WorldWideScience

Sample records for air medical meteorology

  1. Air pollution meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Shirvaikar, V V; Daoo, V J [Environmental Assessment Div., Bhabha Atomic Research Centre, Mumbai (India)

    2002-06-01

    This report is intended as a training cum reference document for scientists posted at the Environmental Laboratories at the Nuclear Power Station Sites and other sites of the Department of Atomic Energy with installations emitting air pollutants, radioactive or otherwise. Since a manual already exists for the computation of doses from radioactive air pollutants, a general approach is take here i.e. air pollutants in general are considered. The first chapter presents a brief introduction to the need and scope of air pollution dispersion modelling. The second chapter is a very important chapter discussing the aspects of meteorology relevant to air pollution and dispersion modelling. This chapter is important because without this information one really does not understand the phenomena affecting dispersion, the scope and applicability of various models or their limitations under various weather and site conditions. The third chapter discusses the air pollution models in detail. These models are applicable to distances of a few tens of kilometres. The fourth chapter discusses the various aspects of meteorological measurements relevant to air pollution. The chapters are followed by two appendices. Apendix A discusses the reliability of air pollution estimates. Apendix B gives some practical examples relevant to general air pollution. It is hoped that the document will prove very useful to the users. (author)

  2. Meteorological Drivers of Extreme Air Pollution Events

    Science.gov (United States)

    Horton, D. E.; Schnell, J.; Callahan, C. W.; Suo, Y.

    2017-12-01

    The accumulation of pollutants in the near-surface atmosphere has been shown to have deleterious consequences for public health, agricultural productivity, and economic vitality. Natural and anthropogenic emissions of ozone and particulate matter can accumulate to hazardous concentrations when atmospheric conditions are favorable, and can reach extreme levels when such conditions persist. Favorable atmospheric conditions for pollutant accumulation include optimal temperatures for photochemical reaction rates, circulation patterns conducive to pollutant advection, and a lack of ventilation, dispersion, and scavenging in the local environment. Given our changing climate system and the dual ingredients of poor air quality - pollutants and the atmospheric conditions favorable to their accumulation - it is important to characterize recent changes in favorable meteorological conditions, and quantify their potential contribution to recent extreme air pollution events. To facilitate our characterization, this study employs the recently updated Schnell et al (2015) 1°×1° gridded observed surface ozone and particulate matter datasets for the period of 1998 to 2015, in conjunction with reanalysis and climate model simulation data. We identify extreme air pollution episodes in the observational record and assess the meteorological factors of primary support at local and synoptic scales. We then assess (i) the contribution of observed meteorological trends (if extant) to the magnitude of the event, (ii) the return interval of the meteorological event in the observational record, simulated historical climate, and simulated pre-industrial climate, as well as (iii) the probability of the observed meteorological trend in historical and pre-industrial climates.

  3. Air pollutants, meteorology and plant injury

    Energy Technology Data Exchange (ETDEWEB)

    Mukammal, E I; Brandt, C S; Neuwirth, R; Pack, D H; Swinbank, W C

    1968-01-01

    The study of the effect of air pollutants on plant growth inevitably involves meteorological factors, and the World Meteorological Organization has therefore been giving much attention to this matter for some time. Within the Organization, responsibility for this work naturally fell to the Commission for Agricultural Meteorology (CAgM), and following the time-honored procedure in such cases, the Commission established in 1962 a small international group of acknowledged experts to study plant injury and reduction of yield by non-radioactive air pollutants, and charged it with the specific task of preparing a review of present knowledge of the subjects involved. After several years' work, the group fulfilled its appointed task and the resulting report is now published in this WMO Technical Note. 95 references.

  4. Sea-air boundary meteorological sensor

    Science.gov (United States)

    Barbosa, Jose G.

    2015-05-01

    The atmospheric environment can significantly affect radio frequency and optical propagation. In the RF spectrum refraction and ducting can degrade or enhance communications and radar coverage. Platforms in or beneath refractive boundaries can exploit the benefits or suffer the effects of the atmospheric boundary layers. Evaporative ducts and surface-base ducts are of most concern for ocean surface platforms and evaporative ducts are almost always present along the sea-air interface. The atmospheric environment also degrades electro-optical systems resolution and visibility. The atmospheric environment has been proven not to be uniform and under heterogeneous conditions substantial propagation errors may be present for large distances from homogeneous models. An accurate and portable atmospheric sensor to profile the vertical index of refraction is needed for mission planning, post analysis, and in-situ performance assessment. The meteorological instrument used in conjunction with a radio frequency and electro-optical propagation prediction tactical decision aid tool would give military platforms, in real time, the ability to make assessments on communication systems propagation ranges, radar detection and vulnerability ranges, satellite communications vulnerability, laser range finder performance, and imaging system performance predictions. Raman lidar has been shown to be capable of measuring the required atmospheric parameters needed to profile the atmospheric environment. The atmospheric profile could then be used as input to a tactical decision aid tool to make propagation predictions.

  5. Multivariate analysis between air pollutants and meteorological variables in Seoul

    International Nuclear Information System (INIS)

    Kim, J.; Lim, J.

    2005-01-01

    Multivariate analysis was conducted to analyze the relationship between air pollutants and meteorological variables measured in Seoul from January 1 to December 31, 1999. The first principal component showed the contrast effect between O 3 and the other pollutants. The second principal component showed the contrast effect between CO, SO 2 , NO 2 , and O 3 , PM 10 , TSP. Based on the cluster analysis, three clusters represented different air pollution levels, seasonal characteristics of air pollutants, and meteorological conditions. Discriminant analysis with air environment index (AEI) was carried out to develop an air pollution index function. (orig.)

  6. Seasonal variation of meteorological factors on air parameters and ...

    African Journals Online (AJOL)

    The impacts of gas flaring on meteorological factors at Ibeno, Eket, Onna, Esit Eket and Umudike - Nigeria were investigated by measuring air quality parameters. The results show that the mean concentration of air parameters value were below Federal Environmental Protection Agency (FEPA) and United States ...

  7. Impact of inherent meteorology uncertainty on air quality model predictions

    Science.gov (United States)

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is impor...

  8. Future directions of meteorology related to air-quality research.

    Science.gov (United States)

    Seaman, Nelson L

    2003-06-01

    Meteorology is one of the major factors contributing to air-pollution episodes. More accurate representation of meteorological fields has been possible in recent years through the use of remote sensing systems, high-speed computers and fine-mesh meteorological models. Over the next 5-20 years, better meteorological inputs for air quality studies will depend on making better use of a wealth of new remotely sensed observations in more advanced data assimilation systems. However, for fine mesh models to be successful, parameterizations used to represent physical processes must be redesigned to be more precise and better adapted for the scales at which they will be applied. Candidates for significant overhaul include schemes to represent turbulence, deep convection, shallow clouds, and land-surface processes. Improvements in the meteorological observing systems, data assimilation and modeling, coupled with advancements in air-chemistry modeling, will soon lead to operational forecasting of air quality in the US. Predictive capabilities can be expected to grow rapidly over the next decade. This will open the way for a number of valuable new services and strategies, including better warnings of unhealthy atmospheric conditions, event-dependent emissions restrictions, and now casting support for homeland security in the event of toxic releases into the atmosphere.

  9. Impact of inherent meteorology uncertainty on air quality ...

    Science.gov (United States)

    It is well established that there are a number of different classifications and sources of uncertainties in environmental modeling systems. Air quality models rely on two key inputs, namely, meteorology and emissions. When using air quality models for decision making, it is important to understand how uncertainties in these inputs affect the simulated concentrations. Ensembles are one method to explore how uncertainty in meteorology affects air pollution concentrations. Most studies explore this uncertainty by running different meteorological models or the same model with different physics options and in some cases combinations of different meteorological and air quality models. While these have been shown to be useful techniques in some cases, we present a technique that leverages the initial condition perturbations of a weather forecast ensemble, namely, the Short-Range Ensemble Forecast system to drive the four-dimensional data assimilation in the Weather Research and Forecasting (WRF)-Community Multiscale Air Quality (CMAQ) model with a key focus being the response of ozone chemistry and transport. Results confirm that a sizable spread in WRF solutions, including common weather variables of temperature, wind, boundary layer depth, clouds, and radiation, can cause a relatively large range of ozone-mixing ratios. Pollutant transport can be altered by hundreds of kilometers over several days. Ozone-mixing ratios of the ensemble can vary as much as 10–20 ppb

  10. Long-term Changes in Extreme Air Pollution Meteorology and the Implications for Air Quality.

    Science.gov (United States)

    Hou, Pei; Wu, Shiliang

    2016-03-31

    Extreme air pollution meteorological events, such as heat waves, temperature inversions and atmospheric stagnation episodes, can significantly affect air quality. Based on observational data, we have analyzed the long-term evolution of extreme air pollution meteorology on the global scale and their potential impacts on air quality, especially the high pollution episodes. We have identified significant increasing trends for the occurrences of extreme air pollution meteorological events in the past six decades, especially over the continental regions. Statistical analysis combining air quality data and meteorological data further indicates strong sensitivities of air quality (including both average air pollutant concentrations and high pollution episodes) to extreme meteorological events. For example, we find that in the United States the probability of severe ozone pollution when there are heat waves could be up to seven times of the average probability during summertime, while temperature inversions in wintertime could enhance the probability of severe particulate matter pollution by more than a factor of two. We have also identified significant seasonal and spatial variations in the sensitivity of air quality to extreme air pollution meteorology.

  11. Air quality modeling: evaluation of chemical and meteorological parameterizations

    International Nuclear Information System (INIS)

    Kim, Youngseob

    2011-01-01

    The influence of chemical mechanisms and meteorological parameterizations on pollutant concentrations calculated with an air quality model is studied. The influence of the differences between two gas-phase chemical mechanisms on the formation of ozone and aerosols in Europe is low on average. For ozone, the large local differences are mainly due to the uncertainty associated with the kinetics of nitrogen monoxide (NO) oxidation reactions on the one hand and the representation of different pathways for the oxidation of aromatic compounds on the other hand. The aerosol concentrations are mainly influenced by the selection of all major precursors of secondary aerosols and the explicit treatment of chemical regimes corresponding to the nitrogen oxides (NO x ) levels. The influence of the meteorological parameterizations on the concentrations of aerosols and their vertical distribution is evaluated over the Paris region in France by comparison to lidar data. The influence of the parameterization of the dynamics in the atmospheric boundary layer is important; however, it is the use of an urban canopy model that improves significantly the modeling of the pollutant vertical distribution (author) [fr

  12. Air pollution forecast in cities by an air pollution index highly correlated with meteorological variables

    International Nuclear Information System (INIS)

    Cogliani, E.

    2001-01-01

    There are many different air pollution indexes which represent the global urban air pollution situation. The daily index studied here is also highly correlated with meteorological variables and this index is capable of identifying those variables that significantly affect the air pollution. The index is connected with attention levels of NO 2 , CO and O 3 concentrations. The attention levels are fixed by a law proposed by the Italian Ministries of Health and Environment. The relation of that index with some meteorological variables is analysed by the linear multiple partial correlation statistical method. Florence, Milan and Vicence were selected to show the correlation among the air pollution index and the daily thermic excursion, the previous day's air pollution index and the wind speed. During the January-March period the correlation coefficient reaches 0.85 at Milan. The deterministic methods of forecasting air pollution concentrations show very high evaluation errors and are applied on limited areas around the observation stations, as opposed to the whole urban areas. The global air pollution, instead of the concentrations at specific observation stations, allows the evaluation of the level of the sanitary risk regarding the whole urban population. (Author)

  13. Correlation between meteorological conditions and the concentration of radionuclides in the ground layer of atmospheric air

    International Nuclear Information System (INIS)

    Krajny, E.; Osrodka, L.; Wojtylak, M.; Michalik, B.; Skowronek, J.

    2001-01-01

    The main goal of this work was to find correlation between the concentrations of radionuclides in outdoor air and the meteorological conditions like: atmospheric pressure, wind velocity and amount of precipitation. Because the sampling period of radionuclides concentrations in air was relatively long (7 days), the average levels of meteorological parameters have been calculated within the same time. Data of radionuclide concentrations and meteorological data have been analyzed in order to find statistical correlation. The regression analysis and one of AI methods, known as neural network, were applied. In general, analysis of the gathered data does not show any strong correlation between the meteorological conditions and the concentrations of the radionuclides in air. A slightly stronger correlation we found for radionuclides with relatively short half-lives. The only positive correlation has been found between the 7 Be concentration and air temperature (at the significance level α = 0.05). In our opinion, the lack of correlation was caused by a too long sampling time in measurements of radionuclides in outdoor air (a whole week). Results of analysis received by means of the artificial neuron network are better. We were able to find certain groups of meteorological conditions, related with the corresponding concentrations of particular radionuclides in air. Preliminary measurements of radon progeny concentration support the thesis that the link between changes of meteorological parameters and concentrations of radionuclides in ambient air must exist. (author)

  14. Atmospheric Boundary Layer Modeling for Combined Meteorology and Air Quality Systems

    Science.gov (United States)

    Atmospheric Eulerian grid models for mesoscale and larger applications require sub-grid models for turbulent vertical exchange processes, particularly within the Planetary Boundary Layer (PSL). In combined meteorology and air quality modeling systems consistent PSL modeling of wi...

  15. Meteorological and urban landscape factors on severe air pollution in Beijing.

    Science.gov (United States)

    Han, Lijian; Zhou, Weiqi; Li, Weifeng; Meshesha, Derege T; Li, Li; Zheng, Mingqing

    2015-07-01

    Air pollution gained special attention with the rapid development in Beijing. In January 2013, Beijing experienced extreme air pollution, which was not well examined. We thus examine the magnitude of air quality in the particular month by applying the air quality index (AQI), which is based on the newly upgraded Chinese environmental standard. Our finding revealed that (1) air quality has distinct spatial heterogeneity and relatively better air quality was observed in the northwest while worse quality happened in the southeast part of the city; (2) the wind speed is the main determinant of air quality in the city-when wind speed is greater than 4 m/sec, air quality can be significantly improved; and (3) urban impervious surface makes a contribution to the severity of air pollution-that is, with an increase in the fraction of impervious surface in a given area, air pollution is more severe. The results from our study demonstrated the severe pollution in Beijing and its meteorological and landscape factors. Also, the results of this work suggest that very strict air quality management should be conducted when wind speed less than 4 m/sec, especially at places with a large fraction of urban impervious surface. Prevention of air pollution is rare among methods with controls on meteorological and urban landscape conditions. We present research that utilizes the latest air quality index (AQI) to compare air pollution with meteorological and landscape conditions. We found that wind is the major meteorological factor that determines the air quality. For a given wind speed greater than 4 m/sec, the air quality improved significantly. Urban impervious surface also contributes to the severe air pollution: that is, when the fraction of impervious surface increases, there is more severe air pollution. These results suggest that air quality management should be conducted when wind speed is less than 4 m/sec, especially at places with a larger fraction of urban impervious surface.

  16. Meteorological factors, air pollutants, and emergency department visits for otitis media: a time series study

    Science.gov (United States)

    Gestro, Massimo; Condemi, Vincenzo; Bardi, Luisella; Fantino, Claudio; Solimene, Umberto

    2017-10-01

    Abstract Otitis media (OM) is a very common disease in children, which results in a significant economic burden to the healthcare system for hospital-based outpatient departments, emergency departments (EDs), unscheduled medical examinations, and antibiotic prescriptions. The aim of this retrospective observational study is to investigate the association between climate variables, air pollutants, and OM visits observed in the 2007-2010 period at the ED of Cuneo, Italy. Measures of meteorological parameters (temperature, humidity, atmospheric pressure, wind) and outdoor air pollutants (particulate matter, ozone, nitrous dioxide) were analyzed at two statistical stages and in several specific steps (crude and adjusted models) according to Poisson's regression. Response variables included daily examinations for age groups 0-3, 0-6, and 0-18. Control variables included upper respiratory infections (URI), flu (FLU), and several calendar factors. A statistical procedure was implemented to capture any delayed effects. Results show a moderate association for temperature ( T), age 0-3, and 0-6 with P < 0.05, as well as nitrous dioxide (NO2) with P < 0.005 at age 0-18. Results of subsequent models point out to URI as an important control variable. No statistical association was observed for other pollutants and meteorological variables. The dose-response models (DLNM—final stage) implemented separately on a daily and hourly basis point out to an association between temperature (daily model) and RR 1.44 at age 0-3, CI 1.11-1.88 (lag time 0-1 days) and RR 1.43, CI 1.05-1.94 (lag time 0-3 days). The hourly model confirms a specific dose-response effect for T with RR 1.20, CI 1.04-1.38 (lag time range from 0 to 11 to 0-15 h) and for NO2 with RR 1.03, CI 1.01-1.05 (lag time range from 0 to 8 to 0-15 h). These results support the hypothesis that the clinical context of URI may be an important risk factor in the onset of OM diagnosed at ED level. The study highlights the

  17. Eighth joint conference on applications of air pollution meteorology with A & WMA

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-12-31

    The eighth Joint Conference on Applications of Air Pollution Meteorology, held January 23-28, 1994, again brings together the American Meteorological Society and Air and Waste Management Association with a broader scientific community to examine the role of the atmosphere on current air quality issues. The CAA Amendments non-attainment title has brought renewed interest in the pairing of complex dynamical meteorological models with photochemical air quality models. Requirements that future attainment to regulations be demonstrated with these models invite a new look at model evaluation. The CAAA titles addressing air toxics have brought renewed interest in near-source dispersion and deposition of toxic chemicals. Consequently, this conference is divided into sessions focusing on topics related to these issues. They include: The Dispersion Environment; Meteorology in Emissions Determination; Long-Range and Mesoscale Pollutant Transport and Fate; Meteorology and Photochemistry; Advanced Dispersion Models and Modeling Systems; Topics in Model Evaluation; Complex Flow Affecting Dispersion Near Structures; and Coastal and Complex Terrain Issues Evaluation.

  18. Methodology for estimation of secondary meteorological variables to be used in local dispersion of air pollutants

    International Nuclear Information System (INIS)

    Turtos, L.; Sanchez, M.; Roque, A.; Soltura, R.

    2003-01-01

    Methodology for estimation of secondary meteorological variables to be used in local dispersion of air pollutants. This paper include the main works, carried out into the frame of the project Atmospheric environmental externalities of the electricity generation in Cuba, aiming to develop methodologies and corresponding software, which will allow to improve the quality of the secondary meteorological data used in atmospheric pollutant calculations; specifically the wind profiles coefficient, urban and rural mixed high and temperature gradients

  19. Surface and upper air meteorological features during onset phase

    Indian Academy of Sciences (India)

    There was a sharp fall in the temperature difference between 850 and 500 hPa, and the height of zero degree isotherm about 2–3 days before the monsoon onset. The flux of sensible heat was positive (sea to air) over south Arabian Sea during the onset phase. Over the Bay of Bengal higher negative (air to sea) values of ...

  20. NOS CO-OPS Meteorological Data, Air Temperature, 6-Minute

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This dataset has Air Temperature data from NOAA NOS Center for Operational Oceanographic Products and Services (CO-OPS). WARNING: These preliminary data have not...

  1. Air Quality and Meteorological Boundary Conditions during the MCMA-2003 Field Campaign

    Science.gov (United States)

    Sosa, G.; Arriaga, J.; Vega, E.; Magaña, V.; Caetano, E.; de Foy, B.; Molina, L. T.; Molina, M. J.; Ramos, R.; Retama, A.; Zaragoza, J.; Martínez, A. P.; Márquez, C.; Cárdenas, B.; Lamb, B.; Velasco, E.; Allwine, E.; Pressley, S.; Westberg, H.; Reyes, R.

    2004-12-01

    A comprehensive field campaign to characterize photochemical smog in the Mexico City Metropolitan Area (MCMA) was conducted during April 2003. An important number of equipment was deployed all around the urban core and its surroundings to measure gas and particles composition from the various sources and receptor sites. In addition to air quality measurements, meteorology variables were also taken by regular weather meteorological stations, tethered balloons, radiosondes, sodars and lidars. One important issue with regard to the field campaign was the characterization of the boundary conditions in order to feed meteorological and air quality models. Four boundary sites were selected to measure continuously criteria pollutants, VOC and meteorological variables at surface level. Vertical meteorological profiles were measured at three other sites : radiosondes in Tacubaya site were launched every six hours daily; tethered balloons were launched at CENICA and FES-Cuautitlan sites according to the weather conditions, and one sodar was deployed at UNAM site in the south of the city. Additionally to these measurements, two fixed meteorological monitoring networks deployed along the city were available to complement these measurements. In general, we observed that transport of pollutants from the city to the boundary sites changes every day, according to the coupling between synoptic and local winds. This effect were less important at elevated sites such as Cerro de la Catedral and ININ, where synoptic wind were more dominant during the field campaign. Also, local sources nearby boundary sites hide the influence of pollution coming from the city some days, particularly at the La Reforma site.

  2. Seasonal variation of meteorological factors on air parameters and ...

    African Journals Online (AJOL)

    user

    Onna. Air quality parameters (Cl-, SPM and SO2) were found to have positive correlation with vapour pressure, humidity and rainfall values in the study areas. It was also established that a positive correlation exits between NO2, H2S, SO2, SPM, chloride, carbon monoxide and wind speed relative humidity, temperature and ...

  3. A NEW COMBINED LOCAL AND NON-LOCAL PBL MODEL FOR METEOROLOGY AND AIR QUALITY MODELING

    Science.gov (United States)

    A new version of the Asymmetric Convective Model (ACM) has been developed to describe sub-grid vertical turbulent transport in both meteorology models and air quality models. The new version (ACM2) combines the non-local convective mixing of the original ACM with local eddy diff...

  4. Air temperature sensors: dependence of radiative errors on sensor diameter in precision metrology and meteorology

    Science.gov (United States)

    de Podesta, Michael; Bell, Stephanie; Underwood, Robin

    2018-04-01

    In both meteorological and metrological applications, it is well known that air temperature sensors are susceptible to radiative errors. However, it is not widely known that the radiative error measured by an air temperature sensor in flowing air depends upon the sensor diameter, with smaller sensors reporting values closer to true air temperature. This is not a transient effect related to sensor heat capacity, but a fluid-dynamical effect arising from heat and mass flow in cylindrical geometries. This result has been known historically and is in meteorology text books. However, its significance does not appear to be widely appreciated and, as a consequence, air temperature can be—and probably is being—widely mis-estimated. In this paper, we first review prior descriptions of the ‘sensor size’ effect from the metrological and meteorological literature. We develop a heat transfer model to describe the process for cylindrical sensors, and evaluate the predicted temperature error for a range of sensor sizes and air speeds. We compare these predictions with published predictions and measurements. We report measurements demonstrating this effect in two laboratories at NPL in which the air flow and temperature are exceptionally closely controlled. The results are consistent with the heat-transfer model, and show that the air temperature error is proportional to the square root of the sensor diameter and that, even under good laboratory conditions, it can exceed 0.1 °C for a 6 mm diameter sensor. We then consider the implications of this result. In metrological applications, errors of the order of 0.1 °C are significant, representing limiting uncertainties in dimensional and mass measurements. In meteorological applications, radiative errors can easily be much larger. But in both cases, an understanding of the diameter dependence allows assessment and correction of the radiative error using a multi-sensor technique.

  5. Effects of air pollution on meteorological parameters during Deepawali festival over an Indian urban metropolis

    Science.gov (United States)

    Saha, Upal; Talukdar, Shamitaksha; Jana, Soumyajyoti; Maitra, Animesh

    2014-12-01

    Atmospheric pollutants (NO2, SO2, PM10, BC, CO, surface O3), emitted during fireworks display, have significant effects on meteorological parameters like air temperature, relative humidity, lapse rate and visibility in air over Kolkata (22°65‧ N, 88°45‧ E), a metropolitan city near the land-ocean boundary, on the eve of Deepawali festival when extensive fireworks are burnt. Long-term trend (2005-2013), indicates that the yearly average concentrations of both primary and secondary air pollutants have increased, exceeding the National Ambient Air Quality Standard (NAAQS) limit, on the respective Deepawali days. Short-term study (2012-2013) during the festival shows that the average pollutant concentrations have increased too compared to normal days. This study also reveals the immediate effects of the increased air pollutants on the boundary layer meteorology. PM10 has been found to be the most dominant atmospheric pollutants during this period. As a result of an increase in atmospheric heat content with elevated surface air temperature, a significant increase in the environmental lapse rate bears a signature of the influence of pollutants on the boundary layer temperature profile. A change in the diurnal pattern of relative humidity as well as in the vertical temperature profile is due to the change of the lapse rate during the festival days. Thus, the atmospheric pollutants during this festival over the urban region have significant effect on the boundary layer meteorology with bearings on environmental hazards.

  6. Meteorological factors had more impact on airborne bacterial communities than air pollutants.

    Science.gov (United States)

    Zhen, Quan; Deng, Ye; Wang, Yaqing; Wang, Xiaoke; Zhang, Hongxing; Sun, Xu; Ouyang, Zhiyun

    2017-12-01

    Airborne bacteria have gained increasing attention because they affect ecological balance and pose potential risks on human health. Recently, some studies have focused on the abundance and composition of airborne bacteria under heavy, hazy polluted weather in China, but they reached different conclusions about the comparisons with non-polluted days. In this study, we tested the hypothesis that meteorological factors could have a higher impact on shaping airborne bacterial communities than air pollutants by systematically monitoring the communities for 1year. Total suspended particles in Beijing were sampled for 20 consecutive days in each season of 2015. Bacterial abundance varied from 8.71×10 3 to 2.14×10 7 ribosomal operons per cubic meter according to the quantitative PCR analysis. There were relatively higher bacterial counts in spring and in autumn than in winter and summer. Airborne bacterial communities displayed a strong seasonality, according to the hierarchical cluster analysis. Only two exceptions overtook the seasonal trend, and both occurred in or after violent meteorological changes (sandstorm or rain). Aggregated boosted tree analysis performed on bacterial abundance showed that the dominant factors shaping bacterial communities were meteorological. They were air pressure in winter, air temperature and relative humidity in spring, RH in summer, and vapor pressure in autumn. Variation partition analysis on community structure showed that meteorological factors explained more variations than air pollutants. Therefore, both of the two models verified our hypothesis that the differences in airborne bacterial communities in polluted days or non-polluted days were mainly driven by the discrepancies of meteorological factors rather than by the presence of air pollutants. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Air ambulance medical transport advertising and marketing.

    Science.gov (United States)

    2011-01-01

    The National Association of EMS Physicians (NAEMSP), the American College of Emergency Physicians (ACEP), the Air Medical Physician Association (AMPA), the Association of Air Medical Services (AAMS), and the National Association of State EMS Officials (NASEMSO) believe that patient care and outcomes are optimized by using air medical transport services that are licensed air ambulance providers with robust physician medical director oversight and ongoing quality assessment and review. Only air ambulance medical transport services with these credentials should advertise/market themselves as air ambulance services.

  8. The relationships between air pollutants, meteorological parameters and concentration of airborne fungal spores

    International Nuclear Information System (INIS)

    Grinn-Gofron, Agnieszka; Strzelczak, Agnieszka; Wolski, Tomasz

    2011-01-01

    Fungal spores are an important component of bioaerosol and also considered to act as indicator of the level of atmospheric bio-pollution. Therefore, better understanding of these phenomena demands a detailed survey of airborne particles. The objective of this study was to examine the dependence of two the most important allergenic taxa of airborne fungi - Alternaria and Cladosporium - on meteorological parameters and air pollutant concentrations during three consecutive years (2006-2008). This study is also an attempt to create artificial neural network (ANN) forecasting models useful in the prediction of aeroallergen abundance. There were statistically significant relationships between spore concentration and environmental parameters as well as pollutants, confirmed by the Spearman's correlation rank analysis and high performance of the ANN models obtained. The concentrations of Cladosporium and Alternaria spores can be predicted with quite good accuracy from meteorological conditions and air pollution recorded three days earlier. - ANN models predict airspore contents from weather conditions and air pollutant.

  9. Medical oxygen and air travel.

    Science.gov (United States)

    Lyznicki, J M; Williams, M A; Deitchman, S D; Howe, J P

    2000-08-01

    This report responds to a resolution that asked the American Medical Association (AMA) to take action to improve airport and airline accommodations for passengers requiring medical oxygen. Information for the report was derived from a search of the MEDLINE database and references listed in pertinent articles, as well as through communications with experts in aerospace and emergency medicine. Based on this information, the AMA Council on Scientific Affairs determined that commercial air travel exposes passengers to altitude-related hypoxia and gas expansion, which may cause some passengers to experience significant symptoms and medical complications during flight. Medical guidelines are available to help physicians evaluate and counsel potential passengers who are at increased risk of inflight hypoxemia. Supplemental oxygen may be needed for some passengers to maintain adequate tissue oxygenation and prevent hypoxemic complications. For safety and security reasons, federal regulations prohibit travelers from using their own portable oxygen system onboard commercial aircraft. Many U.S. airlines supply medical oxygen for use during flight but policies and procedures vary. Oxygen-dependent passengers must make additional arrangements for the use of supplemental oxygen in airports. Uniform standards are needed to specify procedures and equipment for the use of medical oxygen in airports and aboard commercial aircraft. Revision of federal regulations should be considered to accommodate oxygen-dependent passengers and permit them to have an uninterrupted source of oxygen from departure to destination.

  10. An intercomparison of several diagnostic meteorological processors used in mesoscale air quality modeling

    Energy Technology Data Exchange (ETDEWEB)

    Vimont, J.C. [National Park Service, Lakewood, CO (United States); Scire, J.S. [Sigma Research Corp., Concord, MA (United States)

    1994-12-31

    A major component, and area of uncertainty, in mesoscale air quality modeling, is the specification of the meteorological fields which affect the transport and dispersion of pollutants. Various options are available for estimating the wind and mixing depth fields over a mesoscale domain. Estimates of the wind field can be obtained from spatial and temporal interpolation of available observations or from diagnostic meteorological models, which estimate a meteorological field from available data and adjust those fields based on parameterizations of physical processes. A major weakness of these processors is their dependence on spatially and temporally sparse input data, particularly upper air data. These problems are exacerbated in regions of complex terrain and along the shorelines of large bodies of water. Similarly, the estimation of mixing depth is also reliant upon sparse observations and the parameterization of the convective and mechanical processes. The meteorological processors examined in this analysis were developed to drive different Lagrangian puff models. This paper describes the algorithms these processors use to estimate the wind fields and mixing depth fields.

  11. Cairo city air quality research initiative part-i: A meteorological modelling

    International Nuclear Information System (INIS)

    Abdel-AAl, M.M.

    2001-01-01

    The modified meteorological model Hotmac (Higher order turbulence model for atmospheric circulation) is a three-dimensional and finite grid model developed primarily for simospheric motions and based on solving the conservation equations of mass momentum, energy and turbulent kinetic energy. The model is used for studying air quality of cairo cty and its surrounding to treat a domain that includes an urbanized area for understanding problems of air pollution. The acquired terrain (elevation) data for Egypt was obtained. The local and upper level geostrophic data were provided by rawinsonde of wind speed and direction, temperature,relative humidity, water vapour, and pressure The potential temperature was obtained by a computer program. The meteorological data was obtained for helwan site, about 20 kilometer south of cairo city. Three mested grids were used, with grids resolutions of 2 6 and 18 kilometers to cover a domain of approximately 360 km that extended from the red Sea to the mediterranean Sea

  12. Review of urban and industrial air quality. Assessments at the Finnish meteorological institute

    Energy Technology Data Exchange (ETDEWEB)

    Pohjola, V.; Pesonen, R.; Karstastenpaeae, R.; Rantakrans, E.; Kukkonen, J.; Jokinen, J.; Maekinen, E.; Saari, H.; Hiltunen, V. [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1995-12-31

    Air quality in urban and industrial environments has been investigated at the Finnish Meteorological Institute since the early 1970`s. The studies have included emission surveys, air quality measurements, dispersion model computations and bioindicator surveys A substantial fraction of these studies has been done as commissioned work for communities, public institutions, industrial establishments and private enterprises Major resources have also been committed to the development of methods and expertise. The studies in the 1970` s were mainly dispersion model computations and air pollution measurements In the 1980`s research activities increased rapidly due to the national Clean Air Act (coming into force in 1982) and the adoption of national ambient air quality standards (1984). Since the year 1980. About 90 separate air pollution assessments have been conducted; and model computations have been made for most Finnish cities and major communities In many of the surveys in the 1980` s and the 1990`s. Integrated studies of local air quality, which contain the results obtained with emission surveys, dispersion model computations, air quality measurements and bioindicator methods have been conducted. This integrated approach provides more versatile and reliable results on the state of the environment. For instance, the reliability and accuracy of computations can be directly analysed using simultaneous air quality measurements. An overview of the experimental and computational methods used in the air quality surveys is presented here. To illustrate the application of the methods, some selected results from an air quality investigation conducted in a major city in central Finland are discussed. (author)

  13. Review of urban and industrial air quality. Assessments at the Finnish meteorological institute

    Energy Technology Data Exchange (ETDEWEB)

    Pohjola, V; Pesonen, R; Karstastenpaeae, R; Rantakrans, E; Kukkonen, J; Jokinen, J; Maekinen, E; Saari, H; Hiltunen, V [Finnish Meteorological Inst., Helsinki (Finland). Air Quality Dept.

    1996-12-31

    Air quality in urban and industrial environments has been investigated at the Finnish Meteorological Institute since the early 1970`s. The studies have included emission surveys, air quality measurements, dispersion model computations and bioindicator surveys A substantial fraction of these studies has been done as commissioned work for communities, public institutions, industrial establishments and private enterprises Major resources have also been committed to the development of methods and expertise. The studies in the 1970` s were mainly dispersion model computations and air pollution measurements In the 1980`s research activities increased rapidly due to the national Clean Air Act (coming into force in 1982) and the adoption of national ambient air quality standards (1984). Since the year 1980. About 90 separate air pollution assessments have been conducted; and model computations have been made for most Finnish cities and major communities In many of the surveys in the 1980` s and the 1990`s. Integrated studies of local air quality, which contain the results obtained with emission surveys, dispersion model computations, air quality measurements and bioindicator methods have been conducted. This integrated approach provides more versatile and reliable results on the state of the environment. For instance, the reliability and accuracy of computations can be directly analysed using simultaneous air quality measurements. An overview of the experimental and computational methods used in the air quality surveys is presented here. To illustrate the application of the methods, some selected results from an air quality investigation conducted in a major city in central Finland are discussed. (author)

  14. Mapping Comparison and Meteorological Correlation Analysis of the Air Quality Index in Mid-Eastern China

    Directory of Open Access Journals (Sweden)

    Zhichen Yu

    2017-02-01

    Full Text Available With the continuous progress of human production and life, air quality has become the focus of attention. In this paper, Beijing, Tianjin, Hebei, Shanxi, Shandong and Henan provinces were taken as the study area, where there are 58 air quality monitoring stations from which daily and monthly data are obtained. Firstly, the temporal characteristics of the air quality index (AQI are explored. Then, the spatial distribution of the AQI is mapped by the inverse distance weighted (IDW method, the ordinary kriging (OK method and the Bayesian maximum entropy (BME method. Additionally, cross-validation is utilized to evaluate the mapping results of these methods with two indexes: mean absolute error and root mean square interpolation error. Furthermore, the correlation analysis of meteorological factors, including precipitation anomaly percentage, precipitation, mean wind speed, average temperature, average water vapor pressure and average relative humidity, potentially affecting the AQI was carried out on both daily and monthly scales. In the study area and period, AQI shows a clear periodicity, although overall, it has a downward trend. The peak of AQI appeared in November, December and January. BME interpolation has a higher accuracy than OK. IDW has the maximum error. Overall, the AQI of winter (November, spring (February is much worse than summer (May and autumn (August. Additionally, the air quality has improved during the study period. The most polluted areas of air quality are concentrated in Beijing, the southern part of Tianjin, the central-southern part of Hebei, the central-northern part of Henan and the western part of Shandong. The average wind speed and average relative humidity have real correlation with AQI. The effect of meteorological factors such as wind, precipitation and humidity on AQI is putative to have temporal lag to different extents. AQI of cities with poor air quality will fluctuate greater than that of others when weather

  15. Meteorological air pollution potential for Santiago, Chile: Towards an objective episode forecasting.

    Science.gov (United States)

    Rutllant, J; Garreaud, R

    1995-02-01

    The geography and climate of the Santiago basin are, in general, unfavorable for the diffusion of air pollutants. Consequently, extreme events occur frequently during the high pollution season extending from April to August. The meteorological conditions concurrent with those extreme events are mainly associated with the leading edges of coastal lows that bring down the base of the semipermanent temperature inversion reducing the dirunal growth of the surface mixed layer. In order to produce an objective 12 to 24-hour episode forecast, a two-way multivariate discriminant analysis has been used in the definition of a meteorological air-pollution potential index (MAPPI), separating high and low meteorological air-pollution potential days. The same procedure has been applied in the selection of the most efficient predictors for the MAPPI objective forecast, based on 12 and 24 UTC radiosonde data at Quintero, about 100 km to the NW of Santiago. Results indicate about 70% correctly forecasted days, with satisfactory skill-scores relative to persistency. The strong persistency characterizing the most efficient predictors in the 12-hour objective forecast scheme, makes the prediction of the first and last days of any particular air-pollution potential episode particularly difficult. To overcome this problem, a new set of predictors based on continuous measurements near the level of the top of the temperature inversion layer (900 hPa during air-pollution episodes) is being tested. Preliminary results indicate that the time-integrated zonal wind component at that level is a reliable precursor for both the onset and the end of air-pollution potential episodes.

  16. [Study on air quality and pollution meteorology conditions of Guangzhou during the 2010 Asian games].

    Science.gov (United States)

    Li, Ting-Yuan; Deng, Xue-Jiao; Fan, Shao-Jia; Wu, Dui; Li, Fei; Deng, Tao; Tan, Hao-Bo; Jiang, De-Hai

    2012-09-01

    Based on the monitoring data of NO2, O3, SO2, PM, visibility, regional air quality index (RAQI) and the atmospheric transport and diffusion data from Nov. 4, 2010 to Dec. 10, 2010 in Guangzhou area, the variations of air quality and meteorological conditions during the Guangzhou Asian Games were analyzed. It was found that, during the Asian Games, the air quality was better than the air quality before or after the Asian Games. The visibility was greater than the visibility before or after the Asian Games, while the concentrations of PM1 and PM2.5 were lower. The correlation coefficient between visibility and the concentrations of PM1, PM2.5 indicated anti-correlation relationships. Daily and hourly concentrations of NO2 and SO2 met the primary ambient air quality standards, whereas the daily concentration of PM10 and hourly concentration of O3 met the secondary ambient air quality standards. Pollutants had been well controlled during the Asian Games. The concentration of SO2 in Guangzhou was influenced by local sources and long distance transmission, while the concentration of NO2 was significantly influenced by local sources. The emissions of NO2, SO2 and PM10 surrounding Guangzhou had a trend to affect the concentrations in Guangzhou, but the situation of O3 was opposite, the relatively high concentration of O3 in Guangzhou had tendency to be transported to the surrounding areas. The pollution meteorology conditions in the period of Asian Games were better than the conditions before or after the Asian Games. The decrease in the concentrations during the Asian Games did not only benefit from the emission control by the government, but also from the good meteorological conditions.

  17. Medical Meteorology: the Relationship between Meteorological Parameters (Humidity, Rainfall, Wind, and Temperature and Brucellosis in Zanjan Province

    Directory of Open Access Journals (Sweden)

    Yousefali Abedini

    2016-06-01

    Full Text Available Background: Brucellosis (Malta fever is a major contagious zoonotic disease, with economic and public health importance. Methods To assess the effect of meteorological (temperature, rainfall, humidity, and wind and climate parameters on incidence of brucellosis, brucellosis distribution and meteorological zoning maps of Zanjan Province were prepared using Inverse Distance Weighting (IDW and Kriging technique in Arc GIS medium. Zoning maps of mean temperature, rainfall, humidity, and wind were compared to brucellosis distribution maps. Results: Correlation test showed no relationship between the mean number of patients with brucellosis and any of the four meteorological parameters. Conclusion: It seems that in Zanjan province there is no correlation between brucellosis and meteorological parameters.

  18. Improvement of Meteorological Inputs for TexAQS-II Air Quality Simulations

    Science.gov (United States)

    Ngan, F.; Byun, D.; Kim, H.; Cheng, F.; Kim, S.; Lee, D.

    2008-12-01

    An air quality forecasting system (UH-AQF) for Eastern Texas, which is in operation by the Institute for Multidimensional Air Quality Studies (IMAQS) at the University of Houston, uses the Fifth-Generation PSU/NCAR Mesoscale Model MM5 model as the meteorological driver for modeling air quality with the Community Multiscale Air Quality (CMAQ) model. While the forecasting system was successfully used for the planning and implementation of various measurement activities, evaluations of the forecasting results revealed a few systematic problems in the numerical simulations. From comparison with observations, we observe some times over-prediction of northerly winds caused by inaccurate synoptic inputs and other times too strong southerly winds caused by local sea breeze development. Discrepancies in maximum and minimum temperature are also seen for certain days. Precipitation events, as well as clouds, are simulated at the incorrect locations and times occasionally. Model simulatednrealistic thunderstorms are simulated, causing sometimes cause unrealistically strong outflows. To understand physical and chemical processes influencing air quality measures, a proper description of real world meteorological conditions is essential. The objective of this study is to generate better meteorological inputs than the AQF results to support the chemistry modeling. We utilized existing objective analysis and nudging tools in the MM5 system to develop the MUltiscale Nest-down Data Assimilation System (MUNDAS), which incorporates extensive meteorological observations available in the simulated domain for the retrospective simulation of the TexAQS-II period. With the re-simulated meteorological input, we are able to better predict ozone events during TexAQS-II period. In addition, base datasets in MM5 such as land use/land cover, vegetation fraction, soil type and sea surface temperature are updated by satellite data to represent the surface features more accurately. They are key

  19. Technical procedures for implementation of meteorology/air quality site studies, Deaf Smith County site, Texas: Environmental Field Program: Preliminary draft

    International Nuclear Information System (INIS)

    1987-09-01

    This report describes The Technical Procedures that will be used to monitor air quality and meteorology. Topics include: high-volume filter handling; operation, maintenance, and calibration of the 10-M meteorological and air quality system; processing data from the 10-M meteorological tower; processing data from the 60-M meteorological tower; processing total suspended particulate filters and data from the high-volume air samplers; operation maintenance, and calibration of the 60-M meteorological and air quality system; and auditing the air quality system. 4 refs., 6 figs

  20. Air medical transport of cardiac patients.

    Science.gov (United States)

    Essebag, Vidal; Halabi, Abdul R; Churchill-Smith, Michael; Lutchmedial, Sohrab

    2003-11-01

    The air medical transport of cardiac patients is a rapidly expanding practice. For various medical, social, and economic indications, patients are being flown longer distances at commercial altitudes, including international and intercontinental flights. There are data supporting the use of short-distance helicopter flights early in the course of a cardiac event for patients needing emergent transfer for percutaneous coronary intervention or aortocoronary bypass. When considering elective long-distance air medical transport of cardiac patients for social or economic reasons, it is necessary to weigh the benefits against the potential risks of flight. A few recent studies suggest that long-distance air medical transport is safe under certain circumstances. Current guidelines for air travel after myocardial infarction do not address the use of medical escorts or air ambulances equipped with intensive care facilities. Further research using larger prospective studies is needed to better define criteria for safe long-distance air medical transport of cardiac patients.

  1. The effect of meteorological conditions and air pollution on the occurrence of type A and B acute aortic dissections

    Science.gov (United States)

    Xie, Nan; Zou, Liqun; Ye, Lei

    2018-05-01

    To explore the association of weather conditions and air pollutants with incidence risk of acute aortic dissection (AAD), we included patients who consecutively admitted to the emergency units of our hospital for AAD between Dec. 1, 2013, and Apr. 30, 2017. Their medical records were reviewed. The meteorological data (daily precipitation, minimal and maximal temperatures, mean atmospheric pressure, relative humidity) and air pollutants values [air daily index (AQI), aerodynamic diameter of 2.5 mm or less (PM2.5), aerodynamic diameter of 10 mm or less (PM10), ozone, nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2), and ozone (O3_8h)] over the same period were provided by the Chengdu Meteorological Bureau. Finally, a total of 345 patients were admitted with AAD. The results showed that the incidence of AAD was higher in winter than in summer (p < 0.001). Statistical analysis highlighted lower the atmospheric temperature, higher the incidence of AAD (p < 0.001). A significant correlation was found between air pollutants and AAD onset. AQI, PM2.5, SO2, and NO2 were independent predictors of incidence of AAD (OR = 1.006, p = 0.007; OR = 1.020, p < 0.001; OR = 1.037, p < 0.001; and OR = 0.925, p < 0.001; respectively). While, PM10, CO, and O3_8H had a neutral effect on risk of AAD onset. In conclusions, cold atmospheric temperature and larger daily temperature change were correlated with a higher incidence of AAD. AQI, PM2.5, and SO2 played important roles in triggering acute aortic events.

  2. Predicting residential air exchange rates from questionnaires and meteorology: model evaluation in central North Carolina.

    Science.gov (United States)

    Breen, Michael S; Breen, Miyuki; Williams, Ronald W; Schultz, Bradley D

    2010-12-15

    A critical aspect of air pollution exposure models is the estimation of the air exchange rate (AER) of individual homes, where people spend most of their time. The AER, which is the airflow into and out of a building, is a primary mechanism for entry of outdoor air pollutants and removal of indoor source emissions. The mechanistic Lawrence Berkeley Laboratory (LBL) AER model was linked to a leakage area model to predict AER from questionnaires and meteorology. The LBL model was also extended to include natural ventilation (LBLX). Using literature-reported parameter values, AER predictions from LBL and LBLX models were compared to data from 642 daily AER measurements across 31 detached homes in central North Carolina, with corresponding questionnaires and meteorological observations. Data was collected on seven consecutive days during each of four consecutive seasons. For the individual model-predicted and measured AER, the median absolute difference was 43% (0.17 h(-1)) and 40% (0.17 h(-1)) for the LBL and LBLX models, respectively. Additionally, a literature-reported empirical scale factor (SF) AER model was evaluated, which showed a median absolute difference of 50% (0.25 h(-1)). The capability of the LBL, LBLX, and SF models could help reduce the AER uncertainty in air pollution exposure models used to develop exposure metrics for health studies.

  3. Effects of future land use and ecosystem changes on boundary-layer meteorology and air quality

    Science.gov (United States)

    Tai, A. P. K.; Wang, L.; Sadeke, M.

    2017-12-01

    Land vegetation plays key roles shaping boundary-layer meteorology and air quality via various pathways. Vegetation can directly affect surface ozone via dry deposition and biogenic emissions of volatile organic compounds (VOCs). Transpiration from land plants can also influence surface temperature, soil moisture and boundary-layer mixing depth, thereby indirectly affecting surface ozone. Future changes in the distribution, density and physiology of vegetation are therefore expected to have major ramifications for surface ozone air quality. In our study, we examine two aspects of potential vegetation changes using the Community Earth System Model (CESM) in the fully coupled land-atmosphere configuration, and evaluate their implications on meteorology and air quality: 1) land use change, which alters the distribution of plant functional types and total leaf density; and 2) ozone damage on vegetation, which alters leaf density and physiology (e.g., stomatal resistance). We find that, following the RCP8.5 scenario for 2050, global cropland expansion induces only minor changes in surface ozone in tropical and subtropical regions, but statistically significant changes by up to +4 ppbv in midlatitude North America and East Asia, mostly due to higher surface temperature that enhances biogenic VOC emissions, and reduced dry deposition to a lesser degree. These changes are in turn to driven mostly by meteorological changes that include a shift from latent to sensible heat in the surface energy balance and reduced soil moisture, reflecting not only local responses but also a northward expansion of the Hadley Cell. On the other hand, ozone damage on vegetation driven by rising anthropogenic emissions is shown to induce a further enhancement of ozone by up to +6 ppbv in midlatitude regions by 2050. This reflects a strong localized positive feedback, with severe ozone damage in polluted regions generally inducing stomatal closure, which in turn reduces transpiration, increases

  4. Medical Meteorology: the Relationship between Meteorological Parameters (Humidity, Rainfall, Wind, and Temperature) and Brucellosis in Zanjan Province

    OpenAIRE

    Yousefali Abedini; Nahideh Mohammadi; Koorosh Kamali; Mohsen Ahadnejad; Mehdi Azari

    2016-01-01

    Background: Brucellosis (Malta fever) is a major contagious zoonotic disease, with economic and public health importance. Methods To assess the effect of meteorological (temperature, rainfall, humidity, and wind) and climate parameters on incidence of brucellosis, brucellosis distribution and meteorological zoning maps of Zanjan Province were prepared using Inverse Distance Weighting (IDW) and Kriging technique in Arc GIS medium. Zoning maps of mean temperature, rainfall, humidity, and win...

  5. Simultaneous multicopter-based air sampling and sensing of meteorological variables

    Science.gov (United States)

    Brosy, Caroline; Krampf, Karina; Zeeman, Matthias; Wolf, Benjamin; Junkermann, Wolfgang; Schäfer, Klaus; Emeis, Stefan; Kunstmann, Harald

    2017-08-01

    The state and composition of the lowest part of the planetary boundary layer (PBL), i.e., the atmospheric surface layer (SL), reflects the interactions of external forcing, land surface, vegetation, human influence and the atmosphere. Vertical profiles of atmospheric variables in the SL at high spatial (meters) and temporal (1 Hz and better) resolution increase our understanding of these interactions but are still challenging to measure appropriately. Traditional ground-based observations include towers that often cover only a few measurement heights at a fixed location. At the same time, most remote sensing techniques and aircraft measurements have limitations to achieve sufficient detail close to the ground (up to 50 m). Vertical and horizontal transects of the PBL can be complemented by unmanned aerial vehicles (UAV). Our aim in this case study is to assess the use of a multicopter-type UAV for the spatial sampling of air and simultaneously the sensing of meteorological variables for the study of the surface exchange processes. To this end, a UAV was equipped with onboard air temperature and humidity sensors, while wind conditions were determined from the UAV's flight control sensors. Further, the UAV was used to systematically change the location of a sample inlet connected to a sample tube, allowing the observation of methane abundance using a ground-based analyzer. Vertical methane gradients of about 0.3 ppm were found during stable atmospheric conditions. Our results showed that both methane and meteorological conditions were in agreement with other observations at the site during the ScaleX-2015 campaign. The multicopter-type UAV was capable of simultaneous in situ sensing of meteorological state variables and sampling of air up to 50 m above the surface, which extended the vertical profile height of existing tower-based infrastructure by a factor of 5.

  6. The Influence of Urban Planning Affected Static and Stable Meteorological Field on Air Pollution

    Science.gov (United States)

    Zhang, Yue; Zhang, Liyuan; Zhang, Yunwei

    2018-02-01

    Accompany with the rapid urbanized and industrialized process, the built-up area and the number of high-rise buildings increased fast. Urban air quality is facing with the challenge caused by the rapid increase in energy consumption, motor vehicles owned, and the city construction. Long term high precision analysis on Beijing-Tianjin-Hebei region has been conducted in this article, so as to explore the influence of rapid increase in urban size and tall building amount on occurrence frequency of urban static and stable meteorological conditions as well as the contribution to urban PM2.5 pollution.

  7. The Impacts of Urbanization on Meteorology and Air Quality in the Los Angeles Basin

    Science.gov (United States)

    Li, Y.; Zhang, J.; Sailor, D.; Ban-Weiss, G. A.

    2017-12-01

    Urbanization has a profound influence on regional meteorology in mega cities like Los Angeles. This influence is driven by changes in land surface physical properties and urban processes, and their corresponding influence on surface-atmosphere coupling. Changes in meteorology from urbanization in turn influences air quality through weather-dependent chemical reaction, pollutant dispersion, etc. Hence, a real-world representation of the urban land surface properties and urban processes should be accurately resolved in regional climate-chemistry models for better understanding the role of urbanization on changing urban meteorology and associated pollutant dynamics. By incorporating high-resolution land surface data, previous research has improved model-observation comparisons of meteorology in urban areas including the Los Angeles basin, and indicated that historical urbanization has increased urban temperatures and altered wind flows significantly. However, the impact of urban expansion on air quality has been less studied. Thus, in this study, we aim to evaluate the effectiveness of resolving high-resolution heterogeneity in urban land surface properties and processes for regional weather and pollutant concentration predictions. We coupled the Weather Research and Forecasting model with Chemistry to the single-layer Urban Canopy Model to simulate a typical summer period in year 2012 for Southern California. Land cover type and urban fraction were determined from National Land Cover Data. MODIS observations were used to determine satellite-derived albedo, green vegetation fraction, and leaf area index. Urban morphology was determined from GIS datasets of 3D building geometries. An urban irrigation scheme was also implemented in the model. Our results show that the improved model captures the diurnal cycle of 2m air temperature (T2) and Ozone (O3) concentrations. However, it tends to overestimate wind speed and underestimate T2, which leads to an underestimation of O

  8. The temporal and spatial distribution characteristics of air pollution index and meteorological elements in Beijing, Tianjin and Shijiazhuang, China.

    Science.gov (United States)

    Huading, Shi; Critto, Andrea; Torresan, Silvia; Qingxian, Gao

    2018-06-13

    With the rapid economic development and the continuous population growth, several important cities in China suffer serious air pollution, especially in the Beijing-Tianjin-Hebei economic developing area. Based on the daily air pollution index (API) and surface meteorological elements in Beijing, Tianjin and Shijiazhuang from 2001 to 2010, the relationships between API and meteorological elements were analyzed. The statistical analysis focused on the relationships at seasonal and monthly average scales, on different air pollution grades and air pollution processes. The results revealed that the air pollution conditions in the three areas gradually improved from 2001 to 2010, especially during summer; and the worst conditions in air quality were recorded in Beijing in spring due to the influences of dust, while in Tianjin and Shijiazhuang in winter due to household heating. Meteorological elements exhibited different influences on air pollution, showing similar relationships between API in monthly averages and four meteorological elements (i.e., the average, maximum and minimum temperatures, maximum air pressure, vapor pressure, and maximum wind speed); while the relationships on a seasonal average scale demonstrated significant differences. Compared with seasonal and monthly average scales of API, the relation coefficients based on different air pollution grades were significatively lower; while the relationship between API and meteorological elements based on air pollution process reduced the smoothing effect due to the average processing of seasonal and monthly API and improved the accuracy of the results based on different air pollution grades. Finally, statistical analysis of the distribution of pollution days in different wind directions indicated the directions of extreme and maximum wind speeds that mainly influence air pollution; representing a valuable information that could support the definition of air pollution control strategies through the

  9. Air medical transportation in India: Our experience

    Directory of Open Access Journals (Sweden)

    Himanshu Khurana

    2016-01-01

    Conclusion: Cardiac and central nervous system ailments are the most common indication for air medical transportation. These patients may need attention and interventions as any critical patient in the hospital but in a difficult environment lacking space and help. Air medical transport carries no more risk than ground transportation.

  10. The effects of meteorological factors on the occurrence of Ganoderma sp. spores in the air

    Science.gov (United States)

    Grinn-Gofroń, Agnieszka; Strzelczak, Agnieszka

    2011-03-01

    Ganoderma sp. is an airborne fungal spore type known to trigger respiratory allergy symptoms in sensitive patients. Aiming to reduce the risk for allergic individuals, we analysed fungal spore circulation in Szczecin, Poland, and its dependence on meteorological conditions. Statistical models for the airborne spore concentrations of Ganoderma sp.—one of the most abundant fungal taxa in the area—were developed. Aerobiological sampling was conducted over 2004-2008 using a volumetric Lanzoni trap. Simultaneously, the following meteorological parameters were recorded: daily level of precipitation, maximum and average wind speed, relative humidity and maximum, minimum, average and dew point temperatures. These data were used as the explaining variables. Due to the non-linearity and non-normality of the data set, the applied modelling techniques were artificial neural networks (ANN) and mutlivariate regression trees (MRT). The obtained classification and MRT models predicted threshold conditions above which Ganoderma sp. appeared in the air. It turned out that dew point temperature was the main factor influencing the presence or absence of Ganoderma sp. spores. Further analysis of spore seasons revealed that the airborne fungal spore concentration depended only slightly on meteorological factors.

  11. The Interaction Effects of Meteorological Factors and Air Pollution on the Development of Acute Coronary Syndrome.

    Science.gov (United States)

    Huang, Ching-Hui; Lin, Heng-Cheng; Tsai, Chen-Dao; Huang, Hung-Kai; Lian, Ie-Bin; Chang, Chia-Chu

    2017-03-09

    This study investigated the interaction effects of meteorological factors and air pollutants on the onset of acute coronary syndrome (ACS). Data of ACS patients were obtained from the Taiwan ACS Full Spectrum Registry and comprised 3164 patients with a definite onset date during the period October 2008 and January 2010 at 39 hospitals. Meteorological conditions and air pollutant concentrations at the 39 locations during the 488-day period were obtained. Time-lag Poisson and logistic regression were used to explore their association with ACS incidence. One-day lag atmospheric pressure (AP), humidity, particulate matter (PM 2.5 , and PM 10 ), and carbon monoxide (CO) all had significant interaction effects with temperature on ACS occurrence. Days on which high temperatures (>26 °C) and low AP (Typhoon Morakot was an example of high temperature with extremely low AP associated with higher ACS incidence than the daily average. Combinations of high concentrations of PM or CO with low temperatures (<21 °C) and high humidity levels with low temperatures were also associated with increased incidence of ACS. Atmospheric pollution and weather factors have synergistic effects on the incidence of ACS.

  12. The Interaction Effects of Meteorological Factors and Air Pollution on the Development of Acute Coronary Syndrome

    Science.gov (United States)

    Huang, Ching-Hui; Lin, Heng-Cheng; Tsai, Chen-Dao; Huang, Hung-Kai; Lian, Ie-Bin; Chang, Chia-Chu

    2017-03-01

    This study investigated the interaction effects of meteorological factors and air pollutants on the onset of acute coronary syndrome (ACS). Data of ACS patients were obtained from the Taiwan ACS Full Spectrum Registry and comprised 3164 patients with a definite onset date during the period October 2008 and January 2010 at 39 hospitals. Meteorological conditions and air pollutant concentrations at the 39 locations during the 488-day period were obtained. Time-lag Poisson and logistic regression were used to explore their association with ACS incidence. One-day lag atmospheric pressure (AP), humidity, particulate matter (PM2.5, and PM10), and carbon monoxide (CO) all had significant interaction effects with temperature on ACS occurrence. Days on which high temperatures (>26 °C) and low AP (<1009 hPa) occurred the previous day were associated with a greater likelihood of increased incidence of developing ACS. Typhoon Morakot was an example of high temperature with extremely low AP associated with higher ACS incidence than the daily average. Combinations of high concentrations of PM or CO with low temperatures (<21 °C) and high humidity levels with low temperatures were also associated with increased incidence of ACS. Atmospheric pollution and weather factors have synergistic effects on the incidence of ACS.

  13. Meteorological factors influencing on the radon concentrations in indoor and outdoor airs

    International Nuclear Information System (INIS)

    Kojima, Hiroshi

    1989-01-01

    Factors influencing radon concentrations in indoor and outdoor airs are discussed. A balance between source and loss is required in determining the radon concentration. Source refers to as the outdoor and indoor exhalation rate from the ground and the building materials. Loss is caused by turbulent diffusion outdoors and ventilation indoors. A significant factor influencing the exhalation rate of indoor and outdoor radon may be the change in atmospheric pressure. A drop of pressure feeds the high concentration air under the ground or building materials into the open air, and contributes to the increased exhalation rate. The exhalation rate of radon closely depends on the moisture content of the ground or building materials. Up to a certain level of moisture, the radon exhalation increases with increasing moisture content because the emanation power increases by a recoil effect of a fluid present in the internal pores of the materials. Beyond a certain level of moisture, the exhalation decreases rapidly because the pores are filled with water. Radon exhalated from the ground is spread out by turbulent diffusion. The turbulent diffusion may be related to wind velocity and the lapse rate of temperature. There is a remakable difference between indoor and outdoor radon concentrations. The ventilation rate of the house exerted a great effect upon the indoor radon concentration. The ventilation rate is influenced by meteorological factors together with human activities. Of such factors, wind velocity and temperature gradient between indoor and outdoor airs may be the most significant. The correlation coefficients between RaA or radon and some meteorological factors were calculated on the data from the long term measurements on radon and its decay products in and out of a house under normal living conditions. The changes in atmospheric pressure and wind velocity are found to be a significant factor in the variation of concentration of these nuclides. (N.K.)

