cognition in the 2001–2003 Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) project. This secondary analysis of a subsample of the United Kingdom RANCH sample examined 719 children who were 9–10 years of age from 22 schools around London's Heathrow airport for whom air pollution data were available. Data were analyzed using multilevel modeling. Air pollution exposure levels at school were moderate, were not associated with a range of cognitive and health outcomes, and did not account for or moderate associations between noise exposure and cognition. Aircraft noise exposure at school was significantly associated with poorer recognition memory and conceptual recall memory after adjustment for nitrogen dioxide levels. Aircraft noise exposure was also associated with poorer reading comprehension and information recall memory after adjustment for nitrogen dioxide levels. Road traffic noise was not associated with cognition or health before or after adjustment for air pollution. Moderate levels of air pollution do not appear to confound associations of noise on cognition and health, but further studies of higher air pollution levels are needed. PMID:22842719

  9. Does traffic-related air pollution explain associations of aircraft and road traffic noise exposure on children's health and cognition? A secondary analysis of the United Kingdom sample from the RANCH project.

    Science.gov (United States)

    Clark, Charlotte; Crombie, Rosanna; Head, Jenny; van Kamp, Irene; van Kempen, Elise; Stansfeld, Stephen A

    2012-08-15

    The authors examined whether air pollution at school (nitrogen dioxide) is associated with poorer child cognition and health and whether adjustment for air pollution explains or moderates previously observed associations between aircraft and road traffic noise at school and children's cognition in the 2001-2003 Road Traffic and Aircraft Noise Exposure and Children's Cognition and Health (RANCH) project. This secondary analysis of a subsample of the United Kingdom RANCH sample examined 719 children who were 9-10 years of age from 22 schools around London's Heathrow airport for whom air pollution data were available. Data were analyzed using multilevel modeling. Air pollution exposure levels at school were moderate, were not associated with a range of cognitive and health outcomes, and did not account for or moderate associations between noise exposure and cognition. Aircraft noise exposure at school was significantly associated with poorer recognition memory and conceptual recall memory after adjustment for nitrogen dioxide levels. Aircraft noise exposure was also associated with poorer reading comprehension and information recall memory after adjustment for nitrogen dioxide levels. Road traffic noise was not associated with cognition or health before or after adjustment for air pollution. Moderate levels of air pollution do not appear to confound associations of noise on cognition and health, but further studies of higher air pollution levels are needed.

  10. A prospective study (SCOPE) comparing the cardiometabolic and respiratory effects of air pollution exposure on healthy and pre-diabetic individuals.

    Science.gov (United States)

    Wang, Yanwen; Han, Yiqun; Zhu, Tong; Li, Weiju; Zhang, Hongyin

    2018-01-01

    Air pollution is known to be a major risk factor for cardiopulmonary disease, but this is unclear for cardiometabolic disease (e.g. diabetes). This is of considerable public health importance, given the nationwide epidemic of diabetes, accompanied by severe air pollution, in China. The evidence so far remained inadequate to answer questions of whether individuals with cardiometabolic dysfunctions are susceptible to air pollution and whether air pollution exacerbates diabetes development via certain biological pathways. In this manuscript, we summarize the results and limitations of studies exploring these two topics and elaborate our design of a prospective panel study (SCOPE) as a solution. We assessed and compared the health effect of air pollution among pre-diabetic individuals and matched healthy controls through four repeated clinical visits over 1 year. Comprehensive evaluation was made to both health endpoints and exposure. The primary biomarkers were assessed to reveal the impact on multiple biological pathways, including glycolipid metabolism and insulin resistance, endothelial function, and inflammation. Detailed chemical and size fractional components of particulate matter were measured in this study, along with the application of personal monitors. The work should increase our understanding of how air pollution affects individuals with cardiometabolic dysfunction and the underlying mechanisms.

  11. Traffic-related air pollution, preterm birth and term birth weight in the PIAMA birth cohort study

    NARCIS (Netherlands)

    Gehring, Ulrike; Wijga, Alet H.; Fischer, Paul; de Jongste, Johan C.; Kerkhof, Marjan; Koppelman, Gerard H.; Smit, Henriette A.; Brunekreef, Bert

    Background: Maternal exposure to air pollution has been associated with adverse pregnancy outcomes. Few studies took into account the spatial and temporal variation of air pollution levels. Objectives: To evaluate the impact of maternal exposure to traffic-related air pollution during pregnancy on

  12. Oxidative damage to DNA and lipids as biomarkers of exposure to air pollution

    DEFF Research Database (Denmark)

    Møller, Peter; Loft, Steffen

    2010-01-01

    BACKGROUND: Air pollution is thought to exert health effects through oxidative stress, which causes damage to DNA and lipids. OBJECTIVE: We determined whether levels of oxidatively damaged DNA and lipid peroxidation products in cells or bodily fluids from humans are useful biomarkers...... of biologically effective dose in studies of the health effects of exposure to particulate matter (PM) from combustion processes. DATA SOURCES: We identified publications that reported estimated associations between environmental exposure to PM and oxidative damage to DNA and lipids in PubMed and EMBASE. We also...... identified publications from reference lists and articles cited in the Web of Science. DATA EXTRACTION: For each study, we obtained information on the estimated effect size to calculate the standardized mean difference (unitless) and determined the potential for errors in exposure assessment and analysis...

  13. Is There an Association Between Ambient Air Pollution and Bladder Cancer Incidence? Analysis of 15 European Cohorts

    DEFF Research Database (Denmark)

    Pedersen, Marie; Stafoggia, Massimo; Weinmayr, Gudrun

    2016-01-01

    Background: Ambient air pollution contains low concentrations of carcinogens implicated in the etiology of urinary bladder cancer (BC). Little is known about whether exposure to air pollution influences BC in the general population. Objective: To evaluate the association between long-term exposure......) with diameter Pollution Effects project...... of information about lifetime exposure. Conclusions: There was no evidence of an association between exposure to outdoor air pollution levels at place of residence and risk of BC. Patient summary: We assessed the link between outdoor air pollution at place of residence and bladder cancer using the largest study...

  14. Impact of Air Pollutants on Outpatient Visits for Acute Respiratory Outcomes

    Directory of Open Access Journals (Sweden)

    Ran Li

    2017-01-01

    Full Text Available The air pollution in China is a severe problem. The aim of our study was to investigate the impact of air pollutants on acute respiratory outcomes in outpatients. Outpatient data from 2 December 2013 to 1 December 2014 were collected, as well as air pollutant data including ozone (O3, nitrogen dioxide (NO2, carbon monoxide (CO, sulfur dioxide (SO2, and particulate matter (PM2.5 and PM10. We screened six categories of acute respiratory outcomes and analyzed their associations with different air pollutant exposures, including upper respiratory tract infection (URTI, acute bronchitis (AB, community-acquired pneumonia (CAP, acute exacerbation of chronic obstructive pulmonary disease (AECOPD, acute exacerbation of asthma (AE-asthma, and acute exacerbation of bronchiectasis (AEBX. A case-crossover design with a bidirectional control sampling approach was used for statistical analysis. A total of 57,144 patients were enrolled for analysis. PM2.5, PM10, NO2, SO2, and CO exposures were positively associated with outpatient visits for URTI, AB, CAP, and AEBX. PM10, SO2, and CO exposures were positively associated with outpatient visits for AECOPD. Exposure to O3 was positively associated with outpatient visits for AE-asthma, but negatively associated with outpatient visits for URTI, CAP, and AEBX. In conclusion, air pollutants had acute effects on outpatient visits for acute respiratory outcomes, with specific outcomes associated with specific pollutants.

  15. Fish oil and olive oil supplements attenuate the adverse cardiovascular effects of concentrated ambient air pollution particles exposure in healthy middle-aged adult human volunteers

    Science.gov (United States)

    Exposure to ambient levels of air pollution increases cardiovascular morbidity and mortality. Advanced age is among the factors associated with susceptibility to the adverse effects of air pollution. Dietary fatty acid supplementation has been shown to decrease cardiovascular ris...

  16. Estimation of exposure to atmospheric pollutants during pregnancy integrating space-time activity and indoor air levels: does it make a difference?

    Science.gov (United States)

    Marion, OUIDIR; Lise, GIORGIS-ALLEMAND; Sarah, LYON-CAEN; Xavier, MORELLI; Claire, CRACOWSKI; Sabrina, PONTET; Isabelle, PIN; Johanna, LEPEULE; Valérie, SIROUX; Rémy, SLAMA

    2016-01-01

    Studies of air pollution effects during pregnancy generally only consider exposure in the outdoor air at the home address. We aimed to compare exposure models differing in their ability to account for the spatial resolution of pollutants, space-time activity and indoor air pollution levels. We recruited 40 pregnant women in the Grenoble urban area, France, who carried a Global Positioning System (GPS) during up to 3 weeks; in a subgroup, indoor measurements of fine particles (PM2.5) were conducted at home (n=9) and personal exposure to nitrogen dioxide (NO2) was assessed using passive air samplers (n=10). Outdoor concentrations of NO2, and PM2.5 were estimated from a dispersion model with a fine spatial resolution. Women spent on average 16 h per day at home. Considering only outdoor levels, for estimates at the home address, the correlation between the estimate using the nearest background air monitoring station and the estimate from the dispersion model was high (r=0.93) for PM2.5 and moderate (r=0.67) for NO2. The model incorporating clean GPS data was less correlated with the estimate relying on raw GPS data (r=0.77) than the model ignoring space-time activity (r=0.93). PM2.5 outdoor levels were not to moderately correlated with estimates from the model incorporating indoor measurements and space-time activity (r=−0.10 to 0.47), while NO2 personal levels were not correlated with outdoor levels (r=−0.42 to 0.03). In this urban area, accounting for space-time activity little influenced exposure estimates; in a subgroup of subjects (n=9), incorporating indoor pollution levels seemed to strongly modify them. PMID:26300245

  17. Acute symptoms related to air pollution in urban areas: a study protocol

    Directory of Open Access Journals (Sweden)

    Forouzanfar Mohammad

    2006-08-01

    Full Text Available Abstract Background The harmful effects of urban air pollution on general population in terms of annoying symptoms are not adequately evaluated. This is in contrast to the hospital admissions and short term mortality. The present study protocol is designed to assess the association between the level of exposure to certain ambient air pollutants and a wide range of relevant symptoms. Awareness of the impact of pollution on the population at large will make our estimates of the pertinent covert burden imposed on the society more accurate. Methods/design A cross sectional study with spatial analysis for the addresses of the participants was conducted. Data were collected via telephone interviews administered to a representative sample of civilians over age four in the city. Households were selected using random digit dialling procedures and randomization within each household was also performed to select the person to be interviewed. Levels of exposure are quantified by extrapolating the addresses of the study population over the air pollution matrix of the city at the time of the interview and also for different lag times. This information system uses the data from multiple air pollution monitoring stations in conjunction with meteorological data. General linear models are applied for statistical analysis. Discussion The important limitations of cross-sectional studies on acute effects of air pollution are personal confounders and measurement error for exposure. A wide range of confounders in this study are controlled for in the statistical analysis. Exposure error may be minimised by employing a validated geographical information system that provides accurate estimates and getting detailed information on locations of individual participants during the day. The widespread operation of open air conditioning systems in the target urban area which brings about excellent mixing of the outdoor and indoor air increases the validity of outdoor pollutants

  18. Forecasting human exposure to atmospheric pollutants in Portugal - A modelling approach

    Science.gov (United States)

    Borrego, C.; Sá, E.; Monteiro, A.; Ferreira, J.; Miranda, A. I.

    2009-12-01

    Air pollution has become one main environmental concern because of its known impact on human health. Aiming to inform the population about the air they are breathing, several air quality modelling systems have been developed and tested allowing the assessment and forecast of air pollution ambient levels in many countries. However, every day, an individual is exposed to different concentrations of atmospheric pollutants as he/she moves from and to different outdoor and indoor places (the so-called microenvironments). Therefore, a more efficient way to prevent the population from the health risks caused by air pollution should be based on exposure rather than air concentrations estimations. The objective of the present study is to develop a methodology to forecast the human exposure of the Portuguese population based on the air quality forecasting system available and validated for Portugal since 2005. Besides that, a long-term evaluation of human exposure estimates aims to be obtained using one-year of this forecasting system application. Additionally, a hypothetical 50% emission reduction scenario has been designed and studied as a contribution to study emission reduction strategies impact on human exposure. To estimate the population exposure the forecasting results of the air quality modelling system MM5-CHIMERE have been combined with the population spatial distribution over Portugal and their time-activity patterns, i.e. the fraction of the day time spent in specific indoor and outdoor places. The population characterization concerning age, work, type of occupation and related time spent was obtained from national census and available enquiries performed by the National Institute of Statistics. A daily exposure estimation module has been developed gathering all these data and considering empirical indoor/outdoor relations from literature to calculate the indoor concentrations in each one of the microenvironments considered, namely home, office/school, and other

  19. Placental promoter methylation of DNA repair genes and prenatal exposure to particulate air pollution: an ENVIRONAGE cohort study

    Directory of Open Access Journals (Sweden)

    Kristof Y Neven, MSc

    2018-04-01

    Full Text Available Summary: Background: Exposure to particulate air pollution has been linked with risk of carcinogenesis. Damage to repair pathways might have long-term adverse health effects. We aimed to investigate the association of prenatal exposure to air pollution with placental mutation rate and the DNA methylation of key placental DNA repair genes. Methods: This cohort study used data from the ongoing ENVironmental Influence ON early AGEing (ENVIRONAGE birth cohort, which enrols pairs of mothers and neonates (singleton births only at the East-Limburg Hospital (Genk, Belgium. Placental DNA samples were collected after birth. We used bisulfite-PCR-pyrosequencing to investigate the mutation rate of Alu (a marker for overall DNA mutation and DNA methylation in the promoter genes of key DNA repair and tumour suppressor genes (APEX1, OGG1, PARP1, ERCC1, ERCC4, p53, and DAPK1. We used a high-resolution air pollution model to estimate exposure to particulate matter with a diameter less than 2·5 μm (PM2·5, black carbon, and NO2 over the entire pregnancy on the basis of maternal address. Alu mutation was analysed with a linear regression model, and methylation values of the selected genes were analysed in mixed-effects models. Effect estimates are presented as the relative percentage change in methylation for an ambient air pollution increment of one IQR (ie, the difference between the first and third quartiles of exposure in the entire cohort. Findings: 500 biobanked placental DNA samples were randomly selected from 814 pairs of mothers and neonates who were recruited to the cohort between Feb 1, 2010, and Dec 31, 2014, of which 463 samples met the pyrosequencing quality control criteria. IQR exposure increments were 3·84 μg/m3 for PM2·5, 0·36 μg/m3 for black carbon, and 5·34 μg/m3 for NO2. Among these samples, increased Alu mutation rate was associated with greater exposure to PM2·5 (r=0·26, p<0·0001 and black carbon (r=0·33, p<0·0001, but not NO2

  20. Respiratory alterations due to urban air pollution: An experimental study in rats

    International Nuclear Information System (INIS)

    Saldiva, P.H.N.; King, M.; Delmonte, V.L.C.; Macchione, M.; Parada, M.A.C.; Daliberto, M.L.; Sakae, R.S.; Criado, P.M.P.; Silveira, P.L.P.; Zin, W.A.; Boehm, G.M.

