WorldWideScience

Sample records for air pollution climate

  1. Transportation, Air Pollution, and Climate Change

    Science.gov (United States)

    ... Centers Contact Us Share Transportation, Air Pollution, and Climate Change Overview Learn about pollutants from vehicles and engines that cause harmful health effects and climate change. Overview of air pollution from transportation Key issues, ...

  2. The Interplay of Climate Change and Air Pollution on Health.

    Science.gov (United States)

    Orru, H; Ebi, K L; Forsberg, B

    2017-12-01

    Air pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-related health impacts and identify knowledge gaps for future research. Several studies modelled future ozone and particulate matter concentrations and calculated the resulting health impacts under different climate scenarios. Due to climate change, ozone- and fine particle-related mortalities are expected to increase in most studies; however, results differ by region, assumed climate change scenario and other factors such as population and background emissions. This review explores the relationships between climate change, air pollution and air pollution-related health impacts. The results highly depend on the climate change scenario used and on projections of future air pollution emissions, with relatively high uncertainty. Studies primarily focused on mortality; projections on the effects on morbidity are needed.

  3. Climate Change, Air Pollution, and the Economics of Health Impacts

    Science.gov (United States)

    Reilly, J.; Yang, T.; Paltsev, S.; Wang, C.; Prinn, R.; Sarofim, M.

    2003-12-01

    Climate change and air pollution are intricately linked. The distinction between greenhouse substances and other air pollutants is resolved at least for the time being in the context of international negotiations on climate policy through the identification of CO2, CH4, N2O, SF6 and the per- and hydro- fluorocarbons as substances targeted for control. Many of the traditional air pollutant emissions including for example CO, NMVOCs, NOx, SO2, aerosols, and NH3 also directly or indirectly affect the radiative balance of the atmosphere. Among both sets of gases are precursors of and contributors to pollutants such as tropopospheric ozone, itself a strong greenhouse gas, particulate matter, and other pollutants that affect human health. Fossil fuel combustion, production, or transportation is a significant source for many of these substances. Climate policy can thus affect traditional air pollution or air pollution policy can affect climate. Health effects of acute or chronic exposure to air pollution include increased asthma, lung cancer, heart disease and bronchitis among others. These, in turn, redirect resources in the economy toward medical expenditures or result in lost labor or non-labor time with consequent effects on economic activity, itself producing a potential feedback on emissions levels. Study of these effects ultimately requires a fully coupled earth system model. Toward that end we develop an approach for introducing air pollution health impacts into the Emissions Prediction and Policy Analysis (EPPA) model, a component of the MIT Integrated Global Systems Model (IGSM) a coupled economics-chemistry-atmosphere-ocean-terrestrial biosphere model of earth systems including an air pollution model resolving the urban scale. This preliminary examination allows us to consider how climate policy affects air pollution and consequent health effects, and to study the potential impacts of air pollution policy on climate. The novel contribution is the effort to

  4. The Interplay of Climate Change and Air Pollution on Health

    OpenAIRE

    Orru, H.; Ebi, K. L.; Forsberg, B.

    2017-01-01

    Purpose of review: Air pollution significantly affects health, causing up to 7 million premature deaths annually with an even larger number of hospitalizations and days of sick leave. Climate change could alter the dispersion of primary pollutants, particularly particulate matter, and intensify the formation of secondary pollutants, such as near-surface ozone. The purpose of the review is to evaluate the recent evidence on the impacts of climate change on air pollution and air pollution-relat...

  5. Climatic effects of air pollutants over china: A review

    Science.gov (United States)

    Liao, Hong; Chang, Wenyuan; Yang, Yang

    2015-01-01

    Tropospheric ozone (O3) and aerosols are major air pollutants in the atmosphere. They have also made significant contributions to radiative forcing of climate since preindustrial times. With its rapid economic development, concentrations of air pollutants are relatively high in China; hence, quantifying the role of air pollutants in China in regional climate change is especially important. This review summarizes existing knowledge with regard to impacts of air pollutants on climate change in China and defines critical gaps needed to reduce the associated uncertainties. Measured monthly, seasonal, and annual mean surface-layer concentrations of O3 and aerosols over China are compiled in this work, with the aim to show the magnitude of concentrations of O3 and aerosols over China and to provide datasets for evaluation of model results in future studies. Ground-based and satellite measurements of O3 column burden and aerosol optical properties, as well as model estimates of radiative forcing by tropospheric O3 and aerosols are summarized. We also review regional and global modeling studies that have investigated climate change driven by tropospheric O3 and/or aerosols in China; the predicted sign and magnitude of the responses in temperature and precipitation to O3/aerosol forcings are presented. Based on this review, key priorities for future research on the climatic effects of air pollutants in China are highlighted.

  6. Climate change, extreme weather events, air pollution and respiratory health in Europe.

    Science.gov (United States)

    De Sario, M; Katsouyanni, K; Michelozzi, P

    2013-09-01

    Due to climate change and other factors, air pollution patterns are changing in several urbanised areas of the world, with a significant effect on respiratory health both independently and synergistically with weather conditions; climate scenarios show Europe as one of the most vulnerable regions. European studies on heatwave episodes have consistently shown a synergistic effect of air pollution and high temperatures, while the potential weather-air pollution interaction during wildfires and dust storms is unknown. Allergen patterns are also changing in response to climate change, and air pollution can modify the allergenic potential of pollens, especially in the presence of specific weather conditions. The underlying mechanisms of all these interactions are not well known; the health consequences vary from decreases in lung function to allergic diseases, new onset of diseases, exacerbation of chronic respiratory diseases, and premature death. These multidimensional climate-pollution-allergen effects need to be taken into account in estimating both climate and air pollution-related respiratory effects, in order to set up adequate policy and public health actions to face both the current and future climate and pollution challenges.

  7. Climate change impacts on human exposures to air pollution ...

    Science.gov (United States)

    This is an abstract for a presentations at the Annual Conference of the International Society on Exposure Science and Environmental Epidemiology. This presentation will serve as an introduction to the symposium. As we consider the potential health impacts of a warming planet, the relationships between climate change and air pollutants become increasingly important to understand. These relationships are complex and highly variable, causing a variety of environmental impacts at local, regional and global scales. Human exposures and health impacts for air pollutants have the potential to be altered by changes in climate through multiple factors that drive population exposures to these pollutants. Research on this topic will provide both state and local governments with the tools and scientific knowledge base to undertake any necessary adaptation of the air pollution regulations and/or public health management systems in the face of climate change.

  8. Interactions of Climate Change, Air Pollution, and Human Health.

    Science.gov (United States)

    Kinney, Patrick L

    2018-03-01

    I review literature on the impacts of climate change on air quality and human health, with a focus on articles published from 2013 on ozone and airborne particles. Selected previous literature is discussed where relevant in tracing the origins of our current knowledge. Climate and weather have strong influences on the spatial and temporal distribution of air pollution concentrations. Emissions of ozone and PM 2.5 precursors increase at higher ambient temperatures. The reactions that form ozone occur faster with greater sunlight and higher temperatures. Weather systems influence the movement and dispersion of air pollutants in the atmosphere through the action of winds, vertical mixing, and precipitation, all of which are likely to alter in a changing climate. Recent studies indicate that, holding anthropogenic air pollution emissions constant, ozone concentrations in populated regions will tend to increase in future climate scenarios. For the USA, the climate impact on ozone is most consistently seen in north-central and north-eastern states, with the potential for many thousands of additional ozone-related deaths. The sensitivity of anthropogenic PM 2.5 to climate is more variable across studies and regions, owing to the varied nature of PM constituents, as well as to less complete characterization of PM reaction chemistry in available atmospheric models. However, PM emitted by wildland fires is likely to become an increasing health risk in many parts of the world as climate continues to change. The complex interactions between climate change and air quality imply that future policies to mitigate these twin challenges will benefit from greater coordination. Assessing the health implications of alternative policy approaches towards climate and pollution mitigation will be a critical area of future work.

  9. Air Pollution and Climate Change Health Impact Assessment. The ACHIA Project

    International Nuclear Information System (INIS)

    Kinney, P.L.

    2013-01-01

    Climate change may affect human health via interactions with air pollutants such as ozone and PM 2.5 . These air pollutants are linked to climate because they can be both affected by and have effects on climate. In coming decades, substantial, cost-effective improvements in public health may be achieved with well-planned strategies to mitigate climate impacts while also reducing health effects of ozone and PM 2.5 . Climate mitigation actions affect greenhouse pollutant emissions, including methane and black carbon, but also may affect other key air pollution precursors such as NOx, CO, and SOx. To better understand the potential of such strategies, studies are needed that assess possible future health impacts under alternative assumptions about future emissions and climate across multiple spatial scales. The overall objective of this project is to apply state of the art climate, air quality, and health modelling tools to assess future health impacts of ozone and PM 2.5 under different IPCCs scenario of climate change, focusing specifically on pollution-related health co-benefits which could be achieved under alternative climate mitigation pathways in the period 2030-2050. This question will be explored at three spatial scales: global, regional (Europe), and urban (Paris). ACHIA is comprised of an integrated set of four work packages: WP1. Global Climate and Air Pollution Impacts of Alternative Emissions Pathways; WP2. Climate and Air Quality at Regional and Urban Scales: Results for Europe and Paris; WP3. Health Impact Assessment; WP4. Dissemination, Evaluation, Management. ACHIA is designed to create an interdisciplinary approach to the impacts of climate change on health through air quality changes, and to start longer-term collaborations between communities. We expect the project to advance state of art across all WPs, with important implications for research groups around the world. A particular innovation of the project is the multi-scale aspect, i.e., the

  10. Air pollution: UNCED convention on climate change

    International Nuclear Information System (INIS)

    Pieri, M.

    1992-01-01

    In addition to United Nations papers delineating the Organization's convention on climate change and strategies concerning the protection of the earth's atmosphere, this booklet presents four papers expressing the views of Italian and American strategists. The central theme is the establishment of current global air pollution trends, the determination of suitable air pollution limits, and the preparation of feasible socio-economic strategies to allow industrialized and developing countries to work together effectively to achieve the proposed global air quality goals

  11. Climate change and air pollution jointly creating nightmare for tourism industry.

    Science.gov (United States)

    Sajjad, Faiza; Noreen, Umara; Zaman, Khalid

    2014-11-01

    The objective of the study is to examine the long-run and causal relationship between climate change (i.e., greenhouse gas emissions, hydrofluorocarbons, per fluorocarbons, and sulfur hexafluoride), air pollution (i.e., methane emissions, nitrous oxide emissions, and carbon dioxide emissions), and tourism development indicators (i.e., international tourism receipts, international tourism expenditures, natural resource depletion, and net forest depletion) in the World's largest regions. The aggregate data is used for robust analysis in the South Asia, the Middle East and North Africa, sub-Saharan Africa, and East Asia and the Pacific regions, over a period of 1975-2012. The results show that climatic factors and air pollution have a negative impact on tourism indicators in the form of deforestation and natural resource depletion. The impact is evident, as we have seen the systematic eroding of tourism industry, due to severe changes in climate and increasing strain of air pollution. There are several channels of cause-effect relationship between the climatic factors, air pollution, and tourism indicators in the World's region. The study confirms the unidirectional, bidirectional, and causality independent relationship between climatic factors, air pollution, and tourism indicators in the World. It is conclusive that tourism industry is facing all time bigger challenges of reduce investment, less resources, and minor importance from the government agencies because of the two broad challenges, i.e., climate change and air pollution, putting them in a dismal state.

  12. Climate Change and Air Pollution: Effects on Respiratory Allergy.

    Science.gov (United States)

    D'Amato, Gennaro; Pawankar, Ruby; Vitale, Carolina; Lanza, Maurizia; Molino, Antonio; Stanziola, Anna; Sanduzzi, Alessandro; Vatrella, Alessandro; D'Amato, Maria

    2016-09-01

    A body of evidence suggests that major changes involving the atmosphere and the climate, including global warming induced by anthropogenic factors, have impact on the biosphere and human environment. Studies on the effects of climate change on respiratory allergy are still lacking and current knowledge is provided by epidemiological and experimental studies on the relationship between allergic respiratory diseases, asthma and environmental factors, such as meteorological variables, airborne allergens, and air pollution. Urbanization with its high levels of vehicle emissions, and a westernized lifestyle are linked to the rising frequency of respiratory allergic diseases and bronchial asthma observed over recent decades in most industrialized countries. However, it is not easy to evaluate the impact of climate changes and air pollution on the prevalence of asthma in the general population and on the timing of asthma exacerbations, although the global rise in asthma prevalence and severity could also be an effect of air pollution and climate change. Since airborne allergens and air pollutants are frequently increased contemporaneously in the atmosphere, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of respiratory allergy and asthma in atopic subjects in the last 5 decades. Pollen allergy is frequently used to study the relationship between air pollution and respiratory allergic diseases, such as rhinitis and bronchial asthma. Epidemiologic studies have demonstrated that urbanization, high levels of vehicle emissions, and westernized lifestyle are correlated with an increased frequency of respiratory allergy prevalently in people who live in urban areas in comparison with people living in rural areas. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc.) can affect both components (biological and chemical) of this interaction.

  13. Integrated effects of air pollution and climate change on forests: A northern hemisphere perspective

    International Nuclear Information System (INIS)

    Bytnerowicz, Andrzej; Omasa, Kenji; Paoletti, Elena

    2007-01-01

    Many air pollutants and greenhouse gases have common sources, contribute to radiative balance, interact in the atmosphere, and affect ecosystems. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects may significantly differ from a sum of separate effects. We review the links between air pollution and climate change and their interactive effects on northern hemisphere forests. A simultaneous addressing of the air pollution and climate change effects on forests may result in more effective research, management and monitoring as well as better integration of local, national and global environmental policies. - Simultaneous addressing air pollution and climate change effects on forests is an opportunity for capturing synergies in future research and monitoring

  14. Bringing air pollution into the climate change equation

    OpenAIRE

    2014-01-01

    As countries gear up for a major round of international climate talks next year in Paris, the growing problem of air pollution is fast becoming a vital part of the climate change and health debate. Fiona Fleck talks to Marit Viktoria Pettersen.

  15. Bringing air pollution into the climate change equation.

    Science.gov (United States)

    Pettersen, Marit Viktoria; Fleck, Fiona

    2014-08-01

    As countries gear up for a major round of international climate talks next year in Paris, the growing problem of air pollution is fast becoming a vital part of the climate change and health debate. Fiona Fleck talks to Marit Viktoria Pettersen.

  16. Exploring feedbacks between air pollution and climate policy

    NARCIS (Netherlands)

    Chuwah, C.D.

    2015-01-01

    The climate of the Earth is changing in response to natural and anthropogenic forcing agents. Emissions of greenhouse gases and air pollutants have led to significant changes in the Earth’s climate systems and projections indicate that further extensive changes are likely. Increased scientific

  17. Evaluation of co-benefits from combined climate change and air pollution reduction strategies

    Science.gov (United States)

    Leitao, Joana; Van Dingenen, Rita; Dentener, Frank; Rao, Shilpa

    2014-05-01

    The connection of climate change and air pollution is becoming more relevant in the process of policy making and implementation of emission control strategies because of resulting co-benefits and trade-offs. Some sectors, such as fossil fuel combustion, are sources of both pollutants (NOx and PM) as well as greenhouse gas (CO2). Additionally, the use of wood burning as biofuel to reduce climate impact may in fact deteriorate air quality. Furthermore, several air pollutants are important radiative forcers and regulating their emissions impacts on climate. It is evident that both problems need to be undertaken with a common strategy and the existence of cross-policy with co-benefits may encourage their implementation. The LIMITS FP7 project (http://www.feem-project.net/limits/index.html) was designed with the main goal of assessing strategies for reduction of GHG emissions so that the 2°C target can be achieved. The work developed focus on the evaluation of the implementation of strategies analysing several aspects of different scenarios, namely: the feasibility of low carbon scenarios in terms of available technologies and infrastructure, the required financial mechanisms, and also the co-benefits regarding energy security, economic development and air pollution. For the latter, five integrated assessment models (IAMs) provided greenhouse gases and pollutant emission values for several scenarios. These were based on air pollution scenarios defined according to stringency and implementation of future global legislation. They which were also combined with 2 climate policy scenarios (no climate policy and 2.8 W/m2 target). The former are mostly focused on non-climate policies and technical control measures for emissions of air pollutants, such as PM2.5, NOx and SO2, with their emission factors harmonized between the IAMs. With the global air quality source-receptor model TM5-FASST the impact of the resulting emissions was analysed and the co-benefits of combined

  18. Effects of climate change on residential infiltration and air pollution exposure.

    Science.gov (United States)

    Ilacqua, Vito; Dawson, John; Breen, Michael; Singer, Sarany; Berg, Ashley

    2017-01-01

    Air exchange through infiltration is driven partly by indoor/outdoor temperature differences, and as climate change increases ambient temperatures, such differences could vary considerably even with small ambient temperature increments, altering patterns of exposures to both indoor and outdoor pollutants. We calculated changes in air fluxes through infiltration for prototypical detached homes in nine metropolitan areas in the United States (Atlanta, Boston, Chicago, Houston, Los Angeles, Minneapolis, New York, Phoenix, and Seattle) from 1970-2000 to 2040-2070. The Lawrence Berkeley National Laboratory model of infiltration was used in combination with climate data from eight regionally downscaled climate models from the North American Regional Climate Change Assessment Program. Averaged over all study locations, seasons, and climate models, air exchange through infiltration would decrease by ~5%. Localized increased infiltration is expected during the summer months, up to 20-30%. Seasonal and daily variability in infiltration are also expected to increase, particularly during the summer months. Diminished infiltration in future climate scenarios may be expected to increase exposure to indoor sources of air pollution, unless these ventilation reductions are otherwise compensated. Exposure to ambient air pollution, conversely, could be mitigated by lower infiltration, although peak exposure increases during summer months should be considered, as well as other mechanisms.

  19. Integrated effects of air pollution and climate change on forests: a northern hemisphere perspective.

    Science.gov (United States)

    Bytnerowicz, Andrzej; Omasa, Kenji; Paoletti, Elena

    2007-06-01

    Many air pollutants and greenhouse gases have common sources, contribute to radiative balance, interact in the atmosphere, and affect ecosystems. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects may significantly differ from a sum of separate effects. We review the links between air pollution and climate change and their interactive effects on northern hemisphere forests. A simultaneous addressing of the air pollution and climate change effects on forests may result in more effective research, management and monitoring as well as better integration of local, national and global environmental policies.

  20. Urban Climate and Air Pollution in Ouagadougou, Burkina Faso

    Energy Technology Data Exchange (ETDEWEB)

    Linden, Jenny

    2011-05-15

    Africa has recently been singled out by UN Habitat as the fastest urbanizing continent in the world. The most extreme case was found in the Sahelian city of Ouagadougou, Burkina Faso, where the population is expected to almost double over the next ten years. It is well known that the rapid growth of an urban area is among the most important anthropogenic impacts on the environment, and that it has a profound impact on both the urban climate and air quality. Few studies have been focused on cities in the Sahel region, and the lack of information may consequently hinder adaptation to the extreme urbanization rates of these often heavily polluted cities. The main objective of this thesis was to study the nature of, and relationship between, urban climate and air pollution in Ouagadougou, Burkina Faso. Specific objectives were to; examine spatial variations in daily temperature and humidity patterns during early dry season with focus on effects of different land cover; to examine the influence of atmospheric stability on the intra-urban air temperature patterns, the urban wind field and on air pollution levels; and to examine spatial variations in air pollution levels. An additional objective was to document the status and potential development of synoptic meteorological stations in Burkina Faso. Empirical data used in analyses were collected during five field studies between 2003 and 2010. Meteorological and air pollution parameters were measured at fixed sites and through car traverses in areas of different land cover, activity, traffic density and road surface. The most distinct features in thermal patterns found in Ouagadougou were strong intra-urban nocturnal cool islands in vegetated areas, caused by evening evaporative cooling by the vegetation. Extremely stable nocturnal atmospheric conditions were observed during 80 % of days examined in early dry season, during which spatial patterns in temperature and humidity as well as in air pollution were most pronounced

  1. Ambient air pollution, climate change, and population health in China.

    Science.gov (United States)

    Kan, Haidong; Chen, Renjie; Tong, Shilu

    2012-07-01

    As the largest developing country, China has been changing rapidly over the last three decades and its economic expansion is largely driven by the use of fossil fuels, which leads to a dramatic increase in emissions of both ambient air pollutants and greenhouse gases (GHGs). China is now facing the worst air pollution problem in the world, and is also the largest emitter of carbon dioxide. A number of epidemiological studies on air pollution and population health have been conducted in China, using time-series, case-crossover, cross-sectional, cohort, panel or intervention designs. The increased health risks observed among Chinese population are somewhat lower in magnitude, per amount of pollution, than the risks found in developed countries. However, the importance of these increased health risks is greater than that in North America or Europe, because the levels of air pollution in China are very high in general and Chinese population accounts for more than one fourth of the world's totals. Meanwhile, evidence is mounting that climate change has already affected human health directly and indirectly in China, including mortality from extreme weather events; changes in air and water quality; and changes in the ecology of infectious diseases. If China acts to reduce the combustion of fossil fuels and the resultant air pollution, it will reap not only the health benefits associated with improvement of air quality but also the reduced GHG emissions. Consideration of the health impact of air pollution and climate change can help the Chinese government move forward towards sustainable development with appropriate urgency. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Impacts of Air Pollution and Climate Change on Forest Ecosystems — Emerging Research Needs

    Directory of Open Access Journals (Sweden)

    Elena Paoletti

    2007-01-01

    Full Text Available Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems “Forests under Anthropogenic Pressure Effects of Air Pollution, Climate Change and Urban Development”, September 1016, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3 is still the phytotoxic air pollutant of major interest. Challenging issues are how to make O3 standards or critical levels more biologically based and at the same time practical for wide use; quantification of plant detoxification processes in flux modeling; inclusion of multiple environmental stresses in critical load determinations; new concept development for nitrogen saturation; interactions between air pollution, climate, and forest pests; effects of forest fire on air quality; the capacity of forests to sequester carbon under changing climatic conditions and coexposure to elevated levels of air pollutants; enhanced linkage between molecular biology, biochemistry, physiology, and morphological traits.

  3. Effects on asthma and respiratory allergy of Climate change and air pollution.

    Science.gov (United States)

    D'Amato, Gennaro; Vitale, Carolina; De Martino, Annamaria; Viegi, Giovanni; Lanza, Maurizia; Molino, Antonio; Sanduzzi, Alessandro; Vatrella, Alessandro; Annesi-Maesano, Isabella; D'Amato, Maria

    2015-01-01

    The major changes to our world are those involving the atmosphere and the climate, including global warming induced by anthropogenic factors, with impact on the biosphere and human environment. Studies on the effects of climate changes on respiratory allergy are still lacking and current knowledge is provided by epidemiological and experimental studies on the relationship between allergic respiratory diseases, asthma and environmental factors, like meteorological variables, airborne allergens and air pollution. Epidemiologic studies have demonstrated that urbanization, high levels of vehicle emissions and westernized lifestyle are correlated with an increased frequency of respiratory allergy, mainly in people who live in urban areas in comparison with people living in rural areas. However, it is not easy to evaluate the impact of climate changes and air pollution on the prevalence of asthma in general and on the timing of asthma exacerbations, although the global rise in asthma prevalence and severity could be also considered an effect of air pollution and climate changes. Since airborne allergens and air pollutants are frequently increased contemporaneously in the atmosphere, enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of respiratory allergy and asthma in atopic subjects in the last five decades. Pollen allergy is frequently used to study the interrelationship between air pollution and respiratory allergic diseases such as rhinitis and bronchial asthma. Climatic factors (temperature, wind speed, humidity, thunderstorms, etc) can affect both components (biological and chemical) of this interaction. Scientific societies should be involved in advocacy activities, such as those realized by the Global Alliance against chronic Respiratory Diseases (GARD).

  4. Air pollution and climate change. Effects on vegetation, animals, and humans

    International Nuclear Information System (INIS)

    Wellburn, A.R.

    1997-01-01

    This is the first comprehensive review of the effects of air pollution and climate change on the biosphere. The emphasis is on the biochemical processes caused by specific pollutants in plants, animals, and humans, but global aspects of air pollution are gone into as well, e.g. greenhouse effect, acid rain, ozone depletion and forest decline. The reader is given a comprehensive outline of this interdisciplinary problem field. (orig./MG) [de

  5. The impact of climate upon variation in air pollution using a synoptic climatological approach

    International Nuclear Information System (INIS)

    Powley, J.F.

    1991-01-01

    The Environmental Protection Agency has set national ambient air quality standards for six different pollutants: sulfur dioxide, nitrogen dioxide, ozone, total suspended particulates, nitrogen oxides, and oxidants. The goal of this study was to apply an automatic air mass-based synoptic methodology to surface weather data in order to evaluate the impact of climate on the above pollutant concentrations in Philadelphia, PA; Dallas, TX; and St. Louis, MO. A group of synoptic categories depicting the summer and winter weather in each city was developed using principal components analysis and average linkage clustering. The concentrations of the six air pollutants were then related to the synoptic weather categories. The synoptic categories and associated weather conditions exhibiting particularly high pollution concentrations were analyzed in detail. Ultimately, the procedure was validated for prediction of future pollutant levels. The results from this study support the conclusion that there is a close link between synoptic-air mass combinations and various pollutant concentrations. The climate-pollutant relationship seems to change from summer to winter in the three cities. It appears that climatic thresholds could be found for high levels of various air pollutants. Similar synoptic conditions appear to lead to high accumulations of all six pollutants, although the transportation-related pollutants showed more dependency on the level of solar radiation. These pollutants seem to be more significant in the southern city of Dallas. The synoptic methodology proved to be of assistance in developing a weather/pollution watch-warning system; such a system would be designed to signal impending synoptic conditions which could significantly raise pollutant concentrations

  6. Air pollution and associated human mortality: The role of air pollutant emissions, climate change and methane concentration increases during the industrial period

    Science.gov (United States)

    Fang, Y.; Naik, V.; Horowitz, L. W.; Mauzerall, D. L.

    2012-12-01

    Increases in surface ozone (O3) and fine particulate matter (≤ 2.5μm aerodynamic diameter, PM2.5) are associated with excess premature human mortalities. Here we estimate changes in surface O3 and PM2.5 since preindustrial (1860) times and the global present-day (2000) premature human mortalities associated with these changes. We go beyond previous work to analyze and differentiate the contribution of three factors: changes in emissions of short-lived air pollutants, climate change, and increased methane (CH4) concentrations, to air pollution levels and the associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-hour daily maximum O3 in a year) have increased by 8±0.16 μg/m3 and 30±0.16 ppbv, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS), climate (CLIM) and CH4 concentrations (TCH4). EMIS, CLIM and TCH4 cause global average PM2.5 (O3) to change by +7.5±0.19 μg/m3 (+25±0.30 ppbv), +0.4±0.17 μg/m3 (+0.5±0.28 ppbv), and -0.02±0.01 μg/m3 (+4.3±0.33 ppbv), respectively. Total changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.0-2.5) million all-cause mortalities annually and in O3 are associated with 375 (95% CI, 129-592) thousand respiratory mortalities annually. Most air pollution mortality is driven by changes in emissions of short-lived air pollutants and their precursors (95% and 85% of mortalities from PM2.5 and O3 respectively). However, changing climate and increasing CH4 concentrations also increased premature mortality associated with air

  7. Climate change and air pollution: Effects on pollen allergy and other allergic respiratory diseases.

    Science.gov (United States)

    D'Amato, Gennaro; Bergmann, Karl Christian; Cecchi, Lorenzo; Annesi-Maesano, Isabella; Sanduzzi, Alessandro; Liccardi, Gennaro; Vitale, Carolina; Stanziola, Anna; D'Amato, Maria

    The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollen grains especially in the presence of specific weather conditions. Although genetic factors are important in the development of asthma and allergic diseases, their rising trend can be explained only by changes occurring in the environment and urban air pollution by motor vehicles has been indicated as one of the major risk factors responsible for this increase. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world. Due to climate change, air pollution patterns are changing in several urbanized areas of the world with a significant effect on respiratory health. The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases. In addition, it is important to recall that an individual's response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not depend only on the increased production of air pollution, but rather on atmospheric factors that favor the accumulation of air pollutants at ground level. Associations between thunderstorms and asthma morbidity of pollinosis-affected people have also been identified in multiple locations around the world ( Fig. 1). Cite this as D'Amato G, Bergmann KC, Cecchi L, Annesi-Maesano I, Sanduzzi A, Liccardi G, Vitale C, Stanziola A, D'Amato M. Climate change

  8. Synergies in the Asian energy system: Climate change, energy security, energy access and air pollution

    International Nuclear Information System (INIS)

    Vliet, Oscar van; Krey, Volker; McCollum, David; Pachauri, Shonali; Nagai, Yu; Rao, Shilpa; Riahi, Keywan

    2012-01-01

    We use the MESSAGE model to examine multiple dimensions of sustainable development for three Asian regions in a set of scenarios developed for the Asian Modelling Exercise. Using climate change mitigation as a starting point for the analysis, we focus on the interaction of climate and energy with technology choice, energy security, energy access, and air pollution, which often have higher policy priority than climate change. Stringent climate policies drive the future energy supply in Asia from being dominated by coal and oil to a more diversified system based mostly on natural gas, coal with CCS, nuclear and renewable energy. The increase in diversity helps to improve the energy security of individual countries and regions. Combining air pollution control policies and universal energy access policies with climate policy can further help to reduce both outdoor and indoor air pollution related health impacts. Investments into the energy system must double by 2030 to achieve stringent climate goals, but are largely offset by lower costs for O and M and air pollution abatement. Strong focus on end-use efficiency also helps lowering overall total costs and allows for limiting or excluding supply side technologies from the mitigation portfolio. Costs of additional energy access policies and measures are a small fraction of total energy system costs. - Highlights: ► Half of added investments in energy offset by lower costs for O and M and air pollution. ► Costs for achieving universal energy access much smaller than energy system costs. ► Combined emissions and access policies further reduce air pollution impacts on health. ► Strong focus on end-use efficiency allows for more flexibility on energy sources. ► Stringent climate policy can improve energy security of Asian regions.

  9. An integrated assessment of climate change, air pollution, and energy security policy

    International Nuclear Information System (INIS)

    Bollen, Johannes; Hers, Sebastiaan; Van der Zwaan, Bob

    2010-01-01

    This article presents an integrated assessment of climate change, air pollution, and energy security policy. Basis of our analysis is the MERGE model, designed to study the interaction between the global economy, energy use, and the impacts of climate change. For our purposes we expanded MERGE with expressions that quantify damages incurred to regional economies as a result of air pollution and lack of energy security. One of the main findings of our cost-benefit analysis is that energy security policy alone does not decrease the use of oil: global oil consumption is only delayed by several decades and oil reserves are still practically depleted before the end of the 21st century. If, on the other hand, energy security policy is integrated with optimal climate change and air pollution policy, the world's oil reserves will not be depleted, at least not before our modeling horizon well into the 22nd century: total cumulative demand for oil decreases by about 24%. More generally, we demonstrate that there are multiple other benefits of combining climate change, air pollution, and energy security policies and exploiting the possible synergies between them. These benefits can be large: for Europe the achievable CO 2 emission abatement and oil consumption reduction levels are significantly deeper for integrated policy than when a strategy is adopted in which one of the three policies is omitted. Integrated optimal energy policy can reduce the number of premature deaths from air pollution by about 14,000 annually in Europe and over 3 million per year globally, by lowering the chronic exposure to ambient particulate matter. Only the optimal strategy combining the three types of energy policy can constrain the global average atmospheric temperature increase to a limit of 3 C with respect to the pre-industrial level. (author)

  10. [The effects of air pollution and climate change on pulmonary diseases].

    Science.gov (United States)

    Rohde, G

    2008-04-01

    From as early as 1930 there has been evidence for effects on health of air pollution. Ozone, particulates and nitrogen dioxide are the most important pollutants today. The acute increase in air pollution leads to a significant raise in morbidity and mortality. Hospital admissions of patients with chronic obstructive pulmonary disease (COPD) or asthma are more frequent during these periods. Chronic exposure to pollution causes bronchitis, accelerated decline of lung function and impaired maturing of the lungs. Ozone and a residence in proximity to major roads seem to play a role in the development of asthma. A further important environmental factor is climate change, which has an impact on air pollution but also on distribution and quality of aero-allergens and the dissemination and transmission of respiratory pathogens.

  11. Studies of urban climates and air pollution in Switzerland

    International Nuclear Information System (INIS)

    Wanner, H.; Hertig, J.

    1984-01-01

    In addition to an assessment of the factors that are responsible for urban climate change, this paper describes climatological studies and peculiarities of some Swiss cities. Although these cities are small, urban air pollution presents a real problem for urban planning. This is a result of the narow street canyons, the high traffic concentration and the complex topography, which favors air stagnation during anticyclonic weather conditions

  12. Air pollution policies in Europe: efficiency gains from integrating climate effects with damage costs to health and crops

    International Nuclear Information System (INIS)

    Tollefsen, Petter; Rypdal, Kristin; Torvanger, Asbjorn; Rive, Nathan

    2009-01-01

    Emissions of air pollutants cause damage to health and crops, but several air pollutants also have an effect on climate through radiative forcing. We investigate efficiency gains achieved by integrating climate impacts of air pollutants into air quality strategies for the EU region. The pollutants included in this study are SO 2 , NH 3 , VOC, CO, NO x , black carbon, organic carbon, PM 2.5 , and CH 4 . We illustrate the relative importance of climate change effects compared to damage to health and crops, as well as monetary gains of including climate change contributions. The analysis considers marginal abatement costs and compares air quality and climate damage in Euros. We optimize abatement policies with respect to both climate and health impacts, which imply implementing all measures that yield a net benefit. The efficiency gains of the integrated policy are in the order of 2.5 billion Euros, compared to optimal abatement based on health and crop damage only, justifying increased abatement efforts of close to 50%. Climate effect of methane is the single most important factor. If climate change is considered on a 20- instead of a 100-year time-scale, the efficiency gain almost doubles. Our results indicate that air pollution policies should be supplemented with climate damage considerations.

  13. Quantifying the health impacts of air pollution under a changing climate-a review of approaches and methodology.

    Science.gov (United States)

    Sujaritpong, Sarunya; Dear, Keith; Cope, Martin; Walsh, Sean; Kjellstrom, Tord

    2014-03-01

    Climate change has been predicted to affect future air quality, with inevitable consequences for health. Quantifying the health effects of air pollution under a changing climate is crucial to provide evidence for actions to safeguard future populations. In this paper, we review published methods for quantifying health impacts to identify optimal approaches and ways in which existing challenges facing this line of research can be addressed. Most studies have employed a simplified methodology, while only a few have reported sensitivity analyses to assess sources of uncertainty. The limited investigations that do exist suggest that examining the health risk estimates should particularly take into account the uncertainty associated with future air pollution emissions scenarios, concentration-response functions, and future population growth and age structures. Knowledge gaps identified for future research include future health impacts from extreme air pollution events, interactions between temperature and air pollution effects on public health under a changing climate, and how population adaptation and behavioural changes in a warmer climate may modify exposure to air pollution and health consequences.

  14. Air pollution and climate gradients in western Oregon and Washington indicated by epiphytic macrolichens

    International Nuclear Information System (INIS)

    Geiser, Linda H.; Neitlich, Peter N.

    2007-01-01

    Human activity is changing air quality and climate in the US Pacific Northwest. In a first application of non-metric multidimensional scaling to a large-scale, framework dataset, we modeled lichen community response to air quality and climate gradients at 1416 forested 0.4 ha plots. Model development balanced polluted plots across elevation, forest type and precipitation ranges to isolate pollution response. Air and climate scores were fitted for remaining plots, classed by lichen bioeffects, and mapped. Projected 2040 temperatures would create climate zones with no current analogue. Worst air scores occurred in urban-industrial and agricultural valleys and represented 24% of the landscape. They were correlated with: absence of sensitive lichens, enhancement of nitrophilous lichens, mean wet deposition of ammonium >0.06 mg l -1 , lichen nitrogen and sulfur concentrations >0.6% and 0.07%, and SO 2 levels harmful to sensitive lichens. The model can detect changes in air quality and climate by scoring re-measurements. - Lichen-based air quality and climate gradients in western Oregon and Washington are responsive to regionally increasing nitrogen availability and to temperature changes predicted by climate models

  15. The effect of future outdoor air pollution on human health and the contribution of climate change

    Science.gov (United States)

    Silva, R.; West, J. J.; Lamarque, J.; Shindell, D.; Collins, W.; Dalsoren, S. B.; Faluvegi, G. S.; Folberth, G.; Horowitz, L. W.; Nagashima, T.; Naik, V.; Rumbold, S.; Skeie, R.; Sudo, K.; Takemura, T.; Bergmann, D. J.; Cameron-Smith, P. J.; Cionni, I.; Doherty, R. M.; Eyring, V.; Josse, B.; MacKenzie, I. A.; Plummer, D.; Righi, M.; Stevenson, D. S.; Strode, S. A.; Szopa, S.; Zeng, G.

    2013-12-01

    At present, exposure to outdoor air pollution from ozone and fine particulate matter (PM2.5) causes over 2 million deaths per year, due to respiratory and cardiovascular diseases and lung cancer. Future ambient concentrations of ozone and PM2.5 will be affected by both air pollutant emissions and climate change. Here we estimate the potential impact of future outdoor air pollution on premature human mortality, and isolate the contribution of future climate change due to its effect on air quality. We use modeled present-day (2000) and future global ozone and PM2.5 concentrations from simulations with an ensemble of chemistry-climate models from the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Future air pollution was modeled for global greenhouse gas and air pollutant emissions in the four IPCC AR5 Representative Concentration Pathway (RCP) scenarios, for 2030, 2050 and 2100. All model outputs are regridded to a common 0.5°x0.5° horizontal resolution. Future premature mortality is estimated for each RCP scenario and year based on changes in concentrations of ozone and PM2.5 relative to 2000. Using a health impact function, changes in concentrations for each RCP scenario are combined with future population and cause-specific baseline mortality rates as projected by a single independent scenario in which the global incidence of cardiopulmonary diseases is expected to increase. The effect of climate change is isolated by considering the difference between air pollutant concentrations from simulations with 2000 emissions and a future year climate and simulations with 2000 emissions and climate. Uncertainties in the results reflect the uncertainty in the concentration-response function and that associated with variability among models. Few previous studies have quantified the effects of future climate change on global human health via changes in air quality, and this is the first such study to use an ensemble of global models.

  16. Air pollution policy in Europe: Quantifying the interaction with greenhouse gases and climate change policies

    International Nuclear Information System (INIS)

    Bollen, Johannes; Brink, Corjan

    2014-01-01

    This paper uses the computable general equilibrium model WorldScan to analyse interactions between EU's air pollution and climate change policies. Covering the entire world and seven EU countries, WorldScan simulates economic growth in a neo-classical recursive dynamic framework, including emissions and abatement of greenhouse gases (CO 2 , N 2 O and CH 4 ) and air pollutants (SO 2 , NO x , NH 3 and PM 2.5 ). Abatement includes the possibility of using end-of-pipe control options that remove pollutants without affecting the emission-producing activity itself. This paper analyses several variants of EU's air pollution policies for the year 2020. Air pollution policy will depend on end-of-pipe controls for not more than two thirds, thus also at least one third of the required emission reduction will come from changes in the use of energy through efficiency improvements, fuel switching and other structural changes in the economy. Greenhouse gas emissions thereby decrease, which renders climate change policies less costly. Our results show that carbon prices will fall, and may even drop to zero when the EU agrees on a more stringent air pollution policy. - Highlights: • This paper models bottom-up emission control in top-down CGE model. • We analyse interactions between air pollution and climate policies in Europe. • Structural changes induced by stringent air policies may make EU-ETS market obsolete

  17. Regional climate, local climate and ozone air pollution in Tours and Orleans cities

    International Nuclear Information System (INIS)

    Berthelot, M.

    2006-10-01

    The importance of the relations between climate and the air pollution justifies the interest related to the role of the urban heat island of heat with respect to the night persistence of ozone in urban environment. When the days are favourable with important ozone concentrations, the agglomerations of the area observe a dynamics day laborer of ozone different from that observed in rural environment. The study is undertaken on the towns of Turns and Orleans where the observations of Lig'Air revealed a night persistence of ozone whereas the concentrations drop more quickly in periphery. This phenomenon is remarkable during the little broken down anticyclonic days. The region region Centre is a ground of study privileged for ozone because of its situation in the south-west of the Island of France rich in precursors of ozone. When flow is of continental origin, the Centre area is found then under the influence of the Paris area. The investigation of a study of the air pollution must take into account the notes of the regional climate and local climate. Several preliminary studies must intervene to answer our principal problems. First of all a descriptive study of the regional climate is carried out with the participation of Meteo-France. The current absence of climatic atlas as well as the many disparities of the climate related to extended from the territory partly justify the interest of our study. The regional approach of the climate is also essential for the continuation of work on a finer scale on the agglomerations of Turns and Orleans in order to detect the urban heat island of heat there. Collaboration with Meteo-France and Lig'Air made it possible to establish a satisfying network of measurement making it possible to obtain notable thermal differences between the downtown area and the surrounding rural environment. The correlation between meteorology and the proven air pollution leads us to establish the climatology of ozone. Many are the studies having

  18. Impact of climate change on photochemical air pollution in Southern California

    Directory of Open Access Journals (Sweden)

    D. E. Millstein

    2009-06-01

    Full Text Available The effects of future climate and emissions-related perturbations on ozone air quality in Southern California are considered, with an assumed increase to 2× pre-industrial levels for global background levels of carbon dioxide. Effects of emission and climate-related forcings on air quality are superimposed on a summer 2005 high-ozone time period. Perturbations considered here include (a effect of increased temperature on atmospheric reaction rates, (b effect of increased temperature on biogenic emissions, (c effect of increased water vapor concentrations, (d effect of increased pollutant levels at the inflow (western boundary, and (e effect of population growth and technology change on emissions within Southern California. Various combinations of the above perturbations are also considered. The climate-related perturbations (a–c led to combined peak 1-h ozone increases of up to 11 ppb. The effect on ozone was greatly reduced when the temperature increase was applied mostly during nighttime hours rather than uniformly throughout the day. Increased pollutant levels at the inflow boundary also led to ozone increases up to 5 ppb. These climate and inflow-related changes offset some of the anticipated benefits of emission controls within the air basin.

  19. Impacts of air pollution and climate change on forest ecosystems - emerging research needs

    Science.gov (United States)

    Elena Paoletti; Bytnerowicz; Chris Andersen; Algirdas Augustaitis; Marco Ferretti; Nancy Grulke; Madeleine S. Gunthardt-goerg; John Innes; Dale Johnson; Dave Karnosky; Jessada Luangjame; Rainer Matyssek; Steven McNulty; Gerhard Muller-Starck; Robert Musselman; Kevin Percy

    2007-01-01

    Outcomes from the 22nd meeting for Specialists in Air Pollution Effects on Forest Ecosystems "Forests under Anthropogenic Pressure – Effects of Air Pollution, Climate Change and Urban Development", September 10–16, 2006, Riverside, CA, are summarized. Tropospheric or ground-level ozone (O3) is still the phytotoxic...

  20. Climate change, air pollution and extreme events leading to increasing prevalence of allergic respiratory diseases.

    Science.gov (United States)

    D'Amato, Gennaro; Baena-Cagnani, Carlos E; Cecchi, Lorenzo; Annesi-Maesano, Isabella; Nunes, Carlos; Ansotegui, Ignacio; D'Amato, Maria; Liccardi, Gennaro; Sofia, Matteo; Canonica, Walter G

    2013-02-11

    The prevalence of asthma and allergic diseases has increased dramatically during the past few decades not only in industrialized countries. Urban air pollution from motor vehicles has been indicated as one of the major risk factors responsible for this increase.Although genetic factors are important in the development of asthma and allergic diseases, the rising trend can be explained only in changes occurred in the environment. Despite some differences in the air pollution profile and decreasing trends of some key air pollutants, air quality is an important concern for public health in the cities throughout the world.Due to climate change, air pollution patterns are changing in several urbanized areas of the world, with a significant effect on respiratory health.The observational evidence indicates that recent regional changes in climate, particularly temperature increases, have already affected a diverse set of physical and biological systems in many parts of the world. Associations between thunderstorms and asthma morbidity in pollinosis subjects have been also identified in multiple locations around the world.Allergens patterns are also changing in response to climate change and air pollution can modify the allergenic potential of pollens especially in presence of specific weather conditions.The underlying mechanisms of all these interactions are not well known yet. The consequences on health vary from decreases in lung function to allergic diseases, new onset of diseases, and exacerbation of chronic respiratory diseases.Factor clouding the issue is that laboratory evaluations do not reflect what happens during natural exposition, when atmospheric pollution mixtures in polluted cities are inhaled. In addition, it is important to recall that an individual's response to pollution exposure depends on the source and components of air pollution, as well as meteorological conditions. Indeed, some air pollution-related incidents with asthma aggravation do not depend

  1. Adaptation of forest ecosystems to air pollution and climate change: a global assessment on research priorities

    Science.gov (United States)

    Y. Serengil; A. Augustaitis; Andrzej Bytnerowicz; Nancy Grulke; A.R. Kozovitz; R. Matyssek; G. Müller-Starck; M. Schaub; G. Wieser; A.A. Coskun; E. Paoletti

    2011-01-01

    Climate change and air pollution are two of the anthropogenic stressors that require international collaboration. Influence mechanisms and combating strategies towards them have similarities to some extent. Impacts of air pollution and climate change have long been studied under IUFRO Research Group 7.01 and state of the art findings are presented at biannual meetings...

  2. Can air pollutant controls change global warming?

    International Nuclear Information System (INIS)

    Strefler, Jessica; Luderer, Gunnar; Kriegler, Elmar; Meinshausen, Malte

    2014-01-01

    Highlights: • Air pollution policies do not affect long-term climate targets. • Reduction of aerosols counteracts a fraction of the reduction of Kyoto forcing. • Air pollution policies may affect the rate of climate change in the short term. • There is no tradeoff between clean air and climate policies. - Abstract: In this paper we analyze the interaction between climate and air pollution policies using the integrated assessment model REMIND coupled to the reduced-form climate model MAGICC. Since overall, aerosols tend to cool the atmosphere, there is a concern that a reduction of pollutant emissions could accelerate global warming and offset the climate benefits of carbon dioxide emission reductions. We investigate scenarios which independently reduce emissions from either large-scale sources, such as power plants, or small-scale sources, such as cooking and heating stoves. Large-scale sources are likely to be easier to control, but their aerosol emissions are characterized by a relatively high sulfur content, which tends to result in atmospheric cooling. Pollution from small-scale sources, by contrast, is characterized by a high share of carbonaceous aerosol, which is an important contributor to global warming. We find that air pollution policies can significantly reduce aerosol emissions when no climate policies are in place. Stringent climate policies lead to a large reduction of fossil fuel use, and therefore result in a concurrent reduction of air pollutant emissions. These reductions partly reduce aerosol masking, thus initially counteracting the reduction of greenhouse gas forcing, however not overcompensating it. If climate policies are in place, air pollution policies have almost no impacts on medium- and long-term radiative forcing. Therefore there is no conflict of objectives between clean air and limiting global warming. We find that the stringency of air pollution policies may influence the rate of global temperature change in the first decade

  3. Potential impact of climate change on air pollution-related human health effects.

    Science.gov (United States)

    Tagaris, Efthimios; Liao, Kuo-Jen; Delucia, Anthony J; Deck, Leland; Amar, Praveen; Russell, Armistead G

    2009-07-01

    The potential health impact of ambient ozone and PM2.5 concentrations modulated by climate change over the United States is investigated using combined atmospheric and health modeling. Regional air quality modeling for 2001 and 2050 was conducted using CMAQ Modeling System with meteorology from the GISS Global Climate Model, downscaled regionally using MM5,keeping boundary conditions of air pollutants, emission sources, population, activity levels, and pollution controls constant. BenMap was employed to estimate the air pollution health outcomes at the county, state, and national level for 2050 caused by the effect of meteorology on future ozone and PM2.5 concentrations. The changes in calculated annual mean PM2.5 concentrations show a relatively modest change with positive and negative responses (increasing PM2.5 levels across the northeastern U.S.) although average ozone levels slightly decrease across the northern sections of the U.S., and increase across the southern tier. Results suggest that climate change driven air quality-related health effects will be adversely affected in more then 2/3 of the continental U.S. Changes in health effects induced by PM2.5 dominate compared to those caused by ozone. PM2.5-induced premature mortality is about 15 times higher then that due to ozone. Nationally the analysis suggests approximately 4000 additional annual premature deaths due to climate change impacts on PM2.5 vs 300 due to climate change-induced ozone changes. However, the impacts vary spatially. Increased premature mortality due to elevated ozone concentrations will be offset by lower mortality from reductions in PM2.5 in 11 states. Uncertainties related to different emissions projections used to simulate future climate, and the uncertainties forecasting the meteorology, are large although there are potentially important unaddressed uncertainties (e.g., downscaling, speciation, interaction, exposure, and concentration-response function of the human health studies).

  4. Future Global Mortality from Changes in Air Pollution Attributable to Climate Change

    Science.gov (United States)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-Francois; Shindell, Drew T.; Collins, William J.; Faluvegi, Greg; Folberth, Gerd A.; Horowitz, Larry W.; Nagashima, Tatsuya; Naik, Vaishali; hide

    2017-01-01

    Ground-level ozone and fine particulate matter (PM (sub 2.5)) are associated with premature human mortality; their future concentrations depend on changes in emissions, which dominate the near-term, and on climate change. Previous global studies of the air-quality-related health effects of future climate change used single atmospheric models. However, in related studies, mortality results differ among models. Here we use an ensemble of global chemistry-climate models to show that premature mortality from changes in air pollution attributable to climate change, under the high greenhouse gas scenario RCP (Representative Concentration Pathway) 8.5, is probably positive. We estimate 3,340 (30,300 to 47,100) ozone-related deaths in 2030, relative to 2000 climate, and 43,600 (195,000 to 237,000) in 2100 (14 percent of the increase in global ozone-related mortality). For PM (sub 2.5), we estimate 55,600 (34,300 to 164,000) deaths in 2030 and 215,000 (76,100 to 595,000) in 2100 (countering by 16 percent the global decrease in PM (sub 2.5)-related mortality). Premature mortality attributable to climate change is estimated to be positive in all regions except Africa, and is greatest in India and East Asia. Most individual models yield increased mortality from climate change, but some yield decreases, suggesting caution in interpreting results from a single model. Climate change mitigation is likely to reduce air-pollution-related mortality.

  5. Air pollution and associated human mortality: the role of air pollutant emissions, climate change and methane concentration increases from the preindustrial period to present

    Directory of Open Access Journals (Sweden)

    Y. Fang

    2013-02-01

    Full Text Available Increases in surface ozone (O3 and fine particulate matter (≤2.5 μm aerodynamic diameter, PM2.5 are associated with excess premature human mortalities. We estimate changes in surface O3 and PM2.5 from pre-industrial (1860 to present (2000 and the global present-day (2000 premature human mortalities associated with these changes. We extend previous work to differentiate the contribution of changes in three factors: emissions of short-lived air pollutants, climate change, and increased methane (CH4 concentrations, to air pollution levels and associated premature mortalities. We use a coupled chemistry-climate model in conjunction with global population distributions in 2000 to estimate exposure attributable to concentration changes since 1860 from each factor. Attributable mortalities are estimated using health impact functions of long-term relative risk estimates for O3 and PM2.5 from the epidemiology literature. We find global mean surface PM2.5 and health-relevant O3 (defined as the maximum 6-month mean of 1-h daily maximum O3 in a year have increased by 8 ± 0.16 μg m−3 and 30 ± 0.16 ppbv (results reported as annual average ±standard deviation of 10-yr model simulations, respectively, over this industrial period as a result of combined changes in emissions of air pollutants (EMIS, climate (CLIM and CH4 concentrations (TCH4. EMIS, CLIM and TCH4 cause global population-weighted average PM2.5 (O3 to change by +7.5 ± 0.19 μg m−3 (+25 ± 0.30 ppbv, +0.4 ± 0.17 μg m−3 (+0.5 ± 0.28 ppbv, and 0.04 ± 0.24 μg m−3 (+4.3 ± 0.33 ppbv, respectively. Total global changes in PM2.5 are associated with 1.5 (95% confidence interval, CI, 1.2–1.8 million cardiopulmonary mortalities and 95 (95% CI, 44–144 thousand lung cancer

  6. Air pollution management and control in Latin America and the Caribbean: implications for climate change.

    Science.gov (United States)

    Riojas-Rodríguez, Horacio; da Silva, Agnes Soares; Texcalac-Sangrador, José Luis; Moreno-Banda, Grea Litai

    2016-09-01

    To assess the status of the legal framework for air quality control in all countries of Latin America and Caribbean (LAC); to determine the current distribution of air monitoring stations and mean levels of air pollutants in all capital and large cities (more than 100 000 inhabitants); and to discuss the implications for climate change and public policymaking. From January 2015-February 2016, searches were conducted of online databases for legislation, regulations, policies, and air pollution programs, as well as for the distribution of monitoring stations and the mean annual levels of air pollution in all LAC countries. Only 117 cities distributed among 17 of 33 LAC countries had official information on ground level air pollutants, covering approximately 146 million inhabitants. The annual mean of inhalable particles concentration in most of the cities were over the World Health Organization Air Quality Guidelines; notably, only Bolivia, Peru, and Guatemala have actually adopted the guidelines. Most of the cities did not have information on particulate matter of 2.5 microns or less, and only a few measured black carbon. The air quality regulatory framework should be updated to reflect current knowledge on health effects. Monitoring and control of ground level pollutants should be extended and strengthened to increase awareness and protect public health. Using the co-benefits of air pollution control for health and climate as a framework for policy and decision-making in LAC is recommended.

  7. Air pollution management and control in Latin America and the Caribbean: implications for climate change

    Directory of Open Access Journals (Sweden)

    Horacio Riojas-Rodríguez

    Full Text Available ABSTRACT Objective To assess the status of the legal framework for air quality control in all countries of Latin America and Caribbean (LAC; to determine the current distribution of air monitoring stations and mean levels of air pollutants in all capital and large cities (more than 100 000 inhabitants; and to discuss the implications for climate change and public policymaking. Methods From January 2015–February 2016, searches were conducted of online databases for legislation, regulations, policies, and air pollution programs, as well as for the distribution of monitoring stations and the mean annual levels of air pollution in all LAC countries. Results Only 117 cities distributed among 17 of 33 LAC countries had official information on ground level air pollutants, covering approximately 146 million inhabitants. The annual mean of inhalable particles concentration in most of the cities were over the World Health Organization Air Quality Guidelines; notably, only Bolivia, Peru, and Guatemala have actually adopted the guidelines. Most of the cities did not have information on particulate matter of 2.5 microns or less, and only a few measured black carbon. Conclusions The air quality regulatory framework should be updated to reflect current knowledge on health effects. Monitoring and control of ground level pollutants should be extended and strengthened to increase awareness and protect public health. Using the co-benefits of air pollution control for health and climate as a framework for policy and decision-making in LAC is recommended.

  8. Air Pollution Policy in Europe. Quantifying the Interaction with Greenhouse Gases and Climate Change Policies

    Energy Technology Data Exchange (ETDEWEB)

    Bollen, J. [CPB Netherlands Bureau for Economic Policy Analysis, Den Haag (Netherlands); Brink, C. [Netherlands Environmental Assessment Agency PBL, Den Haag (Netherlands)

    2012-10-15

    In this study the Computable General Equilibrium Model called WorldScan is used to analyse interactions between European air pollution policies and policies aimed at addressing climate change. WorldScan incorporates the emissions of both greenhouse gases (CO2, N2O and CH4) and air pollutants (SO2, NOx, NH3 and PM2.5). WorldScan has been extended with equations that enable the simulation of end-of-pipe measures that remove pollutants without affecting the emission-producing activity itself. Air pollution policy will depend on end-of-pipe controls for not more than 50%, thus also at least 50% of the required emission reduction will come from changes in the use of energy through efficiency improvements, fuel switching and other structural changes in the economy. Greenhouse gas emissions thereby decrease which renders climate change policies less costly. Our results show that carbon prices will fall, but not more than 33%, although they could drop to zero when the EU agrees on a more stringent air pollution policy.

  9. Air Pollution Prevention and Control Policy in China.

    Science.gov (United States)

    Huang, Cunrui; Wang, Qiong; Wang, Suhan; Ren, Meng; Ma, Rui; He, Yiling

    2017-01-01

    With rapid urbanization and development of transport infrastructure, air pollution caused by multiple-pollutant emissions and vehicle exhaust has been aggravated year by year in China. In order to improve air quality, the Chinese authorities have taken a series of actions to control air pollution emission load within a permissible range. However, although China has made positive progress on tackling air pollution, these actions have not kept up with its economy growth and fossil-fuel use. The traditional single-pollutant approach is far from enough in China now, and in the near future, air pollution control strategies should move in the direction of the multiple-pollutant approach. In addition, undesirable air quality is usually linked with the combination of high emissions and adverse weather conditions. However, few studies have been done on the influence of climate change on atmospheric chemistry in the global perspective. Available evidence suggested that climate change is likely to exacerbate certain kinds of air pollutants including ozone and smoke from wildfires. This has become a major public health problem because the interactions of global climate change, urban heat islands, and air pollution have adverse effects on human health. In this chapter, we first review the past and current circumstances of China's responses to air pollution. Then we discuss the control challenges and future options for a better air quality in China. Finally, we begin to unravel links between air pollution and climate change, providing new opportunities for integrated research and actions in China.

  10. Household air pollution, health, and climate change: cleaning the air

    Science.gov (United States)

    Goldemberg, Jose; Martinez-Gomez, Javier; Sagar, Ambuj; Smith, Kirk R.

    2018-03-01

    Air pollution from the use of solid household fuels is now recognized to be a major health risk in developing countries. Accordingly, there has been some shift in development thinking and investment from previous efforts, which has focused only on improving the efficiency of household fuel use, to those that focus on reducing exposure to the air pollution that leads to health impact. Unfortunately, however, this is occurring just as the climate agenda has come to dominate much of the discourse and action on international sustainable development. Thus, instead of optimizing approaches that centrally focus on the large health impact, the household energy agenda has been hampered by the constraints imposed by a narrow definition of sustainability—one primarily driven by the desire to mitigate greenhouse emissions by relying on renewable biomass fueling so-called improved cookstoves. In reality, however, solid biomass is extremely difficult to burn sufficiently cleanly in household stoves to reach health goals. In comparison to the international development community, however, some large countries, notably Brazil historically and more recently, India have substantially expanded the use of liquefied petroleum gas (LPG) in their household energy mix, using their own resources, having a major impact on their national energy picture. The net climate impact of such approaches compared to current biomass stoves is minimal or non-existent, and the social and health benefits are, in contrast, potentially great. LPG can be seen as a transition fuel for clean household energy, with induction stoves powered by renewables as the holy grail (an approach already being adopted by Ecuador as also discussed here). The enormous human and social benefits of clean energy, rather than climate concerns, should dominate the household energy access agenda today.

  11. Forests under climate change and air pollution: Gaps in understanding and future directions for research

    International Nuclear Information System (INIS)

    Matyssek, R.; Wieser, G.; Calfapietra, C.; Vries, W. de; Dizengremel, P.; Ernst, D.; Jolivet, Y.; Mikkelsen, T.N.; Mohren, G.M.J.; Le Thiec, D.; Tuovinen, J.-P.

    2012-01-01

    Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems (“supersites”) will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development. - Highlights: ► Research needs are identified for forests under climate change and air pollution. ► Abiotic–biotic interactions in response impede tree-ecosystem upscaling. ► Integration of empirical and modelling research is advocated. ► The concept of multi-scale investigations at novel “Supersites” is propagated. ► “Supersites” warrant mechanistic understanding of soil-plant-atmosphere interface. - Forests under climate change and air pollution require empirical and modelling research needs to be integrated at novel “Supersites” through multi-scale investigations.

  12. Air pollution engineering

    Science.gov (United States)

    Maduna, Karolina; Tomašić, Vesna

    2017-11-01

    Air pollution is an environmental and a social problem which leads to a multitude of adverse effects on human health and standard of human life, state of the ecosystems and global change of climate. Air pollutants are emitted from natural, but mostly from anthropogenic sources and may be transported over long distances. Some air pollutants are extremely stable in the atmosphere and may accumulate in the environment and in the food chain, affecting human beings, animals and natural biodiversity. Obviously, air pollution is a complex problem that poses multiple challenges in terms of management and abatements of the pollutants emission. Effective approach to the problems of air pollution requires a good understanding of the sources that cause it, knowledge of air quality status and future trends as well as its impact on humans and ecosystems. This chapter deals with the complexities of the air pollution and presents an overview of different technical processes and equipment for air pollution control, as well as basic principles of their work. The problems of air protection as well as protection of other ecosystems can be solved only by the coordinated endeavors of various scientific and engineering disciplines, such as chemistry, physics, biology, medicine, chemical engineering and social sciences. The most important engineering contribution is mostly focused on development, design and operation of equipment for the abatement of harmful emissions into environment.

  13. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems

    Science.gov (United States)

    P. Sicard; A. Augustaitis; S. Belyazid; C. Calfapietra; A. De Marco; Mark E. Fenn; Andrzej Bytnerowicz; Nancy Grulke; S. He; R. Matyssek; Y. Serengil; G. Wieser; E. Paoletti

    2016-01-01

    Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii)...

  14. The potential impacts of climate variability and change on air pollution-related health effects in the United States.

    Science.gov (United States)

    Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I

    2001-05-01

    Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the specific types of change (i.e., local, regional, or global), the direction of change in a particular location (i.e., positive or negative), and the magnitude of change in air quality that may be attributable to climate change are a matter of speculation, based on extrapolating present understanding to future scenarios. There is already extensive evidence on the health effects of air pollution. Ground-level ozone can exacerbate chronic respiratory diseases and cause short-term reductions in lung function. Exposure to particulate matter can aggravate chronic respiratory and cardiovascular diseases, alter host defenses, damage lung tissue, lead to premature death, and possibly contribute to cancer. Health effects of exposures to carbon monoxide, sulfur dioxide, and nitrogen dioxide can include reduced work capacity, aggravation of existing cardiovascular diseases, effects on pulmonary function, respiratory illnesses, lung irritation, and alterations in the lung's defense systems. Adaptations to climate change should include ensuring responsiveness of air quality protection programs to changing pollution levels. Research needs include basic atmospheric science work on the association between weather and air pollutants; improving air pollution models and their linkage with climate change scenarios; and closing gaps in the understanding of exposure patterns and health effects.

  15. Air Pollution and Climate Change Effects on Allergies in the Anthropocene: Abundance, Interaction, and Modification of Allergens and Adjuvants.

    Science.gov (United States)

    Reinmuth-Selzle, Kathrin; Kampf, Christopher J; Lucas, Kurt; Lang-Yona, Naama; Fröhlich-Nowoisky, Janine; Shiraiwa, Manabu; Lakey, Pascale S J; Lai, Senchao; Liu, Fobang; Kunert, Anna T; Ziegler, Kira; Shen, Fangxia; Sgarbanti, Rossella; Weber, Bettina; Bellinghausen, Iris; Saloga, Joachim; Weller, Michael G; Duschl, Albert; Schuppan, Detlef; Pöschl, Ulrich

    2017-04-18

    Air pollution and climate change are potential drivers for the increasing burden of allergic diseases. The molecular mechanisms by which air pollutants and climate parameters may influence allergic diseases, however, are complex and elusive. This article provides an overview of physical, chemical and biological interactions between air pollution, climate change, allergens, adjuvants and the immune system, addressing how these interactions may promote the development of allergies. We reviewed and synthesized key findings from atmospheric, climate, and biomedical research. The current state of knowledge, open questions, and future research perspectives are outlined and discussed. The Anthropocene, as the present era of globally pervasive anthropogenic influence on planet Earth and, thus, on the human environment, is characterized by a strong increase of carbon dioxide, ozone, nitrogen oxides, and combustion- or traffic-related particulate matter in the atmosphere. These environmental factors can enhance the abundance and induce chemical modifications of allergens, increase oxidative stress in the human body, and skew the immune system toward allergic reactions. In particular, air pollutants can act as adjuvants and alter the immunogenicity of allergenic proteins, while climate change affects the atmospheric abundance and human exposure to bioaerosols and aeroallergens. To fully understand and effectively mitigate the adverse effects of air pollution and climate change on allergic diseases, several challenges remain to be resolved. Among these are the identification and quantification of immunochemical reaction pathways involving allergens and adjuvants under relevant environmental and physiological conditions.