  14. Meteorology and air-quality in a mega-city: application to Tehran, Iran

    International Nuclear Information System (INIS)

    Malakooti, Hossein

    2010-01-01

    The influence of a mega-city on the atmospheric boundary layer and surface conditions was examined in the complex-terrain, semi-arid Tehran region using the Pennsylvania State University/National Center for Atmospheric Research fifth-generation Mesoscale Model (MM5) during a high pollution period. In addition, model sensitivity studies were conducted to evaluate the performance of the urban canopy and urban soil model 'SM2-U (3D)' parameterization on the meteorological fields and ground level air pollutant concentrations in this area. The topographic flows and urban effects were found to play important roles in modulating the wind and temperature fields, and the urbanized areas exerted important local effects on the boundary layer meteorology. An emission inventory of air pollutants and an inventory of heat generation were developed and updated for 2005 in this work. Emissions from on-road motor vehicles constitute a major portion of the emission inventory and play the most important role in terms of contributions of air pollutants to the atmosphere in Tehran. By using a detailed methodology, we calculated spatial and temporal distributions of the anthropogenic heat flux (Qf) for Tehran during 2005. Wintertime Qf is larger than summertime Qf, which reflects the importance of heating emissions from buildings and traffic during cold and warm period respectively. Different urban parameterizations were used as a tool to investigate the modifications induced by the presence of an urban area in the area of interest. It was found that, for local meteorological simulations, the drag-force approach coupled with an urban soil model (DA-SM2-U) is preferable to the roughness approach (RA-SLAB). The comparisons indicated that the most important features of the wind, temperature and turbulent fields in urban areas are well reproduced by the DA-SM2-U configuration with the anthropogenic heat flux being taken into account (i.e., 'DA-SM2-U Qf: On' option). This

  15. Urban air quality assessment using monitoring data of fractionized aerosol samples, chemometrics and meteorological conditions.

    Science.gov (United States)

    Yotova, Galina I; Tsitouridou, Roxani; Tsakovski, Stefan L; Simeonov, Vasil D

    2016-01-01

    The present article deals with assessment of urban air by using monitoring data for 10 different aerosol fractions (0.015-16 μm) collected at a typical urban site in City of Thessaloniki, Greece. The data set was subject to multivariate statistical analysis (cluster analysis and principal components analysis) and, additionally, to HYSPLIT back trajectory modeling in order to assess in a better way the impact of the weather conditions on the pollution sources identified. A specific element of the study is the effort to clarify the role of outliers in the data set. The reason for the appearance of outliers is strongly related to the atmospheric condition on the particular sampling days leading to enhanced concentration of pollutants (secondary emissions, sea sprays, road and soil dust, combustion processes) especially for ultra fine and coarse particles. It is also shown that three major sources affect the urban air quality of the location studied-sea sprays, mineral dust and anthropogenic influences (agricultural activity, combustion processes, and industrial sources). The level of impact is related to certain extent to the aerosol fraction size. The assessment of the meteorological conditions leads to defining of four downwind patterns affecting the air quality (Pelagic, Western and Central Europe, Eastern and Northeastern Europe and Africa and Southern Europe). Thus, the present study offers a complete urban air assessment taking into account the weather conditions, pollution sources and aerosol fractioning.

  16. Air contamination analysis during emergency medical treatment

    International Nuclear Information System (INIS)

    Yamada, Y.; Fukutsu, K.; Yuuki, M.; Akashi, M.

    2009-01-01

    After radiological emergencies, patients contaminated with radioactivity are taken to radiation emergency hospitals for treatment. Numerical simulations using the computer software 'Flow Designer R were made in order to evaluate indoor air contamination caused by the breathing out of contaminated air. The National Inst. of Radiological Sciences facility was used for the numerical evaluation. Results indicate that the dispersion of contaminated air depends on the characteristics of the contaminants, and that the dispersion range was limited and localised. Only medical staff standing in a special position near the patient was exposed to almost un-diluted contaminated air. Highly contaminated air was evacuated with a local exhaust pump system. Room air quality was monitored using a continuous air sampling system, but it was found that the sampling point was not representative for the purpose of radiation protection. From the air-flow analysis, some problems that affect radiological safety were revealed and valuable information and measures for preventing secondary contamination were determined. (authors)

  17. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    International Nuclear Information System (INIS)

    Nikolich, George; Shadel, Craig; Chapman, Jenny; McCurdy, Greg; Etyemezian, Vicken; Miller, Julianne J.; Mizell, Steve

    2016-01-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.

  18. Tonopah Test Range Air Monitoring: CY2015 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikolich, George [Nevada University, Reno, NV (United States). Desert Research Inst.; Shadel, Craig [Nevada University, Reno, NV (United States). Desert Research Inst.; Chapman, Jenny [Nevada University, Reno, NV (United States). Desert Research Inst.; McCurdy, Greg [Nevada University, Reno, NV (United States). Desert Research Inst.; Etyemezian, Vicken [Nevada University, Reno, NV (United States). Desert Research Inst.; Miller, Julianne J. [Nevada University, Reno, NV (United States). Desert Research Inst.; Mizell, Steve [Nevada University, Reno, NV (United States). Desert Research Inst.

    2016-09-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). The operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites. Radionuclide assessment of airborne particulates in 2015 found the gross alpha and gross beta values of dust collected from the filters at the monitoring stations are consistent with background conditions. The meteorological and particle monitoring indicate that conditions for wind-borne contaminant movement exist at the Clean Slate sites and that, although the transport of radionuclide-contaminated soil by suspension has not been detected, movement by saltation is occurring.

  19. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network.

    Science.gov (United States)

    Sun, Xingming; Yan, Shuangshuang; Wang, Baowei; Xia, Li; Liu, Qi; Zhang, Hui

    2015-07-24

    Air temperature (AT) is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS). Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR). Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE) and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.

  20. Air Temperature Error Correction Based on Solar Radiation in an Economical Meteorological Wireless Sensor Network

    Directory of Open Access Journals (Sweden)

    Xingming Sun

    2015-07-01

    Full Text Available Air temperature (AT is an extremely vital factor in meteorology, agriculture, military, etc., being used for the prediction of weather disasters, such as drought, flood, frost, etc. Many efforts have been made to monitor the temperature of the atmosphere, like automatic weather stations (AWS. Nevertheless, due to the high cost of specialized AT sensors, they cannot be deployed within a large spatial density. A novel method named the meteorology wireless sensor network relying on a sensing node has been proposed for the purpose of reducing the cost of AT monitoring. However, the temperature sensor on the sensing node can be easily influenced by environmental factors. Previous research has confirmed that there is a close relation between AT and solar radiation (SR. Therefore, this paper presents a method to decrease the error of sensed AT, taking SR into consideration. In this work, we analyzed all of the collected data of AT and SR in May 2014 and found the numerical correspondence between AT error (ATE and SR. This corresponding relation was used to calculate real-time ATE according to real-time SR and to correct the error of AT in other months.

  1. Development of the Next Generation Air Quality Modeling System (20th Joint Conference on the Applications of Air Pollution Meteorology with the A&WMA)

    Science.gov (United States)

    A next generation air quality modeling system is being developed at the U.S. EPA to enable modeling of air quality from global to regional to (eventually) local scales. We envision that the system will have three configurations: 1. Global meteorology with seamless mesh refinemen...

  2. Modeling for pollution dispersion and air quality. 3.: meteorological data and emissions

    International Nuclear Information System (INIS)

    Bertagna, Silvia

    2005-01-01

    To better and correctly choose the suitable modeling system to use, it is necessary previously to define with objective criteria the characteristic of the problem to be studied and to gather together a great amount of input data and information, needed by the model, regarding, namely, the meteorological diffusive conditions of the atmosphere, the characteristic of the emission source (type, number, site etc.) and the characteristic of the area of interest (as land use and orography). In this work, the main different typologies of input data, which occur to simulate the air pollutant dispersion, are described, together with the instruments to obtain them: they include the consultation and the elaboration of information coming from databases and inventories appositely built and often also the use of other models or dedicated SW programs [it

  3. Tonopah Test Range Air Monitoring: CY2016 Meteorological, Radiological, and Wind Transported Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Nikolich, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vicken [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2017-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This operation resulted in radionuclide-contaminated soils at the Clean Slate I, II, and III sites. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III, and at the TTR Sandia National Laboratories (SNL) Range Operations Control (ROC) center. The primary objective of the monitoring effort is to determine if wind blowing across the Clean Slate sites is transporting particles of radionuclide-contaminated soil beyond the physical and administrative boundaries of the sites.

  4. Mixing layer height measurements determines influence of meteorology on air pollutant concentrations in urban area

    Science.gov (United States)

    Schäfer, Klaus; Blumenstock, Thomas; Bonn, Boris; Gerwig, Holger; Hase, Frank; Münkel, Christoph; Nothard, Rainer; von Schneidemesser, Erika

    2015-10-01

    Mixing layer height (MLH) is a key parameter to determine the influence of meteorological parameters upon air pollutants such as trace gas species and particulate concentrations near the surface. Meteorology, and MLH as a key parameter, affect the budget of emission source strengths, deposition, and accumulation. However, greater possibilities for the application of MLH data have been identified in recent years. Here, the results of measurements in Berlin in 2014 are shown and discussed. The concentrations of NO, NO2, O3, CO, PM1, PM2.5, PM10 and about 70 volatile organic compounds (anthropogenic and biogenic of origin) as well as particle size distributions and contributions of SOA and soot species to PM were measured at the urban background station of the Berlin air quality network (BLUME) in Nansenstr./Framstr., Berlin-Neukölln. A Vaisala ceilometer CL51, which is a commercial mini-lidar system, was applied at that site to detect the layers of the lower atmosphere in real time. Special software for these ceilometers with MATLAB provided routine retrievals of MLH from vertical profiles of laser backscatter data. Five portable Bruker EM27/SUN FTIR spectrometers were set up around Berlin to detect column averaged abundances of CO2 and CH4 by solar absorption spectrometry. Correlation analyses were used to show the coupling of temporal variations of trace gas compounds and PM with MLH. Significant influences of MLH upon NO, NO2, PM10, PM2.5, PM1 and toluene (marker for traffic emissions) concentrations as well as particle number concentrations in the size modes 70 - 100 nm, 100 - 200 nm and 200 - 500 nm on the basis of averaged diurnal courses were found. Further, MLH was taken as important auxiliary information about the development of the boundary layer during each day of observations, which was required for the proper estimation of CO2 and CH4 source strengths from Berlin on the basis of atmospheric column density measurements.

  5. Self-organized classification of boundary layer meteorology and associated characteristics of air quality in Beijing

    Science.gov (United States)

    Liao, Zhiheng; Sun, Jiaren; Yao, Jialin; Liu, Li; Li, Haowen; Liu, Jian; Xie, Jielan; Wu, Dui; Fan, Shaojia

    2018-05-01

    Self-organizing maps (SOMs; a feature-extracting technique based on an unsupervised machine learning algorithm) are used to classify atmospheric boundary layer (ABL) meteorology over Beijing through detecting topological relationships among the 5-year (2013-2017) radiosonde-based virtual potential temperature profiles. The classified ABL types are then examined in relation to near-surface pollutant concentrations to understand the modulation effects of the changing ABL meteorology on Beijing's air quality. Nine ABL types (i.e., SOM nodes) are obtained through the SOM classification technique, and each is characterized by distinct dynamic and thermodynamic conditions. In general, the self-organized ABL types are able to distinguish between high and low loadings of near-surface pollutants. The average concentrations of PM2.5, NO2 and CO dramatically increased from the near neutral (i.e., Node 1) to strong stable conditions (i.e., Node 9) during all seasons except for summer. Since extremely strong stability can isolate the near-surface observations from the influence of elevated SO2 pollution layers, the highest average SO2 concentrations are typically observed in Node 3 (a layer with strong stability in the upper ABL) rather than Node 9. In contrast, near-surface O3 shows an opposite dependence on atmospheric stability, with the lowest average concentration in Node 9. Analysis of three typical pollution months (i.e., January 2013, December 2015 and December 2016) suggests that the ABL types are the primary drivers of day-to-day variations in Beijing's air quality. Assuming a fixed relationship between ABL type and PM2.5 loading for different years, the relative (absolute) contributions of the ABL anomaly to elevated PM2.5 levels are estimated to be 58.3 % (44.4 µg m-3) in January 2013, 46.4 % (22.2 µg m-3) in December 2015 and 73.3 % (34.6 µg m-3) in December 2016.

  6. Air quality modeling in the Valley of Mexico: meteorology, emissions and forecasting

    Science.gov (United States)

    Garcia-Reynoso, A.; Jazcilevich, A. D.; Diaz-Nigenda, E.; Vazquez-Morales, W.; Torres-Jardon, R.; Ruiz-Suarez, G.; Tatarko, J.; Bornstein, R.

    2007-12-01

    The Valley of Mexico presents important challenges for air quality modeling: complex terrain, a great variety of anthropogenic and natural emissions sources, and high altitude and low latitude increasing the amount of radiation flux. The modeling group at the CCA-UNAM is using and merging state of the art models to study the different aspects that influence the air quality phenomenon in the Valley of Mexico. The air quality model MCCM that uses MM5 as its meteorological input has been a valuable tool to study important features of the complex and intricate atmospheric flows on the valley, such as local confluences and vertical fumigation. Air quality modeling has allowed studying the interaction between the atmospheres of the valleys surrounding the Valley of Mexico, prompting the location of measurement stations during the MILAGRO campaign. These measurements confirmed the modeling results and expanded our knowledge of the transport of pollutants between the Valleys of Cuernavaca, Puebla and Mexico. The urban landscape of Mexico City complicates meteorological modeling. Urban-MM5, a model that explicitly takes into account the influence of buildings, houses, streets, parks and anthropogenic heat, is being implemented. Preliminary results of urban-MM5 on a small area of the city have been obtained. The current emissions inventory uses traffic database that includes hourly vehicular activity in more than 11,000 street segments, includes 23 area emissions categories, more than 1,000 industrial sources and biogenic emissions. To improve mobile sources emissions a system consisting of a traffic model and a car simulator is underway. This system will allow for high time and space resolution and takes into account motor stress due to different driving regimes. An important source of emissions in the Valley of Mexico is erosion dust. The erosion model WEPS has been integrated with MM5 and preliminary results showing dust episodes over Mexico City have been obtained. A

  7. Air medical transportation in India: Our experience.

    Science.gov (United States)

    Khurana, Himanshu; Mehta, Yatin; Dubey, Sunil

    2016-01-01

    Long distance air travel for medical needs is on the increase worldwide. The condition of some patients necessitates specially modified aircraft, and monitoring and interventions during transport by trained medical personnel. This article presents our experience in domestic and international interhospital air medical transportation from January 2010 to January 2014. Hospital records of all air medical transportation undertaken to the institute during the period were analyzed for demographics, primary etiology, and events during transport. 586 patients, 453 (77.3%) males and 133 (22.6%) females of ages 46.7 ± 12.6 years and 53.4 ± 9.7 years were transported by us to the institute. It took 3030 flying hours with an average of 474 ± 72 min for each mission. The most common indication for transport was cardiovascular diseases in 210 (35.8%) and central nervous system disease in 120 (20.4%) cases. The overall complication rate was 5.3% There was no transport related mortality. Cardiac and central nervous system ailments are the most common indication for air medical transportation. These patients may need attention and interventions as any critical patient in the hospital but in a difficult environment lacking space and help. Air medical transport carries no more risk than ground transportation.

  8. Meteorological and air quality data quarterly report WIPP site: Eddy County, New Mexico. Winter quarter, December 1976-February 1977

    International Nuclear Information System (INIS)

    Pocalujka, L.P.; Babij, E.; Church, H.W.

    1979-08-01

    The Wipp meteorological, air quality, and radiological measurements program was implemented to support the environmental effort for the evaluations of the site selection suitability. This data report is the third of a series of seasonal quarterly data summaries to be issued for the southeastern New Mexico site

  9. Modeling the impacts of green infrastructure land use changes on air quality and meteorology case study and sensitivity analysis in Kansas City

    Science.gov (United States)

    Changes in vegetation cover associated with urban planning efforts may affect regional meteorology and air quality. Here we use a comprehensive coupled meteorology-air quality model (WRF-CMAQ) to simulate the influence of planned land use changes from green infrastructure impleme...

  10. Effects of ozone-vegetation coupling on surface ozone air quality via biogeochemical and meteorological feedbacks

    Science.gov (United States)

    Sadiq, Mehliyar; Tai, Amos P. K.; Lombardozzi, Danica; Martin, Maria Val

    2017-02-01

    Tropospheric ozone is one of the most hazardous air pollutants as it harms both human health and plant productivity. Foliage uptake of ozone via dry deposition damages photosynthesis and causes stomatal closure. These foliage changes could lead to a cascade of biogeochemical and biogeophysical effects that not only modulate the carbon cycle, regional hydrometeorology and climate, but also cause feedbacks onto surface ozone concentration itself. In this study, we implement a semi-empirical parameterization of ozone damage on vegetation in the Community Earth System Model to enable online ozone-vegetation coupling, so that for the first time ecosystem structure and ozone concentration can coevolve in fully coupled land-atmosphere simulations. With ozone-vegetation coupling, present-day surface ozone is simulated to be higher by up to 4-6 ppbv over Europe, North America and China. Reduced dry deposition velocity following ozone damage contributes to ˜ 40-100 % of those increases, constituting a significant positive biogeochemical feedback on ozone air quality. Enhanced biogenic isoprene emission is found to contribute to most of the remaining increases, and is driven mainly by higher vegetation temperature that results from lower transpiration rate. This isoprene-driven pathway represents an indirect, positive meteorological feedback. The reduction in both dry deposition and transpiration is mostly associated with reduced stomatal conductance following ozone damage, whereas the modification of photosynthesis and further changes in ecosystem productivity are found to play a smaller role in contributing to the ozone-vegetation feedbacks. Our results highlight the need to consider two-way ozone-vegetation coupling in Earth system models to derive a more complete understanding and yield more reliable future predictions of ozone air quality.

  11. Evaluation of data assimilation techniques for a mesoscale meteorological model and their effects on air quality model results

    Energy Technology Data Exchange (ETDEWEB)

    Amicarelli, A; Pelliccioni, A [ISPESL - Dipartimento Insediamenti Produttivi e Interazione con l' Ambiente, Via Fontana Candida, 1 00040 Monteporzio Catone (RM) Italy (Italy); Finardi, S; Silibello, C [ARIANET, via Gilino 9, 20128 Milano (Italy); Gariazzo, C

    2008-05-01

    Data assimilation techniques are methods to limit the growth of errors in a dynamical model by allowing observations distributed in space and time to force (nudge) model solutions. They have become common for meteorological model applications in recent years, especially to enhance weather forecast and to support air-quality studies. In order to investigate the influence of different data assimilation techniques on the meteorological fields produced by RAMS model, and to evaluate their effects on the ozone and PM{sub 10} concentrations predicted by FARM model, several numeric experiments were conducted over the urban area of Rome, Italy, during a summer episode.

  12. Evaluation of data assimilation techniques for a mesoscale meteorological model and their effects on air quality model results

    Science.gov (United States)

    Amicarelli, A.; Gariazzo, C.; Finardi, S.; Pelliccioni, A.; Silibello, C.

    2008-05-01

    Data assimilation techniques are methods to limit the growth of errors in a dynamical model by allowing observations distributed in space and time to force (nudge) model solutions. They have become common for meteorological model applications in recent years, especially to enhance weather forecast and to support air-quality studies. In order to investigate the influence of different data assimilation techniques on the meteorological fields produced by RAMS model, and to evaluate their effects on the ozone and PM10 concentrations predicted by FARM model, several numeric experiments were conducted over the urban area of Rome, Italy, during a summer episode.

  13. Evaluation of data assimilation techniques for a mesoscale meteorological model and their effects on air quality model results

    International Nuclear Information System (INIS)

    Amicarelli, A; Pelliccioni, A; Finardi, S; Silibello, C; Gariazzo, C

    2008-01-01

    Data assimilation techniques are methods to limit the growth of errors in a dynamical model by allowing observations distributed in space and time to force (nudge) model solutions. They have become common for meteorological model applications in recent years, especially to enhance weather forecast and to support air-quality studies. In order to investigate the influence of different data assimilation techniques on the meteorological fields produced by RAMS model, and to evaluate their effects on the ozone and PM 10 concentrations predicted by FARM model, several numeric experiments were conducted over the urban area of Rome, Italy, during a summer episode

  14. Application of data mining to the analysis of meteorological data for air quality prediction: A case study in Shenyang

    Science.gov (United States)

    Zhao, Chang; Song, Guojun

    2017-08-01

    Air pollution is one of the important reasons for restricting the current economic development. PM2.5 which is a vital factor in the measurement of air pollution is defined as a kind of suspended particulate matter with its equivalent diameter less than 25μm, which may enter the alveoli and therefore make a great impact on the human body. Meteorological factors are also one of the main factors affecting the production of PM2.5, therefore, it is essential to establish the model between meteorological factors and PM2.5 for the prediction. Data mining is a promising approach to model PM2.5 change, Shenyang which is one of the most important industrial city in Northeast China with severe air pollutions is set as the case city. Meteorological data (wind direction, wind speed, temperature, humidity, rainfall, etc.) from 2013 to 2015 and PM2.5 concentration data are used for this prediction. As to the requirements of the World Health Organization (WHO), three data mining models, whereby the predictions of PM2.5 are directly generated by the meteorological data. After assessment, the random forest model is appeared to offer better prediction performance than the other two. At last, the accuracy of the generated models are analysed.

  15. Association of ambient air pollution and meteorological factors with primary care visits at night due to asthma attack.

    Science.gov (United States)

    Yamazaki, Shin; Shima, Masayuki; Yoda, Yoshiko; Oka, Katsumi; Kurosaka, Fumitake; Shimizu, Shigeta; Takahashi, Hironobu; Nakatani, Yuji; Nishikawa, Jittoku; Fujiwara, Katsuhiko; Mizumori, Yasuyuki; Mogami, Akira; Yamada, Taku; Yamamoto, Nobuharu

    2013-09-01

    The association of outdoor air pollution and meteorological elements with primary care visits at night due to asthma attack was studied. A case-crossover study was conducted in a primary care clinic in Himeji City, Japan. The subjects were 956 children aged 0-14 years who visited the clinic with an asthma attack between the hours of 9 p.m. and 6 a.m. Daily concentrations of particulate matter, ozone, nitrogen dioxide, and a number of meteorological elements were measured, and a conditional logistic regression model was used to estimate odds ratios (ORs) of primary care visits per unit increment of air pollutants or meteorological elements. The analyses took into consideration the effects of seasonality. Of the 956 children, 73 (7.6 %) were aged asthma attack at night in the spring or summer was found. An inverse relation between suspended particulate matter and primary care visits due to asthma attack was detected in the winter. ORs in the summer per degree increment in daily mean temperature was 1.31 [95 % confidential interval (CI) 1.09-1.56], and ORs in the autumn per hourly increment in daily hours of sunshine was 0.94 (95 % CI 0.90-0.99). The findings of our study fail to support any association between daily mean concentration of air pollutant and primary care visits at night. However, we did find evidence indicating that certain meteorological elements may be associated with primary care visits.

  16. Study on the medical meteorological forecast of the number of hypertension inpatient based on SVR

    Science.gov (United States)

    Zhai, Guangyu; Chai, Guorong; Zhang, Haifeng

    2017-06-01

    The purpose of this study is to build a hypertension prediction model by discussing the meteorological factors for hypertension incidence. The research method is selecting the standard data of relative humidity, air temperature, visibility, wind speed and air pressure of Lanzhou from 2010 to 2012(calculating the maximum, minimum and average value with 5 days as a unit ) as the input variables of Support Vector Regression(SVR) and the standard data of hypertension incidence of the same period as the output dependent variables to obtain the optimal prediction parameters by cross validation algorithm, then by SVR algorithm learning and training, a SVR forecast model for hypertension incidence is built. The result shows that the hypertension prediction model is composed of 15 input independent variables, the training accuracy is 0.005, the final error is 0.0026389. The forecast accuracy based on SVR model is 97.1429%, which is higher than statistical forecast equation and neural network prediction method. It is concluded that SVR model provides a new method for hypertension prediction with its simple calculation, small error as well as higher historical sample fitting and Independent sample forecast capability.

  17. Tonopah Test Range Air Monitoring: CY2012 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A; Nikolich, George; Shadel, Craig; McCurdy, Greg; Miller, Julianne J

    2013-07-01

    In 1963, the Atomic Energy Commission (AEC), predecessor to the US Department of Energy (DOE), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range (NAFR)). Operation Roller Coaster consisted of four tests in which chemical explosions were detonated in the presence of nuclear devices to assess the dispersal of radionuclides and evaluate the effectiveness of storage structures to contain the ejected radionuclides. These tests resulted in dispersal of plutonium over the ground surface downwind of the test ground zero. Three tests, Clean Slate 1, 2, and 3, were conducted on the TTR in Cactus Flat; the fourth, Double Tracks, was conducted in Stonewall Flat on the NTTR. DOE is working to clean up and close all four sites. Substantial cleaned up has been accomplished at Double Tracks and Clean Slate 1. Cleanup of Clean Slate 2 and 3 is on the DOE planning horizon for some time in the next several years. The Desert Research Institute installed two monitoring stations, number 400 at the Sandia National Laboratories Range Operations Center and number 401 at Clean Slate 3, in 2008 and a third monitoring station, number 402 at Clean Slate 1, in 2011 to measure radiological, meteorological, and dust conditions. The primary objectives of the data collection and analysis effort are to (1) monitor the concentration of radiological parameters in dust particles suspended in air, (2) determine whether winds are re-distributing radionuclides or contaminated soil material, (3) evaluate the controlling meteorological conditions if wind transport is occurring, and (4) measure ancillary radiological, meteorological, and environmental parameters that might provide insight to the above assessments. The following observations are based on data collected during CY2012. The mean annual concentration of gross alpha and gross beta is highest at Station 400 and lowest at Station

  18. Annual report 2004 of the air-quality and meteorological measurements of the Federal Environment Agency Austria

    International Nuclear Information System (INIS)

    Spangl, W.; Nagl, C.; Leeb, C.

    2005-01-01

    The air quality and meteorological measurements performed in several stations (Enzenkirchen, Illmitz, Pillersdorf, St. Koloman, St. Sigmund, Sonnblick, Stolzalpe, Sulzberg, Vorhegg and Zoebelboden) in Austria during 2004 are given. These activities were performed to fulfill the Emissions Protection law (Immissionsschutzgesetz-Luft) and the Ozone Law (Ozongesetz) as well as to collaborate with the Global Atmosphere Watch-measurement program of the World Meteorological Organization. The following pollutants were measured: ozone, PM10, PM2.5, PM1, carbon dioxide, carbon monoxide, nitrogen oxides, sulfur dioxide, heavy metals (lead, cadmium, arsenic, nickel), VOC (benzene, toluene, xylenes, alkenes, alkanes), atmospheric precipitations (SO 4 2- , NO 3 - -N, NH 4 + -N, Na + , Mg 2+ , Ca 2+ , Cl - , K + ), methane. The meteorological measurements were wind, temperature, global radiations, duration of sun shine, rainfall precipitation. figs. 32, tabs. 45 (nevyjel)

  19. One multi-media environmental system with linkage between meteorology/ hydrology/ air quality models and water quality model

    Science.gov (United States)

    Tang, C.; Lynch, J. A.; Dennis, R. L.

    2016-12-01

    The biogeochemical processing of nitrogen and associated pollutants is driven by meteorological and hydrological processes in conjunction with pollutant loading. There are feedbacks between meteorology and hydrology that will be affected by land-use change and climate change. Changes in meteorology will affect pollutant deposition. It is important to account for those feedbacks and produce internally consistent simulations of meteorology, hydrology, and pollutant loading to drive the (watershed/water quality) biogeochemical models. In this study, the ecological response to emission reductions in streams in the Potomac watershed was evaluated. Firstly, we simulated the deposition by using the fully coupled Weather Research & Forecasting (WRF) model and the Community Multiscale Air Quality (CAMQ) model; secondly, we created the hydrological data by the offline linked Variable Infiltration Capacity (VIC) model and the WRF model. Lastly, we investigated the water quality by one comprehensive/environment model, namely the linkage of CMAQ, WRF, VIC and the Model of Acidification of Groundwater In Catchment (MAGIC) model from 2002 to 2010.The simulated results (such as NO3, SO4, and SBC) fit well to the observed values. The linkage provides a generally accurate, well-tested tool for evaluating sensitivities to varying meteorology and environmental changes on acidification and other biogeochemical processes, with capability to comprehensively explore strategic policy and management design.

  20. Investigating the influence of photocatalytic cool wall adoption on meteorology and air quality in the Los Angeles basin

    Science.gov (United States)

    Zhang, J.; Tang, X.; Levinson, R.; Destaillats, H.; Mohegh, A.; Li, Y.; Tao, W.; Liu, J.; Ban-Weiss, G. A.

    2017-12-01

    Solar reflective "cool materials" can be used to lower urban temperatures, useful for mitigating the urban heat island effect and adapting to the local impacts of climate change. While numerous past studies have investigated the climate impacts of cool surfaces, few studies have investigated their effects on air pollution. Meteorological changes from increases in surface albedo can lead to temperature and transport induced modifications in air pollutant concentrations. In an effort to maintain high albedos in polluted environments, cool surfaces can also be made using photocatalytic "self-cleaning" materials. These photocatalytic materials can also remove NOx from ambient air, with possible consequences on ambient gas and particle phase pollutant concentrations. In this research, we investigate the impact of widespread deployment of cool walls on urban meteorology and air pollutant concentrations in the Los Angeles basin. Both photocatalytic and standard (not photocatalytic) high albedo wall materials are investigated. Simulations using a coupled meteorology-chemistry model (WRF-Chem) show that cool walls could effectively decrease urban temperatures in the Los Angeles basin. Preliminary results indicate that meteorology-induced changes from adopting standard cool walls could lead to ozone concentration reductions of up to 0.5 ppb. NOx removal induced by photocatalytic materials was modeled by modifying the WRF-Chem dry deposition scheme, with deposition rates informed by laboratory measurements of various commercially available materials. Simulation results indicate that increased deposition of NOx by photocatalytic materials could increase ozone concentrations, analogous to the ozone "weekend effect" in which reduced weekend NOx emissions can lead to increases in ozone. The impacts of cool walls on particulate matter concentrations are also discussed. Changes in particulate matter concentrations are found to be driven by albedo-induced changes in air pollutant

  1. Performance assessment of retrospective meteorological inputs for use in air quality modeling during TexAQS 2006

    Science.gov (United States)

    Ngan, Fong; Byun, Daewon; Kim, Hyuncheol; Lee, Daegyun; Rappenglück, Bernhard; Pour-Biazar, Arastoo

    2012-07-01

    To achieve more accurate meteorological inputs than was used in the daily forecast for studying the TexAQS 2006 air quality, retrospective simulations were conducted using objective analysis and 3D/surface analysis nudging with surface and upper observations. Model ozone using the assimilated meteorological fields with improved wind fields shows better agreement with the observation compared to the forecasting results. In the post-frontal conditions, important factors for ozone modeling in terms of wind patterns are the weak easterlies in the morning for bringing in industrial emissions to the city and the subsequent clockwise turning of the wind direction induced by the Coriolis force superimposing the sea breeze, which keeps pollutants in the urban area. Objective analysis and nudging employed in the retrospective simulation minimize the wind bias but are not able to compensate for the general flow pattern biases inherited from large scale inputs. By using an alternative analyses data for initializing the meteorological simulation, the model can re-produce the flow pattern and generate the ozone peak location closer to the reality. The inaccurate simulation of precipitation and cloudiness cause over-prediction of ozone occasionally. Since there are limitations in the meteorological model to simulate precipitation and cloudiness in the fine scale domain (less than 4-km grid), the satellite-based cloud is an alternative way to provide necessary inputs for the retrospective study of air quality.

  2. MP3 - A Meteorology and Physical Properties Package to explore Air:Sea interaction on Titan

    Science.gov (United States)

    Lorenz, R. D.

    2012-04-01

    The exchange of mass, heat and momentum at the air:sea interface are profound influences on our environment. Titan presents us with an opportunity to study these processes in a novel physical context. The MP3 instrument, under development for the proposed Discovery mission TiME (Titan Mare Explorer) is an integrated suite of small, simple sensors that combines the a traditional meteorology package with liquid physical properties and depth-sounding. In TiME's 6-Titan-day (96-day) nominal mission, MP3 will have an extended measurement opportunity in one of the most evocative environments in the solar system. The mission and instrument benefit from APL's expertise and experience in marine as well as space systems. The topside meteorology sensors (METH, WIND, PRES, TEMP) will yield the first long-duration in-situ data to constrain Global Circulation Models. The sea sensors (TEMP, TURB, DIEL, SOSO) allow high cadence bulk composition measurements to detect heterogeneities as the TiME capsule drifts across Ligeia, while a depth sounder (SONR) will measure the bottom profile. The combination of these sensors (and vehicle dynamics, ACCL) will characterize air:sea exchange. In addition to surface data, a measurement subset (ACCL, PRES, METH, TEMP) is made during descent to characterize the structure of the polar troposphere and marine boundary layer. A single electronics box inside the vehicle performs supervising and data handling functions and is connected to the sensors on the exterior via a wire and fiber optic harness. ACCL: MEMS accelerometers and angular rate sensors measure the vehicle motion during descent and on the surface, to recover wave amplitude and period and to correct wind measurements for vehicle motion. TEMP: Precision sensors are installed at several locations above and below the 'waterline' to measure air and sea temperatures. Installation of topside sensors at several locations ensures that at least one is on the upwind side of the vehicle. PRES: The

  3. Assessment of air quality benefits from national air pollution control policies in China. Part I: Background, emission scenarios and evaluation of meteorological predictions

    Science.gov (United States)

    Wang, Litao; Jang, Carey; Zhang, Yang; Wang, Kai; Zhang, Qiang; Streets, David; Fu, Joshua; Lei, Yu; Schreifels, Jeremy; He, Kebin; Hao, Jiming; Lam, Yun-Fat; Lin, Jerry; Meskhidze, Nicholas; Voorhees, Scott; Evarts, Dale; Phillips, Sharon

    2010-09-01

    Under the 11th Five Year Plan (FYP, 2006-2010) for national environmental protection by the Chinese government, the overarching goal for sulfur dioxide (SO 2) controls is to achieve a total national emissions level of SO 2 in 2010 10% lower than the level in 2005. A similar nitrogen oxides (NO x) emissions control plan is currently under development and could be enforced during the 12th FYP (2011-2015). In this study, the U.S. Environmental Protection Agency (U.S.EPA)'s Community Multi-Scale Air Quality (Models-3/CMAQ) modeling system was applied to assess the air quality improvement that would result from the targeted SO 2 and NO x emission controls in China. Four emission scenarios — the base year 2005, the 2010 Business-As-Usual (BAU) scenario, the 2010 SO 2 control scenario, and the 2010 NO x control scenario—were constructed and simulated to assess the air quality change from the national control plan. The Fifth-Generation NCAR/Penn State Mesoscale Model (MM5) was applied to generate the meteorological fields for the CMAQ simulations. In this Part I paper, the model performance for the simulated meteorology was evaluated against observations for the base case in terms of temperature, wind speed, wind direction, and precipitation. It is shown that MM5 model gives an overall good performance for these meteorological variables. The generated meteorological fields are acceptable for using in the CMAQ modeling.

  4. Urban air pollution and meteorological factors affect emergency department visits of elderly patients with chronic obstructive pulmonary disease in Taiwan.

    Science.gov (United States)

    Ding, Pei-Hsiou; Wang, Gen-Shuh; Guo, Yue-Leon; Chang, Shuenn-Chin; Wan, Gwo-Hwa

    2017-05-01

    Both air pollution and meteorological factors in metropolitan areas increased emergency department (ED) visits from people with chronic obstructive pulmonary disease (COPD). Few studies investigated the associations between air pollution, meteorological factors, and COPD-related health disorders in Asian countries. This study aimed to investigate the relationship between the environmental factors and COPD-associated ED visits of susceptible elderly population in the largest Taiwanese metropolitan area (Taipei area, including Taipei city and New Taipei city) between 2000 and 2013. Data of air pollutant concentrations (PM 10 , PM 2.5 , O 3 , SO 2 , NO 2 and CO), meteorological factors (daily temperature, relative humidity and air pressure), and daily COPD-associated ED visits were collected from Taiwan Environmental Protection Administration air monitoring stations, Central Weather Bureau stations, and the Taiwan National Health Insurance database in Taipei area. We used a case-crossover study design and conditional logistic regression models with odds ratios (ORs), and 95% confidence intervals (CIs) for evaluating the associations between the environmental factors and COPD-associated ED visits. Analyses showed that PM 2.5 , O 3 , and SO 2 had significantly greater lag effects (the lag was 4 days for PM 2.5 , and 5 days for O 3 and SO 2 ) on COPD-associated ED visits of the elderly population (65-79 years old). In warmer days, a significantly greater effect on elderly COPD-associated ED visits was estimated for PM 2.5 with coexistence of O 3 . Additionally, either O 3 or SO 2 combined with other air pollutants increased the risk of elderly COPD-associated ED visits in the days of high relative humidity and air pressure difference, respectively. This study showed that joint effect of urban air pollution and meteorological factors contributed to the COPD-associated ED visits of the susceptible elderly population in the largest metropolitan area in Taiwan. Government

  5. The role of meteorological conditions and pollution control strategies in reducing air pollution in Beijing during APEC 2014 and Victory Parade 2015

    Science.gov (United States)

    Liang, Pengfei; Zhu, Tong; Fang, Yanhua; Li, Yingruo; Han, Yiqun; Wu, Yusheng; Hu, Min; Wang, Junxia

    2017-11-01

    To control severe air pollution in China, comprehensive pollution control strategies have been implemented throughout the country in recent years. To evaluate the effectiveness of these strategies, the influence of meteorological conditions on levels of air pollution needs to be determined. Using the intensive air pollution control strategies implemented during the Asia-Pacific Economic Cooperation Forum in 2014 (APEC 2014) and the 2015 China Victory Day Parade (Victory Parade 2015) as examples, we estimated the role of meteorological conditions and pollution control strategies in reducing air pollution levels in Beijing. Atmospheric particulate matter of aerodynamic diameter ≤ 2.5 µm (PM2.5) samples were collected and gaseous pollutants (SO2, NO, NOx, and O3) were measured online at a site in Peking University (PKU). To determine the influence of meteorological conditions on the levels of air pollution, we first compared the air pollutant concentrations during days with stable meteorological conditions. However, there were few days with stable meteorological conditions during the Victory Parade. As such, we were unable to estimate the level of emission reduction efforts during this period. Finally, a generalized linear regression model (GLM) based only on meteorological parameters was built to predict air pollutant concentrations, which could explain more than 70 % of the variation in air pollutant concentration levels, after incorporating the nonlinear relationships between certain meteorological parameters and the concentrations of air pollutants. Evaluation of the GLM performance revealed that the GLM, even based only on meteorological parameters, could be satisfactory to estimate the contribution of meteorological conditions in reducing air pollution and, hence, the contribution of control strategies in reducing air pollution. Using the GLM, we found that the meteorological conditions and pollution control strategies contributed 30 and 28 % to the reduction

  6. Future climate impact on unfavorable meteorological conditions for the dispersion of air pollution in Brussels

    Science.gov (United States)

    De Troch, Rozemien; Berckmans, Julie; Giot, Olivier; Hamdi, Rafiq; Termonia, Piet

    2015-04-01

    Belgium is one of the several countries in Europe where air quality levels of different pollutants such as ozone, NOx, and Particulate Matter (PM) still exceed the prescribed European norms multiple times a year (EEA, 2014). These pollution peaks have a great impact on health and environment, in particular in large cities and urban environments. It is well known that observed concentrations of air pollutants are strongly influenced by emissions and meteorological conditions and therefore is sensitive to climate change. As the effects of global climate change are increasingly felt in Belgium, policy makers express growing interest in quantifying its effect on air pollution and the effort required to meet the air quality targets in the next years and decennia (Lauwaet et al., 2014). In this study, two different stability indices are calculated for a 9-year period using present (1991-1999) and future (2047-2055) climate data that has been obtained from a dynamically downscaling of Global Climate Model data from the Arpège model using the ALARO model at 4 km spatial resolution. The ALARO model is described in detail in previous validation studies from De Troch et al. (2013) and Hamdi et al. (2013). The first index gives a measure of the horizontal and vertical transport of nonreactive pollutants in stable atmospheric conditions and has been proposed and tested by Termonia and Quinet (2004). It gives a characteristic length scale l which is the ratio of the mean horizontal wind speed and the Brunt-Väisälä frequency. In this way low values for l in the lower part of the boundary layer during an extended time span of 12 hours, correspond to calm situations and a stable atmosphere and thus indicate unfavorable conditions for the dispersion of air pollution. This transport index is similar to an index used in an old Pasquill-type scheme but is more convenient to use to detect the strongest pollution peaks. The well known Pasquill classes are also calculated in order to

  7. Tonopah Test Range Air Monitoring. CY2014 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Nikoloch, George [Desert Research Inst. (DRI), Las Vegas, NV (United States); Shadel, Craig [Desert Research Inst. (DRI), Las Vegas, NV (United States); Chapman, Jenny [Desert Research Inst. (DRI), Las Vegas, NV (United States); Mizell, Steve A. [Desert Research Inst. (DRI), Las Vegas, NV (United States); McCurdy, Greg [Desert Research Inst. (DRI), Las Vegas, NV (United States); Etyemezian, Vicken [Desert Research Inst. (DRI), Las Vegas, NV (United States); Miller, Julianne J. [Desert Research Inst. (DRI), Las Vegas, NV (United States)

    2015-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during ongoing monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2014 monitoring are: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2014 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations; (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. Differences in the observed dust concentrations are likely the result of differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  8. Tonopah Test Range Air Monitoring: CY2013 Meteorological, Radiological, and Airborne Particulate Observations

    Energy Technology Data Exchange (ETDEWEB)

    Mizell, Steve A [DRI; Nikolich, George [DRI; Shadel, Craig [DRI; McCurdy, Greg [DRI; Etyemezian, Vicken [DRI; Miller, Julianne J [DRI

    2014-10-01

    In 1963, the U.S. Department of Energy (DOE) (formerly the Atomic Energy Commission [AEC]), implemented Operation Roller Coaster on the Tonopah Test Range (TTR) and an adjacent area of the Nevada Test and Training Range (NTTR) (formerly the Nellis Air Force Range). This test resulted in radionuclide-contaminated soils at Clean Slate I, II, and III. This report documents observations made during on-going monitoring of radiological, meteorological, and dust conditions at stations installed adjacent to Clean Slate I and Clean Slate III and at the TTR Range Operations Control center. The primary objective of the monitoring effort is to determine if winds blowing across the Clean Slate sites are transporting particles of radionuclide-contaminated soils beyond both the physical and administrative boundaries of the sites. Results for the calendar year (CY) 2013 monitoring include: (1) the gross alpha and gross beta values from the monitoring stations are approximately equivalent to the highest values observed during the CY2012 reporting at the surrounding Community Environmental Monitoring Program (CEMP) stations (this was the latest documented data available at the time of this writing); (2) only naturally occurring radionuclides were identified in the gamma spectral analyses; (3) the ambient gamma radiation measurements indicate that the average annual gamma exposure is similar at all three monitoring stations and periodic intervals of increased gamma values appear to be associated with storm fronts passing through the area; and (4) the concentrations of both resuspended dust and saltated sand particles generally increase with increasing wind speed. However, differences in the observed dust concentrations are likely due to differences in the soil characteristics immediately adjacent to the monitoring stations. Neither the resuspended particulate radiological analyses nor the ambient gamma radiation measurements suggest wind transport of radionuclide-contaminated soils.

  9. AICE Survey of USSR Air Pollution Literature, Volume 12: Technical Papers from the Leningrad International Symposium on the Meteorological Aspects of Atmospheric Pollution, Part I.

    Science.gov (United States)

    Nuttonson, M. Y.

    Twelve papers dealing with the meteorological aspects of air pollution were translated. These papers were initially presented at an international symposium held in Leningrad during July 1968. The papers are: Status and prospective development of meteorological studies of atmospheric pollution, Effect of the stability of the atmosphere on the…

  10. The occurrence of Ganoderma spores in the air and its relationships with meteorological factors

    Directory of Open Access Journals (Sweden)

    Agnieszka Grinn-Gofroń

    2012-12-01

    Full Text Available According to a recent study, Ganoderma may be the third genus, after Alternaria and Cladosporium, whose spores cause symptoms of allergy and whose levels are directly related to meteorological factors. There are only few articles from different parts of the world about the relationships between Ganoderma spore count and meteorological factors. The aim of the study was to review all available publications about airborne Ganoderma spores and to compare the results in a short useful form.

  11. Long-term meteorologically independent trend analysis of ozone air quality at an urban site in the greater Houston area.

    Science.gov (United States)

    Botlaguduru, Venkata S V; Kommalapati, Raghava R; Huque, Ziaul

    2018-04-19

    The Houston-Galveston-Brazoria (HGB) area of Texas has a history of ozone exceedances and is currently classified under moderate nonattainment status for the 2008 8-hr ozone standard of 75 ppb. The HGB area is characterized by intense solar radiation, high temperature, and humidity, which influence day-to-day variations in ozone concentrations. Long-term air quality trends independent of meteorological influence need to be constructed for ascertaining the effectiveness of air quality management in this area. The Kolmogorov-Zurbenko (KZ) filter technique used to separate different scales of motion in a time series, is applied in the current study for maximum daily 8-hr (MDA8) ozone concentrations at an urban site (EPA AQS Site ID: 48-201-0024, Aldine) in the HGB area. This site located within 10 miles of downtown Houston and the George Bush Intercontinental Airport, was selected for developing long-term meteorologically independent MDA8 ozone trends for the years 1990-2016. Results from this study indicate a consistent decrease in meteorologically independent MDA8 ozone between 2000-2016. This pattern could be partially attributed to a reduction in underlying NO X emissions, particularly that of lowering nitrogen dioxide (NO 2 ) levels, and a decrease in the release of highly reactive volatile organic compounds (HRVOC). Results also suggest solar radiation to be most strongly correlated to ozone, with temperature being the secondary meteorological control variable. Relative humidity and wind speed have tertiary influence at this site. This study observed that meteorological variability accounts for a high of 61% variability in baseline ozone (low-frequency component, sum of long-term and seasonal components), while 64% of the change in long-term MDA8 ozone post-2000 could be attributed to NO X emissions reduction. Long-term MDA8 ozone trend component was estimated to be decreasing at a linear rate of 0.412 ± 0.007 ppb/yr for the years 2000-2016, and 0.155

  12. Meteorological and air quality impacts of increased urban albedo and vegetative cover in the Greater Toronto Area, Canada; FINAL

    International Nuclear Information System (INIS)

    Taha, Haider; Hammer, Hillel; Akbari, Hashem

    2002-01-01

    The study described in this report is part of a project sponsored by the Toronto Atmospheric Fund, performed at the Lawrence Berkeley National Laboratory, to assess the potential role of surface property modifications on energy, meteorology, and air quality in the Greater Toronto Area (GTA), Canada. Numerical models were used to establish the possible meteorological and ozone air-quality impacts of increased urban albedo and vegetative fraction, i.e., ''cool-city'' strategies that can mitigate the urban heat island (UHI), significantly reduce urban energy consumption, and improve thermal comfort, particularly during periods of hot weather in summer. Mitigation is even more important during critical heat wave periods with possible increased heat-related hospitalization and mortality. The evidence suggests that on an annual basis cool-city strategies are beneficial, and the implementation of such measures is currently being investigated in the U.S. and Canada. We simulated possible scenari os for urban heat-island mitigation in the GTA and investigated consequent meteorological changes, and also performed limited air-quality analysis to assess related impacts. The study was based on a combination of mesoscale meteorological modeling, Lagrangian (trajectory), and photochemical trajectory modeling to assess the potential meteorological and ozone air-quality impacts of cool-city strategies. As available air-quality and emissions data are incompatible with models currently in use at LBNL, our air-quality analysis was based on photochemical trajectory modeling. Because of questions as to the accuracy and appropriateness of this approach, in our opinion this aspect of the study can be improved in the future, and the air-quality results discussed in this report should be viewed as relatively qualitative. The MM5 meteorological model predicts a UHI in the order of 2 to 3 degrees C in locations of maxima, and about 1 degree C as a typical value over most of the urban area

  13. Application of a mesoscale forecasting model (NMM) coupled to the CALMET to develop forecast meteorology to use with the CALPUFF air dispersion model

    International Nuclear Information System (INIS)

    Radonjic, Z.; Telenta, B.; Kirklady, J.; Chambers, D.; Kleb, H.

    2006-01-01

    An air quality assessment was undertaken as part of the Environmental Assessment for the Port Hope Area Initiative. The assessment predicted potential effects associated with the remediation efforts for historic low-level radioactive wastes and construction of Long-Term Waste Management Facilities (LTWMFs) for both the Port Hope and Port Granby Projects. A necessary element of air dispersion modelling is the development of suitable meteorological data. For the Port Hope and Port Granby Projects, a meteorological station was installed in close proximity to the location of the recommended LTWMF in Port Hope. The recommended location for the Port Granby LTWMF is approximately 10 km west of the Port Hope LTWMF. Concerns were raised regarding the applicability of data collected for the Port Hope meteorological station to the Port Granby Site. To address this concern, a new method for processing meteorological data, which coupled mesoscale meteorological forecasting data the U.S. EPA CALMET meteorological data processor, was applied. This methodology is possible because a new and advanced mesoscale forecasting modelling system enables extensive numerical calculations on personal computers. As a result of this advancement, mesoscale forecasting systems can now be coupled with the CALMET meteorological data processor and the CALPUFF air dispersion modelling system to facilitate wind field estimations and air dispersion analysis. (author)

  14. Study variation of PM-10 air pollution at Lang Meteorological Station, Hanoi Coded: CS/02/04-06

    International Nuclear Information System (INIS)

    Vuong Thu Bac; Dinh Thien Lam; Ngyen Thi Hong Thinh; Dang Duc Nhan; Nguyen Hao Quang; Pham Duy Hien

    2003-01-01

    577 air dust samples have been collected with two kinds of air samplers (2-SFU, 1-ASP) on every Wednesday and Sunday for 24 hours at both of monitoring stations (Lang - Hanoi and Lucnam - Bacgiang). PM(2.5), PM(2.5-10), PM(10) and BC concentrations in 452 air dust samples have been determined. 9032 data have been analyzed with many of different multi-elements analytical techniques (IC: 264 samples x 9 ions, PIXE: 388 samples x 15 elements, XRF: 48 samples x 8 elements, LR: 452 samples x 1 element). Over 6000 of meteorological parameters (T, Rain, WS, WD, RH...) have been collected and processed.Variations and levels of air dust concentrations and BC in Hanoi from 1998 to 2002 have been studied. PM(2.5), PM(2.5-10), PM(10) and BC concentrations and BC obviously periodically vary. They reach maximum in the winter season, especially in December and January, sometimes they reached 300-400 μg.m -3 , They reach minimum in the summer season, sometimes they went down 10 μg.m -3 on rainy days. These variations were affected by meteorological parameters. PM(2.5), PM(10) daily average concentrations in Hanoi are greater than the American air standards (PM(2.5): 65 μg.m -3 , PM(10): 150 μg.m -3 ) in many days and their yearly average concentrations are also far exceeded. Air dust pollution levels in Hanoi are higher than in developed countries and even countries in the region. BC (5.9 μg.m -3 ) concentration and Pb (0.11 μg.m -3 ) are also higher than in many countries. (VTB)

  15. Relationship between meteorological phenomena and air pollution in an urbanized and industrialized coastal area in northern France

    Science.gov (United States)

    Gengembre, Cyril; Zhang, Shouwen; Dieudonné, Elsa; Sokolov, Anton; Augustin, Patrick; Riffault, Véronique; Dusanter, Sébastien; Fourmentin, Marc; Delbarre, Hervé

    2016-04-01

    Impacts of global climate evolution are quite uncertain at regional and local scales, especially on air pollution. Air quality is associated with local atmospheric dynamics at a time scale shorter than a few weeks, while the climate change time scale is on the order of fifty years. To infer consequences of climate evolution on air pollution, it is necessary to fill the gap between these different scales. Another challenge is to understand the effect of global warming on the frequency of meteorological phenomena that influence air pollution. In this work, we classified meteorological events related to air pollution during a one-year long field campaign in Dunkirk (northern France). Owing to its coastal location under urban and industrial exposures, the Dunkirk agglomeration is an interesting area for studying gaseous and aerosols pollutants and their relationship with weather events such as sea breezes, fogs, storms and fronts. The air quality in the northern region of France is also greatly influenced by highly populated and industrialized cities along the coast of the North Sea, and by London and Paris agglomerations. During a field campaign, we used simultaneously a three-dimensional sonic anemometer and a weather station network, along with a scanning Doppler Lidar system to analyse the vertical structure of the atmosphere. An Aerosol Chemical Speciation Monitor enabled investigating the PM1 behaviour during the studied events. Air contaminants such as NOx (NO and NO2) were also measured by the regional pollution monitoring network ATMO Nord Pas-de-Calais. The events were identified by finding specific criteria from meteorological and turbulent parameters. Over a hundred cases of sea breezes, fog periods, stormy days and atmospheric front passages were investigated. Variations of turbulent parameters (vertical sensible heat flux and momentum flux) give estimations on the transport and the dispersal of pollutants. As the fluxes are weak during fogs, an increase

  16. Spatial and temporal analysis of Air Pollution Index and its timescale-dependent relationship with meteorological factors in Guangzhou, China, 2001–2011

    International Nuclear Information System (INIS)

    Li, Li; Qian, Jun; Ou, Chun-Quan; Zhou, Ying-Xue; Guo, Cui; Guo, Yuming

    2014-01-01

    There is an increasing interest in spatial and temporal variation of air pollution and its association with weather conditions. We presented the spatial and temporal variation of Air Pollution Index (API) and examined the associations between API and meteorological factors during 2001–2011 in Guangzhou, China. A Seasonal-Trend Decomposition Procedure Based on Loess (STL) was used to decompose API. Wavelet analyses were performed to examine the relationships between API and several meteorological factors. Air quality has improved since 2005. APIs were highly correlated among five monitoring stations, and there were substantial temporal variations. Timescale-dependent relationships were found between API and a variety of meteorological factors. Temperature, relative humidity, precipitation and wind speed were negatively correlated with API, while diurnal temperature range and atmospheric pressure were positively correlated with API in the annual cycle. Our findings should be taken into account when determining air quality forecasts and pollution control measures. - Highlights: • Air pollution is still serious in Guangzhou, China. • Air Pollution Index was associated with a variety of meteorological parameters. • The temporal relationships were timescale-dependent. • The findings should be taken into account in air quality forecasts and pollution control. - Spatial and temporal variation of API and its timescale-dependent relationship with meteorological factors in Guangzhou were demonstrated

  17. PLAM - a meteorological pollution index for air quality and its applications in fog-haze forecasts in North China

    Science.gov (United States)

    Yang, Y. Q.; Wang, J. Z.; Gong, S. L.; Zhang, X. Y.; Wang, H.; Wang, Y. Q.; Wang, J.; Li, D.; Guo, J. P.

    2016-02-01

    Using surface meteorological observation and high-resolution emission data, this paper discusses the application of the PLAM/h index (Parameter Linking Air-quality to Meteorological conditions/haze) in the prediction of large-scale low visibility and fog-haze events. Based on the two-dimensional probability density function diagnosis model for emissions, the study extends the diagnosis and prediction of the meteorological pollution index PLAM to the regional visibility fog-haze intensity. The results show that combining the influence of regular meteorological conditions and emission factors together in the PLAM/h parameterization scheme is very effective in improving the diagnostic identification ability of the fog-haze weather in North China. The determination coefficients for four seasons (spring, summer, autumn, and winter) between PLAM/h and visibility observation are 0.76, 0.80, 0.96, and 0.86, respectively, and all of their significance levels exceed 0.001, showing the ability of PLAM/h to predict the seasonal changes and differences of fog-haze weather in the North China region. The high-value correlation zones are located in Jing-Jin-Ji (Beijing, Tianjin, Hebei), Bohai Bay rim, and southern Hebei-northern Henan, indicating that the PLAM/h index is related to the distribution of frequent heavy fog-haze weather in North China and the distribution of emission high-value zone. Through comparative analysis of the heavy fog-haze events and large-scale clear-weather processes in winter and summer, it is found that PLAM/h index 24 h forecast is highly correlated with the visibility observation. Therefore, the PLAM/h index has good capability in identification, analysis, and forecasting.

  18. Impacts of emission reduction and meteorological conditions on air quality improvement during the 2014 Youth Olympic Games in Nanjing, China

    Directory of Open Access Journals (Sweden)

    Q. Huang

    2017-11-01

    Full Text Available As the holding city of the 2nd Youth Olympic Games (YOG, Nanjing is highly industrialized and urbanized, and faces several air pollution issues. In order to ensure better air quality during the event, the local government took great efforts to control the emissions from pollutant sources. However, air quality can still be affected by synoptic weather, not only emission. In this paper, the influences of meteorological factors and emission reductions were investigated using observational data and numerical simulations with WRF–CMAQ (Weather Research and Forecasting – Community Multiscale Air Quality. During the month in which the YOG were held (August 2014, the observed hourly mean concentrations of SO2, NO2, PM10, PM2.5, CO and O3 were 11.6 µg m−3, 34.0 µg m−3, 57.8 µg m−3, 39.4 µg m−3, 0.9 mg m−3 and 38.8 µg m−3, respectively, which were below China National Ambient Air Quality Standard (level 2. However, model simulation showed that the weather conditions, such as weaker winds during the YOG, were adverse for better air quality and could increase SO2, NO2, PM10, PM2.5 and CO by 17.5, 16.9, 18.5, 18.8, 7.8 and 0.8 %. Taking account of local emission abatement only, the simulated SO2, NO2, PM10, PM2.5 and CO decreased by 24.6, 12.1, 15.1, 8.1 and 7.2 %. Consequently, stringent emission control measures can reduce the concentrations of air pollutants in the short term, and emission reduction is very important for air quality improvement during the YOG. A good example has been set for air quality protection for important social events.

  19. Impacts of emission reduction and meteorological conditions on air quality improvement during the 2014 Youth Olympic Games in Nanjing, China

    Science.gov (United States)

    Huang, Qian; Wang, Tijian; Chen, Pulong; Huang, Xiaoxian; Zhu, Jialei; Zhuang, Bingliang

    2017-11-01

    As the holding city of the 2nd Youth Olympic Games (YOG), Nanjing is highly industrialized and urbanized, and faces several air pollution issues. In order to ensure better air quality during the event, the local government took great efforts to control the emissions from pollutant sources. However, air quality can still be affected by synoptic weather, not only emission. In this paper, the influences of meteorological factors and emission reductions were investigated using observational data and numerical simulations with WRF-CMAQ (Weather Research and Forecasting - Community Multiscale Air Quality). During the month in which the YOG were held (August 2014), the observed hourly mean concentrations of SO2, NO2, PM10, PM2.5, CO and O3 were 11.6 µg m-3, 34.0 µg m-3, 57.8 µg m-3, 39.4 µg m-3, 0.9 mg m-3 and 38.8 µg m-3, respectively, which were below China National Ambient Air Quality Standard (level 2). However, model simulation showed that the weather conditions, such as weaker winds during the YOG, were adverse for better air quality and could increase SO2, NO2, PM10, PM2.5 and CO by 17.5, 16.9, 18.5, 18.8, 7.8 and 0.8 %. Taking account of local emission abatement only, the simulated SO2, NO2, PM10, PM2.5 and CO decreased by 24.6, 12.1, 15.1, 8.1 and 7.2 %. Consequently, stringent emission control measures can reduce the concentrations of air pollutants in the short term, and emission reduction is very important for air quality improvement during the YOG. A good example has been set for air quality protection for important social events.

