WorldWideScience

Sample records for air particulate matter

  1. Activation analysis of air particulate matter

    International Nuclear Information System (INIS)

    This review on activation analysis of air particulate matter is an extended and updated version of a review given by the same authors in 1985. The main part is aimed at the analytical scheme and refers to rules and techniques for sampling, sample and standard preparation, irradiation and counting procedures, as well as data processing, - evaluation, and - presentation. Additional chapters deal with relative and monostandard methods, the use of activation analysis for atmosphere samples in various localities, and level of toxic and other elements in the atmosphere. The review contains 190 references. (RB)

  2. Large scale air monitoring: lichen vs. air particulate matter analysis.

    Science.gov (United States)

    Rossbach, M; Jayasekera, R; Kniewald, G; Thang, N H

    1999-07-15

    Biological indicator organisms have been widely used for monitoring and banking purposes for many years. Although the complexity of the interactions between organisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and particular matrix characteristics of air particulate matter as a prerequisite for global monitoring of air pollution is discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300-500 g each) from a number of hotels during a period of 3-4 months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per 3 months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichens such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Hg and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cz, Zn and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). PMID:10474261

  3. Toward the next generation of air quality monitoring: Particulate Matter

    Science.gov (United States)

    Engel-Cox, Jill; Kim Oanh, Nguyen Thi; van Donkelaar, Aaron; Martin, Randall V.; Zell, Erica

    2013-12-01

    Fine particulate matter is one of the key global pollutants affecting human health. Satellite and ground-based monitoring technologies as well as chemical transport models have advanced significantly in the past 50 years, enabling improved understanding of the sources of fine particles, their chemical composition, and their effect on human and environmental health. The ability of air pollution to travel across country and geographic boundaries makes particulate matter a global problem. However, the variability in monitoring technologies and programs and poor data availability make global comparison difficult. This paper summarizes fine particle monitoring, models that integrate ground-based and satellite-based data, and communications, then recommends steps for policymakers and scientists to take to expand and improve local and global indicators of particulate matter air pollution. One of the key set of recommendations to improving global indicators is to improve data collection by basing particulate matter monitoring design and stakeholder communications on the individual country, its priorities, and its level of development, while at the same time creating global data standards for inter-country comparisons. When there are good national networks that produce consistent quality data that is shared openly, they serve as the foundation for better global understanding through data analysis, modeling, health impact studies, and communication. Additionally, new technologies and systems should be developed to expand personal air quality monitoring and participation of non-specialists in crowd-sourced data collections. Finally, support to the development and improvement of global multi-pollutant indicators of the health and economic effects of air pollution is essential to addressing improvement of air quality around the world.

  4. Large scale air monitoring: Biological indicators versus air particulate matter

    International Nuclear Information System (INIS)

    Biological indicator organisms are widely used for monitoring and banking purposes since many years. Although the complexity of the interactions between bioorganisms and their environment is generally not easily comprehensible, environmental quality assessment using the bioindicator approach offers some convincing advantages compared to direct analysis of soil, water, or air. Direct measurement of air particulates is restricted to experienced laboratories with access to expensive sampling equipment. Additionally, the amount of material collected generally is just enough for one determination per sampling and no multidimensional characterization might be possible. Further, fluctuations in air masses have a pronounced effect on the results from air filter sampling. Combining the integrating property of bioindicators with the world wide availability and uniform matrix characteristics of air particulates as a prerequisite for global monitoring of air pollution will be discussed. A new approach for sampling urban dust using large volume filtering devices installed in air conditioners of large hotel buildings is assessed. A first experiment was initiated to collect air particulates (300 to 500 g each) from a number of hotels during a period of three to four months by successive vacuum cleaning of used inlet filters from high volume air conditioning installations reflecting average concentrations per three months in different large cities. This approach is expected to be upgraded and applied for global monitoring. Highly positive correlated elements were found in lichen such as K/S, Zn/P, the rare earth elements (REE) and a significant negative correlation between Fig and Cu was observed in these samples. The ratio of concentrations of elements in dust and Usnea spp. is highest for Cr, Zn, and Fe (400-200) and lowest for elements such as Ca, Rb, and Sr (20-10). (author)

  5. Particulate Matter Levels in Ambient Air Adjacent to Industrial Area

    Science.gov (United States)

    Mohamed, R. M. S. R.; Nizam, N. M. S.; Al-Gheethi, A. A.; Lajis, A.; Kassim, A. H. M.

    2016-07-01

    Air quality in the residential areas adjacent to the industrial regions is of great concern due to the association with human health risks. In this work, the concentrations of particulate matter (PM10) in the ambient air of UTHM campus was investigated tostudy the air qualityand their compliance to the Malaysian Ambient Air Quality Guidelines (AAQG). The PM10 samples were taken over 24 hours from the most significant area at UTHM including Stadium, KolejKediamanTunDr. Ismail (KKTDI) and MakmalBahan. The meteorological parameters; temperature, relative humidity, wind speed and wind direction as well as particulate matterwere estimated by using E-Sampler Particulate Matter (PM10) Collector. The highest concentrations of PM10 (55.56 µg/m3) was recorded at MakmalBahan during the working and weekend days. However, these concentrations are less than 150 pg/m3. It can be concluded that although UTHM is surrounded by the industrial area, the air quality in the campus still within the standards limits.

  6. Some improvements in air particulate matter analysis by INAA

    Science.gov (United States)

    Farinha, M. M.; Freitas, M. C.; Almeida, S. M.; Reis, M. A.

    2001-06-01

    At ITN, analysis of air particulate matter has been made since 1999, stimulated by a contract for air quality monitoring of an urban waste incinerator. Samples are analysed by Instrumental Neutron Activation Analysis (INAA) and Proton Induced X-ray Emission (PIXE). Heavy metals and other elements are determined. The procedures for filter analysis have recently been changed, leading to the present comparison between the old and the new procedures. For INAA, in this new procedure we look for the 336.2 keV gamma line of 115mIn in addition to the gamma-ray line of 527.9 keV used for the detection of 115Cd. Cd evaluations obtained by both gamma lines are compared and detection limits for Cd are presented. Preliminary results for Cd, As, Ni, and Hg are shown for a region in the north of Lisbon.

  7. Some improvements in air particulate matter analysis by INAA

    Energy Technology Data Exchange (ETDEWEB)

    Farinha, M.M. E-mail: mmanuelf@itn1.itn.pt; Freitas, M.C.; Almeida, S.M.; Reis, M.A

    2001-06-01

    At ITN/ analysis of air particulate matter has been made since 1999/ stimulated by a contract for air quality monitoring of an urban waste incinerator. Samples are analysed by Instrumental Neutron Activation Analysis (INAA) and Proton Induced X-ray Emission (PIXE). Heavy metals and other elements are determined. The procedures for filter analysis have recently been changed/ leading to the present comparison between the old and the new procedures. For INAA/ in this new procedure we look for the 336.2 keV gamma line of {sup 115m}In in addition to the gamma-ray line of 527.9 keV used for the detection of {sup 115}Cd. Cd evaluations obtained by both gamma lines are compared and detection limits for Cd are presented. Preliminary results for Cd/ As/ Ni/ and Hg are shown for a region in the north of Lisbon.

  8. Interaction between ozone and airborne particulate matter in office air

    DEFF Research Database (Denmark)

    Mølhave, Lars; Kjærgaard, Søren K.; Sigsgaard, Torben;

    2005-01-01

    This study investigated the hypotheses that humans are affected by air pollution caused by ozone and house dust, that the effect of simultaneous exposure to ozone and dust in the air is larger than the effect of these two pollutants individually, and that the effects can be measured as release of...... cytokines and changes of the respiratory function. Experimental exposures of eight atopic but otherwise healthy subjects were performed in a climate chamber under controlled conditions. The three controlled exposures were about 75 microg/m3 total suspended particulate matter, 0.3 p.p.m. ozone, and the...... combination of these. The exposure duration was 3 h. The outcome measures were interleukins and cells in nasal lavages (NAL), respiratory function, bronchial metacholine responsiveness, rhinometry symptoms and general well-being in a questionnaire and time course of general irritation on a visual analogue...

  9. 77 FR 38760 - National Ambient Air Quality Standards for Particulate Matter; Correction

    Science.gov (United States)

    2012-06-29

    ... AGENCY 40 CFR Parts 50, 51, 52, 53, and 58 RIN 2060-AO47 National Ambient Air Quality Standards for... revise the national ambient air quality standards (NAAQS) for particulate matter (PM). This action...: Questions concerning the ``National Ambient Air Quality Standards for Particulate Matter'' proposed...

  10. Some improvements on air particulate matter analysis by INAA

    International Nuclear Information System (INIS)

    At ITN analysis of air particulate matter is being made since 1994. Use is being made of PM10 Gent samplers with separation in two fractions: E.A.D. (equivalent aerodynamic diameter) < 2.5 μm and 2.5 μm < E.A.D. <10 μm. Costar-Nuclepore polycarbonate filters are used. Filters are routinely analysed by neutron activation analysis (INAA) and proton induced X-ray emission (PIXE). Heavy metals and other elements are determined. The procedure used consists in cutting the filter in three parts: one half for INAA, one quarter for PIXE and one quarter left for other eventual uses. For INAA, the half filter was rolled up, irradiated in pure polyethylene container and gamma measurement made including the irradiated polyethylene container. Blanks consisting of polyethylene container + half filter (clean) were also irradiated for impurity content correction. For some elements correction was quite relevant; therefore decision was taken is irradiating the rolled filter within a tin foil which after irradiation was removed and the half filter put into a polyethylene container not-irradiated. In this work comparison is made between the two situations, showing advantages and disadvantages of both procedures. For INAA, Cd-115 was used for Cd determination and very seldom the 527.9 keV gamma line was visible. Now we also look for the 336.2 keV gamma line of In-115m. In this work Cd results obtained by both gamma lines are shown and compared and detection limits for Cd are presented. Taking into account the EU directive 96/62/CE, which will demand very soon determination of Cd, As, Ni, and Hg, some results on these elements in air particulate matter collected in the neighbourhood of Lisbon are shown. (author)

  11. A possible link between particulate matter air pollution and type 2 diabetes

    OpenAIRE

    Volders, Evelien

    2008-01-01

    Particulate matter (PM) air pollution is most commonly referred to as PM10 and can be subdivided into coarse particles, fine particles and ultrafine particles. Sources of PM air pollution include combustion from car engines and industrial processes. Expos

  12. Particulate matter air pollution components and risk for lung cancer

    DEFF Research Database (Denmark)

    Raaschou-Nielsen, O; Beelen, R; Wang, M.;

    2016-01-01

    BACKGROUND: Particulate matter (PM) air pollution is a human lung carcinogen; however, the components responsible have not been identified. We assessed the associations between PM components and lung cancer incidence. METHODS: We used data from 14 cohort studies in eight European countries. We...... meta-analysis. RESULTS: The 245,782 cohort members contributed 3,229,220person-years at risk. During follow-up (mean, 13.1years), 1878 incident cases of lung cancer were diagnosed. In the meta-analyses, elevated hazard ratios (HRs) for lung cancer were associated with all elements except V; none was.......59; 1.12-2.26 per 2ng/m(3)) and PM10 K (1.17; 1.02-1.33 per 100ng/m(3)). In two-pollutant models, associations between PM10 and PM2.5 and lung cancer were largely explained by PM2.5 S. CONCLUSIONS: This study indicates that the association between PM in air pollution and lung cancer can be attributed to...

  13. EDITORIAL: Global impacts of particulate matter air pollution

    Science.gov (United States)

    Bell, Michelle L.; Holloway, Tracey

    2007-10-01

    development of dose response relationships that take into account how the high degree of source and demographic variability affect PM health response. We look forward to the continued growth of research in ERL contributing to air pollution emissions, distribution, and impacts. As the integrated study of air quality connects to economics, energy, agriculture, meteorology, climate change, and public health—among other subjects—its advancement is well-suited to an interdisciplinary, open-access journal like ERL. Thanks to our authors for contributing to ERL's growth in global air pollution research with such excellent work. Focus on Global Impacts of Particulate Matter Air Pollution Contents The articles below represent the first accepted contributions and further additions will appear in the near future. Major components of China's anthropogenic primary particulate emissions Qiang Zhang, David G Streets, Kebin He and Zbigniew Klimont Impacts of roadway emissions on urban particulate matter concentrations in sub-Saharan Africa: new evidence from Nairobi, Kenya E D S van Vliet and P L Kinney Potential influence of inter-continental transport of sulfate aerosols on air quality Junfeng Liu and Denise L Mauzerall Can warming particles enter global climate discussions? Tami C Bond

  14. Elemental characterization of air particulate matter in Buenos Aires, Argentina

    International Nuclear Information System (INIS)

    Buenos Aires, the capital city of Argentina, is surrounded by 24 neighboring districts forming the so-called Buenos Aires metropolitan area (AMBA) that holds a population of 14 million people. In this work, the atmospheric aerosol of this metropolitan area was characterized through the determination of mass concentration, black carbon and elemental concentrations, on PM10 and PM2.5 samples taken using a 'Gent' sampler. The sampling site was located at an urban area characterized by fast and heavy traffic and samples were collected each third day, along 24 hours, between October 2005 and February 2006. A number of elements (As, Ba, Br, Ce, Co, Cr, Cs, Eu, Fe, Hf, La, Na, Rb, Sb, Sc, Se, Sm, Th, Yb and Zn) were determined by Neutron Activation Analysis and their results, as well as those of gravimetric mass concentrations, were compared with historical data. Enrichment factors were calculated for both fractions, using Sc as reference element and Mason's crustal concentration values, showing enrichment for As, Br, Sb, Se and Zn. Although the number of analyzed filters is still small, a preliminary factor analysis was run on both fraction results and different source profiles were found. The attribution of the sources to soil, high temperature processes including refuse incineration, fuel combustion and others, metal processes, traffic and other anthropogenic ones is discussed. (author)

  15. Particulate matter and health - from air to human lungs

    International Nuclear Information System (INIS)

    Biological and environmental monitoring was carried out at a steel processing sector of a steel plant in Portugal. Approximately 70 workers were surveyed for their respiratory function and blood elemental contents as indicators for a long-term exposure. The characterisation of chemical elements in air at the workplace was also evaluated taking in account the separation of particles by their aerodynamic diameter. Two fractions were collected, a coarse fraction for particles below 10 μm and above 2 μm, and a fine fraction for particles below 2 μm. PIXE and INAA analytical techniques were used for the determination of blood and aerosol elemental concentrations. Up to 12 elements (Na, Cl, K, Ca, Fe, Cu, Zn, As, Se, Sb, Hg, and Pb) were determined in blood and so far, up to 18 elements for aerosols (e.g., Na, Al Si, S, Cl, K, Ca, Cr, Mn, Fe, Cu, Zn, As, Se, Cd, Sb, Hg, and Pb). The concentrations of the essential elements in blood (e.g., Fe, Zn and Se) were found to be altered relative to a reference Portuguese group constituted by non-exposed persons. Relative to the blood average elemental contents for As, Sb, Hg and Pb, the levels determined were below maximum permissible concentrations or reference values, except for Pb. Nevertheless, concentrations above maximum limit values were determined for some of the surveyed subjects. There are evidences that the levels of Se, Cu, and Sb in blood are influenced by exposure. Also, living habits (smoking and other activities) and pulmonary affections may modulate As, Pb and Zn concentrations in blood. For all the chemical elements identified in the particulate matter of the working atmosphere the limit values indicated in the Portuguese regulation were not exceeded, except for Fe. (author)

  16. Particulate matter and health - from air to human lungs

    International Nuclear Information System (INIS)

    The aim of this project is to search for respiratory system particular aggressors to which workers are submitted in their labouring activity. The work plan under the current IAEA contract comprise a prospective study to identify particulate matter deposited in the human respiratory ducts and lung tissue and workers respiratory health status survey at a steel plant, Siderurgia Nacional (SN). So far, the selection of areas of interest at SN, workers exposed, airborne particulate monitoring sites according to the periodicity of labouring cycles, and the beginning of workers medical survey have been achieved and/or initiated. The SN selected area, where steel is processed and steel casting is achieved, involve approximately 80 workers, most of them working at that location for more than 15 years. Blood elemental content data determined by PIXE and INAA and a preliminary health status evaluation from 32 of the 80 workers included in this survey are presented and discussed. (author)

  17. Particulate matter and health - From air to human lungs

    International Nuclear Information System (INIS)

    This work reports on the environmental influence in the respiratory health of workers exposed to metal pollutants in their labour activities (metal processing industry). The clinical, respiratory functional and morphological changes were related with blood elemental concentrations in order to evaluate the influence of exposure to inhaled metal airborne particles. In addition, the deposition of particulate matter in the respiratory system was assessed in humans and in an animal model to infer possible mechanisms of interaction of metals with the respiratory tissue. The respiratory affections encountered for the exposure group through clinical, functional and morphological data are related with the number of years of exposure and with high levels of Zn in blood. Methodologies applied have into account the quality of results produced. Interlaboratory checks were carried out using certified reference materials and standard procedures were initiated to assure traceability in chemical analysis of biological matrices using analytical techniques based on X ray spectrometry. (author)

  18. Chemical characterization of urban air particulate matter of Kuala Lumpur 2002-2004

    International Nuclear Information System (INIS)

    Urban air particulate samples of Kuala Lumpur ambient air have been collected characterize according to fine and coarse airborne particulates. The air filters containing particulate matter were collected using GENT stack filter unit fitted with appropriate polycarbonate filters. The sampling location site (Lat: 03deg 10'30''; Long: 101deg 43'24.2'') is approximately 1 km from the Kuala Lumpur city center. All the sampling conducted from January 2002 until October 2004 was included in the analysis and results were reported. The mass loading for finest air particulate matter (PM 2.5) in Kuala Lumpur are 199±55 μg (2002), 171±53 μg (2003), and 171±61 μg (2004), respectively. The mass loading for coarse air particulate matter (PM 10) in Kuala Lumpur were 125±29 μg (2002), 134±48 μg (2003), and 137 ± 57 μg (2004), respectively. The elemental concentration of the air filters were determined using INAA technique utilizing both short and long irradiation facilities at MINT's TRIGA MKII reactor. Upon irradiation the air filters were counted at suitable counting time using HPGe gamma-ray detectors. The elements reported for this monitoring are Al, As, Br, Co, Cr, K, Lu, Mn, Na, Sb, Sc, Ti, V, and Zn. Certified reference materials were also included in the sample analysis function as quality control materials. (author)

  19. METEOROLOGICAL MONITORING PROGRAM. PARTICULATE MATTER AMBIENT AIR QUALITY MONITORING REPORT, JANUARY THROUGH DECEMBER 1996

    International Nuclear Information System (INIS)

    Environmental field studies in the Yucca Mountain site characterization activities have included monitoring ambient levels of particulate matter since April 1989. The monitoring and reporting work was performed by the Management and Operating Environmental Field Programs Division. The parameters monitored, methods used in the monitoring, and the sampling schedule complied with U.S. Environmental Protection Agency regulations and monitoring guidance. The inhalable particulate matter results have been reported to the State of Nevada since July 1991 to comply with State of Nevada air quality permit requirements. Three previous project reports presented the results obtained through 1995 (Environmental Field Programs Division 1992a; 1992b; 1996). This report presents the results obtained during 1996. Results of this monitoring program continue to identify that particulate matter remains well below applicable ambient air quality standards. The maximum inhalable particulate matter result was 60 micrograms per standard cubic meter; this result is less than one-half of the applicable 24-hour National (and Nevada) Ambient Air Quality Standard of 150 micrograms per standard cubic meter. The annual inhalable particulate matter averages for the period were approximately one-fifth of the applicable annual standard of 50 micrograms per standard cubic meter. The 1996 results were similar to results from 1989 to 1995

  20. Establishment of Exposure-response Functions of Air Particulate Matter and Adverse Health Outcomes in China and Worldwide

    Institute of Scientific and Technical Information of China (English)

    HAI-DONG KAN; BING-HENG CHEN; CHANG-HONG CHEN; BING-YAN WANG; QING-YAN FU

    2005-01-01

    Objective To obtain the exposure-response functions that could be used in health-based risk assessment of particulate air pollution in China. Methods Meta analysis was conducted on the literatures on air particulate matter and its adverse health outcomes in China and worldwide. Results For each health outcome from morbidity to mortality changes, the relative risks were estimated when the concentration of air particulate matter increased to some certain units. Conclusion The exposure-response functions recommended here can be further applied to health risk assessment of air particulate matter in China.

  1. Assessment of the natural sources of particulate matter on the opencast mines air quality.

    Science.gov (United States)

    Huertas, J I; Huertas, M E; Cervantes, G; Díaz, J

    2014-09-15

    Particulate matter is the main air pollutant in open pit mining areas. Preferred models that simulate the dispersion of the particles have been used to assess the environmental impact of the mining activities. Results obtained through simulation have been compared with the particle concentration measured in several sites and a coefficient of determination R(2)0.95) between meteorological variables and particulate matter concentration being humidity, humidity of the previous day and temperature, the meteorological variables that contributed most significantly in the variance of the particulate matter concentration measured in the mining area while the contribution of the AERMOD estimations to the short term TSP (Total Suspended Particles) measured concentrations was negligible (<5%). The multiple regression model was used to identify the meteorological condition that leads to pollution episodes. It was found that conditions drier than 54% lead to pollution episodes while humidities greater than 70% maintain safe air quality conditions in the mining region in northern Colombia. PMID:25016110

  2. Air Quality Standards for Particulate Matter (PM) at high altitude cities

    International Nuclear Information System (INIS)

    The Air Quality Standards for Particulate Matter (PM) at high altitude urban areas in different countries, must consider the pressure and temperature due to the effect that these parameters have on the breath volume. This paper shows the importance to correct Air Quality Standards for PM considering pressure and temperature at different altitudes. Specific factors were suggested to convert the information concerning PM, from local to standard conditions, and adjust the Air Quality Standards for different high altitudes cities. The correction factors ranged from: 1.03 for Santiago de Chile to 1.47 for El Alto Bolivia. Other cities in this study include: Mexico City, México; La Paz, Bolivia; Bogota, Cali and Medellin, Colombia; Quito, Ecuador and Cuzco, Peru. If these corrections are not considered, the atmospheric concentrations will be underestimated. - Highlights: ► AQS for particulate matter concentrations adjusted by pressure and temperature. ► Particulate matter concentrations can be underestimated in high altitude Cities. ► Particulate matter concentrations must be compared under the same conditions. - In order to compare high altitude atmospheric PM concentrations with AQS, one must consider T and P of the sampling site.

  3. Gravimetric Analysis of Particulate Matter using Air Samplers Housing Internal Filtration Capsules

    OpenAIRE

    O'Connor, Sean; O'Connor, Paula Fey; Feng, H. Amy; Ashley, Kevin

    2014-01-01

    An evaluation was carried out to investigate the suitability of polyvinyl chloride (PVC) internal capsules, housed within air sampling devices, for gravimetric analysis of airborne particles collected in workplaces. Experiments were carried out using blank PVC capsules and PVC capsules spiked with 0,1 – 4 mg of National Institute of Standards and Technology Standard Reference Material® (NIST SRM) 1648 (Urban Particulate Matter) and Arizona Road Dust (Air Cleaner Test Dust). The capsules were ...

  4. Impact of Long-term Exposure to Air Particulate Matter on Life Expectancy and Survival Rate of Shanghai Residents

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Objective To evaluate the impact of long-term air particulate matter exposure on the life expectancy and survival rate of Shanghai residents. Methods Epidemiology - based exposureresponse function was used for the calculation of attributable deaths to air particulate matter in Shanghai, and the effect of long-term exposure to particulate matter on life expectancy and survival rate was estimated using the life table of Shanghai residents in 1999. Results It was shown that in 1999, the long-term air particulate matter exposure caused 1.34-1.69 years reduction of life expectancy and a decrease of survival rate for each age group of Shanghai residents. Conclusion The effect of long-term exposure to air particulate matter on life expectancy is substantial in Shanghai.

  5. Particulate Matter (Environmental Health Student Portal)

    Science.gov (United States)

    ... Air Pollution Home Indoor Air Pollution Outdoor Air Pollution Particulate Matter Ozone Chemicals Chemicals Home Mercury Lead Arsenic Volatile Organic Compounds Plastics Pesticides Climate Change Climate ...

  6. Chronic Residential Exposure to Particulate Matter Air Pollution and Systemic Inflammatory Markers

    OpenAIRE

    Hoffmann, Barbara; Moebus, Susanne; Dragano, Nico; Stang, Andreas; Möhlenkamp, Stefan; Schmermund, Axel; Memmesheimer, Michael; Bröcker-Preuss, Martina; Mann, Klaus; Erbel, Raimund; Jöckel, Karl-Heinz

    2009-01-01

    Background Long-term exposure to urban air pollution may accelerate atherogenesis, but mechanisms are still unclear. The induction of a low-grade systemic inflammatory state is a plausible mechanistic pathway. Objectives: We analyzed the association of residential long-term exposure to particulate matter (PM) and high traffic with systemic inflammatory markers. Methods We used baseline data from the German Heinz Nixdorf Recall Study, a population-based, prospective cohort study of 4,814 parti...

  7. Particulate Matter

    Science.gov (United States)

    ... the National Ambient Air Quality Standards for Particle Pollution. Video PSAs EPA's Burn Wise program released two ... announcements (PSAs) to help the public reduce PM pollution from wood smoke. Your Air Quality Good Moderate ...

  8. Characterisation of air particulate matter in Klang Valley by neutron activation analysis technique

    International Nuclear Information System (INIS)

    Air particulate matter is known to affect human health, impairs visibility and can cause climate change. Study on air particulate matter in term of particle size and chemical contents is very important to indicate the quality of air in a sampling area. Information on concentration of important constituents in air particles can be used to identify some of emission sources which contribute to the pollution problem. The data collected may also be, used as a basis to design a strategy in order to overcome the air pollution problem in the area. The study involved sampling of air dust at two stations, one in Bangi and the other in Kuala Lumpur using Gent Stack Sampler units. Each sampler capable of collecting air particle sizes smaller than 2.5 micron (PM 2.5) and between 2.5 - O micron on two different filters simultaneously. The filters were measured for their mass, elemental carbon and elemental concentrations using analytical equipment or techniques including reflectometer and Neutron Activation Analysis. The results of analysis on samples collected in 1997-1998 are discussed. (author)

  9. Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter in Venice air.

    Science.gov (United States)

    Gregoris, Elena; Barbaro, Elena; Morabito, Elisa; Toscano, Giuseppa; Donateo, Antonio; Cesari, Daniela; Contini, Daniele; Gambaro, Andrea

    2016-04-01

    Harbours are important hubs for economic growth in both tourism and commercial activities. They are also an environmental burden being a source of atmospheric pollution often localized near cities and industrial complexes. The aim of this study is to quantify the relative contribution of maritime traffic and harbour activities to atmospheric pollutant concentration in the Venice lagoon. The impact of ship traffic was quantified on various pollutants that are not directly included in the current European legislation for shipping emission reduction: (i) gaseous and particulate PAHs; (ii) metals in PM10; and (iii) PM10 and PM2.5. All contributions were correlated with the tonnage of ships during the sampling periods and results were used to evaluate the impact of the European Directive 2005/33/EC on air quality in Venice comparing measurements taken before and after the application of the Directive (year 2010). The outcomes suggest that legislation on ship traffic, which focused on the issue of the emissions of sulphur oxides, could be an efficient method also to reduce the impact of shipping on primary particulate matter concentration; on the other hand, we did not observe a significant reduction in the contribution of ship traffic and harbour activities to particulate PAHs and metals. Graphical abstract Impact of maritime traffic on polycyclic aromatic hydrocarbons, metals and particulate matter and evaluation of the effect of an European Directive on air quality in Venice. PMID:26681325

  10. Particulate Matter (PM) Pollution

    Science.gov (United States)

    ... Environmental Protection Agency Search Search Particulate Matter (PM) Pollution Share Facebook Twitter Google+ Pinterest Contact Us Most ... issues final PM Implementation Rule Particulate Matter (PM) Pollution PM Basics What is PM, and how does ...

  11. CDC WONDER: Daily Fine Particulate Matter

    Data.gov (United States)

    U.S. Department of Health & Human Services — The Daily Fine Particulate Matter data available on CDC WONDER are geographically aggregated daily measures of fine particulate matter in the outdoor air, spanning...

  12. Particulate matter air pollution exposure: role in the development and exacerbation of chronic obstructive pulmonary disease

    Directory of Open Access Journals (Sweden)

    Sean H Ling

    2009-06-01

    Full Text Available Sean H Ling, Stephan F van EedenJames Hogg iCAPTURE Centre for Pulmonary and Cardiovascular Research and Heart and Lung Institute, University of British Columbia, Vancouver, British Columbia, CanadaAbstract: Due to the rapid urbanization of the world population, a better understanding of the detrimental effects of exposure to urban air pollution on chronic lung disease is necessary. Strong epidemiological evidence suggests that exposure to particulate matter (PM air pollution causes exacerbations of pre-existing lung conditions, such as, chronic obstructive pulmonary disease (COPD resulting in increased morbidity and mortality. However, little is known whether a chronic, low-grade exposure to ambient PM can cause the development and progression of COPD. The deposition of PM in the respiratory tract depends predominantly on the size of the particles, with larger particles deposited in the upper and larger airways and smaller particles penetrating deep into the alveolar spaces. Ineffective clearance of this PM from the airways could cause particle retention in lung tissues, resulting in a chronic, low-grade inflammatory response that may be pathogenetically important in both the exacerbation, as well as, the progression of lung disease. This review focuses on the adverse effects of exposure to ambient PM air pollution on the exacerbation, progression, and development of COPD.Keywords: chronic obstructive pulmonary disease, particulate matter, air pollution, alveolar macrophage

  13. Indoor air quality in urban nurseries at Porto city: Particulate matter assessment

    Science.gov (United States)

    Branco, P. T. B. S.; Alvim-Ferraz, M. C. M.; Martins, F. G.; Sousa, S. I. V.

    2014-02-01

    Indoor air quality in nurseries is an interesting case of study mainly due to children's high vulnerability to exposure to air pollution (with special attention to younger ones), and because nursery is the public environment where young children spend most of their time. Particulate matter (PM) constitutes one of the air pollutants with greater interest. In fact, it can cause acute effects on children's health, as well as may contribute to the prevalence of chronic respiratory diseases like asthma. Thus, the main objectives of this study were: i) to evaluate indoor concentrations of particulate matter (PM1, PM2.5, PM10 and PMTotal) on different indoor microenvironments in urban nurseries of Porto city; and ii) to analyse those concentrations according to guidelines and references for indoor air quality and children's health. Indoor PM measurements were performed in several class and lunch rooms in three nurseries on weekdays and weekends. Outdoor PM10 concentrations were also obtained to determine I/O ratios. PM concentrations were often found high in the studied classrooms, especially for the finer fractions, reaching maxima hourly mean concentrations of 145 μg m-3 for PM1 and 158 μg m-3 PM2.5, being often above the limits recommended by WHO, reaching 80% of exceedances for PM2.5, which is concerning in terms of exposure effects on children's health. Mean I/O ratios were always above 1 and most times above 2 showing that indoor sources (re-suspension phenomena due to children's activities, cleaning and cooking) were clearly the main contributors to indoor PM concentrations when compared with the outdoor influence. Though, poor ventilation to outdoors in classrooms affected indoor air quality by increasing the PM accumulation. So, enhancing air renovation rate and performing cleaning activities after the occupancy period could be good practices to reduce PM indoor air concentrations in nurseries and, consequently, to improve children's health and welfare.

  14. ARE CARS OR TREES MORE IMPORTANT TO PARTICULATE MATTER AIR POLUTION? WHAT RADIOCARBON MEASUREMENTS HAVE TO SAY

    Science.gov (United States)

    Air pollution in the form of particulate matter (PM) originates from both human activities and "natural" phenomena. Setting and achieving National Ambient Air Quality Standards (NAAQS) for PM has to take into account the latter since they are in general less controllable than th...

  15. Capture of air particulate matter and gaseous Hg0 by ionic liquids analyzed by PIXE

    International Nuclear Information System (INIS)

    Particle induced X-ray emission (PIXE) has been extensively employed to study the elements associated to air particulate matter (Pm). However, the atmosphere is a very complex system and inorganic pollutants may be also in gaseous phases. Aerosol monitoring does not allow the determination of all the volatile inorganic compounds, since they are not retained in the filters, or if they are trapped, the analysis under vacuum results in a partial or total loss of them. In order to extend the applications of PIXE there is a need to develop new methods to simultaneously capture particulate matter and volatile substances. Ionic liquids (Il) result from combinations of organic cations and anions that may be liquid at room temperature. The physicochemical characteristics of Il s allow them to absorb atmospheric trace metals present in solid and gaseous phases, a task normally performed with independent sampling methods. In this work we explored this capability of Il s as monitors of chemical species which can be found in the gas phase and as particulate matter. The tested Il s included 1-Butyl-3-Methyl-Imidazolium-Hexafluorophosphate (BMIM) (PF6) for Pm and Hg capture; and 1-Butyl-3-methylimidazolium thiocyanate (BMIM) (Scn) only for Hg capture. Elemental analysis of both experiments was performed by particle induced X-ray emission (PIXE). Changes in the molecular structure on BMIM PF6 due to the Hg binding were followed by infrared spectroscopy. (BMIM( (PF6) proved to be successful as passive collector of Pm. However when both were used for Hg capture, (BMIM) (Scn) showed better selectivity. These preliminary results showed the potential of Il s for simultaneous uptake of Pm and volatile inorganic compounds. (Author)

  16. Collection and characterization of a bulk PM2.5 air particulate matter material for use in reference materials.

    Science.gov (United States)

    Heller-Zeisler, S F; Ondov, J M; Zeisler, R

    1999-01-01

    A contemporary PM2.5 (particulate matter smaller than 2.5 microns aerodynamic diameter) aerosol material from an urban site has been collected for the production of a new standard reference material that will be made available for the development of new PM2.5 air quality standards. Air particulate matter corresponding to the PM2.5 fraction was collected at an established Environmental Protection Agency monitoring site in Baltimore, Maryland. The air-sampling system that has been constructed for this collection separates fine particles with a cyclone separator and deposits them onto an array of Teflon membrane filters. The fine air particulate material is removed by ultrasonication or by mechanical means and collected for further preparation of standards. The composition of the collected PM2.5 aerosol, as well as the composition of the deposited PM2.5 aerosol, are determined by instrumental nuclear activation analysis and other techniques. PMID:10676493

  17. Seven year particulate matter air quality assessment from surface and satellite measurements

    Directory of Open Access Journals (Sweden)

    P. Gupta

    2008-01-01

    Full Text Available Using seven years of the Moderate Resolution Imaging Spectroradiometer (MODIS aerosol optical thickness (AOT data and ground measurements of particulate matter mass over one site in the Southeastern United States (33.55 N, 86.82 W we present a comprehensive analysis of various aspects of particulate matter air quality. Monthly, seasonal and inter-annual relationships are examined with emphasis on sampling biases, quality indicators in the AOT product and various cloud clearing criteria. Our results indicate that PM2.5 mass concentration over Northern Birmingham has decreased by about 23% in year 2006 when compared to year 2002 and air quality during summer months are poor when compared to winter months. MODIS-Terra AOT data was available only about 50% of the time due to cloud cover and favorable surface conditions. However, the mean difference in monthly mean PM2.5 was less than 2.2 μgm−3 derived using all the data and from only those days when satellite AOT was available indicating that satellite data does not have sampling issues. The correlation between PM2.5 and MODIS AOT increased from 0.52 to 0.62 when hourly PM2.5 data were used instead of daily mean PM2.5 data. Changing box size for satellite data around the ground station during comparisons produced less than ±0.03 difference in mean AOT values for 90% of observations. Application of AOT quality flags reduced the sample size but does not affect AOT-PM2.5 relationship significantly. We recommend using AOT quality flags for daily analysis, whereas long time scale analysis can be performed without using all AOT retrievals to obtain better sampling. Our analysis indicates that satellite data is a useful tool for monitoring particulate matter air quality especially in regions where ground measurements are not available.

  18. Particulate matter, air quality and climate: lessons learned and future needs

    Science.gov (United States)

    Fuzzi, S.; Baltensperger, U.; Carslaw, K.; Decesari, S.; Denier van der Gon, H.; Facchini, M. C.; Fowler, D.; Koren, I.; Langford, B.; Lohmann, U.; Nemitz, E.; Pandis, S.; Riipinen, I.; Rudich, Y.; Schaap, M.; Slowik, J. G.; Spracklen, D. V.; Vignati, E.; Wild, M.; Williams, M.; Gilardoni, S.

    2015-07-01

    The literature on atmospheric particulate matter (PM), or atmospheric aerosol, has increased enormously over the last 2 decades and amounts now to some 1500-2000 papers per year in the refereed literature. This is in part due to the enormous advances in measurement technologies, which have allowed for an increasingly accurate understanding of the chemical composition and of the physical properties of atmospheric particles and of their processes in the atmosphere. The growing scientific interest in atmospheric aerosol particles is due to their high importance for environmental policy. In fact, particulate matter constitutes one of the most challenging problems both for air quality and for climate change policies. In this context, this paper reviews the most recent results within the atmospheric aerosol sciences and the policy needs, which have driven much of the increase in monitoring and mechanistic research over the last 2 decades. The synthesis reveals many new processes and developments in the science underpinning climate-aerosol interactions and effects of PM on human health and the environment. However, while airborne particulate matter is responsible for globally important influences on premature human mortality, we still do not know the relative importance of the different chemical components of PM for these effects. Likewise, the magnitude of the overall effects of PM on climate remains highly uncertain. Despite the uncertainty there are many things that could be done to mitigate local and global problems of atmospheric PM. Recent analyses have shown that reducing black carbon (BC) emissions, using known control measures, would reduce global warming and delay the time when anthropogenic effects on global temperature would exceed 2 °C. Likewise, cost-effective control measures on ammonia, an important agricultural precursor gas for secondary inorganic aerosols (SIA), would reduce regional eutrophication and PM concentrations in large areas of Europe, China

  19. Ambient particulate matter air pollution in Mpererwe District, Kampala, Uganda: a pilot study.

    Science.gov (United States)

    Schwander, Stephan; Okello, Clement D; Freers, Juergen; Chow, Judith C; Watson, John G; Corry, Melody; Meng, Qingyu

    2014-01-01

    Air quality in Kampala, the capital of Uganda, has deteriorated significantly in the past two decades. We made spot measurements in Mpererwe district for airborne particulate matter PM2.5 (fine particles) and coarse particles. PM was collected on Teflon-membrane filters and analyzed for mass, 51 elements, 3 anions, and 5 cations. Both fine and coarse particle concentrations were above 100 µg/m(3) in all the samples collected. Markers for crustal/soil (e.g., Si and Al) were the most abundant in the PM2.5 fraction, followed by primary combustion products from biomass burning and incinerator emissions (e.g., K and Cl). Over 90% of the measured PM2.5 mass can be explained by crustal species (41% and 59%) and carbonaceous aerosol (33%-55%). Crustal elements dominated the coarse particles collected from Kampala. The results of this pilot study are indicative of unhealthy air and suggest that exposure to ambient air in Kampala may increase the burden of environmentally induced cardiovascular, metabolic, and respiratory diseases including infections. Greater awareness and more extensive research are required to confirm our findings, to identify personal exposure and pollution sources, and to develop air quality management plans and policies to protect public health. PMID:24693293

  20. Environmental pollution studies. Quantitative determination of elements in the air particulate matter by NAA

    International Nuclear Information System (INIS)

    Regarding to the 2002 PNCA Program for the Utilization of INAA in the Environmental Study, the elemental determination of air particulate matter have been done. Two sampling site were chosen to collect a PMs samples, i.e. Lembang and Bandung that represent the rural and the urban region respectively. The period of sampling was January 2002 to November 2002. Air sample was collect by GANT Stacked air sampler using 47 mm diameter cellulose filter which have a pore size of 0.45 μm and 8 μm for fine and coarse particle respectively. Quantitative elemental determination has been done using Instrumental Neutron Activation Analysis based on a comparative method. The elemental distributions on fine and coarse fraction of air particulate matter have been analyzed for both sampling sites as well as the enrichment factor (EF) for all elements interest. The result shows that the average annual concentrations of fine and coarse PMs in the Lembang sampling site were 7.8 μg.m-3 and 1.6 μg.m-3 respectively. Meanwhile at Bandung sampling site, the PMs are higher than that a Lembang sampling site, i.e. 14.4 μg.m-3 and 22.5 μg.m-3 for fine and coarse PMs respectively. The fine fraction was higher than the coarse fraction at Lembang sampling site, but at Bandung sampling site the fine fraction was lower than the coarse fraction. Fifteen elements of Na, Al, V, Mn, Br, I, Cl, Sc, Co, Fe, Cr, Zn, La, Sb and Sm were analyzed for both sampling site. Among those elements concerned, Na, Al, Br, Cl and Fe were major constituent elements in all fractions that have a concentration more than 40 ng.cm-3. Generally, the concentration of elements determined in the urban sampling site was higher than that in the rural site. Al, V, Mn, Sc, Co and Fe are relatively higher in concentration in coarse fraction of urban site. Br element concentration was not significantly different for both sampling site. The EF values of most elements concerned are generally also higher for the fine fraction than

  1. Household Air Pollution: Sources and Exposure Levels to Fine Particulate Matter in Nairobi Slums

    Directory of Open Access Journals (Sweden)

    Kanyiva Muindi

    2016-07-01

    Full Text Available With 2.8 billion biomass users globally, household air pollution remains a public health threat in many low- and middle-income countries. However, little evidence on pollution levels and health effects exists in low-income settings, especially slums. This study assesses the levels and sources of household air pollution in the urban slums of Nairobi. This cross-sectional study was embedded in a prospective cohort of pregnant women living in two slum areas—Korogocho and Viwandani—in Nairobi. Data on fuel and stove types and ventilation use come from 1058 households, while air quality data based on the particulate matters (PM2.5 level were collected in a sub-sample of 72 households using the DustTrak™ II Model 8532 monitor. We measured PM2.5 levels mainly during daytime and using sources of indoor air pollutions. The majority of the households used kerosene (69.7% as a cooking fuel. In households where air quality was monitored, the mean PM2.5 levels were high and varied widely, especially during the evenings (124.6 µg/m3 SD: 372.7 in Korogocho and 82.2 µg/m3 SD: 249.9 in Viwandani, and in households using charcoal (126.5 µg/m3 SD: 434.7 in Korogocho and 75.7 µg/m3 SD: 323.0 in Viwandani. Overall, the mean PM2.5 levels measured within homes at both sites (Korogocho = 108.9 µg/m3 SD: 371.2; Viwandani = 59.3 µg/m3 SD: 234.1 were high. Residents of the two slums are exposed to high levels of PM2.5 in their homes. We recommend interventions, especially those focusing on clean cookstoves and lighting fuels to mitigate indoor levels of fine particles.

  2. Gravimetric Analysis of Particulate Matter using Air Samplers Housing Internal Filtration Capsules

    Science.gov (United States)

    O'Connor, Sean; O'Connor, Paula Fey; Feng, H. Amy

    2015-01-01

    Summary An evaluation was carried out to investigate the suitability of polyvinyl chloride (PVC) internal capsules, housed within air sampling devices, for gravimetric analysis of airborne particles collected in workplaces. Experiments were carried out using blank PVC capsules and PVC capsules spiked with 0,1 – 4 mg of National Institute of Standards and Technology Standard Reference Material® (NIST SRM) 1648 (Urban Particulate Matter) and Arizona Road Dust (Air Cleaner Test Dust). The capsules were housed within plastic closed-face cassette samplers (CFCs). A method detection limit (MDL) of 0,075 mg per sample was estimated. Precision Sr at 0,5 - 4 mg per sample was 0,031 and the estimated bias was 0,058. Weight stability over 28 days was verified for both blanks and spiked capsules. Independent laboratory testing on blanks and field samples verified long-term weight stability as well as sampling and analysis precision and bias estimates. An overall precision estimate Ŝrt of 0,059 was obtained. An accuracy measure of ±15,5% was found for the gravimetric method using PVC internal capsules. PMID:26435581

  3. JV Task 94 - Air Quality V: Mercury, Trace Elements, SO3, and Particulate Matter Conference

    Energy Technology Data Exchange (ETDEWEB)

    Thomas A. Erickson

    2007-01-31

    This final report summarizes the planning, preparation, facilitation and production, and summary of the conference entitled 'Air Quality V: Mercury, Trace Elements, SO{sub 3}, and Particulate Matter,' held September 18-21, 2005, in Arlington, Virginia. The goal of the conference was to build on the discussions of the first four Air Quality Conferences, providing further opportunity for leading representatives of industry, government, research institutions, academia, and environmental organizations to discuss the key interrelationships between policy and science shaping near-term regulations and controls and to assist in moving forward on emerging issues that will lead to acceptable programs and policies to protect human health, the environment, and economic growth. The conference was extremely timely, as it was the last large conference prior to publication of the U.S. Environmental Protection Agency's final regulations for mercury control from coal-fired utilities, and provided a forum to realistically assess the status of mercury controls in relation to the new regulations.

  4. 75 FR 65594 - Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate Matter Standards

    Science.gov (United States)

    2010-10-26

    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION AGENCY 40 CFR Part 52 Approval and Promulgation of Air Quality Implementation Plans; Ohio; Particulate... have been necessary to attain and maintain the 2006 National Ambient Air Quality Standards for PM...

  5. Particulate Matter Assessment in the Air Based on the Heavy Metals Presence

    Directory of Open Access Journals (Sweden)

    Jandačka Dušan

    2014-05-01

    Full Text Available Particulate matters are the result of various processes in the atmosphere that are part of everyday life. The chemical composition of these particles is mainly influenced by their origin. Their behavior is also dependent on meteorological conditions and other factors as well. The aim of this paper was to identify sources of particulate matters by means of statistical methods due to the presence of 17 heavy metals. The problem solving assumes the knowledge of multivariate statistical data analysis methods as principal components analysis (PCA, factor analysis (FA and multivariate regression and vector algebra. For the application of methodology suitable software may prove appropriate.

  6. Air quality modelling : effects of emission reductions on concentrations of particulate matter

    Science.gov (United States)

    Girault, L.; Roustan, Y.; Seigneur, C.

    2012-04-01

    Atmospheric particulate matter (PM) has adverse effects on human health. PM acts primarily on respiratory and cardiovascular (due to their small size they can penetrate deep into the lungs), but they are also known effects on the skin. In France, the "Particulate Plan" - developed as part of the second National Environmental Health Plan - aims to reduce by 30% fine PM (noted PM2.5because these particles have an aerodynamic diameter of 2.5 micrometers or less) by 2015. A recent study by Airparif (the organization in charge of monitoring air quality in the Paris region, the Île-de-France) and LSCE (Laboratory of climate and the environmental science, France) has allowed, through a large measurement campaign conducted between 2009 and 2011, to quantify the proportion of PM produced in Île-de-France and those transported from the surrounding areas. The study by numerical modelling of air pollution presented here complements these results by investigating future emission scenarios. The CEREA develops and uses an air quality model which simulates the concentrations of pollutants from an emission inventory, meteorological data and boundary conditions of the area studied. After an evaluation of simulation results for the year 2005, the model is used to assess the effects of various scenarios of reductions in NOx and NH3 emissions on the concentrations of PM2.5in Île-de-France. The effects of the controls on the local pollution and the long-range pollution are considered separately. For each emitted species, three scenarios of emission reductions are identified: an emission reduction at the local level (Île-de-France), a reduction at the regional scale (France) and a reduction at the continental scale (across Europe). In each case, a 15% reduction is applied. The comparison of the results allows us to assess the respective contributions of local emissions and long-range transport to PM2.5 concentrations. For instance, the reduction of NOx emissions in Europe leads to a

  7. Indoor Air Quality Investigations on Particulate Matter, Carbonyls, and Tobacco Specific Nitrosamines

    Science.gov (United States)

    Frey, Sarah E.

    Americans spend upwards of 90% of their time indoors, hence indoor air quality (IAQ) and the impact of IAQ on human health is a major public health concern. IAQ can be negatively impacted by outdoor pollution infiltrating indoors, the emission of indoor pollutants, indoor atmospheric chemistry and poor ventilation. Energy saving measures like retrofits to seal the building envelope to prevent the leakage of heated or cooled air will impact IAQ. However, existing studies have been inconclusive as to whether increased energy efficiency is leading to detrimental IAQ. In this work, field campaigns were conducted in apartment homes in Phoenix, Arizona to evaluate IAQ as it relates to particulate matter (PM), carbonyls, and tobacco specific nitrosamines (TSNA). To investigate the impacts of an energy efficiency retrofit on IAQ, indoor and outdoor air quality sampling was carried out at Sunnyslope Manor, a city-subsidized senior living apartment complex. Measured indoor formaldehyde levels before the building retrofit exceeded reference exposure limits, but in the long term follow-up sampling, indoor formaldehyde decreased for the entire study population by a statistically significant margin. Indoor PM levels were dominated by fine particles and showed a statistically significant decrease in the long term follow-up sampling within certain resident subpopulations (i.e. residents who reported smoking and residents who had lived longer at the apartment complex). Additionally, indoor glyoxal and methylglyoxal exceeded outdoor concentrations, with methylglyoxal being more prevalent pre-retrofit than glyoxal, suggesting different chemical pathways are involved. Indoor concentrations reported are larger than previous studies. TSNAs, specifically N'-nitrosonornicotine (NNN), 4-(methyl-nitrosamino)-4-(3-pyridyl)-butanal (NNA) and 4-(methylnitrosoamino)-1-(3-pyridyl)-1-butanone (NNK) were evaluated post-retrofit at Sunnyslope Manor. Of the units tested, 86% of the smoking units and

  8. Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases.

    Science.gov (United States)

    Kim, Kyung Eun; Cho, Daeho; Park, Hyun Jeong

    2016-05-01

    Environmental air pollution encompasses various particulate matters (PMs). The increased ambient PM from industrialization and urbanization is highly associated with morbidity and mortality worldwide, presenting one of the most severe environmental pollution problems. This article focuses on the correlation between PM and skin diseases, along with related immunological mechanisms. Recent epidemiological studies on the cutaneous impacts of PM showed that PM affects the development and exacerbation of skin diseases. PM induces oxidative stress via production of reactive oxygen species and secretion of pro-inflammatory cytokines such as TNF-α, IL-1α, and IL-8. In addition, the increased production of ROS such as superoxide and hydroxyl radical by PM exposure increases MMPs including MMP-1, MMP-2, and MMP-9, resulting in the degradation of collagen. These processes lead to the increased inflammatory skin diseases and skin aging. In addition, environmental cigarette smoke, which is well known as an oxidizing agent, is closely related with androgenetic alopecia (AGA). Also, ultrafine particles (UFPs) including black carbon and polycyclic aromatic hydrocarbons (PAHs) enhance the incidence of skin cancer. Overall, increased PM levels are highly associated with the development of various skin diseases via the regulation of oxidative stress and inflammatory cytokines. Therefore, anti-oxidant and anti-inflammatory drugs may be useful for treating PM-induced skin diseases. PMID:27018067

  9. The Public Health and Air Pollution in Asia (PAPA) Project: Estimating the Mortality Effects of Particulate Matter in Bangkok, Thailand

    OpenAIRE

    Vichit-Vadakan, Nuntavarn; Vajanapoom, Nitaya; Ostro, Bart

    2008-01-01

    Background Air pollution data in Bangkok, Thailand, indicate that levels of particulate matter with aerodynamic diameter ≤10 μm (PM10) are significantly higher than in most cities in North America and Western Europe, where the health effects of PM10 are well documented. However, the pollution mix, seasonality, and demographics are different from those in developed Western countries. It is important, therefore, to determine whether the large metropolitan area of Bangkok is subject to similar e...

  10. Association between particulate matter and its chemical constituents of urban air pollution and daily mortality or morbidity in Beijing City.

    Science.gov (United States)

    Li, Pei; Xin, Jinyuan; Wang, Yuesi; Li, Guoxing; Pan, Xiaochuan; Wang, Shigong; Cheng, Mengtian; Wen, Tianxue; Wang, Guangcheng; Liu, Zirui

    2015-01-01

    Recent time series studies have indicated that daily mortality and morbidity are associated with particulate matters. However, about the relative effects and its seasonal patterns of fine particulate matter constituents is particularly limited in developing Asian countries. In this study, we examined the role of particulate matters and its key chemical components of fine particles on both mortality and morbidity in Beijing. We applied several overdispersed Poisson generalized nonlinear models, adjusting for time, day of week, holiday, temperature, and relative humidity, to investigate the association between risk of mortality or morbidity and particulate matters and its constituents in Beijing, China, for January 2005 through December 2009. Particles and several constituents were associated with multiple mortality or morbidity categories, especially on respiratory health. For a 3-day lag, the nonaccident mortality increased by 1.52, 0.19, 1.03, 0.56, 0.42, and 0.32% for particulate matter (PM)2.5, PM10, K(+), SO4(2-), Ca(2+), and NO3(-) based on interquartile ranges of 36.00, 64.00, 0.41, 8.75, 1.43, and 2.24 μg/m(3), respectively. The estimates of short-term effects for PM2.5 and its components in the cold season were 1 ~ 6 times higher than that in the full year on these health outcomes. Most of components had stronger adverse effects on human health in the heavy PM2.5 mass concentrations, especially for K(+), NO3(-), and SO4(2-). This analysis added to the growing body of evidence linking PM2.5 with mortality or morbidity and indicated that excess risks may vary among specific PM2.5 components. Combustion-related products, traffic sources, vegetative burning, and crustal component and resuspended road dust may play a key role in the associations between air pollution and public health in Beijing. PMID:25074829

  11. Impact of the 2002 Canadian Forest Fires on Particulate Matter Air Quality in Baltimore City

    OpenAIRE

    Sapkota, A.; Symons, J. M.; J. Kleissl; Wang, L.; Parlange, M. B.; Ondov, J.; Breysse, P. N.; Diette, G B; Eggleston, P.A.; T. J. Buckley, 2005

    2005-01-01

    With increasing evidence of adverse health effects associated with particulate matter (PM), the exposure impact of natural sources, such as forest fires, has substantial public health relevance. In addition to the threat to nearby communities, pollutants released from forest fires can travel thousands of kilometers to heavily populated urban areas. There was a dramatic increase in forest fire activity in the province of Quebec, Canada, during July 2002. The transport of PM released from these...

  12. DETERMINATION OF MOBILITY AND BIOAVAILABILITY OF HEAVY METALS IN THE URBAN AIR PARTICULATES MATTER OF ISFAHAN

    OpenAIRE

    Kalantari, A.; M. Talebi; B BINA

    2001-01-01

    Introduction: In addition to, Carbohyrates, Lipids, Amino acids and vitamins, some of the trace metals are known vital for biological activity. But some of them not only are not necessary, but also they are very toxic and carcinogen. In this research the rate of Mobility and Bioavailability of heavy metals associated with airborne particulates matter such as Zn, Pb, Cd, Cu, Fe, Ni and Cr have been measured. Methods: The sequential extraction has been used for releasing of heavy metales f...

  13. Evaluation of sampling methods for toxicological testing of indoor air particulate matter.

    Science.gov (United States)

    Tirkkonen, Jenni; Täubel, Martin; Hirvonen, Maija-Riitta; Leppänen, Hanna; Lindsley, William G; Chen, Bean T; Hyvärinen, Anne; Huttunen, Kati

    2016-09-01

    There is a need for toxicity tests capable of recognizing indoor environments with compromised air quality, especially in the context of moisture damage. One of the key issues is sampling, which should both provide meaningful material for analyses and fulfill requirements imposed by practitioners using toxicity tests for health risk assessment. We aimed to evaluate different existing methods of sampling indoor particulate matter (PM) to develop a suitable sampling strategy for a toxicological assay. During three sampling campaigns in moisture-damaged and non-damaged school buildings, we evaluated one passive and three active sampling methods: the Settled Dust Box (SDB), the Button Aerosol Sampler, the Harvard Impactor and the National Institute for Occupational Safety and Health (NIOSH) Bioaerosol Cyclone Sampler. Mouse RAW264.7 macrophages were exposed to particle suspensions and cell metabolic activity (CMA), production of nitric oxide (NO) and tumor necrosis factor (TNFα) were determined after 24 h of exposure. The repeatability of the toxicological analyses was very good for all tested sampler types. Variability within the schools was found to be high especially between different classrooms in the moisture-damaged school. Passively collected settled dust and PM collected actively with the NIOSH Sampler (Stage 1) caused a clear response in exposed cells. The results suggested the higher relative immunotoxicological activity of dust from the moisture-damaged school. The NIOSH Sampler is a promising candidate for the collection of size-fractionated PM to be used in toxicity testing. The applicability of such sampling strategy in grading moisture damage severity in buildings needs to be developed further in a larger cohort of buildings. PMID:27569522

  14. Air particulate matter exacerbates lung response on Sjögren's Syndrome animals.

    Science.gov (United States)

    Ferraro, S; Orona, N; Villalón, L; Saldiva, P H N; Tasat, D R; Berra, A

    2015-02-01

    Epidemiological studies have associated air particulate matter (PM) inhalation with a decline in lung function and increased morbo-mortality due to cardiorespiratory diseases, particularly in susceptible populations. Sjögren's Syndrome (SS) is a chronic autoimmune disease characterized by cellular infiltration in exocrine glands and extraglandular tissue, being the respiratory tract an important target. We evaluated the effect of PM on the airways of NOD mice, which develop SS and BALB/c mice. BALB/c or NOD mice (2-3 months) were randomized in two groups and exposed to intranasal instillation either with saline (control) or ROFA solution (1mg/kg body weight). After 24h, mice were euthanized in order to perform lung histology, or measure total cell number (TCN), differential cell count (DCC) and superoxide anion generation in the bronchoalveolar lavage (BAL) fluid. BALB/c mice showed normal histoarchitecture, while NOD mice showed lymphocytic peribronchial infiltrates. ROFA exposure affected the respiratory tract from both BALB/c and NOD mice, with a significant increase in the TCN (p<0.05) and generation of O2(-) (p<0.05), as well as an imbalance in the DCC (p<0.05). All histological observations correlated with the cellular parameters evaluated. Lesions in NOD mice were more severe than those of BALB/c, showing cellular infiltration in the alveoli and leading to a greater decrease in the alveolar space. We have proved that in this experimental Sjögren's Syndrome animal model (NOD mice); airborne pollution exacerbates pre-existing pulmonary lesions. These findings show experimental evidence on the harmful effects of airborne pollution on the airways of patients with Sjögren's Syndrome. PMID:25467751

  15. The UK particulate matter air pollution episode of March–April 2014: more than Saharan dust

    Science.gov (United States)

    Vieno, M.; Heal, M. R.; Twigg, M. M.; MacKenzie, I. A.; Braban, C. F.; Lingard, J. J. N.; Ritchie, S.; Beck, R. C.; Móring, A.; Ots, R.; Di Marco, C. F.; Nemitz, E.; Sutton, M. A.; Reis, S.

    2016-04-01

    A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK.

  16. The UK particulate matter air pollution episode of March–April 2014: more than Saharan dust

    International Nuclear Information System (INIS)

    A period of elevated surface concentrations of airborne particulate matter (PM) in the UK in spring 2014 was widely associated in the UK media with a Saharan dust plume. This might have led to over-emphasis on a natural phenomenon and consequently to a missed opportunity to inform the public and provide robust evidence for policy-makers about the observed characteristics and causes of this pollution event. In this work, the EMEP4UK regional atmospheric chemistry transport model (ACTM) was used in conjunction with speciated PM measurements to investigate the sources and long-range transport (including vertical) processes contributing to the chemical components of the elevated surface PM. It is shown that the elevated PM during this period was mainly driven by ammonium nitrate, much of which was derived from emissions outside the UK. In the early part of the episode, Saharan dust remained aloft above the UK; we show that a significant contribution of Saharan dust at surface level was restricted only to the latter part of the elevated PM period and to a relatively small geographic area in the southern part of the UK. The analyses presented in this paper illustrate the capability of advanced ACTMs, corroborated with chemically-speciated measurements, to identify the underlying causes of complex PM air pollution episodes. Specifically, the analyses highlight the substantial contribution of secondary inorganic ammonium nitrate PM, with agricultural ammonia emissions in continental Europe presenting a major driver. The findings suggest that more emphasis on reducing emissions in Europe would have marked benefits in reducing episodic PM2.5 concentrations in the UK. (letter)

  17. Air quality in terms of particulate matter (PM10) and element components in Antananarivo city

    International Nuclear Information System (INIS)

    The main objective of this research was to study the size distribution of toxic elements, undesirables ones and PM10 in the aerosols of Antananarivo urban areas using Total reflection X-ray Fluorescence. This work was carried out in the framework of Co-ordinated Research Program organised by the IAEA in 1998. The air sampler DICHOTOMOUS was used for sampling, with which two types of aerosols could be obtained: respirable aerosols or fine particles (aerodynamic diameter below 2.5 μm PM-2,5) and inhalable or coarse particles (aerodynamic diameter from 2.5 μm to 10μm PM10). Samples were taken from six sampling sites, namely Ambohidahy tunnel, Ambanidia tunnel, Andravoahangy, Soarano, Mahamasina and Ankorondrano. Then, they were digested with acid digestion bomb. The results showed the presence of elements such as sulfur (S), chlorine (Cl), kalium (K), calcium (Ca), titanium (Ti), lead (Pb) in the aerosols. Their concentrations are higher in respirable particles. For classical air pollutant components, particularly lead and PM10, the 1.8 μg.m-3 mean concentration value of lead is largely higher than 0.5μg. m-3, which is the WHO (World Health organization) adopted value, and above the USEPA (United States Environmental Protection Agency) maximum admissible one (1.5 μg.m-3) as well. Regarding the size distribution of lead, the results showed that the small particles were mainly enriched in lead. The same observation can also be stated for PM10 with a 240 μg.m-3 mean concentration value , higher than 150 μg.m-3, adopted by the two above-mentioned organizations. Therefore, the Antananarivo urban area is classified as saturated zone for both parameters (lead and particulate matter). In addition, the results of Mason enrichment factors showed that the elements such as sulfur (S), chromium (Cr), copper (Cu), zinc (Zn), bromine (Br), and lead (Pb) are from both natural and anthropogenic sources. The elements such as kalium (K), chlorine (Cl), calcium (Ca), titanium (Ti

  18. Johns Hopkins Particulate Matter Research Center

    Data.gov (United States)

    Federal Laboratory Consortium — The Johns Hopkins Particulate Matter Research Center will map health risks of PM across the US based on analyses of national databases on air pollution, mortality,...

  19. Particulate matter dynamics

    CERN Document Server

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01

    A substantial fraction of the particulate matter released into the atmosphere by industrial or natural processes corresponds to particles whose aerodynamic diameters are greater than 50 mm. It has been shown that, for these particles, the classical description of Gaussian plume diffusion processes, is inadequate to describe the transport and deposition. In this paper we present new results concerning the dispersion of coarse particulate matter. The simulations are done with our own code that uses the Bulirsch Stoer numerical integrator to calculate threedimensional trajectories of particles released into the environment under very general conditions. Turbulent processes are simulated by the Langevin equation and weather conditions are modeled after stable (Monin-Obukhov length L> 0) and unstable conditions (L <0). We present several case studies based on Monte Carlo simulations and discusses the effect of weather on the final deposition of these particles.

  20. Effect of sample digestion, air filter contamination, and post-adsorption on the analysis of trace elements in air particulate matter

    International Nuclear Information System (INIS)

    Inductively coupled plasma atomic emission spectrometry and inductively coupled plasma MS are the major analytical tools for trace elements in environmental matrices, however, the underestimate of certain trace elements in analysis of air particulate matter by these two techniques has long been observed. This has been attributed to incomplete sample digestion. Here, we demonstrate that the combined effects of sample digestion, air filter impurities, and post-adsorption of the analytes contribute to the interference of the analysis. Particular attention should be paid to post-adsorption of analytes onto air filters after acid digestion. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Assessment of levels of inhalable particulate matter in ambient air at Legon-Adenta road construction site

    International Nuclear Information System (INIS)

    The study sought to assess the ambient air pollution with regard to the particulate matter levels (coarse, fine PM fractions and selected elements present in coarse and fine particulate matter) at a road construction site (Adenta-Legon road) in Accra-Ghana. Consequently 60 samples each of fine and coarse particulate were collected at the site on a nucleopore filter using a Gent sampler at an average flow rate of 16.5L/Min. The mass concentrations of PM10, coarse (PM10-2.5) and fine (PM2.5) particulate matter were determined gravimetrically. The black carbon concentrations of both fine and coarse particles were determined by reflectometer. AAS elemental analyses of relevant elements like Al, Si, Mn, Ca, Cu, V, Cr, Cd and Fe were performed after digestion of filter samples. The study revealed that daily mean PM10 mass concentrations of 125.32μg/m3 exceeded the WHO and Ghana EPA 24hr daily mean values of 50μg/m3 and 70μ/m3 (97.47% and 89.49%) respectively. The PM2.5 mass concentration of 33.77μg/m3 exceeded; (87.47%) of the WHO and USEPA daily 24hr limit value of 25 μg/m3. Black carbon mean concentrations of 2.40μg/m3 representing 2.62% and 15.99% of coarse and fine PM masses respectively were found. The mean mass concentrations of elements such as Al, Si, Ca, Fe, Mn, V, Cd, Pb, Cr and Zn were found to be relatively higher in both coarse and fine PM fraction. Good correlation existed among elemental concentrations and this indicated that they were of the same source. (au)

  2. Fine particulate matter in the indoor air of barbeque restaurants: Elemental compositions, sources and health risks

    International Nuclear Information System (INIS)

    Cooking is a significant source of indoor particulate matter that can cause adverse health effects. In this study, a 5-stage cascade impactor was used to collect particulate matter from 14 restaurants that cooked with charcoal in Kocaeli, the second largest city in Turkey. A total of 24 elements were quantified using ICP-MS. All of the element contents except for Mn were higher for fine particles (PM2.5) than coarse particles (PM>2.5), and the major trace elements identified in the PM2.5 included V, Se, Zn, Cr, As, Cu, Ni, and Pb. Principle component analysis (PCA) and enrichment factor (EF) calculations were used to determine the sources of PM2.5. Four factors that explained over 77% of the total variance were identified by the PCA. These factors included charcoal combustion, indoor activities, crustal components, and road dust. The Se, As, Cd, and V contents in the PM2.5 were highly enriched (EF > 100). The health risks posed by the individual metals were calculated to assess the potential health risks associated with inhaling the fine particles released during charcoal cooking. The total hazard quotient (total HQ) for a PM2.5 of 4.09 was four times greater than the acceptable limit (i.e., 1.0). In addition, the excess lifetime cancer risk (total ELCR) for PM2.5 was 1.57 × 10−4, which is higher than the acceptable limit of 1.0 × 10−6. Among all of the carcinogenic elements present in the PM2.5, the cancer risks resulting from Cr(VI) and As exposure were the highest (i.e., 1.16 × 10−4 and 3.89 × 10−5, respectively). Overall, these results indicate that the lifetime cancer risk associated with As and Cr(VI) exposure is significant at selected restaurants, which is of concern for restaurant workers. - Highlights: • Particulate emissions from charcoal combustion in the BBQ restaurants were studied. • Vanadium, Se, Zn, Cr and As were found as high concentrations in PM2.5. • Charcoal combustion and indoor activities were the primary sources of the

  3. Impact of vehicular strike on particulate matter air quality: results from a natural intervention study in Kathmandu valley.