    1992-01-01

    In order to assess the adverse effects of urban levels of air pollution, rats were used as biological indicators in a chronic exposure experiment. Animals were housed for 6 months in the center of Sao Paulo and were compared to controls kept for the same period in a clean area. Pollution levels were obtained from a State air pollution monitoring station, 200 m distant from the exposure place, which provided the levels of CO, SO 2 , particulates, and ozone. The animals were submitted to several tests focusing on the respiratory system, comprising pulmonary function tests, studies on mucociliary clearance and mucus rheology, histochemical evaluation of airways, bronchoalveolar lavage, and ultrastructural studies of the epithelium of the airways. Rats exposed to air pollution developed secretory cell hyperplasia in the airways, ultrastructural ciliary alterations, and a more rigid mucus, changes that caused mucociliary clearance impairment. In addition, nasal resistance and the number of inflammatory cells recovered by bronchoalveolar lavage were increased in air pollution exposed animals. The results obtained in the present investigation suggest that chronic exposure to urban levels of air pollution may cause respiratory lesions in rats

  1. Land cover and air pollution are associated with asthma hospitalisations: A cross-sectional study.

    Science.gov (United States)

    Alcock, Ian; White, Mathew; Cherrie, Mark; Wheeler, Benedict; Taylor, Jonathon; McInnes, Rachel; Otte Im Kampe, Eveline; Vardoulakis, Sotiris; Sarran, Christophe; Soyiri, Ireneous; Fleming, Lora

    2017-12-01

    There is increasing policy interest in the potential for vegetation in urban areas to mitigate harmful effects of air pollution on respiratory health. We aimed to quantify relationships between tree and green space density and asthma-related hospitalisations, and explore how these varied with exposure to background air pollution concentrations. Population standardised asthma hospitalisation rates (1997-2012) for 26,455 urban residential areas of England were merged with area-level data on vegetation and background air pollutant concentrations. We fitted negative binomial regression models using maximum likelihood estimation to obtain estimates of asthma-vegetation relationships at different levels of pollutant exposure. Green space and gardens were associated with reductions in asthma hospitalisation when pollutant exposures were lower but had no significant association when pollutant exposures were higher. In contrast, tree density was associated with reduced asthma hospitalisation when pollutant exposures were higher but had no significant association when pollutant exposures were lower. We found differential effects of natural environments at high and low background pollutant concentrations. These findings can provide evidence for urban planning decisions which aim to leverage health co-benefits from environmental improvements. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Using a chemistry transport model to account for the spatial variability of exposure concentrations in epidemiologic air pollution studies.

    Science.gov (United States)

    Valari, Myrto; Menut, Laurent; Chatignoux, Edouard

    2011-02-01

    Environmental epidemiology and more specifically time-series analysis have traditionally used area-averaged pollutant concentrations measured at central monitors as exposure surrogates to associate health outcomes with air pollution. However, spatial aggregation has been shown to contribute to the overall bias in the estimation of the exposure-response functions. This paper presents the benefit of adding features of the spatial variability of exposure by using concentration fields modeled with a chemistry transport model instead of monitor data and accounting for human activity patterns. On the basis of county-level census data for the city of Paris, France, and a Monte Carlo simulation, a simple activity model was developed accounting for the temporal variability between working and evening hours as well as during transit. By combining activity data with modeled concentrations, the downtown, suburban, and rural spatial patterns in exposure to nitrogen dioxide, ozone, and PM2.5 (particulate matter [PM] pollution on total nonaccidental mortality for the 4-yr period from 2001 to 2004. It was shown that the time series of the exposure surrogates developed here are less correlated across co-pollutants than in the case of the area-averaged monitor data. This led to less biased exposure-response functions when all three co-pollutants were inserted simultaneously in the same regression model. This finding yields insight into pollutant-specific health effects that are otherwise masked by the high correlation among co-pollutants.

  3. Comparative assessment of air pollution tolerance index (APTI) in ...

    African Journals Online (AJOL)

    Lalita

    Key words: Air pollution tolerance indices (APTI), biochemical parameters, Ficus bengalensis, roadside plants. INTRODUCTION. Air pollution has ... aspects of the quality of the urban environment and the cleanliness of life in a city .... chlorophyll content in variety of crop plant due to NO2,. SO2 and O3 exposure have also ...

  4. Mobile Air Monitoring Data Processing Strategies and Effects on Spatial Air Pollution Trends

    Science.gov (United States)

    The collection of real-time air quality measurements while in motion (i.e., mobile monitoring) is currently conducted worldwide to evaluate in situ emissions, local air quality trends, and air pollutant exposure. This measurement strategy pushes the limits of traditional data an...

  5. Health effects of ambient air pollution – recent research development and contemporary methodological challenges

    Directory of Open Access Journals (Sweden)

    Ren Cizao

    2008-11-01

    Full Text Available Abstract Exposure to high levels of air pollution can cause a variety of adverse health outcomes. Air quality in developed countries has been generally improved over the last three decades. However, many recent epidemiological studies have consistently shown positive associations between low-level exposure to air pollution and health outcomes. Thus, adverse health effects of air pollution, even at relatively low levels, remain a public concern. This paper aims to provide an overview of recent research development and contemporary methodological challenges in this field and to identify future research directions for air pollution epidemiological studies.

  6. A principal components analysis of the factors effecting personal exposure to air pollution in urban commuters in Dublin, Ireland.

    Science.gov (United States)

    McNabola, Aonghus; Broderick, Brian M; Gill, Laurence W

    2009-10-01

    Principal component analysis was used to examine air pollution personal exposure data of four urban commuter transport modes for their interrelationships between pollutants and relationships with traffic and meteorological data. Air quality samples of PM2.5 and VOCs were recorded during peak traffic congestion for the car, bus, cyclist and pedestrian between January 2005 and June 2006 on a busy route in Dublin, Ireland. In total, 200 personal exposure samples were recorded each comprising 17 variables describing the personal exposure concentrations, meteorological conditions and traffic conditions. The data reduction technique, principal component analysis (PCA), was used to create weighted linear combinations of the data and these were subsequently examined for interrelationships between the many variables recorded. The results of the PCA found that personal exposure concentrations in non-motorised forms of transport were influenced to a higher degree by wind speed, whereas personal exposure concentrations in motorised forms of transport were influenced to a higher degree by traffic congestion. The findings of the investigation show that the most effective mechanisms of personal exposure reduction differ between motorised and non-motorised modes of commuter transport.

  7. Air Quality and Indoor Environmental Exposures: Clinical ...

    Science.gov (United States)

    Indoor air quality (IAQ) is a term which refers to the air quality within and around buildings and homes as it relates to the health and comfort of the occupants. Many ambient (outdoor) air pollutants readily permeate indoor spaces. Because indoor air can be considerably more polluted than ambient air, the USEPA lists poor IAQ as a major environmental concern. In the sections that follow, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. In some cases, exposure may be acute, with one or more pets (and owners) experiencing signs within a relatively short period. However, most exposures are episodic or chronic, making it difficult to definitively link poor IAQ to respiratory or other adverse health outcomes. Age or underlying immunologic, cardiac, or respiratory disease may further complicate the clinical picture, as those patients may be more sensitive to (and affected by) lower concentrations than prove problematic for healthy housemates. Because pets, like their owners, spend most of their lives indoors, we will discuss how certain home conditions can worsen indoor air quality and will briefly discuss measures to improve IAQ for owners and their pets. In this overview presentation, health effects associated with commonly encountered ambient air pollutants and indoor contaminants will be broken down by agent class. Because pets, like their owners, spend most of their lives indoo

  8. Exposure to Household Air Pollution from Biomass-Burning Cookstoves and HbA1c and Diabetic Status among Honduran Women.

    Science.gov (United States)

    Rajkumar, Sarah; Clark, Maggie L; Young, Bonnie N; Benka-Coker, Megan L; Bachand, Annette M; Brook, Robert D; Nelson, Tracy L; Volckens, John; Reynolds, Stephen J; L'Orange, Christian; Good, Nicholas; Koehler, Kirsten; Africano, Sebastian; Osorto Pinel, Anibal B; Peel, Jennifer L

    2018-06-13

    Household air pollution from biomass cookstoves is estimated to be responsible for more than two and a half million premature deaths annually, primarily in low and middle-income countries where cardiometabolic disorders, such as Type II Diabetes, are increasing. Growing evidence supports a link between ambient air pollution and diabetes, but evidence for household air pollution is limited. This cross-sectional study of 142 women (72 with traditional stoves and 70 with cleaner-burning Justa stoves) in rural Honduras evaluated the association of exposure to household air pollution (stove type, 24-hour average kitchen and personal fine particulate matter [PM 2.5 ] mass and black carbon) with glycated hemoglobin (HbA1c) levels and diabetic status based on HbA1c levels. The prevalence ratio [PR] per interquartile range increase in pollution concentration indicated higher prevalence of prediabetes/diabetes (versus normal HbA1c) for all pollutant measures (e.g., PR per 84 μg/m 3 increase in personal PM 2.5 , 1.49; 95% confidence interval [CI], 1.11 - 2.01). Results for HbA1c as a continuous variable were generally in the hypothesized direction. These results provide some evidence linking household air pollution with the prevalence of prediabetes/diabetes, and, if confirmed, suggest that the global public health impact of household air pollution may be broader than currently estimated. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  9. Indoor air pollution and respiratory health in the elderly.

    Science.gov (United States)

    Bentayeb, Malek; Simoni, Marzia; Norback, Dan; Baldacci, Sandra; Maio, Sara; Viegi, Giovanni; Annesi-Maesano, Isabella

    2013-01-01

    Data on respiratory effects of indoor air pollution in elderly are scanty. The purpose of this review is to summarize current knowledge on adverse respiratory effects of indoor air pollution in individuals aged over 65 years, by presenting existing epidemiological evidence. Using MEDLINE database through PubMed, we identified relevant publications published between 1991 and 2011 in English on respiratory health effects of indoor air pollution in elderly (>65 years). A total of 61 studies were found and after application of the inclusion criteria: (i) epidemiologic studies published in English in peer-reviewed journals between January 1991 and December 2011, (ii) study population with age over or equal 65 years, and (iii) outcome of respiratory symptoms and disease with the exclusion of lung cancer, 33 relevant publications were selected. Most of them showed significant relationships between exposure to major indoor air pollutants and various short-term and long-term respiratory health outcomes such as wheezing, breathlessness, cough, phlegm, asthma, COPD, lung cancer and more rarely lung function decline. The most consistent relationship is found between chronic obstructive pulmonary disease (COPD) and environmental tobacco smoke (ETS). Further studies in the elderly population are needed in order to define causal relationships between exposures to indoor air pollution and underlying mechanisms in this sub-population.