  16. Global Air Quality and Climate

    Science.gov (United States)

    Fiore, Arlene M.; Naik, Vaishali; Steiner, Allison; Unger, Nadine; Bergmann, Dan; Prather, Michael; Righi, Mattia; Rumbold, Steven T.; Shindell, Drew T.; Skeie, Ragnhild B.; hide

    2012-01-01

    Emissions of air pollutants and their precursors determine regional air quality and can alter climate. Climate change can perturb the long-range transport, chemical processing, and local meteorology that influence air pollution. We review the implications of projected changes in methane (CH4), ozone precursors (O3), and aerosols for climate (expressed in terms of the radiative forcing metric or changes in global surface temperature) and hemispheric-to-continental scale air quality. Reducing the O3 precursor CH4 would slow near-term warming by decreasing both CH4 and tropospheric O3. Uncertainty remains as to the net climate forcing from anthropogenic nitrogen oxide (NOx) emissions, which increase tropospheric O3 (warming) but also increase aerosols and decrease CH4 (both cooling). Anthropogenic emissions of carbon monoxide (CO) and non-CH4 volatile organic compounds (NMVOC) warm by increasing both O3 and CH4. Radiative impacts from secondary organic aerosols (SOA) are poorly understood. Black carbon emission controls, by reducing the absorption of sunlight in the atmosphere and on snow and ice, have the potential to slow near-term warming, but uncertainties in coincident emissions of reflective (cooling) aerosols and poorly constrained cloud indirect effects confound robust estimates of net climate impacts. Reducing sulfate and nitrate aerosols would improve air quality and lessen interference with the hydrologic cycle, but lead to warming. A holistic and balanced view is thus needed to assess how air pollution controls influence climate; a first step towards this goal involves estimating net climate impacts from individual emission sectors. Modeling and observational analyses suggest a warming climate degrades air quality (increasing surface O3 and particulate matter) in many populated regions, including during pollution episodes. Prior Intergovernmental Panel on Climate Change (IPCC) scenarios (SRES) allowed unconstrained growth, whereas the Representative

  17. An integrated assessment of regional air pollution and climate change in Europe: findings of the AIR-CLIM project

    NARCIS (Netherlands)

    Alcamo, J.; Mayerhofer, P.; Guardans, R.; Harmelen, T. van; Minnen, J. van; Onigkeit, J.; Posch, M.; Vries, B. de

    2002-01-01

    This paper presents results of an assessment of the linkages between regional air pollution and climate change in Europe (the AIR-CLIM Project). The main research tool was an integrated modeling framework and the main product was a consistent set of long-term scenarios covering Europe between 1995

  18. Key indicators of air pollution and climate change impacts at forest supersites

    NARCIS (Netherlands)

    Paoletti, E.; Vries, de W.; Mikkelsen, T.N.; Ibrom, A.; Larsen, K.S.; Tuovinen, J.P.; Serengil, Y.; Yurtseven, I.; Wieser, G.; Matyssek, R.

    2013-01-01

    Untangling the complex effects that different air pollution and climate change factors cause to forest ecosystems is challenging. Supersites, that is, comprehensive measurement sites where research and monitoring of the whole soil–plant–atmosphere system can be carried out, are suggested as a

  19. Urban Air Pollution Climates Throughout the World

    DEFF Research Database (Denmark)

    Hertel, Ole; Goodsite, Michael Evan

    2009-01-01

    The extent of the urban area, the local emission density, and the temporal pattern in the releases govern the local contribution to air pollution levels in urban environments. However, meteorological conditions also heavily affect the actual pollution levels as they govern the dispersion conditio...... population and provide the right basis for future urban air pollution management....

  20. More harmful climate change impacts in polluted forests – a review

    Science.gov (United States)

    E Paoletti; NE Grulke; A Bytnerowicz

    2009-01-01

    Forests are facing significant pressures from climate change and air pollution. Air pollution is the main driver of the ongoing climate change. Current knowledge suggests that climate change may become more harmful to pollution-affected forests, although the magnitude of these feedbacks is still to be determined. At present, the air pollutants of most concern to...

  1. Air pollution, greenhouse gases and climate change: Global and regional perspectives

    Science.gov (United States)

    Ramanathan, V.; Feng, Y.

    Greenhouse gases (GHGs) warm the surface and the atmosphere with significant implications for rainfall, retreat of glaciers and sea ice, sea level, among other factors. About 30 years ago, it was recognized that the increase in tropospheric ozone from air pollution (NO x, CO and others) is an important greenhouse forcing term. In addition, the recognition of chlorofluorocarbons (CFCs) on stratospheric ozone and its climate effects linked chemistry and climate strongly. What is less recognized, however, is a comparably major global problem dealing with air pollution. Until about ten years ago, air pollution was thought to be just an urban or a local problem. But new data have revealed that air pollution is transported across continents and ocean basins due to fast long-range transport, resulting in trans-oceanic and trans-continental plumes of atmospheric brown clouds (ABCs) containing sub micron size particles, i.e., aerosols. ABCs intercept sunlight by absorbing as well as reflecting it, both of which lead to a large surface dimming. The dimming effect is enhanced further because aerosols may nucleate more cloud droplets, which makes the clouds reflect more solar radiation. The dimming has a surface cooling effect and decreases evaporation of moisture from the surface, thus slows down the hydrological cycle. On the other hand, absorption of solar radiation by black carbon and some organics increase atmospheric heating and tend to amplify greenhouse warming of the atmosphere. ABCs are concentrated in regional and mega-city hot spots. Long-range transport from these hot spots causes widespread plumes over the adjacent oceans. Such a pattern of regionally concentrated surface dimming and atmospheric solar heating, accompanied by widespread dimming over the oceans, gives rise to large regional effects. Only during the last decade, we have begun to comprehend the surprisingly large regional impacts. In S. Asia and N. Africa, the large north-south gradient in the ABC

  2. Global topics and novel approaches in the study of air pollution, climate change and forest ecosystems.

    Science.gov (United States)

    Sicard, Pierre; Augustaitis, Algirdas; Belyazid, Salim; Calfapietra, Carlo; de Marco, Alessandra; Fenn, Mark; Bytnerowicz, Andrzej; Grulke, Nancy; He, Shang; Matyssek, Rainer; Serengil, Yusuf; Wieser, Gerhard; Paoletti, Elena

    2016-06-01

    Research directions from the 27th conference for Specialists in Air Pollution and Climate Change Effects on Forest Ecosystems (2015) reflect knowledge advancements about (i) Mechanistic bases of tree responses to multiple climate and pollution stressors, in particular the interaction of ozone (O3) with nitrogen (N) deposition and drought; (ii) Linking genetic control with physiological whole-tree activity; (iii) Epigenetic responses to climate change and air pollution; (iv) Embedding individual tree performance into the multi-factorial stand-level interaction network; (v) Interactions of biogenic and anthropogenic volatile compounds (molecular, functional and ecological bases); (vi) Estimating the potential for carbon/pollution mitigation and cost effectiveness of urban and peri-urban forests; (vii) Selection of trees adapted to the urban environment; (viii) Trophic, competitive and host/parasite relationships under changing pollution and climate; (ix) Atmosphere-biosphere-pedosphere interactions as affected by anthropospheric changes; (x) Statistical analyses for epidemiological investigations; (xi) Use of monitoring for the validation of models; (xii) Holistic view for linking the climate, carbon, N and O3 modelling; (xiii) Inclusion of multiple environmental stresses (biotic and abiotic) in critical load determinations; (xiv) Ecological impacts of N deposition in the under-investigated areas; (xv) Empirical models for mechanistic effects at the local scale; (xvi) Broad-scale N and sulphur deposition input and their effects on forest ecosystem services; (xvii) Measurements of dry deposition of N; (xviii) Assessment of evapotranspiration; (xix) Remote sensing assessment of hydrological parameters; and (xx) Forest management for maximizing water provision and overall forest ecosystem services. Ground-level O3 is still the phytotoxic air pollutant of major concern to forest health. Specific issues about O3 are: (xxi) Developing dose-response relationships and

  3. Using statistical models to explore ensemble uncertainty in climate impact studies: the example of air pollution in Europe

    Directory of Open Access Journals (Sweden)

    V. E. P. Lemaire

    2016-03-01

    Full Text Available Because of its sensitivity to unfavorable weather patterns, air pollution is sensitive to climate change so that, in the future, a climate penalty could jeopardize the expected efficiency of air pollution mitigation measures. A common method to assess the impact of climate on air quality consists in implementing chemistry-transport models forced by climate projections. However, the computing cost of such methods requires optimizing ensemble exploration techniques. By using a training data set from a deterministic projection of climate and air quality over Europe, we identified the main meteorological drivers of air quality for eight regions in Europe and developed statistical models that could be used to predict air pollutant concentrations. The evolution of the key climate variables driving either particulate or gaseous pollution allows selecting the members of the EuroCordex ensemble of regional climate projections that should be used in priority for future air quality projections (CanESM2/RCA4; CNRM-CM5-LR/RCA4 and CSIRO-Mk3-6-0/RCA4 and MPI-ESM-LR/CCLM following the EuroCordex terminology. After having tested the validity of the statistical model in predictive mode, we can provide ranges of uncertainty attributed to the spread of the regional climate projection ensemble by the end of the century (2071–2100 for the RCP8.5. In the three regions where the statistical model of the impact of climate change on PM2.5 offers satisfactory performances, we find a climate benefit (a decrease of PM2.5 concentrations under future climate of −1.08 (±0.21, −1.03 (±0.32, −0.83 (±0.14 µg m−3, for respectively Eastern Europe, Mid-Europe and Northern Italy. In the British-Irish Isles, Scandinavia, France, the Iberian Peninsula and the Mediterranean, the statistical model is not considered skillful enough to draw any conclusion for PM2.5. In Eastern Europe, France, the Iberian Peninsula, Mid-Europe and Northern Italy, the statistical model of the

  4. Future climate impact on unfavorable meteorological conditions for the dispersion of air pollution in Brussels

    Science.gov (United States)

    De Troch, Rozemien; Berckmans, Julie; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet

    2015-04-01

    Belgium is one of the several countries in Europe where air quality levels of different pollutants such as ozone, NOx, and Particulate Matter (PM) still exceed the prescribed European norms multiple times a year (EEA, 2014). These pollution peaks have a great impact on health and environment, in particular in large cities and urban environments. It is well known that observed concentrations of air pollutants are strongly influenced by emissions and meteorological conditions and therefore is sensitive to climate change. As the effects of global climate change are increasingly felt in Belgium, policy makers express growing interest in quantifying its effect on air pollution and the effort required to meet the air quality targets in the next years and decennia (Lauwaet et al., 2014). In this study, two different stability indices are calculated for a 9-year period using present (1991-1999) and future (2047-2055) climate data that has been obtained from a dynamically downscaling of Global Climate Model data from the Arpège model using the ALARO model at 4 km spatial resolution. The ALARO model is described in detail in previous validation studies from De Troch et al. (2013) and Hamdi et al. (2013). The first index gives a measure of the horizontal and vertical transport of nonreactive pollutants in stable atmospheric conditions and has been proposed and tested by Termonia and Quinet (2004). It gives a characteristic length scale l which is the ratio of the mean horizontal wind speed and the Brunt-Väisälä frequency. In this way low values for l in the lower part of the boundary layer during an extended time span of 12 hours, correspond to calm situations and a stable atmosphere and thus indicate unfavorable conditions for the dispersion of air pollution. This transport index is similar to an index used in an old Pasquill-type scheme but is more convenient to use to detect the strongest pollution peaks. The well known Pasquill classes are also calculated in order to

  5. Does urban vegetation mitigate air pollution in northern conditions?

    International Nuclear Information System (INIS)

    Setälä, Heikki; Viippola, Viljami; Rantalainen, Anna-Lea; Pennanen, Arto; Yli-Pelkonen, Vesa

    2013-01-01

    It is generally accepted that urban vegetation improves air quality and thereby enhances the well-being of citizens. However, empirical evidence on the potential of urban trees to mitigate air pollution is meager, particularly in northern climates with a short growing season. We studied the ability of urban park/forest vegetation to remove air pollutants (NO 2 , anthropogenic VOCs and particle deposition) using passive samplers in two Finnish cities. Concentrations of each pollutant in August (summer; leaf-period) and March (winter, leaf-free period) were slightly but often insignificantly lower under tree canopies than in adjacent open areas, suggesting that the role of foliage in removing air pollutants is insignificant. Furthermore, vegetation-related environmental variables (canopy closure, number and size of trees, density of understorey vegetation) did not explain the variation in pollution concentrations. Our results suggest that the ability of urban vegetation to remove air pollutants is minor in northern climates. -- Highlights: ► The ability of northern urban vegetation to remove air pollutants is minor. ► Vegetation-related environmental variables had no effect on air pollution levels. ► The ability of vegetation to clean air did not differ between summer and winter. ► Dry deposition passive samplers proved applicable in urban air pollution study. -- The ability of urban vegetation to remove air pollutants seems to be minor in northern climates

  6. Air Pollutants, Climate, and the Prevalence of Pediatric Asthma in Urban Areas of China

    Directory of Open Access Journals (Sweden)

    Juanjuan Zhang

    2016-01-01

    Full Text Available Background. Prevalence of childhood asthma varies significantly among regions, while its reasons are not clear yet with only a few studies reporting relevant causes for this variation. Objective. To investigate the potential role of city-average levels of air pollutants and climatic factors in order to distinguish differences in asthma prevalence in China and explain their reasons. Methods. Data pertaining to 10,777 asthmatic patients were obtained from the third nationwide survey of childhood asthma in China’s urban areas. Annual mean concentrations of air pollutants and other climatic factors were obtained for the same period from several government departments. Data analysis was implemented with descriptive statistics, Pearson correlation coefficient, and multiple regression analysis. Results. Pearson correlation analysis showed that the situation of childhood asthma was strongly linked with SO2, relative humidity, and hours of sunshine (p<0.05. Multiple regression analysis indicated that, among the predictor variables in the final step, SO2 was found to be the most powerful predictor variable amongst all (β=-19.572, p < 0.05. Furthermore, results had shown that hours of sunshine (β = -0.014, p < 0.05 was a significant component summary predictor variable. Conclusion. The findings of this study do not suggest that air pollutants or climate, at least in terms of children, plays a major role in explaining regional differences in asthma prevalence in China.

  7. Particulate Air Pollution from Wildfires in the Western US under Climate Change.

    Science.gov (United States)

    Liu, Jia Coco; Mickley, Loretta J; Sulprizio, Melissa P; Dominici, Francesca; Yue, Xu; Ebisu, Keita; Anderson, Georgiana Brooke; Khan, Rafi F A; Bravo, Mercedes A; Bell, Michelle L

    2016-10-01

    Wildfire can impose a direct impact on human health under climate change. While the potential impacts of climate change on wildfires and resulting air pollution have been studied, it is not known who will be most affected by the growing threat of wildfires. Identifying communities that will be most affected will inform development of fire management strategies and disaster preparedness programs. We estimate levels of fine particulate matter (PM 2.5 ) directly attributable to wildfires in 561 western US counties during fire seasons for the present-day (2004-2009) and future (2046-2051), using a fire prediction model and GEOS-Chem, a 3-D global chemical transport model. Future estimates are obtained under a scenario of moderately increasing greenhouse gases by mid-century. We create a new term "Smoke Wave," defined as ≥2 consecutive days with high wildfire-specific PM 2.5 , to describe episodes of high air pollution from wildfires. We develop an interactive map to demonstrate the counties likely to suffer from future high wildfire pollution events. For 2004-2009, on days exceeding regulatory PM 2.5 standards, wildfires contributed an average of 71.3% of total PM 2.5 . Under future climate change, we estimate that more than 82 million individuals will experience a 57% and 31% increase in the frequency and intensity, respectively, of Smoke Waves. Northern California, Western Oregon and the Great Plains are likely to suffer the highest exposure to widlfire smoke in the future. Results point to the potential health impacts of increasing wildfire activity on large numbers of people in a warming climate and the need to establish or modify US wildfire management and evacuation programs in high-risk regions. The study also adds to the growing literature arguing that extreme events in a changing climate could have significant consequences for human health.

  8. Global premature mortality due to anthropogenic outdoor air pollution and the contribution of past climate change

    International Nuclear Information System (INIS)

    Silva, Raquel A; West, J Jason; Zhang Yuqiang; Anenberg, Susan C; Lamarque, Jean-François; Shindell, Drew T; Faluvegi, Greg; Collins, William J; Dalsoren, Stig; Skeie, Ragnhild; Folberth, Gerd; Rumbold, Steven; Horowitz, Larry W; Nagashima, Tatsuya; Naik, Vaishali; Sudo, Kengo; Takemura, Toshihiko; Bergmann, Daniel; Cameron-Smith, Philip; Cionni, Irene

    2013-01-01

    Increased concentrations of ozone and fine particulate matter (PM 2.5 ) since preindustrial times reflect increased emissions, but also contributions of past climate change. Here we use modeled concentrations from an ensemble of chemistry–climate models to estimate the global burden of anthropogenic outdoor air pollution on present-day premature human mortality, and the component of that burden attributable to past climate change. Using simulated concentrations for 2000 and 1850 and concentration–response functions (CRFs), we estimate that, at present, 470 000 (95% confidence interval, 140 000 to 900 000) premature respiratory deaths are associated globally and annually with anthropogenic ozone, and 2.1 (1.3 to 3.0) million deaths with anthropogenic PM 2.5 -related cardiopulmonary diseases (93%) and lung cancer (7%). These estimates are smaller than ones from previous studies because we use modeled 1850 air pollution rather than a counterfactual low concentration, and because of different emissions. Uncertainty in CRFs contributes more to overall uncertainty than the spread of model results. Mortality attributed to the effects of past climate change on air quality is considerably smaller than the global burden: 1500 (−20 000 to 27 000) deaths yr −1 due to ozone and 2200 (−350 000 to 140 000) due to PM 2.5 . The small multi-model means are coincidental, as there are larger ranges of results for individual models, reflected in the large uncertainties, with some models suggesting that past climate change has reduced air pollution mortality. (letter)

  9. Effects of climatic changes and urban air pollution on the rising trends of respiratory allergy and asthma

    Science.gov (United States)

    2011-01-01

    Over the past two decades there has been increasing interest in studies regarding effects on human health of climate changes and urban air pollution. Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem and there are several observations about the role of urbanization, with its high levels of vehicle emissions and other pollutants, and westernized lifestyle with respect to the rising frequency of respiratory allergic diseases observed in most industrialized countries. There is also evidence that asthmatic subjects are at increased risk of developing exacerbations of bronchial obstruction with exposure to gaseous (ozone, nitrogen dioxide, sulfur dioxide) and particulate inhalable components of air pollution. A change in the genetic predisposition is an unlikely cause of the increasing frequency in allergic diseases because genetic changes in a population require several generations. Consequently, environmental factors such as climate change and indoor and outdoor air pollution may contribute to explain the increasing frequency of respiratory allergy and asthma. Since concentrations of airborne allergens and air pollutants are frequently increased contemporaneously, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of allergic respiratory diseases and bronchial asthma. Scientific societies such as the European Academy of Allergy and Clinical Immunology, European Respiratory Society and the World Allergy Organization have set up committees and task forces to produce documents to focalize attention on this topic, calling for prevention measures. PMID:22958620

  10. Effects of climatic changes and urban air pollution on the rising trends of respiratory allergy and asthma

    Directory of Open Access Journals (Sweden)

    D'Amato Gennaro

    2011-02-01

    Full Text Available Abstract Over the past two decades there has been increasing interest in studies regarding effects on human health of climate changes and urban air pollution. Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem and there are several observations about the role of urbanization, with its high levels of vehicle emissions and other pollutants, and westernized lifestyle with respect to the rising frequency of respiratory allergic diseases observed in most industrialized countries. There is also evidence that asthmatic subjects are at increased risk of developing exacerbations of bronchial obstruction with exposure to gaseous (ozone, nitrogen dioxide, sulfur dioxide and particulate inhalable components of air pollution. A change in the genetic predisposition is an unlikely cause of the increasing frequency in allergic diseases because genetic changes in a population require several generations. Consequently, environmental factors such as climate change and indoor and outdoor air pollution may contribute to explain the increasing frequency of respiratory allergy and asthma. Since concentrations of airborne allergens and air pollutants are frequently increased contemporaneously, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of allergic respiratory diseases and bronchial asthma. Scientific societies such as the European Academy of Allergy and Clinical Immunology, European Respiratory Society and the World Allergy Organization have set up committees and task forces to produce documents to focalize attention on this topic, calling for prevention measures.

  11. Effects of climatic changes and urban air pollution on the rising trends of respiratory allergy and asthma.

    Science.gov (United States)

    D'Amato, Gennaro

    2011-02-28

    Over the past two decades there has been increasing interest in studies regarding effects on human health of climate changes and urban air pollution. Climate change induced by anthropogenic warming of the earth's atmosphere is a daunting problem and there are several observations about the role of urbanization, with its high levels of vehicle emissions and other pollutants, and westernized lifestyle with respect to the rising frequency of respiratory allergic diseases observed in most industrialized countries.There is also evidence that asthmatic subjects are at increased risk of developing exacerbations of bronchial obstruction with exposure to gaseous (ozone, nitrogen dioxide, sulfur dioxide) and particulate inhalable components of air pollution.A change in the genetic predisposition is an unlikely cause of the increasing frequency in allergic diseases because genetic changes in a population require several generations. Consequently, environmental factors such as climate change and indoor and outdoor air pollution may contribute to explain the increasing frequency of respiratory allergy and asthma. Since concentrations of airborne allergens and air pollutants are frequently increased contemporaneously, an enhanced IgE-mediated response to aeroallergens and enhanced airway inflammation could account for the increasing frequency of allergic respiratory diseases and bronchial asthma.Scientific societies such as the European Academy of Allergy and Clinical Immunology, European Respiratory Society and the World Allergy Organization have set up committees and task forces to produce documents to focalize attention on this topic, calling for prevention measures.

  12. Climate change, air pollution and human health in Sydney, Australia: A review of the literature

    Science.gov (United States)

    Dean, Annika; Green, Donna

    2018-05-01

    Sydney is Australia’s largest city and is growing rapidly. Although Sydney’s air quality is relatively good compared to the major cities in many industrialised countries, particulate matter (PM) and ozone (O3) occasionally exceed the national health standards and are the cause of premature mortalities and hospital admissions. Numerous studies from overseas (e.g. North America and continental Europe) suggest that climate change may impact air quality to the detriment of human health. There is limited knowledge about how climate change may impact air quality in Sydney. This study reviews the available literature on the impacts of climate change on air quality related health impacts in Sydney to identify knowledge and research gaps. Where no studies are available for Sydney, it draws on relevant studies from other Australian cities and overseas. Our findings summarise what is known about how climate change may impact air quality in Sydney and where research gaps exist. This approach can facilitate research agendas, policies and planning strategies that mitigate public health impacts and tackle climate change and air pollution in a coordinated way.

  13. Climate, air pollution, and chronic bronchitis

    Energy Technology Data Exchange (ETDEWEB)

    Lawther, P J

    1958-01-01

    Air pollution (SO/sub 2/ and smoke) was correlated with simple, 4-degree diary records of a group of 180 bronchitic patients for the winter of 1955 to 1956. Obvious connection during the winter months disappears in the spring with the decrease in pollution levels.

  14. Spatial-Temporal Analysis of Air Pollution, Climate Change, and Total Mortality in 120 Cities of China, 2012-2013.

    Science.gov (United States)

    Liu, Longjian; Yang, Xuan; Liu, Hui; Wang, Mingquan; Welles, Seth; Márquez, Shannon; Frank, Arthur; Haas, Charles N

    2016-01-01

    China has had a rapid increase in its economy over the past three decades. However, the economic boom came at a certain cost of depleting air quality. In the study, we aimed to examine the burden of air pollution and its association with climatic factors and health outcomes using data from Chinese national and city-level air quality and public health surveillance systems. City-level daily air pollution index (API, a sum weighted index of SO2, NO2, PM10, CO, and Ozone) in 120 cities in 2012 and 2013, and its association with climate factors were analyzed using multiple linear regression analysis, spatial autocorrelation analysis, and panel fixed models. City-level ecological association between annual average API and total mortality were examined using univariate and partial correlation analysis. Sensitivity analysis was conducted by taking the consideration of time-lag effect between exposures and outcomes. The results show that among the 120 cities, annual average API significantly increased from 2012 to 2013 (65.05 vs. 75.99, p 100 (defined as "slightly polluted"), however, it increased to 21 cities (18%) that experienced API >100 for ≥60 days in 2013. Furthermore, 16 cities (13%) in 2012 and 35 (29%) in 2013 experienced a maximum API >300 (defined as "severely polluted"). API was negatively and significantly correlated with heat index, precipitation, and sunshine hours, but positively with air pressure. Cities with higher API concentrations had significantly higher total mortality rates than those with lower API. About a 4-7% of the variation in total mortality could be explained by the difference in API across the nation. In conclusion, the study highlights an increased trend of air pollution from 2012 to 2013 in China. The magnitude of air pollution varied by seasons and regions and correlated with climatic factors and total mortality across the country.

  15. Air pollution and climate change effects on health of the Ukrainian forests: monitoring and evalution

    Science.gov (United States)

    Igor F. Buksha; Valentina L. Meshkova; Oleg M. Radchenko; Alexander S. Sidorov

    1998-01-01

    Forests in the Ukraine are affected by environmental pollution, intensive forestry practice, and recreational uses. These factors make them sensitive to impacts of climate change. Since 1989 Ukraine has participated in the International Cooperative Program on Assessment and Monitoring of Air Pollution Effects on Forests (ICP-Forests). A network of monitoring plots has...

  16. Air Quality and Climate Change

    International Nuclear Information System (INIS)

    Colette, A.; Rouil, L.; Bessagnet, B.; Schucht, S.; Szopa, S.; Vautard, R.; Menut, L.

    2013-01-01

    Climate change and air quality are closely related: through the policy measures implemented to mitigate these major environmental threats but also through the geophysical processes that drive them. We designed, developed and implemented a comprehensive regional air quality and climate modeling System to investigate future air quality in Europe taking into account the combined pressure of future climate change and long range transport. Using the prospective scenarios of the last generation of pathways for both climate change (emissions of well mixed greenhouse gases) and air pollutants, we can provide a quantitative view into the possible future air quality in Europe. We find that ozone pollution will decrease substantially under the most stringent scenario but the efforts of the air quality legislation will be adversely compensated by the penalty of global warming and long range transport for the business as usual scenario. For particulate matter, the projected reduction of emissions efficiently reduces exposure levels. (authors)

  17. Air pollution

    International Nuclear Information System (INIS)

    Nelson, P.

    2000-01-01

    Australian cites experience a number of current and emerging air pollution problems. Concentrations of traditional primary pollutants such as CO, lead and dust have fallen in recent years as a consequence of air pollutant control measures, and the widespread introduction of lead-free petrol. However, recommended guidelines for ozone, the principal component of photochemical smog, are regularly exceeded in major capital cities in the summer months. In addition, it is predicted that extensive urban expansion will lead to much greater dependence on the motor vehicle as the primary means of transportation. Effects of air pollution are felt at a variety of scales. Traditionally, concerns about gaseous and particulate emissions from industrial and vehicular sources were focused on local impacts due to exposure to toxic species such as CO and lead. As noted above, concentrations of these pollutants have been reduced by a variety of control measures. Pollutants which have effects at a regional scale, such as photochemically-produced ozone, and acidic gases and particles have proved more difficult to reduce. In general, these pollutants arc not the result of direct emissions to atmosphere, but result from complex secondary processes driven by photochemical reactions of species such as NO 2 and aldehydes. In addition, global effects of gaseous and particulate emissions to the atmosphere have received significant recent attention, concentrations of atmospheric CO 2 with predicted impacts on global climate, and ozone depletion due to anthropogenic emissions of chlorine-containing chemicals are the two major examples. Combustion processes from petrol- and diesel-fuelled vehicles, make major contributions to air pollution, and the magnitude of this contribution is discussed in this article

  18. Global Scenarios of Air Pollution until 2030: Combining Air Quality, Climate Change and Energy Access Policies

    Science.gov (United States)

    Rao, S.; Dentener, F. J.; Klimont, Z.; Riahi, K.

    2011-12-01

    Outdoor air pollution is increasingly recognized as a significant contributor to global health outcomes. This has led to the implementation of a number of air quality policies worldwide, with total air pollution control costs in 2005 estimated at US$195 billion. More than 80% of the world's population is still found to be exposed to PM2.5 concentrations exceeding WHO air quality guidelines and health impacts resulting from these exposures estimated at around 2-5% of the global disease burden. Key questions to answer are 1) How will pollutant emissions evolve in the future given developments in the energy system and how will energy and environmental policies influence such emission trends. 2) What implications will this have for resulting exposures and related health outcomes. In order to answer these questions, varying levels of stringency of air quality legislation are analyzed in combination with policies on universal access to clean cooking fuels and limiting global temperature change to 2°C in 2100. Bottom-up methodologies using energy emissions modeling are used to derive sector-based pollutant emission trajectories until 2030. Emissions are spatially downscaled and used in combination with a global transport chemistry model to derive ambient concentrations of PM2.5. Health impacts of these exposures are further estimated consistent with WHO data and methodology. The results indicate that currently planned air quality legislation combined with rising energy demand will be insufficient in controlling future emissions growth in developing countries. In order to achieve significant reductions in pollutant emissions of the order of more than 50% from 2005 levels and reduce exposures to levels consistent with WHO standards, it will be necessary to increase the stringency of such legislations and combine them with policies on energy access and climate change. Combined policies also result in reductions in air pollution control costs as compared to those associated

  19. Tackling air pollution and extreme climate changes in China: Implementing the Paris climate change agreement.

    Science.gov (United States)

    Tambo, Ernest; Duo-Quan, Wang; Zhou, Xiao-Nong

    2016-10-01

    China still depends on coal for more than 60% of its power despite big investments in the process of shifting to nuclear, solar and wind power renewable energy resources alignment with Paris climate change agreement (Paris CCA). Chinese government through the Communist Party Central Committee (CPCC) ascribes great importance and commitment to Paris CCA legacy and history landmark implementation at all levels. As the world's biggest carbon dioxide emitter, China has embarked on "SMART" pollution and climate changes programs and measures to reduce coal-fired power plants to less than 50% in the next five years include: new China model of energy policies commitment on CO2 and greenhouse gas emissions reductions to less than 20% non-fossil energy use by 2030 without undermining their economic growth, newly introduced electric vehicles transportation benefits, interactive and sustained air quality index (AQI) monitoring systems, decreasing reliance on fossil fuel economic activities, revision of energy price reforms and renewable energy to less energy efficient technologies development. Furthermore, ongoing CPCC improved environmental initiatives, implemented strict regulations and penalties on local companies and firms' pollution production management, massive infrastructures such as highways to reduce CO2 expansion of seven regional emissions trading markets and programs for CO2 emissions and other pollutants are being documented. Maximizing on the centralized nature of the China's government, implemented Chinese pollution, climate changes mitigation and adaptation initiatives, "SMART" strategies and credible measures are promising. A good and practical example is the interactive and dynamic website and database covering 367 Chinese cities and providing real time information on environmental and pollution emissions AQI. Also, water quality index (WQI), radiation and nuclear safety monitoring and management systems over time and space. These are ongoing Chinese

  20. Interactive effects of air pollution and climate change on forest ecosystems in the United States: current understanding and future scenarios

    Science.gov (United States)

    Andrzej Bytnerowicz; Mark Fenn; Steven McNulty; Fengming Yuan; Afshin Pourmokhtarian; Charles Driscoll; Tom Meixner

    2013-01-01

    A review of the current status of air pollution and climate change (CC) in the United States from a perspective of their impacts on forest ecosystems is provided. Ambient ozone (O3) and nitrogen (N) deposition have important and widespread ecological impacts in U.S. forests. Effects of sulphurous (S) air pollutants and other trace pollutants have...

  1. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change.

    Science.gov (United States)

    Perera, Frederica P

    2017-02-01

    Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141-148; http://dx.doi.org/10.1289/EHP299.

  2. Forests under climate change and air pollution: Gaps in understanding and future directions for research

    DEFF Research Database (Denmark)

    Matyssek, R.; Wieser, G.; Calfapietra, C.

    2012-01-01

    Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between...... changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research...... for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems (“supersites”) will be conducive to addressing...

  3. Meteorological Drivers of Extreme Air Pollution Events

    Science.gov (United States)

    Horton, D. E.; Schnell, J.; Callahan, C. W.; Suo, Y.

    2017-12-01

    The accumulation of pollutants in the near-surface atmosphere has been shown to have deleterious consequences for public health, agricultural productivity, and economic vitality. Natural and anthropogenic emissions of ozone and particulate matter can accumulate to hazardous concentrations when atmospheric conditions are favorable, and can reach extreme levels when such conditions persist. Favorable atmospheric conditions for pollutant accumulation include optimal temperatures for photochemical reaction rates, circulation patterns conducive to pollutant advection, and a lack of ventilation, dispersion, and scavenging in the local environment. Given our changing climate system and the dual ingredients of poor air quality - pollutants and the atmospheric conditions favorable to their accumulation - it is important to characterize recent changes in favorable meteorological conditions, and quantify their potential contribution to recent extreme air pollution events. To facilitate our characterization, this study employs the recently updated Schnell et al (2015) 1°×1° gridded observed surface ozone and particulate matter datasets for the period of 1998 to 2015, in conjunction with reanalysis and climate model simulation data. We identify extreme air pollution episodes in the observational record and assess the meteorological factors of primary support at local and synoptic scales. We then assess (i) the contribution of observed meteorological trends (if extant) to the magnitude of the event, (ii) the return interval of the meteorological event in the observational record, simulated historical climate, and simulated pre-industrial climate, as well as (iii) the probability of the observed meteorological trend in historical and pre-industrial climates.

  4. [Attaching importance to study on acute health risk assessment and adaptation of air pollution and climate change].

    Science.gov (United States)

    Shi, X M

    2017-03-10

    Air pollution and climate change have become key environmental and public health problems around the world, which poses serious threat to human health. How to assess and mitigate the health risks and increase the adaptation of the public have become an urgent topic of research in this area. The six papers in this issue will provide important and rich information on design, analysis method, indicator selection and setting about acute health risk assessment and adaptation study of air pollution and climate change in China, reflecting the advanced conceptions of multi-center and area-specific study and multi-pollutant causing acute effect study. However, the number and type of the cities included in these studies were still limited. In future, researchers should further expand detailed multi-center and multi-area study coverage, conduct area specific predicting and early warning study and strengthen adaptation study.

  5. Ozone, air quality and climatic change

    International Nuclear Information System (INIS)

    Van Noije, T.

    2008-01-01

    Changes in climate due to increased greenhouse gas emissions differ per region. Regional climate changes can also be caused by regional changes in air quality, though. On the other hand, global and regional changes in climate also lead to changes in air quality without any changes in sources of pollution. This article discusses the various aspects of the interaction between air quality and climate change with extra focus on the role of ozone. [mk] [nl

  6. Future health impact assessment of air pollution at the global, European and Ile-de-France scales: the Air Pollution Climate Health Impact Assessment (A-C HIA) project

    International Nuclear Information System (INIS)

    Likhvar, Victoria; Hauglustaine, Didier; Kinney, Patrick; Colette, Augustin; Valari, Myrto; Markakis, Konstandinos; Pascal, Mathilde; Medina, Sylvia

    2016-01-01

    Ozone and fine particles are current risk factors for premature death all over the globe. In coming decades, substantial improvements in public health may be achieved by reducing air pollution. The overall objective of the A-C HIA project (2011-2014) was to apply state of the art climate, air quality, and health modelling tools to assess future health impacts of O 3 and PM2.5 under different scenarios of emissions for the period 2030-2050. A-C HIA created an interdisciplinary team to study the impacts of climate change on health through air quality changes, and to establish longer-term collaborations between communities. This question has been explored at three spatial scales: global, regional (Europe), and urban (ile-de-France). We f ind that 1.5 millions of cardio-vascular deaths could be delayed each year in 2030 compared to 2010. In Europe, air-pollution-related mortality should decrease in 2030 compared to 2010. At the finer scale (ile-de-France) we found that the respiratory mortality should increase over the highly populated area of Paris. In the coming years, substantial benefits to public health could be achieved through coordinated strategies to reduce emissions of greenhouse gases and improving air quality. (authors)

  7. Social Justice Is in the Air: Teaching Climate Change and Air Pollution with Scientific and Social Inquiry

    Science.gov (United States)

    Hahnenberger, M.

    2014-12-01

    The intersection of environmental with social problems is a growing area of concern for scientists, policy makers, and citizens. Climate change and air pollution are two current environmental issues holding the public's attention which require collaboration of all stakeholders to create meaningful solutions. General education science courses are critical venues to engage students in the intersection of science with society. Effective teaching methods for these intersections include case studies, gallery walks, and town hall meetings. A case study from California explores how air quality has greatly improved in Los Angeles in the past 20 years, however residents of neighborhoods with lower socioeconomic status are still exposed to high levels of air pollutants. Students analyze scientific and health data to develop understanding and expertise in the problem, and are then tasked with developing a cost-benefit analysis of solutions. Gallery walks can be used to connect natural phenomena, such as hurricanes and severe weather, with their human impacts. Students bring their personal experiences with disasters and recovery to analyze how societies should deal with the changing climate and weather risks in their region, the country, or across the world. Town hall meetings allow students to gain expertise and perspective while embodying a role as a particular stakeholder in a climate mitigation or adaptation issue. A successful application of this method is a discussion of whether a resort community should be rebuilt on a barrier island after being destroyed in a category 3 hurricane. Stakeholders which students take on as roles have included climate scientists, homeowners, emergency managers, meteorologists, and others. Including distinct connections to social issues in introductory science courses helps students to not only engage with the material in a deeper way, but also helps to create critical thinkers who will become better citizens for tomorrow.

  8. Air pollution impacts on forests in changing climate

    Science.gov (United States)

    M. Lorenz; N. Clarke; E. Paoletti; A. Bytnerowicz; N. Grulke; N. Lukina; H. Sase; J. Staelens

    2010-01-01

    Growing awareness of air pollution effects on forests has, from the early 1980s on, led to intensive forest damage research and monitoring. This has fostered air pollution control, especially in Europe and North America, and to a smaller extent also in other parts of the world. At several forest sites in these regions, there are first indications of a recovery of...

  9. Transportation, Air Pollution, and Climate Change

    Science.gov (United States)

    Learn how emissions reductions, advancements in fuels and fuel economy, and working with industry to find solutions to air pollution problems benefit human and environmental health, create consumer savings and are cost effective.

  10. Multiple Threats to Child Health from Fossil Fuel Combustion: Impacts of Air Pollution and Climate Change

    Science.gov (United States)

    Perera, Frederica P.

    2016-01-01

    Background: Approaches to estimating and addressing the risk to children from fossil fuel combustion have been fragmented, tending to focus either on the toxic air emissions or on climate change. Yet developing children, and especially poor children, now bear a disproportionate burden of disease from both environmental pollution and climate change due to fossil fuel combustion. Objective: This commentary summarizes the robust scientific evidence regarding the multiple current and projected health impacts of fossil fuel combustion on the young to make the case for a holistic, child-centered energy and climate policy that addresses the full array of physical and psychosocial stressors resulting from fossil fuel pollution. Discussion: The data summarized here show that by sharply reducing our dependence on fossil fuels we would achieve highly significant health and economic benefits for our children and their future. These benefits would occur immediately and also play out over the life course and potentially across generations. Conclusion: Going beyond the powerful scientific and economic arguments for urgent action to reduce the burning of fossil fuels is the strong moral imperative to protect our most vulnerable populations. Citation: Perera FP. 2017. Multiple threats to child health from fossil fuel combustion: impacts of air pollution and climate change. Environ Health Perspect 125:141–148; http://dx.doi.org/10.1289/EHP299 PMID:27323709

  11. What health professionals should know about the health effects of air pollution and climate change on children and pregnant mothers.

    Science.gov (United States)

    Poursafa, Parinaz; Kelishadi, Roya

    2011-01-01

    Health professionals face the adverse health effects of climate change and air pollution in their practices. This review underscores the effects of these environmental factors on maternal and children's health, as the most vulnerable groups to climate change and air pollution. We reviewed electronic databases for a search of the literature to find relevant studies published in English from 1990 to 2011. Environmental factors, notably climate change and air pollution influence children's health before conception and continue during pregnancy, childhood, and adolescence. Experts have suggested that such health hazards may represent the greatest public health challenge that humanity has faced. The accumulation of greenhouse gases such as carbon dioxide, primarily from burning fossil fuels, results in warming which has an impact on air pollution particularly on levels of ozone and particulates. Heat-related health effects include increased rates of pregnancy complications, pre-eclampsia, eclampsia, low birth weight, renal effects, vector-borne diseases as malaria and dengue, increased diarrheal and respiratory disease, food insecurity, decreased quality of foods (notably grains), malnutrition, water scarcity, exposures to toxic chemicals, worsened poverty, natural disasters and population displacement. Air pollution has many adverse health effects for mothers and children. In addition to short-term effects like premature labour, intrauterine growth retardation, neonatal and infant mortality rate, malignancies (notably leukaemia and Hodgkin lymphoma), respiratory diseases, allergic disorders and anaemia, exposure to criteria air pollutants from early life might be associated with increase in stress oxidative, inflammation and endothelial dysfunction which in turn might have long-term effects on chronic non-communicable diseases. Health professionals have an exclusive capability to help prevent and reduce the harmful effects of environmental factors for high-risk groups

  12. The potential impacts of climate variability and change on air pollution-related health effects in the United States.

    OpenAIRE

    Bernard, S M; Samet, J M; Grambsch, A; Ebi, K L; Romieu, I

    2001-01-01

    Climate change may affect exposures to air pollutants by affecting weather, anthropogenic emissions, and biogenic emissions and by changing the distribution and types of airborne allergens. Local temperature, precipitation, clouds, atmospheric water vapor, wind speed, and wind direction influence atmospheric chemical processes, and interactions occur between local and global-scale environments. If the climate becomes warmer and more variable, air quality is likely to be affected. However, the...

  13. The Siberian High and Arctic Sea Ice: Long-term Climate Change and Impacts on Air Pollution during Wintertime in China

    Science.gov (United States)

    Long, X.; Zhao, S.; Feng, T.; Tie, X.; Li, G.

    2017-12-01

    China has undergone severe air pollution during wintertime as national industrialization and urbanization have been increasingly developed in the past three decades. It has been suggested that high emission and adverse weather patterns contribute to wintertime air pollution. Recent studies propose that climate change and Arctic sea ice loss likely lead to extreme haze events in winter. Here we use two reanalysis and observational datasets to present the trends of Siberian High (SH) intensity over Eurasia, and Arctic temperature and sea ice. The results show the Arctic region of Asia is becoming warming accompanied by a rapid decline of sea ice while Eurasia is cooling and SH intensity is gradually enhancing. Wind patterns induced by these changes cause straight westerly prevailing over Eurasia at the year of weak SH while strengthened northerly winds at the year of strong SH. Therefore, we utilize regional dynamical and chemical WRF-Chem model to determine the impact of SH intensity difference on wintertime air pollution in China. As a result, enhancing northerly winds at the year of strong SH rapidly dilute and transport air pollution, causing a decline of 50 - 400 µg m-3 PM2.5 concentrations relative to that at the year of weak SH. We also assess the impact of emission reduction to half the current level on air pollution. The results show that emission reduction by 50% has an equivalent impact as the variability of SH intensity. This suggests that climate change over Eurasia has largely offset the negative impact of emission on air pollution and it is urgently needed to take measures to mitigate air pollution. In view of current high emission scenario in China, it will be a long way to effectively mitigate, or ultimately prevent wintertime air pollution.

  14. Exploring the consequences of climate change for indoor air quality

    International Nuclear Information System (INIS)

    Nazaroff, William W

    2013-01-01

    Climate change will affect the concentrations of air pollutants in buildings. The resulting shifts in human exposure may influence public health. Changes can be anticipated because of altered outdoor pollution and also owing to changes in buildings effected in response to changing climate. Three classes of factors govern indoor pollutant levels in occupied spaces: (a) properties of pollutants; (b) building factors, such as the ventilation rate; and (c) occupant behavior. Diversity of indoor conditions influences the public health significance of climate change. Potentially vulnerable subpopulations include not only the young and the infirm but also those who lack resources to respond effectively to changing conditions. Indoor air pollutant levels reflect the sum of contributions from indoor sources and from outdoor pollutants that enter with ventilation air. Pollutant classes with important indoor sources include the byproducts of combustion, radon, and volatile and semivolatile organic compounds. Outdoor pollutants of special concern include particulate matter and ozone. To ensure good indoor air quality it is important first to avoid high indoor emission rates for all pollutants and second to ensure adequate ventilation. A third factor is the use of air filtration or air cleaning to achieve further improvements where warranted. (letter)

  15. ÉCLAIRE - Effects of Climate Change on Air Pollution Impacts and Response Strategies for European Ecosystems - Key Messages for Policy Makers, Year 1

    OpenAIRE

    Sutton, Mark; Howard, Clare

    2013-01-01

    The central goal of ÉCLAIRE is to assess how future climate change may alter the extent to which air pollutants have adverse effects on terrestrial ecosystems. Based on the emerging activities of the first year, it is now hypothesized that, that climate change will worsen the threat of air pollutants on Europe’s ecosystems: Climate warming may cause an increase the emissions of many trace gases, such as biogenic volatile organic compounds (BVOCs), ammonia (NH3) and the soil component of nitro...

  16. Climate Change and Health Risks from Extreme Heat and Air Pollution in the Eastern United States

    Science.gov (United States)

    Limaye, V.; Vargo, J.; Harkey, M.; Holloway, T.; Meier, P.; Patz, J.

    2013-12-01

    Climate change is expected to exacerbate health risks from exposure to extreme heat and air pollution through both direct and indirect mechanisms. Directly, warmer ambient temperatures promote biogenic emissions of ozone precursors and favor the formation of ground-level ozone, while an anticipated increase in the frequency of stagnant air masses will allow fine particulates to accumulate. Indirectly, warmer summertime temperatures stimulate energy demand and exacerbate polluting emissions from the electricity sector. Thus, while technological adaptations such as air conditioning can reduce risks from exposures to extreme heat, they can trigger downstream damage to air quality and public health. Through an interdisciplinary modeling effort, we quantify the impacts of climate change on ambient temperatures, summer energy demand, air quality, and public health. The first phase of this work explores how climate change will directly impact the burden of heat-related mortality. Climatic patterns, demographic trends, and epidemiologic risk models suggest that populations in the eastern United States are likely to experience an increasing heat stress mortality burden in response to rising summertime air temperatures. We use North American Regional Climate Change Assessment Program modeling data to estimate mid-century 2-meter air temperatures and humidity across the eastern US from June-August, and quantify how long-term changes in actual and apparent temperatures from present-day will affect the annual burden of heat-related mortality across this region. With the US Environmental Protection Agency's Environmental Benefits Mapping and Analysis Program, we estimate health risks using concentration-response functions, which relate temperature increases to changes in annual mortality rates. We compare mid-century summertime temperature data, downscaled using the Weather Research and Forecasting model, to 2007 baseline temperatures at a 12 km resolution in order to estimate

  17. The public health relevance of air pollution abatement.

    Science.gov (United States)

    Künzli, N

    2002-07-01

    Assuming a causal relationship between current levels of air pollution and morbidity/mortality, it is crucial to estimate the public health relevance of the problem. The derivation of air pollution attributable cases faces inherent uncertainties and requires influential assumptions. Based on the results of the trinational impact assessment study of Austria, France, and Switzerland, where prudent estimates of the air pollution attributable cases (mortality, chronic bronchitis incidence, hospital admissions, acute bronchitis among children, restricted activity days, asthma attacks) have been made, influential uncertainties are quantified in this review. The public health impact of smoking, environmental tobacco smoke, and air pollution on the prevalence of chronic cough/phlegm are outlined. Despite all methodological caveats, impact assessment studies clearly suggest that public health largely benefits from better air quality. The studies are selective underestimates as they are strongly driven by mortality, but do not include full quantification of the impact on morbidity and their consequences on quality of life among the diseased and the caregivers. Air pollution abatement strategies are usually political in nature, targeting at polities, regulation and technology in mobile or stationary sources rather than at individuals. It is of note that key clean air strategies converge into abatement of climate change. In general, energy consumption is very closely related to both air pollution and greenhouse gases. The dominant causes of both problems are the excessive and inefficient combustion of fossil fuel. Thus, for many policy options, the benefit of air pollution abatement will go far beyond what prudent health-impact assessments may derive. From a climate change and air pollution perspective, improved energy efficiency and a strong and decisive departure from the "fossil fuel" combustion society is a science-based must. Health professionals must raise their voices

  18. Forests under climate change and air pollution: gaps in understanding and future directions for research.

    Science.gov (United States)

    Matyssek, R; Wieser, G; Calfapietra, C; de Vries, W; Dizengremel, P; Ernst, D; Jolivet, Y; Mikkelsen, T N; Mohren, G M J; Le Thiec, D; Tuovinen, J-P; Weatherall, A; Paoletti, E

    2012-01-01

    Forests in Europe face significant changes in climate, which in interaction with air quality changes, may significantly affect forest productivity, stand composition and carbon sequestration in both vegetation and soils. Identified knowledge gaps and research needs include: (i) interaction between changes in air quality (trace gas concentrations), climate and other site factors on forest ecosystem response, (ii) significance of biotic processes in system response, (iii) tools for mechanistic and diagnostic understanding and upscaling, and (iv) the need for unifying modelling and empirical research for synthesis. This position paper highlights the above focuses, including the global dimension of air pollution as part of climate change and the need for knowledge transfer to enable reliable risk assessment. A new type of research site in forest ecosystems ("supersites") will be conducive to addressing these gaps by enabling integration of experimentation and modelling within the soil-plant-atmosphere interface, as well as further model development. Copyright © 2011 Elsevier Ltd. All rights reserved.

  19. Evaluating the climate and air quality impacts of short-lived pollutants

    Science.gov (United States)

    Stohl, A.; Aamaas, B.; Amann, M.; Baker, L. H.; Bellouin, N.; Berntsen, T. K.; Boucher, O.; Cherian, R.; Collins, W.; Daskalakis, N.; Dusinska, M.; Eckhardt, S.; Fuglestvedt, J. S.; Harju, M.; Heyes, C.; Hodnebrog, Ø.; Hao, J.; Im, U.; Kanakidou, M.; Klimont, Z.; Kupiainen, K.; Law, K. S.; Lund, M. T.; Maas, R.; MacIntosh, C. R.; Myhre, G.; Myriokefalitakis, S.; Olivié, D.; Quaas, J.; Quennehen, B.; Raut, J.-C.; Rumbold, S. T.; Samset, B. H.; Schulz, M.; Seland, Ø.; Shine, K. P.; Skeie, R. B.; Wang, S.; Yttri, K. E.; Zhu, T.

    2015-09-01

    This paper presents a summary of the work done within the European Union's Seventh Framework Programme project ECLIPSE (Evaluating the Climate and Air Quality Impacts of Short-Lived Pollutants). ECLIPSE had a unique systematic concept for designing a realistic and effective mitigation scenario for short-lived climate pollutants (SLCPs; methane, aerosols and ozone, and their precursor species) and quantifying its climate and air quality impacts, and this paper presents the results in the context of this overarching strategy. The first step in ECLIPSE was to create a new emission inventory based on current legislation (CLE) for the recent past and until 2050. Substantial progress compared to previous work was made by including previously unaccounted types of sources such as flaring of gas associated with oil production, and wick lamps. These emission data were used for present-day reference simulations with four advanced Earth system models (ESMs) and six chemistry transport models (CTMs). The model simulations were compared with a variety of ground-based and satellite observational data sets from Asia, Europe and the Arctic. It was found that the models still underestimate the measured seasonality of aerosols in the Arctic but to a lesser extent than in previous studies. Problems likely related to the emissions were identified for northern Russia and India, in particular. To estimate the climate impacts of SLCPs, ECLIPSE followed two paths of research: the first path calculated radiative forcing (RF) values for a large matrix of SLCP species emissions, for different seasons and regions independently. Based on these RF calculations, the Global Temperature change Potential metric for a time horizon of 20 years (GTP20) was calculated for each SLCP emission type. This climate metric was then used in an integrated assessment model to identify all emission mitigation measures with a beneficial air quality and short-term (20-year) climate impact. These measures together

  20. Air Pollution Impacts on Global Crop Productivity and Nitrogen Depositio

    Science.gov (United States)

    Heald, C. L.; Tai, A. P. K.; Val Martin, M.

    2014-12-01

    The biosphere is undeniably transformed by air pollution. Emissions, climate change, and land use change are all expected to substantially alter future air quality. In this presentation, we discuss near-term projections (2050) of air quality impacts on both crop productivity and nitrogen deposition. First, we contrast the relative impacts of ozone air pollution and a warming climate on global crop yields. To do so, we define statistical crop yield functions to a warming climate based on the historical record. We combine these relationships with ozone-damage estimates and apply these to future air quality and climate projections from a global coupled chemistry-climate model (CESM). We find substantial variability in the response, with certain regions or crops more sensitive to ozone pollution and others more sensitive to warming. This work demonstrates that air quality management is a key element to ensuring global food security. Second, we examine the relative impacts of anthropogenic emissions, climate change, and land use change on global nitrogen deposition. Nitrogen deposition has rapidly increased over the Anthropocene. Excess deposition of nitrogen to ecosystems can lead to eutrophication of waters, and a decrease in biodiversity. We use the CESM to investigate two scenarios (RCP 4.5 and RCP8.5) and focus our analysis on the impacts on diverse ecoregions in North America, Europe, and Asia.

  1. Economic aspects of air pollution abatement. Air pollution abatement recommended for economic reasons; Oekonomische Aspekte des Klimaschutzes. Gerade aus oekonomischer Sicht ist Klimaschutz sinnvoll

    Energy Technology Data Exchange (ETDEWEB)

    Jasper, J.; Serger, H. [Hannover Univ. (Germany). Lehrstuhl fuer Mikrooekonomik

    2005-07-01

    Climate change is not only dangerous but also expensive. On the other hand, air pollution abatement measures are costly as well. Scientists of the Microeconomics Department investigated how air pollution abatement and cost efficiency can best be combined. (orig.)

  2. The impact of European legislative and technology measures to reduce air pollutants on air quality, human health and climate

    International Nuclear Information System (INIS)

    Turnock, S T; Butt, E W; Richardson, T B; Mann, G W; Reddington, C L; Forster, P M; Carslaw, K S; Spracklen, D V; Haywood, J; Johnson, C E; Crippa, M; Janssens-Maenhout, G; Bellouin, N

    2016-01-01

    European air quality legislation has reduced emissions of air pollutants across Europe since the 1970s, affecting air quality, human health and regional climate. We used a coupled composition-climate model to simulate the impacts of European air quality legislation and technology measures implemented between 1970 and 2010. We contrast simulations using two emission scenarios; one with actual emissions in 2010 and the other with emissions that would have occurred in 2010 in the absence of technological improvements and end-of-pipe treatment measures in the energy, industrial and road transport sectors. European emissions of sulphur dioxide, black carbon (BC) and organic carbon in 2010 are 53%, 59% and 32% lower respectively compared to emissions that would have occurred in 2010 in the absence of legislative and technology measures. These emission reductions decreased simulated European annual mean concentrations of fine particulate matter (PM 2.5 ) by 35%, sulphate by 44%, BC by 56% and particulate organic matter by 23%. The reduction in PM 2.5 concentrations is calculated to have prevented 80 000 (37 000–116 000, at 95% confidence intervals) premature deaths annually across the European Union, resulting in a perceived financial benefit to society of US$232 billion annually (1.4% of 2010 EU GDP). The reduction in aerosol concentrations due to legislative and technology measures caused a positive change in the aerosol radiative effect at the top of atmosphere, reduced atmospheric absorption and also increased the amount of solar radiation incident at the surface over Europe. We used an energy budget approximation to estimate that these changes in the radiative balance have increased European annual mean surface temperatures and precipitation by 0.45 ± 0.11 °C and by 13 ± 0.8 mm yr −1 respectively. Our results show that the implementation of European legislation and technological improvements to reduce the emission of air pollutants has improved air quality

  3. [Environmental pollution, climate variability and climate change: a review of health impacts on the Peruvian population].

    Science.gov (United States)

    Gonzales, Gustavo F; Zevallos, Alisson; Gonzales-Castañeda, Cynthia; Nuñez, Denisse; Gastañaga, Carmen; Cabezas, César; Naeher, Luke; Levy, Karen; Steenland, Kyle

    2014-01-01

    This article is a review of the pollution of water, air and the effect of climate change on the health of the Peruvian population. A major air pollutant is particulate matter less than 2.5 μ (PM 2.5). In Lima, 2,300 premature deaths annually are attributable to this pollutant. Another problem is household air pollution by using stoves burning biomass fuels, where excessive indoor exposure to PM 2.5 inside the household is responsible for approximately 3,000 annual premature deaths among adults, with another unknown number of deaths among children due to respiratory infections. Water pollution is caused by sewage discharges into rivers, minerals (arsenic) from various sources, and failure of water treatment plants. In Peru, climate change may impact the frequency and severity of El Niño Southern Oscillation (ENSO), which has been associated with an increase in cases of diseases such as cholera, malaria and dengue. Climate change increases the temperature and can extend the areas affected by vector-borne diseases, have impact on the availability of water and contamination of the air. In conclusion, Peru is going through a transition of environmental risk factors, where traditional and modern risks coexist and infectious and chronic problems remain, some of which are associated with problems of pollution of water and air.

  4. Air Pollution

    Science.gov (United States)

    Air pollution is a mixture of solid particles and gases in the air. Car emissions, chemicals from factories, ... Ozone, a gas, is a major part of air pollution in cities. When ozone forms air pollution, it's ...

  5. Urban Biometeorology: analysis of the air pollution and climate change on cognition and physical abilities of geriatric population of São Paulo City

    Science.gov (United States)

    Teixeira Gonçalves, Fabio Luiz; Jacob, Wilson; Alucci, Marcia; Busse, Alexandre; Duarte, Denise; Monteiro, Leonardo; Trezza, Beatriz; Tribess, Arlindo; Batista, Rafael; Ambrizzi, Tercip

    2013-04-01

    This is a multidisciplinary Project, which emphasizes geriatric population impacts, i. e., over 65 years old, of meteorological variables and air pollutants (such as particulate matter) associated to human health, and concerning to the real climatology and climate change in the Metropolitan Region of São Paulo. This is a biometeorological study, human subdivision, based on ISB (International Society of Biometeorology). According to the society, the environmental effects are considered meteorotropics where one or more environmental variables (meteorological or climatic even air pollution) affect one or more individuals of a population. Atmospheric pollution will be analyzed using a personal particulate matter multi-collector, concerning the impact of unfavorable meteorological conditions where the impacts will be evaluated comparing the test results during dry season (high air pollutant concentrations) and wet season (low pollutant concentrations). Therefore, the aim of this study will be to evaluate the cognitive and physical performance of a geriatric population in a pre-selected group of aged people which are considered as capable (healthy). This performance is affected by environmental conditions which thermal comfort (where meteorological variables act together) and air pollution are the meteorotropic ones. Consequently, one of the aims of the study is to establish a human thermal comfort index for geriatric populations. Architectural premises (thermal performance and ergonomics) will be also developed. An acclimatized chamber will be used to simulate the extremes of São Paulo climate and to propose a thermal comfort index. Indoors (chamber) and outdoors will be used in order to compare the impact on the selected aged people. Finally, the climate change will be based on GCM's global models which show the meteorological variations in order to calculate their impact on a comfort index. The physical and cognitive performances and architectural premises (thermal

  6. Air pollution problems and diseases caused by hazardous gases in ...

    African Journals Online (AJOL)

    With passage of time people realized that polluted air had serious effects on their health, climate and economics. Weather and climate have the integrated impact on human activities which are resulting in worldwide concentration of the particulate of environmental pollution viz. chloroflorocarbons (CFCs), carbon dioxide, ...

  7. Regional air pollution at a turning point.

    Science.gov (United States)

    Grennfelt, Peringe; Hov, Oystein

    2005-02-01

    The control of transboundary air pollution in Europe has been successful. Emissions of many key pollutants are decreasing and there are signs of improvements in damaged ecosystems. The strategies under development within the CAFE programme under the European Commission and the Convention on Long-range Transboundary Air Pollution (CLRTAP), aim to take regional air pollution control a large step further, in particular with respect to small particles. In this paper we highlight the new strategies but look primarily at socioeconomic trends and climate change feedbacks that may have a significant influence on the outcome of the strategies and which so far have not been considered. In particular, we point out the influence on air quality of increased summer temperatures in Europe and of increasing emissions including international shipping, outside of Europe. Taken together the further emissions reductions in Europe and the increasing background pollution, slowly cause a greying of the Northern Hemisphere troposphere rather than the traditional picture of dominant emissions in Europe and North America ('black') with much lower emission intensities elsewhere ('white'). A hemispheric approach to further combat air pollution will become necessary in Europe and elsewhere.

  8. Statistical Methodological Issues in Studies of Air Pollution and Respiratory Disease.

    OpenAIRE

    Hyndman, R.J.; Erbas, B.

    2001-01-01

    Epidemiological studies have consistently shown short term associations between levels of air pollution and respiratory disease in countries of diverse populations, geographical locations and varying levels of air pollution and climate. The aims of this paper are: (1) to assess the sensitivity of the observed pollution effects to model specification, with particular emphasis on the inclusion of seasonally adjusted covariates; and (2) to study the effect of air pollution on respiratory disease...

  9. Environmental pollution, climate variability and climate change: a review of health impacts on the peruvian population

    OpenAIRE

    Gonzales, Gustavo F.; Instituto de Investigaciones de la Altura. Lima, Perú. Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Lima, Perú. Academia Nacional de Ciencias. Lima, Perú. Doctor en Ciencias y doctor en Medicina; Zevallos, Alisson; Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Lima, Perú. estudiante de Biología; Gonzales-Castañeda, Cynthia; Instituto de Investigaciones de la Altura. Lima, Perú. Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Lima, Perú. Philosophal Doctor; Nuñez, Denisse; Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia. Lima, Perú. estudiante de Biología; Gastañaga, Carmen; Instituto Nacional de Salud. Lima, Perú. médico cirujano; Cabezas, César; Instituto Nacional de Salud. Lima, Perú. médico infectólogo; Naeher, Luke; University of Georgia. Georgia, EE. UU. Philosophal Doctor; Levy, Karen; University of Emory. Georgia. EE. UU. Philosophal Doctor; Steenlan, Kyle; University of Emory. Georgia. EE. UU. Philosophal Doctor

    2014-01-01

    This article is a review of the pollution of water, air and the effect of climate change on the health of the Peruvian population. A major air pollutant is particulate matter less than 2.5 μ (PM 2.5). In Lima, 2,300 premature deaths annually are attributable to this pollutant. Another problem is household air pollution by using stoves burning biomass fuels, where excessive indoor exposure to PM 2.5 inside the household is responsible for approximately 3,000 annual premature deaths among adult...

  10. Impact of environmental pollution and climate change on forest ecosystems: the activity of the IUFRO Research Group 7.01

    Directory of Open Access Journals (Sweden)

    Paoletti E

    2007-12-01

    Full Text Available Impact of environmental pollution and climate change on forest ecosystems: the activity of the IUFRO Research Group 7.01. The IUFRO RG 7.01 deals with "Impacts of Air Pollution and Climate Change on Forest Ecosystems". Climate change and air pollution are closely linked, although in applied scientific research and even more in political negotiations they have been largely separated. Many of the traditional air pollutants and greenhouse gases have not only common sources, but may also interact physically and chemically in the atmosphere causing a variety of environmental impacts on the local, regional and global scales. The impacts on forest ecosystems have been traditionally treated separately for air pollution and climate change. However, the combined effects of numerous climate change and air pollution factors may significantly differ from a sum of separate effects due to an array of various synergistic or antagonistic interactions. The net effect varies for different ecosystem types and geographic regions, and depends on magnitude of climate or air pollution drivers, and types of interactions between them. This paper reviews the links between air pollution and climate change and their interactive effects on forests. A simultaneous addressing of the air pollution and climate change effects on forests is an opportunity for capturing synergies and avoiding overlaps between two lines of traditional research. This could result in more effective research, monitoring and management as well as better integration of environmental policies.

  11. Air pollution and acid rains: status, effects, links with other forms of air pollution; Pollution de l`air et ``pluies acide`` etat des lieux, effets, liens avec d`autres formes de pollution de l`air

    Energy Technology Data Exchange (ETDEWEB)

    Elichegaray, C. [Agence de l`Environnement et de la Maitrise de l`Energie, 75 - Paris (France)

    1997-12-31

    The evolution of acid rain pollution since 1970 is reviewed; it is shown that, broadly speaking, the acid rain issue is decreasing compared to other forms of long range air pollution, at least in Western Europe. The growing issue is the increasing photochemical pollution and its effects on health, ecosystems and climate. Nevertheless, acid rains are still a major concern in various parts of the world (North America for example) and certain parts of France (Ardennes, Landes, parts of Massif Central) exhibit a very high potential sensitivity to acid falls

  12. The relative importance of impacts from climate change vs. emissions change on air pollution levels in the 21st century

    Directory of Open Access Journals (Sweden)

    G. B. Hedegaard

    2013-04-01

    Full Text Available So far several studies have analysed the impacts of climate change on future air pollution levels. Significant changes due to impacts of climate change have been made clear. Nevertheless, these changes are not yet included in national, regional or global air pollution reduction strategies. The changes in future air pollution levels are caused by both impacts from climate change and anthropogenic emission changes, the importance of which needs to be quantified and compared. In this study we use the Danish Eulerian Hemispheric Model (DEHM driven by meteorological input data from the coupled Atmosphere-Ocean General Circulation Model ECHAM5/MPI-OM and forced with the newly developed RCP4.5 emissions. The relative importance of the climate signal and the signal from changes in anthropogenic emissions on the future ozone, black carbon (BC, total particulate matter with a diameter below 2.5 μm (total PM2.5 including BC, primary organic carbon (OC, mineral dust and secondary inorganic aerosols (SIA and total nitrogen (including NHx + NOy has been determined. For ozone, the impacts of anthropogenic emissions dominate, though a climate penalty is found in the Arctic region and northwestern Europe, where the signal from climate change dampens the effect from the projected emission reductions of anthropogenic ozone precursors. The investigated particles are even more dominated by the impacts from emission changes. For black carbon the emission signal dominates slightly at high latitudes, with an increase up to an order of magnitude larger, close to the emission sources in temperate and subtropical areas. Including all particulate matter with a diameter below 2.5 μm (total PM2.5 enhances the dominance from emissions change. In contrast, total nitrogen (NHx + NOy in parts of the Arctic and at low latitudes is dominated by impacts of climate change.