    Science.gov (United States)

    Fransen, Michelle; Pérodin, Joanne; Hada, Jayjeev; He, Xin; Sapkota, Amir

    2013-04-01

    In this natural intervention study, we evaluated the impact of vehicular shutdown during bandhas (general strikes) and meteorological parameters on ambient PM10 concentrations (particulate matter of aerodynamic diameter 10 μm or less) in the Kathmandu Valley, Nepal. Publicly available PM10 data (January 2003-February 2008) collected at six monitoring stations were combined with meteorological and bandh data. Linear mixed effects regression models were used to examine the effects of bandhas on PM10 concentrations. Lower PM10 concentrations were observed during the monsoon season compared to the winter, across all monitoring stations, with the largest reduction observed for the urban high traffic area (mean ± standard deviation: 290 ± 71 vs 143 ± 36 μg/m(3)). In the high traffic area, there was 36 μg/m(3) decrease in PM10 concentration during the bandh period compared to 2 days preceding the bandh, adjusting for season, rainfall, temperature, and windspeed. The improvements in air quality were short lived: PM10 concentration in the urban high traffic area increased by an average of 26 μg/m(3) within the first 2 days after the bandh. Our results suggest that controlling vehicular traffic can have an immediate impact in improving particulate matter air quality even among the most polluted cities in the world. PMID:23433338

  4. Climate change and the meteorological drivers of PM air pollution: Understanding U.S. particulate matter concentrations in a changing climate

    Science.gov (United States)

    Particulate matter (PM) air pollution is a serious public health issue for the United States. While there is a growing body of evidence that climate change will partially counter the effectiveness of future precursor emission reductions to reduce ozone (O3) air pollution, the lin...

  5. Technical comments on EPA`s proposed revisions to the National Ambient Air Quality Standard for particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Lipfert, F.W.

    1997-03-01

    The US Environmental Protection Agency (EPA) has proposed new ambient air quality standards specifically for fine particulate matter, regulating concentrations of particles with median aerodynamic diameters less than 2.5 {mu}m (PM{sub 2.5}). Two new standards have been proposed: a maximum 24-hr concentration that is intended to protect against acute health effects, and an annual concentration limit that is intended to protect against longer-term health effects. EPA has also proposed a slight relaxation of the 24-hr standard for inhalable particles (PM{sub 10}), by allowing additional exceedances each year. Fine particles are currently being indirectly controlled by means of regulations for PM{sub 10} and TSP, under the Clean Air Act of 1970 and subsequent amendments. Although routine monitoring of PM{sub 2.5} is rare and data are sparse, the available data indicate that ambient concentrations have been declining at about 6% per year under existing regulations.

  6. DETERMINATION OF MOBILITY AND BIOAVAILABILITY OF HEAVY METALS IN THE URBAN AIR PARTICULATES MATTER OF ISFAHAN

    Directory of Open Access Journals (Sweden)

    A KALANTARI

    2001-06-01

    Full Text Available Introduction: In addition to, Carbohyrates, Lipids, Amino acids and vitamins, some of the trace metals are known vital for biological activity. But some of them not only are not necessary, but also they are very toxic and carcinogen. In this research the rate of Mobility and Bioavailability of heavy metals associated with airborne particulates matter such as Zn, Pb, Cd, Cu, Fe, Ni and Cr have been measured. Methods: The sequential extraction has been used for releasing of heavy metales from solid samples as airborne particulates matter on the paper filter samples. Five stages in the sequential extraction procedure developed by Tessier, et al, was first used for extraction and determination of the concentration and percentages of heavy metals which could be released in each stage. In the 1st stage, exchangable metals were released. The sample was extracted with 10 ml of ammonium acetat, pH=7 for 1h. Then the sample was centrifuged at 2000 rpm. The solution of extraction, was analysed for Zn, Pb, Cd, Cu, Fe, Ni and Cr. In the 2nd stage, heavy metals bound to carbonates which were sensitive to pH were extracted. The residue from stage 1, with 10 ml of sodium acetate 1 M the pH was adjusted to 5 with acetic acid. Then the sample was centrifuged as stage 1. In the third stage heavy metals bound to iron and manganese oxides were extracted. The residue from stage 2 was reacted with 10 ml hydroxyl amine hydrochloride at 25% v/v. In the 4th stage metals bound to sulfides and organic compounds were extracted. The residue from stage 3 with 5 ml nitric acid and 5 ml hydrogen peroxide 30% and heated at 85° C. Finally in the 5th stage residual heavy metals were extracted. the residue from fraction 4 with 10 ml nitric acid and 3 ml hydroflouric acid were extracted. The concentrations of Pb and Cd in some fractions of sequential extraction were too low, so, we carried out preconcentration method for these two elements. Results and Discussion: The results

  7. Review, improvement and harmonisation of the Nordic particulate matter air emission inventories

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Ole-Kenneth; Winther, M.; Boll Illerup, J. (Aarhus Univ. National Environmental Research Institute (NERI) (Denmark)); Kindbom, K.; Sjodin, AA. (Swedish Environmental Research Institute (IVL) (Sweden)); Saarinen, K.; Mikkola-Pusa, J. (Finlands Miljoecentral (SYKE) (Finland)); Aasestad, K. (Statistisk Sentralbyraa (SSB) (Norway)); Hallsdottir, B. (Environmental and Food Agency Iceland (IS)); Makela, K. (Technical Research Centre of Finland (VTT) (Finland))

    2010-12-15

    In this study the Nordic particulate matter (PM) emission inventories are compared and for the most important sources - residential wood burning and road transport - a quality analysis is carried out based on PM measurements conducted and models used in the Nordic countries. All the institutions in charge of the work on emission inventories in the Nordic countries have participated in this project together with researchers performing PM measurements in the residential and transport sectors in the Nordic countries in order to increase the quality of the PM national inventories. The ratio between the reported emissions of PM{sub 10} and PM{sub 2.5} was calculated for each country. Norway has the largest share of PM{sub 2.5} compared to PM{sub 10} (88 %), whereas Finland has the lowest (66 %). Denmark and Sweden are right in the middle with 73 and 76 %, respectively. The completeness of the inventories was assessed with particular emphasis on the categories where emissions were reported by one or more countries, while the other categories reported notation keys. It is found that the PM emission inventories generally are complete and that the sources reported as not estimated only are expected to have minor contributions to the total PM emissions. The variability of emission factors for residential wood combustion is discussed and it is illustrated that the emission factors can vary by several orders of magnitude. (Author)

  8. Accuracy and reliability of Chile's National Air Quality Information System for measuring particulate matter: Beta attenuation monitoring issue.

    Science.gov (United States)

    Toro A, Richard; Campos, Claudia; Molina, Carolina; Morales S, Raul G E; Leiva-Guzmán, Manuel A

    2015-09-01

    A critical analysis of Chile's National Air Quality Information System (NAQIS) is presented, focusing on particulate matter (PM) measurement. This paper examines the complexity, availability and reliability of monitoring station information, the implementation of control systems, the quality assurance protocols of the monitoring station data and the reliability of the measurement systems in areas highly polluted by particulate matter. From information available on the NAQIS website, it is possible to confirm that the PM2.5 (PM10) data available on the site correspond to 30.8% (69.2%) of the total information available from the monitoring stations. There is a lack of information regarding the measurement systems used to quantify air pollutants, most of the available data registers contain gaps, almost all of the information is categorized as "preliminary information" and neither standard operating procedures (operational and validation) nor assurance audits or quality control of the measurements are reported. In contrast, events that cause saturation of the monitoring detectors located in northern and southern Chile have been observed using beta attenuation monitoring. In these cases, it can only be concluded that the PM content is equal to or greater than the saturation concentration registered by the monitors and that the air quality indexes obtained from these measurements are underestimated. This occurrence has been observed in 12 (20) public and private stations where PM2.5 (PM10) is measured. The shortcomings of the NAQIS data have important repercussions for the conclusions obtained from the data and for how the data are used. However, these issues represent opportunities for improving the system to widen its use, incorporate comparison protocols between equipment, install new stations and standardize the control system and quality assurance. PMID:25796098

  9. Real-Time Cell-Electronic Sensing of Coal Fly Ash Particulate Matter for Toxicity-Based Air Quality Monitoring.

    Science.gov (United States)

    Moe, Birget; Yuan, Chungang; Li, Jinhua; Du, Haiying; Gabos, Stephan; Le, X Chris; Li, Xing-Fang

    2016-06-20

    The development of a unique bioassay for cytotoxicity analysis of coal fly ash (CFA) particulate matter (PM) and its potential application for air quality monitoring is described. Using human cell lines, A549 and SK-MES-1, as live probes on microelectrode-embedded 96-well sensors, impedance changes over time are measured as cells are treated with varying concentrations (1 μg/mL-20 mg/mL) of CFA samples. A dose-dependent impedance change is determined for each CFA sample, from which an IC50 histogram is obtained. The assay was successfully applied to examine CFA samples collected from three coal-fired power plants (CFPs) in China. The samples were separated into three size fractions: PM2.5 (10 μm). Dynamic cell-response profiles and temporal IC50 histograms of all samples show that CFA cytotoxicity depends on concentration, exposure time (0-60 h), and cell-type (SK-MES-1 > A549). The IC50 values differentiate the cytotoxicity of CFA samples based on size fraction (PM2.5 ≈ PM10-2.5 ≫ PM10) and the sampling location (CFP2 > CFP1 ≈ CFP3). Differential cytotoxicity measurements of particulates in human cell lines using cell-electronic sensing provide a useful tool for toxicity-based air quality monitoring and risk assessment. PMID:27124590

  10. Indoor Air Quality in Urban and Rural Preschools in Upper Silesia, Poland: Particulate Matter and Carbon Dioxide

    Directory of Open Access Journals (Sweden)

    Anna Mainka

    2015-07-01

    Full Text Available Indoor air quality (IAQ in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM is of the greatest interest mainly due to its acute and chronic effects on children’s health. In addition, carbon dioxide (CO2 levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total—TSP and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children and of localization (urban or rural. To evaluate the children’s exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children.

  11. Indoor Air Quality in Urban and Rural Preschools in Upper Silesia, Poland: Particulate Matter and Carbon Dioxide.

    Science.gov (United States)

    Mainka, Anna; Zajusz-Zubek, Elwira

    2015-07-01

    Indoor air quality (IAQ) in preschools is an important public health challenge. Particular attention should be paid to younger children, because they are more vulnerable to air pollution than higher grade children and because they spend more time indoors. Among air pollutants, particulate matter (PM) is of the greatest interest mainly due to its acute and chronic effects on children's health. In addition, carbon dioxide (CO2) levels indicate ventilation conditions. In this paper, we present the concentrations of PM (PM1, PM2.5, PM10 and total-TSP) and CO2 monitored in four naturally ventilated nursery schools located in the area of Gliwice, Poland. The nursery schools were selected to characterize areas with different degrees of urbanization and traffic densities during the winter season. The results indicate the problem of elevated concentrations of PM inside the examined classrooms, as well as that of high levels of CO2 exceeding 1000 ppm in relation to outdoor air. The characteristics of IAQ were significantly different, both in terms of classroom occupation (younger or older children) and of localization (urban or rural). To evaluate the children's exposure to poor IAQ, indicators based on air quality guidelines were proposed to rank classrooms according to their hazard on the health of children. PMID:26184249

  12. Determination and analysis of trace metals and surfactant in air particulate matter during biomass burning haze episode in Malaysia

    Science.gov (United States)

    Ahmed, Manan; Guo, Xinxin; Zhao, Xing-Min

    2016-09-01

    Trace metal species and surface active agent (surfactant) emitted into the atmosphere from natural and anthropogenic source can cause various health related and environmental problems. Limited data exists for determinations of atmospheric particulate matter particularly trace metals and surfactant concentration in Malaysia during biomass burning haze episode. We used simple and validated effective methodology for the determination of trace metals and surfactant in atmospheric particulate matter (TSP & PM2.5) collected during the biomass burning haze episode in Kampar, Malaysia from end of August to October 2015. Colorimetric method of analysis was undertaken to determine the concentration of anionic surfactant as methylene blue active substance (MBAS) and cationic surfactant as disulphine blue active substance (DBAS) using a UV-Visible spectrophotometer. Particulate samples were also analyzed for trace metals with inductive coupled plasma mass spectrometer (ICP-MS) followed by extraction from glass microfiber filters with close vessel microwave acid digestion. The result showed that the concentrations of surfactant in both samples (TSP & PM2.5) were dominated by MBAS (0.147-4.626 mmol/m3) rather than DBAS (0.111-0.671 mmol/m3) and higher than the other researcher found. Iron (147.31-1381.19 μg/m3) was recorded leading trace metal in PM followed by Al, Zn, Pb, Cd, Cr and others. During the haze period the highest mass concentration of TSP 313.34 μg/m3 and 191.07 μg/m3 for PM2.5 were recorded. Furthermore, the backward air trajectories from Kampar in north of peninsular Malaysia confirmed that nearly all the winds paths originate from Sumatera and Kalimantan, Indonesia.

  13. Particulate matter air pollution disrupts endothelial cell barrier via calpain-mediated tight junction protein degradation

    Directory of Open Access Journals (Sweden)

    Wang Ting

    2012-08-01

    Full Text Available Abstract Background Exposure to particulate matter (PM is a significant risk factor for increased cardiopulmonary morbidity and mortality. The mechanism of PM-mediated pathophysiology remains unknown. However, PM is proinflammatory to the endothelium and increases vascular permeability in vitro and in vivo via ROS generation. Objectives We explored the role of tight junction proteins as targets for PM-induced loss of lung endothelial cell (EC barrier integrity and enhanced cardiopulmonary dysfunction. Methods Changes in human lung EC monolayer permeability were assessed by Transendothelial Electrical Resistance (TER in response to PM challenge (collected from Ft. McHenry Tunnel, Baltimore, MD, particle size >0.1 μm. Biochemical assessment of ROS generation and Ca2+ mobilization were also measured. Results PM exposure induced tight junction protein Zona occludens-1 (ZO-1 relocation from the cell periphery, which was accompanied by significant reductions in ZO-1 protein levels but not in adherens junction proteins (VE-cadherin and β-catenin. N-acetyl-cysteine (NAC, 5 mM reduced PM-induced ROS generation in ECs, which further prevented TER decreases and atteneuated ZO-1 degradation. PM also mediated intracellular calcium mobilization via the transient receptor potential cation channel M2 (TRPM2, in a ROS-dependent manner with subsequent activation of the Ca2+-dependent protease calpain. PM-activated calpain is responsible for ZO-1 degradation and EC barrier disruption. Overexpression of ZO-1 attenuated PM-induced endothelial barrier disruption and vascular hyperpermeability in vivo and in vitro. Conclusions These results demonstrate that PM induces marked increases in vascular permeability via ROS-mediated calcium leakage via activated TRPM2, and via ZO-1 degradation by activated calpain. These findings support a novel mechanism for PM-induced lung damage and adverse cardiovascular outcomes.

  14. Persistent activation of DNA damage signaling in response to complex mixtures of PAHs in air particulate matter

    International Nuclear Information System (INIS)

    Complex mixtures of polycyclic aromatic hydrocarbons (PAHs) are present in air particulate matter (PM) and have been associated with many adverse human health effects including cancer and respiratory disease. However, due to their complexity, the risk of exposure to mixtures is difficult to estimate. In the present study the effects of binary mixtures of benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) and complex mixtures of PAHs in urban air PM extracts on DNA damage signaling was investigated. Applying a statistical model to the data we observed a more than additive response for binary mixtures of BP and DBP on activation of DNA damage signaling. Persistent activation of checkpoint kinase 1 (Chk1) was observed at significantly lower BP equivalent concentrations in air PM extracts than BP alone. Activation of DNA damage signaling was also more persistent in air PM fractions containing PAHs with more than four aromatic rings suggesting larger PAHs contribute a greater risk to human health. Altogether our data suggests that human health risk assessment based on additivity such as toxicity equivalency factor scales may significantly underestimate the risk of exposure to complex mixtures of PAHs. The data confirms our previous findings with PAH-contaminated soil (Niziolek-Kierecka et al., 2012) and suggests a possible role for Chk1 Ser317 phosphorylation as a biological marker for future analyses of complex mixtures of PAHs. -- Highlights: ► Benzo[a]pyrene (BP), dibenzo[a,l]pyrene (DBP) and air PM PAH extracts were compared. ► Binary mixture of BP and DBP induced a more than additive DNA damage response. ► Air PM PAH extracts were more potent than toxicity equivalency factor estimates. ► Larger PAHs (> 4 rings) contribute more to the genotoxicity of PAHs in air PM. ► Chk1 is a sensitive marker for persistent activation of DNA damage signaling from PAH mixtures.

  15. Exposure information in environmental health research: Current opportunities and future directions for particulate matter, ozone, and toxic air pollutants

    Energy Technology Data Exchange (ETDEWEB)

    McKone, Thomas E.; Ryan, P. Barry; Ozkaynak, Haluk

    2007-02-01

    Understanding and quantifying outdoor and indoor sources of human exposure are essential but often not adequately addressed in health-effects studies for air pollution. Air pollution epidemiology, risk assessment, health tracking and accountability assessments are examples of health-effects studies that require but often lack adequate exposure information. Recent advances in exposure modeling along with better information on time-activity and exposure factors data provide us with unique opportunities to improve the assignment of exposures for both future and ongoing studies linking air pollution to health impacts. In September 2006, scientists from the US Environmental Protection Agency (EPA) and the Centers for Disease Control and Prevention (CDC) along with scientists from the academic community and state health departments convened a symposium on air pollution exposure and health in order to identify, evaluate, and improve current approaches for linking air pollution exposures to disease. This manuscript presents the key issues, challenges and recommendations identified by the exposure working group, who used cases studies of particulate matter, ozone, and toxic air pollutant exposure to evaluate health-effects for air pollution. One of the over-arching lessons of this workshop is that obtaining better exposure information for these different health-effects studies requires both goal-setting for what is needed and mapping out the transition pathway from current capabilities to meeting these goals. Meeting our long-term goals requires definition of incremental steps that provide useful information for the interim and move us toward our long-term goals. Another over-arching theme among the three different pollutants and the different health study approaches is the need for integration among alternate exposure assessment approaches. For example, different groups may advocate exposure indicators, biomonitoring, mapping methods (GIS), modeling, environmental media

  16. Particulate matter sensor with a heater

    Science.gov (United States)

    Hall, Matthew

    2011-08-16

    An apparatus to detect particulate matter. The apparatus includes a sensor electrode, a shroud, and a heater. The electrode measures a chemical composition within an exhaust stream. The shroud surrounds at least a portion of the sensor electrode, exclusive of a distal end of the sensor electrode exposed to the exhaust stream. The shroud defines an air gap between the sensor electrode and the shroud and an opening toward the distal end of the sensor electrode. The heater is mounted relative to the sensor electrode. The heater burns off particulate matter in the air gap between the sensor electrode and the shroud.

  17. A rapid method for the analysis of methyl dihydrojasmonate and galaxolide in indoor and outdoor air particulate matter.

    Science.gov (United States)

    Fontal, Marta; van Drooge, Barend L; Grimalt, Joan O

    2016-05-20

    A method for the analysis of methyl dihydrojasmonate (MHDJ) in air particulate matter (PM1 and PM2.5) is described for the first time. This fragrance is determined together galaxolide (HHCB). Airborne particles were collected by filtration of air volumes between 100 and 1000m(3). Recovery efficiencies of filter extraction with Soxhlet and pressurized liquids were evaluated. The method included reaction with BSTFA:TMCS for generation of trimethylsilyloxy derivatives which prevented deleterious effects in the gas capillary column by interaction of hydroxyl groups from air constituents other than these fragrances. This step avoided the use of additional clean up methods such as liquid column chromatography affording direct quantification by GC-EI-MS. The proposed method had enough sensitivity for quantification of these fragrances in indoor and outdoor environmental samples using small aliquots of the PM extracts, e.g. 2.5%, and therefore saving sample material for eventual determination of other compounds. The detection limits were 0.03ng and 0.01ng for MHDJ and HHCB, respectively. Both MHDJ and HHCB were predominantly found in the smallest PM fraction analyzed (fragrances in indoor environments. Information on the occurrence of this and other fragrances is needed to increase the understanding on the influence of anthropogenic activities in the formation of organic aerosols and source apportionment. PMID:27113676

  18. Characteristics and popular topics of latest researches into the effects of air particulate matter on cardiovascular system by bibliometric analysis.

    Science.gov (United States)

    Jia, Xiaofeng; Guo, Xinbiao; Li, Haicun; An, Xinying; Zhao, Yingguang

    2013-03-01

    In recent years, many epidemiological and toxicological studies have investigated the adverse effects of air particulate matter (PM) on the cardiovascular system. However, it is difficult for the researchers to have a timely and effective overall command of the latest characteristics and popular topics in such a wide field. Different from the previous reviews, in which the research characteristics and trends are empirically concluded by experts, we try to have a comprehensive evaluation of the above topics for the first time by bibliometric analysis, a quantitative tool in information exploration. This study aims to introduce the bibliometric method into the field of PM and cardiovascular system. The articles were selected by searching PubMed/MEDLINE (from 2007 to 2012) using Medical Subject Headings (MeSH) terms "particulate matter" and "cardiovascular system". A total of 935 eligible articles and 1895 MeSH terms were retrieved and processed by the software Thomson Data Analyzer (TDA). The bibliographic information and the MeSH terms of these articles were classified and analyzed to summarize the research characteristics. The top 200 high-frequency MeSH terms (the cumulative frequency percentage was 74.2%) were clustered for popular-topic conclusion. We summarized the characteristics of published articles, of researcher collaborations and of the contents. Ten clusters of MeSH terms are presented. Six popular topics are concluded and elaborated for reference. Our study presents an overview of the characteristics and popular topics in the field of PM and cardiovascular system in the past five years by bibliometric tools, which may provide a new perspective for future researchers. PMID:23480197

  19. Acute exposure to air pollution particulate matter aggravates experimental myocardial infarction in mice by potentiating cytokine secretion from lung macrophages.

    Science.gov (United States)

    Marchini, Timoteo; Wolf, Dennis; Michel, Nathaly Anto; Mauler, Maximilian; Dufner, Bianca; Hoppe, Natalie; Beckert, Jessica; Jäckel, Markus; Magnani, Natalia; Duerschmied, Daniel; Tasat, Deborah; Alvarez, Silvia; Reinöhl, Jochen; von Zur Muhlen, Constantin; Idzko, Marco; Bode, Christoph; Hilgendorf, Ingo; Evelson, Pablo; Zirlik, Andreas

    2016-07-01

    Clinical, but not experimental evidence has suggested that air pollution particulate matter (PM) aggravates myocardial infarction (MI). Here, we aimed to describe mechanisms and consequences of PM exposure in an experimental model of MI. C57BL/6J mice were challenged with a PM surrogate (Residual Oil Fly Ash, ROFA) by intranasal installation before MI was induced by permanent ligation of the left anterior descending coronary artery. Histological analysis of the myocardium 7 days after MI demonstrated an increase in infarct area and enhanced inflammatory cell recruitment in ROFA-exposed mice. Mechanistically, ROFA exposure increased the levels of the circulating pro-inflammatory cytokines TNF-α, IL-6, and MCP-1, activated myeloid and endothelial cells, and enhanced leukocyte recruitment to the peritoneal cavity and the vascular endothelium. Notably, these effects on endothelial cells and circulating leukocytes could be reversed by neutralizing anti-TNF-α treatment. We identified alveolar macrophages as the primary source of elevated cytokine production after PM exposure. Accordingly, in vivo depletion of alveolar macrophages by intranasal clodronate attenuated inflammation and cell recruitment to infarcted tissue of ROFA-exposed mice. Taken together, our data demonstrate that exposure to environmental PM induces the release of inflammatory cytokines from alveolar macrophages which directly worsens the course of MI in mice. These findings uncover a novel link between air pollution PM exposure and inflammatory pathways, highlighting the importance of environmental factors in cardiovascular disease. PMID:27240856

  20. 77 FR 38889 - National Ambient Air Quality Standards for Particulate Matter

    Science.gov (United States)

    2012-06-29

    ... the original air quality criteria document (DHEW, 1969; 36 FR 8186, April 30, 1971). The reference... plans for the next periodic review of the air quality criteria and NAAQS for PM (62 FR 55201, October 23... respect to visual air quality. The EPA solicits comment on all aspects of the proposed secondary...

  1. 78 FR 3085 - National Ambient Air Quality Standards for Particulate Matter

    Science.gov (United States)

    2013-01-15

    ... the original air quality criteria document (DHEW, 1969; 36 FR 8186, April 30, 1971). The reference... review of the air quality criteria and NAAQS for PM (62 FR 55201, October 23, 1997). After CASAC and... the 24-hour PM 2.5 standard at a level of 35 g/m\\3\\. The EPA is revising the Air Quality Index...

  2. 40 CFR Appendix K to Part 50 - Interpretation of the National Ambient Air Quality Standards for Particulate Matter

    Science.gov (United States)

    2010-07-01

    ... particulate matter data to determine attainment of the 24-hour standards specified in 40 CFR 50.6. For the... Determinations 2.124-Hour Primary and Secondary Standards (a) Under 40 CFR 50.6(a) the 24-hour primary and....1, which is the lowest rate for nonattainment). 2.2Reserved 2.3Data Requirements (a) 40 CFR...

  3. Size distribution of trace metals in Ponce, Puerto Rico air particulate matter

    Science.gov (United States)

    Infante, Rafael; Acosta, Iris L.

    The atmospheric particulate size distribution of nine heavy metals was measured in Ponce, a moderately industrial city in the south of Puerto Rico. Samples were collected in the city center and outlying suburban and rural locations during 1986. The size measurements were done with a cascade impactor. The elemental content of the size fractionated aerosol samples was determined by inductively coupled plasma atomic emission spectroscopy. The particle size distributions observed for Cu, Cd, Pb, Mn and Fe were bimodal with a gradual progression from mainly coarse mode to mainly fine mode. Al, Ni and Zn were mostly associated with coarse particles and V size distribution was unimodal with maxima associated with fine particles. The particle size distribution did not vary significantly with the sites sampled in the urban area although some regional characteristics are observed. The data obtained strongly suggest motor vehicle traffic and fuel combustion as the principal pollution pources in Ponce aerosol.

  4. Alpha B-crystallin prevents the arrhythmogenic effects of particulate matter isolated from ambient air by attenuating oxidative stress

    International Nuclear Information System (INIS)

    Ca2+/calmodulin-dependent protein kinase II (CaMKII) is activated by particulate matter (PM) isolated from ambient air and linked to prolonged repolarization and cardiac arrhythmia. We evaluated whether alpha B-crystallin (CryAB), a heat shock protein, could prevent the arrhythmogenic effects of PM by preventing CaMKII activation. CryAB was delivered into cardiac cells using a TAT-protein transduction domain (TAT-CryAB). ECGs were measured before and after tracheal exposure of diesel exhaust particles (DEP) and each intervention in adult Sprague–Dawley rats. After endotracheal exposure of DEP (200 μg/mL for 30 minutes, n = 11), QT intervals were prolonged from 115 ± 14 ms to 144 ± 20 ms (p = 0.03), and premature ventricular contractions were observed more frequently (0% vs. 44%) than control (n = 5) and TAT-Cry (n = 5). However, DEP-induced arrhythmia was not observed in TAT-CryAB (1 mg/kg) pretreated rats (n = 5). In optical mapping of Langendorff-perfused rat heats, compared with baseline, DEP infusion of 12.5 μg/mL (n = 12) increased apicobasal action potential duration (APD) differences from 2 ± 6 ms to 36 ± 15 ms (p < 0.001), APD restitution slope from 0.26 ± 0.07 to 1.19 ± 0.11 (p < 0.001) and ventricular tachycardia (VT) from 0% to 75% (p < 0.001). DEP infusion easily induced spatially discordant alternans. However, the effects of DEP were prevented by TAT-CryAB (1 mg/kg, n = 9). In rat myocytes, while DEP increased reactive oxygen species (ROS) generation and phosphated CaMKII, TAT-CryAB prevented these effects. In conclusion, CryAB, a small heat shock protein, might prevent the arrhythmogenic effects of PM by attenuating ROS generation and CaMKII activation. -- Highlights: ► Particulate matter (PM) increases arrhythmia. ► PM induced arrhythmias are related with oxidative stress and CaMKII activation. ► Alpha B-crystallin (CryAB) could attenuate the arrhythmogenic effect of PM. ► CryAB decreases oxidative stress and CaMKII activation

  5. Alpha B-crystallin prevents the arrhythmogenic effects of particulate matter isolated from ambient air by attenuating oxidative stress

    Energy Technology Data Exchange (ETDEWEB)

    Park, Hyelim [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Park, Sanghoon; Jeon, Hyunju [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Song, Byeong-Wook [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Kim, Jin-Bae [Division of Cardiology, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Kim, Chang-Soo [The Department of Preventive Medicine, Yonsei University College of Medicine, Seoul (Korea, Republic of); Pak, Hui-Nam [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Hwang, Ki-Chul [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of); Lee, Moon-Hyoung [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Chung, Ji Hyung, E-mail: jhchung@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Joung, Boyoung, E-mail: cby6908@yuhs.ac [The Division of Cardiology, Yonsei University College of Medicine, Seoul (Korea, Republic of); Brain Korea 21 Project for Medical Science, Yonsei University, Seoul (Korea, Republic of)

    2013-01-15

    Ca{sup 2+}/calmodulin-dependent protein kinase II (CaMKII) is activated by particulate matter (PM) isolated from ambient air and linked to prolonged repolarization and cardiac arrhythmia. We evaluated whether alpha B-crystallin (CryAB), a heat shock protein, could prevent the arrhythmogenic effects of PM by preventing CaMKII activation. CryAB was delivered into cardiac cells using a TAT-protein transduction domain (TAT-CryAB). ECGs were measured before and after tracheal exposure of diesel exhaust particles (DEP) and each intervention in adult Sprague–Dawley rats. After endotracheal exposure of DEP (200 μg/mL for 30 minutes, n = 11), QT intervals were prolonged from 115 ± 14 ms to 144 ± 20 ms (p = 0.03), and premature ventricular contractions were observed more frequently (0% vs. 44%) than control (n = 5) and TAT-Cry (n = 5). However, DEP-induced arrhythmia was not observed in TAT-CryAB (1 mg/kg) pretreated rats (n = 5). In optical mapping of Langendorff-perfused rat heats, compared with baseline, DEP infusion of 12.5 μg/mL (n = 12) increased apicobasal action potential duration (APD) differences from 2 ± 6 ms to 36 ± 15 ms (p < 0.001), APD restitution slope from 0.26 ± 0.07 to 1.19 ± 0.11 (p < 0.001) and ventricular tachycardia (VT) from 0% to 75% (p < 0.001). DEP infusion easily induced spatially discordant alternans. However, the effects of DEP were prevented by TAT-CryAB (1 mg/kg, n = 9). In rat myocytes, while DEP increased reactive oxygen species (ROS) generation and phosphated CaMKII, TAT-CryAB prevented these effects. In conclusion, CryAB, a small heat shock protein, might prevent the arrhythmogenic effects of PM by attenuating ROS generation and CaMKII activation. -- Highlights: ► Particulate matter (PM) increases arrhythmia. ► PM induced arrhythmias are related with oxidative stress and CaMKII activation. ► Alpha B-crystallin (CryAB) could attenuate the arrhythmogenic effect of PM. ► CryAB decreases oxidative stress and CaMKII activation

  6. Oxidative damage by carcinogenic polycyclic aromatic hydrocarbons and organic extracts from urban air particulate matter

    Czech Academy of Sciences Publication Activity Database

    Hanzalová, Kateřina; Rössner ml., Pavel; Šrám, Radim

    2010-01-01

    Roč. 696, č. 2 (2010), s. 114-121. ISSN 1383-5718 R&D Projects: GA MŠk 2B08005; GA MŽP(CZ) SP/1B3/8/08 Institutional research plan: CEZ:AV0Z50390512 Keywords : carcinogenic polycyclic aromatic hydrocarbons * oxidative damage in vitro * extractable organic matter Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.938, year: 2010

  7. SENSITIVITY ANALYSIS OF RELMAP (REGIONAL LAGRANGIAN MODEL OF AIR POLLUTION) INVOLVING FINE AND COARSE PARTICULATE MATTER

    Science.gov (United States)

    The REgional Lagrangian Model of air pollution (RELMAP) is a mass-conserving, regional scale, Lagrangian model that simulates ambient concentrations as well as wet and dry deposition of SO2, SO4(2-), and more recently fine (diameters<2.5 micrometers) and coarse (2.5 < diameter < ...

  8. Magnetic particles in atmospheric particulate matter collected at sites with different level of air pollution

    Czech Academy of Sciences Publication Activity Database

    Petrovský, Eduard; Zbořil, R.; Matys Grygar, Tomáš; Kotlík, B.; Novák, J.; Kapička, Aleš; Grison, Hana

    2013-01-01

    Roč. 57, č. 4 (2013), s. 755-770. ISSN 0039-3169 R&D Projects: GA ČR GAP210/10/0554 Institutional support: RVO:67985530 ; RVO:61388980 Keywords : magnetite * atmospheric dust * pollution * rock magnetism Subject RIV: DI - Air Pollution ; Quality Impact factor: 0.752, year: 2013

  9. AIR PARTICULATE MATTER (PM CONCENTRATION IN RESITA A MAJOR DANGER FOR CHILDREN’S RESPIRATORY SYSTEM

    Directory of Open Access Journals (Sweden)

    A Preda

    2005-01-01

    Full Text Available The paper work presents a group of school children with respiratory system diseases caused by air polution. The causes of the growing number of respiratory diseases are pointed out by the high number of hospital admissions and the increasing number of visits to the family doctors.

  10. Pollution of atmospheric air with toxic and radioactive particulate matter investigated by means of nuclear techniques

    International Nuclear Information System (INIS)

    The application of spectrometric methods of nuclear techniques to the investigations of atmospheric air pollution by toxic and radioactive elements and results of these investigations conducted in the highly industrialized and urbanized regions of Poland have been presented. The method of precipitation of the samples, the measurements and analysis of radiation spectra of alpha and gamma radiation emitted by isotopes present in the samples have been described. The concentrations of toxic metal dust in the air have been evaluated by neutron activation and X-ray fluorescence analysis. Appropriate methods of measurement, calibration of instrument and the discussion of results have been presented. The work presents the results of investigations performed in Siersza within the years 1973-1974 and in Warsaw in the period of 1975-1977, which have permitted to estimate the mean monthly values of concentration in the atmospheric air of the following radioisotopes: 7Be, 54Mn, 95Zr, 103Ru, 106Ru, 125Sb, 131I, 137Cs, 140Ba, 141Ce, 144Ce, 226Ra, Th-nat, U-nat and the following stable elements: Sc, Cr, Fe, Co, Zn, As, Se, Sb, W, Pb. The analysis of changes in concentration of each particular artificial radioisotope in the air for the region of Poland in connection with Chinese nuclear explosions have been given. On the basis of the performed environmental investigations the method of analysis of relations between the concentrations of particular elements present in the dust has been discussed. The applications of this method have been presented. The hazard to the population and the environment caused by the radioactive and toxic dust present in the atmospheric air has been estimated. (author)

  11. Evaluating the mutagenicity of the water-soluble fraction of air particulate matter: A comparison of two extraction strategies.

    Science.gov (United States)

    Palacio, Isabel C; Oliveira, Ivo F; Franklin, Robson L; Barros, Silvia B M; Roubicek, Deborah A

    2016-09-01

    Many studies have focused on assessing the genotoxic potential of the organic fraction of airborne particulate matter. However, the determination of water-soluble compounds, and the evaluation of the toxic effects of these elements can also provide valuable information for the development of novel strategies to control atmospheric air pollution. To determine an appropriate extraction method for assessing the mutagenicity of the water-soluble fraction of PM, we performed microwave assisted (MW) and ultrasonic bath (US) extractions, using water as solvent, in eight different air samples (TSP and PM10). Mutagenicity and extraction performances were evaluated using the Salmonella/microsome assay with strains TA98 and TA100, followed by chemical determination of water-soluble metals. Additionally, we evaluated the chemical and biological stability of the extracts testing their mutagenic potential and chemically determining elements present in the samples along several periods after extraction. Reference material SRM 1648a was used. The comparison of MW and US extractions did not show differences on the metals concentrations, however positive mutagenic responses were detected with TA98 strain in all samples extracted using the MW method, but not with the US bath extraction. The recovery, using reference material was better in samples extracted with MW. We concluded that the MW extraction is more efficient to assess the mutagenic activity of the soluble fraction of airborne PM. We also observed that the extract freezing and storage over 60 days has a significant effect on the mutagenic and analytical results on PM samples, and should be avoided. PMID:27258903

  12. Temporal variation in the genotoxic potential of urban air particulate matter

    Czech Academy of Sciences Publication Activity Database

    Sevastyanova, Oksana; Nováková, Zuzana; Hanzalová, Kateřina; Binková, Blanka; Šrám, Radim; Topinka, Jan

    2008-01-01

    Roč. 649, 1-2 (2008), s. 179-186. ISSN 1383-5718 R&D Projects: GA MŽP SL/5/160/05; GA AV ČR 1QS500390506 Institutional research plan: CEZ:AV0Z50390512 Keywords : DNA adducts * Carcinogenesis PAHs * Air particles Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 2.363, year: 2008

  13. 40 CFR 52.1131 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1131 Section 52.1131 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) Revisions to the following regulations submitted on March...

  14. 40 CFR 52.1025 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1025 Section 52.1025 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... strategy: Particulate matter. (a) The revisions to the control strategy resulting from the modification...

  15. 40 CFR 52.1374 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter. 52.1374 Section 52.1374 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) AIR... Control strategy: Particulate matter. (a) On July 8, 1997, the Governor of Montana submitted...

  16. The origin of ambient particulate matter concentrations in the Netherlands

    NARCIS (Netherlands)

    Hendriks, C.; Kranenburg, R.; Kuenen, J.; Gijlswijk, R. van; Wichink Kruit, R.; Segers, A.; Denier van der Gon, H.; Schaap, M.

    2013-01-01

    Particulate matter poses a significant threat to human health. To be able to develop effective mitigation strategies, the origin of particulate matter needs to be established. The regional air quality model LOTOS-EUROS, equipped with a newly developed labeling routine, was used to establish the orig

  17. Exposure of chronic obstructive pulmonary disease patients to particulate matter: relationships between personal and ambient air concentrations.

    Science.gov (United States)

    Ebelt, S T; Petkau, A J; Vedal, S; Fisher, T V; Brauer, M

    2000-07-01

    Mot time-series studies of particulate air pollution and acute health outcomes assess exposure of the study population using fixed-site outdoor measurements. To address the issue of exposure misclassification, we evaluate the relationship between ambient particle concentrations and personal exposures of a population expected to be at risk of particle health effects. Sampling was conducted within the Vancouver metropolitan area during April-September 1998. Sixteen subjects (non-smoking, ages 54-86) with physician-diagnosed chronic obstructive pulmonary disease (COPD) wore personal PM2.5 monitors for seven 24-hr periods, randomly spaced approximately 1.5 weeks apart. Time-activity logs and dwelling characteristics data were also obtained for each subject. Daily 24-hr ambient PM10 and PM2.5 concentrations were measured at five fixed sites spaced throughout the study region. SO4(2-), which is found almost exclusively in the fine particle fraction and which does not have major indoor sources, was measured in all PM2.5 samples as an indicator of accumulation mode particulate matter of ambient origin. The mean personal and ambient PM2.5 concentrations were 18 micrograms/m3 and 11 micrograms/m3, respectively. In analyses relating personal and ambient measurements, ambient concentrations were expressed either as an average of the values obtained from five ambient monitoring sites for each day of personal sampling, or as the concentration obtained at the ambient site closest to each subject's home. The mean personal to ambient concentration ratio of all samples was 1.75 (range = 0.24 to 10.60) for PM2.5, and 0.75 (range = 0.09 to 1.42) for SO4(2-). Regression analyses were conducted for each subject separately and on pooled data. The median correlation (Pearson's r) between personal and average ambient PM2.5 concentrations was 0.48 (range = -0.68 to 0.83). Using SO4(2-) as the exposure metric, the median r between personal and average ambient concentrations was 0.96 (range

  18. Source apportionment of size resolved particulate matter at a European air pollution hot spot.

    Science.gov (United States)

    Pokorná, P; Hovorka, J; Klán, M; Hopke, P K

    2015-01-01

    Positive Matrix Factorization-PMF was applied to hourly resolved elemental composition of fine (PM0.15-1.15) and coarse (PM1.15-10) aerosol particles to apportion their sources in the airshed of residential district, Ostrava-Radvanice and Bartovice in winter 2012. Multiple-site measurement by PM2.5 monitors complements the source apportionment. As there were no statistical significant differences amongst the monitors, the source apportionment derived for the central site data is expected to apply to whole residential district. The apportioned sources of the fine aerosol particles were coal combustion (58.6%), sinter production-hot phase (22.9%), traffic (15%), raw iron production (3.5%), and desulfurization slag processing (air pollution sources helped to interpret the PMF solution. PMID:25260163

  19. Characterization of the finest and coarse airborne particulate matter in Kuala Lumpur's ambient air

    International Nuclear Information System (INIS)

    We will report the mass concentration of the finest (PM2.5) and coarse (PM2.5-10) airborne particles in ambient air of Kuala Lumpur area collected using GENT Stack filter unit fitted with appropriate polycarbonate filters. The sampling site (Lat: 03deg 10' 30'' Long: 101deg 43' 24.2'') is about 1 km from Kuala Lumpur City Center. Elemental concentration in the samples collected once every month throughout the year 2002 has been analyzed using the currently available NAA facilities at MINT. Elements determined in the study include Al, As, Br, Co, Cr, K, Lu, Mn, NA, Sb, Sc, Ti, V, and Zn. Quality control material used to control the quality of the analytical procedures was NBS 1633a. (author)

  20. Air Pollution Particulate Matter Collected from an Appalachian Mountaintop Mining Site Induces Microvascular Dysfunction

    Science.gov (United States)

    KNUCKLES, TRAVIS L.; STAPLETON, PHOEBE A.; MINARCHICK, VALERIE C.; ESCH, LAURA; MCCAWLEY, MICHAEL; HENDRYX, MICHAEL; NURKIEWICZ, TIMOTHY R.

    2016-01-01

    Objective Air pollution PM is associated with cardiovascular morbidity and mortality. In Appalachia, PM from mining may represent a health burden to this sensitive population that leads the nation in cardiovascular disease, among others. Cardiovascular consequences following inhalation of PMMTM are unclear, but must be identified to establish causal effects. Methods PM was collected within 1 mile of an active MTM site in southern WV. The PM was extracted and was primarily <10μm in diameter (PM10), consisting largely of sulfur (38%) and silica (24%). Adult male rats were IT with 300 μg PMMTM. Twenty-four hours following exposure, rats were prepared for intravital microscopy, or isolated arteriole experiments. Results PMMTM exposure blunted endothelium-dependent dilation in mesenteric and coronary arterioles by 26%, and 25%, respectively, as well as endothelium-independent dilation. In vivo, PMMTM exposure inhibited endothelium-dependent arteriolar dilation (60% reduction). α-adrenergic receptor blockade inhibited PVNS-induced vasoconstriction in exposed animals compared with sham. Conclusions These data suggest that PMMTM exposure impairs microvascular function in disparate microvascular beds, through alterations in NO-mediated dilation and sympathetic nerve influences. Microvascular dysfunction may contribute to cardiovascular disease in regions with MTM sites. PMID:22963349

  1. Analysis of airborne particulate matter

    International Nuclear Information System (INIS)

    An airborne particulate matter (APM) consists of many kinds of solid and liquid particles in air. APM analysis methods and the application examples are explained on the basis of paper published after 1998. Books and general remarks, sampling and the measurement of concentration and particle distribution, elemental analysis methods and the present state of analysis of species are introduced. Tapered Element Oscillating Microbalance (TEOM) method can collect continuously the integrating mass, but indicates lower concentration. Cu, Ni, Zn, Co, Fe(2), Mn, Cd, Fe(3) and Pb, the water-soluble elements, are determined by ion-chromatography after ultrasonic extraction of the aqueous solution. The detection limit of them is from 10 to 15 ppb (30 ppb Cd and 60 ppb Pb). The elemental carbon (EC) and organic carbon (OC) are separated by the thermal mass measurement-differential scanning calorimeter by means of keeping at 430degC for 60 min. 11 research organizations compared the results of TC (Total Carbon) and EC by NIOSH method 5040 and the thermal method and obtained agreement of TC. ICP-MS has been developed in order to determine correctly and quickly the trace elements. The determination methods for distinction of chemical forms in the environment were developed. GC/MS, LC/MS and related technologies for determination of organic substances are advanced. Online real-time analysis of APN, an ideal method, is examined. (S.Y.)

  2. Monitoring of (7)Be and gross beta in particulate matter of surface air from Mallorca Island, Spain.

    Science.gov (United States)

    Rodas Ceballos, Melisa; Borràs, Antoni; Gomila, Esteve; Estela, José Manuel; Cerdà, Víctor; Ferrer, Laura

    2016-06-01

    Measurements of airbone radionuclides (7)Be and gross beta (Aβ) jointly with atmospheric aerosols, i.e. particulate matter (PM) were routinely carried out for 10 years (2004-2014) at the University of the Balearic Islands, Spain. A total of 728 filter (0.8 μm pore size) samples were collected, and in all of them (7)Be and Aβ specific activities were detected. The maximum and minimum specific activities monitored were 0.73 ± 0.41 - 15.8 ± 1.26 mBq m(-3) of (7)Be and 0.14 ± 0.02 - 2.55 ± 0.04 mBq m(-3) of Aβ. PM concentrations were also determined, showing seasonal behavior with the highest concentration in summer and the lowest one in winter. Several meteorological parameters have been considered to explain this intra-annual variation. Principal component analysis (PCA) was applied to the dataset indicating that it is well represented by two principal components that explain 76.6% of total variance. Additionally, a second study with preliminary results of the specific activities of two natural radiotracers ((7)Be and (210)Pb) in PM10 samples was carried out. They were monitored for two years (2013-2015) in air of Mallorca Island. (7)Be and (210)Pb were detected in most of the PM10 filters, in 100% and 93% of them, respectively. The relationship between activities of both radionuclides and several relevant meteorological parameters was established at 95% confidence level. As a common result to PM and PM10 samples, a strong positive correlation between the evaluated radionuclides and temperature was found. PMID:27003370

  3. The role of air quality modelling in particulate matter management in cities. Results from the Air Implementation Pilot

    OpenAIRE

    Castell N.; Guerreiro C; Denby B.R.; Ortiz González A.

    2015-01-01

    The European Commission and the EEA agreed to reinforce efforts to improve knowledge on implementation of air quality legislation through a joint pilot project. The Air Implementation Pilot run from March 2012 to June 2013 and aimed at better understanding the challenges cities faced in implementing air quality policy. Twelve European cities were selected and invited to join the project. One of the focus of the Pilot project was to assess the use of models ...

  4. The heart as an extravascular target of endothelin-1 in particulate matter-induced cardiac dysfunction

    Science.gov (United States)

    Exposure to particulate matter air pollution has been causally linked to cardiovascular disease in humans. Several broad and overlapping hypotheses describing the biological mechanisms by which particulate matter exposure leads to cardiovascular disease and cardiac dysfunction ha...

  5. Composition of Indoor Particulate Matter

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Schwarz, Jaroslav; Dohányosová, Pavla

    -: -, 2006 - (Fernandes, D.), s. 283-286. (Indoor Climate. II). [Healthy Buildings 2006. Lisboa (PT), 04.06.2006-08.06.2006] R&D Projects: GA ČR(CZ) GA101/04/1190; GA ČR(CZ) GA205/03/1560 Institutional research plan: CEZ:AV0Z40720504 Keywords : indoor particulate matter * chemical composition Subject RIV: CF - Physical ; Theoretical Chemistry

  6. Particulate Organic Matter (POM) Separation

    International Nuclear Information System (INIS)

    Information on soil organic matter (SOM) pools is of vital importance for studying the impact of soil management and environmental factors on soil organic carbon, an important part of the global carbon cycle. Several conceptual SOM pools with different turnover rates are available to feed models or to study carbon cycles. The fractionation scheme of Zimmermann allows isolating the labile particulate organic matter (POM) pool. Besides its use in conventional soil organic carbon dynamics studies and modelling, this pool can be determining as well in the evaluation of soil organic carbon stability based on the use of stable 15N and 13C isotopes

  7. Carbon in Atmospheric Particulate Matter

    International Nuclear Information System (INIS)

    Carbon compounds account for a large fraction of airborne particulate matter ('carbonaceous aerosols'). Their presence raises a number of scientific questions dealing with climate issues and possible effects on human health. This review describes the current state of knowledge with respect to the ambient concentrations levels (elemental carbon, organic carbon and organic matter) and the various emission sources, and summarizes the role of atmospheric carbon in the various environmental issues. The report finishes by identifying the actual gaps in knowledge and gives (related) suggestions for future research

  8. Ambient air particulate matter in Lagos, Nigeria: a study using receptor modeling with x-ray flourescence analysis

    Directory of Open Access Journals (Sweden)

    E.A. Oluyemi

    2001-12-01

    Full Text Available The need for comprehensive air pollution studies in Lagos cannot be overemphasized in view of the level of industrialization of the city and its nearness to the ocean. Air particulate samples collected with a high-volume air sampler at three locations in Lagos, Nigeria were analyzed by the combination of wavelength-dispersive X-ray fluorescence and atomic absorption spectroscopy methods. Elemental concentrations were subjected to factor analysis for source identification and chemical mass balance model was used for source apportionment. Prominent among sources identified with the ranges of their contributions at the sites are: soil 35-54%, marine 26-34%, automobile exhaust 0.3-3.5%, refuse incineration 2-3%, and regional sulphate 2-12%.

  9. Seasonal variation of the size distribution of urban particulate matter and associated organic pollutants in the ambient air

    Science.gov (United States)

    Chrysikou, Loukia P.; Samara, Constantini A.

    Size-segregated samples of urban particulate matter (7.5 μm) were collected in Thessaloniki, northern Greece, during winter and summer of 2007-2008, in order to study the size distribution of organic compounds such as polycyclic aromatic hydrocarbons (PAHs), aliphatic hydrocarbons (AHs) including n-alkanes and the isoprenoids pristane and phytane, organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs). All organic compounds were accumulated in the particle size fraction <0.95 μm particularly in the cold season. Particulate matter displayed a bimodal normalized distribution in both seasons with a stable coarse mode located at 3.0-7.5 μm and a fine mode shifting from 0.95-1.5 μm in winter to <0.95 μm in summer. Unimodal normalized distributions, predominant at 0.95-1.5 μm size range, were found for most organic compounds in both seasons, suggesting gas-to-particle transformation after emission. A second minor mode at larger particles (3.0-7.5 μm) was observed for C 19 and certain OCPs suggesting redistribution due to volatilization and condensation.

  10. Determination of Total Suspended Particulate Matter and Heavy Metals in Ambient Air of Four Cities of Pakistan

    Directory of Open Access Journals (Sweden)

    Muhammad Ali Awan,

    2011-01-01

    Full Text Available Total suspended particulates (TSPs in ambient air of four cities of Pakistan were collected using a high volume sampling technique for subsequent heavy metal analysis. The sampling was conducted for 24hours and the concentration of TSPs ranged 568-2074, 1191-3976, 1133-4400 and 112-280 μg/m3 for Islamabad, Gujranwala, Faisalabad and Bahwalnagar, respectively. The level of TSP contamination was very high in ambient air of two big industrial cities, Gujranwala and Faisalabad. TSPs were also analyzed for Cd, Pb and Zn using flame atomic absorption spectrometry (FAAS following digestion using a mixture of analytical grade nitric acid and hydrochloric acid. Compared to other metals, concentration of Cd was slightly high (around 325 ng/m3 in the samples of Gujranwala and Faisalabad. Overall, the order of metal concentrations were Cd > Pb > Zn.

  11. Exposure assessment of air pollutants: a review on spatial heterogeneity and indoor/outdoor/personal exposure to suspended particulate matter, nitrogen dioxide and ozone

    Science.gov (United States)

    Monn, Christian

    This review describes databases of small-scale spatial variations and indoor, outdoor and personal measurements of air pollutants with the main focus on suspended particulate matter, and to a lesser extent, nitrogen dioxide and photochemical pollutants. The basic definitions and concepts of an exposure measurement are introduced as well as some study design considerations and implications of imprecise exposure measurements. Suspended particulate matter is complex with respect to particle size distributions, the chemical composition and its sources. With respect to small-scale spatial variations in urban areas, largest variations occur in the ultrafine (resuspension of dust) for coarse particles. The relationships between indoor, outdoor and personal levels are complex. The finer the particle size, the better becomes the correlation between indoor, outdoor and personal levels. Furthermore, correlations between these parameters are better in longitudinal analyses than in cross-sectional analyses. For NO 2 and O 3, the air chemistry is important. Both have considerable small-scale spatial variations within urban areas. In the absence of indoor sources such as gas appliances, NO 2 indoor/outdoor relationships are strong. For ozone, indoor levels are quite small. The study hypothesis largely determines the choice of a specific concept in exposure assessment, i.e. whether personal sampling is needed or if ambient monitoring is sufficient. Careful evaluation of the validity and improvements in precision of an exposure measure reduce error in the measurements and bias in the exposure-effect relationship.

  12. Effect of particulate matter air pollution on hospital admissions and medical visits for lung and heart disease in two southeast Idaho cities.

    Science.gov (United States)

    Ulirsch, Gregory V; Ball, Louise M; Kaye, Wendy; Shy, Carl M; Lee, Carolyn V; Crawford-Brown, Douglas; Symons, Michael; Holloway, Tracey

    2007-08-01

    Few, if any, published time series studies have evaluated the effects of particulate matter air exposures by combining hospital admissions with medical visit data for smaller populations. We investigated the relationship between daily particulate matter (influenza, and day-of-week effects were controlled. In single-pollutant models, respiratory disease admissions and visits increased (7.1-15.4% per 50 microg/m3 PM10) for each age group analyzed, with the highest increases in two groups, children and especially the elderly. Statistical analyses suggest that the results probably did not occur by chance. Sensitivity analyses did not provide strong evidence that the respiratory disease effect estimates were sensitive to reasonable changes in the final degrees of freedom choice for time and weather effects. No strong evidence of confounding by NO2 and SO2 was found from results of multi-pollutant models. Ozone and carbon monoxide data were not available to include multi-pollutant models, but evidence suggests that they were not a problem. Unexpectedly, evidence of an association between PM10 with cardiovascular disease was not found, possibly due to the lifestyles of the mostly Mormon study population. Successful time series analyses can be performed on smaller populations if diverse, centralized databases are available. Hospitals that offer urgent or other primary care services may be a rich source of data for researchers. Using data that potentially represented a wide-range of disease severity, the findings provide evidence that evaluating only hospital admissions or emergency room visit effects may underestimate the overall morbidity due to acute particulate matter exposures. Further work is planned to test this conclusion. PMID:17299531

  13. CFD Modeling of Particulate Matter Dispersion from Kerman Cement Plant

    Directory of Open Access Journals (Sweden)

    M. Panahandeh

    2010-04-01

    Full Text Available "n "n "nBackgrounds and Objectives: The dispersion of particulate matter has been known as the most serious environmental pollution of cement plants. In the present work, dispersion of the particulate matter from stack of Kerman Cement Plant was investigated using Computational Fluid Dynamics (CFD modeling."nMaterials and Methods: In order to study the dispersion of particulate matter from the stack, a calculation domain with dimensions of 8000m × 800m × 400m was considered. The domain was divided to 936781 tetrahedral control volumes. The mixture two-phase model was employed to model the interaction of the particulate matter (dispersed phase and air (continuous phase. The Large Eddy Simulation (LES method was used for turbulence modeling."nResults: The concentration of particulate matter in the whole calculation domain was computed. The predicted concentrations were compared to the measured values from the literature and a good agreement was observed. The predicted concentration profiles at different cross sections were analyzed."nConclusion:The results of the present work showed that CFD is a useful tool for understanding the dispersion of particulate matter in air. Although the obtained results were promising, more investigations on the properties of the dispersed phase, turbulent parameters and the boundary layer effect is needed to obtain more accurate results.

  14. Induction of c-Jun by air particulate matter (PM10) of Mexico city: Participation of polycyclic aromatic hydrocarbons

    International Nuclear Information System (INIS)

    The carcinogenic potential of urban particulate matter (PM) has been partly attributed to polycyclic aromatic hydrocarbons (PAHs) content, which activates the aryl hydrocarbon receptor (AhR). Here we report the effect of PM with an aerodynamic size of 10 μm (PM10) on the induction of AhR pathway in A549 cells, evaluating its downstream targets CYP1B1, IL-6, IL-8 and c-Jun. Significant increases in CYP1B1 protein and enzyme activity; IL-6 and IL-8 secretion and c-Jun protein were found in response to PM10. The formation of PAH-DNA adducts was also detected. The involvement of AhR pathway was confirmed with Resveratrol as AhR antagonist, which reversed CYP1B1 and c-Jun induction. Nevertheless, in IL-6 and IL-8 secretion, the Resveratrol was ineffective, suggesting an effect independent of this pathway. Considering the role of c-Jun in oncogenesis, its induction by PM may be contributing to its carcinogenic potential through induction of AhR pathway by PAHs present in PM10. - Highlights: • We analyzed the induction of AhR pathway targets by exposure to PM10 in A549 cells. • We suggest that PAHs content in PM10 are responsible for the induction of c-Jun. • C-Jun induction could represent part of mechanism of carcinogenicity of PM10. - We report the role of the aryl hydrocarbon receptor pathway in cJun induction caused by PM10 exposure in human lung cells, which could represent part of its mechanism of carcinogenicity

  15. Feasibility of analyzing fine particulate matter in air using solid-phase extraction membranes and dynamic subcritical water extraction.

    Science.gov (United States)

    Tollbäck, Johanna; Bigatá, María Blasco; Crescenzi, Carlo; Ström, Johan

    2008-05-01

    We have evaluated the feasibility of using Empore solid-phase extraction (SPE) membranes as an alternative to conventional techniques for sampling fine airborne particulate matter (PM), including nanoparticles, utilizing a scanning mobility particle sizer (SMPS) and a condensation particle counter to evaluate their efficiency for trapping fine particles in the 10-800 nm size range. The results demonstrate that the membranes can efficiently trap these particles and can then be conveniently packed into an extraction cell and extracted under matrix solid-phase dispersion (MSPD) conditions. The potential utility of sampling PM using Empore membranes followed by dynamic subcritical water extraction (DSWE) for fast, efficient, class-selective extraction of polycyclic aromatic hydrocarbons (PAHs) associated with the particles, prior to changing the solvent and analysis by GC/MS, was then explored. The performance of the method was tested using National Institute of Standards and Technology (NIST)-certified "urban dust" reference material (SRM 1649a) and real samples collected at a site in central Rome with heavy road traffic. The method appears to provide comparable extraction efficiency to that of conventional techniques and with using GC/MS, detection limits ranged in the few picograms per cubic meter level. Sampling PM by Empore membranes may reduce the risks of losses of semivolatile compounds, while allowing relatively high sampling flow rates and safe sample storage. Moreover, the combination of MSPD with DSWE permits specific fractions of the PM components to be eluted, thereby generating clean extracts and reducing both analysis time and sample manipulation. PMID:18393539

  16. Analysis of air particulate matter in Teflon trademark and quartz filters by short-irradiation, epithermal-neutron activation with Compton suppression

    International Nuclear Information System (INIS)

    This work aimed at developing methodologies to characterize the elemental composition of air particulate matter (APM) collected in Portugal, at an urban area (Lisboa, mainland Portugal) and at a remote location (Terceira island, Azores, Portugal). The Azores' collections were based on quartz filters; Teflon trademark filters were used at the urban area. The main components of Teflon trademark and quartz filters are fluorine and silica, respectively, the latter featuring higher levels of elements in the blanks. Al and Ti are reduced to null values when the blanks are subtracted. Epithermal short irradiation associated to Compton suppression in the measurement allowed the determination of a set of elements potentially representative of important emission sources: seaspray (Cl, Br, Na, Mg), fuel burning (V), incineration (Cl), soil resuspension (Mg, Mn, Na, U, V), and traffic (Br, Mn). The analysis was fast due to the use of an automatic system. In some cases, the same element had different origins in the urban and remote oceanic areas. (orig.)

  17. The use of neutron activation analysis for particle size fractionation and chemical characterization of trace elements in urban air particulate matter

    International Nuclear Information System (INIS)

    The concentration of more than 25 trace elements have been determined in total air particulate matter and in the size segregated fractions from the urban area of Pavia (North Italy). The PM10 fraction was also collected and analyzed. A study of the solubility in water and in physiological solution of the trace elements contained in the PM10 was also carried out. The resulting solutions were further submitted to column chromatography using Chelex 100 to perform a preliminary chemical characterization. INAA was used as the main analytical technique. ET-AAS was used for all Pb and Cd measurements and, in some cases, for the analysis of V, Mn, Cu and Ni. (author)

  18. Forest Filter Effect: Role of leaves in capturing/releasing air particulate matter and its associated PAHs

    Science.gov (United States)

    Terzaghi, Elisa; Wild, Edward; Zacchello, Gabriele; Cerabolini, Bruno E. L.; Jones, Kevin C.; Di Guardo, Antonio

    2013-08-01

    Plants play a key role in removing particulate matter and their associated Semi-volatile Organic Compounds (SVOCs) from the atmosphere. Understanding the processes involved in particle capture by vegetation is essential to understand the interactions between SVOCs, particles and plants. In the present study Two Photon Excitation Microscopy (TPEM) was used to visualise particle matter uptake and encapsulation, together with its distribution on leaf/needle surface of different broadleaf (cornel and maple) and conifer species (stone pine). Phenanthrene accumulation, the number of particles associated with this compound and its migration from particles into the leaf cuticle was also identified and quantified. Species-specific deposition velocities were estimated to model temporal PM10 leaf/needle accumulation and to investigate the role of Planet Boundary Layer (PBL) height variation in influencing PM10 flux to plants. Particles at the leaf/needle surface were visualised to range in size from 0.2 to 70.4 μm, but cuticular encapsulation was negligible for particles larger than 10.6 μm, which were removed by a washing procedure. Phenanthrene concentration varied between ≈5 and ≈10 ng g-1 dw according to plant species and between ≈10 and ≈200 ng g-1 dw depending on needle age; this compound was visualized to migrate from particles into the adjacent leaf cuticle. Species-specific deposition velocity range between 0.57 and 1.28 m h-1 and preliminary simulations showed that the diel variability of PBL structure influenced the temporal PM10 flux and leaf/needle concentration, e.g. during daytime hours characterized by high PBL height, PM10 accumulated on cornel leaves was about 65% lower than the amount accumulated during night time. The capability of vegetation to capture particles from the atmosphere, retain, encapsulate them into the cuticle and release them to soil and/or lower biomass, highlighted the value of vegetation in removing pollutants from the

  19. Estimation of exhaust and non-exhaust gaseous, particulate matter and air toxics emissions from on-road vehicles in Delhi

    Science.gov (United States)

    Nagpure, Ajay Singh; Gurjar, B. R.; Kumar, Vivek; Kumar, Prashant

    2016-02-01

    Analysis of emissions from on-road vehicles in an Indian megacity, Delhi, have been performed by comparing exhaust emissions of gaseous, particulate matter and mobile source air toxics (MSATs), together with volatile organic compound (VOCs) and PM10 (particulate matter ≤10 μm) from non-exhaust vehicular sources, during the past (1991-2011) and future (2011-2020) scenarios. Results indicate that emissions of most of the pollutants from private vehicles (two wheelers and cars) have increased by 2- to 18-times in 2020 over the 1991 levels. Two wheelers found to be dominating the emissions of carbon monoxide (CO, 29-51%), hydrocarbons (HC, 45-73%), acetaldehyde (46-51%) and total poly aromatic hydrocarbons (PAHs, 37-42%). Conversely, private cars were found to be responsible for the majority of the carbon dioxide (CO2, 24-42%), 1,3-butadiene (72-89%), benzene (60-82%), formaldehyde (23-44%) and total aldehyde (27-52%) between 1991 and 2011. The heavy-duty commercial vehicles (HCVs) shows their accountability for most of the nitrogen oxide (NOx, 18-41%) and PM10 (33-43%) emissions during the years 1991-2011. In terms of PM10 emissions, vehicular exhaust contributed by 21-55%, followed by road dust (42-73%) and brake wear (3-5%) between 1991 and 2011. After 2002, non-exhaust emissions (e.g. road dust, brake wear and tyre wear) together indicate higher accountability (66-86%) for PM10 emission than the exhaust emissions (14-34%). The temporal trend of emissions of NOx and CO show reasonable agreement with available ambient air concentrations that were monitored at locations, significantly influenced by vehicular activity. Encouraging results were emerged, showing a good correlation coefficient for CO (0.94) and NOx (0.68).