  10. Prenatal and childhood traffic-related air pollution exposure and childhood executive function and behavior.

    Science.gov (United States)

    Harris, Maria H; Gold, Diane R; Rifas-Shiman, Sheryl L; Melly, Steven J; Zanobetti, Antonella; Coull, Brent A; Schwartz, Joel D; Gryparis, Alexandros; Kloog, Itai; Koutrakis, Petros; Bellinger, David C; Belfort, Mandy B; Webster, Thomas F; White, Roberta F; Sagiv, Sharon K; Oken, Emily

    Traffic-related air pollution exposure may influence brain development and function and thus be related to neurobehavioral problems in children, but little is known about windows of susceptibility. Examine associations of gestational and childhood exposure to traffic-related pollution with executive function and behavior problems in children. We studied associations of pre- and postnatal pollution exposures with neurobehavioral outcomes in 1212 children in the Project Viva pre-birth cohort followed to mid-childhood (median age 7.7years). Parents and classroom teachers completed the Behavior Rating Inventory of Executive Function (BRIEF) and the Strengths and Difficulties Questionnaire (SDQ). Using validated spatiotemporal models, we estimated exposure to black carbon (BC) and fine particulate matter (PM 2.5 ) in the third trimester of pregnancy, from birth to 3years, from birth to 6years, and in the year before behavioral ratings. We also measured residential distance to major roadways and near-residence traffic density at birth and in mid-childhood. We estimated associations of BC, PM 2.5 , and other traffic exposure measures with BRIEF and SDQ scores, adjusted for potential confounders. Higher childhood BC exposure was associated with higher teacher-rated BRIEF Behavioral Regulation Index (BRI) scores, indicating greater problems: 1.0 points (95% confidence interval (CI): 0.0, 2.1) per interquartile range (IQR) increase in birth-age 6BC, and 1.7 points (95% CI: 0.6, 2.8) for BC in the year prior to behavioral ratings. Mid-childhood residential traffic density was also associated with BRI score (0.6, 95% CI: 0.1, 1.1). Birth-age 3BC was not associated with BRIEF or SDQ scores. Third trimester BC exposure was not associated with teacher-rated BRI scores (-0.2, 95% CI: -1.1, 0.8), and predicted lower scores (fewer problems) on the BRIEF Metacognition Index (-1.2, 95% CI: -2.2, -0.2) and SDQ total difficulties (-0.9, 95% CI: -1.4, -0.4). PM 2.5 exposure was

  11. Air pollution meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Shirvaikar, V V; Daoo, V J [Environmental Assessment Div., Bhabha Atomic Research Centre, Mumbai (India)

    2002-06-01

    This report is intended as a training cum reference document for scientists posted at the Environmental Laboratories at the Nuclear Power Station Sites and other sites of the Department of Atomic Energy with installations emitting air pollutants, radioactive or otherwise. Since a manual already exists for the computation of doses from radioactive air pollutants, a general approach is take here i.e. air pollutants in general are considered. The first chapter presents a brief introduction to the need and scope of air pollution dispersion modelling. The second chapter is a very important chapter discussing the aspects of meteorology relevant to air pollution and dispersion modelling. This chapter is important because without this information one really does not understand the phenomena affecting dispersion, the scope and applicability of various models or their limitations under various weather and site conditions. The third chapter discusses the air pollution models in detail. These models are applicable to distances of a few tens of kilometres. The fourth chapter discusses the various aspects of meteorological measurements relevant to air pollution. The chapters are followed by two appendices. Apendix A discusses the reliability of air pollution estimates. Apendix B gives some practical examples relevant to general air pollution. It is hoped that the document will prove very useful to the users. (author)

  12. Household air pollution and its effects on health [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Komalkirti Apte

    2016-10-01

    Full Text Available Household air pollution is a leading cause of disability-adjusted life years in Southeast Asia and the third leading cause of disability-adjusted life years globally. There are at least sixty sources of household air pollution, and these vary from country to country. Indoor tobacco smoking, construction material used in building houses, fuel used for cooking, heating and lighting, use of incense and various forms of mosquito repellents, use of pesticides and chemicals used for cleaning at home, and use of artificial fragrances are some of the various sources that contribute to household air pollution. Household air pollution affects all stages of life with multi-systemic health effects, and its effects are evident right from pre-conception to old age. In utero exposure to household air pollutants has been shown to have health effects which resonate over the entire lifetime. Exposures to indoor air pollutants in early childhood also tend to have repercussions throughout life. The respiratory system bears the maximum brunt, but effects on the cardiovascular system, endocrine system, and nervous system are largely underplayed. Household air pollutants have also been implicated in the development of various types of cancers. Identifying household air pollutants and their health implications helps us prepare for various health-related issues. However, the real challenge is adopting changes to reduce the health effects of household air pollution and designing innovative interventions to minimize the risk of further exposure. This review is an attempt to understand the various sources of household air pollution, the effects on health, and strategies to deal with this emergent risk factor of global mortality and morbidity.

  13. Air Pollution and Nonmalignant Respiratory Mortality in 16 Cohorts within the ESCAPE Project

    DEFF Research Database (Denmark)

    Dimakopoulou, Konstantina; Samoli, Evangelia; Beelen, Rob

    2014-01-01

    Rationale: Prospective cohort studies have shown that chronic exposure to particulate matter and traffic related air pollution is associated with reduced survival. However, the effects on non-malignant respiratory mortality are less studied and those reported are less consistent. Objectives: We...... have investigated the relationship of long-term exposure to air pollution and non-malignant respiratory mortality in 16 cohorts with individual level data within the multi center European Study of Cohorts for Air Pollution Effects (ESCAPE). Methods: Data from 16 ongoing cohort studies from Europe were...... used. The total number of subjects was 307,553. There were 1,559 respiratory deaths during follow-up. Measurements: Air pollution exposure was estimated by land use regression models at the baseline residential addresses of study participants and traffic-proximity variables were derived from...

  14. Chromosomal Aberrations in Humans Induced by Urban Air Pollution

    DEFF Research Database (Denmark)

    Knudsen, Lisbeth E.; Norppa, Hannu; Gamborg, Michael O.

    1999-01-01

    We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes as a biomar......We have studied the influence of individual susceptibility factors on the genotoxic effects of urban air pollution in 106 nonsmoking bus drivers and 101 postal workers in the Copenhagen metropolitan area. We used the frequency of chromosomal aberrations in peripheral blood lymphocytes...... that long-term exposure to urban air pollution (with traffic as the main contributor) induces chromosome damage in human somatic cells. Low DNA repair capacity and GSTM1 and NAT2 variants associated with reduced detoxification ability increase susceptibility to such damage. The effect of the GSTM1 genotype......, which was observed only in the bus drivers, appears to be associated with air pollution, whereas the NAT2 genotype effect, which affected all subjects, may influence the individual response to some other common exposure or the baseline level of chromosomal aberrations....

  15. QUANTIFYING SUBGRID POLLUTANT VARIABILITY IN EULERIAN AIR QUALITY MODELS

    Science.gov (United States)

    In order to properly assess human risk due to exposure to hazardous air pollutants or air toxics, detailed information is needed on the location and magnitude of ambient air toxic concentrations. Regional scale Eulerian air quality models are typically limited to relatively coar...

  16. Exposure to Ambient Air Pollution and the Risk of Inflammatory Bowel Disease : A European Nested Case-Control Study

    NARCIS (Netherlands)

    Opstelten, Jorrit L; Beelen, Rob M J; Leenders, Max; Hoek, Gerard; Brunekreef, Bert; van Schaik, Fiona D M; Siersema, Peter D; Eriksen, Kirsten T; Raaschou-Nielsen, Ole; Tjønneland, Anne; Overvad, Kim; Boutron-Ruault, Marie-Christine; Carbonnel, Franck; de Hoogh, Kees; Key, Timothy J; Luben, Robert; Chan, Simon S M; Hart, Andrew R; Bueno-de-Mesquita, H Bas; Oldenburg, Bas

    2016-01-01

    BACKGROUND: Industrialization has been linked to the etiology of inflammatory bowel disease (IBD). AIM: We investigated the association between air pollution exposure and IBD. METHODS: The European Prospective Investigation into Cancer and Nutrition cohort was used to identify cases with Crohn's

  17. Exposure to Ambient Air Pollution and the Risk of Inflammatory Bowel Disease: A European Nested Case-Control Study

    NARCIS (Netherlands)

    Opstelten, J.L.; Beelen, R.M.; Leenders, M.; Hoek, G.; Brunekreef, B.; Schaik, F.D. van; Siersema, P.D.; Eriksen, K.T.; Raaschou-Nielsen, O.; Tjonneland, A.; Overvad, K.; Boutron-Ruault, M.C.; Carbonnel, F.; Hoogh, K. de; Key, T.J.; Luben, R.; Chan, S.S.; Hart, A.R.; Bueno-de-Mesquita, H.B.; Oldenburg, B.

    2016-01-01

    BACKGROUND: Industrialization has been linked to the etiology of inflammatory bowel disease (IBD). AIM: We investigated the association between air pollution exposure and IBD. METHODS: The European Prospective Investigation into Cancer and Nutrition cohort was used to identify cases with Crohn's

  18. Long-term air pollution exposure, genome-wide DNA methylation and lung function in the LifeLines cohort study.

    Science.gov (United States)

    BACKGROUND: Long-term air pollution exposure is negatively associated with lung function, yet the mechanisms underlying this association are not·­ fully clear.Differential DNA methylation may explain this association. OBJECTIVES: Our main aim was to study the associati...

  19. Probabilistic estimation of residential air exchange rates for population-based human exposure modeling

    Science.gov (United States)

    Residential air exchange rates (AERs) are a key determinant in the infiltration of ambient air pollution indoors. Population-based human exposure models using probabilistic approaches to estimate personal exposure to air pollutants have relied on input distributions from AER meas...

  20. Health Effects of Air Pollution.

    Science.gov (United States)

    Environmental Education Report and Newsletter, 1985

    1985-01-01

    Summarizes health hazards associated with air pollution, highlighting the difficulty in establishing acceptable thresholds of exposure. Respiratory disease, asthma, cancer, cardiovascular disease, and other problems are addressed. Indicates that a wide range of effects from any one chemical exists and that there are differences in sensitivity to…

  1. Place-based stressors associated with industry and air pollution

    Science.gov (United States)

    Michelle C. Kondo; Carol Ann Gross-Davis; Katlyn May; Lauren O. Davis; Tyiesha Johnson; Mable Mallard; Alice Gabbadon; Claudia Sherrod; Charles C. Branas

    2014-01-01

    Exposure to air pollution and its sources is increasingly viewed as a psychosocial stress, however its nature is not understood. This article explores the role of the concept of place on risk perception and community stress within data collected from eight focus groups in Philadelphia, USA. Discussions focused on air pollution, a nearby oil refinery, health, and a...

  2. Identifying inequitable exposure to toxic air pollution in racialized and low-income neighbourhoods to support pollution prevention

    Directory of Open Access Journals (Sweden)

    Suzanne Kershaw

    2013-05-01

    Full Text Available Numerous environmental justice studies have confirmed a relationship between population characteristics such as low-income or minority status and the location of environmental health hazards. However, studies of the health risks from exposure to harmful substances often do not consider their toxicological characteristics. We used two different methods, the unit-hazard and the distance-based approach, to evaluate demographic and socio-economic characteristics of the population residing near industrial facilities in the City of Toronto, Canada. In addition to the mass of air emissions obtained from the national pollutant release inventory (NPRI, we also considered their toxicity using toxic equivalency potential (TEP scores. Results from the unit-hazard approach indicate no significant difference in the proportion of low-income individuals living in host versus non-host census tracts (t(107 = 0.3, P = 0.735. However, using the distance-based approach, the proportion of low-income individuals was significantly higher (+5.1%, t(522 = 6.0, P <0.001 in host tracts, while the indicator for “racialized” communities (“visible minority” was 16.1% greater (t(521 = 7.2, P <0.001 within 2 km of a NPRI facility. When the most toxic facilities by non-carcinogenic TEP score were selected, the rate of visible minorities living near the most toxic NPRI facilities was significantly higher (+12.9%, t(352 = 3.5, P = 0.001 than near all other NPRI facilities. TEP scores were also used to identify areas in Toronto that face a double burden of poverty and air toxics exposure in order to prioritise pollution prevention.

  3. Long-term exposure to ambient air pollution and traffic noise and incident hypertension in seven cohorts of the European study of cohorts for air pollution effects (ESCAPE).

    Science.gov (United States)

    Fuks, Kateryna B; Weinmayr, Gudrun; Basagaña, Xavier; Gruzieva, Olena; Hampel, Regina; Oftedal, Bente; Sørensen, Mette; Wolf, Kathrin; Aamodt, Geir; Aasvang, Gunn Marit; Aguilera, Inmaculada; Becker, Thomas; Beelen, Rob; Brunekreef, Bert; Caracciolo, Barbara; Cyrys, Josef; Elosua, Roberto; Eriksen, Kirsten Thorup; Foraster, Maria; Fratiglioni, Laura; Hilding, Agneta; Houthuijs, Danny; Korek, Michal; Künzli, Nino; Marrugat, Jaume; Nieuwenhuijsen, Mark; Östenson, Claes-Göran; Penell, Johanna; Pershagen, Göran; Raaschou-Nielsen, Ole; Swart, Wim J R; Peters, Annette; Hoffmann, Barbara

    2017-04-01

    We investigated whether traffic-related air pollution and noise are associated with incident hypertension in European cohorts. We included seven cohorts of the European study of cohorts for air pollution effects (ESCAPE). We modelled concentrations of particulate matter with aerodynamic diameter ≤2.5 µm (PM2.5), ≤10 µm (PM10), >2.5, and ≤10 µm (PMcoarse), soot (PM2.5 absorbance), and nitrogen oxides at the addresses of participants with land use regression. Residential exposure to traffic noise was modelled at the facade according to the EU Directive 2002/49/EC. We assessed hypertension as (i) self-reported and (ii) measured (systolic BP ≥ 140 mmHg or diastolic BP ≥ 90 mmHg or intake of BP lowering medication (BPLM). We used Poisson regression with robust variance estimation to analyse associations of traffic-related exposures with incidence of hypertension, controlling for relevant confounders, and combined the results from individual studies with random-effects meta-analysis. Among 41 072 participants free of self-reported hypertension at baseline, 6207 (15.1%) incident cases occurred within 5-9 years of follow-up. Incidence of self-reported hypertension was positively associated with PM2.5 (relative risk (RR) 1.22 [95%-confidence interval (CI):1.08; 1.37] per 5 µg/m³) and PM2.5 absorbance (RR 1.13 [95% CI:1.02; 1.24] per 10 - 5m - 1). These estimates decreased slightly upon adjustment for road traffic noise. Road traffic noise was weakly positively associated with the incidence of self-reported hypertension. Among 10 896 participants at risk, 3549 new cases of measured hypertension occurred. We found no clear associations with measured hypertension. Long-term residential exposures to air pollution and noise are associated with increased incidence of self-reported hypertension. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2016. For Permissions, please email: journals.permissions@oup.com.

  4. Air pollution and incidence of cancers of the stomach and the upper aerodigestive tract in the European Study of Cohorts for Air Pollution Effects (ESCAPE).