  13. A new air quality monitoring and early warning system: Air quality assessment and air pollutant concentration prediction.

    Science.gov (United States)

    Yang, Zhongshan; Wang, Jian

    2017-10-01

    Air pollution in many countries is worsening with industrialization and urbanization, resulting in climate change and affecting people's health, thus, making the work of policymakers more difficult. It is therefore both urgent and necessary to establish amore scientific air quality monitoring and early warning system to evaluate the degree of air pollution objectively, and predict pollutant concentrations accurately. However, the integration of air quality assessment and air pollutant concentration prediction to establish an air quality system is not common. In this paper, we propose a new air quality monitoring and early warning system, including an assessment module and forecasting module. In the air quality assessment module, fuzzy comprehensive evaluation is used to determine the main pollutants and evaluate the degree of air pollution more scientifically. In the air pollutant concentration prediction module, a novel hybridization model combining complementary ensemble empirical mode decomposition, a modified cuckoo search and differential evolution algorithm, and an Elman neural network, is proposed to improve the forecasting accuracy of six main air pollutant concentrations. To verify the effectiveness of this system, pollutant data for two cities in China are used. The result of the fuzzy comprehensive evaluation shows that the major air pollutants in Xi'an and Jinan are PM 10 and PM 2.5 respectively, and that the air quality of Xi'an is better than that of Jinan. The forecasting results indicate that the proposed hybrid model is remarkably superior to all benchmark models on account of its higher prediction accuracy and stability. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Overview of Megacity Air Pollutant Emissions and Impacts

    Science.gov (United States)

    Kolb, C. E.

    2013-05-01

    The urban metabolism that characterizes major cities consumes very large qualities of humanly produced and/or processed food, fuel, water, electricity, construction materials and manufactured goods, as well as, naturally provided sunlight, precipitation and atmospheric oxygen. The resulting urban respiration exhalations add large quantities of trace gas and particulate matter pollutants to urban atmospheres. Key classes of urban primary air pollutants and their sources will be reviewed and important secondary pollutants identified. The impacts of these pollutants on urban and downwind regional inhabitants, ecosystems, and climate will be discussed. Challenges in quantifying the temporally and spatially resolved urban air pollutant emissions and secondary pollutant production rates will be identified and possible measurement strategies evaluated.

  15. A survey on the perceived need and value of decision-support tools for joint mitigation of air pollution and climate change in cities

    Directory of Open Access Journals (Sweden)

    Erika von Schneidemesser

    2017-11-01

    Full Text Available Decision-support tools are increasingly popular for informing policy decisions linked to environmental issues. For example, a number of decision-support tools on transport planning provide information on expected effects of different measures (actions, policies, or interventions on air quality, often combined with information on noise pollution or mitigation costs. These tools range in complexity and scale of applicability, from city to international, and include one or several polluting sectors. However, evaluation of the need and utility of tools to support decisions on such linked issues is often lacking, especially for tools intended to support local authorities at the city scale. Here we assessed the need for and value of combining air pollution and climate change mitigation measures into one decision-support tool and the existing policy context in which such a tool might be used. We developed a prototype decision-support tool for evaluating measures for coordinated management of air quality and climate change; and administered a survey in which respondents used the prototype to answer questions about demand for such tools and requirements to make them useful. Additionally, the survey asked questions about participants’ awareness of linkages between air pollution and climate change that are crucial for considering synergies and trade-offs among mitigation measures. Participants showed a high understanding of the linkages between air pollution and climate change, especially recognizing that emissions of greenhouse gases and air pollutants come from the same source. Survey participants were: European, predominantly German; employed across a range of governmental, non-governmental and research organizations; and responsible for a diversity of issues, primarily involving climate change, air pollution or environment. Survey results showed a lack of awareness of decision-support tools and little implementation or regular use. However

  16. Potential Impacts of Future Climate Change on Regional Air Quality and Public Health over China

    Science.gov (United States)

    Hong, C.; Zhang, Q.; Zhang, Y.; He, K.

    2017-12-01

    Future climate change would affect public health through changing air quality. Climate extremes and poor weather conditions are likely to occur at a higher frequency in China under a changing climate, but the air pollution-related health impacts due to future climate change remain unclear. Here the potential impacts of future climate change on regional air quality and public health over China is projected using a coupling of climate, air quality and epidemiological models. We present the first assessment of China's future air quality in a changing climate under the Representative Concentration Pathway 4.5 (RCP4.5) scenario using the dynamical downscaling technique. In RCP4.5 scenario, we estimate that climate change from 2006-2010 to 2046-2050 is likely to adversely affect air quality covering more than 86% of population and 55% of land area in China, causing an average increase of 3% in O3 and PM2.5 concentrations, which are found to be associated with the warmer climate and the more stable atmosphere. Our estimate of air pollution-related mortality due to climate change in 2050 is 26,000 people per year in China. Of which, the PM2.5-related mortality is 18,700 people per year, and the O3-related mortality is 7,300 people per year. The climate-induced air pollution and health impacts vary spatially. The climate impacts are even more pronounced on the urban areas where is densely populated and polluted. 90% of the health loss is concentrated in 20% of land areas in China. We use a simple statistical analysis method to quantify the contributions of climate extremes and find more intense climate extremes play an important role in climate-induced air pollution-related health impacts. Our results indicate that global climate change will likely alter the level of pollutant management required to meet future air quality targets as well as the efforts to protect public health in China.

  17. The impacts of changing transport and precipitation on pollutant distributions in a future climate

    Science.gov (United States)

    Fang, Yuanyuan; Fiore, Arlene M.; Horowitz, Larry W.; Gnanadesikan, Anand; Held, Isaac; Chen, Gang; Vecchi, Gabriel; Levy, Hiram

    2011-09-01

    Air pollution (ozone and particulate matter in surface air) is strongly linked to synoptic weather and thus is likely sensitive to climate change. In order to isolate the responses of air pollutant transport and wet removal to a warming climate, we examine a simple carbon monoxide-like (CO) tracer (COt) and a soluble version (SAt), both with the 2001 CO emissions, in simulations with the Geophysical Fluid Dynamics Laboratory chemistry-climate model (AM3) for present (1981-2000) and future (2081-2100) climates. In 2081-2100, projected reductions in lower-tropospheric ventilation and wet deposition exacerbate surface air pollution as evidenced by higher surface COt and SAt concentrations. However, the average horizontal general circulation patterns in 2081-2100 are similar to 1981-2000, so the spatial distribution of COt changes little. Precipitation is an important factor controlling soluble pollutant wet removal, but the total global precipitation change alone does not necessarily indicate the sign of the soluble pollutant response to climate change. Over certain latitudinal bands, however, the annual wet deposition change can be explained mainly by the simulated changes in large-scale (LS) precipitation. In regions such as North America, differences in the seasonality of LS precipitation and tracer burdens contribute to an apparent inconsistency of changes in annual wet deposition versus annual precipitation. As a step toward an ultimate goal of developing a simple index that can be applied to infer changes in soluble pollutants directly from changes in precipitation fields as projected by physical climate models, we explore here a "Diagnosed Precipitation Impact" (DPI) index. This index captures the sign and magnitude (within 50%) of the relative annual mean changes in the global wet deposition of the soluble pollutant. DPI can only be usefully applied in climate models in which LS precipitation dominates wet deposition and horizontal transport patterns change

  18. Modelling the regional effects of climate change on air quality

    International Nuclear Information System (INIS)

    Giorgi, F.; Meleux, F.

    2007-01-01

    The life cycle of pollutants is affected by chemical as well as meteorological factors, such as wind, temperature, precipitation, solar radiation. Therefore, climatic changes induced by anthropogenic emissions of greenhouse gases may be expected to have significant effects on air quality. Because of the spatial variability of the pollutant emissions and climate-change signals, these effects are particularly relevant at the regional to local scales. This paper first briefly reviews modelling tools and methodologies used to study regional climate-change impacts on air quality. Patterns of regional precipitation, temperature, and sea-level changes emerging from the latest set of general circulation model projections are then discussed. Finally, the specific case of climate-change effects on summer ozone concentrations over Europe is presented to illustrate the potential impacts of climate change on pollutant amounts. It is concluded that climate change is an important factor that needs to be taken into account when designing future pollution-reduction policies. (authors)

  19. Methods for Online Monitoring of Air Pollution Concentration

    OpenAIRE

    Ionel, Ioana; Popescu, Francisc

    2010-01-01

    Air pollution is a global environmental problem that represents a measure of the potential of the climate change rate influenced by local pollution sources, although its scale has a strong regional or local orientation. Improvements in technology supported by policy measures have lead to reduced pollution levels, but still, especially in new member states, more activity is needed. In developed countries advanced low pollution technique is applied in order to reduce the pollution levels Howeve...

  20. Effects of decarbonising international shipping and aviation on climate mitigation and air pollution

    International Nuclear Information System (INIS)

    Dessens, Olivier; Anger, Annela; Barker, Terry; Pyle, John

    2014-01-01

    Highlights: • A global emissions trading scheme is applied to international aviation and shipping. • We couple an energy–environment–economy model with an atmospheric model. • 65% reduction on CO 2 emissions in 2050 reduces other pollutants emissions. • Climate effects are reduced and air quality is improved by the scheme. - Abstract: This paper assesses the effects of a global emissions trading scheme (GETS) for international aviation and shipping as a way of reducing emissions of both greenhouse gases (GHG) and other atmospheric emissions that lead to air pollution. A prior assessment of such integration requires the coupling of energy–environment–economy (E3) global modelling of mitigation policies with the atmospheric modelling of pollution sources, mixing and deposition. We report the methodology and results of coupling of the E3MG model and the global atmospheric model, p-TOMCAT. We assess the effects of GETS on the concentrations of atmospheric gases and on the radiative forcing, comparing a GETS scenario to a reference BASE scenario with higher use of fossil fuels. The paper assesses the outcome of GETS for atmospheric composition and radiative forcing for 2050. GETS on international shipping and aviation reduces their CO 2 and non-CO 2 emissions up to 65%. As a consequence atmospheric concentrations are modified and the radiative forcing due to international transport is reduced by different amounts as a function of the pollutant studied (15% for CO 2 , 35% for methane and up to 50% for ozone)

  1. Modelling relationships between lichen bioindicators, air quality and climate on a national scale: Results from the UK OPAL air survey

    International Nuclear Information System (INIS)

    Seed, Lindsay; Wolseley, Pat; Gosling, Laura; Davies, Linda; Power, Sally A.

    2013-01-01

    Air pollution has many negative effects on the natural environment, from changes in plant growth patterns to loss of ecosystem function. This study uses citizen science to investigate national-scale patterns in the distribution and abundance of selected lichen species on tree trunks and branches, and to relate these to air pollution and climate. Volunteers collected data for nine lichen indicators on 19,334 deciduous trees. Submitted data provided information on species-level patterns, and were used to derive composite lichen indices. Multiple linear regression and ANCOVA were used to model the relationships between lichen response variables on Quercus spp. and pollution, climate and location. The study demonstrated significant relationships between patterns in indicator lichens and levels of N- and S-containing pollutants on trunks and twigs. The derived lichen indices show great potential as a tool to provide information on local, site-specific levels of air quality. -- Highlights: •Data on presence and abundance of selected lichens were collected by members of the public. •Indicator species and indices were modelled against air pollution and climate data. •Lichens and indices show significant relationships with nitrogenous air pollution. •Lichen indices are useful tools for providing information on local air quality. -- Data on selected lichen taxa collected by members of the public in England is used to show the relationship of indicator taxa and pollution indices to air pollution and climate data

  2. Some reflections on researches of Future Earth changes in air quality and climate

    Directory of Open Access Journals (Sweden)

    Xiao-Ye Zhang

    2015-06-01

    Full Text Available Within the context of our current research and understanding of climate change, decisionmakers are particularly concerned with the extent of future climate change, its comprehensive impact, and the types of socioeconomic pathways available with respect to mitigation and adaptation. Among the factors contributing to these important issues, the role of air pollution in global and regional climate warming remains as one of the largest uncertainties. On the basis of understanding of the IPCC Fifth Assessment Report, specifically, in the role of air pollution in climate change, scenarios establishment, and relationship between the Shared Socioeconomic Pathways (SSPs and Representative Concentration Pathways (RCPs. Weaknesses and reflections were discussed here especially in strengthening impact, adaptation and mitigation research that related with changes in air pollution and climate. In the future, there are needs to in-depth understand how and why the air pollution in China is so serious and changing; to understand the likely future changes in air pollution and climate; to strengthen comprehensive impact research and selective reduction strategies related to changes in air pollution and climate. Furthermore, this study outlines the needs to develop strategies to close the loop of differential impacts and costs; to establish co-benefits and sustainable development goals, to identify the crucial risks and options for synergies/trade-offs; to integrate sector-specific details with macro-economics, and to integrate the assessments of the various policy instruments. All these focus areas will help to facilitate the transition of economic development patterns towards green and low-carbon development.

  3. Air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Strauss, W; Mainwaring, S J

    1984-01-01

    This book deals with the nature of air pollution. The numerous sources of unwanted gases and dust particles in the air are discussed. Details are presented of the effects of pollutants on man, animals, vegetation and on inanimate materials. Methods used to measure, monitor and control air pollution are presented. The authors include information on the socio-economic factors which impinge on pollution control and on the problems the future will bring as methods of generating energy change and industries provide new sources of pollutants.

  4. Assessment of Air Pollution and GHG Mitigation Strategies in Malaysia using the GAINS Model

    International Nuclear Information System (INIS)

    Kumar, M.

    2013-01-01

    Planning for future energy development, taking into account the national obligations to mitigate climate change and air quality pressures is a major challenge faced by Malaysia. This research facilitates the impact assessment of simultaneous control of air pollution and GHG abatement through a set of emission scenarios while considering current and future Malaysian policies. The IIASAs GAINS (Greenhouse Gas-Air Pollution Interactions and Synergies) model is used for the estimation of emissions and costs, and the outputs of the MESSAGE and MAED energy models provide the underlying energy projections by 2050. Results show that current air-quality policies are efficient in keeping emissions growth at moderate rate, however, significant reduction potential exists if best available control technologies are introduced. Malaysian climate policies - modeled here for power sector - aiming at the -40 % decrease in carbon-intensity, result in important reductions of air pollutants, while the overall co-benefits can be substantial if other sectors are tackled by climate strategies. Initial results indicate the reduction of air pollutant control cost due to climate measures is comparable to the invoked cost-increase in power sector by 2030. Thereby, these co-benefits help to moderate total expenditures for meeting national climate policy targets. (author)

  5. Saltsjoebaden V - Taking international air pollution policies into the future

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-10-15

    24-26 June 2013, 130 leading international policy makers, scientists, experts and others met at an international workshop in Gothenburg, Sweden, in order to discuss and outline future directions in air pollution science and policy. The workshop, which was organised in close collaboration with the Convention on Long-range Transboundary Air Pollution and the European Commission, involved several themes such as linkages to climate change including SLCP, nitrogen, global governance and effects to health and environment. The output is a series of recommendations for further actions with respect to effects to health, ecosystems and near-term climate actions. Recommendations were also given with respect to heavy metals and POPs. The recommendations are directed towards several international organisations and initiatives such as CLRTAP, European Commission, Climate and Clean Air Coalition and the Arctic Council. (Author)

  6. Air pollution and urban climate in the Rhine--Westphalian industrial area and their influence on lichen growth on trees

    Energy Technology Data Exchange (ETDEWEB)

    Domroes, M

    1966-01-01

    Lichens on tree boles were examined on 25,114 trees along streets and areas in the central part of the Ruhr District and related to air pollution concentrations. The lichens were studied with regard to physiognomy, density, and exposition, and in relation to bark characteristics of tree species. Lichens were classified into the following areas: Lichen desert, transitional zone, or area of normal distribution. The lichens were sensitive to air pollution, especially sulfur dioxide emissions. The damaging influence of the town climate, especially aridity, was taken into consideration. Lichens were missing in all areas with a high degree of air pollution. These were areas of high density housing and of lower humidity than open country. Areas which had lower housing density and lower humidity also had increased lichen damage. Lichens were missing in the immediate neighborhood of factories or industrial areas outside towns. Lichen growth was reduced along busy roads.

  7. Air pollution meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Shirvaikar, V V; Daoo, V J [Environmental Assessment Div., Bhabha Atomic Research Centre, Mumbai (India)

    2002-06-01

    This report is intended as a training cum reference document for scientists posted at the Environmental Laboratories at the Nuclear Power Station Sites and other sites of the Department of Atomic Energy with installations emitting air pollutants, radioactive or otherwise. Since a manual already exists for the computation of doses from radioactive air pollutants, a general approach is take here i.e. air pollutants in general are considered. The first chapter presents a brief introduction to the need and scope of air pollution dispersion modelling. The second chapter is a very important chapter discussing the aspects of meteorology relevant to air pollution and dispersion modelling. This chapter is important because without this information one really does not understand the phenomena affecting dispersion, the scope and applicability of various models or their limitations under various weather and site conditions. The third chapter discusses the air pollution models in detail. These models are applicable to distances of a few tens of kilometres. The fourth chapter discusses the various aspects of meteorological measurements relevant to air pollution. The chapters are followed by two appendices. Apendix A discusses the reliability of air pollution estimates. Apendix B gives some practical examples relevant to general air pollution. It is hoped that the document will prove very useful to the users. (author)

  8. AirPEx. Air Pollution Exposure Model

    Energy Technology Data Exchange (ETDEWEB)

    Freijer, J.I.; Bloemen, H.J.Th.; De Loos, S.; Marra, M.; Rombout, P.J.A.; Steentjes, G.M.; Van Veen, M.P.

    1997-12-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The principal grounds for studying the inhalatory exposure of humans to air pollutants are formed by the need for realistic exposure/dose estimates to evaluate the health effects of these pollutants. The AirPEx (Air Pollution Exposure) model, developed to assess the time- and space-dependence of inhalatory exposure of humans to air pollution, has been implemented for use as a Windows 3.1 computer program. The program is suited to estimating various exposure and dose quantities for individuals, as well as for populations and subpopulations. This report describes the fundamentals of the AirPEx model and provides a user manual for the computer program. Several examples included in the report illustrate the possibilities of the AirPEx model in exposure assessment. The model will be used at the National Institute of Public Health and the Environment as a tool in analysing the current exposure of the Dutch population to air pollutants. 57 refs.

  9. Photochemical air pollution

    International Nuclear Information System (INIS)

    Te Winkel, B.H.

    1992-01-01

    During periods of severe photochemical air pollution (smog) the industry in the Netherlands is recommended by the Dutch government to strongly reduce the emissions of air pollutants. For the electric power generating companies it is important to investigate the adequacy of this policy. The purpose of this investigation is to determine the contribution of electric power plants to photochemical air pollution and to assess the efficacy of emission reducing measures. A literature survey on the development of photochemical air pollution was carried out and modelled calculations concerning the share of the electric power plants to the photochemical air pollution were executed

  10. Managing Air Quality - Multi-Pollutant Planning and Control

    Science.gov (United States)

    Describes how planning controls for multiple pollutants at the same time can save money and time and achieve significant benefits, and how control strategies can address both climate change and air quality.

  11. AirPEx: Air Pollution Exposure Model

    NARCIS (Netherlands)

    Freijer JI; Bloemen HJTh; Loos S de; Marra M; Rombout PJA; Steentjes GM; Veen MP van; LBO

    1997-01-01

    Analysis of inhalatory exposure to air pollution is an important area of investigation when assessing the risks of air pollution for human health. Inhalatory exposure research focuses on the exposure of humans to air pollutants and the entry of these pollutants into the human respiratory tract. The

  12. Pollution. Warning on the future of air quality

    International Nuclear Information System (INIS)

    Sredojevic, Alexandre

    2014-01-01

    This article comments the results published by INERIS (the French national institute of the industrial environment and risks) and based on the use of its model Chimere which aims at measuring and foreseeing the evolution of air quality. This model simulates the concentrations of pollutants in the air. It is integrated into the national tool of prediction of air quality, PREV'AIR, which studies prospective scenarios of reduction of emissions, and is also part of the SALUT'AIR project which assesses the evolution of atmospheric concentrations of pollutants by 2050 while taking climate change into account. These models notably show the importance of atmospheric circulation over continents. The author also recalls and comments the objectives of the UN Goteborg protocol for 2020

  13. The application of remote sensing techniques for air pollution analysis and climate change on Indian subcontinent

    Science.gov (United States)

    Palve, S. N.; Nemade, P. D., Dr.; Ghude, S. D., Dr.

    2016-06-01

    India is home to an extraordinary variety of climatic regions, ranging from tropical in the south to temperate and alpine in the Himalayan north, where elevated regions receive sustained winter snowfall. The subcontinent is characterized by high levels of air pollution due to intensively developing industries and mass fuel consumption for domestic purposes. The main tropospheric pollutants (O3, NO2, CO, formaldehyde (HCHO) and SO2) and two major greenhouse gases (tropospheric O3 and methane (CH4)) and important parameters of aerosols, which play a key role in climate change and affecting on the overall well-being of subcontinent residents. In light of considering these facts this paper aims to investigate possible impact of air pollutants over the climate change on Indian subcontinent. Satellite derived column aerosol optical depth (AOD) is a cost effective way to monitor and study aerosols distribution and effects over a long time period. AOD is found to be increasing rapidly since 2000 in summer season that may cause adverse effect to the agricultural crops and also to the human health. Increased aerosol loading may likely affect the rainfall which is responsible for the observed drought conditions over the Indian subcontinent. Carbon monoxide is emitted into the atmosphere by biomass burning activities and India is the second largest contributor of CO emissions in Asia. The MOPITT CO retrievals at 850 hPa show large CO emission from the IG region. The development of convective activity associated with the ASM leads to large scale vertical transport of the boundary layer CO from the Indian region into the upper troposphere. TCO over the Indian subcontinent during 2007 has a systematic and gradual variation, spatial as well as temporal. Higher amount of TCO in the northern latitudes and simultaneous lower TCO at near equatorial latitudes indicates depletion of ozone near the equator and accumulation at higher latitudes within the subcontinent. In addition, changes

  14. Climate change and air quality - measures with co-benefits in China

    Energy Technology Data Exchange (ETDEWEB)

    Kristin Aunan; Jinghua Fang; Tao Hu; Hans Martin Seip; Haakon Vennemo [Center for International Climate and Environmental Research-Oslo (CICERO) (Norway)

    2006-08-15

    Several studies carried out in China over the past 5-10 years, including the authors own work, have found that many measures aimed primarily at reducing local air pollution decrease GHG emissions as a co-benefit. Conversely, a range of CO{sub 2} mitigation policies entail reductions in air pollution as a co-benefit. This implies that the real costs of climate policies in China may be lower than anticipated by the government. This article describes the links between climate change and air quality issues as well as the health and environmental benefits accruing from alterative measures and policies for CO{sub 2} mitigation in China where coal is expected to remain a main energy source for many years to come. The tremendous potential to cut GHG emissions while simultaneously reducing air pollution should make cooperation on climate control strategies more attractive to China and other countries in a similar position. 43 refs., 3 figs., 1 tab.

  15. Urban air pollution, climate and its impact on asthma morbidity

    Directory of Open Access Journals (Sweden)

    Lyudmila Vasilievna Veremchuk

    2016-01-01

    Conclusions: We determined that asthma morbidity depends from general air pollution (in the range of 18.3%. It was detected that the highest age-specific dependence is associated with the content of particulate matter, carbon monoxide and nitrogen dioxide in air.

  16. Air pollution

    OpenAIRE

    MacKenbach, JP; Henschel, S; Goodman, P; McKee, M

    2013-01-01

    The human costs of air pollution are considerable in Jordan. According to a report published in 2000 by the World Bank under the Mediterranean Environmental Technical Assistance Program (METAP), approximately 600 people die prematurely each year in Jordan because of urban pollution. 50-90% of air pollution in Jordanian towns is caused by road traffic. Readings taken in 2007 by Jordanian researchers showed that levels of black carbon particles in the air were higher in urban areas (caused by v...

  17. Tourist perceptions of air travel and climate change: an assessment of the polluters pay principle in South Africa

    Directory of Open Access Journals (Sweden)

    Lara Peck

    2014-01-01

    Full Text Available There is an ongoing debate about possible taxation of air travel and the inclusion of aviation in emission trading schemes. One proposal is the introduction of a carbon tax as part of a broad range of mitigation options to address climate change. However, the effectiveness of such a tax depends largely on the responsiveness to it by tourists. Consequently, the aim of the study is to explore the attitudes of domestic tourists in South Africa toward the introduction of a carbon tax, together with their knowledge and perceptions of climate change. Therefore, the perceptions of the polluters pay principle amongst domestic tourists who use air travel in South Africa are investigated. Data was collected using a structured survey involving two hundred domestic air travel passengers at O.R. Tambo International airport, selected through a random sampling technique. The study is the first of its kind in South Africa and it concludes that the average domestic tourist has moderate to good knowledge regarding climate change, believes climate change to be very serious and in need of attention and is willing to pay a carbon tax in order to offset their contribution to climate change; provided that it is regulated and used effectively.

  18. Hold your breath: A new index of air pollution

    International Nuclear Information System (INIS)

    Buehn, Andreas; Farzanegan, Mohammad Reza

    2013-01-01

    Environmental quality and climate change have been discussed prominently as urgent problems that – due to air pollution – produce severe consequences affecting the everyday life of millions of people. Using a Multiple Indicators Multiple Causes (MIMIC) model, we calculate a new index of air pollution and provide a ranking for 122 countries for every fifth year between 1985 and 2005. The empirical analysis supports the Environmental Kuznets Curve (EKC) hypothesis and shows a significant influence of determinants such as energy efficiency, industrial production, the electricity produced from coal sources, and demographic transition on air pollution. According to the index, Norway, Switzerland, Japan, Luxembourg, and Iceland are among the top 5 countries in terms of air quality performance. Eritrea, Mozambique, Tajikistan, the Democratic Republic of Congo, and Ethiopia performed worst in 2005. - Highlights: ► We calculate a new index of air pollution and provide a ranking for 122 countries. ► The empirical analysis supports the EKC hypothesis. ► Country ranking of this air pollution index is comparable across the period 1985 to 2005. ► Definition of the underlying variables does not change and the methodology is consistent

  19. Air pollution and forest ecosystems: a regional to global perspective

    International Nuclear Information System (INIS)

    Taylor, G.E.; Johnson, D.W.; Andersen, C.P.

    1994-01-01

    Changes in the atmospheric concentrations of a number of air pollutants over the last century are hallmarks of the magnitude and extent of human impact on the environment. Some of these changes are important to ecologists because many pollutants, acting singly or in combination, affect ecological systems in general and forests in particular. The greatest concern lies with chronic levels of tropospheric ozone, cumulative deposition of hydrogen ion, nitrogen, and sulfur via wet and dry processes, a select number of airborne chemicals (e.g., mercury) that tend to bio accumulate in continental landscapes, and ultraviolet—B radiation through the loss of stratospheric ozone. Because the atmospheric residence time of most pollutants of concern to ecologists is measured on time frames extending from a few weeks to decades, pollutant distribution and effects are regional to global in dimension. We present evidence that ambient levels of some air pollutants in North America are affecting managed and unmanaged forests, and that the two most important pollutants are tropospheric ozone and chronic nitrogen loading. Further evidence indicates that while concentrations of some air pollutants have been declining over the last decade in North America, others are expected to remain unchanged or increase, including tropospheric ozone. We conclude that air pollution is affecting many North American forests and some remote forests around the globe. In the immediate future, the concern for air pollution effects on forests and associated natural resources will broaden to include interactions with changes in climate and pollution effects in the world's developing countries. There has been a rapid evolution in air pollution studies in ecology, shifting away from the agricultural paradigm of single—factor experimentation toward new methodologies that are ecologically and multidisciplinarily based. This shift has been promoted by the recognition that air pollution is one of several

  20. Air quality and climate change co-benefits in Durban

    CSIR Research Space (South Africa)

    Thambiran, Tirusha

    2010-10-01

    Full Text Available The relationship between air quality and climate change provides a scientific basis for developing integrative policies. Emission control measures implemented can have varying counteracting influences, simultaneously affecting air quality pollutants...

  1. Arctic air pollution: Challenges and opportunities for the next decade

    Directory of Open Access Journals (Sweden)

    S.R. Arnold

    2016-05-01

    Full Text Available Abstract The Arctic is a sentinel of global change. This region is influenced by multiple physical and socio-economic drivers and feedbacks, impacting both the natural and human environment. Air pollution is one such driver that impacts Arctic climate change, ecosystems and health but significant uncertainties still surround quantification of these effects. Arctic air pollution includes harmful trace gases (e.g. tropospheric ozone and particles (e.g. black carbon, sulphate and toxic substances (e.g. polycyclic aromatic hydrocarbons that can be transported to the Arctic from emission sources located far outside the region, or emitted within the Arctic from activities including shipping, power production, and other industrial activities. This paper qualitatively summarizes the complex science issues motivating the creation of a new international initiative, PACES (air Pollution in the Arctic: Climate, Environment and Societies. Approaches for coordinated, international and interdisciplinary research on this topic are described with the goal to improve predictive capability via new understanding about sources, processes, feedbacks and impacts of Arctic air pollution. Overarching research actions are outlined, in which we describe our recommendations for 1 the development of trans-disciplinary approaches combining social and economic research with investigation of the chemical and physical aspects of Arctic air pollution; 2 increasing the quality and quantity of observations in the Arctic using long-term monitoring and intensive field studies, both at the surface and throughout the troposphere; and 3 developing improved predictive capability across a range of spatial and temporal scales.

  2. Indoor air pollution

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    2001-01-01

    Indoor air pollution is a potential risk to human health. Prolonged exposure to indoor pollutants may cause various infectious, allergic and other diseases. Indoor pollutants can emanate from a broad array of internal and external sources. Internal sources include building and furnishing materials, consumer and commercial products, office equipment, micro-organisms, pesticides and human occupants activities. External sources include soil, water supplies and outside makeup air. The main indoor air pollutants of concern are inorganic gases, formaldehyde and other volatile organic compounds, pesticides, radon and its daughters, particulates and microbes. The magnitude of human exposure to indoor pollutants can be estimated or predicted with the help of mathematical models which have been developed using the data from source emission testing and field monitoring of pollutants. In order to minimize human exposure to indoor pollutants, many countries have formulated guidelines / standards for the maximum permissible levels of main pollutants. Acceptable indoor air quality can be achieved by controlling indoor pollution sources and by effective ventilation system for removal of indoor pollutants. (author)

  3. Coping with Indoor Air Pollution

    Science.gov (United States)

    ... Pollution > Coping with Indoor Air Pollution Font: Outdoor Pollution Indoor Air Pollution Asthma Triggers For Kids and Teachers Coping with Indoor Air Pollution Indoor air pollution is irritating to everyone: But people who ...

  4. Indoor Air Pollution

    Science.gov (United States)

    We usually think of air pollution as being outdoors, but the air in your house or office could also be polluted. Sources of indoor pollution include Mold and pollen Tobacco smoke Household products ...

  5. A multi-model assessment of the co-benefits of climate mitigation for global air quality

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Shilpa; Klimont, Zbigniew; Leitao, Joana; Riahi, Keywan; van Dingenen, Rita; Reis, Lara Aleluia; Calvin, Katherine; Dentener, Frank; Drouet, Laurent; Fujimori, Shinichiro; Harmsen, Mathijs; Luderer, Gunnar; Heyes, Chris; Strefler, Jessica; Tavoni, Massimo; van Vuuren, Detlef P.

    2016-12-01

    The recent International Panel on Climate change (IPCC) report identifies significant co-benefits from climate policies on near-term ambient air pollution and related human health outcomes [1]. This is increasingly relevant for policy making as the health impacts of air pollution are a major global concern- the Global Burden of Disease (GBD) study identifies outdoor air pollution as the sixth major cause of death globally [2]. Integrated assessment models (IAMs) are an effective tool to evaluate future air pollution outcomes across a wide range of assumptions on socio-economic development and policy regimes. The Representative Concentration Pathways (RCPs) [3] were the first set of long-term global scenarios developed across multiple integrated assessment models that provided detailed estimates of a number of air pollutants until 2100. However these scenarios were primarily designed to cover a defined range of radiative forcing outcomes and thus did not specifically focus on the interactions of long-term climate goals on near-term air pollution impacts. More recently, [4] used the RCP4.5 scenario to evaluate the co-benefits of global GHG reductions on air quality and human health in 2030. [5-7] have further examined the interactions of more diverse pollution control regimes with climate policies. This paper extends the listed studies in a number of ways. Firstly it uses multiple IAMs to look into the co-benefits of a global climate policy for ambient air pollution under harmonized assumptions on near-term air pollution control. Multi-model frameworks have been extensively used in the analysis of climate change mitigation pathways, and the structural uncertainties regarding the underlying mechanisms (see for example [8-10]. This is to our knowledge the first time that a multi-model evaluation has been specifically designed and applied to analyze the co-benefits of climate change policy on ambient air quality, thus enabling a better understanding of at a detailed

  6. Hazardous Air Pollutants

    Science.gov (United States)

    ... Search Main menu Environmental Topics Air Bed Bugs Chemicals and Toxics Environmental Information by Location Greener Living Health Land, ... regulate toxic air pollutants, also known as air toxics, from categories of industrial facilities in two phases . About Hazardous Air Pollutants ...

  7. Air quality: how to assess air quality management policies on a short and on a long term? The integration of the climate factor

    International Nuclear Information System (INIS)

    Prevot, Aurelie

    2014-01-01

    This document presents the activities and works performed by the INERIS Institute in the development of tools for the assessment of air quality management policies including the climate factor. This comprises the development of simulations within the frame of the SALUT'AIR project, and also within the frame of the reviewing of the European policy on air quality (directives 2008/50/CE on ambient air quality and 2001/81/CE on national limits of emissions of some pollutants). The CHIMERE model of chemistry and transport is one of these tools. Simulations are performed to analyse the impact of scenarios of air quality management on a short term, in terms of pollutant emissions, pollutant concentration, and particle concentrations. The integration of a climate factor is justified by the existence of interactions between climate and air quality

  8. Ground water pollution through air pollutants

    International Nuclear Information System (INIS)

    Cichorowski, G.; Michel, B.; Versteegen, D.; Wettmann, R.

    1989-01-01

    The aim of the investigation is to determine the significance of air pollutants for ground water quality and ground water use. The report summarizes present knowledge and assesses statements with a view to potential ground water pollution from the air. In this context pollution paths, the spreading behaviour of pollutants, and 'cross points' with burden potentials from other pollutant sources are presented. (orig.) [de

  9. A review of scientifc linkages and interactions between climate change and air quality, with implications for air quality management in South Africa

    Directory of Open Access Journals (Sweden)

    Tirusha Thambiran

    2010-04-01

    Full Text Available In recent years there has been considerable advancement in our scientifc understanding of the linkages and interactions between climate change and air quality. A warmer, evolving climate is likely to have severe consequences for air quality due to impacts on pollution sources and meteorology. Climate-induced changes to sources of tropospheric ozone precursor gases and to atmospheric circulation are likely to lead to changes in both the concentration and dispersion of near-surface ozone that could act to offset improvements in air quality. The control of air pollutants through air quality management is also likely to impact on climate change, with reductions in ozone, particulate matter and sulphur dioxide being of particular interest. The improved understanding of the relationship between air quality and climate change provides a scientific basis for policy interventions. After a review of the scientific linkages, the potential to include climate change considerations in air quality management planning processes in South Africa was examined.

  10. Outdoor-indoor air pollution in urban environment: Challenges and opportunity

    Directory of Open Access Journals (Sweden)

    Dennis Y.C. eLeung

    2015-01-01

    Full Text Available With the continual improvement in our quality of life, indoor air quality has become an important area of concern in the 21st century. Indoor air quality is affected by many factors including the type and running conditions of indoor pollution sources, ventilation conditions, as well as indoor activities. Studies revealed that the outdoor environment is also an important factor that cannot be neglected for indoor air quality studies. In this review, the indoor and outdoor air pollution relationships obtained from different studies are discussed in order to identify the key factors affecting the indoor air quality. As climate change is recognized as imposing impacts on the environment, how it affects the indoor air quality and the health impacts to the occupants will be evaluated in this paper. The major challenges and opportunities in indoor/outdoor air pollution studies will be highlighted.

  11. Air Pollution in Europe

    International Nuclear Information System (INIS)

    1997-09-01

    In spite of improvements relative to air pollution, there is still much to do. more than thirty millions of European people are exposed to sulfur dioxide concentrations superior to guide values for health fixed by European Union, 20% of ecosystems in Europe are above the critical charges in the area of acidification and 33% concern eutrophication. Relative to the carbon dioxide, it is not sure that European Union realize the objective to stabilize the emissions for the year 2000 at the level of the year 1990, because of the increasing of automobile traffic and the energy consumption. Four subjects are presented: the climatic change, acidification and eutrophication, tropospheric ozone and air quality. (N.C.)

  12. Projecting future air pollution-related mortality under a changing climate: progress, uncertainties and research needs.

    Science.gov (United States)

    Madaniyazi, Lina; Guo, Yuming; Yu, Weiwei; Tong, Shilu

    2015-02-01

    Climate change may affect mortality associated with air pollutants, especially for fine particulate matter (PM2.5) and ozone (O3). Projection studies of such kind involve complicated modelling approaches with uncertainties. We conducted a systematic review of researches and methods for projecting future PM2.5-/O3-related mortality to identify the uncertainties and optimal approaches for handling uncertainty. A literature search was conducted in October 2013, using the electronic databases: PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 to September 2013. Fifteen studies fulfilled the inclusion criteria. Most studies reported that an increase of climate change-induced PM2.5 and O3 may result in an increase in mortality. However, little research has been conducted in developing countries with high emissions and dense populations. Additionally, health effects induced by PM2.5 may dominate compared to those caused by O3, but projection studies of PM2.5-related mortality are fewer than those of O3-related mortality. There is a considerable variation in approaches of scenario-based projection researches, which makes it difficult to compare results. Multiple scenarios, models and downscaling methods have been used to reduce uncertainties. However, few studies have discussed what the main source of uncertainties is and which uncertainty could be most effectively reduced. Projecting air pollution-related mortality requires a systematic consideration of assumptions and uncertainties, which will significantly aid policymakers in efforts to manage potential impacts of PM2.5 and O3 on mortality in the context of climate change. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  13. Proceedings of the clean air and climate change summit

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    The Clean Air Partnership was established in the Greater Toronto Area (GTA) over 10 years ago to work on issues related to air pollution and climate change. This summit presented details of the partnership's municipal activities and provided an outline of various projects conducted to reduce air pollution, increase the use of green energy, and encourage residents to reduce their ecological footprint. Climate change was discussed in relation to the recent economic crisis and recently discovered problems related to ocean acidification. The International Energy Agency (IEA) annual report was discussed in relation to peak oil and future economic crises. Advancements in green energy policy in Ontario were outlined. Sustainable housing and renewable energy projects in Germany were presented along with successful urban designs in Melbourne, New York City, and Denver. The GTA-CAC inter-governmental declaration on clean air was discussed, and an interim progress report was presented. The summit concluded with a video presentation of a collaborative artistic piece about climate change and the Arctic. 11 figs.

  14. Proceedings of the clean air and climate change summit

    International Nuclear Information System (INIS)

    2010-01-01

    The Clean Air Partnership was established in the Greater Toronto Area (GTA) over 10 years ago to work on issues related to air pollution and climate change. This summit presented details of the partnership's municipal activities and provided an outline of various projects conducted to reduce air pollution, increase the use of green energy, and encourage residents to reduce their ecological footprint. Climate change was discussed in relation to the recent economic crisis and recently discovered problems related to ocean acidification. The International Energy Agency (IEA) annual report was discussed in relation to peak oil and future economic crises. Advancements in green energy policy in Ontario were outlined. Sustainable housing and renewable energy projects in Germany were presented along with successful urban designs in Melbourne, New York City, and Denver. The GTA-CAC inter-governmental declaration on clean air was discussed, and an interim progress report was presented. The summit concluded with a video presentation of a collaborative artistic piece about climate change and the Arctic. 11 figs.

  15. Air Pollution and Stroke.

    Science.gov (United States)

    Lee, Kuan Ken; Miller, Mark R; Shah, Anoop S V

    2018-01-01

    The adverse health effects of air pollution have long been recognised; however, there is less awareness that the majority of the morbidity and mortality caused by air pollution is due to its effects on the cardiovascular system. Evidence from epidemiological studies have demonstrated a strong association between air pollution and cardiovascular diseases including stroke. Although the relative risk is small at an individual level, the ubiquitous nature of exposure to air pollution means that the absolute risk at a population level is on a par with "traditional" risk factors for cardiovascular disease. Of particular concern are findings that the strength of this association is stronger in low and middle income countries where air pollution is projected to rise as a result of rapid industrialisation. The underlying biological mechanisms through which air pollutants exert their effect on the vasculature are still an area of intense discussion. A greater understanding of the effect size and mechanisms is necessary to develop effective strategies at individual and policy levels to mitigate the adverse cardiovascular effects of air pollution.

  16. Interactions between particulate air pollution and temperature in air pollution mortality time series studies

    International Nuclear Information System (INIS)

    Roberts, Steven

    2004-01-01

    In many community time series studies on the effect of particulate air pollution on mortality, particulate air pollution is modeled additively. In this study, we investigated the interaction between daily particulate air pollution and daily mean temperature in Cook County, Illinois and Allegheny County, Pennsylvania, using data for the period 1987-1994. This was done through the use of joint particulate air pollution-temperature response surfaces and by stratifying the effect of particulate air pollution on mortality by temperature. Evidence that the effect of particulate air pollution on mortality may depend on temperature is found. However, the results were sensitive to the number of degrees of freedom used in the confounder adjustments, the particulate air pollution exposure measure, and how the effects of temperature on mortality are modeled. The results were less sensitive to the estimation method used--generalized linear models and natural cubic splines or generalized additive models and smoothing splines. The results of this study suggest that in community particulate air pollution mortality time series studies the possibility of an interaction between daily particulate air pollution and daily mean temperature should be considered

  17. Public Perceptions of How Long Air Pollution and Carbon Dioxide Remain in the Atmosphere.

    Science.gov (United States)

    Dryden, Rachel; Morgan, M Granger; Bostrom, Ann; Bruine de Bruin, Wändi

    2018-03-01

    The atmospheric residence time of carbon dioxide is hundreds of years, many orders of magnitude longer than that of common air pollution, which is typically hours to a few days. However, randomly selected respondents in a mail survey in Allegheny County, PA (N = 119) and in a national survey conducted with MTurk (N = 1,013) judged the two to be identical (in decades), considerably overestimating the residence time of air pollution and drastically underestimating that of carbon dioxide. Moreover, while many respondents believed that action is needed today to avoid climate change (regardless of cause), roughly a quarter held the view that if climate change is real and serious, we will be able to stop it in the future when it happens, just as we did with common air pollution. In addition to assessing respondents' understanding of how long carbon dioxide and common air pollution stay in the atmosphere, we also explored the extent to which people correctly identified causes of climate change and how their beliefs affect support for action. With climate change at the forefront of politics and mainstream media, informing discussions of policy is increasingly important. Confusion about the causes and consequences of climate change, and especially about carbon dioxide's long atmospheric residence time, could have profound implications for sustained support of policies to achieve reductions in carbon dioxide emissions and other greenhouse gases. © 2017 Society for Risk Analysis.

  18. Air climate health

    International Nuclear Information System (INIS)

    Duval, Dominique; Riottot, Michel; Leger, Karine

    2015-01-01

    'France Nature Environnement Ile de France' publishes, on occasion of the COP 21, a special paper about the air pollution in the Paris region, greenhouse gases and their influence on the environment. This document has been written in close cooperation with professionals and civil associations. Elected representatives from local and regional authorities also speak about their experiences. The first part emphasizes the urgency to accelerate preventive and corrective measures since the air pollution, after slightly decreasing in the 2000's, remains stable. Our work is a science based analysis of essential parameters and details the impact of local pollution and greenhouse gases on the climate. It is based on the GIEC 2013 and 2015 reports, as well as the work of National meteorology in association with the Climate agency of Paris. The threshold of not exceeding an average temperature of +2 deg. C in 2100 is almost reached. If consumption of fossil energies does not heavily decline in the next 10 years, the earth's thermal machine will enter, for several centuries, into an uncontrollable cycle which could endanger life on earth with average temperatures exceeding 4 to 6 deg. C above the current level. The second part reveals the impact of air pollution on the health of the Paris region's population, especially on women who are the most affected by respiratory diseases: obstructive pulmonary bronchitis and asthma. Four departments are particularly affected: Paris, Seine-et-Marne, Seine-Saint-Denis and Val-d'Oise. Even though we do not have the formal causal proof between gas concentration and disease, analysis of similar situations worldwide eliminate any doubts about the reality of the relationship. The third part proposes solutions which can be implemented by local government, companies, but also civil associations and citizens in order to quickly decrease greenhouse gas production. Solutions range from energy sobriety to change in travel

  19. Indoor Air Pollution (Environmental Health Student Portal)

    Science.gov (United States)

    ... Students to Environmental Health Information Menu Home Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ... Pollution Indoor Air Pollution Print this Page Air Pollution Air Pollution Home Indoor Air Pollution Outdoor Air Pollution ...

  20. Estimation of air quality by air pollution indices

    International Nuclear Information System (INIS)

    Liblik, Valdo; Kundel, Helmut

    1999-01-01

    A novel system for estimating the quality of atmospheric air in the over-ground air layer with the help of air pollution indices was developed. The method is based on a comparison of measured or calculated maximum short-term concentrations and average annual concentrations of pollutants with maximum permissible concentrations (with regard to human beings and vegetation). Special air quality estimation scales for residential areas and natural systems are presented. On the basis of the concentration of the substance under study zones of very high, high, rather high, moderate, low and very low air pollution were distinguished in the over-ground layer of the atmosphere. These are projected to land surface for landscape zonation. The application of the system of indices is demonstrated in the analysis of air quality for the towns of Kohtla-Jarve, Johvi and Kivioli (in 1997-1998). A comparative analysis of the air pollution zones distinguished on the basis of emissions and data from bio monitoring yielded satisfactory results. The system of air pollution indices developed enables to process the results of air monitoring in case of pollution fields of complicated composition so that the result for estimating the quality of ambient air in a residential area is easily understood by inhabitants and interpretable with the help of a special scale; analyse temporal changes in the quality of the air in towns, villages and other residential areas and use the results as basis for developing measures for reducing the pollution of ambient air; carry out zonation of large territories on the basis of air pollution levels (spatial air pollution zones are projected on the ground surface) and estimate air quality in places where air monitoring is lacking to forecast the possible effect of air pollution on natural systems (author)

  1. Wildfire air pollution hazard during the 21st century

    Science.gov (United States)

    Knorr, Wolfgang; Dentener, Frank; Lamarque, Jean-François; Jiang, Leiwen; Arneth, Almut

    2017-07-01

    Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5), combining an existing ensemble of simulations using a coupled fire-dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO) air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.

  2. Dispersion of atmospheric air pollution in summer and winter season.

    Science.gov (United States)

    Cichowicz, Robert; Wielgosiński, Grzegorz; Fetter, Wojciech

    2017-11-04

    Seasonal variation of air pollution is associated with variety of seasons and specificity of particular months which form the so-called summer and winter season also known as the "heating" season. The occurrence of higher values of air pollution in different months of a year is associated with the type of climate, and accordingly with different atmospheric conditions in particular months, changing state of weather on a given day, and anthropogenic activity. The appearance of these conditions results in different levels of air pollution characteristic for a given period. The study uses data collected during a seven-year period (2009-2015) in the automatic measuring station of immissions located in Eastern Wielkopolska. The analysis concerns the average and maximum values of air pollution (i.e., particulate matter PM10, sulfur dioxide, nitrogen dioxide, carbon monoxide, and ozone) from the perspective of their occurrence in particular seasons and months or in relation to meteorological actors such as temperature, humidity, and wind speed.

  3. Characterization of the particulate air pollution in contrasted mega cities

    International Nuclear Information System (INIS)

    Favez, O.

    2008-02-01

    This work aims at characterizing the physics and the chemistry that govern particulate air pollution in two mega cities (Paris and Cairo) for which the size distribution and the chemical composition of airborne particles were poorly documented. Seasonal variations of the main aerosol sources and transformation processes are investigated in these two urban centres, with a particular attention to semi-volatile material and secondary organic aerosols. Short-term health effects of Paris size-segregated aerosols, as well as particulate pollution during the Cairo 'Black Cloud' season, are also emphasized here. Finally, the comparison of results obtained for the two mega cities and for another one (Beijing) allows investigating main factors responsible for particulate air pollution in urban centres with contrasted climatic conditions and development levels. Notably, this work also allows the build-up of an experimental dataset which is now available for the modelling of urban air quality and of environmental impacts of mega city air pollution. (author)

  4. APEX (Air Pollution Exercise) Volume 21: Legal References: Air Pollution Control Regulations.

    Science.gov (United States)

    Environmental Protection Agency, Research Triangle Park, NC. Office of Manpower Development.

    The Legal References: Air Pollution Control Regulations Manual is the last in a set of 21 manuals (AA 001 009-001 029) used in APEX (Air Pollution Exercise), a computerized college and professional level "real world" game simulation of a community with urban and rural problems, industrial activities, and air pollution difficulties. The manual…

  5. Regulations Concerning Agriculture and Air Pollution

    Directory of Open Access Journals (Sweden)

    Chiara Bertora

    2010-03-01

    Full Text Available The main issues related to the atmospheric pollution are the stratospheric ozone depletion, the transboundary air pollution, the troposphere air quality and the climate change. The three last decades have seen the birth of several measures for the atmosphere safeguard. Agricultural activities play a key role in determining, preventing and mitigating atmospheric pollution. The emission to atmosphere of different ozone-depleting substances is regulated by the Montreal Protocol. The role of agriculture activity in ozone depletion is linked to the utilization of methyl bromide as soil sterilant and to the emission of nitrogen oxides and nitrous oxide, from agricultural soils. The Convention on long-range transboundary air pollution regulates the emission of several pollutants, i.e. sulphur dioxide, nitrogen oxides, ammonia, non methane volatile organic compounds, carbon monoxide, heavy metals, persistent organic pollutants, and tropospheric ozone. The agriculture sector is responsible for a large part of the emissions of ammonia and nitrogen oxides, mainly through manure management and nitrogen fertilization, and of most persistent organic pollutants, largely used in the past as insecticides and fungicides. The increase of the greenhouse gases (GHGs concentration in the atmosphere is under the control of the Kyoto Protocol. Agriculture accounts for 59-63% of global non-CO2 GHGs emissions but at the same time it contributes to the atmospheric CO2 concentration stabilisation through the substitution of fossil fuels by biofuels and the sequestration of C in soil and vegetal biomass. In this paper we provide an outline of the numerous scientific and legislative initiatives aimed at protecting the atmosphere, and we analyse in detail the agriculture sector in order to highlight both its contribution to atmospheric pollution and the actions aimed at preventing and mitigating it.

  6. Managing air pollution impacted forests of California

    Science.gov (United States)

    Michael J. Arbaugh; Trent Proctor; Annie Esperanza

    2009-01-01

    Fuel treatments (prescribed fire and mechanical removal) on public lands in California are critical for reducing fuel accumulation and wildfire frequency and severity and protecting private property located in the wildland–urban interface. Treatments are especially needed in forests impacted by air pollution and subject to climate change. High ambient ozone (O

  7. Nitric oxide in exhaled and aspirated nasal air as an objective measure of human response to indoor air pollution

    DEFF Research Database (Denmark)

    Kolarik, Barbara; Lagercrantz, L.; Sundell, Jan

    2009-01-01

    The concentration of nitric oxide (NO) in exhaled and aspirated nasal air was used to objectively assess human response to indoor air pollutants in a climate chamber exposure experiment. The concentration of NO was measured before exposure, after 2, and 4.5 h of exposure, using a chemiluminescence...... by the exposures. The results may indicate an association between polluted indoor air and subclinical inflammation.Measurement of nitric oxide in exhaled air is a possible objective marker of subclinical inflammation in healthy adults....... NO analyzer. Sixteen healthy female subjects were exposed to two indoor air pollutants and to a clean reference condition for 4.5 h. Subjective assessments of the environment were obtained by questionnaires. After exposure (4.5 h) to the two polluted conditions a small increase in NO concentration in exhaled...

  8. Perspective for Future Research Direction About Health Impact of Ambient Air Pollution in China.

    Science.gov (United States)

    Dong, Guang-Hui

    2017-01-01

    Air pollution has become one of the major risks to human health because of the progressive increase in the use of vehicles powered by fossil fuels. Although lots of works on the health impact of ambient air pollution have been done in China, the following recommendations for future research were identified in this chapter: (1) the synergistic effect of indoor air pollution with climate change; (2) develop new technologies to improve accurate assessment of air pollution exposure; (3) well-designed cohort study of sensitive populations including children, older people, and people with chronic health problems; (4) multi-omics technologies in the underlying mechanisms study; and (5) benefits evaluation of improvement of air quality. In conclusion, China is becoming a suitable study site, providing an ideal opportunity to evaluate the effects of environmental pollution, including air pollution, on human health, which might serve as an example for developing countries where health impacts of air pollution are as serious as in China.

  9. Determiners of the air pollution effects at Shanghai

    International Nuclear Information System (INIS)

    Anon.

    2009-01-01

    Age, sex and other factors that modify sensitivity to air pollution have been identified in epidemiologic studies in europe and north America. This study assesses modifying factors for the population of Shanghai, which has a different social and demographic profile and lives in a different climate. (author)

  10. Effects of air pollutants on epicuticular wax structure

    International Nuclear Information System (INIS)

    Huttunen, S.

    1994-01-01

    In xerophytes, like conifers, the epicuticular wax is well developed. Especially in and around stomatal entrances, a thick wax coating is present. Epicuticular waxes are modified by changes in plant growth conditions such as temperature, relative humidity, irradiance, and wind, or acid rain. The fine structure of epicuticular waxes, their chemistry, and ecophysiological function are modified, especially in evergreen, long-lived conifer needles with characteristic crystalline wax structures. During needle flushing and development, wax structure is easily modified. Acid rain-treated Scots pine needles had 50% less epicuticular waxes in early August. Pollution-induced delayed development, destruction, and disturbances have been identified in many plant species. The structural changes in wax crystals are known. Acid rain or polluted air can destroy the crystalloid epicuticular waxes in a few weeks. In Pinus sylvestris, the first sign of pollution effect is the fusion of wax tubes. In Picea abies and P. sitchensis, modifications of crystalloid wax structure are known. In Californian pine trees phenomena of recrystallization of wax tubes on second-year needles were observed after delayed epicuticular wax development in Pinus ponderosa and P. coulteri. Thus, the effects of air pollutants are modified by climate. Accelerated senescence of leaves and needles have been associated with natural and anthropogenic stresses. The accelerated erosion rate of epicuticular waxes has been measured under air pollution conditions. Many short-term air pollution experiments have failed to show any structural changes in epicuticular wax structures. The quantity and quality of needle waxes grown in open-top chambers, glass houses, or polluted air before treatment, differ from field conditions and make it difficult to detect effects of any treatment. (orig.)

  11. Air pollution control and decreasing new particle formation lead to strong climate warming

    Science.gov (United States)

    Makkonen, R.; Asmi, A.; Kerminen, V.-M.; Boy, M.; Arneth, A.; Hari, P.; Kulmala, M.

    2012-02-01

    The number concentration of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN), which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000) and future (year 2100) conditions. The present-day total aerosol forcing is increased from -1.0 W m-2 to -1.6 W m-2 when nucleation is introduced into the model. Nucleation doubles the change in aerosol forcing between years 2000 and 2100, from +0.6 W m-2 to +1.4 W m-2. Two climate feedbacks are studied, resulting in additional negative forcings of -0.1 W m-2 (+10% DMS emissions in year 2100) and -0.5 W m-2 (+50% BVOC emissions in year 2100). With the total aerosol forcing diminishing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  12. Air pollution and hospital admissions for respiratory diseases in Lanzhou, China

    International Nuclear Information System (INIS)

    Tao, Yan; Mi, Shengquan; Zhou, Shuhong; Wang, Shigong; Xie, Xiaoyun

    2014-01-01

    Lanzhou is among the most seriously air-polluted cities in China as a whole, due to its unique topography, climate, industrial structure and so on. We studied the relationship between different air pollution and respiratory hospitalizations from 2001 to 2005, the total of respiratory hospital admissions were 28,057. The data were analyzed using Poisson regression models after controlling for the long time trend for air pollutants, the “day of week” effect and confounding meteorological factors. Three air pollutants (PM 10 , SO 2 , NO 2 ) had a lag effect, the lag was 3–5 days for PM 10 , 1–3 days for SO 2 and 1–4 days for NO 2 . The relative risks were calculated for increases in the inter-quartile range of the pollutants (139 μg/m 3 in PM 10 , 61 μg/m 3 in SO 2 and 31 μg/m 3 in NO 2 ). Results showed that there were significant associations between air pollutants and respiratory hospital admissions, and stronger effects were observed for females and aged ≥65 yrs in Lanzhou. -- There were significant associations between air pollutants and respiratory diseases with lag effect, and the aged and female people are more vulnerable to air pollutants. -- Highlights: • We assess the association between different air pollutants and respiratory diseases in 2001–2005. • The associations are significant and show a lag effect. • The lag was 3–5 days for PM 10 , 1–3 days for SO 2 and 1–4 days for NO 2

  13. Air Pollution Training Programs.

    Science.gov (United States)

    Public Health Service (DHEW), Rockville, MD.

    This catalog lists the universities, both supported and not supported by the Division of Air Pollution, which offer graduate programs in the field of air pollution. The catalog briefly describes the programs and their entrance requirements, the requirements, qualifications and terms of special fellowships offered by the Division of Air Pollution.…

  14. Health Effects of Air Pollution

    Science.gov (United States)

    ... Health effects of air pollution Health effects of air pollution Breathing air that is not clean can hurt ... important to know about the health effects that air pollution can have on you and others. Once you ...

  15. Air Pollution, Global Change and Forests in the New Millennium

    International Nuclear Information System (INIS)

    Karnosky, D.F.; Pikkarainen, J.; Percy, K.E.; Simpson, C.; Chappelka, A.H.

    2003-01-01

    The chapters in this book present a snapshot of the state of knowledge of air pollution effects at the beginning of the 21st century. From their different disciplines, a distinguished collection of authors document their understanding of how leaves, trees, and forests respond to air pollutants and climate change. Scenarios of global change and air pollution are described. The authors describe responses of forests to climate variability, tropospheric ozone, rising atmospheric CO2, the combination of CO2 and ozone, and deposition of acidic compounds and heavy metals. The responses to ozone receive particular attention because of increasing concern about its damaging effects and increasing concentrations in rural areas. Scaling issues are addressed - from leaves to trees, from juvenile trees to mature trees, from short-term responses to long-term responses, and from small-scale experiments and observations to large-scale forest ecosystems. This book is one major product of a conference sponsored by the International Union of Forestry Research Organizations, the USDA Forest Service Global Change Northern Stations Program, the Arthur Ross Foundation, NCASI, the Canadian Forest Service, and Michigan Technological University. The conference was held in May 2000 in Houghton, Michigan, USA

  16. Urban Air Pollution in Taiwan before and after the Installation of a Mass Rapid Transit System.

    Science.gov (United States)

    Ding, Pei-Hsiou; Wang, Gen-Shuh; Chen, Bing-Yu; Wan, Gwo-Hwa

    2016-09-01

    Urbanization causes air pollution in metropolitan areas, coupled with meteorological factors that affect air quality. Although previous studies focused on the relationships of urbanization, air pollution, and climate change in Western countries, this study evaluated long-term variations of air quality and meteorological factors in Taiwanese metropolitan areas (Taipei area, Taichung City, and Kaohsiung City) and a rural area (Hualien County) between 1993 and 2012. The influence of a mass rapid transit (MRT) system on air quality was also evaluated. Air pollutant concentrations and meteorology data were collected from Taiwan Environmental Protection Administration (TEPA) air monitoring stations and Central Weather Bureau stations in the surveyed areas, respectively. Analyses indicate that levels of air pollution in metropolitan areas were greater than in the rural area. Kaohsiung City had the highest levels of O, SO, and particulate matter 2.5 or 10 µm in diameter (PM and PM). Clear downward trends for CO, NO, PM, PM, and especially SO concentrations were found in the surveyed areas, whereas O showed no decrease. Both O and PM concentrations showed similar bimodal seasonal distributions. Taiwan's air quality has improved significantly since 1993, indicating the effectiveness of promoting air pollution strategies and policies by the TEPA. Air pollution had an obvious improvement in Taipei area after the MRT system began operations in 1996. Because global climate may potentially affect urban air pollution in Taiwan, further study to clarify the mechanisms by which air pollution may affect human health and other biological effects is warranted. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. The Effects of Air Pollution and Temperature on COPD.

    Science.gov (United States)

    Hansel, Nadia N; McCormack, Meredith C; Kim, Victor

    2016-06-01

    Chronic Obstructive Pulmonary Disease (COPD) affects 12-16 million people in the United States and is the third-leading cause of death. In developed countries, smoking is the greatest risk factor for the development of COPD, but other exposures also contribute to the development and progression of the disease. Several studies suggest, though are not definitive, that outdoor air pollution exposure is linked to the prevalence and incidence of COPD. Among individuals with COPD, outdoor air pollutants are associated with loss of lung function and increased respiratory symptoms. In addition, outdoor air pollutants are also associated with COPD exacerbations and mortality. There is much less evidence for the impact of indoor air on COPD, especially in developed countries in residences without biomass exposure. The limited existing data suggests that indoor particulate matter and nitrogen dioxide concentrations are linked to increased respiratory symptoms among patients with COPD. In addition, with the projected increases in temperature and extreme weather events in the context of climate change there has been increased attention to the effects of heat exposure. Extremes of temperature-both heat and cold-have been associated with increased respiratory morbidity in COPD. Some studies also suggest that temperature may modify the effect of pollution exposure and though results are not conclusive, understanding factors that may modify susceptibility to air pollution in patients with COPD is of utmost importance.

  18. [Influence of industrial pollution of ambient air on health of workers engaged into open air activities in cold conditions].

    Science.gov (United States)

    Chashchin, V P; Siurin, S A; Gudkov, A B; Popova, O N; Voronin, A Iu

    2014-01-01

    The article presents the results of a study on assessment of occupational exposure to air pollutants and related health effects in3792 outdoor workers engaged in operations performed in the vicinity of non-ferrous metallurgical facilities in Far North. Findings are that during cold season repeated climate and weather conditions are associated with higher level of chemical hazards and dust in surface air. At the air temperature below -17 degrees C, maximal single concentrations of major pollutants can exceed MAC up to 10 times. With that, transitory disablement morbidity parameters and occupational accidents frequency increase significantly. The workers with long exposure to cooling meteorological factors and air pollution demonstrate significantly increased prevalence of respiratory and circulatory diseases, despite relatively low levels of sculpture dioxide and dust in the air, not exceeding the occupational exposure limits. It has been concluded that severe cold is to be considered asa factor increasing occupational risk at air polluted outdoor worksites dueto more intense air pollution, higher traumatism risk and lower efficiency of filter antidust masks respiratory PPE and due to modification of the toxic effects.

  19. Understanding the Patterns and Drivers of Air Pollution on Multiple Time Scales: The Case of Northern China

    Science.gov (United States)

    Liu, Yupeng; Wu, Jianguo; Yu, Deyong; Hao, Ruifang

    2018-06-01

    China's rapid economic growth during the past three decades has resulted in a number of environmental problems, including the deterioration of air quality. It is necessary to better understand how the spatial pattern of air pollutants varies with time scales and what drive these changes. To address these questions, this study focused on one of the most heavily air-polluted areas in North China. We first quantified the spatial pattern of air pollution, and then systematically examined the relationships of air pollution to several socioeconomic and climatic factors using the constraint line method, correlation analysis, and stepwise regression on decadal, annual, and seasonal scales. Our results indicate that PM2.5 was the dominant air pollutant in the Beijing-Tianjin-Hebei region, while PM2.5 and PM10 were both important pollutants in the Agro-pastoral Transitional Zone (APTZ) region. Our statistical analyses suggest that energy consumption and gross domestic product (GDP) in the industry were the most important factors for air pollution on the decadal scale, but the impacts of climatic factors could also be significant. On the annual and seasonal scales, high wind speed, low relative humidity, and long sunshine duration constrained PM2.5 accumulation; low wind speed and high relative humidity constrained PM10 accumulation; and short sunshine duration and high wind speed constrained O3 accumulation. Our study showed that analyses on multiple temporal scales are not only necessary to determine key drivers of air pollution, but also insightful for understanding the spatial patterns of air pollution, which was important for urban planning and air pollution control.