  20. Genome-Wide Analysis of DNA Methylation and Fine Particulate Matter Air Pollution in Three Study Populations: KORA F3, KORA F4, and the Normative Aging Study

    Science.gov (United States)

    Panni, Tommaso; Mehta, Amar J.; Schwartz, Joel D.; Baccarelli, Andrea A.; Just, Allan C.; Wolf, Kathrin; Wahl, Simone; Cyrys, Josef; Kunze, Sonja; Strauch, Konstantin; Waldenberger, Melanie; Peters, Annette

    2016-01-01

    Background: Epidemiological studies have reported associations between particulate matter (PM) concentrations and cancer and respiratory and cardiovascular diseases. DNA methylation has been identified as a possible link but so far it has only been analyzed in candidate sites. Objectives: We studied the association between DNA methylation and short- and mid-term air pollution exposure using genome-wide data and identified potential biological pathways for additional investigation. Methods: We collected whole blood samples from three independent studies—KORA F3 (2004–2005) and F4 (2006–2008) in Germany, and the Normative Aging Study (1999–2007) in the United States—and measured genome-wide DNA methylation proportions with the Illumina 450k BeadChip. PM concentration was measured daily at fixed monitoring stations and three different trailing averages were considered and regressed against DNA methylation: 2-day, 7-day and 28-day. Meta-analysis was performed to pool the study-specific results. Results: Random-effect meta-analysis revealed 12 CpG (cytosine-guanine dinucleotide) sites as associated with PM concentration (1 for 2-day average, 1 for 7-day, and 10 for 28-day) at a genome-wide Bonferroni significance level (p ≤ 7.5E-8); 9 out of these 12 sites expressed increased methylation. Through estimation of I2 for homogeneity assessment across the studies, 4 of these sites (annotated in NSMAF, C1orf212, MSGN1, NXN) showed p > 0.05 and I2 genome-wide analysis of DNA methylation and fine particulate matter air pollution in three study populations: KORA F3, KORA F4, and the Normative Aging Study. Environ Health Perspect 124:983–990; http://dx.doi.org/10.1289/ehp.1509966 PMID:26731791

  1. Smoking and Cerebral Oxidative Stress and Air Pollution: A Dreadful Equation with Particulate Matter Involved and One More Powerful Reason Not to Smoke Anything!

    Science.gov (United States)

    Calderón-Garcidueñas, Lilian

    2016-07-22

    Smoking has serious health effects. Cigarettes, including tobacco, marijuana, and electronic nicotine delivery systems are very effective ways to inhale harmful amounts of fine and ultrafine particulate matter. Does size matter? Yes, indeed! The smaller the particle you inhale, the higher the ability to produce reactive oxygen species and to readily access the brain. In this issue of the Journal of Alzheimer's Disease, Durazzo provides evidence of an association between active cigarette tobacco smoking in cognitively-normal elders and increased cerebral oxidative stress, while in actively smoking Alzheimer's disease (AD) patients, the association was also seen with smaller left and total hippocampal volumes. This paper has highly relevant results of interest across the US and the world because millions of people are active smokers and they have other genetic and environmental risk factors that could play a key role in the development/worsening of brain oxidative stress and neurodegeneration. Smoking basically anything producing aerosols with particulate matter in the fine and ultrafine size range is detrimental to your brain. Marijuana and e-cigarette use has grown steadily among adolescents and young adults. Smoking-related cerebral oxidative stress is a potential mechanism promoting AD pathology and increased risk for AD. Current knowledge also relates fine and ultrafine particles exposures influencing neurodevelopmental processes in utero. The results from Durazzo et al. should be put in a broader context, a context that includes evaluating the oxidative stress of nano-aerosols associated with cigarette emissions and their synergistic effects with air pollution exposures. AD is expected to increase in the US threefold by the year 2050, and some of these future AD patients are smoking and vaping right now. Understanding the impact of everyday exposures to long-term harmful consequences for brain health is imperative. PMID:27447427

  2. Nonlinear relationships between particulate matter and its gaseous precursors Analysis of long-term air quality monitoring data by means of neural networks

    CERN Document Server

    Konovalov, I B

    2002-01-01

    The nonlinear features of the relationships between particulate matter (PM) and volatile organic compounds (VOC) and oxides of nitrogen (NOx) are derived directly from data of long-term routine measurements of NOx, VOC, and total suspended PM. The main idea of the method used for the analysis is creation of special empirical models based on artificial neural networks of the perceptron type. These models which are in essence the nonlinear extension of commonly used linear regression models are believed to provide the best fit for the real nonlinear PM-NOx-VOC relationships under different observed levels of air pollution and various meteorological conditions. It is believed that such models may be useful in context of various scientific and practical problems concerning PM. The method is demonstrated by the example of two empirical models created with independent data-sets collected at two air quality monitoring stations at South Coast Air Basin, California. It is shown that in spite of considerable distance b...

  3. Complexity analysis in particulate matter measurements

    Directory of Open Access Journals (Sweden)

    Luciano Telesca

    2011-09-01

    Full Text Available We investigated the complex temporal fluctuations of particulate matter data recorded in London area by using the Fisher-Shannon (FS information plane. In the FS plane the PM10 and PM2.5 data are aggregated in two different clusters, characterized by different degrees of order and organization. This results could be related to different sources of the particulate matter.

  4. Organic extracts of urban air pollution particulate matter (PM2.5)-induced genotoxicity and oxidative stress in human lung bronchial epithelial cells (BEAS-2B cells).

    Science.gov (United States)

    Oh, Seung Min; Kim, Ha Ryong; Park, Yong Joo; Lee, Soo Yeun; Chung, Kyu Hyuck

    2011-08-16

    Traffic is a major source of particulate matter (PM), and ultrafine particulates and traffic intensity probably contribute significantly to PM-related health effects. As a strong relationship between air pollution and motor vehicle-originated pollutants has been shown to exist, air pollution genotoxicity studies of urban cities are steadily increasing. In Korea, the death rate caused by lung cancer is the most rapidly increased cancer death rate in the past 10 years. In this study, genotoxicity of PM2.5 (traffic area in Suwon City, Korea, was studied using cultured human lung bronchial epithelial cells (BEAS-2B) as a model system for the potential inhalation health effects. Organic extract of PM2.5 (CE) generated significant DNA breakage and micronucleus formation in a dose-dependent manner (1μg/cm(3)-50μg/cm(3)). In the acid-base-neutral fractionation of PM2.5, neutral samples including the aliphatic (F3), aromatic (F4) and slightly polar (F5) fractions generated significant DNA breakage and micronucleus formation. These genotoxic effects were significantly blocked by scavenging agents [superoxide dismutase (SOD), sodium selenite (SS), mannitol (M), catalase (CAT)]. In addition, in the modified Comet assay using endonucleases (FPG and ENDOIII), CE and its fractions (F3, F4, and F5) increased DNA breakage compared with control groups, indicating that CE and fractions of PM2.5 induced oxidative DNA damage. These results clearly suggest that PM2.5 collected in the Suwon traffic area has genotoxic effects and that reactive oxygen species may play a distinct role in these effects. In addition, aliphatic/chlorinated hydrocarbons, PAH/alkylderivatives, and nitro-PAH/ketones/quinones may be important causative agents of the genotoxic effects. PMID:21524716

  5. Evaluating The Air Quality Impacts Of The 2008 Beijing Olympic Games: The Spatial Distribution Of Inhalable Particulate Matter And Their Impact Factors

    Science.gov (United States)

    Zhao, Wenhui; Gong, Huili; Zhao, Wenji; Li, Xiaojuan; Tang, Ming

    2010-10-01

    To achieve good air quality and improve traffic during Olympic Games, the Beijing Municipal Government enacted a series of emission control regulations before and during these events. It created a valuable case study to evaluate the effectiveness of these measures on mitigating air pollution and protecting public health. In this paper, we report the results from our field campaign from summer 2007 to 2009 on the on- road emission factors of inhalable particulate matter (IPM) as well as the meteorological factors like temperature, wind speed and humidity. The control measures on vehicle and using light-duty gasoline vehicles showed considerable reduction in the Olympic year (2008) and after-Olympic year (2009) compared to the pre-Olympic year (2007). The concentration of IPM increased with higher construction ratio and population density, while decreased by the higher vegetation cover ratio (VCR). It is also influenced by meteorological factors: temperature has a positive correlation with coarse particle and negative correlation with fine particle. However, the correlation between humidity and fine IPM was positive and negative in coarse IPM. The most influence factor is humidity, the temperature was the second and the wind speed was the least.

  6. Relationship between the Particulate Matter Concentrations in the Indoor and Ambient Air of the Tehran Children Hospital in 2007

    OpenAIRE

    Soheila Rezaei; Kazem Naddafi; Hossain Jabbari; Masoud Yonesian; Arsalan Jamshidi; Abdolmohamad Sadat; Alireza Raygan Shirazinejad

    2013-01-01

    Background and Objectives: In recent years exposure to fine airborne particles has been identified as an important factor affecting human health. Epidemiological studies have showed that the aerosol laden air can be an agent for microorganisms’ dispersion. Ignoring internal sources, ambient air quality significantly affects indoor air quality. Since people spend most of their times in the indoor spaces and little data are available on the general understanding of the indoor air quality, the...

  7. [Chemical Characteristics of Particulate Matters and Trajectory Influence on Air Quality in Shanghai During the Heavy Haze Episode in December, 2013].

    Science.gov (United States)

    Zhou, Min; Qiao, Li-ping; Zhu, Shu-hui; Li, Li; Lou, Sheng-rong; Wang, Hong-li; Tao, Shi-kang; Huang, Cheng; Chen, Chang-hong

    2016-04-15

    Intensive haze shrouded central and eastern parts of China in Dec. 2013. In this study, the mass concentrations of gaseous and particulate pollutants, and also the chemical compositions of fine particulate matters were obtained based on in-situ measurement in Shanghai urban area. The characteristics of PM2.5 were investigated during different pollution episodes, including dust, haze, fog-haze and long-rang transport episodes. The results showed that pollution was most serious during the fog-haze episode, during which the maximum daily mass concentrations of PM10 and PM2.5 reached 536 microg x m(-3) and 411 microg x m(-3), respectively. During the fog-haze episode, the ratio of PM2.5 to PM10 was over 76.7%, suggesting that high humidity enhanced the secondary formation of NO3-, SO4(2-) and NH4+ in PM2.5. Highest concentration of Ca2+ in PM2.5 occurred during the dust episode and the proportion of primary components in PM2.5 increased obviously. Highest concentration of SO2- was observed in PM25 during the long-range transport episode, with a fast growth rate. Meanwhile, the trajectories reaching Shanghai urban area and cluster analysis during different pollution episodes were simulated by HYSPLIT model. Combined with observation data of PM2.5 in Shanghai urban area, chemical characteristics of PM2.5 in different clusters and potential source apportionment of various pollution episodes were also studied in this study. The result revealed that the air trajectories could be grouped into six clusters based on their spatial similarities. Among these clusters, cluster6 which moved fast was associated with clean air. Cluster2 and cluster3 originating from Mongolia region had strong correlations to dust pollution, along with low PM2.5/PM10 ratio and high concentration of Ca2+ in PM2.5. Compared with other clusters, cluster5 and cluster4 with slow moving speed were more favorable for reactions between particulate species and formation of secondary pollutants during transport

  8. Nuclear and atomic techniques in air pollution studies by transplant lichen exposure, bulk deposition and airborne particulate matter collection after 6 month exposure

    International Nuclear Information System (INIS)

    This work presents the preliminary results obtained in the study 'Air pollution monitoring by sampling airborne particulate matter combined with lichen bioaccumulator exposure', in progress at IDRANAP Center of Excellence EU Project, ICA1-CT-2000-70023, WP2. Transplants of Evernia prunastri and Pseudevernia furfuracea lichen species from the Italian Prealps were exposed for 6 and 12 months at six locations with different degrees and types of industrial activity, as well as on a background site with relatively clean air (Fundata). At each investigated location, bulk deposition was collected for the same periods, while airborne particulate matter was sequentially collected during 2 months, in parallel with those at a reference station (Afumati). Pollution in the investigated areas is mainly due to the following industrial activities: steel manufacturing (Galati); non-ferrous ore processing (Baia Mare); chemicals and non-ferrous industry (Copsa Mica); coal-fired power plant and cement factory (Deva); traffic, coal-fired power plants, inorganic dyes and galvanic treatment factories (Oradea); agriculture, mixed industry and traffic (Afumati). The lichen material was analyzed by INAA, XRFA, and ICP-MS, while the aerosol filters were analyzed by INAA and XRFA. The bulk deposition was analyzed only by INAA. XRFA was carried out at Stuttgart, ICP-MS at Trondheim, while INAA at Bucharest (long lifetime radionuclides) and Delft (short lifetime radionuclides, and, in the case of bulk deposition, short and long lifetime radionuclides). The investigated elements having relevant role in environmental studies were: As, Br, Ca, Cd, Co, Cr, Cu, Fe, K, Mn, Ni, Pb, S, Sb, Sc, Se, V, and Zn. Cd, Co, Sb, and Sc could only be determined by INAA and ICP-MS, while Pb and S only by XRFA and ICP-MS. After 6-month exposure, both lichen species showed significant enrichment factors (relative to 'zero level', before exposure) for all the measured elements, except Br, Ca, K, and Mn. Small lichen

  9. Identification of water-soluble polar organics in air and vehicular emitted particulate matter using ultrahigh resolution mass spectrometry and Capillary electrophoresis - mass spectrometry.

    Science.gov (United States)

    Schmitt-Kopplin, P.; Yassine, M.; Gebefugi, I.; Hertkorn, N.; Dabek-Zlotorzynska, E.

    2009-04-01

    The effects of aerosols on human health, atmospheric chemistry, and climate are among the central topics in current environmental health research. Detailed and accurate measurements of the chemical composition of air particulate matter (PM) represent a challenging analytical task. Minute sample amounts are usually composed of several main constituents and hundreds of minor and trace constituents. Moreover, the composition of individual particles can be fairly uniform or very different (internally or externally mixed aerosols), depending on their origin and atmospheric aging processes (coagulation, condensation / evaporation, chemical reaction). The aim of the presentation was the characterization of the organic matter (OM) fraction of environmental aerosols which is not accessible by GC-methods, either because of their high molecular weight, their polarity or due to thermal instability. We also describe the main chemical characteristics of complexe oligomeric organic fraction extracted from different aerosols collected in urban and rural area in Germany and Canada. Mass spectrometry (MS) became an essential tool used by many prominent leaders of the biological research community and the importance of MS to the future of biological research is now clearly evident as in the fields of Proteomics and Metabolomics. Especially Fourier Transform Ion Cyclotron Mass Spectrometry (ICR-FT/MS) is an ultrahigh resolution MS that allows new approach in the analysis of complex mixtures. The mass resolution (acids in atmospheric aerosols and vehicular emission. UltraTrol LN was employed as the pre-coated polymer to suppress the EOF (0.3 ×10-9 m2V-1s-1) and achieve a baseline separation of studied acids. Good repeatability for migration time (RSD acids were identified in atmospheric and diesel-engine emitted particular matter. In off-line combination with the electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS), this method provided

  10. Association between maternal exposure to particulate matter and premature birth

    Directory of Open Access Journals (Sweden)

    Thaiza Agostini Córdoba de Lima

    2014-01-01

    Full Text Available The objective of this time-series study carried out in São José dos Campos, a southeastern Brazilian city, between 01.01.2005 and 31.12.2009, was to estimate the role of maternal exposure to air pollutants and preterm births. Preterm newborns of mothers aged between 18 and 34 years, with at least eight years of schooling, singleton pregnancies and whose delivery was vaginal were included in the study. Logistic regression was used to estimate the role of particulate matter, ozone and sulfur dioxide on preterm delivery with lags of zero up to 30 days. Exposure to particulate matter was associated significantly with preterm newborns in lags of 0, 1 and 3 days; but no association was found between cumulative maternal exposure in lags of 7, 15 and 30 days and the outcome. Maternal exposure to particulate matter therefore has an acute effect on preterm births in a medium-sized Brazilian town.

  11. Ecological effect of airborne particulate matter on plants

    Directory of Open Access Journals (Sweden)

    Santosh Kumar Prajapati

    2012-03-01

    Full Text Available Atmospheric particulate matter is a mixture of diverse elements. Deposition of particulate matter to vegetated surfaces depends on the size distribution of these particles and, to a lesser extent, on the chemistry. Effects of particulate matter on vegetation may be associated with the reduction in light required for photosynthesis and an increase in leaf temperature due to changed surface optical properties. Changes in energy exchange are more important than the diffusion of gases into and out of leaves which is influenced by dust load, color and particle size. Alkaline dust materials may cause leaf surface injury while other materials may be taken up across the cuticle. A more probable route for metabolic uptake and impact on vegetation and ecosystems is through the rhizosphere. Interception of dusts by vegetation makes an important contribution to the improvement of air quality in the vicinity of vegetation. Although the effect of particulate matter on ecosystem is linked to climate change, there is little threat due to un-speciated particulate matter on a regional scale.

  12. How Small Can We Go: Exploring the Limitations and Scaling laws of Air-Microfluidic Particulate Matter Sensors

    Science.gov (United States)

    Air-microfluidics is a field that has the potential to dramatically reduce the size, cost, and power requirements of future air quality sensors. Microfabrication provides a suite of relatively new tools for the development of micro electro mechanical systems (MEMS) that can be ap...

  13. 40 CFR 60.422 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Manufacture § 60.422 Standards for particulate matter. On or after the date on which the performance test... sulfate dryer, particulate matter at an emission rate exceeding 0.15 kilogram of particulate per...

  14. Quality assessment on airborne particulate matter of k0-INAA

    International Nuclear Information System (INIS)

    The analysis of airborne particulate matter (APM) by k0-NAA was assessed using: BCR reference material (RM) simulated air-filters, synthetic air-filters prepared by spiking blank filters with standard solutions, and real APM filters. k0-INAA is a suitable technique for the analysis of APM, delivering accurate and precise results. However, the quality assessment of APM analysis appears to be a difficult task. (author)

  15. Evaluation of near surface ozone and particulate matter in air quality simulations driven by dynamically downscaled historical meteorological fields

    Science.gov (United States)

    In this study, techniques typically used for future air quality projections are applied to a historical 11-year period to assess the performance of the modeling system when the driving meteorological conditions are obtained using dynamical downscaling of coarse-scale fields witho...

  16. Increases in ambient particulate matter air pollution, acute changes in platelet function, and effect modification by aspirin and omega-3 fatty acids: A panel study.

    Science.gov (United States)

    Becerra, Adan Z; Georas, Steve; Brenna, J Thomas; Hopke, Philip K; Kane, Cathleen; Chalupa, David; Frampton, Mark W; Block, Robert; Rich, David Q

    2016-01-01

    Increased particulate matter (PM) air pollutant concentrations have been associated with platelet activation. It was postulated that elevated air pollutant concentrations would be associated with increases in measures of platelet function and that responses would be blunted when taking aspirin and/or fish oil. Data from a sequential therapy trial (30 subjects with type 2 diabetes mellitus), with 4 clinic visits (first: no supplements, second: aspirin, third: omega-3 fatty acid supplements, fourth: aspirin and omega-3 fatty acids) per subject, were utilized. Using linear mixed models, adjusted for relative humidity, temperature, visit number, and season, changes in three platelet function measures including (1) aggregation induced by adenosine diphosphate (ADP), (2) aggregation induced by collagen, and (3) thromboxane B2 production were associated with interquartile range (IQR) increases in mean concentrations of ambient PM2.5, black carbon, ultrafine particles (UFP; 10-100 nm), and accumulation mode particles (AMP; 100-500 nm) in the previous 1-96 h. IQR increases in mean UFP and AMP concentrations were associated with significant decreases in platelet response, with the largest being a -0.43 log(pg/ml) decrease in log(thromboxane B2) (95% CI = -0.8, -0.1) associated with each 582-particles/cm(3) increase in AMP, and a -1.7 ohm reduction in collagen-induced aggregation (95% CI = -3.1, -0.3) associated with each 2097-particles/cm(3) increase in UFP in the previous 72 h. This UFP effect on thromboxane B2 was significantly muted in diabetic subjects taking aspirin (-0.01 log[pg/ml]; 95% CI = -0.4, 0.3). The reason for this finding remains unknown, and needs to be investigated in future studies. PMID:27029326

  17. 40 CFR 52.1489 - Particulate matter (PM-10) Group II SIP commitments.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate matter (PM-10) Group II SIP... Particulate matter (PM-10) Group II SIP commitments. (a) On March 29, 1989, the Air Quality Officer for the... inventory, and other tasks that may be necessary to satisfy the requirements of the PM-10 Group II SIPs....

  18. HIGH VOLUME INJECTION FOR GCMS ANALYSIS OF PARTICULATE ORGANIC SPECIES IN AMBIENT AIR

    Science.gov (United States)

    Detection of organic species in ambient particulate matter typically requires large air sample volumes, frequently achieved by grouping samples into monthly composites. Decreasing the volume of air sample required would allow shorter collection times and more convenient sample c...

  19. Particulate matter air quality assessment using integrated surface, satellite, and meteorological products: 2. A neural network approach

    Science.gov (United States)

    Gupta, Pawan; Christopher, Sundar A.

    2009-10-01

    In recent years, sparse, surface-based air quality monitoring has been improved by using wide-swath, satellite-derived aerosol products. However, satellites are sensitive to the entire aerosol column, not only the aerosol near the surface that impacts human health. In part 1 of this series, we used multiple regression to demonstrate how inclusion of meteorological analyses can help constrain the surface level proportion of the aerosol profile and improve the estimate of surface PM2.5. Here, instead of multiple regression technique, we describe an artificial neural network (ANN) framework that reduces the uncertainty of surface PM estimation from satellite data. We use 3 years of MODIS aerosol optical thickness data at 0.55 μm and meteorological analyses from the rapid update cycle to estimate surface level PM2.5 over the southeast United States (EPA region 4). As compared to regression coefficients obtained through simple correlation (R = 0.60) or multiple regression (R = 0.68) techniques, the ANN derives hourly PM2.5 data that compare with observations with R = 0.74. For estimating daily mean PM2.5, the ANN techniques results in correlation of R = 0.78. Although the degree of improvement varies over different sites and seasons, this study demonstrates the potential for using ANN for operational air quality monitoring.

  20. Self-Cleaning Particulate Air Filter Project

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA requires an innovative solution to the serious issue of particulate fouling on air revitalization component surfaces in order to address the potential for...

  1. Identifying and quantifying transported vs. local sources of New York City PM 2.5 fine particulate matter air pollution

    Science.gov (United States)

    Lall, Ramona; Thurston, George D.

    New York City (NYC) is presently in violation of the nation's PM 2.5 annual mass standard, and will have to take actions to control the sources contributing to these violations. This paper seeks to differentiate the impact of long-range transported aerosols on the air quality of downtown NYC, so that the roles of local sources can more clearly be evaluated. Past source apportionment studies have considered single sites individually in their source apportionment analyses to identify and determine sources affecting that site, often finding secondary sulfates to be an important contributor, but not being able to quantify the portion that is transported vs. local. In this study, a rural site located in Sterling Forest, NY, which is near to the NYC area, but unaffected by local NYC sources, is instead used as a reference to separate the portion of the aerosol that is transported to our Manhattan, NYC site before conducting the source apportionment analysis. Sterling Forest is confirmed as a background site via elemental comparisons with NYC during regional transport episodes of Asian and Sahara sandstorm dusts, as well as by comparisons with a second background site in Chester, NJ. Two different approaches that incorporate Sterling Forest background data into the NYC source apportionment analysis are then applied to quantify local vs. transported aerosols. Six source categories are identified for NYC: regional transported sulfate, trans-continental desert dust, traffic, residual oil, "local" dust and World Trade Center fires pollution. Of these, the transported sulfates and trans-continental desert dust accounted for nearly half of the total PM 2.5 mass in Manhattan during 2001, with more than half coming from these transported sources during the summer months. More than 90% of the Manhattan elemental carbon was found to be of local origins. Conversely, roughly 90% of the NYC sulfate mass was identified as transported into the city. Our results indicate that transported

  2. Occupational exposure to air pollutants: particulate matter and respiratory symptoms affecting traffic-police in Bogotá

    Directory of Open Access Journals (Sweden)

    Jesús A. Estévez-García

    2013-12-01

    Full Text Available Objectives Quantifying personal exposure to particles less than 10 micrometres in diameter (PM10 and determining the prevalence of respiratory symptoms in traffic-police officers working in Bogotá's metropolitan area. Methods This was a cross-sectional study of 574 traffic-police officers divided into two groups (477 traffic-police and 97 police working in an office. They were given a questionnaire inquiring about respiratory symptoms, toxicological medical evaluation, lung function tests and personal PM10 monitoring. The differences between groups were found using stratified analysis (i.e. comparing odds ratios. Multivariate analysis of factors related to symptoms and diagnosis of respiratory alteration was also performed. Results Respiratory symptoms concerned a higher prevalence of cough, expectoration and rhinosinusitis in the traffic-police group. Medical examination revealed that the traffic-police group had higher nasal irritation prevalence; lung function tests showed no difference. Mean PM10 levels were higher for the traffic-police group (139.4 μg/m³, compared to the office work group (86.03 μg/m³. Discussion PM10 values in both groups did not exceed allowable limits for respirable particles in the workplace according to ACGIH standards. Traffic-police exposed to air pollution had an increased risk of developing respiratory symptoms and signs, thereby agreeing with the results of this and other studies. Personal monitoring is a valuable tool when quantifying the concentration of PM10to which an individual has been exposed during a normal workday. This study contributes towards further research in to the effects of PM10 in populations at risk.

  3. Analysis of Phytosterols and N-Alkanols in Atmospheric Organic Particulate Matter Collected in Vancouver During the Pacific 2001 Air Quality Study

    Science.gov (United States)

    Leithead, A.; Li, S.

    2002-12-01

    As part of Pacific 2001, HiVol samples were collected from 5 sites in the Vancouver area. The samples were extracted by accelerated solvent extraction (ACE), concentrated with nitrogen blow down, and separated into fractions by silica gel chromatography. For this portion of the study, an aliquot of one of the polar fraction was derivatized with BSTFA and analyzed by GC-FID and GC-MS. The results for n-alkanols and phytosterols will be reported and discussed. Previous studies have shown that the biogenic components of particulate matter are major constituents of the total organic material in atmospheric samples. Phytosterols are present in wood smoke, epicuticular waxes of many plants and microbial sources. In addition, cholesterol has been proposed as a potential tracer for emissions from cooking. The most abundant phytosterols are cholesterol, campesterol, stigmasterol and beta-sitosterol. It has been hypothesized that the phytosterol signature may be useful in identifying particulate matter from different source areas. The phytosterol signature for these samples will be reported and compared. The n-alkanol CPI and Cmax will also be reported. N-alkanols in atmospheric samples generally show a strong even to odd predominance indicating that their main source in particulate matter is biogenic. The n-alkanol signature for each sampling site will be compared.

  4. Long-term exposure to fine particulate matter air pollution and the risk of lung cancer among participants of the Canadian National Breast Screening Study.

    Science.gov (United States)

    Tomczak, Anna; Miller, Anthony B; Weichenthal, Scott A; To, Teresa; Wall, Claus; van Donkelaar, Aaron; Martin, Randall V; Crouse, Dan Lawson; Villeneuve, Paul J

    2016-11-01

    Recently, air pollution has been classified as a carcinogen largely on the evidence of epidemiological studies of lung cancer. However, there have been few prospective studies that have evaluated associations between fine particulate matter (PM2.5 ) and cancer at lower concentrations. We conducted a prospective analysis of 89,234 women enrolled in the Canadian National Breast Screening Study between 1980 and 1985, and for whom residential measures of PM2.5 could be assigned. The cohort was linked to the Canadian Cancer Registry to identify incident lung cancers through 2004. Surface PM2.5 concentrations were estimated using satellite data. Cox proportional hazards models were used to characterize associations between PM2.5 and lung cancer. Hazard ratios (HRs) and 95% confidence intervals (CIs) computed from these models were adjusted for several individual-level characteristics, including smoking. The cohort was composed predominantly of Canadian-born (82%), married (80%) women with a median PM2.5 exposure of 9.1 µg/m(3) . In total, 932 participants developed lung cancer. In fully adjusted models, a 10 µg/m(3) increase in PM2.5 was associated with an elevated risk of lung cancer (HR: 1.34; 95% CI = 1.10, 1.65). The strongest associations were observed with small cell carcinoma (HR: 1.53; 95% CI = 0.93, 2.53) and adenocarcinoma (HR: 1.44; 95% CI = 1.06, 1.97). Stratified analyses suggested increased PM2.5 risks were limited to those who smoked cigarettes. Our findings are consistent with previous epidemiological investigations of long-term exposure to PM2.5 and lung cancer. Importantly, they suggest associations persist at lower concentrations such as those currently found in Canadian cities. PMID:27380650

  5. Selective TNF-α targeting with infliximab attenuates impaired oxygen metabolism and contractile function induced by an acute exposure to air particulate matter.

    Science.gov (United States)

    Marchini, Timoteo; D'Annunzio, Verónica; Paz, Mariela L; Cáceres, Lourdes; Garcés, Mariana; Perez, Virginia; Tasat, Deborah; Vanasco, Virginia; Magnani, Natalia; Gonzalez Maglio, Daniel; Gelpi, Ricardo J; Alvarez, Silvia; Evelson, Pablo

    2015-11-15

    Inflammation plays a central role in the onset and progression of cardiovascular diseases associated with the exposure to air pollution particulate matter (PM). The aim of this work was to analyze the cardioprotective effect of selective TNF-α targeting with a blocking anti-TNF-α antibody (infliximab) in an in vivo mice model of acute exposure to residual oil fly ash (ROFA). Female Swiss mice received an intraperitoneal injection of infliximab (10 mg/kg body wt) or saline solution, and were intranasally instilled with a ROFA suspension (1 mg/kg body wt). Control animals were instilled with saline solution and handled in parallel. After 3 h, heart O2 consumption was assessed by high-resolution respirometry in left ventricle tissue cubes and isolated mitochondria, and ventricular contractile reserve and lusitropic reserve were evaluated according to the Langendorff technique. ROFA instillation induced a significant decrease in tissue O2 consumption and active mitochondrial respiration by 32 and 31%, respectively, compared with the control group. While ventricular contractile state and isovolumic relaxation were not altered in ROFA-exposed mice, impaired contractile reserve and lusitropic reserve were observed in this group. Infliximab pretreatment significantly attenuated the decrease in heart O2 consumption and prevented the decrease in ventricular contractile and lusitropic reserve in ROFA-exposed mice. Moreover, infliximab-pretreated ROFA-exposed mice showed conserved left ventricular developed pressure and cardiac O2 consumption in response to a β-adrenergic stimulus with isoproterenol. These results provides direct evidence linking systemic inflammation and altered cardiac function following an acute exposure to PM and contribute to the understanding of PM-associated cardiovascular morbidity and mortality. PMID:26386109

  6. Mobile air quality studies (MAQS in inner cities: particulate matter PM10 levels related to different vehicle driving modes and integration of data into a geographical information program

    Directory of Open Access Journals (Sweden)

    Uibel Stefanie

    2012-10-01

    Full Text Available Abstract Background Particulate matter (PM is assumed to exert a major burden on public health. Most studies that address levels of PM use stationary measure systems. By contrast, only few studies measure PM concentrations under mobile conditions to analyze individual exposure situations. Methods By combining spatial-temporal analysis with a novel vehicle-mounted sensor system, the present Mobile Air Quality Study (MAQS aimed to analyse effects of different driving conditions in a convertible vehicle. PM10 was continuously monitored in a convertible car, driven with roof open, roof closed, but windows open, or windows closed. Results PM10 values inside the car were nearly always higher with open roof than with roof and windows closed, whereas no difference was seen with open or closed windows. During the day PM10 values varied with high values before noon, and occasional high median values or standard deviation values due to individual factors. Vehicle speed in itself did not influence the mean value of PM10; however, at traffic speed (10 – 50 km/h the standard deviation was large. No systematic difference was seen between PM10 values in stationary and mobile cars, nor was any PM10 difference observed between driving within or outside an environmental (low emission zone. Conclusions The present study has shown the feasibility of mobile PM analysis in vehicles. Individual exposure of the occupants varies depending on factors like time of day as well as ventilation of the car; other specific factors are clearly identifiably and may relate to specific PM10 sources. This system may be used to monitor individual exposure ranges and provide recommendations for preventive measurements. Although differences in PM10 levels were found under certain ventilation conditions, these differences are likely not of concern for the safety and health of passengers.

  7. Determination of 43 polycyclic aromatic hydrocarbons in air particulate matter by use of direct elution and isotope dilution gas chromatography/mass spectrometry.

    Science.gov (United States)

    Li, Zheng; Pittman, Erin N; Trinidad, Debra A; Romanoff, Lovisa C; Mulholland, James; Sjödin, Andreas

    2010-02-01

    We are reporting a method for measuring 43 polycyclic aromatic hydrocarbons (PAH) and their methylated derivatives (Me-PAHs) in air particulate matter (PM) samples using isotope dilution gas chromatography/high-resolution mass spectrometry (GC/HRMS). In this method, PM samples were spiked with internal standards, loaded into solid phase extraction cartridges, and eluted by dichloromethane. The extracts were concentrated, spiked with a recovery standard, and analyzed by GC/HRMS at 10,000 resolution. Sixteen (13)C-labeled PAHs and two deuterated Me-PAHs were used as internal standards to account for instrument variability and losses during sample preparation. Recovery of labeled internal standards was in the range of 86-115%. The proposed method is less time-consuming than commonly used extraction methods, such as sonication and accelerated solvent extraction (ASE), and it eliminates the need for a filtration step required after the sonication extraction method. Limits of detection ranged from 41 to 332 pg/sample for the 43 analytes. This method was used to analyze reference materials from the National Institute of Standards and Technology. The results were consistent with those from ASE and sonication extraction, and these results were also in good agreement with the certified or reference concentrations. The proposed method was then used to measure PAHs on PM(2.5) samples collected at three sites (urban, suburban, and rural) in Atlanta, GA. The results showed distinct seasonal and spatial variation and were consistent with an earlier study measuring PM(2.5) samples using an ASE method, further demonstrating the compatibility of this method and the commonly used ASE method. PMID:19936717

  8. 40 CFR 60.402 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.402... Plants § 60.402 Standard for particulate matter. (a) On and after the date on which the performance test... which: (i) Contain particulate matter in excess of 0.030 kilogram per megagram of phosphate rock feed...

  9. 40 CFR 60.92 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.92... Facilities § 60.92 Standard for particulate matter. (a) On and after the date on which the performance test... which: (1) Contain particulate matter in excess of 90 mg/dscm (0.04 gr/dscf). (2) Exhibit 20...

  10. 40 CFR 60.162 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.162... Smelters § 60.162 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  11. 40 CFR 60.182 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.182... Smelters § 60.182 Standard for particulate matter. (a) On and after the date on which the performance test... furnace, or sintering machine discharge end any gases which contain particulate matter in excess of 50...

  12. 40 CFR 60.382 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.382... Processing Plants § 60.382 Standard for particulate matter. (a) On and after the date on which the... stack emissions that: (1) Contain particulate matter in excess of 0.05 grams per dry standard...

  13. 40 CFR 60.272a - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60... Standard for particulate matter. (a) On and after the date of which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf); (2) Exit from...

  14. 40 CFR 60.472 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Processing and Asphalt Roofing Manufacture § 60.472 Standards for particulate matter. (a) On and after the...) Particulate matter in excess of: (i) 0.04 kg/Mg (0.08 lb/ton) of asphalt shingle or mineral-surfaced...

  15. 40 CFR 60.142a - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... 20, 1983 § 60.142a Standards for particulate matter. (a) Except as provided under paragraphs (b) and...-blown BOPF and contain particulate matter in excess of 23 mg/dscm (0.010 gr/dscf). (3) Exit from...

  16. 40 CFR 60.342 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.342... Manufacturing Plants § 60.342 Standard for particulate matter. (a) On and after the date on which the... gases which: (1) Contain particulate matter in excess of 0.30 kilogram per megagram (0.60 lb/ton)...

  17. 40 CFR 60.532 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Wood Heaters § 60.532 Standards for particulate matter. Unless exempted under § 60.530, each affected... comply with the following particulate matter emission limits as determined by the test methods...

  18. 40 CFR 60.732 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Dryers in Mineral Industries § 60.732 Standards for particulate matter. Each owner or operator of any... particulate matter in excess of 0.092 gram per dry standard cubic meter (g/dscm) for calciners and...

  19. 40 CFR 60.292 - Standards for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for particulate matter. 60... Manufacturing Plants § 60.292 Standards for particulate matter. (a) On and after the date on which the..., particulate matter at emission rates exceeding those specified in table CC-1, Column 2 and Column...

  20. 40 CFR 52.2584 - Control strategy; Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy; Particulate matter... Control strategy; Particulate matter. (a) Part D—Disapproval—USEPA disapproves Regulation NR 154.11(7)(b... control strategy to attain and maintain the standards for particulate matter, because it does not...

  1. 40 CFR 60.272 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.272... Standard for particulate matter. (a) On and after the date on which the performance test required to be... control device and contain particulate matter in excess of 12 mg/dscm (0.0052 gr/dscf). (2) Exit from...

  2. 40 CFR 60.302 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.302... § 60.302 Standard for particulate matter. (a) On and after the 60th day of achieving the maximum... a grain dryer any process emission which: (1) Contains particulate matter in excess of 0.023...

  3. 40 CFR 60.172 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.172... Smelters § 60.172 Standard for particulate matter. (a) On and after the date on which the performance test... contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf)....

  4. 40 CFR 60.142 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.142....142 Standard for particulate matter. (a) Except as provided under paragraph (b) of this section, on... the atmosphere from any affected facility any gases which: (1) Contain particulate matter in excess...

  5. 40 CFR 60.52 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.52... § 60.52 Standard for particulate matter. (a) On and after the date on which the initial performance... atmosphere from any affected facility any gases which contain particulate matter in excess of 0.18 g/dscm...

  6. 40 CFR 60.682 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.682... Insulation Manufacturing Plants § 60.682 Standard for particulate matter. On and after the date on which the... gases which contain particulate matter in excess of 5.5 kg/Mg (11.0 1b/ton) of glass pulled....

  7. 40 CFR 60.262 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.262... Production Facilities § 60.262 Standard for particulate matter. (a) On and after the date on which the... furnace any gases which: (1) Exit from a control device and contain particulate matter in excess of...

  8. 40 CFR 52.1476 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met since the plan does not provide for the attainment and maintenance of the national standards for particulate matter...

  9. 40 CFR 60.282 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.282... § 60.282 Standard for particulate matter. (a) On and after the date on which the performance test...: (i) Contain particulate matter in excess of 0.10 g/dscm (0.044 gr/dscf) corrected to 8 percent...

  10. Gaseous pollutants in particulate matter epidemiology: confounders or surrogates?

    OpenAIRE

    Sarnat, J A; Schwartz, J.; Catalano, P J; Suh, H H

    2001-01-01

    Air pollution epidemiologic studies use ambient pollutant concentrations as surrogates of personal exposure. Strong correlations among numerous ambient pollutant concentrations, however, have made it difficult to determine the relative contribution of each pollutant to a given health outcome and have led to criticism that health effect estimates for particulate matter may be biased due to confounding. In the current study we used data collected from a multipollutant exposure study conducted i...

  11. Particulate Matter and Ozone: Remote Sensing and Source Attribution

    OpenAIRE

    Kim, Sungshik

    2015-01-01

    Particulate matter (PM) and tropospheric ozone are air pollutants that are harmful to human health and have broad implications for climate. Despite their importance, there remain large uncertainties related to their sources, evolution in the atmosphere, and impact downwind. In this thesis, I work to address some of these uncertainties through integrated analysis of ground, aircraft, and satellite observations and using both forward and inverse modeling approaches. A new, high-resolution d...

  12. Photoinduced particulate matter in a parenteral formulation for bisnafide, an experimental antitumor agent.

    Science.gov (United States)

    Rubino, J T; Chan, L L; Walker, J T; Segretario, J; Everlof, J G; Hussain, M A

    1999-08-01

    This paper assesses the cause of particulate formation in vials of the experimental antitumor agent bisnafide and investigates pharmaceutical techniques to reduce the number of particulates in the product. Solution preparation and particulate isolation were performed under Class 100 laminar air flow. Reversed-phase HPLC and infrared microscopy were used to characterize drug and isolated particulate matter, whereas a Hiac particle counter was used to quantify the particulate matter. Particulate matter was observed following agitation of the drug solutions and was found to be associated with specific lots of drug substance. HPLC of the isolated particulate matter indicated that the particulates consisted largely of bisnafide and impurities that were identified as the products of photodegradation, confirmed to be the result of the photolytic cleavage of bisnafide to form a poorly soluble aldehyde. The aldehyde may, in turn, interact with bisnafide molecules to form the particulate matter as suggested by the observed pH-dependent reversibility of the particulate phenomenon. The particulate matter could be reduced by protecting solutions of bisnafide from light during chemical synthesis and production of the dosage form and, alternatively, by reducing the solution pH to 3.0 or less, addition of surfactants below their critical micelle concentration, and removal of impurities by froth flotation of the bisnafide solutions. PMID:10434290

  13. Thermogravimetric analysis of diesel particulate matter

    Science.gov (United States)

    Lapuerta, M.; Ballesteros, R.; Rodríguez-Fernández, J.

    2007-03-01

    The regulated level of diesel particulate mass for 2008 light-duty diesel on-road engines will be 0.005 g km-1 in Europe. Measurements by weighing and analysis of this low level of particulate mass based on chemical extraction are costly, time consuming and hazardous because of the use of organic solvents, potentially carcinogenic. An alternative to this analysis is proposed here: a thermal mass analyser that measures the volatile fraction (VOF) as well as the soot fraction of the particulate matter (PM) collected on a cleaned fibre glass filter. This paper evaluates this new thermal mass measurement (TGA) as a possible alternative to the conventional chemical extraction method, and presents the results obtained with both methods when testing a diesel engine fuelled with a reference diesel fuel (REF), a pure biodiesel fuel (B100) and two blends with 30% and 70% v/v biodiesel (B30 and B70, respectively).

  14. Investigation of physico-chemical characteristics of size-segregated particulate matter in a metropolitan environment and their impact on air quality in southern California

    Science.gov (United States)

    Pakbin, Payam

    Numerous epidemiological studies have associated the adverse respiratory and cardiovascular effects to atmospheric particulate matter (PM) exposure. There is ample literature providing evidence of adverse effects for all inhalable particle size ranges, however the biological mechanisms responsible for the toxicity of PM are still uncertain. Due to the lack of data about how different PM components act in a complex mixture, it is not possible to precisely quantify the contributions from the main sources and components to the effects on human health. Thus, PM in health impact assessments is usually regarded as a uniform pollutant, regardless of the contribution from different sources, and assuming the same effect on morality. This is probably not a correct assumption, but is a pragmatic compromise while waiting for sufficient knowledge that will allow the use of indicators other than particle mass. As a result linking the toxicity of PM with several of its chemical components has been the focus of considerable research over the past decade. The associations between health endpoints with the hundreds of potentially toxic chemical species and PM characteristics may be daunting and not cost efficient. Therefore it is desirable to focus on the casualty of the few critical chemical components that current science supports as potentially the most harmful to human health. Such information will allow for more effective regulatory control strategies, more targeted air quality standards, and as a result, reductions in population exposure to the most harmful types of airborne PM. The current particulate matter emission standards are based on PM mass only. However, the prevailing scientific opinion contends that PM mass is a surrogate measure of other physical and chemical properties of PM that are the actual causes of the observed health effects. In this study we focus on the PM components that are not currently regulated, while there is ample evidence that they can cause

  15. Samplings of urban particulate matter for mutagenicity assays

    International Nuclear Information System (INIS)

    In the frame of a specific program relating to the evaluation of mutagenic activity of urban particulate matter, an experimental arrangement has been developed to sample aerosuspended particles from the external environment carried indoor by means of a fan. Instrumentation was placed directly in the air flow to minimize particle losses, and consisted of total filter, collecting particles without any size separation; cascade impactor, fractioning urban particulate to obtain separate samples for analyses; an optical device, for real time monitoring of aerosol concentration, temperature and relative humidity sensors. Some of the samples obtained were analysed to investigate: particle morphology, aerosol granulometric distributions, effect of relative humidity on collected particulate, amount of ponderal mass compared with real time optical determinations. The results obtained are reported here, together with some considerations about carbonaceous particles, in urban areas mainly originated from diesel exhausts, their degree of agglomeration and role to vehiculate substances into the human respiratory

  16. Chronic exposure to particulate matter and risk of cardiovascular mortality: cohort study from Taiwan

    OpenAIRE

    Tseng, Eva; Ho, Wen-Chao; Lin, Meng-Hung; Cheng, Tsun-Jen; Chen, Pau-Chung; Lin, Hsien-Ho

    2015-01-01

    Background Evidence on the association between long-term exposure to air pollution and cardiovascular mortality is limited in Asian populations. Methods We conducted a cohort study on the association between fine particulate matter (PM2.5) and cardiovascular mortality using 43,227 individuals in a civil servants health service in Taiwan. Each participant was assigned an exposure level of particulate matter based on their district of residence using air pollution data collected by the Taiwan E...

  17. Characterisation of carbonaceous particulate matter in Edinburgh

    OpenAIRE

    Hammonds, Mark David

    2012-01-01

    Airborne particulate matter (PM) has important harmful effects on human health, as well as a number of other important atmospheric effects. Although progress has been made in understanding the sources and effects of PM, there remains considerable uncertainty on a number of issues, including the nature of a lot of the carbonaceous material, which comprises 30{50% on average of PM mass. This project aims to compare different methods of PM measurement, and contribute understanding...

  18. Controlled exposure to particulate matter from urban street air is associated with decreased vasodilation and heart rate variability in overweight and older adults

    DEFF Research Database (Denmark)

    Hemmingsen, Jette Gjerke; Rissler, Jenny; Lykkesfeldt, Jens;

    2015-01-01

    ) and PM2.5 levels of 24 versus 3μg/m(3), respectively. The PM contained similar fractions of elemental and black carbon (~20-25%) in both exposure scenarios. Reactive hyperemia and nitroglycerin-induced vasodilation in finger arteries and heart rate variability (HRV) measured within 1 h after exposure......BACKGROUND: Exposure to particulate matter (PM) is generally associated with elevated risk of cardiovascular morbidity and mortality. Elderly and obese subjects may be particularly susceptible, although short-term effects are poorly described. METHODS: Sixty healthy subjects (25 males, 35 females...

  19. Polycyclic aromatic hydrocarbon adsorption on selected solid particulate matter fractions

    Science.gov (United States)

    Bozek, Frantisek; Huzlik, Jiri; Pawelczyk, Adam; Hoza, Ignac; Naplavova, Magdalena; Jedlicka, Jiri

    2016-02-01

    This article is directed to evaluating the proportion of polycyclic aromatic hydrocarbons (PAHs) captured on particulate matter (PM) classified as PM2.5-10 and PM2.5, i.e. particulate matter of aerodynamic diameter 2.5-10 μm and 2.5 μm. During three week-long and one 2-day campaigns, 22 paired air samples were taken in parallel of PM10 and PM2.5 fractions inside the Mrázovka tunnel in Prague, Czech Republic. Following sample preparation, concentrations of individual PAHs were determined using gas chromatography combined with mass spectrometry. Concentrations of individual pairs of each PAH were tested by the nonparametric method using Spearman's rank correlation coefficient. At significance level p detection limit, where increased measurement error can be expected.

  20. Impact of 2000–2050 climate change on fine particulate matter (PM2.5 air quality inferred from a multi-model analysis of meteorological modes

    Directory of Open Access Journals (Sweden)

    D. J. Jacob

    2012-12-01

    Full Text Available Studies of the effect of climate change on fine particulate matter (PM2.5 air quality using general circulation models (GCMs show inconsistent results including in the sign of the effect. This reflects uncertainty in the GCM simulations of the regional meteorological variables affecting PM2.5. Here we use the CMIP3 archive of data from fifteen different IPCC AR4 GCMs to obtain improved statistics of 21st-century trends in the meteorological modes driving PM2.5 variability over the contiguous US. We analyze 1999–2010 observations to identify the dominant meteorological modes driving interannual PM2.5 variability and their synoptic periods T. We find robust correlations (r > 0.5 of annual mean PM2.5 with T, especially in the eastern US where the dominant modes represent frontal passages. The GCMs all have significant skill in reproducing present-day statistics for T and we show that this reflects their ability to simulate atmospheric baroclinicity. We then use the local PM2.5-to-period sensitivity (dPM2.5/dT from the 1999–2010 observations to project PM2.5 changes from the 2000–2050 changes in T simulated by the 15 GCMs following the SRES A1B greenhouse warming scenario. By weighted-average statistics of GCM results we project a likely 2000–2050 increase of ~ 0.1 μg m−3 in annual mean PM2.5 in the eastern US arising from less frequent frontal ventilation, and a likely decrease albeit with greater inter-GCM variability in the Pacific Northwest due to more frequent maritime inflows. Potentially larger regional effects of 2000–2050 climate change on PM2.5 may arise from changes in temperature, biogenic emissions, wildfires, and vegetation, but are still unlikely to affect annual PM2.5 by more than 0.5 μg m−3.

  1. The impact of the congestion charging scheme on air quality in London. Part 2. Analysis of the oxidative potential of particulate matter.

    Science.gov (United States)

    Kelly, Frank; Anderson, H Ross; Armstrong, Ben; Atkinson, Richard; Barratt, Ben; Beevers, Sean; Derwent, Dick; Green, David; Mudway, Ian; Wilkinson, Paul

    2011-04-01

    There is growing scientific consensus that the ability of inhaled particulate matter (PM*) to elicit oxidative stress both at the air-lung interface and systemically might underpin many of the acute and chronic respiratory and cardiovascular responses observed in exposed populations. In the current study (which is part two of a two-part HEI study of a congestion charging scheme [CCS] introduced in London, United Kingdom, in 2003), we tested the hypothesis that the reduction in vehicle numbers and changes in traffic composition resulting from the introduction of the CCS would result in decreased concentrations of traffic-specific emissions, both from vehicle exhaust and other sources (brake wear and tire wear), and an associated reduction in the oxidative potential of PM with an aerodynamic diameter test this hypothesis, we obtained, extracted, and analyzed tapered element oscillating microbalance (TEOM) PM10 filters from six monitoring sites within, bordering, or outside the area of the congestion charging zone (CCZ) for the 3 years before and after the introduction of the scheme. In addition, from January 2005, TEOM PM10 filters were obtained from an additional 10 sites outside the zone in order to perform the first-ever assessment of within-city spatial variability in the oxidative potential of PM10. Although London's PM10 was found to have remarkably high oxidative potential, it varied markedly between the studied sites, with evidence of increased potential at roadside locations compared with urban background locations. This difference appeared to reflect increased concentrations of copper (Cu), barium (Ba), and bioavailable iron (Fe) in PM10 collected at the roadside sites. PM10's oxidative potential after the introduction of the CCS did not change at the one urban background site within the zone. Yet compositional changes in PM10 were noted at the same site, including significant decreases in Cu and zinc (Zn) content, probably reflecting brake and tire wear

  2. Source apportionment studies on particulate matter in Beijing/China

    Science.gov (United States)

    Suppan, P.; Shen, R.; Shao, L.; Schrader, S.; Schäfer, K.; Norra, S.; Vogel, B.; Cen, K.; Wang, Y.

    2013-05-01

    More than 15 million people in the greater area of Beijing are still suffering from severe air pollution levels caused by sources within the city itself but also from external impacts like severe dust storms and long range advection from the southern and central part of China. Within this context particulate matter (PM) is the major air pollutant in the greater area of Beijing (Garland et al., 2009). PM did not serve only as lead substance for air quality levels and therefore for adverse health impact effects but also for a strong influence on the climate system by changing e.g. the radiative balance. Investigations on emission reductions during the Olympic Summer Games in 2008 have caused a strong reduction on coarser particles (PM10) but not on smaller particles (PM2.5). In order to discriminate the composition of the particulate matter levels, the different behavior of coarser and smaller particles investigations on source attribution, particle characteristics and external impacts on the PM levels of the city of Beijing by measurements and modeling are performed: a) Examples of long term measurements of PM2.5 filter sampling in 2010/2011 with the objectives of detailed chemical (source attribution, carbon fraction, organic speciation and inorganic composition) and isotopic analyses as well as toxicological assessment in cooperation with several institutions (Karlsruhe Institute of Technology (IfGG/IMG), Helmholtz Zentrum München (HMGU), University Rostock (UR), Chinese University of Mining and Technology Beijing, CUMTB) will be discussed. b) The impact of dust storm events on the overall pollution level of particulate matter in the greater area of Beijing is being assessed by the online coupled comprehensive model system COSMO-ART. First results of the dust storm modeling in northern China (2011, April 30th) demonstrates very well the general behavior of the meteorological parameters temperature and humidity as well as a good agreement between modeled and

  3. A quantitative study of air-borne particulate matter collected on membrane filters by means of X-ray photoelectron spectroscopy

    International Nuclear Information System (INIS)

    The capability of X-ray photoelectron spectroscopy, XPS or ESCA, in analysing oxidation states and measuring the concentration of elements present in air pollution particulates collected on membrane filters is evaluated. Semi-quantitative data are compared with those from XRF and wet chemical analysis. Differences of about a factor of 2.0-2.5 are found which are critically discussed in relation to particle size and the distribution of ionic species. The importance of intrinsic properties of matrix materials and instrumental factors is also discussed. (orig.)

  4. Vehicles and Particulate Air Pollution

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The current scene relating to particles and vehicular emissions in UK is reviewed. The active research topics are health effects of particles, particle size and composition, modeling the fate of particles and assessing individual exposure. There is a National Air Quality Strategy combined with local air quality management which includes monitoring and assessment, dispersion modeling and development of management plans.

  5. Analytical Methods INAA and PIXE Applied to Characterization of Airborne Particulate Matter in Bandung, Indonesia

    OpenAIRE

    D.D. Lestiani; M. Santoso

    2011-01-01

    Urbanization and industrial growth have deteriorated air quality and are major cause to air pollution. Air pollution through fine and ultra-fine particles is a serious threat to human health. The source of air pollution must be known quantitatively by elemental characterization, in order to design the appropriate air quality management. The suitable methods for analysis the airborne particulate matter such as nuclear analytical techniques are hardly needed to solve the air pollution problem....

  6. Establishing the origin of particulate matter across Europe

    Science.gov (United States)

    Schaap, Martijn; Kranenburg, Richard; Hendriks, Carlijn; Kuenen, Jeroen

    2016-04-01

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. In this paper we like to provide an overview of recent source apportionment studies aimed at PM and its precursors carried out at TNO. The source apportionment module that tracks the origin of modelled particulate matter distributions throughout a LOTOS-EUROS simulation will be explained. To optimally apply this technology dedicated emission inventories, e.g. fuel type specific, need to be generated. Applications to Europe shows that in northwestern Europe the contribution of transport and agricultural emissions dominate the PM mass concentrations, especially during episodic events. In eastern Europe, the domestic and energy sector are much more important. In southern Europe the picture is more mixed, although the frequent high levels of desert dust stand out. Evaluation of the source allocation against experimental data and PMF analyses is challenging as there is only a limited availability of source specific tracers or factors that can be used for direct comparison. Nonetheless, for the available tracers such as vanadium for heavy fuel oil combustion an evaluation is very well possible. The source apportionment technique can also be used to interpret particulate matter formation efficiencies. It will be shown that the conversion rates for the secondary inorganic aerosol precursors (NOx, NH3 and SO2) have changed during the last 20 years. A particular problem is related to the fact that CTMs systematically underestimate observed PM levels, which means that the contribution of certain source categories (natural, agriculture, combustion) are underestimated. Future developments needed to improve the source apportionment information concerning process knowledge, data assimilation as well as model implementation will be discussed. Specific challenges concerning the

  7. 40 CFR 60.62 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.62... Plants § 60.62 Standard for particulate matter. (a) On and after the date on which the performance test... particulate matter in excess of 0.15 kg per metric ton of feed (dry basis) to the kiln (0.30 lb per ton)....

  8. 40 CFR 60.102 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.102... Refineries § 60.102 Standard for particulate matter. Each owner or operator of any fluid catalytic cracking... regenerator: (1) Particulate matter in excess of 1.0 kg/Mg (2.0 lb/ton) of coke burn-off in the...

  9. 40 CFR 60.152 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standard for particulate matter. 60.152... Plants § 60.152 Standard for particulate matter. (a) On and after the date on which the performance test...: (1) Particulate matter at a rate in excess of 0.65 g/kg dry sludge input (1.30 lb/ton dry...

  10. Estimating particulate matter health impact related to the combustion of different fossil fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuenen, Jeroen; Kranenburg, Richard; Hendriks, Carlijn; Schaap, Martijn [TNO, Utrecht (Netherlands); Gschwind, Benoit; Lefevre, Mireille; Blanc, Isabelle [MINES ParisTech, Sophia Antipolis (France); Drebszok, Kamila; Wyrwa, Artur [AGH Univ. of Science and Technology, Krakow (Poland); Stetter, Daniel [DLR Deutsches Zentrum fuer Luft- und Raumfahrt e.V., Stuttgart (Germany)

    2013-07-01

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin of the modelled particulate matter distributions thoughout a simulation. Combined with a dedicated emission inventory PM2.5 maps specified by fuel type were generated for 2007-2009. These maps were combined with a health impact calculation to estimate Lost of Life Expectancy for each fuel categories. An user friendly web client was generated to access the results and use the web mapping service in an easy manner. (orig.)

  11. Estimating particulate matter health impact related to the combustion of different fossil fuels

    International Nuclear Information System (INIS)

    Exposure to particulate matter (PM) in ambient air leads to adverse health effects. To design cost effective mitigation strategies, a thorough understanding of the sources of particulate matter is crucial. We have successfully generated a web map service that allows to access information on fuel dependent health effects due to particulate matter. For this purpose, the LOTOS-EUROS air pollution model was equipped with a source apportionment module that tracks the origin of the modelled particulate matter distributions thoughout a simulation. Combined with a dedicated emission inventory PM2.5 maps specified by fuel type were generated for 2007-2009. These maps were combined with a health impact calculation to estimate Lost of Life Expectancy for each fuel categories. An user friendly web client was generated to access the results and use the web mapping service in an easy manner. (orig.)

  12. The particulate matter dispersion studies from a local palm oil mill

    International Nuclear Information System (INIS)

    The appearance of industrial emissions and the degradation of scenic vistas are two characteristics of air pollution that humans object. Reduction in visibility suggests worsening pollution levels. The emissions from mobile source and stationary source are the major source of air pollutions contribution in Malaysia. Suspended particulate matter (SPM). The consequence of increasing the particulate concentrations, the particulate matter dissolves with vapour and grows into droplets when the humidity exceeds approximately 70% and causing opaque situation know as haze. This work focuses on the dispersion particulate matter from palm oil mill. The data obtained serves the purpose of modeling the transport of particulate matter for obtaining permits and prevention of significant deterioration (PSD) to the environment. Gaussian Plume Model from a point source, subject to various atmospheric conditions is used to calculate particulate matter concentration then display the distribution of plume dispersion using geographic information system (GIS). The calculated particulate matter concentration is evaluated using Transilient Matrice function. Atmospheric Stability, mixing height, wind direction, wind speed, natural and artificial features play an important role in dispersion process. High concentration area exhibits immediately under prevailing wind direction. (Author)

  13. Trace elements total content and particle sizes distribution in the air particulate matter of a rural-residential area in north Italy investigated by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    The concentrations (ng/m3) of more than 30 trace elements have been determined in the total air particulate of a rural-residential area in north Italy. By collecting the aerosols with multistage impactors the distribution of the trace elements in the different size-fractionated particles has been also investigated. The fine 'inhalable' fraction with particles of less than 10 μm in equivalent aerodynamic diameter (PM10) as well as the subsequent finest 'respirable' fractions with particles of 0-1.1 μm (alveolar), 1.1-4.6 μm (bronchial) and 4.6-9 μm (tracheo-pharynx) have been analyzed and evaluated. Apart from Pb, Cd and, in some cases, Ni and Cu which have been determined by ETAAS (electrothermal atomic absorption spectroscopy), all measurements have been carried out by instrumental neutron activation analysis (INAA). (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  14. 40 CFR 52.2429 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ....5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52.1004(c... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. Determination of Attainment. EPA has determined, as of January...

  15. 40 CFR 52.1880 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... NAAQS. These determinations, in accordance with 40 CFR 52.1004(c), suspend the requirements for these... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... strategy: Particulate matter. (a) The requirements of subpart G of this chapter are not met because...

  16. 40 CFR 52.2526 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... NAAQS. These determinations, in accordance with 40 CFR 52.1004(c), suspend the requirements for these... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate matter... Control strategy: Particulate matter. (a) EPA approves West Virginia's November 15, 1991 SIP submittal...

  17. Chemical Coupling Between Atmospheric Ozone and Particulate Matter

    OpenAIRE

    Meng, Z.; DABDUB, D; Seinfeld, J. H.

    1997-01-01

    A major fraction of ambient particulate matter arises from atmospheric gas-to-particle conversion. Attempts to reduce particulate matter levels require control of the same organic and nitrogen oxide (NO_x) emissions that are precursors to urban and regional ozone formation. Modeling of the gas-aerosol chemical interactions that govern levels of particulate components showed that control of gas-phase organic and NO_x precursors does not lead to proportionate reductions of the gas-phase–derived...

  18. The investigation of atmospheric particulate matter pollution in Suzhou

    International Nuclear Information System (INIS)

    Objective: To investigate the pollution status, vertical distribution and concentration variation within 24 hours of total suspended particles (TSPs), particulate matter ≤10 μm (PM10), particulate matter ≤5 (PM5) and particulate matter ≤2.5 μm (PM2.5) in major functional areas of Suzhou and the protective effect of different type masks on particulate matter. Methods: (1) The concentration of atmospheric TSPs, PM10, PM5 and PM2.5 in seven functional areas in Suzhou was monitored for three consecutive days. (2) A residential building of 25 stories was chosen and the concentration of TSPs, PM10, PM5, PM2.5 was detected at the 1st, 5th, 10th, 15th, 20th and the 25th floor respectively. (3) The concentrations of the four particulate matter were detected every two-hours for three consecutive days to investigate how concentration of particulate matter varies within 24 hours. (4) The concentration of the four kinds of particulate matter was analyzed with the sampling head of monitor wrapped with disposable non-woven medical mask, fashion-type mask, gauze mask or activated carbon anti-dust mask respectively, and the protective effect of the four masks on particulate matter was compared. Results: (1) The concentration of PM2.5 was higher than the national health limit in all seven functional areas in Suzhou. (2) No significant difference in vertical distribution of particulate matter was found among different floors in residential buildings (P>0.05). (3) Two small peaks of particulate matter appeared in the morning and evening respectively while the top appeared at dawn (P< 0.05). (4) Disposable non-woven medical mask showed the best protective effect on particulate matter among the four tested masks. Conclusion: PM2.5 is the main particulate matter in Suzhou area. In addition the 4 kinds of particulate matter: TSP, PM10, PM5 and PM2.5 are of higher concentration in the early morning. No significant difference was detected from an altitude of less than 75 meters

  19. Monitoring Particulate Matter with Commodity Hardware

    Science.gov (United States)

    Holstius, David

    Health effects attributed to outdoor fine particulate matter (PM 2.5) rank it among the risk factors with the highest health burdens in the world, annually accounting for over 3.2 million premature deaths and over 76 million lost disability-adjusted life years. Existing PM2.5 monitoring infrastructure cannot, however, be used to resolve variations in ambient PM2.5 concentrations with adequate spatial and temporal density, or with adequate coverage of human time-activity patterns, such that the needs of modern exposure science and control can be met. Small, inexpensive, and portable devices, relying on newly available off-the-shelf sensors, may facilitate the creation of PM2.5 datasets with improved resolution and coverage, especially if many such devices can be deployed concurrently with low system cost. Datasets generated with such technology could be used to overcome many important problems associated with exposure misclassification in air pollution epidemiology. Chapter 2 presents an epidemiological study of PM2.5 that used data from ambient monitoring stations in the Los Angeles basin to observe a decrease of 6.1 g (95% CI: 3.5, 8.7) in population mean birthweight following in utero exposure to the Southern California wildfires of 2003, but was otherwise limited by the sparsity of the empirical basis for exposure assessment. Chapter 3 demonstrates technical potential for remedying PM2.5 monitoring deficiencies, beginning with the generation of low-cost yet useful estimates of hourly and daily PM2.5 concentrations at a regulatory monitoring site. The context (an urban neighborhood proximate to a major goods-movement corridor) and the method (an off-the-shelf sensor costing approximately USD $10, combined with other low-cost, open-source, readily available hardware) were selected to have special significance among researchers and practitioners affiliated with contemporary communities of practice in public health and citizen science. As operationalized by

  20. Urban particulate matter pollution: a tale of five cities.

    Science.gov (United States)

    Pandis, Spyros N; Skyllakou, Ksakousti; Florou, Kalliopi; Kostenidou, Evangelia; Kaltsonoudis, Christos; Hasa, Erion; Presto, Albert A

    2016-07-18

    Five case studies (Athens and Paris in Europe, Pittsburgh and Los Angeles in the United States, and Mexico City in Central America) are used to gain insights into the changing levels, sources, and role of atmospheric chemical processes in air quality in large urban areas as they develop technologically. Fine particulate matter is the focus of our analysis. In all cases reductions of emissions by industrial and transportation sources have resulted in significant improvements in air quality during the last few decades. However, these changes have resulted in the increasing importance of secondary particulate matter (PM) which dominates over primary in most cases. At the same time, long range transport of secondary PM from sources located hundreds of kilometres from the cities is becoming a bigger contributor to the urban PM levels in all seasons. "Non-traditional" sources including cooking, and residential and agricultural biomass burning contribute an increasing fraction of the now reduced fine PM levels. Atmospheric chemistry is found to change the chemical signatures of a number of these sources relatively fast both during the day and night, complicating the corresponding source apportionment. PMID:27310460

  1. Investigation of respirable particulate matter pollutants on air-breathing zone workers in the Beam Rolling Mills Factory (Iran National Steel Industrial Group, Ahvaz, Iran

    Directory of Open Access Journals (Sweden)

    Rafiei Masoud

    2008-01-01

    Full Text Available Workers of iron and steel factories are exposed to a wide range of pollutants depending on the particular process, the materials involved, the effectiveness of monitoring and the control measures. Adverse effects are determined by the physical state and propensities of the pollutant involved, the intensity and duration of the exposure, the extent of pollutant accumulation in the body and the sensitivity of the individual to its effects. The main aim of this study is to assess the levels of the indoor respirable particulate matter (RPM and to compare the health condition of exposed workers, with nonexposed employees group. Line 630 has only one furnace of 40 tons and line 650 has two furnaces of 20 and 40 tons capacity due to which the mean of the RPM concentrations in the breathing zone was significantly different ( P < 0.05 in line 650 but not in line 630 as compared with National Institute for Occupational Safety and Hygiene′s (3 mg/m 3 . The average of the RPM concentrations in production line 650 is higher than that of production line 630, with the 95% confidence interval in saw cabin station number 1 of production line 650.