  20. Meteorological conditions during a severe, prolonged regional heavy air pollution episode in eastern China from December 2016 to January 2017

    Science.gov (United States)

    Deng, Xueliang; Cao, Weihua; Huo, Yanfeng; Yang, Guanying; Yu, Caixia; He, Dongyan; Deng, Weitao; Fu, Wei; Ding, Heming; Zhai, Jing; Cheng, Long; Zhao, Xuhui

    2018-03-01

    A severe, prolonged and harmful regional heavy air pollution episode occurred in eastern China from December 2016 to January 2017. In this paper, the pollutant characteristics and the meteorological formation mechanism of this pollution event, including climate anomalies, surface weather conditions, planetary boundary layer structure and large-scale circulation features, were analysed based on observational pollution data, surface meteorological data, sounding data and ERA-Interim reanalysis data. The results are as follows. (1) Five pollution stages were identified in eastern China. The two most severe episodes occurred from December 27, 2016 to January 4, 2017 and from January 8 to 12 2017. During these two pollution episodes, fine mode particles were major contributors, and hourly PM2.5 concentrations often exceeded 150 μg/m3, reaching a maximum of 333 μg/m3 at Fuyang station. Gaseous pollutants were transformed into secondary aerosols through heterogeneous reactions on the surface of PM2.5. (2) Compared with the same period over the years 2000-2016, 2017 presented meteorological field climate anomalies in conjunction with unfavourable surface conditions (weak winds, high relative humidity, fewer hours of sunshine, high cloud cover) and adverse atmospheric circulation (weak East Asian winter monsoon and an abnormal geopotential height of 500 hPa), which caused poorer visibility in 2017 than in the other analysed years. (3) During the development of heavy pollution event, unfavourable surface weather conditions, including poorer visibility, weaker pressure, higher relative humidity, lower wind speed with unfavourable wind direction and less precipitation suppressed the horizontal diffusion ability of air pollutants. Furthermore, the unfavourable structure of the atmospheric boundary layer was the key cause of the rapid PM2.5 increase. The deep, strong temperature inversion layer and weak vertical wind velocity could have suppressed vertical motion and enhanced

  1. Modeling monthly meteorological and agronomic frost days, based on minimum air temperature, in Center-Southern Brazil

    Science.gov (United States)

    Alvares, Clayton Alcarde; Sentelhas, Paulo César; Stape, José Luiz

    2017-09-01

    Although Brazil is predominantly a tropical country, frosts are observed with relative high frequency in the Center-Southern states of the country, affecting mainly agriculture, forestry, and human activities. Therefore, information about the frost climatology is of high importance for planning of these activities. Based on that, the aims of the present study were to develop monthly meteorological (F MET) and agronomic (F AGR) frost day models, based on minimum shelter air temperature (T MN), in order to characterize the temporal and spatial frost days variability in Center-Southern Brazil. Daily minimum air temperature data from 244 weather stations distributed across the study area were used, being 195 for developing the models and 49 for validating them. Multivariate regression models were obtained to estimate the monthly T MN, once the frost day models were based on this variable. All T MN regression models were statistically significant (p Brazilian region are the first zoning of these variables for the country.

  2. Green River air quality model development: meteorological and tracer data, July/August 1982 field study in Brush Valley, Colorado

    Energy Technology Data Exchange (ETDEWEB)

    Whiteman, C.D.; Lee, R.N.; Orgill, M.M.; Zak, B.D.

    1984-06-01

    Meteorological and atmospheric tracer studies were conducted during a 3-week period in July and August of 1982 in the Brush Creek Valley of northwestern Colorado. The objective of the field experiments was to obtain data to evaluate a model, called VALMET, developed at PNL to predict dispersion of air pollutants released from an elevated stack located within a deep mountain valley in the post-sunrise temperature inversion breakup period. Three tracer experiments were conducted in the valley during the 2-week period. In these experiments, sulfur hexafluoride (SF/sub 6/) was released from a height of approximately 100 m, beginning before sunrise and continuing until the nocturnal down-valley winds reversed several hours after sunrise. Dispersion of the sulfur hexafluoride after release was evaluated by measuring SF/sub 6/ concentrations in ambient air samples taken from sampling devices operated within the valley up to about 8 km down valley from the source. An instrumented research aircraft was also used to measure concentrations in and above the valley. Tracer samples were collected using a network of radio-controlled bag sampling stations, two manually operated gas chromatographs, a continuous SF/sub 6/ monitor, and a vertical SF/sub 6/ profiler. In addition, basic meteorological data were collected during the tracer experiments. Frequent profiles of vertical wind and temperature structure were obtained with tethered balloons operated at the release site and at a site 7.7 km down the valley from the release site. 10 references, 63 figures, 50 tables.

  3. Simulating air temperature in an urban street canyon in all weather conditions using measured data at a reference meteorological station

    Science.gov (United States)

    Erell, E.; Williamson, T.

    2006-10-01

    A model is proposed that adapts data from a standard meteorological station to provide realistic site-specific air temperature in a city street exposed to the same meso-scale environment. In addition to a rudimentary description of the two sites, the canyon air temperature (CAT) model requires only inputs measured at standard weather stations; yet it is capable of accurately predicting the evolution of air temperature in all weather conditions for extended periods. It simulates the effect of urban geometry on radiant exchange; the effect of moisture availability on latent heat flux; energy stored in the ground and in building surfaces; air flow in the street based on wind above roof height; and the sensible heat flux from individual surfaces and from the street canyon as a whole. The CAT model has been tested on field data measured in a monitoring program carried out in Adelaide, Australia, in 2000-2001. After calibrating the model, predicted air temperature correlated well with measured data in all weather conditions over extended periods. The experimental validation provides additional evidence in support of a number of parameterisation schemes incorporated in the model to account for sensible heat and storage flux.

  4. Role of meteorology in seasonality of air pollution in megacity Delhi, India.

    Science.gov (United States)

    Guttikunda, Sarath K; Gurjar, Bhola R

    2012-05-01

    The winters in megacity Delhi are harsh, smoggy, foggy, and highly polluted. The pollution levels are approximately two to three times those monitored in the summer months, and the severity is felt not only in the health department but also in the transportation department, with regular delays at airport operations and series of minor and major accidents across the road corridors. The impacts felt across the city are both manmade (due to the fuel burning) and natural (due to the meteorological setting), and it is hard to distinguish their respective proportions. Over the last decade, the city has gained from timely interventions to control pollution, and yet, the pollution levels are as bad as the previous year, especially for the fine particulates, the most harmful of the criteria pollutants, with a daily 2009 average of 80 to 100 μg/m(3). In this paper, the role of meteorology is studied using a Lagrangian model called Atmospheric Transport Modeling System in tracer mode to better understand the seasonality of pollution in Delhi. A clear conclusion is that irrespective of constant emissions over each month, the estimated tracer concentrations are invariably 40% to 80% higher in the winter months (November, December, and January) and 10% to 60% lower in the summer months (May, June, and July), when compared to annual average for that year. Along with monitoring and source apportionment studies, this paper presents a way to communicate complex physical characteristics of atmospheric modeling in simplistic manner and to further elaborate linkages between local meteorology and pollution.

  5. The covariance of air quality conditions in six cities in Southern Germany - The role of meteorology.

    Science.gov (United States)

    Dimitriou, Konstantinos; Kassomenos, Pavlos

    2017-01-01

    This paper analyzed air quality in six cities in Southern Germany (Ulm, Augsburg, Konstanz, Freiburg, Stuttgart and Munich), in conjunction with the prevailing synoptic conditions. Air quality was estimated through the calculation of a daily Air Stress Index (ASI) constituted by five independent components, each one expressing the contribution of one of the five main pollutants (PM 10 , O 3 , SO 2 , NO 2 and CO) to the total air stress. As it was deduced from ASI components, PM 10 from combustion sources and photochemically produced tropospheric O 3 are the most hazardous pollutants at the studied sites, throughout cold and warm periods respectively, yet PM 10 contribute substantially to the overall air stress during both seasons. The influence of anticyclonic high pressure systems, leading to atmospheric stagnation, was associated with increased ASI values, mainly due to the entrapment of PM 10 . Moderate air stress was generally estimated in all cities however a cleaner atmosphere was detected principally in Freiburg when North Europe was dominated by low pressure systems. Daily events of notably escalated ASI values were further analyzed with backward air mass trajectories. Throughout cold period, ASI episodes were commonly related to eastern airflows carrying exogenous PM 10 originated from eastern continental Europe. During warm period, ASI episodes were connected to the arrival of regionally circulated air parcels reflecting lack of dispersion and accumulation of pollutants in accordance with the synoptic analysis. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Meteorological utilization of measurements of the artificial radioactivity on the air and precipitation

    Energy Technology Data Exchange (ETDEWEB)

    Neuwirth, R

    1955-01-01

    German, French, and American measurements of the rainfall and air activity are being evaluated. For that purpose, trajectories from the experimental grounds for bomb tests in Nevada to Western Germany are drawn. By means of intermediate values, the test possibilities of air paths first only scheduled are given. The so-called deposit spaces and meridional circulations, which are significant particularly in divergence regions, prove to be of especial importance. The mechanism of activation of precipitation is discussed. A connexion between the activity of precipitation and air masses could only be found in individual cases. But it seems that semitropical air masses dispose of a higher specific activity in comparison with the polar air masses.

  7. Validity of meteorologic emission and imission parameters when simulating an air pollution episode

    International Nuclear Information System (INIS)

    Lazarevska, Ana; Mirchevski, Metodija

    2002-01-01

    The paper gives light to the current situation with air-quality monitoring in the region of the city of Skopje, compared to the WHO, EEA, US EPA guidelines in order to obtain relevant results when simulating an air pollution episode. The results of the comparative analysis of the regular measurements of SO 2 ground concentration in the city of Skopje, R. Macedonia and the ground concentrations obtained with the CALPUFF simulation show discrepancy up to 86,1%. The main origin of such discrepancy is due to the lack of needed quality and quantity of the input parameters for a regular air quality simulation in the concerned region. (Original)

  8. Correlation of trace element content in air particulates with solar meteorological data in the atmosphere of Athens

    International Nuclear Information System (INIS)

    Kanias, G.D.; Grimanis, A.P.; Viras, L.G.

    2003-01-01

    Relation between the trace element content in air particulates and solar meteorological data in the atmospheric environment of Athens, Greece, was studied. For this purpose, Sm, Br, As, Na, K, La, Ce, Cr, Ag, Sc, Fe, Zn, Co, Sb, Th were determined by INAA in respirable aerosols collected during winter 1993-1994. The results showed that the average cloudiness, sunshine, and the total solar radiation (sun and sky) on a horizontal surface, (3 variables) have no relation with trace element variation. However, diffuse solar radiation (sun and sky) on a horizontal surface seems to have statistically significant relationship with some of the trace element variation. It forms a single component with some trace elements after the application of the factor analysis. The increase of the same solar variable in the Athens City center, is one of the factors which cannot permit the emission of trace elements in the atmospheric environment from dust soil and car tires. (author)

  9. Building a QC Database of Meteorological Data From NASA KSC and the United States Air Force's Eastern Range

    Science.gov (United States)

    Brenton, James C.; Barbre, Robert E.; Orcutt, John M.; Decker, Ryan K.

    2018-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) Natural Environments Branch (EV44) has provided atmospheric databases and analysis in support of space vehicle design and day-of-launch operations for NASA and commercial launch vehicle programs launching from the NASA Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station. The ER is one of the most heavily instrumented sites in the United States measuring various atmospheric parameters on a continuous basis. An inherent challenge with the large databases that EV44 receives from the ER consists of ensuring erroneous data are removed from the databases, and thus excluded from launch vehicle design analyses. EV44 has put forth great effort in developing quality control (QC) procedures for individual meteorological instruments; however, no standard QC procedures for all databases currently exist resulting in QC databases that have inconsistencies in variables, methodologies, and periods of record. The goal of this activity is to use the previous efforts by EV44 to develop a standardized set of QC procedures from which to build flags within the meteorological databases from KSC and the ER, while maintaining open communication with end users from the launch community to develop ways to improve, adapt and grow the QC database. Details of the QC checks are described. The flagged data points will be plotted in a graphical user interface (GUI) as part of a manual confirmation that the flagged data do indeed need to be removed from the archive. As the rate of launches increases with additional launch vehicle programs, more emphasis is being placed to continually update and check weather databases for data quality before use in launch vehicle design and certification analyses.

  10. Analysis of air toxics, criteria pollutants and meteorological monitoring data in Valdez, Alaska

    International Nuclear Information System (INIS)

    Stopenhagen, K.W.; Kester, R.A.; Caniparoli, D.G.; Gravely, R.J.

    1991-01-01

    An ambient monitoring network began operation in Valdez, Alaska in August 1990. The twelve month study for the Alyeska Pipeline Service Company will gather data for regulatory compliance, risk assessment dispersion modeling. The network consists of seven sites. Four sites measure selected species of VOCs by laboratory grade gas chromatographs. The GCS yield hourly concentrations, special plumbing, valving and computer software enable unattended and automated operation. Chromatography is performed by flame ionization detector. Pollutants measured are benzene, ethyl-benzene, toluene and xylenes. Criteria pollutants are measured at four sites; one of which is for permit compliance. VOC and Criteria data presented will show site-by-site concentration comparisons, relate values to ambient standards, and applicability of previous modeling results. A discussion of the use of lab-grade gas chromatographs in the field for automated continuous sampling will be included. Meteorological data discussion will analyze circulation patterns within the fjord for patterns such as cross fjord transport and terrain induced flow regimes

  11. Temporal distribution of air quality related to meteorology and road traffic in Madrid.

    Science.gov (United States)

    Perez-Martinez, Pedro J; Miranda, Regina M

    2015-04-01

    The impact of climatology--air temperature, precipitation and wind speed--and road traffic--volume, vehicle speed and percentage of heavy-duty vehicles (HDVs)--on air quality in Madrid was studied by estimating the effect for each explanatory variable using generalized linear regression models controlling for monthly variations, days of week and parameter levels. Every 1 m/s increase in wind speed produced a decrease in PM10 concentrations by 10.3% (95% CI 12.6-8.6) for all weekdays and by 12.4% (95% CI 14.9-9.8) for working days (up to the cut-off of 2.4 m/s). Increases of PM10 concentrations due to air temperature (7.2% (95% CI 6.2-8.3)) and traffic volume (3.3% (95% CI 2.9-3.8)) were observed at every 10 °C and 1 million vehicle-km increases for all weekdays; oppositely, slight decreases of PM10 concentrations due to percentage of HDVs (3.2% (95% CI 2.7-3.7)) and vehicle speed (0.7% (95% CI 0.6-0.8)) were observed at every 1% and 1 km/h increases. Stronger effects of climatology on air quality than traffic parameters were found.

  12. Examining Air Quality-Meteorology Interactions on Regional to Hemispheric Scales

    Science.gov (United States)

    This presentation provides motivation for coupling the atmospheric dynamics and chemistry calculations in air pollution modeling systems, provides an overview of how this coupling is achieved in the WRF-CMAQ 2-way coupled model, presents results from various applications of the m...

  13. Mean atmospheric temperature model estimation for GNSS meteorology using AIRS and AMSU data

    Directory of Open Access Journals (Sweden)

    Rata Suwantong

    2017-03-01

    Full Text Available In this paper, the problem of modeling the relationship between the mean atmospheric and air surface temperatures is addressed. Particularly, the major goal is to estimate the model parameters at a regional scale in Thailand. To formulate the relationship between the mean atmospheric and air surface temperatures, a triply modulated cosine function was adopted to model the surface temperature as a periodic function. The surface temperature was then converted to mean atmospheric temperature using a linear function. The parameters of the model were estimated using an extended Kalman filter. Traditionally, radiosonde data is used. In this paper, satellite data from an atmospheric infrared sounder, and advanced microwave sounding unit sensors was used because it is open source data and has global coverage with high temporal resolution. The performance of the proposed model was tested against that of a global model via an accuracy assessment of the computed GNSS-derived PWV.

  14. Site Study Plan for meteorology/air quality, Deaf Smith County site, Texas: Environmental Field Program: Preliminary draft

    International Nuclear Information System (INIS)

    1987-06-01

    The Meteorological/Air Quality Site Study Plan describes a field program consisting of continuous measurements of surface (10-meter) wind speed and direction, temperature, humidity, dew point, pressure, and sensible heat flux (vertical). Air quality measurements will be limited to suspended particulate matter. After the first year of measurements, a 60-meter tower will be added to incorporate measurements needed for later modeling and dose calculations; these will include upper level winds, vertical temperature structure, and vertical wind speed. All of these measurements will be made at a site located within the 9-mi 2 site area but remote from the ESF. A second site, located near and downwind from the ESF, will monitor only particulate matter. The SSP describes the need for each study; its design and design rationale; analysis, management, and use of data, schedule of field activities, organization of field personnel and sample management, and quality assurance requirements. These studies will provide data needed to satisfy requirements contained in, or derived from the Salt Repository Project Requirements Document. 38 refs., 8 figs., 3 tabs

  15. Meteorology drives ambient air quality in a valley: a case of Sukinda chromite mine, one among the ten most polluted areas in the world.

    Science.gov (United States)

    Mishra, Soumya Ranjan; Pradhan, Rudra Pratap; Prusty, B Anjan Kumar; Sahu, Sanjat Kumar

    2016-07-01

    The ambient air quality (AAQ) assessment was undertaken in Sukinda Valley, the chromite hub of India. The possible correlations of meteorological variables with different air quality parameters (PM10, PM2.5, SO2, NO2 and CO) were examined. Being the fourth most polluted area in the globe, Sukinda Valley has always been under attention of researchers, for hexavalent chromium contamination of water. The monitoring was carried out from December 2013 through May 2014 at six strategic locations in the residential and commercial areas around the mining cluster of Sukinda Valley considering the guidelines of Central Pollution Control Board (CPCB). In addition, meteorological parameters viz., temperature, relative humidity, wind speed, wind direction and rainfall, were also monitored. The air quality data were subjected to a general linear model (GLM) coupled with one-way analysis of variance (ANOVA) test for testing the significant difference in the concentration of various parameters among seasons and stations. Further, a two-tailed Pearson's correlation test helped in understanding the influence of meteorological parameters on dispersion of pollutants in the area. All the monitored air quality parameters varied significantly among the monitoring stations suggesting (i) the distance of sampling location to the mine site and other allied activities, (ii) landscape features and topography and (iii) meteorological parameters to be the forcing functions. The area was highly polluted with particulate matters, and in most of the cases, the PM level exceeded the National Ambient Air Quality Standards (NAAQS). The meteorological parameters seemed to play a major role in the dispersion of pollutants around the mine clusters. The role of wind direction, wind speed and temperature was apparent in dispersion of the particulate matters from their source of generation to the surrounding residential and commercial areas of the mine.

  16. General aspects of meteorology and wind flow patterns at the National Medical Cyclotron site, Camperdown, NSW, Australia

    International Nuclear Information System (INIS)

    Clark, G.H.; Bartsch, F.J.K.

    1994-06-01

    As part of an assessment into the consequences of a potential accident at the National Medical Cyclotron, Camperdown, NSW., Australia, two meteorological stations were installed to monitor the winds, temperatures and atmospheric dispersion conditions. The data will be used to assess environmental impacts of the Cyclotron's operation. In spite of the relatively poor performance of the stations, the wind data indicated significant effects of local buildings and the general urban surface roughness features. The prevailing winds during the study were from the north-north-west at night and south-south-west or north-east sea breezes during the day. Atmospheric stability/dispersion categories were typical of an urban heat island location. 11 refs., 10 tabs, 6 figs

  17. Application of meteorology of air pollution in nuclear design of the city of Tehran

    International Nuclear Information System (INIS)

    Bahrainy, H.

    1997-01-01

    It is clear that the urban environment provides the setting for the life framework of a large and growing proportion of the world's population. In consequence, urban dwellers spend much of their lives in a quite distinctive type of man-modified (polluted) climate. This study focuses on two aspects of urban climatology in the city of Tehran: Climate and Urban Form. Each building reacts with its atmospheric envelope and these micro climatic effects are then integrated into macro climatic zones which commonly mirror the form of urban development and major land uses. More specifically this research paper intends to test the hypothesis that concentration or dispersion of urban air pollutants depend on atmospheric conditions and heat island in the urban areas, which is affected in turn, by topography and urban form. By some modifications in urban form, therefore, the atmospheric conditions may be changed (wind direction and speed) in an urban area which will eventually lead to better air quality in the city. Part of the study was based on an experiment in a low speed wind tunnel, which was built for this purpose. Also satellite data was the source of information for preparing the heat islands in Tehran

  18. Impact of meteorological parameters and air pollution on emergency department visits for cardiovascular diseases in the city of Zagreb, Croatia.

    Science.gov (United States)

    Pintarić, Sanja; Zeljković, Ivan; Pehnec, Gordana; Nesek, Višnja; Vrsalović, Mislav; Pintarić, Hrvoje

    2016-09-01

    The aim of this study was to investigate whether nitrogen dioxide (NO2), ozone (O3), and certain meteorological conditions had an impact on cardiovascular disease (CVD)-related emergency department (ED) visits in the metropolitan area of Zagreb. This retrospective, ecological study included 20,228 patients with a cardiovascular disease as their primary diagnosis who were examined in the EDs of two Croatian University Hospitals, Sisters of Charity and Holy Spirit, in the study period July 2008-June 2010. The median of daily CVD-related ED visits during the study period was 28 and was the highest during winter. A significant negative correlation was found between CVD-related emergency visits and air temperature measured no more than three days prior to the visit, and the highest negative correlation coefficient was measured two days earlier (R=0.266, p≤0.001). The number of CVD-related emergency visits significantly correlated with the average NO2 concentration on the same day (R=0.191, p<0.001). The results of multiple stepwise regression analysis showed that the number of CVD-related emergency visits depended on air temperature, and NO2 and O3 concentrations. The higher the air temperatures, the lower the number of daily CVD-related emergency visits (p<0.001). An increase in NO2 concentrations (p=0.005) and a decrease in O3 concentrations of two days earlier (p=0.006) led to an increase in CVD-related ED visits. In conclusion, the decrease in O3 concentrations and the increase in NO2, even if below the legally binding thresholds, could be associated with an increase in CVD-related emergency visits and a similar effect was observed with lower temperature measured no more than three days prior to the visit.

  19. Verification of a prognostic meteorological and air pollution model for year-long predictions in the Kwinana industrial region of Western Australia

    International Nuclear Information System (INIS)

    Hurley, P.J.; Blockley, A.; Rayner, K.

    2001-01-01

    A prognostic air pollution model (TAPM) has been used to predict meteorology and sulphur dioxide concentration in the Kwinana industrial region of Western Australia for 1997, with a view to verifying TAPM for use in environmental impact assessments and associated air pollution studies. The regulatory plume model, DISPMOD, developed for the Kwinana region has also been run using both an observationally based meteorological file (denoted DISPMOD-O) and using a TAPM-based meteorological file (denoted DISPMOD-T). TAPM predictions of the meteorology for 1997 compare well with the observed values at each of the five monitoring sites. Root mean square error and index of agreement values for temperature and winds indicate that TAPM performs well at predicting the meteorology, compared to the performance of similar models from other studies. The yearly average, 99.9 percentile, maximum and mean of the top 10 ground-level sulphur dioxide concentrations for 1997 were predicted well by all of the model runs, although DISPMOD-O and DISPMOD-T tended to overpredict extreme statistics at sites furthest from the sources. Overall, TAPM performed better than DISPMOD-O, which in turn performed better than DISPMOD-T, for all statistics considered, but we consider that all three sets of results are sufficiently accurate for regulatory applications. The mean of the top ten concentrations is generally considered to be a robust performance statistic for air pollution applications, and we show that compared to the site-averaged observed value of 95μgm -3 , TAPM predicted 94μgm -3 , DISPMOD-O predicted 111μgm -3 and DISPMOD-T predicted 125μgm -3 . The results indicate that the prognostic meteorological and air pollution approach to regulatory modelling used by TAPM, gives comparable or better results than the current regulatory approach used in the Kwinana region (DISPMOD), and also indicates that the approach of using a currently accepted regulatory model with a prognostically

  20. Urban air quality, meteorology and traffic linkages: Evidence from a sixteen-day particulate matter pollution event in December 2015, Beijing.

    Science.gov (United States)

    Hu, Dongmei; Wu, Jianping; Tian, Kun; Liao, Lyuchao; Xu, Ming; Du, Yiman

    2017-09-01

    A heavy 16-day pollution episode occurred in Beijing from December 19, 2015 to January 3, 2016. The mean daily AQI and PM 2.5 were 240.44 and 203.6μg/m 3 . We analyzed the spatiotemporal characteristics of air pollutants, meteorology and road space speed during this period, then extended to reveal the combined effects of traffic restrictions and meteorology on urban air quality with observational data and a multivariate mutual information model. Results of spatiotemporal analysis showed that five pollution stages were identified with remarkable variation patterns based on evolution of PM 2.5 concentration and weather conditions. Southern sites (DX, YDM and DS) experienced heavier pollution than northern ones (DL, CP and WL). Stage P2 exhibited combined functions of meteorology and traffic restrictions which were delayed peak-clipping effects on PM 2.5 . Mutual information values of Air quality-Traffic-Meteorology (ATM-MI) revealed that additive functions of traffic restrictions, suitable relative humidity and temperature were more effective on the removal of fine particles and CO than NO 2 . Copyright © 2017. Published by Elsevier B.V.

  1. A database on tritium behavior in the chronic HT release experiment. 1. Meteorological data and tritium concentrations in air and soil

    Energy Technology Data Exchange (ETDEWEB)

    Noguchi, Hiroshi; Yokoyama, Sumi; Kinouchi, Nobuyuki; Murata, Mikio; Amano, Hikaru; Ando, Mariko [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Fukutani, Satoshi

    1999-03-01

    This report comprises a database that can be used to develop and validate tritium models to assess doses to the general public due to HT continuously released from fusion facilities into the atmosphere. The data was collected in the 1994 chronic HT release experiment carried out at the Chalk River Laboratories in Canada. The data set include meteorological conditions such as solar radiation, net solar radiation, wind speed, air temperature and humidity, soil temperature and soil heat flux; soil conditions such as bulk density, water content and free pore volume fraction; HT and HTO concentrations in air, HTO concentrations in soil moisture and HTO deposition to water surface. Evapo-transpiration rates and turbulent diffusivity are estimated and tabulated. The report also contains experimental methods to observe meteorological conditions and take air and soil samples. (author)

  2. Characteristics of nontrauma scene flights for air medical transport.

    Science.gov (United States)

    Krebs, Margaret G; Fletcher, Erica N; Werman, Howard; McKenzie, Lara B

    2014-01-01

    Little is known about the use of air medical transport for patients with medical, rather than traumatic, emergencies. This study describes the practices of air transport programs, with respect to nontrauma scene responses, in several areas throughout the United States and Canada. A descriptive, retrospective study was conducted of all nontrauma scene flights from 2008 and 2009. Flight information and patient demographic data were collected from 5 air transport programs. Descriptive statistics were used to examine indications for transport, Glasgow Coma Scale Scores, and loaded miles traveled. A total of 1,785 nontrauma scene flights were evaluated. The percentage of scene flights contributed by nontraumatic emergencies varied between programs, ranging from 0% to 44.3%. The most common indication for transport was cardiac, nonST-segment elevation myocardial infarction (22.9%). Cardiac arrest was the indication for transport in 2.5% of flights. One air transport program reported a high percentage (49.4) of neurologic, stroke, flights. The use of air transport for nontraumatic emergencies varied considerably between various air transport programs and regions. More research is needed to evaluate which nontraumatic emergencies benefit from air transport. National guidelines regarding the use of air transport for nontraumatic emergencies are needed. Copyright © 2014 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  3. Modeling the Short-Term Effect of Traffic and Meteorology on Air Pollution in Turin with Generalized Additive Models

    Directory of Open Access Journals (Sweden)

    Pancrazio Bertaccini

    2012-01-01

    Full Text Available Vehicular traffic plays an important role in atmospheric pollution and can be used as one of the key predictors in air-quality forecasting models. The models that can account for the role of traffic are especially valuable in urban areas, where high pollutant concentrations are often observed during particular times of day (rush hour and year (winter. In this paper, we develop a generalized additive models approach to analyze the behavior of concentrations of nitrogen dioxide (NO2, and particulate matter (PM10, collected at the environmental monitoring stations distributed throughout the city of Turin, Italy, from December 2003 to April 2005. We describe nonlinear relationships between predictors and pollutants, that are adjusted for unobserved time-varying confounders. We examine several functional forms for the traffic variable and find that a simple form can often provide adequate modeling power. Our analysis shows that there is a saturation effect of traffic on NO2, while such saturation is less evident in models linking traffic to PM10 behavior, having adjusted for meteorological covariates. Moreover, we consider the proposed models separately by seasons and highlight similarities and differences in the predictors’ partial effects. Finally, we show how forecasting can help in evaluating traffic regulation policies.

  4. The Investigation of Isotopic Composition of Precipitation and water vapour by Using Air Mass Trajectories and Meteorological Parameters

    International Nuclear Information System (INIS)

    Dirican, A.; Acar, Y.; Demircan, M.

    2002-01-01

    In last century there are so many studies were carried out about stable isotopes of precipitation. The Researchers, study in this field directed to examine origin and transport of water vapour. To investigate the conditions of precipitation formation parallel with climatic changes, stable isotopes using as a powerful tool. So that a project coordinated by IAEA. In this presentation we will give some parts of this project which was carried out in Turkey. First results were obtained for 2001 year. The one of the first result which was obtained in this project is the relation between air temperature and isotopic composition of precipitation collected in Ankara Antalya and Adana station. Second was the observation of temporal variation of stable isotope composition in precipitation and water vapour in relation with water vapour transport. δD and δ 18 O content of atmospheric water vapour examined for January - December 2001 time interval. 27 precipitation event had been examined, starting from endengered place and following to trajectories until to reach Turkey, by using ground level and 500mbar synoptic charts. The observed δD and δ 18 O variations of water vapour is related with the endengered place (Atlantic Ocean, Mediterranean Sea, etc.) of water vapour. The isotopic composition of local precipitation forms by regional meteorological factors. In this study δD and δ 18 O relation of event, daily precipitation and water vapour were defined

  5. Performance of WRF for Simulation of Mesoscale Meteorological Characteristics for Air Quality Assessment over Tropical Coastal City, Chennai

    Science.gov (United States)

    Madala, Srikanth; Srinivas, C. V.; Satyanarayana, A. N. V.

    2018-01-01

    The land-sea breezes (LSBs) play an important role in transporting air pollution from urban areas on the coast. In this study, the Advanced Research WRF (ARW) mesoscale model is used for predicting boundary layer features to understand the transport of pollution in different seasons over the coastal region of Chennai in Southern India. Sensitivity experiments are conducted with two non-local [Yonsei University (YSU) and Asymmetric Convective Model version 2 (ACM2)] and three turbulence kinetic energy (TKE) closure [Mellor-Yamada-Nakanishi and Niino Level 2.5 (MYNN2) and Mellor-Yamada-Janjic (MYJ) and quasi-normal scale elimination (QNSE)], planetary boundary layer (PBL) parameterization schemes for simulating the thermodynamic structure, and low-level atmospheric flow in different seasons. Comparison of simulations with observations from a global positioning system (GPS) radiosonde, meteorological tower, automated weather stations, and Doppler weather radar (DWR)-derived wind data reveals that the characteristics of LSBs vary widely in different seasons and are more prominent during the pre-monsoon and monsoon seasons (March-September) with large horizontal and vertical extents compared to the post-monsoon and winter seasons. The qualitative and quantitative results indicate that simulations with ACM2 followed by MYNN2 and YSU produced various features of the LSBs, boundary layer parameters and the thermo-dynamical structure in better agreement with observations than other tested physical parameterization schemes. Simulations revealed seasonal variation of onset time, vertical extent of LSBs, and mixed layer depth, which would influence the air pollution dispersion in different seasons over the study region.

  6. the effect of air medical transport on survival after trauma

    African Journals Online (AJOL)

    region in the latter part of 1999. This empirical research assessed death rate data to ascertain if the air medical transport (AMT) of patients results in lower death rates than occur with road transportation of patients. Wits Business School ... the South African medical environment, patients were evaluated at the trauma units of ...

  7. Impact of socioeconomic and meteorological factors on reservoirs' air quality: a case in the Three Gorges Reservoir of Chongqing (TGRC), China over a 10-year period.

    Science.gov (United States)

    Peng, Ying; Zhou, Fengwu; Cui, Jian; Du, Ke; Leng, Qiangmei; Yang, Fumo; Chan, Andy; Zhao, Hongting

    2017-07-01

    The Three Gorges Dam's construction and industrial transfer have resulted in a new air pollution pattern with the potential to threaten the reservoir eco-environment. To assess the impact of socioeconomic factors on the pattern of air quality vairation and economical risks, concentrations of SO 2 , NO 2 , and PM 10 , industry genres, and meteorological conditions were selected in the Three Gorges Reservoir of Chongqing (TGRC) during 2006-2015. Results showed that air quality had improved to some extent, but atmospheric NO 2 showed an increased trend during 2011-2015. Spatially, higher atmospheric NO 2 extended to the surrounding area. The primary industry, especially for agriculture, had shown to be responsible for the remarkable increase of atmospheric NO 2 (p air pollutant reductions, but construction industries had inhibited the improvement of regional air quality. In the tertiary industry, the cargo industry at ports had significantly decreased atmospheric NO 2 as a result of eliminating the obsoleted small ships. Contrarily, the highway transportation had brought more air pollutants. The relative humidity was shown to be the main meteorological factor, which had an extremely remarkable relation with atmospheric SO 2 (p air quality improvement difficult, and atmospheric SO 2 , NO 2 , and PM 10 deposition would aggravate regional soil and water acidification and reactivate heavy metal in soil and sediment, further to pose a high level of ecological risk in the TGRC and other countries with reservoirs in the world.

  8. Seasonal and temporal variations of criteria air pollutants and the influence of meteorological parameters on the concentration of pollutants in ambient air in lahore, pakistan

    International Nuclear Information System (INIS)

    Tabinda, A.B.; Munir, S.; Yasir, A.; Ilyas, A.

    2016-01-01

    Criteria air pollutants have their significance for causing health threats and damage to the environment. The study was conducted to assess the seasonal and temporal variations of criteria air pollutants and evaluating the correlations of criteria air pollutants with meteorological parameters in the city of Lahore, Pakistan for a period of one year from April 2010 to March 2011. The concentrations of criteria air pollutants were determined at fixed monitoring stations equipped with HORIBA analyzers. The annual average concentrations (μ/m/super 3/) of PM /sub 2.5/, O/sub 3/, SO/sub 2/, CO and NO/sub x/ (NO+NO/sub 2/) for this study period were 118.94±57.46, 46.0±24.2, 39.9±8.9, 1940±1300 and 130.9±81.0 (61.8±46.2+57.3±22.19), respectively. PM/sub 2.5/, SO/sub 2/, CO and NO/sub x/ had maximum concentrations during winter whereas O/sub 3/ had maximum concentration during summer. Minimum concentrations of PM/sub 2.5/, SO/sub 2/ and NO/sub x/ were found during monsoon as compared to other seasons due to rainfall which scavenged these pollutants. The O/sub 3/ showed positive correlation with temperature and solar radiation but negative correlation with wind speed. All other criteria air pollutants showed negative correlation with wind speed, temperature and solar radiation. A significant (P<0.01) correlation was found between NO/sub x/ and CO (r = 0.779) which showed that NO/sub x/ and CO arise from common source that could be the vehicular emission. PM/sub 2.5/ was significantly correlated (P<0.01) with NO/sub x/ (r = 0.524) and CO (r = 0.519), respectively. High traffic intensity and traffic jams were responsible for increased air pollutants level especially the PM/sub 2.5/, NO/sub x/ and CO. (author)

  9. Hourly pattern of allergenic alder and birch pollen concentrations in the air: Spatial differentiation and the effect of meteorological conditions

    Science.gov (United States)

    Borycka, K.; Kasprzyk, I.

    2018-06-01

    In temperate climate widespread alder and birch are an important source of strong aeroallergens. The diurnal pattern of airborne pollen concentrations depends on the rhythm of pollen release from anthers as well as weather conditions, convection air currents, long-distance transport, pollen trap location and local vegetation. The aim of the study was to present a diurnal pattern of Alnus (alder) and Betula (birch) pollen concentrations in the air in a horizontal and vertical gradient and examine the weather parameters that had the greatest impact on the pattern. The study was conducted in Rzeszów City, southeast Poland over three years. Pollen grains were collected using a Hirst volumetric spore trap at three sampling points: two at 12 m the agl, and one at 1.5 m agl. Data were analysed using circular statistics and a nonlinear function. For alder, three models of hourly patterns were elaborated and the most common presented early morning minimum and early afternoon maximum. For birch, the most common model has one peak at night and a marked decrease in concentrations in early morning, although a second model has peak during early afternoon. A model with 3 peaks is much less common. These models are characteristic for warm temperate climate regions, where alders and birches are common. The diurnal patterns did not depend on the localization of traps or proximity of the pollen source, although these factors influenced the hourly concentrations, with higher values observed at roof level. Significant relationships between the hourly pollen counts and meteorological parameters were observed only for alder. Three incidents of increasing birch pollen concentrations were observed during the first two hours of precipitation and linked to a convection effect. Unstable weather conditions caused by air convection might strongly modify the circadian pattern and cause the nightly peaks concentrations. The general results are that people suffering from allergies may be exposed

  10. Motivational Meteorology.

    Science.gov (United States)

    Benjamin, Lee

    1993-01-01

    Describes an introductory meteorology course for nonacademic high school students. The course is made hands-on by the use of an educational software program offered by Accu-Weather. The program contains a meteorology database and instructional modules. (PR)

  11. Lithium battery fires: implications for air medical transport.

    Science.gov (United States)

    Thomas, Frank; Mills, Gordon; Howe, Robert; Zobell, Jim

    2012-01-01

    Lithium-ion batteries provide more power and longer life to electronic medical devices, with the benefits of reduced size and weight. It is no wonder medical device manufacturers are designing these batteries into their products. Lithium batteries are found in cell phones, electronic tablets, computers, and portable medical devices such as ventilators, intravenous pumps, pacemakers, incubators, and ventricular assist devices. Yet, if improperly handled, lithium batteries can pose a serious fire threat to air medical transport personnel. Specifically, this article discusses how lithium-ion batteries work, the fire danger associated with them, preventive measures to reduce the likelihood of a lithium battery fire, and emergency procedures that should be performed in that event. Copyright © 2012 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  12. AsMA Medical Guidelines for Air Travel: In-Flight Medical Care.

    Science.gov (United States)

    Thibeault, Claude; Evans, Anthony D; Pettyjohn, Frank S; Alves, Paulo M

    2015-06-01

    Medical Guidelines for Airline Travel provide information that enables healthcare providers to properly advise patients who plan to travel by air. All airlines are required to provide first aid training for cabin crew, and the crew are responsible for managing any in-flight medical events. There are also regulatory requirements for the carriage of first aid and medical kits. AsMA has developed recommendations for first aid kits, emergency medical kits, and universal precaution kits.

  13. AsMA Medical Guidelines for Air Travel: Fitness to Fly and Medical Clearances.

    Science.gov (United States)

    Thibeault, Claude; Evans, Anthony D; Dowdall, Nigel P

    2015-07-01

    Medical Guidelines for Airline Travel provide information that enables healthcare providers to properly advise patients who plan to travel by air. Not everyone is fit to travel by air and physicians should advise their patients accordingly. They should review the passenger's medical condition, giving special consideration to the dosage and timing of any medications, contagiousness, and the need for special assistance during travel. In general, an individual with an unstable medical condition should not fly; cabin altitude, duration of exposure, and altitude of the destination airport are all considerations when recommending a passenger for flight.

  14. EARTH, WIND AND FIRE: BUILDING METEOROLOGICALLY-SENSITIVE BIOGENIC AND WILDLAND FIRE EMISSION ESTIMATES FOR AIR QUALITY MODELS

    Science.gov (United States)

    Emission estimates are important for ensuring the accuracy of atmospheric chemical transport models. Estimates of biogenic and wildland fire emissions, because of their sensitivity to meteorological conditions, need to be carefully constructed and closely linked with a meteorolo...

  15. Influence of the meteorological parameters on CFCs and SF6 concentration in the air of Krakow, Poland

    Science.gov (United States)

    Bielewski, Jarosław; Najman, Joanna; Śliwka, Ireneusz; Bartyzel, Jakub; Rosiek, Janusz

    2013-04-01

    key words: gas chromatography, trace gases, CFCs and SF6 measurements in urban area. Halogenated compounds (chlorofluorocarbons-CFCs), both natural and industrial, so-called freons, currently exist as trace gases in the entire human environment. The CFCs cause ozone depletion in the stratosphere. Moreover CFCs and SF6 take part in intensification of the greenhouse effect. The decisions of the Vienna Convention (1985) and of the Montreal Protocol (1987) limited the world production level of CFCs in the year 1989 at least 35% after 2004, 90% after 2015 and total reduction after year 2030. On account of international agreements, the measurements of CFCs and SF6 in air were started. Measurement "clean" stations were situated at places outside of urban areas influence and gathered on world program - AGAGE (Advanced Global Atmospheric Gases Experiment). One of these stations is Mace Head (Ireland, 53o N, 10o W), which participates in AGAGE since 1987 [1] and in European InGOS (Integrated non-CO2 Greenhouse gas Observing System) program since 2011. Similar research is also conducted in Central Europe, in urban area of Krakow (Poland, 50o N, 19o E) since 1997. The work discusses results from 15 years of concentration measurements (in the years 1997-2012) of selected halocarbons and SF6 in Krakow. To obtain concentrations of measured compounds the mathematical procedure has been used, where concentrations were calculated using a five points Lagrange's interpolation method. Using temporary measurement data were determined daily arithmetic means and their standard deviations. Based on these data, efficiency of Montreal Protocol legislation, implemented in Poland (The Journal of Laws No. 52) could be assessed [2]. Additionally cut-off filtration method was used to estimate trend of the base line of individual air pollutant. Rejected exceedances of base lines were corelated with meteorological characteristics of Krakow region to evaluate possible sources of pollution. The

  16. EXPERIENCES IN THE AIR SPINNING TO MANUFACTURE MEDICAL DEVICES

    Directory of Open Access Journals (Sweden)

    MARSAL Feliu

    2015-05-01

    Full Text Available The work aims to determine, with scientific rigor, differences in key parameters of the yarns produced by conventional ring spinning systems, open-end and air spinning and its interrelation with the main parameters of those products that are intended for medical-sanitary sector. The experiences have been made in a Spanish company from short fibers sector that has three spinning systems, with tradition and prestige in world market, validating the results in Innotex Center laboratories of the Polytechnic University of Catalonia. Considering the results, it shows that the technology of manufacture of yarns by air is suitable for yarn, woven fabrics and knitting, structures to textile medical-sanitary application, by specific properties as well as enhanced competitiveness, due to the high production rate and shortened spinning process. The viscose yarns manufactured by air mass are more mass regular. The new DR parameter clearly indicates a better look of the finished fabric when we work with yarns produced by air technology.The significant reduction of the hairiness means less formation of loose fibres by friction, very important in the application of these yarns in the manufacture of textile structures for medical-sanitary use. Also no-table increase of about 15% in the absorption capacity of the fluids, especially water, from the yarns made by air. In the functionalization of fabrics obtained from spun yarn by air will need to apply a permanent smoothing.

  17. Software library of meteorological routines for air quality models; Libreria de software de procedimientos meteorologicos para modelos de dispersion de contaminantes

    Energy Technology Data Exchange (ETDEWEB)

    Galindo Garcia, Ivan Francisco

    1999-04-01

    Air quality models are an essential tool for most air pollution studies. The models require, however, certain meteorological information about the model domain. Some of the required meteorological parameters can be measured directly, but others must be estimated from available measured data. Therefore, a set of procedures, routines and computational programs to obtain all the meteorological and micrometeorological input data is required. The objective in this study is the identification and implementation of several relationships and methods for the determination of all the meteorological parameters required as input data by US-EPA recommended air pollution models. To accomplish this, a study about air pollution models was conducted, focusing, particularly, on the model meteorological input data. Also, the meteorological stations from the Servicio Meteorologico Nacional (SMN) were analyzed. The type and quality of the meteorological data produced was obtained. The routines and methods developed were based, particularly, on the data produced by SMN stations. Routines were organized in a software library, which allows one to build the specific meteorological processor needed, independently of the model used. Methods were validated against data obtained from an advanced meteorological station owned and operated by the Electrical Research Institute (Instituto de Investigaciones Electricas (IIE)). The results from the validation show that the estimation of the parameters required by air pollution models from routinely available data from Mexico meteorological stations is feasible and therefore let us take full advantage of the use of air pollution models. As an application example of the software library developed, the building of a meteorological processor for a specific air pollution model (CALPUFF) is described. The big advantage the library represents is evident from this example. [Espanol] Los modelos de dispersion de contaminantes constituyen una herramienta

  18. 21 CFR 880.6500 - Medical ultraviolet air purifier.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 8 2010-04-01 2010-04-01 false Medical ultraviolet air purifier. 880.6500 Section 880.6500 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES... to ultraviolet radiation. (b) Classification. Class II (performance standards). ...

  19. Organization and performance evaluation of the regional air medical service

    Directory of Open Access Journals (Sweden)

    A. A. Lobzhanidze

    2016-01-01

    Full Text Available We prove the need to create the regional system of air medical service in St. Petersburg and Leningrad Region.We describe the mechanism of managing the medical service transport system which includes patients’ evacuation both by automobile and aviation. We offer algorithms of assessing the cost effectiveness of air medical service both at the time of treatment and making the patient able to work and during the entire period of hisparticipation in social labor activities. This project is being implemented since 2014. Data in the article are provided on the basis of actually realized flights by helicopter center LLC«Helidrive» which took part in pilot project.

  20. Exposure to air pollution and meteorological factors associated with children's primary care visits at night due to asthma attack: case-crossover design for 3-year pooled patients.

    Science.gov (United States)

    Yamazaki, Shin; Shima, Masayuki; Yoda, Yoshiko; Oka, Katsumi; Kurosaka, Fumitake; Shimizu, Shigeta; Takahashi, Hironobu; Nakatani, Yuji; Nishikawa, Jittoku; Fujiwara, Katsuhiko; Mizumori, Yasuyuki; Mogami, Akira; Yamada, Taku; Yamamoto, Nobuharu

    2015-05-03

    We examined the association of outdoor air pollution and meteorological parameters with primary care visits (PCVs) at night due to asthma attack. A case-crossover study was conducted in a primary care clinic in Himeji City, Japan. Participants were 1447 children aged 0-14 years who visited the clinic with an asthma attack from April 2010 until March 2013. Daily concentrations of air pollutants and meteorological parameters were measured. PCVs at night due to asthma attack. A conditional logistic regression model was used to estimate ORs of PCVs per unit increment of air pollutants or meteorological parameters (the per-unit increments of particulate matter with an aerodynamic diameter ≤2.5 µm (PM₂.₅) and ozone were 10 μg/m(3) and 10 ppb, respectively). Analyses took into consideration the effects of seasonality. We noted an association between PCVs and daily ozone levels on the day before a PCV (OR=1.17; 95% CI 1.01 to 1.35; p=0.04), as well as between PCVs and 3-day mean ozone levels before a PCV (OR=1.29; 95% CI 1.00 to 1.46; p=0.04), from April until June. We also observed an association between PCVs and daily PM₂.₅ levels on the day before a PCV from December until March (OR=1.16; 95% CI 1.01 to 1.33; p=0.05). Meteorological parameters, such as hours of sunshine from September until November, atmospheric pressure from April until June, and temperature from April until August, were also found to be associated with PCVs. The findings in the present study supported an association between ozone and PCVs and suggest that certain meteorological items may be associated with PCVs. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.

  1. Applications of satellite data to the studies of agricultural meteorology, 2: Relationship between air temperature and surface temperature measured by infrared thermal radiometer

    International Nuclear Information System (INIS)

    Horiguchi, I.; Tani, H.; Morikawa, S.

    1985-01-01

    Experiments were performed in order to establish interpretation keys for estimation of air temperature from satellite IR data. Field measurements were carried out over four kinds of land surfaces including seven different field crops on the university campus at Sapporo. The air temperature was compared with the surface temperature measured by infrared thermal radiometer (National ER2007, 8.5-12.5μm) and, also with other meteorological parameters (solar radiation, humidity and wind speed). Also perpendicular vegetation index (PVI) was measured to know vegetation density of lands by ho radio-spectralmeter (Figs. 1 & 2). Table 1 summarizes the measurements taken in these experiments.The correlation coefficients between air temperature and other meteorological parameters for each area are shown in Table 2. The best correlation coefficient for total data was obtained with surface temperature, and it suggests the possibility that air temperature may be estimated by satellite IR data since they are related to earth surface temperatures.Further analyses were done between air temperature and surface temperature measured with thermal infrared radiometer.The following conclusions may be drawn:(1) Air temperature from meteorological site was well correlated to surface temperature of lands that were covered with dense plant and water, for example, grass land, paddy field and rye field (Table 2).(2) The correlation coefficients and the regression equations on grass land, paddy field and rye field were almost the same (Fig. 3). The mean correlation coefficient for these three lands was 0.88 and the regression equation is given in Eq. (2).(3) There was good correlation on bare soil land also, but had large variations (Fig. 3).(4) The correlations on crop fields depend on the density of plant cover. Good correlation is obtained on dense vegetative fields.(5) Small variations about correlation coefficients were obtained for the time of day (Table 3).(6) On the other hand, large

  2. Relative impact of emissions controls and meteorology on air pollution mitigation associated with the Asia-Pacific Economic Cooperation (APEC) conference in Beijing, China.

    Science.gov (United States)

    Wang, Yuqin; Zhang, Yang; Schauer, James Jay; de Foy, Benjamin; Guo, Bo; Zhang, Yuanxun

    2016-11-15

    The Beijing government and its surrounding provinces implemented a series of measures to ensure haze-free skies during the 22(nd) Asia-Pacific Economic Cooperation (APEC) conference (November 10(th)-11(th), 2014). These measures included restrictions on traffic, construction, and industrial activity. Twelve hour measurements of the concentration and composition of ambient fine particulate matter (PM2.5) were performed for 5 consecutive months near the APEC conference site before (September 11(th)-November 2(nd), 2014), during (November 3(rd)-12(th), 2014) and after (November 13(th), 2014-January 31(st), 2015). The measurements are used in a positive matrix factorization model to determine the contributions from seven sources of PM2.5: secondary aerosols, traffic exhaust, industrial emission, road dust, soil dust, biomass burning and residual oil combustion. The source apportionment results are integrated with backward trajectory analysis using Weather Research and Forecast (WRF) meteorological simulations, which determine the relative influence of new regulation and meteorology upon improved air quality during the APEC conference. Data show that controls are very effective, but meteorology must be taken into account to determine the actual influence of the controls on pollution reduction. The industry source control is the most effective for reducing concentrations, followed by secondary aerosol and biomass controls, while the least effective control is for the residual oil combustion source. The largest reductions in concentrations occur when air mass transport is from the west-northwest (Ulanqab). Secondary aerosol and traffic exhaust reductions are most significant for air mass transport from the north-northwest (Xilingele League) origin, and least significant for northeast transport (Chifeng via Tangshan conditions). The largest reductions of soil dust, biomass burning, and industrial source are distinctly seen for Ulanqab conditions and least distinct for

  3. Air medical transport personnel experiences with and opinions about research.

    Science.gov (United States)

    Fox, Jolene; Thomas, Frank; Carpenter, Judi; Handrahan, Diana

    2010-01-01

    This study examined air medical transport (AMT) personnel's experiences with and opinions about prehospital and AMT research. A Web-based questionnaire was sent to eight randomly selected AMT programs from each of six Association of Air Medical Services (AAMS) regions. Responders were defined by university association (UA) and AMT professional role. Forty-eight of 54 (89%) contacted programs and 536 of 1,282 (42%) individuals responded. Non-UA responders (74%) had significantly more work experience in emergency medical services (EMS) (13.5 +/- 8.5 vs. 10.8 +/- 8.3 years, P = .002) and AMT (8.3 +/- 6.3 vs. 6.8 +/- 5.7 years, P = .008), whereas UA responders (26%) had more research training (51% vs. 37%, P = .006), experience (79% vs. 59%, P < .001), and grants (7% vs. 2%, P = .006). By AMT role, administrators had the most work experience, and physicians had the most research experience. Research productivity of responders was low, with only 9% having presented and 10% having published research; and UA made no difference in productivity. A majority of responders advocated research: EMS (66%) and AMT (68%), program (53%). Willingness to participate in research was high for both EMS research (87%) and AMT research (92%). Although AMT personnel were strong advocates of and willing to participate in research, few had research knowledge. For AMT personnel, disparity exists between advocating for and producing research. Copyright 2010 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  4. Defense Meteorological Satellite Program (DMSP) Film

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The United States Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS) is a polar orbiting meteorological sensor with two...

  5. Variability of aerosol, gaseous pollutants and meteorological characteristics associated with changes in air mass origin at the SW Atlantic coast of Iberia

    Science.gov (United States)

    Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.

    2012-04-01

    Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean, a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol (NR-PM1) was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) and a weather station provided meteorological parameters. Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m-3 and 1000 cm-3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition, small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions, could be identified in the particle phase

  6. On the usefulness of atmospheric measurements for air quality evaluation in the context of recent urban meteorology findings in Mexico City

    Energy Technology Data Exchange (ETDEWEB)

    Cruz Nunez, X.; Jazcilevich Diamant, A. [Centro de Ciencias de la Atmosfera, Universidad Nacional Autonoma de Mexico, Mexico, D.F. (Mexico)]. E-mail: xochitl@atmosfera.unam.mx

    2007-10-15

    In many cities, the main tool used to assess pollution abatement policies is the air quality information obtained from local monitoring network. However, in the context of a complex meteorology and land use such as those prevailing in Mexico City, the point-wise character and lack of detailed chemistry of this information may confer conflictive or biased information. The approach to understand the problem could be not based on solid ground. It is not until the measurement effort is complemented with detailed meteorological and air quality modeling that proper use of the information can be assured. In order to provide an example of this assertion, the usefulness of measured air quality data is gauged in a simplified manner, constructing three dimensional graphs containing local emission concentrations of nitrogen oxides (NO{sub x}), volatile organic compounds (VOC) and maximum ozone (O{sub 3}) concentrations, that we call ozone isopleths, for three sites in Mexico City. Together with corresponding wind rose data, an interpretation of the air pollution transport in the Valley of Mexico using only measured data is attempted. This interpretation, based on measured information subject to local influences, is compared with recent air quality modeling results showing that when measured data is used in conjunction with air quality modeling a better interpretation of air pollution problem can be obtained. A correct strategy to study the air quality problem, especially in the case of Mexico City where complex meteorology and land use is present, should be that both endeavors, measuring and modeling, are pursued with equal vigor. [Spanish] En muchas ciudades la herramienta principal en la evaluacion de las politicas para el control de la contaminacion es la informacion de calidad del aire proveniente de las redes locales de mediciones. Sin embargo, en el contexto de una meteorologia compleja y el uso de suelo de la Ciudad de Mexico, el caracter puntual y la carencia de

  7. AsMA Medical Guidelines for Air Travel: Reported In-Flight Medical Events and Death.

    Science.gov (United States)

    Thibeault, Claude; Evans, Anthony D

    2015-06-01

    Medical Guidelines for Airline Travel provide information that enables healthcare providers to properly advise patients who plan to travel by air. Although there are no publicly available databases providing information on the number of in-flight medical emergencies, the few studies published in the literature indicate that they are uncommon. Minor illnesses such as near-fainting, dizziness, and hyperventilation occur more frequently. However, serious illnesses, such as seizures and myocardial infarction, also occur. In-flight deaths are also rare.

  8. Model study of meteorology and photochemical air pollution over un urban area in south-eastern France (ESCOMPTE campaign).

    Science.gov (United States)

    Taghavi, M.; Cautenet, S.

    2003-04-01

    The ESCOMPTE Campaign has been conducted over Southern France (Provence region including the Marseille, Aix and Toulon cities and the Fos-Berre industrial center) in June and July of 2001. In order to study the redistribution of the pollutants emitted by anthropic and biogenic emissions and their impact on the atmospheric chemistry, we used meso-scale modeling (RAMS model, paralleled version 4.3, coupled on line with chemical modules : MOCA2.2 (Poulet et al, 2002) including 29 gaseous species). The hourly high resolution emissions were obtained from ESCOMPTE database (Ponche et al, 2002). The model was coupled with the dry deposition scheme (Walmsley and Weseley,1996). In this particular case of complex circulation (sea breeze associated with topography), the processes involving peaks of pollution were strongly non linear, and the meso scale modeling coupled on line with chemistry module was an essential step for a realistic redistribution of chemical species. Two nested grids satisfactorily describe the synoptic dynamics and the sea breeze circulations. The ECMWF meteorological fields provide the initial and boundary conditions. Different events characterized by various meteorological situations were simulated. Meteorological fields retrieved by modeling, also Modeled ozone, NOx, CO and SO2 concentrations, were compared with balloons, lidars, aircrafts and surface stations measurements. The chemistry regimes were explained according to the distribution of plumes. The stratified layers were examined.

  9. Meteorological Summaries

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Multi-year summaries of one or more meteorological elements at a station or in a state. Primarily includes Form 1078, a United States Weather Bureau form designed...

  10. Meteorology Online.

    Science.gov (United States)

    Kahl, Jonathan D. W.

    2001-01-01

    Describes an activity to learn about meteorology and weather using the internet. Discusses the National Weather Service (NWS) internet site www.weather.gov. Students examine maximum and minimum daily temperatures, wind speed, and direction. (SAH)

  11. Linking Meteorology, Air Quality Models and Observations to Characterize Human Exposures in Support of the Environmental Health Studies

    Science.gov (United States)

    Epidemiologic studies are critical in establishing the association between exposure to air pollutants and adverse health effects. Results of epidemiologic studies are used by U.S. EPA in developing air quality standards to protect the public from the health effects of air polluta...

  12. A joint modelling exercise designed to assess the respective impact of emission changes and meteorological variability on the observed air quality trends in major urban hotspots.

    Science.gov (United States)

    Colette, Augustin; Bessagnet, Bertrand; Dangiola, Ariela; D'Isidoro, Massimo; Gauss, Michael; Granier, Claire; Hodnebrog, Øivind; Jakobs, Hermann; Kanakidou, Maria; Khokhar, Fahim; Law, Kathy; Maurizi, Alberto; Meleux, Frederik; Memmesheimer, Michael; Nyiri, Agnes; Rouil, Laurence; Stordal, Frode; Tampieri, Francesco

    2010-05-01

    With the growth of urban agglomerations, assessing the drivers of variability of air quality in and around the main anthropogenic emission hotspots has become a major societal concern as well as a scientific challenge. These drivers include emission changes and meteorological variability; both of them can be investigated by means of numerical modelling of trends over the past few years. A collaborative effort has been developed in the framework of the CityZen European project to address this question. Several chemistry and transport models (CTMs) are deployed in this activity: four regional models (BOLCHEM, CHIMERE, EMEP and EURAD) and three global models (CTM2, MOZART, and TM4). The period from 1998 to 2007 has been selected for the historic reconstruction. The focus for the present preliminary presentation is Europe. A consistent set of emissions is used by all partners (EMEP for the European domain and IPCC-AR5 beyond) while a variety of meteorological forcing is used to gain robustness in the ensemble spread amongst models. The results of this experiment will be investigated to address the following questions: - Is the envelope of models able to reproduce the observed trends of the key chemical constituents? - How the variability amongst models changes in time and space and what does it tell us about the processes driving the observed trends? - Did chemical regimes and aerosol formation processes changed in selected hotspots? Answering the above questions will contribute to fulfil the ultimate goal of the present study: distinguishing the respective contribution of meteorological variability and emissions changes on air quality trends in major anthropogenic emissions hotspots.