  20. Indoor air pollution

    International Nuclear Information System (INIS)

    Anwar, J.; Hussain, F.

    2005-01-01

    Indoor air pollution after being a neglected subject for a number of years, is attracting attention recently because it is a side effect of energy crisis. About 50% of world's 6 billion population, mostly in developing countries, depend on biomass and coal in the form of wood, dung and crop residues for domestic energy because of poverty. These materials are burnt in simple stoves with incomplete combustion and infants, children and women are exposed to high levels of indoor air pollution for a considerable period, approximately between 2-4 hours daily. Current worldwide trade in wood fuel is over US $7 billion and about 2 million people are employed full time in production and marketing it. One of the most annoying and common indoor pollutant in both, developing and developed countries, is cigarette smoke. Children in gas-equipped homes had higher incidences of respiratory disease. Babies' DNA can be damaged even before they are born if their mothers breathe polluted air. Exposure to indoor air pollution may be responsible for nearly 2 million excess deaths in developing countries and for 4% of the global burden of the disease. Only a few indoor pollutants have been studied in detail. Indoor air pollution is a major health threat on which further research is needed to define the extent of the problem more precisely and to determine solutions by the policy-makers instead of neglecting it because sufferers mostly belong to Third World countries. (author)

  1. How Can Urban Policies Improve Air Quality and Help Mitigate Global Climate Change: a Systematic Mapping Review.

    Science.gov (United States)

    Slovic, Anne Dorothée; de Oliveira, Maria Aparecida; Biehl, João; Ribeiro, Helena

    2016-02-01

    Tackling climate change at the global level is central to a growing field of scientific research on topics such as environmental health, disease burden, and its resulting economic impacts. At the local level, cities constitute an important hub of atmospheric pollution due to the large amount of pollutants that they emit. As the world population shifts to urban centers, cities will increasingly concentrate more exposed populations. Yet, there is still significant progress to be made in understanding the contribution of urban pollutants other than CO2, such as vehicle emissions, to global climate change. It is therefore particularly important to study how local governments are managing urban air pollution. This paper presents an overview of local air pollution control policies and programs that aim to reduce air pollution levels in megacities. It also presents evidence measuring their efficacy. The paper argues that local air pollution policies are not only beneficial for cities but are also important for mitigating and adapting to global climate change. The results systematize several policy approaches used around the world and suggest the need for more in-depth cross-city studies with the potential to highlight best practices both locally and globally. Finally, it calls for the inclusion of a more human rights-based approach as a mean of guaranteeing of clean air for all and reducing factors that exacerbate climate change.

  2. Enlisting municipal governments in a national approach to clean air and climate change

    International Nuclear Information System (INIS)

    2006-01-01

    The Federation of Canadian Municipalities (FCM) and the Government of Canada have a shared commitment to improve environmental performance and protect the health of Canadians. Air pollution and climate change are also a shared responsibility among federal, municipal and provincial/territorial governments. Although they operate independently, their policies and programs tend to overlap. This is both costly and inefficient. In order to create synergies and leverage the role and potential of each level of government, the FCM proposed a national approach to clean air and climate change. The approach involves all levels of government in a nationally coordinated effort, with roles appropriate to their capacities. The municipal role in clean air and climate change action, roles and responsibilities of municipal governments, and guiding principles of a new Canadian approach were discussed in this document. Recommendations and next steps were also identified. They centred on the following themes: enhancing public transit, clean transportation and related infrastructure; improving commercial and residential building efficiency; stimulating ongoing productivity and pollution prevention within municipal operations through incentives and policies; enhancing clean energy; strengthened and enforceable air quality standards; emissions trading; climate change adaptation; public education and awareness; and demonstrating success and ensuring accountability. The document concluded that only a long-term intergovernmental partnership can meet the challenges posed by climate change and air pollution. FCM urged the Government of Canada to adopt an integrative and strategic approach to clean air and climate change by enlisting municipal governments as partners in both its development and implementation

  3. Climate and air quality-driven scenarios of ozone and aerosol precursor abatement

    International Nuclear Information System (INIS)

    Rypdal, Kristin; Rive, Nathan; Berntsen, Terje; Fagerli, Hilde; Klimont, Zbigniew; Mideksa, Torben K.; Fuglestvedt, Jan S.

    2009-01-01

    In addition to causing domestic and regional environmental effects, many air pollutants contribute to radiative forcing (RF) of the climate system. However, climate effects are not considered when cost-effective abatement targets for these pollutants are established, nor are they included in current international climate agreements. We construct air pollution abatement scenarios in 2030 which target cost-effective reductions in RF in the EU, USA, and China and compare these to abatement scenarios which instead target regional ozone effects and particulate matter concentrations. Our analysis covers emissions of PM (fine, black carbon and organic carbon), SO 2 , NO x , CH 4 , VOCs, and CO. We find that the effect synergies are strong for PM/BC, VOC, CO and CH 4 . While an air quality strategy targeted at reducing ozone will also reduce RF, this will not be the case for a strategy targeting particulate matter. Abatement in China dominates RF reduction, but there are cheap abatement options also available in the EU and USA. The justification for international cooperation on air quality issues is underlined when the co-benefits of reduced RF are considered. Some species, most importantly SO 2 , contribute a negative forcing on climate. We suggest that given current knowledge, NO x and SO 2 should be ignored in RF-targeted abatement policies.

  4. Local air pollution in the Arctic: knowledge gaps, challenges and future directions

    Science.gov (United States)

    Law, K.; Schmale, J.; Anenberg, S.; Arnold, S.; Simpson, W. R.; Mao, J.; Starkweather, S.

    2017-12-01

    It is estimated that about 30 % of the world's undiscovered gas and 13 % of undiscovered oil resources are located in the Arctic. Sea ice loss with climate change is progressing rapidly and by 2050 the Arctic could be nearly sea ice free in summer. This will allow for Arctic industrialization, commercial shipping, fishing and tourism to increase. Given that the world population is projected to grow beyond 9 billion by mid-century needing more resources, partly to be found in the Arctic, it can be expected that the current urbanization trend in the region will accelerate in the future. Against this background, it is likely that new local emission sources emerge which may lead to increased burdens of air pollutants such as particulate matter (PM), reactive nitrogen, and ozone. Typical Arctic emission sources include road transport, domestic fuel burning, diesel emissions, as well as industrial sources such as oil and gas extraction, metallurgical smelting, power generation as well as shipping in coastal areas. These emissions and their impacts remain poorly quantified in the Arctic. Boreal wildfires can already affect summertime air quality and may increase in frequency and size in a warmer climate. Locally produced air pollution, in combination with cold, stagnant weather conditions and inversion layers in winter, can also lead to significant localized pollutant concentrations, often in exceedance of air quality standards. Despite these concerns, very few process studies on local air pollution in or near inhabited areas in the Arctic have been conducted, which significantly limits our understanding of atmospheric chemical reactions involving air pollutants under Arctic conditions (e.g., extremely cold and dry air with little solar radiation in winter) and their impacts on human health and ecosystems. We will provide an overview of our current understanding of local air pollution and its impacts in Arctic urban environments and highlight key gaps. We will discuss a

  5. DEVELOPMENT OF AN INTEGRATED AIR POLLUTION MAPS ON KEY PLOT OF KRASNOYARSK REGION

    Directory of Open Access Journals (Sweden)

    E. A. Bozhilina

    2016-01-01

    Full Text Available The paper suggested the construction of a comprehensive air pollution map as an example of the key area of the Krasnoyarsk Territory. To create a map developed an original technique for limiting emissions spread zones in the atmosphere from industrial plants near the cities on the basis of climatic data. The proposed method is based on taking into account the repeatability wind speed and direction and length of time of pollutants in the atmosphere. The used methods of cartographic representation – quantitative background (emissions per unit area within the zones of the potential spread of contaminants, localized diagrams (emissions and air pollution index for the city, contour lines (the value of air pollution potential. Using an integrated map allows you to specify the impact of the transfer of pollutants in the formation of the level of pollution in the city, together with the volumes and values of emissions of air pollution potential.

  6. Air pollution tolerance indices of some plants around Ama industrial ...

    African Journals Online (AJOL)

    Air pollution tolerance indices of some plants around Ama industrial complex in ... The total chlorophyll, ascorbic acid, pH, and relative water content of the leaf ... which contribute to green house effect, global warming and climate change.

  7. Controlling Air Pollution from the Oil and Natural Gas Industry

    Science.gov (United States)

    EPA regulations for the oil and natural gas industry help combat climate change and reduce air pollution that harms public health. EPA’s regulations apply to oil production, and the production, process, transmission and storage of natural gas.

  8. Air pollution control in practice

    International Nuclear Information System (INIS)

    Baum, F.

    1988-01-01

    The book offers a comprehensive treatment of the subject, from air pollution monitoring and effects on human and animal health, on plants and materials, to pollution reduction measures, practical applications, and legal regulations. It intends to give the air pollution expert a basis for developing practicable solutions. Apart from the 'classic' pollutants, also radioactive air pollution is gone into. (DG) With 366 figs., 190 tabs [de

  9. Indoor air pollution

    International Nuclear Information System (INIS)

    Spengler, J.D.

    1985-01-01

    Although official efforts to control air pollution have traditionally focused on outdoor air, it is now apparent that elevated contaminant concentrations are common inside some private and public buildings. Concerns about potential public health problems due to indoor air pollution are based on evidence that urban residents typically spend more than 90 percent of their time indoors, concentrations of some contaminants are higher indoors than outdoors, and for some pollutants personal exposures are not characterized adequately by outdoor measurements. Among the more important indoor contaminants associated with health or irritation effects are passive tobacco smoke, radon decay products, carbon monoxide, nitrogen dioxide, formaldehyde, asbestos fibers, microorganisms and aeroallergens. Efforts to assess health risks associated with indoor air pollution are limited by insufficient information about the number of people exposed, the pattern and severity of exposures, and the health consequences of exposures. An overall strategy should be developed to investigate indoor exposures, health effects, control options, and public policy alternatives

  10. Nordic air quality co-benefits from European post-2012 climate policies

    International Nuclear Information System (INIS)

    Rypdal, Kristin; Rive, Nathan; Astroem, Stefan; Karvosenoja, Niko; Aunan, Kristin; Bak, Jesper L.; Kupiainen, Kaarle; Kukkonen, Jaakko

    2007-01-01

    Although climate policies target primarily CO 2 , they may indirectly have an impact on air pollutants and thus on air quality. Here we look specifically at the co-benefits of various European post-2012 climate policy scenarios related to air quality in the Nordic region. We analyse how caps on emissions, expansion of the European Union (EU) Emissions Trading System, carbon taxes, and Russian and non-EU Eastern Europe participation after 2012 will influence emissions, air quality, avoided abatement costs, welfare effects, the regional environment and human exposure to particulate matter in the Nordic countries. We find that stricter targets will contribute to reduced emissions of air pollutants, and benefits to ecosystems and human health, which would have required substantial abatement costs if achieved by application of 'end-of-pipe' measures. Due to the assumed use of the flexibility mechanisms, reductions in emissions in the Nordic countries are smaller than in other regions, but the Nordic countries benefit from reductions in emissions in nearby regions. The more sectors that are included in the emissions trading scheme, the greater the emission of air pollutants. If Eastern Europe and Russia were to abandon participation in a climate agreement, the EU and Norway would have to undertake more emission cuts at home in order to meet the same targets. This would benefit ecosystems in southern Scandinavia, but acidification would increase in the north because of increased emissions in Russia

  11. Air Pollution Forecasts: An Overview.

    Science.gov (United States)

    Bai, Lu; Wang, Jianzhou; Ma, Xuejiao; Lu, Haiyan

    2018-04-17

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  12. Air Pollution Forecasts: An Overview

    Directory of Open Access Journals (Sweden)

    Lu Bai

    2018-04-01

    Full Text Available Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies.

  13. Air Pollution Forecasts: An Overview

    Science.gov (United States)

    Bai, Lu; Wang, Jianzhou; Lu, Haiyan

    2018-01-01

    Air pollution is defined as a phenomenon harmful to the ecological system and the normal conditions of human existence and development when some substances in the atmosphere exceed a certain concentration. In the face of increasingly serious environmental pollution problems, scholars have conducted a significant quantity of related research, and in those studies, the forecasting of air pollution has been of paramount importance. As a precaution, the air pollution forecast is the basis for taking effective pollution control measures, and accurate forecasting of air pollution has become an important task. Extensive research indicates that the methods of air pollution forecasting can be broadly divided into three classical categories: statistical forecasting methods, artificial intelligence methods, and numerical forecasting methods. More recently, some hybrid models have been proposed, which can improve the forecast accuracy. To provide a clear perspective on air pollution forecasting, this study reviews the theory and application of those forecasting models. In addition, based on a comparison of different forecasting methods, the advantages and disadvantages of some methods of forecasting are also provided. This study aims to provide an overview of air pollution forecasting methods for easy access and reference by researchers, which will be helpful in further studies. PMID:29673227

  14. Improved attribution of climate forcing to emissions by pollutant and sector

    Science.gov (United States)

    Shindell, D. T.

    2009-12-01

    Evaluating multi-component climate change mitigation strategies requires knowledge of the diverse direct and indirect effects of emissions. Methane, ozone and aerosols are linked through atmospheric chemistry so that emissions of a single pollutant can affect several species. I will show new calculations of atmospheric composition changes, radiative forcing, and the global warming potential (GWP) for increased emissions of tropospheric ozone and aerosol precursors in a coupled composition-climate model. The results demonstrate that gas-aerosol interactions substantially alter the relative importance of the various emissions, suggesting revisions to the GWPs used in international carbon trading. Additionally, I will present results showing how the net climate impact of particular activities depends strongly upon non-CO2 forcing agents for some sectors. These results will be highlighted by discussing the interplay between air quality emissions controls and climate for the case of emissions from coal-fired power plants. The changing balance between CO2 and air quality pollutants from coal plants may have contributed to the 20th century spatial and temporal patterns of climate change, and is likely to continue to do so as more and more plants are constructed in Asia.

  15. Pigeons home faster through polluted air

    OpenAIRE

    Zhongqiu Li; Franck Courchamp; Daniel T. Blumstein

    2016-01-01

    Air pollution, especially haze pollution, is creating health issues for both humans and other animals. However, remarkably little is known about how animals behaviourally respond to air pollution. We used multiple linear regression to analyse 415 pigeon races in the North China Plain, an area with considerable air pollution, and found that while the proportion of pigeons successfully homed was not influenced by air pollution, pigeons homed faster when the air was especially polluted. Our resu...

  16. Air pollution in China: Status and spatiotemporal variations.

    Science.gov (United States)

    Song, Congbo; Wu, Lin; Xie, Yaochen; He, Jianjun; Chen, Xi; Wang, Ting; Lin, Yingchao; Jin, Taosheng; Wang, Anxu; Liu, Yan; Dai, Qili; Liu, Baoshuang; Wang, Ya-Nan; Mao, Hongjun

    2017-08-01

    In recent years, China has experienced severe and persistent air pollution associated with rapid urbanization and climate change. Three years' time series (January 2014 to December 2016) concentrations data of air pollutants including particulate matter (PM 2.5 and PM 10 ) and gaseous pollutants (SO 2 , NO 2 , CO, and O 3 ) from over 1300 national air quality monitoring sites were studied to understand the severity of China's air pollution. In 2014 (2015, 2016), annual population-weighted-average (PWA) values in China were 65.8 (55.0, 50.7) μg m -3 for PM 2.5 , 107.8 (91.1, 85.7) μg m -3 for PM 10 , 54.8 (56.2, 57.2) μg m -3 for O 3 _8 h, 39.6 (33.3, 33.4) μg m -3 for NO 2 , 34.1 (26, 21.9) μg m -3 for SO 2 , 1.2 (1.1, 1.1) mg m -3 for CO, and 0.60 (0.59, 0.58) for PM 2.5 /PM 10 , respectively. In 2014 (2015, 2016), 7% (14%, 19%), 17% (27%, 34%), 51% (67%, 70%) and 88% (97%, 98%) of the population in China lived in areas that meet the level of annual PM 2.5 , PM 10 , NO 2 , and SO 2 standard metrics from Chinese Ambient Air Quality Standards-Grade II. The annual PWA concentrations of PM 2.5 , PM 10 , O 3 _8 h, NO 2 , SO 2 , CO in the Northern China are about 40.4%, 58.9%, 5.9%, 24.6%, 96.7%, and 38.1% higher than those in Southern China, respectively. Though the air quality has been improving recent years, PM 2.5 pollution in wintertime is worsening, especially in the Northern China. The complex air pollution caused by PM and O 3 (the third frequent major pollutant) is an emerging problem that threatens the public health, especially in Chinese mega-city clusters. NOx controls were more beneficial than SO 2 controls for improvement of annual PM air quality in the northern China, central, and southwest regions. Future epidemiologic studies are urgently required to estimate the health impacts associated with multi-pollutants exposure, and revise more scientific air quality index standards. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Air pollution - health and management

    Energy Technology Data Exchange (ETDEWEB)

    Klug, W; Runca, E; Suess, M J [eds.

    1984-01-01

    The proceedings of a joint workshop of the World Health Organization and the International Institute for Applied Systems Analysis are presented. The workshop was to review the interaction between man's industrial and urban activities and the environment, and the relationship between ambient air quality and human health, and to examine the effectiveness of proper management on the control and abatement of air pollution. The discussion topics included atmospheric processes and respective modelling, air pollution impact on human health, effects of air pollutants on aquatic and terrestrial ecosystems, air pollution episode cycles and management of control. A selected list of 11ASA and WHO/EURO publications related to air pollution is included. Separate abstracts were prepared for 15 papers in this book.

  18. Air Pollution in Museum Buildings

    DEFF Research Database (Denmark)

    Ryhl-Svendsen, Morten

    2017-01-01

    This paper reviews the main air pollutants relevant for preservation of cultural heritage objects. Air pollutants may originate from outdoor or indoor sources. Indoor sources include the emission of corrosive vapors from construction materials used for museum display settings. Air pollution may...

  19. Problem of air pollution

    Energy Technology Data Exchange (ETDEWEB)

    Berge, H

    1964-01-01

    The effects of air pollutants on plants are dependent on and modified by climatic, orographic, edaphic, and biotic factors; the synergism of pollutants; and differences in the sensitivity of individual plants and species. Sulfur dioxide and fluorine are the most dangerous pollutants for plants, but ammonia, hydrogen sulfide, nitrogen oxides, nitric acid, chlorine, hydrochloric acid, bromine, iodine, hydrocyanic acid, ethylene, carbon monoxide, hydrocarbons, mercaptans, asphalt and tar vapors, mercury, and selenium can also inflict damage. Young leaves, sensitive to H/sub 2/S, nitrogen oxides, Cl, HCl, HCN, mercaptans, Hg, and sulfuric acid, are more resistant to SO/sub 2/, gaseous F compounds, ethylene, and selenium than older leaves. Damage is most serious when pollutants enter leaves simultaneously or alternately through epidermis and stomata. The yellow-to-brown coloration of leaves is usually a result of the precipitation of tanning. Plasmolysis is caused by SO/sub 2/, gaseous F compounds, ammonia, nitrogen oxides, HNO/sub 3/, Br, asphalt and tar vapors, while photosynthesis is stimulated by traces of ammonia, HNO/sub 3/, and saturated hydrocarbons. Increased transpiration due to SO/sub 2/ and HCl and elevated permeability and osmosis due to SO/sub 2/ were observed. 9 references, 12 figures, 1 table.

  20. Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions

    International Nuclear Information System (INIS)

    Ochoa-Hueso, Raúl; Munzi, Silvana; Alonso, Rocío; Arróniz-Crespo, María; Avila, Anna; Bermejo, Victoria; Bobbink, Roland; Branquinho, Cristina; Concostrina-Zubiri, Laura; Cruz, Cristina; Cruz de Carvalho, Ricardo; De Marco, Alessandra; Dias, Teresa; Elustondo, David

    2017-01-01

    Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O 3 levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales make it difficult to understand, and thus predict, the consequences of human activities that cause air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement coordinated research and experimental platforms along with wider environmental monitoring networks in the region. In particular, a robust deposition monitoring network in conjunction with modelling estimates is crucial, possibly including a set of common biomonitors (ideally cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant deposition maps. Additionally, increased attention must be paid to functional diversity measures in future air pollution and climate change studies to establish the necessary link between biodiversity and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a greater understanding of the mechanisms underlying the combined effects of air pollution and climate change in the Mediterranean Basin. - Highlights: • Mediterranean Basin ecosystems are at risk due to air pollution and climate change. • A more robust monitoring network in conjunction with modelling estimates is crucial. • Monitoring networks should

  1. Air pollution and vegetation

    Energy Technology Data Exchange (ETDEWEB)

    Numata, M

    1975-01-01

    Although the direct effects of each air pollutant have been fairly well studied for specific species of plants used as indicators, studies on the synecological level have not been done. Clement's communities can be used as indicators. The effects of air pollution should be studied as one in a complex of factors. The characteristic features of biological indicators are described in detail with emphasis on applying the results to human beings in polluted environments. The methods of determining the effects of pollution are described, using a community phytometer and remote sensing methods. Directly connecting the level of air pollution to the wilting of trees in general is dangerous unless it is a matter of an acute episode.

  2. Wildfire air pollution hazard during the 21st century

    Directory of Open Access Journals (Sweden)

    W. Knorr

    2017-07-01

    Full Text Available Wildfires pose a significant risk to human livelihoods and are a substantial health hazard due to emissions of toxic smoke. Previous studies have shown that climate change, increasing atmospheric CO2, and human demographic dynamics can lead to substantially altered wildfire risk in the future, with fire activity increasing in some regions and decreasing in others. The present study re-examines these results from the perspective of air pollution risk, focussing on emissions of airborne particulate matter (PM2. 5, combining an existing ensemble of simulations using a coupled fire–dynamic vegetation model with current observation-based estimates of wildfire emissions and simulations with a chemical transport model. Currently, wildfire PM2. 5 emissions exceed those from anthropogenic sources in large parts of the world. We further analyse two extreme sets of future wildfire emissions in a socio-economic, demographic climate change context and compare them to anthropogenic emission scenarios reflecting current and ambitious air pollution legislation. In most regions of the world, ambitious reductions of anthropogenic air pollutant emissions have the potential to limit mean annual pollutant PM2. 5 levels to comply with World Health Organization (WHO air quality guidelines for PM2. 5. Worst-case future wildfire emissions are not likely to interfere with these annual goals, largely due to fire seasonality, as well as a tendency of wildfire sources to be situated in areas of intermediate population density, as opposed to anthropogenic sources that tend to be highest at the highest population densities. However, during the high-fire season, we find many regions where future PM2. 5 pollution levels can reach dangerous levels even for a scenario of aggressive reduction of anthropogenic emissions.

  3. Health co-benefits from air pollution and mitigation costs of the Paris Agreement: a modelling study

    OpenAIRE

    Prof Anil Markandya, PhD; Jon Sampedro, MSc; Steven J Smith, PhD; Rita Van Dingenen, PhD; Cristina Pizarro-Irizar, PhD; Prof Iñaki Arto, PhD; Prof Mikel González-Eguino, PhD

    2018-01-01

    Background: Although the co-benefits from addressing problems related to both climate change and air pollution have been recognised, there is not much evidence comparing the mitigation costs and economic benefits of air pollution reduction for alternative approaches to meeting greenhouse gas targets. We analysed the extent to which health co-benefits would compensate the mitigation cost of achieving the targets of the Paris climate agreement (2°C and 1·5°C) under different scenarios in which ...

  4. Air pollution and respiratory illness

    Energy Technology Data Exchange (ETDEWEB)

    Indra, G. [DIET, Uttamasolapuram, Salem (India)

    2005-07-01

    This presentation provides an overview of air pollution and impacts on public health. It provides a definition of pollution according to the Oxford English dictionary and categorizes the different types of pollution according to air, water, land and noise. It discusses air pollution and its pollutants (gaseous and particulate pollutants) as well as the diameter of the pollutant (dust, smoke, and gas). The paper also illustrates the formation of acid rain and discusses the amount of pollutants in the atmosphere per year. It presents occupational diseases, discusses radio active pollutants, respiratory illnesses as well as pollution prevention and control. The paper concluded that more research is needed to obtain information on ways to reduce the quantity of pollutants being discharged from special processes. 3 refs., 2 figs., 2 tabs.

  5. INDOOR AIR POLLUTION

    Directory of Open Access Journals (Sweden)

    Ahmet Soysal

    2007-06-01

    Full Text Available The existance of hazardious materials including biological, chemical, and physical agents such as carbon dioxide, carbon monoxide, sulphur dioxide, nitrogen oxides, radon, volotile organic compounds, microorganisms in houses and the other non-industrilized buildings have been defined as “indoor air pollution”. Indoor air pollutants could possible arised from inside or outside environment and categorized into six subgroups. Almost 80% Turkish population have living in the urban areas and people in the cities have spending approximetely 90% of their time in the closed enviroments, health problems could increased due to indoor air pollution. Moreover, currently there is no specific regulation on this area. [TAF Prev Med Bull 2007; 6(3.000: 221-226

  6. INDOOR AIR POLLUTION

    Directory of Open Access Journals (Sweden)

    Ahmet Soysal

    2007-06-01

    Full Text Available The existance of hazardious materials including biological, chemical, and physical agents such as carbon dioxide, carbon monoxide, sulphur dioxide, nitrogen oxides, radon, volotile organic compounds, microorganisms in houses and the other non-industrilized buildings have been defined as “indoor air pollution”. Indoor air pollutants could possible arised from inside or outside environment and categorized into six subgroups. Almost 80% Turkish population have living in the urban areas and people in the cities have spending approximetely 90% of their time in the closed enviroments, health problems could increased due to indoor air pollution. Moreover, currently there is no specific regulation on this area. [TAF Prev Med Bull. 2007; 6(3: 221-226

  7. Air pollution: impact and prevention.

    Science.gov (United States)

    Sierra-Vargas, Martha Patricia; Teran, Luis M

    2012-10-01

    Air pollution is becoming a major health problem that affects millions of people worldwide. In support of this observation, the World Health Organization estimates that every year, 2.4 million people die because of the effects of air pollution on health. Mitigation strategies such as changes in diesel engine technology could result in fewer premature mortalities, as suggested by the US Environmental Protection Agency. This review: (i) discusses the impact of air pollution on respiratory disease; (ii) provides evidence that reducing air pollution may have a positive impact on the prevention of disease; and (iii) demonstrates the impact concerted polices may have on population health when governments take actions to reduce air pollution. © 2012 The Authors. Respirology © 2012 Asian Pacific Society of Respirology.

  8. Air pollution forecast in cities by an air pollution index highly correlated with meteorological variables

    International Nuclear Information System (INIS)

    Cogliani, E.

    2001-01-01

    There are many different air pollution indexes which represent the global urban air pollution situation. The daily index studied here is also highly correlated with meteorological variables and this index is capable of identifying those variables that significantly affect the air pollution. The index is connected with attention levels of NO 2 , CO and O 3 concentrations. The attention levels are fixed by a law proposed by the Italian Ministries of Health and Environment. The relation of that index with some meteorological variables is analysed by the linear multiple partial correlation statistical method. Florence, Milan and Vicence were selected to show the correlation among the air pollution index and the daily thermic excursion, the previous day's air pollution index and the wind speed. During the January-March period the correlation coefficient reaches 0.85 at Milan. The deterministic methods of forecasting air pollution concentrations show very high evaluation errors and are applied on limited areas around the observation stations, as opposed to the whole urban areas. The global air pollution, instead of the concentrations at specific observation stations, allows the evaluation of the level of the sanitary risk regarding the whole urban population. (Author)

  9. Cardiovascular effects of air pollution.

    Science.gov (United States)

    Bourdrel, Thomas; Bind, Marie-Abèle; Béjot, Yannick; Morel, Olivier; Argacha, Jean-François

    2017-11-01

    Air pollution is composed of particulate matter (PM) and gaseous pollutants, such as nitrogen dioxide and ozone. PM is classified according to size into coarse particles (PM 10 ), fine particles (PM 2.5 ) and ultrafine particles. We aim to provide an original review of the scientific evidence from epidemiological and experimental studies examining the cardiovascular effects of outdoor air pollution. Pooled epidemiological studies reported that a 10μg/m 3 increase in long-term exposure to PM 2.5 was associated with an 11% increase in cardiovascular mortality. Increased cardiovascular mortality was also related to long-term and short-term exposure to nitrogen dioxide. Exposure to air pollution and road traffic was associated with an increased risk of arteriosclerosis, as shown by premature aortic and coronary calcification. Short-term increases in air pollution were associated with an increased risk of myocardial infarction, stroke and acute heart failure. The risk was increased even when pollutant concentrations were below European standards. Reinforcing the evidence from epidemiological studies, numerous experimental studies demonstrated that air pollution promotes a systemic vascular oxidative stress reaction. Radical oxygen species induce endothelial dysfunction, monocyte activation and some proatherogenic changes in lipoproteins, which initiate plaque formation. Furthermore, air pollution favours thrombus formation, because of an increase in coagulation factors and platelet activation. Experimental studies also indicate that some pollutants have more harmful cardiovascular effects, such as combustion-derived PM 2.5 and ultrafine particles. Air pollution is a major contributor to cardiovascular diseases. Promotion of safer air quality appears to be a new challenge in cardiovascular disease prevention. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  10. Latest Achievements on Climate Change and Forest Interactions in a Polluted Environment

    Czech Academy of Sciences Publication Activity Database

    Carriero, G.; Tuovinen, J.-P.; Clarke, N.; Matteucci, G.; Matyssek, R.; Wieser, G.; Mikkelsen, J. D.; Fischer, R.; Cudlín, Pavel; Serengil, Y.; Boscaleri, F.; Calfapietra, Carlo; Feng, Z.; Paoletti, E.

    2014-01-01

    Roč. 4, č. 3 (2014), s. 197-207 ISSN 2163-0429 Institutional support: RVO:67179843 Keywords : air pollution * climate change * forests * supersites * COST * FP0903 Action Subject RIV: EH - Ecology, Behaviour

  11. Air Quality, Human Health and Climate Implications of China's Synthetic Natural Gas Development

    Science.gov (United States)

    Qin, Y.; Mauzerall, D. L.; Wagner, F.; Smith, K. R.; Peng, W.; Yang, J.; Zhu, T.

    2016-12-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government is planning an enormous increase in synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases carbon dioxide (CO2) emissions and thus worsens climate change. Primarily due to variation in air pollutant and CO2 emission factors as well as energy efficiencies across sectors and regions, the replacement of coal with SNG results in varying degrees of air quality and adverse climate impacts. Here we conduct an integrated assessment to estimate the air quality, human health, and adverse climate impacts of various sectoral and regional SNG substitution strategies for coal in China in 2020. We find that using all planned production of SNG in the residential sector results in an annual decrease of approximately 43,000 (22,000 to 63,000) outdoor-air-pollution-associated Chinese premature mortalities, with ranges determined by the low and high estimates of relative risks. If changes in indoor/household air pollution were also included the decrease would be larger. By comparison, this is a 10 and 60 times greater reduction in premature mortalities than obtained when the SNG displaces coal in the industrial or power sectors, respectively. Deploying SNG as a coal replacement in the industrial or power sectors also has a 4-5 times higher carbon penalty than utilization in the residential sector due to inefficiencies in current household coal use. If carbon capture and storage (CCS) is used in SNG production, substituting SNG for coal can provide both air quality and climate co-benefits in all scenarios. However, even with CCS, SNG emits 22-40% (depending on end-use) more CO2 than the same amount of conventional gas. For existing SNG projects, we find displacing coal with SNG in the residential sector provides the largest air quality and health benefits with the smallest carbon penalties of deployment in any sector.

  12. Polluted air--outdoors and indoors.

    Science.gov (United States)

    Myers, I; Maynard, R L

    2005-09-01

    Many air pollutants which are considered important in ambient (outdoor) air are also found, sometimes at higher levels, in indoor air. With demanding standards having been set for many of these pollutants, both in the workplace and ambient air, consideration of the problems posed by indoor pollution is gaining pace. Studies on exposure to pollutants found in the indoor domestic environment are increasing and are contributing to an already significant compilation of datasets. Improvement in monitoring techniques has helped this process. Documented reports of fatalities from carbon monoxide poisonings are still worrying. However, studies on health effects of non-fatal, long term, low dose, indoor exposure to carbon monoxide and other pollutants, are still inconclusive and too infrequently documented. Of particular concern are the levels of air pollutants found in the domestic indoor environment in developing countries, despite simple interventions such as vented stoves having shown their value. Exposure to biomass smoke is still a level that would be considered unacceptable on health grounds in developed countries. As in the occupational environment, steps need to be taken to control the risks from exposure to the harmful constituents of indoor air in the home. However, the difficulty regarding regulation of the domestic indoor environment is its inherent privacy. Monitoring levels of pollutants in the home and ensuring regulations are adhered to, would likely prove difficult, especially when individual behaviour patterns and activities have the greatest influence on pollutant levels in indoor air. To this end, the Department of Health is developing guidance on indoor air pollution to encourage the reduction of pollutant levels in indoor domestic air. The importance of the effects of domestic indoor air on health and its contribution to the health of the worker are increasingly appreciated. Occupational physicians, by training and interest, are well placed to extend

  13. Perceived indoor air quality and its relationship to air pollutants in French dwellings.

    Science.gov (United States)

    Langer, S; Ramalho, O; Le Ponner, E; Derbez, M; Kirchner, S; Mandin, C

    2017-11-01

    Perception of indoor air quality (PIAQ) was evaluated in a nationwide survey of 567 French dwellings, and this survey was combined with measurements of gaseous and particulate matter (PM 10 and PM 2.5 ) indoor air pollutants and indoor climate parameters. The perception was assessed on a nine-grade scale by both the occupants of the dwellings and the inspectors who performed the measurements. The occupants perceived the air quality in their homes as more pleasant than the inspectors. The inspectors perceived the air quality as more unpleasant in dwellings in which the residents smoked indoors. Significant associations between PIAQ and indoor air pollutant concentrations were observed for both the inspectors and, to a lesser extent, the occupants. Introducing confounding parameters, such as building and personal characteristics, into a multivariate model suppressed most of the observed bivariate correlations and identified the tenure status of the occupants and their occupation as the parameters that most influenced their PIAQ. For the inspectors, perceived air quality was affected by the presence of smokers, the season, the type of ventilation, retrofitting, and the concentrations of acetaldehyde and acrolein. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Best Practices for Gauging Evidence of Causality in Air Pollution Epidemiology.

    Science.gov (United States)

    Dominici, Francesca; Zigler, Corwin

    2017-12-15

    The contentious political climate surrounding air pollution regulations has brought some researchers and policy-makers to argue that evidence of causality is necessary before implementing more stringent regulations. Recently, investigators in an increasing number of air pollution studies have purported to have used "causal analysis," generating the impression that studies not explicitly labeled as such are merely "associational" and therefore less rigorous. Using 3 prominent air pollution studies as examples, we review good practices for how to critically evaluate the extent to which an air pollution study provides evidence of causality. We argue that evidence of causality should be gauged by a critical evaluation of design decisions such as 1) what actions or exposure levels are being compared, 2) whether an adequate comparison group was constructed, and 3) how closely these design decisions approximate an idealized randomized study. We argue that air pollution studies that are more scientifically rigorous in terms of the decisions made to approximate a randomized experiment are more likely to provide evidence of causality and should be prioritized among the body of evidence for regulatory review accordingly. Our considerations, although presented in the context of air pollution epidemiology, can be broadly applied to other fields of epidemiology. © The Author(s) 2017. Published by Oxford University Press on behalf of the Johns Hopkins Bloomberg School of Public Health. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Air pollution

    International Nuclear Information System (INIS)

    Feugier, A.

    1996-01-01

    The air pollution results from the combustion of petroleum products, natural gas, coal, wastes and transports. Some compounds are considered as particularly pollutants: the carbon monoxide, the nitrogen oxides, the tropospheric ozone and the sulfur dioxides. Their environmental and biological effects are described. The present political guide lines concerns the combustion plants, the ozone, the wastes incineration and the vehicles emissions. The aim is at some future date to control the air quality, to reduce the volatile organic compounds emissions and to limit the sulfur rate of some petroleum products. (O.L.)

  16. Strategies for the long-term climate policy. The results of the Cool project. Final report of the second phase of the Dutch National Research Programme on Global Air Pollution and Climate Change (NRP II) 1995-2001. Part 2

    NARCIS (Netherlands)

    Berk M; Hisschemoller M; Mol T; Hordijk L; Kok M; Metz B; NOP

    2002-01-01

    This report, Climate Change, a Permanent Concern, presents the results of research that was conducted in over 90 projects during the second phase of the National Research Programme on Global Air Pollution and Climate Change (NRP-II, 1995-2001). The report is intended for policymakers, members of

  17. Lead (Pb) Air Pollution

    Science.gov (United States)

    ... Regional Offices Labs and Research Centers Lead (Pb) Air Pollution Contact Us Share As a result of EPA's ... and protect aquatic and terrestrial ecosystems. Lead (Pb) Air Pollution Basic Information How does lead get in the ...

  18. Air pollution and tree growth

    Energy Technology Data Exchange (ETDEWEB)

    Scurfield, G

    1960-01-01

    The problem of air pollution is reviewed with emphasis on its origin and its effects on trees and shrubs. These effects are described from two points of view: the effects of general air pollution, and also the effects of specific pollutants. The considerable mixing, dilution and interaction that pollutants undergo in the air often renders it exceedingly difficult to assign pollution damage to any specific chemical or physical entity. Moreover, it is often impossible to assign responsibility for damage to any particular source. The constituents of general air pollution may be subdivided into those potentially incapable, and those potentially capable, of entering the plant either through the leaf stomata or indirectly by way of the soil. Specific pollutants cause damage directly, as well as indirectly from the chemical reactions that occur in the polluted atmosphere. Sulfur dioxide is discussed in detail in relation to tree and shrub damage, with numerous examples of plant injuries.

  19. Controlling Indoor Air Pollution from Moxibustion

    Directory of Open Access Journals (Sweden)

    Chung-Yen Lu

    2016-06-01

    Full Text Available Indoor air quality (IAQ control of hospitals plays a critical role in protecting both hospital staffs and patients, particularly those who are highly susceptible to the adverse effects of indoor noxious hazards. However, moxibustion in outpatient departments (OPDs of traditional Chinese medicine (TCM may be a source of indoor air pollution in hospitals. Some studies have investigated indoor air pollution during moxibustion in Chinese medicine clinics (CMCs and moxibustion rooms, demonstrating elevated air pollutants that pose a threat to the health of medical staff and patients. Our study investigated the indoor air pollutants of indoor carbon dioxide (CO2, carbon monoxide (CO, formaldehyde (HCHO, total volatile organic compounds (TVOCs, airborne particulate matter with a diameter of ≤10 µm (PM10 and ≤2.5 µm (PM2.5 during moxibustion in an acupuncture and moxibustion room of the OPD in a hospital in Taipei. To evaluate the different control strategies for indoor air pollution from moxibution, a comparison of air pollutants during moxibution among the methods of using alternative old moxa wools, local exhaust ventilation and an air cleaner was conducted. In this study, burning alternative old moxa wools for moxibustion obviously reduced all gaseous pollutants except for aerosols comparing burning fresh moxa wools. Using local exhaust ventilation reduced most of the aerosols after burning moxa. We also found that using an air cleaner was inefficient for controlling indoor air pollutants, particularly gaseous pollutants. Therefore, combining replacing alternative old moxa wools and local exhaust ventilation could be a suitable design for controlling indoor air pollution during moxibustion therapy.

  20. Allergic diseases and air pollution.

    Science.gov (United States)

    Lee, Suh-Young; Chang, Yoon-Seok; Cho, Sang-Heon

    2013-07-01

    The prevalence of allergic diseases has been increasing rapidly, especially in developing countries. Various adverse health outcomes such as allergic disease can be attributed to rapidly increasing air pollution levels. Rapid urbanization and increased energy consumption worldwide have exposed the human body to not only increased quantities of ambient air pollution, but also a greater variety of pollutants. Many studies clearly demonstrate that air pollutants potently trigger asthma exacerbation. Evidence that transportation-related pollutants contribute to the development of allergies is also emerging. Moreover, exposure to particulate matter, ozone, and nitrogen dioxide contributes to the increased susceptibility to respiratory infections. This article focuses on the current understanding of the detrimental effects of air pollutants on allergic disease including exacerbation to the development of asthma, allergic rhinitis, and eczema as well as epigenetic regulation.

  1. Can the Air Pollution Index be used to communicate the health risks of air pollution?

    International Nuclear Information System (INIS)

    Li, Li; Lin, Guo-Zhen; Liu, Hua-Zhang; Guo, Yuming; Ou, Chun-Quan; Chen, Ping-Yan

    2015-01-01

    The validity of using the Air Pollution Index (API) to assess health impacts of air pollution and potential modification by individual characteristics on air pollution effects remain uncertain. We applied distributed lag non-linear models (DLNMs) to assess associations of daily API, specific pollution indices for PM 10 , SO 2 , NO 2 and the weighted combined API (APIw) with mortality during 2003–2011 in Guangzhou, China. An increase of 10 in API was associated with a 0.88% (95% confidence interval (CI): 0.50, 1.27%) increase of non-accidental mortality at lag 0–2 days. Harvesting effects appeared after 2 days’ exposure. The effect estimate of API over lag 0–15 days was statistically significant and similar with those of pollutant-specific indices and APIw. Stronger associations between API and mortality were observed in the elderly, females and residents with low educational attainment. In conclusion, the API can be used to communicate health risks of air pollution. - Highlights: • The cumulative effects of API on mortality over lag 0–15 days remained significant. • The indices for three specific pollutants had similar associations with mortality. • The effects of API were modified by age, gender and educational attainment. • Our findings can help to communicate health risks of air pollution to the public. - The Air Pollution Index communicates health risks of air pollution

  2. Advances in Understanding Air Pollution and Cardiovascular Diseases: The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air)

    Science.gov (United States)

    Kaufman, Joel D.; Spalt, Elizabeth W.; Curl, Cynthia L.; Hajat, Anjum; Jones, Miranda R.; Kim, Sun-Young; Vedal, Sverre; Szpiro, Adam A.; Gassett, Amanda; Sheppard, Lianne; Daviglus, Martha L.; Adar, Sara D.

    2016-01-01

    The Multi-Ethnic Study of Atherosclerosis and Air Pollution (MESA Air) leveraged the platform of the MESA cohort into a prospective longitudinal study of relationships between air pollution and cardiovascular health. MESA Air researchers developed fine-scale, state-of-the-art air pollution exposure models for the MESA Air communities, creating individual exposure estimates for each participant. These models combine cohort-specific exposure monitoring, existing monitoring systems, and an extensive database of geographic and meteorological information. Together with extensive phenotyping in MESA—and adding participants and health measurements to the cohort—MESA Air investigated environmental exposures on a wide range of outcomes. Advances by the MESA Air team included not only a new approach to exposure modeling but also biostatistical advances in addressing exposure measurement error and temporal confounding. The MESA Air study advanced our understanding of the impact of air pollutants on cardiovascular disease and provided a research platform for advances in environmental epidemiology. PMID:27741981

  3. Responses of plants to air pollution

    National Research Council Canada - National Science Library

    Mudd, J. Brian; Kozlowski, T. T

    1975-01-01

    .... KOZLOWSKI Pollution, 1975 ELROY L. RICE. Allelopathy, (Eds.). Fire and Ecosystems, 1974 (Eds.). Responses of Plants to Air Responses of Plants to Air PollutionRESPONSES OF PLANTS TO AIR POLLUTION E...

  4. Air pollution

    International Nuclear Information System (INIS)

    Anon.

    2008-01-01

    Air pollution has accompanied and developed with the industrial age, since its beginnings. This very complete review furnishes the toxicological data available for the principal pollutants and assesses the epidemiologic studies thus far conducted. It also describes European regulations and international commitments for the reduction of emissions. (author)

  5. Indoor Air Pollution

    OpenAIRE

    Kirk R. Smith

    2003-01-01

    Outdoor air pollution in developing-country cities is difficult to overlook. Indoor air pollution caused by burning such traditional fuels as wood, crop residues, and dung is less evident, yet it is responsible for a significant part of country and global disease burdens. The main groups affected are poor women and children in rural areas and urban slums as they go about their daily activi...

  6. Land use and cover change as an overarching topic in the Dutch National Research Programme on Global Air Pollution and Climate Change : issues for implementation

    NARCIS (Netherlands)

    Fresco, L.O.; Berg, van den M.M.; Zeijl-Rozema, van A.E.

    1996-01-01

    The integration study 'Land Use and Cover Change as an overarching topic in the Dutch National Research Programme on Global Air Pollution and Climate Change (NRP)' aims at identifying research fields in which the NRP can contribute most effectively to the international scientific

  7. Air pollution control and decreasing new particle formation lead to strong climate warming

    Directory of Open Access Journals (Sweden)

    R. Makkonen

    2012-02-01

    Full Text Available The number concentration of cloud droplets determines several climatically relevant cloud properties. A major cause for the high uncertainty in the indirect aerosol forcing is the availability of cloud condensation nuclei (CCN, which in turn is highly sensitive to atmospheric new particle formation. Here we present the effect of new particle formation on anthropogenic aerosol forcing in present-day (year 2000 and future (year 2100 conditions. The present-day total aerosol forcing is increased from −1.0 W m−2 to −1.6 W m−2 when nucleation is introduced into the model. Nucleation doubles the change in aerosol forcing between years 2000 and 2100, from +0.6 W m−2 to +1.4 W m−2. Two climate feedbacks are studied, resulting in additional negative forcings of −0.1 W m−2 (+10% DMS emissions in year 2100 and −0.5 W m−2 (+50% BVOC emissions in year 2100. With the total aerosol forcing diminishing in response to air pollution control measures taking effect, warming from increased greenhouse gas concentrations can potentially increase at a very rapid rate.

  8. Acute effect of ambient air pollution on stroke mortality in the China air pollution and health effects study.

    Science.gov (United States)

    Chen, Renjie; Zhang, Yuhao; Yang, Chunxue; Zhao, Zhuohui; Xu, Xiaohui; Kan, Haidong

    2013-04-01

    There have been no multicity studies on the acute effects of air pollution on stroke mortality in China. This study was undertaken to examine the associations between daily stroke mortality and outdoor air pollution (particulate matter air pollution with daily stroke mortality. Air pollution was associated with daily stroke mortality in 8 Chinese cities. In the combined analysis, an increase of 10 μg/m(3) of 2-day moving average concentrations of particulate matter air pollution and risk of stroke mortality. To our knowledge, this is the first multicity study in China, or even in other developing countries, to report the acute effect of air pollution on stroke mortality. Our results contribute to very limited data on the effect of air pollution on stroke for high-exposure settings typical in developing countries.

  9. Population Dynamics and Air Pollution

    DEFF Research Database (Denmark)

    Flachs, Esben Meulengracht; Sørensen, Jan; Bønløkke, Jacob

    2013-01-01

    Objective. To explore how three different assumptions on demographics affect the health impact of Danish emitted air pollution in Denmark from 2005 to 2030, with health impact modeled from 2005 to 2050. Methods. Modeled air pollution from Danish sources was used as exposure in a newly developed......) a static year 2005 population, (2) morbidity and mortality fixed at the year 2005 level, or (3) an expected development. Results. The health impact of air pollution was estimated at 672,000, 290,000, and 280,000 lost life years depending on demographic assumptions and the corresponding social costs at 430.......4 M€, 317.5 M€, and 261.6 M€ through the modeled years 2005–2050. Conclusion. The modeled health impact of air pollution differed widely with the demographic assumptions, and thus demographics and assumptions on demographics played a key role in making health impact assessments on air pollution....

  10. Air quality, health, and climate implications of China's synthetic natural gas development

    Science.gov (United States)

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Peng, Wei; Yang, Junnan; Zhu, Tong; Smith, Kirk R.; Mauzerall, Denise L.

    2017-05-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ˜32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties.

  11. Influence of climate change on air quality in Europe

    International Nuclear Information System (INIS)

    Lecoeur, Eve

    2013-01-01

    Air pollution is the result of high emissions of pollutants (and pollutant precursors) and unfavorable meteorological conditions. Fine particulate matter (PM 2.5 ) is one of the pollutants of great concern for human health. Every year, a repeated or continuous exposure to such particles is responsible for respiratory and cardiovascular diseases among the concerned populations and leads to premature deaths. Climate change is expected to impact meteorological variables (temperature, wind, precipitation,...). Those variables will influence numerous factors, which will affect air quality (emissions, precipitation scavenging, gas/particle equilibrium,...). A large body of studies have already investigated the effects of climate change on ozone, whereas only a few have addressed its effects on PM 2.5 concentrations, especially over Europe. This is the subject we investigate in this thesis. Large-scale circulation is closely linked to surface meteorological variables. Therefore, it is expected that it will impact PM 2.5 concentrations too. In this thesis, we develop a statistical algorithm to estimate future PM 2.5 concentrations from present PM 2.5 observations, selected meteorological variables and tools to represent this circulation (weather regimes and weather types). The lack of daily observations of PM 2.5 and its components over Europe prevents us to used observations. Consequently, we have created a pseudo-observed PM 2.5 data set, by using the Polyphemus/Polair3D air quality Chemical-Transport Model. Both operational and dynamic evaluations were conducted against EMEP measurements, to ensure that the influence of meteorological variables on PM 2.5 concentrations is correctly reproduced by the model. As far as we know, this dynamic evaluation of an air quality model with respect to meteorology is the first conducted to date. Future PM 2.5 concentrations display an increase over the U.K., northern France, Benelux, and in the Balkans, and a decrease over northern

  12. INDOOR AIR POLLUTION

    OpenAIRE

    Ahmet Soysal; Yucel Demiral

    2007-01-01

    The existance of hazardious materials including biological, chemical, and physical agents such as carbon dioxide, carbon monoxide, sulphur dioxide, nitrogen oxides, radon, volotile organic compounds, microorganisms in houses and the other non-industrilized buildings have been defined as “indoor air pollution”. Indoor air pollutants could possible arised from inside or outside environment and categorized into six subgroups. Almost 80% Turkish population have living in the urban areas...

  13. Exploring synergies between climate and air quality policies using long-term global and regional emission scenarios

    NARCIS (Netherlands)

    Braspenning Radu, Olivia; van den Berg, Maarten; Klimont, Zbigniew; Deetman, Sebastiaan; Janssens-Maenhout, Greet; Muntean, Marilena; Heyes, Chris; Dentener, Frank; van Vuuren, Detlef P.

    Abstract In this paper, we present ten scenarios developed using the IMAGE2.4 framework (Integrated Model to Assess the Global Environment) to explore how different assumptions on future climate and air pollution policies influence emissions of greenhouse gases and air pollutants. These scenarios

  14. Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: Current research and future directions.

    Science.gov (United States)

    Ochoa-Hueso, Raúl; Munzi, Silvana; Alonso, Rocío; Arróniz-Crespo, María; Avila, Anna; Bermejo, Victoria; Bobbink, Roland; Branquinho, Cristina; Concostrina-Zubiri, Laura; Cruz, Cristina; Cruz de Carvalho, Ricardo; De Marco, Alessandra; Dias, Teresa; Elustondo, David; Elvira, Susana; Estébanez, Belén; Fusaro, Lina; Gerosa, Giacomo; Izquieta-Rojano, Sheila; Lo Cascio, Mauro; Marzuoli, Riccardo; Matos, Paula; Mereu, Simone; Merino, José; Morillas, Lourdes; Nunes, Alice; Paoletti, Elena; Paoli, Luca; Pinho, Pedro; Rogers, Isabel B; Santos, Arthur; Sicard, Pierre; Stevens, Carly J; Theobald, Mark R

    2017-08-01

    Mediterranean Basin ecosystems, their unique biodiversity, and the key services they provide are currently at risk due to air pollution and climate change, yet only a limited number of isolated and geographically-restricted studies have addressed this topic, often with contrasting results. Particularities of air pollution in this region include high O 3 levels due to high air temperatures and solar radiation, the stability of air masses, and dominance of dry over wet nitrogen deposition. Moreover, the unique abiotic and biotic factors (e.g., climate, vegetation type, relevance of Saharan dust inputs) modulating the response of Mediterranean ecosystems at various spatiotemporal scales make it difficult to understand, and thus predict, the consequences of human activities that cause air pollution in the Mediterranean Basin. Therefore, there is an urgent need to implement coordinated research and experimental platforms along with wider environmental monitoring networks in the region. In particular, a robust deposition monitoring network in conjunction with modelling estimates is crucial, possibly including a set of common biomonitors (ideally cryptogams, an important component of the Mediterranean vegetation), to help refine pollutant deposition maps. Additionally, increased attention must be paid to functional diversity measures in future air pollution and climate change studies to establish the necessary link between biodiversity and the provision of ecosystem services in Mediterranean ecosystems. Through a coordinated effort, the Mediterranean scientific community can fill the above-mentioned gaps and reach a greater understanding of the mechanisms underlying the combined effects of air pollution and climate change in the Mediterranean Basin. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Predictive monitoring and diagnosis of periodic air pollution in a subway station.

    Science.gov (United States)

    Kim, YongSu; Kim, MinJung; Lim, JungJin; Kim, Jeong Tai; Yoo, ChangKyoo

    2010-11-15

    The purpose of this study was to develop a predictive monitoring and diagnosis system for the air pollutants in a subway system using a lifting technique with a multiway principal component analysis (MPCA) which monitors the periodic patterns of the air pollutants and diagnoses the sources of the contamination. The basic purpose of this lifting technique was to capture the multivariate and periodic characteristics of all of the indoor air samples collected during each day. These characteristics could then be used to improve the handling of strong periodic fluctuations in the air quality environment in subway systems and will allow important changes in the indoor air quality to be quickly detected. The predictive monitoring approach was applied to a real indoor air quality dataset collected by telemonitoring systems (TMS) that indicated some periodic variations in the air pollutants and multivariate relationships between the measured variables. Two monitoring models--global and seasonal--were developed to study climate change in Korea. The proposed predictive monitoring method using the lifted model resulted in fewer false alarms and missed faults due to non-stationary behavior than that were experienced with the conventional methods. This method could be used to identify the contributions of various pollution sources. Copyright © 2010 Elsevier B.V. All rights reserved.

  16. Danger in the Air: Air Pollution and Cognitive Dysfunction.

    Science.gov (United States)

    Cipriani, Gabriele; Danti, Sabrina; Carlesi, Cecilia; Borin, Gemma

    2018-01-01

    Clean air is considered to be a basic requirement for human health and well-being. To examine the relationship between cognitive performance and ambient pollution exposure. Studies were identified through a systematic search of online scientific databases, in addition to a manual search of the reference lists from the identified papers. Air pollution is a multifaceted toxic chemical mixture capable of assaulting the central nervous system. Despite being a relatively new area of investigation, overall, there is mounting evidence implicating adverse effects of air pollution on cognitive function in both adults and children. Consistent evidence showed that exposure to air pollution, specifically exposure to particulate matter, caused poor age-related cognitive performance. Living in areas with high levels of air pollution has been linked to markers of neuroinflammation and neuropathology that are associated with neurodegenerative conditions such as Alzheimer's disease-like brain pathologies.

  17. Atmospheric Chemistry and Air Pollution

    Directory of Open Access Journals (Sweden)

    Jeffrey S. Gaffney

    2003-01-01

    Full Text Available Atmospheric chemistry is an important discipline for understanding air pollution and its impacts. This mini-review gives a brief history of air pollution and presents an overview of some of the basic photochemistry involved in the production of ozone and other oxidants in the atmosphere. Urban air quality issues are reviewed with a specific focus on ozone and other oxidants, primary and secondary aerosols, alternative fuels, and the potential for chlorine releases to amplify oxidant chemistry in industrial areas. Regional air pollution issues such as acid rain, long-range transport of aerosols and visibility loss, and the connections of aerosols to ozone and peroxyacetyl nitrate chemistry are examined. Finally, the potential impacts of air pollutants on the global-scale radiative balances of gases and aerosols are discussed briefly.

  18. Manual for THOR-AirPAS - air pollution assessment system

    DEFF Research Database (Denmark)

    Jensen, Steen Solvang; Ketzel, Matthias; Brandt, Jørgen

    The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS.......The report provides an outline of the THOR-AirPAS - air pollution assessment system and a brief manual for getting started with the air quality models and input data included in THOR-AirPAS....

  19. Impact of Climate Change on Siberian High and Wintertime Air Pollution in China in Past Two Decades

    Science.gov (United States)

    Zhao, Shuyu; Feng, Tian; Tie, Xuexi; Long, Xin; Li, Guohui; Cao, Junji; Zhou, Weijian; An, Zhisheng

    2018-02-01

    China has suffered severe air pollutions during wintertime as national industrialization and urbanization have been increasingly developed in the past decades. Recent studies suggest that climate change has important impacts on extreme haze events in northern China. This study uses reanalysis datasets to analyze the trend and variability of Siberian High (SiH) intensity, and its relationship with the Arctic temperature and sea ice cover (SIC) in past two decades. The results show that Arctic is warming accompanied by a rapid decline of SIC, while Eurasia is cooling and SiH intensity is gradually enhancing. The statistics illustrates that the SiH has a significantly positive correlation to the temperature (R = 0.70), and a significant anticorrelation to the SIC (R = -0.69), and this is because the warming Arctic and the reducing SIC enhanced the SiH. The enhanced SiH leads to strengthened northerly winds in the North China Plain (NCP). The WRF-Chem model calculation reveals the strengthened northerly winds during the stronger SiH period in January 2016 produce a significant decrease in PM2.5 (particulate matter with aerodynamic diameter less than 2.5 µm) concentrations by 100-200 µg m-3 than that during the weaker one in January 2013. A sensitivity calculation figures out the reduction of PM2.5 concentrations due to a decrease of 50% in emissions is comparable to changes from the weak SiH condition to the strong SiH condition, suggesting that extreme climate variability in the past few years could have an equivalent impact as a consequence of a large emission reduction on wintertime air pollution in the NCP.

  20. Effects of air pollution on ecosystems and biological diversity in the eastern United States.

    Science.gov (United States)

    Lovett, Gary M; Tear, Timothy H; Evers, David C; Findlay, Stuart E G; Cosby, B Jack; Dunscomb, Judy K; Driscoll, Charles T; Weathers, Kathleen C

    2009-04-01

    Conservation organizations have most often focused on land-use change, climate change, and invasive species as prime threats to biodiversity conservation. Although air pollution is an acknowledged widespread problem, it is rarely considered in conservation planning or management. In this synthesis, the state of scientific knowledge on the effects of air pollution on plants and animals in the Northeastern and Mid-Atlantic regions of the United States is summarized. Four air pollutants (sulfur, nitrogen, ozone, and mercury) and eight ecosystem types ranging from estuaries to alpine tundra are considered. Effects of air pollution were identified, with varying levels of certainty, in all the ecosystem types examined. None of these ecosystem types is free of the impacts of air pollution, and most are affected by multiple pollutants. In aquatic ecosystems, effects of acidity, nitrogen, and mercury on organisms and biogeochemical processes are well documented. Air pollution causes or contributes to acidification of lakes, eutrophication of estuaries and coastal waters, and mercury bioaccumulation in aquatic food webs. In terrestrial ecosystems, the effects of air pollution on biogeochemical cycling are also very well documented, but the effects on most organisms and the interaction of air pollution with other stressors are less well understood. Nevertheless, there is strong evidence for effects of nitrogen deposition on plants in grasslands, alpine areas, and bogs, and for nitrogen effects on forest mycorrhizae. Soil acidification is widespread in forest ecosystems across the eastern United States and is likely to affect the composition and function of forests in acid-sensitive areas over the long term. Ozone is known to cause reductions in photosynthesis in many terrestrial plant species. For the most part, the effects of these pollutants are chronic, not acute, at the exposure levels common in the eastern United States. Mortality is often observed only at experimentally

  1. Relationship between meteorological phenomena and air pollution in an urbanized and industrialized coastal area in northern France

    Science.gov (United States)

    Gengembre, Cyril; Zhang, Shouwen; Dieudonné, Elsa; Sokolov, Anton; Augustin, Patrick; Riffault, Véronique; Dusanter, Sébastien; Fourmentin, Marc; Delbarre, Hervé

    2016-04-01

    Impacts of global climate evolution are quite uncertain at regional and local scales, especially on air pollution. Air quality is associated with local atmospheric dynamics at a time scale shorter than a few weeks, while the climate change time scale is on the order of fifty years. To infer consequences of climate evolution on air pollution, it is necessary to fill the gap between these different scales. Another challenge is to understand the effect of global warming on the frequency of meteorological phenomena that influence air pollution. In this work, we classified meteorological events related to air pollution during a one-year long field campaign in Dunkirk (northern France). Owing to its coastal location under urban and industrial exposures, the Dunkirk agglomeration is an interesting area for studying gaseous and aerosols pollutants and their relationship with weather events such as sea breezes, fogs, storms and fronts. The air quality in the northern region of France is also greatly influenced by highly populated and industrialized cities along the coast of the North Sea, and by London and Paris agglomerations. During a field campaign, we used simultaneously a three-dimensional sonic anemometer and a weather station network, along with a scanning Doppler Lidar system to analyse the vertical structure of the atmosphere. An Aerosol Chemical Speciation Monitor enabled investigating the PM1 behaviour during the studied events. Air contaminants such as NOx (NO and NO2) were also measured by the regional pollution monitoring network ATMO Nord Pas-de-Calais. The events were identified by finding specific criteria from meteorological and turbulent parameters. Over a hundred cases of sea breezes, fog periods, stormy days and atmospheric front passages were investigated. Variations of turbulent parameters (vertical sensible heat flux and momentum flux) give estimations on the transport and the dispersal of pollutants. As the fluxes are weak during fogs, an increase

  2. Outdoor air pollution and sperm quality.

    Science.gov (United States)

    Lafuente, Rafael; García-Blàquez, Núria; Jacquemin, Bénédicte; Checa, Miguel Angel

    2016-09-15

    Exposure to air pollution has been clearly associated with a range of adverse health effects, including reproductive toxicity, but its effects on male semen quality are still unclear. We performed a systematic review (up to June 2016) to assess the impact of air pollutants on sperm quality. We included 17 semi-ecological, panel, and cohort studies, assessing outdoor air pollutants, such as PM2.5, PM10, NOx, SO2, and O3, and their effects on DNA fragmentation, sperm count, sperm motility, and sperm morphology. Thirteen studies assessed air pollution exposure measured environmentally, and six used biomarkers of air pollution exposure (two did both). We rated the studies using the Newcastle-Ottawa Scale and assessed with the exposure method. Taking into account these factors and the number of studies finding significant results (positive or negative), the evidence supporting an effect of air pollution on DNA fragmentation is weak but suggestive, on sperm motility is limited and probably inexistent, on lower sperm count is inconclusive, and on sperm morphology is very suggestive. Because of the diversity of air pollutants and sperm parameters, and the studies' designs, we were unable to perform a meta-analysis. In summary, most studies concluded that outdoor air pollution affects at least one of the four semen quality parameters included in the review. However, results lack consistency, and furthermore, studies were not comparable. Studies using standardized air pollution and semen measures are required to obtain more reliable conclusions. CRD42015007175. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  3. Climate Impacts of Ozone and Sulfate Air Pollution from Specific Emissions Sectors and Regions

    Science.gov (United States)

    Unger, N.; Koch, D. M.; Shindell, D. T.; Streets, D. G.