    NARCIS (Netherlands)

    Nagel, Gabriele; Stafoggia, Massimo; Pedersen, Marie; Andersen, Zorana J; Galassi, Claudia; Munkenast, Jule; Jaensch, Andrea; Sommar, Johan; Forsberg, Bertil; Olsson, David; Oftedal, Bente; Krog, Norun H; Aamodt, Geir; Pyko, Andrei; Pershagen, Göran; Korek, Michal; De Faire, Ulf; Pedersen, Nancy L; Östenson, Claes-Göran; Fratiglioni, Laura; Sørensen, Mette; Tjønneland, Anne; Peeters, Petra H; Bueno-de-Mesquita, Bas; Vermeulen, Roel; Eeftens, Marloes; Plusquin, Michelle; Key, Timothy J; Concin, Hans; Lang, Alois; Wang, Meng; Tsai, Ming-Yi; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Ranzi, Andrea; Cesaroni, Giulia; Forastiere, Francesco; Tamayo-Uria, Ibon; Amiano, Pilar; Dorronsoro, Miren; de Hoogh, Kees; Beelen, Rob; Vineis, Paolo; Brunekreef, Bert; Hoek, Gerard; Raaschou-Nielsen, Ole; Weinmayr, Gudrun

    2018-01-01

    Air pollution has been classified as carcinogenic to humans. However, to date little is known about the relevance for cancers of the stomach and upper aerodigestive tract (UADT). We investigated the association of long-term exposure to ambient air pollution with incidence of gastric and UADT cancer

  5. An association between long-term exposure to ambient air pollution and mortality from lung cancer and respiratory diseases in Japan.

    Science.gov (United States)

    Katanoda, Kota; Sobue, Tomotaka; Satoh, Hiroshi; Tajima, Kazuo; Suzuki, Takaichiro; Nakatsuka, Haruo; Takezaki, Toshiro; Nakayama, Tomio; Nitta, Hiroshi; Tanabe, Kiyoshi; Tominaga, Suketami

    2011-01-01

    Evidence for a link between long-term exposure to air pollution and lung cancer is limited to Western populations. In this prospective cohort study, we examined this association in a Japanese population. The study comprised 63 520 participants living in 6 areas in 3 Japanese prefectures who were enrolled between 1983 and 1985. Exposure to particulate matter less than 2.5 µm in aerodynamic diameter (PM(2.5)), sulfur dioxide (SO(2)), and nitrogen dioxide (NO(2)) was assessed using data from monitoring stations located in or nearby each area. The Cox proportional hazards model was used to calculate the hazard ratios associated with the average concentrations of these air pollutants. The 10-year average concentrations of PM(2.5), SO(2), and NO(2) before recruitment (1974-1983) were 16.8 to 41.9 µg/m(3), 2.4 to 19.0 ppb, and 1.2 to 33.7 ppb, respectively (inter-area range). During an average follow-up of 8.7 years, there were 6687 deaths, including 518 deaths from lung cancer. The hazard ratios for lung cancer mortality associated with a 10-unit increase in PM(2.5) (µg/m(3)), SO(2) (ppb), and NO(2) (ppb) were 1.24 (95% confidence interval: 1.12-1.37), 1.26 (1.07-1.48), and 1.17 (1.10-1.26), respectively, after adjustment for tobacco smoking and other confounding factors. In addition, a significant increase in risk was observed for male smokers and female never smokers. Respiratory diseases, particularly pneumonia, were also significantly associated with all the air pollutants. Long-term exposure to air pollution is associated with lung cancer and respiratory diseases in Japan.

  6. Photochemical air pollution

    International Nuclear Information System (INIS)

    Te Winkel, B.H.

    1992-01-01

    During periods of severe photochemical air pollution (smog) the industry in the Netherlands is recommended by the Dutch government to strongly reduce the emissions of air pollutants. For the electric power generating companies it is important to investigate the adequacy of this policy. The purpose of this investigation is to determine the contribution of electric power plants to photochemical air pollution and to assess the efficacy of emission reducing measures. A literature survey on the development of photochemical air pollution was carried out and modelled calculations concerning the share of the electric power plants to the photochemical air pollution were executed

  7. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease

    OpenAIRE

    McDonald Jacob; Surace Michael J; Levesque Shannon; Block Michelle L

    2011-01-01

    Abstract Background Increasing evidence links diverse forms of air pollution to neuroinflammation and neuropathology in both human and animal models, but the effects of long-term exposures are poorly understood. Objective We explored the central nervous system consequences of subchronic exposure to diesel exhaust (DE) and addressed the minimum levels necessary to elicit neuroinflammation and markers of early neuropathology. Methods Male Fischer 344 rats were exposed to DE (992, 311, 100, 35 a...

  8. Occupational exposure to indoor air pollution among bakery workers in Ethiopia; A comparison of electric and biomass cookstoves

    NARCIS (Netherlands)

    Downward, George S; van der Zwaag, Hugo P; Simons, Leon; Meliefste, Kees; Tefera, Yifokire; Carreon, J Rosales; Vermeulen, Roel; Smit, Lidwien A M

    The indoor air pollution (IAP) produced by the domestic combustion of solid fuels is responsible for up to 4 million deaths annually, especially among low and middle income countries. Occupational exposure within the food preparation industries of these nations remains underexplored. We investigated

  9. Impacts of Air Pollution on Health in Eastern China: Implications for future air pollution and energy policies

    Science.gov (United States)

    Wang, X.; Mauzerall, D.

    2004-12-01

    Our objective is to establish the link between energy consumption and technologies, air pollution and resulting impacts on public health in eastern China. We quantify the impacts that air pollution in the Shandong region of eastern China has on public health in 2000 and quantify the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual, through the implementation of new energy technology. We first develop a highly-resolved emission inventory for the year 2000 for the Shandong region of China including emissions from large point, area, mobile and biogenic sources. We use the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) to process emissions from this inventory for use in the Community Multi-scale Air Quality modeling system (CMAQ) which we drive with the NCAR/PSU MM5 meso-scale meteorology model. We evaluate the inventory by comparing CMAQ results with available measurements of PM10 and SO2 from air pollution indices (APIs) reported in various Chinese municipalities during 2002-2004. We use epidemiological dose-response functions to quantify health impacts and values of a statistical life (VSL) and years-of-life-lost (YLL) to establish a range for the monetary value of these impacts. To examine health impacts and their monetary value, we focus explicitly on Zaozhuang, a coal-intensive city in the Shandong region of eastern China, and quantify the mortalities and morbidities resulting from air pollutants emitted from this city in 2000, and in 2020 using business-as-usual, best-available control technology, and advanced coal gasification technology scenarios. In all scenarios most health damages arise from exposure to particulate matter. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang accounted for 4-10% of its GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have doubled. With no new

  10. Air pollution particles and iron homeostasis

    Science.gov (United States)

    Background: The mechanism underlying biological effects of particles deposited in the lung has not been defined. Major Conclusions: A disruption in iron homeostasis follows exposure of cells to all particulate matter including air pollution particles. Following endocytosis, fun...

  11. Air pollution during pregnancy and childhood cognitive and psychomotor development: six European birth cohorts.

    Science.gov (United States)

    Guxens, Mònica; Garcia-Esteban, Raquel; Giorgis-Allemand, Lise; Forns, Joan; Badaloni, Chiara; Ballester, Ferran; Beelen, Rob; Cesaroni, Giulia; Chatzi, Leda; de Agostini, Maria; de Nazelle, Audrey; Eeftens, Marloes; Fernandez, Mariana F; Fernández-Somoano, Ana; Forastiere, Francesco; Gehring, Ulrike; Ghassabian, Akhgar; Heude, Barbara; Jaddoe, Vincent W V; Klümper, Claudia; Kogevinas, Manolis; Krämer, Ursula; Larroque, Béatrice; Lertxundi, Aitana; Lertxuni, Nerea; Murcia, Mario; Navel, Vladislav; Nieuwenhuijsen, Mark; Porta, Daniela; Ramos, Rosa; Roumeliotaki, Theano; Slama, Rémy; Sørensen, Mette; Stephanou, Euripides G; Sugiri, Dorothea; Tardón, Adonina; Tiemeier, Henning; Tiesler, Carla M T; Verhulst, Frank C; Vrijkotte, Tanja; Wilhelm, Michael; Brunekreef, Bert; Pershagen, Göran; Sunyer, Jordi

    2014-09-01

    Accumulating evidence from laboratory animal and human studies suggests that air pollution exposure during pregnancy affects cognitive and psychomotor development in childhood. We analyzed data from 6 European population-based birth cohorts-GENERATION R (The Netherlands), DUISBURG (Germany), EDEN (France), GASPII (Italy), RHEA (Greece), and INMA (Spain)-that recruited mother-infant pairs from 1997 to 2008. Air pollution levels-nitrogen oxides (NO2, NOx) in all regions and particulate matter (PM) with diameters of psychomotor development was assessed between 1 and 6 years of age. Adjusted region-specific effect estimates were combined using random-effects meta-analysis. A total of 9482 children were included. Air pollution exposure during pregnancy, particularly NO2, was associated with reduced psychomotor development (global psychomotor development score decreased by 0.68 points [95% confidence interval = -1.25 to -0.11] per increase of 10 μg/m in NO2). Similar trends were observed in most regions. No associations were found between any air pollutant and cognitive development. Air pollution exposure during pregnancy, particularly NO2 (for which motorized traffic is a major source), was associated with delayed psychomotor development during childhood. Due to the widespread nature of air pollution exposure, the public health impact of the small changes observed at an individual level could be considerable.

  12. Air Pollution and Insulin Resistance: Do All Roads Lead to Rome?

    Science.gov (United States)

    The World Health Organization estimates that worldwide in 2012, nearly 7 million deaths occurred prematurely due to air pollution (1). In addition to respiratory and cardiovascular diseases, air pollution exposure is also linked to increased incidence of diabetes (2). Notably, th...

  13. Cardiovascular health, traffic-related air pollution and noise: are associations mutually confounded? A systematic review.

    Science.gov (United States)

    Tétreault, Louis-François; Perron, Stéphane; Smargiassi, Audrey

    2013-10-01

    This review assessed the confounding effect of one traffic-related exposure (noise or air pollutants) on the association between the other exposure and cardiovascular outcomes. A systematic review was conducted with the databases Medline and Embase. The confounding effects in studies were assessed by using change in the estimate with a 10 % cutoff point. The influence on the change in the estimate of the quality of the studies, the exposure assessment methods and the correlation between road noise and air pollutions were also assessed. Nine publications were identified. For most studies, the specified confounders produced changes in estimates noise and pollutants, the quality of the study and of the exposure assessment do not seem to influence the confounding effects. Results from this review suggest that confounding of cardiovascular effects by noise or air pollutants is low, though with further improvements in exposure assessment, the situation may change. More studies using pollution indicators specific to road traffic are needed to properly assess if noise and air pollution are subjected to confounding.

  14. Maternal exposure to ambient air pollution and fetal growth in North-East Scotland: A population-based study using routine ultrasound scans.

    Science.gov (United States)

    Clemens, Tom; Turner, Steve; Dibben, Chris

    2017-10-01

    Maternal ambient air pollution exposure is associated with reduced birthweight. Few studies have examined the effect on growth in utero and none have examined the effect of exposure to particulates less than 2.5µm (PM 2.5 ) and possible effect modification by smoking status. Examine the effect of maternal exposure to ambient concentrations of PM 10 , PM 2.5 and nitrogen dioxide (NO 2 ) for in utero fetal growth, size at birth and effect modification by smoking status. Administratively acquired second and third trimester fetal measurements (bi-parietal diameter, femur length and abdominal circumference), birth outcomes (weight, crown heel length and occipito-frontal circumference) and maternal details were obtained from routine fetal ultrasound scans and maternity records (period 1994-2009). These were modelled against residential annual pollution concentrations (calendar year mean) adjusting for covariates and stratifying by smoking status. In the whole sample (n=13,775 pregnancies), exposure to PM 10 , PM 2.5 and NO 2 was associated with reductions in measurements at birth and biparietal diameter from late second trimester onwards. Among mothers who did not smoke at all during pregnancy (n=11,075), associations between biparietal diameter and pollution exposure remained significant but were insignificant among those who did smoke (n=2700). Femur length and abdominal circumference were not significantly associated with pollution exposure. Fetal growth is strongly associated with particulates exposure from later in second trimester onwards but the effect appears to be subsumed by smoking. Typical ambient exposures in this study were relatively low compared to other studies and given these results, it may be necessary to consider reducing recommended "safe" ambient air exposures. Copyright © 2017. Published by Elsevier Ltd.

  15. Adverse effect of outdoor air pollution on cardiorespiratory fitness in Chinese children

    Science.gov (United States)

    Gao, Yang; Chan, Emily Y. Y.; Zhu, Yingjia; Wong, Tze Wai

    2013-01-01

    Little is known about the health impact of air pollution on children's cardiovascular health. A cross-sectional study was conducted and data was analysed in 2048 Chinese schoolchildren (aged 8-10 years) in three districts of Hong Kong to examine the association between exposure to outdoor air pollution and cardiorespiratory fitness. Annual means of ambient PM10, SO2, NO2 and O3 from 1996 to 2003 were used to estimate individual exposure of the subjects. Cardiorespiratory fitness was measured for maximal oxygen uptake (VO2max), predicted by the multistage fitness test (MFT). Height and weight were measured and other potential confounders were collected with questionnaires. Analysis of covariance was performed to estimate the impact of air pollution on complete speed in the MFT and predicted VO2max. The results showed that children in high-pollution district had significantly lower complete speed and predicted VO2max compared to those in low- and moderate-pollution districts. Complete speed and predicted VO2max was estimated to reduce 0.327 km h-1 and 1.53 ml kg-1 min-1 per 10 μg m-3 increase in PM10 annual mean respectively, with those in girls being greater than in boys. Being physically active could not significantly result in improved cardiorespiratory fitness in polluted districts. The adverse effect seems to be independent of short-term exposure to air pollution. We concluded that long-term exposure to higher outdoor air pollution levels was negatively associated with cardiorespiratory fitness in Chinese schoolchildren, especially for girls. PM10 is the most relevant pollutant of the adverse effect. Elevated cardiorespiratory fitness observed in physically activate children could be negated by increased amount of inhaled pollutants during exercise.