  2. Accumulation of particulate matter and trace elements on vegetation as affected by pollution level, rainfall and the passage of time.

    Science.gov (United States)

    Przybysz, A; Sæbø, A; Hanslin, H M; Gawroński, S W

    2014-05-15

    Particulate matter is harmful to human health. To reduce its concentration in air, plants could be used as biological filters, accumulating particulate matter on their foliage. In a study carried out at three sites with differing pollution levels and exposure to precipitation, the capacity of evergreen species (Taxus baccata L., Hedera helix L. and Pinus sylvestris L.) to accumulate particulate matter and trace elements from ambient air in urban areas was investigated. The effects of rainfall and the passage of time on particulate matter deposition on foliage were also determined. The results showed that foliage accumulated an increasing quantity of particulate matter in successive months, but the actual amount of particulate matter and trace elements accumulated differed considerably between sites and plant species. The greatest accumulation of air pollutants occurred on the foliage of plants protected from the rain at a site exposed to traffic related pollution and the smallest accumulation at a rural site. Among the species analysed, the deposited mass of particulate matter and trace elements was the greatest on P. sylvestris. In all species, precipitation removed a considerable proportion of particles accumulated on foliage. Most of the removed particulate matter was large size fraction, but little belong to the smallest size fraction. These results showed that both, the dynamics of deposition and leaf washing by rain during the season need to be considered when evaluating the total effect of vegetation in pollutant remediation. PMID:24607629

  3. Fine particulate matter in acute exacerbation of COPD.

    Science.gov (United States)

    Ni, Lei; Chuang, Chia-Chen; Zuo, Li

    2015-01-01

    Chronic obstructive pulmonary disease (COPD) is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD) can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM) in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM) in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress (OS), immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden. PMID:26557095

  4. Fine particulate matter in acute exacerbation of COPD

    Directory of Open Access Journals (Sweden)

    Lei eNi

    2015-10-01

    Full Text Available Chronic obstructive pulmonary disease (COPD is a common airway disorder. In particular, acute exacerbations of COPD (AECOPD can significantly reduce pulmonary function. The majority of AECOPD episodes are attributed to infections, although environmental stress also plays a role. Increasing urbanization and associated air pollution, especially in developing countries, have been shown to contribute to COPD pathogenesis. Elevated levels of particulate matter (PM in polluted air are strongly correlated with the onset and development of various respiratory diseases. In this review, we have conducted an extensive literature search of recent studies of the role of PM2.5 (fine PM in AECOPD. PM2.5 leads to AECOPD via inflammation, oxidative stress, immune dysfunction, and altered airway epithelial structure and microbiome. Reducing PM2.5 levels is a viable approach to lower AECOPD incidence, attenuate COPD progression and decrease the associated healthcare burden.

  5. Respiratory effects of particulate matter air pollution: studies on diesel exhaust, road tunnel, subway and wood smoke exposure in human subjects

    Energy Technology Data Exchange (ETDEWEB)

    Sehlstedt, Maria

    2011-07-01

    Background: Ambient air pollution is associated with adverse health effects, but the sources and components, which cause these effects is still incompletely understood. The aim of this thesis was to investigate the pulmonary effects of a variety of common air pollutants, including diesel exhaust, biomass smoke, and road tunnel and subway station environments. Healthy non-smoking volunteers were exposed in random order to the specific air pollutants and air/control, during intermittent exercise, followed by bronchoscopy. Methods and results: In study I, exposures were performed with diesel exhaust (DE) generated at transient engine load and air for 1 hour with bronchoscopy at 6 hours post-exposure. Immunohistochemical analyses of bronchial mucosal biopsies showed that DE exposure significantly increased the endothelial adhesion molecule expression of p-selectin and VCAM-1, together with increased bronchoalveolar lavage (BAL) eosinophils. In study II, the subjects were exposed for 1 hour to DE generated during idling with bronchoscopy at 6 hours. The bronchial mucosal biopsies showed significant increases in neutrophils, mast cells and lymphocytes together with bronchial wash neutrophils. Additionally, DE exposure significantly increased the nuclear translocation of the aryl hydrocarbon receptor (AhR) and phosphorylated c-jun in the bronchial epithelium. In contrast, the phase II enzyme NAD(P)H-quinone oxidoreductase 1 (NQO1) decreased after DE. In study III, the 2-hour exposures took place in a road tunnel with bronchoscopy 14 hours later. The road tunnel exposure significantly increased the total numbers of lymphocytes and alveolar macrophages in BAL, whereas NK cell and CD56+/T cell numbers significantly decreased. Additionally, the nuclear expression of phosphorylated c-jun in the bronchial epithelium was significantly increased after road tunnel exposure. In study IV, the subjects were exposed to metal-rich particulate aerosol for 2 hours at a subway station

  6. The CULTEX RFS: A Comprehensive Technical Approach for the In Vitro Exposure of Airway Epithelial Cells to the Particulate Matter at the Air-Liquid Interface

    Directory of Open Access Journals (Sweden)

    Michaela Aufderheide

    2013-01-01

    Full Text Available The EU Regulation on Registration, Evaluation, Authorization and Restriction of Chemicals (REACH demands the implementation of alternative methods for analyzing the hazardous effects of chemicals including particulate formulations. In the field of inhalation toxicology, a variety of in vitro models have been developed for such studies. To simulate the in vivo situation, an adequate exposure device is necessary for the direct exposure of cultivated lung cells at the air-liquid interface (ALI. The CULTEX RFS fulfills these requirements and has been optimized for the exposure of cells to atomized suspensions, gases, and volatile compounds as well as micro- and nanosized particles. This study provides information on the construction and functional aspects of the exposure device. By using the Computational Fluid Dynamics (CFD analysis, the technical design was optimized to realize a stable, reproducible, and homogeneous deposition of particles. The efficiency of the exposure procedure is demonstrated by exposing A549 cells dose dependently to lactose monohydrate, copper(II sulfate, copper(II oxide, and micro- and nanoparticles. All copper compounds induced cytotoxic effects, most pronounced for soluble copper(II sulfate. Micro- and nanosized copper(II oxide also showed a dose-dependent decrease in the cell viability, whereby the nanosized particles decreased the metabolic activity of the cells more severely.

  7. Chemical Speciation of Thorium in Marine Biogenic Particulate Matter

    OpenAIRE

    Katsumi Hirose

    2004-01-01

    Concentrations of particulate thorium in seawater were determined together with the strong organic ligand (SOL) and uranium in particulate matter (PM). The concentrations of particulate Th in surface waters of the western North Pacific and the Sea of Japan ranged from 0.05 to 1.5 pM (1 x 10−12 M), and showed relatively large temporal and spatial variations. In order to chemically characterize the particulate Th in seawater, the relationship between particulate Th and SOL concentrations in sur...

  8. Heart Rate Variability, Ambient Particulate Matter Air Pollution, and Glucose Homeostasis: The Environmental Epidemiology of Arrhythmogenesis in the Women's Health Initiative

    Science.gov (United States)

    Quibrera, P. Miguel; Christ, Sharon L.; Liao, Duanping; Prineas, Ronald J.; Anderson, Garnet L.; Heiss, Gerardo

    2009-01-01

    Metabolic neuropathophysiology underlying the prediabetic state may confer susceptibility to the adverse health effects of ambient particulate matter <10 μm in diameter (PM10). The authors therefore examined whether impaired glucose homeostasis modifies the effect of PM10 on heart rate variability in a stratified, random sample of 4,295 Women's Health Initiative clinical trial participants, among whom electrocardiograms and fasting blood draws were repeated at 3-year intervals from 1993 to 2004. In multilevel, mixed models weighted for sampling design and adjusted for clinical and environmental covariables, PM10 exposure was inversely associated with heart rate variability. Inverse PM10–heart rate variability associations were strongest for the root mean square of successive differences in normal-to-normal RR intervals (RMSSD). Among participants with impaired fasting glucose, there were −8.3% (95% confidence interval: −13.9, −2.4) versus −0.6% (95% confidence interval: −2.4, 1.3), −8.4% (95% confidence interval: −13.8, −2.7) versus −0.3% (95% confidence interval: −2.1, 1.6), and −4.3% (95% confidence interval: −9.4, 1.0) versus −0.8% (95% confidence interval: −2.7, 1.0) decreases in the RMSSD per 10-μg/m3 increase in PM10 at high versus low levels of insulin (P < 0.01), insulin resistance (P < 0.01), and glucose (P = 0.16), respectively. These associations were stronger among participants with diabetes and weaker among those without diabetes or impaired fasting glucose. The findings suggest that insulin and insulin resistance exacerbate the adverse effect of PM10 on cardiac autonomic control and thus risk of coronary heart disease among nondiabetic, postmenopausal women with impaired fasting glucose. PMID:19208727

  9. Gene-particulate matter-health interactions

    International Nuclear Information System (INIS)

    Inter-individual variation in human responses to air pollutants suggests that some subpopulations are at increased risk to the detrimental effects of pollutant exposure. Extrinsic factors such as previous exposure and nutritional status may influence individual susceptibility. Intrinsic (host) factors that determine susceptibility include age, gender, and pre-existing disease (e.g., asthma), and it is becoming clear that genetic background also contributes to individual susceptibility. Environmental exposures to particulates and genetic factors associated with disease risk likely interact in a complex fashion that varies from one population and one individual to another. The relationships between genetic background and disease risk and severity are often evaluated through traditional family-based linkage studies and positional cloning techniques. However, case-control studies based on association of disease or disease subphenotypes with candidate genes have advantages over family pedigree studies for complex disease phenotypes. This is based in part on continued development of quantitative analysis and the discovery and availability of simple sequence repeats and single nucleotide polymorphisms. Linkage analyses with genetically standardized animal models also provide a useful tool to identify genetic determinants of responses to environmental pollutants. These approaches have identified significant susceptibility quantitative trait loci on mouse chromosomes 1, 6, 11, and 17. Physical mapping and comparative mapping between human and mouse genomes will yield candidate susceptibility genes that may be tested by association studies in human subjects. Human studies and mouse modeling will provide important insight to understanding genetic factors that contribute to differential susceptibility to air pollutants

  10. Characterization of functional groups of airborne particulate matter

    International Nuclear Information System (INIS)

    Particulate matter of organic combustibles burning consists of various hydrocarbons and radicals, which may cause harmful impact to human health. In this study solid particulate matter were collected on the filters from burning of various combustibles in a burning chamber and from atmosphere of city of Riga by dichotomous impactor. FTIR spectra were obtained before and after samples' treatment. Absorptions associated with aliphatic and aromatic hydrocarbons and alcohol functional groups were observed in the FTIR spectra. Free radicals of particulate matter were detected by electron paramagnetic resonance (EPR)

  11. Particulate matter analysis at elementary schools in Curitiba, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Avigo, Devanir; Godoi, Ana F.L.; Janissek, Paulo R.; Godoi, Ricardo H.M. [Positivo University, Curitiba (Brazil); Makarovska, Yaroslava; Krata, Agnieszka; Grieken, Rene van [University of Antwerp, Department of Chemistry, Antwerp (Belgium); Potgieter-Vermaak, Sanja [University of the Witwatersrand, Molecular Science Institute, School of Chemistry, Wits (South Africa); Alfoldy, Balint [KFKI Atomic Energy Research Institute, Health Physics Department, Budapest (Hungary)

    2008-06-15

    The particulate matter indoors and outdoors of the classrooms at two schools in Curitiba, Brazil, was characterised in order to assess the indoor air quality. Information concerning the bulk composition was provided by energy-dispersive x-ray fluorescence (EDXRF). From the calculated indoor/outdoor ratios and the enrichment factors it was observed that S-, Cl- and Zn-rich particles are of concern in the indoor environment. In the present research, the chemical compositions of individual particles were quantitatively elucidated, including low-Z components like C, N and O, as well as higher-Z elements, using automated electron probe microanalysis low Z EPMA. Samples were further analysed for chemical and morphological aspects, determining the particle size distribution and classifying them according to elemental composition associations. Five classes were identified based on major elemental concentrations: aluminosilicate, soot, organic, calcium carbonate and iron-rich particles. The majority of the respirable particulate matter found inside of the classroom was composed of soot, biogenic and aluminosilicate particles. In view of the chemical composition and size distribution of the aerosol particles, local deposition efficiencies in the human respiratory system were calculated revealing the deposition of soot at alveolar level. The results showed that on average 42% of coarse particles are deposited at the extrathoracic level, whereas 24% are deposited at the pulmonary region. The fine fraction showed a deposition rate of approximately 18% for both deposition levels. (orig.)

  12. Compositional Analysis of Fine Particulate Matter in Fairbanks, Alaska

    Science.gov (United States)

    Nattinger, K.; Simpson, W. R.; Huff, D.

    2015-12-01

    Fairbanks, AK experiences extreme pollution episodes that result in winter violations of the fine particulate matter (PM2.5) National Ambient Air Quality Standards. This poses a significant health risk for the inhabitants of the area. These high levels result from trapping of pollution in a very shallow boundary layer due to local meteorology, but the role of primary (direct emission) of particulate matter versus secondary production (in the atmosphere) of particulate matter is not understood. Analysis of the PM2.5 composition is being conducted to provide insight into sources, trends, and chemistry. Methods are developed to convert carbon data from IMPROVE (post-2009 analysis method) to NIOSH (pre-2009 method) utilizing blank subtraction, sampler bias adjustment, and inter-method correlations from co-located samples. By converting all carbon measurements to a consistent basis, long-term trends can be analyzed. The approach shows excellent mass closure between PM2.5 mass reconstructed from constituents and gravimetric-analyzed mass. This approach could be utilized in other US locations where the carbon analysis methods also changed. Results include organic and inorganic fractional mass percentages, analyzed over an eight-year period for two testing sites in Fairbanks and two in the nearby city of North Pole. We focus on the wintertime (Nov—Feb) period when most air quality violations occur and find that the particles consist primarily of organic carbon, with smaller percentages of sulfate, elemental carbon, ammonium, and nitrate. The Fairbanks area PM2.5 organic carbon / elemental carbon partitioning matches the source profile of wood smoke. North Pole and Fairbanks PM2.5 have significant compositional differences, with North Pole having a larger percentage of organic matter. Mass loadings in SO42-, NO3-, and total PM2.5 mass correlate with temperature. Multi-year temporal trends show little if any change with a strong effect from temperature. Insights from this

  13. ULTRAFINE PARTICULATE MATTER EXPOSURE AUGMENTS ISCHEMIA REPERFUSION INJURY IN MICE

    Science.gov (United States)

    Epidemiological studies have linked ambient particulate matter (PM) levels to an increased incidence of adverse cardiovascular events. Yet little is definitively known about the mechanisms accounting for the cardiovascular events associated with PM exposure. The goal of thi...

  14. A Bayesian Multivariate Receptor Model for Estimating Source Contributions to Particulate Matter Pollution using National Databases

    OpenAIRE

    2014-01-01

    Time series studies have suggested that air pollution can negatively impact health. These studies have typically focused on the total mass of fine particulate matter air pollution or the individual chemical constituents that contribute to it, and not source-specific contributions to air pollution. Source-specific contribution estimates are useful from a regulatory standpoint by allowing regulators to focus limited resources on reducing emissions from sources that are major cont...

  15. Simulation of Height of Stack Pile using SCREEN3 module for Particulate Matter Pollutants

    Directory of Open Access Journals (Sweden)

    Modi Musalaiah

    2014-12-01

    Full Text Available This study is regarding the air pollution in selected areas near to port (beside stack yards of port interested in particulate matter pollution. In this study, the amount of air pollution due to particulates is analyzed. The amount of air pollution is estimated using SCREEN 3 Methodology. In this study, SCREEN 3 methodology is a predefined software tool which can be used to estimate particulate matter pollution levels at different source release heights, terrain heights and at particular receptor height. The results obtained are reported and finally concluded that to avoid the pollution in the selected area, it is better to construct a periphery along the sides of stack yard (source of pollution

  16. MEMANFAATKAN TANAMAN UNTUK MENGURANGI POLUSI PARTICULATE MATTER KE DALAM BANGUNAN

    Directory of Open Access Journals (Sweden)

    Christina E. Mediastika

    2002-01-01

    Full Text Available Inhabitants of a building are difficult to escape particulate matter emission. Within this condition, buildings should have vertical element that could block the dispersion of particulate matter to living spaces. Vegetation, a part of vertical elemen for fencing, is considered to do this task. The use of vegetation is chosen with reference to nature and behaviour of particulate matter. Earlier research found that dispersion of particulate matter is mostly at lower atmospheric layer and that particulate matter could be deposited. Therefore, low growing vegetation or climbing plants with particular leaf condition to encourage deposition is predicted suitable. Four vegetation was examined: Duranta repens, Polyscias fruticosa, Stephanotis floribunda and Scindapsus sp. As a preliminary study, there is no valid conclusion could be made from this experiment. However, there are indications that Duranta repens and Stephanotis floribunda block and deposit slightly more particulate matter than the two others. Abstract in Bahasa Indonesia : Polusi particulate matter atau partikel halus tidak hanya terjadi di jalan raya, tetapi juga masuk ke dalam bangunan yang terletak di sepanjang jalan. Oleh karenanya, bangunan seyogyanya memiliki elemen vertikal yang mampu bertugas menghalangi masuknya polusi partikel halus. Salah satu kemungkinan penggunaan elemen vertikal, yaitu tanaman yang ditempatkan pada posisi pagar diteliti dalam studi ini. Mempelajari bahwa partikel halus dengan ukuran tertentu dapat diendapkan dan penyebarannya umumnya terjadi pada lapisan udara rendah, maka studi terhadap tanaman semak atau perdu atau tanaman rambat dengan jenis permukaan daun tertentu lebih diutamakan. Empat jenis tanaman diuji kemampuannya, yaitu: Duranta repens, Polyscias fruticosa, Stephanotis floribunda and Scindapsus sp. Sebagai studi yang sangat awal, masih belum ada hasil valid yang ditawarkan, namun setidaknya ditemukan indikasi bahwa Duranta repens and Stephanotis

  17. Transport of airborne particulate matters originating from Mentougou, Beijing, China

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    In this study, a coupled regional air quality modeling system is applied to investigate the time spatial variations in airborne particulate matters (PM10), originating from Mentougou to Beijing municipal area in the period of April 1-7, 2004, and the influences of complex terrain and meteorological conditions upon boundary layer structure and PMio concentration distributions. An intercomparison of the performance with CALPUFF against the observed data is presented and an examination of scatter plots is provided. The statistics show that the correlation coefficient and STD between the modeled and observed data are 0.86 and 0.03, respectively. Analysis of model results illustrates that the pollutants emitted from Mentougou can be transported to Beijing municipal area along certain transport pathways, and PMio concentration distributions show heterogeneity characteristics. Contributions of the Mentougou sources to the PMio concentrations in Beijing municipal area are up to 0.1-15 μg/m3.

  18. Estimation of particulate matter from simulation and measurements

    Science.gov (United States)

    Nakata, Makiko; Nakano, Tomio; Okuhara, Takaaki; Sano, Itaru; Mukai, Sonoyo

    2011-11-01

    The particulate matter is a typical indicator of small particles in the atmosphere. In addition to providing impacts on climate and environment, these small particles can bring adverse effects on human health. Then an accurate estimation of particulate matter is an urgent subject. We set up SPM sampler attached to our AERONET (Aerosol Robotics Network) station in urban city of Higashi-Osaka in Japan. The SPM sampler provides particle information about the concentrations of various SPMs (e.g., PM10 and PM2.5) separately. The AEROENT program is world wide ground based sunphotometric observation networks by NASA and provides the spectral information about aerosol optical thickness (AOT) and Angstrom exponent (α). Simultaneous measurements show that a linear correlation definitely exists between AOT and PM2.5. These results indicate that particulate matter can be estimated from AOT. However AOT represents integrated values of column aerosol amount retrieved from optical property, while particulate matter concentration presents in-situ aerosol loading on the surface. Then simple way using linear correlation brings the discrepancy between observed and estimated particulate matter. In this work, we use cluster information about aerosol type to reduce the discrepancy. Our improved method will be useful for retrieving particulate matter from satellite measurements.

  19. Does Air Pollution Matter for Low Birth Weight?

    OpenAIRE

    Seonyeong Cho; Choongki Lee; Beomsoo Kim

    2012-01-01

    There is growing concern that air pollution may impact the health of newborns. This study examines this issue by considering overtime variation generated by exogenous changes in the pollution level in Korea in early 2000, when some part of Korea experienced huge drop in air pollution. We matched the census of all births from 1998 to 2008 and air pollution data in mother¡¯s residence county level. For air pollutants, we considered carbon monoxide, nitrogen dioxide, particulate matter, sulfur d...

  20. Characterization of Particulate Matter from a Heavily Industrial Environment

    Science.gov (United States)

    Valarini, Simone; Ynoue, Rita Yuri

    2011-01-01

    A characterization of PM aerosols collected in Cubatão, Brazil is presented. Throughout 2009, 5 sampling campaings were carried out at CEPEMA (Centro de Capacitação e Pesquisa em Meio Ambiente da Universidade de São Paulo), in the vicinity of PETROBRAS oil refinery. Mini-vol portable air sampler was deployed to collect coarse and fine particles. Size-fractionated particle samples were collected by a Micro-Orifice Uniform Deposition Impactor (MOUDI) device. Gravimetric analysis showed three peaks for mass size distributions: the After-Filter stage (cut point diameter of less than 0,1μm), stage 7A (d=0,32μm) and stage 3A (d= 3,2μm). Fine particle matter (FPM) concentrations were almost always lower than coarse particle matter (CPM) concentrations. Comparison between the PM2.5 (particulate matter lower than 2.5μg.m-3) measurements by the MOUDI and Mini-Vol sampler reveals good agreement. However, MOUDI underestimates CPM. Reflectance analysis showed that almost all the Black Carbon is found in the Mini-Vol FPM and lower stages of the MOUDI, with higher concentrations at the After-Filter. The atmospheric loading of PM 2.5 was elevated at night, mainly due to more stable atmospheric conditions. Aerosol samples were analyzed for water- soluble ions, black carbon (BC), and trace elements using a number of analytical techniques.

  1. Behaviour of Particulate Matter in the Indoor Environment of the National Library in Prague

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Ondráčková, Lucie; Mašková, Ludmila; Ondráček, Jakub; Zíková, Naděžda

    -: -, 2012, s. 45. ISBN N. [International Conference Indoor Air Quality in Heritage and Historic Environments "Standards and Guidelines" /10./. London (GB), 17.06.2012-20.06.2012] R&D Projects: GA MK DF11P01OVV020 Keywords : particulate matter * indoor environment * measuring campaigns Subject RIV: AL - Art, Architecture, Cultural Heritage http://www.ucl.ac.uk/iaq2012/index

  2. APPLYING DATA ASSIMILATION AND ADJOINT SENSITIVITY TO EPIDEMIOLOGICAL AND POLICY STUDIES OF AIRBORNE PARTICULATE MATTER

    Science.gov (United States)

    Source-resolved fine particulate matter (PM) concentrations are needed at high spatial and temporal resolutions for epidemiological studies aimed at identifying more- and less-harmful types of PM. Building on recent advances in air quality modeling, data assimilation, and s...

  3. Fine airborne particulate matter: secondary production

    International Nuclear Information System (INIS)

    The chemical speciation of over 750 samples of PM2,5 collected in urban area of Milan, provides preliminary information about the role of the sources. In particular the research points out the large importance of the secondary source, i. e. the secondary production in atmosphere from gaseous precursors, that accounts for the 60- 70% of the total particulate. These findings affect the intervention policy, that must be oriented also to control the gaseous precursors of the fine particulate

  4. Toxicological Impact of Air Pollution Particulate Matter PM 2.5 Collected under Urban Industrial or Rural Influence Occurrence of Oxidative Stress and Inflammatory Reaction in BEAS 2B Human Bronchial Epithelial Cells Corrected Version

    International Nuclear Information System (INIS)

    Exposure to air pollution Particulate Matter (PM) is one of the risk factors involved in the high incidence of respiratory and cardio-vascular diseases. In this work, to integrate inter-seasonal and inter-site variations, fine particle (PM2.5) samples have been collected in spring-summer 2008) and autumn 2008-winter 2009, in Dunkerque (France) under urban or industrial influence, and in Rubrouck (France), under rural influence. Attention was paid to characterize their physico-chemical characteristics, and to determine their ability to induce oxidative stress and inflammatory response in a human bronchial epithelial cell model (BEAS-2B cell line). Physico-chemical characterization of the six PM samples showed their heterogeneities and complexities depending upon their respective natural and/or anthropogenic emission sources. Lung cytotoxicity of these air pollution PM2.5 samples, as shown in BEAS-2B cells, might rely on the induction of oxidative stress conditions and particularly on the excessive inflammatory response. (author)

  5. Notes on the Particulate Matter Standards in the European Union and the Netherlands

    Directory of Open Access Journals (Sweden)

    Hugo Priemus

    2009-03-01

    Full Text Available The distribution of Particulate Matter in the atmosphere, resulting from emissions produced by cars, trucks, ships, industrial estates and agricultural complexes, is a topical public health problem that has increased in recent decades due to environmental factors in advanced economies in particular. This contribution relates the health impact caused by concentrations of Particulate Matter (PM in ambient air to the PM standards, the size of the particles and spatial planning. Diverging impacts of PM standards in legal regulation are discussed. The authors present a review of the development of legal PM standards in the European Union, with a specific reference to The Netherlands.

  6. Exposure to airborne particulate matter in the subway system.

    Science.gov (United States)

    Martins, Vânia; Moreno, Teresa; Minguillón, María Cruz; Amato, Fulvio; de Miguel, Eladio; Capdevila, Marta; Querol, Xavier

    2015-04-01

    The Barcelona subway system comprises eight subway lines, at different depths, with different tunnel dimensions, station designs and train frequencies. An extensive measurement campaign was performed in this subway system in order to characterise the airborne particulate matter (PM) measuring its concentration and investigating its variability, both inside trains and on platforms, in two different seasonal periods (warmer and colder), to better understand the main factors controlling it, and therefore the way to improve air quality. The majority of PM in the underground stations is generated within the subway system, due to abrasion and wear of rail tracks, wheels and braking pads caused during the motion of the trains. Substantial variation in average PM concentrations between underground stations was observed, which might be associated to different ventilation and air conditioning systems, characteristics/design of each station and variations in the train frequency. Average PM2.5 concentrations on the platforms in the subway operating hours ranged from 20 to 51 and from 41 to 91 μg m(-3) in the warmer and colder period, respectively, mainly related to the seasonal changes in the subway ventilation systems. The new subway lines with platform screen doors showed PM2.5 concentrations lower than those in the conventional system, which is probably attributable not only to the more advanced ventilation setup, but also to the lower train frequency and the design of the stations. PM concentrations inside the trains were generally lower than those on the platforms, which is attributable to the air conditioning systems operating inside the trains, which are equipped with air filters. This study allows the analysis and quantification of the impact of different ventilation settings on air quality, which provides an improvement on the knowledge for the general understanding and good management of air quality in the subway system. PMID:25616190

  7. Data quality in airborne particulate matter measurements

    Science.gov (United States)

    Hyslop, Nicole Marie

    Environmental measurements are complicated by uncontrollable natural variations in the environment, which cannot be reproduced in the laboratory. These variations affect the measurement uncertainty and detection capabilities -- two measures of data quality. Variations in a measurement series that arise from uncertainty in the measurements should not be interpreted as variations in the environment. Accurate estimates of measurement uncertainty are thus important inputs to data analyses. Collocated (duplicate) measurements are the most direct approach to characterizing uncertainty and detection capabilities because the observed differences reflect the actual measurement performance under the natural environmental variability. This dissertation uses collocated measurements of airborne particulate matter chemical speciation collected by the Interagency Monitoring of Protected Visual Environments (IMPROVE) and Speciation Trends Network (STN) to explore data quality issues. In addition to the complications introduced by uncontrollable environmental factors, the concepts of measurement precision and detection capabilities are often complicated by incomplete and inconsistent definitions. In this dissertation, collocated IMPROVE data are used to illustrate different formulations for precision and their ability to fit the observed differences. Collocated IMPROVE data are also used to show that measurement precision is typically better at concentrations well above the detection limit, when the analysis is performed on the whole filter instead of just a fraction of the filter, and for species predominantly in the smaller size fractions. For most species, the collocated differences are worse than the differences predicted by the current uncertainty model, suggesting that some sources of uncertainty are not accounted for or have been underestimated in the model. In addition, collocated measurement differences are shown to be correlated among several species. In both IMPROVE and

  8. The origin of ambient particulate matter concentrations in the Netherlands

    Science.gov (United States)

    Hendriks, Carlijn; Kranenburg, Richard; Kuenen, Jeroen; van Gijlswijk, René; Wichink Kruit, Roy; Segers, Arjo; Denier van der Gon, Hugo; Schaap, Martijn

    2013-04-01

    Particulate matter poses a significant threat to human health. To be able to develop effective mitigation strategies, the origin of particulate matter needs to be established. The regional air quality model LOTOS-EUROS, equipped with a newly developed labeling routine, was used to establish the origin of PM10 and PM2.5 in the Netherlands for 2007-2009 at the source sector level, distinguishing between national and foreign sources. The results suggest that 70-80% of modeled PM10 and 80-95% of PM2.5 in the Netherlands is of anthropogenic origin. About 1/3 of anthropogenic PM10 is of Dutch origin and 2/3 originates in foreign countries. Agriculture and transport are the Dutch sectors with the largest contribution to PM10 mass in the Netherlands, whereas the foreign contribution is more equally apportioned to road transport, other transport, industry, power generation and agriculture. For the PM2.5 fraction, a larger share is apportioned to foreign and anthropogenic origin than for PM10, but the same source sectors are dominant. The national contribution to PM levels is significantly higher in the densely populated Randstad area than for the country on average and areas close to the borders. In general, the Dutch contribution to the concentration of primary aerosol is larger than for secondary species. The sectoral origin varies per component and is location and time dependent. During peak episodes, natural sources are less important than under normal conditions, whereas especially road transport and agriculture become more important.

  9. Current state of particulate matter research and management in Serbia (Introductory paper

    Directory of Open Access Journals (Sweden)

    Milena Jovašević-Stojanović

    2010-09-01

    Full Text Available Particulate matter is the air pollutant that currently receives most attention from the atmospheric research community, the legislative authorities and the general public. Limiting particulate matter in the atmosphere which will result in significant benefits for human health, with associated positive economic consequences. Successful management of particulate matter requires scientific knowledge about particulate matter “from cradle to grave”, covering sources of particles, processes that govern their formation, composition, dispersion and fate in the atmosphere, as well as knowledge about human exposure and associated health and well being. Such knowledge allows to design and perform effective and efficient abatement measures and monitoring. This paper provides an introduction to the research and monitoring regarding particulate matter in Serbia. The contributions were first partly presented at the 2nd international workshop of the WeBIOPATR “Outdoor concentration, size distribution and composition of respirable particles in WB urban area” project in September 2009. This information provides context to the contributions in this number, and was part of the rationale of the project WeBIOPATR.

  10. Anodic aluminum oxide with fine pore size control for selective and effective particulate matter filtering

    Science.gov (United States)

    Zhang, Su; Wang, Yang; Tan, Yingling; Zhu, Jianfeng; Liu, Kai; Zhu, Jia

    2016-07-01

    Air pollution is widely considered as one of the most pressing environmental health issues. Particularly, atmospheric particulate matters (PM), a complex mixture of solid or liquid matter suspended in the atmosphere, are a harmful form of air pollution due to its ability to penetrate deep into the lungs and blood streams, causing permanent damages such as DNA mutations and premature death. Therefore, porous materials which can effectively filter out particulate matters are highly desirable. Here, for the first time, we demonstrate that anodic aluminum oxide with fine pore size control fabricated through a scalable process can serve as effective and selective filtering materials for different types of particulate matters (such as PM2.5, PM10). Combining selective and dramatic filtering effect, fine pore size control and a scalable process, this type of anodic aluminum oxide templates can potentially serve as a novel selective filter for different kinds of particulate matters, and a promising and complementary solution to tackle this serious environmental issue.

  11. Personal Exposure to Household Particulate Matter, Household Activities and Heart Rate Variability among Housewives

    OpenAIRE

    Huang, Ya-Li; Chen, Hua-Wei; Han, Bor-Cheng; Liu, Chien-Wei; Chuang, Hsiao-Chi; Lin, Lian-Yu; Chuang, Kai-Jen

    2014-01-01

    Background The association between indoor air pollution and heart rate variability (HRV) has been well-documented. Little is known about effects of household activities on indoor air quality and HRV alteration. To investigate changes in HRV associated with changes in personal exposure to household particulate matter (PM) and household activities. Methods We performed 24-h continuous monitoring of electrocardiography and measured household PM exposure among 50 housewives. The outcome variables...

  12. Possible Noncausal Bases for Correlations Between Low Concentrations of Ambient Particulate Matter and Daily Mortality

    OpenAIRE

    Valberg, Peter A

    2003-01-01

    Numerous studies of populations living in areas with good air quality have reported correlations between daily average levels of ambient particulate matter (PM) and daily mortality rates. These associations persist at PM levels below current air quality standards and are difficult to reconcile with the toxicology of PM chemical constituents. The unusual level of lethality per unit PM mass predicted by these associations may result from confounding by unmeasured societal, behavioral, or stress...

  13. Assessing the Capacity of Plant Species to Accumulate Particulate Matter in Beijing, China

    OpenAIRE

    Mo, Li; Ma, Zeyu; Xu, Yansen; Sun, Fengbin; Lun, Xiaoxiu; Liu, Xuhui; Chen, Jungang; Yu, Xinxiao

    2015-01-01

    Air pollution causes serious problems in spring in northern China; therefore, studying the ability of different plants to accumulate particulate matter (PM) at the beginning of the growing season may benefit urban planners in their attempts to control air pollution. This study evaluated deposits of PM on the leaves and in the wax layer of 35 species (11 shrubs, 24 trees) in Beijing, China. Differences in the accumulation of PM were observed between species. Cephalotaxus sinensis, Euonymus jap...

  14. Evaluation of operational online-coupled regional air quality models over Europe and North America in the context of AQMEII phase 2. Part II: Particulate Matter

    Science.gov (United States)

    The second phase of the Air Quality Model Evaluation International Initiative (AQMEII) brought together seventeen modeling groups from Europe and North America, running eight operational online-coupled air quality models over Europe and North America on common emissions and bound...

  15. Particulate composition characteristics under different ambient air quality conditions.

    Science.gov (United States)

    Tsai, Jiun-Horng; Chang, Lisa Tzu-Chi; Huang, Yao-Sheng; Chiang, Hung-Lung

    2011-07-01

    Particulate compositions including elemental carbon (EC), organic carbon (OC), water-soluble ionic species, and elemental compositions were investigated during the period from 2004 to 2006 in southern Taiwan. The correlation between the pollutant standard index (PSI) of ambient air quality and the various particle compositions was also addressed in this study. PSI revealed a correlation with fine (r = 0.74) and coarse (r = 0.80) particulate matter (PM). PSI manifested a significant correlation with the amount of analyzed ionic species (r approximately 0.80) in coarse and fine particles and a moderate correlation with carbon content (r = 0.63) in fine particles; however, it showed no correlation with elemental content. Although the ambient air quality ranged from good to moderate, the ionic species including chloride (Cl-), nitrate (NO3-), sulfate (SO4(2-)), sodium (Na+), ammonium (NH4+), magnesium (Mg2+), and calcium (Ca2+) increased significantly (1.5-3.7 times for Daliao and 1.8-6.9 times for Tzouying) in coarse PM. For fine particles, NO3-, SO4(2-), NH4+, and potassium (K+) also increased significantly (1.3-2.4 times for Daliao and 2.8-9.6 times for Tzouying) when the air quality went from good to moderate. For meteorological parameters, temperature evidenced a slightly negative correlation with PM concentration and PSI value, which implied a high PM concentration in the low-temperature condition. This reflects the high frequency of PM episodes in winter and spring in southern Taiwan. In addition, the mixing height increase from 980 to 1450 m corresponds to the air quality condition changing from unhealthy to good. PMID:21850835

  16. Airborne endotoxin in fine particulate matter in Beijing

    Science.gov (United States)

    Guan, Tianjia; Yao, Maosheng; Wang, Junxia; Fang, Yanhua; Hu, Songhe; Wang, Yan; Dutta, Anindita; Yang, Junnan; Wu, Yusheng; Hu, Min; Zhu, Tong

    2014-11-01

    Endotoxin is an important biological component of particulate matter (PM) which, upon inhalation, can induce adverse health effects, and also possibly complicate the diseases in combination with other pollutants. From 1 March 2012 to 27 February 2013 we collected air samples using quartz filters daily for the quantification of airborne endotoxin and also fine PM (PM2.5) in Beijing, China. The geometric means for endotoxin concentration and the fraction of endotoxin in PM were 0.65 EU/m3 (range: 0.10-75.02) and 10.25 EU/mg PM2.5 (range: 0.38-1627.29), respectively. The endotoxin concentrations were shown to vary greatly with seasons, typically with high values in the spring and winter seasons. Temperature and relative humidity, as well as concentrations of sulfur dioxide and nitrogen oxides were found to be significantly correlated with airborne endotoxin concentrations (p dithiothreitol (DTT) of PM. This study provided the first continuous time series of airborne endotoxin concentrations in Beijing, and identifies its potential associations with atmospheric factors. The information developed here can assist in the assessment of health effects of air pollution in Beijing.

  17. Airborne particulate matter collection and analysis by XRF

    International Nuclear Information System (INIS)

    The Philippine Nuclear Research Institute (PNRI) continues to pursue its air pollution research in support of the implementation of the 1999 Clean Air Act. The primary tool for analysis is X-Ray Fluorescence spectrometry (XRF) since the PPP-I is still on extended shut down. Following the workplan approved during the 1991 Workshop on Utilization of Research Reactors, the PNRI collected airborne particulate matter using the Gent sampler. The sampling site selected for the program was Poveda Learning Center, located beside a major highway, the Epifanio delos Santos Avenue (EDSA) where the principal source of pollution is vehicular emissions. Samples collected up to August were analyzed by XRF using three sets of analytical parameters to allow optimized analysis of a wider range of elements including Na and Pb. Although the PNRI has no operating reactor, it has personnel who have trained in NAA but are unable to apply the technique. As mentioned in the 2001 Workshop, the PNRI is considering several options to resume reactor-related activities. Thus, it is necessary to ensure continuing availability of expertise in NAA in the PNRI. It looks forward to collaborating with other Institutes through the FNCA program for the analysis of samples by NAA and using reactor parameters from collaborating Institute, to obtain experience in the use of Ko. This would also allow validation of XRF data obtained for these samples. In return it can analyze samples for collaborating institutions to generate data on Pb and S, which are important for pollutant source apportionment. (author)

  18. Atmospheric Light Detection and Ranging (LiDAR) Coupled With Point Measurement Air Quality Samplers to Measure Fine Particulate Matter (PM) Emissions From Agricultural Operations: The Los Banos CA Fall 2007 Tillage Campaign.

    Science.gov (United States)

    Airborne particles, especially fine particulate matter 2.5 micrometers (μm) or less in aerodynamic diameter (PM2.5), are microscopic solids or liquid droplets that can cause serious health problems, including increased respiratory symptoms such as coughing or difficulty breathing...

  19. The benefits of whole-house in-duct air cleaning in reducing exposures to fine particulate matter of outdoor origin: a modeling analysis.

    Science.gov (United States)

    Macintosh, David L; Minegishi, Taeko; Kaufman, Matthew; Baker, Brian J; Allen, Joseph G; Levy, Jonathan I; Myatt, Theodore A

    2010-03-01

    Health risks of fine particle air pollution (PM(2.5)) are an important public health concern that has the potential to be mitigated in part by interventions such as air cleaning devices that reduce personal exposure to ambient PM(2.5). To characterize exposure to ambient PM(2.5) indoors as a function of residential air cleaners, a multi-zone indoor air quality model was used to integrate spatially resolved data on housing, meteorology, and ambient PM(2.5), with performance testing of residential air cleaners to estimate short-term and annual average PM(2.5) of outdoor origin inside residences of three metropolitan areas. The associated public health impacts of reduced ambient PM(2.5) exposure were estimated using a standard health impact assessment methodology. Estimated indoor levels of ambient PM(2.5) varied substantially among ventilation and air cleaning configurations. The median 24-h average indoor-outdoor ratio of ambient PM(2.5) was 0.57 for homes with natural ventilation, 0.35 for homes with central air conditioning (AC) with conventional filtration, and 0.1 for homes with central AC with high efficiency in-duct air cleaner. Median modeled 24-h average indoor concentrations of PM(2.5) of outdoor origin for those three configurations were 8.4, 5.3, and 1.5 microg/m(3), respectively. The potential public health benefits of reduced exposure to ambient PM(2.5) afforded by air cleaning systems were substantial. If the entire population of single-family homes with central AC in the modeling domain converted from conventional filtration to high-efficiency in-duct air cleaning, the change in ambient PM(2.5) exposure is estimated to result in an annual reduction of 700 premature deaths, 940 hospital and emergency room visits, and 130,000 asthma attacks in these metropolitan areas. In addition to controlling emissions from sources, high-efficiency whole-house air cleaner are expected to reduce exposure to particles of outdoor origin and are projected to be an

  20. [Determination of particulate matter in small volume antibiotic injections].

    Science.gov (United States)

    Niizeki, M; Tanno, K

    1989-03-01

    Amounts of particulate matter present in 17 small volume antibiotic injections marketed in Japan were determined using light obscuration particle analyzer (HIAC). The vial volume range of each batch of product was 7-20 ml, and each vial contained 1 g as antibiotic potency. In 4 products, contents of particles between 2.5 and 10 microns in diameter were counted 2,000-7,000 per vial, and particles in other products were counted less than 2,000 per vial. Numbers of particles greater than or equal to 10 microns in diameter were much less than the USP XXI criteria for particulate matter in small volume injections. The product of the highest counts for particles between 10 and 25 microns in diameter showed counts amounted to 0.13% of the USP XXI criteria. In the 25-50 microns particulate diameter range, particulate matters were detected only in 2 products, and they were less than 0.2% of the USP XXI criteria. Particles over 50 microns in diameter were not detected in any products. These results showed that 17 small volume antibiotic injections marketed in Japan had good qualities regarding contents of particulate matter. PMID:2746842

  1. Chemical Speciation of Thorium in Marine Biogenic Particulate Matter

    Directory of Open Access Journals (Sweden)

    Katsumi Hirose

    2004-01-01

    Full Text Available Concentrations of particulate thorium in seawater were determined together with the strong organic ligand (SOL and uranium in particulate matter (PM. The concentrations of particulate Th in surface waters of the western North Pacific and the Sea of Japan ranged from 0.05 to 1.5 pM (1 x 10−12 M, and showed relatively large temporal and spatial variations. In order to chemically characterize the particulate Th in seawater, the relationship between particulate Th and SOL concentrations in surface PM was examined. The result reveals that particulate Th in surface PM was well correlated with the SOL concentration in PM. The concentrations of particulate Th in surface water were linearly related to those of particulate U. Mass balance analysis suggests that the dominant chemical form of Th(IV, as well as of U, in surface PM is a surface complex with the SOL in PM. Our findings suggest that the SOL in PM is a nonmetal-specific chelator originating from the cell surface of microorganisms.

  2. Elemental quantification of airborne particulate matter in Bandung and Lembang area

    International Nuclear Information System (INIS)

    ELEMENTAL QUANTIFICATION OF AIRBORNE PARTICULATE MATTER IN BANDUNG AND LEMBANG REGION: The contaminated airborne particulates by toxic gases and elements have a potential affect to the human health. Some toxic elements related to air pollution have carcinogenic affect. The quantification of those elements is important to monitor a level of pollutant contained in the airborne particulate. The aim of this work is to analyze the air particulate sample using instrumental neutron activation analysis and other related technique. Two sampling points of Bandung and Lembang that represent and urban and rural area respectively have been chosen to collect the air particulate sample. The samplings were carried out using Gent Stacked Filter Unit Sampler for 24 hours, and two cellulose filters of 8 μm and 0.45 μm pore size were used. Trace elements in the sample collected were determined using NAA based on a comparative method. Elemental distribution on PM2.5 and PM10 fraction of airborne particulate was analyzed, the enrichment factor was calculated using Al as reference elements, and the black carbons contents were determined using FEL Smoke Stain Reflectometer analyzed. The results are presented and discussed. (author)

  3. Preliminary metals characterization of Metro Manila air particulates

    International Nuclear Information System (INIS)

    High volume air particulate filter samples from some DENR (Department of Environment and Natural Resources) stations in Metro Manila were analyzed for selected metals TSP (total suspended particulates) correlation, enrichment factor calculations and comparison of average weight composition with a reference material were used to analyze the results. (Author)

  4. Temporal and spatial variations of particulate matter and gaseous pollutants in the urban area of Tehran

    Science.gov (United States)

    Alizadeh-Choobari, O.; Bidokhti, A. A.; Ghafarian, P.; Najafi, M. S.

    2016-09-01

    Being hemmed in on two sides by high mountains, the urban area of Tehran is characterized by high levels of particulate matter and gaseous pollutants, which have adverse consequences on human health, ecosystems and environment. Using air quality measurements taken in different regions of Tehran, spatial and temporal variations of particulate matter and gaseous pollutants are analyzed to identify the typical climatological aspects of air pollutants. In terms of particulate matter concentrations, South Tehran is more polluted than Central to North Tehran, while West Tehran is more polluted than the East. Concentrations of particles in North Tehran are lower in the midday compared to the midnight, whereas the opposite is true in South Tehran. The observed annual mean concentrations of PM2.5 and PM10 in North Tehran were 37.5 and 76.3 μg m-3, respectively, which are substantially greater than the national annual mean safety limits of 10 μg m-3 for PM2.5 and 20 μg m-3 for PM10. The observed high levels of particulate matter underline the essential need for a coordinated action to reduce the rapidly increasing air pollution over the growing urban area of Tehran. Noticeable monthly (seasonal) variations are evident in the observed PM10 concentrations, with a minimum of 61.5 μg m-3 in March (spring) and a maximum of 82.9 μg m-3 in July (summer), reflecting contribution of weather conditions. Analyzing daily PM2.5 (PM10) concentrations indicate that mid-week Wednesdays (Mondays) are the most polluted days. The higher mid-week concentrations reflect contribution of heavy vehicular traffic, industrial operation and increased commercial activities. Strong diurnal variations in the concentrations of particulate matter in North Tehran are detected, varying from a peak in late night to a minimum in late afternoon, indicating contribution of deeper daytime convective boundary layer and stronger winds in dispersion of particles.

  5. Cost benefit analysis of European air quality targets for sulphur dioxide, nitrogen dioxide and fine and suspended particulate matter in cities

    International Nuclear Information System (INIS)

    The European Commission has proposed air quality standards for NO2, SO2 and PM10 to be in force by 2010. The present paper presents a study that gauged their costs and benefits. An analysis of the expected emissions for 2010 (reference emission scenario), using simplified air quality models, showed that non-compliance with these standards will occur in cities only, not in rural areas. Most compliance problems are expected for PM10, least for SO2. Central estimates of the costs to meet standards range from 21 MECU (SO2), to 79 MECU (NO2) to 87-225 MECU (PM10). The estimated benefits are 83-3783 MECU (SO2), 408-5900 MECU (NO2), and 5007- 51247 MECU (PM10). Uncertainties are high, due to errors and incertitude in various steps of the methodology, mainly the estimation of the human health effects, in particular effects on mortality, and in the valuation of a statistical life. In the case of PM10, additional uncertainty results from the small size of the air quality database. Notwithstanding the uncertainties, the indications are that the benefits exceed the costs. 28 refs

  6. Polycyclic aromatic hydrocarbons and organic matter associated to particulate matter emitted from atmospheric fluidized bed coal combustion

    International Nuclear Information System (INIS)

    The polycyclic aromatic hydrocarbons (PAH) and the organic matter (OM) content associated with particulate matter (PM) emissions from atmospheric fluidized bed coal combustion have been studied. The two main aims of the work have been (a) to study OM and PAH emissions as a function of the coal fluidized bed combustion (FBC) variables in solid phase and (b) to check if there is any correlation between OM and PAH contained in the PM. The combustion was carried out in a laboratory scale plant at different combustion conditions: temperature, percentage of oxygen excess, and total air flow. PAH associated on the particulate matter have been analyzed by fluorescence spectroscopy in the synchronous mode (FS) after PM extraction by sonication with dimethylformamide (DMF). It can be concluded that there is not a direct relationship between the OM content and the PAH supported in the PM emitted. In addition, neither PM or OM show dependence between themselves

  7. Deposition of Suspended Fine Particulate Matter in a Library

    Czech Academy of Sciences Publication Activity Database

    Smolík, Jiří; Mašková, Ludmila; Zíková, Naděžda; Ondráčková, Lucie; Ondráček, Jakub

    2013-01-01

    Roč. 1, 3 April (2013). ISSN 2050-7445 R&D Projects: GA MK DF11P01OVV020 Keywords : fine particulate matter * deposition * brownian diffusion Subject RIV: CF - Physical ; Theoretical Chemistry http://www.heritagesciencejournal.com/content/1/1/7

  8. 40 CFR 60.122 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... subpart shall discharge or cause the discharge into the atmosphere from a blast (cupola) or reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf). (2... shall discharge or cause the discharge into the atmosphere from any pot furnace any gases which...

  9. 40 CFR 60.132 - Standard for particulate matter.

    Science.gov (United States)

    2010-07-01

    ... reverberatory furnace any gases which: (1) Contain particulate matter in excess of 50 mg/dscm (0.022 gr/dscf... subpart shall discharge or cause the discharge into the atmosphere from any blast (cupola) or electric furnace any gases which exhibit 10 percent opacity or greater....

  10. CHARACTERIZATION OF COTTON GIN PARTICULATE MATTER EMISSIONS – FIRST YEAR

    Science.gov (United States)

    Due to EPA’s implementation of more stringent standards for particulate matter with an effective diameter less than 2.5 microns, the cotton ginners’ associations across the cotton belt, including the National, Texas, Southern, Southeastern, and California associations, agreed that there is an urgent...

  11. SOURCE SAMPLING FINE PARTICULATE MATTER: WOOD-FIRED INDUSTRIAL BOILER

    Science.gov (United States)

    The report provides a profile for a wood-fired industrial boiler equipped with a multistage electrostatic precipitator control device. Along with the profile of emissions of fine particulate matter of aerodynamic diameter of 2.5 micrometers or less (PM-2.5), data are also provide...

  12. Oxidative Stress, DNA Damage, and Inflammation Induced by Ambient Air and Wood Smoke Particulate Matter in Human A549 and THP-1 Cell Lines

    DEFF Research Database (Denmark)

    Danielsen, Pernille Høgh; Møller, Peter; Jensen, Keld Alstrup;

    2011-01-01

    polycyclic aromatic hydrocarbons (PAH), less soluble metals, and expectedly also had a smaller particle size than PM collected from ambient air. All four types of PM combined increased the levels of 8-oxo-7,8-dihydro-20-deoxyguanosine dose-dependently in A549 cells, whereas there was no change in the levels...... sampled from the wood stove area. Expression of oxoguanine glycosylase 1, lymphocyte function-associated antigen-1, and interleukin-6 did not change. We conclude that WSPM has small particle size, high level of PAH, low level of water-soluble metals, and produces high levels of free radicals, DNA damage...

  13. Source apportionment with uncertainty estimates of fine particulate matter in Ostrava, Czech Republic using Positive Matrix Factorization

    Science.gov (United States)

    A 14-week investigation during a warm and cold seasons was conducted to improve understanding of air pollution sources that might be impacting air quality in Ostrava, the Czech Republic. Fine particulate matter (PM2.5) samples were collected in consecutive 12-h day and night incr...

  14. Particulate Matter Pollution and Population Exposure Assessment over Mainland China in 2010 with Remote Sensing

    OpenAIRE

    Ling Yao; Ning Lu

    2014-01-01

    The public is increasingly concerned about particulate matter pollution caused by respirable suspended particles (PM10) and fine particles (PM2.5). In this paper, PM10 and PM2.5 concentration are estimated with remote sensing and individual air quality indexes of PM10 and PM2.5 (IPM10 and IPM2.5) over mainland China in 2010 are calculated. We find that China suffered more serious PM2.5 than PM10 pollution in 2010, and they presented a spatial differentiation. Consequently, a particulate-base...

  15. Collaborative monitoring study of airborne particulate matters among seven Asian countries

    International Nuclear Information System (INIS)

    Seven Asian countries have been collaborating in collecting airborne particulate matter (APM) in their individual countries and analyzing them by neutron activation analysis as a common analytical tool. APM samples were collected into two fractions of fine and coarse grains (PM2 and PM2- 10, respectively). Analytical data were compared from several viewpoints such as particulate sizes, locality of sampling sites (either urban or rural) and geographical location of participating countries. Chemical composition and their monthly variations as well as mass concentrations appear to be highly characteristic for individual sampling sites, suggesting that NAA data are suitable for evaluating the air quality in each site. (author)

  16. Improvements in PIXE analysis of hourly particulate matter samples

    Science.gov (United States)

    Calzolai, G.; Lucarelli, F.; Chiari, M.; Nava, S.; Giannoni, M.; Carraresi, L.; Prati, P.; Vecchi, R.

    2015-11-01

    Most air quality studies on particulate matter (PM) are based on 24-h averaged data; however, many PM emissions as well as their atmospheric dilution processes change within a few hours. Samplings of PM with 1-h resolution can be performed by the streaker sampler (PIXE International Corporation), which is designed to separate the fine (aerodynamic diameter less than 2.5 μm) and the coarse (aerodynamic diameter between 2.5 and 10 μm) fractions of PM. These samples are efficiently analyzed by Particle Induced X-ray Emission (PIXE) at the LABEC laboratory of INFN in Florence (Italy), equipped with a 3 MV Tandetron accelerator, thanks to an optimized external-beam set-up, a convenient choice of the beam energy and suitable collecting substrates. A detailed description of the adopted set-up and results from a methodological study on the detection limits for the selection of the optimal beam energy are shown; the outcomes of the research on alternative collecting substrates, which produce a lower background during the measurements, and with lower contaminations, are also discussed.

  17. Small-scale variability of particulate matter and perception of air quality in an inner-city recreational area in Aachen, Germany

    Directory of Open Access Journals (Sweden)

    Bastian Paas

    2016-06-01

    Full Text Available Spatial micro-scale variability of particle mass concentrations is an important criterion for urban air quality assessment. In this study we present results from detailed spatio-temporal measurements in the urban roughness layer along with a survey to determine perceptions of citizens regarding air quality in an inner city park in Aachen, Germany. Particles were sampled with two different approaches in February, May, July and September 2014 using an optical particle counter at six fixed measurement locations, representing different degrees of outdoor particle exposure that can be experienced by a pedestrian walking in an intra-urban recreational area. A simulation of aerosol emissions induced by road traffic was conducted using the German reference dispersion model Austal2000. The mobile measurements revealed unexpected details in the distribution of urban particles with highest mean concentrations of PM(1;10$\\text{PM}_{(1;10}$ inside the green area 100 m away from bus routes (arithmetic mean: 22.5 μg m−3 and 18.9 μg m−3; geometric mean: 9.3 μg m−3 and 6.5 μg m−3, whereas measurement sites in close proximity to traffic lines showed far lower mean values (arithmetic mean: 7.5 μg m−3 and 8.7 μg m−3; geometric mean: 5.8 μg m−3 and 6.5 μg m−3. Concerning simulation results, motor traffic is still proved to be an important aerosol source in the area, although the corresponding concentrations declined rapidly as the distances to the line sources increased. Further analysis leads to the assumption that particularly coarse particles were emitted through diffuse sources e.g. on the ability of surfaces to release particles by resuspension which were dominantly apparent in measured PM(1;10$\\text{PM}_{(1;10}$ and PM(0.25;10$\\text{PM}_{(0.25;10}$ data. The contribution of diffuse particle sources and urban background transport to local PM(0.25;10$\\text{PM}_{(0.25;10}$ concentrations inside the

  18. Modeling air quality during the California Regional PM 10/PM 2.5 Air Quality Study (CPRAQS) using the UCD/CIT source-oriented air quality model - Part III. Regional source apportionment of secondary and total airborne particulate matter

    Science.gov (United States)

    Ying, Qi; Lu, Jin; Kleeman, Michael

    A comprehensive air quality modeling project was carried out to simulate regional source contributions to secondary and total (=primary + secondary) airborne particle concentrations in California's Central Valley. A three-week stagnation episode lasting from December 15, 2000 to January 7, 2001, was chosen for study using the air quality and meteorological data collected during the California Regional PM 10/PM 2.5 Air Quality Study (CRPAQS). The UCD/CIT mechanistic air quality model was used with explicit decomposition of the gas phase reaction chemistry to track source contributions to secondary PM. Inert artificial tracers were used with an internal mixture representation to track source contributions to primary PM. Both primary and secondary source apportionment calculations were performed for 15 size fractions ranging from 0.01 to 10 μm particle diameters. Primary and secondary source contributions were resolved for fugitive dust, road dust, diesel engines, catalyst equipped gasoline engines, non-catalyst equipped gasoline engines, wood burning, food cooking, high sulfur fuel combustion, and other anthropogenic sources. Diesel engines were identified as the largest source of secondary nitrate in central California during the study episode, accounting for approximately 40% of the total PM 2.5 nitrate. Catalyst equipped gasoline engines were also significant, contributing approximately 20% of the total secondary PM 2.5 nitrate. Agricultural sources were the dominant source of secondary ammonium ion. Sharp gradients of PM concentrations were predicted around major urban areas. The relative source contributions to PM 2.5 from each source category in urban areas differ from those in rural areas, due to the dominance of primary OC in urban locations and secondary nitrate in the rural areas. The source contributions to ultra-fine particle mass PM 0.1 also show clear urban/rural differences. Wood smoke was found to be the major source of PM 0.1 in urban areas while

  19. Particulate Matter Filtration Design Considerations for Crewed Spacecraft Life Support Systems

    Science.gov (United States)

    Agui, Juan H.; Vijayakumar, R.; Perry, Jay L.

    2016-01-01

    Particulate matter filtration is a key component of crewed spacecraft cabin ventilation and life support system (LSS) architectures. The basic particulate matter filtration functional requirements as they relate to an exploration vehicle LSS architecture are presented. Particulate matter filtration concepts are reviewed and design considerations are discussed. A concept for a particulate matter filtration architecture suitable for exploration missions is presented. The conceptual architecture considers the results from developmental work and incorporates best practice design considerations.

  20. Recent Trends in Atmospheric Lead Levels at an Urban-Industrial District of Metropolitan Lisbon, Portugal, through PIXE Analysis of Air-Particulate Matter

    International Nuclear Information System (INIS)

    Despite a steep decline in primary, traffic-related loads, lead in the environment is still much of an issue. Current atmospheric levels may be unmistakably reflecting the widespread use of cleaner fuels, yet decades of uncontrolled emissions from mobile sources have made lead to pervade every terrestrial (and aquatic) ecosystem, from where it keeps re-entering the lower troposphere, at least in terms of local circulation. The continuing surveillance of airborne-lead levels is thus necessary, not just for ensuring a strict compliance with regulatory decisions, but also for assisting in the implementation of remediation and/or rehabilitation policies. In Portugal, unleaded gasoline was made generally available in 1990, yet both leaded and lead-free varieties were commercialised until 1998. After that, all vehicles were compelled to use unleaded gasoline. Even though it is certainly too early for a full trend analysis of airborne levels and their response to the ban on lead, concentrations in ambient air over an important urban-industrial corridor within the Lisbon metropolitan area show a steady, sharp decrease through the last decade. Since 2000, airborne-lead data seems somewhat stabilised and, as far as busy conurbations are concerned, roughly within the values that were usually observed in the rural hinterland back in the mid 1990s

  1. Environmental atmosphere suspended particulate matter analysis using PIXE

    International Nuclear Information System (INIS)

    One of the environmental indicators of the atmosphere environment is suspended particulate matter (SPM). Recently, the concentration of particulate matter under 2.5 micro-meters (PM2.5) among SPM is regarded as important, and an environmental standard has been established for PM2.5 concentration. S.H.I. Examination and Inspection (SEI), Ltd. analyzes the components of PM2.5 by particle-induced X-ray emission (PIXE) using a Van de Graaff accelerator. SEI's PIXE analysis system quantifies the components by an external standard method. As a method for validating the reliability, the certified values of standard matter SRM2783 were compared with SEI's analysis values, and it was confirmed that the uncertainty of the analysis values of PM2.5 with this analysis system was within 10%. (author)

  2. Characterization of airborne particulate matter collected at Jakarta roadside of an arterial road

    International Nuclear Information System (INIS)

    A total of 44 pairs of airborne particulate matter samples were collected in the intersection of Simprug, Pondok Indah, South Jakarta. Sampling of airborne particulate matter was conducted in July 2008-July 2009 using a Gent stacked filter unit sampler in two size fractions of <2.5 μm (fine) and 2.5-10 μm (coarse). Mass concentrations, black carbon as well as elemental concentrations were investigated as a pre-study in step to the evaluation of air quality in these roadside areas. Black carbon was determined by reflectance and elemental analysis was performed using proton induced X-ray emission, PIXE. The data set of fine particulate matters obtained from the characterization was then analyzed using receptor modeling EPA PMF3 for source apportionment. Source apportionment identified 5 factors, i.e. soil (9.2 %), construction mixed with road dust (20.9 %), motor vehicles (31.5 %), biomass burning mixed with seasalt (30.9 %), and industry (7.5 %). Motor vehicles is the dominant sources that contributes to the fine particulate matter in Jakarta. (author)

  3. Outdoor Particulate Matter Exposure and Lung Cancer: A Systematic Review and Meta-Analysis

    OpenAIRE

    Hamra, Ghassan B.; Guha, Neela; Cohen, Aaron; Laden, Francine; Raaschou-Nielsen, Ole; Jonathan M. Samet; Vineis, Paolo; Forastiere, Francesco; Saldiva, Paulo; Yorifuji, Takashi; Loomis, Dana

    2014-01-01

    Background: Particulate matter (PM) in outdoor air pollution was recently designated a Group I carcinogen by the International Agency for Research on Cancer (IARC). This determination was based on the evidence regarding the relationship of PM2.5 and PM10 to lung cancer risk; however, the IARC evaluation did not include a quantitative summary of the evidence. Objective: Our goal was to provide a systematic review and quantitative summary of the evidence regarding the relationship between PM an...

  4. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter

    OpenAIRE

    Oyewale Mayowa Morakinyo; Matlou Ingrid Mokgobu; Murembiwa Stanley Mukhola; Raymond Paul Hunter

    2016-01-01

    Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease...

  5. Ultrafine ambient particulate matter enhances cardiac ischemia and reperfusion injury

    Science.gov (United States)

    Epidemiological studies have demonstrated a consistent link between exposure to ambient particulate air pollutant (PM) and the incidence of cardiovascular morbidity and mortality. The present study was designed to evaluate the cardiac effects of ambient PM. Mice were exposed to 1...