  13. Synergy between air pollution and urban meteorological changes through aerosol-radiation-diffusion feedback―A case study of Beijing in January 2013

    Science.gov (United States)

    Kajino, Mizuo; Ueda, Hiromasa; Han, Zhiwei; Kudo, Rei; Inomata, Yayoi; Kaku, Hidenori

    2017-12-01

    The interactions of aerosol-radiation-stratification-turbulence-cloud processes during a severe haze event in Beijing in January 2013 were studied using a numerical model. For the clear days, solar radiation flux was reduced by approximately 15% and surface temperature was slightly decreased from 0 to 0.5 K throughout the day and night, except for a 1.4 K decrease around sunrise when fog was presented. The longwave radiation cooling was intensified by the fog or drizzle droplets near the top of the fog layer. Thus, in Beijing, both in the daytime and at night, the surface air temperature was decreased by air pollutants. In the presence of the low-level stratus and light precipitation, the modification of meteorology by aerosols was amplified and changed the wind speed and direction much more significantly compared to clear days. The non-linear effect (or positive feedback) of pollutant emission control on the surface air concentration was newly assessed―severe air pollution leads to the intensification of stable stratification near the surface at night and delays the evolution of the mixing layer, which in turn causes more severe air pollution. The non-linear effect was not significant for the current emission levels in the current case, approximately 10%. In another word, the mixing ratio of aerosols became higher by 10% due to their radiation effects.

  14. Variability of aerosol, gaseous pollutants and meteorological characteristics associated with continental, urban and marine air masses at the SW Atlantic coast of Iberia

    Science.gov (United States)

    Diesch, J.-M.; Drewnick, F.; Zorn, S. R.; von der Weiden-Reinmüller, S.-L.; Martinez, M.; Borrmann, S.

    2011-12-01

    Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W). As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS). Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2) and a weather station provided meteorological parameters. Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m-3 and 1000 cm-3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54%) was detected in marine air masses and was to a high degree not neutralized. In addition small concentrations of methanesulfonic acid (MSA), a product of biogenic dimethyl sulfate (DMS) emissions could be identified in the particle phase. In all

  15. Test reference years - meteorological bases for the technical simulation of heating systems and air-conditioning systems

    International Nuclear Information System (INIS)

    Perl, J.

    1991-01-01

    For the FRG (western part) for 12 regions with different climate test reference years (TRY) have been established. The TRYs are used for the simulation of the thermal behaviour of buildings, of the operation of heating and space avc systems, lighting control, solar plants as well as of comparable technical systems. A TRY is a collection of hourly data of important meterological parameters over a whole year. The TRYs include 14 meteorological parameters for temperature, humidity, wind, short- and long-wave radiation, atmospheric pressure, precipitation and description of the weather at that time. A TRY is to correspond to the characteristic weather conditions of the TRY region. (orig.) [de

  16. [New possibilities in emergency medical transportation and emergency services of Polish Medical Air Rescue].

    Science.gov (United States)

    Gałazkowski, Robert

    2010-01-01

    In Poland, two types of medical services are accomplished by the Medical Air Rescue (MAR) operating all over the country: emergency transport from the incident scene to hospital and inter-hospital transport. Helicopters or planes are used for this purpose. In 2009, helicopters performed 4359 flights to incidents and 1537 inter-hospital transports whereas planes performed 589 inter-hospital ambulance and 196 rescue flights. MAR operates from 17 bases of the Helicopter Emergency Medical Service (HEMS) and one airbase. Helicopters are mainly used when medical transport is emergent, within the operational region of a given base whereas planes when the distance between the present and target airports exceeds 250 km. In 2008, new modern aircraft were introduced to HEMS-helicopters EC 135. They fulfil all requirements of air transport regulations and are adjusted to visual (VFR) and instrumental (IFR) flights rules, at day and night. The medical cabin of EC 135 is ergonomic and functional considering the majority of rescue activities under life-saving circumstances. It is equipped with ventilator, defibrillator, infusion pumps etc. Defibrillators have 12-lead ECG, E(T)CO2, SpO2, NIBP, and IBP modules. Transport ventilators can work in a variety of ventilation modes including CMV, SIMV, SVV, BILEVEL, PCV, ASB, PPV and CPAP. The purchase of helicopters with modern avionic and medical configuration ensures high quality services of MAR for many years to come.

  17. Activation of air and concrete in medical isotope production facilities

    Science.gov (United States)

    Dodd, Adam C.; Shackelton, R. J.; Carr, D. A.; Ismail, A.

    2017-05-01

    Medical isotope facilities operating in the 10 to 25 MeV proton energy range have long been used to generate radioisotopes for medical diagnostic imaging. In the last few years the beam currents available in commercially available cyclotrons have increased dramatically, and so the activation of the materials within cyclotron vaults may now pose more serious radiological hazards. This will impact the regulatory oversight of cyclotron operations, cyclotron servicing and future decommissioning activities. Air activation could pose a hazard to cyclotron staff. With the increased cyclotron beam currents it was necessary to examine the issue more carefully. Therefore the ways in which radioactivity may be induced in air by neutron reactions and neutron captures were considered and it was found that the dominant mechanism is neutron capture on Ar-40. A study of the activation of the air by neutron capture on Ar-40 within a cyclotron vault was performed using the MCNP Monte Carlo code. The neutron source energy spectrum used was from the production of the widely used F-18 PET isotope. The results showed that the activation of the air within a cyclotron vault does not pose a significant radiological hazard at the beam intensities currently in use and shows how ventilation affects the results. A second MCNP study on the activation of ordinary concrete in cyclotron vaults by neutron capture was made with a view to determining the optimum thickness of borated polyethylene to reduce neutron activation on both the inner surfaces of the vault and around production targets. This is of importance in decommissioning cyclotrons and therefore in the design of new cyclotron vaults. The distribution of activation on the walls as a function of the source position was also studied. Results are presented for both borated and regular polyethylene, and F-18 and Tc-99 neutron spectra.

  18. Evaluation of near surface ozone and particulate matter in air quality simulations driven by dynamically downscaled historical meteorological fields

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset supports the modeling study of Seltzer et al. (2016) published in Atmospheric Environment. In this study, techniques typically used for future air...

  19. Variability of aerosol, gaseous pollutants and meteorological characteristics associated with changes in air mass origin at the SW Atlantic coast of Iberia

    Directory of Open Access Journals (Sweden)

    J.-M. Diesch

    2012-04-01

    Full Text Available Measurements of the ambient aerosol were performed at the Southern coast of Spain, within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides project. The field campaign took place from 20 November until 9 December 2008 at the atmospheric research station "El Arenosillo" (37°5'47.76" N, 6°44'6.94" W. As the monitoring station is located at the interface between a natural park, industrial cities (Huelva, Seville and the Atlantic Ocean, a variety of physical and chemical parameters of aerosols and gas phase could be characterized in dependency on the origin of air masses. Backwards trajectories were examined and compared with local meteorology to classify characteristic air mass types for several source regions. Aerosol number and mass as well as polycyclic aromatic hydrocarbons and black carbon concentrations were measured in PM1 and size distributions were registered covering a size range from 7 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol (NR-PM1 was measured by means of an Aerosol Mass Spectrometer (Aerodyne HR-ToF-AMS. Gas phase analyzers monitored various trace gases (O3, SO2, NO, NO2, CO2 and a weather station provided meteorological parameters.

    Lowest average submicron particle mass and number concentrations were found in air masses arriving from the Atlantic Ocean with values around 2 μg m−3 and 1000 cm−3. These mass concentrations were about two to four times lower than the values recorded in air masses of continental and urban origins. For some species PM1-fractions in marine air were significantly larger than in air masses originating from Huelva, a closely located city with extensive industrial activities. The largest fraction of sulfate (54% was detected in marine air masses and was to a high degree not neutralized. In addition, small concentrations of

  20. Building a Quality Controlled Database of Meteorological Data from NASA Kennedy Space Center and the United States Air Force's Eastern Range

    Science.gov (United States)

    Brenton, James C.; Barbre. Robert E., Jr.; Decker, Ryan K.; Orcutt, John M.

    2018-01-01

    The National Aeronautics and Space Administration's (NASA) Marshall Space Flight Center (MSFC) Natural Environments Branch (EV44) has provided atmospheric databases and analysis in support of space vehicle design and day-of-launch operations for NASA and commercial launch vehicle programs launching from the NASA Kennedy Space Center (KSC), co-located on the United States Air Force's Eastern Range (ER) at the Cape Canaveral Air Force Station. The ER complex is one of the most heavily instrumented sites in the United States with over 31 towers measuring various atmospheric parameters on a continuous basis. An inherent challenge with large sets of data consists of ensuring erroneous data is removed from databases, and thus excluded from launch vehicle design analyses. EV44 has put forth great effort in developing quality control (QC) procedures for individual meteorological instruments, however no standard QC procedures for all databases currently exists resulting in QC databases that have inconsistencies in variables, methodologies, and periods of record. The goal of this activity is to use the previous efforts by EV44 to develop a standardized set of QC procedures from which to build meteorological databases from KSC and the ER, while maintaining open communication with end users from the launch community to develop ways to improve, adapt and grow the QC database. Details of the QC procedures will be described. As the rate of launches increases with additional launch vehicle programs, it is becoming more important that weather databases are continually updated and checked for data quality before use in launch vehicle design and certification analyses.

  1. Monitoring of meteorology and air quality at influence area of COMPERJ (Rio de Janeiro Petrochemical Complex); Monitoramento meteorologico e da qualidade do ar na regiao de influencia do COMPERJ (Complexo Petroquimico do Rio de Janeiro)

    Energy Technology Data Exchange (ETDEWEB)

    Albuquerque, Edler Lins de; Villa, Felipe de Santana; Lyra, Diogenes Ganghis Pimentel de [CETREL-LUMINA Solucoes Ambientais, Salvador, BA (Brazil); Secron, Marcelo; Iorio, Patricia Freire; Mendes, Marcos Faistauer [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2008-07-01

    Rio de Janeiro Petrochemical Complex (COMPERJ) will be installed in the north region of Itaborai city. The start of COMPERJ operations is foreseen to 2012. Because of the intensification of industrialization and urbanization processes, the implantation of COMPERJ will bring environmental modifications for Itaborai city and neighbors areas. Thus, meteorological and air quality monitoring was initiated in February of 2007 with the intention of carrying out a characterization of air pollution in this area, before COMPERJ operations. In this work are presented the results found in campaigns performed of February of 2007 until April of 2008. The meteorological monitoring disclosed that the meteorological parameters have varied enough throughout the months, but these are representative of a global behavior of the studied area. Monitoring of air quality has shown that atmospheric levels of monitored pollutants has been generally below of Brazilian air quality standards. This fact corroborates the basic aspect of the present study: identification of the concentrations 'background' in the studied area. Throughout the period of monitoring, the primary air quality standard for ozone has been reached. Observations of meteorological parameters indicate that this fact is associated to the emissions originated from Sao Goncalo, Niteroi and Rio de Janeiro cities. (author)

  2. Virtual Meteorological Center

    Directory of Open Access Journals (Sweden)

    Marius Brinzila

    2007-10-01

    Full Text Available A virtual meteorological center, computer based with Internet possibility transmission of the information is presented. Circumstance data is collected with logging field meteorological station. The station collects and automatically save data about the temperature in the air, relative humidity, pressure, wind speed and wind direction, rain gauge, solar radiation and air quality. Also can perform sensors test, analyze historical data and evaluate statistical information. The novelty of the system is that it can publish data over the Internet using LabVIEW Web Server capabilities and deliver a video signal to the School TV network. Also the system performs redundant measurement of temperature and humidity and was improved using new sensors and an original signal conditioning module.

  3. Risk assessment for cardiovascular and respiratory mortality due to air pollution and synoptic meteorology in 10 Canadian cities.

    Science.gov (United States)

    Vanos, Jennifer K; Hebbern, Christopher; Cakmak, Sabit

    2014-02-01

    Synoptic weather and ambient air quality synergistically influence human health. We report the relative risk of mortality from all non-accidental, respiratory-, and cardiovascular-related causes, associated with exposure to four air pollutants, by weather type and season, in 10 major Canadian cities for 1981 through 1999. We conducted this multi-city time-series study using Poisson generalized linear models stratified by season and each of six distinctive synoptic weather types. Statistically significant relationships of mortality due to short-term exposure to carbon monoxide, nitrogen dioxide, sulphur dioxide, and ozone were found, with significant modifications of risk by weather type, season, and mortality cause. In total, 61% of the respiratory-related mortality relative risk estimates were significantly higher than for cardiovascular-related mortality. The combined effect of weather and air pollution is greatest when tropical-type weather is present in the spring or summer. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  4. Characterization of key aerosol, trace gas and meteorological properties and particle formation and growth processes dependent on air mass origins in coastal Southern Spain

    Science.gov (United States)

    Diesch, J.; Drewnick, F.; Sinha, V.; Williams, J.; Borrmann, S.

    2011-12-01

    The chemical composition and concentration of aerosols at a certain site can vary depending on season, the air mass source region and distance from sources. Regardless of the environment, new particle formation (NPF) events are one of the major sources for ultrafine particles which are potentially hazardous to human health. Grown particles are optically active and efficient CCN resulting in important implications for visibility and climate (Zhang et al., 2004). The study presented here is intended to provide information about various aspects of continental, urban and marine air masses reflected by wind patterns of the air arriving at the measurement site. Additionally we will be focusing on NPF events associated with different types of air masses affecting their emergence and temporal evolution. Measurements of the ambient aerosol, various trace gases and meteorological parameters were performed within the framework of the DOMINO (Diel Oxidant Mechanisms In relation to Nitrogen Oxides) project. The field campaign took place from mid-November to mid-December 2008 at the atmospheric research station "El Arenosillo" located at the interface between a natural park, industrial cities (Huelva, Seville) and the Atlantic Ocean. Number and mass as well as PAH and black carbon concentrations were measured in PM1 and size distribution instruments covered the size range 6 nm up to 32 μm. The chemical composition of the non-refractory submicron aerosol was measured by means of an Aerosol Mass Spectrometer (AMS). In order to evaluate the characteristics of different air masses linking local and regional sources as well as NPF processes, characteristic air mass types were classified dependent on backwards trajectory pathways and local meteorology. Large nuclei mode concentrations in the number size distribution were found within continental and urban influenced air mass types due to frequently occurring NPF events. Exploring individual production and sink variables, sulfuric

  5. A proof-of-concept for linking the global meteorological model, MPAS-A with the air quality model, CMAQ

    Science.gov (United States)

    Researchers who perform air quality modeling studies usually do so on a regional scale. Typically, the boundary conditions are generated by another model which might have a different chemical mechanism, spatial resolution, and/or map projection. Hence, a necessary conversion/inte...

  6. The Economics of Air Force Medical Service Readiness.

    Science.gov (United States)

    Graser, John C; Blum, Daniel; Brancato, Kevin; Burks, James J; Chan, Edward W; Nicosia, Nancy; Neumann, Michael J; Ritschard, Hans V; Mundell, Benjamin F

    2012-01-01

    The prime mission of the Air Force Medical Service (AFMS), like those of the medical departments of its sister services, is to provide medical care during wartime. AFMS currently runs three successful in-theater hospitals that treat severely injured or wounded U.S. personnel from all four services. But this wartime mission depends on capabilities built at home, as critical-care specialists maintain their technical proficiency, as much as peacetime opportunities allow, by meeting health-care needs of Department of Defense beneficiaries at home. These patients have ranged from young, healthy active-duty personnel to aging retirees, historically presenting a broad range of injuries and illnesses for treatment. However, between the demands of deployments creating gaps in staff at home and changes in care plans, some beneficiaries now seek care in the civilian sector. In addition, several AFMS hospitals stateside have been closed, converted to clinics, or combined with those of other services for various reasons. All is problematic for two reasons: First, inpatient workloads in particular represent the best opportunities for critical care providers to prepare for their wartime missions. AFMS will need to increase these opportunities, perhaps working with other services, the Department of Veterans Affairs, or civilian hospitals. Second, AFMS's funding depends, in part, on the workload performed, but current measurement methods do not necessarily do a good job of accounting for the work AFMS practitioners accomplish outside their home stations. Some imminent changes may help resolve this situation, but AFMS should pursue opportunities to create additional workload for its medical personnel and to increase its budgets.

  7. Ambient endotoxin in PM10 and association with inflammatory activity, air pollutants, and meteorology, in Chitwan, Nepal.

    Science.gov (United States)

    Mahapatra, Parth Sarathi; Jain, Sumeet; Shrestha, Sujan; Senapati, Shantibhusan; Puppala, Siva Praveen

    2018-03-15

    Endotoxin associated with ambient PM (particulate matter) has been linked to adverse respiratory symptoms, but there have been few studies of ambient endotoxin and its association with co-pollutants and inflammation. Our aim was to measure endotoxin associated with ambient PM 10 (particulate matter with aerodynamic diametermeteorology, co-pollutants, and inflammatory activity. PM 10 concentrations were recorded and filter paper samples were collected using E-samplers; PM 1, PM 2.5 , black carbon (BC), methane (CH 4 ), and carbon monoxide (CO) were also measured. The Limulus amebocyte lysate (LAL) assay was used for endotoxin quantification and the nuclear factor kappa B (NFκB) activation assay to assess inflammatory activity. The mean concentration of PM 10 at the different locations ranged from 136 to 189μg/m 3 , and of endotoxin from 0.29 to 0.53EU/m 3 . Pollutant presence was positively correlated with endotoxin. Apart from relative humidity, meteorological variations had no significant impact on endotoxin concentration. NF-κB activity was negatively correlated with endotoxin concentration. To the best of our knowledge, this study provides the first measurements of ambient endotoxin associated with PM 10 in Nepal. Endotoxin and co-pollutants were positively associated indicating a similar source. Endotoxin was negatively correlated with inflammatory activity as a result of a time-limited forest fire event during the sampling period. Studies of co-pollutants suggested that the higher levels of endotoxin related to biomass burning were accompanied by increased levels of anti-inflammatory agents, which suppressed the endotoxin inflammatory effect. Copyright © 2017. Published by Elsevier B.V.

  8. Modeling of the anthropogenic heat flux and its effect on regional meteorology and air quality over the Yangtze River Delta region, China

    Directory of Open Access Journals (Sweden)

    M. Xie

    2016-05-01

    Full Text Available Anthropogenic heat (AH emissions from human activities caused by urbanization can affect the city environment. Based on the energy consumption and the gridded demographic data, the spatial distribution of AH emission over the Yangtze River Delta (YRD region is estimated. Meanwhile, a new method for the AH parameterization is developed in the WRF/Chem model, which incorporates the gridded AH emission data with the seasonal and diurnal variations into the simulations. By running this upgraded WRF/Chem for 2 typical months in 2010, the impacts of AH on the meteorology and air quality over the YRD region are studied. The results show that the AH fluxes over the YRD have been growing in recent decades. In 2010, the annual-mean values of AH over Shanghai, Jiangsu and Zhejiang are 14.46, 2.61 and 1.63 W m−2, respectively, with the high value of 113.5 W m−2 occurring in the urban areas of Shanghai. These AH emissions can significantly change the urban heat island and urban-breeze circulations in the cities of the YRD region. In Shanghai, 2 m air temperature increases by 1.6 °C in January and 1.4 °C in July, the PBLH (planetary boundary layer height rises up by 140 m in January and 160 m in July, and 10 m wind speed is enhanced by 0.7 m s−1 in January and 0.5 m s−1 in July, with a higher increment at night. The enhanced vertical movement can transport more moisture to higher levels, which causes the decrease in water vapor at ground level and the increase in the upper PBL (planetary boundary layer, and thereby induces the accumulative precipitation to increase by 15–30 % over the megacities in July. The adding of AH can impact the spatial and vertical distributions of the simulated pollutants as well. The concentrations of primary air pollutants decrease near the surface and increase at the upper levels, due mainly to the increases in PBLH, surface wind speed and upward air vertical movement. But surface O3

  9. Modeling of the anthropogenic heat flux and its effect on regional meteorology and air quality over the Yangtze River Delta region, China

    Science.gov (United States)

    Xie, Min; Liao, Jingbiao; Wang, Tijian; Zhu, Kuanguang; Zhuang, Bingliang; Han, Yong; Li, Mengmeng; Li, Shu

    2016-05-01

    Anthropogenic heat (AH) emissions from human activities caused by urbanization can affect the city environment. Based on the energy consumption and the gridded demographic data, the spatial distribution of AH emission over the Yangtze River Delta (YRD) region is estimated. Meanwhile, a new method for the AH parameterization is developed in the WRF/Chem model, which incorporates the gridded AH emission data with the seasonal and diurnal variations into the simulations. By running this upgraded WRF/Chem for 2 typical months in 2010, the impacts of AH on the meteorology and air quality over the YRD region are studied. The results show that the AH fluxes over the YRD have been growing in recent decades. In 2010, the annual-mean values of AH over Shanghai, Jiangsu and Zhejiang are 14.46, 2.61 and 1.63 W m-2, respectively, with the high value of 113.5 W m-2 occurring in the urban areas of Shanghai. These AH emissions can significantly change the urban heat island and urban-breeze circulations in the cities of the YRD region. In Shanghai, 2 m air temperature increases by 1.6 °C in January and 1.4 °C in July, the PBLH (planetary boundary layer height) rises up by 140 m in January and 160 m in July, and 10 m wind speed is enhanced by 0.7 m s-1 in January and 0.5 m s-1 in July, with a higher increment at night. The enhanced vertical movement can transport more moisture to higher levels, which causes the decrease in water vapor at ground level and the increase in the upper PBL (planetary boundary layer), and thereby induces the accumulative precipitation to increase by 15-30 % over the megacities in July. The adding of AH can impact the spatial and vertical distributions of the simulated pollutants as well. The concentrations of primary air pollutants decrease near the surface and increase at the upper levels, due mainly to the increases in PBLH, surface wind speed and upward air vertical movement. But surface O3 concentrations increase in the urban areas, with maximum

  10. Impact of 2000–2050 climate change on fine particulate matter (PM2.5 air quality inferred from a multi-model analysis of meteorological modes

    Directory of Open Access Journals (Sweden)

    D. J. Jacob

    2012-12-01

    Full Text Available Studies of the effect of climate change on fine particulate matter (PM2.5 air quality using general circulation models (GCMs show inconsistent results including in the sign of the effect. This reflects uncertainty in the GCM simulations of the regional meteorological variables affecting PM2.5. Here we use the CMIP3 archive of data from fifteen different IPCC AR4 GCMs to obtain improved statistics of 21st-century trends in the meteorological modes driving PM2.5 variability over the contiguous US. We analyze 1999–2010 observations to identify the dominant meteorological modes driving interannual PM2.5 variability and their synoptic periods T. We find robust correlations (r > 0.5 of annual mean PM2.5 with T, especially in the eastern US where the dominant modes represent frontal passages. The GCMs all have significant skill in reproducing present-day statistics for T and we show that this reflects their ability to simulate atmospheric baroclinicity. We then use the local PM2.5-to-period sensitivity (dPM2.5/dT from the 1999–2010 observations to project PM2.5 changes from the 2000–2050 changes in T simulated by the 15 GCMs following the SRES A1B greenhouse warming scenario. By weighted-average statistics of GCM results we project a likely 2000–2050 increase of ~ 0.1 μg m−3 in annual mean PM2.5 in the eastern US arising from less frequent frontal ventilation, and a likely decrease albeit with greater inter-GCM variability in the Pacific Northwest due to more frequent maritime inflows. Potentially larger regional effects of 2000–2050 climate change on PM2.5 may arise from changes in temperature, biogenic emissions, wildfires, and vegetation, but are still unlikely to affect annual PM2.5 by more than 0.5 μg m−3.

  11. Sensitivity of the Community Multiscale Air Quality (CMAQ model v4.7 results for the eastern United States to MM5 and WRF meteorological drivers

    Directory of Open Access Journals (Sweden)

    K. W. Appel

    2010-02-01

    Full Text Available This paper presents a comparison of the operational performances of two Community Multiscale Air Quality (CMAQ model v4.7 simulations that utilize input data from the 5th-generation Mesoscale Model (MM5 and the Weather Research and Forecasting (WRF meteorological models. Two sets of CMAQ model simulations were performed for January and August 2006. One set utilized MM5 meteorology (MM5-CMAQ and the other utilized WRF meteorology (WRF-CMAQ, while all other model inputs and options were kept the same. For January, predicted ozone (O3 mixing ratios were higher in the Southeast and lower Mid-west regions in the WRF-CMAQ simulation, resulting in slightly higher bias and error as compared to the MM5-CMAQ simulations. The higher predicted O3 mixing ratios are attributed to less dry deposition of O3 in the WRF-CMAQ simulation due to differences in the calculation of the vegetation fraction between the MM5 and WRF models. The WRF-CMAQ results showed better performance for particulate sulfate (SO42−, similar performance for nitrate (NO3, and slightly worse performance for nitric acid (HNO3, total carbon (TC and total fine particulate (PM2.5 mass than the corresponding MM5-CMAQ results. For August, predictions of O3 were notably higher in the WRF-CMAQ simulation, particularly in the southern United States, resulting in increased model bias. Concentrations of predicted particulate SO42− were lower in the region surrounding the Ohio Valley and higher along the Gulf of Mexico in the WRF-CMAQ simulation, contributing to poorer model performance. The primary causes of the differences in the MM5-CMAQ and WRF-CMAQ simulations appear to be due to differences in the calculation of wind speed, planetary boundary layer height, cloud cover and the friction velocity (u in the MM5 and WRF model simulations, while

  12. A quantitative determination of air-water heat fluxes in Hermit Lake, New Hampshire under varying meteorological conditions, time of day, and time of year

    Science.gov (United States)

    Kyper, Nicholas D.

    An extensive heat flux study is performed at Hermit Lake, New Hampshire from May 26, 2010 till November 7, 2010 to determine the effects of the five individual heat fluxes on Hermit Lake and the surrounding amphibian community. Hermit Lake was chosen due to the relatively long meteorological observations record within the White Mountains of New Hampshire, a new lakeside meteorological station, and ongoing phenology studies of the surrounding eco-system. Utilizing meteorological data from the lakeside weather station and moored water temperature sensors, the incident (Qi), blackbody ( Qbnet ), latent (Qe), sensible (Q s), and net (Qn) heat fluxes are calculated. The incident heat flux is the dominate term in the net flux, accounting for 93% of the variance found in Qn and producing a heat gain of ˜ 19x108 J m-2 throughout the period of study. This large gain produces a net gain of heat in the lake until October 1, 2010, where gains by Qi are offset by the large combined losses of Qbnet , Qs, and Qe thereby producing a gradual decline of heat within the lake. The latent and blackbody heat fluxes produce the largest losses of heat in the net heat flux with a total losses of ˜ -8x108 J m-2 and ˜ -7x108 J m-2, respectively. The sensible heat flux is negligible, producing a total minimal loss of ˜ -1x108 J m-2. Overall the net heat produces a net gain of heat of 2x108 J m-2 throughout the study period. Frog calls indicative of breeding are recorded from May 26, 2010 until August 16, 2010. The spring peeper, American toad, and green frog each produced enough actively calling days to be compared to air temperature, surface water temperature, and wind speed data, as well as data from the five heat fluxes. Linear regression analysis reveals that certain water temperature thresholds affect the calling activities of the spring peeper and green frog, while higher wind speeds have a dramatic effect on the calling activities of both the green frog and American toad. All three

  13. Modelling deposition and air concentration of reduced nitrogen in Poland and sensitivity to variability in annual meteorology.

    Science.gov (United States)

    Kryza, Maciej; Dore, Anthony J; Błaś, Marek; Sobik, Mieczysław

    2011-04-01

    The relative contribution of reduced nitrogen to acid and eutrophic deposition in Europe has increased recently as a result of European policies which have been successful in reducing SO(2) and NO(x) emissions but have had smaller impacts on ammonia (NH(3)) emissions. In this paper the Fine Resolution Atmospheric Multi-pollutant Exchange (FRAME) model was used to calculate the spatial patterns of annual average ammonia and ammonium (NH(4)(+)) air concentrations and reduced nitrogen (NH(x)) dry and wet deposition with a 5 km × 5 km grid for years 2002-2005. The modelled air concentrations of NH(3) and dry deposition of NH(x) show similar spatial patterns for all years considered. The largest year to year changes were found for wet deposition, which vary considerably with precipitation amount. The FRAME modelled air concentrations and wet deposition are in reasonable agreement with available measurements (Pearson's correlation coefficients above 0.6 for years 2002-2005), and with spatial patterns of concentrations and deposition of NH(x) reported with the EMEP results, but show larger spatial gradients. The error statistics show that the FRAME model results are in better agreement with measurements if compared with EMEP estimates. The differences in deposition budgets calculated with FRAME and EMEP do not exceed 17% for wet and 6% for dry deposition, with FRAME estimates higher than for EMEP wet deposition for modelled period and lower or equal for dry deposition. The FRAME estimates of wet deposition budget are lower than the measurement-based values reported by the Chief Inspectorate of Environmental Protection of Poland, with the differences by approximately 3%. Up to 93% of dry and 53% of wet deposition of NH(x) in Poland originates from national sources. Over the western part of Poland and mountainous areas in the south, transboundary transport can contribute over 80% of total (dry + wet) NH(x) deposition. The spatial pattern of the relative contribution of

  14. Application of satellite data to the studies of agricultural meteorology: Relationship between ground temperature from GMS IR data and AMeDAS air temperature

    International Nuclear Information System (INIS)

    Tani, H.; Horiguchi, I.; Motoki, T.

    1984-01-01

    The purpose of the present study is to estimate air temperature in areas where there is no meteorological observation site, using satellite thermal IR data. Surface temperature from GMS IR data derived by eq. (1) was compared with AMeDAS (meteorological observation site) air temperature. The results are summarized as follows: 1) The maximum correlation coefficients between AMeDAS air temperature and surface temperature from GMS IR data is 0.90, the minimum is 0.30 and the mean is 0.60±0.15. 2) The correlation coefficients are affected by the precipitable water and decrease with increasing precipitable Water as shown in Fig. 2. 3) The correlation coefficients for each GMS observed time are better at night and in the morning than during the day (Table 2). 4) Also, the small values of the regression coefficients appear during the day and the large values at night and in the morning (Table 2). 5) The standard deviations which indicated scattering around the regression line are large at 12:00 and 15:00, but small at 06:00 and 09:00 (Table 2). The reason that correlation coefficients, regression coefficients and standard deviations between AMeDAS air temperature and surface temperature from GMS IR data are less during the day than at night and in the morning, is caused by ground conditions because the effects of solar radiation on surface temperature depend on ground surface conditions: plant cover, incline of slope etc. The hourly mean deviation from the regression line for surface temperature was calculated to investigate the characteristic of ground surface conditions for each AMeDAS observation site. AMeDAS observation sites were classified into four types according to the patterns of the hourly mean deviation as shown in Fig. 5. Most of type I were distributed in the plain regions: Ishikari, Konsen and Tokachi. Type II appears in the basin regions and type III on the coast of the Pacific Ocean and the Sea of Okhotsuk. The remaining areas are type IV. The standard

  15. Meteorological tracers in regional planning

    International Nuclear Information System (INIS)

    Mueller, K.H.

    1974-11-01

    Atmospheric tracers can be used as indicators to study both the ventilation of an urban region and its dispersion meteorology for air pollutants. A correlation analysis applied to the space-time dependent tracer concentrations is able to give transfer functions, the structure and characteristic parameters of which describe the meteorological and topographical situation of the urban region and its surroundings in an integral manner. To reduce the number of persons usually involved in a tracer experiment an automatic air sampling system had to be developed

  16. Mixing layer height on the North China Plain and meteorological evidence of serious air pollution in southern Hebei

    Science.gov (United States)

    Zhu, Xiaowan; Tang, Guiqian; Guo, Jianping; Hu, Bo; Song, Tao; Wang, Lili; Xin, Jinyuan; Gao, Wenkang; Münkel, Christoph; Schäfer, Klaus; Li, Xin; Wang, Yuesi

    2018-04-01

    To investigate the spatiotemporal variability of the mixing layer height (MLH) on the North China Plain (NCP), multi-site and long-term observations of the MLH with ceilometers at three inland stations (Beijing, BJ; Shijiazhuang, SJZ; Tianjin, TJ) and one coastal site (Qinhuangdao) were conducted from 16 October 2013 to 15 July 2015. The MLH of the inland stations in the NCP were highest in summer and lowest in winter, while the MLH on the coastal area of Bohai was lowest in summer and highest in spring. As a typical site in southern Hebei, the annual mean of the MLH at SJZ was 464 ± 183 m, which was 15.0 and 21.9 % lower than that at the BJ (594 ± 183 m) and TJ (546 ± 197 m) stations, respectively. Investigation of the shear term and buoyancy term in the NCP revealed that these two parameters in southern Hebei were 2.8 times lower and 1.5 times higher than that in northern NCP within 0-1200 m in winter, respectively, leading to a 1.9-fold higher frequency of the gradient Richardson number > 1 in southern Hebei compared to the northern NCP. Furthermore, combined with aerosol optical depth and PM2.5 observations, we found that the pollutant column concentration contrast (1.2 times) between these two areas was far less than the near-ground PM2.5 concentration contrast (1.5 times). Through analysis of the ventilation coefficient in the NCP, the near-ground heavy pollution in southern Hebei mainly resulted from the lower MLH and wind speed. Therefore, due to the importance of unfavorable weather conditions, heavily polluting enterprises should be relocated and strong emission reduction measures should be introduced to improve the air quality in southern Hebei.

  17. Remote Sensing of Urban Thermal Landscape Characteristics and Their Affects on Local and Regional Meteorology and Air Quality: An Overview of NASA EOS-IDS Project Atlanta

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    1999-01-01

    As an entity, the city is a manifestation of human "management" of the land. The act of city-building, however, drastically alters the biophysical environment, which ultimately, impacts local and regional land-atmosphere energy exchange processes. Because of the complexity of both the urban landscape and the attendant energy fluxes that result from urbanization, remote sensing offers the only real way to synoptically quantify these processes. One of the more important land-atmosphere fluxes that occurs over cities relates to the way that thermal energy is partitioned across the heterogeneous urban landscape. The individual land cover and surface material types that comprise the city, such as pavements and buildings, each have their own thermal energy regimes. As the collective urban landscape, the individual thermal energy responses from specific surfaces come together to form the urban heat island phenomena, which prevails as a dome of elevated air temperatures over cities. Although the urban heat island has been known to exist for well over 150 years, it is not understood how differences in thermal energy responses for land covers across the city interact to produce this phenomenon, or how the variability in thermal energy responses from different surface types drive its development. Additionally, it can be hypothesized that as cities grow in size through time, so do their urban heat islands. The interrelationships between urban sprawl and the respective growth of the urban heat island, however, have not been investigated. Moreover, little is known of the consequential effects of urban growth, land cover change, and the urban heat island as they impact local and regional meteorology and air quality.

  18. Mathematical problems in meteorological modelling

    CERN Document Server

    Csomós, Petra; Faragó, István; Horányi, András; Szépszó, Gabriella

    2016-01-01

    This book deals with mathematical problems arising in the context of meteorological modelling. It gathers and presents some of the most interesting and important issues from the interaction of mathematics and meteorology. It is unique in that it features contributions on topics like data assimilation, ensemble prediction, numerical methods, and transport modelling, from both mathematical and meteorological perspectives. The derivation and solution of all kinds of numerical prediction models require the application of results from various mathematical fields. The present volume is divided into three parts, moving from mathematical and numerical problems through air quality modelling, to advanced applications in data assimilation and probabilistic forecasting. The book arose from the workshop “Mathematical Problems in Meteorological Modelling” held in Budapest in May 2014 and organized by the ECMI Special Interest Group on Numerical Weather Prediction. Its main objective is to highlight the beauty of the de...

  19. Project ATLANTA (ATlanta Land-use ANalysis: Temperature and Air quality): A Study of how the Urban Landscape Affects Meteorology and Air Quality Through Time

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G.; Lo, C. P.; Kidder, Stanley Q.; Hafner, Jan; Taha, Haider; Bornstein, Robert D.; Gillies, Robert R.; Gallo, Kevin P.

    1998-01-01

    It is our intent through this investigation to help facilitate measures that can be Project ATLANTA (ATlanta Land-use ANalysis: applied to mitigate climatological or air quality Temperature and Air-quality) is a NASA Earth degradation, or to design alternate measures to sustain Observing System (EOS) Interdisciplinary Science or improve the overall urban environment in the future. investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta. The primary objectives for this research effort are: 1) To In the last half of the 20th century, Atlanta, investigate and model the relationship between Atlanta Georgia has risen as the premier commercial, urban growth, land cover change, and the development industrial, and transportation urban area of the of the urban heat island phenomenon through time at southeastern United States. The rapid growth of the nested spatial scales from local to regional; 2) To Atlanta area, particularly within the last 25 years, has investigate and model the relationship between Atlanta made Atlanta one of the fastest growing metropolitan urban growth and land cover change on air quality areas in the United States. The population of the through time at nested spatial scales from local to Atlanta metropolitan area increased 27% between 1970 regional; and 3) To model the overall effects of urban and 1980, and 33% between 1980-1990 (Research development on surface energy budget characteristics Atlanta, Inc., 1993). Concomitant with this high rate of across the Atlanta urban landscape through time at population growth, has been an explosive growth in nested spatial scales from local to regional. Our key retail, industrial, commercial, and transportation goal is to derive a better scientific understanding of how services within the Atlanta region. This has resulted in land cover changes associated with urbanization in the tremendous land cover change dynamics within the Atlanta area, principally in transforming

  20. Meteorological instrumentation

    International Nuclear Information System (INIS)

    1982-06-01

    RFS or ''Regles Fondamentales de Surete'' (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety , while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the ''Service Central de Surete des Installations Nucleaires'' or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The purpose of this RFS is to specify the meteorological instrumentation required at the site of each nuclear power plant equipped with at least one pressurized water reactor

  1. Detection of spatio-temporal variability of air temperature and precipitation based on long-term meteorological station observations over Tianshan Mountains, Central Asia

    Science.gov (United States)

    Xu, Min; Kang, Shichang; Wu, Hao; Yuan, Xu

    2018-05-01

    As abundant distribution of glaciers and snow, the Tianshan Mountains are highly vulnerable to changes in climate. Based on meteorological station records during 1960-2016, we detected the variations of air temperature and precipitation by using non-parametric method in the different sub-regions and different elevations of the Tianshan Mountains. The mutations of climate were investigated by Mann-Kendall abrupt change test in the sub-regions. The periodicity is examined by wavelet analysis employing a chi-square test and detecting significant time sections. The results show that the Tianshan Mountains experienced an overall rapid warming and wetting during study period, with average warming rate of 0.32 °C/10a and wet rate of 5.82 mm/10a, respectively. The annual and seasonal spatial variation of temperature showed different scales in different regions. The annual precipitation showed non-significant upward trend in 20 stations, and 6 stations showed a significant upward trend. The temperatures in the East Tianshan increased most rapidly at rates of 0.41 °C/10a. The increasing magnitudes of annual precipitation were highest in the Boertala Vally (8.07 mm/10a) and lowest in the East Tianshan (2.64 mm/10a). The greatest and weakest warming was below 500 m (0.42 °C/10a) and elevation of 1000-1500 m (0.23 °C/10a), respectively. The increasing magnitudes of annual precipitation were highest in the elevation of 1500 m-2000 m (9.22 mm/10a) and lowest in the elevation of below 500 m (3.45 mm/10a). The mutations of annual air temperature and precipitation occurred in 1995 and 1990, respectively. The large atmospheric circulation influenced on the mutations of climate. The significant periods of air temperature were 2.4-4.1 years, and annual precipitation was 2.5-7.4 years. Elevation dependency of temperature trend magnitude was not evidently in the Tianshan Mountains. The annual precipitation wetting trend was amplified with elevation in summer and autumn. The strong

  2. Instrumentation for high-frequency meteorological observations from research vessel

    Digital Repository Service at National Institute of Oceanography (India)

    VijayKumar, K.; Khalap, S.; Mehra, P.

    Ship provides an attractive platform from which high-frequency meteorological observations (e.g., wind components, water vapor density, and air temperature) can be made accurately. However, accurate observations of meteorological variables depend...

  3. Aerosol particle measurements at three stationary sites in the megacity of Paris during summer 2009: meteorology and air mass origin dominate aerosol particle composition and size distribution

    Directory of Open Access Journals (Sweden)

    F. Freutel

    2013-01-01

    Full Text Available During July 2009, a one-month measurement campaign was performed in the megacity of Paris. Amongst other measurement platforms, three stationary sites distributed over an area of 40 km in diameter in the greater Paris region enabled a detailed characterization of the aerosol particle and gas phase. Simulation results from the FLEXPART dispersion model were used to distinguish between different types of air masses sampled. It was found that the origin of air masses had a large influence on measured mass concentrations of the secondary species particulate sulphate, nitrate, ammonium, and oxygenated organic aerosol measured with the Aerodyne aerosol mass spectrometer in the submicron particle size range: particularly high concentrations of these species (about 4 μg m−3, 2 μg m−3, 2 μg m−3, and 7 μg m−3, respectively were measured when aged material was advected from continental Europe, while for air masses originating from the Atlantic, much lower mass concentrations of these species were observed (about 1 μg m−3, 0.2 μg m−3, 0.4 μg m−3, and 1–3 μg m−3, respectively. For the primary emission tracers hydrocarbon-like organic aerosol, black carbon, and NOx it was found that apart from diurnal source strength variations and proximity to emission sources, local meteorology had the largest influence on measured concentrations, with higher wind speeds leading to larger dilution and therefore smaller measured concentrations. Also the shape of particle size distributions was affected by wind speed and air mass origin. Quasi-Lagrangian measurements performed under connected flow conditions between the three stationary sites were used to estimate the influence of the Paris emission plume onto its surroundings, which was found to be rather small. Rough estimates for the impact of the Paris emission plume on the suburban areas can be

  4. Airline meteorological requirements

    Science.gov (United States)

    Chandler, C. L.; Pappas, J.

    1985-01-01

    A brief review of airline meteorological/flight planning is presented. The effects of variations in meteorological parameters upon flight and operational costs are reviewed. Flight path planning through the use of meteorological information is briefly discussed.

  5. Acute effects of urban ambient air pollution on respiratory symptoms, asthma medication use, and doctor visits for asthma in a cohort of Australian children

    International Nuclear Information System (INIS)

    Jalaludin, Bin B.; O'Toole, Brian I.; Leeder, Stephen R.

    2004-01-01

    We enrolled a cohort of primary school children with a history of wheeze (n=148) in an 11-month longitudinal study to examine the relationship between ambient air pollution and respiratory morbidity. We obtained daily air pollution (ozone, particulate matter less than 10 μm, and nitrogen dioxide), meteorological, and pollen data. One hundred twenty-five children remained in the final analysis. We used logistic regression models to determine associations between air pollution and respiratory symptoms, asthma medication use, and doctor visits for asthma. There were no associations between ambient ozone concentrations and respiratory symptoms, asthma medication use, and doctor visits for asthma. There was, however, an association between PM 10 concentrations and doctor visits for asthma (RR=1.11, 95% CI=1.04-1.19) and between NO 2 concentration and wet cough (RR=1.05, 95% CI=1.003-1.10) in single-pollutant models. The associations remained significant in multipollutant models. There was no consistent evidence that children with wheeze, positive histamine challenge, and doctor diagnosis of asthma reacted differently to air pollution from children with wheeze and doctor diagnosis of asthma and children with wheeze only. There were significant associations between PM 10 levels and doctor visits for asthma and an association between NO 2 levels and the prevalence of wet cough. We were, however, unable to demonstrate that current levels of ambient air pollution in western Sydney have a coherent range of adverse health effects on children with a history of wheezing

  6. Singapore Haze in June 2013: Consequences of Land-Use Change, Fires, and Anomalous Meteorology for Air Quality in Equatorial Asia

    Science.gov (United States)

    Koplitz, S.; Mickley, L. J.; Jacob, D. J.; Kim, P. S.; DeFries, R. S.; Marlier, M. E.; Schwartz, J.; Buonocore, J.; Myers, S. S.

    2014-12-01

    warm anomalies (+2 C°) in the East. These conditions appear to provide an important meteorological pathway by which land-use change fires in Indonesia may affect the health of large populations. Our work suggests that this pathway should be taken into account in the development of strategies to curb fire-related air pollution and health effects in Indonesia.

  7. Induced radioactivity in air and water at medical accelerators

    International Nuclear Information System (INIS)

    Masumoto, K.; Takahashi, K.; Nakamura, H.; Toyoda, A.; Iijima, K.; Kosako, K.; Oishi, K.; Nobuhara, F.

    2013-01-01

    Activation of air and water has been evaluated at the 10 and 15 MeV linear electron accelerator facilities. At 15 MeV irradiation, the activity of 10-min-half-life 13 N was observed in the case of the air in the glove box. Air and water samples were also bombarded by 250 MeV protons and 400 MeV/u carbon, and the irradiation dose was 10 Gy at the isocenter. Upon the ion-chamber monitoring of the air sampled from the glove box, 15 O, 13 N, and 11 C activities were mainly observed. At the end of proton and carbon irradiation, the activity of the water was found to be about 10 kBq·cm -3 and several kBq·cm -3 , respectively. From the decay analysis of the induced activity in water, 15 O, 13 N, and 11 C were detected. (author)

  8. Meteorological circumstances during the 'Chernobyl-period'

    International Nuclear Information System (INIS)

    Ivens, R.; Lablans, W.N.; Wessels, H.R.A.

    1987-01-01

    The progress of the meteorological circumstances and air flows in Europe from 26th April up to 8th May 1986, which caused the spread of contaminated air originating from Chernobyl is outlined and mapped out. Furthermore a global survey is presented of the precipitation in the Netherlands during the period 2nd May to 10th May based on observations of various observation stations of the Royal Dutch Meteorologic Institute (KNMI). 11 figs.; 1 table (H.W.)

  9. How To...Activities in Meteorology.

    Science.gov (United States)

    Nimmer, Donald N.; Sagness, Richard L.

    This series of experiments seeks to provide laboratory exercises which demonstrate concepts in Earth Science, particularly meteorology. Materials used in the experiments are easily obtainable. Examples of experiments include: (1) making a thermometer; (2) air/space relationship; (3) weight of air; (4) barometers; (5) particulates; (6) evaporation;…

  10. CAMEX-4 DC-8 METEOROLOGICAL MEASUREMENT SYSTEM (MMS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The NASA DC-8 Meteorological Measurement System consists of three major systems: an air-motion sensing system to measure air velocity with respect to the aircraft,...

  11. CAMEX-4 DC-8 METEOROLOGICAL MEASUREMENT SYSTEM (MMS) V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The CAMEX-4 DC-8 Meteorological Measurement System (MMS) was collected by the MMS, which consists of three major systems: an air-motion sensing system to measure air...

  12. An Analysis of the Populations of the Air Force's Medical and Professional Officer Corps.

    Science.gov (United States)

    Keating, Edward G; Massey, Hugh G; Mele, Judith D; Mundell, Benjamin F

    2012-01-01

    Since the advent of the all-volunteer force, one of the foremost personnel challenges of the U.S. Air Force has been recruiting and retaining an adequate number of medical and professional officers in the Air Force's seven medical and professional officer corps: the Biomedical Sciences Corps (BSC), the Chaplain Corps, the Dental Corps, the Judge Advocate General (JAG) Corps (attorneys), the Medical Corps (physicians), the Medical Service Corps (MSC), and the Nurse Corps. For each of these corps, there are highly similar jobs in the private sector, so attracting and retaining these corps' officers is a constant challenge. This article analyzes all seven Air Force medical and professional officer corps and their relative statuses with regard to end strengths, accession levels, promotion flow, and attrition since the late 1970s. The authors find that recent accession and retention trends have been most adverse in the Air Force's Nurse Corps, while the MSC and the JAG Corps appear to have the most stable populations.

  13. Synoptic meteorological modes of variability for fine particulate matter (PM2.5) air quality in major metropolitan regions of China

    Science.gov (United States)

    Leung, Danny M.; Tai, Amos P. K.; Mickley, Loretta J.; Moch, Jonathan M.; van Donkelaar, Aaron; Shen, Lu; Martin, Randall V.

    2018-05-01

    In his study, we use a combination of multivariate statistical methods to understand the relationships of PM2.5 with local meteorology and synoptic weather patterns in different regions of China across various timescales. Using June 2014 to May 2017 daily total PM2.5 observations from ˜ 1500 monitors, all deseasonalized and detrended to focus on synoptic-scale variations, we find strong correlations of daily PM2.5 with all selected meteorological variables (e.g., positive correlation with temperature but negative correlation with sea-level pressure throughout China; positive and negative correlation with relative humidity in northern and southern China, respectively). The spatial patterns suggest that the apparent correlations with individual meteorological variables may arise from common association with synoptic systems. Based on a principal component analysis of 1998-2017 meteorological data to diagnose distinct meteorological modes that dominate synoptic weather in four major regions of China, we find strong correlations of PM2.5 with several synoptic modes that explain 10 to 40 % of daily PM2.5 variability. These modes include monsoonal flows and cold frontal passages in northern and central China associated with the Siberian High, onshore flows in eastern China, and frontal rainstorms in southern China. Using the Beijing-Tianjin-Hebei (BTH) region as a case study, we further find strong interannual correlations of regionally averaged satellite-derived annual mean PM2.5 with annual mean relative humidity (RH; positive) and springtime fluctuation frequency of the Siberian High (negative). We apply the resulting PM2.5-to-climate sensitivities to the Intergovernmental Panel on Climate Change (IPCC) Coupled Model Intercomparison Project Phase 5 (CMIP5) climate projections to predict future PM2.5 by the 2050s due to climate change, and find a modest decrease of ˜ 0.5 µg m-3 in annual mean PM2.5 in the BTH region due to more frequent cold frontal ventilation

  14. Meteorological modes of variability for fine particulate matter (PM2.5 air quality in the United States: implications for PM2.5 sensitivity to climate change

    Directory of Open Access Journals (Sweden)

    J. A. Fisher

    2012-03-01

    Full Text Available We applied a multiple linear regression model to understand the relationships of PM2.5 with meteorological variables in the contiguous US and from there to infer the sensitivity of PM2.5 to climate change. We used 2004–2008 PM2.5 observations from ~1000 sites (~200 sites for PM2.5 components and compared to results from the GEOS-Chem chemical transport model (CTM. All data were deseasonalized to focus on synoptic-scale correlations. We find strong positive correlations of PM2.5 components with temperature in most of the US, except for nitrate in the Southeast where the correlation is negative. Relative humidity (RH is generally positively correlated with sulfate and nitrate but negatively correlated with organic carbon. GEOS-Chem results indicate that most of the correlations of PM2.5 with temperature and RH do not arise from direct dependence but from covariation with synoptic transport. We applied principal component analysis and regression to identify the dominant meteorological modes controlling PM2.5 variability, and show that 20–40% of the observed PM2.5 day-to-day variability can be explained by a single dominant meteorological mode: cold frontal passages in the eastern US and maritime inflow in the West. These and other synoptic transport modes drive most of the overall correlations of PM2.5 with temperature and RH except in the Southeast. We show that interannual variability of PM2.5 in the US Midwest is strongly correlated with cyclone frequency as diagnosed from a spectral-autoregressive analysis of the dominant meteorological mode. An ensemble of five realizations of 1996–2050 climate change with the GISS general circulation model (GCM using the same climate forcings shows inconsistent trends in cyclone frequency over the Midwest (including in sign, with a likely decrease in cyclone frequency implying an increase in PM2.5. Our results demonstrate the need for multiple GCM realizations (because of climate chaos when diagnosing

  15. Comparative analysis of meteorological performance of coupled chemistry-meteorology models in the context of AQMEII phase 2

    Science.gov (United States)

    Air pollution simulations critically depend on the quality of the underlying meteorology. In phase 2 of the Air Quality Model Evaluation International Initiative (AQMEII-2), thirteen modeling groups from Europe and four groups from North America operating eight different regional...

  16. Body temperature change and outcomes in patients undergoing long-distance air medical transport.

    Science.gov (United States)

    Nakajima, Mikio; Aso, Shotaro; Yasunaga, Hideo; Shirokawa, Masamitsu; Nakano, Tomotsugu; Miyakuni, Yasuhiko; Goto, Hideaki; Yamaguchi, Yoshihiro

    2018-04-30

    Short-distance air medical transport for adult emergency patients does not significantly affect patients' body temperature and outcomes. This study aimed to examine the influence of long-distance air medical transport on patients' body temperatures and the relationship between body temperature change and mortality. We retrospectively enrolled consecutive patients transferred via helicopter or plane from isolated islands to an emergency medical center in Tokyo, Japan between April 2010 and December 2016. Patients' average body temperature was compared before and after air transport using a paired t-test, and corrections between body temperature change and flight duration were calculated using Pearson's correlation coefficient. Multivariable logistic regression models were then used to examine the association between body temperature change and in-hospital mortality. Of 1253 patients, the median age was 72 years (interquartile range, 60-82 years) and median flight duration was 71 min (interquartile range, 54-93 min). In-hospital mortality was 8.5%, and average body temperature was significantly different before and after air transport (36.7 °C versus 36.3 °C; difference: -0.36 °C; 95% confidence interval, -0.30 to -0.42; p 38.0 °C) or normothermia (36.0-37.9 °C) before air transport and hypothermia after air transport (odds ratio, 2.08; 95% confidence interval, 1.20-3.63; p = 0.009), and (ii) winter season (odds ratio, 2.15; 95% confidence interval, 1.08-4.27; p = 0.030). Physicians should consider body temperature change during long-distance air transport in patients with not only hypothermia but also normothermia or hyperthermia before air transport, especially in winter. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. The urban air; L'air de la ville

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    This paper presents the abstracts of conferences proposed during the meeting on the urban air, organized by the French Meteorological Society in november 2002. These conferences dealt with the air quality monitoring, the public health impacts, the air pollution in function of the meteorological effects, the pollutants, the main factors of the air quality and the models of the meteorology. (A.L.B.)

  18. SU-F-T-656: Monte Carlo Study On Air Activation Around a Medical Electron Linac

    International Nuclear Information System (INIS)

    Horst, F; Fehrenbacher, G; Zink, K

    2016-01-01

    Purpose: In high energy photon therapy, several radiation protection issues result from photonuclear reactions. The activation of air - directly by photonuclear reactions as well as indirectly by capture of photoneutrons generated inside the linac head - is a major point of concern for the medical staff. The purpose of this study was to estimate the annual effective dose to medical workers due to activated air around a medical high energy electron linac by means of Monte Carlo simulations. Methods: The treatment head of a Varian Clinac in 18 MV-X mode as well as the surrounding concrete bunker were modeled and the radiation transport was simulated using the Monte Carlo code FLUKA, starting from the primary electron striking the bremsstrahlung target. The activation yields in air from photo-disintegration of O-16 and N-14 nuclei as well as from neutron capture on Ar-40 nuclei were obtained from the simulations. The activation build-up, radioactive decay and air ventilation were studied using a mathematical model. The annual effective dose to workers was estimated by using published isotope specific conversion factors. Results: The oxygen and nitrogen activation yields were in contrast to the argon activation yield found to be field size dependent. The impact of the treatment room ventilation on the different air activation products was investigated and quantified. An estimate with very conservative assumptions gave an annual effective dose to workers of < 1 mSv/a. Conclusion: From the results of this study it can be concluded that the contribution of air activation to the radiation exposure to medical workers should be negligible in modern photon therapy, especially when it is compared to the dose due to prompt neutrons and the activation of heavy solid materials such as the jaws and the collimators inside the linac head.

  19. SU-F-T-656: Monte Carlo Study On Air Activation Around a Medical Electron Linac

    Energy Technology Data Exchange (ETDEWEB)

    Horst, F [Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen (Germany); GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Fehrenbacher, G [GSI Helmholtz Centre for Heavy Ion Research, Darmstadt (Germany); Zink, K [Institute of Medical Physics and Radiation Protection, University of Applied Sciences, Giessen (Germany); University Hospital Giessen-Marburg, Marburg (Germany)

    2016-06-15

    Purpose: In high energy photon therapy, several radiation protection issues result from photonuclear reactions. The activation of air - directly by photonuclear reactions as well as indirectly by capture of photoneutrons generated inside the linac head - is a major point of concern for the medical staff. The purpose of this study was to estimate the annual effective dose to medical workers due to activated air around a medical high energy electron linac by means of Monte Carlo simulations. Methods: The treatment head of a Varian Clinac in 18 MV-X mode as well as the surrounding concrete bunker were modeled and the radiation transport was simulated using the Monte Carlo code FLUKA, starting from the primary electron striking the bremsstrahlung target. The activation yields in air from photo-disintegration of O-16 and N-14 nuclei as well as from neutron capture on Ar-40 nuclei were obtained from the simulations. The activation build-up, radioactive decay and air ventilation were studied using a mathematical model. The annual effective dose to workers was estimated by using published isotope specific conversion factors. Results: The oxygen and nitrogen activation yields were in contrast to the argon activation yield found to be field size dependent. The impact of the treatment room ventilation on the different air activation products was investigated and quantified. An estimate with very conservative assumptions gave an annual effective dose to workers of < 1 mSv/a. Conclusion: From the results of this study it can be concluded that the contribution of air activation to the radiation exposure to medical workers should be negligible in modern photon therapy, especially when it is compared to the dose due to prompt neutrons and the activation of heavy solid materials such as the jaws and the collimators inside the linac head.

  20. Development and application of artificial neural network models to estimate values of a complex human thermal comfort index associated with urban heat and cool island patterns using air temperature data from a standard meteorological station.

    Science.gov (United States)

    Moustris, Konstantinos; Tsiros, Ioannis X; Tseliou, Areti; Nastos, Panagiotis

    2018-04-11

    The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.

  1. Development and application of artificial neural network models to estimate values of a complex human thermal comfort index associated with urban heat and cool island patterns using air temperature data from a standard meteorological station

    Science.gov (United States)

    Moustris, Konstantinos; Tsiros, Ioannis X.; Tseliou, Areti; Nastos, Panagiotis

    2018-04-01

    The present study deals with the development and application of artificial neural network models (ANNs) to estimate the values of a complex human thermal comfort-discomfort index associated with urban heat and cool island conditions inside various urban clusters using as only inputs air temperature data from a standard meteorological station. The index used in the study is the Physiologically Equivalent Temperature (PET) index which requires as inputs, among others, air temperature, relative humidity, wind speed, and radiation (short- and long-wave components). For the estimation of PET hourly values, ANN models were developed, appropriately trained, and tested. Model results are compared to values calculated by the PET index based on field monitoring data for various urban clusters (street, square, park, courtyard, and gallery) in the city of Athens (Greece) during an extreme hot weather summer period. For the evaluation of the predictive ability of the developed ANN models, several statistical evaluation indices were applied: the mean bias error, the root mean square error, the index of agreement, the coefficient of determination, the true predictive rate, the false alarm rate, and the Success Index. According to the results, it seems that ANNs present a remarkable ability to estimate hourly PET values within various urban clusters using only hourly values of air temperature. This is very important in cases where the human thermal comfort-discomfort conditions have to be analyzed and the only available parameter is air temperature.