    2006-12-01

    The secondary air pollutants ozone (O3) and sulfate aerosol are generated by human activities and affect the Earth's climate system. The global mean radiative forcings of these short-lived species depend on the location of the precursor gas emissions, which has so far prevented their incorporation into climate-motivated policy agreements. O3 and sulfate aerosol are strongly coupled through tropospheric photochemistry and yet air quality control efforts consider each species separately. Previous modeling work to assess climate impacts of O3 has focused on individual precursors, such as nitrogen oxides, even though policy action would target a particular sector. We use the G-PUCCINI atmospheric composition-climate model to isolate the O3 and sulfate direct radiative forcing impacts of 6 specific emissions sectors (industry, transport, power, domestic biofuel, domestic fossil fuel and biomass burning) from 7 geographic regions (North America, Europe, South Asia, East Asia, North Africa and the Middle East, Central and South Africa and South America) for the near future 2030 atmosphere. The goal of the study is to identify specific source sectors and regions that present the most effective opportunities to mitigate global warming. At 2030, the industry and power sectors dominate the sulfate forcing across all regions, with East Asia, South Asia and North Africa and Middle East contributing the largest sulfate forcings (-100 to 120 mWm-2). The transport sector represents an important O3 forcing from all regions ranging from 5 mWm-2 (Europe) to 12 mWm-2 (East Asia). Domestic biofuel O3 forcing is important for the East Asia (13 mWm-2), South Asia (7 mWm-2) and Central and South Africa (10 mWm-2) regions. Biomass burning contributes large O3 forcings for the Central and South Africa (15 mWm-2) and South America (11 mWm-2) regions. In addition, the power sector O3 forcings from East Asia (14 mWm-2) and South Asia (8 mWm-2) are also substantial. Considering the sum of the O

  4. Cobenefits of climate and air pollution regulations. The context of the European Commission Roadmap for moving to a low carbon economy in 2050

    Energy Technology Data Exchange (ETDEWEB)

    Koelemeijer, R.; Eerens, H.; Van Velze, K. [Netherlands Environmental Assessment Agency PBL, Den Haag (Netherlands); Colette, A.; Schucht, S.; Pere, J.C.; Bessagnet, B.; Rouil, L. [Institut National de l' Environnement Industriel et des Risques INERIS, Verneuil-en-Halatte (France); Mellios, G. [EMISIA, Thessaloniki (Greece)

    2012-03-15

    In 2011, the European Commission published its roadmap towards a competitive low-carbon economy for 2050. For this roadmap the possibilities of a far-reaching reduction in greenhouse gas emissions in Europe were assessed (a decrease of 80% by 2050 compared to 1990 levels). This report was written at the request of the European Environment Agency and examines the effects of such a reduction on air quality. Analysis of several existing scenarios indicates that climate policy, in general, leads to a decrease in air pollution in Europe.

  5. Ambient air pollution and semen quality.

    Science.gov (United States)

    Nobles, Carrie J; Schisterman, Enrique F; Ha, Sandie; Kim, Keewan; Mumford, Sunni L; Buck Louis, Germaine M; Chen, Zhen; Liu, Danping; Sherman, Seth; Mendola, Pauline

    2018-05-01

    Ambient air pollution is associated with systemic increases in oxidative stress, to which sperm are particularly sensitive. Although decrements in semen quality represent a key mechanism for impaired fecundability, prior research has not established a clear association between air pollution and semen quality. To address this, we evaluated the association between ambient air pollution and semen quality among men with moderate air pollution exposure. Of 501 couples in the LIFE study, 467 male partners provided one or more semen samples. Average residential exposure to criteria air pollutants and fine particle constituents in the 72 days before ejaculation was estimated using modified Community Multiscale Air Quality models. Generalized estimating equation models estimated the association between air pollutants and semen quality parameters (volume, count, percent hypo-osmotic swollen, motility, sperm head, morphology and sperm chromatin parameters). Models adjusted for age, body mass index, smoking and season. Most associations between air pollutants and semen parameters were small. However, associations were observed for an interquartile increase in fine particulates ≤2.5 µm and decreased sperm head size, including -0.22 (95% CI -0.34, -0.11) µm 2 for area, -0.06 (95% CI -0.09, -0.03) µm for length and -0.09 (95% CI -0.19, -0.06) µm for perimeter. Fine particulates were also associated with 1.03 (95% CI 0.40, 1.66) greater percent sperm head with acrosome. Air pollution exposure was not associated with semen quality, except for sperm head parameters. Moderate levels of ambient air pollution may not be a major contributor to semen quality. Published by Elsevier Inc.

  6. Air pollution in the Slovak Republic, 2001

    International Nuclear Information System (INIS)

    Mitosinkova, M.; Kozakovic, L.; Zavodsky, D.; Sajtakova, E.; Mareckova, K.; Pukancikova, K.

    2003-01-01

    A report on air quality and contribution of individual sources on its pollution in the Slovak Republic in 2001 is presented. This report consists of two parts: (1) Ambient air and (2) Emission. Ambient air part is divided into the following chapters: Regional air pollution and quality of precipitation; Local air pollution; Atmospheric ozone. Emission part is divided into the following chapters: Emission and air pollution source inventory, Greenhouse gas emissions

  7. Ambient air pollution and thrombosis.

    Science.gov (United States)

    Robertson, Sarah; Miller, Mark R

    2018-01-03

    Air pollution is a growing public health concern of global significance. Acute and chronic exposure is known to impair cardiovascular function, exacerbate disease and increase cardiovascular mortality. Several plausible biological mechanisms have been proposed for these associations, however, at present, the pathways are incomplete. A seminal review by the American Heart Association (2010) concluded that the thrombotic effects of particulate air pollution likely contributed to their effects on cardiovascular mortality and morbidity. The aim of the current review is to appraise the newly accumulated scientific evidence (2009-2016) on contribution of haemostasis and thrombosis towards cardiovascular disease induced by exposure to both particulate and gaseous pollutants.Seventy four publications were reviewed in-depth. The weight of evidence suggests that acute exposure to fine particulate matter (PM 2.5 ) induces a shift in the haemostatic balance towards a pro-thrombotic/pro-coagulative state. Insufficient data was available to ascertain if a similar relationship exists for gaseous pollutants, and very few studies have addressed long-term exposure to ambient air pollution. Platelet activation, oxidative stress, interplay between interleukin-6 and tissue factor, all appear to be potentially important mechanisms in pollution-mediated thrombosis, together with an emerging role for circulating microvesicles and epigenetic changes.Overall, the recent literature supports, and arguably strengthens, the contention that air pollution contributes to cardiovascular morbidity by promoting haemostasis. The volume and diversity of the evidence highlights the complexity of the pathophysiologic mechanisms by which air pollution promotes thrombosis; multiple pathways are plausible and it is most likely they act in concert. Future research should address the role gaseous pollutants play in the cardiovascular effects of air pollution mixture and direct comparison of potentially

  8. Meteorological air pollution potential for Santiago, Chile: Towards an objective episode forecasting.

    Science.gov (United States)

    Rutllant, J; Garreaud, R

    1995-02-01

    The geography and climate of the Santiago basin are, in general, unfavorable for the diffusion of air pollutants. Consequently, extreme events occur frequently during the high pollution season extending from April to August. The meteorological conditions concurrent with those extreme events are mainly associated with the leading edges of coastal lows that bring down the base of the semipermanent temperature inversion reducing the dirunal growth of the surface mixed layer. In order to produce an objective 12 to 24-hour episode forecast, a two-way multivariate discriminant analysis has been used in the definition of a meteorological air-pollution potential index (MAPPI), separating high and low meteorological air-pollution potential days. The same procedure has been applied in the selection of the most efficient predictors for the MAPPI objective forecast, based on 12 and 24 UTC radiosonde data at Quintero, about 100 km to the NW of Santiago. Results indicate about 70% correctly forecasted days, with satisfactory skill-scores relative to persistency. The strong persistency characterizing the most efficient predictors in the 12-hour objective forecast scheme, makes the prediction of the first and last days of any particular air-pollution potential episode particularly difficult. To overcome this problem, a new set of predictors based on continuous measurements near the level of the top of the temperature inversion layer (900 hPa during air-pollution episodes) is being tested. Preliminary results indicate that the time-integrated zonal wind component at that level is a reliable precursor for both the onset and the end of air-pollution potential episodes.

  9. Can the Air Pollution Index be used to communicate the health risks of air pollution?

    Science.gov (United States)

    Li, Li; Lin, Guo-Zhen; Liu, Hua-Zhang; Guo, Yuming; Ou, Chun-Quan; Chen, Ping-Yan

    2015-10-01

    The validity of using the Air Pollution Index (API) to assess health impacts of air pollution and potential modification by individual characteristics on air pollution effects remain uncertain. We applied distributed lag non-linear models (DLNMs) to assess associations of daily API, specific pollution indices for PM10, SO2, NO2 and the weighted combined API (APIw) with mortality during 2003-2011 in Guangzhou, China. An increase of 10 in API was associated with a 0.88% (95% confidence interval (CI): 0.50, 1.27%) increase of non-accidental mortality at lag 0-2 days. Harvesting effects appeared after 2 days' exposure. The effect estimate of API over lag 0-15 days was statistically significant and similar with those of pollutant-specific indices and APIw. Stronger associations between API and mortality were observed in the elderly, females and residents with low educational attainment. In conclusion, the API can be used to communicate health risks of air pollution. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Impact of air traffic on the climate

    Energy Technology Data Exchange (ETDEWEB)

    Stief, G. [Florence Univ. (Italy). Ist. di Agrometeorologia

    1997-12-31

    Though emission from world-wide air traffic may seem to be relatively small in comparison to that from all other anthropogenic sources, the deleterious effect on the climate of the gases and particles emitted by planes is disproportionately large. It is thought that air traffic, working together with pollutants that have already accumulated at critical heights, and depending on humidity and temperature, plays a decisive role in helping to cause the changes, presented below, in global radiation, sunshine duration, rainfall and maximum and minimum temperatures which are taking place. (author) 7 refs.

  11. Impact of air traffic on the climate

    Energy Technology Data Exchange (ETDEWEB)

    Stief, G [Florence Univ. (Italy). Ist. di Agrometeorologia

    1998-12-31

    Though emission from world-wide air traffic may seem to be relatively small in comparison to that from all other anthropogenic sources, the deleterious effect on the climate of the gases and particles emitted by planes is disproportionately large. It is thought that air traffic, working together with pollutants that have already accumulated at critical heights, and depending on humidity and temperature, plays a decisive role in helping to cause the changes, presented below, in global radiation, sunshine duration, rainfall and maximum and minimum temperatures which are taking place. (author) 7 refs.

  12. Air pollution response to changing weather and power plant emissions in the eastern United States

    Science.gov (United States)

    Bloomer, Bryan Jaye

    Air pollution in the eastern United States causes human sickness and death as well as damage to crops and materials. NOX emission reduction is observed to improve air quality. Effectively reducing pollution in the future requires understanding the connections between smog, precursor emissions, weather, and climate change. Numerical models predict global warming will exacerbate smog over the next 50 years. My analysis of 21 years of CASTNET observations quantifies a climate change penalty. I calculate, for data collected prior to 2002, a climate penalty factor of ˜3.3 ppb O3/°C across the power plant dominated receptor regions in the rural, eastern U.S. Recent reductions in NOX emissions decreased the climate penalty factor to ˜2.2 ppb O3/°C. Prior to 1995, power plant emissions of CO2, SO2, and NOX were estimated with fuel sampling and analysis methods. Currently, emissions are measured with continuous monitoring equipment (CEMS) installed directly in stacks. My comparison of the two methods show CO 2 and SO2 emissions are ˜5% lower when inferred from fuel sampling; greater differences are found for NOX emissions. CEMS are the method of choice for emission inventories and commodity trading and should be the standard against which other methods are evaluated for global greenhouse gas trading policies. I used CEMS data and applied chemistry transport modeling to evaluate improvements in air quality observed by aircraft during the North American electrical blackout of 2003. An air quality model produced substantial reductions in O3, but not as much as observed. The study highlights weaknesses in the model as commonly used for evaluating a single day event and suggests areas for further investigation. A new analysis and visualization method quantifies local-daily to hemispheric-seasonal scale relationships between weather and air pollution, confirming improved air quality despite increasing temperatures across the eastern U.S. Climate penalty factors indicate

  13. The Federal Air Pollution Program.

    Science.gov (United States)

    National Air Pollution Control Administration (DHEW), Washington, DC.

    Described is the Federal air pollution program as it was in 1967. The booklet is divided into these major topics: History of the Federal Program; Research; Assistance to State and Local Governments; Abatement and Prevention of Air Pollution; Control of Motor Vehicle Pollution; Information and Education; and Conclusion. Federal legislation has…

  14. Advances of air pollution science: from forest decline to multiple-stress effects on forest ecosystem services.

    Science.gov (United States)

    Paoletti, E; Schaub, M; Matyssek, R; Wieser, G; Augustaitis, A; Bastrup-Birk, A M; Bytnerowicz, A; Günthardt-Goerg, M S; Müller-Starck, G; Serengil, Y

    2010-06-01

    Over the past 20 years, the focus of forest science on air pollution has moved from forest decline to a holistic framework of forest health, and from the effects on forest production to the ecosystem services provided by forest ecosystems. Hence, future research should focus on the interacting factorial impacts and resulting antagonistic and synergistic responses of forest trees and ecosystems. The synergistic effects of air pollution and climatic changes, in particular elevated ozone, altered nitrogen, carbon and water availability, must be key issues for research. Present evidence suggests air pollution will become increasingly harmful to forests under climate change, which requires integration amongst various stressors (abiotic and biotic factors, including competition, parasites and fire), effects on forest services (production, biodiversity protection, soil protection, sustained water balance, socio-economical relevance) and assessment approaches (research, monitoring, modeling) to be fostered. Copyright 2009 Elsevier Ltd. All rights reserved.

  15. Air quality and climate benefits of long-distance electricity transmission in China

    Science.gov (United States)

    Peng, Wei; Yuan, Jiahai; Zhao, Yu; Lin, Meiyun; Zhang, Qiang; Victor, David G.; Mauzerall, Denise L.

    2017-06-01

    China is the world’s top carbon emitter and suffers from severe air pollution. It has recently made commitments to improve air quality and to peak its CO2 emissions by 2030. We examine one strategy that can potentially address both issues—utilizing long-distance electricity transmission to bring renewable power to the polluted eastern provinces. Based on an integrated assessment using state-of-the-science atmospheric modeling and recent epidemiological evidence, we find that transmitting a hybrid of renewable (60%) and coal power (40%) (Hybrid-by-wire) reduces 16% more national air-pollution-associated deaths and decreases three times more carbon emissions than transmitting only coal-based electricity. Moreover, although we find that transmitting coal power (Coal-by-Wire, CbW) is slightly more effective at reducing air pollution impacts than replacing old coal power plants with newer cleaner ones in the east (Coal-by-Rail, CbR) (CbW achieves a 6% greater reduction in national total air-pollution-related mortalities than CbR), both coal scenarios have approximately the same carbon emissions. We thus demonstrate that coordinating transmission planning with renewable energy deployment is critical to maximize both local air quality benefits and global climate benefits.

  16. Climate change impacts on human health over Europe through its effect on air quality.

    Science.gov (United States)

    Doherty, Ruth M; Heal, Mathew R; O'Connor, Fiona M

    2017-12-05

    This review examines the current literature on the effects of future emissions and climate change on particulate matter (PM) and O 3 air quality and on the consequent health impacts, with a focus on Europe. There is considerable literature on the effects of climate change on O 3 but fewer studies on the effects of climate change on PM concentrations. Under the latest Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (AR5) Representative Concentration Pathways (RCPs), background O 3 entering Europe is expected to decrease under most scenarios due to higher water vapour concentrations in a warmer climate. However, under the extreme pathway RCP8.5 higher (more than double) methane (CH 4 ) abundances lead to increases in background O 3 that offset the O 3 decrease due to climate change especially for the 2100 period. Regionally, in polluted areas with high levels of nitrogen oxides (NO x ), elevated surface temperatures and humidities yield increases in surface O 3 - termed the O 3 climate penalty - especially in southern Europe. The O 3 response is larger for metrics that represent the higher end of the O 3 distribution, such as daily maximum O 3 . Future changes in PM concentrations due to climate change are much less certain, although several recent studies also suggest a PM climate penalty due to high temperatures and humidity and reduced precipitation in northern mid-latitude land regions in 2100.A larger number of studies have examined both future climate and emissions changes under the RCP scenarios. Under these pathways the impact of emission changes on air quality out to the 2050s will be larger than that due to climate change, because of large reductions in emissions of O 3 and PM pollutant precursor emissions and the more limited climate change response itself. Climate change will also affect climate extreme events such as heatwaves. Air pollution episodes are associated with stagnation events and sometimes heat waves. Air quality during

  17. Air pollution: Impact and prevention

    OpenAIRE

    SIERRA-VARGAS, MARTHA PATRICIA; TERAN, LUIS M

    2012-01-01

    ABSTRACT Air pollution is becoming a major health problem that affects millions of people worldwide. In support of this observation, the World Health Organization estimates that every year, 2.4 million people die because of the effects of air pollution on health. Mitigation strategies such as changes in diesel engine technology could result in fewer premature mortalities, as suggested by the US Environmental Protection Agency. This review: (i) discusses the impact of air pollution on respirat...

  18. Impacts of air pollution and climate on materials in Athens, Greece

    Science.gov (United States)

    Christodoulakis, John; Tzanis, Chris G.; Varotsos, Costas A.; Ferm, Martin; Tidblad, Johan

    2017-01-01

    For more than 10 years now the National and Kapodistrian University of Athens, Greece, has contributed to the UNECE (United Nations Economic Commission for Europe) ICP Materials (International Co-operative Programme on Effects on Materials including Historic and Cultural Monuments) programme for monitoring the corrosion/soiling levels of different kinds of materials due to environmental air-quality parameters. In this paper we present the results obtained from the analysis of observational data that were collected in Athens during the period 2003-2012. According to these results, the corrosion/soiling of the particular exposed materials tends to decrease over the years, except for the case of copper. Based on this long experimental database that is applicable to the multi-pollutant situation in the Athens basin, we present dose-response functions (DRFs) considering that dose stands for the air pollutant concentration, response for the material mass loss (normally per annum) and function, the relationship derived by the best statistical fit to the data.

  19. Origin, extent and health impacts of air pollution in Sub-Saharan Africa

    Science.gov (United States)

    Bauer, S.; Im, U.; Mezuman, K.

    2017-12-01

    Southern Africa produces about a third of the Earth's biomass burning aerosol particles, yet the fate of these particles, their origin, chemical composition and their influence on regional and global climate is poorly understood. These research questions motivated the NASA field campaign ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS). ORACLES is a five year investigation with three Intensive Observation Periods (IOP) designed to study key processes that determine the climate impacts of African biomass burning aerosols. The first IOP has been carried out in 2016. The main focus of the field campaign are aerosol-cloud interactions, however in our first study related to this area we will investigate the aerosol plume itself, its origin, extend and its resulting health impacts. Here we will discuss results using the global mesoscale model NASA GEOS-5 in conjunction with the NASA GISS-E2 climate model to investigate climate and health impacts that are directly related to the anthropogenic fire activities in Sub-Saharan Africa. Focus will be on the SH winter seasons biomass burning events, its contribution to Sub-Saharan air pollution in relationship to other air-pollution sources and its resulting premature mortality.

  20. Origin, extend and health impacts of air pollution in Sub-Saharan Africa

    Science.gov (United States)

    Bauer, Susanne E.; Mezuman, Keren; Longo, Karla; da Silva, Arlindo

    2017-04-01

    Southern Africa produces about a third of the Earth's biomass burning aerosol particles, yet the fate of these particles, their origin, chemical composition and their influence on regional and global climate is poorly understood. These research questions motivated the NASA field campaign ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS). ORACLES is a five year investigation with three Intensive Observation Periods (IOP) designed to study key processes that determine the climate impacts of African biomass burning aerosols. The first IOP has been carried out in 2016. The main focus of the field campaign are aerosol-cloud interactions, however in our first study related to this area we will investigate the aerosol plume itself, its origin, extend and its resulting health impacts. Here we will discuss results using the global mesoscale model NASA GEOS-5 in conjunction with the NASA GISS-E2 climate model to investigate climate and health impacts that are directly related to the anthropogenic fire activities in Sub-Saharan Africa. Focus will be on the SH winter seasons biomass burning events, its contribution to Sub-Saharan air pollution in relationship to other air-pollution sources and its resulting premature mortality.

  1. EDITORIAL: Global impacts of particulate matter air pollution

    Science.gov (United States)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    sulfate aerosol exposure (both domestically and on downwind continents), while presenting a new metric to quantify the impact of distance on health-relevant exposure: the 'influence potential'. Extending the scope of aerosol impacts from health to climate, Bond outlines the barriers to including aerosols in climate agreements, and proposes solutions to facilitate the integration of this key climate species in a policy context. Together, the articles scope out the state-of-the-science with respect to key issues in international air pollution. All four studies advance understanding the human health implications of air pollution, by drawing from worldwide data sources and considering a global perspective on key processes and impacts. To extend exposure estimates, like those of van Vliet and Kinney or Liu and Mauzerall, and to evaluate the induced physiological response of PM exposure, typically existing dose response relationships are applied. Unfortunately, the common practice of applying health response estimates from one location to another is problematic. In addition to potential differences in the chemical composition of particles, the underlying populations may differ with respect to their baseline health status, occupational exposures, age and gender distribution, and behavioral factors such as nutrition and smoking habits. Health response to a given stressor is affected by the quality of and access to health care, which varies widely, and can be almost non-existent in some regions of developing countries. Further, exposure to ambient PM is affected by the relative fraction of time spent in different settings (e.g., work, home, outside, in transit), the activities that affect ventilation rate (e.g., exercising heavily versus sitting still), and housing characteristics that alter the penetration of outdoor particles into indoor environments (e.g., housing materials, windows, air conditioning). To make the most of exposure estimates, the 'missing link' is the

  2. Stochastic Modeling of Traffic Air Pollution

    DEFF Research Database (Denmark)

    Thoft-Christensen, Palle

    2014-01-01

    In this paper, modeling of traffic air pollution is discussed with special reference to infrastructures. A number of subjects related to health effects of air pollution and the different types of pollutants are briefly presented. A simple model for estimating the social cost of traffic related air...... and using simple Monte Carlo techniques to obtain a stochastic estimate of the costs of traffic air pollution for infrastructures....... pollution is derived. Several authors have published papers on this very complicated subject, but no stochastic modelling procedure have obtained general acceptance. The subject is discussed basis of a deterministic model. However, it is straightforward to modify this model to include uncertain parameters...

  3. Urban air pollution; La pollution de l'air dans la ville

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The theme of this congress concerns air pollution in urban areas. Cities are accumulation of populations and economic activities, and then pollutants activities. The first articles are devoted to pollutants and their effects on health. Then come articles relative to measurements and modeling. Finally, the traffic in city and the automobile pollution are examined. Transportation systems as well technology in matter of gas emissions are reviewed. (N.C.)

  4. Ozone concentrations and damage for realistic future European climate and air quality scenarios

    Science.gov (United States)

    Hendriks, Carlijn; Forsell, Nicklas; Kiesewetter, Gregor; Schaap, Martijn; Schöpp, Wolfgang

    2016-11-01

    Ground level ozone poses a significant threat to human health from air pollution in the European Union. While anthropogenic emissions of precursor substances (NOx, NMVOC, CH4) are regulated by EU air quality legislation and will decrease further in the future, the emissions of biogenic NMVOC (mainly isoprene) may increase significantly in the coming decades if short-rotation coppice plantations are expanded strongly to meet the increased biofuel demand resulting from the EU decarbonisation targets. This study investigates the competing effects of anticipated trends in land use change, anthropogenic ozone precursor emissions and climate change on European ground level ozone concentrations and related health and environmental impacts until 2050. The work is based on a consistent set of energy consumption scenarios that underlie current EU climate and air quality policy proposals: a current legislation case, and an ambitious decarbonisation case. The Greenhouse Gas-Air Pollution Interactions and Synergies (GAINS) integrated assessment model was used to calculate air pollutant emissions for these scenarios, while land use change because of bioenergy demand was calculated by the Global Biosphere Model (GLOBIOM). These datasets were fed into the chemistry transport model LOTOS-EUROS to calculate the impact on ground level ozone concentrations. Health damage because of high ground level ozone concentrations is projected to decline significantly towards 2030 and 2050 under current climate conditions for both energy scenarios. Damage to plants is also expected to decrease but to a smaller extent. The projected change in anthropogenic ozone precursor emissions is found to have a larger impact on ozone damage than land use change. The increasing effect of a warming climate (+2-5 °C across Europe in summer) on ozone concentrations and associated health damage, however, might be higher than the reduction achieved by cutting back European ozone precursor emissions. Global

  5. Air Pollution and Industry.

    Science.gov (United States)

    Ross, R. D., Ed.

    This book is an authoritative reference and practical guide designed to help the plant engineer identify and solve industrial air pollution problems in order to be able to meet current air pollution regulations. Prepared under the editorial supervision of an experienced chemical engineer, with each chapter contributed by an expert in his field,…

  6. The changing face of urban air pollution

    Science.gov (United States)

    Lewis, Alastair C.

    2018-02-01

    The atmospheric chemistry that leads to photochemical smog and climate-active aerosols requires the presence of volatile organic compounds (VOCs) (1, 2). The VOCs in urban air typically derive from the prevailing energy and transport technologies as well as the use of petrochemical-derived products. On page 760 of this issue, McDonald et al. (3) report that a notable change in emissions may be underway in U.S. cities, with effects on secondary pollutants such as organic aerosols. Shifting from an urban atmosphere dominated by transport-related VOCs to one dominated by VOCs from coatings, adhesives, and consumer products would alter predictions of urban air quality and challenge the existing policy framework for emissions control.

  7. Air Pollution, Causes and Cures.

    Science.gov (United States)

    Manufacturing Chemists Association, Washington, DC.

    This commentary on sources of air pollution and air purification treatments is accompanied by graphic illustrations. Sources of carbon monoxide, sulfur oxides, nitrogen oxides, and hydrocarbons found in the air are discussed. Methods of removing these pollutants at their source are presented with cut-away diagrams of the facilities and technical…

  8. RESEARCH AREA -- ARTIFICIAL INTELLIGENCE CONTROL (AIR POLLUTION TECHNOLOGY BRANCH, AIR POLLUTION PREVENTION AND CONTROL DIVISION, NRMRL)

    Science.gov (United States)

    The Air Pollution Technology Branch (APTB) of NRMRL's Air Pollution Prevention and Control Division in Research Triangle Park, NC, has conducted several research projects for evaluating the use of artificial intelligence (AI) to improve the control of pollution control systems an...

  9. Air pollution and mortality in Barcelona.

    OpenAIRE

    Sunyer, J; Castellsagué, J; Sáez, M; Tobias, A; Antó, J M

    1996-01-01

    STUDY OBJECTIVES: Studies conducted in Barcelona reported a short term relation between daily air pollutant values and emergency department admissions for exacerbation of chronic obstructive pulmonary diseases and asthma. Air pollution in Barcelona is mainly generated by vehicle exhaust and is below the World Health Organization air quality guidelines. The acute relation between air pollution and mortality was assessed. DESIGN: Daily variations in total mortality, mortality in subjects older ...

  10. Air Pollution. Environmental Ecological Education Project.

    Science.gov (United States)

    Parkway School District, Chesterfield, MO.

    This unit, designed for senior high school students, focuses on air pollution by examining its effect on man, plants and animals, the causes of air pollution, and possible solutions to the air pollution problems. It approaches each of these topics through both natural science and social science perspectives. The unit is divided into seven separate…

  11. Air pollution: a tale of two countries.

    Science.gov (United States)

    Haryanto, Budi; Franklin, Peter

    2011-01-01

    The fast growing economies and continued urbanization in Asian countries have increased the demand for mobility and energy in the region, resulting in high levels of air pollution in cities from mobile and stationary sources. In contrast, low level of urbanization in Australia produces low level of urban air pollution. The World Health Organization estimates that about 500,000 premature deaths per year are caused by air pollution, leaving the urban poor particularly vulnerable since they live in air pollution hotspots, have low respiratory resistance due to bad nutrition, and lack access to quality health care. Identifying the differences and similarities of air pollution levels and its impacts, between Indonesia and Australia, will provide best lesson learned to tackle air pollution problems for Pacific Basin Rim countries.

  12. Air pollution and its control in China

    Institute of Scientific and Technical Information of China (English)

    HAO Jiming; HE Kebin; DUAN Lei; LI Junhua; WANG Litao

    2007-01-01

    The rapid growth of China's economy has led to severe air pollution characterized by acid rain,severe pollution in cities,and regional air pollution.High concentrations are found for various pollutants such as sulfur dioxides(SO2),nitrogen oxides(NOx),and fine particulates.Great efforts have thus been undertaken for the control of air pollution in the country.This paper discusses the development and application of appropriate technologies for reducing the major pollutants produced by coal and vehicles,and investi gates air quality modeling as an important support for policy-making.

  13. Climate Penalty on Air Quality and Human Health in China and India

    Science.gov (United States)

    Li, M.; Zhang, S.; Garcia-Menendez, F.; Monier, E.; Selin, N. E.

    2017-12-01

    Climate change, favoring more heat waves and episodes of stagnant air, may deteriorate air quality by increasing ozone and fine particulate matter (PM2.5) concentrations and high pollution episodes. This effect, termed as "climate penalty", has been quantified and explained by many earlier studies in the U.S. and Europe, but research efforts in Asian countries are limited. We evaluate the impact of climate change on air quality and human health in China and India using a modeling framework that links the Massachusetts Institute of Technology Integrated Global System Model to the Community Atmosphere Model (MIT IGSM-CAM). Future climate fields are projected under three climate scenarios including a no-policy reference scenario and two climate stabilization scenarios with 2100 total radiative forcing targets of 9.7, 4.5 and 3.7 W m-2, respectively. Each climate scenario is run for five representations of climate variability to account for the role of natural variability. Thirty-year chemical transport simulations are conducted in 1981-2010 and 2086-2115 under the three climate scenarios with fixed anthropogenic emissions at year 2000 levels. We find that 2000—2100 climate change under the no-policy reference scenario would increase ozone concentrations in eastern China and northern India by up to 5 ppb through enhancing biogenic emissions and ozone production efficiency. Ozone extreme episodes also become more frequent in these regions, while climate policies can offset most of the increase in ozone episodes. Climate change between 2000 and 2100 would slightly increase anthropogenic PM2.5 concentrations in northern China and Sichuan province, but significantly reduce anthropogenic PM2.5 concentrations in southern China and northern India, primarily due to different chemical responses of sulfate-nitrate-ammonium aerosols to climate change in these regions. Our study also suggests that the mitigation costs of climate policies can be partially offset by health

  14. Outdoor air Pollution

    CSIR Research Space (South Africa)

    Forbes, PBC

    2016-07-01

    Full Text Available This chapter focuses on the air pollutants which are generally found in the troposphere and does not provide detail on specific areas where atmospheric pollutants and atmospheric chemistry may differ from that generally found, such as in the arctic...

  15. Quantifying the co-impacts of energy sector decarbonisation on outdoor air pollution in the United Kingdom

    International Nuclear Information System (INIS)

    Lott, Melissa C.; Pye, Steve; Dodds, Paul E.

    2017-01-01

    The energy sector is a major contributor to greenhouse gas (GHG) emissions and other types of air pollution that negatively impact human health and the environment. Policy targets to achieve decarbonisation goals for national energy systems will therefore impact levels of air pollution. Advantages can be gained from considering these co-impacts when analysing technology transition scenarios in order to avoid tension between climate change and air quality policies. We incorporated non-GHG air pollution into a bottom-up, technoeconomic energy systems model that is at the core of UK decarbonisation policy development. We then used this model to assess the co-impacts of decarbonisation on other types of air pollution and evaluated the extent to which transition pathways would be altered if these other pollutants were considered. In a scenario where the UK meets its existing decarbonisation targets to 2050, including the costs of non-GHG air pollution led to a 40% and 45% decrease in PM_1_0 and PM_2_._5 pollution (respectively) between 2010 and 2050 due to changes in technology choice in residential heating. Conversely, limited change in the pollution profile for transportation were observed, suggesting that other policy strategies will be necessary to reduce pollution from transport. - Highlights: • Strategies to decarbonise energy systems should consider other air pollutants. • Energy systems models can show decarbonisation pathway co-impacts on PM, NO_x and SO_x. • Considering non-GHG pollution eliminates carbon & air quality policy tensions. • Transport particulate pollution challenges will only be addressed by modal shifting.

  16. Assessing emissions levels and costs associated with climate and air pollution policies in South Africa

    International Nuclear Information System (INIS)

    Henneman, Lucas R.F.; Rafaj, Peter; Annegarn, Harold J.; Klausbruckner, Carmen

    2016-01-01

    Affordable energy supply and reductions in emissions of local air pollution and greenhouse gases are each important aspects of South Africa's goals. Many traditional solutions, however, work in contradiction to one another. This work investigates effects on estimated emissions and costs of mitigation strategies using the Greenhouse Gas and Air Pollution Interaction Synergies (GAINS) model to identify policies that satisfy multiple goals. Eight scenarios that describe air pollution control options and mixes of energy production technologies are implemented in GAINS, which quantifies country-wide air pollution and greenhouse emissions and costs of controls. Emissions and costs trajectories are compared to the business as usual case, which projects CO_2 emissions to increase by 60% by 2050 compared to 2015. Results show that replacing all coal generation with renewables reduces CO_2 emissions in 2050 by 8% compared to 2015, and that aggressive policy targeting the whole energy sector reduces CO_2 emissions in 2050 by 40%. GAINS is used to show co-benefits and tradeoffs of each scenario, such as reductions in emissions control costs that accompany a switch to renewables. The approach provides supporting evidence for policies that exploit co-benefits and avoid contradictions by assessing multiple aspects of the energy sector within the integrated framework provided by the GAINS modeling platform.

  17. Neurotoxicity of traffic-related air pollution.

    Science.gov (United States)

    Costa, Lucio G; Cole, Toby B; Coburn, Jacki; Chang, Yu-Chi; Dao, Khoi; Roqué, Pamela J

    2017-03-01

    The central nervous system is emerging as an important target for adverse health effects of air pollution, where it may contribute to neurodevelopmental and neurodegenerative disorders. Air pollution comprises several components, including particulate matter (PM) and ultrafine particulate matter (UFPM), gases, organic compounds, and metals. An important source of ambient PM and UFPM is represented by traffic-related air pollution, primarily diesel exhaust (DE). Human epidemiological studies and controlled animal studies have shown that exposure to air pollution, and to traffic-related air pollution or DE in particular, may lead to neurotoxicity. In particular, air pollution is emerging as a possible etiological factor in neurodevelopmental (e.g. autism spectrum disorders) and neurodegenerative (e.g. Alzheimer's disease) disorders. The most prominent effects caused by air pollution in both humans and animals are oxidative stress and neuro-inflammation. Studies in mice acutely exposed to DE (250-300μg/m 3 for 6h) have shown microglia activation, increased lipid peroxidation, and neuro-inflammation in various brain regions, particularly the hippocampus and the olfactory bulb. An impairment of adult neurogenesis was also found. In most cases, the effects of DE were more pronounced in male mice, possibly because of lower antioxidant abilities due to lower expression of paraoxonase 2. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Air pollution in the Slovak Republic, 2004

    International Nuclear Information System (INIS)

    Mitosinkova, M.; Kozakovic, L.; Zavodsky, D.; Sajtakova, E.; Szemesova, J.; Pukancikova, K.

    2006-01-01

    A report on air quality and contribution of individual sources on its pollution in the Slovak Republic in 2004 is presented. This report consists of two parts: (1) Pollutants part and (2) Emission part. Pollutants part is divided into the following chapters: Regional air pollution and quality of precipitation; Local air pollution; Atmospheric ozone. Emission part is divided into the following chapters: Inventory control of emissions and sources of pollution, Emission of greenhouse gases

  19. Air pollution in the Slovak Republic, 2003

    International Nuclear Information System (INIS)

    Mitosinkova, M.; Kozakovic, L.; Zavodsky, D.; Sajtakova, E.; Szemesova, J.; Pukancikova, K.

    2005-01-01

    A report on air quality and contribution of individual sources on its pollution in the Slovak Republic in 2003 is presented. This report consists of two parts: (1) Pollutants part and (2) Emission part. Pollutants part is divided into the following chapters: Regional air pollution and quality of of precipitation; Local air pollution; Atmospheric ozone. Emission part is divided into the following chapters: Inventory control of emissions and sources of pollution, Emission of greenhouse gases

  20. Air pollution and human mortality

    Energy Technology Data Exchange (ETDEWEB)

    Lave, L B [Carnegie-Mellon Univ., Pittsburgh, PA (USA). Dept. of Economics; Seskin, E P [Department of Commerce, Washington, DC (USA). Environmental and Nonmarket Economics Div.

    1979-11-01

    Investigations have been made on the quantitative relationship between air pollution and human mortality. While primary focus has been on suspended particulates and sulfates from stationary sources of pollution, the evidence relating to air pollutants attributed to mobile sources was also examined. Using statistical analyses for a large number of US metropolitan areas, it was concluded that the benefits associated with a substantial abatement of air pollution from stationary sources are greater than the costs of such abatement. In contrast, the situation for mobile sources-chiefly cars and trucks is less clear-cut. That is, the costs of implementing the currently mandated US standards for automobile emissions probably exeed their potential health benefits.

  1. Contributions of air pollution and climate warming to tufa wetland degradation in Jiuzhaigou National Nature Reserve, eastern rim of the Qinghai-Tibetan Plateau, China

    Science.gov (United States)

    Qiao, X.; Tang, Y.

    2017-12-01

    Massive deposition of calcium carbonate in ambient temperature waters forms magnificent tufa wetlands, many of which are designated as protected areas and are popular tourist destinations. There is a tufa wetland belt along the Eastern Rim of the Qinghai-Tibetan Plateau (ERQTP), and many of them are experiencing degradation, such as nutrient enrichment and tufa degradation. Meanwhile, there is also an air pollution belt in the ERQTP. This study was made to understand the correlation of tufa wetland degradation with climate change and air pollution for Jiuzhaigou National Nature Reserve (hereafter Jiuzhaigou). Atmospheric changes were first studied. The results show that annual mean air temperature increased by 1.2oC from 1951 to 2014. Anthropogenic emissions contributed to over 90% annual wet deposition fluxes of reactive sulfur and nitrogen and caused acid rain (pHpollutants. Then, the impacts of air pollution and climate warming on tufa wetlands were further investigated. We found that precipitation was calcite-unsaturated so it could dissolve exposed tufa and considerably reduce tufa deposition rate and even cause tufa dissolution in shallow waters. These effects enhanced as precipitation pH decreased. Annual volume-weighted mean concentration of reactive nitrogen in wet deposition and runoff were 26.1 and 14.8 µmol L-1, respectively, both exceeding China's national standard of total nitrogen in runoff for nature reserves (14.3 µmol L-1) and this suggested a nitrogen fertilization effect of wet deposition on green algae. As water temperature is the limiting factor of algal growth in Jiuzhaigou and temperature in the top layer (0-5 cm) of runoff (with a depthpollutants have contributed to tufa wetland degradation in Jiuzhaigou, but in order to better quantify the contributions, further studies are needed, as many other anthropogenic and natural processes also influence tufa wetland evolution.

  2. Climate change and occupational allergies: an overview on biological pollution, exposure and prevention.

    Science.gov (United States)

    D'Ovidio, Maria Concetta; Annesi-Maesano, Isabella; D'Amato, Gennaro; Cecchi, Lorenzo

    2016-01-01

    Climate change, air pollution, temperature increase and other environmental variables are modifying air quality, contributing to the increase of prevalence of allergic respiratory diseases. Allergies are complex diseases characterized by multilevel interactions between individual susceptibility, response to immune modulation and environmental exposures to physical, chemical and biological agents. Occupational allergies introduce a further complexity to these relationships by adding occupational exposure to both the indoor and outdoor ones in the living environment. The aim of this paper is to overview climate-related allergy affecting environmental and occupational health, as literature data are scanty in this regard, and to suggest a management model of this risk based on a multidisciplinary approach, taking the case of biological pollution, with details on exposure and prevention. The management of climate-related occupational allergy should take into account preventive health strategies, environmental, public and occupational interventions, as well as to develop, implement, evaluate, and improve guidelines and standards protecting workers health under changing climatic conditions; new tools and strategies based on local conditions will have to be developed. Experimental studies and acquisition of environmental and personal data have to be matched to derive useful information for the scope of occupational health and safety.

  3. Chinese air pollution embodied in trade

    Science.gov (United States)

    Davis, S. J.

    2014-12-01

    Rapid economic development in China has been accompanied by high levels of air pollution in many areas of China. Although researchers have applied a range of methods to monitor and track pollutant emissions in the atmosphere, studies of the underlying economic and technological drivers of this pollution have received considerably less attention. I will present results of a series of studies that have quantified the air pollutants embodied in goods being traded both within China and internationally. The results show that trade is facilitating the concentration of pollution in less economically developed areas, which in turn export pollution-intensive goods to more affluent areas. However, the export-related pollution itself is sometimes transported long distances; for instance, we have quantified the impacts of the Chinese pollution embodied in internationally-exported goods on air quality in the US. These findings important implications for Chinese efforts to curb CO2 emissions and improve air quality. The research to be presented reflects the efforts of a multiple year, ongoing collaboration among interdisciplinary researchers in China, the US and the UK.

  4. Air pollution-related health and climate benefits of clean cookstove programs in Mozambique

    Science.gov (United States)

    Anenberg, Susan C.; Henze, Daven K.; Lacey, Forrest; Irfan, Ans; Kinney, Patrick; Kleiman, Gary; Pillarisetti, Ajay

    2017-02-01

    Approximately 95% of households in Mozambique burn solid fuels for cooking, contributing to elevated indoor and outdoor fine particulate matter (PM2.5) concentrations and subsequent health and climate impacts. Little is known about the potential health and climate benefits of various approaches for expanding the use of cleaner stoves and fuels in Mozambique. We use state-of-the-science methods to provide a first-order estimation of potential air pollution-related health and climate benefits of four illustrative scenarios in which traditional cooking fires and stoves are displaced by cleaner and more efficient technologies. For rural areas, we find that a 10% increase in the number of households using forced draft wood-burning stoves could achieve >2.5 times more health benefits from reduced PM2.5 exposure (200 avoided premature deaths and 14 000 avoided disability adjusted life years, DALYs, over a three-year project lifetime) compared to natural draft stoves in the same households, assuming 70% of households use the new technology for both cases. Expanding use of LPG stoves to 10% of households in five major cities is estimated to avoid 160 premature deaths and 11 000 DALYs from reduced PM2.5 exposure for a three-year intervention, assuming 60% of households use the new stove. Advanced charcoal stoves would achieve ∽80% of the PM2.5-related health benefits of LPG stoves. Approximately 2%-5% additional health benefits would result from reduced ambient PM2.5, depending on the scenario. Although climate impacts are uncertain, we estimate that all scenarios would reduce expected climate change-related temperature increases from continued solid fuel use by 4%-6% over the next century. All results are based on an assumed adjustment factor of 0.8 to convert from laboratory-based emission reduction measurements to exposure reductions, which could be optimistic in reality given potential for continued use of the traditional stove. We conclude that cleaner cooking stoves

  5. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Song, Ky Seok; Rhee, Young Joo; Kim, Duck Hyun; Yang, Ki Ho; Lee, Jong Min; Cha, Byung Heon; Lee, Kang Soo

    1999-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols

  6. Technology of Measuring equipment for Air Pollution. Development of Mobile Air Pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Ky Seok; Rhee, Young Joo; Kim, Duck Hyun; Yang, Ki Ho; Lee, Jong Min; Cha, Byung Heon; Lee, Kang Soo

    1999-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment process and provides pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR (Light detection and ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The goal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  7. Exploring the ancillary benefits of the Kyoto Protocol for air pollution in Europe

    International Nuclear Information System (INIS)

    Vuuren, D.P. van; Cofala, J.; Eerens, H.E.; Oostenrijk, R.; Heyes, C.; Klimont, Z.; Elzen, M.G.J. den; Amann, M.

    2006-01-01

    An integrated approach to climate change and regional air pollution can harvest considerable ancillary benefits in terms of environmental impacts and costs. This is because both problems are caused to a large extent by the same activity (fossil fuel combustion). Substantial ancillary benefits were found for regional air pollution (SO 2 , NO x , VOC and particulate matter) of implementing the Kyoto Protocol (intended to control greenhouse gas emissions) in Europe. For instance, while three different scenarios on Kyoto implementation were found to reduce European CO 2 emissions by 4-7%, they also reduced European emissions of SO 2 by 5-14% compared with a no Kyoto policies case. The magnitude of ancillary benefits depends on how flexible mechanisms and surplus emission allowances are used in meeting the Kyoto targets. The total cost savings for implementing current policies for regional air pollution of the Kyoto Protocol are of an order of 2.5-7 billion Euro. In all cases, this is in the order of half the costs of the climate policy (4-12 billion Euro). Using flexible mechanisms reduces emissions of air pollutants for Europe as a whole even further than domestic implementation (e.g. 10-14% versus 5% for SO 2 emissions), but the reductions are shifted from Western Europe to Central and Eastern Europe and Russia. The use of surplus emission allowances to achieve the Kyoto targets decreases the ancillary benefits, in particular for the latter group of countries (e.g. unprotected area against acidification increases from 1.3 to 1.7 million ha)

  8. The effects of air pollution and climatic factors on atmospheric corrosion of marble under field exposure

    International Nuclear Information System (INIS)

    Lan, Tran Thi Ngoc; Nishimura, Rokuro; Tsujino, Yoshio; Satoh, Yukihiro; Thi Phuong Thoa, Nguyen; Yokoi, Masayuki; Maeda, Yasuaki

    2005-01-01

    The atmospheric corrosion of marble was evaluated in terms of SO 2 concentration as air pollution and climatic factors such as rainfall, relative humidity, temperature and so on under the field exposure. Marble of calcite type (CaCO 3 ) was exposed to outdoor atmospheric environment with and without a rain shelter at four test sites in the southern part of Vietnam for 3-month, 1- and 2-year periods from July 2001 to September 2003. The thickness loss of marble was investigated gravimetrically. X-ray diffraction and X-ray fluorescent methods were applied to study corrosion products on marble. The corrosion product of marble was only gypsum (CaSO 4 . 2H 2 O) and was washed out by rain under the unsheltered exposure condition. It was found that the most substantial factors influencing the corrosion of marble were rainfall, SO 2 concentration in the air and relative humidity. Based on the results obtained, we estimated the dose-response functions for the atmospheric corrosion of marble in the southern part of Vietnam

  9. Air quality, health, and climate implications of China’s synthetic natural gas development

    Science.gov (United States)

    Qin, Yue; Wagner, Fabian; Scovronick, Noah; Yang, Junnan; Zhu, Tong; Mauzerall, Denise L.

    2017-01-01

    Facing severe air pollution and growing dependence on natural gas imports, the Chinese government plans to increase coal-based synthetic natural gas (SNG) production. Although displacement of coal with SNG benefits air quality, it increases CO2 emissions. Due to variations in air pollutant and CO2 emission factors and energy efficiencies across sectors, coal replacement with SNG results in varying degrees of air quality benefits and climate penalties. We estimate air quality, human health, and climate impacts of SNG substitution strategies in 2020. Using all production of SNG in the residential sector results in an annual decrease of ∼32,000 (20,000 to 41,000) outdoor-air-pollution-associated premature deaths, with ranges determined by the low and high estimates of the health risks. If changes in indoor/household air pollution were also included, the decrease would be far larger. SNG deployment in the residential sector results in nearly 10 and 60 times greater reduction in premature mortality than if it is deployed in the industrial or power sectors, respectively. Due to inefficiencies in current household coal use, utilization of SNG in the residential sector results in only 20 to 30% of the carbon penalty compared with using it in the industrial or power sectors. Even if carbon capture and storage is used in SNG production with today’s technology, SNG emits 22 to 40% more CO2 than the same amount of conventional gas. Among the SNG deployment strategies we evaluate, allocating currently planned SNG to households provides the largest air quality and health benefits with the smallest carbon penalties. PMID:28438993

  10. The impact of international shipping on European air quality and climate forcing

    Energy Technology Data Exchange (ETDEWEB)

    van Aardenne, J. [European Environment Agency (EEA), Copenhagen (Denmark); Colette, A. [INERIS (France); Degraeuwe, B.; de Vlieger, I. [VITO (Belgium); Hammingh, P. [PBL Netherlands Environmental Assessment Agency (Netherlands); Viana, M. [CSIC (Spain)

    2013-03-15

    This EEA Technical report provides an overview on the state of knowledge on the impact of international shipping in European waters to air quality and climate change. Based on literature review and model assessment studies information is provided on past and future emissions of air pollutants and greenhouse gases, monitoring of ship emissions, emission mitigation policies and impact on European air quality and radiative forcing. (Author)

  11. Traffic-related air pollution - the health effects scrutinized

    NARCIS (Netherlands)

    Nijland, M.E.

    2013-01-01

    Numerous studies have been published on the health effects associated with exposure to air pollution. Air pollution is acknowledged as a public health risk and air quality regulations are set for specific air pollutants to protect human health. A major pollutant, well known for its adverse health

  12. Urban air pollution; La pollution de l'air dans la ville

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-07-01

    The theme of this congress concerns air pollution in urban areas. Cities are accumulation of populations and economic activities, and then pollutants activities. The first articles are devoted to pollutants and their effects on health. Then come articles relative to measurements and modeling. Finally, the traffic in city and the automobile pollution are examined. Transportation systems as well technology in matter of gas emissions are reviewed. (N.C.)

  13. Evaluating co-benefits of energy efficiency and air pollution abatement in China’s cement industry

    NARCIS (Netherlands)

    Zhang, Shaohui; Worrell, Ernst; Crijns - Graus, Wina

    2015-01-01

    China’s cement industry is the world’s largest and is one of the largest energy consuming, and GHG and air pollutant emitting industries. Actions to improve energy efficiency by best available technology can often bring co-benefits for climate change and air quality through reducing emissions of

  14. Air pollution problem in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, H

    1964-10-01

    Air pollution in the United States as a problem affecting health, as well as man's enjoyment of his property, was first noted in 1912 in the reports of the investigators at the Mellon Institute of the University of Pittsburgh. The Selby copper smelter incident in 1915 was among the first episodic air pollution events documented. The US Public Health Service studied carbon monoxide buildup in vehicular tunnels in 1928 and 1929. the Donora (Pennsylvania) pollution episode, where 17 people died, occurred in 1949. It and the onset of smog conditions in the Los Angeles area really initiated broad public awareness of air pollution as a public health hazard in the USA. The symptoms of air pollution-related injuries are discussed, the role of the US Public Health Service in dealing with air pollution, and the effect of the Clean Air Act of 1963 are discussed. 26 references.

  15. Air Pollution and Environmental Justice Awareness

    Science.gov (United States)

    Bouvier-Brown, N. C.

    2014-12-01

    Air pollution is not equally dispersed in all neighborhoods and this raises many social concerns, such as environmental justice. "Real world" data, whether extracted from online databases or collected in the field, can be used to demonstrate air quality patterns. When students explore these trends, they not only learn about atmospheric chemistry, but they also become socially aware of any inequities. This presentation outlines specific ways to link air pollution and environmental justice suitable for an undergraduate upper division Air Pollution or Atmospheric Chemistry course.

  16. Air pollution damage to plants

    Energy Technology Data Exchange (ETDEWEB)

    Daly, G T

    1974-01-01

    The effects of the most important air pollutants on plants are described in detail. The include: smoke and particulates, sulfur dioxide, fluorides, peroxyacetyl nitrate, nitrogen oxides, and ozone. An attempt is made to show that plant injury by air pollution can be recognized and evaluated in the presence of effects from insect, fungal, bacterial, viral pathogens and the symptoms of nutrient and enviromental stress. All plants are more or less affected by toxic gases and metals absorbed from the air. For each plant and each pollutant there is a critical concentration above which damage occurs, and below which growth is normal.

  17. Household air pollution and the sustainable development goals.

    Science.gov (United States)

    Amegah, Adeladza Kofi; Jaakkola, Jouni J K

    2016-03-01

    Globally, 41% of households, over 2.8 billion people, rely on solid fuels (coal and biomass) for cooking and heating. In developing countries in Asia and sub-Saharan Africa where these fuels are predominantly used, women who are customarily responsible for cooking, and their young children, are most exposed to the resulting air pollution. Solid fuels are still in widespread use and it appears that intervention efforts are not keeping pace with population growth in developing countries. Here we pinpoint the challenges and identify opportunities for addressing household air pollution while mitigating global climate change and promoting the sustainable development goals. We recommend the following actions: implementation of the WHO indoor air quality guidelines on household fuel combustion; effective promotion and dissemination of improved cookstoves through formation of country alliances for clean cookstoves; expansion of liquefied petroleum gas production facilities and distribution networks; harnessing renewable energy potential; promotion of biogas production at both household and community level; ensuring improved ventilation of homes through education and enforcement of building standards; and exploiting opportunities in the health and other sectors for changing health-damaging cooking behaviour.

  18. Air Pollution and Human Health

    Science.gov (United States)

    Lave, Lester B.; Seskin, Eugene P.

    1970-01-01

    Reviews studies statistically relating air pollution to mortality and morbidity rates for respiratory, and cardiovascular diseases, cancer and infant mortality. Some data recalculated. Estimates 50 percent air pollution reduction will save 4.5 percent (2080 million dollars per year) of all economic loss (hospitalization, income loss) associated…

  19. Intercontinental Transport of Air Pollution

    Science.gov (United States)

    Rogers, David; Whung, Pai-Yei; Einaudi, Franco (Technical Monitor)

    2001-01-01

    The development of the global economy goes beyond raising our standards of living. We are in an ear of increasing environmental as well as economic interdependence. Long-range transport of anthropogenic atmospheric pollutants such as ozone, ozone precursors, airborne particles, heavy metals (such as mercury) and persistent organic pollutants are the four major types of pollution that are transported over intercontinental distances and have global environmental effects. The talk includes: 1) an overview of the international agreements related to intercontinental transport of air pollutants, 2) information needed for decision making, 3) overview of the past research on intercontinental transport of air pollutants - a North American's perspective, and 4) future research needs.

  20. Public Communication on Urban Air Pollution

    International Nuclear Information System (INIS)

    Otra, C.; Sala, R.

    2014-01-01

    The aim of this study was to analyze the state of public information in the field of air pollution in Spain. We conducted semi-structured interviews with members of public agencies, technical experts, scientists, and members of non governmental associations together with a documentary analysis of air pollution documents (plans, reports, etc.). We tried to characterize the information actions on air quality carried out in Spanish cities during the last years. In the results section we first analyze the ideas, concerns and considerations that underlie the actions of public information on air pollution, as well as the main challenges of public communication on this subject, according to the documents and the different experts consulted. We analyze the various contents of information transmitted nowadays (on levels of pollution, health impacts and mitigation or protection actions), as well as the mechanisms by which it is communicated, both continuously and in the case of threshold overcoming episodes. We also review the different media used to communicate air pollution information (Internet, mobile applications and other forms) and other issues such as information audiences, or the perceived impacts of information provided. Finally, the implications for more diverse and effective public involvement strategies in air pollution are discussed. (Author)

  1. Impacts of air pollution wave on years of life lost: A crucial way to communicate the health risks of air pollution to the public.

    Science.gov (United States)

    Huang, Jing; Pan, Xiaochuan; Guo, Xinbiao; Li, Guoxing

    2018-04-01

    Limited studies have explored the impacts of exposure to sustained high levels of air pollution (air pollution wave) on mortality. Given that the frequency, intensity and duration of air pollution wave has been increasing in highly polluted regions recently, understanding the impacts of air pollution wave is crucial. In this study, air pollution wave was defined as 2 or more consecutive days with air pollution index (API) > 100. The impacts of air pollution wave on years of life lost (YLL) due to non-accidental, cardiovascular and respiratory deaths were evaluated by considering both consecutive days with high levels of air pollution and daily air pollution levels in Tianjin, China, from 2006 to 2011. The results showed the durational effect of consecutive days with high levels of air pollution was substantial in addition to the effect of daily air pollution. For instance, the durational effect was related to an increase in YLL of 116.6 (95% CI: 4.8, 228.5) years from non-accidental deaths when the air pollution wave was sustained for 4 days, while the corresponding daily air pollution's effect was 121.2 (95% CI: 55.2, 187.1) years. A better interpretation of the health risks of air pollution wave is crucial for air pollution control policy making and public health interventions. Copyright © 2018 Elsevier Ltd. All rights reserved.

  2. Air pollution epidemiology. Assessment of health effects and risks

    Energy Technology Data Exchange (ETDEWEB)

    Katsouyanni, K. [Athens Univ. (Greece). Dept. of Hygiene and Epidemiology

    1995-12-31

    Air pollution epidemiology is the study of the occurrence and distribution of health outcomes in association with community air pollution exposure. It is therefore specific in the exposure variable. Air pollution health effects became evident during high air pollution episodes which occurred in the first decades of our century. Since then, legal and other control measures have led to lower air pollution levels. However, recent results from several studies indicate that lower levels of air pollution than the previously considered safe have serious adverse health effects. Although, there is increasingly agreement that air pollution, at levels measured today, affects health, there is still a lot to be understood concerning specific causal pollutants, biologic mechanisms involved and sensitive groups of individuals. The extent of potential confounding, time-considerations in air pollution effects, individual variation in air pollution exposure and exposure misclassification are some factors which complicate the study of these issues. (author)

  3. Air pollution epidemiology. Assessment of health effects and risks

    Energy Technology Data Exchange (ETDEWEB)

    Katsouyanni, K [Athens Univ. (Greece). Dept. of Hygiene and Epidemiology

    1996-12-31

    Air pollution epidemiology is the study of the occurrence and distribution of health outcomes in association with community air pollution exposure. It is therefore specific in the exposure variable. Air pollution health effects became evident during high air pollution episodes which occurred in the first decades of our century. Since then, legal and other control measures have led to lower air pollution levels. However, recent results from several studies indicate that lower levels of air pollution than the previously considered safe have serious adverse health effects. Although, there is increasingly agreement that air pollution, at levels measured today, affects health, there is still a lot to be understood concerning specific causal pollutants, biologic mechanisms involved and sensitive groups of individuals. The extent of potential confounding, time-considerations in air pollution effects, individual variation in air pollution exposure and exposure misclassification are some factors which complicate the study of these issues. (author)

  4. Air pollution control regulation. [Japan

    Energy Technology Data Exchange (ETDEWEB)

    Sogabe, K

    1975-05-01

    The Basic Law for Environmental Pollution Control is reviewed. The fundamental ideology of pollution control, range of pollution control, environmental standards, and national policy concerning pollution control are discussed. The content of the Air Pollution Control Law is summarized. The purpose of the Air Pollution Control Law, a list of substances regulated by the law, the type of facilities regulated by the law, control standards, type of control means, and emission standards for flue gas (sulfur oxides, particulate matters, and toxic substances) are described. The environmental standard for each pollutant and the target date for achieving the environmental standard are also given. The list of cities where the 7-rank K value control regulation for SOx is enforced is given. The procedure for registration in compliance with the law is also described.

  5. Indoor Air Pollution in Non Ac Passenger Bus

    Science.gov (United States)

    El Husna, Iksiroh; Unzilatirrizqi, Rizal D. Yan El; Karyanto, Yudi; Sunoko, Henna R.

    2018-02-01

    Passenger buses have been one of favorite means of transportation in Indonesia due to its affordability and flexibility. Intensity of human activities during the trip in the buses have a potential of causing indoor air pollution (polusi udara dalam ruang; PUDR). The indoor air pollution has an impact of 1000-time bigger than outdoor air pollution (polusi udara luar ruang; PULR) on lung. This study aimed to find out indoor air pollution rate of non air conditioned buses using an approach to biological agent pollutant source. The study applied an analysis restricted to microorganisms persistence as one of the sources of the indoor air pollution. The media were placed in different parts of the non AC buses. This study revealed that fungs were found in the non AC buses. They became contaminants and developed pathogenic bacteria that caused air pollution.

  6. Indoor Air Pollution in Non Ac Passenger Bus

    Directory of Open Access Journals (Sweden)

    El Husna Iksiroh

    2018-01-01

    Full Text Available Passenger buses have been one of favorite means of transportation in Indonesia due to its affordability and flexibility. Intensity of human activities during the trip in the buses have a potential of causing indoor air pollution (polusi udara dalam ruang; PUDR. The indoor air pollution has an impact of 1000-time bigger than outdoor air pollution (polusi udara luar ruang; PULR on lung. This study aimed to find out indoor air pollution rate of non air conditioned buses using an approach to biological agent pollutant source. The study applied an analysis restricted to microorganisms persistence as one of the sources of the indoor air pollution. The media were placed in different parts of the non AC buses. This study revealed that fungs were found in the non AC buses. They became contaminants and developed pathogenic bacteria that caused air pollution.

  7. Air quality and climate impacts due to CNG conversion of motor vehicles in Dhaka, Bangladesh.

    Science.gov (United States)

    Wadud, Zia; Khan, Tanzila

    2013-12-17

    Dhaka had recently experienced rapid conversion of its motor vehicle fleet to run on compressed natural gas (CNG). This paper quantifies ex-post the air quality and climate benefits of the CNG conversion policy, including monetary valuations, through an impact pathway approach. Around 2045 (1665) avoided premature deaths in greater Dhaka (City Corporation) can be attributed to air quality improvements from the CNG conversion policy in 2010, resulting in a saving of around USD 400 million. Majority of these health benefits resulted from the conversion of high-emitting diesel vehicles. CNG conversion was clearly detrimental from climate change perspective using the changes in CO2 and CH4 only (CH4 emissions increased); however, after considering other global pollutants (especially black carbon), the climate impact was ambiguous. Uncertainty assessment using input distributions and Monte Carlo simulation along with a sensitivity analysis show that large uncertainties remain for climate impacts. For our most likely estimate, there were some climate costs, valued at USD 17.7 million, which is an order of magnitude smaller than the air quality benefits. This indicates that such policies can and should be undertaken on the grounds of improving local air pollution alone and that precautions should be taken to reduce the potentially unintended increases in GHG emissions or other unintended effects.

  8. Teaching Air Pollution in an Authentic Context

    Science.gov (United States)

    Mandrikas, Achilleas; Stavrou, Dimitrios; Skordoulis, Constantine

    2017-04-01

    This paper describes a teaching-learning sequence (TLS) about air pollution and the findings resulting from its implementation by pre-service elementary teachers (PET) currently undergraduate students of the Department of Primary Education in the National and Kapodistrian University of Athens, Greece. The TLS focused on the relation of air pollution with wind and topography in local conditions. An authentic context was provided to the students based on daily up-to-date meteorological data via the Internet in order to estimate air pollution. The results are encouraging given that PET can correlate wind and concentration of air pollutants through reading specialized angular diagrams and weather maps, can recognize the correlation of topography in the concentration of air pollutants, and can describe temperature inversion. However, the PET demonstrated clear difficulties in ability of orientation, in wind naming, and in interpretation of symbols on weather map. Finally, the implications on teaching air pollution are discussed.

  9. The effects of air pollutants on the mortality rate of lung cancer and leukemia.

    Science.gov (United States)

    Dehghani, Mansooreh; Keshtgar, Laila; Javaheri, Mohammad Reza; Derakhshan, Zahra; Oliveri Conti, Gea; Zuccarello, Pietro; Ferrante, Margherita

    2017-05-01

    World Health Organization classifies air pollution as the first cause of human cancer. The present study investigated impact of air pollutants on the mortality rates of lung cancer and leukemia in Shiraz, one of the largests cities of Iran. This cross‑sectional (longitudinal) study was carried out in Shiraz. Data on six main pollutants, CO, SO2, O3, NO2, PM10 and PM2.5, were collected from Fars Environmental Protection Agency for 3,001 days starting from 1 January, 2005. Also, measures of climatic factors (temperature, humidity, and air pressure) were obtained from Shiraz Meteorological Organization. Finally, data related to number of deaths due to lung and blood cancers (leukemia) were gathered from Shiraz University Hospital. Relationship between variations of pollutant concentrations and cancers in lung and blood was investigated using statistical software R and MiniTab to perform time series analysis. Results of the present study revealed that the mortality rate of leukemia had a direct significant correlation with concentrations of nitrogen dioxide and carbon monoxide in the air (Pcar sharing.

  10. Chronic air pollution and social deprivation as modifiers of the association between high temperature and daily mortality.

    Science.gov (United States)

    Benmarhnia, Tarik; Oulhote, Youssef; Petit, Claire; Lapostolle, Annabelle; Chauvin, Pierre; Zmirou-Navier, Denis; Deguen, Séverine

    2014-06-18

    Heat and air pollution are both associated with increases in mortality. However, the interactive effect of temperature and air pollution on mortality remains unsettled. Similarly, the relationship between air pollution, air temperature, and social deprivation has never been explored. We used daily mortality data from 2004 to 2009, daily mean temperature variables and relative humidity, for Paris, France. Estimates of chronic exposure to air pollution and social deprivation at a small spatial scale were calculated and split into three strata. We developed a stratified Poisson regression models to assess daily temperature and mortality associations, and tested the heterogeneity of the regression coefficients of the different strata. Deaths due to ambient temperature were calculated from attributable fractions and mortality rates were estimated. We found that chronic air pollution exposure and social deprivation are effect modifiers of the association between daily temperature and mortality. We found a potential interactive effect between social deprivation and chronic exposure with regards to air pollution in the mortality-temperature relationship. Our results may have implications in considering chronically polluted areas as vulnerable in heat action plans and in the long-term measures to reduce the burden of heat stress especially in the context of climate change.

  11. Downscaling a Global Climate Model to Simulate Climate Change Impacts on U.S. Regional and Urban Air Quality

    Science.gov (United States)

    Trail, M.; Tsimpidi, A. P.; Liu, P.; Tsigaridis, K.; Hu, Y.; Nenes, A.; Russell, A. G.