  6. Characterization of the particulate air pollution in contrasted mega cities

    International Nuclear Information System (INIS)

    This work aims at characterizing the physics and the chemistry that govern particulate air pollution in two mega cities (Paris and Cairo) for which the size distribution and the chemical composition of airborne particles were poorly documented. Seasonal variations of the main aerosol sources and transformation processes are investigated in these two urban centres, with a particular attention to semi-volatile material and secondary organic aerosols. Short-term health effects of Paris size-segregated aerosols, as well as particulate pollution during the Cairo 'Black Cloud' season, are also emphasized here. Finally, the comparison of results obtained for the two mega cities and for another one (Beijing) allows investigating main factors responsible for particulate air pollution in urban centres with contrasted climatic conditions and development levels. Notably, this work also allows the build-up of an experimental dataset which is now available for the modelling of urban air quality and of environmental impacts of mega city air pollution. (author)

  7. Biodiesel Fuel Property Effects on Particulate Matter Reactivity

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Black, S.; McCormick, R. L.

    2010-06-01

    Controlling diesel particulate emissions to meet the 2007 U.S. standard requires the use of a diesel particulate filter (DPF). The reactivity of soot, or the carbon fraction of particulate matter, in the DPF and the kinetics of soot oxidation are important in achieving better control of aftertreatment devices. Studies showed that biodiesel in the fuel can increase soot reactivity. This study therefore investigated which biodiesel fuel properties impact reactivity. Three fuel properties of interest included fuel oxygen content and functionality, fuel aromatic content, and the presence of alkali metals. To determine fuel effects on soot reactivity, the performance of a catalyzed DPF was measured with different test fuels through engine testing and thermo-gravimetric analysis. Results showed no dependence on the aromatic content or the presence of alkali metals in the fuel. The presence and form of fuel oxygen was the dominant contributor to faster DPF regeneration times and soot reactivity.

  8. Evaluation of Exposures to Diesel Particulate Matter Utilizing Ambient Air Monitoring and Urinary Biomarkers Among Pedestrian Commuters who Cross the U.S.-Mexico Border at San Ysidro, CA

    Science.gov (United States)

    Galaviz, Vanessa Eileen

    Background: Walk-in-line pedestrians crossing the U.S.-Mexico border northbound at the San Ysidro, CA Port of Entry ("Border Commuters") may be at an increased risk of experiencing elevated traffic-related air pollution, including diesel exhaust (DE). DE exposure has been associated with numerous adverse health effects, particularly cardiovascular and respiratory problems, including as lung cancer. Pedestrian crossers wait in line for extended periods and stand within 10 feet of highly concentrated traffic, particularly to diesel buses. Understanding the magnitude of traffic-related exposures is important for this vulnerable population. It was hypothesized that subjects who reside in Tijuana, Baja California, Mexico and cross the border as a pedestrian will experience higher exposure to traffic-related pollutants than those who live and work in South San Diego, CA, USA and do not cross the border. Methods: Ninety-one participants were enrolled for this study; 80% were "Border Commuters" and 20% were "Non-Border Commuters". "Non-Border Commuters" served as the comparison group and were defined as residents who lived in or near and worked or went to school in San Ysidro, CA but did not cross the border. Questionnaires, time activity diaries, and urine samples were collected from all participants. Of the "Border Commuters", 56 personal 24-hour PM2.5 and 1-nitropyrene (1-NP) - a marker for diesel exhaust - samples were collected. There were 22 at-home indoor and 14 at-home outdoor 1-NP samples collected. Additionally, area samples collected at the border included 35 days of 1-NP, black carbon (BC), carbon monoxide (CO), fine particulate matter (PM2.5) and ultrafine particulate matter (UFP). Of the "Non-Border Commuters", 15 personal 24-hour PM2.5 and 1-NP samples were collected. Additonally, 3 at-home indoor and outdoor 24-hour 1-NP samples were collected. Results: Personal exposure to PM2.5 was nearly 2-fold higher among "Border Commuters" compared to "Non

  9. Particulate matter formation from photochemical degradation of organophosphorus pesticides

    Science.gov (United States)

    Borrás, E.; Ródenas, M.; Vera, T.; Muñoz, A.

    2015-12-01

    Several experiments were performed in the European Photo-reactor - EUPHORE - for studying aerosol formation from organophosphorus pesticides such as diazinon, chlorpyrifos, chlorpyrifos-methyl and pirimiphos-methyl. The mass concentration yields obtained (Y) were in the range 5 - 44% for the photo-oxidation reactions in the presence and the absence of NOx. These results confirm the importance of studying pesticides as significant precursors of atmospheric particulate matter due to the serious risks associated to them. The studies based on the use of EUPHORE photoreactor provide useful data about atmospheric degradation processes of organophosphorus pesticides to the atmosphere. Knowledge of the specific degradation products, including the formation of secondary particulate matter, could complete the assessment of their potential impact, since the formation of those degradation products plays a significant role in the atmospheric chemistry, global climate change, radiative force, and are related to health effects.

  10. Qualitative and quantitative determination of water in airborne particulate matter

    OpenAIRE

    Canepari, S.; C. Farao; E. Marconi; C. Giovannelli; C. Perrino

    2012-01-01

    This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM). The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C).

    The analytical performance...

  11. Qualitative and quantitative determination of water in airborne particulate matter

    OpenAIRE

    Canepari, S.; C. Farao; E. Marconi; C. Giovannelli; C. Perrino

    2013-01-01

    This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM). The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C). The analytical performance of the method was verif...

  12. Electrically heated particulate matter filter soot control system

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2016-03-15

    A regeneration system includes a particulate matter (PM) filter with an upstream end for receiving exhaust gas and a downstream end. A control module determines a current soot loading level of the PM filter and compares the current soot loading level to a predetermined soot loading level. The control module permits regeneration of the PM filter when the current soot loading level is less than the predetermined soot loading level.

  13. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    International Nuclear Information System (INIS)

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter (≤2.5 μm) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban–rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003–2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3–4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter ≤2.5 and ≤10 μm emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  14. Exposure to airborne metals and particulate matter and risk for youth adjudicated for criminal activity

    Energy Technology Data Exchange (ETDEWEB)

    Haynes, Erin N., E-mail: Erin.Haynes@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Chen, Aimin, E-mail: Aimin.Chen@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Ryan, Patrick, E-mail: Patrick.Ryan@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Succop, Paul, E-mail: Paul.Succop@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States); Wright, John, E-mail: John.Wright@uc.edu [College of Education, Criminal Justice, and Human Services, University of Cincinnati, Cincinnati, OH 45221 (United States); Dietrich, Kim N., E-mail: Kim.Dietrich@uc.edu [College of Medicine, Department of Environmental Health, University of Cincinnati, Cincinnati, OH 45267 (United States)

    2011-11-15

    Antisocial behavior is a product of multiple interacting sociohereditary variables, yet there is increasing evidence that metal exposure, particularly, manganese and lead, play a role in its epigenesis. Other metals, such as arsenic, cadmium, chromium, and mercury, and exposure to traffic-related air pollution, such as fine particulate matter ({<=}2.5 {mu}m) have been associated with neurological deficits, yet largely unexplored with respect to their relationship with delinquent behavior. The purpose of this study is to evaluate the ecological relationship between county-wide reported airborne emissions of air metals, particulate matter, and youth adjudicated for criminal activity. Metal exposure data were collected from the Environmental Protection Agency AirData. Population statistics were obtained from the United States Census 2000 and adjudication data was obtained from the Courts of Common Pleases from each Ohio County. Simple correlations were calculated with the percentage of adjudications, all covariates, and estimated metal air emissions. Separate negative binomial regression models for each pollutant were used to provide an estimated risk ratio of pollutant emissions on the risk of adjudication for all Ohio counties adjusting for urban-rural residence, percentage of African Americans, median family income, percentage of family below poverty, percentage of high school graduation in 25 years and older populations, and population density. Metal emissions and PM in 1999 were all correlated with adjudication rate (2003-2005 average). Metal emissions were associated with slightly higher risk of adjudication, with about 3-4% increased risk per natural log unit of metal emission except chromium. The associations achieved statistical significance for manganese and mercury. The particulate matter {<=}2.5 and {<=}10 {mu}m emissions had a higher risk estimate, with 12% and 19% increase per natural log unit emission, respectively, and also achieved statistical

  15. PAH Accessibility in Particulate Matter from Road-Impacted Environments.

    Science.gov (United States)

    Allan, Ian J; O'Connell, Steven G; Meland, Sondre; Bæk, Kine; Grung, Merete; Anderson, Kim A; Ranneklev, Sissel B

    2016-08-01

    Snowmelt, surface runoff, or stormwater releases in urban environments can result in significant discharges of particulate matter-bound polycyclic aromatic hydrocarbons (PAHs) into aquatic environments. Recently, more-specific activities such as road-tunnel washing have been identified as contributing to contaminant load to surface waters. However, knowledge of PAH accessibility in particulate matter (PM) of urban origin that may ultimately be released into urban surface waters is limited. In the present study, we evaluated the accessibility of PAHs associated with seven distinct (suspended) particulate matter samples collected from different urban sources. Laboratory-based infinite sink extractions with silicone rubber (SR) as the extractor phase demonstrated a similar pattern of PAH accessibility for most PM samples. Substantially higher accessible fractions were observed for the less-hydrophobic PAHs (between 40 and 80% of total concentrations) compared with those measured for the most-hydrophobic PAHs (wash waters, first-order desorption rates for PAHs with log Kow > 5.5 were found in line with those commonly found for slowly or very slowly desorbing sediment-associated contaminants. PAHs with log Kow wash waters when surfactants are used. The implications of total and accessible PAH concentrations measured in our urban PM samples are discussed in a context of management of PAH and PM emission to the surrounding aquatic environment. Although we only fully assessed PAHs in this work, further study should consider other contaminants such as OPAHs, which were also detected in all PM samples. PMID:27312518

  16. Spatial statistics of atmospheric particulate matter in China

    Science.gov (United States)

    Gao, Shenghui; Wang, Yangjun; Huang, Yongxiang; Zhou, Quan; Lu, Zhiming; Shi, Xiang; Liu, Yulu

    2016-06-01

    In this paper, the spatial dynamics of the atmospheric particulate matters (resp. PM10 and PM2.5) are studied using turbulence methodologies. It is found experimentally that the spatial correlation function ρ(r) shows a log-law on the mesoscale range, i.e., 50 ≤ r ≤ 500 km, with an experimental scaling exponent β = 0.45. The spatial structure function shows a power-law behavior on the mesoscale range 90 ≤ r ≤ 500 km. The experimental scaling exponent ζ(q) is convex, showing that the intermittent correction is relevant in characterizing the spatial dynamic of particulate matter. The measured singularity spectrum f(α) also shows its multifractal nature. Experimentally, the particulate matter is more intermittent than the passive scalar, which could be partially due to the mesoscale movements of the atmosphere, and also due to local sources, such as local industry activities.

  17. Characterization of elements in air particulate matters in Beijing-Tianjin-Hebei megacities, China%京津冀地区城市环境空气颗粒物及其元素特征分析

    Institute of Scientific and Technical Information of China (English)

    张霖琳; 王超; 刀谞; 滕恩江; 王业耀

    2014-01-01

    于2013年四个季度,选择京津冀3个主要城市和1个对照点,以及4个全国大气背景站,同步采集环境空气颗粒物PM10和PM2.5样品,采用微波消解ICP-MS法分析样品中的68种元素.结果表明,京津冀3个城市四个季度PM10和PM2.5均超过国家二级标准限值,且采暖季高于非采暖季.全年PM2.5/PM10比值大于0.5,细颗粒物污染占主导.元素在PM2.5中所占比例高于PM10.而背景点颗粒物浓度低于标准限值,远低于城市点,且四个季节变化不大.在检出的57种元素中, Na、Mg、Al、S、K、Ca、Fe、Zn在0.1~10µg/m3之间,P、Ti、Mn、Ni、Cu、Ba、Pb在10~100ng/m3之间,其他含量较低元素如Cd、Co、Ge、Ga、Zr、Sr、V等在0.01~10ng/m3之间.元素S、Na、K、Al、Fe、Mg、Ca等含量大于1%,P、Zn、Pb、Cu、Ba等其他元素含量介于0.1%~1%.富集因子分析结果提示,K、Ca、Cr、Fe、Cu、Zn、As、Cd和Pb等9种元素主要来源于人为污染,采暖季与非采暖季富集因子比值在1.1~3.5之间.因子分析提示,燃煤、工业污染源、燃油等是颗粒物污染的主要贡献因素.%Air particulate matter samples from three Beijing-Tianjin-Hebei megacities, a reference and four national background sites were collected. 68 elements in PM10 and PM2.5 were analyzed with microwave-assisted digestion and inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the daily mass concentrations of PM10 and PM2.5 in three Beijing-Tianjin-Hebei megacities were much higher than the relevant Chinese air quality standards. The concentrations in heating season were much higher than those in non- heating season. The ratios of PM2.5/PM10 were higher than 0.5, which indicated PM2.5 was the main component of PM pollution. The concentrations of PM10 and PM2.5 in national background sites changed slightly in seasons and were lower than the air quality standards and the city sites. The concentrations of Na, Mg, Al, S, K, Ca Fe and Zn were in

  18. Real-world exposure of airborne particulate matter triggers oxidative stress in an animal model

    OpenAIRE

    Wan, Guohui; Rajagopalan, Sanjay; Sun, Qinghua; Zhang, Kezhong

    2010-01-01

    Epidemiological studies have shown a strong link between air pollution and the increase of cardio-pulmonary mortality and morbidity. In particular, inhaled airborne particulate matter (PM) exposure is closely associated with the pathogenesis of air pollution-induced systemic diseases. In this study, we exposed C57BIV6 mice to environmentally relevant PM in fine and ultra fine ranges (diameter < 2.5 μm, PM2.5) using a “real-world” airborne PM exposure system. We investigated the pathophysiolog...

  19. Distribution of particulate organic matter in Rajapur and Vagothan estuarines (west coast of India)

    Digital Repository Service at National Institute of Oceanography (India)

    Tulaskar, A.S.; Sawant, S.S.; Wagh, A.B.

    The distribution of particulate organic carbon (POC), particulate carbohydrates (PCHO) and particulate proteins (PP) in the suspended particulate matter was studied. The POC, PCHO and PP concentrations ranged from 176 to 883 mu g.l/1, 115 to 647 mu...

  20. Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark

    DEFF Research Database (Denmark)

    Feilberg, A.; Poulsen, M.W.B.; Nielsen, T.;

    2001-01-01

    The occurrence of selected nitro-polycyclic aromatic hydrocarbons (nitro-PAHs) associated with atmospheric particulate matter has been investigated at an urban site and at a semi-rural site. For this purpose an analysis method based on gas chromatography and tandem ion trap mass spectrometry has...... been developed and applied. The nitro-PAK levels have been compared with levels of other air pollutants including unsubstituted PAHs, inorganic gases and particulate matter, as well as with meteorological parameters. Correlations and concentration ratios suggest that the dominant source of 9...... contribution of the OH initiated formation is estimated to be in the range of 90-100%. However, under wintertime conditions with cloudy weather implying low OH radical production, NO3 radicals may also be important as initiators of nitro-PAH formation. Samples influenced by transport of polluted air masses...

  1. Chemical and biological characterization of urban particulate matter

    International Nuclear Information System (INIS)

    Airborne particulate matter has been collected on glass fiber filter by high volume sampling in the Goeteborg urban area. The samples were, after extraction with respect to organic components, tested for biological effect in the Salmonella mutagenicity assay, affinity to the cytosol TCDD receptor and toxicity towards a mammalian cell system and analysed chemically for selected polycyclic aromatic compounds. A series of samples collected simultaneously at a street level location and a rooftop site showed that most parameters associated with the organic compounds adsorbed to airborne particulate matter has similar concentrations at the two levels. The differences observed for the mutagenic effect in different strains and conditions showed that the rooftop samples had a different composition compared to the street samples indicating that atmospheric transformations have occurred. Chemical fractionation of representative samples showed that the distribution of mutagenic activity among different fractions is dissimilar to the distribution obtained in the fractionation of both gasoline and diesel engine exhaust particles. Partial least squares regression analysis showed qualitatively that diesel exhaust is a major source of airborne particulate mutagenic activity and source apportionment with chemical mass balance and multilinear regression corroborated this quantitatively. The multilinear regression analysis gave the result that the airborne activity in Salmonella TA90-S9 originated to 54±4% from diesel exhaust and to 26±3% from gasoline exhaust. The contribution is more equal for the activity measured with TA98+S9. The usefulness of short-term bioassays as an addition to chemical analysis of airborne particulate matter depends on whether only polycylic aromatic hydrocarbons (PAH) are major carcinogens, as has been suggested in the literature, or whether also other polycyclic aromatic compound (PAC) are of importance. (au)

  2. Acute Effects of Fine Particulate Air Pollution on Cardiac Arrhythmia: The APACR Study

    OpenAIRE

    He, Fan; Michele L. Shaffer; Rodriguez-Colon, Sol; Yanosky, Jeff D.; Bixler, Edward; Cascio, Wayne E; Liao, Duanping

    2011-01-01

    Background: The mechanisms underlying the relationship between particulate matter (PM) air pollution and cardiac disease are not fully understood. Objectives: We examined the effects and time course of exposure to fine PM [aerodynamic diameter ≤ 2.5 μm (PM2.5)] on cardiac arrhythmia in 105 middle-age community-dwelling healthy nonsmokers in central Pennsylvania. Methods: The 24-hr beat-to-beat electrocardiography data were obtained using a high-resolution Holter system. After visually identif...

  3. Enhancement in secondary particulate matter production due to mountain trapping

    Science.gov (United States)

    Yao, Teng; Fung, J. C. H.; Ma, H.; Lau, A. K. H.; Chan, P. W.; Yu, J. Z.; Xue, J.

    2014-10-01

    As China's largest economic development zone, the Pearl River Delta (PRD) is subject to particulate matter (PM) and visibility deterioration problems. Due to high PM concentration, haze days impacting ambient visibility have occurred frequently in this region. Besides visibility impairment, PM pollution also causes a negative impact on public health. These negative impacts have heightened the need to improve our understanding of the PM pollution of the PRD region. One major cause of the PRD pollution problem is cold front passages in the winter; however, the mechanism of pollution formation stays unclear. In this study, the Comprehensive Air Quality Model (CAMx) is utilized to investigate the detailed PM production and transport mechanisms in the PRD. Simulated concentrations of PM2.5 species, which have a good correlation with observation, show that sulfate and nitrate are the dominant pollutants among different PM2.5 species. Before the cold front passage a large amount of gas-phase and particle-phase pollutants are transported to the mountainous regions in the north of the PRD, and become trapped by the terrain. Over the mountain regions, cloud driven by upwelling flow promotes aqueous-phase reactions including oxidations of PM precursors such as SO2 and NO2. By this process, production of secondary PM is enhanced. When the cold front continues to advance further south, PM is transported to the PRD cities, and suppressed into a thin layer near the ground by a low planetary boundary layer (PBL). Thus high PM concentration episodes take place in the PRD cities. After examining production and transportation pathways, this study presents that the complex terrain configuration would block pollutant dispersion, provide cloudy environment, and advance secondary PM production. Previous studies have pointed out that pollution emitted from outside this region largely influences the air quality in the PRD; however, this study shows that pollutants from the outside could be

  4. Toxicologically important trace elements and organic compounds investigated in size-fractionated urban particulate matter collected near the Prague highway

    Czech Academy of Sciences Publication Activity Database

    Sysalová, J.; Sýkorová, Ivana; Havelcová, Martina; Száková, J.; Trejtnarová, Hana; Kotlík, B.

    2012-01-01

    Roč. 437, October (2012), s. 127-136. ISSN 0048-9697 R&D Projects: GA ČR GA205/09/1162 Institutional support: RVO:67985891 Keywords : urban particulate matter * grain-size partitioning * grain-size partitioning Subject RIV: DI - Air Pollution ; Quality Impact factor: 3.258, year: 2012

  5. Differential Effects of Particulate Matter Upwind and Downwind of an Urban Freeway in an Allergic Mouse Model

    Science.gov (United States)

    Near-road exposure to air pollutants has been associated with decreased lung function and other adverse health effects in susceptible populations. This study was designed to investigate whether different types of near-road particulate matter (PM) contribute to exacerbation of all...

  6. Health effects and time course of particulate matter on the cardiopulmonary system in rats with lung inflammation

    NARCIS (Netherlands)

    Ulrich, M.M.W.; Alink, G.M.; Kumarathasan, P.; Vincent, R.; Boere, A.J.F.; Cassee, F.R.

    2002-01-01

    Recent epidemiological studies associate health effects and particulate matter in ambient air. Exacerbation of the particle-induced inflammation can be a mechanism responsible for increased hospitalization and death due to cardiopulmonary events in high-risk groups of the population. Systems regulat

  7. Black carbon and elemental concentration of ambient particulate matter in Makassar Indonesia

    International Nuclear Information System (INIS)

    Airborne particulate matter with aerodynamic diameter of less or equal to 10 um or PM10, has been collected on a weekly basis for one year from February 2012 to January 2013 at one site of Makassar, Province of South Sulawesi Indonesia. The samples were collected using a size selective high volume air sampler sited at Daya, a mixed urban, commercial and industrial area in the city of Makassar. The concentration of black carbon (BC) along with a total of 14 elements (i.e Al, Ba, Ca, Cr, Fe, K, Mg, Ba, Na, Ni, Pb, Si, Ti and Zn) were determined from the sample. Results showed that the average particulate mass concentration was 32.9 ± 11.6 μg/m3 with BC and elemental concentration constituted 6.1% and 10.6% of the particulate concentration, respectively. Both BC and elemental constituents contributed 16.7% while 83.3% of the particulate matter remained to be counted for. The black carbon concentration was higher during the dry months which may be attributed to rampant biomass burning during hot and dry weather conditions, apart from other possible sources. Most of the elements were enriched relative to soil origin illustrating of their possible associations with other sources such as marine and anthropogenic derived aerosols, particularly Cr, Ni, Pb, and Zn, which are known to originate from man-made activities

  8. Deposition of heavy metals from particulate settleable matter in soils of an industrialized area

    Science.gov (United States)

    Sanfeliu, Teófilo

    2010-05-01

    Particulate air pollutants from industrial emissions and natural resource exploitation represent an important contribution to soil contamination. These atmospheric particles, usually settleable particulate matter form (which settle by gravity) are deposited on soil through both dry and wet. The most direct consequences on soil of air pollutants are acidification and salinization, not to mention the pollution that can cause heavy metals as components of suspended particulate matter. The main objective of this study was to evaluate the influence of air pollution in soil composition. For this purpose, has been conducted a study of the composition of heavy metals in the settleable particulate matter in two locations (Almazora and Vila-real) with high industrial density (mainly ceramic companies) located in the ceramic cluster of Castellón (Spain). Settleable air particles samples were collected with a PS Standard Britannic captor (MCV-PS2) for monthly periods between January 2007 and December 2009. We analyzed the following elements: Cd, Pb, Cu, Ni, Sb and Bi which are highly toxic and have the property of accumulating in living organisms. It has been determined the concentration of heavy metals in the soluble fraction of settleable air particles by ICP-MS. The annual variation of the results obtained in both populations shows a decline over the study period the concentrations of heavy metals analyzed. This fact is associated with the steady implementation of corrective measures in the main industrial sector in the area based on the treatment of mineral raw materials. Moreover, this decline is, in turn, a lower intake of heavy metals to the soil. REFERENCES Gómez E.T.; Sanfeliu T.; Rius J.; Jordán M.M. (2005) "Evolution, sources and distribution of mineral particles and amorphous phase of atmospheric aerosol in an industrial and Mediterranean coastal area" Water, air and Soil Pollution 167:311-330 Moral R., Gilkes R.J.; Jordán M.M. (2005) "Distribution of heavy

  9. The role of particulate size and chemistry in the association between summertime ambient air pollution and hospitalization for cardiorespiratory diseases.

    OpenAIRE

    Burnett, R.T.; Cakmak, S; Brook, J. R.; Krewski, D

    1997-01-01

    In order to address the role that the ambient air pollution mix, comprised of gaseous pollutants and various physical and chemical measures of particulate matter, plays in exacerbating cardiorespiratory disease, daily measures of fine and coarse particulate mass, aerosol chemistry (sulfates and acidity), and gaseous pollution (ozone, nitrogen dioxide, sulfur dioxide, and carbon monoxide) were collected in Toronto, Ontario, Canada, in the summers of 1992, 1993, and 1994. These time series were...

  10. Valuing the health impacts from particulate air pollution in Tianjin

    OpenAIRE

    Zhou Yuan; Richard S.J. Tol

    2005-01-01

    Although China has made dramatic economic progress in recent years, air pollution continues to be the most visible environmental problem and imposes significant health and economic costs on society. Using data on pollutant concentration and population for 2003, this paper estimates the economic costs of health related effects due to particulate air pollution in urban areas of Tianjin, China. Exposure-response functions are used to quantify the impact on human health. Value of a statistical li...

  11. A Systematic Review of Occupational Exposure to Particulate Matter and Cardiovascular Disease

    Directory of Open Access Journals (Sweden)

    Shona C. Fang

    2010-04-01

    Full Text Available Exposure to ambient particulate air pollution is a recognized risk factor for cardiovascular disease; however the link between occupational particulate exposures and adverse cardiovascular events is less clear. We conducted a systematic review, including meta-analysis where appropriate, of the epidemiologic association between occupational exposure to particulate matter and cardiovascular disease. Out of 697 articles meeting our initial criteria, 37 articles published from January 1990 to April 2009 (12 mortality; 5 morbidity; and 20 intermediate cardiovascular endpoints were included. Results suggest a possible association between occupational particulate exposures and ischemic heart disease (IHD mortality as well as non-fatal myocardial infarction (MI, and stronger evidence of associations with heart rate variability and systemic inflammation, potential intermediates between occupational PM exposure and IHD. In meta-analysis of mortality studies, a significant increase in IHD was observed (meta-IRR = 1.16; 95% CI: 1.06–1.26, however these data were limited by lack of adequate control for smoking and other potential confounders. Further research is needed to better clarify the magnitude of the potential risk of the development and aggravation of IHD associated with short and long-term occupational particulate exposures and to clarify the clinical significance of acute and chronic changes in intermediate cardiovascular outcomes.

  12. Simultaneously catalytic removal of NOx and particulate matter on diesel particulate filter

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    The simultaneous removal of NOx and particulate matter (PM) exhausted from diesel engine was studied with a diesel particulate filter (DPF) on which a mixed metal oxide catalyst, Cu0.95K0.05Fe2O4 was loaded. The NOx reduction was observed in the same temperature range of the CO2 formation, implying the occurrence of the simultaneous removal of NOx and PM in an oxidizing atmosphere. It was shown that SOF and soot in PM are attributed to the reduction of NOx at lower and higher temperatures, respectively. The oxidation of PM was enhanced by the coexistence of NO and O2. The ignition and exhaustion temperatures of PM decrease as the order NO>O2>NO+O2. This is a combined process of PM trapping as well as the catalytic reactions of soot oxidation and NOx reduction, promising the most desirable after-treatment of diesel exhausts.

  13. Evaluation of Exposures to Diesel Particulate Matter Utilizing Ambient Air Monitoring and Urinary Biomarkers Among Pedestrian Commuters who Cross the U.S.-Mexico Border at San Ysidro, CA

    Science.gov (United States)

    Galaviz, Vanessa Eileen

    Background: Walk-in-line pedestrians crossing the U.S.-Mexico border northbound at the San Ysidro, CA Port of Entry ("Border Commuters") may be at an increased risk of experiencing elevated traffic-related air pollution, including diesel exhaust (DE). DE exposure has been associated with numerous adverse health effects, particularly cardiovascular and respiratory problems, including as lung cancer. Pedestrian crossers wait in line for extended periods and stand within 10 feet of highly concentrated traffic, particularly to diesel buses. Understanding the magnitude of traffic-related exposures is important for this vulnerable population. It was hypothesized that subjects who reside in Tijuana, Baja California, Mexico and cross the border as a pedestrian will experience higher exposure to traffic-related pollutants than those who live and work in South San Diego, CA, USA and do not cross the border. Methods: Ninety-one participants were enrolled for this study; 80% were "Border Commuters" and 20% were "Non-Border Commuters". "Non-Border Commuters" served as the comparison group and were defined as residents who lived in or near and worked or went to school in San Ysidro, CA but did not cross the border. Questionnaires, time activity diaries, and urine samples were collected from all participants. Of the "Border Commuters", 56 personal 24-hour PM2.5 and 1-nitropyrene (1-NP) - a marker for diesel exhaust - samples were collected. There were 22 at-home indoor and 14 at-home outdoor 1-NP samples collected. Additionally, area samples collected at the border included 35 days of 1-NP, black carbon (BC), carbon monoxide (CO), fine particulate matter (PM2.5) and ultrafine particulate matter (UFP). Of the "Non-Border Commuters", 15 personal 24-hour PM2.5 and 1-NP samples were collected. Additonally, 3 at-home indoor and outdoor 24-hour 1-NP samples were collected. Results: Personal exposure to PM2.5 was nearly 2-fold higher among "Border Commuters" compared to "Non

  14. Long-term exposure to fine particulate matter and incidence of diabetes in the Danish Nurse Cohort

    DEFF Research Database (Denmark)

    Hansen, Anne Busch; Ravnskjær, Line; Loft, Steffen;

    2016-01-01

    Cohort with 28,731 female nurses who at recruitment in 1993 or 1999 reported information on diabetes prevalence and risk factors, and obtained data on incidence of diabetes from National Diabetes Register until 2013. We estimated annual mean concentrations of PM2.5, particulate matter with diameter <10μm......AIMS/HYPOTHESIS: It has been suggested that air pollution may increase the risk of type 2 diabetes but data on particulate matter with diameter <2.5μm (PM2.5) are inconsistent. We examined the association between long-term exposure to PM2.5 and diabetes incidence. METHODS: We used the Danish Nurse...

  15. Seasonal variations in the concentration and solubility of elements in atmospheric particulate matter: a case study in Northern Italy

    Directory of Open Access Journals (Sweden)

    Canepari S.

    2013-04-01

    Full Text Available Atmospheric particulate matter is characterized by a variety of chemical components, generally produced by different sources. Chemical fractionation of elements, namely the determination of their extractable and residual fractions, may reliably increase the selectivity of some elements as tracers of specific PM sources. Seasonal variations of atmospheric particulate matter concentration in PM10 and PM2.5, of elemental concentration in PM10 and PM2.5, of the extractable and residual fraction of elements in different size fractions in the range 0.18 – 18 μm are reported in this paper. The effect of the ageing of the air masses is discussed.

  16. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China

    Directory of Open Access Journals (Sweden)

    Qiulin Xiong

    2015-09-01

    Full Text Available Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spatial analysis and grey correlation analysis. The results showed that the aerial fine particulate matter pollution was mainly distributed in the Zizhuyuan sub-district office. There was a certain association between respiratory health and fine particles. Outpatients with respiratory system disease in this study area were mostly located in the southeastern regions (Balizhuang sub-district office, Ganjiakou sub-district office, Wanshoulu sub-district office, and Yongdinglu sub-district office and east-central regions (Zizhuyuan sub-district office and Shuangyushu sub-district office of the study area. Correspondingly, PM1 (particulate matter with aerodynamic diameter smaller than 1.0 um concentrations in these regions were higher than those in any other regions. Grey correlation analysis results showed that the correlation degree of the fine particle concentration with the number of outpatients is high, and the smaller fine particles had more obvious effects on respiratory system disease than larger particles.

  17. Characterization of particulate matter concentrations and bioaerosol on each floor at a building in Seoul, Korea.

    Science.gov (United States)

    Oh, Hyeon-Ju; Jeong, Na-Na; Chi, Woo-Bae; Seo, Ji-Hoon; Jun, Si-Moon; Sohn, Jong-Ryeul

    2015-10-01

    Particulate matter (PM) in buildings are mostly sourced from the transport of outdoor particles through a heating, ventilation, and air conditioning (HVAC) system and generation of particle within the building itself. We investigated the concentrations and characteristic of indoor and outdoor particles and airborne bacteria concentrations across four floors of a building located in a high-traffic area. In all the floors we studied (first, second, fifth, and eighth), the average concentrations of particles less than 10 μm (PM10) in winter for were higher than those in summer. On average, a seasonal variation in the PM10 level was found for the first, fifth, and eighth floors, such that higher values occurred in the winter season, compared to the summer season. In addition, in winter, the indoor concentrations of PM10 on the first, fifth, and eighth floors were higher than those of the outdoor PM10. The maximum level of airborne bacteria concentration was found in a fifth floor office, which held a private academy school consisting of many students. Results indicated that the airborne bacteria remained at their highest concentration throughout the weekday period and varied by students' activity. The correlation coefficient (R (2)) and slope of linear approximation for the concentrations of particulate matter were used to evaluate the relationship between the indoor and outdoor particulate matter. These results can be used to predict both the indoor particle levels and the risk of personal exposure to airborne bacteria. PMID:26062466

  18. A study to reduce DPM(Diesel Particulate Matter) emission

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Bok Youn; Kang, Chang Hee; Jo, Young Do; Lim, Sang Taek [Korea Institute of Geology Mining and Materials, Taejon (Korea, Republic of)

    1997-12-01

    This research commenced in 1994 for the purpose of providing safety and environmental measures of underground mines where the mobile diesel equipment are operating. In this last research year, research on filtering of DPM(diesel particulate matter) has been carried out. Through the research, it was known that water scrubber is only one practical way to reduce DPM emission as of now. There are several kinds of the sophisticated DPM filters, but it is not practical yet to be used in underground equipment due to the many adverse effects of the devices such as tremendous increase of SOx, NOx and back pressure etc. (author). 1 tab., 3 figs.

  19. Qualitative and quantitative determination of water in airborne particulate matter

    OpenAIRE

    Canepari, S.; C. Farao; E. Marconi; C. Giovannelli; C. Perrino

    2013-01-01

    This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM). The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C).

    The analytical performance of the method was verified ...

  20. Ash reduction system using electrically heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Paratore, Jr., Michael J; He, Yongsheng [Sterling Heights, MI

    2011-08-16

    A control system for reducing ash comprises a temperature estimator module that estimates a temperature of an electrically heated particulate matter (PM) filter. A temperature and position estimator module estimates a position and temperature of an oxidation wave within the electrically heated PM filter. An ash reduction control module adjusts at least one of exhaust flow, fuel and oxygen levels in the electrically heated PM filter to adjust a position of the oxidation wave within the electrically heated PM filter based on the oxidation wave temperature and position.

  1. Low exhaust temperature electrically heated particulate matter filter system

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2012-02-14

    A system includes a particulate matter (PM) filter, a sensor, a heating element, and a control module. The PM filter includes with an upstream end that receives exhaust gas, a downstream end and multiple zones. The sensor detects a temperature of the exhaust gas. The control module controls current to the heating element to convection heat one of the zones and initiate a regeneration process. The control module selectively increases current to the heating element relative to a reference regeneration current level when the temperature is less than a predetermined temperature.

  2. Elevated exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V [Pinckney, MI; Bhatia, Garima [Bangalore, IN

    2012-04-17

    A system includes an electrical heater and a particulate matter (PM) filter that is arranged one of adjacent to and in contact with the electrical heater. A control module selectively increases an exhaust gas temperature of an engine to a first temperature and that initiates regeneration of the PM filter using the electrical heater while the exhaust gas temperature is above the first temperature. The first temperature is greater than a maximum exhaust gas temperature at the PM filter during non-regeneration operation and is less than an oxidation temperature of the PM.

  3. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    Science.gov (United States)

    Oyama, B. S.; Andrade, M. F.; Herckes, P.; Dusek, U.; Röckmann, T.; Holzinger, R.

    2015-12-01

    Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV) and Heavy (HDV) duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol), hydrated ethanol, and diesel (with 5 % of biodiesel). The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5) in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ) where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA) where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS), and by Thermal-Optical Transmittance (TOT). The organic aerosol (OA) desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF) organic aerosol (OA) and organic carbon (OC) were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the aerosol

  4. Vehicular emissions of organic particulate matter in Sao Paulo, Brazil

    Directory of Open Access Journals (Sweden)

    B. S. Oyama

    2015-12-01

    Full Text Available Vehicular emissions have a strong impact on air pollution in big cities. Many factors affect these emissions: type of vehicle, type of fuel, cruising velocity, and brake use. This study focused on emissions of organic compounds by Light (LDV and Heavy (HDV duty vehicle exhaust. The study was performed in the city of Sao Paulo, Brazil, where vehicles run on different fuels: gasoline with 25 % ethanol (called gasohol, hydrated ethanol, and diesel (with 5 % of biodiesel. The vehicular emissions are an important source of pollutants and the principal contribution to fine particulate matter (smaller than 2.5 μm, PM2.5 in Sao Paulo. The experiments were performed in two tunnels: Janio Quadros (TJQ where 99 % of the vehicles are LDV, and Rodoanel Mario Covas (TRA where up to 30 % of the fleet was HDV. The PM2.5 samples were collected on quartz filters in May and July 2011 at TJQ and TRA, respectively, using two samplers operating in parallel. The samples were analyzed by Thermal-Desorption Proton-Transfer-Reaction Mass-Spectrometry (TD-PTR-MS, and by Thermal-Optical Transmittance (TOT. The organic aerosol (OA desorbed at TD-PTR-MS represented around 30 % of the OA estimated by the TOT method, mainly due to the different desorption temperatures, with a maximum of 870 and 350 °C for TOT and TD-PTR-MS, respectively. Average emission factors (EF organic aerosol (OA and organic carbon (OC were calculated for HDV and LDV fleet. We found that HDV emitted more OA and OC than LDV, and that OC emissions represented 36 and 43 % of total PM2.5 emissions from LDV and HDV, respectively. More than 700 ions were identified by TD-PTR-MS and the EF profiles obtained from HDV and LDV exhibited distinct features. Nitrogen-containing compounds measured in the desorbed material up to 350 °C contributed around 20 % to the EF values for both types of vehicles, possibly associated with incomplete fuel burning. Additionally, 70 % of the organic compounds measured from the

  5. Acute effects of particulate matter on respiratory diseases, symptoms and functions:. epidemiological results of the Austrian Project on Health Effects of Particulate Matter (AUPHEP)

    Science.gov (United States)

    Neuberger, Manfred; Schimek, Michael G.; Horak, Friedrich; Moshammer, Hanns; Kundi, Michael; Frischer, Thomas; Gomiscek, Bostjan; Puxbaum, Hans; Hauck, Helger; Auphep-Team

    To examine hypotheses regarding health effects of particulate matter, we conducted time series studies in Austrian urban and rural areas. Of the pollutants measured, ambient PM 2.5 was most consistently associated with parameters of respiratory health. Time series studies applying semiparametric generalized additive models showed significant increases of respiratory hospital admissions (ICD 490-496) at age 65 and older. The early increase of 5.5% in Vienna at a lag of 2 days in males and of 5.6% per 10 μg/m 3 at a lag of 3 days in females was not observed in a nearby rural area. Another increase of respiratory admissions (mainly COPD) was observed after a lag of 10-11 days. A time series on a panel of 56 healthy preschool children showed a significant impact of the carbonaceous fraction of PM 2.5 on tidal breathing pattern assessed by inductive plethysmography. In repeated oscillometric measurements of respiratory resistance in 164 healthy elementary school children not only immediate responses to fine particulates were found but also latent ones, possibly indicating inflammatory changes in airways. It may be speculated that the improvements of urban air quality prevented measurable effects on respiratory mortality. More sensitive indicators, however, still show acute impairments of respiratory function and health in elderly and children which are associated with fine particulates and subfractions related to motor traffic.

  6. Method for determination of stable carbon isotope ratio of methylnitrophenols in atmospheric particulate matter

    Directory of Open Access Journals (Sweden)

    S. Moukhtar

    2011-11-01

    Full Text Available A technique for the measurement of the stable isotope ratio of methylnitrophenols in atmospheric particulate matter is presented. Atmospheric samples from rural and suburban areas were collected for evaluation of the procedure. Particulate matter was collected on quartz fibre filters using dichotomous high volume air samplers. Methylnitrophenols were extracted from the filters using acetonitrile. The sample was then purified using a combination of high-performance liquid chromatography and solid phase extraction. The final solution was then divided into two aliquots. To one aliquot, a derivatising agent, Bis(trimethylsilyltrifluoroacetamide, was added for Gas Chromatography-Mass Spectrometry analysis. The second half of the sample was stored in a refrigerator. For samples with concentrations exceeding 1 ng μl−1, the second half of the sample was used for measurement of stable carbon isotope ratios by Gas Chromatography-Isotope Ratio Mass Spectrometry.

    The procedure described in this paper provides a method for the analysis of methylnitrophenols in atmospheric particulate matter at concentrations as low as 0.3 pg m−3 and for stable isotope ratios with an accuracy of better than ±0.5‰ for concentrations exceeding 100 pg m−3.

    In all atmospheric particulate matter samples analysed, 2-methyl-4-nitrophenol was found to be the most abundant methylnitrophenol, with concentrations ranging from the low pg m−3 range in rural areas to more than 200 pg m−3 in some samples from a suburban location.

  7. Size-resolved particulate matter composition in Beijing during pollution and dust events

    OpenAIRE

    Dillner, Ann M.; Schauer, James J; Zhang, Yuanhang; Zeng, Limin; Cass, Glen R.

    2006-01-01

    Each spring, Beijing, China, experiences dust storms which cause high particulate matter concentrations. Beijing also has many anthropogenic sources of particulate matter including the large Capitol Steel Company. On the basis of measured size segregated, speciated particulate matter concentrations, and calculated back trajectories, three types of pollution events occurred in Beijing from 22 March to 1 April 2001: dust storms, urban pollution events, and an industrial pollution event. For eac...

  8. No association between ambient particulate matter exposure during pregnancy and stillbirth risk in the north of England, 1962–1992

    OpenAIRE

    Pearse, M.S.; Glinianaia, Svetlana V; Rankin, Judith; Rushton, Steven; Charlton, Martin; Parker, L.; Pless-Mulloli, Tanja

    2010-01-01

    Objectives: Research evidence suggests that exposure to ambient air pollutants can adversely affect the growth and development of the foetus and infant survival. Much less is known regarding the potential for an association between black smoke air pollution and stillbirth risk. This potential association was examined using data from the historical cohort UK Particulate Matter and Perinatal Events Research (PAMPER) study. Methods: Using data from paper-based neonatal recor...

  9. Sorption of polycyclic aromatic hydrocarbons on particulate organic matters

    International Nuclear Information System (INIS)

    Particulate organic matter (POM) is a key organic matter fraction which can influence soil fertility. Its interactions with hydrophobic organic pollutants (HOCs) have not been characterized and the mechanisms of retention of HOCs by POM remain unclear. In the present study, sorption behaviors of polycyclic aromatic hydrocarbons (PAHs) naphthalene (NAP), phenanthrene (PHE), and pyrene (PYR) by POMs separated from different soils were examined and the POMs were characterized by elemental analysis, solid state 13C NMR, and Fourier transform infrared spectroscopy (FT-IR). The results indicated that POMs were mainly composed of aliphatic components with high polarity. The different original POMs showed similar chemical composition and configuration. Sorption behaviors of PAHs indicated that there was no significant difference in sorption capacity among the POMs. Sorption of NAP and PHE by POMs displayed a nonlinear isotherm, while sorption of PYR yielded a linear isotherm. No significant hysteresis and ionic strength effect were observed for PAH desorption from the POMs.

  10. High efficiency particulate air filter experience survey

    International Nuclear Information System (INIS)

    Causes and magnitude of HEPA filter changeouts and failures at DOE sites for the years 1977 to 1979 were evaluated. Conclusions inferred from the data follow: HEPA filters have been generally performing the task they were designed for; most changeouts have been made because of filter plugging, preventive maintenance, or precautionary reasons rather than evidence of filter failure; where failures have been experienced, records generally have not been adequate to determine the cause of failure; where cause of failure has been determined, damage attributed to personnel handling and installation has been substantially more prevalent than that from filter environmental exposure. The need for improved personnel training in handling and installation was stressed. Some reduction in filter failure frequency can be achieved by improving the acid and moisture resistance of filters, and providing adequate pretreatment of air prior to HEPA filtration

  11. Analysis of aliphatic and aromatic hydrocarbons in particulate matter in Madrid urban area

    International Nuclear Information System (INIS)

    Levels of n-alkanes and polycyclic aromatic hydrocarbons have been measured in the air particulate matter during six months, from January to June of 1987, in an urban area of Madrid. The hydrocarbons were collected on glass fiber filters by high volumen sampling. The extraction was carried out by Sohxlet and ultrasonic techniques. The extracts were clean-up on silicagel fractionation and the chromatographic analysis was performed by capillary column gas chromatographic. Final results are discussed as well as the immission values related to the possible emission sources. (Author)

  12. Exposures to Particulate Matter and Polycyclic Aromatic Hydrocarbons and Oxidative Stress in Schoolchildren

    OpenAIRE

    Bae, Sanghyuk; Pan, Xiao-Chuan; Kim, Su-Young; Park, Kwangsik; Kim, Yoon-Hee; Kim, Ho; Hong, Yun-Chul

    2009-01-01

    Background Air pollution is known to contribute to respiratory and cardiovascular mortality and morbidity. Oxidative stress has been suggested as one of the main mechanisms for these effects on health. Objective The aim of this study was to analyze the effects of exposure to particulate matter (PM) with aerodynamic diameters ≤ 10 μm (PM10) and ≤ 2.5 μm (PM2.5) and polycyclic aromatic hydrocarbons (PAHs) on urinary malondialdehyde (MDA) levels in schoolchildren. Methods The study population co...

  13. Seasonal variation of the metal composition in particulate matter (PM) in Graz determined with ICPMS

    International Nuclear Information System (INIS)

    Full text: Graz, the 2nd biggest city of Austria, is not only famous for its cultural heritage but is also well known as one of the most heavily air-polluted cities of Austria. Samples of particulate matter (PM1.0, PM2.5, and PM10), collected in Graz over a one year period, were analyzed for 36 metals by ICPMS following microwave-assisted acid digestion. Accumulation of PM in the city (Graz is located in a basin) and additional emissions (e.g. domestic combustion) during winter caused not only higher PM concentrations but also marked changes in the PM metal composition. (author)

  14. Fine Particulate Matter Pollution and Hospital Admissions for Respiratory Diseases in Beijing, China

    OpenAIRE

    Qiulin Xiong; Wenji Zhao; Zhaoning Gong; Wenhui Zhao; Tao Tang

    2015-01-01

    Fine particulate matter has become the premier air pollutant of Beijing in recent years, enormously impacting the environmental quality of the city and the health of the residents. Fine particles with aerodynamic diameters of 0~0.3 μm, 0.3~0.5 μm, and 0.5~1.0 μm, from the yeasr 2007 to 2012, were monitored, and the hospital data about respiratory diseases during the same period was gathered and calculated. Then the correlation between respiratory health and fine particles was studied by spat...

  15. Evaluation of total suspended particulate matter in some urban and industrial cities of Pakistan

    International Nuclear Information System (INIS)

    Environmental studies are very important as the living beings depend greatly on the conditions of the environment. Air is an important component of the environment, which greatly affects the health of humans, animals and plants. Environmental problems in Pakistan are growing with the rise in total sectorial growth in population, economy and industrialization. In connection with atmospheric pollution, measurement of the total suspended particulate matter (TSP) in the urban atmosphere of Lahore, Faisalabad, Rawalpindi, Islamabad, Wah Cantt. and Khanispur (background area) has been carried out and compared to that of U.S. Environmental Protection Agency Standards. (author)

  16. Composition of airborne particulate matter in the industrial area versus mountain area

    Directory of Open Access Journals (Sweden)

    Barbora Sýkorová

    2016-03-01

    Full Text Available The paper deals with research of air pollution in two different locations on the Moravian-Silesian Region, Czech Republic. These are the sites Ostrava-Radvanice, which is located in the area affected by the industry and Ostravice in the mountains (without significant effect of the industry. The dust particles collected at these locations were subjected to a wide range of analyses. The mass concentration, the mass-size distribution, mineralogical composition, the concentration of PAHs (polycyclic aromatic hydrocarbons, and the concentrations of selected metals (Cd, Pb, Zn, Fe, Mn, As, Ni, Co, and Cr were observed at the particulate matter.

  17. Particulate matter and atherosclerosis: role of particle size, composition and oxidative stress

    Directory of Open Access Journals (Sweden)

    Nel Andre E

    2009-09-01

    Full Text Available Abstract Air Pollution has been associated with significant adverse health effects leading to increased morbidity and mortality. Cumulative epidemiological and experimental data have shown that exposure to air pollutants lead to increased cardiovascular ischemic events and enhanced atherosclerosis. It appears that these associations are much stronger with the air particulate matter (PM component and that in urban areas, the smaller particles could be more pathogenic, as a result of their greater propensity to induce systemic prooxidant and proinflammatory effects. Much is still unknown about the toxicology of ambient particulates as well as the pathogenic mechanisms responsible for the induction of adverse cardiovascular health effects. It is expected that better understanding of these effects will have large implications and may lead to the formulation and implementation of new regulatory policies. Indeed, we have found that ultrafine particles ( Extensive epidemiological evidence supports the association of air pollution with adverse health effects 123. It is increasingly being recognized that such effects lead to enhanced morbidity and mortality, mostly due to exacerbation of cardiovascular diseases and predominantly those of ischemic character 4. Indeed, in addition to the classical risk factors such as serum lipids, smoking, hypertension, aging, gender, family history, physical inactivity and diet, recent data have implicated air pollution as an important additional risk factor for atherosclerosis. This has been the subject of extensive reviews 56 and a consensus statement from the American Heart Association 7. This article reviews the supporting epidemiological and animal data, possible pathogenic mechanisms and future perspectives.

  18. Collaboration in air particulate analysis through sharing of regional resources

    International Nuclear Information System (INIS)

    The air pollution research program of the Philippine Nuclear Research Institute is being pursued in support of the 1999 Clean Air Act. This is being undertaken as part of the RCA/IAEA subproject, 'Air Pollution and Its Trends'. Since the PNRI research reactor (PRR-I) has been on extended shut down for the past 18 years, the PNRI depends solely on X-ray Fluorescence (XRF) spectrometry for elemental characterization of air particulate samples. NAA is a powerful and efficient tool in air particulate characterization and is used in many national programs in the region. Collaboration in air pollution studies through exchange of samples between XRF and NAA groups will widen the range of elements that could be detected by one group. In the RCA/IAEA RAS/4/020, 'Improvement of Research Reactor Operation and Utilization' sharing of research reactor facilities is encouraged. Working out of mechanisms for such sharing will be advantageous to research groups without operational research reactors. This could take the form of exchange of samples or fellowship at a regional host institution. This will allow training of technical staff from countries without research reactors, thus ensuring continuing expertise in NAA even after long periods of reactor shutdown. (author)

  19. Qualitative and quantitative determination of water in airborne particulate matter

    Directory of Open Access Journals (Sweden)

    S. Canepari

    2013-02-01

    Full Text Available This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM. The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C.

    The analytical performance of the method was verified by using standard materials containing 5.55% and 1% by weight of water. The recovery was greater than 95%; the detection limit was about 20 μg. The method was then applied to NIST Reference Materials (NIST1649a, urban particulate matter and to real PM10 samples collected in different geographical areas. In all cases the repeatability was satisfactory (10–15%.

    When analyzing the Reference Material, the separation of four different types of water was obtained. In real PM10 samples the amount of water and its thermal profile differed as a function of the chemical composition of the dust. Mass percentages of 3–4% of water were obtained in most samples, but values up to about 15% were reached in areas where the chemical composition of PM is dominated by secondary inorganic ions and organic matter. High percentages of water were also observed in areas where PM is characterized by the presence of desert dust.

    A possible identification of the quality of water released from the samples was tried by applying the method to some hygroscopic compounds that are likely contained in PM (pure SiO2, Al2O3, ammonium salts, carbohydrates and dicarboxylic acids and by comparing the results with those obtained from field samples.

  20. Qualitative and quantitative determination of water in airborne particulate matter

    Directory of Open Access Journals (Sweden)

    S. Canepari

    2012-10-01

    Full Text Available This paper describes the optimization and validation of a new simple method for the quantitative determination of water in atmospheric particulate matter (PM. The analyses are performed by using a coulometric Karl-Fisher system equipped with a controlled heating device; different water contributions are separated by the application of an optimized thermal ramp (three heating steps: 50–120 °C, 120–180 °C, 180–250 °C.

    The analytical performance of the method was verified by using standard materials containing 5.55% and 1% by weight of water. The recovery was greater than 95%; the detection limit was about 20 μg. The method was then applied to NIST reference materials (NIST1649a, urban particulate matter and to real PM10 samples collected in different geographical areas. In all cases the repeatability was satisfactory (10–15%.

    When analyzing the reference material, the separation of four different types of water was obtained. In real PM10 samples the amount of water and its thermal profile differed as a function of the chemical composition of the dust. Mass percentages of 3–4% of water were obtained in most samples, but values up to about 15% were reached in areas where the chemical composition of PM is dominated by secondary inorganic ions and organic matter. High percentages of water were also observed in areas where PM is characterized by the presence of desert dust.

    A possible identification of the quality of water released from the samples was tried by applying the method to some hygroscopic compounds that are likely contained in PM (pure SiO2, Al2O3, ammonium salts, carbohydrates and dicarboxylic acids and by comparing the results with those obtained from field samples.

  1. Hazard identification of particulate matter on vasomotor dysfunction and progression of atherosclerosis

    DEFF Research Database (Denmark)

    Møller, Peter; Mikkelsen, Lone; Vesterdal, Lise Kristine;

    2011-01-01

    inflammatory pathways. We have assessed the effect of exposure to particulate matter on progression of atherosclerosis and vasomotor function in humans, animals, and ex vivo experimental systems. The type of particles that have been tested in these systems encompass TiO(2), carbon black, fullerene C(60......The development and use of nanoparticles have alerted toxicologists and regulators to issues of safety testing. By analogy with ambient air particles, it can be expected that small doses are associated with a small increase in risk of cardiovascular diseases, possibly through oxidative stress and......), single-walled carbon nanotubes, ambient air particles, and diesel exhaust particles. Exposure to ambient air particles is associated with accelerated progression of atherosclerosis and vasomotor dysfunction in both healthy and susceptible animal models and humans at risk of developing cardiovascular...

  2. Composition of particulate organic matter sampled in the troposphere over Siberia

    Science.gov (United States)

    Belan, Boris D.; Voronetskaya, Natalya G.; Pevneva, Galina S.; Golovko, Anatoly K.; Kozlov, Alexander S.; Simonenkov, Denis V.; Tolmachev, Gennadii N.

    2015-04-01

    In this paper we present some results of the analysis of organic compounds contained in the particulate matter sampled in the Siberian air shed during monthly research flights in 2012-2013. Aerosol sampling was performed in the tropospheric layer from 500 to 7000 m over the Karakan pine forest located on the east bank of the Novosibirsk Reservoir (River Ob). The Optik TU-134 aircraft laboratory was used as a research platform for in-situ measurements of atmospheric trace gas species and aerosols, as well as a particulate matter collection on PTFE filters. Analysis of the particulate organic matter sampled in the Siberian air shed in 2012-2013 allowed us to draw the following conclusions: the total content of n-alkanes increases in the spring and decreases in the winter. the length of the n-alkane homologous series had no seasonal dependence. maximum in the molecular weight distribution of n-alkanes varies depending on the season; compounds with C17, C22 and C25 chains dominated in winter and spring 2012, whereas in summer - C17 ones; in 2013 compounds with C17 chains dominated in winter, C18-C20 - in spring, and C21 and C23 - in summer. Carbon preference index (CPI) value for a given chain length of the homologous series (on the average from C12 to C28) did not reflect the contribution of sources of n-alkanes in the atmosphere. This work was supported by Interdisciplinary integration projects of the Siberian Branch of the Russian Academy of Science No. 35, No. 70 and No. 131; the Branch of Geology, Geophysics and Mining Sciences of RAS (Program No. 5); State contracts of the Ministry of Education and Science of Russia No. 14.604.21.0100, (RFMTFIBBB210290) and No. 14.613.21.0013 (RFMEFI61314X0013); and Russian Foundation for Basic Research (grants No. 14-05-00526 and 14-05-00590).

  3. Mutagenic and genotoxic activity of particulate matter MP2,5, in Pamplona, North Santander, Colombia

    Directory of Open Access Journals (Sweden)

    Martínez Montañez, Mónica Liseth

    2012-10-01

    Full Text Available Objective: To study the mutagenic and genotoxic activities of particulate material (MP2,5 collected in Pamplona, Norte de Santander, Colombia.Materials and methods: MP2,5 was monitored by means of a Partisol 2025 sequential air sampler with Plus Palmflex quartz filters. The latter were subjected to two extraction procedures: Soxhlet extraction using dichloromethane-acetone; and ultrasonic extraction using dichloromethane, acetone and dichloromethane/ acetone mix. The mutagenic and genotoxic activities were determined for each extract.Results: This is the first study conducted in Colombia that reports the mutagenic and genotoxic activities associated with particulate matter (MP2,5 taken from vehicular emissions in Pamplona, Norte de Santander. The mutagenic assay determined by the Ames test using Salmonella typhimurium strains TA98 and TA100 showed a high direct mutagenic activity in the analyzed extracts. On the other hand, the genotoxic activity, determined by means of the comet assay, was high too.Conclusion: Particulate material (MP2,5 present in air samples in Pamplona (northeastern Colombia is a risk factor for the exposed population because it can directly induce mutations and also cause genotoxic damage.

  4. 40 CFR 52.1637 - Particulate Matter (PM10) Group II SIP commitments.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. (a) On August 19, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan (SIP) that contained commitments, from the Director...

  5. 40 CFR 52.2306 - Particulate Matter (PM10) Group II SIP commitments.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Particulate Matter (PM10) Group II SIP... Particulate Matter (PM10) Group II SIP commitments. On July 18, 1988, the Governor of Texas submitted a revision to the State Implementation Plan (SIP) that contained commitments for implementing all of...

  6. Ambient particulate air pollution from vehicles promotes lipid peroxidation and inflammatory responses in rat lung

    Directory of Open Access Journals (Sweden)

    C.E.L. Pereira

    2007-10-01

    Full Text Available Oxidative stress plays a major role in the pathogenesis of particle-dependent lung injury. Ambient particle levels from vehicles have not been previously shown to cause oxidative stress to the lungs. The present study was conducted to a determine whether short-term exposure to ambient levels of particulate air pollution from vehicles elicits inflammatory responses and lipid peroxidation in rat lungs, and b determine if intermittent short-term exposures (every 4 days induce some degree of tolerance. Three-month-old male Wistar rats were exposed to ambient particulate matter (PM from vehicles (N = 30 for 6 or 20 continuous hours, or for intermittent (5 h periods during 20 h for 4 consecutive days or to filtered air (PM <10 µm; N = 30. Rats continuously breathing polluted air for 20 h (P-20 showed a significant increase in the total number of leukocytes in bronchoalveolar lavage compared to control (C-20: 2.61 x 105 ± 0.51;P-20: 5.01 x 105 ± 0.81; P < 0.05 and in lipid peroxidation ([MDA] nmol/mg protein: C-20: 0.148 ± 0.01; P-20: 0.226 ± 0.02; P < 0.05. Shorter exposure (6 h and intermittent 5-h exposures over a period of 4 days did not cause significant changes in leukocytes. Lipid damage resulting from 20-h exposure to particulate air pollution did not cause a significant increase in lung water content. These data suggest oxidative stress as one of the mechanisms responsible for the acute adverse respiratory effects of particles, and suggest that short-term inhalation of ambient particulate air pollution from street with high automobile traffic represents a biological hazard.

  7. Characterization of coarse particulate matter in school gyms

    International Nuclear Information System (INIS)

    We investigated the mass concentration, mineral composition and morphology of particles resuspended by children during scheduled physical education in urban, suburban and rural elementary school gyms in Prague (Czech Republic). Cascade impactors were deployed to sample the particulate matter. Two fractions of coarse particulate matter (PM10-2.5 and PM2.5-1.0) were characterized by gravimetry, energy dispersive X-ray spectrometry and scanning electron microscopy. Two indicators of human activity, the number of exercising children and the number of physical education hours, were also recorded. Lower mass concentrations of coarse particulate matter were recorded outdoors (average PM10-2.5 4.1-7.4 μg m-3 and PM2.5-1.0 2.0-3.3 μg m-3) than indoors (average PM10-2.5 13.6-26.7 μg m-3 and PM2.5-1.0 3.7-7.4 μg m-3). The indoor concentrations of coarse aerosol were elevated during days with scheduled physical education with an average indoor-outdoor (I/O) ratio of 2.5-16.3 for the PM10-2.5 and 1.4-4.8 for the PM2.5-1.0 values. Under extreme conditions, the I/O ratios reached 180 (PM10-2.5) and 19.1 (PM2.5-1.0). The multiple regression analysis based on the number of students and outdoor coarse PM as independent variables showed that the main predictor of the indoor coarse PM concentrations is the number of students in the gym. The effect of outdoor coarse PM was weak and inconsistent. The regression models for the three schools explained 60-70% of the particular dataset variability. X-ray spectrometry revealed 6 main groups of minerals contributing to resuspended indoor dust. The most abundant particles were those of crustal origin composed of Si, Al, O and Ca. Scanning electron microscopy showed that, in addition to numerous inorganic particles, various types of fibers and particularly skin scales make up the main part of the resuspended dust in the gyms. In conclusion, school gyms were found to be indoor microenvironments with high concentrations of coarse particulate

  8. Inhibition of intercellular communication by airborne particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Heussen, G.A.H. (Landbouwhogeschool Wageningen (Netherlands). Dept. of Toxicology)

    1991-04-01

    To investigate the inhibition of gap junction mediated intercellular communication (IC) by extracts of airborne particulate matter (APM), V79 cells were incubated with extracts of APM and subsequently microinjected with the fluorescent dye Lucifer Yellow, after which the number of fluorescent (= communicating) cells was determined. To compare inhibitory effects on IC with mutagenicity, APM was also tested in the Salmonella microsome assay. Six different extracts were tested, two outdoor extracts representing a heavily polluted and a relatively clean sample, and four indoor extracts, taken either in livingrooms with or without wood combustion in an open fire place, or in a room with or without cigarette smoking. Non-cytotoxic doses of outdoor and indoor APM inhibited IC in V79 cells in dose- and time-dependent manner. Mutagenicity data and IC data were correlated. These results suggest that APM has tumor promoter activity in addition to mutagenic activity. (orig.).

  9. Simulations of dispersion and deposition of coarse particulate matter

    CERN Document Server

    Cionco, Rodolfo G; Caligaris, Marta G

    2012-01-01

    In order to study the dispersion and deposition of coarse anthropogenic particulate matter (PMc, aerodynamic diameters> 10 mm), a FORTRAN simulator based on the numerical integrator of Bulirsch and Stoer has been developed. It calculates trajectories of particles of several shapes released into the atmosphere under very general conditions. This first version, fully three-dimensional, models the meteorology under neutral stability conditions. The simulations of such pollutants are also important because the standard software (usually originating in the United States Environmental Protection Agency-EPA-) describe only the behavior of PM10 (diameter less than 10 mm). Bulirsch and Stoer integrator of widespread use in astrophysics, is also very fast and accurate for this type of simulations. We present 2D and 3D trajectories in physical space and discuss the final deposition in function of various parameters. PMc simulations results in the range of 50-100 mm and densities of 5.5 g cm-3 emitted from chimneys, indi...

  10. High exhaust temperature, zoned, electrically-heated particulate matter filter

    Science.gov (United States)

    Gonze, Eugene V.; Paratore, Jr., Michael J.; Bhatia, Garima

    2015-09-22

    A system includes a particulate matter (PM) filter, an electric heater, and a control circuit. The electric heater includes multiple zones, which each correspond to longitudinal zones along a length of the PM filter. A first zone includes multiple discontinuous sub-zones. The control circuit determines whether regeneration is needed based on an estimated level of loading of the PM filter and an exhaust flow rate. In response to a determination that regeneration is needed, the control circuit: controls an operating parameter of an engine to increase an exhaust temperature to a first temperature during a first period; after the first period, activates the first zone; deactivates the first zone in response to a minimum filter face temperature being reached; subsequent to deactivating the first zone, activates a second zone; and deactivates the second zone in response to the minimum filter face temperature being reached.

  11. Free amino acids in atmospheric particulate matter of Venice, Italy

    Science.gov (United States)

    Barbaro, Elena; Zangrando, Roberta; Moret, Ivo; Barbante, Carlo; Cescon, Paolo; Gambaro, Andrea

    2011-09-01

    The concentrations of free amino acids were determined in atmospheric particulate matter from the city of Venice (Italy) in order to better understand their origin. The analysis of aerosol samples was carried out via high-performance liquid chromatography coupled to a triple quadrupole tandem mass spectrometric detector (HPLC/ESI-MS/MS). The internal standard method was used and the analytical procedure was validated by evaluating the trueness, the precision, the recovery, the detection and the quantification limits. The particulate matter was collected using quartz fiber filters and extracted in methanol; after filtration the extract was directly analyzed. Forty samples were collected from April to October 2007 and the average concentrations of free amino acids in the aerosol were: alanine 35.6 pmol m -3, aspartic acid 31.1 pmol m -3, glycine 30.1 pmol m -3, glutamic acid 32.5 pmol m -3, isoleucine 2.4 pmol m -3, leucine 2.7 pmol m -3, methionine, cystine and 3-hydroxy-proline below the limit of detection, phenylalanine 2.8 pmol m -3, proline 43.3 pmol m -3, serine 8.6 pmol m -3, threonine 2.8 pmol m -3, tyrosine 1.7 pmolm -3, valine 3.8 pmol m -3, asparagine 70.2 pmol m -3, glutamine 38.0 pmol m -3, 4-hydroxy-proline 2.5 pmol m -3, methionine sulfoxide 1.1 pmol m -3, and methionine sulfone 0.1 pmol m -3. The total average concentration of these free amino acids in aerosol samples of Venice Lagoon was 334 pmol m -3. The temporal evolution and multivariate analysis indicated the photochemical origin of 4-hydroxy-proline and methionine sulfoxide and for other compounds an origin further away from the site of sampling, presumably reflecting transport from terrestrial sources.