  2. Identifying Housing and Meteorological Conditions Influencing Residential Air Exchange Rates in the DEARS and RIOPA Studies: Development of Distributions for Human Exposure Modeling

    Science.gov (United States)

    Appropriate prediction of residential air exchange rate (AER) is important for estimating human exposures in the residential microenvironment, as AER drives the infiltration of outdoor-generated air pollutants indoors. AER differences among homes may result from a number of fact...

  3. Meteorological Monitoring Program

    International Nuclear Information System (INIS)

    Hancock, H.A. Jr.; Parker, M.J.; Addis, R.P.

    1994-01-01

    The purpose of this technical report is to provide a comprehensive, detailed overview of the meteorological monitoring program at the Savannah River Site (SRS) near Aiken, South Carolina. The principle function of the program is to provide current, accurate meteorological data as input for calculating the transport and diffusion of any unplanned release of an atmospheric pollutant. The report is recommended for meteorologists, technicians, or any personnel who require an in-depth understanding of the meteorological monitoring program

  4. Meteorological Monitoring Program

    Energy Technology Data Exchange (ETDEWEB)

    Hancock, H.A. Jr. [ed.; Parker, M.J.; Addis, R.P.

    1994-09-01

    The purpose of this technical report is to provide a comprehensive, detailed overview of the meteorological monitoring program at the Savannah River Site (SRS) near Aiken, South Carolina. The principle function of the program is to provide current, accurate meteorological data as input for calculating the transport and diffusion of any unplanned release of an atmospheric pollutant. The report is recommended for meteorologists, technicians, or any personnel who require an in-depth understanding of the meteorological monitoring program.

  5. Lectures in Micro Meteorology

    DEFF Research Database (Denmark)

    Larsen, Søren Ejling

    This report contains the notes from my lectures on Micro scale meteorology at the Geophysics Department of the Niels Bohr Institute of Copenhagen University. In the period 1993-2012, I was responsible for this course at the University. At the start of the course, I decided that the text books...... available in meteorology at that time did not include enough of the special flavor of micro meteorology that characterized the work of the meteorology group at Risø (presently of the Institute of wind energy of the Danish Technical University). This work was focused on Boundary layer flows and turbulence...

  6. Monitoring Forsmark. Meteorological monitoring at Forsmark, January-December 2010

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Cari; Jones, Joergen (Swedish Meteorological and Hydrological Institute (SMHI), Norrkoeping (Sweden))

    2011-01-15

    In the Forsmark area, SKB's meteorological monitoring started in 2003 at the sites Storskaeret and Hoegmasten. However, since July 1, 2007 measurements are only performed at Hoegmasten. Measured and calculated parameters at Hoegmasten are precipitation and corrected precipitation, air temperature, barometric pressure, wind speed and direction, air humidity, global radiation and potential evapotranspiration. The Swedish Meteorological and Hydrological Institute, SMHI, has been responsible for planning and design, as well as for the operation of the stations used for meteorological monitoring. In general, the quality of the meteorological measurements during the period concerned, starting January 1, 2010, and ending December 31, 2010, has shown to be good

  7. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment.

    Science.gov (United States)

    Shepherd, Simon J; Beggs, Clive B; Smith, Caroline F; Kerr, Kevin G; Noakes, Catherine J; Sleigh, P Andrew

    2010-04-12

    In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units. A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter. The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V) in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene acrylonitrile), did however develop a positive charge in the

  8. Effect of negative air ions on the potential for bacterial contamination of plastic medical equipment

    Directory of Open Access Journals (Sweden)

    Kerr Kevin G

    2010-04-01

    Full Text Available Abstract Background In recent years there has been renewed interest in the use of air ionizers to control the spread of infection in hospitals and a number of researchers have investigated the biocidal action of ions in both air and nitrogen. By comparison, the physical action of air ions on bacterial dissemination and deposition has largely been ignored. However, there is clinical evidence that air ions might play an important role in preventing the transmission of Acinetobacter infection. Although the reasons for this are unclear, it is hypothesized that a physical effect may be responsible: the production of air ions may negatively charge items of plastic medical equipment so that they repel, rather than attract, airborne bacteria. By negatively charging both particles in the air and items of plastic equipment, the ionizers minimize electrostatic deposition on these items. In so doing they may help to interrupt the transmission of Acinetobacter infection in certain healthcare settings such as intensive care units. Methods A study was undertaken in a mechanically ventilated room under ambient conditions to accurately measure changes in surface potential exhibited by items of plastic medical equipment in the presence of negative air ions. Plastic items were suspended on nylon threads, either in free space or in contact with a table surface, and exposed to negative ions produced by an air ionizer. The charge build-up on the specimens was measured using an electric field mill while the ion concentration in the room air was recorded using a portable ion counter. Results The results of the study demonstrated that common items of equipment such as ventilator tubes rapidly developed a large negative charge (i.e. generally >-100V in the presence of a negative air ionizer. While most items of equipment tested behaved in a similar manner to this, one item, a box from a urological collection and monitoring system (the only item made from styrene

  9. A real case simulation of the air-borne effluent dispersion on a typical summer day under CDA scenario for PFBR using an advanced meteorological and dispersion model

    International Nuclear Information System (INIS)

    Srinivas, C.V; Venkatesan, R.; Bagavath Singh, A.; Somayaji, K.M.

    2003-11-01

    Environmental concentrations and radioactive doses within and beyond the site boundary for the CDA situation of PFBR have been estimated using an Advanced Radiological Impact Prediction system for a real atmospheric situation on a typical summer day in the month of May 2003. The system consists of a meso-scale atmospheric prognostic model MM5 coupled with a random walk Lagrangian particle dispersion model FLEXPART for the simulation of transport, diffusion and deposition of radio nuclides. The details of the modeling system, its capabilities and various features are presented. The model has been validated for the simulated coastal atmospheric features of land-sea breeze, development of TIBL etc., with site and regional meteorological observations from IMD. Analysis of the dose distribution in a situation that corresponds to the atmospheric conditions on the chosen day shows that the doses for CDA through different pathways are 8 times less than the earlier estimations made according to regulatory requirements using the Gaussian Plume Model (GPM) approach. However for stack releases a higher dose than was reported earlier occurred beyond the site boundary at 2-4 km range under stable and fumigation conditions. The doses due to stack releases under these conditions maintained almost the same value in 3 to 10 km range and decreased there after. Deposition velocities computed from radionuclide species, wind speed, surface properties were 2 orders lower than the values used earlier and hence gave more realistic estimates of ground deposited activity. The study has enabled to simulate the more complex meteorological situation that actually is present at the site of interest and the associated spatial distribution of radiological impact around Kalpakkam. In order to draw meaningful conclusion that can be compared with regulatory estimates future study would be undertaken to simulate the dispersion under extreme meteorological situations which could possibly be worse than

  10. In-flight auscultation during medical air evacuation: comparison between traditional and amplified stethoscopes.

    Science.gov (United States)

    Fontaine, Emmanuelle; Coste, Sébastien; Poyat, Chrystelle; Klein, Céline; Lefort, Hugues; Leclerc, Thomas; Dubourdieu, Stéphane; Briche, Frédérique; Jost, Daniel; Maurin, Olga; Domanski, Laurent; Tourtier, Jean-Pierre

    2014-01-01

    The aim of this study was to evaluate the capacity of a traditional stethoscope versus an electronically amplified one (expected to reduce background and ambient noise) to assess heart and respiratory sounds during medical transport. It was a prospective, double-blinded, randomized performed study. One traditional stethoscope (Littmann Cardiology III; 3M, St Paul, MN) and 1 electronically amplified stethoscope (Littmann 3200, 3M) were used for our tests. Heart and lung auscultation during real medical evacuations aboard a medically configured Falcon 50 aircrafts were studied. The quality of auscultation was ranged using a numeric rating scale from 0 to 10 (0 corresponding to "I hear nothing" and 10 to "I hear perfectly"). Data collected were compared using a t-test for paired values. A total of 40 comparative evaluations were performed. For cardiac auscultation, the value of the rating scale was 4.53 ± 1.91 and 7.18 ± 1.88 for the traditional and amplified stethoscope, respectively (paired t-test: P auscultation was estimated at 3.1 ± 1.95 for a traditional stethoscope and 5.10 ± 2.13 for the amplified one (paired t-test: P < .0001). This study showed that practitioners would be better helped in hearing cardiac and respiratory sounds with an electronically amplified stethoscope than with a traditional one during air medical transport in a medically configured Falcon 50 aircraft. Copyright © 2014 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  11. Fire and forest meteorology

    Science.gov (United States)

    SA Ferguson; T.J. Brown; M. Flannigan

    2005-01-01

    The American Meteorological Society symposia series on Fire and Forest Meteorology provides biennial forums for atmospheric and fire scientists to introduce and discuss the latest and most relevant research on weather, climate and fire. This special issue highlights significant work that was presented at the Fifth Symposium in Orlando, Florida during 16-20 November...

  12. METRODOS: Meteorological preprocessor chain

    DEFF Research Database (Denmark)

    Astrup, P.; Mikkelsen, T.; Deme, S.

    2001-01-01

    The METRODOS meteorological preprocessor chain combines measured tower data and coarse grid numerical weather prediction (NWP) data with local scale flow models and similarity scaling to give high resolution approximations of the meteorological situation. Based on available wind velocity and dire...

  13. A Comparative Analysis of Patient Access Modes at Wilford Hall United States Air Force Medical Center and Selected Civilian Medical Centers

    Science.gov (United States)

    1983-12-01

    In A COMPARATIVE ANALYSIS OF PATIENT ACCESS MODES AT WILFORD HALL UNITED STATES AIR FORCE MEDICAL CENTER N AND SELECTED CIVILIAN MEDICAL CENTERS0 N...current patient access modes at WHMC and several civilian medical centers of comparable size. This project has pursued the subject of patient access in...selected civilian medical centers which are comparable to WHMC in size, specialty mix, workload, and mission, providing responsive and efficient patient

  14. Meteorological satellite systems

    CERN Document Server

    Tan, Su-Yin

    2014-01-01

    Meteorological Satellite Systems” is a primer on weather satellites and their Earth applications. This book reviews historic developments and recent technological advancements in GEO and polar orbiting meteorological satellites. It explores the evolution of these remote sensing technologies and their capabilities to monitor short- and long-term changes in weather patterns in response to climate change. Satellites developed by various countries, such as U.S. meteorological satellites, EUMETSAT, and Russian, Chinese, Japanese and Indian satellite platforms are reviewed. This book also discusses international efforts to coordinate meteorological remote sensing data collection and sharing. This title provides a ready and quick reference for information about meteorological satellites. It serves as a useful tool for a broad audience that includes students, academics, private consultants, engineers, scientists, and teachers.

  15. Wind Power Meteorology

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Mortensen, Niels Gylling; Landberg, Lars

    Wind power meteorology has evolved as an applied science, firmly founded on boundary-layer meteorology, but with strong links to climatology and geography. It concerns itself with three main areas: siting of wind turbines, regional wind resource assessment, and short-term prediction of the wind...... resource. The history, status and perspectives of wind power meteorology are presented, with emphasis on physical considerations and on its practical application. Following a global view of the wind resource, the elements of boundary layer meteorology which are most important for wind energy are reviewed......: wind profiles and shear, turbulence and gust, and extreme winds. The data used in wind power meteorology stem mainly from three sources: onsite wind measurements, the synoptic networks, and the re-analysis projects. Wind climate analysis, wind resource estimation and siting further require a detailed...

  16. Quality Assurance Guidance for the Collection of Meteorological Data Using Passive Radiometers

    Science.gov (United States)

    This document augments the February 2000 guidance entitled Meteorological Monitoring Guidance for Regulatory Modeling Applications and the March 2008 guidance entitled Quality Assurance Handbook for Air Pollution Measurement Systems Volume IV: Meteorological Measurements Version ...

  17. AICE Survey of USSR Air Pollution Literature, Volume 13: Technical Papers from the Leningrad International Symposium on the Meteorological Aspects of Atmospheric Pollution, Part 2.

    Science.gov (United States)

    Nuttonson, M. Y., Ed.

    Twelve papers were translated from Russian: Automation of Information Processing Involved in Experimental Studies of Atmospheric Diffusion, Micrometeorological Characteristics of Atmospheric Pollution Conditions, Study of theInfluence of Irregularities of the Earth's Surface on the Air Flow Characteristics in a Wind Tunnel, Use of Parameters of…

  18. NASA's aviation safety - meteorology research programs

    Science.gov (United States)

    Winblade, R. L.

    1983-01-01

    The areas covering the meteorological hazards program are: severe storms and the hazards to flight generated by severe storms; clear air turbulence; icing; warm fog dissipation; and landing systems. Remote sensing of ozone by satellites, and the use of satellites as data relays is also discussed.

  19. Fungal spore concentrations in indoor and outdoor air in university libraries, and their variations in response to changes in meteorological variables.

    Science.gov (United States)

    Flores, María Elena Báez; Medina, Pável Gaxiola; Camacho, Sylvia Páz Díaz; de Jesús Uribe Beltrán, Magdalena; De la Cruz Otero, María del Carmen; Ramírez, Ignacio Osuna; Hernández, Martín Ernesto Tiznado

    2014-08-01

    The fungal spore concentration (FSC) in the air poses a risk for human health. This work studied the FSC in university libraries and how it is affected by environmental factors. A total of 347 samples were obtained using a Microbio MB2(®) Aerosol Sampler. The wind speed (WS), cross wind (CW), temperature (T), relative humidity (HR), barometric pressure (BP) and dew point (DP) were recorded using a Kestrel(®) 4500 weather station. The median indoor/outdoor FSC was 360/1230 CFU m(-3). FSC correlated inversely with BP, HR and DP; and positively with WS and CW; whereas T showed negative or positive correlation with FSC, depending on the region or sampling time. Eleven fungal genera were found and the dominant isolates were identified as Aspergillus niger, Aspergillus tamarii and Aspergillus oryzae. All fungi identified are known to be allergenic. It was concluded that environmental variables can influence the air FSC in different ways.

  20. US Marine Meteorological Journals

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This series consists of volumes entitled 'Meteorological Journal' (a regulation Navy-issue publication) which were to be completed by masters of merchant vessels...

  1. Meteorology and atomic energy

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    The science of meteorology is useful in providing information that will be of assistance in the choice of favorable plant locations and in the evaluation of significant relations between meteorology and the design, construction, and operation of plant and facilities, especially those from which radioactive or toxic products could be released to the atmosphere. Under a continuing contract with the Atomic Energy Commission, the Weather Bureau has carried out this study. Some of the meteorological techniques that are available are summarized, and their applications to the possible atmospheric pollution deriving from the use of atomic energy are described. Methods and suggestions for the collection, analysis, and use of meteorological data are presented. Separate abstracts are included of 12 chapters in this publication for inclusion in the Energy Data Base

  2. Wave Meteorology and Soaring

    Science.gov (United States)

    Wiley, Scott

    2008-01-01

    This viewgraph document reviews some mountain wave turbulence and operational hazards while soaring. Maps, photographs, and satellite images of the meteorological phenomena are included. Additionally, photographs of aircraft that sustained mountain wave damage are provided.

  3. Meteorological Observations Available for the State of Utah

    Energy Technology Data Exchange (ETDEWEB)

    Wharton, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-09-12

    The National Weather Service’s Meteorological Assimilation Data Ingest System (MADIS) contains a large number of station networks of surface and upper air meteorological observations for the state of Utah. In addition to MADIS, observations from individual station networks may also be available. It has been confirmed that LLNL has access to the data sources listed below.

  4. Climate and meteorology

    International Nuclear Information System (INIS)

    Hoitink, D.J.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the significant activities conducted in 1994 to monitor the meteorology and climatology of the site. Meteorological measurements are taken to support Hanford Site emergency preparedness and response, Hanford Site operations, and atmospheric dispersion calculations. Climatological data are collected to help plan weather-dependent activities and are used as a resource to assess the environmental effects of Hanford Site operations

  5. Climate and meteorology

    Energy Technology Data Exchange (ETDEWEB)

    Hoitink, D.J.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the significant activities conducted in 1994 to monitor the meteorology and climatology of the site. Meteorological measurements are taken to support Hanford Site emergency preparedness and response, Hanford Site operations, and atmospheric dispersion calculations. Climatological data are collected to help plan weather-dependent activities and are used as a resource to assess the environmental effects of Hanford Site operations.

  6. Impacts of Detailed Land-Use Types and Urban Heat in an Urban Canopy Model on Local Meteorology and Ozone Levels for Air Quality Modeling in a Coastal City, Korea

    Directory of Open Access Journals (Sweden)

    Yoon-Hee Kang

    2016-01-01

    Full Text Available An urban canopy model (UCM, with detailed urban land-use and anthropogenic heat information, is required to reproduce and understand the urbanization process and its impact on regional climate and urban air quality. This study investigates the UCM impact on simulated meteorology and surface ozone in the coastal city of Busan using the WRF-SMOKE-CMAQ model coupled with (UCM case, and without the UCM (NOUCM case. The UCM and NOUCM case results suggest that UCM case generally produces warmer temperatures and deeper planetary boundary layer (PBL heights, especially in the early morning and night time, than the NOUCM case. Owing to urban heating and enhanced turbulent mixing incorporation in the center of the city, the sea breeze in the UCM case tends to penetrate faster and more strongly than in the NOUCM case. After sea breeze arrival at the urban center, the urban heat island effect prevents its penetration further inland. In the UCM case in the late afternoon, local meteorological changes induce remarkable increases in simulated O3 concentrations over the downwind (up to 17.1 ppb and downtown (up to 10.6 ppb areas. This is probably due to an increase in temperature in the urban areas and the wind convergence zone movement due to the sea breeze interaction and offshore flows. The increase in O3 concentration in the late afternoon results in the model bias reduction under previously underestimated O3 conditions due to high NOx emissions. The simulated O3 concentrations in the UCM case are more similar to the observed O3 concentrations compared to those of the NOUCM case.

  7. design, construction and evaluation of a meteorological mobile mast

    African Journals Online (AJOL)

    Vincent

    gathering meteorological information through the use of radiosondes [3]. Earlier measurements of wind and air pressure were done by launching balloons which climb through the denser air close to the earth to the thinner air in the upper atmosphere and the instruments carried collect data about wind in the different layers ...

  8. Meteorology Products - Naval Oceanography Portal

    Science.gov (United States)

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › FNMOC › Meteorology Products FNMOC Logo FNMOC Navigation Meteorology Products Oceanography Products Tropical Applications Climatology and Archived Data Info Meteorology Products Global

  9. AsMA Medical Guidelines for Air Travel: stresses of flight.

    Science.gov (United States)

    Thibeault, Claude; Evans, Anthony D

    2015-05-01

    Medical Guidelines for Airline Travel provide information that enables healthcare providers to properly advise patients who plan to travel by air. Modern commercial aircraft are very safe and, in most cases, reasonably comfortable. However, all flights, short or long haul, impose stresses on passengers. Preflight stresses include airport commotion on the ground such as carrying baggage, walking long distances, getting to the gate on time, and being delayed. In-flight stresses include acceleration, vibration (including turbulence), noise, lowered barometric pressure, variations of temperature and humidity, and fatigue among others. Healthy passengers normally tolerate these stresses quite well; however, there is the potential for passengers to become ill during or after the flight due to these stresses, especially for those with pre-existing medical conditions and reduced physiological reserves.

  10. Spreading knowledge in medical informatics: the contribution of the hospital Italiano de Buenos Aires.

    Science.gov (United States)

    Gonzalez Bernaldo de Quiros, F; Luna, D; Otero, P; Baum, A; Borbolla, D

    2009-01-01

    Medical Informatics (MI) is an emerging discipline with a high need of trained and skillful professionals. To describe the educational experience of the Department of Health Informatics of the Hospital Italiano de Buenos Aires. A descriptive study of the development of the Medical Informatics Residency Program (MIRP) and the e-learning courses related to medical informatics. A four-year MIRP with 15 rotations was started in 2000, and was awarded national educational accreditation. Eight residents have been fully trained and their main academic contributions are shown in this study. The e-learning courses related to medical informatics (Healthcare Management, Epidemiology & Biostatistics, Information Retrieval, Computer Literacy started, 10x10 Spanish version and HL7 introductory course) started in 2006 and were followed by more than 2266 students from all over the world, with an increase trend in foreign students. These educational activities have produced skilled human resources for the development and maintenance of the health informatics projects at our Hospital. In parallel, the number of students trained by e-learning continues to increase, demonstrating the worldwide need of knowledge in this field.

  11. Jesuits' Contribution to Meteorology.

    Science.gov (United States)

    Udías, Agustín

    1996-10-01

    Starting in the middle of the nineteenth century, as part of their scientific tradition, Jesuits founded a considerable number of meteorological observatories throughout the world. In many countries, Jesuits established and maintained the first meteorological stations during the period from 1860 to 1950. The Jesuits' most important contribution to atmospheric science was their pioneer work related to the study and forecast of tropical hurricanes. That research was carried out at observatories of Belén (Cuba), Manila (Philippines), and Zikawei (China). B. Viñes, M. Decheyrens, J. Aigué, and C.E. Deppermann stood out in this movement.

  12. Meteorology in site operations

    International Nuclear Information System (INIS)

    Anon.

    1986-01-01

    During the site selection and design phases of a plant, meteorological assistance must be based on past records, usually accumulated at stations not actually on the site. These preliminary atadvices will be averages and extremes that might be expected. After a location has been chosen and work has begun, current and forecast weather conditions become of immediate concern. On-site meteorological observations and forecasts have many applications to the operating program of an atomic energy site. Requirements may range from observations of the daily minimum temperatures to forecasts of radiation dosages from airborne clouds

  13. Applied Meteorology Unit (AMU)

    Science.gov (United States)

    Bauman, William; Crawford, Winifred; Barrett, Joe; Watson, Leela; Wheeler, Mark

    2010-01-01

    This report summarizes the Applied Meteorology Unit (AMU) activities for the first quarter of Fiscal Year 2010 (October - December 2009). A detailed project schedule is included in the Appendix. Included tasks are: (1) Peak Wind Tool for User Launch Commit Criteria (LCC), (2) Objective Lightning Probability Tool, Phase III, (3) Peak Wind Tool for General Forecasting, Phase II, (4) Upgrade Summer Severe Weather Tool in Meteorological Interactive Data Display System (MIDDS), (5) Advanced Regional Prediction System (ARPS) Data Analysis System (ADAS) Update and Maintainability, (5) Verify 12-km resolution North American Model (MesoNAM) Performance, and (5) Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) Graphical User Interface.

  14. Modeled occupational exposures to gas-phase medical laser-generated air contaminants.

    Science.gov (United States)

    Lippert, Julia F; Lacey, Steven E; Jones, Rachael M

    2014-01-01

    Exposure monitoring data indicate the potential for substantive exposure to laser-generated air contaminants (LGAC); however the diversity of medical lasers and their applications limit generalization from direct workplace monitoring. Emission rates of seven previously reported gas-phase constituents of medical laser-generated air contaminants (LGAC) were determined experimentally and used in a semi-empirical two-zone model to estimate a range of plausible occupational exposures to health care staff. Single-source emission rates were generated in an emission chamber as a one-compartment mass balance model at steady-state. Clinical facility parameters such as room size and ventilation rate were based on standard ventilation and environmental conditions required for a laser surgical facility in compliance with regulatory agencies. All input variables in the model including point source emission rates were varied over an appropriate distribution in a Monte Carlo simulation to generate a range of time-weighted average (TWA) concentrations in the near and far field zones of the room in a conservative approach inclusive of all contributing factors to inform future predictive models. The concentrations were assessed for risk and the highest values were shown to be at least three orders of magnitude lower than the relevant occupational exposure limits (OELs). Estimated values do not appear to present a significant exposure hazard within the conditions of our emission rate estimates.

  15. Meteorology observations in the Athabasca oil sands region

    International Nuclear Information System (INIS)

    1996-01-01

    Meteorological data was collected in the Athabasca oil sands area of Alberta in support of Syncrude' application for approval to develop and operate the Aurora Mine. Meteorology controls the transport and dispersion of gaseous and particulate emissions which are vented into the atmosphere. Several meteorological monitoring stations have been set up in the Fort McMurray and Fort McKay area. The study was part of Suncor's commitment to Alberta Environmental Protection to substantially reduce SO 2 emissions by July 1996. Also, as a condition of approval of the proposed Aurora Mine, the company was required to develop additional ambient air quality, sulphur deposition and biomonitoring programs. Background reports were prepared for: (1) source characterization, (2) ambient air quality observations, (3) meteorology observations, and (4) air quality monitoring. The following factors were incorporated into dispersion modelling: terrain, wind, turbulence, temperature, net radiation and mixing height, relative humidity and precipitation. 15 refs., 9 tabs., 40 figs

  16. Developing International Standards for Meteorological Balloon to Facilitate Industrial Progress

    Institute of Scientific and Technical Information of China (English)

    Deng Yizhi

    2011-01-01

    Meteorological balloon is made of natural rubber latex with a special process.On natural conditions,it carries the air sounding instrument into the high air to detect the meteorological elements in the air.As a means of delivery used in the aerological sounding,it is widely used in the meteorological,sailing,aeronautical,aerospace and other fields,and plays an extremely important role in the weather report,disaster prevention,disaster relief,guaranteeing ships and aircrafts to leave ports safely,and scientific research in relevant spaces,etc.Especially,the role of meteorological balloons is not ignorable in the forecast of extremely adverse weather frequently occurring around the world in recent years.

  17. Computer Exercises in Meteorology.

    Science.gov (United States)

    Trapasso, L. Michael; Conner, Glen; Stallins, Keith

    Beginning with Western Kentucky University's (Bowling Green) fall 1999 semester, exercises required for the geography and meteorology course used computers for learning. This course enrolls about 250 students per year, most of whom choose it to fulfill a general education requirement. Of the 185 geography majors, it is required for those who…

  18. Surface Meteorology and Solar Energy

    Data.gov (United States)

    National Aeronautics and Space Administration — Surface Meteorology and Solar Energy data - over 200 satellite-derived meteorology and solar energy parameters, monthly averaged from 22 years of data, global solar...

  19. Project ATLANTA (Atlanta Land use Analysis: Temperature and Air Quality): Use of Remote Sensing and Modeling to Analyze How Urban Land Use Change Affects Meteorology and Air Quality Through Time

    Science.gov (United States)

    Quattrochi, Dale A.; Luvall, Jeffrey C.; Estes, Maurice G., Jr.

    1999-01-01

    This paper presents an overview of Project ATLANTA (ATlanta Land use ANalysis: Temperature and Air-quality) which is an investigation that seeks to observe, measure, model, and analyze how the rapid growth of the Atlanta, Georgia metropolitan area since the early 1970's has impacted the region's climate and air quality. The primary objectives for this research effort are: (1) To investigate and model the relationships between land cover change in the Atlanta metropolitan, and the development of the urban heat island phenomenon through time; (2) To investigate and model the temporal relationships between Atlanta urban growth and land cover change on air quality; and (3) To model the overall effects of urban development on surface energy budget characteristics across the Atlanta urban landscape through time. Our key goal is to derive a better scientific understanding of how land cover changes associated with urbanization in the Atlanta area, principally in transforming forest lands to urban land covers through time, has, and will, effect local and regional climate, surface energy flux, and air quality characteristics. Allied with this goal is the prospect that the results from this research can be applied by urban planners, environmental managers and other decision-makers, for determining how urbanization has impacted the climate and overall environment of the Atlanta area. Multiscaled remote sensing data, particularly high resolution thermal infrared data, are integral to this study for the analysis of thermal energy fluxes across the Atlanta urban landscape.

  20. AsMA Medical Guidelines for Air Travel: Airline Special Services.

    Science.gov (United States)

    Thibeault, Claude; Evans, Anthony D

    2015-07-01

    Medical Guidelines for Airline Travel provide information that enables healthcare providers to properly advise patients who plan to travel by air. Treating physicians should advise patients in need of special services to contact the airline well before travel to find out if the required services will be available. Ensuring the required services are available throughout a journey can be challenging, especially when different airlines and aircraft types are involved. For example, airlines carry a limited supply of oxygen for use in the event of an unexpected in-flight emergency; however, this supply is not intended for use by passengers needing supplemental oxygen. Arrangements must be made in advance with the airline. Therefore, early contact with the airline is helpful.

  1. Meteorological instrumentation for nuclear facilities

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. An analysis of the problems associated with grounding of a typical meteorological station is presented. (Author) [pt

  2. Meteorological instrumentation for nuclear installations

    International Nuclear Information System (INIS)

    Costa, A.C.L. da.

    1983-01-01

    The main requirements of regulatory agencies, concerning the meteorological instrumentation needed for the licensing of nuclear facilities are discussed. A description is made of the operational principles of sensors for the various meteorological parameters and associated electronic systems. Finally, it is presented an analysis of the problems associated with grounding of a typical meteorological station. (Author) [pt

  3. Pantex Plant meteorological monitoring program

    International Nuclear Information System (INIS)

    Snyder, S.F.

    1993-07-01

    The current meteorological monitoring program of the US Department of Energy's Pantex Plant, Amarillo, Texas, is described in detail. Instrumentation, meteorological data collection and management, and program management are reviewed. In addition, primary contacts are noted for instrumentation, calibration, data processing, and alternative databases. The quality assurance steps implemented during each portion of the meteorological monitoring program are also indicated

  4. Extreme meteorological conditions

    International Nuclear Information System (INIS)

    Altinger de Schwarzkopf, M.L.

    1983-01-01

    Different meteorological variables which may reach significant extreme values, such as the windspeed and, in particular, its occurrence through tornadoes and hurricanes that necesarily incide and wich must be taken into account at the time of nuclear power plants' installation, are analyzed. For this kind of study, it is necessary to determine the basic phenomenum of design. Two criteria are applied to define the basic values of design for extreme meteorological variables. The first one determines the expected extreme value: it is obtained from analyzing the recurence of the phenomenum in a convened period of time, wich may be generally of 50 years. The second one determines the extreme value of low probability, taking into account the nuclear power plant's operating life -f.ex. 25 years- and considering, during said lapse, the occurrence probabilities of extreme meteorological phenomena. The values may be determined either by the deterministic method, which is based on the acknowledgement of the fundamental physical characteristics of the phenomena or by the probabilistic method, that aims to the analysis of historical statistical data. Brief comments are made on the subject in relation to the Argentine Republic area. (R.J.S.) [es

  5. Women in Meteorology.

    Science.gov (United States)

    Lemone, Margaret A.; Waukau, Patricia L.

    1982-11-01

    The names of 927 women who are or have been active in meteorology or closely related fields have been obtained from various sources. Of these women, at least 500 are presently active. An estimated 4-5% of the total number of Ph.D.s in meteorology are awarded to women. About 10% of those receiving B.S. and M.S. degrees are women.The work patterns, accomplishments, and salaries of employed women meteorologists have been summarized from 330 responses to questionnaires, as functions of age, family status, part- or full-time working status, and employing institutions. It was found that women meteorologists holding Ph.D.s are more likely than their male counterparts to be employed by universities. As increasing number of women were employed in operational meteorology, although few of them were married and fewer still responsible for children. Several women were employed by private industry and some had advanced into managerial positions, although at the present time, such positions remain out of the reach of most women.The subjective and objective effects of several gender-related factors have been summarized from the comments and responses to the questionnaires. The primary obstacles to advancement were found to be part-time work and the responsibility for children. Part-time work was found to have a clearly negative effect on salary increase as a function of age. prejudicated discrimination and rules negatively affecting women remain important, especially to the older women, and affirmative action programs are generally seen as beneficial.Surprisingly, in contrast to the experience of women in other fields of science, women Ph.D.s in meteorology earn salaries comparable of their employment in government or large corporations and universities where there are strong affirmative action programs and above-average salaries. Based on the responses to the questionnaire, the small size of the meteorological community is also a factor, enabling women to become recognized

  6. [Factors associated with academic success of medical students at Buenos Aires University].

    Science.gov (United States)

    Borracci, Raúl A; Pittaluga, Roberto D; Álvarez Rodríguez, Juan E; Arribalzaga, Eduardo B; Poveda Camargo, Ricardo L; Couto, Juan L; Provenzano, Sergio L

    2014-01-01

    The aim of this study was to identify common factors relating to the academic success of medical students who were distinguished with honors at the Buenos Aires University. In 2011, 142 graduates were surveyed; the questionnaire included 59 questions on their sociodemographic environment, living conditions and social integration, motivation to study, learning capacity and health quality during their career. Compared to other students, these distinguished students more often lived in the city, far from their families; had been educated at private or universitary high schools, their economic needs were financed by their parents, who were on the whole professionals. Most of them were single and childless. The possibility of future employment oportunities (work) did not influence their choice of a medical career, academic success was important to them and they believed that success depended largely on personal effort; they knew how to handle anxiety, were sociable but independent and preferred solid experience to abstract conceptuality in order to obtain information. Our conclusion, within the current system of candidate selection, these results serve to calculate the covert self-selection mechanisms during the career, or in a more restrictive regime, to select those likely to reach academic success due to their privileged ambience. The analysis of demographic factors indicates some degree of inequality for socially disadvantaged students. Perhaps, a selection system based only on intellectual abilities would help identify and support the best candidates regardless of their social context.

  7. Improved meteorology from an updated WRF/CMAQ modeling system with MODIS vegetation and albedo

    Science.gov (United States)

    Realistic vegetation characteristics and phenology from the Moderate Resolution Imaging Spectroradiometer (MODIS) products improve the simulation for the meteorology and air quality modeling system WRF/CMAQ (Weather Research and Forecasting model and Community Multiscale Air Qual...

  8. Using the Estimating Supplies Program to Develop Material Solutions for the U.S. Air Force Medical Gynecological Treatment Team (FFGYN)

    National Research Council Canada - National Science Library

    Hopkins, Curt; Nix, Ralph; Konoske, Paula; Pang, Gerry; Onofrio, Kathleen

    2007-01-01

    ...) conduct a proof of concept study to assess the validity and feasibility of using NHRC's medical modeling tool for the development and management of Air Force medical Allowance Standards as a baseline...

  9. Mapping the Martian Meteorology

    Science.gov (United States)

    Allison, M.; Ross, J. D.; Solomon, N.

    1999-01-01

    The Mars-adapted version of the NASA/GISS general circulation model (GCM) has been applied to the hourly/daily simulation of the planet's meteorology over several seasonal orbits. The current running version of the model includes a diurnal solar cycle, CO2 sublimation, and a mature parameterization of upper level wave drag with a vertical domain extending from the surface up to the 6microb level. The benchmark simulations provide a four-dimensional archive for the comparative evaluation of various schemes for the retrieval of winds from anticipated polar orbiter measurements of temperatures by the Pressure Modulator Infrared Radiometer. Additional information is contained in the original extended abstract.

  10. Recent trends in workload, input costs, and expenditures in the Air Force Medical Service Direct Care System.

    Science.gov (United States)

    Robbins, Anthony S; Moilanen, Dale A; Fonseca, Vincent P; Chao, Susan Y

    2002-04-01

    A study was conducted to examine the relationship between two types of trends in the Air Force Medical Service Direct Care System (AFMS/DCS): trends in expenditures, total and by categories; and trends in medical workload, defined as the sum of inpatient admissions and outpatient clinic visits. Expenditure and medical workload data were extracted from the Medical Expense and Performance Reporting System Executive Query System. Medical inflation data were obtained from the Bureau of Labor Statistics Producer Price Index series. Between fiscal years 1995 and 1999, the AFMS/DCS experienced a 21.2% decrease in medical workload, but total (nominal) expenditures declined only 3.6%. Of all expenditure categories, only inpatient medical care, outpatient medical care, and military-funded private sector care for active duty personnel (supplemental care) have any direct relationship with AFMS/DCS medical workload. Real expenditures for the three categories above decreased by 20.3% during the 5-year period. Accounting for inflation and considering only expenditures related to medical workload, these results suggest that the AFMS/DCS is spending approximately 20% less money to do approximately 20% less work.

  11. Wind power variations under humid and arid meteorological conditions

    International Nuclear Information System (INIS)

    Şen, Zekâi

    2013-01-01

    Highlights: • It indicates the role of weather parameters’ roles in the wind energy calculation. • Meteorological variables are more significant in arid regions for wind power. • It provides opportunity to take into consideration air density variability. • Wind power is presented in terms of the wind speed, temperature and pressure. - Abstract: The classical wind power per rotor area per time is given as the half product of the air density by third power of the wind velocity. This approach adopts the standard air density as constant (1.23 g/cm 3 ), which ignores the density dependence on air temperature and pressure. Weather conditions are not taken into consideration except the variations in wind velocity. In general, increase in pressure and decrease in temperature cause increase in the wind power generation. The rate of increase in the pressure has less effect on the wind power as compared with the temperature rate. This paper provides the wind power formulation based on three meteorological variables as the wind velocity, air temperature and air pressure. Furthermore, from the meteorology point of view any change in the wind power is expressed as a function of partial changes in these meteorological variables. Additionally, weather conditions in humid and arid regions differ from each other, and it is interesting to see possible differences between the two regions. The application of the methodology is presented for two meteorology stations in Istanbul, Turkey, as representative of the humid regions and Al-Madinah Al-Monawwarah, Kingdom of Saudi Arabia, for arid region, both on daily record bases for 2010. It is found that consideration of air temperature and pressure in the average wind power calculation gives about 1.3% decrease in Istanbul, whereas it is about 13.7% in Al-Madinah Al-Monawwarah. Hence, consideration of meteorological variables in wind power calculations becomes more significant in arid regions

  12. `X meteograph and MO.D.A.`: two information systems for processing meteorological data for air quality assessment; X{sub M}eteograph e MO.D.A.: due sistemi informativi per la visualizzazione ed elaborazione interattiva di dati meteorologici e di qualita` dell`aria

    Energy Technology Data Exchange (ETDEWEB)

    Caiaffa, Emanuela; Pellegrini, Andrea [ENEA, Centro Ricerche Casaccia, Roma (Italy). Dipt. Ambiente

    1997-03-01

    This paper introduces the Information System named `X{sub M}eteograph`, which enables an interactive processing of meteorological data stored in the `Meteodata` database, which is housed at the `Research Centre Casaccia` of ENEA, on a VAX computer. The `MO.D.A.` Information System is also described; this system allows the user to visualize and to apply some statistical processing to the a.m. meteorological data, and to air quality data. Both systems have been developed in co-operation between AMB/INF and AMB/SAF Sectors of ENEA - Environment Department. Co-operation included software design (concerning MO.D.A.) and sharing of costs. As a result of this activity, we provide the user with software packages easy to use, which enable retrieval, processing and rendering of meteorological data from the Meteodata database and air quality data from external sources; rendering is done in the form of tables, graphs and plotting of contours and symbols on geographical maps.

  13. Autonomous Aerial Sensors for Wind Power Meteorology

    DEFF Research Database (Denmark)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Reuder, Joachim

    2011-01-01

    , UAVs could be quite cost-effective. In order to test this assumption and to test the limits of UAVs for wind power meteorology, this project assembles four different UAVs from four participating groups. Risø has built a lighter-than-air kite with a long tether, Bergen University flies a derivative......This paper describes a new approach for measurements in wind power meteorology using small unmanned flying platforms. Large-scale wind farms, especially offshore, need an optimisation between installed wind power density and the losses in the wind farm due to wake effects between the turbines. Good...... movement. In any case, a good LIDAR or SODAR will cost many tenthousands of euros. Another current problem in wind energy is the coming generation of wind turbines in the 10-12MW class, with tip heights of over 200m. Very few measurement masts exist to verify our knowledge of atmospheric physics, and most...

  14. Sponge divers of the Aegean and medical consequences of risky compressed-air dive profiles.

    Science.gov (United States)

    Toklu, Akin Savas; Cimsit, Maide

    2009-04-01

    Historically, Turkey once had a substantial number of professional sponge divers, a population known for a relatively high incidence of diving-related conditions such as decompression sickness (DCS) and dysbaric osteonecrosis (DON). Sponge diving ended in the mid-1980s when nearly all of the sponges in the Aegean and Mediterranean Seas contracted a bacterial disease and the occupation became unprofitable. We reviewed the records of Turkish sponge divers for information on their level of knowledge, diving equipment, dive profiles, and occupational health problems. Information was collected by: 1) interviewing former sponge divers near Bodrum, where most of them had settled; 2) reviewing the relevant literature; and 3) examining the medical records of sponge divers who underwent recompression treatment. These divers used three types of surface-supplied equipment, including hard helmets, Fernez apparatus, and hookahs; the latter were preferred because they allowed divers the greatest freedom of movement while harvesting sponges underwater. These divers used profiles that we now know involved a high risk for DCS and DON. We were able to access the records of 58 divers who had received recompression treatment. All of the cases involved severe DCS and delays from dive to recompression that averaged 72 h. Complete resolution of symptoms occurred in only 11 cases (19%). Thus, we were able to document the several factors that contributed to the risks in this occupational group, including unsafe dive profiles, resistance to seeking treatment, long delays before recompression, and the fact that recompression treatment used air rather than oxygen.

  15. Atlantic Oceanographic and Meteorological Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Atlantic Oceanographic and Meteorological Laboratory conducts research to understand the physical, chemical, and biological characteristics and processes of the...

  16. Meteorology ans solar physics

    Science.gov (United States)

    Schwarz, Oliver

    When in the second half of the 19th century both solar physics and astrophysics came into existence, various solar phenomena were described by analogies encountered in the terrestrial atmosphere. For a certain time, meteorology played a central role in research on solar processes. At first glance, this may appear as a curious and old-fashioned specialty. However, solar physics owes its first insights into solar structure to various analogies in terrestrial atmospheric studies. The present investigation intends to elucidate this fact, to present details of the historical development, and to demonstrate how our present knowledge in certain fields is based on considerations which were originally taken from the description of the terrestrial atmosphere.

  17. Meteorology as an infratechnology

    Science.gov (United States)

    Williams, G. A.; Smith, L. A.

    2003-04-01

    From an economists perspective, meteorology is an underpinning or infratechnology in the sense that in general it does not of its own accord lead to actual products. Its value added comes from the application of its results to the activities of other forms of economic and technological activity. This contribution discusses both the potential applications of meteorology as an ininfratechnology, and quantifying its socio-economic impact. Large economic and social benefits are both likely in theory and can be identified in practice. Case studies of particular weather dependent industries or particular episodes are suggested, based on the methodology developed by NIST to analyze the social impact of technological innovation in US industries (see www.nist.gov/director/planning/strategicplanning.htm ). Infratechnologies can provide economic benefits in the support of markets. Incomplete information is a major cause of market failure because it inhibits the proper design of contracts. The performance of markets in general can be influenced by strategies adopted by different firms within a market to regulate the performance of others especially suppliers or purchasers. This contribution will focus on benefits to society from mechanisms which enhance and enforce mitigating actions. When the market mechanism fails, who might social benefits be gained, for example, by widening the scope of authorities to ensure that those who could have taken mitigating action, given prior warning, cover the costs. This goes beyond the design and implementation of civil responses to severe weather warnings to include the design of legislative recourse in the event of negligence given prior knowledge, or the modification of insurance contracts. The aim here, for example, would be to avoid the loss of an oil tanker in heavy seas at a location where a high probability of heavy seas had been forecast for some time.

  18. Meteorological safeguarding of nuclear power plant operation in Czechoslovakia

    International Nuclear Information System (INIS)

    Rak, J.; Skulec, S.

    1976-01-01

    A meteorological tower 200 m high has to be built for meteorological control of the operation of the A-1 nuclear power plant at Jaslovske Bohunice. This meteorological station will measure the physical properties of the lower layers of the atmosphere, carry out experimental verifications of the models of air pollution, investigate the effects of waste heat and waste water from the nuclear power plant on the microclimate, provide the theoretical processing of measured data with the aim of selecting the most favourable model for conditions prevailing in the Czechoslovak Socialist Republic, perform basic research of the physical properties of the ground and boundary layers of the atmosphere and the coordination of state-wide plans in the field of securing the operation of nuclear power plants with regard to meteorology. (Z.M.)

  19. Micrococcus cohnii sp. nov., isolated from the air in a medical practice.

    Science.gov (United States)

    Rieser, Gernot; Scherer, Siegfried; Wenning, Mareike

    2013-01-01

    Three Gram-reaction-positive bacteria, isolated from the air in a medical practice (strains WS4601(T), WS4602) or a pharmaceutical clean room (strain WS4599), were characterized using a polyphasic approach. Phylogenetic analyses based on 16S rRNA and recA gene sequences of the three novel strains showed that they formed a distinct lineage within the genus Micrococcus, sharing 16S rRNA gene sequence similarities of 96.1-98.0 % with other species of this genus. Chemotaxonomic features also supported the classification of the three novel strains within the genus Micrococcus. The major cellular fatty acids of strain WS4601(T) were anteiso-C(15 : 0) and iso-C(15 : 0), the cell-wall peptidoglycan was of type A3α (L-Lys-L-Ala), and the predominant respiratory quinones were MK-7(H(2)) and MK-8(H(2)). The polar lipid profile contained diphosphatidylglycerol and phosphatidylglycerol, but no phosphatidylinositol. The G+C content of the genomic DNA was 70.4 mol%. Numerous physiological properties were found that clearly distinguished strains WS4599, WS4601(T) and WS4602 from established members of the genus Micrococcus. Based on the phenotypic and phylogenetic data, strains WS4599, WS4601(T) and WS4602 are considered to represent three different strains of a novel species of the genus Micrococcus, for which the name Micrococcus cohnii sp. nov. is proposed. The type strain is WS4601(T) (=DSM 23974(T)=LMG 26183(T)).

  20. Assessing air medical crew real-time readiness to perform critical tasks.

    Science.gov (United States)

    Braude, Darren; Goldsmith, Timothy; Weiss, Steven J

    2011-01-01

    Air medical transport has had problems with its safety record, attributed in part to human error. Flight crew members (FCMs) must be able to focus on critical safety tasks in the context of a stressful environment. Flight crew members' cognitive readiness (CR) to perform their jobs may be affected by sleep deprivation, personal problems, high workload, and use of alcohol and drugs. The current study investigated the feasibility of using a computer-based cognitive task to assess FCMs' readiness to perform their job. The FCMs completed a short questionnaire to evaluate their physiologic and psychological state at the beginning and end of each shift. The FCMs then performed 3 minutes of a computer-based cognitive task called synthetic work environment (SYNWIN test battery). Task performance was compared with the questionnaire variables using correlation and regression analysis. Differences between the beginning and end of each shift were matched and compared using a paired Students t test. SYNWIN performance was significantly worse at the end of a shift compared with the beginning of the shift (p = 0.028) primarily because of decrement in the memory component. The SYNWIN composite scores were negatively correlated to degree of irritability felt by the participant, both before (r = -0.25) and after (r = -0.34) a shift and were significantly correlated with amount of sleep (0.22), rest (0.30), and life satisfaction (0.30). Performance by FCMs on a simple, rapid, computer-based psychological test correlates well with self-reported sleep, rest, life satisfaction, and irritability. Although further studies are warranted, these findings suggest that assessment of the performance of FCMs on a simple, rapid, computer-based, multitasking battery is feasible as an approach to determine their readiness to perform critical safety tasks through the SYNWIN task battery.

  1. Development of estimation method for tephra transport and dispersal characteristics with numerical simulation technique. Part 2. A method of selecting meteorological conditions and the effects on ash deposition and concentration in air for Kanto-area

    International Nuclear Information System (INIS)

    Hattori, Yasuo; Suto, Hitoshi; Toshida, Kiyoshi; Hirakuchi, Hiromaru

    2016-01-01

    In the present study, we examine the estimation of ground deposition for a real test case, a volcanic ash hazard in Kanto-area with various meteorological conditions by using an ash transport- and deposition-model, fall3d; we consider three eruptions, which correspond to the stage 1 and 3 of Hoei eruption at Mt. Fuji and Tenmei Eruption at Mt. Asama. The meteorological conditions are generated with the 53 years reanalysis meteorological dataset, CRIEPI-RCM-Era2, which has a temporal- and spatial-resolutions of 1 hr and 5 km. The typical and extreme conditions were sampled by using Gumbel plot and an artificial neural network technique. The ash deposition is invariably limited to the west area of the vent, even with the typical wind conditions on summer, while the isopach of ground deposition depicted various distributions, which strongly depends on meteorological conditions. This implies that the concentric circular distribution must not be realistic. Also, a long-term eruption, such as the Hoei eruption during stage 3, yields large deposition area due to the daily variations of wind direction, suggesting that the attention to the differences between daily variation and fluctuations of wind direction on evaluating of volcanic ash risk is vital. (author)

  2. A PERSPECTIVE ON MILITARY MEDICAL SERVICE ROLE IN STABILIZATION OPERATIONS: EXPANSION OF AIR FORCE MEDICAL SERVICE CAPABILITIES INMEDICAL DIPLOMACY

    Science.gov (United States)

    2017-04-06

    global and regional international organizations (IOs), US and foreign nongovernmental organizations ( NGOs ), and private-sector individuals and for-profit...iv Abstract This research paper advocates that the US military health workers will be more effective in medical diplomacy than their NGO ...organizations (IO), and non-governmental organizations ( NGO ), provided humanitarian assistance to bring social stability to affected regions. In

  3. Instruments for meteorological measurement

    International Nuclear Information System (INIS)

    1983-08-01

    The Fundamental Safety Rules applicable to certain types of nuclear installation are intended to clarify the conditions of which observance, for the type of installation concerned and for the subject that they deal with, is considered as equivalent to compliance with regulatory French technical practice. These Rules should facilitate safety analysises and the clear understanding between persons interested in matters related to nuclear safety. They in no way reduce the operator's liability and pose no obstacle to statutory provisions in force. For any installation to which a Fundamental Safety Rule applies according to the foregoing paragraph, the operator may be relieved from application of the Rule if he shows proof that the safety objectives set by the Rule are attained by other means that he proposes within the framework of statutory procedures. Furthermore, the Central Service for the Safety of Nuclear Installations reserves the right at all times to alter any Fundamental Safety Rule, as required, should it deem this necessary, while specifying the applicability conditions. This present rule has for objective to determine the means for meteorological measurement near a site of nuclear facility in which there is not a PWR power plant [fr

  4. Comparison of a Padded Patient Litter and Long Spine Board for Spinal Immobilization in Air Medical Transport.

    Science.gov (United States)

    Weber, Steven R; Rauscher, Patrick; Winsett, Rebecca P

    2015-01-01

    The long spinal board is the immobilization standard during prehospital transport. The flat surface of the board increases the pressure placed on both the thoracic kyphosis and the sacrum and increases the risk for pressure ulcers. This study compared patient stability and comfort between a padded litter system used in air medical transport and the long spine board. The study was completed at a large 350-bed Magnet Recognized nonteaching hospital. The hospital owns and operates an air medical transport service. Subjects were secured to a padded litter and a long spinal board with a cervical collar and head blocks and 3 straps. Laser pointers were used to mark neutral at points on the subject's head, sternum, and pelvis. The subject was tilted 45 degrees left and right with movement measured in inches. Comfort level was measured before and after. Paired t-tests were used to detect differences in movement. No statistical difference in movement was found between devices for the head; however, there was statistically significant greater movement on the padded litter for the sternum and pelvis. The padded litter did not immobilize as tightly as the long board although the effect of the differences was small. Copyright © 2015 Air Medical Journal Associates. Published by Elsevier Inc. All rights reserved.

  5. Meteorological measurements. Chapter 3

    Science.gov (United States)

    David Y. Hollinger

    2008-01-01

    Environmental measurements are useful for detecting climatic trends, understanding how the environment influences biological processes, and as input to ecosystem models. Landscape-scale monitoring requires a suite of environmental measures for all of these purposes, including air and soil temperature, humidity, wind speed, precipitation and soil moisture, and different...

  6. Air

    International Nuclear Information System (INIS)

    Gugele, B.; Scheider, J.; Spangl, W.

    2001-01-01

    In recent years several regulations and standards for air quality and limits for air pollution were issued or are in preparation by the European Union, which have severe influence on the environmental monitoring and legislation in Austria. This chapter of the environmental control report of Austria gives an overview about the legal situation of air pollution control in the European Union and in specific the legal situation in Austria. It gives a comprehensive inventory of air pollution measurements for the whole area of Austria of total suspended particulates, ozone, volatile organic compounds, nitrogen oxides, sulfur dioxide, carbon monoxide, heavy metals, benzene, dioxin, polycyclic aromatic hydrocarbons and eutrophication. For each of these pollutants the measured emission values throughout Austria are given in tables and geographical charts, the environmental impact is discussed, statistical data and time series of the emission sources are given and legal regulations and measures for an effective environmental pollution control are discussed. In particular the impact of fossil-fuel power plants on the air pollution is analyzed. (a.n.)

  7. The meteorological data acquisition system

    International Nuclear Information System (INIS)

    Bouharrour, S.; Thomas, P.

    1975-07-01

    The 200 m meteorological tower of the Karlsruhe Nuclear Research Center has been equipped with 45 instruments measuring the meteorological parameters near the ground level. Frequent inquiry of the instruments implies data acquisition with on-line data reduction. This task is fulfilled by some peripheral units controlled by a PDP-8/I. This report presents details of the hardware configuration and a short description of the software configuration of the meteorological data acquisition system. The report also serves as an instruction for maintenance and repair work to be carried out at the system. (orig.) [de

  8. Thermometric convection coefficients for rocket meteorological sensors (tables)

    Science.gov (United States)

    Staffanson, F. L.

    1974-01-01

    Values of the convective heat transfer coefficient h, and the recovery factor r, for miniature beads, fine wires, and films in rarefied air flow are shown. Data provide a standard reference for computing consistent operational corrections to rocket meteorological measurements, and for predicting the performance of existing and proposed sensor systems.

  9. Design, construction and evaluation of a meteorological mobile mast ...

    African Journals Online (AJOL)

    A 30 metre meteorological mobile mast has been designed and constructed for upper air profile measurements. The parameters to be measured are wind speed, wind direction, temperature and relative humidity. The sensors for each parameter to be measured are constructed with locally available materials.

  10. The role of the Finnish Meteorological Institute

    International Nuclear Information System (INIS)

    Savolainen, A.L.; Valkama, I.

    1993-01-01

    The Finnish Meteorological Institute is responsible for the dispersion forecasts for the radiation control in Finland. In addition to the normal weather forecasts the duty forecaster has the work station based three dimensional trajectory model and the short range dispersion model YDINO at his disposal. For expert use, dispersion and dose model TRADOS is available. The TRADOS, developed by the Finnish Meteorological Institute and by the Technical Research Centre of Finland, includes a meteorological data base that utilizes the numerical forecasts of the High Resolution Limited Area Model (HIRLAM) weather prediction model. The transport is described by three-dimensional air-parcel trajectories. For each time step the integrated air concentrations as well as dry and wet deposition for selected groups of radionuclides are computed. In the operational emergency application only external dose rates are computed. In the statistical version also individual and population dose estimates via several external and internal pathways can be made. The TRADOS is currently run under two separate user interfaces. The trajectory and dispersion model interface includes ready-made lists of the nuclear power plants and other installations. The dose model has a set of release terms for several groups of radionuclides. There is also a graphical module that enables the computed results to be presented in grid or also isolines. A new graphical user interface and presentation lay-outs redesigned as visual and end-user friendly as possible and with the aim of possible and with the aim of possible adoption as a Nordic standard will be installed in the near future. (orig.)

  11. Viking-1 meteorological measurements - First impressions

    Science.gov (United States)

    Hess, S. L.; Henry, R. M.; Leovy, C. B.; Tillman, J. E.; Ryan, J. A.

    1976-01-01

    A preliminary evaluation is given of in situ meteorological measurements made by Viking 1 on Mars. The data reported show that: (1) the atmosphere has approximate volume mixing ratios of 1.5% argon, 3% nitrogen, and 95% carbon dioxide; (2) the diurnal temperature range is large and regular, with a sunrise minimum of about 188 K and a midafternoon maximum near 244 K; (3) air and ground temperatures coincide quite closely during the night, but ground temperature exceeds air temperature near midday by as much as 25 C; (4) the winds exhibit a marked diurnal cycle; and (5) a large diurnal pressure variation with an afternoon minimum and an early-morning maximum parallels the wind pattern. The variations are explained in terms of familiar meteorological processes. It is suggested that latent heat is unlikely to play an important role on Mars because no evidence has been observed for traveling synoptic-scale disturbances such as those that occur in the terrestrial tropics.

  12. Defense Meteorological Satellite Program (DMSP)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Defense Meteorological Satellite Program (DMSP) satellites collect visible and infrared cloud imagery as well as monitoring the atmospheric, oceanographic,...

  13. Data assimilation in atmospheric chemistry models: current status and future prospects for coupled chemistry meteorology models

    OpenAIRE

    M. Bocquet; H. Elbern; H. Eskes; M. Hirtl; R. Žabkar; G. R. Carmichael; J. Flemming; A. Inness; M. Pagowski; J. L. Pérez Camaño; P. E. Saide; R. San Jose; M. Sofiev; J. Vira; A. Baklanov

    2015-01-01

    Data assimilation is used in atmospheric chemistry models to improve air quality forecasts, construct re-analyses of three-dimensional chemical (including aerosol) concentrations and perform inverse modeling of input variables or model parameters (e.g., emissions). Coupled chemistry meteorology models (CCMM) are atmospheric chemistry models that simulate meteorological processes and chemical transformations jointly. They offer the possibility to assimilate both meteorologica...

  14. Urban meteorological modelling for nuclear emergency preparedness

    International Nuclear Information System (INIS)

    Baklanov, Alexander; Sorensen, Jens Havskov; Hoe, Steen Cordt; Amstrup, Bjarne

    2006-01-01

    The main objectives of the current EU project 'Integrated Systems for Forecasting Urban Meteorology, Air Pollution and Population Exposure' (FUMAPEX) are the improvement of meteorological forecasts for urban areas, the connection of numerical weather prediction (NWP) models to urban air pollution and population dose models, the building of improved urban air quality information and forecasting systems, and their application in cities in various European climates. In addition to the forecast of the worst air-pollution episodes in large cities, the potential use of improved weather forecasts for nuclear emergency management in urban areas, in case of hazardous releases from nuclear accidents or terror acts, is considered. Such use of NWP data is tested for the Copenhagen metropolitan area and the Oresund region. The Danish Meteorological Institute (DMI) is running an experimental version of the HIRLAM NWP model over Zealand including the Copenhagen metropolitan area with a horizontal resolution of 1.4 km, thus approaching the city-scale. This involves 1-km resolution physiographic data with implications for the urban surface parameters, e.g. surface fluxes, roughness length and albedo. For the city of Copenhagen, the enhanced high-resolution NWP forecasting will be provided to demonstrate the improved dispersion forecasting capabilities of the Danish nuclear emergency preparedness decision-support system, the Accident Reporting and Guidance Operational System (ARGOS), used by the Danish Emergency Management Agency (DEMA). Recently, ARGOS has been extended with a capability of real-time calculation of regional-scale atmospheric dispersion of radioactive material from accidental releases. This is effectuated through on-line interfacing with the Danish Emergency Response Model of the Atmosphere (DERMA), which is run at DMI. For local-scale modelling of atmospheric dispersion, ARGOS utilises the Local-Scale Model Chain (LSMC), which makes use of high-resolution DMI

  15. The DOE/NOAA meteorological program at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    George, D.H.

    1996-01-01

    The National Oceanic and Atmospheric Administration (NOAA) Air Resources Laboratory (ARL) has recently upgraded the U.S. Department of Energy's (DOE's) Idaho National Engineering Laboratory (INEL) Meteorological Measuring Network. This has allowed the entire service system to be modernized

  16. Numerical simulation of meteorological conditions for peak pollution in Paris

    Energy Technology Data Exchange (ETDEWEB)

    Carissimo, B. [Electricite de France (EDF), 78 - Chatou (France). Direction des Etudes et Recherches

    1997-06-01

    Results obtained on the simulation of meteorological conditions during two episodes of peak pollution in Paris are presented, one in the winter, the other in the summer. The A3UR air quality modelling system is first described followed by the MERCURE mesoscale meteorological model. The conditions of simulation are described. The results obtained on these two causes show satisfactory agreement, for example on the magnitude of the urban heat island which is correctly reproduced. In this study, several areas of progress have been identified: improvement of the altitude measurement network around cities, the simulation of light wind conditions and the simulation of formation and dissipation of fog. (author) 24 refs.