    2013-01-01

    Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with WRF to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the continental United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12km by 12km resolution, as well as the effect of evolving climate conditions on the air quality at major U.S. cities. The high resolution simulations produce somewhat different results than the coarse resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the U.S. during fall (Western U.S., Texas, Northeastern, and Southeastern U.S), one region during summer (Texas), and one region where changes potentially would lead to better air quality during spring (Northeast). We also find that daily peak temperatures tend to increase in most major cities in the U.S. which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air pollutants.

  12. Downscaling a global climate model to simulate climate change over the US and the implication on regional and urban air quality

    Directory of Open Access Journals (Sweden)

    M. Trail

    2013-09-01

    Full Text Available Climate change can exacerbate future regional air pollution events by making conditions more favorable to form high levels of ozone. In this study, we use spectral nudging with the Weather Research and Forecasting (WRF model to downscale NASA earth system GISS modelE2 results during the years 2006 to 2010 and 2048 to 2052 over the contiguous United States in order to compare the resulting meteorological fields from the air quality perspective during the four seasons of five-year historic and future climatological periods. GISS results are used as initial and boundary conditions by the WRF regional climate model (RCM to produce hourly meteorological fields. The downscaling technique and choice of physics parameterizations used are evaluated by comparing them with in situ observations. This study investigates changes of similar regional climate conditions down to a 12 km by 12 km resolution, as well as the effect of evolving climate conditions on the air quality at major US cities. The high-resolution simulations produce somewhat different results than the coarse-resolution simulations in some regions. Also, through the analysis of the meteorological variables that most strongly influence air quality, we find consistent changes in regional climate that would enhance ozone levels in four regions of the US during fall (western US, Texas, northeastern, and southeastern US, one region during summer (Texas, and one region where changes potentially would lead to better air quality during spring (Northeast. Changes in regional climate that would enhance ozone levels are increased temperatures and stagnation along with decreased precipitation and ventilation. We also find that daily peak temperatures tend to increase in most major cities in the US, which would increase the risk of health problems associated with heat stress. Future work will address a more comprehensive assessment of emissions and chemistry involved in the formation and removal of air

  13. Analysis and modeling of daily air pollutants in the city of Ruse, Bulgaria

    Science.gov (United States)

    Zheleva, I.; Veleva, E.; Filipova, M.

    2017-10-01

    The city of Ruse is situated in the north-eastern part of Bulgaria. The northern boundary of Ruse region goes along the Danube river valley and coincides with the state boundary of the Republic of Bulgaria and the Republic of Romania. The climate of the region of Ruse is temperate continental, characterized by cold winters and dry, warm summers. Spring and autumn are short. In our previous work we studied information from 40 years period measurements [6] of temperature, air humidity and atmospheric pressure in Ruse region, Bulgaria. It was shown that mean values of the temperature in Ruse region are slightly goes up for the last 10 years and they are bigger than the mean temperature for Bulgaria. This could be a proof for climate change in Ruse region of Bulgaria. The most variable atmospheric parameter is air humidity during the spring seasons. The hardest change of temperature and atmospheric pressure is during January. Temperature has biggest change in January and smallest - in July. Humidity has biggest change in April and smallest - in October. Atmospheric pressure has biggest change in January and smallest - in July [5]. Air pollution maybe affects temperature, atmospheric pressure and humidity. All this in our opinion may be a reason for the increase in average temperatures for the period examined. This paper is devoted to examine air pollution in the Ruse region. It presents a statistical analysis of the level of air pollution in Ruse on data from the monitoring stations in the city. The measurements cover the period from 2015 including up to now. For the most dangerous pollutant PM10 we create an ARIMA model which is in a good agreement with the PM10 measurements.

  14. Air pollution control in India

    International Nuclear Information System (INIS)

    Jain, S.K.

    1995-01-01

    Prior to rapid spurt in industrialization in India, people were used to inhale pure air containing about 78% nitrogen, 21% oxygen and some carbon dioxide. But afterwards this composition of pure air was disturbed as a result of increased economic activities. Air, now a days also contains sulphur dioxide, carbon monoxide, nitrogen oxides etc., etc. which are extremely harmful for human health. Virulence of air pollution was realised in late eighties after Bhopal Gas Tragedy (BGT) and an effective air quality management started taking shape in India afterwards. The basic components of air quality management are legislation and regulations, emission inventory, air quality standards and monitoring, air dispersion models and installation of pollution control equipment which are being discussed in this paper. (author). 15 refs., 5 tabs

  15. Effect of environmental air pollution on cardiovascular diseases.

    Science.gov (United States)

    Meo, S A; Suraya, F

    2015-12-01

    Environmental air pollution has become a leading health concern especially in the developing countries with more urbanization, industrialization and rapidly growing population. Prolonged exposure to air pollution is a risk factor for cardiovascular diseases. The present study aimed to investigate the effects of environmental air pollution on progression of cardiovascular problems. In this study, we identified 6880 published articles through a systematic database including ISI-Web of Science, PubMed and EMBASE. The allied literature was searched by using the key words such as environmental pollution, air pollution, particulate matter pollutants PM 2.5 μm-PM 10 μm. Literature in which environmental air pollution and cardiac diseases were discussed was included. Descriptive information was retrieved from the selected literature. Finally, we included 67 publications and remaining studies were excluded. Environmental pollution can cause high blood pressure, arrhythmias, enhanced coagulation, thrombosis, acute arterial vasoconstriction, atherosclerosis, ischemic heart diseases, myocardial infarction and even heart failure. Environmental air pollution is associated with increased risk of cardiovascular diseases. Environmental pollution exerts its detrimental effects on the heart by developing pulmonary inflammation, systemic inflammation, oxidative stress, endothelial dysfunction and prothrombotic changes. Environmental protection officials must take high priority steps to minimize the air pollution to decrease the prevalence of cardiovascular diseases.

  16. Research into forest decline and air pollution in France: major findings and relevance for policy applications

    International Nuclear Information System (INIS)

    Landmann, G.

    1992-01-01

    The DEFORPA Programme (Forest Decline and Air Pollution) (1984-1991) aimed at identifying the causes of decline in conifers in the French mountains. The yellowing Norway spruce (Picea abies K), which reveals a Mg deficiency, results primarily from the long-term acidification and cation depletion of originally poor soils under the influence of acid deposition and harvest. Other air pollution effects include stream acidification in the Vosges area and eutrophication of forest ground vegetation. Ozone effects remain uncertain. Climatic anomalies affecting vulnerable standards in relation with their history were found to be the main causes of silver fir (Abies alba Mill.) dieback. Despite these air pollution effects and visible damage, the productivity of the studied species has increased over the past century; the causes (climate change, increased N deposition and CO 2 levels, silviculture) are not yet identified. Critical loads are thought to be a valuable tool for defining further emissions abatements to protect the sensitive parts of the forest ecosystem (flora, soils, surface waters). 45 refs., 1 fig., 3 tabs

  17. Cordon Pricing Considering Air Pollutants Emission

    Directory of Open Access Journals (Sweden)

    Shahriar Afandizadeh

    2016-04-01

    Full Text Available This paper considers the issue of air pollutants emission for the optimal and sustainable determination of cordon location, toll level, and price of park and ride (P&R. Although air pollutants emission decreases within the cordon by the implementation of cordon pricing scheme, it may increase outside the cordon and the whole network. Hence, air pollutants emission may only transfer from inside of the cordon to its outside. Therefore, in this paper, a multi-objective bi-level optimization model is developed. A solution algorithm is also presented based on the second version of strength Pareto evolutionary algorithm (SPEA2. The results reveal that this multi-objective model can be a useful tool for the sustainable and optimal design of the cordon and P&R scheme. In addition, cordon pricing is a multi-objective problem. Therefore, it is necessary to consider air pollutants emission. By choosing another non-dominated result in the solution space, air pollutants emission outside the cordon and the whole network can be reduced without a significant reduction in social welfare.

  18. Public Health and Air Pollution in Asia (PAPA): a multicity study of short-term effects of air pollution on mortality.

    Science.gov (United States)

    Wong, Chit-Ming; Vichit-Vadakan, Nuntavarn; Kan, Haidong; Qian, Zhengmin

    2008-09-01

    Although the deleterious effects of air pollution from fossil fuel combustion have been demonstrated in many Western nations, fewer studies have been conducted in Asia. The Public Health and Air Pollution in Asia (PAPA) project assessed the effects of short-term exposure to air pollution on daily mortality in Bangkok, Thailand, and in three cities in China: Hong Kong, Shanghai, and Wuhan. Poisson regression models incorporating natural spline smoothing functions were used to adjust for seasonality and other time-varying covariates that might confound the association between air pollution and mortality. Effect estimates were determined for each city and then for the cities combined using a random effects method. In individual cities, associations were detected between most of the pollutants [nitrogen dioxide, sulfur dioxide, particulate matter air pollution than those in Western industrial nations because they spend more time outdoors and less time in air conditioning. Although the social and environmental conditions may be quite different, it is reasonable to apply estimates derived from previous health effect of air pollution studies in the West to Asia.

  19. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality.

    Science.gov (United States)

    Hou, Pei; Wu, Shiliang

    2016-03-31

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology.

  20. Evaluation of the Dutch National Research Programme on Global Air Pollution and Climate Change. Final Report

    International Nuclear Information System (INIS)

    Guy, K.; Boekholt, P.; Kaellen, E.; Downing, T.; Verbruggen, A.

    2002-02-01

    During 2001, the second phase of the National Research Programme on Global Air Pollution and Climate Change (NOP2) has been evaluated. In the period 1995-2001 the budget for NOP was 47 million Dutch guilders, which supported over 30 organisations in 100 projects and studies spanning four main themes: (1) dynamics of the climate system and its component parts; (2) vulnerability of natural and societal systems to climate change; (3) societal causes and solutions; (4) integration and assessment. Later in the life of the programme, two themes were added to widen the scope of the programme and add value to existing activities. These covered projects concerned with 'cross-cutting' or 'over-arching' issues and those dealing with 'internationalisation', i.e. projects specifically designed to support various initiatives in the development of international programmes. A further proportion of the research budget was dedicated to direct policy support. The evaluation was primarily intended to: Assess the scientific quality of the work undertaken in the programme and the attainment of scientific and technical goals. Also attention was paid to the relevancy of projects and project outputs to national and international policy formulation (policy relevance); the structure and operation of the programme to see if it promoted coherence and synergy between the constituent parts (synergy); and recommendations concerning the form, content and direction of a new programme in the area (new directions)

  1. Characterizing the impact of projected changes in climate and air quality on human exposures to ozone.

    Science.gov (United States)

    Dionisio, Kathie L; Nolte, Christopher G; Spero, Tanya L; Graham, Stephen; Caraway, Nina; Foley, Kristen M; Isaacs, Kristin K

    2017-05-01

    The impact of climate change on human and environmental health is of critical concern. Population exposures to air pollutants both indoors and outdoors are influenced by a wide range of air quality, meteorological, behavioral, and housing-related factors, many of which are also impacted by climate change. An integrated methodology for modeling changes in human exposures to tropospheric ozone (O 3 ) owing to potential future changes in climate and demographics was implemented by linking existing modeling tools for climate, weather, air quality, population distribution, and human exposure. Human exposure results from the Air Pollutants Exposure Model (APEX) for 12 US cities show differences in daily maximum 8-h (DM8H) exposure patterns and levels by sex, age, and city for all scenarios. When climate is held constant and population demographics are varied, minimal difference in O 3 exposures is predicted even with the most extreme demographic change scenario. In contrast, when population is held constant, we see evidence of substantial changes in O 3 exposure for the most extreme change in climate. Similarly, we see increases in the percentage of the population in each city with at least one O 3 exposure exceedance above 60 p.p.b and 70 p.p.b thresholds for future changes in climate. For these climate and population scenarios, the impact of projected changes in climate and air quality on human exposure to O 3 are much larger than the impacts of changing demographics. These results indicate the potential for future changes in O 3 exposure as a result of changes in climate that could impact human health.

  2. Application of meteorology of air pollution in nuclear design of the city of Tehran

    International Nuclear Information System (INIS)

    Bahrainy, H.

    1997-01-01

    It is clear that the urban environment provides the setting for the life framework of a large and growing proportion of the world's population. In consequence, urban dwellers spend much of their lives in a quite distinctive type of man-modified (polluted) climate. This study focuses on two aspects of urban climatology in the city of Tehran: Climate and Urban Form. Each building reacts with its atmospheric envelope and these micro climatic effects are then integrated into macro climatic zones which commonly mirror the form of urban development and major land uses. More specifically this research paper intends to test the hypothesis that concentration or dispersion of urban air pollutants depend on atmospheric conditions and heat island in the urban areas, which is affected in turn, by topography and urban form. By some modifications in urban form, therefore, the atmospheric conditions may be changed (wind direction and speed) in an urban area which will eventually lead to better air quality in the city. Part of the study was based on an experiment in a low speed wind tunnel, which was built for this purpose. Also satellite data was the source of information for preparing the heat islands in Tehran

  3. Air pollution and population health: a global challenge.

    Science.gov (United States)

    Chen, Bingheng; Kan, Haidong

    2008-03-01

    "Air pollution and population health" is one of the most important environmental and public health issues. Economic development, urbanization, energy consumption, transportation/motorization, and rapid population growth are major driving forces of air pollution in large cities, especially in megacities. Air pollution levels in developed countries have been decreasing dramatically in recent decades. However, in developing countries and in countries in transition, air pollution levels are still at relatively high levels, though the levels have been gradually decreasing or have remained stable during rapid economic development. In recent years, several hundred epidemiological studies have emerged showing adverse health effects associated with short-term and long-term exposure to air pollutants. Time-series studies conducted in Asian cities also showed similar health effects on mortality associated with exposure to particulate matter (PM), sulfur dioxide (SO(2)), nitrogen dioxide (NO(2)) and ozone (O(3)) to those explored in Europe and North America. The World Health Organization (WHO) published the "WHO Air Quality Guidelines (AQGs), Global Update" in 2006. These updated AQGs provide much stricter guidelines for PM, NO(2), SO(2) and O(3). Considering that current air pollution levels are much higher than the WHO-recommended AQGs, interim targets for these four air pollutants are also recommended for member states, especially for developing countries in setting their country-specific air quality standards. In conclusion, ambient air pollution is a health hazard. It is more important in Asian developing countries within the context of pollution level and population density. Improving air quality has substantial, measurable and important public health benefits.

  4. Air pollution control. 3. ed.

    International Nuclear Information System (INIS)

    Baumbach, G.; Baumann, K.; Droescher, F.; Gross, H.; Steisslinger, B.

    1994-01-01

    Controlling the pollution of the air is an interdisciplinary problem. This introduction reaches from the origin of hazardous substances via their extension and conversion in the atmosphere, their effects of men, animals, plants and goods up to reduction methods for the various sources. Measuring techniques are one of the main points of interest, as it plays a key role in detecting hazardous substances and monitoring reduction measures. A survey of the history shows the historical dimension of the subject. The prescriptions relating to air pollution control give an impression of the present situation of air pollution control. Currently existing problems such as waste gases from motor vehicles, SO 2 transports, ozone in the ambient air, newly detected sorts of damage to the forests, emission reduction in the burning of fossile fuels, polychloried dibenzodioxins and furanes are dealt with. (orig.). 232 figs [de

  5. Air pollution and lichens

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, B W; Baddeley, M S; Hawksworth, D L [eds.

    1973-01-01

    This volume reflects the particular concern of many biologists for the effects of air pollution and illustrates the special values of lichens as plants suitable for such studies. It brings together contributions from many experts in this field and includes much previously unpublished data, as well as up-to-date review chapters. Emphasis is placed on the logical progression from field observational studies to critical laboratory investigations aimed at elucidating the modes of action of various air pollutants on the living tissues of lichens. The action of such pollutants on vascular plants is also discussed. It is the editors' intention that the book be both a reference volume and an encouragement for further wor

  6. Experimental technique of calibration of symmetrical air pollution ...

    Indian Academy of Sciences (India)

    Based on the inherent property of symmetry of air pollution models, a Symmetrical Air Pollution. Model ... process is in compliance with air pollution regula- ..... Ground simulation is achieved through MATLAB package which is based on least-.

  7. Air pollution and population health: a global challenge

    OpenAIRE

    Chen, Bingheng; Kan, Haidong

    2008-01-01

    Air pollution and population health” is one of the most important environmental and public health issues. Economic development, urbanization, energy consumption, transportation/motorization, and rapid population growth are major driving forces of air pollution in large cities, especially in megacities. Air pollution levels in developed countries have been decreasing dramatically in recent decades. However, in developing countries and in countries in transition, air pollution levels are still...

  8. Air Pollutants Minimalization of Pollutant Absorber with Condensation System

    International Nuclear Information System (INIS)

    Ruhiat, Yayat; Wibowo, Firmanul Catur; Oktarisa, Yuvita

    2017-01-01

    Industrial development has implications for pollution, one of it is air pollution. The amount of air pollutants emitted from industrial depend on several factors which are capacity of its fuel, high chimneys and atmospheric stability. To minimize pollutants emitted from industries is created a tool called Pollutant Absorber (PA) with a condensing system. Research and Development with the approach of Design for Production was used as methodology in making PA. To test the function of PA, the simulation had been done by using the data on industrial emissions Cilegon industrial area. The simulation results in 15 years period showed that the PA was able to minimize the pollutant emissions of SO2 by 38% NOx by 37% and dust by 64%. Differences in the absorption of pollutants shows the weakness of particle separation process in the separator. This condition happen because the condensation process is less optimal during the absorption and separation in the separator. (paper)

  9. An Integrative Study of Photochemical Air Pollution in Hong Kong: an Overview

    Science.gov (United States)

    Wang, T.

    2014-12-01

    Hong Kong is situated in the Pearl River delta of Southern China. This region has experienced phenomenal economic growth in the past 30 years. Emissions of large amount of pollutants from urban areas and various industries coupled with subtropical climate have led to frequent occurrences of severe photochemical air pollution. Despite the long-term control efforts of the Hong Kong government, the atmospheric levels of ozone have been increasing in the past decade. To obtain an updated and more complete understanding of photochemical smog, an integrative study has been conducted during 2010-2014. Several intensive measurement campaigns were carried out at urban, suburban and rural sites in addition to the routine observations at fourteen air quality monitoring stations in Hong Kong. Meteorological, photochemical, and chemical-transport modeling studies were conducted to investigate the causes/processes of elevated photochemical pollution . The main activities of this study were to (1) examine the situation and trends of photochemical air pollution in Hong Kong, (2) understand some underlying chemical processes in particular the poorly-understood heterogeneous processes of reactive nitrogen oxides, (3) quantify the local, regional, and super-regional contributions to the ozone pollution in Hong Kong, and (4) review the control policy and make further recommendations based on the science. This paper will give an overview of this study and present some key results on the trends and chemistry of the photochemical pollution in this polluted subtropical region.

  10. Implications of alternative assumptions regarding future air pollution control in scenarios similar to the Representative Concentration Pathways

    NARCIS (Netherlands)

    Chuwah, C.; van Noije, T.; van Vuuren, D.P.; Hazeleger, W.; Strunk, A.; Deetman, S.; Beltran, A.M.; van Vliet, J.

    2013-01-01

    The uncertain, future development of emissions of short-lived trace gases and aerosols forms a key factor for future air quality and climate forcing. The Representative Concentration Pathways (RCPs) only explore part of this range as they all assume that worldwide ambitious air pollution control

  11. Air pollution and sick-leaves. A case study using air pollution data from Oslo

    International Nuclear Information System (INIS)

    Hansen, A.C.; Selte, H.K.

    2000-01-01

    During the last decade an increasing amount of studies have investigated the relationship between air pollution and human health effects. In this study we investigate how these effects in turn induce reduced labour productivity in terms of sick-leaves, which is an important factor in assessment of air pollution costs in urban areas. For this purpose we employ a logit model along with data on sick-leaves from a large office in Oslo and different air pollutants. Our results indicate that sick-leaves are significantly associated with particulate matter (PM 1 0), while the associations with SO 2 and NO 2 are more ambiguous. We also try to estimate the induced social costs in terms of lost labour productivity and increased governmental expenditures, although these estimates are more uncertain. 17 refs

  12. Population Dynamics and Air Pollution: The Impact of Demographics on Health Impact Assessment of Air Pollution

    Directory of Open Access Journals (Sweden)

    Esben Meulengracht Flachs

    2013-01-01

    Full Text Available Objective. To explore how three different assumptions on demographics affect the health impact of Danish emitted air pollution in Denmark from 2005 to 2030, with health impact modeled from 2005 to 2050. Methods. Modeled air pollution from Danish sources was used as exposure in a newly developed health impact assessment model, which models four major diseases and mortality causes in addition to all-cause mortality. The modeling was at the municipal level, which divides the approximately 5.5 M residents in Denmark into 99 municipalities. Three sets of demographic assumptions were used: (1 a static year 2005 population, (2 morbidity and mortality fixed at the year 2005 level, or (3 an expected development. Results. The health impact of air pollution was estimated at 672,000, 290,000, and 280,000 lost life years depending on demographic assumptions and the corresponding social costs at 430.4 M€, 317.5 M€, and 261.6 M€ through the modeled years 2005–2050. Conclusion. The modeled health impact of air pollution differed widely with the demographic assumptions, and thus demographics and assumptions on demographics played a key role in making health impact assessments on air pollution.

  13. Air pollution from motor vehicle emissions

    International Nuclear Information System (INIS)

    Petrushevska, Ljubica

    1996-01-01

    This paper presents some aspects of air pollution from motor vehicle emissions as: characteristic primary and secondary pollutants, dependence of the motor vehicle emission from the engine type; the relationship of typical engine emission and performance to air-fuel ratio, transport of pollutants from mobile sources of emissions, as well as some world experiences in the control approaches for exhaust emissions. (author)

  14. Air Pollution Primer.

    Science.gov (United States)

    National Tuberculosis and Respiratory Disease Association, New York, NY.

    As the dangers of polluted air to the health and welfare of all individuals became increasingly evident and as the complexity of the causes made responsibility for solutions even more difficult to fix, the National Tuberculosis and Respiratory Disease Association felt obligated to give greater emphasis to its clean air program. To this end they…

  15. Air pollution and mortality: A history

    Science.gov (United States)

    Anderson, H. R.

    Mortality is the most important health effect of ambient air pollution and has been studied the longest. The earliest evidence relates to fog episodes but with the development of more precise methods of investigation it is still possible to discern short-term temporal associations with daily mortality at the historically low levels of air pollution that now exist in most developed countries. Another early observation was that mortality was higher in more polluted areas. This has been confirmed by modern cohort studies that account for other potential explanations for such associations. There does not appear to be a threshold of effect within the ambient range of concentrations. Advances in the understanding of air pollution and mortality have been driven by the combined development of methods and biomedical concepts. The most influential methodological developments have been in time-series techniques and the establishment of large cohort studies, both of which are underpinned by advances in data processing and statistical analysis. On the biomedical side two important developments can be identified. One has been the application of the concept of multifactorial disease causation to explaining how air pollution may affect mortality at low levels and why thresholds are not obvious at the population level. The other has been an increasing understanding of how air pollution may plausibly have pathophysiological effects that are remote from the lung interface with ambient air. Together, these advances have had a profound influence on policies to protect public health. Throughout the history of air pollution epidemiology, mortality studies have been central and this will continue because of the widespread availability of mortality data on a large population scale and the weight that mortality carries in estimating impacts for policy development.

  16. Household air pollution and its effects on health.

    Science.gov (United States)

    Apte, Komalkirti; Salvi, Sundeep

    2016-01-01

    Household air pollution is a leading cause of disability-adjusted life years in Southeast Asia and the third leading cause of disability-adjusted life years globally. There are at least sixty sources of household air pollution, and these vary from country to country. Indoor tobacco smoking, construction material used in building houses, fuel used for cooking, heating and lighting, use of incense and various forms of mosquito repellents, use of pesticides and chemicals used for cleaning at home, and use of artificial fragrances are some of the various sources that contribute to household air pollution. Household air pollution affects all stages of life with multi-systemic health effects, and its effects are evident right from pre-conception to old age. In utero exposure to household air pollutants has been shown to have health effects which resonate over the entire lifetime. Exposures to indoor air pollutants in early childhood also tend to have repercussions throughout life. The respiratory system bears the maximum brunt, but effects on the cardiovascular system, endocrine system, and nervous system are largely underplayed. Household air pollutants have also been implicated in the development of various types of cancers. Identifying household air pollutants and their health implications helps us prepare for various health-related issues. However, the real challenge is adopting changes to reduce the health effects of household air pollution and designing innovative interventions to minimize the risk of further exposure. This review is an attempt to understand the various sources of household air pollution, the effects on health, and strategies to deal with this emergent risk factor of global mortality and morbidity.

  17. Clean Air Slots Amid Atmospheric Pollution

    Science.gov (United States)

    Hobbs, Peter V.

    2002-01-01

    This article investigates the mechanism for those layers in the atmosphere that are free of air borne pollution even though the air above and below them carry pollutants. Atmospheric subsidence is posed as a mechanism for this phenomenon.

  18. Air Pollution Exposure—A Trigger for Myocardial Infarction?

    Directory of Open Access Journals (Sweden)

    Niklas Berglind

    2010-03-01

    Full Text Available The association between ambient air pollution exposure and hospitalization for cardiovascular events has been reported in several studies with conflicting results. A case-crossover design was used to investigate the effects of air pollution in 660 first-time myocardial infarction cases in Stockholm in 1993–1994, interviewed shortly after diagnosis using a standard protocol. Air pollution data came from central urban background monitors. No associations were observed between the risk for onset of myocardial infarction and two-hour or 24-hour air pollution exposure. No evidence of susceptible subgroups was found. This study provides no support that moderately elevated air pollution levels trigger first-time myocardial infarction.

  19. Air pollution problem in the Mexico City metropolitan zone: Photochemical pollution

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, H.B.; Alvarez, P.S.; Echeverria, R.S.; Jardon, R.T. [Centro de Ciencias de la Atmosfera (Mexico). Seccion de Contaminacion Ambiental

    1997-12-31

    Mexico City Metropolitan Zone (MCMZ) represents an example of a megacity where the air pollution problem has reached an important evolution in a very short time, causing a risk in the health of a population of more than 20 million inhabitants. The atmospheric pollution problem in the MCMZ, began several decades ago, but it increased drastically in the middle of the 80`s. It is important to recognize that in the 60`s, 70`s and the first half of the 80`s the main pollutants were sulfur dioxide and total suspended particles. However since the second half of the 80`s until now, ozone is the most important air pollutant besides of the suspended particles (PM{sub 10}) and other toxic pollutants (1--8). The purpose of this paper is to discuss the evolution of the ozone atmospheric pollution problem in the MCMZ, as well as to analyze the results of several implemented air pollution control strategies.

  20. Ozone as an air pollutant

    DEFF Research Database (Denmark)

    Berg, Rolf W.

    1996-01-01

    A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995.......A Danish new book on ozone as an air pollutant has been reviewed. The Book is "Ozon som luftforurening" by Jes Fenger, Published by "Danmarks Miljøundersøgelser, 1995....

  1. Mapping real-time air pollution health risk for environmental management: Combining mobile and stationary air pollution monitoring with neural network models.

    Science.gov (United States)

    Adams, Matthew D; Kanaroglou, Pavlos S

    2016-03-01

    Air pollution poses health concerns at the global scale. The challenge of managing air pollution is significant because of the many air pollutants, insufficient funds for monitoring and abatement programs, and political and social challenges in defining policy to limit emissions. Some governments provide citizens with air pollution health risk information to allow them to limit their exposure. However, many regions still have insufficient air pollution monitoring networks to provide real-time mapping. Where available, these risk mapping systems either provide absolute concentration data or the concentrations are used to derive an Air Quality Index, which provides the air pollution risk for a mix of air pollutants with a single value. When risk information is presented as a single value for an entire region it does not inform on the spatial variation within the region. Without an understanding of the local variation residents can only make a partially informed decision when choosing daily activities. The single value is typically provided because of a limited number of active monitoring units in the area. In our work, we overcome this issue by leveraging mobile air pollution monitoring techniques, meteorological information and land use information to map real-time air pollution health risks. We propose an approach that can provide improved health risk information to the public by applying neural network models within a framework that is inspired by land use regression. Mobile air pollution monitoring campaigns were conducted across Hamilton from 2005 to 2013. These mobile air pollution data were modelled with a number of predictor variables that included information on the surrounding land use characteristics, the meteorological conditions, air pollution concentrations from fixed location monitors, and traffic information during the time of collection. Fine particulate matter and nitrogen dioxide were both modelled. During the model fitting process we reserved

  2. Trends of air pollution in Denmark - Normalised by a simple weather index model

    International Nuclear Information System (INIS)

    Kiilsholm, S.; Rasmussen, A.

    2000-01-01

    This report is a part of the Traffic Pool projects on 'Traffic and Environments', 1995-99, financed by the Danish Ministry of Transport. The Traffic Pool projects included five different projects on 'Surveillance of the Air Quality', 'Atmospheric Modelling', 'Atmospheric Chemistry Modelling', 'Smog and ozone' and 'Greenhouse effects and Climate', [Rasmussen, 2000]. This work is a part of the project on 'Surveillance of the Air Quality' with the main objectives to make trend analysis of levels of air pollution from traffic in Denmark. Other participants were from the Road Directory mainly focusing on measurement of traffic and trend analysis of the air quality utilising a nordic model for the air pollution in street canyons called BLB (Beregningsmodel for Luftkvalitet i Byluftgader) [Vejdirektoratet 2000], National Environmental Research Institute (HERI) mainly focusing on. measurements of air pollution and trend analysis with the Operational Street Pollution Model (OSPM) [DMU 2000], and the Copenhagen Environmental Protection Agency mainly focusing on measurements. In this study a more simple statistical model has been developed for trend analysis of the air quality. The model is filtering out the influence of the variations from year to year in the meteorological conditions on the air pollution levels. The weather factors found most important are wind speed, wind direction and mixing height. Measurements of CO, NO and NO 2 from three streets in Copenhagen have been used, these streets are Jagtvej, Bredgade and H. C. Andersen's Boulevard (HCAB). The years 1994-1996 were used for evaluation of the method and annual indexes of air pollution index dependent only on meteorological parameters, called WEATHIX, were calculated for the years 1990-1997 and used for normalisation of the observed air pollution trends. Meteorological data were taken from either the background stations at the H.C. Oersted - building situated close to one of the street stations or the synoptic

  3. Contribution of ecosystem services to air quality and climate change mitigation policies: the case of urban forests in Barcelona, Spain.

    Science.gov (United States)

    Baró, Francesc; Chaparro, Lydia; Gómez-Baggethun, Erik; Langemeyer, Johannes; Nowak, David J; Terradas, Jaume

    2014-05-01

    Mounting research highlights the contribution of ecosystem services provided by urban forests to quality of life in cities, yet these services are rarely explicitly considered in environmental policy targets. We quantify regulating services provided by urban forests and evaluate their contribution to comply with policy targets of air quality and climate change mitigation in the municipality of Barcelona, Spain. We apply the i-Tree Eco model to quantify in biophysical and monetary terms the ecosystem services "air purification," "global climate regulation," and the ecosystem disservice "air pollution" associated with biogenic emissions. Our results show that the contribution of urban forests regulating services to abate pollution is substantial in absolute terms, yet modest when compared to overall city levels of air pollution and GHG emissions. We conclude that in order to be effective, green infrastructure-based efforts to offset urban pollution at the municipal level have to be coordinated with territorial policies at broader spatial scales.

  4. Air Pollution and Allergic Airway Diseases: Social Determinantsand Sustainability in the Control and Prevention.

    Science.gov (United States)

    Paramesh, H

    2018-04-01

    Air pollution, global warming and climate change are the major contributing factors in causing the increase prevalence of allergic airway diseases like asthma and allergic rhinitis and they will be the defining issues for health system in the twenty-first century. Asthma is an early onset non-communicable environmental disease with global epidemic and contributes a greatest psycho socio economic burden. Nearly 8 million global deaths are from air pollution. Over one billion population are the sufferers during 2015 and will increase to 4 billion by 2050. Air pollution not only triggers the asthma episodes but also changes the genetic pattern in initiating the disease process. Over the years our concept of management of allergic airway disease has changed from control of symptoms to prevention of the disease. To achieve this we need positive development on clean air policies with standard norms, tracking progress, monitoring and evaluation, partnership and conventions with local and global authorities. We do have challenges to overcome like rapid urbanization, lack of multisectorial policy making, lack of finance for research and development and lack of monitoring exposure to health burden from air pollution. We need to prioritize our strategy by sustainable, safe, human settlement, cities, sustainable energy, industrialization, and research. The measures to be adopted are highlighted in this review article. With effective measures by all stake holders we can reduce air pollution and prevent the global warming by 2030, along with 194 countries as adopted by WHO in May 2015.

  5. Air pollution and lichens

    Energy Technology Data Exchange (ETDEWEB)

    Ferry, B W; Baddeley, M S; Hawksworth, D L [eds.

    1973-01-01

    This volume reflects the concern of biologists for the effects of air pollution and illustrates the special values of lichens as plants suitable for such studies. Emphasis is placed on the logical progression from field observational studies to laboratory investigations aimed at elucidating the modes of action of various pollutants. The actions of pollutants on vascular plants is also discussed. Separate analytics are included for 17 chapters.

  6. Assessment of regional air pollution variability in Istanbul

    International Nuclear Information System (INIS)

    Sen, Z.; Oztopal, A.

    2001-01-01

    Air pollution concentrations have temporal and spatial variations depending on the prevailing weather conditions, topographic features, city building heights and locations. When the measurements of air pollutants are available at set measurement sites, the regional variability degree of air pollutants is quantified using the point cumulative semi-variogram (PCSV). This technique provides a systematic method for calculating the changes in the concentrations of air pollutants with distance from a specific site. Regional variations of sulphur dioxide (SO 2 ) and total suspended particulate (TSP) matter concentrations in Istanbul city were evaluated using the PCSV concept. The data were available from 16 different air pollution measurement stations scattered all over the city for a period from 1988 to 1994. Monthly regional variation maps were drawn in and around the city at different radii of influence. These maps provide a reference for measuring future changes of air pollution in the city. (author)

  7. Air pollution sources, impact and monitoring

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    1999-01-01

    Improper management of socio-economic developmental activities has put a great stress on natural resources and eco-systems and has caused environmental degradation. Indiscriminate release of toxic substances into the atmosphere from power generation, industrial operations, transportation, incineration of waste and other operations has affected the quality of ambient air. Combustion of fossil fuel results in the emission of oxides of carbon, sulfur and nitrogen, particulate and organic compounds which affect the local, regional and global environment. Industrial operations release a wide variety of pollutants which directly affect the local environment. Operation of automobiles releases oxides of carbon, sulfur and nitrogen, hydrocarbons, traces of heavy metals and toxic polycyclic aromatic compounds whereas incineration of municipal waste releases particulate, acid fumes and photochemically reactive and odorous compounds. These air pollutants have varying impacts on health and environment. The intake of polluted air may produce various physiological disorders ranging from respiratory diseases to changes in blood chemistry. Therefore, the emission of pollutants should be controlled at the source and monitoring the levels of pollution should assess the quality of air. (author)

  8. Air Quality in Lanzhou, a Major Industrial City in China: Characteristics of Air Pollution and Review of Existing Evidence from Air Pollution and Health Studies

    Science.gov (United States)

    Zhang, Yaqun; Li, Min; Bravo, Mercedes A.; Jin, Lan; Nori-Sarma, Amruta; Xu, Yanwen; Guan, Donghong; Wang, Chengyuan; Chen, Mingxia; Wang, Xiao; Tao, Wei; Qiu, Weitao; Zhang, Yawei

    2015-01-01

    Air pollution contributes substantially to global health burdens; however, less is known about pollution patterns in China and whether they differ from those elsewhere. We evaluated temporal and spatial heterogeneity of air pollution in Lanzhou, an urban Chinese city (April 2009–December 2012), and conducted a systematic review of literature on air pollution and health in Lanzhou. Average levels were 141.5, 42.3, and 47.2 µg/m3 for particulate matter with an aerodynamic diameter ≤10 µm (PM10), NO2, and SO2, respectively. Findings suggest some seasonality, particularly for SO2, with higher concentrations during colder months relative to warmer months, although a longer time frame of data is needed to evaluate seasonality fully. Correlation coefficients generally declined with distance between monitors, while coefficients of divergence increased with distance. However, these trends were not statistically significant. PM10 levels exceeded Chinese and other health-based standards and guidelines. The review identified 13 studies on outdoor air pollution and health. Although limited, the studies indicate that air pollution is associated with increased risk of health outcomes in Lanzhou. These studies and the high air pollution levels suggest potentially serious health consequences. Findings can provide guidance to future epidemiological studies, monitor placement programs, and air quality policies. PMID:25838615

  9. Ambient Air Pollution and Biomarkers of Health Effect.

    Science.gov (United States)

    Yang, Di; Yang, Xuan; Deng, Furong; Guo, Xinbiao

    2017-01-01

    Recently, the air pollution situation of our country is very serious along with the development of urbanization and industrialization. Studies indicate that the exposure of air pollution can cause a rise of incidence and mortality of many diseases, such as chronic obstructive pulmonary disease (COPD), asthma, myocardial infarction, and so on. However, there is now growing evidence showing that significant air pollution exposures are associated with early biomarkers in various systems of the body. In order to better prevent and control the damage effect of air pollution, this article summarizes comprehensively epidemiological studies about the bad effects on the biomarkers of respiratory system, cardiovascular system, and genetic and epigenetic system exposure to ambient air pollution.

  10. Effects of air pollution on human health

    Energy Technology Data Exchange (ETDEWEB)

    Heimann, H

    1961-01-01

    An appreciable amount of knowledge exists about the effects of community air pollution upon human health. This knowledge comes in part from direct studies of the air pollution health problem and in part from investigations done for other purposes. It is equally apparent that there are many aspects of the subject of the health effects of air pollution on which sound information is lacking. Many years undoubtedly will pass before we have the answers to all the questions involved. Man-made air pollution could be entirely eliminated, but the price that civilization would be required to pay for this would be exorbitant by any standards, whether monetary or otherwise. It is unreasonable to contemplate that we could put a stop to all combustion, the chief source of man-made air pollution. It is logical, however, to consider that the clarification of the air on a qualitatively and quantitatively selective basis is feasible, and in some cases, highly desirable. This can be done, for example, by selectively arresting the contaminants at their source. 404 references.

  11. Healthy neighborhoods: walkability and air pollution.

    Science.gov (United States)

    Marshall, Julian D; Brauer, Michael; Frank, Lawrence D

    2009-11-01

    The built environment may influence health in part through the promotion of physical activity and exposure to pollution. To date, no studies have explored interactions between neighborhood walkability and air pollution exposure. We estimated concentrations of nitric oxide (NO), a marker for direct vehicle emissions), and ozone (O(3)) and a neighborhood walkability score, for 49,702 (89% of total) postal codes in Vancouver, British Columbia, Canada. NO concentrations were estimated from a land-use regression model, O(3) was estimated from ambient monitoring data; walkability was calculated based on geographic attributes such as land-use mix, street connectivity, and residential density. All three attributes exhibit an urban-rural gradient, with high walkability and NO concentrations, and low O(3) concentrations, near the city center. Lower-income areas tend to have higher NO concentrations and walkability and lower O(3) concentrations. Higher-income areas tend to have lower pollution (NO and O(3)). "Sweet-spot" neighborhoods (low pollution, high walkability) are generally located near but not at the city center and are almost exclusively higher income. Increased concentration of activities in urban settings yields both health costs and benefits. Our research identifies neighborhoods that do especially well (and especially poorly) for walkability and air pollution exposure. Work is needed to ensure that the poor do not bear an undue burden of urban air pollution and that neighborhoods designed for walking, bicycling, or mass transit do not adversely affect resident's exposure to air pollution. Analyses presented here could be replicated in other cities and tracked over time to better understand interactions among neighborhood walkability, air pollution exposure, and income level.

  12. The European concerted action on air pollution epidemiology

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann-Liebrich, U. [Basel Univ. (Switzerland). Inst. for Social and Preventive Medicine

    1995-12-31

    The European Concerted Action on Air Pollution Epidemiology was started in 1990 with the aim of bringing together European researchers in the field and improving research through collaboration and by preparing documents which would help to this end and by organizing workshops. A further aim was to stimulate cooperative research. Air pollution epidemiology investigates human effects of community air pollution by epidemiological methods. Epidemiology in general investigates the distribution and determinants of health-related states and events in populations. Diseases in which air pollution may play a significant role are mainly diseases of the respiratory system, for example chronic non-specific lung disease and lung cancer. Most diseases caused by air pollution can also be caused by other factors. Air pollution epidemiology is therefore specific in the expo variable (community air pollution) rather than in the type of health effects being studied. Air pollution epidemiology is beset with some specially challenging difficulties: ubiquitous exposure and as a consequence limited heterogeneity in exposure, low relative risks, few or specific health end points, and strong confounding. Further on the exposure-effect relationship is complicated by assumptions inherent to different study designs which relate to the exposure duration necessary to produce a certain health effect. In reports and workshops the concerted action tries to propose strategies to deal with these problems. (author)

  13. The European concerted action on air pollution epidemiology

    Energy Technology Data Exchange (ETDEWEB)

    Ackermann-Liebrich, U [Basel Univ. (Switzerland). Inst. for Social and Preventive Medicine

    1996-12-31

    The European Concerted Action on Air Pollution Epidemiology was started in 1990 with the aim of bringing together European researchers in the field and improving research through collaboration and by preparing documents which would help to this end and by organizing workshops. A further aim was to stimulate cooperative research. Air pollution epidemiology investigates human effects of community air pollution by epidemiological methods. Epidemiology in general investigates the distribution and determinants of health-related states and events in populations. Diseases in which air pollution may play a significant role are mainly diseases of the respiratory system, for example chronic non-specific lung disease and lung cancer. Most diseases caused by air pollution can also be caused by other factors. Air pollution epidemiology is therefore specific in the expo variable (community air pollution) rather than in the type of health effects being studied. Air pollution epidemiology is beset with some specially challenging difficulties: ubiquitous exposure and as a consequence limited heterogeneity in exposure, low relative risks, few or specific health end points, and strong confounding. Further on the exposure-effect relationship is complicated by assumptions inherent to different study designs which relate to the exposure duration necessary to produce a certain health effect. In reports and workshops the concerted action tries to propose strategies to deal with these problems. (author)

  14. Cough and environmental air pollution in China.

    Science.gov (United States)

    Zhang, Qingling; Qiu, Minzhi; Lai, Kefang; Zhong, Nanshan

    2015-12-01

    With fast-paced urbanization and increased energy consumption in rapidly industrialized modern China, the level of outdoor and indoor air pollution resulting from industrial and motor vehicle emissions has been increasing at an accelerated rate. Thus, there is a significant increase in the prevalence of respiratory symptoms such as coughing, wheezing, and decreased pulmonary function. Experimental exposure research and epidemiological studies have indicated that exposure to particulate matter, ozone, nitrogen dioxide, and environmental tobacco smoke have a harmful influence on development of respiratory diseases and are significantly associated with cough and wheeze. This review mainly discusses the effect of air pollutants on respiratory health, particularly with respect to cough, the links between air pollutants and microorganisms, and air pollutant sources. Particular attention is paid to studies in urban areas of China where the levels of ambient and indoor air pollution are significantly higher than World Health Organization recommendations. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Air pollution control policy in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Leutert, G. [Forests and Landscape, Berne (Switzerland). Federal Office of Environment

    1995-12-31

    The legal basis of the Swiss air pollution control policy is set by the Federal Law on the Protection of the Environment, which came into force in 1985. It aims to protect human beings, animals and plants, their biological communities and habitats against harmful effects or nuisances and to maintain the fertility of the soil. The law is source-oriented (by emission standards) as well as effect-oriented (by ambient air quality standards). To link both elements a two-stage approach is applied. In the first stage preventive measures are taken at the emitting sources, irrespective of existing air pollution levels. Emissions have to be limited by early preventive measures as much as technical and operational conditions allow and as far as economically acceptable (prevention principle). By this, air pollution shall be kept as low as possible as a matter of principle, without the environment having to be in danger first. In a second stage the measures are strengthened or backed up by additional measures if ambient air quality standards laid down in the Ordinance on Air Pollution Control are exceeded. At this second stage, protection of man and his environment has priority over economic considerations. (author)

  16. Air pollution control policy in Switzerland

    Energy Technology Data Exchange (ETDEWEB)

    Leutert, G [Forests and Landscape, Berne (Switzerland). Federal Office of Environment

    1996-12-31

    The legal basis of the Swiss air pollution control policy is set by the Federal Law on the Protection of the Environment, which came into force in 1985. It aims to protect human beings, animals and plants, their biological communities and habitats against harmful effects or nuisances and to maintain the fertility of the soil. The law is source-oriented (by emission standards) as well as effect-oriented (by ambient air quality standards). To link both elements a two-stage approach is applied. In the first stage preventive measures are taken at the emitting sources, irrespective of existing air pollution levels. Emissions have to be limited by early preventive measures as much as technical and operational conditions allow and as far as economically acceptable (prevention principle). By this, air pollution shall be kept as low as possible as a matter of principle, without the environment having to be in danger first. In a second stage the measures are strengthened or backed up by additional measures if ambient air quality standards laid down in the Ordinance on Air Pollution Control are exceeded. At this second stage, protection of man and his environment has priority over economic considerations. (author)

  17. Photochemical and other air pollutants in South Holland

    Energy Technology Data Exchange (ETDEWEB)

    Posthumus, A.C.

    1975-01-01

    This year at fifteen places, regularly distributed over the industrial area west of Rotterdam, indicator plants for air pollution were again set out in the open. Tulip, gladiolus and freesia, indicators for HF, all demonstrated the same two sites to have maximum HF concentration. Spinach, an indicator for O/sub 3//SO/sub 2/, showed maximum injury in April and May and more south of the New Waterway than north of it. Medicago sativa, a plant species rather sensitive for SO/sub 2/ and O/sub 3/, showed little damage, and the reaction of petunia indicated a possible effect of ethylene only in a few cases. The photochemical air pollutant PAN caused in a few cases as well a slight injury to the indicator plants Urtica urens and Poa annua. The frequency of the injury to tobacco Bel W3 by O/sub 3//SO/sub 2/ was maximum during some periods in summer and autumn. This year again the effect of air pollution on growth and yield of tulips, tobacco and tomato plants was studied at six sites at the mouth of the Rhine with filtered and unfiltered greenhouses. The climatic conditions in these greenhouses were completely alike. Tulips in all the unfiltered greenhouses showed twice as heavy leaf injury as those in the filtered greenhouses. Tobacco plants had a higher average fresh and dry weight in the filtered greenhouses than in the unfiltered ones. The same usually held for tomato plants and also for the number of fruits and the average fresh and dry weight of tomato fruits.

  18. Photochemical and other air pollutions in the Netherlands

    Energy Technology Data Exchange (ETDEWEB)

    Floor, H.

    1975-01-01

    Together with the State Institute of Public Health and the Royal Dutch Meteorological Institute, the Institute of Phytopathological Research continued investigations on incidence of air pollution in the country. The main purpose is to measure the effects of air pollution on indicator plants and to detect over the years which components separately or perhaps together damage indicator plants. In 1974, the network of experimental fields in the Netherlands was completed. From April until October, 29 fields were inspected weekly for typical symptoms of air pollution. Just as in the preceding year O3 caused most injury of the photochemical air pollutants, as shown by Spinacia oleracea and Nicotiana tabacum. Other photochemical air pollutants like PAN, and the pollutants SO2, NO/sub x/ and ethylene caused little injury to the indicator plants Urtica urens, Poa annua, Medicago sativa, Petunia nyctaginiflora and Solanum tuberosum. Symptoms of damage on Tulipa gesneriana, Gladiolus gandavensis and Freesia refracta indicated air pollution by HF in all experimental fields, but especially in the south of the country. The F determination in the air by means of the limed paper method established the results with the indicator plants.

  19. Review of air pollution and health impacts in Malaysia

    International Nuclear Information System (INIS)

    Afroz, Rafia; Hassan, M.N.; Ibrahim, N.A.

    2003-01-01

    In the early days of abundant resources and minimal development pressures, little attention was paid to growing environmental concerns in Malaysia. The haze episodes in Southeast Asia in 1983, 1984, 1991, 1994, and 1997 imposed threats to the environmental management of Malaysia and increased awareness of the environment. As a consequence, the government established Malaysian Air Quality Guidelines, the Air Pollution Index, and the Haze Action Plan to improve air quality. Air quality monitoring is part of the initial strategy in the pollution prevention program in Malaysia. Review of air pollution in Malaysia is based on the reports of the air quality monitoring in several large cities in Malaysia, which cover air pollutants such as Carbon monoxide (CO), Sulphur Dioxide (SO 2 ), Nitrogen Dioxide (NO 2 ), Ozone (O 3 ), and Suspended Particulate Matter (SPM). The results of the monitoring indicate that Suspended Particulate Matter (SPM) and Nitrogen Dioxide (NO 2 ) are the predominant pollutants. Other pollutants such as CO, O x , SO 2 , and Pb are also observed in several big cities in Malaysia. The air pollution comes mainly from land transportation, industrial emissions, and open burning sources. Among them, land transportation contributes the most to air pollution. This paper reviews the results of the ambient air quality monitoring and studies related to air pollution and health impacts

  20. Air Pollution Surveillance Systems

    Science.gov (United States)

    Morgan, George B.; And Others

    1970-01-01

    Describes atmospheric data monitoring as part of total airpollution control effort. Summarizes types of gaseous, liquid and solid pollutants and their sources; contrast between urban and rural environmental air quality; instrumentation to identify pollutants; and anticipated new non-wet chemical physical and physiochemical techniques tor cetection…

  1. Gaseous and particulate urban air pollution in the region of Vojvodina (Serbia

    Directory of Open Access Journals (Sweden)

    Malinović-Milićević Slavica B.

    2015-01-01

    Full Text Available The present study focuses on interpretations of the temporal variations and variations between urban locations of sulfur dioxide (SO2, nitrogen dioxide (NO2 and black smoke (BS during the period 2001-2008 in the Vojvodina Region of Serbia (VR_S. In this study we examined variations of pollutants concentrations during household heating and non-heating seasons and the effect of household heating, traffic, rainfall and wind speed on the air pollution levels of SO2, NO2 and BS in eight locations. The analyses showed that the annual limit values of these pollutants as recommended by the Serbian regulations and recommendations were not exceeded, unlike the daily limits. Higher SO2 concentrations during household heating season in four locations indicate the substantial impact of house­hold heating on air quality. Positive effects of the use of environmentally cleaner fuels were observed in only two locations. The growing impact of traffic on air pollution is shown by the increasing trend of NO2 during both seasons. Calm wind conditions and an absence of rainfall were found to have incremental effects on pollution levels in most locations. [Projekat Ministarstva nauke Republike Srbije, br. III 43007: Studying climate change and its influence on the environment: impacts, adaptation and mitigation i br. III 43002: Biosensing Technolo­gies and Global System for Continuous Research and Integrated Management

  2. Global air pollution crossroads over the Mediterranean

    NARCIS (Netherlands)

    Lelieveld, J; Berresheim, H; Borrmann, S; Crutzen, P J; Dentener, F J; Fischer, H; Feichter, J; Flatau, P J; Heland, J; Holzinger, R; Korrmann, R; Lawrence, M G; Levin, Z; Markowicz, K M; Mihalopoulos, N; Minikin, A; Ramanathan, V; De Reus, M; Roelofs, G J; Scheeren, H A; Sciare, J; Schlager, H; Schultz, M; Siegmund, P; Steil, B; Stephanou, E G; Stier, P; Traub, M; Warneke, C; Williams, J; Ziereis, H

    2002-01-01

    The Mediterranean Intensive Oxidant Study, performed in the summer of 2001, uncovered air pollution layers from the surface to an altitude of 15 kilometers. In the boundary layer, air pollution standards are exceeded throughout the region, caused by West and East European pollution from the north.

  3. Spatiotemporal Variations and Driving Factors of Air Pollution in China.

    Science.gov (United States)

    Zhan, Dongsheng; Kwan, Mei-Po; Zhang, Wenzhong; Wang, Shaojian; Yu, Jianhui

    2017-12-08

    In recent years, severe and persistent air pollution episodes in China have drawn wide public concern. Based on ground monitoring air quality data collected in 2015 in Chinese cities above the prefectural level, this study identifies the spatiotemporal variations of air pollution and its associated driving factors in China using descriptive statistics and geographical detector methods. The results show that the average air pollution ratio and continuous air pollution ratio across Chinese cities in 2015 were 23.1 ± 16.9% and 16.2 ± 14.8%. The highest levels of air pollution ratio and continuous air pollution ratio were observed in northern China, especially in the Bohai Rim region and Xinjiang province, and the lowest levels were found in southern China. The average and maximum levels of continuous air pollution show distinct spatial variations when compared with those of the continuous air pollution ratio. Monthly changes in both air pollution ratio and continuous air pollution ratio have a U-shaped variation, indicating that the highest levels of air pollution occurred in winter and the lowest levels happened in summer. The results of the geographical detector model further reveal that the effect intensity of natural factors on the spatial disparity of the air pollution ratio is greater than that of human-related factors. Specifically, among natural factors, the annual average temperature, land relief, and relative humidity have the greatest and most significant negative effects on the air pollution ratio, whereas human factors such as population density, the number of vehicles, and Gross Domestic Product (GDP) witness the strongest and most significant positive effects on air pollution ratio.

  4. Spatiotemporal Variations and Driving Factors of Air Pollution in China

    Directory of Open Access Journals (Sweden)

    Dongsheng Zhan

    2017-12-01

    Full Text Available In recent years, severe and persistent air pollution episodes in China have drawn wide public concern. Based on ground monitoring air quality data collected in 2015 in Chinese cities above the prefectural level, this study identifies the spatiotemporal variations of air pollution and its associated driving factors in China using descriptive statistics and geographical detector methods. The results show that the average air pollution ratio and continuous air pollution ratio across Chinese cities in 2015 were 23.1 ± 16.9% and 16.2 ± 14.8%. The highest levels of air pollution ratio and continuous air pollution ratio were observed in northern China, especially in the Bohai Rim region and Xinjiang province, and the lowest levels were found in southern China. The average and maximum levels of continuous air pollution show distinct spatial variations when compared with those of the continuous air pollution ratio. Monthly changes in both air pollution ratio and continuous air pollution ratio have a U-shaped variation, indicating that the highest levels of air pollution occurred in winter and the lowest levels happened in summer. The results of the geographical detector model further reveal that the effect intensity of natural factors on the spatial disparity of the air pollution ratio is greater than that of human-related factors. Specifically, among natural factors, the annual average temperature, land relief, and relative humidity have the greatest and most significant negative effects on the air pollution ratio, whereas human factors such as population density, the number of vehicles, and Gross Domestic Product (GDP witness the strongest and most significant positive effects on air pollution ratio.

  5. Air pollution monitoring - a methodological approach

    International Nuclear Information System (INIS)

    Trajkovska Trpevska, Magdalena

    2002-01-01

    Methodology for monitoring the emission of polluters in the air is a complex concept that in general embraces following fazes: sampling, laboratory treatment, and interpretation of results. In Company for technological and laboratory investigation and environmental protection - Mining Institute Skopje, the control of emission of polluters in the air is performing according methodology based in general on the recommendation of standard VDI 2.066 prescribe from Ministry of Ecology in Germany, because adequate legislation in our country does not exist. In this article the basic treatment of methodology for the air polluters emission control is presented. (Original)

  6. Influence of air pollution upon plants

    Energy Technology Data Exchange (ETDEWEB)

    Kangas, E

    1963-01-01

    This talk, which was given at a symposium concerned with pollution of the air, arranged by the Societas Biochemica Biophysica et Microbiologica of Finland, deals with the influence exerted by air pollution upon plants, and upon trees in particular. Mention is made of the gases which have in Finland caused pollution of the air and have damaged plants (SO/sub 2/, Cl, gases containing chlorates, and the smoke from coal and liquid fuel). The effect of these substances, and of their varying concentrations, is reported, together with the effect of forms of dirt, especially with respect to coniferous trees.

  7. Human Exposure Assessment for Air Pollution.

    Science.gov (United States)

    Han, Bin; Hu, Li-Wen; Bai, Zhipeng

    2017-01-01

    Assessment of human exposure to air pollution is a fundamental part of the more general process of health risk assessment. The measurement methods for exposure assessment now include personal exposure monitoring, indoor-outdoor sampling, mobile monitoring, and exposure assessment modeling (such as proximity models, interpolation model, air dispersion models, and land-use regression (LUR) models). Among these methods, personal exposure measurement is considered to be the most accurate method of pollutant exposure assessment until now, since it can better quantify observed differences and better reflect exposure among smaller groups of people at ground level. And since the great differences of geographical environment, source distribution, pollution characteristics, economic conditions, and living habits, there is a wide range of differences between indoor, outdoor, and individual air pollution exposure in different regions of China. In general, the indoor particles in most Chinese families comprise infiltrated outdoor particles, particles generated indoors, and a few secondary organic aerosol particles, and in most cases, outdoor particle pollution concentrations are a major contributor to indoor concentrations in China. Furthermore, since the time, energy, and expense are limited, it is difficult to measure the concentration of pollutants for each individual. In recent years, obtaining the concentration of air pollutants by using a variety of exposure assessment models is becoming a main method which could solve the problem of the increasing number of individuals in epidemiology studies.

  8. Integrated Assessment of Air Pollution Control Measures for Megacities

    Science.gov (United States)

    Friedrich, R.; Theloke, J.; Denier-van-der-Gon, H.; Kugler, U.; Kampffmeyer, T.; Roos, J.; Torras, S.

    2012-04-01

    Air pollution in large cities is still a matter of concern. Especially the concentration of fine particles (PM10 and PM2.5) is largest in large cities leading to severe health impacts. Furthermore the PM10 thresholds of the EU Air Quality Directive are frequently exceeded. Thus the question arises, whether the initiated policies and measures for mitigating air pollution are sufficient to meet the air quality targets and - if not - which efficient further pollution mitigation measures exist. These questions have been addressed in the EU research project MEGAPOLI for the four European megacities respectively agglomerations London, Paris, Rhine-Ruhr area and Po valley. Firstly, a reference scenario of future activities and emissions has been compiled for the megacities for the years 2020, 2030 and 2050 for all relevant air pollutants (CO, NH3, NMVOC, NOx, PM10, PM2.5 and SO2) and greenhouse gases (CO2, CH4 and N2O). The reference scenario takes into account as well population changes as technical progress and economic growth. As pollution flowing in from outside the city is about as important as pollution caused by emissions in the city, the analysis covers the whole of Europe and not only the city area. Emissions are then transformed into concentrations using atmospheric models. The higher concentrations in cities were estimated with a newly developed 'urban increment' model. Results show, that in the megacities the limits of the Air Quality Directive (2008/50/EC) will be exceeded. Thus additional efforts are necessary to reduce emissions further. Thus, a number of further measures (not implemented in current legislation) were selected and assessed. These included mitigation options for road transport, other mobile sources, large combustion plants, small and medium combustion plants and industry. For each measure and in addition for various bundles of measures a cost-benefit analysis has been carried out. Benefits (avoided health risks and climate change risks) have

  9. Hydrocarbons and air pollution

    International Nuclear Information System (INIS)

    Herz, O.

    1992-01-01

    This paper shows the influence of hydrocarbons vapors, emitted by transports or by volatile solvents using, on air pollution. Hydrocarbons are the principal precursors of photochemical pollution. After a brief introduction on atmospheric chemistry and photochemical reactions, the author describes the french prevention program against hydrocarbons emissions. In the last chapter, informations on international or european community programs for photochemical pollution study are given. 5 figs., 10 tabs

  10. Air pollution and climate-forcing impacts of a global hydrogen economy.

    Science.gov (United States)

    Schultz, Martin G; Diehl, Thomas; Brasseur, Guy P; Zittel, Werner

    2003-10-24

    If today's surface traffic fleet were powered entirely by hydrogen fuel cell technology, anthropogenic emissions of the ozone precursors nitrogen oxide (NOx) and carbon monoxide could be reduced by up to 50%, leading to significant improvements in air quality throughout the Northern Hemisphere. Model simulations of such a scenario predict a decrease in global OH and an increased lifetime of methane, caused primarily by the reduction of the NOx emissions. The sign of the change in climate forcing caused by carbon dioxide and methane depends on the technology used to generate the molecular hydrogen. A possible rise in atmospheric hydrogen concentrations is unlikely to cause significant perturbations of the climate system.

  11. Air pollution: mechanisms of neuroinflammation and CNS disease.

    Science.gov (United States)

    Block, Michelle L; Calderón-Garcidueñas, Lilian

    2009-09-01

    Air pollution has been implicated as a chronic source of neuroinflammation and reactive oxygen species (ROS) that produce neuropathology and central nervous system (CNS) disease. Stroke incidence and Alzheimer's and Parkinson's disease pathology are linked to air pollution. Recent reports reveal that air pollution components reach the brain; systemic effects that impact lung and cardiovascular disease also impinge upon CNS health. While mechanisms driving air pollution-induced CNS pathology are poorly understood, new evidence suggests that microglial activation and changes in the blood-brain barrier are key components. Here we summarize recent findings detailing the mechanisms through which air pollution reaches the brain and activates the resident innate immune response to become a chronic source of pro-inflammatory factors and ROS, culminating in CNS disease.

  12. Regional model of EKC for air pollution: Evidence from the Republic of Korea

    International Nuclear Information System (INIS)

    Park, Soonae; Lee, Youngmi

    2011-01-01

    This study aims to investigate a relationship between economic development and air pollution at the regional level, and further suggest energy policies for climate change mitigation. The present study examines an Environmental Kuznets Curve (EKC) hypothesis analyzing annual panel data of 16 metropolitan regions in Korea over a 16-year time period. The analysis results show that there is no one-dominant shape of EKC for SO 2 and NO 2 ; each region has its own EKC. That is, although we find the potential existence of U-shaped and N-shaped curves, the region-specific coefficients are enormously heterogeneous across regions. For CO, on the other hand, the random coefficient model shows that there is a dominant U-shaped curve across regions. In addition, energy consumption appears to be the most significant variable in explaining air pollution. Based on these results, we assert that environmental policy should consider the different characteristics of each region and type of pollutant. - Highlights: → Environmental Kuznets Curve (EKC) hypotheses are tested for air pollution in Korea. → A relationship of economic growth and pollution is analyzed at the regional level. → No-dominant EKC is found for SO 2 and NO 2 , but a dominant U-shaped curve for CO. → Environmental Policy should consider different features of each pollutant and region.

  13. Regional model of EKC for air pollution: Evidence from the Republic of Korea

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soonae, E-mail: psoonae@snu.ac.kr [Graduate School of Public Administration, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, Youngmi, E-mail: youngmil@usc.edu [School of Policy, Planning, and Development, University of Southern California, Los Angeles, CA 90089 (United States)

    2011-10-15

    This study aims to investigate a relationship between economic development and air pollution at the regional level, and further suggest energy policies for climate change mitigation. The present study examines an Environmental Kuznets Curve (EKC) hypothesis analyzing annual panel data of 16 metropolitan regions in Korea over a 16-year time period. The analysis results show that there is no one-dominant shape of EKC for SO{sub 2} and NO{sub 2}; each region has its own EKC. That is, although we find the potential existence of U-shaped and N-shaped curves, the region-specific coefficients are enormously heterogeneous across regions. For CO, on the other hand, the random coefficient model shows that there is a dominant U-shaped curve across regions. In addition, energy consumption appears to be the most significant variable in explaining air pollution. Based on these results, we assert that environmental policy should consider the different characteristics of each region and type of pollutant. - Highlights: > Environmental Kuznets Curve (EKC) hypotheses are tested for air pollution in Korea. > A relationship of economic growth and pollution is analyzed at the regional level. > No-dominant EKC is found for SO{sub 2} and NO{sub 2}, but a dominant U-shaped curve for CO. > Environmental Policy should consider different features of each pollutant and region.

  14. Public Perception of Urban Air Pollution: An Exploratory Study

    International Nuclear Information System (INIS)

    Sala, R.; Oltra, C.; Goncalves, L.