  12. Particulate Matter deposition on Quercus ilex leaves in an industrial city of central Italy

    International Nuclear Information System (INIS)

    A number of studies have focused on urban trees to understand their mitigation capacity of air pollution. In this study particulate matter (PM) deposition on Quercus ilex leaves was quantitatively analyzed in four districts of the City of Terni (Italy) for three periods of the year. Fine (between 0.2 and 2.5 μm) and Large (between 2.5 and 10 μm) PM fractions were analyzed. Mean PM deposition value on Quercus ilex leaves was 20.6 μg cm−2. Variations in PM deposition correlated with distance to main roads and downwind position relatively to industrial area. Epicuticular waxes were measured and related to accumulated PM. For Fine PM deposited in waxes we observed a higher value (40% of total Fine PM) than Large PM (4% of total Large PM). Results from this study allow to increase our understanding about air pollution interactions with urban vegetation and could be hopefully taken into account when guidelines for local urban green management are realized. - Highlights: • A quantitative analysis of Particulate Matter deposition on urban Quercus ilex leaves was implemented. • Deposition data were correlated with pollutants sources such as roads and local steel factory, and with epicuticular waxes. • Results provide new insight about the capacity of trees in removing pollutants in urban environment. - This paper is providing useful information on PM deposition on urban vegetation

  13. Spatial Interpolation of Fine Particulate Matter Concentrations Using the Shortest Wind-Field Path Distance

    Science.gov (United States)

    Li, Longxiang; Gong, Jianhua; Zhou, Jieping

    2014-01-01

    Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197

  14. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance.

    Science.gov (United States)

    Li, Longxiang; Gong, Jianhua; Zhou, Jieping

    2014-01-01

    Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW) with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health. PMID:24798197

  15. Spatial interpolation of fine particulate matter concentrations using the shortest wind-field path distance.

    Directory of Open Access Journals (Sweden)

    Longxiang Li

    Full Text Available Effective assessments of air-pollution exposure depend on the ability to accurately predict pollutant concentrations at unmonitored locations, which can be achieved through spatial interpolation. However, most interpolation approaches currently in use are based on the Euclidean distance, which cannot account for the complex nonlinear features displayed by air-pollution distributions in the wind-field. In this study, an interpolation method based on the shortest path distance is developed to characterize the impact of complex urban wind-field on the distribution of the particulate matter concentration. In this method, the wind-field is incorporated by first interpolating the observed wind-field from a meteorological-station network, then using this continuous wind-field to construct a cost surface based on Gaussian dispersion model and calculating the shortest wind-field path distances between locations, and finally replacing the Euclidean distances typically used in Inverse Distance Weighting (IDW with the shortest wind-field path distances. This proposed methodology is used to generate daily and hourly estimation surfaces for the particulate matter concentration in the urban area of Beijing in May 2013. This study demonstrates that wind-fields can be incorporated into an interpolation framework using the shortest wind-field path distance, which leads to a remarkable improvement in both the prediction accuracy and the visual reproduction of the wind-flow effect, both of which are of great importance for the assessment of the effects of pollutants on human health.

  16. Ambient particulate matter exposure and cardiovascular diseases: a focus on progenitor and stem cells.

    Science.gov (United States)

    Cui, Yuqi; Sun, Qinghua; Liu, Zhenguo

    2016-05-01

    Air pollution is a major challenge to public health. Ambient fine particulate matter (PM) is the key component for air pollution, and associated with significant mortality. The majority of the mortality following PM exposure is related to cardiovascular diseases. However, the mechanisms for the adverse effects of PM exposure on cardiovascular system remain largely unknown and under active investigation. Endothelial dysfunction or injury is considered one of the major factors that contribute to the development of cardiovascular diseases such as atherosclerosis and coronary heart disease. Endothelial progenitor cells (EPCs) play a critical role in maintaining the structural and functional integrity of vasculature. Particulate matter exposure significantly suppressed the number and function of EPCs in animals and humans. However, the mechanisms for the detrimental effects of PM on EPCs remain to be fully defined. One of the important mechanisms might be related to increased level of reactive oxygen species (ROS) and inflammation. Bone marrow (BM) is a major source of EPCs. Thus, the number and function of EPCs could be intimately associated with the population and functional status of stem cells (SCs) in the BM. Bone marrow stem cells and other SCs have the potential for cardiovascular regeneration and repair. The present review is focused on summarizing the detrimental effects of PM exposure on EPCs and SCs, and potential mechanisms including ROS formation as well as clinical implications. PMID:26988063

  17. Particulate matter and hospital admissions due to ischemic heart disease in Sorocaba, SP

    Directory of Open Access Journals (Sweden)

    Samara da Silva Gavinier

    2013-12-01

    Full Text Available There is evidence that air pollution is a risk factor for ischemic heart diseases (IHD. The objective of this study was to estimate the association between exposure to particulate matter (PM10 and hospital admissions due to ischemic heart diseases. It was a time-series ecological study with individuals of both genders, 50 or more years old, and residents of Sorocaba, São Paulo. The admission data was obtained from the DATASUS site according to ICD-10 (I20 to I22 and I24 to I25.0, for the period from January 1st 2007 to December 31st 2010. The concentrations of air pollutants (particulate matter, ozone, nitrogen dioxide, nitrogen oxide and oxides of nitrogen, temperature and mean relative humidity were provided by the São Paulo State Environmental Agency. The generalized additive model Poisson regression with lags of up to four days was used. There were 1804 admissions during the period. Exposure to PM10 was significantly associated with hospitalization for IHD two and four days after exposure with RR = 1.006, 95% CI 1.001-1.012 and an increment of 21 μg m-³ was associated with an increase of 13% in risk of hospitalization two days after exposure and 14% after four days. It was therefore possible to identify an association with exposure to PM10 in hospitalizations due to ischemic heart diseases in individuals from a medium-sized city of Sao Paulo.

  18. Elemental composition of airborne particulate matter from Santiago City, Chile, 1976

    Energy Technology Data Exchange (ETDEWEB)

    Prendez, M.; Ortiz, J.L.; Cortes, E.; Cassorla, V.

    1984-01-01

    In Chile, the State Public Health Office (Ministerio de Salud Publica) is responsible for pollution control and for air quality. This office has been monitoring only toxic gases and total suspended particulate matter. The present work is the first study in Chile designed to determine trace elements and their concentrations in particulate matter in the air. By use of enrichment factors, 25 trace elements were classified according to natural or anthropogenic origin. There were two sampling periods: July (winter) and September (spring) 1976. Four sites were studied, located about 6 km north, south, west and east of downtown Santiago. The south, north and west sites are urban and 55 m above sea level. The east site is suburban and approximately 270 m higher than the others. Twenty-four-hour samples were collected on Whatman-41 cellulose filter paper, in a modified stainless steel Buchner funnel. Approximately 10 m/sup 3/ were used at the urban sites and 200 m/sup 3/ at the suburban site. Instrumental neutron activation analysis (INAA) was used as the analytical technique.

  19. Particulate air pollution and mortality in a cohort of Chinese men

    International Nuclear Information System (INIS)

    Few prior cohort studies exist in developing countries examining the association of ambient particulate matter (PM) with mortality. We examined the association of particulate air pollution with mortality in a prospective cohort study of 71,431 middle-aged Chinese men. Baseline data were obtained during 1990–1991. The follow-up evaluation was completed in January, 2006. Annual average PM exposure between 1990 and 2005, including TSP and PM10, were estimated by linking fixed-site monitoring data with residential communities. We found significant associations between PM10 and mortality from cardiopulmonary diseases; each 10 μg/m3 PM10 was associated with a 1.6% (95%CI: 0.7%, 2.6%), 1.8% (95%CI: 0.8%, 2.9%) and 1.7% (95%CI: 0.3%, 3.2%) increased risk of total, cardiovascular and respiratory mortality, respectively. For TSP, we observed significant associations only for cardiovascular morality. These data contribute to the scientific literature on long-term effects of particulate air pollution for high exposure settings typical in developing countries. -- Highlights: • There have been few air pollution cohort studies in developing countries. • PM10 was associated with increased cardiorespiratory mortality in 71,431 Chinese men. • PM was not significantly associated with lung cancer mortality. -- PM10 was associated with increased cardiorespiratory mortality in a cohort of 71,431 Chinese men

  20. Analytical Methods INAA and PIXE Applied to Characterization of Airborne Particulate Matter in Bandung, Indonesia

    Directory of Open Access Journals (Sweden)

    D.D. Lestiani

    2011-08-01

    Full Text Available Urbanization and industrial growth have deteriorated air quality and are major cause to air pollution. Air pollution through fine and ultra-fine particles is a serious threat to human health. The source of air pollution must be known quantitatively by elemental characterization, in order to design the appropriate air quality management. The suitable methods for analysis the airborne particulate matter such as nuclear analytical techniques are hardly needed to solve the air pollution problem. The objectives of this study are to apply the nuclear analytical techniques to airborne particulate samples collected in Bandung, to assess the accuracy and to ensure the reliable of analytical results through the comparison of instrumental neutron activation analysis (INAA and particles induced X-ray emission (PIXE. Particle samples in the PM2.5 and PM2.5-10 ranges have been collected in Bandung twice a week for 24 hours using a Gent stacked filter unit. The result showed that generally there was a systematic difference between INAA and PIXE results, which the values obtained by PIXE were lower than values determined by INAA. INAA is generally more sensitive and reliable than PIXE for Na, Al, Cl, V, Mn, Fe, Br and I, therefore INAA data are preffered, while PIXE usually gives better precision than INAA for Mg, K, Ca, Ti and Zn. Nevertheless, both techniques provide reliable results and complement to each other. INAA is still a prospective method, while PIXE with the special capabilities is a promising tool that could contribute and complement the lack of NAA in determination of lead, sulphur and silicon. The combination of INAA and PIXE can advantageously be used in air pollution studies to extend the number of important elements measured as key elements in source apportionment.

  1. Analytical Methods INAA and PIXE Applied to Characterization of Airborne Particulate Matter in Bandung, Indonesia

    International Nuclear Information System (INIS)

    Urbanization and industrial growth have deteriorated air quality and are major cause to air pollution. Air pollution through fine and ultra-fine particles is a serious threat to human health. The source of air pollution must be known quantitatively by elemental characterization, in order to design the appropriate air quality management. The suitable methods for analysis the airborne particulate matter such as nuclear analytical techniques are hardly needed to solve the air pollution problem. The objectives of this study are to apply the nuclear analytical techniques to airborne particulate samples collected in Bandung, to assess the accuracy and to ensure the reliable of analytical results through the comparison of instrumental neutron activation analysis (INAA) and particles induced X-ray emission (PIXE). Particle samples in the PM2.5 and PM2.5-10 ranges have been collected in Bandung twice a week for 24 hours using a Gent stacked filter unit. The result showed that generally there was a systematic difference between INAA and PIXE results, which the values obtained by PIXE were lower than values determined by INAA. INAA is generally more sensitive and reliable than PIXE for Na, Al, Cl, V, Mn, Fe, Br and I, therefore INAA data are preferred, while PIXE usually gives better precision than INAA for Mg, K, Ca, Ti and Zn. Nevertheless, both techniques provide reliable results and complement to each other. INAA is still a prospective method, while PIXE with the special capabilities is a promising tool that could contribute and complement the lack of NAA in determination of lead, sulphur and silicon. The combination of INAA and PIXE can advantageously be used in air pollution studies to extend the number of important elements measured as key elements in source apportionment. (author)

  2. Effects of particulate air pollution on human health. Statement of the German Society of Pneumology (DGP) on the discussion about fine particulate air pollution; Partikulaere Luftverunreinigung und ihre Folgen fuer die menschliche Gesundheit. Stellungnahme der deutschen Gesellschaft fuer Pneumologie (DGP) zur aktuellen Feinstaub-Diskussion

    Energy Technology Data Exchange (ETDEWEB)

    Voshaar, T.H. [Krankenhaus Bethanien, Moers (Germany). Zentrum fuer Schlafmedizin und Heimbeatmung; Heyder, J. [GSF Inst. fuer Inhalationsbiologie, Neuherberg/Muenchen (Germany); Koehler, D. [Fachkrankenhaus Kloster Grafschaft, Schmallenberg (Germany); Krug, N. [Fraunhofer-Inst. Toxikologie und Experimentelle Medizin, Hannover (Germany); Nowak, D. [Inst. und Poliklinik fuer Arbeits- und Umweltmedizin, Ludwig-Maximilians-Univ., Muenchen (Germany); Scheuch, G. [Inamed GmbH, Muenchen-Gauting und Gemuenden/Wohra (Germany); Schulz, H. [GSF Inst. fuer Inhalationsbiologie, Neuherberg/Muenchen (Germany); Witt, C. [Charite-Universitaetsklinik, Schwerpunkt Pneumologie, Berlin (Germany)

    2005-07-01

    The statement of the German Society of Pneumology (DGP) on the discussion about fine particulate air pollution reviews recent research on the matter: effects of particulates depending on particle size, abundance indoor and outdoor, tobacco smoke, diesel soot particles, health hazards especially for children, epidemiology, toxicological studies, aerosols. (uke)

  3. Fast Inverse Distance Weighting-Based Spatiotemporal Interpolation: A Web-Based Application of Interpolating Daily Fine Particulate Matter PM2.5 in the Contiguous U.S. Using Parallel Programming and k-d Tree

    OpenAIRE

    Lixin Li; Travis Losser; Charles Yorke; Reinhard Piltner

    2014-01-01

    Epidemiological studies have identified associations between mortality and changes in concentration of particulate matter. These studies have highlighted the public concerns about health effects of particulate air pollution. Modeling fine particulate matter PM2.5 exposure risk and monitoring day-to-day changes in PM2.5 concentration is a critical step for understanding the pollution problem and embarking on the necessary remedy. This research designs, implements and compares two inverse dista...

  4. Multifaceted health impacts of Particulate Matter (PM and its management: An overview

    Directory of Open Access Journals (Sweden)

    Prabhat Kumar Rai

    2015-03-01

    Full Text Available Urban air quality is becoming a serious public health concern at global scale. Particulate matter (PM pollution is intimately linked with human health. Present review describes the different human health implications associated with PM pollution. PM may derive its origin from natural and anthropogenic sources. Vehicle derived pollutants as well as industrial emissions simultaneously release deleterious fine-grained PM into the atmosphere. Fine PM especially PM2.5 and PM10 are particularly deleterious to human health. Air pollution PM is an important environmental health risk factor for several respiratory and cardiovascular morbidity and mortality. Further, PM is inextricably linked with genotoxicity and mutations. Literature review of the cellular and molecular basis of adverse effects associated with PM is presented in this paper. Finally, management, existing technologies and policy options to reduce or mitigate the adverse health impacts of PM pollution is discussed as an eco-sustainable approach.

  5. Characterization of Particulate Matter Transport across the Lung-Surfactant Barrier using Langmuir Monolayers

    Science.gov (United States)

    Eaton, Jeremy; Dennin, Michael; Levine, Alex; George, Steven

    2014-03-01

    We investigate the transport of particulate matter acros the lung using a monolayer of bovine lung surfactant tagged with NBD in conjunction with alveolar lung cells below the air-water interface. The monolaye dynamically compressed and expanded to induce phase transitions as well as buckling and folding. Polystyrene spheres ranging from 20 to 500 nm in diameter were tagged with fluorescent molecules and deposited on the monolayer. We will present results of preliminary studies of the transport of beads from the air-water surface to the lung cells through the monolayer. Characterization of the transfer will focus on differential fluorescence microscopy to distinguish uncoated beads from beads from beads coated with surfactant monolayers. The presence or absence of surfactant associated with the beads provides insight into potential transfer mechanisms and will serve as an input into models of the bead transfer. We gladly acknowledge the support of NSF grant DMR-1309402.

  6. Emissions of volatile organic compounds and particulate matter from small-scale peat fires

    Science.gov (United States)

    George, I. J.; Black, R.; Walker, J. T.; Hays, M. D.; Tabor, D.; Gullett, B.

    2013-12-01

    Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared to burning of other types of biomass. However, few studies have characterized the gas and particulate emissions from peat burning. To assess the atmospheric impact of peat fires, particulate matter (PM) and volatile organic compounds (VOCs) were quantified from controlled small-scale peat fire experiments. Major carbon emissions (i.e. CO2, CO, methane and total hydrocarbons) were measured during the peat burn experiments. Speciated PM mass was also determined from the peat burns from filter and polyurethane foam samples. Whole air samples were taken in SUMMA canisters and analyzed by gas chromatography-mass spectrometry to measure 82 trace VOCs. Additional gaseous carbonyl species were measured by sampling with dinitrophenylhydrazine-coated cartridges and analyzed with high performance liquid chromatography. VOCs with highest observed concentrations measured from the peat burns were propylene, benzene, chloromethane and toluene. Gas-phase carbonyls with highest observed concentrations included acetaldehyde, formaldehyde and acetone. Emission factors of major pollutants will be compared with recommended values for peat and other biomass burning.

  7. PARTICULATE MATTER CONCENTRATION AND EMISSION FACTOR IN THREE DIFFERENT LAYING HEN HOUSING SYSTEMS

    Directory of Open Access Journals (Sweden)

    Annamaria Costa

    2009-09-01

    Full Text Available The aim of this study was to evaluate PM10 concentration in three different laying hens houses (traditional battery cages with aerated open manure storage, aviary system and vertical tiered cages with manure belts with forced air drying and to evaluate particulate matter emission into atmosphere during one year of observation. Internal and external temperature and relative humidity, ventilation rate, PM10 concentration have been continuously monitored in order to evaluate particulate matter concentration changes during the day and the season and to define PM10 emission factors. PM10 concentration was corrected by gravimetric technique to lower measurements error. In the aviary system house, TSP and fine particulate matter (particles smaller than 2.5 micron concentration was measured. Average yearly PM10 concentration was remarkably higher in the aviary system house with 0.215 mg m-3 vs 108 mg m-3 for the ventilated belt house and vs 0.094 mg m-3 for the traditional battery cages house. In the Aviary system housing, TSP concentration was 0.444 mg m-3 and PM2.5 was 0.032 mg m-3, highlighting the existence of a severe working environment for men and animals. Recorded values for PM10 emission were 0.433 mg h-1 hen-1 for battery cages housing type, 0.081 mg h-1 hen-1 for ventilated belt cages house, values lower than those available in literature, while the aviary system housing type showed the highest PM10 emission (1.230 mg h-1 hen-1 with appreciable peaks during the morning, together with the increased animal activity and daily farmer operations, as feed administration, cleaning and droppings removal.

  8. 40 CFR Table 2 to Subpart Ddddd of... - Operating Limits for Boilers and Process Heaters With Particulate Matter Emission Limits

    Science.gov (United States)

    2010-07-01

    ... emission limit for particulate matter. 2. Fabric filter control a. Install and operate a bag leak detection... Process Heaters With Particulate Matter Emission Limits 2 Table 2 to Subpart DDDDD of Part 63 Protection... Heaters With Particulate Matter Emission Limits As stated in § 63.7500, you must comply with...

  9. Ambient Carbon Monoxide and Fine Particulate Matter in Relation to Preeclampsia and Preterm Delivery in Western Washington State

    OpenAIRE

    Rudra, Carole B.; Williams, Michelle A.; Sheppard, Lianne; Koenig, Jane Q.; Schiff, Melissa A.

    2011-01-01

    Background Preterm delivery and preeclampsia are common adverse pregnancy outcomes that have been inconsistently associated with ambient air pollutant exposures. Objectives We aimed to prospectively examine relations between exposures to ambient carbon monoxide (CO) and fine particulate matter [≤ 2.5 μm in aerodynamic diameter (PM2.5)] and risks of preeclampsia and preterm delivery. Methods We used data from 3,509 western Washington women who delivered infants between 1996 and 2006. We predic...

  10. Differences in views of experts about their role in particulate matter policy advice: Empirical evidence from an international expert consultation

    OpenAIRE

    Spruijt, P.; Knol, A. B.; Petersen, A.C.; Lebret, E.

    2016-01-01

    There is ample scientific evidence of adverse health effects of air pollution at exposure levels that are common among the general population. Some points of uncertainty remain, however. Several theories exist regarding the various roles that experts may play when they offer policy advice on uncertain issues such as particulate matter (PM). Roles may vary according to e.g. the views of the expert on the science-policy interface or the extent to which she/he involves stakeholders. Empirical un...

  11. “ASSESSMENT OF APTI AND CONCENTRATION OF PARTICULATE MATTER AT HEAVY TRAFFIC AREAS OF BHUSAWAL CITY”

    OpenAIRE

    Kiran Pawar; Gauri Rane

    2016-01-01

    The present study examined the concentration of particulate matter (SPM, RSPM) and air pollution tolerance indices (APTI) of six plant/herb species at three different heavy traffic areas of Bhusawal city, Jalgaon District, Maharashtra. Four physiological and biochemical parameters; leaf relative water content (RWC) ascorbic acid content (AA), total leaf chlorophyll (TCh) and leaf extract pH were used to compute the APTI values. The result showed that Calatropis procera Ait. Hyptis suaveolens ...

  12. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level

    OpenAIRE

    KARAGULIAN Federico; BELIS CLAUDIO; DORA Carlos Francisco; Prüss-Ustün, Annette; Bonjour, Sophie; ROHANI Heather; Ammann, Markus

    2015-01-01

    For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. This study systematically reviewed and analysed available source apportionment studies on particulate matter (of diameter of 10 and 2.5 microns, PM10 and PM2.5) performed in cities to estimate typical shares of the sources of pollution by country and by region. A database with city source apportionment records, estimated with the use of receptor models, was also deve...

  13. Particulate matter concentrations and emissions in rabbit farms

    Directory of Open Access Journals (Sweden)

    Elisa Adell

    2012-04-01

    Full Text Available The extent of the potential health hazards of particulate matter (PM inside rabbit farms and the magnitude of emission levels to the outside environment are still unknown, as data on PM concentrations and emissions in and from such buildings is scarce.  The purpose of this study was to quantify airborne PM10 and PM2.5 concentrations and emissions on two rabbit farms in Mediterranean conditions and identify the main factors related with farm activities influencing PM generation.  Concentrations of PM10 and PM2.5 were determined continuously using a tapered element oscillating microbalance (TEOM in one farm with fattening rabbits and one reproductive doe farm in autumn.  At the same time as PM sampling, the time and type of human farm activity being performed was recorded. Additionally, temperature, relative humidity and ventilation rate were recorded continuously.  Emissions were calculated using a mass balance on each farm.  Results showed PM concentrations in rabbit farms are low compared with poultry and pig farms.  Average PM10 concentrations were 0.082±0.059 mg/m3 (fattening rabbits, and 0.048 ±0.058 mg/m3 (reproductive does. Average PM2.5 concentrations were 0.012±0.016 mg/m3 (fattening rabbits, and 0.012±0.035 mg/m3 (reproductive does. Particulate matter concentrations were significantly influenced by the type of human farm activity carried out in the building rather than by animal activity.  The main PM-generating activity on the fattening rabbit farm was sweeping, and the major PM-generating activity in reproductive does was sweeping and burning hair from the cages.  Average PM10 emissions were 5.987±6.144 mg/place/day (fattening rabbits, and 14.9±31.5 mg/place/day (reproductive does.  Average PM2.5 emissions were 0.20±1.26 mg/place/day (fattening rabbits, and 2.83±19.54 mg/place/day (reproductive does.  Emission results indicate that rabbit farms can be considered relevant point sources of PM emissions, comparable to

  14. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    International Nuclear Information System (INIS)

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM2.5 (particulate matter with an aerodynamic diameter 10 (particulate matter with an aerodynamic diameter 2.5 was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8–6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM2.5 were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  15. Acute changes in pulse pressure in relation to constituents of particulate air pollution in elderly persons

    Energy Technology Data Exchange (ETDEWEB)

    Jacobs, Lotte [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Buczynska, Anna [Departement of Chemistry, UA, Wilrijk (Belgium); Walgraeve, Christophe [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); Delcloo, Andy [Royal Meteorological Institute, Brussels (Belgium); Potgieter-Vermaak, Sanja [Departement of Chemistry, UA, Wilrijk (Belgium); Molecular Science Institute, School of Chemistry, University of Witwatersrand, Johannesburg (South Africa); Division of Chemistry and Environmental Science, Manchester Metropolitan University, Manchester (United Kingdom); Van Grieken, Rene [Departement of Chemistry, UA, Wilrijk (Belgium); Demeestere, Kristof; Dewulf, Jo; Van Langenhove, Herman [Research group EnVOC, Department of Sustainable Organic Chemistry and Technology, UGent, Gent (Belgium); De Backer, Hugo [Royal Meteorological Institute, Brussels (Belgium); Nemery, Benoit, E-mail: ben.nemery@med.kuleuven.be [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Nawrot, Tim S. [Occupational and Environmental Medicine, Unit of Lung Toxicology, K.U.Leuven, Leuven (Belgium); Centre for Environmental Sciences, Hasselt University, Diepenbeek (Belgium)

    2012-08-15

    An increased pulse pressure (difference between systolic and diastolic blood pressure) suggests aortic stiffening. The objective of this study was to examine the acute effects of both particulate matter (PM) mass and composition on blood pressure, among elderly persons. We carried out a panel study in persons living in elderly homes in Antwerp, Belgium. We recruited 88 non-smoking persons, 70% women with a mean age of 83 years (standard deviation: 5.2). Blood pressure was measured and a blood sample was collected on two time points, which were chosen so that there was an exposure contrast in ambient PM exposure. The elemental content of the collected indoor and outdoor PM{sub 2.5} (particulate matter with an aerodynamic diameter <2.5 {mu}m) mass concentration was measured. Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) on outdoor PM{sub 10} (particulate matter with an aerodynamic diameter <10 {mu}m) were measured. Each interquartile range increase of 20.8 {mu}g/m Superscript-Three in 24-h mean outdoor PM{sub 2.5} was associated with an increase in pulse pressure of 4.0 mmHg (95% confidence interval: 1.8-6.2), in persons taking antihypertensive medication (n=57), but not in persons not using antihypertensive medication (n=31) (p for interaction: 0.02). Vanadium, iron and nickel contents of PM{sub 2.5} were significantly associated with systolic blood pressure and pulse pressure, among persons on antihypertensive medication. Similar results were found for indoor concentrations. Of the oxy-PAHs, chrysene-5,6-dione and benzo[a]pyrene-3,6-dione were significantly associated with increases in systolic blood pressure and pulse pressure. In elderly, pulse pressure was positively associated with acute increases in outdoor and indoor air pollution, among persons taking antihypertensive medication. These results might form a mechanistic pathway linking air pollution as a trigger of cardiovascular events.

  16. Application of the polarization Raman Mie lidar system to monitor the particulate matter and water vapor in the aerosol pollution and haze episodes

    Science.gov (United States)

    Xie, Chenbo; Zhao, Ming; Shang, Zhen; Wang, Bangxin; Zhong, Zhiqing; Liu, Dong; Wang, Yingjian

    2014-11-01

    To monitor the temporal and spatial characteristics of particulate matter and water vapor in the aerosol pollution and haze episodes, the polarization Raman Mie lidar system has been developed. The lidar system includes four detection channels and it can measure the extinction coefficient and depolarization ratio of particulate matter as well as water vapor mixing ratio. The extinction coefficient indicates the visibility of atmosphere and it associates with the concentration of particulate matter. The depolarization ratio demonstrates the nonsphericity of particulate matter and is useful to distinguish the dust and pollution aerosol. The water vapor mixing ratio denotes the content of water vapor in the air and it is an important factor to influence of the hygroscopic growth on the pollution aerosol. The lidar system can operate in the automatic and continuous modes through a window on the roof of the observation room regards of the weather, and it takes continuous measurement from 20 November 2013 to 6 February 2014 over Hefei, China. During the experiment, the typical results of particulate matter measured with lidar in clear air, aerosol pollution and haze, and dust episodes are analyzed and given. The lidar observations are also compared with the air quality data and the meteorological data on the ground.

  17. Study of particulate matter in Limeira (Brazil) using SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Canteras, Felippe B.; Moreira, Silvana, E-mail: silvana@fec.unicamp.b [Universidade Estadual de Campinas (FEC/UNICAMP), SP (Brazil) Faculdade de Engenharia Civil, Arquitetura e Urbanismo

    2011-07-01

    Air pollution is a growing problem mainly in metropolitan areas in the world. The atmospheric pollutants are responsible for various environmental problems including the human health. Among the pollutants, the particulate matter is important, since it has a heterogeneous composition. The goal of this work was to analyze quantitatively the particulate matter in Limeira city, Sao Paulo State, Brazil. The sampling was made using a sequential filtering system, containing two filters putted in series, to collect fine and coarse fractions. After a removal in an acid medium, with ultrasound bath, the samples were analyzed by Synchrotron Radiation Total Reflection X-Ray Fluorescence (SR-TXRF). The results obtained for PM10 were in agreement with the standards defined by the Brazilian legislation and also with the standards established by USEPA. In all analyzed samples S, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Ba and Pb were quantified. Employing multivariate statistical analysis (principal component and cluster analysis) was possible to identify the emission sources. For coarse fraction the main emission source was soil dusty responsible for 57% of the total in the coarse fraction, followed by vehicular emission with 30% and industrial 13%. In the fine fraction soil dusty was the mainly emission source contributing with 79% of the total, followed by vehicular emission with 13% and finally the industrial emission responsible just for 8%. (author)

  18. Genotoxicity of organic extracts of urban airborne particulate matter: an assessment within a personal exposure study.

    Science.gov (United States)

    Abou Chakra, Oussama R; Joyeux, Michel; Nerrière, Eléna; Strub, Marie-Pierre; Zmirou-Navier, Denis

    2007-01-01

    Airborne particulate matter, PM(10) and PM(2.5), are associated with a range of health effects including lung cancer. Their complex organic fraction contains genotoxic and carcinogenic compounds such as polycyclic aromatic hydrocarbons (PAHs) and their derivatives. This study evaluates the genotoxicity of the PM(10) and PM(2.5) organic extracts that were sampled in the framework of a personal exposure study in three French metropolitan areas (Paris, Rouen and Strasbourg), using the comet assay, performed on HeLa S3 cells. In each city, 60-90 non-smoking volunteers composed of two groups of equal size (adults and children) carried the personal Harvard Chempass multi-pollutant sampler during 48h along two different seasons ('hot' and 'cold'). Volunteers were selected so as to live (home and work/school) in 3 different urban sectors contrasted in terms of air pollution within each city (one highly exposed to traffic emissions, one influenced by local industrial sources, and a background urban environment). Genotoxic effects are stronger for PM(2.5) extracts than for PM(10), and greater in winter than in summer. Fine particles collected by subjects living within the traffic proximity sector present the strongest genotoxic responses, especially in the Paris metropolitan area. This work confirms the genotoxic potency of particulate matter (PM(10) and PM(2.5)) organic extracts to which urban populations are exposed. PMID:16901531

  19. PIXE analysis of airborne particulate matter from Monterrey, Mexico. A first survey

    International Nuclear Information System (INIS)

    A first survey of elemental contents in airborne particulate matter from Monterrey, Nuevo Leon, Mexico, was performed using PIXE. This second largest industrial city is located 715 km north of Mexico City, and counts with a population of nearly three million inhabitants in its conurbation. Air pollution in the place comes from a great variety of industries ranging from iron smelters to furniture manufacturing, as well as from fuel combustion in vehicles and industries. This study presents results of elemental contents in airborne particulate matter in two particle size fractions: PM2.5 and PM15. The samples were collected during five weeks on working days, Monday-Friday, from 9 December 1996 to 14 January 1997. Two samples a day were collected, 12 h each, night-time and day-time. These first results show local pollution as typical from a large urban area in conjunction with an active industry. Thirteen elements were consistently detected in most of the samples and some episodes due to both industrial and human activities were identified. A general discussion about the results obtained is presented

  20. Particulate matter (PM10) patterns in Europe: An exploratory data analysis using non-negative matrix factorization

    Science.gov (United States)

    Žibert, Janez; Cedilnik, Jure; Pražnikar, Jure

    2016-05-01

    In last decade space-density of monitoring stations increased, in to addition also air pollution modeling made big progress. Using diversity of big data can lead to better knowledge about air pollution at continental scale. The focus of presented study is the data-driven approach using non-negative matrix factorization to provide new insights and to study the characteristic space-time particulate-matter patterns across Europe. We analyzed the PM10 concentrations obtained from 1097 monitoring stations (AirBase data) and the Monitoring Atmospheric Composition and Climate (MACC) modeled fields for a period of 3 years. We distinguished five characteristic patterns obtained from the AirBase data and five patterns from the MACC data. A comparison between the AirBase and MACC data shows a good spatial overlap for the east Europe, central Europe and the Mediterranean patterns. However, it should be noted that an analysis of the MACC data revealed two additional marine patterns: the Celtic and the North Seas. The Po Valley and Balkan patterns were very clearly identified when analyzing the AirBase data. In order to better understand the influence of the synoptic situation on the particulate-matter concentrations the synoptic meteorological situations were additionally analyzed. The cold season, low wind and very stable conditions, which can last for several days, is the most common situation linked to high concentrations of anthropogenic air pollution with particulate matter. In contrast, for the Mediterranean pattern the most common situation (high factor loadings) is observed during the summer period. This pattern also exhibits a clearer annual cycle. A closer look at the sea-salt patterns (Celtic and North Seas) shows low time-series correlations between these two factors. Nevertheless, the physical mechanism is the same: a steep gradient between the cyclone and the anti-cyclone that causes high winds and, consequently, higher sea-salt production.

  1. The Concentrations and Reduction of Airborne Particulate Matter (PM10, PM2.5, PM1) at Shelterbelt Site in Beijing

    OpenAIRE

    Jungang Chen; Xinxiao Yu; Fenbing Sun; Xiaoxiu Lun; Yanlin Fu; Guodong Jia; Zhengming Zhang; Xuhui Liu; Li Mo; Huaxing Bi

    2015-01-01

    Particulate matter is a serious source of air pollution in urban areas, where it exerts adverse effects on human health. This article focuses on the study of subduction of shelterbelts for atmospheric particulates. The results suggest that (1) the PM mass concentration is higher in the morning or both morning and noon inside the shelterbelts and lower mass concentrations at other times; (2) the particle mass concentration inside shelterbelt is higher than outside; (3) the particle interceptio...

  2. Sources of atmospheric carbonaceous particulate matter in Pittsburgh, Pennsylvania

    Energy Technology Data Exchange (ETDEWEB)

    Cabada, J.C.; Pandis, S.N.; Robinson, A.L. [Carnegie Mellon University, Pittsburgh, PA (United States)

    2002-06-01

    The organic carbon (OC)/elemental carbon (EC) tracer method is applied to the Pittsburgh, PA, area to estimate the contribution of secondary organic aerosol (SOA) to the monthly average concentration of organic particulate matter (PM) during 1995. An emissions inventory is constructed for the primary emissions of OC and EC in the area of interest. The ratio of primary emissions of OC to those of EC ranges between 2.4 in the winter months and 1.0 in summer months. A mass balance model and ambient measurements were used to assess the accuracy of the emissions inventory. It is estimated to be accurate to within 50%. The results from this analysis show a strong monthly dependence of the SOA contribution to the total organic PM concentration, varying from near zero during winter months to as much as 50% of the total OC concentration in the summer. Local wood and fugitive sources combustion are major sources of primary OC in western Pennsylvania on an annual basis (33 and 22% respectively), and wood burning is the dominant source during winter months. The coke producing industry and diesel combustion are the dominant sources of the primary EC emissions (21 and 30% respectively). The EC emissions show a weaker monthly dependence compared with that shown by OC sources. 57 refs., 9 figs., 8 tabs.

  3. Skin Damage Mechanisms Related to Airborne Particulate Matter Exposure.

    Science.gov (United States)

    Magnani, Natalia D; Muresan, Ximena M; Belmonte, Giuseppe; Cervellati, Franco; Sticozzi, Claudia; Pecorelli, Alessandra; Miracco, Clelia; Marchini, Timoteo; Evelson, Pablo; Valacchi, Giuseppe

    2016-01-01

    Epidemiological studies suggest a correlation between increased airborne particulate matter (PM) and adverse health effects. The mechanisms of PM-health effects are believed to involve oxidative stress and inflammation. To evaluate the ability of PM promoting skin tissue damage, one of the main organs exposed to outdoor pollutants, we analyzed the effect of concentrated ambient particles (CAPs) in a reconstructed human epidermis (RHE) model. RHE tissues were exposed to 25 or 100 µg/ml CAPs for 24 or 48 h. Data showed that RHE seems to be more susceptible to CAPs-induced toxicity after 48 h exposure than after 24 h. We found a local reactive O(2) species (ROS) production increase generated from metals present on the particle, which contributes to lipids oxidation. Furthermore, as a consequence of altered redox status, NFkB nucleus translocation was increase upon CAPs exposure, as well as cyclooxygenase 2 and cytochrome P450 levels, which may be involved in the inflammatory response initiated by PM. CAPs also triggered an apoptotic process in skin. Surprisingly, by transition electron microscopy analysis we showed that CAPs were able to penetrate skin tissues. These findings contribute to the understanding of the cutaneous pathophysiological mechanisms initiated by CAPs exposure, where oxidative stress and inflammation may play predominant roles. PMID:26507108

  4. Particulate matter in rural and urban nursery schools in Portugal

    International Nuclear Information System (INIS)

    Studies have been showing strong associations between exposures to indoor particulate matter (PM) and health effects on children. Urban and rural nursery schools have different known environmental and social differences which make their study relevant. Thus, this study aimed to evaluate indoor PM concentrations on different microenvironments of three rural nursery schools and one urban nursery school, being the only study comparing urban and rural nursery schools considering the PM1, PM2.5 and PM10 fractions (measured continuously and in terms of mass). Outdoor PM2.5 and PM10 were also obtained and I/O ratios have been determined. Indoor PM mean concentrations were higher in the urban nursery than in rural ones, which might have been related to traffic emissions. However, I/O ratios allowed concluding that the recorded concentrations depended more significantly of indoor sources. WHO guidelines and Portuguese legislation exceedances for PM2.5 and PM10 were observed mainly in the urban nursery school. - Highlights: • This is the only study comparing urban and rural nurseries considering PM fractions. • A low number of children in classrooms is enough to increase PM concentrations. • Children in urban nurseries are exposed to higher PM concentrations than in rural. • Children were mainly exposed to the finer fractions, which are worse to health. - PM levels were higher in the urban nursery than in the rural ones, which might have been related to traffic emissions. Still concentrations depended more significantly of indoor sources

  5. Characteristics and cellular effects of ambient particulate matter from Beijing

    International Nuclear Information System (INIS)

    In vitro tests using human adenocarcinomic alveolar epithelial cell line A549 and small mouse monocyte-macrophage cell line J774A.1 were conducted to test toxicity of six PM (particulate matter) samples from Beijing. The properties of the samples differ significantly. The production of inflammatory cytokine (TNF-α for J774A.1) and chemokine (IL-8 for A549) and the level of intracellular reactive oxygen species (ROS) were used as endpoints. There was a positive correlation between water soluble organic carbon and DTT-based redox activity. Both cell types produced increased levels of inflammatory mediators and had higher level of intracelllar ROS, indicating the presence of PM-induced inflammatory response and oxidative stress, which were dose-dependent and significantly different among the samples. The releases of IL-8 from A549 and TNF-α from J774A.1 were significantly correlated to PM size, Zeta potential, endotoxin, major metals, and polycyclic aromatic hydrocarbons. No correlation between ROS and these properties was identified. - Highlights: • Six PMs from Beijing were tested for toxicity using A549 and J774A.1 cell lines. • The properties of the PM samples differ significantly. • Dose-dependent inflammatory response and oxidative stress were found. • The release of inflammatory cytokine was significantly correlated to PM properties. • No correlation between ROS and PM properties was identified. - Cellular toxicity of PM2.5 from Beijing depends on their properties

  6. Particulate matter in rural and urban nursery schools in Portugal.

    Science.gov (United States)

    Nunes, R A O; Branco, P T B S; Alvim-Ferraz, M C M; Martins, F G; Sousa, S I V

    2015-07-01

    Studies have been showing strong associations between exposures to indoor particulate matter (PM) and health effects on children. Urban and rural nursery schools have different known environmental and social differences which make their study relevant. Thus, this study aimed to evaluate indoor PM concentrations on different microenvironments of three rural nursery schools and one urban nursery school, being the only study comparing urban and rural nursery schools considering the PM1, PM2.5 and PM10 fractions (measured continuously and in terms of mass). Outdoor PM2.5 and PM10 were also obtained and I/O ratios have been determined. Indoor PM mean concentrations were higher in the urban nursery than in rural ones, which might have been related to traffic emissions. However, I/O ratios allowed concluding that the recorded concentrations depended more significantly of indoor sources. WHO guidelines and Portuguese legislation exceedances for PM2.5 and PM10 were observed mainly in the urban nursery school. PMID:25795175

  7. Long-term particulate matter exposure and mortality: a review of European epidemiological studies

    Directory of Open Access Journals (Sweden)

    Boffetta Paolo

    2009-12-01

    Full Text Available Abstract Background Several studies considered the relation between long-term exposure to particulate matter (PM and total mortality, as well as mortality from cardiovascular and respiratory diseases. Our aim was to provide a comprehensive review of European epidemiological studies on the issue. Methods We searched the Medline database for epidemiological studies on air pollution and health outcomes published between January 2002 and December 2007. We also examined the reference lists of individual papers and reviews. Two independent reviewers classified the studies according to type of air pollutant, duration of exposure and health outcome considered. Among European investigations that examined long-term PM exposure we found 4 cohort studies (considering total and cardiopulmonary mortality, 1 case-control study (considering mortality from myocardial infarction, and 4 ecologic studies (2 studies considering total and cardiopulmonary mortality and 2 studies focused on cardiovascular mortality. Results Measurement indicators of PM exposure used in European studies, including PM10, PM2.5, total suspended particulate and black smoke, were heterogeneous. This notwithstanding, in all analytic studies total mortality was directly associated with long-term exposure to PM. The excesses in mortality were mainly due to cardiovascular and respiratory causes. Three out of 4 ecologic studies found significant direct associations between PM indexes and mortality. Conclusion European studies on long-term exposure to PM indicate a direct association with mortality, particularly from cardiovascular and respiratory diseases.

  8. QUANTITATION, DETECTION AND MEASUREMENT PRECISION OF ORGANIC MOLECULAR MARKERS IN URBAN PARTICULATE MATTER FROM PHILADELPHIA, PA

    Science.gov (United States)

    This work focuses on analysis of organic molecular markers in airborne particulate matter (PM) by Gas Chromatography/Ion Trap Mass Spectrometry (GC/IT MS). The particulate samples used in the method development were collected as PM10 in metropolitan Philadelphia during...

  9. 40 CFR 52.528 - Control strategy: Sulfur oxides and particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.528 Section 52.528 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... and Port Everglades plants of Florida Power and Light Company from the particulate emission limits...

  10. Seasonally varying nitrogen isotope biogeochemistry of particulate organic matter in Lake Kinneret, Israel

    Digital Repository Service at National Institute of Oceanography (India)

    Hadas, O.; Altabet, M.A.; Agnihotri, R.

    Large temporal variations in the nitrogen isotopic composition (delta sup(15) N) of particulate organic matter (POM) and dissolved inorganic nitrogen (DIN) species in Lake Kinneret occurred in response to seasonal phasing of dominant nitrogen cycle...

  11. Trueness, Precision, and Detectability for Sampling and Analysis of Organic Species in Airborne Particulate Matter

    Science.gov (United States)

    Recovery. precision, limits of detection and quantitation, blank levels, calibration linearity, and agreement with certified reference materials were determined for two classes of organic components of airborne particulate matter, polycyclic aromatic hydrocarbons and hopanes usin...

  12. Ambient particulate matter affects cardiac recovery in a Langendorff ischemia model.

    NARCIS (Netherlands)

    Bagate, Karim; Meiring, James J; Gerlofs-Nijland, Miriam E; Cassee, Flemming R; Wiegand, Herbert; Osornio-Vargas, Alvaro; Borm, Paul J A

    2006-01-01

    Exposure to ambient particulate matter (PM) is associated with increased mortality and morbidity among subjects with cardiovascular impairment. We hypothesized that exposure of spontaneously hypertensive (SH) rats to PM impairs the recovery of cardiovascular performance after coronary occlusion and

  13. Particulate matter inhalation exacerbates cardiopulmonary injury in a rat model of isoproterenol-induced cardiomyopathy

    Science.gov (United States)

    Ambient particulate matter (PM) exposure is linked to cardiovascular events and death, especially among individuals with heart disease. A model of toxic cardiomyopathy was developed in Spontaneously Hypertensive Heart Failure (SHHF) rats to explore potential mechanisms. Rats were...

  14. On-Board Engine Exhaust Particulate Matter Sensor for HCCI and Conventional Diesel Engines

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Matt; Matthews, Ron

    2011-09-30

    The goal of the research was to refine and complete development of an on-board particulate matter (PM) sensor for diesel, DISI, and HCCI engines, bringing it to a point where it could be commercialized and marketed.

  15. Cardiac Effects of Seasonal Ambient Particulate Matter and Ozone Co-exposure in Rats

    Science.gov (United States)

    BackgroundThe potential for seasonal differences in the physicochemical characteristics of ambient particulate matter (PM) to modify interactive effects with gaseous pollutants has not been thoroughly examined. The purpose of this study was to compare cardiac responses in conscio...

  16. Source apportionment of atmospheric fine particulate matter collected at the Seney National Wildlife Refuge

    Data.gov (United States)

    US Fish and Wildlife Service, Department of the Interior — The trends in secondary organic aerosol at a remote location are studied using atmospheric fine particulate matter samples collected at Seney National Wildlife...

  17. Toxicogenomic analysis of susceptibility to inhaled urban particulate matter in mice with chronic lung inflammation

    OpenAIRE

    Yauk Carole L; Williams Andrew; Thomson Errol M; Vincent Renaud

    2009-01-01

    Abstract Background Individuals with chronic lung disease are at increased risk of adverse health effects from airborne particulate matter. Characterization of underlying pollutant-phenotype interactions may require comprehensive strategies. Here, a toxicogenomic approach was used to investigate how inflammation modifies the pulmonary response to urban particulate matter. Results Transgenic mice with constitutive pulmonary overexpression of tumour necrosis factor (TNF)-α under the control of ...

  18. Reduction of fine particulate matter in urban areas through biological fixation processes

    International Nuclear Information System (INIS)

    The article retrieves an experiment carried out in Milan under the tunnel connecting Viale Brianza and Viale Lunigiana that was aimed at assessing the efficacy of the system patented by the company Eurovix for the reduction of particulate matter by means of biological fixation of PM10 to the ground. at the same time we evaluated the reduction, by means of selective enzymatic degradation of IPA concentration absorbed on particulate matter

  19. Occurrence and sources of particulate nitro-polycyclic aromatic hydrocarbons in ambient air in Denmark

    DEFF Research Database (Denmark)

    Feilberg, A.; Poulsen, M.W.B.; Nielsen, T.; Skov, H.

    2001-01-01

    been developed and applied. The nitro-PAK levels have been compared with levels of other air pollutants including unsubstituted PAHs, inorganic gases and particulate matter, as well as with meteorological parameters. Correlations and concentration ratios suggest that the dominant source of 9......-nitroanthracene at the urban site is direct emissions, whereas at the semirural site its dominant source is atmospheric formation. The atmospheric formation of 2-nitrofluoranthene and 2-nitropyrene generally seems to be initiated by OH radicals during the day rather than by NO3 radicals at night. The average...... contribution of the OH initiated formation is estimated to be in the range of 90-100%. However, under wintertime conditions with cloudy weather implying low OH radical production, NO3 radicals may also be important as initiators of nitro-PAH formation. Samples influenced by transport of polluted air masses...

  20. Catalytic Control of Typical Particulate Matters and Volatile Organic Compounds Emissions from Simulated Biomass Burning.

    Science.gov (United States)

    Chen, Yaxin; Tian, Guangkai; Zhou, Meijuan; Huang, Zhiwei; Lu, Chenxi; Hu, Pingping; Gao, Jiayi; Zhang, Zhaoliang; Tang, Xingfu

    2016-06-01

    Emissions of particulate matters (PMs) and volatile organic compounds (VOCs) from open burning of biomass often cause severe air pollution; a viable approach is to allow biomass to burn in a furnace to collectively control these emissions, but practical control technologies for this purpose are lacking. Here, we report a hollandite manganese oxide (HMO) catalyst that can efficiently control both typical PMs and VOCs emissions from biomass burning. The results reveal that typical alkali-rich PMs such as KCl particles are disintegrated and the K(+) ions are trapped in the HMO "single-walled" tunnels with a great trapping capacity. The K(+)-trapping HMO increases the electron density of the lattice oxygen and the redox ability, thus promoting the combustion of soot PMs and the oxidation of typical VOCs such as aldehydes and acetylates. This could pave a way to control emissions from biomass burning concomitant with its utilization for energy or heat generation. PMID:27128185

  1. Heavy metal analysis of suspended particulate matter (SPM) and other samples from some workplaces in Kenya

    International Nuclear Information System (INIS)

    Air pollution studies in Nairobi are indicating a rising trend in the particulate matter loading. The trend is mainly attributed to increased volume of motor vehicles, the physical change of the environment, agricultural and industrial activities. In this study, total suspended particulate matter sampling at the Nairobi industrial area and inside one workplace are reported. Included also are the results of analysis of water samples and effluents collected from a sugar factory, a tannery, and mercury (Hg) analysis in some beauty creams sold in Nairobi. The samples were analysed for heavy metal content using Energy Dispersive X-ray Fluorescence (EDXRF) while the suspended particulate matter (SPM) concentrations were determined by gravimetric technique. Total reflection x-ray fluorescence (TRXF), atomic absorption spectrophotometry and PIXE analytical techniques plus the use of Standard and Certified Reference Materials (SRM's and CRM's) were used for quality control, analysis and evaluation of the accrued data. Air sampling in the industrial area was done twice (Wednesday and Saturday) every week for a period of two months (November and December, 1996) and twice monthly for a period of six months (January-June 1997). Each sample covering approximately 24 hours, was collected using the 'Gent' Stacked Filter Unit (SFU), for day and night times. The SPM were found to vary from 16 to 83 mgm-3 during the sampling period. The analysis of dust collected inside a workplace showed that there was poor filtration of the air pumped into the building and that there was a need for improvement of the air conditioning unit plus reduction of emissions from a neighbouring tyre factory. Beauty creams analysed showed that there is some mercury present in significant amounts (0.14 - 3.0%). The results of these mercury levels are presented for various brands of cosmetics sold in some market outlets in Nairobi. The health implications on the presence of mercury in some of these beauty

  2. Assessment of Elemental Content in Airborne Particulate Matter in Bratislava Atmosphere using INAA and AAS

    Science.gov (United States)

    Meresova, J.; Florek, M.; Frontasyeva, M. V.; Pavlov, S. S.; Holy, K.; Sykora, I.

    2007-11-01

    The wide range concentration of elements including heavy metals, halogens and rare earths in airborne particulate matter were investigated. Sixteen samples were collected on filters in Meteorological station, Comenius University Bratislava (Slovak Republic) in different seasons. Using instrumental neutron activation analysis (INAA) the concentrations of 29 elements (Na, Al, Cl, K, Ca, Sc, Ti, V, Mn, Fe, Ga, As, Se, Br, Rb, In, Sb, I, Cs, Ba, La, Sm, Dy, Tm, W, Au, Hg, Th, U) were determined. The concentrations of other 6 elements (Cr, Ni, Cu, Zn, Cd, Pb) were measured by atomic absorption spectrometry (AAS). The obtained results allow us to better understand the dynamic processes in the atmosphere and to quantify the air pollution and its trends.

  3. Simulation of the transport of suspended particulate matter in the Rio de la Plata

    Energy Technology Data Exchange (ETDEWEB)

    Hausstein, H.

    2008-11-06

    Numerical simulations of the transport of Suspended Particulate Matter in the Rio de la Plata estuary were performed with a three dimensional model for coastal waters driven by wave sand currents. Aturbulence based flocculation approach is implemented to the model. The model is for the first time applied under heavy conditions, since the Rio de la Plata has discharges up to 25000 m{sup 3}/s and SPM concentrations up to 300-400 mg/l. Such concentrations are also difficult to compute from satellite measurements. SeaWiFs satellite images served for the validation of the model results. The model is able to reproduce the shape and the position of the front as well as the zone of the turbidity maximum. It also identifies the zones of erosion and deposition which is of significant importance because of the dense ship traffic along the navigational channels towards Buenos Aires and the cities upstream the rivers. (orig.)

  4. Quantifying population exposure to airborne particulate matter during extreme events in California due to climate change

    Directory of Open Access Journals (Sweden)

    A. Mahmud

    2012-02-01

    Full Text Available The effect of climate change on population-weighted concentrations of particulate matter (PM during extreme events was studied using the Parallel Climate Model (PCM, the Weather Research and Forecasting (WRF model and the UCD/CIT 3-D photochemical air quality model. A "business as usual" (B06.44 global emissions scenario was dynamically downscaled for the entire state of California between the years 2000–2006 and 2047–2053. Air quality simulations were carried out for 1008 days in each of the present-day and future climate conditions using year-2000 emissions. Population-weighted concentrations of PM0.1, PM2.5, and PM10 total mass, components species, and primary source contributions were calculated for California and three air basins: the Sacramento Valley air basin (SV, the San Joaquin Valley air basin (SJV and the South Coast Air Basin (SoCAB. Results over annual-average periods were contrasted with extreme events.

    Climate change between 2000 vs. 2050 did not cause a statistically significant change in annual-average population-weighted PM2.5 mass concentrations within any major sub-region of California in the current study. Climate change did alter the annual-average composition of the airborne particles in the SoCAB, with notable reductions of elemental carbon (EC; −3% and organic carbon (OC; −3% due to increased annual-average wind speeds that diluted primary concentrations from gasoline combustion (−3% and food cooking (−4%. In contrast, climate change caused significant increases in population-weighted PM2.5 mass concentrations in central California during extreme events. The maximum 24-h average PM2.5 concentration experienced by an average person during a ten-year period in the SJV increased by 21% due to enhanced production of secondary particulate matter (manifested as NH4NO3. In general, climate change caused increased

  5. Particulate Air Pollution and the Rate of Hospitalization for Congestive Heart Failure among Medicare Beneficiaries in Pittsburgh, Pennsylvania.

    OpenAIRE

    Wellenius, Gregory A.; Bateson, Thomas F.; Mittleman, Murray A.; Schwartz, Joel

    2005-01-01

    We used a case-crossover approach to evaluate the association between ambient air pollution and the rate of hospitalization for congestive heart failure (CHF) among Medicare recipients (age ≥ 65) residing in Allegheny County (Pittsburgh area), PA, during 1987–1999. We also explored effect modification by age, gender, and specific secondary diagnoses. During follow-up, there were 55,019 admissions with a primary diagnosis of CHF. We found that particulate matter with aerodynamic diameter ≤ 10 ...

  6. Blood Pressure Changes and Chemical Constituents of Particulate Air Pollution: Results from the Healthy Volunteer Natural Relocation (HVNR) Study

    OpenAIRE

    Wu, Shaowei; Deng, Furong; Huang, Jing; Wang, Hongyi; Shima, Masayuki; Wang, Xin; Qin, Yu; Zheng, Chanjuan; Wei, Hongying; Hao, Yu; Lv, Haibo; Lu, Xiuling; Guo, Xinbiao

    2012-01-01

    Background: Elevated blood pressure (BP) has been associated with particulate matter (PM) air pollution, but associations with PM chemical constituents are still uncertain. Objectives: We investigated associations of BP with various chemical constituents of fine PM (PM2.5) during 460 repeated visits among a panel of 39 university students. Methods: Resting BP was measured using standardized methods before and after the university students relocated from a suburban campus to an urban campus wi...

  7. Sub-micrometre particulate matter is primarily in liquid form over Amazon rainforest

    Science.gov (United States)

    Bateman, Adam P.; Gong, Zhaoheng; Liu, Pengfei; Sato, Bruno; Cirino, Glauber; Zhang, Yue; Artaxo, Paulo; Bertram, Allan K.; Manzi, Antonio O.; Rizzo, Luciana V.; Souza, Rodrigo A. F.; Zaveri, Rahul A.; Martin, Scot T.

    2016-01-01

    Atmospheric particulate matter influences the Earth’s energy balance directly, by altering or absorbing solar radiation, and indirectly by influencing cloud formation. Whether organic particulate matter exists in a liquid, semi-solid, or solid state can affect particle growth and reactivity, and hence particle number, size and composition. The properties and abundance of particles, in turn, influence their direct and indirect effects on energy balance. Non-liquid particulate matter was identified over a boreal forest of Northern Europe, but laboratory studies suggest that, at higher relative humidity levels, particles can be liquid. Here we measure the physical state of particulate matter with diameters smaller than 1 μm over the tropical rainforest of central Amazonia in 2013. A real-time particle rebound technique shows that the particulate matter was liquid for relative humidity greater than 80% for temperatures between 296 and 300 K during both the wet and dry seasons. Combining these findings with the distributions of relative humidity and temperature in Amazonia, we conclude that near-surface sub-micrometre particulate matter in Amazonia is liquid most of the time during both the wet and the dry seasons.

  8. Continuous and semicontinuous monitoring techniques for particulate matter mass and chemical components: a synthesis of findings from EPA's Particulate Matter Supersites Program and related studies.

    Science.gov (United States)

    Solomon, Paul A; Sioutas, Constantinos

    2008-02-01

    The U.S. Environmental Protection Agency (EPA) established the Particulate Matter (PM) Supersites Program to provide key stakeholders (government and private sector) with significantly improved information needed to develop effective and efficient strategies for reducing PM on urban and regional scales. All Supersites projects developed and evaluated methods and instruments, and significant advances have been made and applied within these programs to yield new insights to our understanding of PM accumulation in air as well as improved source-receptor relationships. The tested methods include a variety of continuous and semicontinuous instruments typically with a time resolution of an hour or less. These methods often overcome many of the limitations associated with measuring atmospheric PM mass concentrations by daily filter-based methods (e.g., potential positive or negative sampling artifacts). Semicontinuous coarse and ultrafine mass measurement methods also were developed and evaluated. Other semicontinuous monitors tested measured the major components of PM such as nitrate, sulfate, ammonium, organic and elemental carbon, trace elements, and water content of the aerosol as well as methods for other physical properties of PM, such as number concentration, size distribution, and particle density. Particle mass spectrometers, although unlikely to be used in national routine monitoring networks in the foreseeable future because of their complex technical requirements and cost, are mentioned here because of the wealth of new information they provide on the size-resolved chemical composition of atmospheric particles on a near continuous basis. Particle mass spectrometers likely represent the greatest advancement in PM measurement technology during the last decade. The improvements in time resolution achieved by the reported semicontinuous methods have proven to be especially useful in characterizing ambient PM, and are becoming essential in allowing scientists to

  9. Levels of particulate matter in rural, urban and industrial sites in Spain

    Energy Technology Data Exchange (ETDEWEB)

    Querol, X.; Alastuey, A.; Rodriguez, S.; Viana, M.M. [Instituto de Ciencias de la Tierra del CSIC, C/Luis Sole y Sabaris s/n, 08028 Barcelona (Spain); Artinano, B.; Salvador, P. [Centro de Investigaciones Energeticas, Mediambientales y Tecnologicas, CIEMAT Avda. Complutense 22, 28040 Madrid (Spain); Mantilla, E. [Centro de Estudios Ambientales del Mediterraneo, CEAM. Parque tecnologico, C-4, sector oeste, 46980 Paterna, Valencia (Spain); Santos, S. Garcia do; Patier, R. Fernandez [Area de Contaminacion Atmosferica, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, km n. 2, 28220 Majadahonda, Madrid (Spain); De La Rosa, J.; De la Campa, A. Sanchez [Departamento de Geologia, Universidad de Huelva, Campus Universitario de la Rabida, La Rabida, 21819 Huelva (Spain); Menendez, M.; Gil, J.J. [Departamento Mineralogia y Petrologia. Universidad del Pais Vasco, Aptdo. 644, 48080 Bilbao (Spain)

    2004-12-01

    This paper summarises the results of a series of studies on the interpretation of time series of levels of total suspended particles (TSP) and particulate matter (PM, <10 {mu}m) in six regions of Spain in the period 1996-2000. In addition to the local pollution events, high PM10 episodes are recorded during African dust outbreaks, regional atmospheric recirculation events (mainly in spring to autumn), and to a lesser extent, under the influence of European and Mediterranean long range transported air masses. The lowest PM10 levels are usually recorded under Atlantic air mass advective conditions. All these regional and large-scale processes account for the relatively high PM10 levels recorded in regional background stations in Spain. Thus, the PM10 levels recorded at EMEP (Cooperative Program for Monitoring and Evaluation of the Long Range Transmission of Air Pollutants in Europe) regional background stations between March 2001 and March 2002 are very close to the annual limit value proposed for 2010 by the EU Air Quality Directive 1999/30/CE. Chemical data obtained for the different monitoring stations during 2001 show a high mineral load in PM10 for most of the study sites in Spain. Furthermore, a high marine aerosol load is evidenced in the Canary Islands. These mineral and marine loads are lower when considering PM2.5, but a relatively high proportion (8-21%) of mineral dust is still present.

  10. Levels of particulate matter in rural, urban and industrial sites in Spain.

    Science.gov (United States)

    Querol, X; Alastuey, A; Rodríguez, S; Viana, M M; Artíñano, B; Salvador, P; Mantilla, E; García do Santos, S; Fernandez Patier, R; de La Rosa, J; Sanchez de la Campa, A; Menéndez, M; Gil, J J

    2004-12-01

    This paper summarises the results of a series of studies on the interpretation of time series of levels of total suspended particles (TSP) and particulate matter (PM, pollution events, high PM10 episodes are recorded during African dust outbreaks, regional atmospheric recirculation events (mainly in spring to autumn), and to a lesser extent, under the influence of European and Mediterranean long range transported air masses. The lowest PM10 levels are usually recorded under Atlantic air mass advective conditions. All these regional and large-scale processes account for the relatively high PM10 levels recorded in regional background stations in Spain. Thus, the PM10 levels recorded at EMEP (Cooperative Program for Monitoring and Evaluation of the Long Range Transmission of Air Pollutants in Europe) regional background stations between March 2001 and March 2002 are very close to the annual limit value proposed for 2010 by the EU Air Quality Directive 1999/30/CE. Chemical data obtained for the different monitoring stations during 2001 show a high mineral load in PM10 for most of the study sites in Spain. Furthermore, a high marine aerosol load is evidenced in the Canary Islands. These mineral and marine loads are lower when considering PM2.5, but a relatively high proportion (8-21%) of mineral dust is still present. PMID:15504522

  11. Modeling particulate matter concentrations measured through mobile monitoring in a deletion/substitution/addition approach

    Science.gov (United States)

    Su, Jason G.; Hopke, Philip K.; Tian, Yilin; Baldwin, Nichole; Thurston, Sally W.; Evans, Kristin; Rich, David Q.

    2015-12-01

    Land use regression modeling (LUR) through local scale circular modeling domains has been used to predict traffic-related air pollution such as nitrogen oxides (NOX). LUR modeling for fine particulate matters (PM), which generally have smaller spatial gradients than NOX, has been typically applied for studies involving multiple study regions. To increase the spatial coverage for fine PM and key constituent concentrations, we designed a mobile monitoring network in Monroe County, New York to measure pollutant concentrations of black carbon (BC, wavelength at 880 nm), ultraviolet black carbon (UVBC, wavelength at 3700 nm) and Delta-C (the difference between the UVBC and BC concentrations) using the Clarkson University Mobile Air Pollution Monitoring Laboratory (MAPL). A Deletion/Substitution/Addition (D/S/A) algorithm was conducted, which used circular buffers as a basis for statistics. The algorithm maximizes the prediction accuracy for locations without measurements using the V-fold cross-validation technique, and it reduces overfitting compared to other approaches. We found that the D/S/A LUR modeling approach could achieve good results, with prediction powers of 60%, 63%, and 61%, respectively, for BC, UVBC, and Delta-C. The advantage of mobile monitoring is that it can monitor pollutant concentrations at hundreds of spatial points in a region, rather than the typical less than 100 points from a fixed site saturation monitoring network. This research indicates that a mobile saturation sampling network, when combined with proper modeling techniques, can uncover small area variations (e.g., 10 m) in particulate matter concentrations.