  17. ROMANIAN AERONAUTICAL METEOROLOGY APPLICABLE LEGAL FRAMEWORK –BRIEFING

    Directory of Open Access Journals (Sweden)

    CATALIN POPA

    2012-05-01

    Full Text Available The purpose of this briefing is toprovide an overview of the aeronautical meteorology legal framework in Romania. In this context, the role and importance of aeronautical meteorology in international air traffic management will be underlined, with focus on the civil aviation activity in Romania. The international legal framework and modalities of implementing these rules at national level will constitute a significant part of the present study., Specific accent will be put on the national regulatory framework and structure, means of updating it, and how it responds to changing regulatory requirements.

  18. Application of meteorology to safety at nuclear plants

    International Nuclear Information System (INIS)

    1968-01-01

    This report was prepared on behalf of the International Atomic Energy Agency by an international panel of experts who met at the Agency's headquarters from 10 to 14 April 1967. The application of meteorology to safety at nuclear plants is discussed in connection with site selection, design and construction, operation, and emergency planning and action. The final chapter considers the training to be given to operators and health and safety personnel on meteorology problems. The appendix gives a simple method for computing air concentration values at ground level. An extensive bibliography is also included.

  19. Meteorology/Oceanography Help - Naval Oceanography Portal

    Science.gov (United States)

    section Advanced Search... Sections Home Time Earth Orientation Astronomy Meteorology Oceanography Ice You are here: Home › Help › Meteorology/Oceanography Help USNO Logo USNO Info Meteorology/Oceanography Help Send an e-mail regarding meteorology or oceanography products. Privacy Advisory Your E-Mail

  20. Archives of Environmental Health, Volume 18 Number 4. Ninth AMA Air Pollution Medical Research Conference, Denver, July 22-24, 1968.

    Science.gov (United States)

    Barton, Frank

    Papers read before the Ninth American Medical Association (AMA) Air Pollution Medical Research Conference, Denver, Colorado, July 22-24, 1968, are presented in this document. Topics deal with the relationship and effects of atmospheric pollution to respiratory diseases, epidemiology, human physiological reactions, urban morbidity, health of school…

  1. Automated data system for emergency meteorological response

    International Nuclear Information System (INIS)

    Kern, C.D.

    1975-01-01

    The Savannah River Plant (SRP) releases small amounts of radioactive nuclides to the atmosphere as a consequence of the production of radioisotopes. The potential for larger accidental releases to the atmosphere also exists, although the probability for most accidents is low. To provide for emergency meteorological response to accidental releases and to conduct research on the transport and diffusion of radioactive nuclides in the routine releases, a series of high-quality meteorological sensors have been located on towers in and about SRP. These towers are equipped with instrumentation to detect and record temperature and wind turbulence. Signals from the meterological sensors are brought by land-line to the SRL Weather Center-Analysis Laboratory (WC-AL). At the WC-AL, a Weather Information and Display (WIND) system has been installed. The WIND system consists of a minicomputer with graphical displays in the WC-AL and also in the emergency operating center (EOC) of SRP. In addition, data are available to the system from standard weat []er teletype services, which provide both routine surface weather observations and routine upper air wind and temperature observations for the southeastern United States. Should there be an accidental release to the atmosphere, available recorded data and computer codes would allow the calculation and display of the location, time, and downwind concentration of the atmospheric release. These data are made available to decision makers in near real-time to permit rapid decisive action to limit the consequences of such accidental releases. (auth)

  2. Successful medical management of emphysematous gastritis with concomitant portal venous air: a case report

    Directory of Open Access Journals (Sweden)

    Weiss Stan L

    2010-05-01

    Full Text Available Abstract Introduction The causes of diffuse abdominal pain following pelvic surgery are numerous. We present a rare case of acute abdominal pain in a woman in the post-partum period. Case presentation A 25-year-old Caucasian woman with neurofibromatosis type 1 presented to our hospital with diffuse abdominal pain immediately after a cesarean section. The patient was acutely ill and toxic with a fever of 38.8°C, a pulse of 120 beats per minute and a distended abdomen with absent bowel sounds. A computed tomography scan showed air in the wall of the stomach and portal venous system. The patient was successfully treated with intravenous antibiotics, bowel rest and total parenteral nutrition. Conclusion It is rare for a case of emphysematous gastritis associated with portal venous air to be treated successfully without surgery. To the best of our knowledge, to date there has been no reported association of emphysematous gastritis with neurofibromatosis.

  3. Trusted Care In The Air Force Medical Service: Practical Recommendations For Transformation

    Science.gov (United States)

    2016-02-16

    in the U.S. Air Force Dental Corps. As a dental officer, he completed his residency in periodontics in 2006 at The University of Texas Health...Force Academy, followed by a position on the teaching staff at the periodontics residency at Joint Base San Antonio-Lackland. Prior to his current...military organization may be fully on board with changes in policy and/or transformation, the process for getting rid of those who are chronic resisters

  4. EPA True NO2 ground site measurements – multiple sites, TCEQ ground site measurements of meteorological and air pollution parameters – multiple sites ,GeoTASO NO2 Vertical Column

    Data.gov (United States)

    U.S. Environmental Protection Agency — EPA True NO2 ground site measurements – multiple sites - http://www-air.larc.nasa.gov/cgi-bin/ArcView/discover-aq.tx-2013; TCEQ ground site measurements of...

  5. Surface meteorology and Solar Energy

    Science.gov (United States)

    Stackhouse, Paul W. (Principal Investigator)

    The Release 5.1 Surface meteorology and Solar Energy (SSE) data contains parameters formulated for assessing and designing renewable energy systems. Parameters fall under 11 categories including: Solar cooking, solar thermal applications, solar geometry, tilted solar panels, energy storage systems, surplus product storage systems, cloud information, temperature, wind, other meteorological factors, and supporting information. This latest release contains new parameters based on recommendations by the renewable energy industry and it is more accurate than previous releases. On-line plotting capabilities allow quick evaluation of potential renewable energy projects for any region of the world. The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Mission Objectives] The SSE project contains insolation and meteorology data intended to aid in the development of renewable energy systems. Collaboration between SSE and technology industries such as the Hybrid Optimization Model for Electric Renewables ( HOMER ) may aid in designing electric power systems that employ some combination of wind turbines, photovoltaic panels, or diesel generators to produce electricity. [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  6. Evaporation in hydrology and meteorology

    NARCIS (Netherlands)

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the

  7. An Evidence-based Guideline for the air medical transportation of prehospital trauma patients.

    Science.gov (United States)

    Thomas, Stephen H; Brown, Kathleen M; Oliver, Zoë J; Spaite, Daniel W; Lawner, Benjamin J; Sahni, Ritu; Weik, Tasmeen S; Falck-Ytter, Yngve; Wright, Joseph L; Lang, Eddy S

    2014-01-01

    Decisions about the transportation of trauma patients by helicopter are often not well informed by research assessing the risks, benefits, and costs of such transport. The objective of this evidence-based guideline (EBG) is to recommend a strategy for the selection of prehospital trauma patients who would benefit most from aeromedical transportation. A multidisciplinary panel was recruited consisting of experts in trauma, EBG development, and emergency medical services (EMS) outcomes research. Representatives of the Federal Interagency Committee on Emergency Medical Services (FICEMS), the National Highway Traffic Safety Administration (NHTSA) (funding agency), and the Children's National Medical Center (investigative team) also contributed to the process. The panel used the Grading of Recommendations Assessment, Development and Evaluation (GRADE) methodology to guide question formulation, evidence retrieval, appraisal/synthesis, and formulate recommendations. The process followed the National Evidence-Based Guideline Model Process, which has been approved by the Federal Interagency Committee on EMS and the National EMS Advisory Council. Two strong and three weak recommendations emerged from the process, all supported only by low or very low quality evidence. The panel strongly recommended that the 2011 CDC Guideline for the Field Triage of Injured Patients be used as the initial step in the triage process, and that ground emergency medical services (GEMS) be used for patients not meeting CDC anatomic, physiologic, and situational high-acuity criteria. The panel issued a weak recommendation to use helicopter emergency medical services (HEMS) for higher-acuity patients if there is a time-savings versus GEMS, or if an appropriate hospital is not accessible by GEMS due to systemic/logistical factors. The panel strongly recommended that online medical direction should not be required for activating HEMS. Special consideration was given to the potential need for local

  8. Use of a Tourniquet by LIFE STAR Air Medical Crew: A Case Report.

    Science.gov (United States)

    Jacobs, Lenworth M; Burns, Karyl J; Priest, Heather Standish; Muskett, William

    2015-10-01

    For many years tourniquets were perceived as dangerous due to the belief that they led to loss of limb because of ischemia. Their use in civilian and military environments was discouraged. Emergency medical responders were not taught about tourniquets and commercial tourniquets were not available. However, research by the United States military during the wars in Iraq and Afghanistan has demonstrated that tourniquets are safe life-saving devices. As a consequence, they have been widely deployed in combat situations and there are now calls for the use of tourniquets in the civilian prehospital setting. This article presents a report of the successful application of a tourniquet by the LIFE STAR crew to control bleeding that local emergency medical services (EMS) personnel could not control with direct pressure. Tourniquets should be readily available in public places and carried by all EMS.

  9. Detainee Healthcare in Theater Hospitals: Are Air Force Medics Prepared for the Challenge

    Science.gov (United States)

    2009-04-01

    hostility could include not having same sex medical personnel for detainees, which can be challenging, due to staffing limitations. Muslim males, and...set of problems called ethnocentrism . What it boils down to is the belief that your own culture is the normal and right way of doing things and...population itself, but more so with first identifying our own preconceptions, ethnocentrisms , as well as our propensity to push our own cultural

  10. The Current Practices in Injury Prevention and Safety Helmet Use in an Air Force Medical Center

    Science.gov (United States)

    2000-05-01

    skateboarding . Findings from the DoD survey (1995) suggest that additional effort is necessary to meet Healthy People 2000 objectives in the area of...rollerblading or skateboarding . Primary care provider A family or individual goes to a primary care provider initially for medical care and the management...related head injury was considered a head injury that occurred while the subject was riding either a bicycle, motorcycle, rollerblading or skateboarding

  11. Tornado frequency in the USA - meteorological and non-meteorological factors of a downward trend

    Directory of Open Access Journals (Sweden)

    Mihajlović Jovan

    2015-01-01

    Full Text Available Citing numerical simulations, climate alarmists believe that global warming will lead to more frequent and more intensive tornadoes. Considering temperature increase data in the contiguous USA, this study has investigated the trend of strong tornadoes in F3+ category in the 1954-2012 period. Statistically significant decrease of tornadoes per year at an average rate of 0.44 has been recorded, that is, 4.4 tornadoes per decade. Tornado increase has been recorded with F0 and F1 categories and the cause of this increase lies in meteorological and non-meteorological factors. By using upper and lower standard deviation values, the stages of tornado activity have been singled out. The 1957-1974 period may be considered as an active stage and the 1978-2009 period as an inactive stage. Upward trend of air temperature increase does not correspond with the downward trend of the number of F3+ tornado category, while the correlation coefficient between these two variables is R = −0.14. This fact does not correspond with the simulation results and output data of various numerical models anticipating an increase in the number and intensity of tornado events in the conditions of surface air temperature growth.

  12. Air conditioning technology. Vol. 1. Calculation, design, meteorological data. Standards, guidelines. As of October 31, 1986. Raumlufttechnik. Bd. 1. Berechnung, Konstruktion, meteorologische Daten. Normen, Richtlinien. Stand der abgedruckten Normen: 31. Oktober 1986

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    Since 1970 the energy consumption of air-conditioning systems has almost been reduced by half. This has been achieved by means of improved technologies and on the basis of a change in technological awareness. Revised DIN Standards have contributed to this as well. The application of the standards compiled in the DIN pocket book No. 217 'Raumlufttechnik 1' (Air-conditioning Technology 1) will secure the associated systems to actually generate the desired air-conditioning effects. With its major DIN Standards for the calculation and design of air-conditioning systems, this DIN pocket book turns out to be a valuable guide and tool for planners, manufacturers and operators. In addition, its annex supplies substantiated information on the control of HVAC systems (VDI/VDE 3525 BI) and contains the guideline for the acceptance testing of HVAC systems (VDI/2079), the draft for the building inspection guideline on fire protection requirements on ventilation systems, and annotations for air-conditioning installations in public buildings.

  13. Temporal variations of reference evapotranspiration and its sensitivity to meteorological factors in Heihe River Basin, China

    Directory of Open Access Journals (Sweden)

    Jie Zhao

    2015-01-01

    Full Text Available On the basis of daily meteorological data from 15 meteorological stations in the Heihe River Basin (HRB during the period from 1959 to 2012, long-term trends of reference evapotranspiration (ET0 and key meteorological factors that affect ET0 were analyzed using the Mann-Kendall test. The evaporation paradox was also investigated at 15 meteorological stations. In order to explore the contribution of key meteorological factors to the temporal variation of ET0, a sensitivity coefficient method was employed in this study. The results show that: (1 mean annual air temperature significantly increased at all 15 meteorological stations, while the mean annual ET0 decreased at most of sites; (2 the evaporation paradox did exist in the HRB, while the evaporation paradox was not continuous in space and time; and (3 relative humidity was the most sensitive meteorological factor with regard to the temporal variation of ET0 in the HRB, followed by wind speed, air temperature, and solar radiation. Air temperature and solar radiation contributed most to the temporal variation of ET0 in the upper reaches; solar radiation and wind speed were the determining factors for the temporal variation of ET0 in the middle-lower reaches.

  14. Relationship between particle matter and meteorological data in Canada

    Science.gov (United States)

    Bahrami, Azad; Memarian Fard, Mahsa; Bahrami, Ala

    2017-04-01

    The fine particulate matter (PM2.5) has a strong influence on the hydrological cycle, cloud formation, visibility, global climate, and human health. The meteorological conditions have important effects on PM2.5 mass concentration. Canada's National Air Pollution Surveillance (NAPS) network measures air pollutants at urban, suburban and rural locations in Canada. In this study, the point monthly relationships between meteorological data provided by Environment of Canada and PM2.5 mass concentration from January 1st, 2010 to December 31st, 2015 of fifteen speciation stations in Canada were analyzed. The correlation analysis results between PM2.5 concentrations and precipitation as well as surface pressure demonstrated a negative correlation. It should be noted that the correlation between temperature and special humidity with PM2.5 in cold seasons and warm seasons were negative and positive respectively. Moreover, the weak correlation between wind speed and PM2.5 were obtained.

  15. Use of information systems in Air Force medical treatment facilities in strategic planning and decision-making.

    Science.gov (United States)

    Yap, Glenn A; Platonova, Elena A; Musa, Philip F

    2006-02-01

    An exploratory study used Ansoff's strategic planning model as a framework to assess perceived effectiveness of information systems in supporting strategic business plan development at Air Force medical treatment facilities (MTFs). Results showed information systems were most effective in supporting historical trend analysis, strategic business plans appeared to be a balance of operational and strategic plans, and facilities perceived a greater need for new clinical, vice administrative, information systems to support strategic planning processes. Administrators believed information systems should not be developed at the local level and perceived information systems have the greatest impact on improving clinical quality outcomes, followed by ability to deliver cost effective care and finally, ability to increase market share.

  16. Meteorological analysis of the eruption of soufriere in april 1979.

    Science.gov (United States)

    Barr, S; Heffter, J L

    1982-06-04

    Meteorological upper-air data, in conjunction with satellite imagery, lidar light detection and ranging returns, and aircraft sampling, aid in the determination of plume altitude and transport. The estimated trajectories indicate that the ash was transported eastward across the Atlantic to Africa in 3 to 5 days and that there was modest meridional transport as far as 15 degrees poleward during the first week of travel.

  17. [Meteorology and the human body: two hundred years of history].

    Science.gov (United States)

    Forrai, Judit

    2010-07-04

    Modern meteorology was started in the 18th century, with the establishment of observer networks through countries. Since then, temperature, pressure and purity of air, quantity of powder have been measured and the effects of changes on the human body have been studied. New theories have been set relating to the atmospheric properties of microorganisms. Changes of pathogens in the context of climatic changes have been also studied.

  18. Meteorological radar services: a brief discussion and a solution in practice

    Science.gov (United States)

    Nicolaides, K. A.

    2014-08-01

    The Department of Meteorology is the organization designated by the Civil Aviation Department and by the National Supervisory Authority of the Republic of Cyprus, as an air navigation service provider, based on the regulations of the Single European Sky. Department of Meteorology holds and maintains also an ISO: 9001/2008, Quality System, for the provision of meteorological and climatological services to aeronautic and maritime community, but also to the general public. In order to fulfill its obligations the Department of Meteorology customs the rather dense meteorological stations network, with long historical data series, installed and maintained by the Department, in parallel with modelling and Numerical Weather Prediction (NWP), along with training and gaining of expertise. Among the available instruments in the community of meteorologists is the meteorological radar, a basic tool for the needs of very short/short range forecasting (nowcasting). The Department of Meteorology installed in the mid 90's a C-band radar over «Throni» location and expanded its horizons in nowcasting, aviation safety and warnings issuance. The radar has undergone several upgrades but today technology has over passed its rather old technology. At the present the Department of Meteorology is in the process of buying Meteorological Radar Services as a result of a public procurement procedure. Two networked X-band meteorological radar will be installed (the project now is in the phase of infrastructure establishment while the hardware is in the process of assemble), and maintained from Space Hellas (the contractor) for a 13 years' time period. The present article must be faced as a review article of the efforts of the Department of Meteorology to support its weather forecasters with data from meteorological radar.

  19. Measurement of 131I activity in air indoor Polish nuclear medical hospital as a tool for an internal dose assessment.

    Science.gov (United States)

    Brudecki, K; Szczodry, A; Mróz, T; Kowalska, A; Mietelski, J W

    2018-03-01

    This paper presents results of 131 I air activity measurements performed within nuclear medical hospitals as a tool for internal dose assessment. The study was conducted at a place of preparation and administration of 131 I ("hot room") and at a nurse station. 131 I activity measurements were performed for 5 and 4 consecutive working days, at the "hot room" and nurse station, respectively. Iodine from the air was collected by a mobile HVS-30 aerosol sampler combined with a gas sampler. Both the gaseous and aerosol fractions were measurement. The activities in the gaseous fraction ranged from (28 ± 1 Bq m -3 ) to (492 ± 4) Bq m -3 . At both sampling sites, the activity of the gaseous iodine fraction trapped on activated charcoal was significantly higher than that of the aerosol fraction captured on Petrianov filter cloth. Based on these results, an attempt has been made to estimate annual inhalation effective doses, which were found to range from 0.47 mSv (nurse female) to 1.3 mSv (technician male). The highest annual inhalation equivalent doses have been found for thyroid as 32, 27, 13, and 11 mSv, respectively, for technician male, technical female, nurse male, and nurse female. The method presented here allows to fill the gaps in internal doses measurements. Moreover, because method has been successful used for many years in radioactive contamination monitoring of air in cases of serious nuclear accidents, it should also be used in nuclear medicine.

  20. Meteorological data fields 'in perspective'

    Science.gov (United States)

    Hasler, A. F.; Pierce, H.; Morris, K. R.; Dodge, J.

    1985-01-01

    Perspective display techniques can be applied to meteorological data sets to aid in their interpretation. Examples of a perspective display procedure applied to satellite and aircraft visible and infrared image pairs and to stereo cloud-top height analyses are presented. The procedure uses a sophisticated shading algorithm that produces perspective images with greatly improved comprehensibility when compared with the wire-frame perspective displays that have been used in the past. By changing the 'eye-point' and 'view-point' inputs to the program in a systematic way, movie loops that give the impression of flying over or through the data field have been made. This paper gives examples that show how several kinds of meteorological data fields are more effectively illustrated using the perspective technique.

  1. Technology and Meteorology. An Action Research Paper.

    Science.gov (United States)

    Taggart, Raymond F.

    Meteorology, the science of weather and weather conditions, has traditionally been taught via textbook and rote demonstration. This study was intended to determine to what degree utilizing technology in the study of meteorology improves students' attitudes towards science and to measure to what extent technology in meteorology increases…

  2. Syllabi for Instruction in Agricultural Meteorology.

    Science.gov (United States)

    De Villiers, G. D. B.; And Others

    A working group of the Commission for Agricultural Meteorology has prepared this report to fill a need for detailed syllabi for instruction in agricultural meteorology required by different levels of personnel. Agrometeorological personnel are classified in three categories: (1) professional meteorological personnel (graduates with basic training…

  3. Epicurean Meteorology: Sources, method, scope and organization

    NARCIS (Netherlands)

    Bakker, F.A.

    2016-01-01

    In Epicurean Meteorology Frederik Bakker discusses the meteorology as laid out by Epicurus (341-270 BCE) and Lucretius (1st century BCE). Although in scope and organization their ideas are clearly rooted in the Peripatetic tradition, their meteorology sets itself apart from this tradition by its

  4. Journal of Meteorology and Climate Science

    African Journals Online (AJOL)

    The Journal of Meteorology and Climate Science publishes rigorous theoretical reasoning and advanced empirical research in all areas of Meteorology and Climate Sciences. We welcome articles or proposals from all perspectives and on all subjects pertaining to Meteorology, Agriculture, Humanity, Physics, Geography, ...

  5. Evaporation in hydrology and meteorology

    OpenAIRE

    Brandsma, T.

    1990-01-01

    In this paper the role of evaporation in hydrology and meteorology is discussed, with the emphasis on hydrology. The basic theory of evaporation is given and methods to determine evaporation are presented. Some applications of evaporation studies in literature are given in order to illustrate the theory. Further, special conditions in evaporation are considered, followed by a fotmulation of the difficulties in determining evaporation, The last part of the paper gives a short discussion about ...

  6. Air bio-battery with a gas/liquid porous diaphragm cell for medical and health care devices.

    Science.gov (United States)

    Arakawa, Takahiro; Xie, Rui; Seshima, Fumiya; Toma, Koji; Mitsubayashi, Kohji

    2018-04-30

    Powering future generations of medical and health care devices mandates the transcutaneous transfer of energy or harvesting energy from the human body fluid. Glucose-driven bio fuel cells (bio-batteries) demonstrate promise as they produce electrical energy from glucose, which is a substrate presents in physiological fluids. Enzymatic biofuel cells can convert chemical energy into electrical energy using enzymes as catalysts. In this study, an air bio-battery was developed for healthcare and medical applications, consisting of a glucose-driven enzymatic biofuel cell using a direct gas-permeable membrane or a gas/liquid porous diaphragm. The power generation characteristics included a maximum current density of 285μA/cm 2 and maximum power density of 70.7μW/cm 2 in the presence of 5mmol/L of glucose in solution. In addition, high-performance, long-term-stabilized power generation was achieved using the gas/liquid porous diaphragm for the reactions between oxygen and enzyme. This system can be powered using 5mmol/L of glucose, the value of which is similar to that of the blood sugar range in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Meteorology and dispersion forecast in nuclear emergency in Argentina

    International Nuclear Information System (INIS)

    Kunst, Juan J.; Boutet, Luis I.; Jordan, Osvaldo D.; Hernandez, Daniel G.; Guichandut, M.E.; Chiappesoni, H.

    2008-01-01

    The 'Nuclear Regulatory Authority (NRA) (ARN in Spanish)' and the 'National Meteorological Office (NMO) (SMN in Spanish)' of Argentine has been working together on the improvement of both meteorological forecasting and dispersion prediction. In the pre-release phase of a nuclear emergency, it is very important to know the wind direction and the forecast of it, to establish the area, around the installation, where the emergency state is declared and to foresee the modification of this area. Information is also needed about deterministic effects, to begin the evacuation. At this time, meteorological forecast of wind direction and speed, and the real time meteorological information is available in the nuclear power plant (NPP) and in the Nuclear Emergency Control Centre at the ARN headquarters, together with the short-range dose calculation provided by our dispersion code, SEDA. By means of the SEDA code, we can estimate the optimum place to measure the radioactive material concentration in air, needed do to reduce evaluation uncertainties due, among others, to poor knowledge of the source term. The SEDA code allows considering atmospheric condition, and the need to reduced doses of the measuring team in charge of the measurements. For the evaluation in the medium range, we participate in the project IXP, which provides four hours and about 50 kilometres forecast. In the long-range movement of air borne radioactivity, the World Meteorological Organization (WMO), whose contact point in Argentina is the SMN, can assist us. We have developed together, with the SMN, a detailed procedure to request assistance from the WMO. In this work, we describe the combined tasks that were carried out with the SMN to define the procedures and the concepts for their application during a real emergency. The results of an application exercise carried out in 2006 are also described. (author)

  8. AN IMPACT OF THE EFFICIENT FUNCTIONING OF THE VENTILATION AND AIR-CONDITIONING SYSTEM ON THERMAL COMFORT OF THE MEDICAL STAFF IN THE OPERATING ROOM

    Directory of Open Access Journals (Sweden)

    Tomasz Jankowski

    2016-11-01

    Full Text Available Ventilation and air conditioning systems are necessary for developing proper parameters of indoor envi-ronment in operating rooms. The main task of ventilation and air conditioning in those specific areas consists in creating desirable temperature, reducing the number of microorganisms and the concen-trations of hazardous gases and substances in the air, as well as ensuring the proper direction of airflow. In Poland, indoor environment in operating rooms has to comply with the requirements set out in three regulations (Journal of Laws of 2002 No. 75, item 690, as amended, Journal of Laws of 2002 No. 217, item 1833, Journal of Laws of 2011 No. 31, item 158, as amended and the document entitled "Guidelines for the design of general hospitals". Given insufficient accuracy of the abovementioned national documents, it is a common practice to use foreign standards, i.e. ASHRAE Standard 170-2013, DIN 1946-4: 2008 and FprCEN TR 16244: 2011. When considering the conditions for thermal comfort, it is important to bear in mind a close link between air flow velocity and air temperature. Air in the zone occupied by patients and medical staff must not cause the sensation of draft. Furthermore, air velocity should be sufficient to eliminate interference caused by the presence of people and other sources of heat. It should also reduce the turbulence level in the air in the operating room. Efficient functioning of ventilation and air conditioning was tested during treatments and operations carried out on three wards of a Warsaw hospital. Tests were performed with the participation of medical staff from various surgical units. They were asked to perform minor manual tasks to simulate work on the op-erating table, and to complete a questionnaire on subjective thermal sensation. The applied methodology is widely used during testing of general and local ventilation in public buildings. Air temperature, relative humidity, air flow supply and exhaust air from the

  9. Air pollution and asthma in children. The relationship between air pollution and anti-ashma medication despensing to children from 6 until 12 years old in the North of the Netherlands.

    NARCIS (Netherlands)

    Weide van der, Lianne

    2005-01-01

    This explorative study aimed to investigate the relationship between anthropogenic air pollution like summer smog, and anti-asthma medication dispensing by pharmacies to children from 6 until 12 years old in a city and a town in the North of the Netherlan

  10. Medical and biochemical training in radioprotection at the Faculty of Pharmacy and Biochemistry, Buenos Aires University

    International Nuclear Information System (INIS)

    Bergoc, R.M.; Caro, R.A.

    1998-01-01

    Full text: The Faculty of Pharmacy and Biochemistry of the University of Buenos Aires offers four different coursers on Radioisotope Methodology in which Radiological Protection concepts are given to: 1) biochemistry undergraduates; 2) physicians, biochemists, biologists and chemists; 3) professionals who need to put their theoretical and practical knowledge up-to-date; 4) technicians working at nuclear medicine centers or at biomedicine laboratories. Each course has a different purpose: the first one, which has been given at different levels of the curricula since 1960, is mainly informative; the second one, given during five months from 1962, is formative. 1513 professionals have passed the examinations of this course and asked for the authorization to handle radioactive materials from Argentine Nuclear Regulatory Authority. Training is theoretical and practical. It includes: dosimetric magnitudes and units, internal and external dosimetry of 125 I, 131 I, 201 TI, 99m Tc, 60 Co and other isotopes with the intensity required by each professional according to his/her specialty; qualification of areas, working conditions, contamination barriers, shielding; justification, optimization and dose limits; radioactive wastes; legal aspects, national and international regulations. The third course, which has been given since 1992, has the aim to being the knowledge of radioprotection up-to-date. The fourth course, which started in 1997, includes mainly operational aspects: columns elution, injection of radioactive drugs to patients, decontamination of areas. Our results are quite satisfactory: 95% of the enrolled students passed the examinations of the respective levels; the requirement is the acquisition of criteria according to their professional/technical responsibility. (author) [es

  11. Understanding meteorological influences on PM2.5 concentrations across China: a temporal and spatial perspective

    Directory of Open Access Journals (Sweden)

    Z. Chen

    2018-04-01

    Full Text Available With frequent air pollution episodes in China, growing research emphasis has been put on quantifying meteorological influences on PM2.5 concentrations. However, these studies mainly focus on isolated cities, whilst meteorological influences on PM2.5 concentrations at the national scale have not yet been examined comprehensively. This research employs the CCM (convergent cross-mapping method to understand the influence of individual meteorological factors on local PM2.5 concentrations in 188 monitoring cities across China. Results indicate that meteorological influences on PM2.5 concentrations have notable seasonal and regional variations. For the heavily polluted North China region, when PM2.5 concentrations are high, meteorological influences on PM2.5 concentrations are strong. The dominant meteorological influence for PM2.5 concentrations varies across locations and demonstrates regional similarities. For the most polluted winter, the dominant meteorological driver for local PM2.5 concentrations is mainly the wind within the North China region, whilst precipitation is the dominant meteorological influence for most coastal regions. At the national scale, the influence of temperature, humidity and wind on PM2.5 concentrations is much larger than that of other meteorological factors. Amongst eight factors, temperature exerts the strongest and most stable influence on national PM2.5 concentrations in all seasons. Due to notable temporal and spatial differences in meteorological influences on local PM2.5 concentrations, this research suggests pertinent environmental projects for air quality improvement should be designed accordingly for specific regions.

  12. Spatial clustering and meteorological drivers of summer ozone in Europe

    Science.gov (United States)

    Carro-Calvo, Leopoldo; Ordóñez, Carlos; García-Herrera, Ricardo; Schnell, Jordan L.

    2017-10-01

    We have applied the k-means clustering technique on a maximum daily 8-h running average near-surface ozone (MDA8 O3) gridded dataset over Europe at 1° × 1° resolution for summer 1998-2012. This has resulted in a spatial division of nine regions where ozone presents coherent spatiotemporal patterns. The role of meteorology in the variability of ozone at different time scales has been investigated by using daily meteorological fields from the NCEP-NCAR meteorological reanalysis. In the five regions of central-southern Europe ozone extremes (exceedances of the summer 95th percentile) occur mostly under anticyclonic circulation or weak sea level pressure gradients which trigger elevated temperatures and the recirculation of air masses. In the four northern regions extremes are associated with high-latitude anticyclones that divert the typical westerly flow at those latitudes and cause the advection of aged air masses from the south. The impact of meteorology on the day-to-day variability of ozone has been assessed by means of two different types of multiple linear models. These include as predictors meteorological fields averaged within the regions (;region-based; approach) or synoptic indices indicating the degree of resemblance between the daily meteorological fields over a large domain (25°-70° N, 35° W - 35° E) and their corresponding composites for extreme ozone days (;index-based; approach). With the first approach, a reduced set of variables, always including daily maximum temperature within the region, explains 47-66% of the variability (adjusted R2) in central-southern Europe, while more complex models are needed to explain 27-49% of the variability in the northern regions. The index-based approach yields better results for the regions of northern Europe, with adjusted R2 = 40-57%. Finally, both methodologies have also been applied to reproduce the interannual variability of ozone, with the best models explaining 66-88% of the variance in central

  13. Site-specific meteorology identification for DOE facility accident analysis

    International Nuclear Information System (INIS)

    Rabin, S.B.

    1995-01-01

    Currently, chemical dispersion calculations performed for safety analysis of DOE facilities assume a Pasquill D-Stability Class with a 4.5 m/s windspeed. These meteorological conditions are assumed to conservatively address the source term generation mechanism as well as the dispersion mechanism thereby resulting in a net conservative downwind consequence. While choosing this Stability Class / Windspeed combination may result in an overall conservative consequence, the level of conservative can not be quantified. The intent of this paper is to document a methodology which incorporates site-specific meteorology to determine a quantifiable consequence of a chemical release. A five-year meteorological database, appropriate for the facility location, is utilized for these chemical consequence calculations, and is consistent with the approach used for radiological releases. The hourly averages of meteorological conditions have been binned into 21 groups for the chemical consequence calculations. These 21 cases each have a probability of occurrence based on the number of times each case has occurred over the five year sampling period. A code has been developed which automates the running of all the cases with a commercially available air modeling code. The 21 cases are sorted by concentration. A concentration may be selected by the user for a quantified level of conservatism. The methodology presented is intended to improve the technical accuracy and defensability of Chemical Source Term / Dispersion Safety Analysis work. The result improves the quality of safety analyses products without significantly increasing the cost

  14. The Impact of Ambient Air Pollution on Daily Hospital Visits for Various Respiratory Diseases and the Relevant Medical Expenditures in Shanghai, China

    Directory of Open Access Journals (Sweden)

    Hao Zhang

    2018-02-01

    Full Text Available The evidence concerning the acute effects of ambient air pollution on various respiratory diseases was limited in China, and the attributable medical expenditures were largely unknown. From 2013 to 2015, we collected data on the daily visits to the emergency- and outpatient-department for five main respiratory diseases and their medical expenditures in Shanghai, China. We used the overdispersed generalized additive model together with distributed lag models to fit the associations of criteria air pollutants with hospital visits, and used the linear models to fit the associations with medical expenditures. Generally, we observed significant increments in emergency visits (8.81–17.26% and corresponding expenditures (0.33–25.81% for pediatric respiratory diseases, upper respiratory infection (URI, and chronic obstructive pulmonary disease (COPD for an interquartile range increase of air pollutant concentrations over four lag days. As a comparison, there were significant but smaller increments in outpatient visits (1.36–4.52% and expenditures (1.38–3.18% for pediatric respiratory diseases and upper respiratory infection (URI. No meaningful changes were observed for asthma and lower respiratory infection. Our study suggested that short-term exposure to outdoor air pollution may induce the occurrences or exacerbation of pediatric respiratory diseases, URI, and COPD, leading to considerable medical expenditures upon the patients.

  15. The Impact of Ambient Air Pollution on Daily Hospital Visits for Various Respiratory Diseases and the Relevant Medical Expenditures in Shanghai, China.

    Science.gov (United States)

    Zhang, Hao; Niu, Yue; Yao, Yili; Chen, Renjie; Zhou, Xianghong; Kan, Haidong

    2018-02-28

    The evidence concerning the acute effects of ambient air pollution on various respiratory diseases was limited in China, and the attributable medical expenditures were largely unknown. From 2013 to 2015, we collected data on the daily visits to the emergency- and outpatient-department for five main respiratory diseases and their medical expenditures in Shanghai, China. We used the overdispersed generalized additive model together with distributed lag models to fit the associations of criteria air pollutants with hospital visits, and used the linear models to fit the associations with medical expenditures. Generally, we observed significant increments in emergency visits (8.81-17.26%) and corresponding expenditures (0.33-25.81%) for pediatric respiratory diseases, upper respiratory infection (URI), and chronic obstructive pulmonary disease (COPD) for an interquartile range increase of air pollutant concentrations over four lag days. As a comparison, there were significant but smaller increments in outpatient visits (1.36-4.52%) and expenditures (1.38-3.18%) for pediatric respiratory diseases and upper respiratory infection (URI). No meaningful changes were observed for asthma and lower respiratory infection. Our study suggested that short-term exposure to outdoor air pollution may induce the occurrences or exacerbation of pediatric respiratory diseases, URI, and COPD, leading to considerable medical expenditures upon the patients.

  16. Logistics of air medical transport: When and where does helicopter transport reduce prehospital time for trauma?

    Science.gov (United States)

    Chen, Xilin; Gestring, Mark L; Rosengart, Matthew R; Peitzman, Andrew B; Billiar, Timothy R; Sperry, Jason L; Brown, Joshua B

    2018-05-04

    Trauma is a time sensitive disease. Helicopter emergency medical services (HEMS) have shown benefit over ground EMS (GEMS), which may be related to reduced prehospital time. The distance at which this time benefit emerges depends on many factors that can vary across regions. Our objective was to determine the threshold distance at which HEMS has shorter prehospital time than GEMS under different conditions. Patients in the PA trauma registry 2000-2013 were included. Distance between zip centroid and trauma center was calculated using straight-line distance for HEMS and driving distance from GIS network analysis for GEMS. Contrast margins from linear regression identified the threshold distance at which HEMS had a significantly lower prehospital time than GEMS, indicated by non-overlapping 95% confidence intervals. The effect of peak traffic times and adverse weather on the threshold distance was evaluated. Geographic effects across EMS regions were also evaluated. A total of 144,741 patients were included with 19% transported by HEMS. Overall, HEMS became faster than GEMS at 7.7miles from the trauma center (p=0.043). HEMS became faster at 6.5miles during peak traffic (p=0.025) compared to 7.9miles during off-peak traffic (p=0.048). Adverse weather increased the distance at which HEMS was faster to 17.1miles (p=0.046) from 7.3miles in clear weather (p=0.036). Significant variation occurred across EMS regions, with threshold distances ranging from 5.4miles to 35.3miles. There was an inverse but non-significant relationship between urban population and threshold distance across EMS regions (ρ -0.351, p=0.28). This is the first study to demonstrate that traffic, weather, and geographic region significantly impact the threshold distance at which HEMS is faster than GEMS. HEMS was faster at shorter distances during peak traffic while adverse weather increased this distance. The threshold distance varied widely across geographic region. These factors must be considered

  17. A comparison of the effects of carbon dioxide and medical air for abdominal insufflation on respiratory parameters in xylazine-sedated sheep undergoing laparoscopic artificial insemination.

    Science.gov (United States)

    Haan, J D; Hay Kraus, B L; Sathe, S R

    2018-07-01

    To determine if abdominal insufflation with medical air will improve oxygenation and ventilation parameters when compared to insufflation with CO 2 in xylazine-sedated sheep undergoing laparoscopic artificial insemination (AI). Forty-seven sheep underwent oestrus synchronisation and were fasted for 24 hours prior to laparoscopic AI. Each animal was randomised to receive either CO 2 or medical air for abdominal insufflation. An auricular arterial catheter was placed and utilised for serial blood sampling. Respiratory rates (RR) and arterial blood samples were collected at baseline, after xylazine (0.1 mg/kg I/V) sedation, 2 minutes after Trendelenburg positioning, 5 minutes after abdominal insufflation, and 10 minutes after being returned to a standing position. Blood samples were collected in heparinised syringes, stored on ice, and analysed for arterial pH, partial pressure of arterial O 2 (PaO 2 ), and CO 2 (PaCO 2 ). The number of ewes conceiving to AI was also determined. Repeated measures ANOVA demonstrated temporal effects on RR, PaO 2 , PaCO 2 and arterial pH during the laparoscopic AI procedure (p0.01). No sheep experienced hypercapnia (PaCO 2 >50 mmHg) or acidaemia (pH<7.35). Hypoxaemia (PaO 2 <70 mmHg) was diagnosed during the procedure in 14/22 (64%) ewes in the CO 2 group compared with 8/23 (35%) ewes in the medical air group (p=0.053). Overall, 15/20 (75%) ewes in the CO 2 group conceived to AI compared with 16/22 (72.7%) in the medical air group (p=0.867). There were no statistical or clinical differences in RR, PaO 2 , PaCO 2 , pH, or conception to AI when comparing the effects of CO 2 and medical air as abdominal insufflation gases. None of the sheep experienced hypercapnia or acidaemic, yet 42% (19/45) of sheep developed clinical hypoxaemia, with a higher percentage of ewes in the CO 2 group developing hypoxaemia than in the medical air group. Based on the overall analysis, medical air could be utilised as a comparable alternative for

  18. Automated emergency meteorological response system

    International Nuclear Information System (INIS)

    Pepper, D.W.

    1980-01-01

    A sophisticated emergency response system was developed to aid in the evaluation of accidental releases of hazardous materials from the Savannah River Plant to the environment. A minicomputer system collects and archives data from both onsite meteorological towers and the National Weather Service. In the event of an accidental release, the computer rapidly calculates the trajectory and dispersion of pollutants in the atmosphere. Computer codes have been developed which provide a graphic display of predicted concentration profiles downwind from the source, as functions of time and distance

  19. Technical Note: A proposal of air ventilation system design criteria for a clinical room in a heavy-ion medical facility.

    Science.gov (United States)

    Kum, Oyeon

    2018-04-16

    An optimized air ventilation system design for a treatment room in Heavy-ion Medical Facility is an important issue in the aspects of nuclear safety because the activated air produced in a treatment room can directly affect the medical staff and the general public in the radiation-free area. Optimized design criteria of air ventilation system for a clinical room in 430 MeV/u carbon ion beam medical accelerator facility was performed by using a combination of MCNPX2.7.0 and CINDER'90 codes. Effective dose rate and its accumulated effective dose by inhalation and residual gamma were calculated for a normal treatment scenario (2 min irradiation for one fraction) as a function of decay time. Natural doses around the site were measured before construction and used as reference data. With no air ventilation system, the maximum effective dose rate was about 3 μSv/h (total dose of 90 mSv/y) and minimum 0.2 μSv/h (total dose of 6 mSv/y), which are over the legal limits for medical staff and for the general public. Although inhalation dose contribution was relatively small, it was considered seriously because of its long-lasting effects in the body. The integrated dose per year was 1.8 mSv/y in the radiation-free area with the 20-min rate of air ventilation system. An optimal air ventilation rate of 20 min is proposed for a clinical room, which also agrees with the best mechanical design value. © 2018 American Association of Physicists in Medicine.

  20. Synopsis of TC4 Missions and Meteorology

    Science.gov (United States)

    Starr, D.; Pfister, L.; Selkirk, H.; Nguyen, L.

    2007-12-01

    The TC4 (Tropical Composition, Clouds and Climate Coupling) Experiment conducted 26 aircraft sorties on 13 flight days from July 17 to August 8, 2007 (23 days). Quality science observations were also obtained during the transit flights to/from from San Jose, Costa Rica, where the mission was based. On 9 days, coordinated aircraft missions were flown with the NASA ER-2 and DC-8, and with the NASA WB-57 on 3 occasions (and transit flights). The ER-2 served as an A-Train simulator (MODIS, CloudSat, CALIPSO, AIRS/TES, partial AMSR-E) while the WB-57 provided in-situ measurements of upper tropospheric cloud particles, aerosols and trace gases. The DC-8 provided both in-situ and remote sensing measurements, where the latter were focused on Aura validation, and also including a down-looking scanning precipitation radar (TRMM PR simulator). This paper will provide a synopsis of the science observations that were obtained, as regards the clouds and cloud systems sampled, from a meteorological perspective. A diversity of clouds were sampled and the meteorology proved more interesting than expected, at least to this author. Upper tropospheric cirrus outflows were sampled from a number of convective cloud systems including ITCZ-type systems as well as systems close to and affected by land. The low level inflows to these systems were also sampled in some cases (DC-8) and missions were flown to sample stratocumulus clouds over the Pacific Ocean exploiting the unique instrumentation on the DC-8 to add to the knowledge of these clouds which are so important to the Earth radiation budget. Measurements were made in the tropical Tropopause Transition Layer (TTL) by the WB-57. Upper tropospheric clouds and TTL properties and processes were central TC4 objectives. Excellent data were also obtained on the fate of the Saharan Air Layer and its aerosols over the Caribbean and Central America, as well as samples of plumes from volcanoes in Ecuador and Columbia and biogenic emissions over

  1. Microbial contamination of central supply systems for medical air Contaminação microbiana dos sistemas centrais de abastecimento de ar medicinal

    Directory of Open Access Journals (Sweden)

    Carolina Machado Andrade

    2003-11-01

    Full Text Available There are many standards and recommendations for breathing air quality associated with respiratory protection equipment, but little has been done regarding the possible microbial contamination of medical air. The present study demonstrates quantitatively and qualitatively that pipelines might be incriminated as source of microbial contamination of compressed and synthetic air for medical use. Air samples were drawn into an especially pressure-resistant device and the bacterial and fungi contents were identified after growth on agar plates. The bacterial flora isolated from peripheral air outlets was virtually the same as that found in the central air-generating installations, consisting of a mixture of pathogens and normal skin bacteria. Several factors contributing to microbial contamination of medical air are mentioned and preventive measures are discussed.Existem vários padrões e recomendações para a qualidade do ar respirável relacionado aos equipamentos de proteção respiratória, mas pouco tem sido feito em relação a uma possível contaminação microbiana do ar medicinal. O presente trabalho demonstra quantitativa e qualitativamente que as linhas de ar estão relacionadas à contaminação microbiológica do ar comprimido e ar sintético para uso medicinal. Amostras de ar foram coletadas por um equipamento especialmente resistente a pressão, e o conteúdo bacteriano e fúngico foi identificado após crescimento em placa. A flora bacteriana isolada tanto dos sistema periféricos de ar foi virtualmente a mesma encontrada nas instalações centralizadas, sendo uma mistura de patógenos e bactérias normais da pele. Vários fatores contribuintes para a contaminação microbiana do ar medicinal e medidas preventivas são discutidas.

  2. A pilot study to determine medical laser generated air contaminant emission rates for a simulated surgical procedure.

    Science.gov (United States)

    Lippert, Julia F; Lacey, Steven E; Lopez, Ramon; Franke, John; Conroy, Lorraine; Breskey, John; Esmen, Nurtan; Liu, Li

    2014-01-01

    The U.S. Occupational Safety and Health Administration (OSHA) estimates that half a million health-care workers are exposed to laser surgical smoke each year. The purpose of this study was to establish a methodology to (1) estimate emission rates of laser-generated air contaminants (LGACs) using an emission chamber, and to (2) perform a screening study to differentiate the effects of three laser operational parameters. An emission chamber was designed, fabricated, and assessed for performance to estimate the emission rates of gases and particles associated with LGACs during a simulated surgical procedure. Two medical lasers (Holmium Yttrium Aluminum Garnet [Ho:YAG] and carbon dioxide [CO2]) were set to a range of plausible medical laser operational parameters in a simulated surgery to pyrolyze porcine skin generating plume in the emission chamber. Power, pulse repetition frequency (PRF), and beam diameter were evaluated to determine the effect of each operational parameter on emission rate using a fractional factorial design. The plume was sampled for particulate matter and seven gas phase combustion byproduct contaminants (benzene, ethylbenzene, toluene, formaldehyde, hydrogen cyanide, carbon dioxide, and carbon monoxide): the gas phase emission results are presented here. Most of the measured concentrations of gas phase contaminants were below their limit of detection (LOD), but detectable measurements enabled us to determine laser operation parameter influence on CO2 emissions. Confined to the experimental conditions of this screening study, results indicated that beam diameter was statistically significantly influential and power was marginally statistically significant to emission rates of CO2 when using the Ho:YAG laser but not with the carbon dioxide laser; PRF was not influential vis-a-vis emission rates of these gas phase contaminants.

  3. Abstraction the public from scientific - applied meteorological-climatologic data

    Science.gov (United States)

    Trajanoska, L.

    2010-09-01

    Mathematical and meteorological statistic processing of meteorological-climatologic data, which includes assessment of the exactness, level of confidence of the average and extreme values, frequencies (probabilities) of the occurrence of each meteorological phenomenon and element e.t.c. helps to describe the impacts climate may have on different social and economic activities (transportation, heat& power generation), as well as on human health. Having in mind the new technology and the commercial world, during the work with meteorological-climatologic data we have meet many different challenges. Priority in all of this is the quality of the meteorological-climatologic set of data. First, we need compatible modern, sophisticated measurement and informatics solution for data. Results of this measurement through applied processing and analyze is the second branch which is very important also. Should we all (country) need that? Today we have many unpleasant events connected with meteorology, many questions which are not answered and all of this has too long lasting. We must give the answers and solve the real and basic issue. In this paper the data issue will be presented. We have too much of data but so little of real and quality applied of them, Why? There is a data for: -public applied -for jurisdiction needs -for getting fast decision-solutions (meteorological-dangerous phenomenon's) -for getting decisions for long-lasting plans -for explore in different sphere of human living So, it is very important for what kind of data we are talking. Does the data we are talking are with public or scientific-applied character? So,we have two groups. The first group which work with the data direct from the measurement place and instrument. They are store a quality data base and are on extra help to the journalists, medical workers, human civil engineers, electromechanical engineers, agro meteorological and forestry engineer e.g. The second group do work with all scientific

  4. Examining Reliability and Validity of an Online Score (ALiEM AIR) for Rating Free Open Access Medical Education Resources.

    Science.gov (United States)

    Chan, Teresa Man-Yee; Grock, Andrew; Paddock, Michael; Kulasegaram, Kulamakan; Yarris, Lalena M; Lin, Michelle

    2016-12-01

    Since 2014, Academic Life in Emergency Medicine (ALiEM) has used the Approved Instructional Resources (AIR) score to critically appraise online content. The primary goals of this study are to determine the interrater reliability (IRR) of the ALiEM AIR rating score and determine its correlation with expert educator gestalt. We also determine the minimum number of educator-raters needed to achieve acceptable reliability. Eight educators each rated 83 online educational posts with the ALiEM AIR scale. Items include accuracy, usage of evidence-based medicine, referencing, utility, and the Best Evidence in Emergency Medicine rating score. A generalizability study was conducted to determine IRR and rating variance contributions of facets such as rater, blogs, posts, and topic. A randomized selection of 40 blog posts previously rated through ALiEM AIR was then rated again by a blinded group of expert medical educators according to their gestalt. Their gestalt impression was subsequently correlated with the ALiEM AIR score. The IRR for the ALiEM AIR rating scale was 0.81 during the 6-month pilot period. Decision studies showed that at least 9 raters were required to achieve this reliability. Spearman correlations between mean AIR score and the mean expert gestalt ratings were 0.40 for recommendation for learners and 0.35 for their colleagues. The ALiEM AIR scale is a moderately to highly reliable, 5-question tool when used by medical educators for rating online resources. The score displays a fair correlation with expert educator gestalt in regard to the quality of the resources. The score displays a fair correlation with educator gestalt. Copyright © 2016 American College of Emergency Physicians. Published by Elsevier Inc. All rights reserved.

  5. Meteorological observations in support of a hill cap cloud experiment

    Energy Technology Data Exchange (ETDEWEB)

    Nielsen, Morten

    1998-06-01

    Humid air flows form a hill cap cloud over the Agana mountain ridge in the north-east of Tenerife. The HILLCLOUD project utilised this cloud formation to investigate the chemical and physical properties of cloud aerosols by land based observations. The project was part of the second Aerosol characterisation Experiment (ACE-2) of the International Global Atmospheric chemistry project (IGAC). The present report describes meteorological observations in support of the hill cap cloud experiment. Time-series of wind speed, wind direction, temperature and humidity were collected at ground-based meteorological stations during a period starting one year in advance of the main campaign. A series of radiosonde detecting the upstream stability and wind profile were launched during the main campaign. (au) 5 tabs., 32 ills., 6 refs.

  6. [Relationships between horqin meadow NDVI and meteorological factors].

    Science.gov (United States)

    Qu, Cui-ping; Guan, De-xin; Wang, An-zhi; Jin, Chang-jie; Wu, Jia-bing; Wang, Ji-jun; Ni, Pan; Yuan, Feng-hui

    2009-01-01

    Based on the 2000-2006 MODIS 8-day composite NDVI and day-by-day meteorological data, the seasonal and inter-annual variations of Horqin meadow NDVI as well as the relationships between the NDVI and relevant meteorological factors were studied. The results showed that as for the seasonal variation, Horqin meadow NDVI was more related to water vapor pressure than to precipitation. Cumulated temperature and cumulated precipitation together affected the inter-annual turning-green period significantly, and the precipitation in growth season (June and July), compared with that in whole year, had more obvious effects on the annual maximal NDVI. The analysis of time lag effect indicated that water vapor pressure had a persistent (about 12 days) prominent effect on the NDVI. The time lag effect of mean air temperature was 11-15 days, and the cumulated dual effect of the temperature and precipitation was 36-52 days.

  7. Analysis of the effect of meteorological factors on dewfall

    International Nuclear Information System (INIS)

    Xiao, Huijie; Meissner, Ralph; Seeger, Juliane; Rupp, Holger; Borg, Heinz; Zhang, Yuqing

    2013-01-01

    To get an insight into when dewfall will occur and how much to expect we carried out extensive calculations with the energy balance equation for a crop surface to 1) identify the meteorological factors which determine dewfall, 2) establish the relationship between dewfall and each of them, and 3) analyse how these relationships are influenced by changes in these factors. The meteorological factors which determine dewfall were found to be air temperature (T a ), cloud cover (N), wind speed (u), soil heat flux (G), and relative humidity (h r ). Net radiation is also a relevant factor. We did not consider it explicitly, but indirectly through the effect of temperature on the night-time radiation balance. The temperature of the surface (T s ) where dew forms on is also important. However, it is not a meteorological factor, but determined by the aforementioned parameters. All other conditions being equal our study revealed that dewfall increases linearly with decreasing N or G, and with increasing h r . The effect of T a and u on dewfall is non-linear: dewfall initially increases with increasing T a or u, and then decreases. All five meteorological factors can lead to variations in dewfall between 0 and 25 W m −2 over the range of their values we studied. The magnitude of the variation due to one factor depends on the value of the others. Dewfall is highest at N = 0, G = 0, and h r = 1. T a at which dewfall is highest depends on u and vice versa. The change in dewfall for a unit change in N, G or h r is not affected by the value of N, G or h r , but increases as T a or u increase. The change in dewfall for a unit change in T a or u depends on the value of the other four meteorological factors. - Highlights: • Process of dewfall is examined for a wide range of meteorological conditions. • Effect of meteorological factors on dewfall is individually elucidated. • Interaction between factors and their combined effect on dewfall is assessed. • Extensive

  8. Air Pollution and Dispensed Medications for Asthma, and Possible Effect Modifiers Related to Mental Health and Socio-Economy: A Longitudinal Cohort Study of Swedish Children and Adolescents.

    Science.gov (United States)

    Oudin, Anna; Bråbäck, Lennart; Oudin Åström, Daniel; Forsberg, Bertil

    2017-11-16

    It has been suggested that children that are exposed to a stressful environment at home have an increased susceptibility for air pollution-related asthma. The aim here was to investigate the association between air pollution exposure and asthma, and effect modification by mental health and by socio-economic status (as markers of a stressful environment). All individuals under 18 years of age in four Swedish counties during 2007 to 2010 (1.2 million people) were included. The outcome was defined as dispensing at least two asthma medications during follow up. We linked data on NO₂ from an empirical land use regression to data from national registers on outcome and potential confounders. Data was analyzed with logistic regression. There was an odds ratio (OR) of 1.02 (95% Confidence Interval (CI: 1.01-1.03) for asthma associated with a 10 µg·m -3 increase in NO₂. The association only seemed to be present in areas where NO₂ was higher than 15 µg·m -3 with an OR of 1.09 (95% CI: 1.07-1.12), and the association seemed stronger in children with parents with a high education, OR = 1.05 (95% CI: 1.02-1.09) and OR = 1.04 (95% CI: 1.01-1.07) in children to mothers and father with a high education, respectively. The association did not seem to depend on medication history of psychiatric disorders. There was weak evidence for the association between air pollution and asthma to be stronger in neighborhoods with higher education levels. In conclusion, air pollution was associated with dispensed asthma medications, especially in areas with comparatively higher levels of air pollution, and in children to parents with high education. We did not observe support for our hypothesis that stressors linked to socio-economy or mental health problems would increase susceptibility to the effects of air pollution on the development of asthma.

  9. The influence of meteorological parameters on the occurrence of hypertensive urgency and emergency

    Energy Technology Data Exchange (ETDEWEB)

    Koppe, Christina [Centre for Human-Biometeorological Research, Freiburg (Germany). Deutscher Wetterdienst; Ghafoor, Jasmin; Arndt, Daniel; Schilling, Hanno; Boergel, Jan [Katharinen-Hospital, Unna (Germany). Dept. of Cardiology; Springer, Stephanie; Muegge, Andreas [Ruhr Univ., Bochum (Germany). Medizinische Klinik 2

    2011-10-15

    Hypertensive urgency/emergency is a common and potentially life threatening condition that is characterised by a rapid and strong increase in blood pressure. It is estimated that hypertensive urgencies/emergencies account for 25 % of all patient visits in the medical section of emergency departments. Between 24 September 2007 and 06 September 2008, we investigated 195 persons with hypertensive events who were admitted to the emergency unit of the University Clinic St. Josef Hospital in Bochum. After stabilization of blood pressure, the patients were sent to the ward for further evaluation. Aldosterone, renin, and cortisol levels were monitored during the first 24 hours. Blood was taken at 8 am after 2 hours in supine position and after mobilization at 10 am. Meteorological data at the time of admission were analyzed for potential associations with the temporary accumulation of hypertensive events. The meteorological parameters were air temperature TA, relative humidity RH, air pressure P, and sunshine duration SD, observed at the meteorological station in Duesseldorf (airport). In addition, perceived temperature PT was calculated and included in the analysis. First results indicate that the hypertensive events occurred on days when TA departed on average -0.28 K (95 % confidence interval: -0.59 to -0.03 K) and PT deviated on average -0.43 K (-0.82 to -0.04) from the respective values of the preceding day. On days without hypertensive events TA was on average 0.21 (-0.08 to 0.49) and PT was on average 0.32 K (-0.04 to 0.68) higher than on the day before. Days with and days without cases of hypertensive events were, with respect to the daily TA and PT changes, significantly different (TA: p = 0.012; PT: p = 0.003). On days with lower PT than on the previous day the probability of a hospital admission due to a hypertensive event was more than twice as high as on days with higher PT than on the day before. These first results indicate a potential relationship between

  10. A Meteorological Distribution System for High Resolution Terrestrial Modeling (MicroMet)

    Science.gov (United States)

    Liston, G. E.; Elder, K.

    2004-12-01

    Spatially distributed terrestrial models generally require atmospheric forcing data on horizontal grids that are of higher resolution than available meteorological data. Furthermore, the meteorological data collected may not necessarily represent the area of interest's meteorological variability. To address these deficiencies, computationally efficient and physically realistic methods must be developed to take available meteorological data sets (e.g., meteorological tower observations) and generate high-resolution atmospheric-forcing distributions. This poster describes MicroMet, a quasi-physically-based, but simple meteorological distribution model designed to produce high-resolution (e.g., 5-m to 1-km horizontal grid increments) meteorological data distributions required to run spatially distributed terrestrial models over a wide variety of landscapes. The model produces distributions of the seven fundamental atmospheric forcing variables required to run most terrestrial models: air temperature, relative humidity, wind speed, wind direction, incoming solar radiation, incoming longwave radiation, and precipitation. MicroMet includes a preprocessor that analyzes meteorological station data and identifies and repairs potential data deficiencies. The model uses known relationships between meteorological variables and the surrounding area (primarily topography) to distribute those variables over any given landscape. MicroMet performs two kinds of adjustments to available meteorological data: 1) when there are data at more than one location, at a given time, the data are spatially interpolated over the domain using a Barnes objective analysis scheme, and 2) physical sub-models are applied to each MicroMet variable to improve its realism at a given point in space and time with respect to the terrain. The three, 25-km by 25-km, Cold Land Processes Experiment (CLPX) mesoscale study areas (MSAs: Fraser, North Park, and Rabbit Ears) will be used as example Micro

  11. Some directions in laser meteorology

    International Nuclear Information System (INIS)

    Derr, V.E.