  16. Ambient air pollution the risk of stillbirth: A prospective birth cohort study in Wuhan, China.

    Science.gov (United States)

    Yang, Shaoping; Tan, Yafei; Mei, Hui; Wang, Fang; Li, Na; Zhao, Jinzhu; Zhang, Yiming; Qian, Zhengmin; Chang, Jen Jen; Syberg, Kevin M; Peng, Anna; Mei, Hong; Zhang, Dan; Zhang, Yan; Xu, Shunqing; Li, Yuanyuan; Zheng, Tongzhang; Zhang, Bin

    2018-04-01

    Recent studies suggest that ambient air pollution exposure during pregnancy is associated with stillbirth occurrence. However, the results on the associations between ambient air pollutants and stillbirths are inconsistent and little is known about the gestational timing of sensitive periods for the effects of ambient air pollutants exposure on stillbirth. This study aimed to examine whether exposure to high levels of ambient air pollutants in a Chinese population is associated with an increased risk of stillbirth, and determine the gestational period when the fetus is most susceptible. We conducted a population-based cohort study in Wuhan, China, involving 95,354 births between June 10, 2011 and June 9, 2013. The exposure assessments were based on the daily mean concentrations of air pollutants obtained from the exposure monitor nearest to the pregnant women's residence. Logistic regression analyses were performed to determine the associations between stillbirths and exposure to each of the air pollutants at different pregnancy periods with adjustment for confounding factors. Stillbirth increased with a 10 μg/m 3 increase in particulate matter 2.5 (PM 2.5 ) in each stage of pregnancy, and a significant association between carbon monoxide (CO) exposure and stillbirth was found during the third trimester (adjusted odds ratio (aOR): 1.01, 95% confidence interval (CI): 1.00-1.01) and in the entire pregnancy (aOR: 1.18, 95% CI: 1.04-1.34). Furthermore, an increased risk of stillbirth in the third trimester was associated with a 10 μg/m 3 increase in PM 10 (aOR: 1.08, 95% CI: 1.04-1.11), nitrogen dioxide (NO 2 ) (aOR: 1.13, 95% CI: 1.07-1.21) and sulfur dioxide (SO 2 ) (aOR: 1.26, 95% CI: 1.16-1.35). However, no positive association was observed between ozone exposure and stillbirth. In the two-pollutant models, PM 2.5 and CO exposures were found to be consistently associated with stillbirth. Our study revealed that exposure to high levels of PM 2.5 , PM 10 , SO 2

  17. Air pollution engineering

    Science.gov (United States)

    Maduna, Karolina; Tomašić, Vesna

    2017-11-01

    Air pollution is an environmental and a social problem which leads to a multitude of adverse effects on human health and standard of human life, state of the ecosystems and global change of climate. Air pollutants are emitted from natural, but mostly from anthropogenic sources and may be transported over long distances. Some air pollutants are extremely stable in the atmosphere and may accumulate in the environment and in the food chain, affecting human beings, animals and natural biodiversity. Obviously, air pollution is a complex problem that poses multiple challenges in terms of management and abatements of the pollutants emission. Effective approach to the problems of air pollution requires a good understanding of the sources that cause it, knowledge of air quality status and future trends as well as its impact on humans and ecosystems. This chapter deals with the complexities of the air pollution and presents an overview of different technical processes and equipment for air pollution control, as well as basic principles of their work. The problems of air protection as well as protection of other ecosystems can be solved only by the coordinated endeavors of various scientific and engineering disciplines, such as chemistry, physics, biology, medicine, chemical engineering and social sciences. The most important engineering contribution is mostly focused on development, design and operation of equipment for the abatement of harmful emissions into environment.

  18. Assessment of the biomass related indoor air pollution in Kwale ...

    African Journals Online (AJOL)

    Background: Indoor air pollution remains an important health problem in some countries. Although research data on this issue is available, routine monitoring in affected areas is limited. The aims of this study were to quantify exposure to biomass- related indoor air pollution; assess the respiratory health of subjects; and ...

  19. Spatial associations between social groups and ozone air pollution exposure in the Beijing urban area.

    Science.gov (United States)

    Zhao, Xinyi; Cheng, Hongguang; He, Siyuan; Cui, Xiangfen; Pu, Xiao; Lu, Lu

    2018-07-01

    Few studies have linked social factors to air pollution exposure in China. Unlike the race or minority concepts in western countries, the Hukou system (residential registration system) is a fundamental reason for the existence of social deprivation in China. To assess the differences in ozone (O 3 ) exposure among social groups, especially groups divided by Hukou status, we assigned estimates of O 3 exposure to the latest census data of the Beijing urban area using a kriging interpolation model. We developed simultaneous autoregressive (SAR) models that account for spatial autocorrelation to identify the associations between O 3 exposure and social factors. Principal component regression was used to control the multicollinearity bias as well as explore the spatial structure of the social data. The census tracts (CTs) with higher proportions of persons living alone and migrants with non-local Hukou were characterized by greater exposure to ambient O 3 . The areas with greater proportions of seniors had lower O 3 exposure. The spatial distribution patterns were similar among variables including migrants, agricultural population and household separation (population status with separation between Hukou and actual residences), which fit the demographic characteristics of the majority of migrants. Migrants bore a double burden of social deprivation and O 3 pollution exposure due to city development planning and the Hukou system. Copyright © 2018 Elsevier Inc. All rights reserved.

  20. The impact of human perception of simultaneous exposure to thermal load, low-frequency ventilation noise and indoor air pollution

    DEFF Research Database (Denmark)

    Alm, Ole; Witterseh, Thomas; Clausen, Geo

    1999-01-01

    Human perception of simultaneous exposure to combinations of three different levels of operative temperature, low-frequency ventilation noise and indoor air pollution (27 combinations) was studied in climate chambers. The operative temperatures studied were: 26.0 deg.C, 27.6 deg.C and 29.6 deg.......C, and the sound pressure levels were: 45 dB(A), 48 dB(A) and 51 dB(A). The air pollution corresponding to these three levels of perceived air quality (at 26 deg.C) was: 1.1 decipol (dp), 2.4 dp and 4.5 dp. A 1 deg.C change in operative temperature had the same impact on the human perception of the overall...... conditions as a change of 3.8 dB(A) in sound pressure level or a change of 7 dp in air pollution (at 26 deg.C). The percentage of dissatisfied with the perceived air quality increased with increasing temperature. An elevated temperature had a dominant impact on the human perception of the indoor environment...

  1. Short-term effects of ambient air pollution on pediatric outpatient visits for respiratory diseases in Yichang city, China

    International Nuclear Information System (INIS)

    Liu, Yuewei; Xie, Shuguang; Yu, Qing; Huo, Xixiang; Ming, Xiaoyan; Wang, Jing; Zhou, Yun; Peng, Zhe; Zhang, Hai; Cui, Xiuqing; Xiang, Hua; Huang, Xiji; Zhou, Ting; Chen, Weihong; Shi, Tingming

    2017-01-01

    Previous studies have suggested that short-term exposure to ambient air pollution was associated with pediatric hospital admissions and emergency room visits for certain respiratory diseases; however, there is limited evidence on the association between short-term air pollution exposure and pediatric outpatient visits. Our aim was to quantitatively assess the short-term effects of ambient air pollution on pediatric outpatient visits for respiratory diseases. We conducted a time-series study in Yichang city, China between Jan 1, 2014 and Dec 31, 2015. Daily counts of pediatric respiratory outpatient visits were collected from 3 large hospitals, and then linked with air pollution data from 5 air quality monitoring stations by date. We used generalized additive Poisson models to conduct linear and nonlinear exposure-response analyses between air pollutant exposures and pediatric respiratory outpatient visits, adjusting for seasonality, day of week, public holiday, temperature, and relative humidity. Each interquartile range (IQR) increase in PM 2.5 (lag 0), PM 10 (lag 0), NO 2 (lag 0), CO (lag 0), and O 3 (lag 4) concentrations was significantly associated with a 1.91% (95% CI: 0.60%, 3.23%), 2.46% (1.09%, 3.85%), 1.88% (0.49%, 3.29%), 2.00% (0.43%, 3.59%), and 1.91% (0.45%, 3.39%) increase of pediatric respiratory outpatient visits, respectively. Similarly, the nonlinear exposure-response analyses showed monotonic increases of pediatric respiratory outpatient visits by increasing air pollutant exposures, though the associations for NO 2 and CO attenuated at higher concentrations. These associations were unlikely modified by season. We did not observe significant association for SO 2 exposure. Our results suggest that short-term exposures to PM 2.5 , PM 10 , NO 2 , CO, and O 3 may account for increased risk of pediatric outpatient visits for respiratory diseases, and emphasize the needs for reduction of air pollutant exposures for children. - Highlights: • PM 2

  2. Health effects associated with passenger vehicles: monetary values of air pollution.

    Science.gov (United States)

    Marzouk, Mohamed; Madany, Magdy

    2012-01-01

    Air pollution is regarded as one of the highest priorities in environmental protection in both developed and developing countries. High levels of air pollution have adverse effects on human health that might cause premature death. This study presents the monetary value estimates for the adverse human health effects resulted from ambient air pollution. It aids decision makers to set priorities in the public health relevance of pollution abatement. The main driver of policymaker is the need to reduce the avoidable cardiopulmonary morbidity and mortality from pollutant exposures. The monetary valuation involves 2 steps: (i) relate levels of pollutants to mortality and morbidity (concentration-response relationships) and (ii) apply unit economic values. Cost of air pollution associated with passenger vehicles running over a major traffic bridge (6th of October Elevated Highway) is presented as a case study to demonstrate the use of monetary value of air pollution. The study proves that the cost of air pollution is extremely high and should not be overlooked.

  3. Exposure-response functions for health effects of ambient air pollution applicable for China. A meta-analysis

    International Nuclear Information System (INIS)

    Aunan, Kristin; Pan, Xiao-Chuan

    2004-01-01

    Assessing the benefits of projects and policies to reduce air pollution requires quantitative knowledge about the relationship between exposure to air pollution and public health. This article proposes exposure-response functions for health effects of PM 10 and SO 2 pollution in China. The functions are based on Chinese epidemiological studies, and cover mortality, hospital admissions, and chronic respiratory symptoms and diseases. We derive the following coefficients for acute effects: a 0.03% (S.E. 0.01) and a 0.04% (S.E. 0.01) increase in all-cause mortality per μg/m 3 PM 10 and SO 2 , respectively, a 0.04% (S.E. 0.01) increase in cardiovascular deaths per μg/m 3 for both PM 10 and SO 2 , and a 0.06% (S.E. 0.02) and a 0.10% (S.E. 0.02) increase in respiratory deaths per μg/m 3 PM 10 and SO 2 , respectively. For hospital admissions due to cardiovascular diseases the obtained coefficients are 0.07% (S.E. 0.02) and 0.19% (S.E. 0.03) for PM 10 and SO 2 , respectively, whereas the coefficients for hospital admissions due to respiratory diseases are 0.12% (S.E. 0.02) and 0.15% (S.E. 0.03) for PM 10 and SO 2 , respectively. Exposure-response functions for the impact of long-term PM 10 levels on the prevalence of chronic respiratory symptoms and diseases are derived from the results of cross-sectional questionnaire surveys, and indicate a 0.31% (S.E. 0.01) increase per μg/m 3 in adults and 0.44% (S.E. 0.02) per μg/m 3 in children. With some exceptions, Chinese studies report somewhat lower exposure-response coefficients as compared to studies in Europe and USA

  4. Air pollution, deprivation and health: Understanding relationships to add value to local air quality management policy and practice in Wales, UK

    OpenAIRE

    Brunt, H.; Barnes, J.; Jones, S.; Longhurst, J.; Scally, G.; Hayes, E. T.

    2017-01-01

    Background \\ud Air pollution exposure reduces life expectancy. Air pollution, deprivation and poor-health status combinations can create increased and disproportionate disease burdens. Problems and solutions are rarely considered in a broad public health context, but doing so can add value to air quality management efforts by reducing air pollution risks, impacts and inequalities.\\ud \\ud Methods \\ud An ecological study assessed small-area associations between air pollution (nitrogen dioxide a...

  5. Ambient air pollution and low birth weight

    DEFF Research Database (Denmark)

    Westergaard, Nadja; Gehring, Ulrike; Slama, Rémy

    2017-01-01

    (TLBW, restriction (IUGR), and suggest that some subgroups of pregnant women who are smoking, of low or high body-mass index (BMI), low socioeconomic status (SES) or asthma are more vulnerable towards...... on the association between ambient air pollution and TLBW. The adjusted odds ratio (OR) for TLBW associated with exposure to ambient air pollution were in one study higher among women who smoked during pregnancy, as compared to the OR of non-smoking women, while in the other study the association was in the opposite...... direction. The association of ambient air pollution and TLBW were higher among women characterized by extreme BMI (two studies) and low SES compared to non-obese women or women of higher SES (four studies), respectively. Only one study reported the estimated effects among asthmatic and non-asthmatic women...

  6. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach.