  12. Analysis of airborne particulate matter collected in urban and rural area by instrumental neutron activation analysis

    International Nuclear Information System (INIS)

    ANALYSIS OF AIRBORNE PARTICULATE MATTER COLLECTED IN URBAND AND RURAL AREA BY INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS. This report presents the work of monitoring study on air particulate matter (PMs) in Indonesia on the period of 2002 to 2004. The PMs were collected at two sampling site that represented an urban and rural area using Gent stacked air sampler for 24 hours, once a month for each sampling point. Fine and coarse fractions of PMs were collected. The PMs deposited on a filter were measured for mass concentration and were analyzed for elemental concentration by using INAA. Irradiation of filters were carried out at GA. Siwabessy reactor and were counted by high-resolution HPGe detector coupled to a multichannel analyzer. The PM10 analysis resulted shows that the range of PM10 for rural site was 5.5 μg.m-3 to 46.9 μg.m-3 while PM10 for urban site was 12.0 μg.m-3 to 93.1 μg.m-3. About 17 elements of Al, Br, Cl, Cr, Co, Cs, Fe, I, La, Mn, Na, Sb, Sc, Se, Sm, V and Zn were analyzed through short and long irradiation of INAA. Among, the elements of Al, Br, Cl, Fe and Na were found at mayor component. The pollutants of Fe, V, Sb, Cr, Zn and Co were higher at urban site compare to the rural site. It could be conclude that the mean of 24 hours PM10 and mean annual of fine fraction were still below the PMs National Standard for both sampling sites. The INAA technique could be used to control the pollutant concentration on environmental sample. (author)

  13. A five-year study of particulate matter (PM2.5) and cerebrovascular diseases

    International Nuclear Information System (INIS)

    Cerebrovascular accidents, or strokes, are the second leading cause of mortality and the leading cause of morbidity in both Chile and the rest of the world. However, the relationship between particulate matter pollution and strokes is not well characterized. The association between fine particle concentration and stroke admissions was studied. Data on hospital admissions due to cerebrovascular accidents were collected from the Ministry of Health. Air quality and meteorological data were taken from the Air Quality database of the Santiago Metropolitan Area. Santiago reported 33,624 stroke admissions between January 1, 2002 and December 30, 2006. PM2.5 concentration was markedly seasonal, increasing during the winter. This study found an association between PM2.5 exposure and hospital admissions for stroke; for every PM2.5 concentration increase of 10 μg m−3, the risk of emergency hospital admissions for cerebrovascular causes increased by 1.29% (95% CI 0.552%–2.03%). Highlights: •Particulate matter pollution – cerebrovascular diseases relationship is not well known. •Cerebrovascular diseases are the second leading cause of mortality and the leading cause of morbidity. •PM2.5 increase 10 μg/m3 the risk of hospital admissions for stroke causes increases by 1.29%. •The results are similar to that of other cities worldwide. -- Relationship between PM pollution and strokes is not well characterized. In Santiago the risk of the stroke increased by 1.29%; for every increase of 10 μg m−3 in PM2.5

  14. Emissions of particulate matter from animal houses in the Netherlands

    Science.gov (United States)

    Winkel, Albert; Mosquera, Julio; Groot Koerkamp, Peter W. G.; Ogink, Nico W. M.; Aarnink, André J. A.

    2015-06-01

    In the Netherlands, emissions from animal houses represent a major source of ambient particulate matter (PM). The objective of the present paper was to provide accurate and up to date concentrations and emission rates of PM10 and PM2.5 for commonly used animal housing systems, under representative inside and outside climate conditions and ventilation rates. We set up a national survey which covered 13 housing systems for poultry, pigs, and dairy cattle, and included 36 farms. In total, 202 24-h measurements were carried out, which included concentrations of inhalable PM, PM10, PM2.5, and CO2, ventilation rate, temperature, and relative humidity. On an animal basis, geometric mean emission rates of PM10 ranged from 2.2 to 12.0 mg h-1 in poultry and from 7.3 to 22.5 mg h-1 in pigs. The mean PM10 emission rate in dairy cattle was 8.5 mg h-1. Geometric mean emission rates of PM2.5 ranged from 0.11 to 2.41 mg h-1 in poultry and from 0.21 to 1.56 mg h-1 in pigs. The mean PM2.5 emission rate in dairy cattle was 1.65 mg h-1. Emissions are also reported per Livestock Unit and Heat Production Unit. PM emission rates increased exponentially with increasing age in broilers and turkeys and increased linearly with increasing age in weaners and fatteners. In laying hens, broiler breeders, sows, and dairy cattle, emission levels were variable throughout the year.

  15. Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon

    International Nuclear Information System (INIS)

    Concentrations and vertical profiles of various fractions of airborne particulate matter (suspended particulate matter (SPM), PM10 and PM2.5) have been measured over the first three metres from ground in a street canyon. Measurements were carried out using automated near real-time apparatus called the Kinetic Sequential Sampling (KSS) system. KSS system is essentially an electronically-controlled lift carrying a real-time particle monitor for sampling air sequentially, at different heights within the breathing zone, which includes all heights within the surface layer of a street canyon at which people may breathe. Data is automatically logged at the different receptor levels, for the determination of the average vertical concentration profile of airborne particulate matter. For measuring the airborne particle concentration, a Grimm Dust Monitor 1.104/5 was used. The recorded data also allows for time series analysis of airborne particulate matter concentration at different heights. Time series data and hourly-average vertical concentration profiles in the boundary layer of the confines of a street are thought to be mainly determined by traffic emissions and traffic associated processes. Hence the measured data were compared with results of a street canyon emission-dispersion model in time and space. This Street Level Air Quality (SLAQ) model employs the plume-box technique and includes modules for simulating vehicle-generated effects such as thermally- and mechanically-generated turbulence and resuspension of road dust. Environmental processes, such as turbulence resulting from surface sensible heat and the formation of sulphate aerosol from sulphur dioxide exhaust emissions, are taken into account. The paper presents an outline description of the measuring technique and model used, and a comparison of the measured and modelled data

  16. Approach to predict partitioning of organic compounds from air into airborne particulate

    Institute of Scientific and Technical Information of China (English)

    SUN Cong; FENG Liu

    2005-01-01

    Based on the theoretical linear solvation energy relationship and quantum chemical descriptors computed by AM1 Hamiltonian, a new approach was developed to predict the partitioning of some organic compounds between the airborne particulate and air. It could be successfully used to study the partitioning of organic compounds from air into airborne particulate, and evaluate the potential risk of organic compounds.

  17. Deposition measurement of particulate matter in connection with corrosion studies.

    Science.gov (United States)

    Ferm, Martin; Watt, John; O'Hanlon, Samantha; De Santis, Franco; Varotsos, Costas

    2006-03-01

    A new passive particle collector (inert surrogate surface) that collects particles from all directions has been developed. It was used to measure particle deposition at 35 test sites as part of a project that examined corrosion of materials in order that variation in particulate material could be used in development of dose-response functions in a modern multi-pollutant environment. The project, MULTI-ASSESS, was funded by the EU to examine the effects of air pollution on cultural heritage. Passive samplers were mounted rain-protected, and both in wind-protected and wind-exposed positions, to match the exposure of the samples for corrosion studies. The particle mass and its chemical content (nitrate, ammonium, sulfate, calcium, sodium, chloride, magnesium and potassium) were analysed. The loss of light reflectance on the surrogate surface was also measured. Very little ammonium and potassium was found, and one or more anions are missing in the ion balance. There were many strong correlations between the analysed species. The mass of analysed water-soluble ions was fairly constant at 24% of the total mass. The particle mass deposited to the samplers in the wind-protected position was about 25% of the particles deposited to an openly exposed sampler. The Cl-/Na+ ratios indicate a reaction between HNO(3) and NaCl. The deposited nitrate flux corresponds to the missing chloride. The Ca2+ deposition equals the SO4(2-) deposition and the anion deficiency. The SO4(2-) deposition most likely originates from SO2 that has reacted with basic calcium-containing particles either before or after they were deposited. The particle depositions at the urban sites were much higher than in nearby rural sites. The deposited mass correlated surprisingly well with the PM(10) concentration, except at sites very close to traffic. PMID:16518649

  18. [Particulate matter in indoor environments--exposure situation in residences, schools, pubs, and related recreational spaces].

    Science.gov (United States)

    Fromme, H

    2006-11-01

    Numerous epidemiological studies have been carried out during the last decades which have demonstrated an association between the pollution of outside air with toxic substances and the occurrence of health-related effects. Against the background of these findings, particularly in recent years, the focus of research has clearly shifted towards particulate matter (PM), notable fine and ultrafine particles. While diverse measurements of PM in the outside air have been conducted, only few data on indoor air pollution are available. The concentration of PM in the indoor environment is highly variable in time and space due to various influencing factors like type of the source, building and room characteristics, the activities of users and the airing behaviour. In this article we aim to summarise and discuss the exposure situation regarding PM in indoor environments. In residences, European studies have found mean PM (2.5) values between 10 and 87 microg/m (3). Especially in smokers' homes, a high background level was observed, reaching very high concentrations of some hundred microg/m (3) when active smoking took place. There are some studies on air quality in schools and similar public places which show that exposure to particulate matter in these environments is high. The main causes of this situation appear to be an insufficient ventilation routine as well as the low frequency and quality of cleaning. In combination with the high number of pupils in relation to room area and volume and their sometimes high physical activity, this leads to a continued resuspension of particles from the room's surfaces. A very high concentration of PM can be observed in those recreational places where smoking is not prohibited, such as discotheques, pubs and restaurants. Here, the mean PM values can reach some hundred microg/m (3). Specific strategies are necessary to especially protect the health of non-smokers in such places. Further investigations are needed to characterise the

  19. 40 CFR Appendix Q to Part 50 - Reference Method for the Determination of Lead in Particulate Matter as PM10 Collected From...

    Science.gov (United States)

    2010-07-01

    ... 40 CFR Part 53 (Reference and Equivalent Methods). This FRM specifically applies to the analysis of..., Ann Arbor Science Publishers Inc., 1977. 5. Code of Federal Regulations (CFR) 40, Part 136, Appendix B... of Lead in Particulate Matter as PM10 Collected From Ambient Air Q Appendix Q to Part 50...

  20. [Testing of Concentration and Characteristics of Particulate Matters Emitted from Stationary Combustion Sources in Beijing].

    Science.gov (United States)

    Hu, Yue-qi; Wu, Xiao-dong; Wang, Chen; Liang, Yun-ping; Ma, Zhao-hui

    2016-05-15

    A self-built monitoring sampling system on particulate matters and water soluble ions emitted from stationary combustion sources and a size separated sampling system on particulate matters based on FPS4000 and ELPI + were applied to test particulate matters in fumes of typical stationary combustion sources in Beijing. The results showed that the maximum concentration of total particulate matters in fumes of stationary combustion sources in Beijing was 83.68 mg · m⁻³ in standard smoke oxygen content and the minimum was 0.12 mg · m⁻³. And particle number concentration was in the 10⁴-10⁶ cm⁻³ number of grade. Both mass and number concentration ranking order of particulate matters emitted from stationary combustion sources in Beijing was: heating gas fired boilers power plant coal fired boilers coal fired boilers. And two or three peaks existed under 1 µm of particulate size for both number size distribution and mass size distribution. The number concentration for PM₂.₅ accounted for over 99.8% of that for PM₁₀ and that for PM₀.₁ accounted for over 83% of that for PM₂.₅. But the proportions of PM₀.₁, and PM₂.₅ in PM₁₀ were significantly lower in quality analysis,the proportion of PM₂.₅ in PM₁₀ was about 82%, and that of PM₀.₁ in PM₂.₅ was about 27%-33%. PMID:27506016

  1. Ammonia, hydrogen sulfide, carbon dioxide and particulate matter emissions from California high-rise layer houses

    Science.gov (United States)

    Lin, X.-J.; Cortus, E. L.; Zhang, R.; Jiang, S.; Heber, A. J.

    2012-01-01

    Ammonia and hydrogen sulfide are hazardous substances that are regulated by the U.S. Environmental Protection Agency through community right-to-know legislation (EPCRA, EPA, 2011). The emissions of ammonia and hydrogen sulfide from large commercial layer facilities are of concern to legislators and nearby neighbors. Particulate matter (PM 10 and PM 2.5) released from layer houses are two of seven criteria pollutants for which EPA has set National Ambient Air Quality Standards as required by the Clean Air Act. Therefore, it is important to quantify the baseline emissions of these pollutants. The emissions of ammonia, hydrogen sulfide, carbon dioxide and PM from two California high-rise layer houses were monitored for two years from October 2007 to October 2009. Each house had 32,500 caged laying hens. The monitoring site was setup in compliance with a U.S. EPA-approved quality assurance project plan. The results showed the average daily mean emission rates of ammonia, hydrogen sulfide and carbon dioxide were 0.95 ± 0.67 (standard deviation) g d -1 bird -1, 1.27 ± 0.78 mg d -1 bird -1 and 91.4 ± 16.5 g d -1 bird -1, respectively. The average daily mean emission rates of PM 2.5, PM 10 and total suspended particulate (TSP) were 5.9 ± 12.6, 33.4 ± 27.4, and 78.0 ± 42.7 mg d -1 bird -1, respectively. It was observed that ammonia emission rates in summer were lower than in winter because the high airflow stabilized the manure by drying it. The reductions due to lower moisture content were greater than the increases due to higher temperature. However, PM 10 emission rates in summer were higher than in winter because the drier conditions coupled with higher internal air velocities increased PM 10 release from feathers, feed and manure.

  2. Development of a Low-Cost Particulate Matter Monitor

    Energy Technology Data Exchange (ETDEWEB)

    White, Richard M.; Apte, Michael G.; Gundel, Lara A.; Black, Justin

    2008-08-01

    We describe a small, inexpensive portable monitor for airborne particulates, composed of the following elements: a. A simple size-selective inlet (vertical elutriator) that permits only particles below a pre-set diameter to pass and enter the measurement section; b. A measurement section in which passing particles are deposited thermophoretically on a micro-fabricated resonant piezoelectric mass sensor; c. An optical characterization module co-located with the mass sensor module that directs infrared and ultraviolet beams through the deposit. The emergent optical beams are detected by a photodiode. The optical absorption of the deposit can be measured in order to characterize the deposit, and determine how much is due to diesel exhaust and/or environmental tobacco smoke; and d. A small pump that moves air through the device, which may also be operated in a passive mode. The component modules were designed by the project team, and fabricated at UCB andLBNL. Testing and validation were performed in a room-sized environmental chamber at LBNL in to which was added either environmental tobacco smoke (ETS, produced by a cigarette smoking machine) or diesel exhaust (from a conventional diesel engine). Two pilot field tests in a dwelling compared the monitor with existing aerosol instruments during exposure to infiltrated ambient air to which cigarette smoke, diesel exhaust, wood smoke and cooking fumes were added. The limit of detection (LOD) derived from statistical analysis of field data is 18 mu g m-3, at the 99percent confidence level. The monitor weighs less than 120 g and has a volume of roughly 250 cm3. Power consumption is approximately 100 milliwatts. During this study, the optical component of the device was not fully implemented and has been left for future efforts. Suggested improvements in the current prototype include use of integrated thermal correction, reconfiguration of the resonator for increased particle collection area, increased thermophoretic

  3. Quantitative exposure matrix for asphalt fume, total particulate matter, and respirable crystalline silica among roofing and asphalt manufacturing workers.

    Science.gov (United States)

    Fayerweather, William E; Trumbore, David C; Johnson, Kathleen A; Niebo, Ronald W; Maxim, L Daniel

    2011-09-01

    This paper summarizes available data on worker exposures to asphalt fume (soluble fraction), total particulate matter, and respirable crystalline silica (quartz) [hereinafter RCS] over a 30-year period in Owens Corning's asphalt production and roofing manufacturing plants. For the period 1977 through 2006, the air-monitoring database contains more than 1,400 personal samples for asphalt fume (soluble fraction), 2,400 personal samples for total particulate, and 1,300 personal samples for RCS. Unique process-job categories were identified for the asphalt production and roofing shingle manufacturing plants. Quantitative exposures were tabulated by agent, process-job, and calendar period to form an exposure matrix for use in subsequent epidemiologic studies of the respiratory health of these workers. Analysis of time trends in exposure data shows substantial and statistically significant exposure reductions for asphalt fume (soluble fraction), total particulate matter, and respirable crystalline silica at Owens Corning plants. Cumulative distribution plots for the most recent sampling period (2001-2006) show that 95% of the asphalt fume (soluble fraction) measurements were less than 0.25 mg/m3; 95% of the total particulate measurements were less than 2.2 mg/m3; and 95% of the RCS measurements were less than 0.05 mg/m3. Several recommendations are offered to improve the design of future monitoring efforts. PMID:21879950

  4. Chemical-morphological analysis and evaluation of the distribution of particulate matter in the Toluca Valley

    International Nuclear Information System (INIS)

    The breathable fraction of the suspended particles is the main pollutant in the Metropolitan Area of the Toluca Valley (ZMVT), to have the bigger number of days outside of standard, especially during the winter and low water time, its registered maximum value is of 367 IMECA points in 2004. The particles present a potential risk for the lungs, its increase the chemical reactions in the atmosphere; its reduce the visibility; its increase the possibility of the precipitation, the fog and the clouds; its reduce the solar radiation, with the changes in the environmental temperature and in the biological growth rates of those plants; and it dirties the soil matters. For that reason it is very important to characterize physicochemical and morphologically by scanning electron microscopy the particulate material of the Toluca Valley, to determine to that type of particles is potentially exposed the population before drastic scenarios of air pollution of the Toluca Valley, as well as to evaluate the distribution of the one particulate material in the ZMVT. (Author)

  5. Satellite constraints on surface concentrations of particulate matter

    Science.gov (United States)

    Ford Hotmann, Bonne

    Because of the increasing evidence of the widespread adverse effects on human health from exposure to poor air quality and the recommendations of the World Health Organization to significantly reduce PM2.5 in order to reduce these risks, better estimates of surface air quality globally are required. However, surface measurements useful for monitoring particulate exposure are scarce, especially in developing countries which often experience the worst air pollution. Therefore, other methods are necessary to augment estimates in regions with limited surface observations. The prospect of using satellite observations to infer surface air quality is attractive; however, it requires knowledge of the complicated relationship between satellite-observed aerosol optical depth (AOD) and surface concentrations. This dissertation explores how satellite observations can be used in conjunction with a chemical transport model (GEOS-Chem) to better understand this relationship. First, we investigate the seasonality in aerosols over the Southeastern United States using observations from several satellite instruments (MODIS, MISR, CALIOP) and surface network sites (IMPROVE, SEARCH, AERONET). We find that the strong summertime enhancement in satellite-observed aerosol optical depth (factor 2-3 enhancement over wintertime AOD) is not present in surface mass concentrations (25-55% summertime enhancement). Goldstein et al. [2009] previously attributed this seasonality in AOD to biogenic organic aerosol; however, surface observations show that organic aerosol only accounts for ~35% of PM2.5 mass and exhibits similar seasonality to total surface PM2.5. The GEOS-Chem model generally reproduces these surface aerosol measurements, but under represents the AOD seasonality observed by satellites. We show that seasonal differences in water uptake cannot sufficiently explain the magnitude of AOD increase. As CALIOP profiles indicate the presence of additional aerosol in the lower troposphere

  6. A health-based assessment of particulate air pollution in urban areas of Beijing in 2000-2004

    International Nuclear Information System (INIS)

    Particulate air pollution is a serious problem in Beijing. The annual concentration of particulate matter with aerodynamic diameter less than 10 μm (PM10), ranging from 141 to 166 μg m-3 in 2000-2004, could be very harmful to human health. In this paper, we presented the mortality and morbidity effects of PM10 pollution based on statistical data and the epidemiological exposure-response function. The economic costs to health during the 5 years were estimated to lie between US$1670 and $3655 million annually, accounting for about 6.55% of Beijing's gross domestic product each year. The total costs were apportioned into two parts caused by: the local emissions and long-range transported pollution. The contribution from local emissions dominated the total costs, accounting on average for 3.60% of GDP. However, the contributions from transported pollution cannot be neglected, and the relative percentage to the total costs from the other regions could account for about 45%. An energy policy and effective measures should be proposed to reduce particulate matter, especially PM2.5 pollution in Beijing to protect public health. The Beijing government also needs to cooperate with the other local governments to reduce high background level of particulate air pollution

  7. Investigation of Fungal Bioaerosols and Particulate Matter in the Teaching-Medical Hospitals of Khorramabad City, Iran During 2015

    Directory of Open Access Journals (Sweden)

    A Sepahvand

    2016-06-01

    Full Text Available Background and Objective: The presence of fungal bioaerosols in hospitals indoor environments have affected the health of patients with the defect in immunity system. Therefore, determination of the rate and species of these agents is essential. This study aimed to investigate association between fungi contamination and particulate matter (PM10, PM2.5 and PM1 concentrations in the main indoor wards and outdoor environment and to determine I/O ratio in two educational-medical hospitals of Khorramabad City. Materials and Methods: In this description-analytical study, the concentration of fungal bioaerosols and particulate matter was measured in 10 indoor parts and 2 outdoor stations over 6 mounts. The sampling was conducted using Quick Take-30 at an airflow rate of 28.3 L/min and sampling period of 2.5 min onto Sabouraud dextrose agar medium containing chloramphenicol. The particulate matters were measured using Monitor Dust-Trak 8520. Moreover, the relative humidity and temperature were recorded using digital TES-1360. Results: Analysis of 288 fungi samples and 864 particulate matter samples showed that the average of fungi accumulation was 59.75 CFU/m3 and the mean concentrations of PM10, PM2.5 and PM1 in the indoor environment was  27.3, 23, and 20.2 µg/m3 respectively. In addition, in ambient air the mean concentration was 135.3 CFU/m3 for fungal bioaerosols and 40.2, 35.7, and 29.8 µg/m3 for PM10, PM2.5 and PM1 respectively. At the total of fungi samples, 12.5% were negative and 87.5% were positive. Having 101.7%, Infection ward was the most contaminated ward. The operation ward in both hospitals showed the minimum fungal contamination. Conclusions: The results of the present study showed that at all of the samplings the ratio of I/O was lower than one. It was noticed the dominancy of fungal bioaerosols and particulate matter of outdoor source on the indoor environment. In addition, a significant correlation (P < 0.001( was found between

  8. Physical properties of particulate matter from animal houses-empirical studies to improve emission modelling.

    Science.gov (United States)

    Mostafa, Ehab; Nannen, Christoph; Henseler, Jessica; Diekmann, Bernd; Gates, Richard; Buescher, Wolfgang

    2016-06-01

    Maintaining and preserving the environment from pollutants are of utmost importance. Particulate matter (PM) is considered one of the main air pollutants. In addition to the harmful effects of PM in the environment, it has also a negative indoor impact on human and animal health. The specific forms of damage of particulate emission from livestock buildings depend on its physical properties. The physical properties of particulates from livestock facilities are largely unknown. Most studies assume the livestock particles to be spherical with a constant density which can result in biased estimations, leading to inaccurate results and errors in the calculation of particle mass concentration in livestock buildings. The physical properties of PM, including difference in density as a function of particle size and shape, can have a significant impact on the predictions of particles' behaviour. The aim of this research was to characterize the physical properties of PM from different animal houses and consequently determine PM mass concentration. The mean densities of collected PM from laying hens, dairy cows and pig barns were 1450, 1520 and 2030 kg m(-3), respectively, whilst the mass factors were 2.17 × 10(-3), 2.18 × 10(-3) and 5.36 × 10(-3) μm, respectively. The highest mass concentration was observed in pig barns generally followed by laying hen barns, and the lowest concentration was in dairy cow buildings. Results are presented in such a way that they can be used in subsequent research for simulation purposes and to form the basis for a data set of PM physical properties. PMID:26976010

  9. Particulate matter concentration and chemical composition in the metro system of Rome, Italy.

    Science.gov (United States)

    Perrino, C; Marcovecchio, F; Tofful, L; Canepari, S

    2015-06-01

    Air quality at the main station of the metro system of Rome (Termini hub) has been characterized by the point of view of particulate matter (PM) concentration and chemical composition. Indoor air in different environments (underground train platform and shopping center, metro carriages with and without air conditioning system) has been studied and compared with outdoor air at a nearby urban site. Air quality at the railway station, located outdoor at surface level, has been also considered for comparison. PM chemical characterization included ions, elemental carbon, organic carbon, macro-elements, and the bio-accessible and residual fractions of micro- and trace elements. Train platform and carriages without air conditioning resulted to be the most polluted environments, with indoor/outdoor ratio up to two orders of magnitude for many components. PM mass concentration was determined on filter membranes by the gravimetric procedure as well as from the optical particle counter (OPC) number concentration measurements. The OPC results, taken with the original calibration factor, were below 40 % of the value obtained by the gravimetric measurements. Only a chemical and morphological characterization of the collected dust could lead to a reconciliation of the results yielded by the two methods. Macro-components were used to estimate the strength of the main macro-sources. The most significant contribution is confirmed to derive from wheels, rails, and brakes abrasion; from soil re-suspension (over 50 % at the subway platform); and from organics (about 25 %). The increase in the concentration of elements was mostly due to the residual fraction, but also the bio-accessible fraction showed a remarkable enrichment, particularly in the case of Ba, Zn, Cd, and Ni. PMID:25586611

  10. Emission characteristics of particulate matter and volatile organic compounds in cow dung combustion.

    Science.gov (United States)

    Park, Duckshin; Barabad, Mona L; Lee, Gwangjae; Kwon, Soon-Bark; Cho, Youngmin; Lee, Duckhee; Cho, Kichul; Lee, Kiyoung

    2013-11-19

    Biomass fuel is used for cooking and heating, especially in developing countries. Combustion of biomass fuel can generate high levels of indoor air pollutants, including particulate matter (PM) and volatile organic compounds (VOCs). This study characterized PM and VOC emissions from cow dung combustion in a controlled experiment. Dung from grass-fed cows was dried and combusted using a dual-cone calorimeter. Heat fluxes of 10, 25, and 50 kW/m(2) were applied. The concentrations of PM and VOCs were determined using a dust spectrometer and gas chromatography/mass spectrometry, respectively. PM and VOC emission factors were much higher for the lower heat flux, implying a fire ignition stage. When the heat flux was 50 kW/m(2), the CO2 emission factor was highest and the PM and VOC emission factors were lowest. Particle concentrations were highest in the 0.23-0.3 μm size range at heat fluxes of 25 and 50 kW/m(2). Various toxic VOCs, including acetone, methyl ethyl ketone, benzene, and toluene, were detected at high concentrations. Although PM and VOC emission factors at 50 kW/m(2) were lower, they were high enough to cause extremely high indoor air pollution. The characteristics of PM and VOC emissions from cow dung combustion indicated potential health effects of indoor air pollution in developing countries. PMID:24180364

  11. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring.

    Science.gov (United States)

    Rai, Prabhat Kumar

    2016-07-01

    Air pollution is one of the serious problems world is facing in recent Anthropocene era of rapid industrialization and urbanization. Specifically particulate matter (PM) pollution represents a threat to both the environment and human health. The changed ambient environment due to the PM pollutant in urban areas has exerted a profound influence on the morphological, biochemical and physiological status of plants and its responses. Taking into account the characteristics of the vegetation (wide distribution, greater contact area etc.) it turns out to be an effective indicator of the overall impact of PM pollution and harmful effects of PM pollution on vegetation have been reviewed in the present paper, covering an extensive span of 1960 to March 2016. The present review critically describes the impact of PM pollution and its constituents (e.g. heavy metals and poly-aromatic hydrocarbons) on the morphological attributes such as leaf area, leaf number, stomata structure, flowering, growth and reproduction as well as biochemical parameters such as pigment content, enzymes, ascorbic acid, protein, sugar and physiological aspect such as pH and Relative water content. Further, the paper provides a brief overview on the impact of PM on biodiversity and climate change. Moreover, the review emphasizes the genotoxic impacts of PM on plants. Finally, on the basis of such studies tolerant plants as potent biomonitors with high Air Pollution Tolerance Index (APTI) and Air Pollution Index (API) can be screened and may be recommended for green belt development. PMID:27011112

  12. Use of a Robotic Sampler (PIPER for Evaluation of Particulate Matter Exposure and Eczema in Preschoolers

    Directory of Open Access Journals (Sweden)

    Lokesh Shah

    2016-02-01

    Full Text Available While the association of eczema with asthma is well recognized, little research has focused on the potential role of inhalable exposures and eczema. While indoor air quality is important in the development of respiratory disease as children in the U.S. spend the majority of their time indoors, relatively little research has focused on correlated non-respiratory conditions. This study examined the relationship between particulate matter (PM exposures in preschool age children and major correlates of asthma, such as wheeze and eczema. Air sampling was carried out using a robotic (PIPER child-sampling surrogate. This study enrolled 128 participants, 57 male and 71 female children. Ages ranged from 3 to 58 months with the mean age of 29.3 months. A comparison of subjects with and without eczema showed a difference in the natural log (ln of PM collected from the PIPER air sampling (p = 0.049. PIPER’s sampling observed an association between the ln PM concentrations and eczema, but not an association with wheezing history in pre-school children. Our findings are consistent with the hypothesis of the role of the microenvironment in mediating atopic dermatitis, which is one of the predictors of persistent asthma. Our findings also support the use of PIPER in its ability to model and sample the microenvironment of young children.

  13. Daily variations of size-segregated ambient particulate matter in Beijing

    International Nuclear Information System (INIS)

    Daily, size-segregated particulate matter (PM) samples were collected at Peking University from March 2012 to April 2013. Seventeen indoor air samples were also collected over this period. Winter PM concentrations decreased compared with those reported a decade ago, but summer PM concentrations increased over the same time period. Increasing summer PM concentrations likely resulted from a shift in the major source of PM from primary coal burning to vehicle-associated secondary particle formation. A multiple regression model explained 62% of daily PM concentration variations, and wind direction was the most important factor controlling PM concentrations. Severe pollution was often associated with southeasterly winds, while westerly and northwesterly winds brought relatively clean air. Temperature, precipitation and relative humidity also affected PM concentrations. PM concentrations indoors were generally lower than, but significantly correlated with ambient concentrations. Indoor PM concentrations were also affected by wind speed and temperature. - Highlights: • Daily concentrations of five size fraction PMs were measured for a year. • The seasonality and source pattern were different from those reported a decade ago. • Severe pollution epidoses were associated with southeasterly winds. • Indoor PM concentrations were lower than but correlated with those in ambient air. - Size-segregated ambient PM concentrations in Beijing varied depending on wind direction; and PM concentrations indoors were well-correlated with, but lower than those outdoors

  14. Contribution of vegetation and peat fires to particulate air pollution in Southeast Asia

    International Nuclear Information System (INIS)

    Smoke haze, caused by vegetation and peat fires in Southeast Asia, is of major concern because of its adverse impact on regional air quality. We apply two different methods (a chemical transport model and a Lagrangian atmospheric transport model) to identify the locations of fires contributing to the increased mass concentration of particulate matter with diameters less than 2.5 μm (PM2.5) in Singapore over the period 2004–09. We find that fires in southern Sumatra account for the greatest percentage of the total fire enhancement to PM2.5 concentrations in Singapore (42–62%), with fires in central Sumatra and Kalimantan contributing 21–35% and 14–15%, respectively. Furthermore, we find that fires in these regions also increase PM2.5 concentrations in other major cities across Southeast Asia. Our results suggest that acting to reduce fires in southern and central Sumatra (specifically in the eastern parts of the provinces of Jambi, South Sumatra, Lampung and Riau) and southwest Kalimantan (the southern extent of the provinces of West, Central and South Kalimantan) would have the greatest benefit to particulate air quality in Singapore and more widely across Southeast Asia. (letter)

  15. Study of glyphosate transport through suspended particulate matter

    Science.gov (United States)

    Amiot, Audrey; Landry, David; Jadas-Hécart, Alain; La Jeunesse, Isabelle; Sourice, Stéphane; Ballouche, Aziz

    2014-05-01

    complete (95% in 2 min). (ii) Kd obtained on the erodible fraction are two times higher than on 2 mm sieved soils. (iii) Desorption showed that glyphosate is desorbed from the erodible fraction at 40% after 25 desorptions. The aim of this study was to show the potential transport of glyphosate through suspended particulate matter. The adsorption on the erodible fraction argued to a significant transport potential of glyphosate on this fraction. The desorption of glyphosate from the erodible water fraction have revealed that the adsorption of glyphosate is reversible but it is much slower. These results demonstrate that glyphosate may be stored on the erodible fraction and be transported by these fractions. Keywords: Adsorption, Desorption, Glyphosate, Suspended Solids, Erosion.

  16. 40 CFR 60.48b - Emission monitoring for particulate matter and nitrogen oxides.

    Science.gov (United States)

    2010-07-01

    ... matter and nitrogen oxides. 60.48b Section 60.48b Protection of Environment ENVIRONMENTAL PROTECTION... monitoring for particulate matter and nitrogen oxides. (a) Except as provided in paragraph (j) of this... nitrogen content of 0.30 weight percent or less, natural gas, distillate oil, gasified coal, or any...

  17. Biomass burning contribution to ambient air particulate levels at Navrongo in the Savannah zone of Ghana.

    Science.gov (United States)

    Ofosu, Francis G; Hopke, Philip K; Aboh, Innocent J K; Bamford, Samuel A

    2013-09-01

    The concentrations of airborne particulate matter (PM) in Navrongo, a town in the Sahel Savannah Zone of Ghana, have been measured and the major sources have been identified. This area is prone to frequent particulate pollution episodes due to Harmattan dust and biomass burning, mostly from annual bushfires. The contribution of combustion emissions, particularly from biomass and fossil fuel, to ambient air particulate loadings was assessed. Sampling was conducted from February 2009 to February 2010 in Navrongo. Two Gent samplers were equipped to collect PM10 in two size fractions, coarse (PM10-2.5) and fine (PM2.5). Coarse particles are collected on a coated, 8-microm-pore Nuclepore filter. Fine particle samples were sampled with 47-mm-diameter Nuclepore and quartz filters. Elemental carbon (EC) and organic carbon (OC) concentrations were determined from the quartz filters using thermal optical reflectance (IMPROVE/TOR) methods. Elements were measured on the fine-particle Nuclepore filters using energy-dispersive x-ray fluorescence. The average PM2.5 mass concentration obtained at Navrongo was 32.3 microg/m. High carbonaceous concentrations were obtained from November to March, the period of Harmattan dust and severe bush fires. Total carbon was found to contribute approximately 40% of the PM2.5 particulate mass. Positive matrix factorization (PMF) suggested six major sources contributing to the PM2.5 mass. They are two stroke engines, gasoline emissions, soil dust, diesel emissions, biomass burning, and resuspended soil dust. Biomass combustion (16.0%) was identified as second most important source next to soil dust at Navrongo. PMID:24151679

  18. Health effects of ambient levels of respirable particulate matter (PM) on healthy, young-adult population

    Science.gov (United States)

    Shaughnessy, William J.; Venigalla, Mohan M.; Trump, David

    2015-12-01

    There is an absence of studies that define the relationship between ambient particulate matter (PM) levels and adverse health outcomes among the young and healthy adult sub-group. In this research, the relationship between exposures to ambient levels of PM in the 10 micron (PM10) and 2.5 micron (PM2.5) size fractions and health outcomes in members of the healthy, young-adult subgroup who are 18-39 years of age was examined. Active duty military personnel populations at three strategically selected military bases in the United States were used as a surrogate to the control group. Health outcome data, which consists of the number of diagnoses for each of nine International Classification of Diseases, 9th Revision (ICD-9) categories related to respiratory illness, were derived from outpatient visits at each of the three military bases. Data on ambient concentrations of particulate matter, specifically PM10 and PM2.5, were obtained for these sites. The health outcome data were correlated and regressed with the PM10 and PM2.5 data, and other air quality and weather-related data on a daily and weekly basis for the period 1998 to 2004. Results indicate that at Fort Bliss, which is a US Environmental Protection Agency designated non-attainment area for PM10, a statistically significant association exists between the weekly-averaged number of adverse health effects in the young and healthy adult population and the corresponding weekly-average ambient PM10 concentration. A least squares regression analysis was performed on the Fort Bliss data sets indicated that the health outcome data is related to several environmental parameters in addition to PM10. Overall, the analysis estimates a .6% increase in the weekly rate of emergency room visits for upper respiratory infections for every 10 μg/m3 increase in the weekly-averaged PM10 concentration above the mean. The findings support the development of policy and guidance opportunities that can be developed to mitigate exposures

  19. Particulate matter is associated with sputum culture conversion in patients with culture-positive tuberculosis

    Directory of Open Access Journals (Sweden)

    Chen KY

    2016-01-01

    Full Text Available Kuan-Yuan Chen,1,* Kai-Jen Chuang,2,3,* Hui-Chiao Liu,4,5 Kang-Yun Lee,1,6 Po-Hao Feng,1,6 Chien-Ling Su,1,4 Chii-Lan Lin,1,4 Chun-Nin Lee,1,4 Hsiao-Chi Chuang1,4 1Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, 2Department of Public Health, School of Medicine, College of Medicine, 3School of Public Health, College of Public Health and Nutrition, 4School of Respiratory Therapy, College of Medicine, Taipei Medical University, 5Division of Pulmonary Medicine, Department of Internal Medicine, Sijhih Cathay General Hospital, 6Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan *These authors contributed equally to the study Abstract: Emerging risk factors for tuberculosis (TB infection, such as air pollution, play a significant role at both the individual and population levels. However, the association between air pollution and TB remains unclear. The objective of this study was to examine the association between outdoor air pollution and sputum culture conversion in TB patients. In the present study, 389 subjects were recruited from a hospital in Taiwan from 2010 to 2012: 144 controls with non-TB-related pulmonary diseases with negative sputum cultures and 245 culture-positive TB subjects. We observed that a 1 µg/m3 increase in particulate matter of ≤10 µm in aerodynamic diameter (PM10 resulted in 4% higher odds of TB (odds ratio =1.04, 95% confidence interval =1.01–1.08, P<0.05. The chest X-ray grading of TB subjects was correlated to 1 year levels of PM10 (R2=0.94, P<0.05. However, there were no associations of pulmonary cavitation or treatment success rate with PM10. In subjects with TB-positive cultures, annual exposure to ≥50 µg/m3 PM10 was associated with an increase in the time required for sputum culture conversion (hazard ratio =1.28, 95% confidence interval: 1.07–1.84, P<0.05. In conclusion, chronic exposure to ≥50 µg/m3 PM

  20. Sources of organic pollution in particulate matter and soil of Silesian Agglomeration (Poland): evidence from geochemical markers.

    Science.gov (United States)

    Fabiańska, Monika J; Kozielska, Barbara; Konieczyński, Jan; Kowalski, Adam

    2016-06-01

    The exact input of particular sources to polycyclic aromatic hydrocarbons (PAHs) concentrations in urban and industrial agglomerations is still not well recognized. The major breakthrough is possible using geochemical markers. In the air aerosol and soil samples from areas located in the direct influence of industry/traffic in Silesian Agglomeration (Poland), PAHs and other organic compounds were analyzed, including geochemical markers (biomarkers) and polar compounds from fossil fuels and biomass. Gas chromatography (GC-FID) and gas chromatography-mass spectrometry (GC-MS) were applied to investigate the composition of particulate matter and soil extracts. The results suggest that the predominant source of PAHs is fossil fuel. The presence and distribution of steranes, pentacyclic triterpenoids (i.e., hopanes and moretanes) and alkyl PAHs point to traffic emissions and fossil fuel combustion, mainly bituminous coal for power and heat purposes, as the main source of PAHs in the region. Moreover, the presence of fossil fuel biomarker in particulate matter and soil extracts from a rural site, previously considered to be free of organic pollution, requires a cautious interpretation for PAHs results. Apart from the fossil fuel, also other sources of contamination were identified in particulate matter extracts by their markers: phenols and levoglucosan for biomass and diisopropylnaphthalenes for printing materials combustion. The absence of polar biomass combustion indicators in soil extracts might be related to their higher reactivity. PMID:26362678

  1. Obesity as a susceptibility factor to indoor particulate matter health effects in COPD

    Science.gov (United States)

    McCormack, Meredith C.; Belli, Andrew J.; Kaji, Deepak A.; Matsui, Elizabeth C.; Brigham, Emily P.; Peng, Roger D.; Sellers, Cortlandt; Williams, D’Ann L.; Diette, Gregory B.; Breysse, Patrick N.; Hansel, Nadia N.

    2016-01-01

    Our goal was to investigate whether obesity increases susceptibility to the adverse effects of indoor particulate matter on respiratory morbidity among individuals with chronic obstructive pulmonary disease (COPD). Participants with COPD were studied at baseline, 3 and 6 months. Obesity was defined as a body mass index ≥30 kg·m−2. At each time point, indoor air was sampled for 5–7 days and particulate matter (PM) with an aerodynamic size ≤2.5 μm (PM2.5) and 2.5–10 μm (PM2.5–10) was measured. Respiratory symptoms, health status, rescue medication use, exacerbations, blood biomarkers and exhaled nitric oxide were assessed simultaneously. Of the 84 participants enrolled, 56% were obese and all were former smokers with moderate-to-severe COPD. Obese participants tended to have less severe disease as assessed by Global Initiative for Chronic Obstructive Pulmonary Disease stage and fewer pack-years of smoking. There was evidence that obesity modified the effects of indoor PM on COPD respiratory outcomes. Increases in PM2.5 and PM2.5–10 were associated with greater increases in nocturnal symptoms, dyspnoea and rescue medication use among obese versus non-obese participants. The impact of indoor PM on exacerbations, respiratory status and wheeze also tended to be greater among obese versus non-obese participants, as were differences in airway and systemic inflammatory responses to indoor PM. We found evidence that obesity was associated with exaggerated responses to indoor fine and coarse PM exposure among individuals with COPD. PMID:25573407

  2. Fine particulate matter estimated by mathematical model and hospitalizations for pneumonia and asthma in children

    Directory of Open Access Journals (Sweden)

    Ana Cristina Gobbo César

    2016-03-01

    Full Text Available Abstract Objective: To estimate the association between exposure to fine particulate matter with an aerodynamic diameter <2.5 microns (PM2.5 and hospitalizations for pneumonia and asthma in children. Methods: An ecological study of time series was performed, with daily indicators of hospitalization for pneumonia and asthma in children up to 10 years of age, living in Taubaté (SP and estimated concentrations of PM2.5, between August 2011 and July 2012. A generalized additive model of Poisson regression was used to estimate the relative risk, with lag zero up to five days after exposure; the single pollutant model was adjusted by the apparent temperature, as defined from the temperature and relative air humidity, seasonality and weekday. Results: The values of the relative risks for hospitalization for pneumonia and asthma were significant for lag 0 (RR=1.051, 95%CI; 1.016 to 1.088; lag 2 (RR=1.066, 95%CI: 1.023 to 1.113; lag 3 (RR=1.053, 95%CI: 1.015 to 1.092; lag 4 (RR=1.043, 95%CI: 1.004 to 1.088 and lag 5 (RR=1.061, 95%CI: 1.018 to 1.106. The increase of 5mcg/m3 in PM2.5 contributes to increase the relative risk for hospitalization from 20.3 to 38.4 percentage points; however, the reduction of 5µg/m3 in PM2.5 concentration results in 38 fewer hospital admissions. Conclusions: Exposure to PM2.5 was associated with hospitalizations for pneumonia and asthma in children younger than 10 years of age, showing the role of fine particulate matter in child health and providing subsidies for the implementation of preventive measures to decrease these outcomes.

  3. Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry

    Science.gov (United States)

    Abegglen, Manuel; Brem, B. T.; Ellenrieder, M.; Durdina, L.; Rindlisbacher, T.; Wang, J.; Lohmann, U.; Sierau, B.

    2016-06-01

    Non-volatile aircraft engine emissions are an important anthropogenic source of soot particles in the upper troposphere and in the vicinity of airports. They influence climate and contribute to global warming. In addition, they impact air quality and thus human health and the environment. The chemical composition of non-volatile particulate matter emission from aircraft engines was investigated using single particle time-of-flight mass spectrometry. The exhaust from three different aircraft engines was sampled and analyzed. The soot particulate matter was sampled directly behind the turbine in a test cell at Zurich Airport. Single particle analyses will focus on metallic compounds. The particles analyzed herein represent a subset of the emissions composed of the largest particles with a mobility diameter >100 nm due to instrumental restrictions. A vast majority of the analyzed particles was shown to contain elemental carbon, and depending on the engine and the applied thrust the elemental carbon to total carbon ratio ranged from 83% to 99%. The detected metallic compounds were all internally mixed with the soot particles. The most abundant metals in the exhaust were Cr, Fe, Mo, Na, Ca and Al; V, Ba, Co, Cu, Ni, Pb, Mg, Mn, Si, Ti and Zr were also detected. We further investigated potential sources of the ATOFMS-detected metallic compounds using Inductively Coupled Plasma Mass Spectrometry. The potential sources considered were kerosene, engine lubrication oil and abrasion from engine wearing components. An unambiguous source apportionment was not possible because most metallic compounds were detected in several of the analyzed sources.

  4. Monitoring of suspended particulate matter (SPM), heavy metals and other parameters in some workplaces

    International Nuclear Information System (INIS)

    This report presents results of measurements of sound levels, chemical analysis of air particulate matter and soil samples from two factories in Nairobi. A preliminary assessment of suspended particulate matter (SPM) in a residential site and its possible impacts on acute respiratory infections (ARI) of children under five years of age is also reported. Our investigations show that for Factory A, the Soil pH measurements within the Factory were more basic (pH=8.5) than those collected near a complainant's residence (pH=7.2). The sound level measurements showed that the maximum noise level recorded was 90 dB. This was at a distance of about 0.5 m from the main exhaust vent of the Factory (20 m above ground level). There was a strong ''detergent-perfume'' odour within and outside the Factory premises especially towards the complainant's side. However, the odour fluctuated. There was also no smoke emissions noticed during the site visits when the factory was operational. For Factory B, the major source of environmental degradation was drainage and management of the factory effluents. The BOD and COD levels for effluents samples analyzed (3 whereas the fine particles ranged from 16.2-24.4 μm/m3. The prevalence of ARI cases in 1998 ranged between 29.9% in January to the highest level of 59.6% in June. The total number of children who presented themselves throughout the study period, January-December 1998, was 146. A parallel study of dust sampling was also carried out from January to December 1998 in a typical office environment. Dust levels recorded from the working office environment at the Institute of Nuclear Science was found to range from 0. 44 -1.79 μg/cm2/day. (author)

  5. Environmental particulate matter induces murine intestinal inflammatory responses and alters the gut microbiome.

    Directory of Open Access Journals (Sweden)

    Lisa Kish

    Full Text Available BACKGROUND: Particulate matter (PM is a key pollutant in ambient air that has been associated with negative health conditions in urban environments. The aim of this study was to examine the effects of orally administered PM on the gut microbiome and immune function under normal and inflammatory conditions. METHODS: Wild-type 129/SvEv mice were gavaged with Ottawa urban PM10 (EHC-93 for 7-14 days and mucosal gene expression analyzed using Ingenuity Pathways software. Intestinal permeability was measured by lactulose/mannitol excretion in urine. At sacrifice, segments of small and large intestine were cultured and cytokine secretion measured. Splenocytes were isolated and incubated with PM10 for measurement of proliferation. Long-term effects of exposure (35 days on intestinal cytokine expression were measured in wild-type and IL-10 deficient (IL-10(-/- mice. Microbial composition of stool samples was assessed using terminal restriction fragment length polymorphism. Short chain fatty acids were measured in caecum. RESULTS: Short-term treatment of wild-type mice with PM10 altered immune gene expression, enhanced pro-inflammatory cytokine secretion in the small intestine, increased gut permeability, and induced hyporesponsiveness in splenocytes. Long-term treatment of wild-type and IL-10(-/- mice increased pro-inflammatory cytokine expression in the colon and altered short chain fatty acid concentrations and microbial composition. IL-10(-/- mice had increased disease as evidenced by enhanced histological damage. CONCLUSIONS: Ingestion of airborne particulate matter alters the gut microbiome and induces acute and chronic inflammatory responses in the intestine.

  6. Fine particulate matter estimated by mathematical model and hospitalizations for pneumonia and asthma in children

    Science.gov (United States)

    César, Ana Cristina Gobbo; Nascimento, Luiz Fernando Costa; Mantovani, Katia Cristina Cota; Vieira, Luciana Cristina Pompeo

    2016-01-01

    Abstract Objective: To estimate the association between exposure to fine particulate matter with an aerodynamic diameter <2.5 microns (PM2.5) and hospitalizations for pneumonia and asthma in children. Methods: An ecological study of time series was performed, with daily indicators of hospitalization for pneumonia and asthma in children up to 10 years of age, living in Taubaté (SP) and estimated concentrations of PM2.5, between August 2011 and July 2012. A generalized additive model of Poisson regression was used to estimate the relative risk, with lag zero up to five days after exposure; the single pollutant model was adjusted by the apparent temperature, as defined from the temperature and relative air humidity, seasonality and weekday. Results: The values of the relative risks for hospitalization for pneumonia and asthma were significant for lag 0 (RR=1.051, 95%CI; 1.016 to 1.088); lag 2 (RR=1.066, 95%CI: 1.023 to 1.113); lag 3 (RR=1.053, 95%CI: 1.015 to 1.092); lag 4 (RR=1.043, 95%CI: 1.004 to 1.088) and lag 5 (RR=1.061, 95%CI: 1.018 to 1.106). The increase of 5mcg/m3 in PM2.5 contributes to increase the relative risk for hospitalization from 20.3 to 38.4 percentage points; however, the reduction of 5µg/m3 in PM2.5 concentration results in 38 fewer hospital admissions. Conclusions: Exposure to PM2.5 was associated with hospitalizations for pneumonia and asthma in children younger than 10 years of age, showing the role of fine particulate matter in child health and providing subsidies for the implementation of preventive measures to decrease these outcomes. PMID:26522821

  7. Contributions to cities' ambient particulate matter (PM): A systematic review of local source contributions at global level

    Science.gov (United States)

    Karagulian, Federico; Belis, Claudio A.; Dora, Carlos Francisco C.; Prüss-Ustün, Annette M.; Bonjour, Sophie; Adair-Rohani, Heather; Amann, Markus

    2015-11-01

    For reducing health impacts from air pollution, it is important to know the sources contributing to human exposure. This study systematically reviewed and analysed available source apportionment studies on particulate matter (of diameter of 10 and 2.5 microns, PM10 and PM2.5) performed in cities to estimate typical shares of the sources of pollution by country and by region. A database with city source apportionment records, estimated with the use of receptor models, was also developed and available at the website of the World Health Organization. Systematic Scopus and Google searches were performed to retrieve city studies of source apportionment for particulate matter. Six source categories were defined. Country and regional averages of source apportionment were estimated based on city population weighting. A total of 419 source apportionment records from studies conducted in cities of 51 countries were used to calculate regional averages of sources of ambient particulate matter. Based on the available information, globally 25% of urban ambient air pollution from PM2.5 is contributed by traffic, 15% by industrial activities, 20% by domestic fuel burning, 22% from unspecified sources of human origin, and 18% from natural dust and salt. The available source apportionment records exhibit, however, important heterogeneities in assessed source categories and incompleteness in certain countries/regions. Traffic is one important contributor to ambient PM in cities. To reduce air pollution in cities and the substantial disease burden it causes, solutions to sustainably reduce ambient PM from traffic, industrial activities and biomass burning should urgently be sought. However, further efforts are required to improve data availability and evaluation, and possibly to combine with other types of information in view of increasing usefulness for policy making.

  8. Ambient Fine Particulate Matter and Mortality among Survivors of Myocardial Infarction: Population-Based Cohort Study

    Science.gov (United States)

    Chen, Hong; Burnett, Richard T.; Copes, Ray; Kwong, Jeffrey C.; Villeneuve, Paul J.; Goldberg, Mark S.; Brook, Robert D.; van Donkelaar, Aaron; Jerrett, Michael; Martin, Randall V.; Brook, Jeffrey R.; Kopp, Alexander; Tu, Jack V.

    2016-01-01

    Background: Survivors of acute myocardial infarction (AMI) are at increased risk of dying within several hours to days following exposure to elevated levels of ambient air pollution. Little is known, however, about the influence of long-term (months to years) air pollution exposure on survival after AMI. Objective: We conducted a population-based cohort study to determine the impact of long-term exposure to fine particulate matter ≤ 2.5 μm in diameter (PM2.5) on post-AMI survival. Methods: We assembled a cohort of 8,873 AMI patients who were admitted to 1 of 86 hospital corporations across Ontario, Canada in 1999–2001. Mortality follow-up for this cohort extended through 2011. Cumulative time-weighted exposures to PM2.5 were derived from satellite observations based on participants’ annual residences during follow-up. We used standard and multilevel spatial random-effects Cox proportional hazards models and adjusted for potential confounders. Results: Between 1999 and 2011, we identified 4,016 nonaccidental deaths, of which 2,147 were from any cardiovascular disease, 1,650 from ischemic heart disease, and 675 from AMI. For each 10-μg/m3 increase in PM2.5, the adjusted hazard ratio (HR10) of nonaccidental mortality was 1.22 [95% confidence interval (CI): 1.03, 1.45]. The association with PM2.5 was robust to sensitivity analyses and appeared stronger for cardiovascular-related mortality: ischemic heart (HR10 = 1.43; 95% CI: 1.12, 1.83) and AMI (HR10 = 1.64; 95% CI: 1.13, 2.40). We estimated that 12.4% of nonaccidental deaths (or 497 deaths) could have been averted if the lowest measured concentration in an urban area (4 μg/m3) had been achieved at all locations over the course of the study. Conclusions: Long-term air pollution exposure adversely affects the survival of AMI patients. Citation: Chen H, Burnett RT, Copes R, Kwong JC, Villeneuve PJ, Goldberg MS, Brook RD, van Donkelaar A, Jerrett M, Martin RV, Brook JR, Kopp A, Tu JV. 2016. Ambient fine

  9. [Reduction of exposure to particulate matter in classrooms by improved cleaning: extent of exposure and results of a pilot study in Bavaria].

    Science.gov (United States)

    Twardella, D; Fromme, H; Dietrich, S; Dietrich, W C

    2009-02-01

    The aims of the research project were (I) to describe the exposure to particulate matter in Bavarian schools and identify predictors of increased exposure and (II) to evaluate whether exposure can be reduced by improving the ventilation and/or cleaning routine. Air quality was measured in 46 schools, two classrooms each, in the City of Munich and Dachau county. Each classroom was measured on one school day in both winter 2004/2005 and summer 2005. The continuously generated data on particulate matter during the teaching hours were summarised to daily medians and the possible association of the median concentration with classroom characteristics was tested using non-parametric methods. In winter, the median PM (2.5) concentration was 18.8 microg/m (3), in summer 12.7 microg/m (3). The median PM (10) concentration was 91.5 microg/m (3) in winter and 64.9 microg/m (3) in summer. Determinants of a high particulate matter concentration were the winter period, an increased number of pupils or decreased room size, a high CO(2) concentration, and a low class level. Following this survey, a pilot study on the effects of improved cleaning and ventilation routines was conducted in autumn 2005. Three conditions were tested in two classrooms of one school: (a) standard, (b) improved airing (3 min during short and 20 min during long breaks), and (c) improved airing and improved cleaning (thorough cleaning once and vacuuming before wet wiping). Each condition was implemented for 2 weeks and particulate matter concentrations measured concurrently. In both rooms a reduction of both PM (2.5) and PM (10) concentration was found following improved airing and a further reduction occurred when improved cleaning was introduced in addition. However, in a linear regression accounting for other factors (room, physical activity of the pupils, outdoor concentration of particulate matter) the effect of improved airing was no longer significant, while the effect of improved cleaning remained at

  10. Framework for using deciduous tree leaves as biomonitors for intraurban particulate air pollution in exposure assessment.

    Science.gov (United States)

    Gillooly, Sara E; Shmool, Jessie L Carr; Michanowicz, Drew R; Bain, Daniel J; Cambal, Leah K; Shields, Kyra Naumoff; Clougherty, Jane E

    2016-08-01

    Fine particulate matter (PM2.5) air pollution, varying in concentration and composition, has been shown to cause or exacerbate adverse effects on both human and ecological health. The concept of biomonitoring using deciduous tree leaves as a proxy for intraurban PM air pollution in different areas has previously been explored using a variety of study designs (e.g., systematic coverage of an area, source-specific focus), deciduous tree species, sampling strategies (e.g., single day, multi-season), and analytical methods (e.g., chemical, magnetic) across multiple geographies and climates. Biomonitoring is a low-cost sampling method and may potentially fill an important gap in current air monitoring methods by providing low-cost, longer-term urban air pollution measures. As such, better understanding of the range of methods, and their corresponding strengths and limitations, is critical for employing the use of tree leaves as biomonitors for pollution to improve spatially resolved exposure assessments for epidemiological studies and urban planning strategies. PMID:27450373

  11. 40 CFR 52.1081 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 1997 PM2.5 NAAQS has attained the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52..., in accordance with 40 CFR 52.1004(c), suspend the requirements for this area to submit an attainment... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate...

  12. 40 CFR 52.2059 - Control strategy: Particulate matter.

    Science.gov (United States)

    2010-07-01

    ... the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52.1004(c), suspends the... nonattainment areas have clean data for the 1997 PM2.5 NAAQS. This determination, in accordance with 40 CFR 52... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Particulate...

  13. Polycyclic aromatic hydrocarbons in the airborne particulate matter at a location 40 km north of Bangkok, Thailand

    Science.gov (United States)

    Kim Oanh, N. T.; Bætz Reutergårdh, L.; Dung, N. Tr.; Yu, M.-H.; Yao, W.-X.; Co, H. X.

    Total suspended particulate matter in ambient air was sampled by high-volume samplers at four sites at the Asian Institute of Technology campus, west of the Phahonyothin Road, Phathumthani Province, 40 km North of Bangkok, Thailand. The concentrations of 18 polycyclic aromatic hydrocarbons (PAH), were measured by gas chromatography with flame ionisation and/or liquid chromatography with fluorescence detection. The PAH profile with relatively high concentrations of benzo(ghi)perylene and coronene, decreasing with the distance from the road, suggested a substantial contribution from the traffic. The concentrations in the core of the campus were in the same range as those reported for residential areas in the Bangkok Metropolitan.

  14. Changes in particulate matter physical properties during Saharan advections over Rome (Italy): a four-year study, 2001–2004

    OpenAIRE

    R. Sozzi; Basart, S.; J. M. Baldasano; Barnaba, F.; F. Costabile; F. Angelini; G. P. Gobbi; A. Bolignano

    2013-01-01

    Particulate matter mass concentrations measured in the city of Rome (Italy) in the period 2001–2004 have been cross-analysed with concurrent Saharan dust advection events to infer the impact these natural episodes bear on the standard air quality parameter PM10 observed at two city stations and at one regional background station. Natural events as Saharan dust advections are associated to a definite health risk. At the same time, the Directive 2008/50/EC allows subtraction of PM exceedances c...

  15. Estimating the influence of different urban canopy cover types on atmospheric particulate matter (PM10) pollution abatement in London UK

    OpenAIRE

    Tallis, Matthew J.

    2010-01-01

    In the urban environment atmospheric pollution by PM10 (particulate matter with a diameter less than 10 x 10-6 m) is a problem that can have adverse effects on human health, particularly increasing rates of respiratory disease. The main contributors to atmospheric PM10 in the urban environment are road traffic, industry and power production. The urban tree canopy is a receptor for removing PM10s from the atmosphere due to the large surface areas generated by leaves and air turbulence creat...

  16. Properties and cellular effects of particulate matter from direct emissions and ambient sources.

    Science.gov (United States)

    Jin, Wenjie; Su, Shu; Wang, Bin; Zhu, Xi; Chen, Yilin; Shen, Guofeng; Liu, Junfeng; Cheng, Hefa; Wang, Xilong; Wu, Shuiping; Zeng, Eddy; Xing, Baoshan; Tao, Shu

    2016-10-14

    The pollution of particulate matter (PM) is of great concern in China and many other developing countries. It is generally recognized that the toxicity of PM is source and property dependent. However, the relationship between PM properties and toxicity is still not well understood. In this study, PM samples from direct emissions of wood, straw, coal, diesel combustion, cigarette smoking and ambient air were collected and characterized for their physicochemical properties. Their expression of intracellular reactive oxygen species (ROS) and levels of inflammatory cytokines (i.e., tumor necrosis factor-α (TNF-α)) was measured using a RAW264.7 cell model. Our results demonstrated that the properties of the samples from different origins exhibited remarkable differences. Significant increases in ROS were observed when the cells were exposed to PMs from biomass origins, including wood, straw and cigarettes, while increases in TNF-α were found for all the samples, particularly those from ambient air. The most important factor associated with ROS generation was the presence of water-soluble organic carbon, which was extremely abundant in the samples that directly resulted from biomass combustion. Metals, endotoxins and PM size were the most important properties associated with increases in TNF-α expression levels. The association of the origins of PM particles and physicochemical properties with cytotoxic properties is illustrated using a cluster analysis. PMID:27409416

  17. Health Outcomes of Exposure to Biological and Chemical Components of Inhalable and Respirable Particulate Matter.

    Science.gov (United States)

    Morakinyo, Oyewale Mayowa; Mokgobu, Matlou Ingrid; Mukhola, Murembiwa Stanley; Hunter, Raymond Paul

    2016-01-01

    Particulate matter (PM) is a key indicator of air pollution and a significant risk factor for adverse health outcomes in humans. PM is not a self-contained pollutant but a mixture of different compounds including chemical and biological fractions. While several reviews have focused on the chemical components of PM and associated health effects, there is a dearth of review studies that holistically examine the role of biological and chemical components of inhalable and respirable PM in disease causation. A literature search using various search engines and (or) keywords was done. Articles selected for review were chosen following predefined criteria, to extract and analyze data. The results show that the biological and chemical components of inhalable and respirable PM play a significant role in the burden of health effects attributed to PM. These health outcomes include low birth weight, emergency room visit, hospital admission, respiratory and pulmonary diseases, cardiovascular disease, cancer, non-communicable diseases, and premature death, among others. This review justifies the importance of each or synergistic effects of the biological and chemical constituents of PM on health. It also provides information that informs policy on the establishment of exposure limits for PM composition metrics rather than the existing exposure limits of the total mass of PM. This will allow for more effective management strategies for improving outdoor air quality. PMID:27314370

  18. Indoor particulate matter in developing countries: a case study in Pakistan and potential intervention strategies

    International Nuclear Information System (INIS)

    Around three billion people, largely in low and middle income countries, rely on biomass fuels for their household energy needs. The combustion of these fuels generates a range of hazardous indoor air pollutants and is an important cause of morbidity and mortality in developing countries. Worldwide, it is responsible for four million deaths. A reduction in indoor smoke can have a significant impact on lives and can help achieve many of the Millennium Developments Goals. This letter presents details of a seasonal variation in particulate matter (PM) concentrations in kitchens using biomass fuels as a result of relocating the cooking space. During the summer, kitchens were moved outdoors and as a result the 24 h average PM10, PM2.5 and PM1 fell by 35%, 22% and 24% respectively. However, background concentrations of PM10 within the village increased by 62%. In locations where natural gas was the dominant fuel, the PM concentrations within the kitchen as well as outdoors were considerably lower than those in locations using biomass. These results highlights the importance of ventilation and fuel type for PM levels and suggest that an improved design of cooking spaces would result in enhanced indoor air quality. (letter)

  19. Distribution and composition of suspended particulate matter in the Atlantic Ocean: Direct measurements and satellite data

    Science.gov (United States)

    Lisitzin, A. P.; Klyuvitkin, A. A.; Burenkov, V. I.; Kravchishina, M. D.; Politova, N. V.; Novigatsky, A. N.; Shevchenko, V. P.; Klyuvitkina, T. S.

    2016-01-01

    The main purpose of this work is to study the real distribution and spatial-temporal variations of suspended particulate matter and its main components in surface waters of the Atlantic Ocean on the basis of direct and satellite measurements for development of new and perfection of available algorithms for converting satellite data. The distribution fields of suspended particulate matter were calculated and plotted for the entire Atlantic Ocean. It is established that its distribution in the open ocean is subordinate to the latitudinal climatic zonality. The areas with maximum concentrations form latitudinal belts corresponding to high-productivity eutrophic and mesotrophic waters of the northern and southern temperate humid belts and with the equatorial humid zone. Phytoplankton, the productivity of which depends primarily on the climatic zonality, is the main producer of suspended particulate matter in the surface water layer.

  20. Diversity and Composition of Airborne Fungal Community Associated with Particulate Matters in Beijing during Haze and Non-haze Days

    Science.gov (United States)

    Yan, Dong; Zhang, Tao; Su, Jing; Zhao, Li-Li; Wang, Hao; Fang, Xiao-Mei; Zhang, Yu-Qin; Liu, Hong-Yu; Yu, Li-Yan

    2016-01-01

    To assess the diversity and composition of airborne fungi associated with particulate matters (PMs) in Beijing, China, a total of 81 PM samples were collected, which were derived from PM2.5, PM10 fractions, and total suspended particles during haze and non-haze days. The airborne fungal community in these samples was analyzed using the Illumina Miseq platform with fungi-specific primers targeting the internal transcribed spacer 1 region of the large subunit rRNA gene. A total of 797,040 reads belonging to 1633 operational taxonomic units were observed. Of these, 1102 belonged to Ascomycota, 502 to Basidiomycota, 24 to Zygomycota, and 5 to Chytridiomycota. The dominant orders were Pleosporales (29.39%), Capnodiales (27.96%), Eurotiales (10.64%), and Hypocreales (9.01%). The dominant genera were Cladosporium, Alternaria, Fusarium, Penicillium, Sporisorium, and Aspergilus. Analysis of similarities revealed that both particulate matter sizes (R = 0.175, p = 0.001) and air quality levels (R = 0.076, p = 0.006) significantly affected the airborne fungal community composition. The relative abundance of many fungal genera was found to significantly differ among various PM types and air quality levels. Alternaria and Epicoccum were more abundant in total suspended particles samples, Aspergillus in heavy-haze days and PM2.5 samples, and Malassezia in PM2.5 samples and heavy-haze days. Canonical correspondence analysis and permutation tests showed that temperature (p air pollution in Beijing. PMID:27148180

  1. Method for contamination control and barrier apparatus with filter for containing waste materials that include dangerous particulate matter

    International Nuclear Information System (INIS)

    A container for hazardous waste materials that includes air or other gas carrying dangerous particulate matter has incorporated barrier material, preferably in the form of a flexible sheet, and one or more filters for the dangerous particulate matter sealably attached to such barrier material. The filter is preferably a HEPA type filter and is preferably chemically bonded to the barrier materials. The filter or filters are preferably flexibly bonded to the barrier material marginally and peripherally of the filter or marginally and peripherally of air or other gas outlet openings in the barrier material, which may be a plastic bag. The filter may be provided with a backing panel of barrier material having an opening or openings for the passage of air or other gas into the filter or filters. Such backing panel is bonded marginally and peripherally thereof to the barrier material or to both it and the filter or filters. A coupling or couplings for deflating and inflating the container may be incorporated. Confining a hazardous waste material in such a container, rapidly deflating the container and disposing of the container, constitutes one aspect of the method of the invention. The chemical bonding procedure for producing the container constitutes another aspect of the method of the invention. 3 figs

  2. Inhalation of fine particulate matter during pregnancy increased IL-4 cytokine levels in the fetal portion of the placenta.