    1977-01-01

    Applications of lidar systems in studies of pollution meteorology are discussed. It is pointed out that lidar can contribute to the determination of characteristics of particulate pollutants and also the study of the dynamics of dispersion. Agricultural and energy related problems require both short and longer term forecasting. It is as yet not completely clear whether lidar will be significant in longer term forecasts, of benefit to agriculture and conservation, or whether its usefulness will be primarily in the study of basic atmospheric processes involving the effect of clouds and aerosols on radiation balance. However, recent studies indicate that lidar will be important, in the future, in global wind sensing from satellites. Lidar and radar systems for cloud observations are compared

  12. Evaluation of the Association between Air Pollutants and Number of Cases with Severe Acute Respiratory Syndrome Recorded at Emergency Medical Centers in Tehran, Iran in 2013

    Directory of Open Access Journals (Sweden)

    sadegh khazaei

    2016-09-01

    Full Text Available Introduction and purpose: Air pollution is an important risk factor for the environment and public health, associated with increased severity of respiratory diseases. This study aimed to evaluate the association between various air pollutants and number of cases with severe acute respiratory syndrome referred to emergency medical centers in Tehran, Iran in 2013. Methods: In this ecological study, the relationship between air pollution and acute respiratory symptoms in patients referred to the emergency centers of Tehran in 2013 was assessed. In total, 36787 patients with acute respiratory symptoms has been registered in these centers. Data on the number of cases with acute respiratory symptoms and air pollutants of emergency centers and air quality monitoring stations were collected. Moreover, Poisson regression was used to assess the relationship between air pollutant concentrations (PM2.5, SO2, NO2, O3, CO and the number of cases with severe acute respiratory syndrome. Results: The results of the current study demonstrated that CO (weekly average IRR=1.1 and SO2 (three days average IRR=1.03 and weekly average IRR= 1.04 increased the risk of respiratory diseases 10%, 3%, and 4%, respectively. Consequently, longer duration of pollutants would increase the risk of respiratory syndromes. Conclusion: According to the results of this study, increased air pollutant concentrations could be associated with escalated number of patients with acute respiratory symptoms referred to the emergency medical centers in Tehran.

  13. Meteorological controls on atmospheric particulate pollution during hazard reduction burns

    Science.gov (United States)

    Di Virgilio, Giovanni; Hart, Melissa Anne; Jiang, Ningbo

    2018-05-01

    Internationally, severe wildfires are an escalating problem likely to worsen given projected changes to climate. Hazard reduction burns (HRBs) are used to suppress wildfire occurrences, but they generate considerable emissions of atmospheric fine particulate matter, which depend upon prevailing atmospheric conditions, and can degrade air quality. Our objectives are to improve understanding of the relationships between meteorological conditions and air quality during HRBs in Sydney, Australia. We identify the primary meteorological covariates linked to high PM2.5 pollution (particulates pollution, the PBLH between 00:00 and 07:00 LT (local time) was 100-200 m higher than days with high pollution. The PBLH was similar during 10:00-17:00 LT for both low and high pollution days, but higher after 18:00 LT for HRB days with low pollution. Cloud cover, temperature and wind speed reflected the above pattern, e.g. mean temperatures and wind speeds were 2 °C cooler and 0.5 m s-1 lower during mornings and evenings of HRB days when air quality was poor. These cooler, more stable morning and evening conditions coincide with nocturnal westerly cold air drainage flows in Sydney, which are associated with reduced mixing height and vertical dispersion, leading to the build-up of PM2.5. These findings indicate that air pollution impacts may be reduced by altering the timing of HRBs by conducting them later in the morning (by a matter of hours). Our findings support location-specific forecasts of the air quality impacts of HRBs in Sydney and similar regions elsewhere.

  14. Transport of radionuclides in the atmosphere during complex meteorological conditions

    International Nuclear Information System (INIS)

    Antic, D.; Telenta, B.

    1991-01-01

    Radionuclides from various sources (nuclear and fossil fuel power plants, nuclear facilities, medical facilities, etc.) are being released to the atmosphere. The meteorological conditions determine the atmospheric turbulence, dispersion, and removal processes of the radionuclides. A two-dimensional version of the cloud model based on the Klemp-Wilhelmson dynamic and Lin et al.'s microphysics and thermodynamics has been adapted and used to simulate the transport of radionuclides emitted from a power plant or other source to the atmosphere. Calculations of the trajectories and radii for a few puffs are included in this paper. These numerical investigations show that the presented model can be used for the transport simulation of radionuclides and for the assessment of the radiological impact of power plants and other sources in safety assessments and comparative studies. Because it can simulate puff trajectories, this model is especially valuable in the presence of complex meteorological conditions

  15. Optimizing Time Intervals of Meteorological Data Used with Atmospheric Dose Modeling at SRS

    International Nuclear Information System (INIS)

    Simpkins, A.A.

    1999-01-01

    Measured tritium oxide concentrations in air have been compared with calculated values using routine release Gaussian plume models for different time intervals of meteorological data. These comparisons determined an optimum time interval of meteorological data used with atmospheric dose models at the Savannah River Site (SRS). Meteorological data of varying time intervals (1-yr to 10-yr) were used for the comparison. Insignificant differences are seen in using a one-year database as opposed to a five-year database. Use of a ten-year database results in slightly more conservative results. For meteorological databases of length one to five years the mean ratio of predicted to measured tritium oxide concentrations is approximately 1.25 whereas for the ten-year meteorological database the ration is closer to 1.35. Currently at the Savannah River Site a meteorological database of five years duration is used for all dose models. This study suggests no substantially improved accuracy using meteorological files of shorter or longer time intervals

  16. Extreme meteorological events in nuclear power plant siting, excluding tropical cyclones

    International Nuclear Information System (INIS)

    1981-01-01

    This Safety Guide deals with the extremes of meteorological variables and the extreme meteorological phenomena in accordance with the general criteria of the Code. The Guide outlines a procedure based on the following steps: (1) The meteorological phenomena and variables are described and classified, according to their effects on safety. (2) Data sources are identified, and data are collected. (3) Meteorological variables such as air temperature are analysed to determine their design bases; and the design basis event in case of phenomena such as the design basis tornado is identified. (4) As appropriate, the design basis value for the variable, or the design basis for the phenomena (such as pressure drop and maximum wind speed of the design basis tornado), is defined. In the following sections, the general procedure for evaluating the design bases of extreme meteorological variables and phenomena is outlined. The procedure is then presented in detail for each variable or phenomenon considered. The variables characterizing the meteorological environment dealt with in this Guide are wind speed, atmospheric precipitation, and temperature. The extreme meteorological phenomena discussed here are the tornado and, briefly, the tropical cyclone, which is discussed more extensively in the Safety Guide on Design Basis Tropical Cyclone for Nuclear Power Plants (IAEA Safety Series No. 50-SG-S11B)

  17. Advanced software tool for the creation of a typical meteorological year

    International Nuclear Information System (INIS)

    Skeiker, Kamal; Ghani, Bashar Abdul

    2008-01-01

    The generation of a typical meteorological year is of great importance for calculations concerning many applications in the field of thermal engineering. In this context, method that has been proposed by Hall et al. is selected for generating typical data, and an improved criterion for final selection of typical meteorological month (TMM) was demonstrated. The final selection of the most representative year was done by examining a composite score S. The composite score was calculated as the weighed sum of the scores of the four meteorological parameters used. These parameters are air dry bulb temperature, relative humidity, wind velocity and global solar radiation intensity. Moreover, a new modern software tool using Delphi 6.0 has been developed, utilizing the Filkenstein-Schafer statistical method for the creation of a typical meteorological year for any site of concern. Whereas, an improved criterion for final selection of typical meteorological month was employed. Such tool allows the user to perform this task without an intimate knowledge of all of the computational details. The final alphanumerical and graphical results are presented on screen, and can be saved to a file or printed as a hard copy. Using this software tool, a typical meteorological year was generated for Damascus, capital of Syria, as a test run example. The data processed used were obtained from the Department of Meteorology and cover a period of 10 years (1991-2000)

  18. The utilization of mesh meteorological data maps for agricultural activity in hilly and mountainous area

    International Nuclear Information System (INIS)

    Ueyama, H.

    2008-01-01

    Hilly and mountainous areas occupy approximately 70% of Japan, and the area of farmland in these regions is decreasing; these areas are defined as those from the outer plains to the mountains. The development of strategies for the revitalization of local agriculture in hilly and mountainous areas is therefore a significant problem in Japan. Systematic agriculture is efficient in hilly and mountainous areas, and distribution maps are effective planning tools for evaluating the meteorological conditions for individual farms in those areas where farms are small and interspersed. Public agricultural research centers in each prefecture of Japan have developed mesh meteorological data maps with some kilometers grid cell resolutions for local agriculture, and have been made many studies using mesh meteorological data maps. However, critical variations exist between estimated mesh data and actual meteorological condition within the area of each grid cell. To address this problem, methods of estimating air temperature and solar radiation on a 50 m mesh (latitude 1.5 sec x longitude 2.25 sec) were developed. While many studies with mesh meteorological data maps have been made, numbers of concrete examples of utility for agricultural activity in hilly and mountainous areas have been few. This paper presents therefore some studies for utilization facilitated of mesh meteorological data maps in hilly and mountainous areas. And furthermore, it is proposed some guides to utilize mesh meteorological data maps for the purpose of revitalizing an agricultural activity in hilly and mountainous area with concrete examples

  19. Lloyd Berkner: Catalyst for Meteorology's Fabulous Fifties

    Science.gov (United States)

    Lewis, J. M.

    2002-05-01

    In the long sweep of meteorological history - from Aristotle's Meteorologica to the threshold of the third millennium - the 1950s will surely be recognized as a defining decade. The contributions of many individuals were responsible for the combination of vision and institution building that marked this decade and set the stage for explosive development during the subsequent forty years. In the minds of many individuals who were active during those early years, however, one name stands out as a prime mover par excellence: Lloyd Viel Berkner. On May 1, 1957, Berkner addressed the National Press Club. The address was entitled, "Horizons of Meteorology". It reveals Berkner's insights into meteorology from his position as Chairman of the Committee on Meteorology of the National Academy of Sciences, soon to release the path-breaking report, Research and Education in Meteorology (1958). The address also reflects the viewpoint of an individual deeply involved in the International Geophysical Year (IGY). It is an important footnote to meteorological history. We welcome this opportunity to profile Berkner and to discuss "Horizons of Meteorology" in light of meteorology's state-of-affairs in the 1950s and the possible relevance to Berkner's ideas to contemporary issues.

  20. DESCARTES AND THE METEOROLOGY OF THE WORLD

    Directory of Open Access Journals (Sweden)

    Patrick BRISSEY

    2012-11-01

    Full Text Available Descartes claimed that he thought he could deduce the assumptions of his Meteorology by the contents of the Discourse. He actually began the Meteorology with assumptions. The content of the Discourse, moreover, does not indicate how he deduced the assumptions of the Meteorology. We seem to be left in a precarious position. We can examine the text as it was published, independent of Descartes’ claims, which suggests that he incorporated a presumptive or hypothetical method. On the other hand, we can take Descartes’ claims as our guide and search for the epistemic foundations of the Meteorology independent of the Discourse. In this paper, I will pursue the latter route. My aim is to explain why, and how, Descartes thought that he had deduced the assumptions of the Meteorology. My interest, in this case, is solely Descartes’ physical foundation for the Meteorology, in the physics and physiology that resulted in Descartes’ explanation. With this aim, I provide an interpretation of Descartes’ World where many of its conclusions serve as evidence for the assumptions of the Meteorology. I provisionally conclude that Descartes thought that his World was the epistemic foundation for his Meteorology.

  1. Meteorological Factors Affecting Evaporation Duct Height Climatologies.

    Science.gov (United States)

    1980-07-01

    Italy Maritime Meteorology Division Japan Meteorological Agency Ote-Machi 1-3-4 Chiyoda-Ku Tokyo, Japan Instituto De Geofisica U.N.A.M. Biblioteca ...Torre De Ciencias, 3ER Piso Ciudad Universitaria Mexico 20, D.F. Koninklijk Nederlands Meteorologisch Instituu. Postbus 201 3730 AE Debilt Netherlands

  2. Assessing meteorological key factors influencing crop invasion by pollen beetle (

    Directory of Open Access Journals (Sweden)

    Jürgen Junk

    2016-09-01

    Full Text Available The pollen beetle, Meligethes aeneus F. (Coleoptera: Nitidulidae, is a severe pest of winter oilseed rape. A phenological model to forecast the first spring invasion of crops in Luxembourg by M. aeneus was developed in order to provide a tool for improving pest management and for assessing the potential effects of climate change on this pest. The model was derived using long-term, multi-site observational datasets of pollen beetle migration and meteorological data, as the timing of crop invasion is determined mainly by meteorological variables. Daily values of mean air and soil temperature, accumulated sunshine duration and precipitation were used to create a threshold-based model to forecast crop invasion. Minimising of the root mean squared error (RMSE of predicted versus observed migration dates was used as the quality criterion for selecting the optimum combination of threshold values for meteorological variables. We identified mean air temperature 8.0 °C, mean soil temperature 4.6 °C, and sunshine duration of 3.4 h as the best threshold values, with a cut-off of 1 mm precipitation and with no need for persistence of those conditions for more than one day (RMSE=9.3days$RMSE=9.3\\,\\text{days}$. Only in six out of 30 cases, differences between observed and predicted immigration dates were >5$>5$ days. In the future, crop invasion by pollen beetles will probably be strongly affected by changes in air temperature and precipitation related to climate change. We used a multi-model ensemble of 15 regional climate models driven by the A1B emission scenario to assess meteorological changes in two 30‑year future periods, near future (2021–2050 and far future (2069–2098 in comparison with the reference period (1971–2000. Air temperature and precipitation were predicted to increase in the first three months of each year, both in the near future and the far future. The pollen beetle migration model indicated that this change would

  3. Estimation of daily net radiation from synoptic meteorological data

    International Nuclear Information System (INIS)

    Lee, B.W.; Myung, E.J.; Kim, B.C.

    1991-01-01

    Five models for net radiation estimation reported by Linacre (1968), Berljand(1956), Nakayama et al. (1983), Chang (1970) and Doorenbos et al. (1977) were tested for the adaptability to Korea. A new model with effective longwave radiation term parameterized by air temperature, solar radiation and vapor pressure was formulated and tested for its accuracy. Above five models with original parameter values showed large absolute mean deviations ranging from 0.86 to 1.64 MJ/m 2 /day. The parameters of the above five models were reestimated by using net radiation and meteorological elements measured in Suwon, Korea

  4. Synoptic and meteorological drivers of extreme ozone concentrations over Europe

    Science.gov (United States)

    Otero, Noelia Felipe; Sillmann, Jana; Schnell, Jordan L.; Rust, Henning W.; Butler, Tim

    2016-04-01

    The present work assesses the relationship between local and synoptic meteorological conditions and surface ozone concentration over Europe in spring and summer months, during the period 1998-2012 using a new interpolated data set of observed surface ozone concentrations over the European domain. Along with local meteorological conditions, the influence of large-scale atmospheric circulation on surface ozone is addressed through a set of airflow indices computed with a novel implementation of a grid-by-grid weather type classification across Europe. Drivers of surface ozone over the full distribution of maximum daily 8-hour average values are investigated, along with drivers of the extreme high percentiles and exceedances or air quality guideline thresholds. Three different regression techniques are applied: multiple linear regression to assess the drivers of maximum daily ozone, logistic regression to assess the probability of threshold exceedances and quantile regression to estimate the meteorological influence on extreme values, as represented by the 95th percentile. The relative importance of the input parameters (predictors) is assessed by a backward stepwise regression procedure that allows the identification of the most important predictors in each model. Spatial patterns of model performance exhibit distinct variations between regions. The inclusion of the ozone persistence is particularly relevant over Southern Europe. In general, the best model performance is found over Central Europe, where the maximum temperature plays an important role as a driver of maximum daily ozone as well as its extreme values, especially during warmer months.

  5. Meteorological Controls on Local and Regional Volcanic Ash Dispersal.

    Science.gov (United States)

    Poulidis, Alexandros P; Phillips, Jeremy C; Renfrew, Ian A; Barclay, Jenni; Hogg, Andrew; Jenkins, Susanna F; Robertson, Richard; Pyle, David M

    2018-05-02

    Volcanic ash has the capacity to impact human health, livestock, crops and infrastructure, including international air traffic. For recent major eruptions, information on the volcanic ash plume has been combined with relatively coarse-resolution meteorological model output to provide simulations of regional ash dispersal, with reasonable success on the scale of hundreds of kilometres. However, to predict and mitigate these impacts locally, significant improvements in modelling capability are required. Here, we present results from a dynamic meteorological-ash-dispersion model configured with sufficient resolution to represent local topographic and convectively-forced flows. We focus on an archetypal volcanic setting, Soufrière, St Vincent, and use the exceptional historical records of the 1902 and 1979 eruptions to challenge our simulations. We find that the evolution and characteristics of ash deposition on St Vincent and nearby islands can be accurately simulated when the wind shear associated with the trade wind inversion and topographically-forced flows are represented. The wind shear plays a primary role and topographic flows a secondary role on ash distribution on local to regional scales. We propose a new explanation for the downwind ash deposition maxima, commonly observed in volcanic eruptions, as resulting from the detailed forcing of mesoscale meteorology on the ash plume.

  6. METEOROLOGICAL SATELLITE IMAGES IN GEOGRAPHY CLASSES: a didactic possibility

    Directory of Open Access Journals (Sweden)

    Diego Correia Maia

    2016-01-01

    Full Text Available ABSTRACT: The satellite images are still largely unexplored as didactic resource in geography classes, particularly about meteorology. This article aims to contribute to the development of new methodologies of interpretation and understanding, beyond the construction of pedagogical practices involving meteorological satellite images, concepts and issues related to climate issues. The aim of this paper is to present possibilities for the use of meteorological satellite images in the Teaching of Geography, aiming the promoting and the understanding of contents of air masses and fronts and climatic factors. RESUMO: As imagens de satélite ainda são pouco exploradas como recurso didático nas aulas de Geografia, principalmente aquelas relativas à meteorologia. Este artigo visa contribuir com o desenvolvimento de novas metodologias de interpretação e compreensão, além da construção de práticas pedagógicas envolvendo imagens de satélite meteorológico, conceitos e temas ligados às questões climáticas. Seu objetivo é apresentar possibilidades de utilização das imagens de satélite meteorológico no Ensino de Geografia, visando à promoção e ao entendimento dos conteúdos de massas de ar e frentes e de elementos climáticos. Palavras chave

  7. Meteorological Data Visualization in Multi-User Virtual Reality

    Science.gov (United States)

    Appleton, R.; van Maanen, P. P.; Fisher, W. I.; Krijnen, R.

    2017-12-01

    Due to their complexity and size, visualization of meteorological data is important. It enables the precise examining and reviewing of meteorological details and is used as a communication tool for reporting, education and to demonstrate the importance of the data to policy makers. Specifically for the UCAR community it is important to explore all of such possibilities.Virtual Reality (VR) technology enhances the visualization of volumetric and dynamical data in a more natural way as compared to a standard desktop, keyboard mouse setup. The use of VR for data visualization is not new but recent developments has made expensive hardware and complex setups unnecessary. The availability of consumer of the shelf VR hardware enabled us to create a very intuitive and low cost way to visualize meteorological data. A VR viewer has been implemented using multiple HTC Vive head sets and allows visualization and analysis of meteorological data in NetCDF format (e.g. of NCEP North America Model (NAM), see figure). Sources of atmospheric/meteorological data include radar and satellite as well as traditional weather stations. The data includes typical meteorological information such as temperature, humidity, air pressure, as well as those data described by the climate forecast (CF) model conventions (http://cfconventions.org). Other data such as lightning-strike data and ultra-high-resolution satellite data are also becoming available. The users can navigate freely around the data which is presented in a virtual room at a scale of up to 3.5 X 3.5 meters. The multiple users can manipulate the model simultaneously. Possible mutations include scaling/translating, filtering by value and using a slicing tool to cut-off specific sections of the data to get a closer look. The slicing can be done in any direction using the concept of a `virtual knife' in real-time. The users can also scoop out parts of the data and walk though successive states of the model. Future plans are (a.o.) to

  8. Meteorological events in site evaluation for nuclear power plants. Safety guide

    International Nuclear Information System (INIS)

    2005-01-01

    This Safety Guide provides recommendations and guidance on conducting hazard assessments of extreme and rare meteorological phenomena. It is of interest to safety assessors and regulators involved in the licensing process as well as to designers of nuclear power plants. This Safety Guide was prepared under the IAEA programme for safety standards for nuclear power plants. It supplements the IAEA Safety Requirements publication on Site Evaluation for Nuclear Facilities which is to supersede the Code on the Safety of Nuclear Power Plants: Siting, Safety Series No. 50-C-S (Rev. 1), IAEA, Vienna (1988). The present Safety Guide supersedes two earlier Safety Guides: Safety Series No. 50-SG-S11A (1981) on Extreme Meteorological Events in Nuclear Power Plant Siting, Excluding Tropical Cyclones and Safety Series No. 50-SG-S11B (1984) on Design Basis Tropical Cyclone for Nuclear Power Plants. The purpose of this Safety Guide is to provide recommendations and guidance on conducting hazard assessments of extreme and rare meteorological phenomena. This Safety Guide provides interpretation of the Safety Requirements publication on Site Evaluation for Nuclear Facilities and guidance on how to fulfil these requirements. It is aimed at safety assessors or regulators involved in the licensing process as well as designers of nuclear power plants, and provides them with guidance on the methods and procedures for analyses that support the assessment of the hazards associated with extreme and rare meteorological events. This Safety Guide discusses the extreme values of meteorological variables and rare meteorological phenomena, as well as their rates of occurrence, according to the following definitions: (a) Extreme values of meteorological variables such as air temperature and wind speed characterize the meteorological or climatological environment. And (b) Rare meteorological phenomena

  9. Use of preventive measures for air travel-related venous thrombosis in professionals who attend medical conferences

    NARCIS (Netherlands)

    Kuipers, S.; Cannegieter, S. C.; Middeldorp, S.; Rosendaal, F. R.; Büller, H. R.

    2006-01-01

    BACKGROUND: Lack of guidelines for prevention of air travel-related venous thrombosis may lead to excessive use of potentially dangerous precautions. OBJECTIVES: To assess the use of preventive measures for air travel-related thrombosis in professionals employed in the field of thrombosis and

  10. Daily variation of the radon concentration indoors and outdoors and the influence of meteorological parameters

    International Nuclear Information System (INIS)

    Porstendoerfer, J.; Butterweck, G.; Reineking, A.

    1994-01-01

    Series of continuous radon measurements in the open atmosphere and in a dwelling, including the parallel measurement of meteorological parameters, were performed over a period of several weeks. The radon concentration in indoor and outdoor air depends on meteorological conditions. In the open atmosphere the radon concentration varies between 1 and 100 Bq m -3 , depending on weather conditions and time of day. During time periods of low turbulent air exchange (high pressure weather with clear night sky), especially in the night and early morning hours (night inversion layer), the diurnal variation of the radon concentration showed a pronounced maximum. Cloudy and windy weather conditions yield a small diurnal variation of the radon concentration. Indoors, the average level and the diurnal variation of the indoor radon concentration is also influenced by meteorological conditions. The measurements are consistent with a dependence of indoor radon concentrations on indoor-outdoor pressure differences. 11 refs., 4 figs

  11. Needs and workflow assessment prior to implementation of a digital pathology infrastructure for the US Air Force Medical Service

    Directory of Open Access Journals (Sweden)

    Jonhan Ho

    2013-01-01

    Full Text Available Background: Advances in digital pathology are accelerating integration of this technology into anatomic pathology (AP. To optimize implementation and adoption of digital pathology systems within a large healthcare organization, initial assessment of both end user (pathologist needs and organizational infrastructure are required. Contextual inquiry is a qualitative, user-centered tool for collecting, interpreting, and aggregating such detailed data about work practices that can be employed to help identify specific needs and requirements. Aim: Using contextual inquiry, the objective of this study was to identify the unique work practices and requirements in AP for the United States (US Air Force Medical Service (AFMS that had to be targeted in order to support their transition to digital pathology. Subjects and Methods: A pathology-centered observer team conducted 1.5 h interviews with a total of 24 AFMS pathologists and histology lab personnel at three large regional centers and one smaller peripheral AFMS pathology center using contextual inquiry guidelines. Findings were documented as notes and arranged into a hierarchal organization of common themes based on user-provided data, defined as an affinity diagram. These data were also organized into consolidated graphic models that characterized AFMS pathology work practices, structure, and requirements. Results: Over 1,200 recorded notes were grouped into an affinity diagram composed of 27 third-level, 10 second-level, and five main-level (workflow and workload distribution, quality, communication, military culture, and technology categories. When combined with workflow and cultural models, the findings revealed that AFMS pathologists had needs that were unique to their military setting, when compared to civilian pathologists. These unique needs included having to serve a globally distributed patient population, transient staff, but a uniform information technology (IT structure. Conclusions: The

  12. Weathering the empire: meteorological research in the early British Straits Settlements.

    Science.gov (United States)

    Williamson, Fiona

    2015-09-01

    This article explores meteorological interest and experimentation in the early history of the Straits Settlements. It centres on the establishment of an observatory in 1840s Singapore and examines the channels that linked the observatory to a global community of scientists, colonial officers and a reading public. It will argue that, although the value of overseas meteorological investigation was recognized by the British government, investment was piecemeal and progress in the field often relied on the commitment and enthusiasm of individuals. In the Straits Settlements, as elsewhere, these individuals were drawn from military or medical backgrounds, rather than trained as dedicated scientists. Despite this, meteorology was increasingly recognized as of fundamental importance to imperial interests. Thus this article connects meteorology with the history of science and empire more fully and examines how research undertaken in British dependencies is revealing of the operation of transnational networks in the exchange of scientific knowledge.

  13. Meteorological Data Analysis Using MapReduce

    Directory of Open Access Journals (Sweden)

    Wei Fang

    2014-01-01

    Full Text Available In the atmospheric science, the scale of meteorological data is massive and growing rapidly. K-means is a fast and available cluster algorithm which has been used in many fields. However, for the large-scale meteorological data, the traditional K-means algorithm is not capable enough to satisfy the actual application needs efficiently. This paper proposes an improved MK-means algorithm (MK-means based on MapReduce according to characteristics of large meteorological datasets. The experimental results show that MK-means has more computing ability and scalability.

  14. Communicating meteorology through popular music

    Science.gov (United States)

    Brown, Sally; Aplin, Karen; Jenkins, Katie; Mander, Sarah; Walsh, Claire; Williams, Paul

    2015-04-01

    Previous studies of weather-inspired classical music showed that all forms of music (as well as visual arts and literature) reflect the significance of the environment in society. Here we quantify the extent to which weather has inspired popular musicians, and how weather is represented in English-language pop music. Our work is in press at Weather. Over 750 songs have been identified which were found to refer to meteorological phenomena, mainly in their lyrics, but also in the title of the song, name of the band or songwriter and occasionally in the song's music or sound effects. Over one third of the songs analysed referred to either sun or rain, out of a possible 20 weather categories. It was found that artists use weather to describe emotion, for example, to mirror the changes in a relationship. In this context, rain was broadly seen negatively, and might be used to signify the end of a relationship. Rain could also be perceived in a positive way, such as in songs from more agricultural communities. Wind was the next most common weather phenomenon, but did not represent emotions as much as sun or rain. However, it was the most frequently represented weather type in the music itself, such as in instrumental effects, or non-verbally in choruses. From the limited evidence available, we found that artists were often inspired by a single weather event in writing lyrics, whereas the outcomes were less clearly identifiable from longer periods of good or bad weather. Some artists were influenced more by their environment than others, but they were often inspired to write many songs about their surroundings as part of every-day life, rather than weather in particular. Popular singers and songwriters can therefore emotionally connect their listeners to the environment; this could be exploited to communicate environmental science to a broad audience.

  15. PREVIMER : Meteorological inputs and outputs

    Science.gov (United States)

    Ravenel, H.; Lecornu, F.; Kerléguer, L.

    2009-09-01

    PREVIMER is a pre-operational system aiming to provide a wide range of users, from private individuals to professionals, with short-term forecasts about the coastal environment along the French coastlines bordering the English Channel, the Atlantic Ocean, and the Mediterranean Sea. Observation data and digital modelling tools first provide 48-hour (probably 96-hour by summer 2009) forecasts of sea states, currents, sea water levels and temperatures. The follow-up of an increasing number of biological parameters will, in time, complete this overview of coastal environment. Working in partnership with the French Naval Hydrographic and Oceanographic Service (Service Hydrographique et Océanographique de la Marine, SHOM), the French National Weather Service (Météo-France), the French public science and technology research institute (Institut de Recherche pour le Développement, IRD), the European Institute of Marine Studies (Institut Universitaire Européen de la Mer, IUEM) and many others, IFREMER (the French public institute fo marine research) is supplying the technologies needed to ensure this pertinent information, available daily on Internet at http://www.previmer.org, and stored at the Operational Coastal Oceanographic Data Centre. Since 2006, PREVIMER publishes the results of demonstrators assigned to limited geographic areas and to specific applications. This system remains experimental. The following topics are covered : Hydrodynamic circulation, sea states, follow-up of passive tracers, conservative or non-conservative (specifically of microbiological origin), biogeochemical state, primary production. Lastly, PREVIMER provides researchers and R&D departments with modelling tools and access to the database, in which the observation data and the modelling results are stored, to undertake environmental studies on new sites. The communication will focus on meteorological inputs to and outputs from PREVIMER. It will draw the lessons from almost 3 years during

  16. Inversion of GPS meteorology data

    Directory of Open Access Journals (Sweden)

    K. Hocke

    Full Text Available The GPS meteorology (GPS/MET experiment, led by the Universities Corporation for Atmospheric Research (UCAR, consists of a GPS receiver aboard a low earth orbit (LEO satellite which was launched on 3 April 1995. During a radio occultation the LEO satellite rises or sets relative to one of the 24 GPS satellites at the Earth's horizon. Thereby the atmospheric layers are successively sounded by radio waves which propagate from the GPS satellite to the LEO satellite. From the observed phase path increases, which are due to refraction of the radio waves by the ionosphere and the neutral atmosphere, the atmospheric parameter refractivity, density, pressure and temperature are calculated with high accuracy and resolution (0.5–1.5 km. In the present study, practical aspects of the GPS/MET data analysis are discussed. The retrieval is based on the Abelian integral inversion of the atmospheric bending angle profile into the refractivity index profile. The problem of the upper boundary condition of the Abelian integral is described by examples. The statistical optimization approach which is applied to the data above 40 km and the use of topside bending angle profiles from model atmospheres stabilize the inversion. The retrieved temperature profiles are compared with corresponding profiles which have already been calculated by scientists of UCAR and Jet Propulsion Laboratory (JPL, using Abelian integral inversion too. The comparison shows that in some cases large differences occur (5 K and more. This is probably due to different treatment of the upper boundary condition, data runaways and noise. Several temperature profiles with wavelike structures at tropospheric and stratospheric heights are shown. While the periodic structures at upper stratospheric heights could be caused by residual errors of the ionospheric correction method, the periodic temperature fluctuations at heights below 30 km are most likely caused by atmospheric waves (vertically

  17. Spatial clustering and meteorological drivers of summer ozone in Europe

    Science.gov (United States)

    Carro-Calvo, Leopoldo; Ordóñez, Carlos; García-Herrera, Ricardo; Schnell, Jordan L.

    2017-04-01

    We present a regionalization of summer near-surface ozone (O3) in Europe. For this purpose we apply a K-means algorithm on a gridded MDA8 O3 (maximum daily average 8-h ozone) dataset covering a European domain [15° W - 30° E, 35°-70° N] at 1° x 1° horizontal resolution for the 1998-2012 period. This dataset was compiled by merging observations from the European Monitoring and Evaluation Programme (EMEP) and the European Environment Agency's air quality database (AirBase). The K-means method allows identifying sets of different regions where the O3 concentrations present coherent spatiotemporal patterns and are thus expected to be driven by similar meteorological factors. After some testing, 9 regions were selected: the British Isles, North-Central Europe, Northern Scandinavia, the Baltic countries, the Iberian Peninsula, Western Europe, South-Central Europe, Eastern Europe and the Balkans. For each region we examine the synoptic situations associated with elevated ozone extremes (days exceeding the 95th percentile of the summer MDA8 O3 distribution). Our analyses reveal that there are basically two different kinds of regions in Europe: (a) those in the centre and south of the continent where ozone extremes are associated with elevated temperature within the same region and (b) those in northern Europe where ozone extremes are driven by southerly advection of air masses from warmer, more polluted areas. Even when the observed patterns were initially identified only for days registering high O3 extremes, all summer days can be projected on such patterns to identify the main modes of meteorological variability of O3. We have found that such modes are partly responsible for the day-to-day variability in the O3 concentrations and can explain a relatively large fraction (from 44 to 88 %, depending on the region) of the interannual variability of summer mean MDA8 O3 during the period of analysis. On the other hand, some major teleconnection patterns have been tested

  18. Documentation of meteorological data from the coniferous forest biome primary station in Oregon.

    Science.gov (United States)

    R.H. Waring; H.R. Holbo; R.P. Bueb; R.L. Fredriksen

    1978-01-01

    As part of the International Biological Program, a primary meteorological station was installed in the west-central Cascade Range of Oregon. Short-wave solar radiation, air temperature, dewpoint temperature, windspeed, and precipitation are recorded continuously. Climatic data are summarized in a daily record available from May 11, 1972, to date. This report details...

  19. Autonomous Aerial Sensors for Wind Power Meteorology - A Pre-Project

    DEFF Research Database (Denmark)

    Giebel, Gregor; Schmidt Paulsen, Uwe; Bange, Jens

    Autonomous Aerial Sensors, i.e. meteorological sensors mounted on Unmanned Aerial Systems UAS, can characterise the atmospheric flow in and around wind farms. We instrumented three planes, a helicopter and a lighter-than-air LTA system to fly one week together in a well-instrumented wind farm...

  20. Online coupled regional meteorology chemistry models in Europe : Current status and prospects

    NARCIS (Netherlands)

    Baklanov, A.; Schlünzen, K.; Suppan, P.; Baldasano, J.; Brunner, D.; Aksoyoglu, S.; Carmichael, G.; Douros, J.; Flemming, J.; Forkel, R.; Galmarini, S.; Gauss, M.; Grell, G.; Hirtl, M.; Joffre, S.; Jorba, O.; Kaas, E.; Kaasik, M.; Kallos, G.; Kong, X.; Korsholm, U.; Kurganskiy, A.; Kushta, J.; Lohmann, U.; Mahura, A.; Manders-Groot, A.; Maurizi, A.; Moussiopoulos, N.; Rao, S.T.; Savage, N.; Seigneur, C.; Sokhi, R.S.; Solazzo, E.; Solomos, S.; Sørensen, B.; Tsegas, G.; Vignati, E.; Vogel, B.; Zhang, Y.

    2014-01-01

    Online coupled mesoscale meteorology atmospheric chemistry models have undergone a rapid evolution in recent years. Although mainly developed by the air quality modelling community, these models are also of interest for numerical weather prediction and regional climate modelling as they can consider

  1. A meteorological overview of the ARCTAS 2008 mission

    Directory of Open Access Journals (Sweden)

    H. E. Fuelberg

    2010-01-01

    Full Text Available The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS mission was a multi-aircraft project whose major objective was to investigate the factors driving changes in the Arctic's atmospheric composition and climate. It was conducted during April and June–July 2008. The summer ARCTAS deployment was preceded by a week of flights over and around California to address state issues of air quality and climate forcing. This paper focuses on meteorological conditions during the ARCTAS Spring and Summer campaigns. We examine mission averaged large-scale flow patterns at the surface, 500 hPa, and 300 hPa and determine their departures from climatology. Results from runs of the Weather Research and Forecasting (WRF model are used to describe meteorological conditions on individual days. Our WRF configuration included a nested grid approach that provided horizontal spacing as small as 5 km. Trajectories calculated from the WRF output are used to determine transport pathways to the Arctic, including their origins and the altitudes at which they reach 70° N. We also present backward trajectories from selected legs of individual ARCTAS flights. Finally, the FLEXPART Lagrangian particle dispersion model, with the high resolution WRF data as input, is used to determine the paths of anthropogenic and biomass burning-derived CO. Results show that there was frequent and widespread transport to the Arctic during both phases of ARCTAS and that the three ARCTAS aircraft sampled air having a multitude of origins, following a myriad of paths, and experiencing many types of meteorological conditions.

  2. Modern history of meteorological services with pictures for a century

    International Nuclear Information System (INIS)

    2004-07-01

    This book deals with modern history of meteorological services with pictures for a century. It is divided into twelve chapters, which mention meteorological services before the Joseon Dynasty period, meteorological observation about surface weather observation, aero logical observation, meteorological satellite, seismometry, observation on yellow dust, and observation on the falling of thunderbolt, weather forecast, meteorological telecommunication, education for weather, research for weather, promotion on weather, international cooperation, main events, special aid on meteorological services, meteorological disaster and the list of the offices for meteorological services.

  3. Measurement of airborne radioactivity and its meteorological application. Part V. Annual report, 1 April 1973--31 July 1974

    International Nuclear Information System (INIS)

    Reiter, R.; Kanter, H.J.; Sladkovic, R.; Poetzl, K.

    1976-03-01

    Results are reported from studies on the exchange of air between stratosphere and troposphere. Continuous data on the concentrations of the radio-nuclides Be7, P32, P33, and S35, of the fallout and ozone from April 1972 to August 1974 are reported. The meteorological analysis of five intrusions of stratospheric air is presented

  4. Seasonal variation of meteorological factors on air parameters and ...

    African Journals Online (AJOL)

    user

    African Journal of Environmental Science and. Technology. Full Length ..... higher volume during dry season and lower volume during rainy .... 224 Afr. J. Environ. Sci. Technol. ..... Procedia - Social and Behavioral Sciences. 1- 5. Babatunde ...

  5. Redefining the Air Force Medical Service in the New Millennium: Should the AFMS Outsource Physician Training and Residency Education Programs

    National Research Council Canada - National Science Library

    Baker, Susan

    2000-01-01

    ... that will greatly impact military readiness. Providing the correct mix of physicians to the Air Expeditionary Forces for contingency and wartime operations will partially determine the effectiveness of the deployed forces...

  6. Interim report on the meteorological database

    International Nuclear Information System (INIS)

    Stage, S.A.; Ramsdell, J.V.; Simonen, C.A.; Burk, K.W.

    1993-01-01

    The Hanford Environmental Dose Reconstruction (HEDR) Project is estimating radiation doses that individuals may have received from operations at Hanford from 1944 to the present. An independent Technical Steering Panel (TSP) directs the project, which is being conducted by the Battelle, Pacific Northwest Laboratories in Richland, Washington. The goals of HEDR, as approved by the TSP, include dose estimates and determination of confidence ranges for these estimates. This letter report describes the current status of the meteorological database. The report defines the meteorological data available for use in climate model calculations, describes the data collection procedures and the preparation and control of the meteorological database. This report also provides an initial assessment of the data quality. The available meteorological data are adequate for atmospheric calculations. Initial checks of the data indicate the data entry accuracy meets the data quality objectives

  7. Index of Meteorological Observations Publication (Before 1890)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Index of meteorological observations in the United States made prior to January 1, 1890, organized by state. Includes station name, coordinates, elevation, period of...

  8. A marine meteorological data acquisition system

    Digital Repository Service at National Institute of Oceanography (India)

    Desai, R.G.P.; Desa, E.; Vithayathil, G.

    A marine meteorological data acquisition system has been developed for long term unattended measurements at remote coastal sites, ocean surface platforms and for use on board research vessels. The system has an open and modular configuration...

  9. NDBC Standard Meteorological Buoy Data, 1970-present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The National Data Buoy Center (NDBC) distributes meteorological data from moored buoys maintained by NDBC and others. Moored buoys are the weather sentinels of the...

  10. Ionospheric irregularities in periods of meteorological disturbances

    Science.gov (United States)

    Borchevkina, O. P.; Karpov, I. V.

    2017-09-01

    The results of observations of the total electron content (TEC) in periods of storm disturbances of meteorological situation are presented in the paper. The observational results have shown that a passage of a meteorological storm is accompanied by a substantial decrease in values of TEC and critical frequencies of the ionospheric F2 region. The decreases in values of these ionospheric parameters reach 50% and up to 30% in TEC and critical frequency of the F2 layer, respectively, as compared to meteorologically quiet days. Based on qualitative analysis, it is found that the processes related to formation of local regions of thermospheric heating due to a dissipation of AGW coming into the upper atmosphere from the region of the meteorological disturbance in the lower atmosphere are a possible cause of these ionospheric disturbances.

  11. Meteorological interpretation of transient LOD changes

    Science.gov (United States)

    Masaki, Y.

    2008-04-01

    The Earth’s spin rate is mainly changed by zonal winds. For example, seasonal changes in global atmospheric circulation and episodic changes accompanied with El Nĩ os are clearly detected n in the Length-of-day (LOD). Sub-global to regional meteorological phenomena can also change the wind field, however, their effects on the LOD are uncertain because such LOD signals are expected to be subtle and transient. In our previous study (Masaki, 2006), we introduced atmospheric pressure gradients in the upper atmosphere in order to obtain a rough picture of the meteorological features that can change the LOD. In this presentation, we compare one-year LOD data with meteorological elements (winds, temperature, pressure, etc.) and make an attempt to link transient LOD changes with sub-global meteorological phenomena.

  12. Adaptive Weather Forecasting using Local Meteorological Information

    NARCIS (Netherlands)

    Doeswijk, T.G.; Keesman, K.J.

    2005-01-01

    In general, meteorological parameters such as temperature, rain and global radiation are important for agricultural systems. Anticipating on future conditions is most often needed in these systems. Weather forecasts then become of substantial importance. As weather forecasts are subject to

  13. HYDRO-METEOROLOGICAL CHARACTERISTICS FOR SUSTAINABLE LAND MANAGEMENT IN THE SINGKARAK BASIN, WEST SUMATRA

    Directory of Open Access Journals (Sweden)

    Kasdi Subagyono

    2008-11-01

    Full Text Available Studi tentang karakteristik hidro-meteorologi telah dilakukan di wilayah danau Singkarak pada 2006-2007 dengan melibatkan partisipasi masyarakat. Stasiun iklim otomatis dan pengukur tinggi muka air otomatis dipasang untuk memonitor data hidrologi dan meteorologi di wilayah cekungan Singkarak. Data meteorologi dianalisa untuk mengetahui karakteristik iklim di wilayah sekitar danau. Model hidrologi GR4J dan H2U diaplikasikan untuk simulasi discharge dan untuk mengkarakterisasi proses hidrologi di wilayah danau. Simulasi model aliran divalidasi pada musim hujan. Alternatif pengelolaan lahan diformulasikan berdasarkan karakteristik hidrologi daerah aliran sungai di sekitar cekungan Singkarak. Hasil penelitian menunjukkan bahwa daerah tangkapan di sekitar danau Singkarak memiliki respon yang tinggi terhadap jumlah dan intensitas hujan. Hidrograp menunjukkan peningkatan yang tajam dari discharge segera setelah curah hujan mulai dan menurun relative lamban ketika curah hujan berhenti. Untuk pengelolaan lahan secara berkelanjutan di wilayah danau Singkarak, konservasi lahan dan air harus menjadi prioritas utama. Wanatani dapat diimplementasikan sebagai alternatif sistem pertanaman oleh penduduk lokal. Karena potensi kelangkaan air bisa terjadi pada periode kering, panen air dan konservasi air dapat diterapkan sebagai opsi yang dapat dikombinasikan dalam sistem pengelolaan lahan.   Hydro-meteorological processes of the Singkarak basin has been studied involving participatory of local community in 2006-2007. Automatic weather station (AWS and automatic water level recorder (AWLR were installed to record meteorological and hydrological data within the Singkarak Basin. Meteorological data was analyzed to understand the meteorological characteristic surrounding the Basin area. Model of GR4J and H2U were used to simulated discharge and to understand the hydrological processes within the basin. The validation of simulated discharge was done in the wet season

  14. The 1989 progress report: dynamic meteorology

    International Nuclear Information System (INIS)

    Sadourny, R.

    1989-01-01

    The 1989 progress report of the laboratory of Dynamic Meteorology of the Polytechnic School (France) is presented. The aim of the research programs is the dynamic study of climate and environment in relationship with the global athmospheric behavior. The investigations reported were performed in the fields of: climate modelling, dynamic study of Turbulence, analysis of atmospheric radiation and nebulosity, tropical meteorology and climate, Earth radioactive balance, lidar measurements, middle atmosphere studies. The published papers, the conferences and Laboratory staff are listed [fr

  15. Meteorological measurements at nuclear power plants

    International Nuclear Information System (INIS)

    1995-01-01

    On-site meteorological measurements are necessary for evaluating atmospheric dispersion of gaseous effluents. Radiation doses in a plant's vicinity due to these effluents are calculated from the results of dispersion evaluations. The guide addresses the requirements for on-site meteorological measurement systems. Guide YVL 7.3 addresses atmospheric dispersion evaluations and calculation methods, Guide YVL 7.2 radiation dose calculations and Guide YVL 7.8 environmental data reporting. (5 refs.)

  16. On-site meteorological instrumentation requirements to characterize diffusion from point sources: workshop report. Final report Sep 79-Sep 80

    International Nuclear Information System (INIS)

    Strimaitis, D.; Hoffnagle, G.; Bass, A.

    1981-04-01

    Results of a workshop entitled 'On-Site Meteorological Instrumentation Requirements to Characterize Diffusion from Point Sources' are summarized and reported. The workshop was sponsored by the U.S. Environmental Protection Agency in Raleigh, North Carolina, on January 15-17, 1980. Its purpose was to provide EPA with a thorough examination of the meteorological instrumentation and data collection requirements needed to characterize airborne dispersion of air contaminants from point sources and to recommend, based on an expert consensus, specific measurement technique and accuracies. Secondary purposes of the workshop were to (1) make recommendations to the National Weather Service (NWS) about collecting and archiving meteorological data that would best support air quality dispersion modeling objectives and (2) make recommendations on standardization of meteorological data reporting and quality assurance programs

  17. A new detrended semipartial cross-correlation analysis: Assessing the important meteorological factors affecting API

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Chen-Hua, E-mail: shenandchen01@163.com [College of Geographical Science, Nanjing Normal University, Nanjing 210046 (China); Jiangsu Center for Collaborative Innovation in Geographical Information Resource, Nanjing 210046 (China); Key Laboratory of Virtual Geographic Environment of Ministry of Education, Nanjing 210046 (China)

    2015-12-04

    To analyze the unique contribution of meteorological factors to the air pollution index (API), a new method, the detrended semipartial cross-correlation analysis (DSPCCA), is proposed. Based on both a detrended cross-correlation analysis and a DFA-based multivariate-linear-regression (DMLR), this method is improved by including a semipartial correlation technique, which is used to indicate the unique contribution of an explanatory variable to multiple correlation coefficients. The advantages of this method in handling nonstationary time series are illustrated by numerical tests. To further demonstrate the utility of this method in environmental systems, new evidence of the primary contribution of meteorological factors to API is provided through DMLR. Results show that the most important meteorological factors affecting API are wind speed and diurnal temperature range, and the explanatory ability of meteorological factors to API gradually strengthens with increasing time scales. The results suggest that DSPCCA is a useful method for addressing environmental systems. - Highlights: • A detrended multiple linear regression is shown. • A detrended semipartial cross correlation analysis is proposed. • The important meteorological factors affecting API are assessed. • The explanatory ability of meteorological factors to API gradually strengthens with increasing time scales.

  18. A new detrended semipartial cross-correlation analysis: Assessing the important meteorological factors affecting API

    International Nuclear Information System (INIS)

    Shen, Chen-Hua

    2015-01-01

    To analyze the unique contribution of meteorological factors to the air pollution index (API), a new method, the detrended semipartial cross-correlation analysis (DSPCCA), is proposed. Based on both a detrended cross-correlation analysis and a DFA-based multivariate-linear-regression (DMLR), this method is improved by including a semipartial correlation technique, which is used to indicate the unique contribution of an explanatory variable to multiple correlation coefficients. The advantages of this method in handling nonstationary time series are illustrated by numerical tests. To further demonstrate the utility of this method in environmental systems, new evidence of the primary contribution of meteorological factors to API is provided through DMLR. Results show that the most important meteorological factors affecting API are wind speed and diurnal temperature range, and the explanatory ability of meteorological factors to API gradually strengthens with increasing time scales. The results suggest that DSPCCA is a useful method for addressing environmental systems. - Highlights: • A detrended multiple linear regression is shown. • A detrended semipartial cross correlation analysis is proposed. • The important meteorological factors affecting API are assessed. • The explanatory ability of meteorological factors to API gradually strengthens with increasing time scales.

  19. Air quality monitoring of the post-operative recovery room and locations surrounding operating theaters in a medical center in Taiwan.

    Directory of Open Access Journals (Sweden)

    Chin-Sheng Tang

    Full Text Available To prevent surgical site infection (SSI, the airborne microbial concentration in operating theaters must be reduced. The air quality in operating theaters and nearby areas is also important to healthcare workers. Therefore, this study assessed air quality in the post-operative recovery room, locations surrounding the operating theater area, and operating theaters in a medical center. Temperature, relative humidity (RH, and carbon dioxide (CO2, suspended particulate matter (PM, and bacterial concentrations were monitored weekly over one year. Measurement results reveal clear differences in air quality in different operating theater areas. The post-operative recovery room had significantly higher CO2 and bacterial concentrations than other locations. Bacillus spp., Micrococcus spp., and Staphylococcus spp. bacteria often existed in the operating theater area. Furthermore, Acinetobacter spp. was the main pathogen in the post-operative recovery room (18% and traumatic surgery room (8%. The mixed effect models reveal a strong correlation between number of people in a space and high CO2 concentration after adjusting for sampling locations. In conclusion, air quality in the post-operative recovery room and operating theaters warrants attention, and merits long-term surveillance to protect both surgical patients and healthcare workers.

  20. Air quality monitoring of the post-operative recovery room and locations surrounding operating theaters in a medical center in Taiwan.

    Science.gov (United States)

    Tang, Chin-Sheng; Wan, Gwo-Hwa

    2013-01-01

    To prevent surgical site infection (SSI), the airborne microbial concentration in operating theaters must be reduced. The air quality in operating theaters and nearby areas is also important to healthcare workers. Therefore, this study assessed air quality in the post-operative recovery room, locations surrounding the operating theater area, and operating theaters in a medical center. Temperature, relative humidity (RH), and carbon dioxide (CO2), suspended particulate matter (PM), and bacterial concentrations were monitored weekly over one year. Measurement results reveal clear differences in air quality in different operating theater areas. The post-operative recovery room had significantly higher CO2 and bacterial concentrations than other locations. Bacillus spp., Micrococcus spp., and Staphylococcus spp. bacteria often existed in the operating theater area. Furthermore, Acinetobacter spp. was the main pathogen in the post-operative recovery room (18%) and traumatic surgery room (8%). The mixed effect models reveal a strong correlation between number of people in a space and high CO2 concentration after adjusting for sampling locations. In conclusion, air quality in the post-operative recovery room and operating theaters warrants attention, and merits long-term surveillance to protect both surgical patients and healthcare workers.

  1. Numerical experiments with assimilation of the mean and unresolved meteorological conditions into large-eddy simulation model

    OpenAIRE

    Esau, Igor

    2010-01-01

    Micrometeorology, city comfort, land use management and air quality monitoring increasingly become important environmental issues. To serve the needs, meteorology needs to achieve a serious advance in representation and forecast on micro-scales (meters to 100 km) called meteorological terra incognita. There is a suitable numerical tool, namely, the large-eddy simulation modelling (LES) to support the development. However, at present, the LES is of limited utility for applications. The study a...

  2. Comparison of HYSPLIT-4 model simulations of the ETEX data, using meteorological input data of differing spatial and temporal resolution

    International Nuclear Information System (INIS)

    Hess, G.D.; Mills, G.A.; Draxler, R.R.

    1997-01-01

    Model simulations of air concentrations during ETEX-1 using the HYSPLIT-4 (HYbrid Single-Particle Lagrangian Integrated Trajectories, version 4) code and analysed meteorological data fields provided by ECMWF and the Australian Bureau of Meteorology are presented here. The HYSPLIT-4 model is a complete system for computing simple trajectories to complex dispersion and deposition simulations using either puff or particle approaches. A mixed dispersion algorithm is employed in this study: puffs in the horizontal and particles in the vertical

  3. Meteorological factors for PM10 concentration levels in Northern Spain

    Science.gov (United States)

    Santurtún, Ana; Mínguez, Roberto; Villar-Fernández, Alejandro; González Hidalgo, Juan Carlos; Zarrabeitia, María Teresa

    2013-04-01

    Atmospheric particulate matter (PM) is made up of a mixture of solid and aqueous species which enter the atmosphere by anthropogenic and natural pathways. The levels and composition of ambient air PM depend on the climatology and on the geography (topography, soil cover, proximity to arid zones or to the coast) of a given region. Spain has particular difficulties in achieving compliance with the limit values established by the European Union (based on recommendations from the World Health Organization) for particulate matter on the order of 10 micrometers of diameter or less (PM10), but not only antropogenical emissions are responsible for this: some studies show that PM10 concentrations originating from these kinds of sources are similar to what is found in other European countries, while some of the geographical features of the Iberian Peninsula (such as African mineral dust intrusion, soil aridity or rainfall) are proven to be a factor for higher PM concentrations. This work aims to describe PM10 concentration levels in Cantabria (Northern Spain) and their relationship with the following meteorological variables: rainfall, solar radiation, temperature, barometric pressure and wind speed. Data consists of daily series obtained from hourly data records for the 2000-2010 period, of PM10 concentrations from 4 different urban-background stations, and daily series of the meteorological variables provided by Spanish National Meteorology Agency. The method used for establishing the relationships between these variables consists of several steps: i) fitting a non-stationary probability density function for each variable accounting for long-term trends, seasonality during the year and possible seasonality during the week to distinguish between work and weekend days, ii) using the marginal distribution function obtained, transform the time series of historical values of each variable into a normalized Gaussian time series. This step allows using consistently time series

  4. Random forest meteorological normalisation models for Swiss PM10 trend analysis

    Science.gov (United States)

    Grange, Stuart K.; Carslaw, David C.; Lewis, Alastair C.; Boleti, Eirini; Hueglin, Christoph

    2018-05-01

    Meteorological normalisation is a technique which accounts for changes in meteorology over time in an air quality time series. Controlling for such changes helps support robust trend analysis because there is more certainty that the observed trends are due to changes in emissions or chemistry, not changes in meteorology. Predictive random forest models (RF; a decision tree machine learning technique) were grown for 31 air quality monitoring sites in Switzerland using surface meteorological, synoptic scale, boundary layer height, and time variables to explain daily PM10 concentrations. The RF models were used to calculate meteorologically normalised trends which were formally tested and evaluated using the Theil-Sen estimator. Between 1997 and 2016, significantly decreasing normalised PM10 trends ranged between -0.09 and -1.16 µg m-3 yr-1 with urban traffic sites experiencing the greatest mean decrease in PM10 concentrations at -0.77 µg m-3 yr-1. Similar magnitudes have been reported for normalised PM10 trends for earlier time periods in Switzerland which indicates PM10 concentrations are continuing to decrease at similar rates as in the past. The ability for RF models to be interpreted was leveraged using partial dependence plots to explain the observed trends and relevant physical and chemical processes influencing PM10 concentrations. Notably, two regimes were suggested by the models which cause elevated PM10 concentrations in Switzerland: one related to poor dispersion conditions and a second resulting from high rates of secondary PM generation in deep, photochemically active boundary layers. The RF meteorological normalisation process was found to be robust, user friendly and simple to implement, and readily interpretable which suggests the technique could be useful in many air quality exploratory data analysis situations.

  5. Meteorological and hydrographic data from a nearshore platform in Dauphin Island, AL from 22 Feb 1998 to 4 Jan 1999 (NODC Accession 0118645)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Meteorological and hydrographic data were collected from a monitoring station on Dauphin Island from Feb 1998 to Jan 1999. Variables measured include air...

  6. Meteorological and hydrographic monitoring data collected at Dauphin Island Station in Alabama from 1999-11-06 to 2001-03-01 (NODC Accession 0122658)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Meteorological and hydrographic data were collected from a monitoring station on Dauphin Island from Nov 1999 to Feb 2001. Variables measured include air...

  7. Observations of atmospheric pollutants at Lhasa during 2014-2015: Pollution status and the influence of meteorological factors.

    Science.gov (United States)

    Duo, Bu; Cui, Lulu; Wang, Zhenzhen; Li, Rui; Zhang, Liwu; Fu, Hongbo; Chen, Jianmin; Zhang, Huifang; Qiong, A

    2018-01-01

    Atmospheric pollutants including SO 2 , NO 2 , CO, O 3 and inhalable particulate matter (PM 2.5 and PM 10 ) were monitored continuously from March 2014 to February 2015 to investigate characteristics of air pollution at Lhasa, Tibetan Plateau. Species exhibited similar seasonal variations except O 3 , with the peaks in winter but low valleys in summer. The maximum O 3 concentration was observed in spring, followed by summer, autumn, and winter. The positive correlation between O 3 and PM 10 in spring indicated similar sources of them, and was assumed to be turbulent transport. Temperature was the dominant meteorological factor for most species in spring. High temperature accelerates O 3 photochemistry, and favors air disturbance which is conductive to dust resuspension in spring. Relative humidity (RH) and atmospheric pressure were the main meteorological factors in summer. RH showed negative correlations with species, while atmospheric pressure posed opposite situation. Wind speed (WS) was the dominant meteorological factor in autumn, the negative correlations between WS and species indicated diffusion by wind. Most species showed non-significant correlations with meteorological factors in winter, indicating the dependence of pollution on source emission rather than restriction by meteorology. Pollution weather character indicated that emissions were from biomass burning and dust suspension, and meteorological factors also played an important role. Air stream injection from the stratosphere was observed during O 3 pollution period. Air parcels from Southwest Asia were observed during air pollution period in winter. An enhancement in air pollutants such as O 3 would be expected in the future, more attention should be given to countermeasures for prevention of air pollution in the future. Copyright © 2017. Published by Elsevier B.V.

  8. The Fleet Numerical Meteorology and Oceanography Center (FNMOC) - Naval

    Science.gov (United States)

    Meteorology Oceanography Ice You are here: Home › FNMOC FNMOC Logo FNMOC Navigation Meteorology Products Oceanography Products Tropical Applications Climatology and Archived Data Info The Fleet Numerical Meteorology and Oceanography Center (FNMOC) The Fleet Numerical Meteorology and Oceanography Center (FNMOC

  9. Maximum vehicle cabin temperatures under different meteorological conditions

    Science.gov (United States)

    Grundstein, Andrew; Meentemeyer, Vernon; Dowd, John

    2009-05-01

    A variety of studies have documented the dangerously high temperatures that may occur within the passenger compartment (cabin) of cars under clear sky conditions, even at relatively low ambient air temperatures. Our study, however, is the first to examine cabin temperatures under variable weather conditions. It uses a unique maximum vehicle cabin temperature dataset in conjunction with directly comparable ambient air temperature, solar radiation, and cloud cover data collected from April through August 2007 in Athens, GA. Maximum cabin temperatures, ranging from 41-76°C, varied considerably depending on the weather conditions and the time of year. Clear days had the highest cabin temperatures, with average values of 68°C in the summer and 61°C in the spring. Cloudy days in both the spring and summer were on average approximately 10°C cooler. Our findings indicate that even on cloudy days with lower ambient air temperatures, vehicle cabin temperatures may reach deadly levels. Additionally, two predictive models of maximum daily vehicle cabin temperatures were developed using commonly available meteorological data. One model uses maximum ambient air temperature and average daily solar radiation while the other uses cloud cover percentage as a surrogate for solar radiation. From these models, two maximum vehicle cabin temperature indices were developed to assess the level of danger. The models and indices may be useful for forecasting hazardous conditions, promoting public awareness, and to estimate past cabin temperatures for use in forensic analyses.