    Directory of Open Access Journals (Sweden)

    Chayut Pinichka

    Full Text Available Growing urbanisation and population requiring enhanced electricity generation as well as the increasing numbers of fossil fuel in Thailand pose important challenges to air quality management which impacts on the health of the population. Mortality attributed to ambient air pollution is one of the sustainable development goals (SDGs. We estimated the spatial pattern of mortality burden attributable to selected ambient air pollution in 2009 based on the empirical evidence in Thailand.We estimated the burden of disease attributable to ambient air pollution based on the comparative risk assessment (CRA framework developed by the World Health Organization (WHO and the Global Burden of Disease study (GBD. We integrated geographical information systems (GIS-based exposure assessments into spatial interpolation models to estimate ambient air pollutant concentrations, the population distribution of exposure and the concentration-response (CR relationship to quantify ambient air pollution exposure and associated mortality. We obtained air quality data from the Pollution Control Department (PCD of Thailand surface air pollution monitoring network sources and estimated the CR relationship between relative risk (RR and concentration of air pollutants from the epidemiological literature.We estimated 650-38,410 ambient air pollution-related fatalities and 160-5,982 fatalities that could have been avoided with a 20 reduction in ambient air pollutant concentrations. The summation of population-attributable fraction (PAF of the disease burden for all-causes mortality in adults due to NO2 and PM2.5 were the highest among all air pollutants at 10% and 7.5%, respectively. The PAF summation of PM2.5 for lung cancer and cardiovascular disease were 16.8% and 14.6% respectively and the PAF summations of mortality attributable to PM10 was 3.4% for all-causes mortality, 1.7% for respiratory and 3.8% for cardiovascular mortality, while the PAF summation of mortality

  7. Burden of disease attributed to ambient air pollution in Thailand: A GIS-based approach.

    Science.gov (United States)

    Pinichka, Chayut; Makka, Nuttapat; Sukkumnoed, Decharut; Chariyalertsak, Suwat; Inchai, Puchong; Bundhamcharoen, Kanitta

    2017-01-01

    Growing urbanisation and population requiring enhanced electricity generation as well as the increasing numbers of fossil fuel in Thailand pose important challenges to air quality management which impacts on the health of the population. Mortality attributed to ambient air pollution is one of the sustainable development goals (SDGs). We estimated the spatial pattern of mortality burden attributable to selected ambient air pollution in 2009 based on the empirical evidence in Thailand. We estimated the burden of disease attributable to ambient air pollution based on the comparative risk assessment (CRA) framework developed by the World Health Organization (WHO) and the Global Burden of Disease study (GBD). We integrated geographical information systems (GIS)-based exposure assessments into spatial interpolation models to estimate ambient air pollutant concentrations, the population distribution of exposure and the concentration-response (CR) relationship to quantify ambient air pollution exposure and associated mortality. We obtained air quality data from the Pollution Control Department (PCD) of Thailand surface air pollution monitoring network sources and estimated the CR relationship between relative risk (RR) and concentration of air pollutants from the epidemiological literature. We estimated 650-38,410 ambient air pollution-related fatalities and 160-5,982 fatalities that could have been avoided with a 20 reduction in ambient air pollutant concentrations. The summation of population-attributable fraction (PAF) of the disease burden for all-causes mortality in adults due to NO2 and PM2.5 were the highest among all air pollutants at 10% and 7.5%, respectively. The PAF summation of PM2.5 for lung cancer and cardiovascular disease were 16.8% and 14.6% respectively and the PAF summations of mortality attributable to PM10 was 3.4% for all-causes mortality, 1.7% for respiratory and 3.8% for cardiovascular mortality, while the PAF summation of mortality attributable to

  8. Behavioural change, indoor air pollution and child respiratory health in developing countries: a review.

    Science.gov (United States)

    Barnes, Brendon R

    2014-04-25

    Indoor air pollution caused by the indoor burning of solid biomass fuels has been associated with Acute Respiratory Infections such as pneumonia amongst children of less than five years of age. Behavioural change interventions have been identified as a potential strategy to reduce child indoor air pollution exposure, yet very little is known about the impact of behavioural change interventions to reduce indoor air pollution. Even less is known about how behaviour change theory has been incorporated into indoor air pollution behaviour change interventions. A review of published studies spanning 1983-2013 suggests that behavioural change strategies have the potential to reduce indoor air pollution exposure by 20%-98% in laboratory settings and 31%-94% in field settings. However, the evidence is: (1) based on studies that are methodologically weak; and (2) have little or no underlying theory. The paper concludes with a call for more rigorous studies to evaluate the role of behavioural change strategies (with or without improved technologies) to reduce indoor air pollution exposure in developing countries as well as interventions that draw more strongly on existing behavioural change theory and practice.

  9. Effect of duration of exposure to polluted air environment on lung function in subjects exposed to crude oil spill into sea water.

    Science.gov (United States)

    Meo, Sultan Ayoub; Al-Drees, Abdul Majeed; Rasheed, Shahzad; Meo, Imran Mu; Khan, Muhammad Mujahid; Al-Saadi, Muslim M; Alkandari, Jasem Ramadan

    2009-01-01

    Oil spill in sea water represents a huge environmental disaster for marine life and humans in the vicinity. The aim was to investigate the effect of duration of exposure to polluted air environment on lung function in subjects exposed to crude oil spill into sea water. The present study was conducted under the supervision of Department of Physiology, College of Medicine, King Khalid University Hospital, King Saud University, Riyadh, Saudi Arabia, during the period July 2003 - December 2004. This was a comparative study of spirometry in 31 apparently healthy, non smoking, male workers, exposed to crude oil spill environment during the oil cleaning operation. The exposed group was matched with similar number of male, non smoking control subjects. Pulmonary function test was performed by using an electronic spirometer. Subjects exposed to polluted air for periods longer than 15 days showed a significant reduction in Forced Vital Capacity (FVC), Forced Expiratory Volume in First Second (FEV1), Forced Expiratory Flow in 25-25% (FEF25-75%) and Maximal Voluntary Ventilation (MVV). Air environment polluted due to crude oil spill into sea water caused impaired lung function and this impairment was associated with dose response effect of duration of exposure to air polluted by crude oil spill into sea water.

  10. Testing Selected Behaviors to Reduce Indoor Air Pollution Exposure in Young Children

    Science.gov (United States)

    Barnes, B. R.; Mathee, A.; Krieger, L.; Shafritz, L.; Favin, M.; Sherburne, L.

    2004-01-01

    Indoor air pollution is responsible for the deaths and illness of millions of young children in developing countries. This study investigated the acceptability (willingness to try) and feasibility (ability to perform) of four indoor air pollution reduction behaviors (improve stove maintenance practices, child location practices, ventilation…

  11. Ambient air pollution and low birthweight: a European cohort study (ESCAPE)

    NARCIS (Netherlands)

    Pedersen, Marie; Giorgis-Allemand, Lise; Bernard, Claire; Aguilera, Inmaculada; Andersen, Anne-Marie Nybo; Ballester, Ferran; Beelen, Rob M. J.; Chatzi, Leda; Cirach, Marta; Danileviciute, Asta; Dedele, Audrius; Eijsden, Manon van; Estarlich, Marisa; Fernández-Somoano, Ana; Fernández, Mariana F.; Forastiere, Francesco; Gehring, Ulrike; Grazuleviciene, Regina; Gruzieva, Olena; Heude, Barbara; Hoek, Gerard; de Hoogh, Kees; van den Hooven, Edith H.; Håberg, Siri E.; Jaddoe, Vincent W. V.; Klümper, Claudia; Korek, Michal; Krämer, Ursula; Lerchundi, Aitana; Lepeule, Johanna; Nafstad, Per; Nystad, Wenche; Patelarou, Evridiki; Porta, Daniela; Postma, Dirkje; Raaschou-Nielsen, Ole; Rudnai, Peter; Sunyer, Jordi; Stephanou, Euripides; Sørensen, Mette; Thiering, Elisabeth; Tuffnell, Derek; Varró, Mihály J.; Vrijkotte, Tanja G. M.; Wijga, Alet; Wilhelm, Michael; Wright, John; Nieuwenhuijsen, Mark J.; Pershagen, Göran; Brunekreef, Bert; Kogevinas, Manolis; Slama, Rémy

    2013-01-01

    Background Ambient air pollution has been associated with restricted fetal growth, which is linked with adverse respiratory health in childhood. We assessed the effect of maternal exposure to low concentrations of ambient air pollution on birthweight. Methods We pooled data from 14 population-based

  12. Episodic air pollution is associated with increased DNA fragmentation in human sperm without other changes in semen quality

    Energy Technology Data Exchange (ETDEWEB)

    Rubes, J.; Selevan, S.G.; Evenson, D.P.; Zudova, D.; Vozdova, M.; Zudova, Z.; Robbins, W.A.; Perreault, S.D. [US EPA, Research Triangle Park, NC (United States)

    2005-10-01

    This study examined potential associations between exposure to episodes of air pollution and alterations in semen quality. The air pollution, resulting from combustion of coal for industry and home heating in the Teplice district of the Czech Republic, was much higher during the winter than at other times of year with peaks exceeding US air quality standards. Young men from Teplice were sampled up to seven times over 2 years allowing evaluation of semen quality after periods of exposure to both low and high air pollution. Routine semen analysis (sperm concentration, motility and morphology) and tests for sperm aneuploidy and chromatin integrity were performed, comparing measurements within each subject. Exposure was classified as high or low based on data from ambient air pollution monitoring. Using repeated measures analysis, a significant association was found between exposure to periods of high air pollution (at or above the upper limit of US air quality standards) and the percentage of sperm with DNA fragmentation according to sperm chromatin structure assay (SCSA). Other semen measures were not associated with air pollution. It is concluded that exposure to intermittent air pollution may result in sperm DNA damage and thereby increase the rates of male-mediated infertility, miscarriage, and other adverse reproductive outcomes.

  13. Air pollution

    OpenAIRE

    MacKenbach, JP; Henschel, S; Goodman, P; McKee, M

    2013-01-01

    The human costs of air pollution are considerable in Jordan. According to a report published in 2000 by the World Bank under the Mediterranean Environmental Technical Assistance Program (METAP), approximately 600 people die prematurely each year in Jordan because of urban pollution. 50-90% of air pollution in Jordanian towns is caused by road traffic. Readings taken in 2007 by Jordanian researchers showed that levels of black carbon particles in the air were higher in urban areas (caused by v...

  14. Global Scenarios of Air Pollution until 2030: Combining Air Quality, Climate Change and Energy Access Policies

    Science.gov (United States)

    Rao, S.; Dentener, F. J.; Klimont, Z.; Riahi, K.

    2011-12-01

    Outdoor air pollution is increasingly recognized as a significant contributor to global health outcomes. This has led to the implementation of a number of air quality policies worldwide, with total air pollution control costs in 2005 estimated at US$195 billion. More than 80% of the world's population is still found to be exposed to PM2.5 concentrations exceeding WHO air quality guidelines and health impacts resulting from these exposures estimated at around 2-5% of the global disease burden. Key questions to answer are 1) How will pollutant emissions evolve in the future given developments in the energy system and how will energy and environmental policies influence such emission trends. 2) What implications will this have for resulting exposures and related health outcomes. In order to answer these questions, varying levels of stringency of air quality legislation are analyzed in combination with policies on universal access to clean cooking fuels and limiting global temperature change to 2°C in 2100. Bottom-up methodologies using energy emissions modeling are used to derive sector-based pollutant emission trajectories until 2030. Emissions are spatially downscaled and used in combination with a global transport chemistry model to derive ambient concentrations of PM2.5. Health impacts of these exposures are further estimated consistent with WHO data and methodology. The results indicate that currently planned air quality legislation combined with rising energy demand will be insufficient in controlling future emissions growth in developing countries. In order to achieve significant reductions in pollutant emissions of the order of more than 50% from 2005 levels and reduce exposures to levels consistent with WHO standards, it will be necessary to increase the stringency of such legislations and combine them with policies on energy access and climate change. Combined policies also result in reductions in air pollution control costs as compared to those associated

  15. Linking exposure to environmental pollutants with biological effects

    DEFF Research Database (Denmark)

    Sørensen, Mette; Autrup, Herman; Møller, Peter

    2003-01-01

    Exposure to ambient air pollution has been associated with cancer. Ambient air contains a complex mixture of toxics, including particulate matter (PM) and benzene. Carcinogenic effects of PM may relate both to the content of PAH and to oxidative DNA damage generated by transition metals, benzene,...

  16. The association between air pollution and mortality in Thailand.

    Science.gov (United States)

    Guo, Yuming; Li, Shanshan; Tawatsupa, Benjawan; Punnasiri, Kornwipa; Jaakkola, Jouni J K; Williams, Gail

    2014-07-01

    Bayesian statistical inference with a case-crossover design was used to examine the effects of air pollutants {Particulate matter pollutants had significant short-term impacts on non-accidental mortality. An increase of 10 μg/m(3) in PM10, 10 ppb in O₃, 1 ppb in SO₂ were associated with a 0.40% (95% posterior interval (PI): 0.22, 0.59%), 0.78% (95% PI: 0.20, 1.35%) and 0.34% (95% PI: 0.17, 0.50%) increase of non-accidental mortality, respectively. O₃ air pollution is significantly associated with cardiovascular mortality, while PM10 is significantly related to respiratory mortality. In general, the effects of all pollutants on all mortality types were higher in summer and winter than those in the rainy season. This study highlights the effects of exposure to air pollution on mortality risks in Thailand. Our findings support the Thailand government in aiming to reduce high levels of air pollution.

  17. Long-term exposure to ambient air pollution (including PM1) and metabolic syndrome: The 33 Communities Chinese Health Study (33CCHS).