    2014-01-01

    This report presents the results of a qualitative study using focus groups aimed at understanding the beliefs and attitudes of the population towards air pollution, its levels, causes, health impacts and possible mitigation and protection actions. The study sample consisted of members of the general population, between 18 and 65 years living in Barcelona. The analysis of the group discussion indicates that there is little awareness among participants about air pollution risks. The causes of air pollution are relatively known but there is little knowledge about pollution levels and types of pollutants. We found a low level of perceived personal risk associated to air pollution that coexists with a general awareness of the health impacts of air pollution, a low level of concern about the problem and a low level of personal involvement in mitigation and self protection measures. Participants reported no use of existing information services about air pollution. (Author)

  15. Analysis of motorcycle fleet in Hanoi for estimation of air pollution emission and climate mitigation co-benefit of technology implementation

    Science.gov (United States)

    Kim Oanh, Nguyen Thi; Thuy Phuong, Mai Thi; Permadi, Didin Agustian

    2012-11-01

    A fleet of over two million motorcycles (MC) in Hanoi is believed to contribute a substantial emission of air pollutants and climate forcers but has not been thoroughly characterized. This study conducted a survey of the MC technologies and activities in Hanoi using questionnaires, GPS monitoring, and video camera in 2008. The data were collected for three typical road types (highways, arterials, residential streets) in 3 zones of the city. Majority of MC in Hanoi were relatively new (3.6 years), had 4-stroke engine, but only 6% was equipped with catalyst exhaust control devices. About 35% of the fleet did not comply with any EURO standards. The MC daily driving was 20 km, mostly done on arterial streets. The main driving features in Hanoi arterials and residential streets were of low speeds with frequent starts/stops and idling. International Vehicle Emissions (IVE) model produced adjusted emission factors (EFs) that were compared with the limited available measurement data. The fleet emission was estimated for 2008 as a base case and for two “what-if” faster technology implementation scenarios: scenario 1 assumed that the entire fleet in 2008 conformed at least EURO2 and scenario 2 assumed 100% MC met the EURO3 standard. Total emissions from the fleet in 2008 of CO, VOC, NOx, SO2, PM10, and CH4 were 158, 51.5, 9.5, 0.17, 2.4 and 9.5 kt, respectively. Emissions of 1,3-butadiene, acetaldehydes, formaldehydes and benzene were 0.26, 1.2, 4.9 and 2.1 kt, respectively. Faster EURO3 technology intrusion in scenario 2 would significantly reduce the emission of pollutants (by 53-94%) and climate forcers in CO2-equivalent (53% for 20-year and 38% for 100-year horizon), which tripled the reductions obtained under scenario 1. Substantial co-benefits for air quality and climate forcer mitigation could be achieved by the faster technology implementation.

  16. The climate-wildfire-air quality system: interactions and feedbacks across spatial and temporal scales

    Science.gov (United States)

    E. Natasha Stavros; Donald McKenzie; Narasimhan. Larkin

    2014-01-01

    Future climate change and its effects on social and ecological systems present challenges for preserving valued ecosystem services, including local and regional air quality. Wildfire is a major source of air-quality impact in some locations, and a substantial contributor to pollutants of concern, including nitrogen oxides and particulate matter, which are regulated to...

  17. Influence of air pollution on cultivated plants

    Energy Technology Data Exchange (ETDEWEB)

    Spierings, F H.F.G.; Van Raay, A; Wolting, H G

    1967-01-01

    An investigation repeated for the third time on susceptibility for SO/sub 2/ of 7 varieties of lettuce resulted in a reliable difference between the most and least susceptible variety; the others produced differences between individual plants within the varieties. Ethylene fumigations of tomato plants during five to six hours at concentrations of 0.5 to 3 ppm caused no visible reaction. A fumigation with 3 ppm for 23 hours resulted in a strong epinastic reaction at the base of the leaf petioles and curling of the young growing leaves. An apparatus was constructed to fumigate herbaceous plants, shrubs and trees in their natural environment and under normal climatic conditions. With this apparatus daffodil, tulip and Ixia were fumigated for 3 hours with HF in a concentration of 0.030 ppm. The most susceptible varieties showed leaf tip damage to an extent of 2 to 4 cm. Some time after an aluminium factory came into operation, injury to trees and shrubs occurred in the neighborhood; farm crops were not affected. For some factories the opportunity was given to carry out measurements on the amount of air pollution in the neighborhood of these factories before production starts, to estimate how much extra air pollution may be caused by the new factory.

  18. Transport of Aerosols: Regional and Global Implications for Climate, Weather, and Air Quality

    Science.gov (United States)

    Chin, Mian; Diehl, Thomas; Yu, Hongbin; Bian, Huisheng; Remer, Lorraine; Kahn, Ralph

    2008-01-01

    Long-range transport of atmospheric aerosols can have a significant impact on global climate, regional weather, and local air quality. In this study, we use a global model GOCART together with satellite data and ground-based measurements to assess the emission and transport of pollution, dust, biomass burning, and volcanic aerosols and their implications. In particular, we will show the impact of emissions and long-range transport of aerosols from major pollution and dust source regions to (1) the surface air quality, (2) the atmospheric heating rates, and (3) surface radiation change near the source and downwind regions.

  19. Advance planning for air pollution control

    Energy Technology Data Exchange (ETDEWEB)

    Brewer, G L

    1972-11-01

    An air quality management program for nitric acid plants emitting pollutants which include nitrogen oxides is proposed. The program consists of the following five phases: an inventory of the handling equipment within the plant, including the identification of potential emission sources in terms of process material balances; source testing (if required); ambient air quality measurements; emission control analysis; and the development of a complete air management plan which includes a balance between air exhausted from buildups and processes and air supplied in a controlled economical manner. Typical NOx air pollution problems associated with nitric acid plants are reviewed along with various approaches to control and by-product recovery.

  20. Effects of air pollution on plants

    Energy Technology Data Exchange (ETDEWEB)

    Seidman, G.

    1965-01-01

    Weather, automobile exhaust, waste dumps and industrial activities are major factors in the creation of air pollution problems. The first indication of an air pollution problem is often the injury that appears on comparatively sensitive vegetation. Sulfur dioxide causes both acute and chronic plant injury. Plants especially sensitive to SO/sub 2/ are alfalfa, cosmos, sweet pea, bachelor's button, and blackberry. Fluoride causes characteristic injury on plants. Plants sensitive to fluoride injury are gladiolus, azalea, tulip, and young needles of pine. Ethylene damage to plants was initially noted in greenhouses using artificial gas for heating. Orchids and carnations are sensitive to ethylene. Ozone is highly reactive and causes typical spotting injury to the upper surface of leaves. PAN causes injury to vegetation, especially petunia and lettuce. Other pollutants also cause plant injury. Mercury vapor, chlorine gas, ammonia, H/sub 2/S, CO, and nitrogen oxides are minor hazards. Susceptibility of vegetation to air pollution depends on various things such as variety of plants, amount of moisture available to the plants, temperature, and amount of sunlight during the period of air pollution. 8 references.

  1. Air pollution and urban air quality management in Indonesia

    Energy Technology Data Exchange (ETDEWEB)

    Santosa, Sri J. [Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta (Indonesia); Okuda, Tomoaki; Tanaka, Shigeru [Department of Applied Chemistry, Faculty of Science and Technology, Keio University, Yokohama (Japan)

    2008-06-15

    The trade-led industry and economic development after the Asian financial crisis a decade ago has been accelerated in Indonesia to improve the quality of life of its population. This rapid development of Indonesia was in fact heavily fueled by fossil fuels, especially oil, followed by natural gas and coal. The exploitation of fossil fuel in fueling the development resulted in significant environmental quality degradation. Air pollution is perhaps Indonesia's most severe environmental problem. Industry and transportation were the typical main sources of urban air pollutants. Moreover, Indonesia also failed to reach its original 2005 target for a complete phase-out of leaded gasoline. As a result, the level of Pb together with other pollutants such as CO, NO{sub x}, SO{sub 2}, and total suspended particulates has exceeded or at least approached the designated ambient air quality standards. The urban air pollution will not be lesser in extent, but surely will be more severe in the future. Unfortunately, the capability of the Indonesian authorities to manage the urban air quality is still very limited and the portion of the budget allocated to the improvement of urban air quality is still remarkably low, typically 1% of total. This is why the efforts to enhance the capability to manage the urban air quality could not be handled by the environmental authorities in Indonesia's cities themselves, but outside stimulation in the form of man power, consultant and equipment assistance along with financial support has been very important. (Abstract Copyright [2008], Wiley Periodicals, Inc.)

  2. Methods of valuing air pollution and estimated monetary values of air pollutants in various U.S. regions

    Energy Technology Data Exchange (ETDEWEB)

    Wang, M.Q.; Santini, D.J.; Warinner, S.A.

    1994-12-01

    Air pollutant emission values are used to determine the social costs of various technologies that cause air pollution and to estimate the benefits of emission control technologies. In this report, the authors present two methods of estimating air pollutant emission values--the damage value method and the control cost method--and review 15 recent studies in which these methods were employed to estimate emission values. The reviewed studies derived emission values for only a limited number of areas; emission value estimates are needed for other US regions. Using the emission values estimated in the reviewed studies, they establish regression relationships between emission values, air pollutant concentrations, and total population exposed, and apply the established relationships to 17 US metropolitan areas to estimate damage-based and control-cost-based emission values for reactive organic gases, nitrogen oxides, particulate matter measuring less than 10 microns, sulfur oxides, and carbon monoxide in these areas. Their estimates show significant variations in emission values across the 17 regions.

  3. Forcing of a photochemical air quality model with atmospheric fields simulated by a regional climate model

    CSIR Research Space (South Africa)

    Naidoo, M

    2010-10-01

    Full Text Available to the enhanced greenhouse effect (e.g. Engelbrecht et al, 2009). Such changes are likely to influence the future transport and chemistry of air pollutants over the region. The complexity in which climate change may affect regional air quality is evident...

  4. Aerosols: connection between regional climatic change and air quality (Iupac Technical Report)

    NARCIS (Netherlands)

    Slanina, J.; Zhang, Y.H.

    2004-01-01

    yAerosols play an important role in all problems connected with air pollution, ranging from very local effects and human health problems to regional problems such as acid deposition and eutrophication up to continental and global questions such as stratospheric ozone loss and climatic change. In

  5. Air pollution: a smoking gun for cancer.

    Science.gov (United States)

    Zhang, Wei; Qian, Chao-Nan; Zeng, Yi-Xin

    2014-04-01

    Once considered a taboo topic or stigma, cancer is the number one public health enemy in the world. Once a product of an almost untouchable industry, tobacco is indisputably recognized as a major cause of cancer and a target for anticancer efforts. With the emergence of new economic powers in the world, especially in highly populated countries such as China, air pollution has rapidly emerged as a smoking gun for cancer and has become a hot topic for public health debate because of the complex political, economic, scientific, and technologic issues surrounding the air pollution problem. This editorial and the referred articles published in this special issue of the Chinese Journal of Cancer discuss these fundamental questions. Does air pollution cause a wide spectrum of cancers? Should air pollution be considered a necessary evil accompanying economic transformation in developing countries? Is an explosion of cancer incidence coming to China and how soon will it arrive? What must be done to prevent this possible human catastrophe? Finally, the approaches for air pollution control are also discussed.

  6. Characterizing the "Time of Emergence" of Air Quality Climate Penalties

    Science.gov (United States)

    Rothenberg, D. A.; Garcia-Menendez, F.; Monier, E.; Solomon, S.; Selin, N. E.

    2017-12-01

    By driving not only local changes in temperature, but also precipitation and regional-scale changes in seasonal circulation patterns, climate change can directly and indirectly influence changes in air quality and its extremes. These changes - often referred to as "climate penalties" - can have important implications for human health, which is often targeted when assessing the potential co-benefits of climate policy. But because climate penalties are driven by slow, spatially-varying, temporal changes in the climate system, their emergence in the real world should also have a spatio-temporal component following regional variability in background air quality. In this work, we attempt to estimate the spatially-varying "time of emergence" of climate penalty signals by using an ensemble modeling framework based on the MIT Integrated Global System Model (MIT IGSM). With this framework we assess three climate policy scenarios assuming three different underlying climate sensitivities, and conduct a 5-member ensemble for each case to capture internal variability within the model. These simulations are used to drive offline chemical transport modeling (using CAM-Chem and GEOS-Chem). In these simulations, we find that the air quality response to climate change can vary dramatically across different regions of the globe. To analyze these regionally-varying climate signals, we employ a hierarchical clustering technique to identify regions with similar seasonal patterns of air quality change. Our simulations suggest that the earliest emergence of ozone climate penalties would occur in Southern Europe (by 2035), should the world neglect climate change and rely on a "business-as-usual" emissions policy. However, even modest climate policy dramatically pushes back the time of emergence of these penalties - to beyond 2100 - across most of the globe. The emergence of climate-forced changes in PM2.5 are much more difficult to detect, partially owing to the large role that changes in

  7. Analysis of Co-Effects on Air Pollutants and CO2 Emissions Generated by End-of-Pipe Measures of Pollution Control in China’s Coal-Fired Power Plants

    Directory of Open Access Journals (Sweden)

    Haijun Zhao

    2017-03-01

    Full Text Available China is now facing great challenges resulting from climate change and air pollution, driven by the processes of industrialization and urbanization. Greenhouse gas and air pollutant emissions produced by the coal-fired power industry represent approximately 70% of the total emissions in China’s industrial sector. In this study, 39 coal-fired power plants built in China between 2014 and 2015 were analyzed in regards to the co-effects oncarbon dioxide and air pollutant emissions generated directly and indirectly by end-of-pipe measures of pollution control. After completing the quantitative analysis with input data from 83units of power plants, we found that co-effects were positive only for air pollutant reductions through the implementation of desulfurization, denitrification, and dedusting measures, but co-effects were negative for carbon dioxide production because of the corresponding electricity use and chemical reactions that led to the increases in carbon dioxide emissions. We also performed an assessment of the synergistic coefficients to better understand the degree of co-effects. It will be important for researchers to take a comprehensive view of China’s coal-fired power plants and look for solutions that can maximize positive co-effects and achieve overall co-benefits of reductions in greenhouse gas emissions and air pollutants.

  8. [Air pollution, cardiovascular risk and hypertension].

    Science.gov (United States)

    Soldevila Bacardit, N; Vinyoles Bargalló, E; Agudo Ugena, J; Camps Vila, L

    2018-04-24

    Air pollution is a worrying factor and has an impact on public health. Multiple studies relate exposure to air pollutants with an increase in cardiovascular events, cardiovascular mortality and mortality for all causes. A relationship has also been demonstrated between increased pollution and high blood pressure, as well as a higher prevalence of hypertension. Pollutants that play a more relevant role in this association are particulate matters, nitrogen dioxide and sulphur dioxide. The objective of this review is to understand the mechanisms involved in this increase and to find the most recent publications that relate pollution, cardiovascular risk and hypertension. Copyright © 2018 SEH-LELHA. Publicado por Elsevier España, S.L.U. All rights reserved.

  9. Air pollution burden of illness from traffic in Toronto

    International Nuclear Information System (INIS)

    McKeown, D.; Campbell, M.; Bassil, K.; Morgan, C.; Lalani, M.; Macfarlane, R.; Bienefeld, M.

    2007-11-01

    This paper examined the health impacts of air pollution from traffic in Toronto. The paper provided a review of scientific studies on the health effects of vehicle pollution as well as a quantitative assessment of the economic costs and the burden of illness attributed to traffic pollution in Toronto. The report also assessed air pollution and traffic trends in the city, and outlined initiatives being conducted to reduce vehicle-related pollution. The study used the new air quality benefits tool (AQBAT) which determines the burden of illness and the economic impacts of traffic-related air pollution. Air modelling specialists were consulted in order to determine the contribution of traffic-related pollutants to overall pollution levels using data on traffic counts and vehicle emissions factors. The air model also considered dispersion, transport and and the transformation of compounds emitted from vehicles. Results of the study showed that traffic pollution caused approximately 440 premature deaths and 1700 hospitalizations per year. Children in the city experienced more than 1200 acute bronchitis episodes per year as a result of air pollution from traffic. Mortality-related costs associated with traffic pollution in Toronto were estimated at $2.2 billion. It was concluded that the city must pursue the implementation of sustainable transportation policies and programs which foster and enable the expansion and use of public transport. 47 refs., 8 tabs., 9 figs

  10. Health Effects of Ambient Air Pollution in Developing Countries.

    Science.gov (United States)

    Mannucci, Pier Mannuccio; Franchini, Massimo

    2017-09-12

    The deleterious effects of ambient air pollution on human health have been consistently documented by many epidemiologic studies worldwide, and it has been calculated that globally at least seven million deaths are annually attributable to the effects of air pollution. The major air pollutants emitted into the atmosphere by a number of natural processes and human activities include nitrogen oxides, volatile organic compounds, and particulate matter. In addition to the poor ambient air quality, there is increasing evidence that indoor air pollution also poses a serious threat to human health, especially in low-income countries that still use biomass fuels as an energy resource. This review summarizes the current knowledge on ambient air pollution in financially deprived populations.

  11. Coal Mine Air Pollution and Number of Children Hospitalizations because of Respiratory Tract Infection: A Time Series Analysis

    Directory of Open Access Journals (Sweden)

    Yonglin Liu

    2015-01-01

    Full Text Available To analyze the relationship between levels of air pollution and number of children hospitalizations because of respiratory tract infection in Shenmu County, the data regarding meteorological factors, environmental pollutants, that is SO2 and NO2, Particulate Matter 10 (PM10, and hospitalizations of children less than 16 years of age was collected during the time duration of November 2009 to October 2012. Using SAS 9.3, descriptive data analysis for meteorological and environmental factors and hospital admissions were performed along with main air pollutants determination. Using the statistical software R 3.0.1, a generalized additive Poisson regression model was established, the linear fitting models of the air pollutant concentrations and meteorological factors were introduced considering the lag effect, and the relative risk of the main atmospheric pollutants on children hospitalization was evaluated. The results showed that the primary air pollutant in Shenmu County is PM10 and its Pearson correlation coefficient with Air Pollution Index (API is 0.917. After control of long term climate trend, “week day effect,” meteorological factors, and impact of other contaminants, it was found that, on the same day and during the lag of 1 to 10 days, PM10 concentrations had no significant effect on children hospitalization rate.

  12. Evaluating impacts of air pollution in China on public health: Implications for future air pollution and energy policies

    Science.gov (United States)

    Wang, Xiaoping; Mauzerall, Denise L.

    Our objective is to establish the link between energy consumption and technologies, air pollution concentrations, and resulting impacts on public health in eastern China. We use Zaozhuang, a city in eastern China heavily dependent on coal, as a case study to quantify the impacts that air pollution in eastern China had on public health in 2000 and the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual (BAU), through the implementation of best available emission control technology (BACT) and advanced coal gasification technologies (ACGT). We use an integrated assessment approach, utilizing state-of-the-science air quality and meteorological models, engineering, epidemiology, and economics, to achieve this objective. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang, using the "willingness-to-pay" metric, was equivalent to 10% of Zaozhuang's GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have more than tripled. With no new air pollution controls implemented between 2000 and 2020 but with projected increases in energy use, we estimate health damages from air pollution exposure to be equivalent to 16% of Zaozhuang's projected 2020 GDP. BACT and ACGT (with only 24% penetration in Zaozhuang and providing 2% of energy needs in three surrounding municipalities) could reduce the potential health damage of air pollution in 2020 to 13% and 8% of projected GDP, respectively. Benefits to public health, of substantial monetary value, can be achieved through the use of BACT; health benefits from the use of ACGT could be even larger. Despite significant uncertainty associated with each element of the integrated assessment approach, we demonstrate that substantial benefits to public health could be achieved in this region of eastern China through the use of additional pollution controls and particularly from the

  13. MEGAPOLI: concept of multi-scale modelling of megacity impact on air quality and climate

    Science.gov (United States)

    Baklanov, A.; Lawrence, M.; Pandis, S.; Mahura, A.; Finardi, S.; Moussiopoulos, N.; Beekmann, M.; Laj, P.; Gomes, L.; Jaffrezo, J.-L.; Borbon, A.; Coll, I.; Gros, V.; Sciare, J.; Kukkonen, J.; Galmarini, S.; Giorgi, F.; Grimmond, S.; Esau, I.; Stohl, A.; Denby, B.; Wagner, T.; Butler, T.; Baltensperger, U.; Builtjes, P.; van den Hout, D.; van der Gon, H. D.; Collins, B.; Schluenzen, H.; Kulmala, M.; Zilitinkevich, S.; Sokhi, R.; Friedrich, R.; Theloke, J.; Kummer, U.; Jalkinen, L.; Halenka, T.; Wiedensholer, A.; Pyle, J.; Rossow, W. B.

    2010-11-01

    The EU FP7 Project MEGAPOLI: "Megacities: Emissions, urban, regional and Global Atmospheric POLlution and climate effects, and Integrated tools for assessment and mitigation" (http://megapoli.info) brings together leading European research groups, state-of-the-art scientific tools and key players from non-European countries to investigate the interactions among megacities, air quality and climate. MEGAPOLI bridges the spatial and temporal scales that connect local emissions, air quality and weather with global atmospheric chemistry and climate. The suggested concept of multi-scale integrated modelling of megacity impact on air quality and climate and vice versa is discussed in the paper. It requires considering different spatial and temporal dimensions: time scales from seconds and hours (to understand the interaction mechanisms) up to years and decades (to consider the climate effects); spatial resolutions: with model down- and up-scaling from street- to global-scale; and two-way interactions between meteorological and chemical processes.

  14. [Prevention and control of air pollution needs to strengthen further study on health damage caused by air pollution].

    Science.gov (United States)

    Wu, T C

    2016-08-06

    Heath issues caused by air pollution such as particulate matter (PM) are much concerned and focused among air, water and soil pollutions because human breathe air for whole life span. Present comments will review physical and chemical characteristics of PM2.5 and PM10; Dose-response associations of PM10, PM2.5 and their components with mortality and risk of cardiopulmonary diseases, early health damages such as the decrease of lung functions and heart rate variability, DNA damage; And the roles of genetic variations and epigenetic changes in lung functions and heart rate variability, DNA damage related to PMs and their components. This comments list some limitations and perspectives about the associations of air pollution with health.

  15. Respiratory health effects of air pollution: update on biomass smoke and traffic pollution.

    Science.gov (United States)

    Laumbach, Robert J; Kipen, Howard M

    2012-01-01

    Mounting evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases, including asthma, chronic obstructive pulmonary disease, pneumonia, and possibly tuberculosis. Although associations between air pollution and respiratory disease are complex, recent epidemiologic studies have led to an increased recognition of the emerging importance of traffic-related air pollution in both developed and less-developed countries, as well as the continued importance of emissions from domestic fires burning biomass fuels, primarily in the less-developed world. Emissions from these sources lead to personal exposures to complex mixtures of air pollutants that change rapidly in space and time because of varying emission rates, distances from source, ventilation rates, and other factors. Although the high degree of variability in personal exposure to pollutants from these sources remains a challenge, newer methods for measuring and modeling these exposures are beginning to unravel complex associations with asthma and other respiratory tract diseases. These studies indicate that air pollution from these sources is a major preventable cause of increased incidence and exacerbation of respiratory disease. Physicians can help to reduce the risk of adverse respiratory effects of exposure to biomass and traffic air pollutants by promoting awareness and supporting individual and community-level interventions. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  16. Respiratory Health Effects of Air Pollution: Update on Biomass Smoke and Traffic Pollution

    OpenAIRE

    Laumbach, Robert J.; Kipen, Howard M.

    2012-01-01

    Mounting evidence suggests that air pollution contributes to the large global burden of respiratory and allergic diseases including asthma, chronic obstructive pulmonary disease, pneumonia and possibly tuberculosis. Although associations between air pollution and respiratory disease are complex, recent epidemiologic studies have led to an increased recognition of the emerging importance of traffic-related air pollution in both developed and less-developed countries, as well as the continued i...

  17. The Effect of Future Ambient Air Pollution on Human Premature Mortality to 2100 Using Output from the ACCMIP Model Ensemble

    Science.gov (United States)

    Silva, Raquel A.; West, J. Jason; Lamarque, Jean-Francois; Shindell, Drew T.; Collins, William J.; Dalsoren, Stig; Faluvegi, Greg; Folberth, Gerd; Horowitz, Larry W.; Nagashima, Tatsuya; hide

    2016-01-01

    Ambient air pollution from ground-level ozone and fine particulate matter (PM(sub 2.5)) is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs), the ACCMIP ensemble of chemistry climate models simulated future concentrations of ozone and PM(sub 2.5) at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air-pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM(sub 2.5) relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM(sub 2.5) in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths per year), likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382000 (121000 to 728000) deaths per year in 2000 to between 1.09 and 2.36 million deaths per year in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM(sub 2.5) concentrations decrease relative to 2000 in all scenarios, due to

  18. The effect of future ambient air pollution on human premature mortality to 2100 using output from the ACCMIP model ensemble

    Directory of Open Access Journals (Sweden)

    R. A. Silva

    2016-08-01

    Full Text Available Ambient air pollution from ground-level ozone and fine particulate matter (PM2.5 is associated with premature mortality. Future concentrations of these air pollutants will be driven by natural and anthropogenic emissions and by climate change. Using anthropogenic and biomass burning emissions projected in the four Representative Concentration Pathway scenarios (RCPs, the ACCMIP ensemble of chemistry–climate models simulated future concentrations of ozone and PM2.5 at selected decades between 2000 and 2100. We use output from the ACCMIP ensemble, together with projections of future population and baseline mortality rates, to quantify the human premature mortality impacts of future ambient air pollution. Future air-pollution-related premature mortality in 2030, 2050 and 2100 is estimated for each scenario and for each model using a health impact function based on changes in concentrations of ozone and PM2.5 relative to 2000 and projected future population and baseline mortality rates. Additionally, the global mortality burden of ozone and PM2.5 in 2000 and each future period is estimated relative to 1850 concentrations, using present-day and future population and baseline mortality rates. The change in future ozone concentrations relative to 2000 is associated with excess global premature mortality in some scenarios/periods, particularly in RCP8.5 in 2100 (316 thousand deaths year−1, likely driven by the large increase in methane emissions and by the net effect of climate change projected in this scenario, but it leads to considerable avoided premature mortality for the three other RCPs. However, the global mortality burden of ozone markedly increases from 382 000 (121 000 to 728 000 deaths year−1 in 2000 to between 1.09 and 2.36 million deaths year−1 in 2100, across RCPs, mostly due to the effect of increases in population and baseline mortality rates. PM2.5 concentrations decrease relative to 2000 in all scenarios

  19. Ambient and household air pollution: complex triggers of disease

    Science.gov (United States)

    Farmer, Stephen A.; Nelin, Timothy D.; Falvo, Michael J.

    2014-01-01

    Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants. PMID:24929855

  20. Ambient and household air pollution: complex triggers of disease.

    Science.gov (United States)

    Farmer, Stephen A; Nelin, Timothy D; Falvo, Michael J; Wold, Loren E

    2014-08-15

    Concentrations of outdoor air pollution are on the rise, particularly due to rapid urbanization worldwide. Alternatively, poor ventilation, cigarette smoke, and other toxic chemicals contribute to rising concentrations of indoor air pollution. The World Health Organization recently reported that deaths attributable to indoor and outdoor air pollutant exposure are more than double what was originally documented. Epidemiological, clinical, and animal data have demonstrated a clear connection between rising concentrations of air pollution (both indoor and outdoor) and a host of adverse health effects. During the past five years, animal, clinical, and epidemiological studies have explored the adverse health effects associated with exposure to both indoor and outdoor air pollutants throughout the various stages of life. This review provides a summary of the detrimental effects of air pollution through examination of current animal, clinical, and epidemiological studies and exposure during three different periods: maternal (in utero), early life, and adulthood. Additionally, we recommend future lines of research while suggesting conceivable strategies to curb exposure to indoor and outdoor air pollutants.

  1. Some measurements of ambient air pollution

    International Nuclear Information System (INIS)

    Memon, H.R.; Memon, A.A.; Behan, M.Y.

    1999-01-01

    Ambient air pollution arising from different sources in Karachi and its surroundings has been studied. The urban centres like Karachi are mostly confronted with eye-irritation, reduce visibility, heart-diseases, nervous disorder, smog and other unpleasant experiences. In this paper quantitative estimations of some air-pollutants such as sulphur dioxide, carbon monoxide, oxides of nitrogen, chlorine and particular matters are presented with their hazardous effects. The remedial measures for the control of major air emissions are also discussed. (author)

  2. Fractional kalman filter to estimate the concentration of air pollution

    Science.gov (United States)

    Vita Oktaviana, Yessy; Apriliani, Erna; Khusnul Arif, Didik

    2018-04-01

    Air pollution problem gives important effect in quality environment and quality of human’s life. Air pollution can be caused by nature sources or human activities. Pollutant for example Ozone, a harmful gas formed by NOx and volatile organic compounds (VOCs) emitted from various sources. The air pollution problem can be modeled by TAPM-CTM (The Air Pollution Model with Chemical Transport Model). The model shows concentration of pollutant in the air. Therefore, it is important to estimate concentration of air pollutant. Estimation method can be used for forecast pollutant concentration in future and keep stability of air quality. In this research, an algorithm is developed, based on Fractional Kalman Filter to solve the model of air pollution’s problem. The model will be discretized first and then it will be estimated by the method. The result shows that estimation of Fractional Kalman Filter has better accuracy than estimation of Kalman Filter. The accuracy was tested by applying RMSE (Root Mean Square Error).

  3. Air pollution and health studies in China--policy implications.

    Science.gov (United States)

    Chen, Bingheng; Kan, Haidong; Chen, Renjie; Jiang, Songhui; Hong, Chuanjie

    2011-11-01

    During the rapid economic development in China, ambient air pollutants in major cities, including PM10 (particulate matter with aerodynamic diameter air pollution levels in China are still at the higher end of the world level. Less information is available regarding changes in national levels of other pollutants such as PM2.5 and ozone. The Chinese Ministry of Environmental Protection (MOEP) set an index for "controlling/reducing total SO2 emissions" to evaluate the efficacy of air pollution control strategy in the country. Total SO2 emissions declined for the first time in 2007. Chinese epidemiologic studies evidenced adverse health effects of ambient air pollution similar to those reported from developed countries, though risk estimates on mortality/morbidity per unit increase of air pollutant are somewhat smaller than those reported in developed countries. Disease burden on health attributable to air pollution is relatively greater in China because of higher pollution levels. Improving ambient air quality has substantial and measurable public health benefits in China. It is recommended that the current Chinese air quality standards be updated/revised and the target for "controlling/reducing total SO2 emissions" be maintained and another target for "reducing total NO2 emissions" be added in view of rapid increase in motor vehicles. Continuous and persistent efforts should be taken to improve ambient air quality.

  4. Cadastre of air polluters for city of Skopje

    International Nuclear Information System (INIS)

    Trajkovska, Magdalena

    1997-01-01

    In this paper a review of the condition with harmful articles emission in the air from industrial, energetic and communal emitters on the area of city Skopje is presented. The results of researches taken in the period 1994-1996, as a second phase of the project: 'Cadastre of air polluters and map of air pollution of Republic of Macedonia' are given. The level of data processing represents a base for prognosis of expected air pollution of city of Skopje, with what a possibility of air quality control will be provided. (author)

  5. Climatic significance of stable isotope characteristics of air-CO2 and rainfall in Delhi area water-plant-air system

    International Nuclear Information System (INIS)

    Datta, P.S.; Tyagi, S.K.

    2002-01-01

    In recent years, there is a global concern on the role of carbon dioxide in atmosphere in affecting the climate. The present models of global atmospheric circulation suggest that oceans sequester about one-third of the CO 2 released by anthropogenic activities, and biospheric productivity is the primary cause of the interannual fluctuations in the atmospheric CO 2 . However, most of the times, the excess of CO 2 in air is associated with the presence of anthropogenic pollutants from urbanised centres. Therefore, the studies on the pattern of local variations in the isotopic composition of air CO 2 and rainfall in urban areas are expected to provide important information on the atmospheric circulation processes which affect the climate on a regional scale. Internationally, aspects of climate change have been so far demonstrated using isotopic data mainly from temperate climates, and there is limited understanding of the factors controlling stable isotopic composition of air-CO 2 and rainfall in tropical regions. In this context, to assess the magnitude of the above mentioned effects, analysis of the data on the variations in the 13 C/ 12 C and 18 O/ 16 O signatures of air-CO 2 in Delhi area water-plant-air system is presented here

  6. Air Pollution Episodes Associated with Prescribed Burns

    Science.gov (United States)

    Hart, M.; Di Virgilio, G.; Jiang, N.

    2017-12-01

    Air pollution events associated with wildfires have been associated with extreme health impacts. Prescribed burns are an important tool to reduce the severity of wildfires. However, if undertaken during unfavourable meteorological conditions, they too have the capacity to trigger extreme air pollution events. The Australian state of New South Wales has increased the annual average area treated by prescribed burn activities by 45%, in order to limit wildfire activity. Prescribed burns need to be undertaken during meteorological conditions that allow the fuel load to burn, while still allowing the burn to remain under control. These conditions are similar to those that inhibit atmospheric dispersion, resulting in a fine balance between managing fire risk and managing ambient air pollution. During prescribed burns, the Sydney air shed can experience elevated particulate matter concentrations, especially fine particulates (PM2.5) that occasionally exceed national air quality standards. Using pollutant and meteorological data from sixteen monitoring stations in Sydney we used generalized additive model and CART analyses to profile the meteorological conditions influencing air quality during planned burns. The insights gained from this study will help improve prescribed burn scheduling in order to reduce the pollution risk to the community, while allowing fire agencies to conduct this important work.

  7. The economic cost of air pollution in Mangaung metro municipality ...

    African Journals Online (AJOL)

    The economic cost of air pollution in Mangaung metro municipality: A case study in South Africa. ... the significance of air quality, to value the benefits of air pollution control ... Key words: Air pollution, air quality, workdays lost, mitigating cost.

  8. Analysing the Air: Experiences and Results of Long Term Air Pollution Monitoring in the Asia-Pacific Region Using Nuclear Analysis Techniques

    International Nuclear Information System (INIS)

    Atanacio, Armand J.

    2015-01-01

    Particles present in the air we breathe are now recognized as a major cause of disease and premature death globally. In fact, a World Health Organization (WHO) report recently ranked ambient air pollution as one of the top 10 causes of death in the world, directly contributing annually to around 3.7 million premature deaths worldwide 65% of which occurred in the Asian region alone. Airborne particulate matter (PM) can be generated from natural sources such as windblown soil or coastal sea-spray; as well as anthropogenic sources such as power stations, industry, vehicles and domestic biomass burning. At low concentration these fine pollution particles are too small to be seen by eye, but penetrate deep into our lungs and even our blood stream as our nose and throat are inefficient at filtering them out. At large concentrations, they can also have wider regional effects including reduced visibility, acid rain and even climate variability. The International Atomic Energy Agency (IAEA) in 2000, recognizing air pollution as a significant local, national and global challenge, initiated a collaborative air pollution study involving 14 countries across the greater Asia-pacific region from 2000 to 2015. This has amassed a database containing more than 14,000 data lines of PM mass concentration and the concentration of up to 40 elements using nuclear analytical techniques. It represents the most comprehensive and long-term airborne PM data set compiled to date for the Asia-Pacific region and as will be discussed, can be used to statistically resolve individual source fingerprints and their contributions to total air pollution using Positive Matrix Factorization (PMF). This sort of data necessary for implementing or reviewing the effectiveness of policy level changes aimed at targeted air pollution reduction. (author)

  9. Air quality biomonitoring: assessment of air pollution genotoxicity in the Province of Novara (North Italy) by using Trifolium repens L. and molecular markers.

    Science.gov (United States)

    Piraino, F; Aina, R; Palin, L; Prato, N; Sgorbati, S; Santagostino, A; Citterio, S

    2006-12-15

    Mixed air pollutants are considered a major cause of DNA damage in living species. In this study Trifolium repens L. cv Regal was used as a bioindicator to assess the genotoxicity of air stressors in the Italian province of Novara. Two on-site biomonitoring experiments were performed during the spring and autumn of 2004. Test plants were exposed at 19 monitoring sites distributed homogeneously throughout the province, and each experiment lasted for a period of 6 weeks. Genotoxicity was evaluated with Amplified Fragment Length Polymorphism (AFLP) molecular markers. The results show the predominantly rural central-west region of the Novara Province to have the worst air quality with regard to genotoxicity. Analyses of geomorphology, land use and climatic factors suggest that the compromised air quality in the region could be attributed to wind strength and direction, transporting pollution from vehicular traffic on the A4 highway and from the urban/industrialized centres of Novara and Vercelli. Plant growth, changes in plant photochemical efficiency and the presence of ozone related leaf injuries were also measured to better interpret the results of genotoxicity. Statistical analyses show that although climatic factors such as light intensity and temperature influence plant growth, they do not contribute to atmospheric stressor-induced DNA damage. Further analyses indicated that, as expected, a mixture of genotoxic and non-genotoxic pollutants coexist in the Novara Province troposphere, and that the elevated ozone concentrations experienced during the study may have contributed to the DNA damage in the tested plants by enhancing genotoxicity via interaction with other air stressors.

  10. The state of transboundary air pollution: 1989 update

    International Nuclear Information System (INIS)

    1990-01-01

    This sixth volume of the series of Air Pollution Studies published under the auspices of the Executive Body for the Convention on Long-range Transboundary Air Pollution, contains the documents reviewed and approved for publication at the seventh session of the Executive Body held at Geneva from 21 to 24 November 1989. Part one is the annual review of strategies and policies for air pollution abatement. Country by country, recent legislative and regulatory developments are summarized, including ambient-air quality standards, fuel-quality standards, emission standards, as well as economic instruments for air pollution abatement. Part two is an executive summary of the 1988 forest damage survey in Europe, carried out under the International Co-operative Programme for Assessment and Monitoring of Air Pollution Effects on Forests which was established by the Executive Body for the Convention in 1985. A total of 25 countries participated in the survey, conducted in accordance with common guidelines laid down in an ECE manual on methodologies and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Parts three and four describe the effects of mercury and some other heavy metals related to the long-range atmospheric transport of pollution. The section on mercury describes the environmental effects and the causes of mercury pollution in air and atmospheric deposition, including its sources and its transport from forest soils into fresh water and aquatic organisms. The section dealing with other heavy metals (such as asbestos, cadmium and lead) describes the process of atmospheric transport and deposition, the effects on forest ecosystems, ground water, surface water and agricultural products. Refs, figs and tabs

  11. Urban air pollution in megacities of the world

    Science.gov (United States)

    Mage, David; Ozolins, Guntis; Peterson, Peter; Webster, Anthony; Orthofer, Rudi; Vandeweerd, Veerle; Gwynne, Michael

    Urban air pollution is a major environmental problem in the developing countries of the world. WHO and UNEP created an air pollution monitoring network as part of the Global Environment Monitoring System. This network now covers over 50 cities in 35 developing and developed countries throughout the world. The analyses of the data reported by the network over the past 15-20 yr indicate that the lessons of the prior experiences in the developed countries (U.S.A., U.K.) have not been learned. A study of air pollution in 20 of the 24 megacities of the world (over 10 million people by year 2000) shows that ambient air pollution concentrations are at levels where serious health effects are reported. The expected rise of population in the next century, mainly in the developing countries with a lack of capital for air pollution control, means that there is a great potential that conditions will worsen in many more cities that will reach megacity status. This paper maps the potential for air pollution that cities will experience in the future unless control strategies are developed and implemented during the next several decades.

  12. Determinants of perceived air pollution annoyance and association between annoyance scores and air pollution (PM 2.5, NO 2) concentrations in the European EXPOLIS study

    Science.gov (United States)

    Rotko, Tuulia; Oglesby, Lucy; Künzli, Nino; Carrer, Paolo; Nieuwenhuijsen, Mark J.; Jantunen, Matti

    Apart from its traditionally considered objective impacts on health, air pollution can also have perceived effects, such as annoyance. The psychological effects of air pollution may often be more important to well-being than the biophysical effects. Health effects of perceived annoyance from air pollution are so far unknown. More knowledge of air pollution annoyance levels, determinants and also associations with different air pollution components is needed. In the European air pollution exposure study, EXPOLIS, the air pollution annoyance as perceived at home, workplace and in traffic were surveyed among other study objectives. Overall 1736 randomly drawn 25-55-yr-old subjects participated in six cities (Athens, Basel, Milan, Oxford, Prague and Helsinki). Levels and predictors of individual perceived annoyances from air pollution were assessed. Instead of the usual air pollution concentrations at fixed monitoring sites, this paper compares the measured microenvironment concentrations and personal exposures of PM 2.5 and NO 2 to the perceived annoyance levels. A considerable proportion of the adults surveyed was annoyed by air pollution. Female gender, self-reported respiratory symptoms, downtown living and self-reported sensitivity to air pollution were directly associated with high air pollution annoyance score while in traffic, but smoking status, age or education level were not significantly associated. Population level annoyance averages correlated with the city average exposure levels of PM 2.5 and NO 2. A high correlation was observed between the personal 48-h PM 2.5 exposure and perceived annoyance at home as well as between the mean annoyance at work and both the average work indoor PM 2.5 and the personal work time PM 2.5 exposure. With the other significant determinants (gender, city code, home location) and home outdoor levels the model explained 14% (PM 2.5) and 19% (NO 2) of the variation in perceived air pollution annoyance in traffic. Compared to

  13. Air Pollution Mortality in Denmark, Finland, and Sweden

    Directory of Open Access Journals (Sweden)

    Ulla Lehmijoki

    2009-01-01

    Full Text Available The adverse health consequences of air pollution are of concern currently and there is a fear that these consequences escalate along with economic growth. The effect of economic growth on air pollution deaths is analyzed in Denmark, Finland, and Sweden by applying the Environmental Kuznets Curve approach, according to which economic growth has competing effects on air pollution and related deaths. On the one hand, emissions tend to increase as the scale of economic activity increases, but on the other hand, consumers and firms in richer countries use cleaner goods and adopt cleaner technologies. In Denmark and Finland, the latter effects are stronger, while in Sweden the opposite is true. Therefore, air pollution deaths will decrease in Denmark and Finland but increase in Sweden. Since country's own emissions do not determine air pollution completely, the paper briefly analyzes emissions from the Baltic countries and Russia.

  14. Lichen-based indices to quantify responses to climate and air pollution across northeastern U.S.A

    Science.gov (United States)

    Susan Will-Wolf; Sarah Jovan; Peter Neitlich; JeriLynn E. Peck; Roger Rosentreter

    2015-01-01

    Lichens are known to be indicators for air quality; they also respond to climate. We developed indices for lichen response to climate and air quality in forests across the northeastern United States of America (U.S.A.), using 218–250 plot surveys with 145–161 macrolichen taxa from the Forest Inventory and Analysis (FIA) Program of the U.S. Department of Agriculture,...

  15. Public Health and Air Pollution in Asia (PAPA): A Multicity Study of Short-Term Effects of Air Pollution on Mortality

    OpenAIRE

    Wong, Chit-Ming; Vichit-Vadakan, Nuntavarn; Kan, Haidong; Qian, Zhengmin

    2008-01-01

    Background and Objectives: Although the deleterious effects of air pollution from fossil fuel combustion have been demonstrated in many Western nations, fewer studies have been conducted in Asia. The Public Health and Air Pollution in Asia (PAPA) project assessed the effects of short-term exposure to air pollution on daily mortality in Bangkok, Thailand, and in three cities in China: Hong Kong, Shanghai, and Wuhan. Methods: Poisson regression models incorporating natural spline smoothing func...

  16. Air pollution due to road traffic in Ljubljana

    Directory of Open Access Journals (Sweden)

    Matej Ogrin

    2007-01-01

    Full Text Available Air pollution is due to road traffic an inevitable outcome of internal combustion in engines ofvehicles and some other processes. Air near the roads is more polluted with some pollutants,such as carbon monoxide, nitrogen oxides, ozone, particulate matter and some others.Monitoring the air quality is a key issue, when one wants to estimate environmental impactsof the road traffic. The article shows a method of passive samplers for air quality monitoringalong different roads in the area of Ljubljana Municipality.

  17. A review of air exchange rate models for air pollution exposure assessments.

    Science.gov (United States)

    Breen, Michael S; Schultz, Bradley D; Sohn, Michael D; Long, Thomas; Langstaff, John; Williams, Ronald; Isaacs, Kristin; Meng, Qing Yu; Stallings, Casson; Smith, Luther

    2014-11-01

    A critical aspect of air pollution exposure assessments is estimation of the air exchange rate (AER) for various buildings where people spend their time. The AER, which is the rate of exchange of indoor air with outdoor air, is an important determinant for entry of outdoor air pollutants and for removal of indoor-emitted air pollutants. This paper presents an overview and critical analysis of the scientific literature on empirical and physically based AER models for residential and commercial buildings; the models highlighted here are feasible for exposure assessments as extensive inputs are not required. Models are included for the three types of airflows that can occur across building envelopes: leakage, natural ventilation, and mechanical ventilation. Guidance is provided to select the preferable AER model based on available data, desired temporal resolution, types of airflows, and types of buildings included in the exposure assessment. For exposure assessments with some limited building leakage or AER measurements, strategies are described to reduce AER model uncertainty. This review will facilitate the selection of AER models in support of air pollution exposure assessments.

  18. Pollution prevention for cleaner air: EPA's air and energy engineering research laboratory

    International Nuclear Information System (INIS)

    Shaver, E.M.

    1992-01-01

    The article discusses the role of EPA's Air and Energy Engineering Research Laboratory (AEERL) in pollution prevention research for cleaner air. For more than 20 years, AEERL has been conducting research to identify control approaches for the pollutants and sources which contribute to air quality problems. The Laboratory has successfully developed and demonstrated cost-effective sulfur dioxide, nitrogen oxides, and particulate control technologies for fossil fuel combustion sources. More recently, it has expanded its research activities to include indoor air quality, radon, organic control, stratospheric ozone depletion, and global warming. AEERL also develops inventories of air emissions of many types. Over the last several years, it has made substantial efforts to expand research on pollution prevention as the preferred choice for air emissions reduction

  19. Tolerance Levels of Roadside Trees to Air Pollutants Based on Relative Growth Rate and Air Pollution Tolerance Index

    Directory of Open Access Journals (Sweden)

    SULISTIJORINI

    2008-09-01

    Full Text Available Motor vehicles release carbon monoxide, nitrogen dioxide, sulphur dioxide, and particulate matters to the air as pollutants. Vegetation can absorb these pollutants through gas exchange processes. The objective of this study was to examine the combination of the relative growth rate (RGR and physiological responses in determining tolerance levels of plant species to air pollutants. Physiological responses were calculated as air pollution tolerance index (APTI. Eight roadside tree species were placed at polluted (Jagorawi highway and unpolluted (Sindangbarang field area. Growth and physiological parameters of the trees were recorded, including plant height, leaf area, total ascorbate, total chlorophyll, leaf-extract pH, and relative water content. Scoring criteria for the combination of RGR and APTI method was given based on means of the two areas based on two-sample t test. Based on the total score of RGR and APTI, Lagerstroemia speciosa was categorized as a tolerant species; and Pterocarpus indicus, Delonix regia, Swietenia macrophylla were categorized as moderately tolerant species. Gmelina arborea, Cinnamomum burmanii, and Mimusops elengi were categorized as intermediate tolerant species. Lagerstroemia speciosa could be potentially used as roadside tree. The combination of RGR and APTI value was better to determinate tolerance level of plant to air pollutant than merely APTI method.

  20. Air pollution prevention at the Hanford Site: Status and recommendations

    International Nuclear Information System (INIS)

    Engel, J.A.

    1995-08-01

    With the introduction of the Clean Air Act Amendments of 1990 and other air and pollution prevention regulations, there has been increased focus on both pollution prevention and air emissions at US DOE sites. The Pollution Prevention (P2) Group of WHC reviewed the status of air pollution prevention with the goal of making recommendations on how to address air emissions at Hanford through pollution prevention. Using the air emissions inventory from Hanford's Title V permit, the P2 Group was able to identify major and significant air sources. By reviewing the literature and benchmarking two other DOE Sites, two major activities were recommended to reduce air pollution and reduce costs at the Hanford Site. First, a pollution prevention opportunity assessment (P2OA) should be conducted on the significant painting sources in the Maintenance group and credit should be taken for reducing the burning of tumbleweeds, another significant source of air pollution. Since they are significant sources, reducing these emissions will reduce air emission fees, as well as have the potential to reduce material and labor costs, and increase worker safety. Second, a P2OA should be conducted on alternatives to the three coal-fired powerhouses (steam plants) on-site, including a significant costs analysis of alternatives. This analysis could be of significant value to other DOE sites. Overall, these two activities would reduce pollution, ease regulatory requirements and fees, save money, and help Hanford take a leadership role in air pollution prevention

  1. Interaction patterns of major air pollutants in Hong Kong territory

    International Nuclear Information System (INIS)

    Lu, W.Z.; Wang, X.K.

    2004-01-01

    Air pollution in a metropolitan city like Hong Kong is a major obstacle to improve air quality and living environment due to the high population density and the vehicle emission increases. The high air pollutant levels impose harm to the human health and impair the city image. The characteristic analysis of air pollutants is very important and necessary to pollutant monitoring, forecasting and controlling. In this study, the interaction patterns of principle air pollutants, e.g. nitrogen dioxide (NO 2 ), nitric oxide (NO), nitric oxides (NO x ) and ozone (O 3 ), a secondary pollutant, are investigated based on the measured database in four selected areas, which covers two urban types (i.e. residential area, mixed residential/commercial/industrial area) in Hong Kong, during the period of 1999-2001. The study involves analyzing the chemical and physical properties, the characteristics of air pollutants and the factors affecting such interactions using statistical method. The results reveal several routines in urban air pollutants' variations, interaction and trends from macro aspect

  2. Impact of noise and air pollution on pregnancy outcomes.

    Science.gov (United States)

    Gehring, Ulrike; Tamburic, Lillian; Sbihi, Hind; Davies, Hugh W; Brauer, Michael

    2014-05-01

    Motorized traffic is an important source of both air pollution and community noise. While there is growing evidence for an adverse effect of ambient air pollution on reproductive health, little is known about the association between traffic noise and pregnancy outcomes. We evaluated the impact of residential noise exposure on small size for gestational age, preterm birth, term birth weight, and low birth weight at term in a population-based cohort study, for which we previously reported associations between air pollution and pregnancy outcomes. We also evaluated potential confounding of air pollution effects by noise and vice versa. Linked administrative health data sets were used to identify 68,238 singleton births (1999-2002) in Vancouver, British Columbia, Canada, with complete covariate data (sex, ethnicity, parity, birth month and year, income, and education) and maternal residential history. We estimated exposure to noise with a deterministic model (CadnaA) and exposure to air pollution using temporally adjusted land-use regression models and inverse distance weighting of stationary monitors for the entire pregnancy. Noise exposure was negatively associated with term birth weight (mean difference = -19 [95% confidence interval = -23 to -15] g per 6 dB(A)). In joint air pollution-noise models, associations between noise and term birth weight remained largely unchanged, whereas associations decreased for all air pollutants. Traffic may affect birth weight through exposure to both air pollution and noise.

  3. Air pollution and the school air environment

    OpenAIRE

    Fsadni, Peter; Montefort, Stephen

    2015-01-01

    There is growing concern about the association of school indoor air quality (SIAQ) with asthma, rhinitis, and rhinoconjunctivitis. Students and school staff deserve the highest standards of school air quality to ensure a safe and productive environment for our children’s education. Existing studies highlight the presence of several air pollutants present within school classrooms that have a direct association with poor health and poor student performance. Very little data exist ab...

  4. THE RISK PERCEPTION OF TRANSPORT–GENERATED AIR POLLUTION

    Directory of Open Access Journals (Sweden)

    Birgitta GATERSLEBEN

    2000-01-01

    Full Text Available This paper describes a study that is part of a multidisciplinary project examining the relationship between transport, air pollution and health in Guildford, a medium sized town in the UK. Real-time air quality monitoring revealed low levels of air pollution through vehicle emissions. However, the residents of the town claim that there is an air pollution problem, perceptions reinforced by visual and sensory feedback, i.e., people see dust, feel irritations to their eyes, noses and throats and smell exhaust fumes. It is shown that the higher people believe air pollution levels to be the more responsible they feel and the less trust they have in local authorities and technological developments. Beliefs about the health consequences of air pollution are not related to responsibility and trust. The findings support other studies on risk perception that have shown that people find a risk less acceptable when they have a lower trust in risk managers. It is concluded that these findings are of importance for the environmental education of the public generally and risk communication by local authorities in particular.

  5. Effects of air pollution on the skin: A review.

    Science.gov (United States)

    Puri, Poonam; Nandar, Shashi Kumar; Kathuria, Sushruta; Ramesh, V

    2017-01-01

    The increase in air pollution over the years has had major effects on the human skin. Various air pollutants such as ultraviolet radiation, polycyclic aromatic hydrocarbons, volatile organic compounds, oxides, particulate matter, ozone and cigarette smoke affect the skin as it is the outermost barrier. Air pollutants damage the skin by inducing oxidative stress. Although human skin acts as a biological shield against pro-oxidative chemicals and physical air pollutants, prolonged or repetitive exposure to high levels of these pollutants may have profound negative effects on the skin. Exposure to ultraviolet radiation has been associated with extrinsic skin aging and skin cancers. Cigarette smoke contributes to premature aging and an increase in the incidence of psoriasis, acne and skin cancers. It is also implicated in allergic skin conditions such as atopic dermatitis and eczema. Polyaromatic hydrocarbons are associated with extrinsic skin aging, pigmentation, cancers and acneiform eruptions. Volatile organic compounds have been associated with atopic dermatitis. Given the increasing levels of air pollution and its detrimental effects on the skin, it is advisable to use strategies to decrease air pollution.

  6. Air pollution: what matters most? : Physical, chemical and oxidative properties of air pollution components related to toxic effects

    NARCIS (Netherlands)

    Steenhof, M.

    2015-01-01

    Numerous studies have been published on the adverse health effects associated with both short- and long-term exposure to air pollution. Air pollution is a heterogeneous, complex mixture of gases, liquids, and particulate matter (PM). Up to now, PM mass concentration has been the metric of choice to

  7. Urban Form, Air Pollution, and Health.

    Science.gov (United States)

    Hankey, Steve; Marshall, Julian D

    2017-12-01

    Urban form can impact air pollution and public health. We reviewed health-related articles that assessed (1) the relationships among urban form, air pollution, and health as well as (2) aspects of the urban environment (i.e., green space, noise, physical activity) that may modify those relationships. Simulation and empirical studies demonstrate an association between compact growth, improved regional air quality, and health. Most studies are cross-sectional and focus on connections between transportation emissions and land use. The physical and mental health impacts of green space, public spaces that promote physical activity, and noise are well-studied aspects of the urban environment and there is evidence that these factors may modify the relationship between air pollution and health. Urban form can support efforts to design clean, health-promoting cities. More work is needed to operationalize specific strategies and to elucidate the causal pathways connecting various aspects of health.

  8. Air pollution holiday effect in metropolitan Kaohsiung

    Science.gov (United States)

    Tan, P.; Chen, P. Y.

    2014-12-01

    Different from Taipei, the metropolitan Kaohsiung which is a coastal and industrial city has the major pollution sources from stationary sources such as coal-fired power plants, petrochemical facilities and steel plants, rather than mobile sources. This study was an attempt to conduct a comprehensive and systematical examination of the holiday effect, defined as the difference in air pollutant concentrations between holiday and non-holiday periods, over the Kaohsiung metropolitan area. We documented evidence of a "holiday effect", where concentrations of NOx, CO, NMHC, SO2 and PM10 were significantly different between holidays and non-holidays, in the Kaohsiung metropolitan area from daily surface measurements of seven air quality monitoring stations of the Taiwan Environmental Protection Administration during the Chinese New Year (CNY) and non-Chinese New Year (NCNY) periods of 1994-2010. Concentrations of the five pollutants were lower in the CNY than in the NCNY period, however, that of O3 was higher in the CNY than in the NCNY period and had no holiday effect. The exclusion of the bad air quality day (PSI > 100) and the Lantern Festival Day showed no significant effects on the holiday effects of air pollutants. Ship transportation data of Kaohsiung Harbor Bureau showed a statistically significant difference in the CNY and NCNY period. This difference was consistent with those found in air pollutant concentrations of some industrial and general stations in coastal areas, implying the possible impact of traffic activity on the air quality of coastal areas. Holiday effects of air pollutants over the Taipei metropolitan area by Tan et al. (2009) are also compared.

  9. The health effects of exercising in air pollution.

    Science.gov (United States)

    Giles, Luisa V; Koehle, Michael S

    2014-02-01

    The health benefits of exercise are well known. Many of the most accessible forms of exercise, such as walking, cycling, and running often occur outdoors. This means that exercising outdoors may increase exposure to urban air pollution. Regular exercise plays a key role in improving some of the physiologic mechanisms and health outcomes that air pollution exposure may exacerbate. This problem presents an interesting challenge of balancing the beneficial effects of exercise along with the detrimental effects of air pollution upon health. This article summarizes the pulmonary, cardiovascular, cognitive, and systemic health effects of exposure to particulate matter, ozone, and carbon monoxide during exercise. It also summarizes how air pollution exposure affects maximal oxygen consumption and exercise performance. This article highlights ways in which exercisers could mitigate the adverse health effects of air pollution exposure during exercise and draws attention to the potential importance of land use planning in selecting exercise facilities.

  10. Large Scale Computations in Air Pollution Modelling

    DEFF Research Database (Denmark)

    Zlatev, Z.; Brandt, J.; Builtjes, P. J. H.

    Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998......Proceedings of the NATO Advanced Research Workshop on Large Scale Computations in Air Pollution Modelling, Sofia, Bulgaria, 6-10 July 1998...

  11. Dialogues on air pollution: an Asian example

    NARCIS (Netherlands)

    Kroeze, C.; Stalpers, S.I.P.

    2013-01-01

    The efficient reduction of transboundary air pollution requires dialogue on emission reduction at an international level. A model is under construction to facilitate such dialogues for Asia. This is the Regional Air pollution Information System (RAINS-Asia), developed at the International Institute

  12. [Study on emission standard system of air pollutants].

    Science.gov (United States)

    Jiang, Mei; Zhang, Guo-Ning; Zhang, Ming-Hui; Zou, Lan; Wei, Yu-Xia; Ren, Chun

    2012-12-01

    Scientific and reasonable emission standard system of air pollutants helps to systematically control air pollution, enhance the protection of the atmospheric environment effect and improve the overall atmospheric environment quality. Based on the study of development, situation and characteristics of national air pollutants emission standard system, the deficiencies of system were pointed out, which were not supportive, harmonious and perfect, and the improvement measures of emission standard system were suggested.

  13. Air pollution and forest decline in central Europe

    Energy Technology Data Exchange (ETDEWEB)

    Kandler, O.; Innes, J.L. [University of Munich, Munich (Germany). Institute of Botany

    1995-12-31

    The term `Waldsterben` was introduced in the early 1980s to describe the progressive death of forests that was believed to be occurring in Central Europe as a result of air pollution. Subsequent surveys and investigations have failed to confirm that forests are dying or are even declining over large areas of Central Europe. Foliar injury by air pollutants, together with mortality, has occurred, but is generally restricted to specific locations in the Czech Republic and in eastern Germany. Where foliar damage has been recorded, it can often be attributed to high concentrations of sulphur dioxide, often acting in combination with other stresses (e.g. frost or insects). Outside areas affected by local sources of pollution, there is little, if any, evidence that the crown condition of trees has been adversely affected by pollution over large areas. Instead, climate appears to have a major effect on the crown condition and growth of trees. Measurements and surveys have revealed a very different picture to that forecasted in the mid-1980s. Growth rates of trees and stands in Central Europe are currently higher than have been recorded at any time in the past. Although declines in individual species in specific areas have been recorded, past records indicate that these do not represent a new phenomenon. Consequently, the terms `Waldsterben` (forest deaths) and `neuartige Waldschaden` (novel type of forest damages) should not be used in the context of the phenomenon reported in Central Europe in the 1980s. Instead different problems should be described separately and the term forest decline used only when there is clear evidence of a general deterioration in the condition of all tree species within a forest.

  14. Impact of global climate change on regional air quality: Introduction to the thematic issue

    International Nuclear Information System (INIS)

    Vautard, R.; Hauglustaine, D.

    2007-01-01

    Despite the major international efforts devoted to the understanding and to the future estimate of global climate change and its impact on regional scale processes, the evolution of the atmospheric composition in a changing climate is far to be understood. In particular, the future evolution of the concentration of near-surface pollutants determining air quality at a scale affecting human health and ecosystems is a subject of intense scientific research. This thematic issue reviews the current scientific knowledge of the consequences of global climate change on regional air quality and its related impact on the biosphere and on human mortality. This article provides a presentation of the key issues, summarizes the current knowledge, and introduces the thematic issue. (authors)

  15. Long short-term memory neural network for air pollutant concentration predictions: Method development and evaluation

    International Nuclear Information System (INIS)

    Li, Xiang; Peng, Ling; Yao, Xiaojing; Cui, Shaolong; Hu, Yuan; You, Chengzeng; Chi, Tianhe

    2017-01-01

    Air pollutant concentration forecasting is an effective method of protecting public health by providing an early warning against harmful air pollutants. However, existing methods of air pollutant concentration prediction fail to effectively model long-term dependencies, and most neglect spatial correlations. In this paper, a novel long short-term memory neural network extended (LSTME) model that inherently considers spatiotemporal correlations is proposed for air pollutant concentration prediction. Long short-term memory (LSTM) layers were used to automatically extract inherent useful features from historical air pollutant data, and auxiliary data, including meteorological data and time stamp data, were merged into the proposed model to enhance the performance. Hourly PM 2.5 (particulate matter with an aerodynamic diameter less than or equal to 2.5 μm) concentration data collected at 12 air quality monitoring stations in Beijing City from Jan/01/2014 to May/28/2016 were used to validate the effectiveness of the proposed LSTME model. Experiments were performed using the spatiotemporal deep learning (STDL) model, the time delay neural network (TDNN) model, the autoregressive moving average (ARMA) model, the support vector regression (SVR) model, and the traditional LSTM NN model, and a comparison of the results demonstrated that the LSTME model is superior to the other statistics-based models. Additionally, the use of auxiliary data improved model performance. For the one-hour prediction tasks, the proposed model performed well and exhibited a mean absolute percentage error (MAPE) of 11.93%. In addition, we conducted multiscale predictions over different time spans and achieved satisfactory performance, even for 13–24 h prediction tasks (MAPE = 31.47%). - Highlights: • Regional air pollutant concentration shows an obvious spatiotemporal correlation. • Our prediction model presents superior performance. • Climate data and metadata can significantly

  16. Endothelial damage due to air pollution

    Directory of Open Access Journals (Sweden)

    Livio Dei Cas

    2010-05-01

    Full Text Available The first human deaths due to air pollution were recorded in the mid-20th century. There were 6,000 cases of illness recorded in Donora, Pennsylvania, in 1948 and 20,000 in London in 1952; 15 and 4,000 cases of death, respectively, were allegedly ascribed to air pollution. Since then, many countries have adopted standards of air quality in order to protect environmental and human health, although the quality of the air in some industrialized countries remains worrying. Emerging countries in the Far East and South America are also cause for concern because of the growth in the population, industrialization and transport. The WHO World Health Report 2002 estimated that air pollutants, particularly PM10, are associated with a mortality rate of 5% for cancer of the respiratory system, 2% for cardiovascular diseases and about 1% for respiratory tract infections. These estimates consider the mortality but not the morbidity rate, which would increase proportionally the number of cases of these pathologies, despite the difficulty in evaluation.

  17. Developing a Clinical Approach to Air Pollution and Cardiovascular Health.

    Science.gov (United States)

    Hadley, Michael B; Baumgartner, Jill; Vedanthan, Rajesh

    2018-02-13

    Nearly 3 billion people are exposed to household air pollution emitted from inefficient cooking and heating stoves, and almost the entire global population is exposed to detectable levels of outdoor air pollution from traffic, industry, and other sources. Over 3 million people die annually of ischemic heart disease or stroke attributed to air pollution, more than from traditional cardiac risk factors such as obesity, diabetes mellitus, or smoking. Clinicians have a role to play in reducing the burden of pollution-attributable cardiovascular disease. However, there currently exists no clear clinical approach to this problem. Here, we provide a blueprint for an evidence-based clinical approach to assessing and mitigating cardiovascular risk from exposure to air pollution. We begin with a discussion of the global burden of pollution-attributable cardiovascular disease, including a review of the mechanisms by which particulate matter air pollution leads to cardiovascular outcomes. Next, we offer a simple patient-screening tool using known risk factors for pollution exposure. We then discuss approaches to quantifying air pollution exposures and cardiovascular risk, including the development of risk maps for clinical catchment areas. We review a collection of interventions for household and outdoor air pollution, which clinicians can tailor to patients and populations at risk. Finally, we identify future research needed to quantify pollution exposures and validate clinical interventions. Overall, we demonstrate that clinicians can be empowered to mitigate the global burden of cardiovascular disease attributable to air pollution. © 2018 American Heart Association, Inc.

  18. Impacts of Air Pollution on Health in Eastern China: Implications for future air pollution and energy policies

    Science.gov (United States)

    Wang, X.; Mauzerall, D.