  10. A prospective survey of air and surface fungal contamination in a medical mycology laboratory at a tertiary care university hospital.

    Science.gov (United States)

    Sautour, Marc; Dalle, Frédéric; Olivieri, Claire; L'ollivier, Coralie; Enderlin, Emilie; Salome, Elsa; Chovelon, Isabelle; Vagner, Odile; Sixt, Nathalie; Fricker-Pap, Véronique; Aho, Serge; Fontaneau, Olivier; Cachia, Claire; Bonnin, Alain

    2009-04-01

    Invasive filamentous fungi infections resulting from inhalation of mold conidia pose a major threat in immunocompromised patients. The diagnosis is based on direct smears, cultural symptoms, and culturing fungi. Airborne conidia present in the laboratory environment may cause contamination of cultures, resulting in false-positive diagnosis. Baseline values of fungal contamination in a clinical mycology laboratory have not been determined to date. A 1-year prospective survey of air and surface contamination was conducted in a clinical mycology laboratory during a period when large construction projects were being conducted in the hospital. Air was sampled with a portable air system impactor, and surfaces were sampled with contact Sabouraud agar plates. The collected data allowed the elaboration of Shewhart graphic charts. Mean fungal loads ranged from 2.27 to 4.36 colony forming units (cfu)/m(3) in air and from 0.61 to 1.69 cfu/plate on surfaces. Strict control procedures may limit the level of fungal contamination in a clinical mycology laboratory even in the context of large construction projects at the hospital site. Our data and the resulting Shewhart graphic charts provide baseline values to use when monitoring for inappropriate variations of the fungal contamination in a mycology laboratory as part of a quality assurance program. This is critical to the appropriate management of the fungal risk in hematology, cancer and transplantation patients.

  11. Meteorological considerations in emergency response capability at nuclear power plant

    International Nuclear Information System (INIS)

    Fairobent, J.E.

    1985-01-01

    Meteorological considerations in emergency response at nuclear power plants are discussed through examination of current regulations and guidance documents, including discussion of the rationale for current regulatory requirements related to meteorological information for emergency response. Areas discussed include: major meteorological features important to emergency response; onsite meteorological measurements programs, including redundant and backup measurements; access to offsite sources of meteorological information; consideration of real-time and forecast conditions and atmospheric dispersion modeling

  12. Study on Extension of Standard Meteorological Data for Cities in South Korea Using ISO 15927-4

    Directory of Open Access Journals (Sweden)

    Yeweon Kim

    2017-11-01

    Full Text Available Accurate standard meteorological data sets for each city are essential elements to assess and analyze high-performance buildings quantitatively in order to ensure that they comply with energy saving policies of the nation. ECO2, which is an assessment program of building energy in Korea, has employed meteorological data of the closest city to the target location from 13 urban meteorological data references; the employment of this program has demonstrated the ability to reflect climatic differences between cities. The present study expanded urban meteorological data to ISO TRY (International Organization for Standard Test Reference Year, an international standard methodology that can calculate the data in a relatively simple manner using observed data in Korea, as much as possible in order to reflect meteorological data, including the air temperature relevant for heating and cooling energy as well as solar radiation (cooling/heating energy for each city, that affected the assessment of building energy the most. In the present study, existing data is expanded to a show the standard meteorological data of 66 cities that can be put into the Korean assessment program (ECO2. This data considered valid meteorological data (minimum statistical period, air temperature, relative humidity, wind, and solar radiation, etc. among manned and unmanned observational data obtained from 479 locations from 2001 to 2010. For cities other than the 66 aforementioned cities, zoning was conducted to separate cities that had and did not have the standard meteorological data using a cumulative temperature density graph. In this way, meteorological data can be available in all cities, which will enable more accurate simulation assessments on building energy.

  13. Hemispheric transport and influence of meteorology on global aerosol climatology

    Directory of Open Access Journals (Sweden)

    T. L. Zhao

    2012-08-01

    Full Text Available Based on a 10-yr simulation with the global air quality modeling system GEM-AQ/EC, the northern hemispheric aerosol transport with the inter-annual and seasonal variability as well as the mean climate was investigated. The intercontinental aerosol transport is predominant in the zonal direction from west to east with the ranges of inter-annual variability between 14% and 63%, and is 0.5–2 orders of magnitude weaker in the meridional direction but with larger inter-annual variability. The aerosol transport is found to fluctuate seasonally with a factor of 5–8 between the maximum in late winter and spring and the minimum in late summer and fall. Three meteorological factors controlling the intercontinental aerosol transport and its inter-annual variations are identified from the modeling results: (1 Anomalies in the mid-latitude westerlies in the troposphere. (2 Variations of precipitation over the intercontinental transport pathways and (3 Changes of meteorological conditions within the boundary layer. Changed only by the meteorology, the aerosol column loadings in the free troposphere over the source regions of Europe, North America, South and East Asia vary inter-annually with the highest magnitudes of 30–37% in January and December and the lowest magnitudes of 16–20% in August and September, and the inter-annual aerosol variability within the boundary layer influencing the surface concentrations with the magnitudes from 6% to 20% is more region-dependent. As the strongest climatic signal, the El Niño-Southern Oscillation (ENSO can lead the anomalies in the intercontinental aerosols in El Niño- and La Niña-years respectively with the strong and weak transport of the mid-latitude westerlies and the low latitude easterlies in the Northern Hemisphere (NH.

  14. Poster — Thur Eve — 24: Commissioning and preliminary measurements using an Attix-style free air ionization chamber for air kerma measurements on the BioMedical Imaging and Therapy beamlines at the Canadian Light Source

    International Nuclear Information System (INIS)

    Anderson, D; McEwen, M; Shen, H; Siegbahn, EA; Fallone, BG; Warkentin, B

    2014-01-01

    Synchrotron facilities, including the Canadian Light Source (CLS), provide opportunities for the development of novel imaging and therapy applications. A vital step progressing these applications toward clinical trials is the availability of accurate dosimetry. In this study, a refurbished Attix-style (cylindrical) free air chamber (FAC) is tested and used for preliminary air kerma measurements on the two BioMedical Imaging and Therapy (BMIT) beamlines at the CLS. The FAC consists of a telescoping chamber that relies on a difference measurement of collected charge in expanded and collapsed configurations. At the National Research Council's X-ray facility, a Victoreen Model 480 FAC was benchmarked against two primary standard FACs. The results indicated an absolute accuracy at the 0.5% level for energies between 60 and 150 kVp. A series of measurements were conducted on the small, non-uniform X-ray beams of the 05B1-1 (∼8 – 100 keV) and 05ID-2 (∼20 – 200 keV) beamlines for a variety of energies, filtrations and beam sizes. For the 05B1-1 beam with 1.1 mm of Cu filtration, recombination corrections of less than 5 % could only be achieved for field sizes no greater than 0.5 mm × 0.6 mm (corresponding to an air kerma rate of ∼ 57 Gy/min). Ionic recombination thus presents a significant challenge to obtaining accurate air kerma rate measurements using this FAC in these high intensity beams. Future work includes measurements using a smaller aperture to sample a smaller and thus more uniform beam area, as well as experimental and Monte Carlo-based investigation of correction factors

  15. Meteorological aspects of siting large wind turbines

    Energy Technology Data Exchange (ETDEWEB)

    Hiester, T.R.; Pennell, W.T.

    1981-01-01

    This report, which focuses on the meteorological aspects of siting large wind turbines (turbines with a rated output exceeding 100 kW), has four main goals. The first is to outline the elements of a siting strategy that will identify the most favorable wind energy sites in a region and that will provide sufficient wind data to make responsible economic evaluations of the site wind resource possible. The second is to critique and summarize siting techniques that were studied in the Department of Energy (DOE) Wind Energy Program. The third goal is to educate utility technical personnel, engineering consultants, and meteorological consultants (who may have not yet undertaken wind energy consulting) on meteorological phenomena relevant to wind turbine siting in order to enhance dialogues between these groups. The fourth goal is to minimize the chances of failure of early siting programs due to insufficient understanding of wind behavior.

  16. Reconstructing the prevailing meteorological and optical environment during the time of the Titanic disaster

    Science.gov (United States)

    Basu, Sukanta; Nunalee, Christopher G.; He, Ping; Fiorino, Steven T.; Vorontsov, Mikhail A.

    2014-10-01

    In this paper, we reconstruct the meteorological and optical environment during the time of Titanic's disaster utilizing a state-of-the-art meteorological model, a ray-tracing code, and a unique public-domain dataset called the Twentieth Century Global Reanalysis. With high fidelity, our simulation captured the occurrence of an unusually high Arctic pressure system over the disaster site with calm wind. It also reproduced the movement of a polar cold front through the region bringing a rapid drop in air temperature. The simulated results also suggest that unusual meteorological conditions persisted several hours prior to the Titanic disaster which contributed to super-refraction and intermittent optical turbulence. However, according to the simulations, such anomalous conditions were not present at the time of the collision of Titanic with an iceberg.

  17. Background of the Military Aviation Meteorological Service

    Directory of Open Access Journals (Sweden)

    V.I. Zshumatiy

    2016-09-01

    Full Text Available The article is devoted to the birth of aviation and its meteorological service in the early twentieth century. The article details the military aviation meteorological services in Italy, France, Germany, Austria, the USA and Russia. Are described the problems, which arose with the takeoff and landings of flight vehicles with complex weather conditions. It is shown that the information about the actual and forthcoming weather is capable of reducing a quantity of failures of flight vehicles, of increasing safety of pilots and accuracy of the defeat of enemy, of planning the application of aviation.

  18. Identifying and Evaluating Chaotic Behavior in Hydro-Meteorological Processes

    Directory of Open Access Journals (Sweden)

    Soojun Kim

    2015-01-01

    Full Text Available The aim of this study is to identify and evaluate chaotic behavior in hydro-meteorological processes. This study poses the two hypotheses to identify chaotic behavior of the processes. First, assume that the input data is the significant factor to provide chaotic characteristics to output data. Second, assume that the system itself is the significant factor to provide chaotic characteristics to output data. For solving this issue, hydro-meteorological time series such as precipitation, air temperature, discharge, and storage volume were collected in the Great Salt Lake and Bear River Basin, USA. The time series in the period of approximately one year were extracted from the original series using the wavelet transform. The generated time series from summation of sine functions were fitted to each series and used for investigating the hypotheses. Then artificial neural networks had been built for modeling the reservoir system and the correlation dimension was analyzed for the evaluation of chaotic behavior between inputs and outputs. From the results, we found that the chaotic characteristic of the storage volume which is output is likely a byproduct of the chaotic behavior of the reservoir system itself rather than that of the input data.

  19. Data analysis of backscattering LIDAR system correlated with meteorological data

    International Nuclear Information System (INIS)

    Uehara, Sandro Toshio

    2009-01-01

    In these last years, we had an increase in the interest in the monitoring of the effect of the human activity being on the atmosphere and the climate in the planet. The remote sensing techniques has been used in many studies, also related the global changes. A backscattering LIDAR system, the first of this kind in Brazil, has been used to provide the vertical profile of the aerosol backscatter coefficient at 532 nm up to an altitude of 4-6 km above sea level. In this study, data has was collected in the year of 2005. These data had been correlated with data of solar photometer CIMEL and also with meteorological data. The main results had indicated to exist a standard in the behavior of these meteorological data and the vertical distribution of the extinction coefficient gotten through LIDAR. In favorable periods of atmospheric dispersion, that is, rise of the temperature of associated air the fall of relative humidity, increase of the atmospheric pressure and low ventilation tax, was possible to determine with good precision the height of the Planetary Boundary Layer, as much through the vertical profile of the extinction coefficient how much through the technique of the vertical profile of the potential temperature. The technique LIDAR showed to be an important tool in the determination of the thermodynamic structure of the atmosphere, assisting to characterize the evolution of the CLP throughout the day, which had its good space and secular resolution. (author)

  20. Assessing measurement uncertainty in meteorology in urban environments

    International Nuclear Information System (INIS)

    Curci, S; Lavecchia, C; Frustaci, G; Pilati, S; Paganelli, C; Paolini, R

    2017-01-01

    Measurement uncertainty in meteorology has been addressed in a number of recent projects. In urban environments, uncertainty is also affected by local effects which are more difficult to deal with than for synoptic stations. In Italy, beginning in 2010, an urban meteorological network (Climate Network ® ) was designed, set up and managed at national level according to high metrological standards and homogeneity criteria to support energy applications. The availability of such a high-quality operative automatic weather station network represents an opportunity to investigate the effects of station siting and sensor exposure and to estimate the related measurement uncertainty. An extended metadata set was established for the stations in Milan, including siting and exposure details. Statistical analysis on an almost 3-year-long operational period assessed network homogeneity, quality and reliability. Deviations from reference mean values were then evaluated in selected low-gradient local weather situations in order to investigate siting and exposure effects. In this paper the methodology is depicted and preliminary results of its application to air temperature discussed; this allowed the setting of an upper limit of 1 °C for the added measurement uncertainty at the top of the urban canopy layer. (paper)

  1. Assessing measurement uncertainty in meteorology in urban environments

    Science.gov (United States)

    Curci, S.; Lavecchia, C.; Frustaci, G.; Paolini, R.; Pilati, S.; Paganelli, C.

    2017-10-01

    Measurement uncertainty in meteorology has been addressed in a number of recent projects. In urban environments, uncertainty is also affected by local effects which are more difficult to deal with than for synoptic stations. In Italy, beginning in 2010, an urban meteorological network (Climate Network®) was designed, set up and managed at national level according to high metrological standards and homogeneity criteria to support energy applications. The availability of such a high-quality operative automatic weather station network represents an opportunity to investigate the effects of station siting and sensor exposure and to estimate the related measurement uncertainty. An extended metadata set was established for the stations in Milan, including siting and exposure details. Statistical analysis on an almost 3-year-long operational period assessed network homogeneity, quality and reliability. Deviations from reference mean values were then evaluated in selected low-gradient local weather situations in order to investigate siting and exposure effects. In this paper the methodology is depicted and preliminary results of its application to air temperature discussed; this allowed the setting of an upper limit of 1 °C for the added measurement uncertainty at the top of the urban canopy layer.

  2. Idiopathic epistaxis and meteorological factors: case-control study.

    Science.gov (United States)

    Jelavic, B; Majstorovic, Z; Kordić, M; Leventić, M; Grgić, M V; Baudoin, T

    2015-01-01

    The aim of this study was to determine the relationship between the occurrence of idiopathic epistaxis and daily values of air pressure, temperature, and humidity. We also investigated whether biometeorological forecasts should be addressed to persons with a history of nosebleed diathesis. We analyzed consecutive idiopathic epistaxis events over a 3-year period. Patients were included if they had been in the municipality of Mostar, Bosnia and Herzegovina at least 24 hours before the epistaxis occurrence. The monthly variation in epistaxis events was determined. Epistaxis days (Days "0", 0 = day with epistaxis occurrence) and selected nonepistaxis days (Days "-1", -1 = each first single day without epistaxis prior to Day 0) were compared according to daily values of mean, minimum, and maximum temperature; diurnal temperature range; minimum and maximum atmospheric pressure; diurnal pressure range; and mean relative humidity. The greatest and smallest percentage of epistaxis events occurred in the months of March and August, respectively. There were no significant differences between Days 0 and Days -1 with respect to the examined meteorological factors. In this region with a Mediterranean climate, we found a seasonal variation with an incidence peak during the spring transition months, but we did not identify any meteorological trigger factors for epistaxis. Thus, there is no need for biometeorological forecasts to be addressed to persons with a history of nosebleed diathesis.

  3. 76 FR 34845 - Medical Devices; Ear, Nose, and Throat Devices; Classification of the Wireless Air-Conduction...

    Science.gov (United States)

    2011-06-15

    ... control by other users with a similar medical device. Exposure to non-ionizing radiation Wireless... relating to EMC and wireless technology and human exposure to non-ionizing radiation. Therefore, on March... electro magnetic compatibility (EMC) and safety of exposure to non-ionizing radiation; (2) Design...

  4. Air kerma national standard of Russian Federation for x-ray and gamma radiation. Activity SSDL/VNIIM in medical radiation dosimetry field

    International Nuclear Information System (INIS)

    Kharitonov, I.A.; Villevalde, N.D.; Oborin, A.V.; Fominykh, V.I.

    2002-01-01

    for medium-energy X-ray range in 1998. The results of comparisons are presented in the table 1. Dimensions of unities of air kerma and air kerma rate are transmitted from primary standard to secondary standards with expanded uncertainty from 1,3 to 2,5 % (k=2), which are including and at laboratory SSDL/VNIIM and base dosimetry laboratory CNIRRI. The comparisons of secondary standards with the primary standard VNIIM are performed one time in 5 years. The laboratory SSDL/VNIIM is the component of state primary standards laboratory in the field of measurement ionizing radiations VNIIM. SSDL/VNIIM has the secondary standard - universal dosimeter UNIDOS with ionization chambers of volume from 0,6 cm 3 to 10 liters, radioactive sources from Fe-55, Cd-109, Am-241, Cs-137 and Co-60 with activity from 0,03 to 140 GBq. The primary standard equipment and facility on the basis industrial X-ray apparatus YRD-1 with a tungsten-anode X-ray tube and inherent filtration of around 3 mm Al (at generating potential from 50 to 250 kV) are used for calibration dosimetric devices in the field X-ray. There is termoluminescence dosimetric system such as KDT-02M with TL detectors from LiF for spending audit measurements by method 'dose-post'. Laboratory SSDL/VNIIM and base dosimetric laboratory CNIRRI are carried out calibrations and verifications of air kerma and air kerma rate reference standards and working measurement means for X-ray and gamma therapy and diagnostics, belonging to the oncology and diagnostic centers, clinics and hospitals. The laboratory CNIRRI fulfils the verification of measurement means and supervision of the application in the medical radiology, but the regional departments of radial diagnostics put into practice monitoring of doses, obtained by patients and staff at fulfilling of diagnostic and medical procedures. The diagnostic and clinical dosimeters are calibrated directly under the primary standard of air kerma and air kerma rate for achievement the highest

  5. Evaluating the performance of ENVI-met model in diurnal cycles for different meteorological conditions

    Science.gov (United States)

    Acero, Juan A.; Arrizabalaga, Jon

    2018-01-01

    Urban areas are known to modify meteorological variables producing important differences in small spatial scales (i.e. microscale). These affect human thermal comfort conditions and the dispersion of pollutants, especially those emitted inside the urban area, which finally influence quality of life and the use of public open spaces. In this study, the diurnal evolution of meteorological variables measured in four urban spaces is compared with the results provided by ENVI-met (v 4.0). Measurements were carried out during 3 days with different meteorological conditions in Bilbao in the north of the Iberian Peninsula. The evaluation of the model accuracy (i.e. the degree to which modelled values approach measured values) was carried out with several quantitative difference metrics. The results for air temperature and humidity show a good agreement of measured and modelled values independently of the regional meteorological conditions. However, in the case of mean radiant temperature and wind speed, relevant differences are encountered highlighting the limitation of the model to estimate these meteorological variables precisely during diurnal cycles, in the considered evaluation conditions (sites and weather).

  6. Applied Meteorology Unit (AMU) Quarterly Report First Quarter FY-14

    Science.gov (United States)

    Bauman, William Henry; Crawford, Winifred C.; Shafer, Jaclyn A.; Watson, Leela R.; Huddleston, Lisa L.; Decker, Ryan K.

    2014-01-01

    NASA's LSP and other programs at Vandenberg Air Force Base (VAFB) use wind forecasts issued by the 30th Operational Support Squadron (30 OSS) to determine if they need to limit activities or protect property such as a launch vehicle due to the occurrence of warning level winds at VAFB in California. The 30 OSS tasked the AMU to provide a wind forecasting capability to improve wind warning forecasts and enhance the safety of their customers' operations. This would allow 30 OSS forecasters to evaluate pressure gradient thresholds between pairs of regional observing stations to help determine the onset and duration of warning category winds. Development of such a tool will require that solid relationships exist between wind speed and the pressure gradient of one or more station pairs. As part of this task, the AMU will also create a statistical climatology of meteorological observations from the VAFB wind towers.

  7. Meteorological influences on coastal new particle formation

    NARCIS (Netherlands)

    Leeuw, G. de; Kunz, G.J.; Buzorius, G.; O`Dowd, C.D.

    2002-01-01

    The meteorological situation at the midlatitude coastal station of Mace Head, Ireland, is described based on observations during the New Particle Formation and Fate in the Coastal Environment (PARFORCE) experiments in September 1998 and June 1999. Micrometeorological sensors were mounted near the

  8. assessment and monitoring of meteorological and hydrological ...

    African Journals Online (AJOL)

    F. Djellouli, A. Bouanani and K. Babahamed

    2016-09-01

    Sep 1, 2016 ... en meteorological drought indices was found for 9-month time step ... Drought severity is expected to increase further in the next 50 years [20]. ... In the present study, our interest to examine the applicability of various drought ...

  9. Meteorological features associated with unprecedented precipitation ...

    Indian Academy of Sciences (India)

    56

    India Meteorological Department, Lodi Road, New Delhi-110003 .... adjoining Iran & Arabian Sea with temperature gradient of order 5 Kelvin on 28th February, 2015. (Fig. 4a). On 1st .... Indian Region on 00 UTC of 1st March and seen in two patches, one over north Pakistan & .... Accordingly, the precipitation belt also.

  10. Meteorological data related to the Chernobyl accident

    International Nuclear Information System (INIS)

    Graziani, G.; Zarimpas, N.

    1989-01-01

    This report presents a detailed technical description of the JRC-Ispra comprehensive collection of meteorological information related to the Chernobyl accident and attempts an analysis of the data in order to perform an initial checking of their quality and facilitate a suitable and compact way of display

  11. Integrating meteorology into research on migration.

    Science.gov (United States)

    Shamoun-Baranes, Judy; Bouten, Willem; van Loon, E Emiel

    2010-09-01

    Atmospheric dynamics strongly influence the migration of flying organisms. They affect, among others, the onset, duration and cost of migration, migratory routes, stop-over decisions, and flight speeds en-route. Animals move through a heterogeneous environment and have to react to atmospheric dynamics at different spatial and temporal scales. Integrating meteorology into research on migration is not only challenging but it is also important, especially when trying to understand the variability of the various aspects of migratory behavior observed in nature. In this article, we give an overview of some different modeling approaches and we show how these have been incorporated into migration research. We provide a more detailed description of the development and application of two dynamic, individual-based models, one for waders and one for soaring migrants, as examples of how and why to integrate meteorology into research on migration. We use these models to help understand underlying mechanisms of individual response to atmospheric conditions en-route and to explain emergent patterns. This type of models can be used to study the impact of variability in atmospheric dynamics on migration along a migratory trajectory, between seasons and between years. We conclude by providing some basic guidelines to help researchers towards finding the right modeling approach and the meteorological data needed to integrate meteorology into their own research. © The Author 2010. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved.

  12. Atmospheric Science: It's More than Meteorology.

    Science.gov (United States)

    Smith, David R.; Krockover, Gerald H.

    1988-01-01

    Indicates that atmospheric science is not just forcasting the weather. Gives an overview of current topics in meteorology including ozone depletion, acid precipitation, winter cyclones, severe local storms, the greenhouse effect, wind shear and microbursts. Outlines the Atmospheric Sciences Education Program at Purdue University to produce…

  13. Problem-Based Learning Approaches in Meteorology

    Science.gov (United States)

    Charlton-Perez, Andrew James

    2013-01-01

    Problem-Based Learning, despite recent controversies about its effectiveness, is used extensively as a teaching method throughout higher education. In meteorology, there has been little attempt to incorporate Problem-Based Learning techniques into the curriculum. Motivated by a desire to enhance the reflective engagement of students within a…

  14. assessment and monitoring of meteorological and hydrological ...

    African Journals Online (AJOL)

    During the last century, Algeria experienced a rainfall deficit was recorded in 1944, then successive drought periods since 1975 to the present day in Northen and Eastern. The most recent has repercussions on water resources and on agriculture. In this paper, we focus on the meteorological and hydrological drought.

  15. Meteorological Development Laboratory Student Career Experience Program

    Science.gov (United States)

    McCalla, C., Sr.

    2007-12-01

    The National Oceanic and Atmospheric Administration's (NOAA) National Weather Service (NWS) provides weather, hydrologic, and climate forecasts and warnings for the protection of life and property and the enhancement of the national economy. The NWS's Meteorological Development Laboratory (MDL) supports this mission by developing meteorological prediction methods. Given this mission, NOAA, NWS, and MDL all have a need to continually recruit talented scientists. One avenue for recruiting such talented scientist is the Student Career Experience Program (SCEP). Through SCEP, MDL offers undergraduate and graduate students majoring in meteorology, computer science, mathematics, oceanography, physics, and statistics the opportunity to alternate full-time paid employment with periods of full-time study. Using SCEP as a recruiting vehicle, MDL has employed students who possess some of the very latest technical skills and knowledge needed to make meaningful contributions to projects within the lab. MDL has recently expanded its use of SCEP and has increased the number of students (sometimes called co- ops) in its program. As a co-op, a student can expect to develop and implement computer based scientific techniques, participate in the development of statistical algorithms, assist in the analysis of meteorological data, and verify forecasts. This presentation will focus on describing recruitment, projects, and the application process related to MDL's SCEP. In addition, this presentation will also briefly explore the career paths of students who successfully completed the program.

  16. United States Air Force Personalized Medicine and Advanced Diagnostics Program Panel: Representative Research at the San Antonio Military Medical Center

    Science.gov (United States)

    2016-05-20

    health system. dedicated to excellence in global care PROCESSING OF PROFESSIONAL MEDICAL RESEARCH PUBLICATIONS/PRESENTATIONS INSTRUCTIONS 1. The...present this research at the University of Texas at San Antonio/SAMHS & Universities Research Forum, SURF 2016 in San Antonio, TX, on 20 May 2016. The...at San Antonio/SAMHS & Universities Research Forum, SURF 2016 in San Antonio, TX, on 20 May 2016. 3. LAWS AND REGULATIONS: DoD 5500.07-R, Joint

  17. A Hybrid Method for Generation of Typical Meteorological Years for Different Climates of China

    Directory of Open Access Journals (Sweden)

    Haixiang Zang

    2016-12-01

    Full Text Available Since a representative dataset of the climatological features of a location is important for calculations relating to many fields, such as solar energy system, agriculture, meteorology and architecture, there is a need to investigate the methodology for generating a typical meteorological year (TMY. In this paper, a hybrid method with mixed treatment of selected results from the Danish method, the Festa-Ratto method, and the modified typical meteorological year method is proposed to determine typical meteorological years for 35 locations in six different climatic zones of China (Tropical Zone, Subtropical Zone, Warm Temperate Zone, Mid Temperate Zone, Cold Temperate Zone and Tibetan Plateau Zone. Measured weather data (air dry-bulb temperature, air relative humidity, wind speed, pressure, sunshine duration and global solar radiation, which cover the period of 1994–2015, are obtained and applied in the process of forming TMY. The TMY data and typical solar radiation data are investigated and analyzed in this study. It is found that the results of the hybrid method have better performance in terms of the long-term average measured data during the year than the other investigated methods. Moreover, the Gaussian process regression (GPR model is recommended to forecast the monthly mean solar radiation using the last 22 years (1994–2015 of measured data.

  18. Impact of meteorological conditions on airborne fine particle composition and secondary pollutant characteristics in urban area during winter-time

    Directory of Open Access Journals (Sweden)

    Klaus Schäfer

    2016-06-01

    Full Text Available The assessment of airborne fine particle composition and secondary pollutant characteristics in the case of Augsburg, Germany, during winter (31 January–12 March 2010 is studied on the basis of aerosol mass spectrometry (3 non-refractory components and organic matter, 3 positive matrix factorizations (PMF factors, particle size distributions (PSD, 5 size modes, 5 PMF factors, further air pollutant mass concentrations (7 gases and VOC, black carbon, PM10, PM2.5 and meteorological measurements, including mixing layer height (MLH, with one-hourly temporal resolution. Data were subjectively assigned to 10 temporal phases which are characterised by different meteorological influences and air pollutant concentrations. In each phase hierarchical clustering analysis with the Ward method was applied to the correlations of air pollutants, PM components, PM source contributions and PSD modes and correlations of these data with all meteorological parameters. This analysis resulted in different degrees of sensitivities of these air pollutant data to single meteorological parameters. It is generally found that wind speed (negatively, MLH (negatively, relative humidity (positively and wind direction influence primary pollutant and accumulation mode particle (size range 100–500 nm concentrations. Temperature (negatively, absolute humidity (negatively and also relative humidity (positively are relevant for secondary compounds of PM and particle (PM2.5, PM10 mass concentrations. NO, nucleation and Aitken mode particle and the fresh traffic aerosol concentrations are only weakly dependent on meteorological parameters and thus are driven by emissions. These daily variation data analyses provide new, detailed meteorological influences on air pollutant data with the focus on fine particle composition and secondary pollutant characteristics and can explain major parts of certain PM component and gaseous pollutant exposure.

  19. The Applied Meteorology Unit: Nineteen Years Successfully Transitioning Research Into Operations for America's Space Program

    Science.gov (United States)

    Madura, John T.; Bauman, William H., III; Merceret, Francis J.; Roeder, William P.; Brody, Frank C.; Hagemeyer, Bartlett C.

    2011-01-01

    The Applied Meteorology Unit (AMU) provides technology development and transition services to improve operational weather support to America's space program . The AMU was founded in 1991 and operates under a triagency Memorandum of Understanding (MOU) between the National Aeronautics and Space Administration (NASA), the United States Air Force (USAF) and the National Weather Service (NWS) (Ernst and Merceret, 1995). It is colocated with the 45th Weather Squadron (45WS) at Cape Canaveral Air Force Station (CCAFS) and funded by the Space Shuttle Program . Its primary customers are the 45WS, the Spaceflight Meteorology Group (SMG) operated for NASA by the NWS at the Johnson Space Center (JSC) in Houston, TX, and the NWS forecast office in Melbourne, FL (MLB). The gap between research and operations is well known. All too frequently, the process of transitioning research to operations fails for various reasons. The mission of the AMU is in essence to bridge this gap for America's space program.

  20. Evaluation of medically significant bacteria in colonoscopes after 8 weeks of shelf life in open air storage.

    Science.gov (United States)

    Ingram, Jackie; Gaines, Peggy; Kite, Roberta; Morgan, Marcia; Spurling, Sheila; Winsett, Rebecca P

    2013-01-01

    The purpose of this study was to examine bacterial growth in colonoscopes in a series of graduated shelf times. There is no conclusive evidence on the length of time colonoscopes can be safely stored before requiring redisinfection. Standards for processing scopes after use are described and supported by the professional organizations of gastroenterology and infection control; however, shelf life varies from 3 to 5 days and most recommendations are based on clinical consensus. In this study, four colonoscopes were used in a clinical procedure, underwent automated high-level disinfection with 2.6% buffered glutaraldehyde, and cultured after 3, 5, 7, 14, 21, 28, 42, and 56 days of shelf time. Two investigators collected all the cultures after interrater reliability was established. Cultures were processed in the microbiology laboratory. No medically significant growth was detected at any of the culture points. At Day 14 and Day 42, one of four scopes grew fewer than two colony-forming units of a medically insignificant bacterium. Using professional standards for high-level disinfection growth was suppressed for up to 8 weeks. Further evidence to assess fungal or viral growth is needed to be able to make suggestions for colonoscope shelf life.

  1. Measurement of {sup 131}I activity in air indoor Polish nuclear medical hospital as a tool for an internal dose assessment

    Energy Technology Data Exchange (ETDEWEB)

    Brudecki, K.; Mietelski, J.W. [Polish Academy of Sciences, Institute of Nuclear Physics, Krakow (Poland); Szczodry, A.; Kowalska, A. [Department of Endocrinology and Nuclear Medicine Holycross Cancer Center, Kielce (Poland); Mroz, T. [Pedagogical University in Cracow, Krakow (Poland)

    2018-03-15

    This paper presents results of {sup 131}I air activity measurements performed within nuclear medical hospitals as a tool for internal dose assessment. The study was conducted at a place of preparation and administration of {sup 131}I (''hot room'') and at a nurse station. {sup 131}I activity measurements were performed for 5 and 4 consecutive working days, at the ''hot room'' and nurse station, respectively. Iodine from the air was collected by a mobile HVS-30 aerosol sampler combined with a gas sampler. Both the gaseous and aerosol fractions were measurement. The activities in the gaseous fraction ranged from (28 ± 1 Bq m{sup -3}) to (492 ± 4) Bq m{sup -3}. At both sampling sites, the activity of the gaseous iodine fraction trapped on activated charcoal was significantly higher than that of the aerosol fraction captured on Petrianov filter cloth. Based on these results, an attempt has been made to estimate annual inhalation effective doses, which were found to range from 0.47 mSv (nurse female) to 1.3 mSv (technician male). The highest annual inhalation equivalent doses have been found for thyroid as 32, 27, 13, and 11 mSv, respectively, for technician male, technical female, nurse male, and nurse female. The method presented here allows to fill the gaps in internal doses measurements. Moreover, because method has been successful used for many years in radioactive contamination monitoring of air in cases of serious nuclear accidents, it should also be used in nuclear medicine. (orig.)

  2. ICON - Port Everglades 2015 Meteorological Observations (NCEI Accession 0156578)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  3. Research Ship Oceanus Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Oceanus Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  4. NOAA Ship Okeanos Explorer Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Okeanos Explorer Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System...

  5. Research Ship Melville Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Melville Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  6. Research Ship Atlantic Explorer Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Atlantic Explorer Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  7. NOAA Ship Nancy Foster Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Nancy Foster Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  8. Research Ship Healy Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Healy Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  9. Research Ship Knorr Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Knorr Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  10. Research Ship Nathaniel B. Palmer Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Nathaniel B. Palmer Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and...

  11. NOAA Ship Delaware II Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Delaware II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  12. Research Ship Atlantis Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Atlantis Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  13. NOAA Ship Pisces Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Pisces Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  14. Research Ship Robert Gordon Sproul Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Robert Gordon Sproul Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and...

  15. Research Ship Roger Revelle Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Roger Revelle Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  16. NOAA Ship Fairweather Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Fairweather Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  17. NOAA Ship Bell M. Shimada Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Bell M. Shimada Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  18. NOAA Ship Hi'ialakai Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Hi'ialakai Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  19. Research Ship New Horizon Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship New Horizon Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  20. NOAA Ship Ronald Brown Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ronald Brown Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  1. Research Ship Aurora Australis Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Aurora Australis Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  2. NOAA Ship Miller Freeman Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Miller Freeman Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  3. NOAA Ship David Starr Jordan Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship David Starr Jordan Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  4. NOAA Ship Gordon Gunter Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Gordon Gunter Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  5. NOAA Ship Henry B. Bigelow Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Henry B. Bigelow Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  6. NOAA Ship Oregon II Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  7. NOAA Ship Oscar Dyson Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Dyson Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  8. NOAA Ship Oscar Elton Sette Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Elton Sette Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  9. NOAA Ship Fairweather Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Fairweather Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  10. Research Ship Kilo Moana Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Kilo Moana Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  11. NOAA Ship Nancy Foster Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Nancy Foster Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  12. NOAA Ship Gordon Gunter Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Gordon Gunter Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  13. Research Ship Southern Surveyor Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Southern Surveyor Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  14. NOAA Ship Rainier Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Rainier Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  15. Research Ship Tangaroa Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Tangaroa Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  16. NOAA Ship Ka'imimoana Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ka'imimoana Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  17. NOAA Ship Oregon II Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oregon II Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic System...

  18. ICON - Media Luna Reef 2009 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  19. NOAA Ship Rainier Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Rainier Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  20. NOAA Ship Pisces Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Pisces Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  1. ICON - Port Everglades 2014 Meteorological Observations (NCEI Accession 0137094)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  2. ICON - Salt River Bay 2010 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  3. ICON - Port Everglades 2013 Meteorological Observations (NODC Accession 0124002)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  4. ICON - Little Cayman, Cayman Islands 2009 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  5. ICON - Salt River Bay 2009 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  6. Research Ship T. G. Thompson Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship T. G. Thompson Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  7. Research Ship Laurence M. Gould Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Research Ship Laurence M. Gould Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  8. NOAA Ship Ronald Brown Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Ronald Brown Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  9. NOAA Ship Okeanos Explorer Underway Meteorological Data, Quality Controlled

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Okeanos Explorer Underway Meteorological Data (delayed ~10 days for quality control) are from the Shipboard Automated Meteorological and Oceanographic...

  10. NOAA Ship Oscar Dyson Underway Meteorological Data, Near Real Time

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — NOAA Ship Oscar Dyson Underway Meteorological Data (Near Real Time, updated daily) are from the Shipboard Automated Meteorological and Oceanographic System (SAMOS)...

  11. ICON - Port Everglades 2012 Meteorological Observations (NODC Accession 0117727)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  12. ICON - Salt River Bay 2005 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  13. Frequency modulator. Transmission of meteorological signals in LVC

    International Nuclear Information System (INIS)

    Rivero G, P.T.; Ramirez S, R.; Gonzalez M, J.L.; Rojas N, P.; Celis del Angel, L.

    2007-01-01

    The development of the frequency modulator and demodulator circuit for transmission of meteorological signals by means of fiber optics of the meteorology station to the nuclear reactor unit 1 in the Laguna Verde Central in Veracruz is described. (Author)

  14. ICON - North Norman's Patch Reef 2004 Meteorological and Oceanographic Observations

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Atlantic Oceanographic and Meteorological Laboratory (AOML) of OAR is conducting research on the influence of meteorological and oceanographic factors upon coral...

  15. Calculation of climatic reference values and its use for automatic outlier detection in meteorological datasets

    Directory of Open Access Journals (Sweden)

    B. Téllez

    2008-04-01

    Full Text Available The climatic reference values for monthly and annual average air temperature and total precipitation in Catalonia – northeast of Spain – are calculated using a combination of statistical methods and geostatistical techniques of interpolation. In order to estimate the uncertainty of the method, the initial dataset is split into two parts that are, respectively, used for estimation and validation. The resulting maps are then used in the automatic outlier detection in meteorological datasets.

  16. Statistics of meteorological data at Tokai Research Establishment in JAERI

    International Nuclear Information System (INIS)

    Sekita, Tsutomu; Tachibana, Haruo; Matsuura, Kenichi; Yamaguchi, Takenori

    2003-12-01

    The meteorological observation data at Tokai site were analyzed statistically based on a 'Guideline of meteorological statistics for the safety analysis of nuclear power reactor' (Nuclear Safety Commission on January 28, 1982; revised on March 29, 2001). This report shows the meteorological analysis of wind direction, wind velocity and atmospheric stability etc. to assess the public dose around the Tokai site caused by the released gaseous radioactivity. The statistical period of meteorological data is every 5 years from 1981 to 1995. (author)

  17. Meteorological services annual data report for 2015

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, John [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, Scott [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2016-01-25

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2015. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  18. Meteorological services annual data report for 2016

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, John [Brookhaven National Lab. (BNL), Upton, NY (United States); Smith, S.

    2017-01-18

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2016. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  19. Meteorological Automatic Weather Station (MAWS) Instrument Handbook

    Energy Technology Data Exchange (ETDEWEB)

    Holdridge, Donna J [Argonne National Lab. (ANL), Argonne, IL (United States); Kyrouac, Jenni A [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-08-01

    The Meteorological Automatic Weather Station (MAWS) is a surface meteorological station, manufactured by Vaisala, Inc., dedicated to the balloon-borne sounding system (BBSS), providing surface measurements of the thermodynamic state of the atmosphere and the wind speed and direction for each radiosonde profile. These data are automatically provided to the BBSS during the launch procedure and included in the radiosonde profile as the surface measurements of record for the sounding. The MAWS core set of measurements is: Barometric Pressure (hPa), Temperature (°C), Relative Humidity (%), Arithmetic-Averaged Wind Speed (m/s), and Vector-Averaged Wind Direction (deg). The sensors that collect the core variables are mounted at the standard heights defined for each variable.

  20. Meteorological observatory for Antarctic data collection

    International Nuclear Information System (INIS)

    Grigioni, P.; De Silvestri, L.

    1996-01-01

    In the last years, a great number of automatic weather stations was installed in Antarctica, with the aim to examine closely the weather and climate of this region and to improve the coverage of measuring points on the Antarctic surface. In 1987 the Italian Antarctic Project started to set up a meteorological network, in an area not completely covered by other countries. Some of the activities performed by the meteorological observatory, concerning technical functions such as maintenance of the AWS's and the execution of radio soundings, or relating to scientific purposes such as validation and elaboration of collected data, are exposed. Finally, some climatological considerations on the thermal behaviour of the Antarctic troposphere such as 'coreless winter', and on the wind field, including katabatic flows in North Victoria Land are described

  1. Meteorological services annual data report for 2017

    Energy Technology Data Exchange (ETDEWEB)

    Heiser, John

    2018-01-18

    This document presents the meteorological data collected at Brookhaven National Laboratory (BNL) by Meteorological Services (Met Services) for the calendar year 2017. The purpose is to publicize the data sets available to emergency personnel, researchers and facility operations. Met services has been collecting data at BNL since 1949. Data from 1994 to the present is available in digital format. Data is presented in monthly plots of one-minute data. This allows the reader the ability to peruse the data for trends or anomalies that may be of interest to them. Full data sets are available to BNL personnel and to a limited degree outside researchers. The full data sets allow plotting the data on expanded time scales to obtain greater details (e.g., daily solar variability, inversions, etc.).

  2. Uncertainty in dispersion forecasts using meteorological ensembles

    International Nuclear Information System (INIS)

    Chin, H N; Leach, M J

    1999-01-01

    The usefulness of dispersion forecasts depends on proper interpretation of results. Understanding the uncertainty in model predictions and the range of possible outcomes is critical for determining the optimal course of action in response to terrorist attacks. One of the objectives for the Modeling and Prediction initiative is creating tools for emergency planning for special events such as the upcoming the Olympics. Meteorological forecasts hours to days in advance are used to estimate the dispersion at the time of the event. However, there is uncertainty in any meteorological forecast, arising from both errors in the data (both initial conditions and boundary conditions) and from errors in the model. We use ensemble forecasts to estimate the uncertainty in the forecasts and the range of possible outcomes

  3. LNG Regasification Terminals: The Role of Geography and Meteorology on Technology Choices

    Directory of Open Access Journals (Sweden)

    Randeep Agarwal

    2017-12-01

    Full Text Available Liquefied natural gas (LNG projects are regulated by host countries, but policy and regulation should depend on geography and meteorology. Without considering the role of geography and meteorology, sub-optimal design choices can result, leading to energy conversion efficiency and capital investment decisions that are less than ideal. A key step in LNG is regasification, which transforms LNG back from liquid to the gaseous state and requires substantial heat input. This study investigated different LNG regasification technologies used around the world and benchmarked location and meteorology-related factors, such as seawater temperatures, ambient air temperatures, wind speeds and relative humidity. Seawater vaporizers are used for more than 95% of locations subject to water quality. Ambient air conditions are relatively better for South America, India, Spain and other Asian countries (Singapore, Taiwan, Indonesia, and Thailand and provide a much cleaner regasification technology option for natural and forced draft systems and air-based intermediate fluid vaporizers. On a global basis, cold energy utilization currently represents <1% of the total potential, but this approach could deliver nearly 12 Gigawatt (GW per annum. Overall, climate change is expected to have a positive financial impact on the LNG regasification industry, but the improvement could be unevenly distributed.

  4. Integrating Current Meteorological Research Through Club Fundraising

    Science.gov (United States)

    Gill, S. S.; Kauffman, C. M.

    2003-12-01

    Earth science programs whose focus is primarily an undergraduate education do not often have the funding to take students to very many conferences which could expose the student to new research as well as possible graduate programs and employment opportunities. Conferences also give the more enthusiastic and hardworking students a venue in which to present their research to the meteorological community. In addition, the California University services largely lower income counties, which make student attendance at conferences even more difficult even though the student in SW PA may be individually motivated. This issue is compounded by the fact that the Meteorology Concentration within the Earth Science department at Cal U is composed of only two full-time Professors, which limits the amount of research students can be exposed to within a classroom setting. New research ideas presented at conferences are thus an important mechanism for broadening what could be an isolated program. One way in which the meteorology program has circumvented the funding problem to a certain extent is through an active student club. With nearly 60 majors (3/4 of which are active in club activities, the meteorology club is able to execute a variety of fundraising activities. Money that is raised can then request from student services matching funds. Further money is given to clubs, which are very active not only in fundraising, but using that money for academic related activities. For the last 3 years the club budget has been in the neighborhood of \\$4500. The money has then been used to partially finance student registration and accommodation costs making conference attendance much more affordable. Normally 8-16 students attend conferences that they would otherwise not be able to attend without great expense. There are times when more than 16 students wish to attend, but travel arrangements prohibit more than 16. Moreover club money is also use to supplement student costs on a summer

  5. Uncertainty analysis of hydro-meteorological forecasts

    OpenAIRE

    Grythe, Karl Kristian; Gao, Yukun

    2010-01-01

    Masteroppgave i informasjons- og kommunikasjonsteknologi 2010 – Universitetet i Agder, Grimstad Meteorological and hydrological forecasts are very important to human’s life which concerns agriculture, industry, transport, etc. The Nordic hydropower industry use and develop hydrological forecasting models to make predictions of rivers steam flow. The quantity of incoming stream flow is important to the electricity production because excessive water in reservoir will cause flood ...

  6. Naval Meteorology and Oceanography Command exhibit entrance

    Science.gov (United States)

    2000-01-01

    StenniSphere at NASA's John C. Stennis Space Center in Hancock County, Miss., invites visitors to discover why America comes to Stennis Space Center before going into space. Designed to entertain while educating, StenniSphere includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center.

  7. Naval Meteorology and Oceanography Command exhibit

    Science.gov (United States)

    2000-01-01

    Designed to entertain while educating, StenniSphere at the John C. Stennis Space Center in Hancock County, Miss., includes informative displays and exhibits from NASA and other agencies located at Stennis, such as this one from the Naval Meteorology and Oceanography Command. Visitors can 'travel' three-dimensionally under the sea and check on the weather back home in the Weather Center. StenniSphere is open free of charge from 9 a.m. to 5 p.m. daily.

  8. Operative meteorological data base in Forsmark

    International Nuclear Information System (INIS)

    Appelgren, A.; Hallberg, B.; Nordlinder, S.

    1990-01-01

    This report describes how data collected during a field measurement campaign were analysed and compiled to create a data base for operative use. The data base gives information about the wind and the atmospheric stability at five locations around the Forsmark nuclear power plant. In the measurement campaign, sodar systems and a 100 m high tower at Forsmark were used. Temperature, wind speed and wind direction were measured by sensors on the tower, while wind speed and direction, and the standard deviation of the vertical wind, were monitored by the sodar systems. This gave meteorological data from several heights. At Forsmark, the temperature difference and the wind speed from the tower were used to determine the atmospheric stability. At the sodar locations, the stability was deduced by employing a scheme which considered the season, the time of day, the wind direction and the wind speed. To create the operative data base, the wind speeds and wind directions, respectively, from two locations at the time were correlated. A code for graphical and numerical presentation of the data from the data base was developed. A special system of warnings was included, featuring notification about phenomena such as sea breeze, warnings about large variation in the wind conditions within the area, and warnings for situations in which the meteorological conditions make the results from the atmospheric dispersion calculations uncertain. This feature was implemented to alert the user to the fact that ordinary dispersion and dose calculations, using meteorological data from a single point, might give erroneous results. The operative data base and the presentation code were integrated with the dispersion and dose calculation code AIRPAC/EMMA, which is to be used in case of increased releases from nuclear power plants. The possibility to use the data from the operative data base in the dispersion calculations was investigated. It was found that a modification of AIRPAC/EMMA, in such a

  9. Meteorological experiments for emergency preparedness. part 1

    International Nuclear Information System (INIS)

    Leao, I.L.B.; Nicolli, D.

    1993-12-01

    Since the preliminary studies for the Angra dos Reis Nuclear Power Plant (NPP) siting, by an American consultant company, it was verified that the micro scale and mesoscale meteorological conditions in the region show a unique complex pattern, so that no similar nuclear installation site could be found for reference. Therefore, it was recommended to install onsite a correspondingly complex meteorological data acquisition system which comprises a 100-meter tower with instruments at three different levels and three 15-meter satellite towers on the hills around. In this report, are described the equipment and instruments sent by the IAEA to CNEN as well as the procedures and particular computer programming developed by the staff. It is also reported on the bureaucratic problems and meager budget allocation for the Project which delayed the installation of the two meteorological stations and hindered the implementation of the Project. The equipment for the atmospheric boundary layer sounding were used for the first time in September 1993, when CNEN provided some resource for the purchase of gas and batteries. The first atmospheric sounding campaign showed the occurrence of strong night winds and intense thermal inversion at the higher level of the boundary layer, until now unknown by the Brazilian meteorologists. By way of this report, the staff of meteorologists tries to show the status of Project BRA/09/031 and the know-how gained with it. (author)

  10. Mesoscale meteorological measurements characterizing complex flows

    International Nuclear Information System (INIS)

    Hubbe, J.M.; Allwine, K.J.

    1993-09-01

    Meteorological measurements are an integral and essential component of any emergency response system for addressing accidental releases from nuclear facilities. An important element of the US Department of Energy's (DOE's) Atmospheric Studies in Complex Terrain (ASCOT) program is the refinement and use of state-of-the-art meteorological instrumentation. ASCOT is currently making use of ground-based remote wind sensing instruments such as doppler acoustic sounders (sodars). These instruments are capable of continuously and reliably measuring winds up to several hundred meters above the ground, unattended. Two sodars are currently measuring the winds, as part of ASCOT's Front Range Study, in the vicinity of DOE's Rocky Flats Plant (RFP) near Boulder, Colorado. A brief description of ASCOT's ongoing Front Range Study is given followed by a case study analysis that demonstrates the utility of the meteorological measurement equipment and the complexity of flow phenomena that are experienced near RFP. These complex flow phenomena can significantly influence the transport of the released material and consequently need to be identified for accurate assessments of the consequences of a release

  11. Planned Burn-Piedmont. A local operational numerical meteorological model for tracking smoke on the ground at night: Model development and sensitivity tests

    Science.gov (United States)

    Gary L. Achtemeier

    2005-01-01

    Smoke from both prescribed fires and wildfires can, under certain meteorological conditions, become entrapped within shallow layers of air near the ground at night and get carried to unexpected destinations as a combination of weather systems push air through interlocking ridge-valley terrain typical of the Piedmont of the Soutthern United States. Entrapped smoke...

  12. Comparative Evaluation of the Impact of WRF-NMM and WRF-ARW Meteorology on CMAQ Simulations for O3 and Related Species During the 2006 TexAQS/GoMACCS Campaign

    Science.gov (United States)

    In this paper, impact of meteorology derived from the Weather, Research and Forecasting (WRF)– Non–hydrostatic Mesoscale Model (NMM) and WRF–Advanced Research WRF (ARW) meteorological models on the Community Multiscale Air Quality (CMAQ) simulations for ozone and its related prec...

  13. Paracas dust storms: Sources, trajectories and associated meteorological conditions

    Science.gov (United States)

    Briceño-Zuluaga, F.; Castagna, A.; Rutllant, J. A.; Flores-Aqueveque, V.; Caquineau, S.; Sifeddine, A.; Velazco, F.; Gutierrez, D.; Cardich, J.

    2017-09-01

    Dust storms that develop along the Pisco-Ica desert in Southern Peru, locally known as ;Paracas; winds have ecological, health and economic repercussions. Here we identify dust sources through MODIS (Moderate Resolution Imaging Spectroradiometer) imagery and analyze HYSPLIT (Hybrid Single Particles Lagrangian Integrated Trajectory) model trajectories and dispersion patterns, along with concomitant synoptic-scale meteorological conditions from National Centers for Environmental Prediction/National Center for Atmospheric Research reanalysis (NCEP/NCAR). Additionally, surface pressure data from the hourly METeorological Aerodrome Report (METAR) at Arica (18.5°S, 70.3°W) and Pisco (13.7°S, 76.2°W) were used to calculate Alongshore (sea-level) Pressure Gradient (APG) anomalies during Paracas dust storms, their duration and associated wind-speeds and wind directions. This study provides a review on the occurrence and strength of the Paracas dust storms as reported in the Pisco airfield for five-year period and their correspondence with MODIS true-color imagery in terms of dust-emission source areas. Our results show that most of the particle fluxes moving into the Ica-Pisco desert area during Paracas wind events originate over the coastal zone, where strong winds forced by steep APGs develop as the axis of a deep mid-troposphere trough sets in along north-central Chile. Direct relationships between Paracas wind intensity, number of active dust-emission sources and APGs are also documented, although the scarcity of simultaneous METAR/MODIS data for clearly observed MODIS dust plumes prevents any significant statistical inference. Synoptic-scale meteorological composites from NCEP/NCAR reanalysis data show that Paracas wind events (steep APGs) are mostly associated with the strengthening of anticyclonic conditions in northern Chile, that can be attributed to cold air advection associated with the incoming trough. Compared to the MODIS images, HYSPLIT outputs were able

  14. [Attempt to reduce the formaldehyde concentration by blowing cooled fresh air down in to the breathing zone of medical students from an admission port on the ceiling during gross anatomy class].

    Science.gov (United States)

    Takayanagi, Masaaki; Sakai, Makoto; Ishikawa, Youichi; Murakami, Kunio; Kimura, Akihiko; Kakuta, Sachiko; Sato, Fumi

    2008-09-01

    Cadavers in gross anatomy laboratories at most medical schools are conventionally embalmed in formaldehyde solution, which is carcinogenic to humans. Medical students and instructors are thus exposed to formaldehyde vapors emitted from cadavers during dissection. To reduce high formaldehyde concentrations in the breathing zone above cadavers being examined by anatomy medical students provisionally, dissection beds were located under existing admission ports on the ceiling to supply cooled fresh air from the admission port blowing downward on to the cadaver. In all cases, compared to normal condition, the downward flow of cooled fresh air from an admission port reduced formaldehyde concentrations by 0.09-0.98 ppm and reduced to 12.6-65.4% in the air above a cadaver in the breathing zone of students. The formaldehyde concentrations above cadavers under admission ports were not more than the formaldehyde concentrations between beds representing the indoor formaldehyde concentrations. Although the application of an existing admission port on the ceiling in this study did not remove formaldehyde, the downflow of cooled fresh air using this system reduced the formaldehyde concentration in the air above cadavers being attended by anatomy students during dissections. These results suggest the need for reducing formaldehyde levels in gross anatomy laboratories using fundamental countermeasures in order to satisfy the guidelines of 0.08 ppm established by the World Health Organization and the Japan Ministry of Health, Labor and Welfare.

  15. Urban Air Pollution Climates Throughout the World

    DEFF Research Database (Denmark)

    Hertel, Ole; Goodsite, Michael Evan

    2009-01-01

    The extent of the urban area, the local emission density, and the temporal pattern in the releases govern the local contribution to air pollution levels in urban environments. However, meteorological conditions also heavily affect the actual pollution levels as they govern the dispersion conditio...... population and provide the right basis for future urban air pollution management....

  16. Reliability analysis of meteorological data registered during nuclear power plant normal operation

    International Nuclear Information System (INIS)

    Amado, V.; Ulke, A.; Marino, B.; Thomas, L.

    2011-01-01

    The atmosphere is the environment in which gaseous radioactive discharges from nuclear power plants are transported. It is therefore essential to have reliable meteorological information to characterize the dispersion and feed evaluation models and radiological environmental impact during normal operation of the plant as well as accidental releases. In this way it is possible to determine the effects on the environment and in humans. The basic data needed to represent adequately the local weather include air temperature, wind speed and direction, rainfall, humidity and pressure. On the other hand, specific data consistent with the used model is required to determine the turbulence, for instance, radiation, cloud cover and vertical temperature gradient. It is important that the recorded data are representative of the local meteorology. This requires, first, properly placed instruments, that should be kept in operation and undergoing maintenance on a regular basis. Second, but equally substantial, a thorough analysis of its reliability must be performed prior to storage and/or data processing. In this paper we present the main criteria to consider choosing the location of a meteorological tower in the area of a nuclear power plant and propose a methodology for assessing the reliability of recorded data. The methodology was developed from the analysis of meteorological data registered in nuclear power plants in Argentina. (authors) [es

  17. Fifty years of atmospheric radioactivity monitoring by the German Meteorological Service

    International Nuclear Information System (INIS)

    2006-01-01

    At a commemorative event at the Langen Training and Congress Center on 8 and 9 June 2005 it was brought to the attention of the audience that the German Meteorological Service has been charged with the sovereign task of monitoring atmospheric radioactivity since 8 August 1955. The purpose of this commission at the time was to measure traces of radioactivity in the atmosphere and precipitation and make forecasts on the movement of radioactive air masses. This was motivated by the above-ground nuclear tests carried out by the USA and the Soviet Union and the resulting measurable increase in atmospheric radioactivity levels. Equipped as it was with the necessary infrastructure the German Meteorological Service offered to take on this monitoring task. The importance of being able to assess the meteorological situation and provide data on radioactivity levels in the atmosphere and precipitation became apparent in 1986 after the reactor disaster of Chernobyl. When the Law on Preventive Radiation Protection was enacted in 1986 it was therefore only logical for the German Meteorological Service's commission to monitor atmospheric radioactivity levels to be renewed

  18. Observing Boundary-Layer Winds from Hot-Air Balloon Flights

    NARCIS (Netherlands)

    Bruijn, de E.I.F.; Haan, de S.; Bosveld, F.C.; Wichers Schreur, B.G.J.; Holtslag, A.A.M.

    2016-01-01

    High-resolution upper-air wind observations are sparse, and additional observations are a welcome source of meteorological information. In this paper the potential of applying balloon flights for upper-air wind measurements is explored, and the meteorological content of this information is

  19. Radiation-use efficiency in maize: response to fertilization and meteorological conditions

    International Nuclear Information System (INIS)

    Mikova, A.; Dimitrov, I.; Stoyanov, P.

    2005-01-01

    The effect of fertilization rates on radiation use efficiency (RUE) of maize was examined. The investigations were carried out in Sadovo Experimental station on the leached vertisol. Two years with different growing periods in terms of meteorological conditions were chosen. The RUE by organs and for the whole plant for each phenological phase of maize development was estimated. It was found that the highest RUE in conditions of low air temperature and high air humidity during the first stages of growing period (vegetative growth) are observed in maize grown at 125% of fertilization rate. In conditions of high air temperature and low air humidity during the same stages, the plants, grown at 50% of fertilization rate, utilization of mineral fertilization are more successfully

  20. Regional-to-Urban Enviro-HIRLAM Downscaling for Meteorological and Chemical Patterns over Chinese Megacities

    Science.gov (United States)

    Mahura, Alexander; Nuterman, Roman; Gonzalez-Aparicio, Iratxe; Amstrup, Bjarne; Baklanov, Alexander; Yang, Xiaohua; Nielsen, Kristian

    2015-04-01

    Due to strong economic growth in the past decades, air pollution became a serious problem in megacities and major industrial agglomerations of China. So, information on air quality in these urbanized areas is important for population. In particular, the metropolitan areas of Shanghai, Beijing, and Pearl River Delta are well known as main regions with serious air pollution issues. One of the aims of the EU FP7 MarcoPolo project is to improve existing regional-meso-urban/city scale air quality forecasts using improved emission inventories and to validate modelling results using satellite and ground-based measurements. The Enviro-HIRLAM (Environment - HIgh Resolution Limited Area Model) adapted for the Shanghai region of China is applied for forecasting. The model is urbanized using the Building Effects Parameterization module, which describes different types of urban districts such as industrial commercial, city center, high density and residential with its own characteristics. For sensitivity studies, the model was run in downscaling chain from regional-to-urban scales at subsequent horizontal resolutions of 15-5-2.5 km for selected dates with elevated pollution levels and unfavorable meteorological conditions. For these dates, the effects of urbanization are analyzed for atmospheric transport, dispersion, deposition, and chemical transformations. The evaluation of formation and development of meteorological and chemical/aerosol patterns due to influence of the urban areas is performed. The impact of selected (in a model domain) megacities of China is estimated on regional-to-urban scales, as well as relationship between air pollution and meteorology are studied.