    Science.gov (United States)

    Yang, Bo-Yi; Qian, Zhengmin Min; Li, Shanshan; Fan, Shujun; Chen, Gongbo; Syberg, Kevin M; Xian, Hong; Wang, Si-Quan; Ma, Huimin; Chen, Duo-Hong; Yang, Mo; Liu, Kang-Kang; Zeng, Xiao-Wen; Hu, Li-Wen; Guo, Yuming; Dong, Guang-Hui

    2018-07-01

    Little evidence exists about the effects of long-term exposure to ambient air pollution on metabolic syndrome (MetS). This study aimed to determine the association between long-term ambient air pollution and MetS in China. A total of 15,477 adults who participated in the 33 Communities Chinese Health Study (33CCHS) in 2009 were evaluated. MetS was defined based on the recommendation by the Joint Interim Societies. Exposure to air pollutants was assessed using data from monitoring stations and a spatial statistical model (including particles with diameters ≤ 1.0 µm (PM 1 ), ≤ 2.5 µm (PM 2.5 ), and ≤ 10 µm (PM 10 ), sulfur dioxide (SO 2 ), nitrogen dioxide (NO 2 ), and ozone (O 3 )). Two-level logistic regression analyses were utilized to assess the associations between air pollutants and MetS. The prevalence of MetS was 30.37%. The adjusted odds ratio of MetS per 10 µg/m 3 increase in PM 1 , PM 2.5 , PM 10 , SO 2 , NO 2 , and O 3 were 1.12 (95% CI = 1.00-1.24), 1.09 (95% CI = 1.00-1.18), 1.13 (95% CI = 1.08-1.19), 1.10 (95% CI = 1.02-1.18), 1.33 (95% CI = 1.12-1.57), and 1.10 (95% CI = 1.01-1.18), respectively. Stratified analyses indicated that the above associations were stronger in participants with the demographic variables of males, < 50 years of age, and higher income, as well as with the behavioral characteristics of smoking, drinking, and consuming sugar-sweetened soft drinks frequently. This study indicates that long-term exposure to ambient air pollutants may increase the risk of MetS, especially among males, the young to middle aged, those of low income, and those with unhealthy lifestyles. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Association between Short-Term Exposure to Air Pollution and Dyslipidemias among Type 2 Diabetic Patients in Northwest China: A Population-Based Study.

    Science.gov (United States)

    Wang, Minzhen; Zheng, Shan; Nie, Yonghong; Weng, Jun; Cheng, Ning; Hu, Xiaobin; Ren, Xiaowei; Pei, Hongbo; Bai, Yana

    2018-03-30

    Air pollution exposure may play an adverse role in diabetes. However, little data are available directly evaluating the effects of air pollution exposure in blood lipids of which dysfunction has been linked to diabetes or its complications. We aimed to evaluate the association between air pollution and lipids level among type 2 diabetic patients in Northwest China. We performed a population-based study of 3912 type 2 diabetes patients in an ongoing cohort study in China. Both spline and multiple linear regressions analysis were used to examine the association between short-term exposure to PM 10 , SO₂, NO₂ and total cholesterol (TC), triglycerides (TG), low-density lipoprotein cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDL-C). By spline analyses, we observed that the relationship between SO₂ and HDL-C and LDL-C was shown to be non-linear ( p _non-lin-association = 0.0162 and 0.000). An inverted U-shaped non-linear relationship between NO₂ and LDL-C was found ( p _non-lin-association < 0.0001). A J-shaped non-linear relationship between PM 10 and TC, HDL-C ( p _non-lin-association = 0.0173, 0.0367) was also revealed. In linear regression analyses, a 10 μg/m³ increment in SO₂ was associated with 1.31% (95% CI: 0.40-2.12%), 3.52% (95% CI: 1.07-6.03%) and 7.53% (95% CI: 5.98-9.09%) increase in TC, TG and LDL-C, respectively. A 10 μg/m³ increment in PM 10 was associated with 0.45% (95% CI: 0.08-0.82%), 0.29% (95% CI: 0.10-0.49%) and 0.83% (95% CI: 0.21-1.45%) increase in TC, HDL-C and LDL-C, respectively. For NO₂, an increment of 10 μg/m³ was statistically associated with -3.55% (95% CI: -6.40-0.61%) and 39.01% (95% CI: 31.43-47.03%) increase in HDL-C and LDL-C. The adverse effects of air pollutants on lipid levels were greater in female and elder people. Further, we found SO₂ and NO₂ played a more evident role in lipid levels in warm season, while PM 10 appeared stronger in cold season. The findings suggest that exposure to air

  19. Ambient air pollution and primary liver cancer incidence in four European cohorts within the ESCAPE project

    NARCIS (Netherlands)

    Pedersen, Marie; Andersen, Zorana J; Stafoggia, Massimo; Weinmayr, Gudrun; Galassi, Claudia; Sørensen, Mette; Eriksen, Kirsten T; Tjønneland, Anne; Loft, Steffen; Jaensch, Andrea; Nagel, Gabriele; Concin, Hans; Tsai, Ming-Yi; Grioni, Sara; Marcon, Alessandro; Krogh, Vittorio; Ricceri, Fulvio; Sacerdote, Carlotta; Ranzi, Andrea; Sokhi, Ranjeet; Vermeulen, Roel|info:eu-repo/dai/nl/216532620; Hoogh, Kees de; Wang, Meng; Beelen, Rob|info:eu-repo/dai/nl/30483100X; Vineis, Paolo; Brunekreef, Bert|info:eu-repo/dai/nl/067548180; Hoek, Gerard|info:eu-repo/dai/nl/069553475; Raaschou-Nielsen, Ole

    2017-01-01

    BACKGROUND: Tobacco smoke exposure increases the risk of cancer in the liver, but little is known about the possible risk associated with exposure to ambient air pollution. OBJECTIVES: We evaluated the association between residential exposure to air pollution and primary liver cancer incidence.

  20. Genetic modification of the effect of maternal household air pollution exposure on birth weight in Guatemalan newborns.

    Science.gov (United States)

    Thompson, Lisa M; Yousefi, Paul; Peñaloza, Reneé; Balmes, John; Holland, Nina

    2014-12-01

    Low birth weight is associated with exposure to air pollution during pregnancy. The purpose of this study was to evaluate whether null polymorphisms of Glutathione S-transferases (GSTs), specifically GSTM1 and GSTT1 genes in infants or mothers, modify the association between high exposures to household air pollution (HAP) from cooking fires and birth weight. Pregnant women in rural Guatemala were randomized to receive a chimney stove or continue to use open fires for cooking. Newborns were measured within 48 h of birth. 132 mother-infant pairs provided infant genotypes (n=130) and/or maternal genotypes (n=116). Maternal null GSTM1 was associated with a 144 g (95% CI, -291, 1) and combined maternal/infant null GSTT1 was associated with a 155 g (95% CI, -303, -8) decrease in birth weight. Although there was a trend toward higher birth weights with increasing number of expressed GST genes, the effect modification by chimney stove use was not demonstrated. Copyright © 2014 Elsevier Inc. All rights reserved.

  1. GPS-based microenvironment tracker (MicroTrac) model to estimate time-location of individuals for air pollution exposure assessments: model evaluation in central North Carolina.

    Science.gov (United States)

    Breen, Michael S; Long, Thomas C; Schultz, Bradley D; Crooks, James; Breen, Miyuki; Langstaff, John E; Isaacs, Kristin K; Tan, Yu-Mei; Williams, Ronald W; Cao, Ye; Geller, Andrew M; Devlin, Robert B; Batterman, Stuart A; Buckley, Timothy J

    2014-07-01

    A critical aspect of air pollution exposure assessment is the estimation of the time spent by individuals in various microenvironments (ME). Accounting for the time spent in different ME with different pollutant concentrations can reduce exposure misclassifications, while failure to do so can add uncertainty and bias to risk estimates. In this study, a classification model, called MicroTrac, was developed to estimate time of day and duration spent in eight ME (indoors and outdoors at home, work, school; inside vehicles; other locations) from global positioning system (GPS) data and geocoded building boundaries. Based on a panel study, MicroTrac estimates were compared with 24-h diary data from nine participants, with corresponding GPS data and building boundaries of home, school, and work. MicroTrac correctly classified the ME for 99.5% of the daily time spent by the participants. The capability of MicroTrac could help to reduce the time-location uncertainty in air pollution exposure models and exposure metrics for individuals in health studies.

  2. Air pollution in China, with Junfeng (Jim) Zhang by Ashley Ahearn.

    Science.gov (United States)

    Zhang, Junfeng Jim

    2011-06-01

    Air pollution in China, one of the world’s oldest civilizations, reflects a combination of traditional and modern-day factors. Severe air pollution in Chinese cities is the result of rapid industrialization, urbanization, and growth in vehicle use. At the same time, traditional indoor burning of solid fuels such as coal and dung presents acute, severe exposures to pollutants including particulate matter, carbon monoxide, arsenic, and mercury. In this podcast, Junfeng (Jim) Zhang tells host Ashley Ahearn about some of the factors that make air pollution a significant problem in China.

  3. Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study.

    Science.gov (United States)

    Brunekreef, Bert; Beelen, Rob; Hoek, Gerard; Schouten, Leo; Bausch-Goldbohm, Sandra; Fischer, Paul; Armstrong, Ben; Hughes, Edward; Jerrett, Michael; van den Brandt, Piet

    2009-03-01

    Evidence is increasing that long-term exposure to ambient air pollution is associated with deaths from cardiopulmonary diseases. In a 2002 pilot study, we reported clear indications that traffic-related air pollution, especially at the local scale, was related to cardiopulmonary mortality in a randomly selected subcohort of 5000 older adults participating in the ongoing Netherlands Cohort Study (NLCS) on diet and cancer. In the current study, referred to as NLCS-AIR, our objective was to obtain more precise estimates of the effects of traffic-related air pollution by analyzing associations with cause-specific mortality, as well as lung cancer incidence, in the full cohort of approximately 120,000 subjects. Cohort members were 55 to 69 years of age at enrollment in 1986. Follow-up was from 1987 through 1996 for mortality (17,674 deaths) and from late 1986 through 1997 for lung cancer incidence (2234 cases). Information about potential confounding variables and effect modifiers was available from the questionnaire that subjects completed at enrollment and from publicly available data (including neighborhood-scale information such as income distributions). The NLCS was designed for a case-cohort approach, which makes use of all the cases in the full cohort, while data for the random subcohort are used to estimate person-time experience in the study. Full information on confounders was available for the subjects in the random subcohort and for the emerging cases of mortality and lung cancer incidence during the follow-up period, and in NLCS-AIR we used the case-cohort approach to examine the relation between exposure to air pollution and cause-specific mortality and lung cancer. We also specified a standard Cox proportional hazards model within the full cohort, for which information on potential confounding variables was much more limited. Exposure to air pollution was estimated for the subjects' home addresses at baseline in 1986. Concentrations were estimated for

  4. Combined effects of road traffic noise and ambient air pollution in relation to risk for stroke?

    DEFF Research Database (Denmark)

    Sørensen, Mette; Lühdorf, Pernille; Ketzel, Matthias

    2014-01-01

    Exposure to road traffic noise and air pollution have both been associated with risk for stroke. The few studies including both exposures show inconsistent results. We aimed to investigate potential mutual confounding and combined effects between road traffic noise and air pollution in association...... to 2009 were identified in national registers and road traffic noise and air pollution were modeled for all addresses. Analyses were done using Cox regression. A higher mean annual exposure at time of diagnosis of 10µg/m(3) nitrogen dioxide (NO2) and 10dB road traffic noise at the residential address...... was found for combination of high noise and high NO2 (IRR=1.28; 95% CI=1.09-1.52). Fatal stroke was positively associated with air pollution and not with traffic noise. In conclusion, in mutually adjusted models road traffic noise and not air pollution was associated ischemic stroke, while only air...

  5. Cardiovascular effects of air pollution.

    Science.gov (United States)

    Brook, Robert D

    2008-09-01

    Air pollution is a heterogeneous mixture of gases, liquids and PM (particulate matter). In the modern urban world, PM is principally derived from fossil fuel combustion with individual constituents varying in size from a few nanometres to 10 microm in diameter. In addition to the ambient concentration, the pollution source and chemical composition may play roles in determining the biological toxicity and subsequent health effects. Nevertheless, studies from across the world have consistently shown that both short- and long-term exposures to PM are associated with a host of cardiovascular diseases, including myocardial ischaemia and infarctions, heart failure, arrhythmias, strokes and increased cardiovascular mortality. Evidence from cellular/toxicological experiments, controlled animal and human exposures and human panel studies have demonstrated several mechanisms by which particle exposure may both trigger acute events as well as prompt the chronic development of cardiovascular diseases. PM inhaled into the pulmonary tree may instigate remote cardiovascular health effects via three general pathways: instigation of systemic inflammation and/or oxidative stress, alterations in autonomic balance, and potentially by direct actions upon the vasculature of particle constituents capable of reaching the systemic circulation. In turn, these responses have been shown to trigger acute arterial vasoconstriction, endothelial dysfunction, arrhythmias and pro-coagulant/thrombotic actions. Finally, long-term exposure has been shown to enhance the chronic genesis of atherosclerosis. Although the risk to one individual at any single time point is small, given the prodigious number of people continuously exposed, PM air pollution imparts a tremendous burden to the global public health, ranking it as the 13th leading cause of morality (approx. 800,000 annual deaths).

  6. Air Pollution Is Associated With Ischemic Stroke via Cardiogenic Embolism.

    Science.gov (United States)

    Chung, Jong-Won; Bang, Oh Young; Ahn, Kangmo; Park, Sang-Soon; Park, Tai Hwan; Kim, Jae Guk; Ko, Youngchai; Lee, SooJoo; Lee, Kyung Bok; Lee, Jun; Kang, Kyusik; Park, Jong-Moo; Cho, Yong-Jin; Hong, Keun-Sik; Nah, Hyun-Wook; Kim, Dae-Hyun; Cha, Jae-Kwan; Ryu, Wi-Sun; Kim, Dong-Eog; Kim, Joon-Tae; Choi, Jay Chol; Oh, Mi-Sun; Yu, Kyung-Ho; Lee, Byung-Chul; Lee, Ji Sung; Lee, Juneyoung; Park, Hong-Kyun; Kim, Beom Joon; Han, Moon-Ku; Bae, Hee-Joon

    2017-01-01

    The aim of the study was to assessed the impact of short-term exposure to air pollution on ischemic stroke subtype, while focusing on stroke caused via cardioembolism. From a nationwide, multicenter, prospective, stroke registry database, 13 535 patients with acute ischemic stroke hospitalized to 12 participating centers were enrolled in this study. Data on the hourly concentrations of particulate matter <10 μm, nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ), ozone (O 3 ), and carbon monoxide (CO) were collected from 181 nationwide air pollution surveillance stations. The average values of these air pollutants over the 7 days before stroke onset from nearest air quality monitoring station in each patient were used to determine association with stroke subtype. The primary outcome was stroke subtype, including large artery atherosclerosis, small-vessel occlusion, cardioembolism, and stroke of other or undetermined cause. Particulate matter <10 μm and SO 2 concentrations were independently associated with an increased risk of cardioembolic stroke, as compared with large artery atherosclerosis and noncardioembolic stroke. In stratified analyses, the proportion of cases of cardioembolic stroke was positively correlated with the particulate matter <10 μm, NO 2 , and SO 2 quintiles. Moreover, seasonal and geographic factors were related to an increased proportion of cardioembolic stroke, which may be attributed to the high levels of air pollution. Our findings suggest that the short-term exposure to air pollutants is associated with cardioembolic stroke, and greater care should be taken for those susceptible to cerebral embolism during peak pollution periods. Public and environmental health policies to reduce air pollution could help slow down global increasing trends of cardioembolic stroke. © 2016 American Heart Association, Inc.