    Science.gov (United States)

    de Melo, Juliana Oliveira; Soto, Sônia Fátima; Katayama, Isis Akemi; Wenceslau, Camilla Ferreira; Pires, Amanda Gonçalves; Veras, Mariana Matera; Furukawa, Luzia N S; de Castro, Isac; Saldiva, Paulo Hilário Nascimento; Heimann, Joel Claudio

    2015-01-22

    This study aimed to verify the development of placental and systemic inflammation in rats exposed to fine particulate matter before or during pregnancy. Wistar rats were exposed to filtered air (control) or to a load of 600 μg/m(3) of fine particles in the air. The gene expression of IL-1β, IL-4, IL-6, IL-10, INF-γ, TNF-α and Toll-like receptor 4 in the placenta was evaluated. The serum and placental concentrations of IL-1β, IL-4, IL-6, IL-10, INF-γ and TNF-α were measured. The total and differential blood leukocyte and blood platelet count was assessed. Compared to control animals, IL-4 content was elevated in the fetal portion of the placenta in rats exposed to air pollution before and during pregnancy. Increased IL-4 suggests that a placental inflammatory reaction may have occurred in response to exposure to fine particulate matter and that this cytokine was responsible, among possibly others factors, for resolution of the inflammatory reaction. PMID:25481569

  3. Final report for measurement of primary particulate matter emissions from light-duty motor vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Norbeck, J. M.; Durbin, T. D.; Truex, T. J.

    1998-12-31

    This report describes the results of a particulate emissions study conducted at the University of California, Riverside, College of Engineering-Center for Environmental Research and Technology (CE-CERT) from September of 1996 to August of 1997. The goal of this program was to expand the database of particulate emissions measurements from motor vehicles to include larger numbers of representative in-use vehicles. This work was co-sponsored by the Coordinating Research Council (CRC), the South Coast Air Quality Management District (SCAQMD), and the National Renewable Energy Laboratory (NREL) and was part of a larger study of particulate emissions being conducted in several states under sponsorship by CRC. For this work, FTP particulate mass emission rates were determined for gasoline and diesel vehicles, along with the fractions of particulates below 2.5 and 10 microns aerodynamic diameter. A total of 129 gasoline-fueled vehicles and 19 diesel-fueled vehicles were tested as part of the program.

  4. EDXRF elemental profiles and characterization of size-segregated particulate matter of aerosols in Khartoum area

    International Nuclear Information System (INIS)

    In this work analysis of size segregated particles from the aerosols in Khartoum area was performed using EDXRFA, to determine the particulate matter concentration levels as well as to compare them with other African countries. During the study three measurement campaigns, inside and out side Sudan, were carried out during the period April-July-2001 in Khartoum, and October 2001 in Dar Es-Salaam, (Tanzania). In addition soil samples were collected from ten locations in the proximity of dense roads at the center of Khartoum city and from a desert area 120 km north of Khartoum. The sampling and segregation of particles were done using a dichotomous virtual impactor and a cyclone. Elemental concentrations of fourteen elements in he samples were determined by EDXRFA. Concentrations of back carbon (B C) were also measured at the two size fractions. The elements Si, K, Ca, Ti, Mn, Fe, Zn and Sr were found to be dominant in the collected particulates. Day period collections were found to have higher elemental concentrations than those of night periods. The statistical analysis of the results indicated that all elements in the proximity of roadsides had elevated concentrations compared to the background air levels. The results indicated an influence of vehicular traffic emission for the elements Zn, Ni and Pb and a correlation between lead and bromine. The lead to bromine ratio was found to be with the range of those derived from vehicular exhaust and in good agreement with the ratios obtained in some African countries. The lead distributions in the roadside soils confirmed source as automobile emission. However, it was observed that the levels were having different trends with respect to both the depth from the surface layer of the the earth and the distance from the edge of the road. It was found that Khartoum aerosols had relatively high levels of air particulates originating from the soil. Dar Es-Salaam (Tanzania), and to a lesser extent Gaborone (Botswana), results

  5. Gas and Particulate Aircraft Emissions Measurements: Impacts on local air quality.

    Science.gov (United States)

    Jayne, J. T.; Onasch, T.; Northway, M.; Canagaratna, M.; Worsnop, D.; Timko, M.; Wood, E.; Miake-Lye, R.; Herndon, S.; Knighton, B.; Whitefield, P.; Hagen, D.; Lobo, P.; Anderson, B.

    2007-12-01

    Air travel and freight shipping by air are becoming increasingly important and are expected to continue to expand. The resulting increases in the local concentrations of pollutants, including particulate matter (PM), volatile organic compounds (VOCs), and nitrogen oxides (NOX), can have negative impacts on regional air quality, human health and can impact climate change. In order to construct valid emission inventories, accurate measurements of aircraft emissions are needed. These measurements must be done both at the engine exit plane (certification) and downwind following the rapid cooling, dilution and initial atmospheric processing of the exhaust plume. We present here results from multiple field experiments which include the Experiment to Characterize Volatile Aerosol and Trace Species Emissions (EXCAVATE) and the four Aircraft Particle Emissions eXperiments (APEX- 1/Atlanta/2/3) which characterized gas and particle emissions from both stationary or in-use aircraft. Emission indices (EIs) for NOx and VOCs and for particle number concentration, refractory PM (black carbon soot) and volatile PM (primarily sulfate and organic) particles are reported. Measurements were made at the engine exit plane and at several downstream locations (10 and 30 meters) for a number of different engine types and engine thrust settings. A significant fraction of organic particle mass is composed of low volatility oil-related compounds and is not combustion related, potentially emitted by vents or heated surfaces within aircraft engines. Advected plumes measurements from in-use aircraft show that the practice of reduced thrust take-offs has a significant effect on total NOx and soot emitted in the vicinity of the airport. The measurements reported here represent a first observation of this effect and new insights have been gained with respect to the chemical processing of gases and particulates important to the urban airshed.

  6. Biomonitoring of Toxic Compounds of Airborne Particulate Matter in Urban and Industriel Areas

    DEFF Research Database (Denmark)

    Klumpp, Andreas; Ro-Poulsen, Helge

    The toxicity and ecotoxicity of airborne particulate matter is determined by its physical features, but also by its chemical composition. The standardised exposure of accumulative bioindicator plants is suggested as an efficient and reliable tool to assess and monitor effects of particulate matter...... on man and environment. Two widely applied biomonitoring procedures, namely the standardised ryegrass exposure for monitoring of trace metals, and the standardised exposure of curly kale for monitoring of PAH compounds, is presented taking examples from a Europe-wide biomonitoring study conducted in...... these methods in environmental monitoring programmes are made...

  7. The nature of particulate organic matter settled on solid substrata

    Digital Repository Service at National Institute of Oceanography (India)

    Sharma, M.O.; Wagh, A.B.

    National Institute of Oceanography, Dona Paula, Goa, 403004, India. Received 25/0 I/90, in revised form 16/02/90, accepted 22/03/90. Particulate material settled on aluminium and glass panels during their immersion in estuarine water was analysed... etre principale ment d'origine hactcrienne. Oceollo!ogica Acta, 1990, 13.4,471-474. INTRODUCTION Solid substrata placed in an aquatic environment adsorb organic molecules from the ambient waters onto their surfaces, making them readily available...

  8. Source Apportionment of Particulate Matter (PM10 In an Integrated Coal Mining Complex of Jharia Coalfield, Eastern India, A Review.

    Directory of Open Access Journals (Sweden)

    Debananda Roy

    2014-04-01

    Full Text Available Coal based thermal power generation accounts for 44.7% of the world's electricity and coal alone provides about 80% of the total energy demand in India. Energy-intensive industries deteriorate the air quality of the residential areas due to release of different pollutants, especially a range of deleterious heavy metals like Hg, Cd, Cu, Pb, and Cr. Near about 53.3 percent of the coal produced every year in India has been used for thermal generation. Jharia Coalfield (JCF is major contributor of coking coal in India. JCF receives particulate matter from various sources such as, opencast coal mining and its associated activities, thermal power stations, automobiles, generator sets fuel burning, construction activities, domestic coal, cooking gas burning, etc. and even the background contribution of natural dust (crustal origin can not be ruled out, particularly, in the zones having loose topsoil. Concentration of particulate matter causes harmful impacts to the society. These multiple sources are contributing to particulates pollution in the study area.

  9. Chemical Composition and Emission Sources of the Fine Particulate Matters in a Southeast Asian Mega City (Dhaka, Bangladesh)

    Science.gov (United States)

    Salam, Abdus

    2016-04-01

    Air pollution has significant impact on human health, climate change, agriculture, visibility reduction, and also on the atmospheric chemistry. There are many studies already reported about the direct relation of the human mortality and morbidity with the increase of the atmospheric particulate matters. Especially, fine particulate matters can easily enter into the human respiratory system and causes many diseases. Particulate matters have the properties to absorb the solar radiation and impact on the climate. Dhaka, Bangladesh is a densely populated mega-city in the world. About 16 million inhabitants are living within an area of 360 square kilometers. Air quality situation has been degrading due to unplanned growth, increasing vehicles, severe traffic jams, brick kilns, industries, construction, and also transboundary air pollution. A rapidly growing number of vehicles has worsen the air quality in spite of major policy interventions, e.g., ban of two-stroke and three-wheeled vehicles, phase out of 20 years old vehicles, conversion to compressed natural gas (CNGs), etc. Introduction of CNGs to reduce air pollution was not the solution for fine particles at all, as evidence shows that CNGs and diesel engines are the major sources of fine particles. High concentration of the air pollutants in Dhaka city such as PM, carbonaceous species (black and organic carbon), CO, etc. has already been reported. PM2.5 mass, chemical composition (e.g., BC, OC, SO42-, NO3-, trace elements, etc.), aerosol Optical Depth (AOD) and emission sources of our recent measurements at the highly polluted south East Asian Mega city (Dhaka) Bangladesh will be presented in the conference. PM2.5 samples were collected on filters with Digital PM2.5 sampler (Switzerland) and Air photon, USA. BC was measured from filters (with thermal and optical method) and also real time with an Aethalometer AE42 (Magee Scitific., USA). Water soluble ions were determined from filters with ion chromatogram. AOD

  10. Characterization of coarse particulate matter in the western United States: a comparison between observation and modeling

    Directory of Open Access Journals (Sweden)

    R. Li

    2012-05-01

    Full Text Available We provide a regional characterization of coarse particulate matter (PM10–2.5 spanning the western United States based on the analysis of measurements from 50 sites reporting in the US EPA Air Quality System (AQS and two state agencies. We found that the observed PM10–2.5 concentrations show significant spatial variability and distinct spatial patterns, associated with the distributions of land use/land cover and soil moisture. The highest concentrations were observed in the southwestern US, where sparse vegetation, shrublands or barren lands dominate with lower soil moistures, whereas the lowest concentrations were observed in areas dominated by grasslands, forest, or croplands with higher surface soil moistures. The observed PM10–2.5 concentrations also show variable seasonal, weekly, and diurnal patterns, indicating a variety of sources and their relative importance at different locations. To obtain insights for regional PM10–2.5 modeling, the observed results were also compared to modeled PM10–2.5 concentrations from an annual simulation using the Community Multiscale Air Quality modeling system (CMAQ that has been designed for regulatory or policy assessments of a variety of pollutants including PM10, which consists of PM10–2.5 and fine particulate matter (PM2.5. The model under-predicts PM10–2.5 observations at 49 of 50 sites, among which 14 sites have annual observation means that are at least five times greater than model means. Model results also fail to reproduce their spatial patterns. Important sources were not included in the emission inventory used and/or the applied emissions were greatly under-estimated. Unlike observations, the modeled concentrations show similar seasonal, weekly, and diurnal pattern across the entire domain. CMAQ does not include organics in PM10–2.5, which recent measurements show to be

  11. Spatial distribution assessment of particulate matter in an urban street canyon using biomagnetic leaf monitoring of tree crown deposited particles

    International Nuclear Information System (INIS)

    Recently, biomagnetic monitoring of tree leaves has proven to be a good estimator for ambient particulate concentration. This paper investigates the usefulness of biomagnetic leaf monitoring of crown deposited particles to assess the spatial PM distribution inside individual tree crowns and an urban street canyon in Ghent (Belgium). Results demonstrate that biomagnetic monitoring can be used to assess spatial PM variations, even within single tree crowns. SIRM values decrease exponentially with height and azimuthal effects are obtained for wind exposed sides of the street canyon. Edge and canyon trees seem to be exposed differently. As far as we know, this study is the first to present biomagnetic monitoring results of different trees within a single street canyon. The results not only give valuable insights into the spatial distribution of particulate matter inside tree crowns and a street canyon, but also offer a great potential as validation tool for air quality modelling. Highlights: ► Spatial distribution of tree crown deposited PM was evaluated. ► SIRM values decrease exponentially with height. ► Azimuthal effects were observed at wind exposed sides of the street canyon. ► Edge and canyon trees seem to be exposed differently. ► Biomagnetic monitoring offers a great potential as validation of air quality models. -- Biomagnetic leaf monitoring provides useful insights into the spatial distribution of particulates inside individual tree crowns and an urban street canyon in Ghent (Belgium)

  12. Nitro Polycyclic Aromatic Hydrocarbons in Particulate Matter Emitted by the Combustion of Diesel and Biodiesel

    Science.gov (United States)

    Valle-Hernández, B. L.; Amador-Muñoz, O.; Jazcilevich, A. D.; Santos-Medina, G. L.; Hernández-Lopéz, E.; Villalobos-Pietrini, R.

    2013-05-01

    The rapid population growth in large urban areas, has resulted in a precipitous increase in the consumption of fossil fuels, mainly by the transport sector, diesel vehicles are a significant source of air pollution by particulate matter emissions, damaging the population health, because of the size and composition of these particles, as they may contain carcinogenic organic compounds such as polycyclic aromatic hydrocarbons and their derivatives, nitro-PAH. This study focused on analysis of nitro-PAH contained in particles emitted from diesel engines fuelled with biodiesel blends (B5, B10 and B16.67) to different driving cycles (rpm and torque), and to compare their concentrations with emissions from current diesel. A diesel truck engine was used in the laboratory for collect particulate mass emitted directly from the exhaust. Mass of particles and nitro-PAH were determined by gas chromatography-mass spectrometry using negative chemical ionization. No reduction was observed in the particles mass per second by using biodiesel relative to diesel (p > 0.1). Seven nitro-PAH were observed in samples: 1-nitronaphthalene, 2-nitronaphthalene, 9-nitroanthracene, 3-nitrophenanthrene, 1,8-dinitronaphthalene, 1-nitropyrene and 1,6-dinitropyrene. 1-nitropyrene showed the highest mass concentration in diesel and in all blends of biodiesel, followed by 3-nitrophenanthrene. Emissions reduction in biodiesel combustion with respect to diesel combustion were observed for 1-nitropyrene: 50 %, in all blends (B5, B10 and B16.67) and for 3-nitrophenanthrene: 55 % in B5, 72 % in B10 and 64 % in B16.67.

  13. Short-term health effects of particulate air pollution with special reference to the needs of southern European countries

    Directory of Open Access Journals (Sweden)

    Katsouyanni Klea

    2012-01-01

    Full Text Available Exposure to air pollution, especially from particulate matter, is generally accepted to be one of the most important public health problems in Europe and worldwide. The effects caused in the general population are associated with relatively small relative risks, but if the ubiquity of exposure is considered, the attributable number of events is large. Furthermore, there is evidence that the effects in sensitive population subgroups (such as the elderly, those with chronic diseases and children are stronger. Within large European Union funded collaborative projects (such as the Air Pollution and Health: a European Approach-APHEA, effect modification by geographical characteristics has been investigated and it was found that in warmer countries, in locations where particles come from traffic and where the proportion of the elderly is greater, particle toxicity is increased. These characteristics are particularly relevant to Southern European locations. From other projects we know that meteorological, climatic, environmental and socioeconomic factors are effect modifiers of the effects of specific air pollutants. In this presentation we will show the evidence on the short-term health effects of particulate and gaseous air pollutants and emphasize particularly results concerning southern Europe and potential effect modifiers. The gaps in knowledge and the need to study air pollution in Southern European countries more extensively will be demonstrated. To conduct useful research, good quality air pollution and health data are needed.

  14. Omega-3 Fatty Acid Supplementation Appears to Attenuate Particulate Air Pollution–Induced Cardiac Effects and Lipid Changes in Healthy Middle-Aged Adults

    OpenAIRE

    Tong, Haiyan; Rappold, Ana G.; Diaz-Sanchez, David; Steck, Susan E.; Berntsen, Jon; Cascio, Wayne E; Devlin, Robert B; Samet, James M.

    2012-01-01

    Background: Air pollution exposure has been associated with adverse cardiovascular health effects. Findings of a recent epidemiological study suggested that omega-3 fatty acid (fish oil) supplementation blunted cardiac responses to air pollution exposure. Objectives: We conducted a randomized, controlled exposure study to evaluate the efficacy of fish oil supplements in attenuating adverse cardiac effects of exposure to concentrated ambient fine and ultrafine particulate matter (CAP). Methods...

  15. 40 CFR Appendix B to Part 50 - Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere (High...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 2 2010-07-01 2010-07-01 false Reference Method for the Determination of Suspended Particulate Matter in the Atmosphere (High-Volume Method) B Appendix B to Part 50... Determination of Suspended Particulate Matter in the Atmosphere (High-Volume Method) 1.0 Applicability. 1.1...

  16. NUMERICAL SIMULATION FOR AIR AND AIR-PM FLOW IN WALL FLOW DIESEL PARTICULATE FILTERS

    Institute of Scientific and Technical Information of China (English)

    Zhao Binjuan; Yuan Shouqi; Seizo Kato; Akira Nishimura

    2005-01-01

    Numerical simulations are performed both for the single airflow and air-PM two-phase flow in wall flow diesel particulate filters (DPF) for the first time. The calculation domain is divided into two regions. In the inlet and outlet flow channels, the simulations are performed for the steady and laminar flow; In the porous filtration walls, the calculation model for flow in porous media is used. The Lagrange two-phase flow model is used to calculate the air-PM flow in DPF, for the dispersed phase (PM), its flow tracks are obtained by the integrating of the Lagrange kinetic equation. The calculated velocity, pressure distribution and PM flow tracks in DPF are obtained, which exhibits the main flow characteristics in wall flow DPF and will be help for the optimal design and performance prediction of wall flow DPF.

  17. Measures to reduce particulate matter and nitrogen dioxide; Massnahmen zur Reduzierung von Feinstaub und Stickstoffdioxid

    Energy Technology Data Exchange (ETDEWEB)

    Diegmann, Volker; Pfaefflin, Florian; Wiegand, Goetz; Wursthorn, Heike [IVU Umwelt GmbH, Freiburg (Germany)

    2007-06-15

    1. Clean Air Plans and Action Plans published in Germany up to October 2005 are comparatively analysed. In the synopsis, these plans outline an extensive representation of the current air pollution situation, the different methods of forecast and the measures discussed. A thematic map representing the data of the clean air plans is used as an important means to the comparative reporting. The comparison shows among other things the regional (specific to Federal States) distinctions in the methods used and described. 2. A scheme of measures is being developed and filled with data, in order to research and evaluate the measures for PM{sub 10} and NO{sub 2} reduction as described in the plans. Source groups, fields of action, types and target values serve to classify the measures. The PM{sub 10} reducing measures analysed within the framework of the project are focussing with 79 % on the source group of motor vehicle traffic. Analyses of publications in other European countries show a focus on motor vehicle traffic as well. 3. The reduction potential of measures concerning PM10 emissions of motor vehicle traffic is determined. Selected measures are being analysed in regard to their impact limit and the administrative executive level. The emission and concentration reduction potential is being calculated for different configurations. If procurable, a concluding estimation of the cost efficiency is carried out und implementation conditions and barriers are discussed. 4. The most important results in section 3 are summarized in the separate abridged report 'Traffic measures to reduce particulate matter - possibilities and reduction potentials'. (orig.)

  18. Mercury in particulate matter over Polish zone of the southern Baltic Sea

    Science.gov (United States)

    Beldowska, M.; Saniewska, D.; Falkowska, L.; Lewandowska, A.

    2012-01-01

    Important Hg transformations can occur at the air-water interface where polluted terrestrial air masses meet humid, halogen-rich marine air masses over the southern Baltic Sea. These chemical and physical processes include gas-to-particle conversion that led to an increase of Hg associated with coarse particles, which due to higher dry deposition rates, enhanced local scale deposition and limited the transport of this toxic trace metal. Daily (24 h) sampling of size-segregated atmospheric particles revealed the sea to be a sink for Hg during winter months and as a source of Hg during summer months. Poland is one of the major Hg emitters among the Baltic States according to International HELCOM Reports. Thus, important measurements in this region were conducted over a one-year period from December 18, 2007 to December 15, 2008. The range in concentrations of Hg in particulate matter (2-142 pg m -3) at the Polish site are comparable to other measurements at sites along the coastal areas of the Baltic Sea. Annual Hg(p) represents 1% of the total atmospheric Hg (Hg TOT) under unpolluted or background ambient conditions. A major source of atmospheric Hg in this area is the combustion of fossil fuels, especially coal burning used for home heating. This was clearly seen in the statistically higher mean concentration of 24 pg m -3 observed during the heating season compared to the 15 pg m -3 measured during the non-heating season. Construction activities e.g., cement manufacturing, gravel extraction, and waste incineration during the warm season strongly influenced Hg concentrations and led to an increase in Hg(p) on working days compared to weekend days.

  19. Case study. Health hazards of automotive repair mechanics: thermal and lighting comfort, particulate matter and noise.

    Science.gov (United States)

    Loupa, G

    2013-01-01

    An indoor environmental quality survey was conducted in a small private automotive repair shop during May 2009 (hot season) and February 2010 (cold season). It was established that the detached building, which is naturally ventilated and lit, had all the advantages of the temperate local climate. It provided a satisfactory microclimatic working environment, concerning the thermal and the lighting comfort, without excessive energy consumption for air-conditioning or lighting. Indoor number concentrations of particulate matter (PM) were monitored during both seasons. Their size distributions were strongly affected by the indoor activities and the air exchange rate of the building. During working hours, the average indoor/outdoor (I/O) number concentration ratio was 31 for PM0.3-1 in the hot season and 69 for the cold season. However I/O PM1-10 number concentration ratios were similar, 33 and 32 respectively, between the two seasons. The estimated indoor mass concentration of PM10 for the two seasons was on average 0.68 mg m(-3) and 1.19 mg m(-3), i.e., 22 and 36 times higher than outdoors, during the hot and the cold seasons, respectively. This is indicative that indoor air pollution may adversely affect mechanics' health. Noise levels were highly variable and the average LEX, 8 h of 69.3 dB(A) was below the European Union exposure limit value 87db (A). Noise originated from the use of manual hammers, the revving up of engines, and the closing of car doors or hoods. Octave band analysis indicated that the prevailing noise frequencies were in the area of the maximum ear sensitivity. PMID:23984679

  20. The Contribution of Local and Regional Sources to Particulate Matter in European Megacities

    Science.gov (United States)

    Skyllakou, Ksakousti; Megaritis, Athanasios; Fountoukis, Christos; Murphy, Benjamin; Pandis, Spyros

    2013-04-01

    ., Charalampidis P. E., Pilinis C., Wiedensohler A., Dall'Osto M., O'Dowd C., and S. N. Pandis: Evaluation of a three-dimensional chemical transport model (PMCAMx) in the European domain during the EUCAARI May 2008 campaign, Atmos. Chem. Phys., 11, 10331-10347, 2011. Seinfeld, J. H., and Pandis, S. N. (2006) Atmospheric chemistry and physics: From air pollution to climate change, 2nd ed.; John Wiley and Sons, Hoboken, NJ. United Nations Populations Fund, UNFPA, State of the world population (2007) Unleashing the potential of urban growth , available at: http://www.unfpa.org/swp/2007/presskit/pdf/sowp2007eng.pdf. Wagstrom K., Spyros N. Pandis: Source receptor relationships for fine particulate matter concentrations in the Eastern United States, Atmospheric Environment, Atmos. Environ., 45, 347-356, 2011a. Wagstrom K., Spyros N. Pandis: Contribution of long range transport to local fine particulate matter concerns, Atmos. Environ., 45, 2730-2735, 2011b.

  1. MERIS imagery of Belgian coastal waters: mapping of suspended particulate matter and chlorophyll-a

    OpenAIRE

    Ruddick, K.; PARK, Y.; B. Nechad

    2003-01-01

    This paper describes a first application-oriented analysis of MERIS products for Suspended Particulate Matter (SPM) and Chlorophyll-a (CHL) concentration in Belgian coastal waters. Regional algorithms designed for Belgian waters have been implemented and compared with the standard MERIS products, termed Total Suspended Matter and Algal2 respectively. The standard and regional SPM products seem robust and give similar data. Notwithstanding a more complete match-up validation analysis, these pr...

  2. The added value of a proposed satellite imager for ground level particulate matter analyses and forecasts

    NARCIS (Netherlands)

    Timmermans, R.M.A.; Segers, A.J.; Builtjes, P.J.H.; Vautard, R.; Siddans, R.; Elbern, H.; Tjemkes, S.A.T.; Schaap, M.

    2009-01-01

    Monitoring aerosols over wide areas is important for the assessment of the population's exposure to health relevant particulate matter (PM). Satellite observations of aerosol optical depth (AOD) can contribute to the improvement of highly needed analyzed and forecasted distributions of PM when combi

  3. 40 CFR 49.128 - Rule for limiting particulate matter emissions from wood products industry sources.

    Science.gov (United States)

    2010-07-01

    ... CFR part 51. (e) Definitions of terms used in this section. The following terms that are used in this... emissions from wood products industry sources. 49.128 Section 49.128 Protection of Environment ENVIRONMENTAL... Rule for limiting particulate matter emissions from wood products industry sources. (a) What is...

  4. Detailed Study of Fine Particulate Matter during 2013 New Year’s Celebrations

    Czech Academy of Sciences Publication Activity Database

    Kubelová, Lucie; Vodička, Petr; Schwarz, Jaroslav; Ždímal, Vladimír

    Prague : Czech Aerosol Society, 2013, A115. ISBN N. [European Aerosol Conference (EAC 2013). Prague (CZ), 01.09.2013-06.09.2013] R&D Projects: GA ČR GAP209/11/1342 Institutional support: RVO:67985858 Keywords : fine particulate matter * firrworks * aerosol mass spectrometry Subject RIV: CF - Physical ; Theoretical Chemistry http://eac2013.cz/index.php

  5. PIXE analysis of suspended particulate matter originally collected for beta-ray absorption mass monitoring

    International Nuclear Information System (INIS)

    A method of transferring suspended particulate matter (SPM) from the used filter of a beta-absorption mass monitor to a polycarbonate filter for subsequent PIXE analysis has been developed. The method allows determination of the relative elemental composition of SPM. It was demonstrated that PIXE analysis can detect S, Cl, Fe and Zn in SPM sampled over a one-hour period. (author)

  6. IMPROVED SOURCE APPORTIONMENT AND SPECIATION OF LOW-VOLUME PARTICULATE MATTER SAMPLES

    Science.gov (United States)

    This research will examine methods with the high sensitivity and low limits of detection needed to analyze a wide range of chemical species in particulate matter collected with personal samplers. Dr. Schauer and colleagues will develop sensitive methods to detect trace meta...

  7. INSTILLATION OF COARSE ASH PARTICULATE MATTER AND LIPOPOLYSACCHARIDE PRODUCES A SYSTEMIC INFLAMMATORY RESPONSE IN MICE

    Science.gov (United States)

    Coronary ischemic events increase significantly floowing a “bad air” day. Ambient particulate matter (PM10) is the pollutant most strongly associated with these events. PM10 causes inflammatory injury to the lower airways. It is not clear, however, if pulmonary inflation transl...

  8. 40 CFR 52.146 - Particulate matter (PM-10) Group II SIP commitments.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Particulate matter (PM-10) Group II SIP... (PM-10) Group II SIP commitments. (a) On December 28, 1988, the Governor's designee for Arizona submitted a revision to the State Implementation Plan (SIP) for Casa Grande, Show Low, Safford,...

  9. 40 CFR 52.1638 - Bernalillo County particulate matter (PM10) Group II SIP commitments.

    Science.gov (United States)

    2010-07-01

    ... (PM10) Group II SIP commitments. 52.1638 Section 52.1638 Protection of Environment ENVIRONMENTAL... (CONTINUED) New Mexico § 52.1638 Bernalillo County particulate matter (PM10) Group II SIP commitments. (a) On December 7, 1988, the Governor of New Mexico submitted a revision to the State Implementation Plan...

  10. Trace elements present in airborne particulate matter-Stressors of plant metabolism

    Czech Academy of Sciences Publication Activity Database

    Pavlík, Milan; Pavlíková, D.; Zemanová, V.; Hnilička, F.; Urbanová, V.; Száková, J.

    2012-01-01

    Roč. 79, May 2012 (2012), s. 101-107. ISSN 0147-6513 Grant ostatní: GA ČR(CZ) GA521/09/1150 Institutional research plan: CEZ:AV0Z50380511 Keywords : Airborne particulate matter * Amino acids * Gas- exchange parameters Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.203, year: 2012

  11. Elemental constituents of particulate matter and newborn’s size in eight European cohorts

    NARCIS (Netherlands)

    Pedersen, M.; Gehring, U.; Beelen, R.; Wang, M.; Giorgis-Allemand, L.; Andersen, A.M.N.; Basagaña, X.; Bernard, C.; Cirach, M.; Forastiere, F.; Hoogh, K. de; Gražuleviĉvienė, R.; Gruzieva, O.; Hoek, G.; Jedynska, A.; Klümper, C.; Kooter, I.M.; Krämer, U.; Kukkonen, J.; Porta, D.; Postma, D.S.; Raaschou-Nielsen, O.; Rossem, L. van; Sunyer, J.; Sørensen, M.; Tsai, M.Y.; Vrijkotte, T.G.M.; Wilhelm, M.; Nieuwenhuijsen, M.J.; Pershagen, G.; Brunekreef, B.; Kogevinas, M.; Slama, R.

    2016-01-01

    Background: The health effects of suspended particulate matter (PM) may depend on its chemical composition. Associations between maternal exposure to chemical constituents of PM and newborn’s size have been little examined. Objective: We aimed to investigate the associations of exposure to elemental

  12. Patients with asthma demonstrate airway inflammation after exposure to concentrated ambient particulate matter

    Science.gov (United States)

    ..To the Editor"': Of the three major particulate matter (PM) size fractions (ultrafme, fine and coarse),coarse PM (PM2.5- 10) has been the least examined in terms of its health effects on susceptible populations, this despite having characteristics that make it particula...

  13. 40 CFR 52.62 - Control strategy: Sulfur oxides and particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 3 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides and particulate matter. 52.62 Section 52.62 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Electric Cooperative—Lowman Steam Plant; Alabama Power Company-Gorgas Steam Plant, Gaston Steam...

  14. 40 CFR 52.2231 - Control strategy: Sulfur oxides and particulate matter.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 4 2010-07-01 2010-07-01 false Control strategy: Sulfur oxides and... § 52.2231 Control strategy: Sulfur oxides and particulate matter. (a) Part D conditional approval. The... area are approved on condition that the State submit by December 31, 1987, a definition of the...

  15. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Buggiano, Valeria; Petrillo, Ezequiel; Alló, Mariano; Lafaille, Celina [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); Redal, María Ana [Instituto de Ciencias Básicas y Medicina Experimental, Hospital Italiano de Buenos Aires (Argentina); Alghamdi, Mansour A. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Khoder, Mamdouh I. [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah (Saudi Arabia); Shamy, Magdy [Department of Environmental Sciences, Faculty of Meteorology, Environment and Arid Land Agriculture, King Abdulaziz University, Jeddah (Saudi Arabia); Muñoz, Manuel J., E-mail: mmunoz@fbmc.fcen.uba.ar [Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, IFIBYNE-CONICET, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires (Argentina); and others

    2015-07-15

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer.

  16. Effects of airborne particulate matter on alternative pre-mRNA splicing in colon cancer cells

    International Nuclear Information System (INIS)

    Alternative pre-mRNA splicing plays key roles in determining tissue- and species-specific cell differentiation as well as in the onset of hereditary disease and cancer, being controlled by multiple post- and co-transcriptional regulatory mechanisms. We report here that airborne particulate matter, resulting from industrial pollution, inhibits expression and specifically affects alternative splicing at the 5′ untranslated region of the mRNA encoding the bone morphogenetic protein BMP4 in human colon cells in culture. These effects are consistent with a previously reported role for BMP4 in preventing colon cancer development, suggesting that ingestion of particulate matter could contribute to the onset of colon cell proliferation. We also show that the underlying mechanism might involve changes in transcriptional elongation. This is the first study to demonstrate that particulate matter causes non-pleiotropic changes in alternative splicing. - Highlights: • Airborne particulate matter (PM10) affects alternative splicing in colon cells. • PM10 upregulates one of the two mRNA variants of the growth factor BMP-4. • This variant has a longer 5′ unstranslated region and introduces an upstream AUG. • By regulating BMP-4 mRNA splicing PM10 inhibits total expression of BMP-4 protein. • BMP-4 downregulation was previously reported to be associated to colon cancer

  17. Indoor/outdoor Particulate Matter Number and Mass Concentration in Modern Offices

    Czech Academy of Sciences Publication Activity Database

    Chatoutsidou, S.E.; Ondráček, Jakub; Tesař, Ondřej; Tørseth, K.; Ždímal, Vladimír; Lazaridis, M.

    2015-01-01

    Roč. 92, OCT 2015 (2015), s. 462-474. ISSN 0360-1323 EU Projects: European Commission(XE) 315760 Institutional support: RVO:67985858 Keywords : modern offices * particulate matter * mechanical ventilation Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 3.341, year: 2014

  18. Characterization of cotton gin particulate matter emissions - Final year of field work

    Science.gov (United States)

    Due to EPA’s implementation of more stringent standards for particulate matter (PM) with an effective diameter less than 2.5 microns (PM2.5), the cotton ginners’ associations across the cotton belt agreed that there is an urgent need to collect gin emission data. The primary issues surrounding PM re...

  19. Source apportionment of particulate matter in a South Asian Mega City: A case study of Karachi

    Science.gov (United States)

    Shahid, imran

    2016-04-01

    Pakistan is facing unabated air pollution as a major issue and its cities are more vulnerable as compared to urban centers in the developed world. During the last few decades, there has been a rapid increase in population, urbanization, industrialization, transportation and other human activities. In year June 2015 heat wave in largest South Asian mega city Karachi more than 1500 people died in one week. Unfortunately no air quality monitoring system is operation in any city of Pakistan. There is a sharp increase in both the variety and quantity of air pollutants and their corresponding sources. In this study contributions of different sources to particulate matter concentration has estimated in urban area of Karachi. Carbonaceous species (elemental carbon, organic carbon, carbonate carbon), soluble ions (Ca++, Mg++, Na+, K+, NH4+, Cl-, NO3-, SO4--), saccharides (levoglucosan, galactosan, mannosan, sucrose, fructose, glucose, arabitol and mannitol) were measured in atmospheric fine (PM2.5) and coarse (PM10) particles collected under pre-monsoon conditions (March - April 2009) at an urban site in Karachi (Pakistan). Average concentrations of PM2.5 were 75μg/m3 and of PM10 437μg/m3. The large difference between PM10 and PM2.5 originated predominantly from mineral dust. "Calcareous dust" and „siliceous dust" were the overall dominating material in PM, with 46% contribution to PM2.5 and 78% to PM10-2.5. 20 Combustion particles and secondary organics (EC+OM) comprised 23% of PM2.5 and 6% of PM10-2.5. EC, as well as OC ambient levels were higher (59% and 56%) in PM10-2.5 than in 22 PM2.5. Biomass burning contributed about 3% to PM2.5, and had a share of about 13% of "EC+OM" in PM2.5. The impact of bioaerosol (fungal spores) was minor and had a share of 1 and 2% of the OC in the PM2.5 and PM10-2.5 size fractions. Of secondary inorganic constituents (NH4)2SO4 contributes 4.4% to PM2.5 and no detectable quantity to PM10-2.5. The sea salt contribution is about 2% both to

  20. Assessment of Population and Microenvironmental Exposure to Fine Particulate Matter (PM2.5)

    Science.gov (United States)

    Jiao, Wan

    A positive relationship exists between fine particulate matter (PM 2.5) exposure and adverse health effects. PM2.5 concentration-response functions used in the quantitative risk assessment were based on findings from human epidemiological studies that relied on areawide ambient concentrations as surrogate for actual ambient exposure, which cannot capture the spatial and temporal variability in human exposures. The goal of the study is to assess inter-individual, geographic and seasonal variability in population exposures to inform the interpretation of available epidemiological studies, and to improve the understanding of how exposure-related factors in important exposure microenvironments contribute to the variability in individual PM2.5 exposure. Typically, the largest percentage of time in which an individual is exposed to PM2.5 of ambient origin occurs in indoor residence, and the highest ambient PM2.5 concentrations occur in transportation microenvironments because of the proximity to on-road traffic emissions. Therefore, indoor residence and traffic-related transportation microenvironments were selected for further assessment in the study. Population distributions of individual daily PM2.5 exposures were estimated for the selected regions and seasons using the Stochastic Human Exposure and Dose Simulation Model for Particulate Matter (SHEDS-PM). For the indoor residence, the current practice by assuming the entire residence to be one large single zone for calculating the indoor residential PM 2.5 concentration was evaluated by applying an indoor air quality model, RISK, to compare indoor PM2.5 concentrations between single-zone and multi-zone scenarios. For the transportation microenvironments, one field data collection focused on in-vehicle microenvironment and was conducted to quantify the variability in the in-vehicle PM2.5 concentration with respect to the outside vehicle concentration for a wide range of conditions that affect intra-vehicle variability

  1. Lateral supply and downward export of particulate matter from upper waters to the seafloor in the deep eastern Fram Strait

    Science.gov (United States)

    Lalande, Catherine; Nöthig, Eva-Maria; Bauerfeind, Eduard; Hardge, Kristin; Beszczynska-Möller, Agnieszka; Fahl, Kirsten

    2016-08-01

    Time-series sediment traps were deployed at 4 depths in the eastern Fram Strait from July 2007 to June 2008 to investigate variations in the magnitude and composition of the sinking particulate matter from upper waters to the seafloor. Sediment traps were deployed at 196 m in the Atlantic Water layer, at 1296 and 2364 m in the intermediate and deep waters, and at 2430 m on a benthic lander in the near-bottom layer. Fluxes of total particulate matter, particulate organic carbon, particulate organic nitrogen, biogenic matter, lithogenic matter, biogenic particulate silica, calcium carbonate, dominant phytoplankton cells, and zooplankton fecal pellets increased with depth, indicating the importance of lateral advection on fluxes in the deep Fram Strait. The lateral supply of particulate matter was further supported by the constant fluxes of biomarkers such as brassicasterol, alkenones, campesterol, β-sitosterol, and IP25 at all depths sampled. However, enhanced fluxes of diatoms and appendicularian fecal pellets from the upper waters to the seafloor in the presence of ice during spring indicated the rapid export (15-35 days) of locally-produced large particles that likely contributed most of the food supply to the benthic communities. These results show that lateral supply and downward fluxes are both important processes influencing the transport of particulate matter to the seafloor in the deep eastern Fram Strait, and that particulate matter size dictates the prevailing sinking process.

  2. Toxicity of Particulate Matter from Incineration of Nanowaste

    OpenAIRE

    Salem-Said, Abdel-Halim; Fayed, Hassan; Ragab, Saad

    2013-01-01

    Two-phase (water and air) flow in the forced-air mechanically-stirred Dorr-Oliver machine has been investigated using computational fluid dynamics (CFD). A 6 m3 model is considered. The flow is modeled by the Euler-Euler approach, and transport equations are solved using software ANSYS-CFX5. Unsteady simulations are conducted in a 180-degree sector with periodic boundary conditions. Air is injected into the rotor at the rate of 2.63 m3/min, and a uniform bubble diameter is specified. The effe...

  3. Physicochemical factors and sources of particulate matter at residential urban environment in Kuala Lumpur.

    Science.gov (United States)

    Khan, Firoz; Latif, Mohd Talib; Juneng, Liew; Amil, Norhaniza; Mohd Nadzir, Mohd Shahrul; Syedul Hoque, Hossain Mohammed

    2015-08-01

    Long-term measurements (2004-2011) of PM10 (particulate matter with an aerodynamic diameter gases (carbon monoxide [CO], ozone [O₃], nitrogen oxide [NO], oxides of nitrogen [NO(x)], nitrogen dioxide [NO₂], sulfur dioxide [SO₂], methane [CH₄], nonmethane hydrocarbon [NMHC]) have been conducted to study the effect of physicochemical factors on the PM10 concentration. In addition, this study includes source apportionment of PM10 in Kuala Lumpur urban environment. An advanced principal component analysis (PCA) technique coupled with absolute principal component scores (APCS) and multiple linear regression (MLR) has been applied. The average annual concentration of PM10 for 8 yr is 51.3 ± 25.8 μg m⁻³, which exceeds the Recommended Malaysian Air Quality Guideline (RMAQG) and international guideline values. Detail analysis shows the dependency of PM10 on the linear changes of the motor vehicles in use and the amount of biomass burning, particularly from Sumatra, Indonesia, during southwesterly monsoon. The main sources of PM10 identified by PCA-APCS-MLR are traffic combustion (28%), ozone coupled with meteorological factors (20%), and wind-blown particles (1%). However, the apportionment procedure left 28.0 μg m⁻³, that is, 51% of PM10 undetermined. PMID:26030827

  4. Health Risk Assessment of Inhalable Particulate Matter in Beijing Based on the Thermal Environment

    Directory of Open Access Journals (Sweden)

    Lin-Yu Xu

    2014-11-01

    Full Text Available Inhalable particulate matter (PM10 is a primary air pollutant closely related to public health, and an especially serious problem in urban areas. The urban heat island (UHI effect has made the urban PM10 pollution situation more complex and severe. In this study, we established a health risk assessment system utilizing an epidemiological method taking the thermal environment effects into consideration. We utilized a remote sensing method to retrieve the PM10 concentration, UHI, Normalized Difference Vegetation Index (NDVI, and Normalized Difference Water Index (NDWI. With the correlation between difference vegetation index (DVI and PM10 concentration, we utilized the established model between PM10 and thermal environmental indicators to evaluate the PM10 health risks based on the epidemiological study. Additionally, with the regulation of UHI, NDVI and NDWI, we aimed at regulating the PM10 health risks and thermal environment simultaneously. This study attempted to accomplish concurrent thermal environment regulation and elimination of PM10 health risks through control of UHI intensity. The results indicate that urban Beijing has a higher PM10 health risk than rural areas; PM10 health risk based on the thermal environment is 1.145, which is similar to the health risk calculated (1.144 from the PM10 concentration inversion; according to the regulation results, regulation of UHI and NDVI is effective and helpful for mitigation of PM10 health risk in functional zones.

  5. Level, potential sources of polycyclic aromatic hydrocarbons (PAHs) in particulate matter (PM10) in Naples

    Science.gov (United States)

    Di Vaio, Paola; Cocozziello, Beatrice; Corvino, Angela; Fiorino, Ferdinando; Frecentese, Francesco; Magli, Elisa; Onorati, Giuseppe; Saccone, Irene; Santagada, Vincenzo; Settimo, Gaetano; Severino, Beatrice; Perissutti, Elisa

    2016-03-01

    In Naples, particulate matter PM10 associated with polycyclic aromatic hydrocarbons (PAHs) in ambient air were determined in urban background (NA01) and urban traffic (NA02) sites. The principal objective of the study was to determine the concentration and distribution of PAHs in PM10 for identification of their possible sources (through diagnostic ratio - DR and principal component analysis - PCA) and an estimation of the human health risk (from exposure to airborne TEQ). Airborne PM10 samples were collected on quartz filters using a Low Volume Sampler (LVS) for 24 h with seasonal samples (autumn, winter, spring and summer) of about 15 days each between October 2012 and July 2013. The PM10 mass was gravimetrically determined. The PM10 levels, in all seasons, were significantly higher (P Perylene), had a large contribution (∼50-55%) of total PAHs concentration in PM10 in two sites and in each of the campaigns. Diagnostic ratio analysis and PCA suggested a substantial contributions from traffic emission with minimal influence from coal combustion and natural gas emissions. In particular diesel vehicular emissions were the major source of PAHs at the studied sites. The use of Toxicity Equivalence Quantity (TEQ) concentration provide a better estimation of carcinogenicity activities; health risk to adults and children associated with PAHs inhalation was assessed by taking into account the lifetime average daily dose and corresponding incremental lifetime cancer risk (ILCR). The ILCR was within the acceptable range (10-6-10-4), indicating a low health risk to residents in these areas.

  6. Study on the behavior of trace elements and radionuclides in airborne particulate matters

    International Nuclear Information System (INIS)

    Airborne particulate matters (PM) are collected by HV-1000 high volume air sampler in Musashi Institute of Technology in Japan from October, 2002, to November, 2003. The elements were determined by a neutron activation analysis and radioactive nuclides were detected by γ-ray spectrometry. The concentration of PM decreased with increasing amount of precipitation. The amount of PM was affected by wash out depend on rain a day before. 12 to 17 kinds of elements are determined in the samples. The correlation coefficient of Br and Sb was 0.81 of the concentration of element and 0.60 of concentration of composition. The same tendency was observed among Sc, Fe and La. Na is thought to be affected by sea salt particles. Sc and Th in PM were originated by wikipedia in Asia. The concentration of Sc, V, La and Th are smaller than the earth's crust. However, its Br and Sb were larger than it. Pb-210 and Be-7 are determined and both average concentrations were increased by north wind. (S.Y.)

  7. Reducing particulate matter in the operation of firewood burning stoves taking into account the toxicological relevance

    International Nuclear Information System (INIS)

    One of the greatest challenges facing humanity is climate change. Correspondingly, inter alia, the German government has set a target by 2020, to reduce emissions of greenhouse gases to the 1990 level by 20%. For this purpose can and should an increased energetic use of biomass contribute. End of 2007, the bioenergy had a share of around three quarters of the renewable primary energy input. Of which more than 45% were used for the heat supply. A total of more than 90% of renewable heat have been provided from biomass. From the provided amount of heat come over 80% from the combustion of solid biofuels - so far almost exclusively wood products - in small and medium wood-fuelled combustion systems. To reduce carbon dioxide emissions the federal government is accelerating a further expansion of energetic use of biomass in the heating sector. This expansion of thermal use of biomass, however, for reasons of pollution control, should not rise simultaneously with the emissions of air pollutants such as carbon monoxide, nitrogen oxides or particulate matter.

  8. Evaluation of regional background particulate matter concentration based on vertical distribution characteristics

    Directory of Open Access Journals (Sweden)

    S. Han

    2015-05-01

    Full Text Available Heavy regional particulate matter (PM pollution in China has resulted in an important and urgent need for joint control actions among cities. It's advisable to improve the understanding of regional background concentration of PM for the development of efficient and effective joint control policies. With the increase of vertical height the influence of source emission on local air quality is weakening, but the characteristics of regional pollution gradually become obvious. A method to estimate regional background PM concentration is proposed in this paper, based on the vertical variation periodic characteristics of the atmospheric boundary layer structure and particle mass concentration, as well as the vertical distribution of particle size, chemical composition and pollution source apportionment. According to the method, the averaged regional background PM2.5 concentration, being extracted from the original time series in Tianjin, was 40.0 ± 20.2, 63.6 ± 16.9 and 53.2 ± 11.1 μg m−3, respectively, in July, August and September.

  9. Accumulation of three different sizes of particulate matter on plant leaf surfaces: Effect on leaf traits

    Directory of Open Access Journals (Sweden)

    Chen Xiaoping

    2015-01-01

    Full Text Available Plants not only improve air quality by adsorbing particulate matter (PM on leaf surfaces but can also be affected by their accumulation. In this study, a field investigation was performed in Wuhan, China, into the relationship between seven leaf traits and the accumulation of three different sizes of PM (PM11, PM2.5 and PM0.2 on leaves. The retention abilities of plant leaves with respect to the three sizes of PM differed significantly at different sites and species. The average PM retention capabilities of plant leaves and specific leaf area (SLA were significantly greater in a seriously polluted area, whereas the average values of chlorophyll a (Chl a, chlorophyll b (Chl b, total chlorophyll, carotenoid, pH and relative water content (RWC were greater at the control site. SLA significantly positively correlated with the size of PM, but Chl a, Chl b, total chlorophyll, RWC significantly negatively correlated with the size of PM, whereas the pH did not correlate significantly with the the PM fractions. Additionally, SLA was found to be affected by large particles (PM11, p<0.01; PM2.5 had a more obvious effect on plant leaf traits than the other PM (p<0.05. Overall, the findings from this study provide useful information regarding the selection of plants to reduce atmospheric pollution.

  10. Source attribution of particulate matter pollution over North China with the adjoint method

    International Nuclear Information System (INIS)

    We quantify the source contributions to surface PM2.5 (fine particulate matter) pollution over North China from January 2013 to 2015 using the GEOS-Chem chemical transport model and its adjoint with improved model horizontal resolution (1/4° × 5/16°) and aqueous-phase chemistry for sulfate production. The adjoint method attributes the PM2.5 pollution to emissions from different source sectors and chemical species at the model resolution. Wintertime surface PM2.5 over Beijing is contributed by emissions of organic carbon (27% of the total source contribution), anthropogenic fine dust (27%), and SO2 (14%), which are mainly from residential and industrial sources, followed by NH3 (13%) primarily from agricultural activities. About half of the Beijing pollution originates from sources outside of the city municipality. Adjoint analyses for other cities in North China all show significant regional pollution transport, supporting a joint regional control policy for effectively mitigating the PM2.5 air pollution. (letter)

  11. Concentrations of toxic heavy metals in ambient particulate matter in an industrial area of northeastern China

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    This paper investigates concentrations of various heavy metals in ambient particulate matter(PM)and provide evidence for prevention from air pollution.The concentrations of heavy metal components in the PM were determined by inductively coupled plasma/Mass spectrometry(ICP/MS)from September 2000 to August 2002 in a northeast industrial city in China.Concentrations of Cd,Mn,Pb,Ni,Cr and As in the PM were 9.3,461.9,588.7,69.5,205.7 and 57.4 ng/m3 in the industrial area,and 5.7,245.5,305.0,31.4,58.8 and 32.5 ng/m3 in the main road,respectively.Concentrations of these heavy metals except Cd were significantly higher in the industrial area and main road than those in the suburban area(P<0.05 or P<0.01).The change curves of the six heavy metal concentrations show their concentrations increased in the winter and spring,but decreased in the summer and autumn.The results indicate that concentrations of the metals in the PM are relatively high in the indu.strial area and main road.

  12. Organic composition of aerosol particulate matter during a haze episode in Kuala Lumpur, Malaysia

    Science.gov (United States)

    Radzi Bin Abas, M.; Rahman, Noorsaadah A.; Omar, Nasr Yousef M. J.; Maah, M. Jamil; Abu Samah, Azizan; Oros, Daniel R.; Otto, Angelika; Simoneit, Bernd R. T.

    The solvent-extractable compounds of urban airborne particulate matter were analyzed to determine the distributions of homologous and biomarker tracers. Samples were collected by high-volume air filtration during the haze episode of 1997 around the University of Malaya campus near Petaling Jaya, a suburb of Kuala Lumpur, Malaysia. These results show that the samples contain n-alkanes, n-alkan-2-ones, n-alkanols, methyl n-alkanoates, n-alkyl nitriles, n-alkanals, n-alkanoic acids, levoglucosan, PAHs, and UCM as the dominant components, with minor amounts of terpenoids, glyceryl esters and sterols, all derived from natural biogenic sources (vascular plant wax), from burning of biomass, and from anthropogenic utilization of fossil fuel products (lubricating oil, vehicle emissions, etc.). Some compositional differences are observed in the samples and greater atmospheric concentrations were found for almost all organic components in the samples collected near a roadway. The results interpreted in terms of major sources are due to local build-up of organic contaminants from vehicular emissions, smoke from biomass burning, and natural background as a result of the atmospheric stability during the haze episodes. The organic components transported in from areas outside the region, assuming all smoke components are external to the city, amount to about 30% of the total organic particle burden.

  13. Assessment of heavy metals in suspended particulate matter in Moradabad, India.

    Science.gov (United States)

    Pal, Raina; Mahima; Gupta, A; Tripathi, Anamika

    2014-03-01

    Samples of suspended particulate matter (PM10) were collected from three different sites in Moradabad, India. The sampling was done concurrently twice a week during the period of April 2011-March 2012. Elemental concentration of PM10 was analyzed using an Inductively Coupled Plasma Optical Emission Spectrophotometer (ICP-OES). The monthly mean concentration of PM10 (RSPM) ranged between 63-226 microgm(-3), which was higher than the permissible limit of 100 microgm(-3) of National Ambient Air Quality Standards. The maximum concentration of Zn, Fe, Cu, Cr and Ni found in the Industrial area of the city was 21.24, 18.43, 15.23, 0.41, 0.03 microgm(-3), respectively; whereas the maximum concentration of Pb (2.72 microgm(-3)) and Cd (0.20 microgm(-3)) was found in heavy density traffic area, denoted as commercial area. The study shows that high number of vehicles and the brassware industries are responsible for enhanced concentration of heavy metals in the Brass City. PMID:24665762

  14. Health risk assessment of inhalable particulate matter in Beijing based on the thermal environment.

    Science.gov (United States)

    Xu, Lin-Yu; Yin, Hao; Xie, Xiao-Dong

    2014-12-01

    Inhalable particulate matter (PM10) is a primary air pollutant closely related to public health, and an especially serious problem in urban areas. The urban heat island (UHI) effect has made the urban PM10 pollution situation more complex and severe. In this study, we established a health risk assessment system utilizing an epidemiological method taking the thermal environment effects into consideration. We utilized a remote sensing method to retrieve the PM10 concentration, UHI, Normalized Difference Vegetation Index (NDVI), and Normalized Difference Water Index (NDWI). With the correlation between difference vegetation index (DVI) and PM10 concentration, we utilized the established model between PM10 and thermal environmental indicators to evaluate the PM10 health risks based on the epidemiological study. Additionally, with the regulation of UHI, NDVI and NDWI, we aimed at regulating the PM10 health risks and thermal environment simultaneously. This study attempted to accomplish concurrent thermal environment regulation and elimination of PM10 health risks through control of UHI intensity. The results indicate that urban Beijing has a higher PM10 health risk than rural areas; PM10 health risk based on the thermal environment is 1.145, which is similar to the health risk calculated (1.144) from the PM10 concentration inversion; according to the regulation results, regulation of UHI and NDVI is effective and helpful for mitigation of PM10 health risk in functional zones. PMID:25464132

  15. The Spatial Variation of Dust Particulate Matter Concentrations during Two Icelandic Dust Storms in 2015

    Directory of Open Access Journals (Sweden)

    Pavla Dagsson-Waldhauserova

    2016-06-01

    Full Text Available Particulate matter mass concentrations and size fractions of PM1, PM2.5, PM4, PM10, and PM15 measured in transversal horizontal profile of two dust storms in southwestern Iceland are presented. Images from a camera network were used to estimate the visibility and spatial extent of measured dust events. Numerical simulations were used to calculate the total dust flux from the sources as 180,000 and 280,000 tons for each storm. The mean PM15 concentrations inside of the dust plumes varied from 10 to 1600 µg·m−3 (PM10 = 7 to 583 µg·m−3. The mean PM1 concentrations were 97–241 µg·m−3 with a maximum of 261 µg·m−3 for the first storm. The PM1/PM2.5 ratios of >0.9 and PM1/PM10 ratios of 0.34–0.63 show that suspension of volcanic materials in Iceland causes air pollution with extremely high PM1 concentrations, similar to polluted urban areas in Europe or Asia. Icelandic volcanic dust consists of a higher proportion of submicron particles compared to crustal dust. Both dust storms occurred in relatively densely inhabited areas of Iceland. First results on size partitioning of Icelandic dust presented here should challenge health authorities to enhance research in relation to dust and shows the need for public dust warning systems.

  16. Source attribution of particulate matter pollution over North China with the adjoint method

    Science.gov (United States)

    Zhang, Lin; Liu, Licheng; Zhao, Yuanhong; Gong, Sunling; Zhang, Xiaoye; Henze, Daven K.; Capps, Shannon L.; Fu, Tzung-May; Zhang, Qiang; Wang, Yuxuan

    2015-08-01

    We quantify the source contributions to surface PM2.5 (fine particulate matter) pollution over North China from January 2013 to 2015 using the GEOS-Chem chemical transport model and its adjoint with improved model horizontal resolution (1/4° × 5/16°) and aqueous-phase chemistry for sulfate production. The adjoint method attributes the PM2.5 pollution to emissions from different source sectors and chemical species at the model resolution. Wintertime surface PM2.5 over Beijing is contributed by emissions of organic carbon (27% of the total source contribution), anthropogenic fine dust (27%), and SO2 (14%), which are mainly from residential and industrial sources, followed by NH3 (13%) primarily from agricultural activities. About half of the Beijing pollution originates from sources outside of the city municipality. Adjoint analyses for other cities in North China all show significant regional pollution transport, supporting a joint regional control policy for effectively mitigating the PM2.5 air pollution.

  17. The satellite-based remote sensing of particulate matter (PM) in support to urban air quality: PM variability and hot spots within the Cordoba city (Argentina) as revealed by the high-resolution MAIAC-algorithm retrievals applied to a ten-years dataset (2

    Science.gov (United States)

    Della Ceca, Lara Sofia; Carreras, Hebe A.; Lyapustin, Alexei I.; Barnaba, Francesca

    2016-04-01

    Particulate matter (PM) is one of the major harmful pollutants to public health and the environment [1]. In developed countries, specific air-quality legislation establishes limit values for PM metrics (e.g., PM10, PM2.5) to protect the citizens health (e.g., European Commission Directive 2008/50, US Clean Air Act). Extensive PM measuring networks therefore exist in these countries to comply with the legislation. In less developed countries air quality monitoring networks are still lacking and satellite-based datasets could represent a valid alternative to fill observational gaps. The main PM (or aerosol) parameter retrieved from satellite is the 'aerosol optical depth' (AOD), an optical parameter quantifying the aerosol load in the whole atmospheric column. Datasets from the MODIS sensors on board of the NASA spacecrafts TERRA and AQUA are among the longest records of AOD from space. However, although extremely useful in regional and global studies, the standard 10 km-resolution MODIS AOD product is not suitable to be employed at the urban scale. Recently, a new algorithm called Multi-Angle Implementation of Atmospheric Correction (MAIAC) was developed for MODIS, providing AOD at 1 km resolution [2]. In this work, the MAIAC AOD retrievals over the decade 2003-2013 were employed to investigate the spatiotemporal variation of atmospheric aerosols over the Argentinean city of Cordoba and its surroundings, an area where a very scarce dataset of in situ PM data is available. The MAIAC retrievals over the city were firstly validated using a 'ground truth' AOD dataset from the Cordoba sunphotometer operating within the global AERONET network [3]. This validation showed the good performances of the MAIAC algorithm in the area. The satellite MAIAC AOD dataset was therefore employed to investigate the 10-years trend as well as seasonal and monthly patterns of particulate matter in the Cordoba city. The first showed a marked increase of AOD over time, particularly evident in

  18. Fine Particulate Air Pollution and Hospital Emergency Room Visits for Respiratory Disease in Urban Areas in Beijing, China, in 2013

    OpenAIRE

    Xu, Qin; Li, Xia; Wang, Shuo; Wang, Chao; Huang, Fangfang; Gao, Qi; Wu, Lijuan; Tao, Lixin; Guo, Jin; Wang, Wei(Helmholtz-Institut für Strahlen- und Kernphysik, Bethe Center for Theoretical Physics, Universität Bonn, Bonn, D-53115, Germany); Guo, Xiuhua

    2016-01-01

    Background Heavy fine particulate matter (PM2.5) air pollution occurs frequently in China. However, epidemiological research on the association between short-term exposure to PM2.5 pollution and respiratory disease morbidity is still limited. This study aimed to explore the association between PM2.5 pollution and hospital emergency room visits (ERV) for total and cause-specific respiratory diseases in urban areas in Beijing. Methods Daily counts of respiratory ERV from Jan 1 to Dec 31, 2013, ...

  19. Green Ocean Amazon 2014/15 High-Volume Filter Sampling: Atmospheric Particulate Matter of an Amazon Tropical City and its Relationship to Population Health Field Campaign Report

    Energy Technology Data Exchange (ETDEWEB)

    Machado, C. M. [Federal Univ. of Amazonas (Brazil); Santos, Erickson O. [Federal Univ. of Amazonas (Brazil); Fernandes, Karenn S. [Federal Univ. of Amazonas (Brazil); Neto, J. L. [Federal Univ. of Amazonas (Brazil); Souza, Rodrigo A. [Univ. of the State of Amazonas (Brazil)

    2016-08-01

    Manaus, the capital of the Brazilian state of Amazonas, is developing very rapidly. Its pollution plume contains aerosols from fossil fuel combustion mainly due to vehicular emission, industrial activity, and a thermal power plant. Soil resuspension is probably a secondary source of atmospheric particles. The plume transports from Manaus to the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Climate Research Facility ARM site at Manacapuru urban pollutants as well as pollutants from pottery factories along the route of the plume. Considering the effects of particulate matter on health, atmospheric particulate matter was evaluated at this site as part of the ARM Facility’s Green Ocean Amazon 2014/15 (GoAmazon 2014/15) field campaign. Aerosol or particulate matter (PM) is typically defined by size, with the smaller particles having more health impact. Total suspended particulate (TSP) are particles smaller than 100 μm; particles smaller than 2.5 μm are called PM2.5. In this work, the PM2.5 levels were obtained from March to December of 2015, totaling 34 samples and TSP levels from October to December of 2015, totaling 17 samples. Sampling was conducted with PM2.5 and TSP high-volume samplers using quartz filters (Figure 1). Filters were stored during 24 hours in a room with temperature (21,1ºC) and humidity (44,3 %) control, in order to do gravimetric analyses by weighing before and after sampling. This procedure followed the recommendations of the Brazilian Association for Technical Standards local norm (NBR 9547:1997). Mass concentrations of particulate matter were obtained from the ratio between the weighted sample and the volume of air collected. Defining a relationship between particulate matter (PM2.5 and TSP) and respiratory diseases of the local population is an important goal of this project, since no information exists on that topic.

  20. KEY COMPARISON: CCQM-K50: Polycyclic aromatic hydrocarbons (PAHs) in soil/particulate matter

    Science.gov (United States)

    Philipp, R.; Bremser, W.; Becker, R.; Win, T.; Schantz, M. M.; Pérez Urquiza, M.; Ávila Calderón, M. A.; Maldonado Torres, M.; Carter, D.; O'Connor, G.; Sejeroe-Olsen, B.; Ricci, M.; Lalere, B.; Peignaux, M.; Kim, D. H.; Itoh, N.; Wong, S.; Man, T. O.; Marques Rodrigues Caixeiro, J.

    2010-01-01

    There are numerous Calibration and Measurement Capability Claims (CMCs) on PAH analysis in various matrices published in the BIPM key comparison database, Appendix C. By July 2007 such CMCs were released in Category 10 Biological fluids and materials, Subcategory 10.4 Tissues, Category 11 Food, Subcategory 11.2 Contaminants and Category 13 Sediments, soils, ores and particulates, Subcategories 13.1 Sediments, 13.2 Soils and 13.4 Particulates. CCQM comparisons are needed to underpin these claims. A pilot study CCQM-P69 'PAHs in soil' was successfully conducted in 2004. After review of the results at the OAWG meeting in September 2005 it was decided to proceed with a key comparison and a concurrent second pilot study CCQM-K50/P69.1. CENAM and BAM agreed to coordinate the intercomparison. The measurand of the study was specified as amount of specific PAHs in solid matrices as extracted under exhaustive extraction conditions. As for the preceding pilot study and two studies for PAHs in solution (CCQM-P31a and CCQM-K38), five target analytes, phenanthrene, fluoranthene, benz[a]anthracene, benzo[a]pyrene and benzo[ghi]perylene, were selected as representative of the measurement of individual compounds. The CCQM-K50 study utilized a soil sample from BAM and an air particulate sample from NIST. Both materials were naturally contaminated, not enriched or spiked. The mass fraction of target analytes in the samples ranged from 2 mg/kg to 15 mg/kg. NIST SRM 1649a Urban Dust was provided as a control material. Participants were requested to determine the mass fraction of the selected PAHs on a dry mass basis and submit a complete uncertainty budget for their measurements. Ten NMIs participated in the study. All participants applied Soxhlet or Accelerated Solvent extraction (ASE) and GC-MS with either deuterated or 13C labelled internal standards. Results demonstrate a good level of equivalence in capabilities of the participating NMIs to identify and measure PAHs in highly