    2004-12-01

    Our objective is to establish the link between energy consumption and technologies, air pollution and resulting impacts on public health in eastern China. We quantify the impacts that air pollution in the Shandong region of eastern China has on public health in 2000 and quantify the benefits in improved air quality and health that could be obtained by 2020, relative to business-as-usual, through the implementation of new energy technology. We first develop a highly-resolved emission inventory for the year 2000 for the Shandong region of China including emissions from large point, area, mobile and biogenic sources. We use the Sparse Matrix Operator Kernel Emissions Modeling System (SMOKE) to process emissions from this inventory for use in the Community Multi-scale Air Quality modeling system (CMAQ) which we drive with the NCAR/PSU MM5 meso-scale meteorology model. We evaluate the inventory by comparing CMAQ results with available measurements of PM10 and SO2 from air pollution indices (APIs) reported in various Chinese municipalities during 2002-2004. We use epidemiological dose-response functions to quantify health impacts and values of a statistical life (VSL) and years-of-life-lost (YLL) to establish a range for the monetary value of these impacts. To examine health impacts and their monetary value, we focus explicitly on Zaozhuang, a coal-intensive city in the Shandong region of eastern China, and quantify the mortalities and morbidities resulting from air pollutants emitted from this city in 2000, and in 2020 using business-as-usual, best-available control technology, and advanced coal gasification technology scenarios. In all scenarios most health damages arise from exposure to particulate matter. We find that total health damages due to year 2000 anthropogenic emissions from Zaozhuang accounted for 4-10% of its GDP. If all health damages resulting from coal use were internalized in the market price of coal, the year 2000 price would have doubled. With no new

  19. Air pollution and lung cancer incidence in 17 European cohorts

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, Ole; Andersen, Zorana Jovanovic; Beelen, Rob

    2013-01-01

    Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations.......Ambient air pollution is suspected to cause lung cancer. We aimed to assess the association between long-term exposure to ambient air pollution and lung cancer incidence in European populations....

  20. Hazardous air pollutant handbook: measurements, properties, and fate in ambient air

    Energy Technology Data Exchange (ETDEWEB)

    Spicer, C.W. (ed.); Gordon, S.M.; Kelly, T.J.; Holdren, M.W.; Mukund, R. [Battelle, Columbus, OH (United States)

    2002-07-01

    Focussing on the 188 hazardous air pollutants (HAPs) identified in the Title III of the US Clean Air Act Amendments, this work reviews the methods used to identify, measure, and locate the presence of toxics in ambient air. After a classification and characterization of the HAPs, the current status of ambient measurement methods are surveyed and categorized according to applicable, likely, and potential methods. The results of studies of ambient air concentrations of the HAPs are presented. Methods used to study atmospheric transformations of toxic air pollutants are reviewed and the concept of atmospheric lifetimes of HAPs is discussed.

  1. Incorporating Air Quality Improvement at a Local Level into Climate Policy in the Transport Sector: A Case Study in Bandung City, Indonesia

    Directory of Open Access Journals (Sweden)

    Helmi Gunawan

    2017-06-01

    Full Text Available Climate policy has a strong influence on policy processes at national levels in Indonesia, while other policies with a focus on air quality improvement are being implemented at local levels. Indonesia as a developing country has committed to reducing greenhouse gas (GHG emissions by 29 percent by the year 2030. This calls into question the extent to which cities and local governments can cope with the challenges of climate change mitigation. The purpose of the research is to find out the extent to which local air pollution reduction policies can contribute to the climate change mitigation program. The research design involved an empirical case study on governance and policy relevant to climate change efforts to lower GHG in Bandung City, Indonesia. The study evaluated the air quality improvement and the climate change mitigation programs using the actor-based framework of the Contextual Interaction Theory (CIT. The governance and stakeholder characteristic of climate change mitigation were also analysed using the structural context part of the CIT framework. The result shows that air quality improvement policy is implemented separately from climate policy; the latter operates at the national level and the former at the local level. By looking at the actor interaction analysis, the study concludes that a more holistic environmental policy approach would be more efficient at reducing local air pollution and contributing to the mitigation of climate change.

  2. Changes of Air Pollution and Climate Forcing Emissions due to Fuel Switching to Gasohol in Motorcycle Fleet in an Urban Area of Thailand

    Directory of Open Access Journals (Sweden)

    Rattapon Onchang

    2017-07-01

    Full Text Available This research aims to examine the exhaust emission changed due to fuel switching to gasohol in actual motorcycles (MC fleet in Nakhon Pathom municipality, Thailand. International Vehicle Emissions (IVE model was applied by specifying the year 2010 as a base case and the target year of 2020 as Business as Usual (BAU. The parking lot survey, GPS monitoring and MC counting on selected roads during weekday and weekend were conducted. Fuel switching from gasoline octane number 91 to gasohol in all MC fleet in the municipality was set as a scenario according to current Thailand’s transport energy policies. Total pollution emissions reduction of the following pollutants after switching to gasohol E10 (10% of ethanol for all MC in the fleet compared to BAU were obtained: benzene (86%, 1,3-butadiene (69%, VOC (including evaporation (31% and CO (29%, while the following pollutants increased: acetaldehydes (>100%, formaldehydes (51%, NOx (9% and PM (5%. Gasohol use scenario produced larger amount of CO2 (29% and CH4 (9%. Only a small deviation of climate forcer emissions in CO2-equivalent (reduced by 8% for 20-year and increased by 2% for 100-year horizon were obtained. Switching to gasohol in MC fleet in Nakhon Pathom municipality unable to achieve air quality and climate co-benefit. Restriction of the local emission factors (EFs available for adjusting the model’s EFs can be influence to the emission calculation. Also, as PM was excluded from the calculation of GWP due to lack of OC and EC information, this can affect the analysis of climate forcer emissions.

  3. Air pollution during pregnancy and lung development in the child.

    Science.gov (United States)

    Korten, Insa; Ramsey, Kathryn; Latzin, Philipp

    2017-01-01

    Air pollution exposure has increased extensively in recent years and there is considerable evidence that exposure to particulate matter can lead to adverse respiratory outcomes. The health impacts of exposure to air pollution during the prenatal period is especially concerning as it can impair organogenesis and organ development, which can lead to long-term complications. Exposure to air pollution during pregnancy affects respiratory health in different ways. Lung development might be impaired by air pollution indirectly by causing lower birth weight, premature birth or disturbed development of the immune system. Exposure to air pollution during pregnancy has also been linked to decreased lung function in infancy and childhood, increased respiratory symptoms, and the development of childhood asthma. In addition, impaired lung development contributes to infant mortality. The mechanisms of how prenatal air pollution affects the lungs are not fully understood, but likely involve interplay of environmental and epigenetic effects. The current epidemiological evidence on the effect of air pollution during pregnancy on lung function and children's respiratory health is summarized in this review. While evidence for the adverse effects of prenatal air pollution on lung development and health continue to mount, rigorous actions must be taken to reduce air pollution exposure and thus long-term respiratory morbidity and mortality. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Indoor air pollution: a public health perspective

    International Nuclear Information System (INIS)

    Spengler, J.D.; Sexton, K.

    1983-01-01

    Although official efforts to control air pollution have traditionally focused on outdoor air, it is now apparent that elevated contaminant concentrations are common inside some private and public buildings. Concerns about potential public health problems due to indoor air pollution are based on evidence that urban residents typically spend more than 90 percent of their time indoors, concentrations of some contaminants are higher indoors than outdoors, and for some pollutants personal exposures are not characterized adequately by outdoor measurements. Among the more important indoor contaminants associated with health or irritation effects are passive tobacco smoke, radon decay products, carbon monoxide, nitrogen dioxide, formaldehyde, asbestos fibers, microorganisms, and aeroallergens. Efforts to assess health risks associated with indoor air pollution are limited by insufficient information about the number of people exposed, the pattern and severity of exposures, and the health consequences of exposures. An overall strategy should be developed to investigate indoor exposures, health effects, control options, and public policy alternatives

  5. Adverse respiratory effects of outdoor air pollution in the elderly.

    Science.gov (United States)

    Bentayeb, M; Simoni, M; Baiz, N; Norback, D; Baldacci, S; Maio, S; Viegi, G; Annesi-Maesano, I

    2012-09-01

    Compared to the rest of the population, the elderly are potentially highly susceptible to the effects of outdoor air pollution due to normal and pathological ageing. The purpose of the present review was to gather data on the effects on respiratory health of outdoor air pollution in the elderly, on whom data are scarce. These show statistically significant short-term and chronic adverse effects of various outdoor air pollutants on cardiopulmonary morbidity and mortality in the elderly. When exposed to air pollution, the elderly experience more hospital admissions for asthma and chronic obstructive pulmonary disease (COPD) and higher COPD mortality than others. Previous studies also indicate that research on the health effects of air pollution in the elderly has been affected by methodological problems in terms of exposure and health effect assessments. Few pollutants have been considered, and exposure assessment has been based mostly on background air pollution and more rarely on objective measurements and modelling. Significant progress needs to be made through the development of 'hybrid' models utilising the strengths of information on exposure in various environments to several air pollutants, coupled with daily activity exposure patterns. Investigations of chronic effects of air pollution and of multi-pollutant mixtures are needed to better understand the role of air pollution in the elderly. Lastly, smoking, occupation, comorbidities, treatment and the neighbourhood context should be considered as confounders or modifiers of such a role. In this context, the underlying biological, physiological and toxicological mechanisms need to be explored to better understand the phenomenon through a multidisciplinary approach.

  6. Multicontaminant air pollution in Chinese cities.

    Science.gov (United States)

    Han, Lijian; Zhou, Weiqi; Pickett, Steward Ta; Li, Weifeng; Qian, Yuguo

    2018-04-01

    To investigate multicontaminant air pollution in Chinese cities, to quantify the urban population affected and to explore the relationship between air pollution and urban population size. We obtained data for 155 cities with 276 million inhabitants for 2014 from China's air quality monitoring network on concentrations of fine particulate matter measuring under 2.5 μm (PM 2.5 ), coarse particulate matter measuring 2.5 to 10 μm (PM 10 ), nitrogen dioxide (NO 2 ), sulfur dioxide (SO 2 ) and ozone (O 3 ). Concentrations were considered as high, if they exceeded World Health Organization (WHO) guideline limits. Overall, 51% (142 million) of the study population was exposed to mean annual multicontaminant concentrations above WHO limits - east China and the megacities were worst affected. High daily levels of four-contaminant mixtures of PM 2.5 , PM 10 , SO 2 and O 3 and PM 2.5 , PM 10 , SO 2 and NO 2 occurred on up to 110 days in 2014 in many cities, mainly in Shandong and Hebei Provinces. High daily levels of PM 2.5 , PM 10 and SO 2 occurred on over  146 days in 110 cities, mainly in east and central China. High daily levels of mixtures of PM 2.5 and PM 10 , PM 2.5 and SO 2 , and PM 10 and SO 2 occurred on over  146 days in 145 cities, mainly in east China. Surprisingly, multicontaminant air pollution was less frequent in cities with populations over 10 million than in smaller cities. Multicontaminant air pollution was common in Chinese cities. A shift from single-contaminant to multicontaminant evaluations of the health effects of air pollution is needed. China should implement protective measures during future urbanization.

  7. Parental stress and air pollution increase childhood asthma in China.

    Science.gov (United States)

    Deng, Qihong; Deng, Linjing; Lu, Chan; Li, Yuguo; Norbäck, Dan

    2018-08-01

    Although air pollution and social stress may independently increase childhood asthma, little is known on their synergistic effect on asthma, particularly in China with high levels of stress and air pollution. To examine associations between exposure to a combination of parental stress and air pollution and asthma prevalence in children. We conducted a cohort study of 2406 preschool children in Changsha (2011-2012). A questionnaire was used to collect children's lifetime prevalence of asthma and their parental stress. Parental socioeconomic and psychosocial stresses were respectively defined in terms of housing size and difficulty concentrating. Children's exposure to ambient air pollutants was estimated using concentrations measured at monitoring stations. Associations between exposure to parental stress and air pollution and childhood asthma were estimated by multiple logistic regression models using odds ratio (OR) and 95% confidence interval (CI). Life time prevalence of asthma in preschool children (6.7%) was significantly associated with parental socioeconomic and psychosocial stresses with OR (95% CI) respectively 1.48 (1.02-2.16) and 1.64 (1.00-2.71). Asthma was also associated with exposure to air pollutants, with adjusted OR (95% CI) during prenatal and postnatal periods respectively 1.43 (1.10-1.86) and 1.35 (1.02-1.79) for SO 2 and 1.61 (1.19-2.18) and 1.76 (1.19-2.61) for NO 2 . The association with air pollution was significant only in children exposed to high parental stress, the association with parental stress was significant only in children exposed to high air pollution, and the association was the strongest in children exposed to a combination of parental stress and air pollution. Sensitivity analysis showed that the synergistic effects of parental stress and air pollution on childhood asthma were stronger in boys. Parental stress and air pollution were synergistically associated with increased childhood asthma, indicating a common biological

  8. Legal aspects of transfrontier air pollution

    International Nuclear Information System (INIS)

    Rauschning, D.

    1986-01-01

    This contribution deals with the technical developments and the necessary adaptation of the legal and social systems in the various states. The author first discusses provisions of international law with regard to giving proof of environmental pollution caused by a neighbour state. He then deals with the legal aspects of long-distance air pollution. Finally, the Federal German substantial air pollution control law and relevant licensing provisions are taken as an example to show how the Federal Republic of Germany comes up to the obligations set by international law, to provide for due protection of the environment in neighbour states. (orig./HSCH) [de

  9. Multivariate analysis between air pollutants and meteorological variables in Seoul

    International Nuclear Information System (INIS)

    Kim, J.; Lim, J.

    2005-01-01

    Multivariate analysis was conducted to analyze the relationship between air pollutants and meteorological variables measured in Seoul from January 1 to December 31, 1999. The first principal component showed the contrast effect between O 3 and the other pollutants. The second principal component showed the contrast effect between CO, SO 2 , NO 2 , and O 3 , PM 10 , TSP. Based on the cluster analysis, three clusters represented different air pollution levels, seasonal characteristics of air pollutants, and meteorological conditions. Discriminant analysis with air environment index (AEI) was carried out to develop an air pollution index function. (orig.)

  10. Air pollution radiative forcing from specific emissions sectors at 2030

    Science.gov (United States)

    Unger, Nadine; Shindell, Drew T.; Koch, Dorothy M.; Streets, David G.

    2008-01-01

    Reduction of short-lived air pollutants can contribute to mitigate global warming in the near-term with ancillary benefits to human health. However, the radiative forcings of short-lived air pollutants depend on the location and source type of the precursor emissions. We apply the Goddard Institute for Space Studies atmospheric composition-climate model to quantify near-future (2030 A1B) global annual mean radiative forcing by ozone (O3) and sulfate from six emissions sectors in seven geographic regions. At 2030 the net forcings from O3, sulfate, black and organic carbon, and indirect CH4 effects for each emission sector are (in mWm-2) biomass burning, +95; domestic, +68; transportation, +67; industry, -131; and power, -224. Biomass burning emissions in East Asia and central and southern Africa, domestic biofuel emissions in East Asia, south Asia, and central and southern Africa, and transportation emissions in Europe and North America have large net positive forcings and are therefore attractive targets to counter global warming. Power and industry emissions from East Asia, south Asia, and north Africa and the Middle East have large net negative forcings. Therefore air quality control measures that affect these regional sectors require offsetting climate measures to avoid a warming impact. Linear relationships exist between O3 forcing and biomass burning and domestic biofuel CO precursor emissions independent of region with sensitivity of +0.2 mWm-2/TgCO. Similarly, linear relationships exist between sulfate forcing and SO2 precursor emissions that depend upon region but are independent of sector with sensitivities ranging from -3 to -12 mWm-2/TgS.

  11. The air pollution: sources, effects, prevention

    International Nuclear Information System (INIS)

    Elichegaray, C.

    2008-01-01

    The author offers a detailed and illustrated panorama of the air pollution sources and effects. The study is realized at the individual scale with the indoor pollution and at a global scale with the consequences of the greenhouse effect gases. Added to classical pollutants, the book takes into account new pollutants (organic, nano particulates, biological) and the epidemiology. (A.L.B.)

  12. Impact of ambient air pollution on obesity: a systematic review.

    Science.gov (United States)

    An, Ruopeng; Ji, Mengmeng; Yan, Hai; Guan, Chenghua

    2018-05-24

    Over 80% of the global populations living in urban areas are exposed to air quality levels that exceed the World Health Organization limits. Air pollution may lead to unhealthy body weight through metabolic dysfunction, chronic disease onset, and disruption of regular physical activity. A literature search was conducted in the PubMed and Web of Science for peer-reviewed articles published until September 2017 that assessed the relationship between air pollution and body weight status. A standardized data extraction form was used to collect methodological and outcome variables from each eligible study. Sixteen studies met the selection criteria and were included in the review. They were conducted in seven countries, including the US (n = 9), China (n = 2), Canada (n = 1), Italy (n = 1), The Netherlands (n = 1), Serbia (n = 1), and South Korea (n = 1). Half of them adopted a longitudinal study design, and the rest adopted a cross-sectional study design. Commonly examined air pollutants included PM, NO 2 , SO 2 , O 3 , and overall air quality index. Among a total of 66 reported associations between air pollution and body weight status, 29 (44%) found air pollution to be positively associated with body weight, 29 (44%) reported a null finding, and the remaining eight (12%) found air pollution to be negatively associated with body weight. The reported associations between air pollution and body weight status varied by sex, age group, and type of air pollutant. Three pathways hypothesized in the selected studies were through increased oxidative stress and adipose tissue inflammation, elevated risk for chronic comorbidities, and insufficient physical activity. Concurrent evidence regarding the impact of air pollution on body weight status remains mixed. Future studies should assess the impact of severe air pollution on obesity in developing countries, focus on a homogenous population subgroup, and elucidate the biomedical and psychosocial

  13. Measurement of Air Pollutants in the Troposphere

    Science.gov (United States)

    Clemitshaw, Kevin C.

    2011-01-01

    This article describes the principles, applications and performances of methods to measure gas-phase air pollutants that either utilise passive or active sampling with subsequent laboratory analysis or involve automated "in situ" sampling and analysis. It focuses on air pollutants that have adverse impacts on human health (nitrogen…

  14. Relationship between Air Pollution and Weather Conditions under Complicated Geographical conditions

    Science.gov (United States)

    Cheng, Q.; Jiang, P.; Li, M.

    2017-12-01

    Air pollution is one of the most serious issues all over the world, especially in megacities with constrained geographical conditions for air pollution diffusion. However, the dynamic mechanism of air pollution diffusion under complicated geographical conditions is still be confused. Researches to explore relationship between air pollution and weather conditions from the perspective of local atmospheric circulations can contribute more to solve such problem. We selected three megacities (Beijing, Shanghai and Guangzhou) under different geographical condition (mountain-plain transition region, coastal alluvial plain and coastal hilly terrain) to explore the relationship between air pollution and weather conditions. RDA (Redundancy analysis) model was used to analyze how the local atmospheric circulation acts on the air pollutant diffusion. The results show that there was a positive correlation between the concentration of air pollutants and air pressure, while temperature, precipitation and wind speed have negative correlations with the concentration of air pollutants. Furthermore, geographical conditions, such as topographic relief, have significant effects on the direction, path and intensity of local atmospheric circulation. As a consequence, air pollutants diffusion modes in different cities under various geographical conditions are diverse from each other.

  15. Method for determining the susceptibility of trees to air pollution by artificial fumigation

    Energy Technology Data Exchange (ETDEWEB)

    Spierings, F

    1967-01-01

    An apparatus has been developed for testing the susceptibility of trees and shrubs to air pollution while they are growing in their natural environment. It does not disturb the prevailing climatic conditions because ambient air and the test gas are mixed and blown onto a branch of the tree. The specially constructed blower is set up so that the branch to be fumigated is near the outlet and between two transparent plastic plates fixed on either side of the outlet of the apparatus. 2 references, 4 figures, 3 tables.

  16. Health effects from indoor air pollution: case studies.

    Science.gov (United States)

    White, L E; Clarkson, J R; Chang, S N

    1987-01-01

    In recent years there has been a growing awareness of the health effects associated with the presence of contaminants in indoor air. Numerous agents can accumulate in public buildings, homes and automobiles as a result of ongoing activities that normally occur in these closed spaces. Ventilation is a major factor in the control of indoor air pollutants since proper movement of air can prevent or minimize the build up of compounds in buildings. The recent emphasis on energy conservation has lead to measures which economize on energy for heating and air conditioning, but which also trap pollutants within a building. Three cases of indoor air pollution were investigated. A typical investigation of indoor air pollutant problems includes the following: interviews with building occupants; history of the building with regard to maintenance, pesticide treatment, etc.; a survey of the building and ventilation; and when warranted, sampling and analysis of air. Each case presented is unique in that atypical situations caused agents to accumulate in a building or section of a building. The indoor air problems in these cases were solved by identifying and removing the source of the offending agent and/or improving the ventilation in the building.

  17. Woody-plant ecosystems under climate change and air pollution-response consistencies across zonobiomes?

    Science.gov (United States)

    Matyssek, R; Kozovits, A R; Wieser, G; King, J; Rennenberg, H

    2017-06-01

    Forests store the largest terrestrial pools of carbon (C), helping to stabilize the global climate system, yet are threatened by climate change (CC) and associated air pollution (AP, highlighting ozone (O3) and nitrogen oxides (NOx)). We adopt the perspective that CC-AP drivers and physiological impacts are universal, resulting in consistent stress responses of forest ecosystems across zonobiomes. Evidence supporting this viewpoint is presented from the literature on ecosystem gross/net primary productivity and water cycling. Responses to CC-AP are compared across evergreen/deciduous foliage types, discussing implications of nutrition and resource turnover at tree and ecosystem scales. The availability of data is extremely uneven across zonobiomes, yet unifying patterns of ecosystem response are discernable. Ecosystem warming results in trade-offs between respiration and biomass production, affecting high elevation forests more than in the lowland tropics and low-elevation temperate zone. Resilience to drought is modulated by tree size and species richness. Elevated O3 tends to counteract stimulation by elevated carbon dioxide (CO2). Biotic stress and genomic structure ultimately determine ecosystem responsiveness. Aggrading early- rather than mature late-successional communities respond to CO2 enhancement, whereas O3 affects North American and Eurasian tree species consistently under free-air fumigation. Insect herbivory is exacerbated by CC-AP in biome-specific ways. Rhizosphere responses reflect similar stand-level nutritional dynamics across zonobiomes, but are modulated by differences in tree-soil nutrient cycling between deciduous and evergreen systems, and natural versus anthropogenic nitrogen (N) oversupply. The hypothesis of consistency of forest responses to interacting CC-AP is supported by currently available data, establishing the precedent for a global network of long-term coordinated research sites across zonobiomes to simultaneously advance both

  18. Health Effects of Ambient Air Pollution in Developing Countries

    OpenAIRE

    Mannucci, Pier Mannuccio; Franchini, Massimo

    2017-01-01

    The deleterious effects of ambient air pollution on human health have been consistently documented by many epidemiologic studies worldwide, and it has been calculated that globally at least seven million deaths are annually attributable to the effects of air pollution. The major air pollutants emitted into the atmosphere by a number of natural processes and human activities include nitrogen oxides, volatile organic compounds, and particulate matter. In addition to the poor ambient air quality...

  19. Reconsidering the Relationship between Air Pollution and Deprivation.

    Science.gov (United States)

    Bailey, Nick; Dong, Guanpeng; Minton, Jon; Pryce, Gwilym

    2018-03-29

    This paper critically examines the relationship between air pollution and deprivation. We argue that focusing on a particular economic or social model of urban development might lead one to erroneously expect all cities to converge towards a particular universal norm. A naive market sorting model, for example, would predict that poor households will eventually be sorted into high pollution areas, leading to a positive relationship between air pollution and deprivation. If, however, one considers a wider set of theoretical perspectives, the anticipated relationship between air pollution and deprivation becomes more complex and idiosyncratic. Specifically, we argue the relationship between pollution and deprivation can only be made sense of by considering processes of risk perception, path dependency, gentrification and urbanization. Rather than expecting all areas to eventually converge to some universal norm, we should expect the differences in the relationship between air pollution and deprivation across localities to persist. Mindful of these insights, we propose an approach to modeling which does not impose a geographically fixed relationship. Results for Scotland reveal substantial variations in the observed relationships over space and time, supporting our argument.

  20. Air pollution: worldwide effects on mountain forests

    Science.gov (United States)

    Anne M. Rosenthal; Andrzej Featured: Bytnerowicz

    2004-01-01

    Widespread forest decline in remote areas of the Carpathian Mountains has been linked to air pollution from urban and industrial regions. Besides injuring plant tissues directly, pollutants may deposit to soils and water, drastically changing susceptible ecosystems. Researcher Andrzej Bytnerowicz has developed effective methods for assessing air quality over wildlands...

  1. Climatological variability in regional air pollution

    International Nuclear Information System (INIS)

    Shannon, J.D.; Trexler, E.C. Jr.

    1995-01-01

    Although some air pollution modeling studies examine events that have already occurred (e.g., the Chernobyl plume) with relevant meteorological conditions largely known, most pollution modeling studies address expected or potential scenarios for the future. Future meteorological conditions, the major pollutant forcing function other than emissions, are inherently uncertain although much relevant information is contained in past observational data. For convenience in our discussions of regional pollutant variability unrelated to emission changes, we define meteorological variability as short-term (within-season) pollutant variability and climatological variability as year-to-year changes in seasonal averages and accumulations of pollutant variables. In observations and in some of our simulations the effects are confounded because for seasons of two different years both the mean and the within-season character of a pollutant variable may change. Effects of climatological and meteorological variability on means and distributions of air pollution parameters, particularly those related to regional visibility, are illustrated. Over periods of up to a decade climatological variability may mask or overstate improvements resulting from emission controls. The importance of including climatological uncertainties in assessing potential policies, particularly when based partly on calculated source-receptor relationships, is highlighted

  2. International conventions on air pollution abatement. Implementation measures

    International Nuclear Information System (INIS)

    Adler, S.; Groza, L.

    1996-01-01

    The environmental protection, the pollution reduction, their positive direct and indirect effects, the energy efficiency increase in using fossil fuels have an important role on the environmental and energy policies, as well as on the long-term planning. The report presents, under the new legislative context, the general frame from the implementation of concrete actions to fulfill the commitments contained in different environmental conventions, in which Romania is or intends to be a part. In this context it is presented the national approach for the implementation of two conventions: the United Nations Framework Convention on Climate Change and the Long-Range Transboundary Air Pollution, this under the United Nations Economic Commission for Europe. The report presents the necessary measures to reduce the emissions of carbon, sulfur and nitrogen oxides taking into account the process of the Romanian integration in the European structure as well as the dynamic of the economic reform. Romania is aware that the necessary environmental activities (research, design, environmental investments etc.) must be financed from internal resources, the own resources of the polluting economic units, the central and local budgets. (author). 7 refs

  3. Developmental Neurotoxicity of Traffic-Related Air Pollution: Focus on Autism.

    Science.gov (United States)

    Costa, Lucio G; Chang, Yu-Chi; Cole, Toby B

    2017-06-01

    Epidemiological and animal studies suggest that air pollution may negatively affect the central nervous system (CNS) and contribute to CNS diseases. Traffic-related air pollution is a major contributor to global air pollution, and diesel exhaust (DE) is its most important component. Several studies suggest that young individuals may be particularly susceptible to air pollution-induced neurotoxicity and that perinatal exposure may cause or contribute to developmental disabilities and behavioral abnormalities. In particular, a number of recent studies have found associations between exposures to traffic-related air pollution and autism spectrum disorders (ASD), which are characterized by impairment in socialization and in communication and by the presence of repetitive and unusual behaviors. The cause(s) of ASD are unknown, and while it may have a hereditary component, environmental factors are increasingly suspected as playing a pivotal role in its etiology, particularly in genetically susceptible individuals. Autistic children present higher levels of neuroinflammation and systemic inflammation, which are also hallmarks of exposure to traffic-related air pollution. Gene-environment interactions may play a relevant role in determining individual susceptibility to air pollution developmental neurotoxicity. Given the worldwide presence of elevated air pollution, studies on its effects and mechanisms on the developing brain, genetic susceptibility, role in neurodevelopmental disorders, and possible therapeutic interventions are certainly warranted.

  4. Human health effects of air pollution

    International Nuclear Information System (INIS)

    Kampa, Marilena; Castanas, Elias

    2008-01-01

    Hazardous chemicals escape to the environment by a number of natural and/or anthropogenic activities and may cause adverse effects on human health and the environment. Increased combustion of fossil fuels in the last century is responsible for the progressive change in the atmospheric composition. Air pollutants, such as carbon monoxide (CO), sulfur dioxide (SO 2 ), nitrogen oxides (NOx), volatile organic compounds (VOCs), ozone (O 3 ), heavy metals, and respirable particulate matter (PM2.5 and PM10), differ in their chemical composition, reaction properties, emission, time of disintegration and ability to diffuse in long or short distances. Air pollution has both acute and chronic effects on human health, affecting a number of different systems and organs. It ranges from minor upper respiratory irritation to chronic respiratory and heart disease, lung cancer, acute respiratory infections in children and chronic bronchitis in adults, aggravating pre-existing heart and lung disease, or asthmatic attacks. In addition, short- and long-term exposures have also been linked with premature mortality and reduced life expectancy. These effects of air pollutants on human health and their mechanism of action are briefly discussed. - The effect of air pollutants on human health and underlying mechanisms of cellular action are discussed

  5. Meteorological conditions during a severe, prolonged regional heavy air pollution episode in eastern China from December 2016 to January 2017

    Science.gov (United States)

    Deng, Xueliang; Cao, Weihua; Huo, Yanfeng; Yang, Guanying; Yu, Caixia; He, Dongyan; Deng, Weitao; Fu, Wei; Ding, Heming; Zhai, Jing; Cheng, Long; Zhao, Xuhui

    2018-03-01

    A severe, prolonged and harmful regional heavy air pollution episode occurred in eastern China from December 2016 to January 2017. In this paper, the pollutant characteristics and the meteorological formation mechanism of this pollution event, including climate anomalies, surface weather conditions, planetary boundary layer structure and large-scale circulation features, were analysed based on observational pollution data, surface meteorological data, sounding data and ERA-Interim reanalysis data. The results are as follows. (1) Five pollution stages were identified in eastern China. The two most severe episodes occurred from December 27, 2016 to January 4, 2017 and from January 8 to 12 2017. During these two pollution episodes, fine mode particles were major contributors, and hourly PM2.5 concentrations often exceeded 150 μg/m3, reaching a maximum of 333 μg/m3 at Fuyang station. Gaseous pollutants were transformed into secondary aerosols through heterogeneous reactions on the surface of PM2.5. (2) Compared with the same period over the years 2000-2016, 2017 presented meteorological field climate anomalies in conjunction with unfavourable surface conditions (weak winds, high relative humidity, fewer hours of sunshine, high cloud cover) and adverse atmospheric circulation (weak East Asian winter monsoon and an abnormal geopotential height of 500 hPa), which caused poorer visibility in 2017 than in the other analysed years. (3) During the development of heavy pollution event, unfavourable surface weather conditions, including poorer visibility, weaker pressure, higher relative humidity, lower wind speed with unfavourable wind direction and less precipitation suppressed the horizontal diffusion ability of air pollutants. Furthermore, the unfavourable structure of the atmospheric boundary layer was the key cause of the rapid PM2.5 increase. The deep, strong temperature inversion layer and weak vertical wind velocity could have suppressed vertical motion and enhanced

  6. Patient-Provider Discussions About Strategies to Limit Air Pollution Exposures.

    Science.gov (United States)

    Mirabelli, Maria C; Damon, Scott A; Beavers, Suzanne F; Sircar, Kanta D

    2018-06-11

    Exposure to air pollution negatively affects respiratory and cardiovascular health. The objective of this study was to describe the extent to which health professionals report talking about how to limit exposure to air pollution during periods of poor air quality with their at-risk patients. In 2015, a total of 1,751 health professionals completed an online survey and reported whether they talk with their patients about limiting their exposure to air pollution. In 2017, these data were analyzed to assess the frequency that health professionals in primary care, pediatrics, obstetrics/gynecology, and nursing reported talking about limiting air pollution exposure with patients who have respiratory or cardiovascular diseases, were aged ≤18 years, were aged ≥65 years, or were pregnant women. Frequencies of positive responses were assessed across categories of provider- and practice-level characteristics. Overall, 714 (41%) respondents reported ever talking with their patients about limiting their exposure to air pollution. Thirty-four percent and 16% of providers specifically reported talking with their patients with respiratory or cardiovascular disease diagnoses, respectively. Percentages of health professionals who reported talking with their patients about limiting air pollution exposure were highest among respondents in pediatrics (56%) and lowest among respondents in obstetrics/gynecology (0%). Despite the well-described health effects of exposure to air pollution, the majority of respondents did not report talking with their patients about limiting their exposure to air pollution. These findings reveal clear opportunities to improve awareness about strategies to limit air pollution exposure among sensitive groups of patients and their health care providers. Published by Elsevier Inc.

  7. Controlling Air Pollution; A Primer on Stationary Source Control Techniques.

    Science.gov (United States)

    Corman, Rena

    This companion document to "Air Pollution Primer" is written for the nonexpert in air pollution; however, it does assume a familiarity with air pollution problems. This work is oriented toward providing the reader with knowledge about current and proposed air quality legislation and knowledge about available technology to meet these standards for…

  8. Air pollution in eastern Asia an integrated perspective

    CERN Document Server

    Wang, Xuemei; Brasseur, Guy

    2017-01-01

    This book, written by an international group of experts from China, Europe and the USA, presents a broad and comprehensive analysis of the chemical and meteorological processes responsible for the formation of air pollutants in eastern Asia, and in particular for the development of severe pollution episodes observed primarily during winter in the northeastern part of China. With the rapid population growth, economic development and urbanization occurring in Asia, air pollution has become a major environmental problem in this part of the world. The book is organized around six distinct parts. The first part of the volume offers a general perspective on issues related to air pollution including persistent haze events in eastern and southern Asia. The second part presents an overview of air pollution sources (i.e., anthropogenic and biomass burning sources). The third part analyzes in-situ observations of chemical species in China, while the fourth part focuses on space observations of gas-phase and aerosol spec...

  9. Western forests and air pollution

    International Nuclear Information System (INIS)

    Olson, R.K.; Binkley, D.; Boehm, M.

    1992-01-01

    The book addresses the relationships between air pollution in the western United States and trends in the growth and condition of Western coniferous forests. The major atmospheric pollutants to which forest in the region are exposed are sulfur and nitrogen compounds and ozone. The potential effects of atmospheric pollution on these forests include foliar injury, alteration of growth rates and patterns, soil acidification, shifts in species composition, and modification of the effects of natural stresses

  10. Local pollutants go global: The impacts of intercontinental air pollution from China on air quality and morbidity in California.

    Science.gov (United States)

    Ngo, Nicole S; Bao, Xiaojia; Zhong, Nan

    2018-08-01

    China is among the greatest emitters of air pollution in the world and one concern is the effects of intercontinental air pollution traveling across the Pacific Ocean from China to the U.S. We exploit a natural experiment by observing the effects of changes in intercontinental air pollution associated with Chinese New Year, a 7-day national holiday, and sandstorms from China on air quality and morbidity in California. The timing of these events are unlikely correlated to other factors affecting air quality and health in California. Chinese New Year follows the Lunar New Year which varies each traditional calendar year while sandstorms are a naturally occurring phenomenon. We examine effects on morbidity using restricted emergency department and inpatient hospitalization data for the universe of patients with respiratory and heart disease between 2005 and 2012 in California. This is the first study to use patient-level data to examine the effects of trans-Pacific air pollution from China on morbidity in the U.S. We show that heavy sandstorms are associated with a modest increase in acute respiratory disease per capita, representing 0.5-4.6% of average weekly hospitalizations. However, we find no significant effect on morbidity in California from Chinese New Year. Results suggest that policymakers could prepare for changes in air quality following major sandstorms in China. Copyright © 2018 Elsevier Inc. All rights reserved.

  11. Report on the behalf of the Commission of inquiry on the economic and financial cost of air pollution. Nr 610

    International Nuclear Information System (INIS)

    Husson, Jean-Francois; Aichi, Leila

    2015-01-01

    After a list of 61 propositions made by the authors, this huge report first addresses air pollution as a major public health issue with multiple impacts. It proposes an overview of the progressive awareness on this issue as pollution has been considered for a long time as an unavoidable consequence of technical and industrial progress, as the emergence of air survey slowly became a priority for public authorities between 1917 and 1973, and as the struggle against atmospheric pollution is now a key issue in the prevention of climate change in a context which has become supra-national. It analyses outer air pollution: European and international definitions, status of scientific knowledge on health effects, sources of atmospheric pollution, the peculiar case of France regarding chemical pollution due to the Diesel engines, and aero-biologic pollution. It addresses inner air pollution, a hazard with many unknowns: a phenomenon which has been progressively acknowledged as a major public health problem, overview of the rather timid French legal framework. It proposes an overview of other impacts (other than on health): on vegetal and biodiversity, on the built environment, and on water. The second part addresses the economic and financial cost of air pollution. It discusses how to assess the cost of air pollution (assessment of health impacts of air pollution, assessment of health cost of air pollution). It outlines that it is a major cost which is often under-assessed. It proposes an overview of the status of the cost of air pollution in France as far as the cost for the health system, the social and economic cost, and other costs (decrease of agriculture efficiency, building degradation, policy costs, effect of the environment and loss of biodiversity, tax and regulation) are concerned. The third part of this report proposes an overview of solutions which aim at obtaining a better balance between standards and tax policy, at promoting innovation, at implementing

  12. Setting limits: Using air pollution thresholds to protect and restore U.S. ecosystems

    Science.gov (United States)

    Fenn, M.E.; Lambert, K.F.; Blett, T.F.; Burns, Douglas A.; Pardo, L.H.; Lovett, Gary M.; Haeuber, R. A.; Evers, D.C.; Driscoll, C.T.; Jeffries, D.S.

    2011-01-01

    More than four decades of research provide unequivocal evidence that sulfur, nitrogen, and mercury pollution have altered, and will continue to alter, our nation's lands and waters. The emission and deposition of air pollutants harm native plants and animals, degrade water quality, affect forest productivity, and are damaging to human health. Many air quality policies limit emissions at the source but these control measures do not always consider ecosystem impacts. Air pollution thresholds at which ecological effects are observed, such as critical loads, are effective tools for assessing the impacts of air pollution on essential ecosystem services and for informing public policy. U.S. ecosystems can be more effectively protected and restored by using a combination of emissions-based approaches and science-based thresholds of ecosystem damage. Based on the results of a comprehensive review of air pollution thresholds, we conclude: ??? Ecosystem services such as air and water purification, decomposition and detoxification of waste materials, climate regulation, regeneration of soil fertility, production and biodiversity maintenance, as well as crop, timber and fish supplies are impacted by deposition of nitrogen, sulfur, mercury and other pollutants. The consequences of these changes may be difficult or impossible to reverse as impacts cascade throughout affected ecosystems. ??? The effects of too much nitrogen are common across the U.S. and include altered plant and lichen communities, enhanced growth of invasive species, eutrophication and acidification of lands and waters, and habitat deterioration for native species, including endangered species. ??? Lake, stream and soil acidification is widespread across the eastern United States. Up to 65% of lakes within sensitive areas receive acid deposition that exceeds critical loads. ??? Mercury contamination adversely affects fish in many inland and coastal waters. Fish consumption advisories for mercury exist in all 50

  13. Vegetation fires and air pollution in Vietnam.

    Science.gov (United States)

    Le, Thanh Ha; Thanh Nguyen, Thi Nhat; Lasko, Kristofer; Ilavajhala, Shriram; Vadrevu, Krishna Prasad; Justice, Chris

    2014-12-01

    Forest fires are a significant source of air pollution in Asia. In this study, we integrate satellite remote sensing data and ground-based measurements to infer fire-air pollution relationships in selected regions of Vietnam. We first characterized the active fires and burnt areas at a regional scale from MODIS satellite data. We then used satellite-derived active fire data to correlate the resulting atmospheric pollution. Further, we analyzed the relationship between satellite atmospheric variables and ground-based air pollutant parameters. Our results show peak fire activity during March in Vietnam, with hotspots in the Northwest and Central Highlands. Active fires were significantly correlated with UV Aerosol Index (UVAI), aerosol extinction absorption optical depth (AAOD), and Carbon Monoxide. The use of satellite aerosol optical thickness improved the prediction of Particulate Matter (PM) concentration significantly. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. Air pollution and chronic airway diseases: what should people know and do?

    Science.gov (United States)

    Jiang, Xu-Qin; Mei, Xiao-Dong; Feng, Di

    2016-01-01

    The health effects of air pollution remain a public health concern worldwide. Exposure to air pollution has many substantial adverse effects on human health. Globally, seven million deaths were attributable to the joint effects of household and ambient air pollution. Subjects with chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are especially vulnerable to the detrimental effects of air pollutants. Air pollution can induce the acute exacerbation of COPD and onset of asthma, increase the respiratory morbidity and mortality. The health effects of air pollution depend on the components and sources of pollutants, which varied with countries, seasons, and times. Combustion of solid fuels is a major source of air pollutants in developing countries. To reduce the detrimental effects of air pollution, people especially those with COPD or asthma should be aware of the air quality and take extra measures such as reducing the time outdoor and wearing masks when necessary. For reducing the air pollutants indoor, people should use clean fuels and improve the stoves so as to burn fuel more efficiently and vent emissions to the outside. Air cleaners that can improve the air quality efficiently are recommended.

  15. Air pollution and chronic airway diseases: what should people know and do?

    Science.gov (United States)

    Jiang, Xu-Qin; Feng, Di

    2016-01-01

    The health effects of air pollution remain a public health concern worldwide. Exposure to air pollution has many substantial adverse effects on human health. Globally, seven million deaths were attributable to the joint effects of household and ambient air pollution. Subjects with chronic respiratory diseases such as chronic obstructive pulmonary disease (COPD) and asthma are especially vulnerable to the detrimental effects of air pollutants. Air pollution can induce the acute exacerbation of COPD and onset of asthma, increase the respiratory morbidity and mortality. The health effects of air pollution depend on the components and sources of pollutants, which varied with countries, seasons, and times. Combustion of solid fuels is a major source of air pollutants in developing countries. To reduce the detrimental effects of air pollution, people especially those with COPD or asthma should be aware of the air quality and take extra measures such as reducing the time outdoor and wearing masks when necessary. For reducing the air pollutants indoor, people should use clean fuels and improve the stoves so as to burn fuel more efficiently and vent emissions to the outside. Air cleaners that can improve the air quality efficiently are recommended. PMID:26904251

  16. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste

    Science.gov (United States)

    The open burning of waste, whether at individual residences, businesses, or dump sites, is a large source of air pollutants. These emissions, however, are not included in many current emission inventories used in chemistry and climate modeling applications. This paper presents th...

  17. STRESS IN THE AIR: INHALED POLLUTANTS AND MULTI-ORGAN IMPAIRMENT

    Science.gov (United States)

    Air pollution has been blamed for nearly 7 million premature deaths worldwide. For decades, the research on how air pollution impacts human health has centered on cardiopulmonary consequences. However, more recently it is clearly evident that air pollution affects every organ in ...

  18. Health status and air pollution related socioeconomic concerns in urban China.

    Science.gov (United States)

    Jiao, Kaishan; Xu, Mengjia; Liu, Meng

    2018-02-05

    China is experiencing environmental issues and related health effects due to its industrialization and urbanization. The health effects associated with air pollution are not just a matter of epidemiology and environmental science research, but also an important social science issue. Literature about the relationship of socioeconomic factors with the environment and health factors is inadequate. The relationship between air pollution exposure and health effects in China was investigated with consideration of the socioeconomic factors. Based on nationwide survey data of China in 2014, we applied the multilevel mixed-effects model to evaluate how socioeconomic status (represented by education and income) contributed to the relationship between self-rated air pollution and self-rated health status at community level and individual level. The findings indicated that there was a non-linear relationship between the community socioeconomic status and community air pollution in urban China, with the highest level of air pollution presented in the communities with moderate socioeconomic status. In addition, health effects associated air pollution in different socioeconomic status groups were not equal. Self-rated air pollution had the greatest impact on self-rated health of the lower socioeconomic groups. With the increase of socioeconomic status, the effect of self-rated air pollution on self-rated health decreased. This study verified the different levels of exposure to air pollution and inequality in health effects among different socioeconomic groups in China. It is imperative for the government to urgently formulate public policies to enhance the ability of the lower socioeconomic groups to circumvent air pollution and reduce the health damage caused by air pollution.

  19. Assessing Health Impacts of Air Pollution in Kashan 2011

    Directory of Open Access Journals (Sweden)

    Masoud Motalleby

    2015-08-01

    Full Text Available Abstract Background: The air pollutants such as CO, SO2, NO2, O3, and particulate matters have harmful effects on public health. Determination of the actual concentration of the pollutants and description of air quantity and quality contents in comparison of standard conditions and timely informing people to regulate control programs is essential. Kashan is exposed to the winds contain-ing the suspended particulate matters due to the proximity of the desert. Moreover, the growth of population, factories and industries in the city are artifical resources of the air pollution. Hence, assessment and monitoring of air pollution standard condition in kashan is crucial. Materials and Methods: In this cross-sectional and descriptive study, the concentration of CO, SO2, NO2, O3, and suspended particulate matters less than 10 microns (PM10 measured according to WHO standards in Panzdah-e-Khordad station of Kashan in 2011. The annual mean and maximum rates, the mean and maximum rate of summer and winter, and annual percentile 98%, determined for each pollutant and used in AirQ software. Then, the number of death and disease attributed to each pollutant was calculated. Results: The results demonstrate that the cumulative number of deaths attributed to PM10, NO2, SO2, and O3 was 100, 22, 82, and 54, respectively. Conclusion: In total, the suspended particulate matters have the most effects on death and disease resulted from the air pollution. Hence, managing the resources of particulate matters and SO2 pollutants has many effects on reducing the adverse health effects of air pollution in Kashan.

  20. Associations of outdoor air pollution with hemorrhagic stroke mortality.

    Science.gov (United States)

    Yorifuji, Takashi; Kawachi, Ichiro; Sakamoto, Tetsuro; Doi, Hiroyuki

    2011-02-01

    Evidence linking short-term exposure to outdoor air pollution with hemorrhagic stroke is inconsistent. We evaluated the associations between outdoor air pollution and specific types of stroke in Tokyo, Japan, from April 2003 to December 2008. We obtained daily counts of stroke mortality (n = 41,440) and concentrations of nitrogen dioxide as well as particles less than 2.5 μm in diameter. Time-series analysis was employed. Although same-day air pollutants were positively associated with ischemic stroke and intracerebral hemorrhage mortality, both air pollutants were more strongly associated with subarachnoid hemorrhage mortality: rate ratio was 1.041 (95% confidence interval: 1.011-1.072) for each 10 μg/m3 increase in the previous-day particles less than 2.5 μm. This study suggests that short-term exposure to outdoor air pollution increases the risks of hemorrhagic stroke mortality as well as ischemic stroke mortality.

  1. Generalized additive model of air pollution to daily mortality

    International Nuclear Information System (INIS)

    Kim, J.; Yang, H.E.

    2005-01-01

    The association of air pollution with daily mortality due to cardiovascular disease, respiratory disease, and old age (65 or older) in Seoul, Korea was investigated in 1999 using daily values of TSP, PM10, O 3 , SO 2 , NO 2 , and CO. Generalized additive Poisson models were applied to allow for the highly flexible fitting of daily trends in air pollution as well as nonlinear association with meteorological variables such as temperature, humidity, and wind speed. To estimate the effect of air pollution and weather on mortality, LOESS smoothing was used in generalized additive models. The findings suggest that air pollution levels affect significantly the daily mortality. (orig.)

  2. Air pollutant penetration through airflow leaks into buildings

    Energy Technology Data Exchange (ETDEWEB)

    Liu, De-Ling [Univ. of California, Berkeley, CA (United States)

    2002-01-01

    The penetration of ambient air pollutants into the indoor environment is of concern owing to several factors: (1) epidemiological studies have shown a strong association between ambient fine particulate pollution and elevated risk of human mortality; (2) people spend most of their time in indoor environments; and (3) most information about air pollutant concentration is only available from ambient routine monitoring networks. A good understanding of ambient air pollutant transport from source to receptor requires knowledge about pollutant penetration across building envelopes. Therefore, it is essential to gain insight into particle penetration in infiltrating air and the factors that affect it in order to assess human exposure more accurately, and to further prevent adverse human health effects from ambient particulate pollution. In this dissertation, the understanding of air pollutant infiltration across leaks in the building envelope was advanced by performing modeling predictions as well as experimental investigations. The modeling analyses quantified the extent of airborne particle and reactive gas (e.g., ozone) penetration through building cracks and wall cavities using engineering analysis that incorporates existing information on building leakage characteristics, knowledge of pollutant transport processes, as well as pollutant-surface interactions. Particle penetration is primarily governed by particle diameter and by the smallest dimension of the building cracks. Particles of 0.1-1 μm are predicted to have the highest penetration efficiency, nearly unity for crack heights of 0.25 mm or higher, assuming a pressure differential of 4 Pa or greater and a flow path length of 3 cm or less. Supermicron and ultrafine particles (less than 0.1 μm) are readily deposited on crack surfaces by means of gravitational settling and Brownian diffusion, respectively. The fraction of ozone penetration through building leaks could vary widely, depending significantly on its

  3. Ship emissions and air pollution in Denmark

    DEFF Research Database (Denmark)

    Olesen, Helge Rørdam; Winther, Morten; Ellermann, Thomas

    A project has been carried out to map the contribution from ship traffic to air pollution in Denmark. A main element in the project is the establishment of a new, improved inventory of ship emissions for the waters around Denmark. The inventory makes use of the so-called AIS system, which...... continuously keeps track of ship positions. The inventory provides basis for model calculations of air quality in Denmark for the years 2007, 2011 and 2020. The study has focus on identifying the contribution from ships, and on assessing the effect of international regulations of ship pollution. A minor...... component of the study concerns the contribution to local air pollution from ships at port....

  4. Monitoring Gaseous and Particulate Air Pollutants near Major ...

    African Journals Online (AJOL)

    High traffic volume and traffic congestion on Nigerian roads have led to increase in the concentration of pollutants in the air t posing health risks for human population. This study investigates air quality due to vehicular emissions in some busy roads in Abeokuta metropolis, Nigeria. Air pollutants such as CO, CO2, NO, NO2, ...

  5. Spatial distribution of the persistent organic pollutants across the Tibetan Plateau and its linkage with the climate systems: a 5-year air monitoring study

    Directory of Open Access Journals (Sweden)

    X. Wang

    2016-06-01

    Full Text Available The Tibetan Plateau (TP has been contaminated by persistent organic pollutants (POPs, including legacy organochlorine pesticides (OCPs and polychlorinated biphenyls (PCBs through atmospheric transport. The exact source regions, transport pathways and time trends of POPs to the TP are not well understood. Here polystyrene–divinylbenzene copolymer resin (XAD-based passive air samplers (PASs were deployed at 16 Tibetan background sites from 2007 to 2012 to gain further insight into spatial patterns and temporal trends of OCPs and PCBs. The southeastern TP was characterized by dichlorodiphenyltrichloroethane (DDT-related chemicals delivered by Indian monsoon air masses. The northern and northwestern TP displayed the greatest absolute concentration and relative abundance of hexachlorobenzene (HCB in the atmosphere, caused by the westerly-driven European air masses. The interactions between the DDT polluted Indian monsoon air and the clean westerly winds formed a transition zone in central Tibet, where both DDT and HCB were the dominant chemicals. Based on 5 years of continuous sampling, our data indicated declining concentrations of HCB and hexachlorocyclohexanes (HCHs across the Tibetan region. Inter-annual trends of DDT class chemicals, however, showed less variation during this 5-year sampling period, which may be due to the ongoing usage of DDT in India. This paper demonstrates the possibility of using POP fingerprints to investigate the climate interactions and the validity of using PAS to derive inter-annual atmospheric POP time trends.

  6. Impact of energy conversion procedures in air pollution

    International Nuclear Information System (INIS)

    Shaaban, Farid

    1998-01-01

    This article presents an overview on air pollution , its causes , its effects and methods of control. Pollution caused essentially by transportation sector and vehicles, different kinds of power plants (thermal power plants, cement, iron power plants, industrial power plants, natural factors as volcans), effects of electricity sectors. Pollutants (elements, CO 2 , CO, NO, Lead, Ozone, Chlorofluorcarbone) with sources of pollution such as fuel oil, fossil fuels and their effects are presented in tables. Monitoring data on CO 2 has been implemented in some towns in Lebanon (Gieh, Zouk, Chikka, etc.) some data on pollutants and pollution due to transportation sector in Lebanon are given. Methods of air pollution control for the two sectors are presented

  7. Air pollution impacts from demand-side management

    International Nuclear Information System (INIS)

    Hall, D.C.; Sandii Win, M.; Hall, J.V.

    1995-01-01

    Air-polluting emission rates and energy-efficiency ratings vary widely among power plants, depending on location, age and whether the power plant is repowered. Traditional regulations require installation of specified emission control equipment that varies among power plants. These regulations do not specify that utilities first dispatch the cleanest power plants as demand varies from peak to off-peak periods. This empirical analysis shows, for 2 years out of 20, that demand-side management (DSM) programs increase air pollution. One reason for this result is that regulations require installation of specific emission-control technology but do not provide the incentive to take actual emissions or their air quality impacts into account when operating the system. For certain types of air pollutants and in some regions, regulatory programs now include markets for tradable emission credits. Such programs may alter this incentive. (author)

  8. Association of air pollution with increased incidence of ventricular tachyarrhythmias recorded by implantable cardioverter defibrillators: Vulnerable patients to air pollution.

    Science.gov (United States)

    Kim, In-Soo; Sohn, Jungwoo; Lee, Seung-Jun; Park, Jin-Kyu; Uhm, Jae-Sun; Pak, Hui-Nam; Lee, Moon-Hyoung; Kim, Changsoo; Joung, Boyoung

    2017-08-01

    This study investigated the acute effects of exposure to air pollution on ventricular tachyarrhythmias (VTAs) in an East Asian population. The association between air pollution and VTA has not yet been studied in an East Asian country affected by the Asian dust phenomenon, which worsens air quality. The study cohort consisted of 160patients with implantable cardioverter defibrillator (ICD) devices in the Seoul metropolitan area who were followed for 5.5±3.8years. We used ICD records of VTAs and matched these with hourly measurements of air pollutant concentrations and meteorological data. Fine particle mass and gaseous air pollution plus temperature and relative humidity were measured hourly during the study period. During the study period, 1064 VTA events including 204 instances of ventricular fibrillation (VF) were observed. We found a statistically significant association between overall VTA events and SO 2 (lag 24h; OR 1.49, 95%CI 1.16-1.92, p=0.002), PM 10 (lag 2h; OR 2.56, 95%CI 2.03-3.23, pair pollution and VTA were observed in a metropolitan area of an East Asian country. Exposures to SO 2 , PM 10 , NO 2 , and CO were significantly associated with VTAs in ICD patients with SHD. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Health effects associated with passenger vehicles: monetary values of air pollution.

    Science.gov (United States)

    Marzouk, Mohamed; Madany, Magdy

    2012-01-01

    Air pollution is regarded as one of the highest priorities in environmental protection in both developed and developing countries. High levels of air pollution have adverse effects on human health that might cause premature death. This study presents the monetary value estimates for the adverse human health effects resulted from ambient air pollution. It aids decision makers to set priorities in the public health relevance of pollution abatement. The main driver of policymaker is the need to reduce the avoidable cardiopulmonary morbidity and mortality from pollutant exposures. The monetary valuation involves 2 steps: (i) relate levels of pollutants to mortality and morbidity (concentration-response relationships) and (ii) apply unit economic values. Cost of air pollution associated with passenger vehicles running over a major traffic bridge (6th of October Elevated Highway) is presented as a case study to demonstrate the use of monetary value of air pollution. The study proves that the cost of air pollution is extremely high and should not be overlooked.

  10. [Air contamination in the Autonomous City of Buenos Aires: the current risk or future climate change, a false option].

    Science.gov (United States)

    Abrutzky, Rosana; Dawidowski, Laura; Murgida, Ana; Natenzon, Claudia Eleonor

    2014-09-01

    Based on the theoretical framework of environmental risk, this article discusses the management of air quality in the Autonomous City of Buenos Aires in relation to current and potential impacts of toxic gases and global climate change on the health of the population. Information on historical and current management of the air was linked to the results of the South American Emissions, Megacities and Climate research project to assess danger, exposure, vulnerability and uncertainty as the dimensions of risk. By contextualizing public policies developed in recent decades on this subject, it was possible to identify emerging configurations of risk and uncertainties as accelerators of social vulnerability. On the one hand, the fact that there is a positive correlation between mortality, changes in temperature and air pollution was confirmed. On the other hand, it became clear that there is a disconnect between air quality management and health care management, while limitations were found in the proposed mitigation measures relating to emissions of greenhouse gases produced by fuel, revealing uncertainties regarding their efficacy.

  11. Applied research on air pollution using nuclear-related analytical techniques

    International Nuclear Information System (INIS)

    1994-01-01

    A co-ordinated research programme (CRP) on applied research on air pollution using nuclear-related techniques is a global CRP which will run from 1992-1996, and will build upon the experience gained by the Agency from the laboratory support that it has been providing for several years to BAPMoN - the Background Air Pollution Monitoring Network programme organized under the auspices of the World Meterological Organization. The purpose of this CRP is to promote the use of nuclear analytical techniques in air pollution studies, e.g. NAA, XFR, and PIXE for the analysis of toxic and other trace elements in suspended particulate matter (including air filter samples), rainwater and fog-water samples, and in biological indicators of air pollution (e.g. lichens and mosses). The main purposes of the core programme are i) to support the use of nuclear and nuclear-related analytical techniques for practically-oriented research and monitoring studies on air pollution ii) to identify major sources of air pollution affecting each of the participating countries with particular reference to toxic heavy metals, and iii) to obtain comparative data on pollution levels in areas of high pollution (e.g. a city centre or a populated area downwind of a large pollution source) and low pollution (e.g. rural areas). This document reports the discussions held during the first Research Co-ordination Meeting (RCM) for the CRP which took place at the IAEA Headquarters in Vienna. Refs, figs and tabs

  12. Selected Malaysia air quality pollutants assessment using ...

    African Journals Online (AJOL)

    Analysis of PCA, FA, KMO and Bartlett's test were done on five main air quality pollutants (O3, NO2, SO2, CO and PM10) from all around Malaysia. From the data analysis obtained, the concentrations of air quality pollutants all around Malaysia starting from 2008 to 2011 were acceptable and the most dominant major ...

  13. Air pollution restrictions in electrical production system

    International Nuclear Information System (INIS)

    Gallizioli, G.

    1993-01-01

    A description of the principal characteristics regarding the Italian electrical power system and the evolution of standardization in air pollution control is given. Afterwards, ENEL (the Italian National Electricity Board) actions in the environmental protection field (with particular respect to thermo-electrical production) are presented. Finally, principal ENEL research programs on new air pollution control technologies are discussed

  14. Association between air pollution and suicide: a time series analysis in four Colombian cities.

    Science.gov (United States)

    Fernández-Niño, Julián Alfredo; Astudillo-García, Claudia Iveth; Rodríguez-Villamizar, Laura Andrea; Florez-Garcia, Víctor Alfonso

    2018-05-12

    Recent epidemiological studies have suggested that air pollution could be associated with suicide. However, other studies have criticized these results for being analytically weak and not taking into account potential confounding factors. As such, further studies examining the relationship under diverse contexts are necessary to help clarify this issue. This study explored the association between specific air pollutants (NO 2 , SO 2 , PM 10 , PM 2.5 , CO and O 3 ) and suicide incidence in four Colombian cities after adjusting for climatic variables and holidays. A time series of daily suicides among men and women living in Bogota, Medellin, Cali and Bucaramanga was generated using information from the National Administrative Department of Statistics (DANE) for the years 2011-2014. At the same time, the average daily concentration of each air pollutant for each city was obtained from monitoring stations belonging to the National Air Quality Surveillance System. Using this information together, we generated conditional Poisson models (stratified by day, month and year) for the suicide rate in men and women, with air pollutants as the principal explanatory variable. These models were adjusted for temperature, relative humidity, precipitation and holidays. No association was found between any of the examined pollutants and suicide: NO 2 (IRR:0.99, 95% CI: 0.95-1.04), SO 2 (IRR:0.99, 95% CI: 0.98-1.01), PM 10 (IRR:0.99, 95% CI:0.95-1.03), PM 2.5 (IRR:1.01, 95% CI: 0.98-1.05), CO (IRR:1.00, 95% CI:1.00-1.00) and O 3 (IRR: 1.00, 95% CI: 0.96-1.04). In the same way, no association was found in stratified models by sex and age group neither in lagged and cumulative effects models. After adjusting for major confounding factors, we found no statistically significant association between air pollution and suicide in Colombia. These "negative" results provide further insight into the current discussion regarding the existence of such a relationship.

  15. Air Pollution, Disease Burden, and Health Economic Loss in China.

    Science.gov (United States)

    Niu, Yue; Chen, Renjie; Kan, Haidong

    2017-01-01

    As the largest developing country in the world, China is now facing one of the severest air pollution problems. The objective of this section is to evaluate the disease burden and corresponding economic loss attributable to ambient air pollution in China. We reviewed a series of studies by Chinese or foreign investigators focusing on the disease burden and economic loss in China. These studies showed both the general air pollution and haze episodes have resulted in substantial disease burden in terms of excess number of premature deaths, disability-adjusted life-year loss, and years of life lost. The corresponding economic loss has accounted for an appreciable proportion of China's national economy. Overall, the disease burden and health economic loss due to ambient air pollution in China is greater than in the remaining parts of the world, for one of the highest levels of air pollution and the largest size of exposed population. Consideration of both health and economic impacts of air pollution can facilitate the Chinese government to develop environmental policies to reduce the emissions of various air pollutants and protect the public health.

  16. Letter to the Editor: Applications Air Q Model on Estimate Health Effects Exposure to Air Pollutants

    Directory of Open Access Journals (Sweden)

    Gholamreza Goudarzi

    2016-02-01

    Full Text Available Epidemiologic studies in worldwide have measured increases in mortality and morbidity associated with air pollution (1-3. Quantifying the effects of air pollution on the human health in urban area causes an increasingly critical component in policy discussion (4-6. Air Q model was proved to be a valid and reliable tool to predicts health effects related to criteria  pollutants (particulate matter (PM, ozone (O3, nitrogen dioxide (NO2, sulfur dioxide (SO2, and carbon monoxide (CO, determinate  the  potential short term effects of air pollution  and allows the examination of various scenarios in which emission rates of pollutants are varied (7,8. Air Q software provided by the WHO European Centre for Environment and Health (ECEH (9. Air Q model is based on cohort studies and used to estimates of both attributable average reductions in life-span and numbers of mortality and morbidity associated with exposure to air pollution (10,11. Applications

  17. Intense atmospheric pollution modifies weather: a case of mixed biomass burning with fossil fuel combustion pollution in eastern China

    Science.gov (United States)

    Ding, A. J.; Fu, C. B.; Yang, X. Q.; Sun, J. N.; Petäjä, T.; Kerminen, V.-M.; Wang, T.; Xie, Y.; Herrmann, E.; Zheng, L. F.; Nie, W.; Liu, Q.; Wei, X. L.; Kulmala, M.

    2013-10-01

    The influence of air pollutants, especially aerosols, on regional and global climate has been widely investigated, but only a very limited number of studies report their impacts on everyday weather. In this work, we present for the first time direct (observational) evidence of a clear effect of how a mixed atmospheric pollution changes the weather with a substantial modification in the air temperature and rainfall. By using comprehensive measurements in Nanjing, China, we found that mixed agricultural burning plumes with fossil fuel combustion pollution resulted in a decrease in the solar radiation intensity by more than 70%, a decrease in the sensible heat by more than 85%, a temperature drop by almost 10 K, and a change in rainfall during both daytime and nighttime. Our results show clear air pollution-weather interactions, and quantify how air pollution affects weather via air pollution-boundary layer dynamics and aerosol-radiation-cloud feedbacks. This study highlights cross-disciplinary needs to investigate the environmental, weather and climate impacts of the mixed biomass burning and fossil fuel combustion sources in East China.

  18. Selection and identification of air pollution-tolerant plants by air ...

    African Journals Online (AJOL)

    Mehdi

    2012-07-10

    Jul 10, 2012 ... taining the ecological balance by actively participating in the cycling of ... (APTI) and this performance rating, the most tolerant. *Corresponding author ... overall pollution load, leaving the air moderately free of pollutants (Rao ...

  19. Development of mobile air pollution monitoring system (LIDAR)

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Hyung Ki; Song, Kyu Seok; Kim, Dukh Yeon; Yang, Ki Ho; Lee, Jong Min; Yoon, S.; Rostov, A

    2001-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment and provide pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR(Light Detection And Ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The coal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols.

  20. Development of mobile air pollution monitoring system (LIDAR)

    International Nuclear Information System (INIS)

    Cha, Hyung Ki; Song, Kyu Seok; Kim, Dukh Yeon; Yang, Ki Ho; Lee, Jong Min; Yoon, S.; Rostov, A.

    2001-01-01

    Most air pollution monitoring technologies accompany a time-consuming sample treatment and provide pollution information only for a local area. Thus, they have a critical restriction in monitoring time-dependent pollution variation effectively over the wide range of area both in height and in width. LIDAR(Light Detection And Ranging) is a new technology to overcome such drawbacks of the existing pollution monitoring technologies and has long been investigated in the advanced countries. The coal of this project is to develop the mobile air pollution monitoring system and to apply the system to the detection of various pollutants, such as ozone, nitrogen dioxide, sulfur dioxide and aerosols