  7. Long-term air pollution exposure and living close to busy roads are associated with COPD in women

    Directory of Open Access Journals (Sweden)

    Gehring Ulrike

    2005-12-01

    Full Text Available Abstract Background Lung function and exacerbations of chronic obstructive pulmonary disease (COPD have been associated with short-term exposure to air pollution. However, the effect of long-term exposure to particulate matter from industry and traffic on COPD as defined by lung function has not been evaluated so far. Our study was designed to investigate the influence of long-term exposure to air pollution on respiratory symptoms and pulmonary function in 55-year-old women. We especially focused on COPD as defined by GOLD criteria and additionally compared the effects of air pollution on respiratory symptoms by questionnaire data and by lung function measurements. Methods In consecutive cross sectional studies conducted between 1985–1994, we investigated 4757 women living in the Rhine-Ruhr Basin of Germany. NO2 and PM10 exposure was assessed by measurements done in an 8 km grid, and traffic exposure by distance from the residential address to the nearest major road using Geographic Information System data. Lung function was determined and COPD was defined by using the GOLD criteria. Chronic respiratory symptoms and possible confounders were defined by questionnaire data. Linear and logistic regressions, including random effects were used to account for confounding and clustering on city level. Results The prevalence of COPD (GOLD stages 1–4 was 4.5%. COPD and pulmonary function were strongest affected by PM10 and traffic related exposure. A 7 μg/m3 increase in five year means of PM10 (interquartile range was associated with a 5.1% (95% CI 2.5%–7.7% decrease in FEV1, a 3.7% (95% CI 1.8%–5.5% decrease in FVC and an odds ratio (OR of 1.33 (95% CI 1.03–1.72 for COPD. Women living less than 100 m from a busy road also had a significantly decreased lung function and COPD was 1.79 times more likely (95% CI 1.06–3.02 than for those living farther away. Chronic symptoms as based on questionnaire information showed effects in the same

  8. Air pollution and chronic airway diseases: what should people know and do?

    Science.gov (United States)

    Jiang, Xu-Qin; Mei, Xiao-Dong; Feng, Di

    2016-01-01

    The health effects of air pollution remain a public health concern worldwide. Exposure to air pollution has many substantial adverse effects on human health. Globally, seven million deaths were attributable to the joint effects of household and ambient air pollution. Subjects with chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are especially vulnerable to the detrimental effects of air pollutants. Air pollution can induce the acute exacerbation of COPD and onset of asthma, increase the respiratory morbidity and mortality. The health effects of air pollution depend on the components and sources of pollutants, which varied with countries, seasons, and times. Combustion of solid fuels is a major source of air pollutants in developing countries. To reduce the detrimental effects of air pollution, people especially those with COPD or asthma should be aware of the air quality and take extra measures such as reducing the time outdoor and wearing masks when necessary. For reducing the air pollutants indoor, people should use clean fuels and improve the stoves so as to burn fuel more efficiently and vent emissions to the outside. Air cleaners that can improve the air quality efficiently are recommended.

  9. Air pollution and chronic airway diseases: what should people know and do?

    Science.gov (United States)

    Jiang, Xu-Qin; Feng, Di

    2016-01-01

    The health effects of air pollution remain a public health concern worldwide. Exposure to air pollution has many substantial adverse effects on human health. Globally, seven million deaths were attributable to the joint effects of household and ambient air pollution. Subjects with chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are especially vulnerable to the detrimental effects of air pollutants. Air pollution can induce the acute exacerbation of COPD and onset of asthma, increase the respiratory morbidity and mortality. The health effects of air pollution depend on the components and sources of pollutants, which varied with countries, seasons, and times. Combustion of solid fuels is a major source of air pollutants in developing countries. To reduce the detrimental effects of air pollution, people especially those with COPD or asthma should be aware of the air quality and take extra measures such as reducing the time outdoor and wearing masks when necessary. For reducing the air pollutants indoor, people should use clean fuels and improve the stoves so as to burn fuel more efficiently and vent emissions to the outside. Air cleaners that can improve the air quality efficiently are recommended. PMID:26904251

  10. Does air pollution pose a public health problem for New Zealand?

    Science.gov (United States)

    Scoggins, Amanda

    2004-02-01

    Air pollution is increasingly documented as a threat to public health and a major focus of regulatory activity in developed and developing countries. Air quality indicators suggest New Zealand has clean air relative to many other countries. However, media releases such as 'Christchurch wood fires pump out deadly smog' and 'Vehicle pollution major killer' have sparked public health concern regarding exposure to ambient air pollution, especially in anticipation of increasing emissions and population growth. Recent evidence is presented on the effects of air quality on health, which has been aided by the application of urban airshed models and Geographic Information Systems (GIS). Future directions for research into the effects of air quality on health in New Zealand are discussed, including a national ambient air quality management project: HAPINZ--Health and Air Pollution in New Zealand.

  11. Long-term exposure to gaseous air pollutants and cardio-respiratory mortality in Brisbane, Australia

    Directory of Open Access Journals (Sweden)

    Xiao Yu Wang

    2009-05-01

    Full Text Available This study examines the association of long-term exposure to gaseous air pollution with cardio-respiratory mortality in Brisbane, Australia, in the period 1996-2004. The pollutant concentrations were estimated using geographical information system (GIS techniques at the statistical local area (SLA level. The generalized estimating equations model was used to investigate the impact of nitrogen dioxide (NO2, ozone (O3 and sulphur dioxide (SO2 on mortality due to cardio-respiratory disease after adjusting for a range of potential confounders. An increase of 4.7% (95% confidence interval = 0.7-8.9% in cardio-respiratory mortality for 1 part per billion (ppb increment in annual average concentration of SO2 was estimated. However, there was no significant association between long-term exposures to NO2 or O3 and death due to cardio-respiratory disease. The results indicate that the annual average concentration of SO2 is associated with cardio-respiratory mortality at the SLA level and this association appears to vary with the geographical area.

  12. Coping with Indoor Air Pollution

    Science.gov (United States)

    ... Pollution > Coping with Indoor Air Pollution Font: Outdoor Pollution Indoor Air Pollution Asthma Triggers For Kids and Teachers Coping with Indoor Air Pollution Indoor air pollution is irritating to everyone: But people who ...

  13. Association between air pollution and cardiovascular mortality in Hefei, China: A time-series analysis.

    Science.gov (United States)

    Zhang, Chao; Ding, Rui; Xiao, Changchun; Xu, Yachun; Cheng, Han; Zhu, Furong; Lei, Ruoqian; Di, Dongsheng; Zhao, Qihong; Cao, Jiyu

    2017-10-01

    In recent years, air pollution has become an alarming problem in China. However, evidence on the effects of air pollution on cardiovascular mortality is still not conclusive to date. This research aimed to assess the short-term effects of air pollution on cardiovascular morbidity in Hefei, China. Data of air pollution, cardiovascular mortality, and meteorological characteristics in Hefei between 2010 and 2015 were collected. Time-series analysis in generalized additive model was applied to evaluate the association between air pollution and daily cardiovascular mortality. During the study period, the annual average concentration of PM 10, SO 2 , and NO 2 was 105.91, 20.58, and 30.93 μg/m 3 , respectively. 21,816 people (including 11,876 man, and 14,494 people over 75 years of age) died of cardiovascular diseases. In single pollutant model, the effects of multi-day exposure were greater than single-day exposure of the air pollution. For every increase of 10 μg/m 3 in SO 2 , NO 2 , and PM 10 levels, CVD mortality increased by 5.26% (95%CI: 3.31%-7.23%), 2.71% (95%CI: 1.23%-4.22%), and 0.68% (95%CI: 0.33%-1.04%) at a lag03, respectively. The multi-pollutant models showed that PM 10 and SO 2 remained associated with CVD mortality, although the effect estimates attenuated. However, the effect of NO 2 on CVD mortality decreased to statistically insignificant. Subgroup analyses further showed that women were more vulnerable than man upon air pollution exposure. These findings showed that air pollution could significantly increase the CVD mortality. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models.

    Science.gov (United States)

    Adams, Matthew D; Kanaroglou, Pavlos S

    2016-03-01

    Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved

  15. Spatiotemporally resolved air exchange rate as a modifier of acute air pollution-related morbidity in Atlanta.

    Science.gov (United States)

    Sarnat, Jeremy A; Sarnat, Stefanie Ebelt; Flanders, W Dana; Chang, Howard H; Mulholland, James; Baxter, Lisa; Isakov, Vlad; Özkaynak, Halûk

    2013-01-01

    Epidemiological studies frequently use central site concentrations as surrogates of exposure to air pollutants. Variability in air pollutant infiltration due to differential air exchange rates (AERs) is potentially a major factor affecting the relationship between central site concentrations and actual exposure, and may thus influence observed health risk estimates. In this analysis, we examined AER as an effect modifier of associations between several urban air pollutants and corresponding emergency department (ED) visits for asthma and wheeze during a 4-year study period (January 1999-December 2002) for a 186 ZIP code area in metro Atlanta. We found positive associations for the interaction between AER and pollution on asthma ED visits for both carbon monoxide (CO) and nitrogen oxides (NO(x)), indicating significant or near-significant effect modification by AER on the pollutant risk-ratio estimates. In contrast, the interaction term between particulate matter (PM)(2.5) and AER on asthma ED visits was negative and significant. However, alternative distributional tertile analyses showed PM(2.5) and AER epidemiological model results to be similar to those found for NOx and CO (namely, increasing risk ratios (RRs) with increasing AERs when ambient PM(2.5) concentrations were below the highest tertile of their distribution). Despite the fact that ozone (O(3)) was a strong independent predictor of asthma ED visits in our main analysis, we found no O(3)-AER effect modification. To our knowledge, our findings for CO, NOx, and PM(2.5) are the first to provide an indication of short-term (i.e., daily) effect modification of multiple air pollution-related risk associations with daily changes in AER. Although limited to one outcome category in a single large urban locale, the findings suggest that the use of relatively simple and easy-to-derive AER surrogates may reflect intraurban differences in short-term exposures to pollutants of ambient origin.

  16. Indoor Air Pollution

    Science.gov (United States)

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  17. Air pollution as noxious environmental factor in the development of cardiovascular disease

    NARCIS (Netherlands)

    Hassing, H. C.; Twickler, Th B.; Kastelein, J. J. P.; Cramer, M. J. M.; Cassee, F. R.

    2009-01-01

    A strong epidemiological association has been revealed between air pollution and the occurrence of cardiovascular disease (CVD). Deleterious consequences of such pollution, including myocardial infarction and coronary ischaemia, have occurred after both acute as well as chronic exposure to air

  18. Human health effects of air pollution

    International Nuclear Information System (INIS)

    Kampa, Marilena; Castanas, Elias

    2008-01-01

    Hazardous chemicals escape to the environment by a number of natural and/or anthropogenic activities and may cause adverse effects on human health and the environment. Increased combustion of fossil fuels in the last century is responsible for the progressive change in the atmospheric composition. Air pollutants, such as carbon monoxide (CO), sulfur dioxide (SO 2 ), nitrogen oxides (NOx), volatile organic compounds (VOCs), ozone (O 3 ), heavy metals, and respirable particulate matter (PM2.5 and PM10), differ in their chemical composition, reaction properties, emission, time of disintegration and ability to diffuse in long or short distances. Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs. It ranges from minor upper respiratory irritation to chronic respiratory and heart disease, lung cancer, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks. In addition, short- and long-term exposures have also been linked with premature mortality and reduced life expectancy. These effects of air pollutants on human health and their mechanism of action are briefly discussed. - The effect of air pollutants on human health and underlying mechanisms of cellular action are discussed

  19. Hazardous Air Pollutants

    Science.gov (United States)

    ... Search Main menu Environmental Topics Air Bed Bugs Chemicals and Toxics Environmental Information by Location Greener Living Health Land, ... regulate toxic air pollutants, also known as air toxics, from categories of industrial facilities in two phases . About Hazardous Air Pollutants ...

  20. Ships, ports and particulate air pollution - an analysis of recent studies

    Directory of Open Access Journals (Sweden)

    Mueller Daniel

    2011-12-01

    Full Text Available Abstract The duration of use is usually significantly longer for marine vessels than for roadside vehicles. Therefore, these vessels are often powered by relatively old engines which may propagate air pollution. Also, the quality of fuel used for marine vessels is usually not comparable to the quality of fuels used in the automotive sector and therefore, port areas may exhibit a high degree of air pollution. In contrast to the multitude of studies that addressed outdoor air pollution due to road traffic, only little is known about ship-related air pollution. Therefore the present article aims to summarize recent studies that address air pollution, i.e. particulate matter exposure, due to marine vessels. It can be stated that the data in this area of research is still largely limited. Especially, knowledge on the different air pollutions in different sea areas is needed.